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Abstract

Let F be a set of functions with common domain X and common range Y .
A set S ⊆ X is called a set of range uniqueness (SRU) for F , if for all
f, g ∈ F

f [S] = g[S]⇒ f = g.

Let Pn,k be the set of all real polynomials in n variables of degree at most k
and let Lk(Rn,Rn) be the set of all linear functions f : Rn → Rn with
rank k. We show that there are SRU’s for Pn,k of cardinality 2

(
n+k
k

)
− 1,

but there are no such SRU’s of size 2
(
n+k
k

)
−2 or less. Moreover, we show

that there are SRU’s for Lk(Rn,Rn) of size{
2n− 1, if k = 1,

2n− k + 1, if k > 1,

but there are no such SRU’s of smaller size.

Key words: sets of range uniqueness, polynomials, magic sets, unique range, Vander-

monde

Mathematics Subject Classification: 26C05, 11C20

1 Introduction

Let F be a set of functions with a common domain X and a common range Y .
A set S ⊆ X is called a set of range uniqueness (SRU) for F , if for all f, g ∈ F ,

f [S] = g[S] =⇒ f = g,

where f [S] :=
{
f(s) ∈ Y | s ∈ S

}
. The set S ⊆ X is called a magic set for F if

for all f, g ∈ F ,
f [S] ⊆ g[S] =⇒ f = g.

Clearly, if S is an SRU or a magic set for F , then S is also an SRU or a magic
set for any subset G ⊆ F .

∗Partially supported by SNF grant 200021 178851.
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Burke and Ciesielski have shown in [2] that SRU’s always exist (i.e., provable in
ZFC) for the set of all Lebesgue-measurable real functions on R. In [4] Diamond,
Pomerance, and Rubel construct SRU’s for the set Cω(C) of entire functions.
The continuum hypothesis implies the existence of an SRU for the class Cnwc(R)
of continuous nowhere constant functions from R to R. This has been shown
by Berarducci and Dikranjan in [1]. Halbeisen, Lischka and Schumacher have
replaced the continuum hypothesis by a weaker condition (see [7]). However, the
existence of such a set is not provable in ZFC as Ciesielski and Shelah showed
in [3].

At the other end of the regularity spectrum of functions lies the following result:
For every s ≥ 2n + 1 there exist SRU’s of cardinality s for the set of all real
polynomials on R of degree n. But there is no SRU of cardinality 2n for this set
(see [5]). Magic sets for polynomials are constructed in [6]: For polynomials of
degree n there are magic sets of cardinality s ≥ 2n+ 1 and no SRU’s of smaller
size exist. And there are SRU’s for polynomials which are not magic.

In this paper we study SRU’s for the set of multivariate real polynomials in n
variables of degree at most k, for linear and affine functions from Rn to Rn and
for linear functions from Rn to Rn with given rank k.

2 Linear and affine functions

We will begin this section by introducing the following vector spaces

A(Rn,R) := {f : Rn → R, x 7→ 〈x, a〉+ b | a ∈ Rn, b ∈ R}
Pn := {p ∈ R[x] | deg(p) ≤ n}

where 〈 · , · 〉 is the Euclidean inner product. Note that both A(Rn,R) and Pn
are n+ 1 dimensional vector spaces.

Notice that
Φ : A(Rn,R)→ Pn, f 7→ f ◦ h,

where h : R → Rn, x 7→ (x, x2, x3, . . . , xn), is an isomorphism of vector spaces.
Then we have:

Theorem 1. If S is an SRU for Pn, then S := h[S] ⊆ Rn is an SRU for
A(Rn,R).

Proof. Let f, g ∈ A(Rn,R) be such that f
[
S
]

= g
[
S
]
. Then consider the

polynomials F := Φ(f) and G = Φ(g) in Pn. We have

F [S] = (f ◦ h)[S] = f [h[S]] = f
[
S
]

= g
[
S
]

= g[h[S]] = (g ◦ h)[S] = G[S]

and hence F = G, since S is an SRU for Pn. As Φ is an isomorphism of the
vector spaces A(Rn,R) and Pn it follows f = g. �

We now conclude immediately by the main result in [5, Section 3]:

Corollary 2. For every s ≥ 2n + 1 there exists an SRU of size s for the set
A(Rn,R).
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We transfer this finding to the n-dimensional vector space

L(Rn,R) := {f : Rn → R, x 7→ 〈x, a〉 | a ∈ Rn}

of linear functionals on Rn. Observe that

Ψ : L(Rn,R)→ A(Rn−1,R), f 7→ f ◦ k,

where k : Rn−1 → Rn, x 7→ (x, 1), is an isomorphism of vector spaces. We find:

Theorem 3. If S is an SRU for A(Rn−1,R), then S := k[S] is an SRU for
L(Rn,R).

Proof. Let f, g ∈ L(Rn,R) be such that f
[
S
]

= g
[
S
]
. Then consider F := Ψ(f)

and G = Ψ(g) in A(Rn−1,R). We have

F [S] = (f ◦ k)[S] = f [k[S]] = f
[
S
]

= g
[
S
]

= g[k[S]] = (g ◦ k)[S] = G[S]

and hence F = G, because S is an SRU for A(Rn−1,R). Since Ψ is an isomor-
phism of the vector spaces L(Rn,R) and A(Rn−1,R) it follows f = g. �

Thus, by Corollary 2 we obtain:

Corollary 4. For every s ≥ 2n − 1 there exists an SRU of size s for the set
L(Rn,R).

