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Abstract

A set S ⊆ R is called a set of range uniqueness (SRU) for the set Pn of
real polynomials of degree at most n, if for all f, g ∈ Pn, f [S] = g[S] =⇒
f = g. We show that for every natural number n, there are SRUs for
Pn of cardinality 2n+ 1, but there are no such SRUs of size 2n. We also
construct SRUs for the set P of all real polynomials.
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1 Introduction

Let F be a set of functions from R to R. Then a set S ⊆ R is called a set of range
uniqueness (SRU) for F if the following implication holds: For all f, g ∈ F ,

f [S] = g[S] =⇒ f = g

where f [S] :=
{
y ∈ R | ∃x ∈ S (f(x) = y)

}
. A set S ⊆ R is called a multiset of

range uniqueness (MSRU) for F if the above implication holds when f [S] and
g[S] are interpreted as multisets, where multisets are collections in which the
elements can appear more than once. The concepts SRU and MSRU carry over
in the obvious way to functions on C instead of R.

Clearly, if S is an (M)SRU for a set F , then S is also an (M)SRU for any subset
G ⊆ F . On the other hand, we will say that S is a disassociating (M)SRU for
G ⊆ F if S is an (M)SRU for G, but not for F .

The question of the existence of SRUs has been studied in the past quite in-
tensively. For example, SRUs always exist (i.e., provable in ZFC) for the set
of all Lebesgue-measurable functions on R, as has been shown by Burke and
Ciesielski in [2]. In [4] Diamond, Pomerance, and Rubel construct SRUs for the
set Cω(C) of entire functions: In particular, for N∗ := N \ {0},

{
1
n | n ∈ N

∗},

∗Partially supported by SNF grant 200021 178851.
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{
1
n! | n ∈ N

∗} and
{

1
ln(n+1) | n ∈ N

∗
}

are SRUs for Cω(C). Notice that, for

example, S :=
{

1
n | n ∈ N

∗} is not an SRU for the set of functions C∞(C),
since

f(x+ iy) =

{
exp

(
− 1
x2

)
sin
(
π
x

)
for x+ iy 6= 0,

0 for x+ iy = 0,

and the zero-function g(x) = 0 agree on S. Hence, S =
{

1
n | n ∈ N

∗} is a dis-
associating SRU for Cω(C) ⊆ C∞(C). The continuum hypothesis implies the
existence of an SRU for the class Cn(R) of continuous nowhere constant func-
tions from R to R (see the work [1] of Berarducci and Dikranjan). Halbeisen,
Lischka and Schumacher have replaced the continuum hypothesis by a weaker
condition (see [5]), but the existence of such a set is not provable in ZFC. In [3],
Burke and Ciesielski have shown that a meager SRU for the family of contin-
uous functions satisfying the Luzin N-condition always exists for the class of
differentiable functions and the class of absolutely continuous functions.

If we consider the full regularity spectrum of function spaces, we see that the
question of SRUs for polynomials has not yet been touched. It is the aim of
this article to close this gap. We start in Section 2 by constructing SRUs for
the set R[x] of real polynomials in one variable. Surprisingly, the question of an
SRU for the finite dimensional vector spaces of polynomials of bounded degree
is then much harder to answer (see Sections 3 and 4).

2 An MSRU and an SRU for the set of polyno-
mials

The aim of this section is to construct an SRU for the setR[x] of real polynomials
in one variable which is not an SRU for the set of entire functions.

Theorem 1. The set N = {0, 1, 2, . . .} of natural numbers is an MSRU for the
set R[x] of real polynomials in one variable.

Proof. Let p ∈ R[x] be a polynomial. We want to show that p can be recon-
structed from the multiset p[N]. To do this, we arrange the multiset p[N] in
ascending order ξ0 ≤ ξ1 ≤ ξ2 ≤ . . . if p[N] is bounded from below, and in
descending order if p[N] is bounded from above. In what follows it suffices to
consider the first case, the second case is analogous.

There exists α ≥ 0 such that p is monotone increasing on [α,∞). Let

M := max
{
p(x) | x ∈ [0, α]

}
.

Then there is a number β ≥ α, β ∈ N, such that p(β) ≥M . It follows that

ξn = p(n) for all n ∈ N, n ≥ β. (1)

Hence, any two polynomials which have the same image of N must agree on an
end-segment of N and are therefore equal.
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In order to actually identify the polynomial p from its multiset p(N), one can
proceed as follows: Consider the difference operator ∆ acting on the set of
sequences:

∆(a0, a1, a2, . . .) := (a1 − a0, a2 − a1, . . .).

We apply ∆ repeatedly to the sequence ξ := (ξ0, ξ1, ξ2, . . .): ∆n+1(ξ) = ∆(∆n(ξ)).
Then it follows from (1) that there is an iteration ∆g(ξ) which has a constant
tail ∆g(ξ) = (∗, ∗, . . . , ∗, c, c, c, . . .), c 6= 0. We conclude that g is the degree
of the polynomial p, and that p is the unique interpolation polynomial of this
degree through the points (β, ξβ), (β + 1, ξβ+1), . . . , (β + g, ξβ+g).

Remarks.

1. Observe that N is not an SRU for the set of polynomials R[x]: For ex-
ample, for the polynomials p(x) = x(x− 1) and q(x) = x(x+ 1), we have
that the sets p[N] and q[N] agree.

