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Abstract

For each positive odd integer n and for each prime p with p ≡ 3 (mod 4),
there are integers a and b such that 1+pn+p2n+p3n+ . . .+p(p−1)n = a2 +b2.
Furthermore, for each positive even integer n and for each odd prime p, there
are integers a and b such that 1 − pn + p2n − . . . + p(p−1)n = a2 + b2. These
results follow from representations of the cyclotomic polynomials Φ4p as sum
of two squares. Finally, we show that for primes p with p ≡ 3 (mod 4), the
minimal polynomial of

√
p · sin(2π/p) over Q is of degree (p− 1)/2.

1 Introduction

In [8], Koopa Tak Lun Koo proposed the following two problems:

(a) Show that when n is an odd positive integer, 1 + 7n + 72n + 73n + 74n + 75n + 76n

is a sum of two squares.

(b) Show that when n is even, the expression in part (a) is not a sum of two squares.

If n is even, then 1 + 7n + . . . + 76n ≡ 3 (mod 4), and Problem (b) follows from the
fact that no integer m such that m ≡ 3 (mod 4) is the sum of two squares. Hence,
Problem (a) cannot be generalised to arbitrary positive integers n. However, one can ask
whether Problem (a) can be generalised to prime numbers different from 7. In particular,
a natural generalization is to ask whether for each positive odd integer n and for each
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(prime) integer p, the expression 1 + pn + p2n + p3n + . . . + p(p−1)n is the sum of two
squares. By some classical results (see, e.g., [3]), one can easily verify that for n = 1
and for non-primes p or for primes p ≡ 1 (mod 4), 1 + p + p2 + p3 + . . . + pp−1 is in
general not the sum of two squares. On the other hand, we shall see that for each positive
odd integer n and for each prime p with p ≡ 3 (mod 4), there are integers a and b such
that 1 + pn + p2n + p3n + . . . + p(p−1)n = a2 + b2 (see Theorem 6). Similarly, for each
positive even integer n and for each odd prime p, there are integers a and b such that
1 − pn + p2n − p3n ± . . . + p(p−1)n = a2 + b2 (see Theorem 3). These results follow from
representations of the cyclotomic polynomials Φ4p as sum and difference of two squares
(see Proposition 1).

As a side result we show that for each odd prime number p, the minimal polynomial of√
p · sin(2π/p) over Q has degree (p− 1)/2 if p ≡ 3 (mod 4) (see Theorem 8), and degree

p− 1 if p ≡ 1 (mod 4).

2 On cyclotomic polynomials

In order to investigate geometric sums of the form 1 + pn + p2n + p3n + . . .+ p(p−1)n we set
n = 1 and replace the odd prime p by a variable x. This way, we obtain the cyclotomic
polynomial Φp(x) := 1 + x+ x2 + . . .+ xp−1.

In general, for any positive integer n, let ζn be a primitive n-th root of unity and let

Φn(x) =
∏

1 ≤ k ≤ n
(k, n) = 1

(x− ζkn)

denote the n-th cyclotomic polynomial. Then, for odd primes p we have

Φp(x) = xp−1 + xp−2 + . . .+ x+ 1 and

Φ4p(x) = x2(p−1) − x2(p−2) + . . .− x2 + 1.

In particular, since p is odd, we have

Φ4p(i
√
x) = (−x)p−1 − (−x)p−2 + . . .− (−x) + 1 = Φp(x).

Let p be an odd prime and let L be the splitting field of Φ4p over Q. Then the Galois
group of L/Q is isomorphic to the group of coprime residue classes G = (Z/4pZ)×, where
a residue class a (mod 4p) represents the automorphism defined by σa : ζ4p 7→ ζa4p (see
Washington [19, Thm. 2.5]). Observe that σ−1 is complex conjugation. Since the group G
is abelian, every subgroup of G is a normal subgroup, which implies that all intermediate
fields of the field extension L/Q are normal field extension of Q. Furthermore, since
G ∼= (Z/4Z)× × (Z/pZ)× and the multiplicative group of (Z/pZ) is cyclic of order p− 1,
we have G ∼= C2 × Cp−1, where Cn denotes the cyclic group of order n. Thus, there are
three subgroups of index 2 in G. Two of these three subgroups are isomorphic to Cp−1 and
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one is isomorphic to C2 × C(p−1)/2, which implies that in the case when p ≡ 3 (mod 4),
all three subgroups are cyclic.