Now we show, that Corollary 4 is optimal.

Theorem 5. Let S = {x1, x2, . . . , xk} ⊆ Rn with k ≤ 2n − 2. Then there are
two functionals f, g ∈ L(Rn,R) with f [S] = g[S] but f 6= g. In other words:
There is no SRU for L(Rn,R) of cardinality at most 2n− 2.

Proof. We are looking for functions f(x) = 〈a, x〉, g(x) = 〈b, x〉 with a, b ∈ Rn,
a 6= b. If U := span{x1, . . . , xk} 6= Rn, we can choose f ≡ 0 and extend g = 0
on U nontrivially to Rn, and we are done with f [S] = g[S] = {0}. So, we may
assume without loss of generality that U = Rn.

Consider the homogeneous linear system of equations

〈a, xi〉 = 〈b, xi+1〉 for i = 1, 2, . . . , k, (1)

where we take indices cyclically; (a, b) ∈ R2n are the unknowns. This system has
rank at most k ≤ 2n−2 and therefore the null space is at least two-dimensional.
Hence there exist non-trivial solutions (a, b) ∈ R2n of (1). Observe that solutions
for which a = b span at most a one dimensional subspace, since a = b implies
〈a, xi〉 = 〈b, xi〉 = c for all i for some constant c. �

It now follows from Theorem 3 and Theorem 5 that also Corollary 2 is optimal:

Corollary 6. There is no SRU for A(Rn,R) of cardinality ≤ 2n.

Remark 7. It is clear that S ⊆ Rn is an SRU for A(Rn,Rm) of vector valued
affine functions if and only if S is an SRU for A(Rn,R). And the analogous
statement holds for vector valued linear maps L(Rn,Rm). Hence the results of
this section hold mutatis mutandis for A(Rn,Rm) and L(Rn,Rm), respectively.
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3 Generalized Vandermonde matrices

Let n ∈ N \ {0}, k ∈ N be fixed, arbitrary natural numbers. Let us denote by
s ∈ N, the number of all possible monomials in n variables of degree at most k,
and for 0 ≤ p ≤ s, we denote sp the number of monomials of degree exactly p.
The latter, sp, is a standard combinatorial result call “Stars and Bars” problem
with k stars and n− 1 bars1, and hence,

for all p with 0 ≤ p ≤ k, sp =

(
n+ p− 1

p

)
.

Using the combinatorial identity
(
a+1
b+1

)
=
(
a
b+1

)
+
(
a
b

)
, we also see that(

n+ 0− 1

0

)
+

(
n+ 1− 1

1

)
+ . . .+

(
n+ k − 1

k

)
=

(
n+ k

k

)
.

In other words, the identity s =
∑k
p=0 sp holds as a direct consequence. For all

1 ≤ i ≤ s, let

xi := (xi,1, xi,2, . . . , xi,n) ∈ Rn and αi ∈ R \ {0}.

In short, the xi are real vectors and the αi are non-zero real scalars for all
1 ≤ i ≤ s.

For every 0 ≤ i ≤ k, let γi be the following collection of n-tuples:

γi :=
{

(m1, . . . ,mn) ∈ Nn
∣∣ n∑
j=1

mj = i
}
.

Intuitively, each n-tuple in γi represents the exponents of a monomial of degree
exactly i. Note that the sets γi are pairwise disjoint. Without loss of generality,
we will order the elements in γi lexicographically. For every 1 ≤ j ≤ k and
every β = (β1, . . . , βn) ∈ γj , we define

xβi :=

n∏
l=1

xβl

il ,

where xil is the lth component of xi. In particular, xβi represents the monomial
whose exponents are given by β, and the value of the lth variable is determined
by the lth component of xi. We will also adopt the following notation to simplify
writing: For all 1 ≤ i, j ≤ let

x
γj
i :=

(
x
γj,1
i , x

γj,2
i , . . . , x

γj,sj
i

)
.

The generalized Vandermonde matrix An,k(x1, . . . , xs) is given by the following
s× s-matrix:

An,k(x1, . . . , xs) =


α1 xγ11 xγ21 . . . xγk1

α2 xγ12 xγ22 . . . xγk2

...
...

. . .
...

αs xγ1s xγ2s . . . xγks


1This is also the “Bins and Balls” problem with n bins and k balls, but they are equivalent.
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Example 8. For n = k = 2 and αi = i for all 0 ≤ i ≤ 6 we have that

A2,2(x1, x2) =



1 x11 x12 x211 x11x12 x212

2 x21 x22 x221 x21x22 x222

3 x31 x32 x231 x31x32 x232

4 x41 x42 x241 x41x42 x242

5 x51 x52 x251 x51x52 x252

6 x61 x62 x261 x61x62 x262


Lemma 9. For all n ∈ N \ {0} and all k ∈ N we have that det(An,k) 6≡ 0.

Proof. We prove this Lemma by induction on k. If k = 0, then s =
(
n
0

)
= 1 and

det(An,0) = α1 6= 0.

Now let k ≥ 1. Consider the Laplace expansion of An,k along the first row. We
have that

det(An,k) = (−1)s+1x
γk,sk
1 det

(
A1
n,k(x2, . . . , xs)

)
+ δ1,

where A1
n,k is the submatrix obtained by deleting the first row and the last

column from An,k, and δ1 is the remaining polynomial term due to the Laplace

expansion; note that no summand in δ1 is divisible by x
γk,sk
1 . If A1

n,k 6= An,k−1
we do a Laplace expansion of A1

n,k along the first row and we get that

det(An,k) = (−1)2s+1x
γk,sk
1 x

γk,sk−1

2 det
(
A2
n,k(x3, . . . , xs)

)
+ δ2,

As before A2
n,k is the submatrix obtained by deleting the first row and the

last column from A1
n,k, and δ2 represent the remaining polynomial in which no

summand is divisible by x
γk,sk
1 x

γk,sk−1

2 .