2. We also remark, that there is no algorithm which would allow to compute
p from the multiset p[N], since one cannot verify in finitely many steps if
a certain iteration ∆n(ξ) has a constant tail.

3. It is easy to see that every cofinite subset of N is also an MSRU for the set
of polynomials R[x]. On the other hand, a finite set cannot be an MSRU
for the set of polynomials R[x].

4. As a last remark we would like to mention that for any transcendental
number τ , {τ} is an SRU for the set Q[x] of rational polynomials. The
reason is that the reals in the field Q(τ) form an infinite dimensional vector
space over Q with basis {τn | n ∈ N}. With a similar argument one can

show, for example, that for each prime p and for every n ∈ N∗, {p
1

n+1 }
is a disassociating SRU for Qn ⊆ Qn+1, where Qn and Qn+1 denote the
rational polynomials of degree at most n and n+ 1, respectively.

Theorem 2. The set S := N ∪
{
n+ 1

n | n ∈ N, n > 0
}

is an SRU for the set
R[x] of real polynomials in one real variable. S is not an SRU for the set Cω(C)
of entire functions.

Proof. Let p ∈ R[x] be a polynomial. We will show, that p can be reconstructed
from the set p[S]. To do so, we first sort the set p[S] in ascending order ξ0 <
ξ1 < ξ2 < . . . if p[S] is bounded from below, and in descending order if p[S] is
bounded from above. We consider only the first case, the second is analogous.

Let, as in the proof of Theorem 1, β ∈ N be such that p is monotone increasing
on [β,∞) and p(x) ≤ p(β) for all x ∈ [0, β]. In particular, the values p(n) and
p
(
n+ 1

n

)
are distinct for all n ≥ β. Hence, for some k ∈ N we have:

ξk = p(β) < ξk+1 = p
(
β +

1

β

)
< ξk+2 =

= p(β + 1) < ξk+3 = p
(
β + 1 +

1

β + 1

)
< . . .

If we apply repeatedly the difference operator ∆ to the two sequences ξeven :=
(ξ2n)n∈N and ξodd := (ξ2n+1)n∈N we will find that, depending on the parity

3



of k, exactly one of the sequences ∆g(ξeven) or ∆g(ξodd) has a constant tail
(∗, ∗, . . . , ∗, c, c, c, . . .), c 6= 0, for some g ∈ N. In fact, if k is even, then ∆g(ξeven)
has a constant tail and g is the degree of p, if k is odd, then ∆g(ξodd) has
a constant tail and g is the degree of p. Observe that for the the sequence
η = (p(n+ 1

n ))n∈N∗ the m-th difference sequence ∆m(η) can never have a zero
tail for some m ∈ N (and hence, no constant tail for m − 1). This is because
the n-th term in the sequence ∆m(η) is given by a rational function with a pole
in 0 evaluated in n. Such a function cannot have infinitely many zeros.

Now, we consider the unique interpolation polynomial q of degree g through the
points (0, ξk), (1, ξk+2), (2, ξk+4), . . .. Then p must be one of the polynomials
qj(x) := q(x− j), j ∈ N, namely the only qj for which qj(j + 1

j ) = ξk+1.

It remains to show that S is not an SRU for the set of entire functions. Indeed,
according to the Weierstrass product theorem, there is an entire function with
zeros exactly in S and which therefore agrees with the zero function on S.

By applying Theorem 2 separately to the real and imaginary part of complex
polynomials, one obtains the following:

Corollary 3. The set S := N ∪
{
n + 1

n | n ∈ N
∗} is a disassociating SRU

for the set C[z] of complex polynomials in one complex variable considered as a
subset of the entire functions Cω(C).

3 An SRU for Pn of size 2n+ 1

In this section we will show that for every s ≥ 2n + 1 there is an SRU of size
s for the set Pn of all real polynomials of degree at most n. For this, we first
introduce a special type of directed graphs.

Definition 4. A directed graph G is a pair (V,E), where V is a set (the vertices
of G) and E ⊆ V × V (the edges of G). The elements of E are denoted (vi, vj),
where vi, vj ∈ V . For v ∈ V , we define

indegreeG(v) :=
∣∣{v′ ∈ V : (v′, v) ∈ E

}∣∣ ,
outdegreeG(v) :=

∣∣{v′ ∈ V : (v, v′) ∈ E
}∣∣ .

Before we consider special directed graphs, let us give a few general definitions:

Definition 5. Let G = (V,E) be a directed graph.

• A cycle is a subgraph C = (VC , EC) of G with VC = {c0, c1, . . . , cm−1}
and EC = {(ci, c(i+1)modm) | i ∈ N} for an m ≥ 2.

• A loop is a subgraph L = (VL, EL) ofG with VL = {w} and EL = {(w,w)}.

• A path is a subgraph P = (VP , EP ) of G with VP = {p0, p1, . . . , pm−1}
and EC = {(pi, pi+1) | 0 ≤ i ≤ m− 2} for an m ≥ 2.

