Mathematical imaging

Habib Ammari

Department of Mathematics, ETH Zürich

Habib Ammari

Mathematical imaging

- Biomedical imaging:
 - Image electrical, optical, and mechanical tissue properties using electromagnetic and elastic waves at single or multiple frequencies.
 - Enhance the resolution, the stability, and the specificity.
- Direct and inverse problems for wave propagation in complex media.
- Build mathematical frameworks and develop effective numerical algorithms for biomedical imaging applications.

- Key concepts:
 - Resolution: smallest detail that can be resolved.
 - Robustness: stability of the image formation with respect to model uncertainty and electronic noise.
 - Specificity: physical nature (benign or malignant for tumors).

- Waves play a key role in biomedical imaging techniques.
- Visualize contrast information on the electrical, optical, mechanical properties of tissues.
- Tissue contrasts:
 - Highly sensitive to physiological and pathological tissue status.
 - Depend on the cell organization and composition.
 - Overall parameters, averaged in space over many cells.
- Recognize the microscopic cell organization and composition from measurements at the macroscopic level.

- Diagnosis and staging of cancer disease.
- Help surgeons to make sure they removed everything unwanted around the margin of the cancer tumor.
- Perform biopsy in the operating room.

- Anomaly imaging: take advantage of the smallness of the imaged anomalies.
- Hybrid imaging: one single imaging system based on the combined use of conductivity imaging and acoustic or elastic waves.
 - Conductivity imaging: sensitivity to only the electrical contrast.
 - Spatial resolution: low.
 - Hybrid imaging: Conductivity imaging gives its contrast and acoustic or elastic wave its spatial resolution.
- Spectroscopic tissue property imaging: specific dependence with respect to the frequency of the contrast.
 - Detect the characteristic signature of tumors; determine which are malignant and which are benign: specificity enhancement.
 - Classify micro-structure organization using spectroscopic tissue property imaging: resolution enhancement.
- Single particle imaging: take advantage of scattering and absorption enhancements and single particle imaging.

- Anomaly imaging:
 - Conductivity anomalies.
- Hybrid imaging:
 - Acousto-electric effect:
 - Ultrasound-modulated optical tomography;
 - Full-field optical coherence elastography
- Spectroscopic imaging:
 - Spectroscopic electrical tissue property imaging.
- Single particle imaging:
 - Plasmonic nanoparticles.

- Scale separation techniques: take advantage of the smallness of the imaged anomalies.
- Conductivity anomaly *D* inside a background medium Ω.
- k: conductivity of D; 1: background conductivity.
- $\lambda = (k+1)/(2(k-1))$: conductivity contrast.
- Detect, localize, and characterize the anomaly D from boundary measurements on $\partial \Omega$.

• Use multipolar approximation:

$$u(x) - U(x) \simeq \sum_{\alpha,\beta} \partial^{\alpha} G(x-z) M_{\alpha\beta}(\lambda, D) \partial^{\beta} U(z).$$

- *u*: voltage potential with *D*; *U*: voltage potential without *D*.
- G: background Green's function.
- $M_{\alpha\beta}(\lambda, D)$: high-order polarization tensors.

$$M_{lphaeta}(\lambda,D) := \int_{\partial D} x^{eta} (\lambda I - \mathcal{K}_D^*)^{-1} [\partial x^{lpha} / \partial
u](x) \, ds(x).$$

Neumann-Poincaré operator K^{*}_D:

$$\mathcal{K}^*_D[\varphi](x) := \int_{\partial D} \frac{\partial \mathcal{G}}{\partial \nu(x)}(x-y)\varphi(y) \, ds(y) \,, \quad x \in \partial D.$$

 ν : normal to ∂D .