We illustrate these three subgroups for p = 11 and p = 13, respectively. Let ḡp ∈ Z/pZ
be a generator of the multiplicative group (Z/pZ)×, e.g., let g11 = 6 and g13 = 2. By
the Chinese Remainder Theorem, there is a h̄p ∈ Z/4pZ, such that hp ≡ gp (mod p) and
hp ≡ 1 (mod 4), e.g., h11 = 17 and h13 = 41. Then 〈h̄p〉 and 〈2̄p̄+ h̄p〉 are two subgroups
of index 2 in G; for example,

〈1̄7〉 =
(
{1, 5, 9, 13, 17, 21, 25, 29, 37, 41 (mod 44)}, ·

)
,

〈2̄2 + 1̄7〉 =
(
{1, 5, 7, 9, 19, 25, 35, 37, 39, 43 (mod 44)}, ·

)
,

〈4̄1〉 =
(
{1, 5, 9, 17, 21, 25, 29, 33, 37, 41, 45, 49 (mod 52)}, ·

)
,

〈2̄6 + 4̄1〉 =
(
{1, 7, 9, 11, 15, 17, 19, 25, 29, 31, 47, 49 (mod 52)}, ·

)
.

For the third subgroup of index 2 in G, let k̄p ∈ Z/4pZ be such that kp ≡ g2
p (mod p)

and kp ≡ 3 (mod 4), e.g., k11 = 3 and k13 = 43. Then 〈k̄p〉 ∪
(
2̄p̄+ 〈k̄p〉

)
is a subgroup of

index 2 in G, where for p ≡ 3 (mod 4), this subgroup is isomorphic to 〈k̄p〉; for example,

〈3̄〉 =
(
{1, 3, 5, 9, 15, 23, 25, 27, 31, 37 (mod 44)}, ·

)
,

〈4̄3〉 ∪
(
2̄6 + 〈4̄3〉

)
=

(
{1, 3, 9, 17, 23, 25, 27, 29, 35, 43, 49, 51 (mod 52)}, ·

)
.

The quadratic subextensions of the field extension L/Q are the fixed fields of the three
subgroups of index 2 in G. To find the three quadratic intermediate fields, let p be an
odd prime and let ζp be a primitive p-th root of unity. First notice that ζ4p = iζp is a
primitive 4p-th root of unity. So, we have that ζ4p + ζ−1

4p = iζp − iζ−1
p = i(ζp − ζ−1

p ). In
particular, i ∈ L, which gives us the quadratic subextension Q(i). Furthermore (see, for
example, [11, Prp. 3.21, p. 96]), we have

p−1∑
k=1

(
k

p

)
ζkp =

{ √
p if p ≡ 1 (mod 4),

i
√
p if p ≡ 3 (mod 4),

where
(
k
p

)
is the Legendre-Symbol. Thus, since i ∈ L, for odd primes p we obtain the

two quadratic subextension Q(
√
−p ) = Q(i

√
p ) and Q(

√
p ).

So, the fixed fields of the three subgroups of index 2 in G are Q(i), Q(
√
−p ) and Q(

√
p ).

For H1 := Gal
(
L/Q(i)

)
, H2 := Gal

(
L/Q(

√
−p )

)
and H3 := Gal

(
L/Q(

√
p )
)
, we have

H1 = {a (mod 4p) : (a, 4p) = 1 and (−4
a ) = +1},

H2 = {a (mod 4p) : (a, 4p) = 1 and (−4p
a ) = +1},

H3 = {a (mod 4p) : (a, 4p) = 1 and (4p
a ) = +1},

where (mn ) is the Jacobi-Symbol.

This is easy to see: Fix a primitive p-th root of unity ζp and set ζ4p = iζp. The
Galois group G of Q(ζ4p)/Q is isomorphic to (Z/4pZ)× ' (Z/4Z)×(Z/pZ)×. For (r, s) ∈
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(Z/4Z)×(Z/pZ)× define σ(r,s) ∈ G : iζp 7→ irζsp . Clearly the elements (1, s) fix Q(i), and

these correspond to residue classes a mod 4p that satisfy a ≡ 1 mod 4, i.e., (−4
a ) = +1.

For example, let p = 11 and let ζ44 = iζ11 where ζ11 = e2πi/11. Then i =
ζ44+ζ−1

44

ζ11−ζ−1
11

, and

since ζ11 = ζ12
44 , we have

i =
ζ44 + ζ−1

44

ζ
12
44 − ζ

−12
44

.