Let k, n ∈ N∗ with k ≥ 2n and let {x0, x1, . . . , xk} ⊆ R. For all 0 ≤ i ≤ k
let vi := (xi, x

2
i , . . . , x

n
i ). The following family G of directed graphs will play a

crucial role in the construction of SRUs of size 2n+ 1 for the set Pn:
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G is the family of all directed graphs G = (V,E) with vertex set
V = {v0, v1, . . . , vk} and a set E of directed edges (vi, vj), such that
for each v ∈ V we have

indegreeG(v) ≥ 1 and outdegreeG(v) ≥ 1 .

Definition 6. Let l ∈ N. Cycles and loops C0 = (VC0
, EC0

), . . . , Cl = (VCl
, ECl

)
are called obviously different if for every 0 ≤ i ≤ l there is a yi ∈ VCi with

yi /∈

 l⋃
j=0

VCj

 \ VCi .

We partition the family G of directed graphs G = (V,E) into two parts, namely
the graphs of type 1n and the graphs of type 2n.

Definition 7. A graph G = (V,E) ∈ G is of type 1n iff there are at most n
obviously different cycles and loops in G. Otherwise G is of type 2n.

In Sections 3.1 and 3.2, we consider graphs of type 1n and we will show in
Proposition 20, that for every graph G = (V,E) of type 1n and all sets U ∈ Rk+1

which are open in the box topology, there is a (2n+ 1)× (2n+ 1)-matrix

MG(x0, x1, . . . , xk) =


1 vi0 −vj0
1 vi1 −vj1
...

...
...

1 vi2n −vj2n


with il, jl ∈ {0, 1, . . . , k} (for 0 ≤ l ≤ 2n) and (vil , vjl) ∈ E (for 0 ≤ l ≤ 2n), and
an open set UG ⊆ U in the box topology, such that for all (x0, x1, . . . , xk) ∈ UG
we have

det
(
MG(x0, x1, . . . , xk)

)
6= 0 . (2)

Concerning graphs H = (V,E) of type 2n, let C0 = (VC0
, EC0

), . . . , Cn =
(VCn

, ECn
) be n + 1 obviously different loops and cycles. Let xi0 , xi1 , . . . , xin

be n+ 1 vertices of H such that for each 0 ≤ l ≤ n, xil ∈ VCl
and

xil 6∈

(
n⋃

m=0

VCm

)
\ VCl

.

We will show in Section 3.3 that for every open set U ⊆ Rk+1 in the box
topology there is an open set UH ⊆ U in the box topology such that for all
(x0, x1, . . . , xk) ∈ UH we have

det
(
MH(x0, x1, . . . , xk)

)
6= 0 , (3)

where

MH(x0, x1, . . . xk) =


|VC0
|
∑
x∈VC0

x
∑
x∈VC0

x2 . . .
∑
x∈VC0

xn

|VC1 |
∑
x∈VC1

x
∑
x∈VC1

x2 . . .
∑
x∈VC1

xn

...
...

...
. . .

...
|VCn
|
∑
x∈VCn

x
∑
x∈VCn

x2 . . .
∑
x∈VCn

xn

 .
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As a consequence of (2) and (3), and since |G| < ∞, we can find a point
(m0,m1, . . . ,mk) ∈ Rk+1 such that for all G ∈ G of type 1n

det (MG(m0,m1, . . . ,mk)) 6= 0

and for all H ∈ G of type 2n

det (MH(m0,m1, . . . ,mk)) 6= 0.

This leads to the following

Theorem 8. The set S := {m0,m1, . . . ,mk} is an SRU for Pn.

Proof. Assume towards a contradiction that S is not an SRU for Pn. So, there
are two polynomials

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

and
g(x) = b0 + b1x+ b2x

2 + · · ·+ bnx
n

such that f 6= g but f [S] = g[S]. Let G = (V,E) with

V := S and E := {(mi,mj) | f(mi) = g(mj)}.

Note that G ∈ G. There are two cases:

Case 1: G is of type 1n.
In this case

MG(m0,m1 . . . ,mk) =


1 vi0 −vj0
1 vi1 −vj1
...

...
...

1 vi2n −vj2n


has non-zero determinant. Note that for all 0 ≤ l ≤ n we have that

f(mil) = g(mjl) ⇐⇒
(a0 − b0) + (a1mil + · · ·+ anm

n
il

)− (b1mjl + · · ·+ bnm
n
jl

) = 0.

So, f and g satisfy the following system of linear equations:

MG(m0, . . . ,mk) ·



a0 − b0
a1
...
an
b1
...
bn


=



0
0
...
0
0
...
0


.
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Since det (MG(m0, . . . ,mk)) 6= 0, this equation has a unique solution,
namely 

a0 − b0
a1
...
an
b1
...
bn


=



0
0
...
0
0
...
0


.

Therefore, f = g, which is a contradiction to our assumption that S is not
an SRU.

Case 2: G is of type 2n.
In this case

MH(m0, . . . ,mk) =


|VC0 |

∑
x∈VC0

x
∑
x∈VC0

x2 . . .
∑
x∈VC0

xn

|VC1
|
∑
x∈VC1

x
∑
x∈VC1

x2 . . .
∑
x∈VC1

xn

...
...

...
. . .

...
|VCn |

∑
x∈VCn

x
∑
x∈VCn

x2 . . .
∑
x∈VCn

xn


with n+ 1 obviously disjoint cycles C0, . . . , Cn. For all 0 ≤ i ≤ n we have
that ∑

m∈VCi

(f − g)(m) = 0.