- G: Fundamental solution to the Laplacian.
- *K*^{*}_D: compact operator on L²(∂D); Spectrum of *K*^{*}_D lies in (-¹/₂, ¹/₂]

 (Kellog).
- Spectral decomposition formula in $H^{-1/2}(\partial D)$,

$$\mathcal{K}_D^*[\psi] = \sum_{j=0}^\infty \lambda_j(\psi, \varphi_j)_{\mathcal{H}^*} \varphi_j.$$

- $(\lambda_j, \varphi_j), j = 0, 1, 2, \ldots$: eigenvalue and normalized eigenfunction pair of \mathcal{K}_D^* in $\mathcal{H}^*(\partial D); \lambda_j \in (-\frac{1}{2}, \frac{1}{2}]$ and $\lambda_j \to 0$ as $j \to \infty$;
- $\mathcal{H}^*(\partial D) = H^{-\frac{1}{2}}(\partial D)$ equipped with

$$(u, v)_{\mathcal{H}^*} = -(u, \mathcal{S}_D[v])_{-\frac{1}{2}, \frac{1}{2}}; \quad \mathcal{S}_D : \text{single layer potential}$$

Properties of high-order polarization tensors:

- Recover high-frequency information on the shape;
- Separate topology;
- Determine uniquely the shape and the material parameter.

- Positivity and symmetry properties on harmonic coefficients; optimal bounds.
- Harmonic coefficients:

$$(x_1+ix_2)^m=\sum_{|\alpha|=m}a^m_{\alpha}x^{\alpha}+i\sum_{|\beta|=m}b^m_{\beta}x^{\beta}.$$

• Translation, rotation, and scaling formulas.

< A >

A B > A B >

- Location-search algorithms: subspace projection algorithms.
- *P_m* orthogonal projection onto the *m* first significant singular values of data matrix.
- MUltiple SIgnal Classification algorithm:

$$\mathcal{I}_{MU}(z^s) = 1/\sqrt{1-\sum_{|lpha|\leq 1}\|(I-P_m)(\partial^{lpha}G(\cdot,z^s))\|}.$$

• $\mathcal{I}_{MU}(z^s)$ peaks at the location of the anomaly.

• MUSIC Imaging functional: MUSIC-type reconstruction from the singular value decomposition of data matrix.

- Reconstruction of high-order polarization tensors from the data by a least squares method.
- Instability:

 $M_{lphaeta}(k,D)=O(|D|^{|lpha|+|eta|+d-2}), |\partial^{lpha}G(x-z)|=O(|x|^{-|lpha|})(|x|
ightarrow+\infty).$

- Resolving power= number of high-order polarization tensors reconstructed from the data: depends on the signal-to-noise ratio (SNR) in the data.
- $\epsilon = \text{characteristic size of the anomaly}/\text{ the distance to the boundary }\partial\Omega$.
- SNR = ϵ^2 /standard deviation of the measurement noise (Gaussian).
- Formula for the resolving power *m* as function of the SNR:

$$(m\epsilon^{1-m})^2 = \text{SNR}.$$

Hybrid techniques

 Hybrid imaging: one single imaging system based on the combined use of different imaging modalities.

- 4 同 6 4 日 6 4 日 6

Habib Ammari

- Acousto-electric effect:
 - Acoustic pressure: p(x, t) = p₀b(x)a(t); p₀: amplitude; b: beam pattern; a: ultrasound waveform.
 - Acousto-electric effect:

 $\Delta \sigma = \eta \sigma p; \quad \eta : \text{ interaction constant.}$

- Acousto-electric imaging:
 - Change of conductivity induces a change of the boundary voltage measurements.
 - Scan the sample, record the boundary variations, and determine the conductivity distribution.

< 17 ▶

- Acousto-electric imaging: mathematical and numerical framework¹.
- *u* the voltage potential induced by a current *g* in the absence of acoustic perturbations:

$$\left\{egin{array}{ll}
abla_{ imes}\cdot\left(\sigma(x)
abla_{ imes}u
ight)=0\ {
m in}\ \Omega\ ,\ \sigma(x)rac{\partial u}{\partial
u}=g\ {
m on}\ \partial\Omega\ .\end{array}
ight.$$

 Suppose σ bounded from below and above and known in a neighborhood of the boundary ∂Ω: σ = σ_{*}; Set Ω' ⊂ Ω where σ is unknown.

¹with E. Bonnetier, Y. Capdeboscq, M. Fink, M. Tanter, SIAM J. Appl. Math., 2008.

Mathematical imaging

• Use of focalized ultrasonic waves with D as a focal spot \rightarrow

$$\sigma_{\delta}(x) = \sigma(x) \bigg[1 + \chi(D)(x) (\nu(x) - 1) \bigg],$$

with $\nu(x) = \eta p(x)$: known.