Inductively apply the Laplace expansion until we get Aln,k = An,k−1 for some
l ∈ N \ {0}. Thus we can write

det(An,k) = εdet (An,k−1(xl+1, xl+2, . . . , xs)) + δl

with a monomial ε := ε(x1, . . . , xl) that does not divide any summand in δl. By
the induction hypothesis det(An,k−1) 6≡ 0, it follows that det(An,k) 6≡ 0. �

4 SRU’s for multivariate polynomials

Let n ∈ N \ {0}, k ∈ N and define

Pn,k :=
{
f ∈ R[x1, x2, . . . , xn]

∣∣ deg(f) ≤ k
}
.

We will prove that for all l ≥ 2·
(
n+k
k

)
−1 there is an SRU of size l for Pn,k. To do

this, it will be necessary to generalize the proof of [5, Theorem 8] considerably.
Let {x1, x2, . . . , xl} ⊆ Rn. The following family G of directed graphs will play a
crucial role in the construction of SRU’s of size l for the set Pn,k:
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Definition 10. G is the family of all directed graphs G = (V,E) with vertex
set V = {x1, x2, . . . , xl} and a set E of directed edges (xi, xj) such that for each
x ∈ V we have

indegreeG(x) ≥ 1 and outdegreeG(x) ≥ 1.

Definition 11. Let G = (V,E) be a directed graph.

• A cycle ofG is a subgraph C = (VC , EC) ofG with VC = {c0, c1, . . . , cm−1}
and EC = {(ci, c(i+1)modm) | i ∈ N} for an m ≥ 2.

• A loop is a subgraph L = (VL, EL) ofG with VL = {w} and EL = {(w,w)}.

• A path is a subgraph P = (VP , EP ) of G with VP = {p0, p1, . . . , pm−1}
and EC = {(pi, pi+1) | 0 ≤ i ≤ m− 2} for an m ≥ 2.

Definition 12. Let s ∈ N. Cycles and loops C1 = (VC0 , EC0), . . . , Cs =
(VCl

, ECl
) are called obviously different if for every 1 ≤ i ≤ s there is a xi ∈ VCi

with

xi ∈ VCi
\

 s⋃
j=1,j 6=i

VCj

 .

Definition 13. A graph G = (V,E) is of type 1n,k iff there are at most
(
n+k
k

)
−1

obviously different cycles and loops in G. Otherwise G is of type 2n,k.

4.1 Graphs and matrices of type 1n,k

Definition 14. Let n ∈ N \ {0}, k ∈ N and let G = (V,E) be a graph of type
1n,k with |V | ≥ 2 ·

(
n+k
k

)
−1. A nice sequence of length s is a sequence of graphs

G0 = (V0, E0) ⊆ G1 = (V1, E1) ⊆ · · · ⊆ Gs = (Vs, Es) ⊆ G

with the following properties: For all 0 ≤ i ≤ s

1. we have that |Ei| ∈ {2i, 2i+ 1};

2. there are at most i obviously different loops and cycles in Gi,

3. we have that Ei+1 \ Ei has one of the following forms:

• Ei+1\Ei = {(xj , xj), (xm, xp)} with degGi
(xj) = 0, and detGi

(xm) =
0 or degGi

(xp) = 0;

• Ei+1 \ Ei = {(xj , xm), (xp, xj)} with degGi
(xj) = 0.

Theorem 15. Let n ∈ N \ {0}, k ∈ N and s :=
(
n+k
k

)
. Every graph G = (V,E)

of type 1n,k with |V | ≥ 2 ·
(
n+k
k

)
− 1 has a nice sequence

G0 ⊆ G1 ⊆ · · · ⊆ Gs−1 = (Vs−1, Es−1)

with |Es−1| = 2 ·
(
n+k
k

)
− 1.
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Proof. The proof is the analogue of the proofs of [5, Lemma 12] and [5, Corollary
15]. �

For all 0 ≤ i ≤ k let si :=
(
n+i
i

)
. Define MG0 :=

(
1
)
. And for all 0 ≤ i < k and

all 1 ≤ l ≤ si+1 − si we define

MGsi+l
=



x
⋃i

p=0 γp
j1

x
⋃l

q=1 γi+1,q

j1
−x

⋃i
p=1 γp

l1
−x

⋃l
q=1 γi+1,q

l1

x
⋃i

p=0 γp
j2

x
⋃l

q=1 γi+1,q

j2
−x

⋃i
p=1 γp

l2
−x

⋃l
q=1 γi+1,q

l2

...
...

...
...

x
⋃i

p=0 γp
j2(si+l)+1

x
⋃l

q=1 γi+1,q

j2(si+l)+1
−x

⋃i
p=1 γp

l2(si+l)+1
−x

⋃l
q=1 γi+1,q

l2(si+l)+1


where for all 1 ≤ m ≤ si + l we have that (xjm , xlm) ∈ EGsi+l

.

Lemma 16. For all 1 ≤ i ≤ sk we have that det(MGi) 6≡ 0.

Proof. We prove this Lemma by induction over i. For i = 0 we have that

det(MG1
) = 1 6≡ 0.