If we replace ζ44 by ζa44 for some a ∈ H1, say a = 5, then we have

ζ5
44 + ζ−5

44

ζ
12·5
44 − ζ−12·5

44

=
ζ5

44 + ζ−5
44

ζ
16
44 − ζ

−16
44

=
iζ5

11 − iζ
−5
11

ζ
5
11 − ζ

−5
11

= i,

which shows that a = 5 (which belongs to H1) is an element of the fix-group of Q(i).

Now, for odd primes p, let p∗ be either +p or −p, so that p∗ ≡ 1 (mod 4). Then, since
the automorphisms σs : ζp 7→ ζsp with ( sp) = (p

∗

s ) = +1 fix the quadratic subfield of Q(ζp),

which is Q(
√
p∗ ), the automorphisms σ(r,s) with (ps ) = +1 fix the subfield Q(

√
p∗ ) of

Q(ζ4p).

For the other intermediate fields of L/Q, let ζp be again a primitive p-th root of unity.
Then, the maximal real subfield of L = Q(ζ4p) is L+ = Q

(
i(ζp − ζ−1

p )
)
. To see this, recall

that ζ4p = iζp is a primitive 4p-th root of unity and that ζ4p + ζ−1
4p = i(ζp − ζ−1

p ).

Figure 1 below shows some of the intermediate fields of the field extension L/Q.

Q

Q(
√
−p )Q(i) Q(

√
p )

Q(i,
√
p ) K+

K+(i) L+ K

L

Figure 1: Subfield Diagram of L = Q(ζ4p); here K = Q(ζp),
K+ = Q(ζp + ζ−1

p ), L+ = Q
(
i(ζp − ζ−1

p )
)
.

Proposition 1. Let p be an odd prime. Then the cyclotomic polynomial Φ4p(x) can be
written in the forms

Φ4p(x) = X2
1 + Y 2

1 = X2
2 + pY 2

2 = X2
3 − pY 2

3 ,
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where X1, Y1, 2X2, 2Y2, 2X3, 2Y3 ∈ Z[x]. Moreover, if p ≡ 1 mod 4, then X2, Y2 ∈ Z[x],
and if p ≡ 3 mod 4, then X3, Y3 ∈ Z[x].

In addition, the polynomials X1, X2 and X3 are even and the polynomial Y1 is odd, for
p ≡ 1 (mod 4) the polynomial Y2 is odd and Y3 is even, and for p ≡ 3 (mod 4), Y2 is even
and Y3 is odd.

For proving our main result concerning the representation of certain geometric sums
as sums of two squares, it is sufficient that the polynomials Xj have rational coefficients.
This is because an integer that is the sum of two rational squares is always the sum of two
integral squares.

Before we prove this proposition we consider the cases p = 11 and p = 13.

p = 11:

X1(x) = x10 − x8 + x6 − x4 + x2 − 1 Y1(x) = x9 − x7 + x5 − x3 + x

2X2(x) = 2x10 − x8 − 2x6 − 2x4 − x2 + 2 2Y2(x) = x8 − x2

X3(x) = x10 + 5x8 − x6 − x4 + 5x2 + 1 Y3(x) = x9 + x7 − x5 + x3 + x

p = 13:

X1(x) = x12 − x10 + x8 − x6 + x4 − x2 + 1
Y1(x) = x11 − x9 + x7 − x5 + x3 − x
X2(x) = x12 − 7x10 + 15x8 − 19x6 + 15x4 − 7x2 + 1
Y2(x) = x11 − 3x9 + 5x7 − 5x5 + 3x3 − x

2X3(x) = 2x12 − x10 + 4x8 + x6 + 4x4 − x2 + 2
2Y3(x) = x10 + x6 + x2

Proof of Proposition 1. Proposition 1 follows in part from the formulas of Gauss (see [6,
§356–357], [5, Chapter 5 and Supplement 7], [9, pp. 93–129], and [10, pp. 1–5]), and Lucas,
Aurifeuille and Le Lasseur (see [9, pp. 87–88], [12, p. 276], [13, p. 785], [2, 14, 17], and [16,
pp. 436–456]). However, since the theory is quite widely scattered in the literature, we
give a direct proof here so that the text is self-contained.