*u*_δ induced by *g* in the presence of acoustic perturbations localized in the focal spot *D* := *z* + δ*B*:

$$\begin{cases} \nabla_x \cdot (\sigma_\delta(x) \nabla_x u_\delta(x)) = 0 \text{ in } \Omega, \\ \sigma(x) \frac{\partial u_\delta}{\partial \nu} = g \text{ on } \partial \Omega. \end{cases}$$

• Suppose the focal spot D to be a disk and $u \in W^{2,\infty}(D)$. Then,

$$\int_{\partial\Omega} (u_{\delta} - u)g \, d\sigma = |\nabla u(z)|^2 \int_D \sigma(x) \frac{(\nu(x) - 1)^2}{\nu(x) + 1} dx$$
$$+ O(|D|^{1+\beta}),$$

- $O(|D|^{1+\beta}) \leq C|D|^{1+\beta}||\nabla u||_{L^{\infty}(D)}|\nabla^2 u||_{L^{\infty}(D)}$ with C: independent of D and u.
- β : depends only on Ω' , ν , $\sup_{\Omega} \sigma$, $\min_{\Omega} \sigma$.

• Suppose $\sigma \in \mathcal{C}^{0, \alpha}(D)$, $0 \leq \alpha \leq 2\beta \leq 1$. Then

$$\begin{aligned} \mathcal{E}(z) &:= \left(\int_{D} \frac{\left(\nu(x)-1\right)^{2}}{\nu(x)+1} dx\right)^{-1} \int_{\partial\Omega} (u_{\delta}-u) g \, d\sigma \\ &= \sigma(z) \left|\nabla u(z)\right|^{2} + O(|D|^{\alpha/2}). \end{aligned}$$

ε(z): electrical energy density; known function from the boundary measurements.

Habib Ammari

御 と くきと くきとう

- Substitute σ by $\mathcal{E}/|\nabla u|^2$.
- Nonlinear PDE (the 0–Laplacian)

$$\left\{ \begin{array}{cc} \nabla_{x} \cdot \left(\frac{\mathcal{E}}{\left| \nabla u \right|^{2}} \nabla u \right) = 0 & \text{ in } \Omega \ , \\ \frac{\mathcal{E}}{\left| \nabla u \right|^{2}} \frac{\partial u}{\partial \nu} = g & \text{ on } \partial \Omega \end{array} \right.$$

• g such that u has no critical point inside Ω' .

- Polarized measurements:
- g₁ and g₂: two currents.

$$\mathcal{E}_{ij} := \int_{\partial\Omega} (u_{\delta}^{(j)} - u^{(j)}) g_i \ d\sigma \approx \sigma(x) \nabla u^{(j)}(x) \cdot \nabla u^{(l)}(x), \quad i, j = 1, 2.$$

$$\left\{ \begin{array}{ll} \nabla_{\mathsf{x}} \cdot \left(\frac{\mathcal{E}_{jj}}{|\nabla u^{(j)}|^2} \nabla u^{(j)} \right) = 0 & \quad \text{in } \Omega \ , \\ \\ \frac{\mathcal{E}_{jj}}{|\nabla u^{(j)}|^2} \frac{\partial u^{(j)}}{\partial \nu} = \mathbf{g}_j & \quad \text{on } \partial\Omega \ . \end{array} \right.$$

• Proper set of measurements: (g_1, g_2) s.t.

 $|\nabla u^{(j)}| > 0; (\mathcal{E}_{ij})_{i,j}: \text{ invertible in } \Omega' \Subset \Omega.$

< ∃ >

- Substitution algorithm.
 - Start from an initial guess for the conductivity σ ;
 - Solve the corresponding Dirichlet conductivity problem

$$\begin{cases} \nabla \cdot (\sigma \nabla u_0) = 0 & \text{in } \Omega , \\ u_0 = \psi & \text{on } \partial \Omega . \end{cases}$$

- ψ: Dirichlet data measured as a response to the current g = g₁ in absence of elastic deformation;
- Define the discrepancy between the data and the guessed solution by

$$\epsilon_0 := \frac{\mathcal{E}_{11}}{\left|\nabla u_0\right|^2} - \sigma \; .$$

• Introduce the corrector, δu , computed as the solution to

$$\begin{cases} \nabla \cdot (\sigma \nabla \delta u) = -\nabla \cdot (\varepsilon_0 \nabla u_0) & \text{in } \Omega ,\\ \delta u = 0 & \text{on } \partial \Omega ; \end{cases}$$

Update the conductivity

$$\sigma := \frac{\mathcal{E}_{11} - 2\sigma\nabla\delta u \cdot \nabla u_0}{|\nabla u_0|^2} \; .$$

• Iteratively update the conductivity, alternating directions of currents (with $g = g_2$ and \mathcal{E}_{11} replaced with \mathcal{E}_{22}).