Now let 0 ≤ i ≤ k and 0 < l ≤ si+1 − si such that si + l ≥ 1. We want to show
that det(MGsi+l

) 6≡ 0. There are three cases:

Case 1: Esi+l \ Esi+l−1 = {(xj , xm), (xp, xj)} with degGsi+l−1
(xj) = 0.

First of all we do a Laplace expansion along the row containing xj and xm. We
get

det(MGsi+l
) = ε0x

γi+1,l

j det(MGsi+l
) + δ0, (2)

where MGsi+l
is the matrix we obtain from MGsi+l

by deleting the row con-

taining xj and xm and the column containing x
γi+1,l

j . Moreover, we have that

ε0 ∈ {−1, 1} and that
(
x
γi+1,l

j

)2
does not divide any summand in δ0 because

from degGsi+l−1
(xj) = 0 it follows that xj is only contained in two rows of

MGsi+l
. Now we do a second Laplace expansion along the row containing xj

and xp. We get that

det(MGsi+l
) = ε1x

γi+1,l

j det(MGsi+l−1
) + δ1, (3)

where ε1 ∈ {−1, 1} and x
γi+1,l

j does not divide any summand in δ1. Combining
(2) and (3) we get that

det(MGsi+l
) = ε0ε1

(
x
γi+1,l

j

)2
det(MGsi+l−1

) + ε0x
γi+1,l

j δ1 + δ0,

where ε0x
γi+1,l

j δ1 + δ0 does not contain a summand that can be divided by(
x
γi+1,l

j

)2
. Since by the induction hypothesis det(MGsi+l−1

) 6≡ 0 it follows that

det(MGsi+l
) 6≡ 0.
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Case 2: Esi+l \ Esi+l−1 = {(xj , xj), (xm, xp)} with degGsi+l−1
(xm) = 0 and

degGsi+l−1
(xj) = 0.

As in Case 1 we do two Laplace expansions. First we do one along the row
containing xj and then we do one along the row containing xm and xp. We get
that

det(MGsi+l
) = ε0ε1x

γi+1,l

j x
γi+1,l
m det(MGsi+l−1

) + ε0x
γi+1,l

j δ1 + δ0,

where ε0, ε1 ∈ {−1, 1} and x
γi+1,l

j x
γi+1,l
m does not divide any summand in ε0x

γi+1,l

j δ1+
δ0. Since by the induction hypothesis det(MGsi+l−1

) 6≡ 0 it follows that

det(MGsi+l
) 6≡ 0.

Case 3: Esi+l \ Esi+l−1 = {(xj , xj), (xm, xp)} with degGsi+l−1
(xp) = 0 and

degGsi+l−1
(xj) = 0.

This case is similar to Case 2. �

4.2 Graphs and matrices of type 2n,k

Let G = (V,E) be a graph of type 2n,k. So G contains at least s =
(
n+k
k

)
obviously different loops and cycles

C1 = (VC1
, EC1

), C2 = (VC2
, EC2

), . . . , Cs = (VCs
, ECs

).

Without loss of generality we can assume that for all 1 ≤ i ≤ s we have that

xi = (xi,1, xi,2, . . . , xi,n) ∈ VCi \

 s⋃
j=1,j 6=i

VCj

 .

Let t :=
(
n+k−1

k

)
and define

NG(x1, x2, . . . , xl) :=



|VC1
|
∑
x∈VC1

xγ1,1
∑
x∈VC1

xγ1,2 . . .
∑
x∈VC1

xγk,t

|VC2
|
∑
x∈VC2

xγ1,1
∑
x∈VC2

xγ1,2 . . .
∑
x∈VC2

xγk,t

...
...

...
. . .

...

|VCs
|
∑
x∈VCs

xγ1,1
∑
x∈VCs

xγ1,2 . . .
∑
x∈VCs

xγk,t


Now we want to show that det(NG(x1, . . . , xl)) 6≡ 0. It suffices to prove that
the determinant of

NG(x1, . . . , xs, 0, . . . , 0) =



|VC1 | xγ11 xγ21 . . . xγk1

|VC2 | xγ12 xγ22 . . . xγk2

...
...

...
. . .

...

|VCs
| xγ1s xγ2s . . . xγks


is not identically equal to zero. Since |VCi

| 6= 0 for all 1 ≤ i ≤ s this follows
from Lemma 9.
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4.3 An SRU for Pn,k

Lemma 17. For every l ≥ 2 ·
(
n+k
k

)
− 1 there is an SRU of size l for Pn,k.

Proof. This Lemma can be proven as in [5, Theorem 8]. �

5 Minimal cardinality of SRU’s for Pn,k

In this section we will prove that there are no SRU’s of size at most 2 ·
(
n+k
k

)
−2

for Pn,k. To do this, we will generalize the proof of [8, Theorem 2.7].

In this section let n ∈ N\{0} and k ∈ N. For all 0 ≤ p ≤ k define sp :=
(
n+p−1

p

)
.

Remark 18. For all 0 ≤ p ≤ k there are
(
n+p−1

p

)
monomials of degree exactly p

in n variables and there are
(
n+p
p

)
monomials of degree at most p in n variables.

Lemma 19. Let f, g ∈ Pn,k and let xi, xj be such that f(xi) = g(xj) and
f(xj) = g(xi). Then we have that

k∑
p=0

sp∑
q=1

(apq − bpq)(x
γp,q
i + x

γp,q
j ) = 0

and
k∑
p=1

sp∑
q=1

(apq + bpq)(x
γp,q
i − xγp,qj ) = 0,

where f(x) =
∑k
p=0

∑sp
q=1 apqx

γp,q and g(x) =
∑k
p=0

∑sp
q=1 bpqx

γp,q .