We have Φ4p(x) =
∏

(x − ζk), where ζ is a primitive 4p-th root of unity and k runs
through the coprime residue classes modulo 4p. We define three polynomials of degree
p− 1 and their conjugates by

fj(x) =
∏
k∈Hj

(x− ζk), gj(x) =
∏

k∈G\Hj

(x− ζk).

Since fj is fixed by the automorphisms σa : ζ 7→ ζa with a ∈ Hj , we see that the
polynomials fj have coefficients that lie in the rings of integers of the three quadratic
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subfields Kj of L = Q(ζ4p), namely

K1 = Q(i), K2 = Q(
√
−p ) and K3 = Q(

√
p ).

For example, f1(x) = X1(x) + iY1(x) and g1(x) = X1(x)− iY1(x), hence

Φ4p(x) =
∏
k∈G

(x− ζk) = f1(x) g1(x) = X2
1 + Y 2

1 .

Similarly, we have f2(x) = X2(x) +
√
−p Y2(x), g2(x) = X2(x)−

√
−p Y2(x), and f3(x) =

X3(x) +
√
p Y3(x), g3(x) = X3(x)−√p Y3(x), and therefore we get Φ4p(x) = X2

2 + pY 2
2 =

X2
3 − pY 2

3 .

X1 is even and Y1 is odd : For this, we first show that f1 + g1 is even. Let

Γ1 :=
{
k : 1 ≤ k ≤ 4p− 1, (−4/k) = +1, (k, 4p) = 1

}
.

Then |Γ1| = p− 1 and

f1(−x) =
∏
k∈Γ1

(−x− ζk) = (−1)p−1
∏
k∈Γ1

(x+ ζk) =
∏
k∈Γ1

(x+ ζk)

=
∏
k∈Γ1

(x− ζ2p+k) = g1(x),

where we have used the fact that p is odd and that 2p+k ≡ 3 (mod 4) when k ≡ 1 mod 4.

Thus f1(−x) = g1(x), which implies that

X1(x) =
1

2
(f1(x) + g1(x)) =

1

2
(f1(x) + f1(−x))

is even as claimed. Furthermore,

Y1(x) =
1

2i
(f1(x)− g1(x)) =

1

2i
(g1(−x)− g1(x))

and hence, Y1 is odd, as claimed.

The parity of the polynomial X2 and Y2: In this case, we have to consider f2. For

Γ2 :=
{
k : 1 ≤ k ≤ 4p− 1, (−4p/k) = +1, (k, 4p) = 1

}
we find again

f2(−x) =
∏
k∈Γ2

(x− ζ2p+k).

Assume first that p ≡ 1 (mod 4). Then( −4p

2p+ k

)
=
( −4

2p+ k

)( p

2p+ k

)
= −

(−1

k

)( p

2p+ k

)
= −

(−1

k

)(2p+ k

p

)
= −

(−1

k

)(k
p

)
= −

(−1

k

)(p
k

)
= −

(−4p

k

)
.
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Here, we have used that 2p + k ≡ 2 + k (mod 4) and the the quadratic reciprocity law

(−1
m ) = (−1)

m−1
2 , which implies( −1

2p+ k

)
= (−1)

(2p+k)−1
2 = (−1)

(k+2)−1
2 = (−1)

2+(k−1)
2 = −

(−1

k

)
.

Furthermore, we have used that 2p+ k ≡ k (mod p) and the quadratic reciprocity law
(mq ) = ( q

∗

m ), where in our case we have p∗ = p. Thus, we get again f2(−x) = g2(x), which
implies that X2 is even and Y2 is odd.

Assume now that p ≡ 3 (mod 4). Then( −4p

2p+ k

)
=
( −p

2p+ k

)
=
(2p+ k

p

)
=
(k
p

)
=
(−p
k

)
=
(−4p

k

)
.

Here, we have used again the quadratic reciprocity law (mq ) = ( q
∗

m ), where in this case we
have p∗ = −p. Thus, f2 and g2 are even, which implies that X2 and Y2 are both even.

The parity of the polynomial X3 and Y3: In this case, we consider f3. For

Γ3 :=
{
k : 1 ≤ k ≤ 4p− 1, (4p/k) = +1, (k, 4p) = 1

}
we have again

f3(−x) =
∏
k∈Γ3

(x− ζ2p+k).

If p ≡ 1 (mod 4), then( 4p

2p+ k

)
=
( p

2p+ k

)
=
(2p+ k

p

)
=
(k
p

)
=
(p
k

)
=
(4p

k

)
.