- Optimal control algorithm
- (g₁, g₂): proper set of measurements.
- Admissible set of conductivities: open subset of W^{1,∞}(Ω)

$$A = \{ \sigma \in W^{1,2}(\Omega) : c_0 < \sigma < C_0, |\nabla \sigma| < C_1 \}.$$

Minimization problem:

$$\min_{\sigma\in A} J[\sigma] := \frac{1}{2} \sum_{j,l=1}^{2} \int_{\Omega} \left| \mathcal{E}_{jl}[\sigma] - \mathcal{E}_{jl}^{(m)} \right|^{2} dx \,,$$

 $\mathcal{E}_{jl}^{(m)}$: measurements.

• Fréchet derivative of *J*[*σ*]:

$$dJ[\sigma] = \frac{1}{2} \sum_{j,l=1}^{2} (\mathcal{E}_{jl}[\sigma] - \mathcal{E}_{jl}^{(m)}) \nabla u^{(j)} \cdot \nabla u^{(l)} + \sum_{j,l=1}^{2} \nabla u^{(j)} \cdot \nabla p^{(j,l)};$$

• $p^{(j,l)}$: solution of the adjoint problem

$$\left\{ \begin{array}{rcl} \nabla \cdot \sigma \nabla p^{(j,l)} &=& -\nabla \cdot (\mathcal{E}_{jl}[\sigma] - \mathcal{E}_{jl}^{(m)}) \sigma \nabla u^{(l)} & \text{ in } \Omega \,, \\ \\ \sigma \frac{\partial p^{(j,l)}}{\partial \nu} &=& 0 & \text{ on } \partial \Omega \,, \\ \\ \int_{\partial \Omega} p^{(j,l)} = 0 \,. \end{array} \right.$$

- ∢ ⊒ →

- For σ ∈ A, dE_{jl} takes the form l + compact, up to a multiplication by a continuous function.
- $\bullet \Rightarrow$

 $\|d\mathcal{E}[\sigma]\|_{\mathcal{L}(H^1_0(\Omega),L^2(\Omega))} \geq C.$

- Convergence of the Landweber iteration scheme:
 - Assume that $\sigma^{(0)}$: good initial guess for σ_* .
 - As $n \to +\infty$, the sequence

$$\sigma^{(n+1)} = T\sigma^{(n)} - \eta d\mathcal{E}^*[T\sigma^{(n)}](\mathcal{E}[\sigma^{(n)}] - \mathcal{E}^{(m)})$$

converges to σ_* ; T: Hilbert projection of $H^1(\Omega)$ onto A; σ_* : true conductivity distribution, η : step size; $\mathcal{E}^{(m)} = (\mathcal{E}_{jl}^{(m)})_{j,l=1,2}$.

Reconstruct the conductivity distribution knowing the internal energies:

- Linearized versions of the nonlinear (zero-Laplacian) PDE problems.
- Optimal control approach: minimize over the conductivity the discrepancy between the computed and reconstructed internal energies.
- Optimal control approach: more efficient approach specially with incomplete internal measurements of the internal energy densities.
- Resolution of order the size of the focal spot + stability (wrt measurement noise).
- Exact inversion formulas: derivatives of the data ⇒ used only to obtain a good initial guess.

- Reconstruction algorithm for ultrasound-modulated diffuse optical tomography.
- Diffuse optical imaging: low resolution.
- By mechanically perturbing the medium → achieve a significant resolution enhancement.
 - Spherical acoustic wave: propagating inside the medium \rightarrow optical parameter of the medium: perturbed.
 - Cross-correlations of the boundary measurements of the intensity of the light propagating in the perturbed medium and in the unperturbed one \rightarrow two iterative algorithms for reconstructing the optical absorption coefficient:
 - Spherical Radon transform inversion → nonlinear system: solved iteratively or by optimal control.

• Acoustically modulated optical tomography²:

• Record the variations of the light intensity on the boundary due to the propagation of the acoustic pulses.