Proof. Since f(xi) = g(xj) and f(xj) = g(xi) we have that

k∑
p=0

sp∑
q=1

apq(x
γp,q
i + x

γp,q
j ) = f(xi) + f(xj) = g(xi) + g(xj)

=

k∑
p=0

sp∑
q=1

bpq(x
γp,q
i + x

γp,q
j ).

By rearranging this equation we get that

k∑
p=0

sp∑
q=1

(apq − bpq)(x
γp,q
i + x

γp,q
j ) = 0.
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Moreover, we have that

k∑
p=1

sp∑
q=1

apq(x
γp,q
i − xγp,qj ) =

k∑
p=0

sp∑
q=1

apq(x
γp,q
i − xγp,qj ) = f(xi)− f(xj)

= g(xj)− g(xi) =

k∑
p=0

sp∑
q=1

bpq(x
γp,q
j − xγp,qi )

=

k∑
p=1

sp∑
q=1

bpq(x
γp,q
j − xγp,qi ).

By rearranging this equation we get that

k∑
p=1

sp∑
q=1

(apq + bpq)(x
γp,q
i − xγp,qj ) = 0. �

Lemma 20. Let S = {x1, x2, . . . , xr} ⊆ Rn with 1 ≤ r ≤ 2 ·
(
n+k
k

)
− 2. Choose

an l ∈ N such that r = 2l if r is even and r = 2l + 1 if r is odd. Then there
exist cp,q ∈ R and dpq ∈ R with

k∑
p=0

sp∑
q=1

cpq(x
γp,q
2i−1 + x

γp,q
2i ) = 0 =

k∑
p=0

sp∑
q=1

dp,q(x
γp,q
2i−1 − x

γp,q
2i ) (4)

for all 1 ≤ i ≤ l. Moreover, if r is odd,

k∑
p=0

sp∑
q=1

cpqx
γp,q
r = 0.

Proof. First of all we assume that r = 2l ≤ 2 ·
(
n+k
k

)
− 2 is even. We will look

at the other case later. For all 1 ≤ i ≤ l we want that

k∑
p=0

sp∑
q=1

cpq(x
γp,q
2i−1 + x

γp,q
2i ) = 0 and

k∑
p=0

sp∑
q=1

dpq(x
γp,q
2i−1 − x

γp,q
2i ) = 0.

Define the following two l ×
(
n+k
k

)
-matrices X1 and X2:

X1 :=



1 xγ11 xγ21 . . . xγk1

1 xγ13 xγ23 . . . xγk3

...
...

...
. . .

...

1 xγ12l−1 xγ22l−1 . . . xγk2l−1

 X2 :=



1 xγ12 xγ22 . . . xγk2

1 xγ14 xγ24 . . . xγk4

...
...

...
. . .

...

1 xγ12l xγ22l . . . xγk2l

 .

Since l <
(
n+k
k

)
there are non-trivial vectors

(cpq) = c ∈ ker(X1 +X2) \ {0} and (dpq) = d ∈ ker(X1 −X2) \ {0}.

10



So in case r is even we are done. Assume now that r = 2l+ 1 ≤ 2 ·
(
n+k
k

)
− 2 is

odd. Consider the following two (l + 1)×
(
n+k
k

)
-matrices

X3 :=



1 xγ11 xγ21 . . . xγk1

1 xγ13 xγ23 . . . xγk3

...
...

...
. . .

...

1 xγ12l−1 xγ22l−1 . . . xγk2l−1

1 xγ12l+1 xγ22l+1 . . . xγk2l+1


and

X4 :=



1 xγ12 xγ22 . . . xγk2

1 xγ14 xγ24 . . . xγk4

...
...

...
. . .

...

1 xγ12l xγ22l . . . xγk2l

1 xγ12l+1 xγ22l+1 . . . xγk2l+1


.

Thus X3 +X4 and X3−X4 are matrices of dimension (l+ 1)×
(
n+k
k

)
and since

l + 1 <
(
n+k
k

)
there are

(cpq) = c ∈ ker(X3 +X4) \ {0} and (dpq) = d ∈ ker(X3 −X4) \ {0}.

So in case r is odd the equations (4) hold. In case r is odd the (l+ 1)-th row of
X3 +X4 yields

k∑
p=0

sp∑
q=1

2cpqx
γp,q
r = 0 ⇒

k∑
p=0

sp∑
q=1

cpqx
γp,q
r = 0. �

Theorem 21. Any set S ⊆ Rn with |S| ≤ 2 ·
(
n+k
k

)
− 2 is not an SRU for Pn,k.

Proof. Let 1 ≤ r ≤ 2 ·
(
n+k
k

)
− 2 be arbitrary, let S = {x1, x2, . . . , xr} ⊆ Rn and

let the cpq and the dpq be as in Lemma 20. Let

apq := dpq + cpq and bpq := dpq − cpq

for all 0 ≤ p ≤ k and all 0 ≤ q ≤ sp. Define f(x) =
∑k
p=0

∑sp
q=1 apqx

γpq and

g(x) =
∑k
p=0

∑sp
q=1 bpqx

γp,q .

Claim 1: f 6= g

Since c = (cpq) 6= 0 there are p, q with cpq 6= 0. So

apq = dpq + cpq 6= dpq − cpq = bpq

and therefore, f 6= g.