In other words, we have to solve the following system of linear equations:

MH(m0, . . . ,mk) ·


a0 − b0
a1 − b1

...
an − bn

 =


0
0
...
0

 .

Since det(MH(m0, . . . ,mk)) 6= 0 this equation has a unique solution,
namely 

a0 − b0
a1 − b1

...
an − bn

 =


0
0
...
0

 .

Therefore, f = g, which is again a contradiction.

It remains to prove the equations (2) and (3), respectively.
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3.1 Graphs of type 1n

Definition 9. Let G = (V,E) ∈ G be a directed graph and let G′ = (V ′, E′) ⊆
G. For each vertex v ∈ V ′ we define

degG′(v) := indegreeG′(v) + outdegreeG′(v).

Moreover, for all v ∈ V \ V ′ we define degG′(v) := 0.

Definition 10. Let n ∈ N∗ and let G = (V,E) be a graph of type 1n with
|V | ≥ 2n+ 1. A nice sequence of length m ∈ N of G is a sequence of graphs

G0 = (V0, E0) ⊆ G1 = (V1, E1) ⊆ · · · ⊆ Gm = (Vm, Em) ⊆ G = (V,E)

with the following properties: For all 0 ≤ i ≤ m

1. we have that |Ei| ∈ {2i, 2i+ 1};

2. there are at most i obviously different loops and cycles in Gi;

3. we have that Ei+1 \ Ei has one of the following forms:

• Ei+1 \Ei = {(vj , vj), (vk, vl)} with degGi
(vj) = 0, and degGi

(vk) = 0
or degGi

(vl) = 0;

• Ei+1 \ Ei = {(vj , vk), (vl, vj)} with degGi
(vj) = 0.

Definition 11. Two directed graphsG1 = (V1, E1) andG2 = (V2, E2) are called
undirected edge disjoint if and only if the corresponding undirected graphs do
not share any edges.

Lemma 12. Let n ∈ N∗. Every graph G = (V,E) of type 1n with |V | ≥ 2n+ 1
has a nice sequence

G0 = (V0, E0) ⊆ G1 = (V1, E1) ⊆ . . . ⊆ Gm = (Vm, Em) ⊆ G

of length m with |Em| ≥ 2n+ 1.

Proof. Let G = (V,E) be a graph of type 1n. Let L be the set of all isolated
loops of G. To be more precise

L := {({v}, {(v, v)}) ⊆ G | degG(v) = 2}.

Notice that since G is of type 1n, |L| ≤ n, and since G ∈ G, at least n+ 1 edges
belong to cycles or paths.

How to construct Gm. (See also Example 13.)

We start with the empty graph H0 := (∅, ∅).

Step 1: Adding cycles
Let C0, C1, . . . , Cl be a maximal family of pairwise disjoint cycles. First,
add C0 = (VC0

, EC0
) to H0, and then add a maximal subset M ⊆ L to

H0 + C0 with
|M| ≤ |EC0

| − 2.
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The resulting graph is called H0
1 . Furthermore, let L0

1 := L \M. Repeat
the same construction with respect to C1, a maximal subset M ⊆ L0

1,
and the graph H0

1 , in order to obtain H1
1 , and so on. We define H1 =

(VH1 , EH1) := H l
1 and L1 := Ll1. Note that in this graph |VH1 | = |EH1 |.

Step 2: Adding paths
Let P0 = (VP0

, EP0
) be a maximal path in G which is undirected edge

disjoint from H1. In addition, we require that all vertices of P1 (except
possibly the first or the last one) are disjoint from the vertices in H1. We
allow P0 to start and end in the same vertex if this vertex is in H1. In this
case, P0 is a cycle which shares a vertex with one of the cycles C0, . . . , Cl.
Since G ∈ G, we have that if P0 starts (or ends) in a vertex which is not
in H1, it starts (or ends) in a loop, and in this case, we add these loops to
P0. Let l0 ∈ {0, 1, 2} be the number of loops in P0. There are two cases:

• |L1| ≤ |EP0 | − l0 − 1
If |EP0 | + |L1| is odd, then remove the first edge (which might be a
loop) from the path P0. Otherwise, do not modify P0. Then add P0

and L1 to H1. This new graph is called H0
2 and we define L0

2 := ∅.
Note that there is a surjection from the set of all edges of H0

2 to the
set of all vertices of H0

2 .

• |L1| > |EP0 | − l0 − 1, i.e., |L1| ≥ |EP0 | − l0
Let M ⊆ L1 be a (|EP0

| − l0 − 1)-element subset. Now, remove the
first edge (which might be a loop) from P0, add this new path to H1,
and add M to H1. The resulting graph is called H0

2 . Moreover we
define L0

2 := L1 \M. Note that there is a surjection from the set of
all edges of H0

2 to the set of all vertices of H0
2 .

Repeat the same construction with respect to H0
2 and L0

2, in order to

obtain H1
2 , and so on. Finally, let m :=

⌊
|EGm |

2

⌋
, denote the resulting

graph Gm = (VGm
, EGm

) and the resulting set of loops Lm. Note that by
construction, |VGm

| ≤ |EGm
|, and since |L| ≤ n, Lm = ∅.

How to construct Gi for 1 ≤ i ≤ n. (See also Example 14.)