²with E. Bossy, J. Garnier, L. Nguyen, L. Seppecher, Proc. AMS, 2014. 🛓 🔗

Habib Ammari

 g: the light illumination; a: optical absorption coefficient; *l*: extrapolation length. Fluence Φ (in the unperturbed domain):

$$\begin{cases} -\Delta \Phi + a\Phi = 0 \text{ in } \Omega, \\ I \frac{\partial \Phi}{\partial \nu} + \Phi = g \text{ on } \partial \Omega. \end{cases}$$

- Acoustic pulse propagation: $a \rightarrow a_u(x) = a(x + u(x))$.
- Fluence Φ_u (in the displaced domain):

$$\begin{cases} -\Delta \Phi_u + a_u \Phi_u = 0 \text{ in } \Omega, \\ I \frac{\partial \Phi_u}{\partial \nu} + \Phi_u = g \text{ on } \partial \Omega. \end{cases}$$

- *u*: thin spherical shell growing at a constant speed; *y*: source point; *r*: radius.
- Cross-correlation formula:

$$M(y,r) := \int_{\partial\Omega} \left(\frac{\partial \Phi}{\partial \nu} \Phi_u - \frac{\partial \Phi_u}{\partial \nu} \Phi \right) = \int_{\Omega} (a_u - a) \Phi \Phi_u \approx \underbrace{\int_{\Omega} u \cdot \nabla a |\Phi|^2}_{Taylor + Born}.$$

- Helmholtz decomposition: $\Phi^2 \nabla a = \nabla \psi + \nabla \times A$.
- Spherical Radon transform: $\nabla \psi = -\frac{1}{c} \nabla \mathcal{R}^{-1} \left[\int_0^r \frac{M(y,\rho)}{\rho^{d-2}} d\rho \right].$
- System of nonlinearly coupled elliptic equations: $\nabla \cdot \Phi^2 \nabla a = \Delta \psi$ and $\Delta \Phi + a \Phi = 0$.
- Fixed point and Optimal control algorithms.
- Convergence result for the fixed point scheme provided that $\|\Delta \psi\|_{L^{\infty}(\Omega)}$: small.

- Optimal control and Landweber schemes:
 - $F[a] := \nabla \cdot (\Phi^2[a] \nabla a);$
 - Optimal control: min $||F[a] \Delta \psi||$;
 - Landweber sequence:

$$a^{(n+1)} = a^{(n)} - \mu dF[a^{(n)}]^*(F[a^{(n)}] - \Delta \psi),$$

- $\mu > 0$: relaxation parameter.
- Convergence results assuming a good initial guess.
- *dF*[*a*]: well-defined on H¹₀(Ω) and there exists a positive constant C s.t. for all *h* ∈ H¹₀(Ω),

 $\|dF[a](h)\|_{H^{-1}(\Omega)} \ge C \|h\|_{H^{1}_{0}(\Omega)}.$

 $dF[a](h): v \in H_0^1(\Omega) \mapsto dF[a](h, v).$

Realistic biological light absorption map:

Habib Ammari

- Reconstruction for a realistic absorption map: proofs of convergence for highly discontinuous absorption maps³ (bounded variation).
- Minimal regularity assumption on a (SBV[∞]; change of function):

$$\widetilde{a} := a - a_0 - \frac{\psi}{\phi^2}.$$

• a and ψ : same set of discontinuities.

³with L. Nguyen, L. Seppecher, J. Funct. Anal., 2014.

- Full-field optical coherence tomography (OCT): optical image with sub-cellular resolution.
- Elastography: mechanical tissue properties.
- Biological tissues: quasi-incompressible.
- Apply a load on the sample.
- OCTE: Use a set of optical images before and after mechanical solicitation to reconstruct the shear modulus distribution inside the sample.
- Map of mechanical properties: added as a supplementary contrast mechanism to enhance specificity.

Habib Ammari

<ロ> <同> <同> < 回> < 回>

Habib Ammari

- Reconstruct the shear modulus μ from ε and ε_u^4 .
- $\varepsilon(\mathbf{x}) = \varepsilon_u \left(\mathbf{x} + \mathbf{u}(\mathbf{x}) \right)$;
- Displacement field u:

$$\begin{cases} \nabla \cdot \left(\mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T) \right) + \nabla p = 0 & \text{in } \Omega, \\ \nabla \cdot \mathbf{u} = 0 & \text{in } \Omega, \\ \mathbf{u} = \mathbf{f} & \text{on } \partial \Omega. \end{cases}$$

⁴with E. Bretin, P. Millien, L. Seppecher, J.K. Seo, SIAM J. Appl. Math., 2015.