11



Claim 2: f [S] = g[S]

By Lemma 20 we have that

f(x2i−1) =

k∑
p=0

sp∑
q=1

(dpq + cpq)x
γp,q
2i−1 =

k∑
p=0

sp∑
q=1

(dpq − cpq)x
γp,q
2i = g(x2i)

and

f(x2i) =

k∑
p=0

sp∑
q=1

(dpq + cpq)x
γp,q
2i =

k∑
p=0

sp∑
q=1

(dpq − cpq)x
γp,q
2i−1 = g(x2i−1)

for all i with 2i ≤ r. If r is odd we additionally have that

f(xr) =

k∑
p=0

sp∑
q=1

(dpq + cpq)x
γp,q
r =

k∑
p=0

sp∑
q=1

dpqx
γp,q
r =

=

k∑
p=0

sp∑
q=1

(dpq − cpq)xγp,qr = g(xr). �

Remark 22. In Lemma 20 we can choose d =
(
1, 0, . . . , 0

)T
. Therefore, for

all sets S ⊆ Rn with |S| ≤ 2 ·
(
n+k
k

)
− 2 there are functions f, g ∈ Pn,k with

f [S] = g[S] and g = 2− f .

Example 23. Let k = n = 2 and

S := {(0, 0), (0, 4), (4, 0), (4, 4), (1, 2), (2, 1), (2, 3), (4, 1), (2, 2), (4, 2)}.

Then |S| = 10 = 2 ·
(
n+k
k

)
− 2. Indeed, for

f(x, y) = −9 + 6x+ y − 2x2 + xy + y2

and
g(x, y) = 2− f(x, y) = 11− 6x− y + 2x2 − xy − y2

which are both in Pn,k we have f [S] = g[S].

6 Linear maps with rank k

Let n, k ∈ N \ {0}. In this section we are interested in the family of all linear
endomorphisms with rank k, i.e.,

Lk(Rn,Rn) := {f(x) = Ax | A is an n× n matrix with rank k} .

We will prove that the minimal size of an SRU for the family Lk(Rn,Rn) is{
2n− 1 k = 1

2n− k + 1 k > 1

12



6.1 An SRU for Lk(Rn,Rn)

For k = 1 we have already constructed an SRU of size 2n− 1 for the family of
all linear maps with rank at least k = 1, see Remark 7. So let n ∈ N \ {0} and
k ∈ N \ {0, 1}. Now we want to construct an SRU for the family of all linear
maps with rank at least k of size 2n− k + 1.

Let S := {x1, x2, . . . , x2n−k+1}. We look at the family F of all graphs on S in
which each vertex has indegree and outdegree at least one. Let U ⊆ R2n−k+1

be a non-empty, open set. If a graph G ∈ F has at least n obviously different
loops and cycles C1, C2, . . . , Cn we can find a matrix

MG(x1, . . . , x2n−k+1) =



|VC1
|
∑
x∈VC1

x
∑
x∈VC1

x2 . . .
∑
x∈VC1

xn−1

|VC2
|
∑
x∈VC2

x
∑
x∈VC2

x2 . . .
∑
x∈VC2

xn−1

...
...

...
. . .

...

|VCn |
∑
x∈VCn

x
∑
x∈VC1

x2 . . .
∑
x∈VCn

xn−1


and a non-empty open subset V ⊆ U , such that MG(x1, . . . , x2n−k+1) has full
rank, i.e. non-zero determinant, for all (x1, . . . , x2n−k+1) ∈ V . This matrix can
be found as in [5, Section 3.3]. Now assume that G = (VG, EG) ∈ F has less
than n obviously different loops and cycles. For all 1 ≤ i ≤ 2n− k+ 1 we define

vi := (xi, x
2
i , · · · , xn−1i ).

We will show later that we can find a matrix

NG(x1, . . . , x2n−k+1) =


1 vi1 −1 −vj1
1 vi2 −1 −vj2
...

...
...

...

1 vi2n−k+1
−1 −vj2n−k+1


such that (xil , xjl) ∈ EG for all 1 ≤ l ≤ 2n−k+1 and an open subset V ⊆ U such
that NG(x1, x2, . . . , x2n−k+1) has full rank for all (x1, x2, . . . , x2n−k+1) ∈ V .

Proposition 24. There is an SRU S = {s1, s2, . . . , s2n−k+1} ⊆ Rn for the
family of all linear maps with rank at least k.

Proof. Since the family F is finite, we can find an open set U ⊆ R2n−k+1 such
that for all G ∈ F , the matrix MG (if G contains at least n cycles) or the matrix
NG (if G contains less than n cycles) has full rank. Let T = {t1, . . . , t2n−k+1} ⊆
R such that (t1, . . . , t2n−k+1) ∈ U . For all 1 ≤ i ≤ 2n− k + 1 we define

si := (1, ti, t
2
i , . . . , t

n−1
i ) and S := {s1, . . . , s2n−k+1}.

Assume that there are functions f(x) = Ax and g(x) = Bx with rank(A) =
rank(B) ≥ k and f [S] = g[S]. Our goal is to show that f = g. We define a
graph G on S by drawing an edge pointing from si to sj whenever f(si) = g(sj).
There are two cases:
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Case 1: G contains at least n cycles.
For all 1 ≤ i ≤ n let ai and bi be the i-th row of A or B respectively. In this
case we have that

MG(ai − bi) = 0

for all 1 ≤ i ≤ n. However, since dim(ker(MG)) = 0, it follows that ai − bi = 0
and therefore, A = B = 0 which is a contradiction.