We start with the graph Gm and first construct Gm−1. For this let C0, . . . , Cl
be the pairwise disjoint cycles from Step 1 and let P0, . . . , Ps be the paths from
Step 2 in the order we added them to the graph. For each 0 ≤ i ≤ l letMi ⊆ L
be the set of all loops we added to the graph together with the cycle Ci. And
for each 0 ≤ j ≤ s let Nj ⊆ L be the set of all loops we added to the graph
together with the path Pj . First of all we will completely remove EPs

from Gm.
This is possible because |EPS

|+ |Ns| is even.

Case 1: There is a loop (v, v) in Ps = (VPs , EPs).
We define

Gm−1 := (VGm , EGm \ {(a, b) ∈ EPs | a = v or b = v}).

Remove the vertex v and the corresponding edges from Ps.
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Case 2: We are not in Case 1 and there is a vertex v in Ps with degGm
(v) = 1.

If Ns 6= ∅ let e0 be a loop from Ns. Moreover let e1 ∈ EPs
be the edge

that contains v. Define

Gm−1 := (VGm
, EGm

\ {e0, e1}).

Remove v and e1 from Ps.
If Ns = ∅ there is a vertex w ∈ VPs

with degGm
(w) = 2. We define

Gm−1 := (VGm
, EGm

\ {(a, b) ∈ EPs
| a = w or b = w}).

Remove w and the corresponding edges from Ps.

Case 3: We are not in one of the previous cases.
There is a vertex v ∈ VPs

with degGm
(v) = 2. We define

Gm−1 := (VGm , EGm \ {(a, b) ∈ EPs | a = v or b = v}).

Remove v and the corresponding edges from Ps.

After doing this process ks :=
|EPs |+|Ns|

2 many times, we found a sequence

Gm ⊇ Gm−1 ⊇ · · · ⊇ Gm−ks
of graphs. Do the same with all other paths Ps−1, . . . , P1, P0.

Without loss of generality assume that Gm−ks contains only cycles from Step

1 and the loops
⋃l
i=0Mi. We will now remove all but at most one edge of Cl

from Gm−ks .

Case 1: Each vertex in VCl
has degree 2 or 0.

Let v ∈ VCl
with degree degGm−ks

(v) = 2. We define

Gm−ks−1 := (VGm−ks
, EGm−ks

\ {(a, b) ∈ ECl
| a = v or b = v}).

Remove v and the corresponding edges from Cl.

Case 2: There is a vertex v in VCl
with degree 1.

If Ml 6= ∅ let e0 be a loop from Ml. Moreover, let e1 ∈ ECl
be the edge

that contains v. Define

Gm−ks−1 := (VGm−ks
, EGm−ks

\ {e0, e1}).

Remove e1 and v from Cl. If Ml = ∅ there is a vertex w ∈ VCl
with

degGm−ks
(w) = 2. We define

Gm−ks−1 := (VGm−ks
, EGm−ks

\ {(a, b) ∈ EPs
| a = w or b = w}).

Remove w and the corresponding edges from Cl.

Repeat this process until |ECl
| ≤ 1, and then, repeat this procedure again with

all other cycles. So, we found a sequence of graphs

Gm−ks ⊇ Gm−ks−1 ⊇ · · · ⊇ Gt
for some t ∈ N. If |EGt

| ≥ 2, then any two distinct edges e0, e1 ∈ EGt
are

from two different disjoint cycles. So, we can remove them. The resulting graph
is called Gt−1. Redo this process until we found a graph with at most one
edge.
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Example 13. In this example we will construct the graph G9 for the following
graph G of type 1n:

Figure 1: Graph G = (V,E).

Figure 2: Cycle C0. Figure 3: Graph H1.

Figure 4: Path P0. Figure 5: Graph H0
2 .

Figure 6: Path P1. Figure 7: Graph H1
2 .

Figure 8: Path P2. Figure 9: Graph H2
2 .

Figure 10: Path P3. Figure 11: Graph H3
2 = G9.
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Example 14. In this example we will construct a nice sequence for the graph
G of Example 13. We start with the graph Gm = G9 we found in Example 13:

Figure 12: Graph G9.

Figure 13: Graph G8. Figure 14: Graph G7.

Figure 15: Graph G6. Figure 16: Graph G5.

Figure 17: Graph G4. Figure 18: Graph G3.

Figure 19: Graph G2. Figure 20: Graph G1.

Corollary 15. Let n ∈ N∗, every graph G = (V,E) of type 1n with |V | ≥ 2n+1
has a nice sequence

G0 = (V0, E0) ⊆ G1 = (V1, E1) ⊆ . . . ⊆ Gn = (Vn, En) ⊆ G

with |En| = 2n+ 1.

Proof. Let G = (V,E) be a graph of type 1n. By Lemma 12, there is a nice
sequence

H0 = (V0, E0) ⊆ H1 = (V1, E1) ⊆ · · · ⊆ Hm = (Vm, Em)

12



with |Ei| ∈ {2i, 2i + 1} (for all 0 ≤ i ≤ n). If |En| = 2n + 1, then we are done
because

H0 ⊆ H1 ⊆ · · · ⊆ Hn

is a nice sequence with the right form. So, assume that |En| = 2n. In this case
we have that m ≥ n + 1. Choose any e0 ∈ E1 (if possible, let e0 be a loop).
Then (

V1, E1 \ {e0}
)
⊆
(
V2, E2 \ {e0}

)
⊆ . . . ⊆

(
Vn+1, En+1 \ {e0}

)
is a nice sequence with the right form.