Mathematical imaging

• \mathbf{u}^* the true displacement; $\widetilde{\varepsilon}$ the measured deformed optical:

$$\widetilde{\varepsilon} = \varepsilon \circ \left(\mathbb{I} + \mathbf{u}^* \right)^{-1}.$$

- Optical image: discontinuous.
- Optimal control algorithm:

$$I(\mathbf{u}) = \frac{1}{2} \int_{\Omega} |\widetilde{\varepsilon} \circ (\mathbb{I} + \mathbf{u}) - \varepsilon|^2 d\mathbf{x}.$$

- *I* has a nonempty subgradient.
- $\boldsymbol{\xi} \in \partial I$:

$$\boldsymbol{\xi}: \mathbf{h} \mapsto \int_{\Omega} [\widetilde{arepsilon}(\mathbf{x} + \mathbf{u}) - arepsilon(\mathbf{x})] \mathbf{h}(\mathbf{x}) \cdot D\widetilde{arepsilon} \circ (\mathbb{I} + \mathbf{u})(\mathbf{x}) \, d\mathbf{x}.$$

Initial guess:

- Detect the surface of jumps of the optical image (edge detection algorithm).
- Local recovery by linearization: data = $\varepsilon \varepsilon_u (\approx \nabla \varepsilon \cdot \mathbf{u})$

$$J_{\mathbf{x}}(\mathbf{u}) = \int_{\Omega} |\nabla \varepsilon(\mathbf{y}) \cdot \mathbf{u} - \operatorname{data}(\mathbf{y})|^2 w_{\delta}(|\mathbf{x} - \mathbf{y}|) d\mathbf{y}.$$

• $w_{\delta} = \frac{1}{\delta^d} w\left(\frac{\cdot}{\delta}\right)$; w: a mollifier supported on [-1, 1].

• Least-squares solution:

$$\mathbf{u}^{\mathsf{T}} = \left(\int_{\Omega} w_{\delta}(|\mathbf{x} - \mathbf{y}|) \nabla \varepsilon(\mathbf{y}) \nabla \varepsilon^{\mathsf{T}}(\mathbf{y}) d\mathbf{y}\right)^{-1} \int_{\mathbf{x} + \delta B} \mathrm{data} w_{\delta}(|\mathbf{x} - \mathbf{y}|) \nabla \varepsilon(\mathbf{y}) d\mathbf{y}.$$

• If all vectors $\nabla \varepsilon$ in $\{\mathbf{y} : w_{\delta}(|\mathbf{y} - \mathbf{x}|) \neq 0\}$ not collinear, then

$$\int_{\Omega} w_{\delta}(|\mathbf{x}-\mathbf{y}|)
abla arepsilon(\mathbf{y})
abla arepsilon^{ op}(\mathbf{y}) d\mathbf{y} \quad ext{invertible}.$$

• Resolution = variation of ε .

Optical image ε of the medium:

Averaging kernel w_{δ} :

Conditioning of the matrix $w_{\delta} \star \nabla \varepsilon \nabla \varepsilon^{T}$:

Mathematical imaging

Displacement field and its reconstruction.

< ∃ →

< 1 →

Habib Ammari

< 17 ▶

- Differentiate between normal, pre-cancerous and cancerous tissues from electrical measurements at tissue level.
- Frequency dependence of the (anisotropic) homogenized admittivity: $\omega \mapsto K^*(\omega).$
- Relaxation times:
 - 1/ arg max_ω eigenvalues of ℑm K^{*}(ω);
 - Classification: invariance properties;
 - Measure of anisotropy: ratios of the eigenvalues of $\Im m K^*(\omega)$.