Case 2: G contains less than n cycles.
In this case, NG has full rank, namely, for all (x1, . . . , x2n−k+1) ∈ U we have
rank(NG) = 2n− k + 1. So,

dim(ker(NG)) = 2n− rank(NG) = 2n− 2n+ k − 1 = k − 1.

For all 1 ≤ i ≤ n let ai and bi be the i-th row of A or B respectively. Note that
since f [S] = g[S] we have that

NG

(
aTi
bTi

)
=

(
0
0

)
for all 1 ≤ i ≤ n. However, since A has rank at least k, there exists i0 such that
1 ≤ i0 ≤ n and (

aTi0
bTi0

)
/∈ ker(NG).

In other words, f [S] 6= g[S] which is a contradiction. �

Let G ∈ F and assume that G contains less than n obviously different loops
and cycles. The matrix NG can be found as follows: First choose a maximal
nice sequence

G0 = (VG0 , EG0) ⊆ G1 = (VG1 , EG1) ⊆ · · · ⊆ Gm = (VGm , EGm) ⊆ G

as in [5, Proof of Lemma 12]. If |EGm
| > 2n − 1, shorten the nice sequence as

in [5, Corollary 15] to a nice sequence with |EGm
| = 2n − 1. Now look at the

matrix LG corresponding to Gm = (VGm
, EGm

). For vi = (xi, x
2
i , . . . , x

n−1
i ) and

vj = (xj , x
2
j , . . . , x

n−1
j ) let 1 vi vj := (1, xi, x

2
i , . . . , x

n−1
i , xj , x

2
j , . . . , x

n−1
j ). So

1 vi vj is a row in LG iff (xi, xj) ∈ EGm . If LG is a quadratic matrix, we can
show as in [5, Proposition 20] that for every open set U ⊆ R2n−k+1 there is an
open subset V ⊆ U with

det(LG(x1, . . . , x2n−k+1)) 6= 0

for all (x1, . . . , x2n−k+1) ∈ V . So all rows of LG(x1, . . . , x2n−k+1) are linearly
independent if (x1, . . . , x2n−k+1) ∈ V . If LG is not quadratic, let y1, . . . , yl with
an l ∈ N be new variables in R and add rows 1 w2i w2i−1 to LG, where

wj = (yj , y
2
j , . . . , y

n−1
j−1 ) for all 1 ≤ j ≤ l,

until we get a quadratic matrix LG. Also for this matrix we can show as in
[5, Proposition 20] that for every open set U ⊆ R2n−k+1+l there is an open
subset V ⊆ U such that for all (x1, x2, . . . , xn, y1, . . . yl) ∈ V , LG has non-zero
determinant. In other words, all rows in LG are linearly independent. There-
fore, all rows in LG are linearly independent. This also shows that all rows in
NG(x1, . . . , x2n−k+1) are linearly independent whenever (x1, . . . , x2n−k+1) ∈ V .
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6.2 Minimal cardinality of SRU’s for Lk(Rn,Rn)

Lemma 25. Any SRU S of Lk(Rn,Rn) contains a basis of Rn.

Proof. Suppose not, and let {x1, . . . , xl} ⊆ S be a maximum linearly inde-
pendent subset. Then there exists two distinct basis transformation matrix
T1, T2 ∈ Rn (i.e. T1 6= T2) such that T1xi = ei = T2xi for i = 1, . . . , l.

Let C ∈ Rn×n be an arbitrary linear map of rank k. Define f(x) := CT1x and
g(x) := CT2x. We have f [S] = g[S] but f 6= g. Moreover, CT1 and CT2 are
rank k matrices, hence f, g are rank-k linear maps, contradicting S is an SRU
of Lk(Rn,Rn). �

Lemma 26. Let n ∈ N \ {0, 1} and let k ∈ {1, 2, . . . , n}. We define

mk :=

{
2n− 2 k = 1,

2n− k k > 1

Then every set S ⊆ Rn containing at most mk elements is not an SRU for the
family Lk(Rn,Rn).

Proof. For k = 1 we have already seen that 2n−2 points are not enough to form
an SRU (see Remark 7). So let k ≥ 2. Let S ⊆ Rn be a set with cardinality at
most mk. If S does not contain a basis, then by Lemma 25, S is not an SRU of
Lk(Rn,Rn). So we may assume that S contains a basis of Rn.

Consider the following system of linear equations:

〈a, xi〉 = 〈b, xi+1〉 for i = 1, 2, . . . l,

where we take indices cyclically; (a, b) ∈ R2n are the unknowns. This system
has rank at most r ≤ mk. So the null-space is at least k-dimensional. So we
can find k linearly independent vectors in the null-space, namely

(a1, b1)T , (a2, b2)T , . . . , (ak, bk)T ∈ R2n.

Observe that solutions for which a = b span at most a one-dimensional subspace
since a = b implies 〈a, xi〉 = 〈b, xi〉 = c for all i and some constant c. Let
1 ≤ i0 ≤ k be such that ai0 6= bi0 .

Claim: Both, {ai | 1 ≤ i ≤ k} ⊆ Rn and {bi | 1 ≤ i ≤ k} ⊆ Rn, are sets of
linearly independent vectors.

Proof of the Claim. Assume towards a contradiction that {ai | 1 ≤ i ≤ k} or
{bi | 1 ≤ i ≤ k} is linearly dependent; without loss of generality we will assume

that {ai | 1 ≤ i ≤ k} is linearly dependent, and a1 =
∑k
i=2 λiai for some λi ∈ R.