3.2 Matrices of type 1n

Let k ≥ n, and for all 0 ≤ i, j ≤ k and all 0 ≤ s ≤ n define

1 vi − vj := (1, xi, x
2
i , . . . , x

s
i ,−xj ,−x2j , . . . ,−xsj).

For every graph G = (V,E) of type 1n choose a nice sequence

G0 = (V0, E0) ⊆ G1 = (V1, E1) ⊆ · · · ⊆ Gn = (Vn, En)

with |En| = 2n + 1. For every graph G of type 1n and all 0 ≤ s ≤ n let
MGs

(x0, . . . , xk) be a square matrix with pairwise different rows 1 vi −vj where
(vi, vj) ∈ EGs

. For all 0 ≤ s ≤ n we define

Cs :=
{
MGs

(x0, . . . , xk) | G is a graph of type 1n
}
.

Furthermore, we define MG := MGn
(x0, . . . , xk).

Definition 16. Let n ∈ N∗, let k ≥ 2n, let 1 ≤ s ≤ n, and let C ∈ Cs. Assume
that C has two rows of the form

1 vi − vj
1 vt − vl

with 0 ≤ i, j, t, l ≤ k. Then we define C1 vi −vj ,1 vt −vl to be the matrix that
we obtain from C by deleting the rows 1 vi − vj and 1 vt − vl, as well as the
(s+ 1)-th column and the (2s+ 1)-th column.

Lemma 17. Let n ∈ N∗, let k ≥ 2n, let 1 ≤ s ≤ n and let C ∈ Cs. Moreover,
let 0 ≤ i, j, t ≤ k such that C has two rows of the form

1 vi − vj
1 vj − vt

with i 6= j, t 6= j and there are no other rows which contain vj or −vj. We
assume that det(C1 vi −vj ,1 vj −vt) 6≡ 0. Then we have that det(C) 6≡ 0.

Proof. First of all, we do a Laplace expansion of C along the row 1 vi −vj . So,
we have that

det(C) = ε0x
s
j det(C) + γ,

13



where C is the matrix that we obtain from C by deleting the row 1 vi − vj and
the (2s+ 1)-th column. Moreover, γ is a polynomial in which there is no term
of the form x2sj and we have that ε0 ∈ {−1, 1}. Now we do a Laplace expansion
along the remainders of the row 1 vj − vt. We get

det(C) = ε1x
s
j det(C1 vi −vj ,1 vj −vt) + δ,

where δ is a polynomial in which there is no term of the form xsj and ε1 ∈ {−1, 1}.
So, we have that

det(C) = ε0ε1x
2s
j det(C1 vi −vj ,1 vj −vt) + ε0x

s
jδ + γ.

In the polynomial ε0x
s
jδ + γ there is no term of the form x2sj and

ε0ε1x
2s
j det(C1 vi −vj ,1 vj −vt) 6≡ 0 ,

which concludes the proof of the lemma.

Lemma 18. Let n ∈ N∗, let k ≥ 2n, let 1 ≤ s ≤ n and let C ∈ Cs. Moreover,
let 0 ≤ i, j, t ≤ k such that C has two rows

1 vi − vi
1 vj − vt

with t 6= j and there are no other rows which contain vi, vj ,−vi or −vj. We
assume that det(C1 vi −vi,1 vj −vt) 6≡ 0. Then we have that det(C) 6≡ 0.

Proof. First of all, we do a Laplace expansion of C along the row 1 vi − vi. So,
we have that

det(C) = ε0x
s
i det(C) + γ,

where C is the matrix that we obtain from C by deleting the row 1 vi − vi and
the (2s+ 1)-th column. Moreover, γ is a polynomial in which there is no term
of the form xsix

s
j and ε0 ∈ {−1, 1}. Now, we do a Laplace expansion along the

remainders of the row 1 vj − vt. We get

det(C) = ε1x
s
j det(C1 vi −vi,1 vj −vt) + δ,

where δ is a polynomial in which there is no term of the form xsj and ε1 ∈ {−1, 1}.
So, we have that

det(C) = ε0ε1x
s
ix
s
j det(C1 vi −vi,1 vj −vt) + ε0x

s
i δ + γ.

In the polynomial ε0x
s
i δ + γ there is no term of the form xsix

s
j and

ε0ε1x
s
ix
s
j det(C1 vi −vi,1 vj −vt) 6≡ 0 ,

which concludes the proof of the lemma.

Lemma 19. Let n ∈ N∗, let k ≥ 2n, let 1 ≤ s ≤ n and let C ∈ Cs. Moreover,
let 0 ≤ i, j, t ≤ k such that C has two rows

1 vi − vi
1 vt − vj

with t 6= j and there are no other rows which contain vi, vj ,−vi or −vj. We
assume that det(C1 vi −vi,1 vj −vt) 6≡ 0. Then we have that det(C) 6≡ 0.
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Proof. The proof is similar to the proof of Lemma 18.

