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Mathematics for biomedical imaging

® Biomedical imaging:

o Image electrical, optical, and mechanical tissue properties
using electromagnetic and elastic waves at single or multiple

frequencies.
e Enhance the resolution, the stability, and the specificity.

® Direct and inverse problems for wave propagation in complex media.

® Build mathematical frameworks and develop effective numerical
algorithms for biomedical imaging applications.
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Mathematics for biomedical imaging

e Key concepts:
e Resolution: smallest detail that can be resolved.
e Robustness: stability of the image formation with respect to
model uncertainty and electronic noise.
e Specificity: physical nature (benign or malignant for tumors).
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Mathematics for biomedical imaging

® Waves play a key role in biomedical imaging techniques.
® Visualize contrast information on the electrical, optical, mechanical
properties of tissues.
® Tissue contrasts:
e Highly sensitive to physiological and pathological tissue status.
e Depend on the cell organization and composition.
o Overall parameters, averaged in space over many cells.

® Recognize the microscopic cell organization and composition from
measurements at the macroscopic level.
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Mathematics for biomedical imaging

® Diagnosis and staging of cancer disease.
® Help surgeons to make sure they removed everything unwanted around
the margin of the cancer tumor.

® Perform biopsy in the operating room.
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Mathematics for biomedical imaging

® Anomaly imaging: take advantage of the smallness of the imaged
anomalies.

® Hybrid imaging: one single imaging system based on the combined use of
conductivity imaging and acoustic or elastic waves.

e Conductivity imaging: sensitivity to only the electrical contrast.

e Spatial resolution: low.

e Hybrid imaging: Conductivity imaging gives its contrast and
acoustic or elastic wave its spatial resolution.

® Spectroscopic tissue property imaging: specific dependence with respect
to the frequency of the contrast.

o Detect the characteristic signature of tumors; determine which
are malignant and which are benign: specificity enhancement.

e Classify micro-structure organization using spectroscopic tissue
property imaging: resolution enhancement.

® Single particle imaging: take advantage of scattering and absorption
enhancements and single particle imaging.
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Mathematics for biomedical imaging

® Anomaly imaging:

e Conductivity anomalies.

Hybrid imaging:

o Acousto-electric effect:
o Ultrasound-modulated optical tomography;
o Full-field optical coherence elastography

® Spectroscopic imaging:
e Spectroscopic electrical tissue property imaging.
® Single particle imaging:

e Plasmonic nanoparticles.
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Scale-Separation techniques

® Scale separation techniques: take advantage
of the smallness of the imaged anomalies.

® Conductivity anomaly D inside a background

medium Q. Mathematical and
. Statistical Methods
® k: conductivity of D; 1: background for Multistatic
conductivity. Imaging
® \=(k+1)/(2(k—1)): conductivity contrast.
® Detect, localize, and characterize the anomaly Biping

D from boundary measurements on 0f2.

Mathematical imaging Habib Ammari



Scale-Separation techniques

® Use multipolar approximation:

u(x) = U(x) 2 > 9%G(x — z)Mas(X, D) U(2).
o,B

® u: voltage potential with D; U: voltage potential without D.

G: background Green's function.

Mag(A, D): high-order polarization tensors.

M.s(), D) ::/ xP (A = Kp) M [ox™ /o] (x) ds(x).

oD

Mathematical imaging Habib Ammari



Scale-Separation techniques

® Neumann-Poincaré operator Kp:

Kelel() = | G72s(x=y)ely)dsly) . x € oD.

v: normal to 9D.
® G: Fundamental solution to the Laplacian.

® [ compact operator on L?(0D); Spectrum of K}, lies in (—%, %]
(Kellog).

Spectral decomposition formula in H='/2(8D),

Kol = > N, )ne -

Jj=0

(Aj, ), J=0,1,2,...: eigenvalue and normalized eigenfunction pair of
b in H*(OD); A\j € (—3,3] and Aj — 0 as j — oo;

H*(8D) = H™2(0D) equipped with

(u, v)ax = —(u,Sp[v]) ;  Sp : single layer potential.

_11
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Scale-Separation techniques

Properties of high-order polarization tensors:

® Recover high-frequency information on the
shape;

® Separate topology;

® Determine uniquely the shape and the ; @
material parameter.
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Scale-Separation techniques

® Positivity and symmetry properties on
harmonic coefficients; optimal bounds.