Thus, f3 and g3 are even, which implies that X3 and Y3 are both even.

Finally, assume that p ≡ 3 (mod 4). Then( 4p

2p+ k

)
=
( p

2p+ k

)
=
((−1)(−p)

2p+ k

)
=
( −1

2p+ k

)( −p
2p+ k

)
= −

(−1

k

)(2p+ k

p

)
= −

(−1

k

)(k
p

)
= −

(−1

k

)(−p
k

)
= −

(p
k

)
= −

(4p

k

)
.

Thus, we get again f2(−x) = g3(x), which implies that X3 is even and Y3 is odd.

Next we show that the polynomials fj and gj (for 1 ≤ j ≤ 3) have integral coeffi-
cients, from which it follows that X1, Y1 ∈ Z[x], that X2, Y2 ∈ Z[x] for p ≡ 1 mod 4, and
thatX3, Y3 ∈ Z[x] for p ≡ 3 mod 4. To see this, notice that the coefficients of fj and gj
are sums of products of roots of Φ4p, and therefore, the coefficients are algebraic integers.
Thus, it is enough to show that they are rational (see [15, Ch. 2]), which is clear since by
definition fj , gj ∈ Q[x]. q.e.d.

We now show that in the case when p ≡ 3 (mod 4), the polynomials X1 and Y1 can be
given explicitly.
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Proposition 2. For each odd prime p there exist polynomials X1, Y1 ∈ Z[x] such that

Φ4p(x) = X2
1 + Y 2

1 ,

where

X1 = xp−1 − xp−3 ± . . .+ x2 − 1 and

Y1 = xp−2 − xp−4 ± . . .− x3 + x.

Proof. It is sufficient to show that X2
1 + Y 2

1 = 0 for all primitive 4p-th roots of unity ζ4p.
Choose ζ4p = iζp; then

X1(ζ4p) = ζp−1
p + ζp−3

p + . . .+ ζ2
p + 1,

Y1(ζ4p) = iζp(ζ
p−3
p + . . .+ ζ2

p + 1),

hence,

X1(ζ4p)
2 + Y1(ζ4p)

2 =
(
ζp−1
p + ζp−3

p + . . .+ ζ2
p + 1

)2 − ζ2
p

(
ζp−3
p + . . .+ ζ2

p + 1
)2

=
(
ζp−1
p + ζp−3

p + . . .+ ζ2
p + 1− ζp(ζp−3

p + . . .+ ζ2
p + 1)

)
·(

ζp−1
p + ζp−3

p + . . .+ ζ2
p + 1 + ζp(ζ

p−3
p + . . .+ ζ2

p + 1)
)

=
(
ζp−1
p − ζp−2

p + . . .− ζp + 1
)
·
(
ζp−1
p + ζp−2

p + . . .+ ζp + 1
)

= 0

since the second factor vanishes. q.e.d.

2.1 On 1− pn + p2n − . . .+ p(p−1)n = a2 + b2

Theorem 3. For each positive even integer n and for each odd prime p, there are integers
a and b such that 1− pn + p2n − p3n + . . .− p(p−2)n + p(p−1)n = a2 + b2.

Proof. Let p be an odd prime and let n = 2k be even. Write

Φ4p(x) = X2
1 + Y 2

1

for X1 and Y1 as in Proposition 2. So, for all x we have

x2(p−1) − x2(p−2) + . . .− x2 + 1 =(
xp−1 − xp−3 + . . .+ x2 − 1

)2
+ x2

(
xp−3 − xp−5 + . . .− x2 + 1

)2
.

If we replace x by
√
pn =

√
p2k = pk, then we obtain

p(p−1)n − p(p−2)n + . . .− pn + 1 =
(
pk(p−1) − pk(p−3) + . . .+ p2k − 1︸ ︷︷ ︸

=a

)2
+

p2k
(
pk(p−3) − pk(p−5) ± . . .− p2k + 1︸ ︷︷ ︸

=b′

)2
.
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Hence,
1− pn + p2n − . . .+ p(p−1)n = a2 + (pk · b′︸ ︷︷ ︸

=b

)2 = a2 + b2

as desired. q.e.d.