Proposition 20. Let n ∈ N∗, k ≥ 2n and MG = MG(x0, . . . , xk) ∈ Cn. Then
for every open set U ⊆ Rk+1 in the box topology there is an open set UG ⊆ U
in the box topology such that

det(MG) 6= 0

for all (x0, x1, . . . , xk) ∈ UG.

Proof. It suffices to prove that det(MG) is a non-zero polynomial in the k + 1
variables x0, x1, . . . , xk. Let

G0 ⊆ G1 ⊆ · · · ⊆ Gn

be the nice sequence we used to construct MG. Note that MG0 =
(
1
)
, and

therefore, det(MG0
) = 1 6≡ 0. Assume that for an i with 0 ≤ i < n, we have

already shown that det(MGi
) 6≡ 0. Now, we want to show that det(MGi+1

) 6≡ 0.
For this, let a and b be the two rows which are added to MGi

in order to obtain
MGi+1 . Since the matrices MGi are constructed with a nice sequence, these two
rows have one of the following three forms:

1. a = 1 vi − vj and b = 1 vj − vt with 0 ≤ i, j, t ≤ k, i 6= j, t 6= j and
there are no other rows in MGi+1

which contain vj or −vj . In this case
we apply Lemma 17.

2. a = 1 vi − vi and b = 1 vj − vt with 0 ≤ i, j, t ≤ k, t 6= j and there are
no other rows in MGi+1

which contain vi, vj ,−vi or −vj . In this case we
apply Lemma 18.

3. a = 1 vi − vi and b = 1 vt − vj with 0 ≤ i, j, t ≤ k, t 6= j and there are
no other rows in MGi+1

which contain vi, vj ,−vi or −vj . In this case we
apply Lemma 19.

So, we see that det(MGi+1
) 6≡ 0, which concludes the proof of the proposition.

3.3 Graphs and Matrices of type 2n

Let
f(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n

and
g(x) = b0 + b1x+ b2x

2 + · · ·+ bnx
n

be two polynomials and assume that the graph Gf,g contains at least n + 1
obviously different loops and cycles C0, C1, . . . , Cn. For all 1 ≤ i ≤ n + 1 we
have that ∑

x∈VCi

(f − g)(x) = 0.
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The matrix belonging to this system of linear equations is given by
|VC0
|
∑
x∈VC0

x
∑
x∈VC0

x2 . . .
∑
x∈VC0

xn

|VC1 |
∑
x∈VC1

x
∑
x∈VC1

x2 . . .
∑
x∈VC1

xn

...
...

...
. . .

...
|VCn
|
∑
x∈VCn

x
∑
x∈VCn

x2 . . .
∑
x∈VCn

xn


︸ ︷︷ ︸

=:MGf,g
(x0,...xk)


a0 − b0
a1 − b1

...
an − bn

 =


0
0
...
0

 .

Our goal is to show that det
(
C(x0, . . . , xk)

)
6≡ 0 (i.e., det(C(x0, . . . , xk)), de-

pending on x0, . . . , xk, is not the zero-function). Without loss of generality we
can assume that for all 0 ≤ i ≤ n we have that xi ∈ VCi

and

xi /∈

 n⋃
j=0

VCj

 \ VCi .

Then we have that

det(C(x0, x1, . . . ,xn, 0, . . . , 0)) = det


|VC0
| x0 x20 . . . xn0

|VC1
| x1 x21 . . . xn1

...
...

...
. . .

...
|VCn
| xn x2n . . . xnn



=

n∑
l=0

(−1)l+2|VCl
|det



x0 x20 . . . xn0
x1 x21 . . . xn1
...

...
. . .

...
xl−1 x2l−1 . . . xnl−1
xl+1 x2l+1 . . . xnl+1

xl+2 x2l+2 . . . xnl+2
...

...
. . .

...
xn x2n . . . xnn



=

n∑
l=0

(−1)l|VCl
|
∏

0≤i<j≤n
i,j 6=l

(xj − xi) 6≡ 0.

Therefore, det(MGf,g
(x0, . . . , xk)) 6≡ 0. So, for every open set U ⊆ Rk+1 in the

box topology there is an open set UGf,g
⊆ U in the box topology such that for

all (x0, . . . , xk) ∈ UGf,g

det(MGf,g
(x0, . . . , xk)) 6= 0.

4 There are no SRUs of size 2n for Pn

In this section we will show that for every n ∈ N, whenever S is a set of
cardinality 2n, then there are two polynomials f, g ∈ Pn with f 6= g and f [S] =
g[S]. In other words, there are no SRUs for Pn of size 2n.
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Let S = {x1, x2, . . . , x2n} ⊆ R be a set with 2n pairwise different points. With-
out loss of generality we can assume that 0 < x1 < x2 < · · · < x2n−1 < x2n.
Our goal is to find two polynomials f, g ∈ Pn with f 6= g and

f [S] = g[S].

In fact, these two polynomials will have the form

g(x) =

n∑
j=1

bjx
j with bj ∈ R for j = 1, . . . , n,

and
f(x) = 1− g(x).

Moreover, they will even satisfy the equations

f(x2i) = g(x2i−1) and f(x2i−1) = g(x2i) (4)

for all 1 ≤ i < n. In order to prove that such polynomials f and g exist, we
have to show that the following linear equation is solvable:

x1 + x2 x21 + x22 . . . xn1 + xn2
x3 + x4 x23 + x24 . . . xn3 + xn4

...
...