- Cell: homogeneous core covered by a thin membrane of contrasting electric conductivities and permittivities.
 - Intra and extra-cellular media: k₀ := σ₀ + iωε₀ (conducting effect; transport of charges);
 - Membrane: $k_m := \sigma_m + i\omega\varepsilon_m$ with $\sigma_m/\sigma_0 \ll 1$ (capacitance effect; storage or charges or rotating molecular dipoles);
 - Thickness of the membrane \ll typical size of the cell.

$$\begin{cases} -\nabla \cdot k_0 \nabla u_{\delta}^+ = 0 & \text{in } \Omega_{\delta}^+ \cup \Omega_{\delta}^-, \\ k_0 \frac{\partial u_{\delta}^+}{\partial n} = k_0 \frac{\partial u_{\delta}^-}{\partial n} & \text{on } \Gamma_{\delta}, \\ u_{\delta}^+ - u_{\delta}^- - \delta \xi \frac{\partial u_{\delta}^+}{\partial n} = 0 & \text{on } \Gamma_{\delta}, \\ \frac{\partial u_{\delta}^+}{\partial n} = g & \text{on } \partial \Omega. \end{cases}$$

•
$$u_{\delta} = u_{\delta}^{\pm}$$
 in Ω_{δ}^{\pm} ;

• $\xi = \text{thickness} \times k_m/k_0$: effective thickness;

• g: electric field applied at $\partial \Omega$ of frequency $\omega (\int_{\partial \Omega} g d\sigma = 0)$.

御 とくきとくきとう

The effective admittivity of a periodic dilute suspension⁵:

$$K^* = k_0 \left(I + fM \left(I - \frac{f}{2}M \right)^{-1} \right) + o(f^2).$$

- *M*: membrane polarization tensor

$$M = -\left(\xi \int_{\partial \widetilde{D}} \nu_j \left(I + \xi L_{\widetilde{D}}\right)^{-1} [\nu_i](y) ds(y)\right)_{i,j=1,2}$$

•
$$L_{\widetilde{D}}[\varphi](x) = \frac{1}{2\pi} \text{p.v.} \int_{\partial \widetilde{D}} \frac{\partial^2 \ln |x - y|}{\partial \nu(x) \partial \nu(y)} \varphi(y) ds(y), \quad x \in \partial \widetilde{D}.$$

⁵with J. Garnier, L. Giovangigli, W. Jing, J.K. Seo, J. Math. Pures Appl., 2016.

Mathematical imaging

- Properties of the membrane polarization tensor:
 - *M*: symmetric; invariant by translation;
 - $M(sC,\xi) = s^2 M(C,\frac{\xi}{s})$ for any scaling parameter s > 0.
 - $M(\mathcal{RC},\xi) = \mathcal{R}M(\mathcal{C},\xi)\mathcal{R}^t$ for any rotation \mathcal{R} .
 - Sm M is positive and its eigenvalues, λ₁ ≥ λ₂, have one maximum with respect to ω.
- Relaxation times for the arbitrary-shaped cells:

 $rac{1}{ au_i} := rg\max_{\omega} \lambda_i(\omega).$

- $(\tau_i)_{i=1,2}$: invariant by translation, rotation and scaling.
- Concentric circular-shaped cells: Maxwell-Wagner-Fricke formula (λ₁ = λ₂).
- Nondilute regime: Assume f known ⇒ Classification based on relaxation times.

御 と くきと くきと

Plasmonic resonant nanoparticles

- Gold nano-particles: accumulate selectively in tumor cells; bio-compatible; reduced toxicity.
- Detection: localized enhancement in radiation dose (strong scattering).
- Ablation: localized damage (strong absorption).
- Functionalization: targeted drugs.

M.A. El-Sayed et al.

Plasmonic resonances for nanoparticles

• Spectral decomposition: (1, m)-entry

$$M_{l,m}(\lambda(\omega),D) = \sum_{j=1}^{\infty} \frac{(\nu_m,\varphi_j)_{\mathcal{H}^*}(\nu_l,\varphi_j)_{\mathcal{H}^*}}{(1/2-\lambda_j)(\lambda(\omega)-\lambda_j)}.$$

- $(\nu_m, \varphi_0)_{\mathcal{H}^*} = 0$; φ_0 : eigenfunction of \mathcal{K}_D^* associated to 1/2.
- Quasi-static far-field approximation⁶: $\delta \rightarrow 0$,

$$u^{s} = -\delta^{d} M(\lambda(\omega), B) \nabla_{z} G_{k_{m}}(x-z) \cdot \nabla u^{i}(z) + O(\frac{\delta^{d+1}}{\operatorname{dist}(\lambda(\omega), \sigma(\mathcal{K}_{D}^{*}))}).$$

 Quasi-static plasmonic resonance: dist(λ(ω), σ(K^{*}_D)) minimal (ℜe ε_c(ω) < 0).