Example 1. For p = 17 and n = 4 we have

1− pn + p2n − . . .+ p(p−1)n = 5 606 938 188 524 233 972 884 833 709 876 259 715 320

120 412 834 365 746 490 518 013 679 084 903 477 761

which is equal to a2 + b2 for

a = 2 367 883 244 007 434 985 275 084 433 544 972 212 481,

b = 8 193 367 626 323 304 447 318 631 257 941 080 320.

Example 2. For p = 19 and n = 4 we have

1− pn + p2n − . . .+ p(p−1)n = 117 559 014 338 527 165 166 244 286 348 071

379 595 604 269 270 562 262 117 202 886

547 466 177 979 905 306 611 717 019 281

which is equal to a2 + b2 for

a = 10 842 421 882 253 262 218 528 226 247 705 356 162 489 099 600,

b = −30 034 409 646 130 920 272 931 374 647 383 258 067 836 841.

Theorem 4. For each positive odd integer n and for each prime p ≡ 1 (mod 4), there
are integers a and b such that 1− pn + p2n − p3n + . . .− p(p−2)n + p(p−1)n = a2 + b2.

Proof. Let p be a prime with p ≡ 1 (mod 4) and let n = 2k + 1 be odd. Write

Φ4p(x) = X2
2 + p Y 2

2

for X2 and Y2 as in Proposition 2. Since Y2(x) is odd, Y2(x) = xỸ2(x), for some even
polynomial Ỹ2(x). So, for all x we have

x2(p−1) − x2(p−2) + . . .− x2 + 1 = X2(x)2 + p x2 Ỹ2(x)2.

If we replace x by
√
pn =

√
p2k+1, then we obtain

p(p−1)n − p(p−2)n + . . .− pn + 1 = X2(
√
p2k+1)2 + p · p2k+1︸ ︷︷ ︸

=(pk+1)2

· Ỹ2(
√
p2k+1)2,

and since the polynomialsX2 and Ỹ2 are even, a := X2(
√
p2k+1) and b := pk+1·Ỹ2(

√
p2k+1)

are integers and
1− pn + p2n − . . .+ p(p−1)n = a2 + b2

as desired. q.e.d.
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Example 3. For p = 17 and n = 5 we have

1− pn + p2n − . . .+ p(p−1)n = 272 843 369 591 083 565 163 897 960 274 150 163 925 907

398 160 401 760 528 914 080 984 723 578 982 308 965 034 129 183 153 705 601

which is equal to a2 + b2 for

a = 16 517 872 224 923 648 631 090 629 860 090 753 718 335 620 345 665,

b = −57 155 508 740 967 834 987 352 073 159 700 853 265 061 238 624.

The next result shows that for each positive odd integer n and for each prime p ≡
3 (mod 4), there are integers a and b such that 1−pn+p2n−p3n+ . . .−p(p−2)n+p(p−1)n =
a2 − b2. On the one hand, since 1 − pn + p2n − p3n + . . . − p(p−2)n + p(p−1)n is odd, it is
trivial that this number can be written as the difference of two consecutive squares, for
arbitrary positive integers p and n. On the other hand, since the construction of a and b in
the proof yields the known Aurifeuillian factorization (a− b)(a+ b) of p

p+1
p+1 (see [4,17,18]),

we will carry out the proof.

Proposition 5. For each positive odd integer n and for each prime p ≡ 3 (mod 4), there
are integers a and b such that 1− pn + p2n − p3n + . . .− p(p−2)n + p(p−1)n = a2 − b2.

Proof. Let p be a prime with p ≡ 3 (mod 4) and let n = 2k + 1 be odd. Write

Φ4p(x) = X2
2 − p Y 2

3

for X3 and Y3 as in Proposition 2. Since Y3(x) is odd, Y3(x) = xỸ3(x), for some even
polynomial Ỹ3(x). So, for all x we have

x2(p−1) − x2(p−2) + . . .− x2 + 1 = X3(x)2 − p x2 Ỹ3(x)2.

If we replace x by
√
pn =

√
p2k+1, then we obtain

p(p−1)n − p(p−2)n + . . .− pn + 1 = X3(
√
p2k+1)2 − p · p2k+1︸ ︷︷ ︸

=(pk+1)2

· Ỹ3(
√
p2k+1)2,

and since the polynomialsX3 and Ỹ3 are even, a := X3(
√
p2k+1) and b := pk+1·Ỹ3(

√
p2k+1)

are integers and
1− pn + p2n − . . .+ p(p−1)n = a2 − b2

as desired. q.e.d.