So for all 1 ≤ j ≤ l (we take the indices cyclically) we have that

〈b1, xj+1〉 = 〈a1, xj〉 =

〈
k∑
i=2

λiai, xj

〉
=

k∑
i=2

λi〈ai, xj〉

=

k∑
i=2

λi〈bi, xj+1〉 =

〈
k∑
i=2

λibi, xj+1

〉
.
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Since S = {x1, . . . , xl} contains a basis of Rn, it follows that

b1 =

k∑
i=2

λibi

and hence (a1, b1)T =
∑k
i=2 λi(ai, bi)

T . So {(ai, bi)T | 1 ≤ i ≤ k} is not a
linearly independent set. This is a contradiction. �Claim

Now define the following n× n-matrices

A :=



aT1

aT2

...

aTk

0

...

0


and B :=



bT1

bT2

...

bTk

0

...

0


.

Note that A 6= B because ai0 6= bi0 and that by the claim both matrices A and
B have rank k. Moreover, A and B map S to the same set. Therefore, S is not
an SRU for the family of all linear maps with rank exactly k. �

Example 27. Let n := 3, k := 2 and S :=


1

0
0

 ,

1
2
1

 ,

4
6
3

. Then
1

0
0

 ,

1
2
1

 is a maximal linearly independent subfamily. There are two

different basis transformations that map

1
0
0

 to

1
0
0

 and

1
2
1

 to

0
1
0

, e.g.

T1 :=

1 − 1
2 0

0 1
2 0

0 − 1
2 1

 and T2 :=

1 0 −1
0 0 1
0 1 −2

 .

Let C :=

1 0 0
0 1 0
0 0 0

. Then

A = CT1 =

1 − 1
2 0

0 1
2 0

0 0 0

 and B = CT2 =

1 0 −1
0 0 1
0 0 0


both have rank k. For f(x) = Ax and g(x) = Bx we have f [S] = g[S].
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Example 28. Let n := 3, k := 2 and S :=


1

0
0

 ,

1
2
1

 ,

3
6
4

. Note that

S forms a basis of R3. We consider the following system of linear equations:

a1 = b1 + 2b2 + b3

a1 + 2a2 + a3 = 3b1 + 6b2 + 4b3

3a1 + 6a2 + 4a3 = b1,

where a1, a2, a3, b1, b2, b3 are the unknowns. The following vectors of the form
(a1, a2, a3, b1, b2, b3)T are in the null-space:

(1, 5,−8, 1, 0, 0)T , (2, 11,−18, 0, 1, 0)T and (2, 15,−24, 0, 0, 2)T .

So let, for example,

A :=

1 5 −8
2 11 −18
0 0 0

 and B :=

1 0 0
0 1 0
0 0 0

 .

Both matrices have rank k. For f(x) = Ax and g(x) = Bx we have f [S] = g[S].

7 Invertible linear maps

In this section, we aim to provide a concrete SRU for the family of all invertible,
linear maps

Ln(Rn,Rn) = {f(x) = Ax | A ∈ Rn×n is invertible}.

Theorem 29. Let n ∈ N \ {0}. For every i ∈ {1, 2, . . . , n} let ei be the i-th
standard basis vector of Rn and define

xi := ei for i ∈ {1, 2, . . . , n} and xn+1 :=

n∑
j=1

j · ej .

Then S := {x1, x2, . . . , xn+1} is an SRU for the family Ln(Rn,Rn).

Proof. Assume towards a contradiction that S is not an SRU for Ln(Rn,Rn).
So, we can find f, g ∈ Ln(Rn,Rn) with f [S] = g[S] but f 6= g. Let A,B ∈ Rn×n
be invertible matrices with

f(x) = Ax and g(x) = Bx

for all x ∈ Rn. Notice that since f 6= g, we have A 6= B. There is a permutation
of the set {1, 2, . . . , n+ 1} such that

Axi = Bxπ(i)

for all i ∈ {1, . . . , n+ 1}. Define C := B−1A. Then we have that

Cxi = xπ(i) for all i ∈ {1, . . . , n+ 1}. (5)
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Note that π 6= id because otherwise we would have that C is the identity matrix
and therefore A = B.

Case 1: π(n+ 1) = n+ 1.
By (5) we have that

Cei = eπ(i)

for all i ∈ {1, 2, . . . , n}. Therefore,

Cxn+1 = C

 n∑
j=1

jej

 =

n∑
j=1

jCej =

n∑
j=1

jeπ(j).

But since π(n+ 1) = n+ 1 we have that by (5)

n∑
j=1

jej = xn+1 = Cxn+1 =

n∑
j=1

jeπ(j)

and it follows that π is the identity. This is a contradiction.

Case 2: π(n+ 1) = i0 6= n+ 1.
Let j0 := π−1(n + 1) ∈ {1, 2, . . . , n}. So, Cej0 = xπ(j0) = xn+1 and we have
that

Cxn+1 = C

 n∑
j=1

jej

 =

n∑
j=1

jCej =

 n∑
j=1,j 6=j0

jeπ(j)

+ j0

 n∑
j=1

jej

 .

In particular, all entries of the vector Cxn+1 are non-zero. But by assumption
π(n+ 1) = i0 6= n+ 1 and therefore,

Cxn+1 = xπ(n+1) = ei0 .

So, some entries of the vector Cxn+1 are equal to zero. This is a contradiction.
�
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