. . .
...

x2n−1 + x2n x22n−1 + x22n . . . xn2n−1 + xn2n


︸ ︷︷ ︸

=:An=An(x1,x2,...,x2n−1,x2n)


b1
b2
...
bn

 =


1
1
...
1

 .

To see this, we will show that det (An) > 0 for every n ∈ N∗.

Definition 21. For every n ∈ N∗ let πn be the family of all permutations of
{1, 2, . . . , n}. For each σ ∈ πn, let sgn(σ) be the signum of the permutation σ.

Definition 22. For every n ∈ N∗ we define

Y n :=
{

(y1, y2, . . . , yn) ∈ Rn | yi ∈ {x2i−1, x2i} for all 1 ≤ i ≤ n
}
.

Lemma 23. For every n ∈ N∗ we have that

det(An) =
∑

(y1,y2,...,yn)∈Y n

∑
σ∈πn

(−1)sgn(σ)y
σ(1)
1 y

σ(2)
2 . . . yσ(n)n .

Proof. The prove is by induction on n.

n = 1 : We have that det(A1) = x1 + x2.

n 7→ n + 1 : We do a Laplace expansion of An+1 = An+1(x1, x2, . . . , x2n+2)
along the (n+ 1)-th column. So, we obtain

det(An+1) =

n+1∑
i=1

(−1)n+1+i(xn+1
2i−1 + xn+1

2i ) det
(
An(x1, . . . , x2i−2, x2i+1, . . . , x2n+2)

)
.
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Note that the number of inversions x2i−1 causes (or analogously x2i causes) is
equal to n + 1 − i (e.g., if n = 3 and i = 2, then the number of inversions x3
causes in the term x22x

4
3x

1
6x

3
8 is equal to 2). So, with the induction hypothesis

we get that

det(An+1) =
∑

(y1,y2,...,yn+1)∈Y n+1

∑
σ∈πn+1

(−1)sgn(σ)y
σ(1)
1 . . . y

σ(n+1)
n+1 .

Lemma 24. For every n ∈ N∗ and all y1, y2, . . . , yn ∈ R let

Vn(y1, y2, . . . , yn) :=


y1 y21 . . . yn1
y2 y22 . . . yn2
...

...
. . .

...
yn y2n . . . ynn

 .

This is a Vandermonde matrix which satisfies

det(Vn(y1, . . . , yn)) =
∑
σ∈πn

(−1)sgn(σ)y
σ(1)
1 y

σ(2)
2 . . . yσ(n)n . (5)

Proof. It is well-known that

det
(
Vn(y1, . . . , yn)

)
=

(
n∏
k=1

yk

) ∏
1≤i<j≤n

(yj − yi)


and by expanding the right hand side we obtain (5).

Corollary 25. For all n ∈ N∗ we have

det(An(x1, x2, . . . , x2n)) > 0.

Proof. By combining Lemma 23 and Lemma 24 we get that

det (An(x1, x2, . . . , x2n)) =
∑

(y1,y2,...,yn)∈Y n

det (Vn(y1, . . . , yn)) . (6)

Finally, since

det
(
Vn(y1, . . . , yn)

)
=

 ∏
1≤i<j≤n

(yj − yi)

( n∏
k=1

yk

)
> 0

we obtain
det(An(x1, x2, . . . , x2n)) > 0

which completes the proof.

Remark 26. Note that (6) provides a formula for the determinant of the sum
of two arbitrary Vandermonde matrices. Note also that the assumption 0 <
x0 < x1 < . . . , x2n−1 < x2n is not necessary to derive this formula.
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Example 27. Let S :=
{

3
5 ,

11
10 ,

3
2 ,

23
10 , 5,

26
5 ,

63
10 , 9

}
. In the following picture we

can see two polynomials f and g of degree 4 with f [S] = g[S] but f 6= g. These
polynomials indicate that S is not an SRU for P4.

1 2 3 4 5 6 7 8 9 10

−1

−0.5

0.5

1

1.5

x

y

Example 28. By definition each SRU for Pn is an MSRU for Pn. In Section
4 equation (4) we saw that for every set S = {x1, . . . , x2n} of size 2n there are
polynomials f, g ∈ Pn with f(x2i) = g(x2i−1), which implies that the size of an
MSRU for Pn is at least 2n + 1. Observe that the set S = {0, 1, 4, 9, 16} is an
MSRU but not an SRU for quadratic polynomials: Indeed, for f(x) = x2 − 16x
and g(x) = −x2 + 16x − 63 we have f [S] = g[S] = {0,−15,−48,−63} (f
takes the value 0 twice, g takes the value −63 twice). Hence, in general, not
every MSRU is an SRU for polynomials of bounded degree. Incidentally, the
set S = {1, 4, 9, 16, 25} is an an SRU for quadratic polynomials.

5 Open Questions

1. Is there a simple way to characterise SRUs and MSRUs for the set Pn?

2. A setM ⊆ R is called a magic set for Pn if for all non-constant polynomials
f, g ∈ Pn, f [M ] ⊆ g[M ] =⇒ f = g. The question is now: Is there a
magic set for Pn of size 2n + 1? Note that since there is no SRU for Pn
of size 2n, there is no magic set for Pn of size 2n.
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