Example 4. For p = 19 and n = 5 we have

1− pn + p2n − . . .+ p(p−1)n = 12 241 197 653 400 194 976 316 344 352 158 020 672

788 585 557 257 984 632 807 522 590 951 633 776 884

227 612 141 191 585 621 087 559 109 580 423 076 919

which is equal to a2 − b2 for

a = 3 498 755 719 507 579 273 794 799 179 010 519 299 740 321 464 312 052 914 100,

b = −9 691 820 613 473 972 679 175 423 830 801 834 757 164 995 075 858 712 741.
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2.2 On 1 + pn + p2n + . . .+ p(p−1)n = a2 + b2

Theorem 6. For each positive odd integer n and for each prime p with p ≡ 3 (mod 4),
there are integers a and b such that 1 + pn + p2n + p3n + . . .+ p(p−1)n = a2 + b2.

Proof. Assume that p ≡ 3 (mod 4) and write

Φ4p(x) = X2
3 − pY 2

3 .

If we set x =
√
−pn, the left side becomes

Φ4p

(√
−pn

)
= 1 + pn + p2n + . . .+ p(p−1)n

and since X3 is even and Y3 is odd, we find that there are integers a and b̃ with

X3

(√
−pn

)
= a and Y3

(√
−pn

)
= b̃
√
−pn .

This implies

1 + pn + p2n + . . .+ p(p−1)n = a2 − p · (−pn) · b̃2 = a2 + pn+1 · b̃2,

and since n is odd, b := p(n+1)/2 · b̃ is an integer and we finally have

1 + pn + p2n + . . .+ p(p−1)n = a2 + b2

as desired. q.e.d.

Example 5. For p = 19 and n = 5 we have

1 + pn + p2n + . . .+ p(p−1)n = 12 241 207 540 890 636 307 955 864 529 747 398 926

816 231 303 577 845 363 670 867 101 162 934 744 482

260 391 318 439 126 866 697 079 482 004 381 725 101

which is equal to a2 + b2 for

a = −3 498 730 285 397 697 559 176 102 637 920 628 146 694 774 816 247 528 976 330,

b = −9 691 797 128 607 969 251 794 909 402 064 256 942 732 602 279 983 923 101.

The next result shows that for each positive odd integer n and each prime p with
p ≡ 1 (mod 4), there are integers a and b such that 1+pn+p2n+p3n+. . .+p(p−1)n = a2−b2.
Again, even though this result is trivial, since our construction of a and b yields an
Aurifeuillian factorization of pp−1

p−1 , we will carry out the proof.

Proposition 7. For each positive odd integer n and for each prime p with p ≡ 1 (mod 4),
there are integers a and b such that 1 + pn + p2n + p3n + . . .+ p(p−1)n = a2 − b2.
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Proof. Assume that p ≡ 1 (mod 4) and write

Φ4p(x) = X2
2 + pY 2

2 .

If we set x =
√
−pn, the left side becomes

Φ4p

(√
−pn

)
= 1 + pn + p2n + . . .+ p(p−1)n

and since X2 is even and Y2 is odd, we find that there are integers a and b̃ with

X2

(√
−pn

)
= a and Y2

(√
−pn

)
= b̃
√
−pn .

This implies

1 + pn + p2n + . . .+ p(p−1)n = a2 + p · (−pn) · b̃2 = a2 − pn+1 · b̃2,

and since n is odd, b := p(n+1)/2 · b̃ is an integer and we finally have

1 + pn + p2n + . . .+ p(p−1)n = a2 − b2

as desired. q.e.d.

Example 6. For p = 17 and n = 5 we have

1 + pn + p2n + . . .+ p(p−1)n = 272 843 753 916 493 453 326 592 154 471 252 228

008 693 153 768 573 519 357 641 119 380 280

571 696 470 094 485 235 540 600 070 801

which is equal to a2 − b2 for

a = 16 518 081 628 817 619 620 544 774 714 274 402 979 427 456 957 265,

b = 57 155 750 267 950 500 435 205 735 853 405 846 342 799 896 868.

3 On the minimal polynomial of
√
p · sin(2π/p)

Below we show that for primes p ≡ 3 (mod 4), the degree of the minimal polynomial of√
p · sin(2π/p) over Q is always (p − 1)/2. Notice that since the minimal polynomial of√
5 · sin(2π/5) over Q is 125− 100x2 + 16x4, the result does not hold in general for primes

p ≡ 1 (mod 4).