⁶with P. Millien, M. Ruiz, H. Zhang, Arch. Ration. Mech. Anal., 2017. ≥ ∽ Mathematical imaging Habib Ammari Plasmonic resonances for nanoparticles

•
$$M(\lambda(\omega), B) = \left(\frac{\varepsilon_c(\omega)}{\varepsilon_m} - 1\right) \int_B \nabla v(y) dy:$$

$$\begin{cases} \nabla \cdot \left(\varepsilon_m \chi(\mathbb{R}^d \setminus \overline{B}) + \varepsilon_c(\omega) \chi(\overline{B})\right) \nabla v = 0, \\ v(y) - y \to 0, \quad |y| \to +\infty. \end{cases}$$

• Corrector v:

$$v(y) = y + \mathcal{S}_B(\lambda(\omega)I - \mathcal{K}_B^*)^{-1}[\nu](y), \quad y \in \mathbb{R}^d.$$

• Inner expansion: $\delta \rightarrow 0$, $|x - z| = O(\delta)$,

$$u(x) = u^{i}(z) + \delta v(\frac{x-z}{\delta}) \cdot \nabla u^{i}(z) + O(\frac{\delta^{2}}{\operatorname{dist}(\lambda(\omega), \sigma(\mathcal{K}_{D}^{*}))}).$$

• Monitoring of temperature elevation due to nanoparticle heating⁷:

$$\begin{cases} \rho C \frac{\partial T}{\partial t} - \nabla \cdot \tau \nabla T = \frac{\omega}{2\pi} (\Im(\varepsilon_c(\omega)) |u|^2 \chi(D), \\ T|_{t=0} = 0. \end{cases}$$

< □ > < 同

 ρ : mass density; C: thermal capacity; τ : thermal conductivity.

⁷with F. Romero, M. Ruiz, SIAM MMS, 2018.

Plasmonic resonances for nanoparticles

• Scattering amplitude:

$$u^{s}(x) = -ie^{-\frac{\pi i}{4}} \frac{e^{ik_{m}|x|}}{\sqrt{8\pi k_{m}|x|}} A_{\infty}[D, \varepsilon_{c}, \varepsilon_{m}, \omega](\theta, \theta') + o(|x|^{-\frac{1}{2}}),$$

 $|x| \rightarrow \infty; \, \theta, \, \theta'$: incident and scattered directions.

• Scattering cross-section:

$$Q^{s}[D,\varepsilon_{c},\varepsilon_{m},\omega](\theta'):=\int_{0}^{2\pi}\left|A_{\infty}[D,\varepsilon_{c},\varepsilon_{m},\omega](\theta,\theta')\right|^{2}d\theta.$$

• Enhancement of the absorption and scattering cross-sections Q^a and Q^s at plasmonic resonances⁸:

 $Q^{a} + Q^{s} (= \text{extinction cross-section } Q^{e}) \propto \Im m \operatorname{Trace}(M(\lambda(\omega), D));$

$$Q^{s} \propto \left| \operatorname{Trace}(M(\lambda(\omega), D)) \right|^{2}.$$

⁸with P. Millien, M. Ruiz, H. Zhang, Arch. Ration. Mech. Anal., 2017.

Single particle imaging

• Single nanoparticle imaging⁹:

$\max_{z^S} I(z^S, \omega)$

- $I(z^{s}, \omega)$: imaging functional; z^{s} : search point.
- Resolution: limited only by the signal-to-noise-ratio.
- Cross-correlation techniques: robustness with respect to medium noise.

⁹with J. Garnier, P. Millien, SIAM J. Imag. Sci., 2014. *Ameri*

Concluding remarks

- Scale separation techniques, multi-wave imaging, single particle imaging.
- Source¹⁰ and dynamic separation techniques¹¹.
- Functional conductivity imaging: Neuro-activity: localized conductivity change. Inject a dc current through electrodes and measure the change in the current density.
- Stem cells monitoring and tissue engineering: Image each layer and measure noninvasively its composition.

¹¹with G.S. Alberti, F. Romero, T. Wintz, submitted, 2018.

¹⁰with G.S. Alberti, ACHA, 2017.