Theorem 8. For each prime p ≡ 3 (mod 4), the minimal polynomial of
√
p · sin(2π/p)

over Q is of degree (p− 1)/2.

Proof. Let p ≡ 3 mod 4 be a prime number and let ζp = cos(2π
p ) + i sin(2π

p ). Then

sp :=
√
p · sin(2π

p ) =
√
p ·

ζp − ζ−1
p

2i
=
p

2
·
ζp − ζ−1

p√
−p

.
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Since for p ≡ 3 (mod 4) we have

p−1∑
k=1

(
k

p

)
· ζkp =

√
−p

the real number sp is an element of Q(ζp) fixed by complex conjugation. Hence, it is an
element of the maximal real subfield of Q(ζp), and since |Gal(Q(ζp)/Q)| = p − 1 (recall
that Gal(Q(ζp)/Q) ∼= Cp−1), the degree of sp is a proper divisor of p− 1 and therefore the
degree of sp is at most p−1

2 .

On the other hand, sin(2π
p ) has degree p− 1 (see below) and

√
p has degree 2, so their

product must have degree at least p−1
2 . Thus, sp has degree p−1

2 . q.e.d.

In order to compute for primes p ≡ 3 (mod 4) the minimal polynomial of
√
p · sin(2π/p)

over Q, we proceed as follows. Let p be a prime with p ≡ 3 (mod 4), let q := (p − 1)/2,
and let ϕp := 2π/p. In [1] one finds that the minimal polynomial of sin(ϕp) over Q is

fp(x) =

q∑
k=0

(−1)q−k
(

p

2k + 1

)
(1− x2)q−kx2k,

which we can also express as

fp(x) =

q∑
k=0

c2k x
2k

where for k ∈ {0, . . . , q},

c2k := (−1)k+1 p(p+1)/2

∏k−1
j=0

(
p2 − (2j + 1)2

)
pk(2k + 1)!

.

This is a polynomial of degree p−1 with zeroes sin(k ϕp) for k ∈ {1, . . . , p−1}. If we replace
in fp(x) the indeterminate x by x/

√
p and multiply by pq, we get a polynomial gp(x) of

the same degree with integral coefficients with zeroes
√
p ·sin(k ϕp) (for k ∈ {1, . . . , p−1}).

Therefore, the minimal polynomial of
√
p · sin(ϕp) over Q must divide gp(x). In particular,

the polynomial gp(x) can always be factorised into two polynomials of the same degree as
follows:

gp(x) = (a0 + a1x+ a2x
2 + . . .+ aq−1x

q−1 + aqx
q)·

(−a0 + a1x− a2x
2 ± . . .− aq−1x

q−1 + aqx
q)

where a0 = p(p+1)/4 and aq = 2q (the latter follows from the fact that a2
q = c2q = 2p−1).

The structure of the two factors comes from the fact that the polynomial fp(x) is even. It

turns out that the zeroes of one of the factors are
√
p
(
`
p

)
sin(` ϕp) (for ` ∈ {1, . . . , q}), and

that the zeroes of the other factor are −√p
(
`
p

)
sin(` ϕp) (for ` ∈ {1, . . . , q}). Since the

degree of the minimal polynomial of
√
p · sin(ϕp) over Q is at least q, and since

√
p · sin(ϕp)

is a zero of one of the factors, we find that one of factors must be the minimal polynomial
of
√
p · sin(ϕp) over Q.
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Example 7. For p = 11, the minimal polynomial of sin(ϕp) over Q is

−11 + 220x2 − 1232x4 + 2816x6 − 2816x8 + 1024x10.

Replacing x by x/
√

11 and multiplying by 115 gives us

−1771561 + 3221020x2 − 1639792x4 + 340736x6 − 30976x8 + 1024x10,

which factorises as

(1331− 2662x+ 1452x2 − 176x4 + 32x5) · (−1331− 2662x− 1452x2 + 176x4 + 32x5)

and the minimal polynomial of
√

11 · sin(2π/11) over Q is

1331− 2662x+ 1452x2 − 176x4 + 32x5.
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[12] Édouard Lucas. Théorèmes d’arithmétique. Atti. R. Acad. Sc. Torino 13
(1877?8), 271–284.

[13] Édouard Lucas. Sur la série récurrente de Fermat. Bull. Bibl. Storia Sc. Mat. e
Fis. 11 (1878), 783–789.
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