. .. Polarization and

® Harmonic coefficients: Moment Tensors
With Applications to

. . Inverse Problems
(X]_ =+ IXz)m = E a;nxa —+ 1 E bg’xﬂ and Effective
Medium Theory
|o|=m |Bl=m
® Translation, rotation, and scaling formulas. -
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Scale-Separation techniques

® [ocation-search algorithms: subspace projection algorithms.

Pp, orthogonal projection onto the m first significant singular values of
data matrix.

MUItiple Slgnal Classification algorithm:

Imu(2°) = 1/\/1 = > U= Pu)(@2G (-, 22)).

la|<1

Imu(z°) peaks at the location of the anomaly.
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Scale-Separation techniques

e MUSIC Imaging functional: MUSIC-type reconstruction from the singular
value decomposition of data matrix.

Y axis

S
X axis

Y axis h X axis
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Scale-Separation techniques

® Reconstruction of high-order polarization tensors from the data by a least
squares method.

® |Instability:
Mag(k, D) = O(|D|'**1717972) 152 G (x — 2)| = O(|x|'*)(|x| = +o0).

® Resolving power= number of high-order polarization tensors reconstructed
from the data: depends on the signal-to-noise ratio (SNR) in the data.

® ¢ = characteristic size of the anomaly/ the distance to the boundary 9.
e SNR = ¢?/standard deviation of the measurement noise (Gaussian).

® Formula for the resolving power m as function of the SNR:

(me'™™)? = SNR.
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Hybrid techniques

Multi-Wave
Medical Imaging

Mathematical Modelling

® Hybrid imaging: one single imaging system SRt 8
based on the combined use of different b
imaging modalities.

W wors s
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Acousto-electric imaging
® Acousto-electric effect:

o Acoustic pressure: p(x,t) = pob(x)a(t); po: amplitude; b:
beam pattern; a: ultrasound waveform.
e Acousto-electric effect:

Ao =nop; n: interaction constant.

® Acousto-electric imaging:
e Change of conductivity induces a change of the boundary
voltage measurements.
e Scan the sample, record the boundary variations, and
determine the conductivity distribution.
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Acousto-electric imaging

® Acousto-electric imaging: mathematical and numerical framework?.

® 4 the voltage potential induced by a current g in the absence of acoustic
perturbations:
Vi (6(x)Vxu) =0in Q,

O(X)% =gondQ.

® Suppose o bounded from below and above and known in a neighborhood
of the boundary 0Q2: o = o4; Set Q' C Q where o is unknown.

lwith E. Bonnetier, Y. Capdeboscq, M. Fink, M. Tanter, SIAM J. Appl.
Math., 2008.
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Acousto-electric imaging

® Use of focalized ultrasonic waves with D as a focal spot —

o5(x) = o(x)|1+x(D)(x)(v(x) 1) |,

with v(x) = np(x): known.

® us induced by g in the presence of acoustic perturbations localized in the
focal spot D := z + §B:

Vi (05(x)Vxus(x)) =0 in Q,

(x)— = g on 0Q.
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Acousto-electric imaging

® Suppose the focal spot D to be a disk and u € W?*°°(D). Then,

'/Oﬂ(u(; —u)gdo = |Vu(z)|2/£)0'(x)7(l;((xx)):rll)

+0(|D["*?),

dx

o O(|D|"*7) < CIDI*P||Vull 1o (D) V?ul| 1 (D) with C:
independent of D and u.
e [3: depends only on @', v, supg o, ming o.
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Acousto-electric imaging

® Suppose 0 € C>¥(D), 0 < a <28 < 1. Then

E(z) = (/E)de>_l aQ(u[;—u)gdcf

= o(2)[Vu(z)]? + O(ID|*'?).

® £(z): electrical energy density; known function from the boundary
measurements.
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Acousto-electric imaging

e Substitute o by £/ |Vul*.
® Nonlinear PDE (the 0-Laplacian)

Vx' (%VU) =0 inQ,
u
l‘ ou
Wazg on 0N .

® g such that u has no critical point inside .
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Acousto-electric imaging

® Polarized measurements:

® g and g»: two currents.

&= / WY — uNg do =~ o(x)Vu (x) - Vu (x), i,j=1,2.
o0

[ ]
V- 5”', svul) | = inQ,
|Vu(l)|
g oul)
Va0 ov =g on 00 .

® Proper set of measurements: (gi, &) s.t.

IVu| > 0;(&;)i) : invertible in Q' € Q.
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Acousto-electric imaging

® Substitution algorithm.

e Start from an initial guess for the conductivity o;
e Solve the corresponding Dirichlet conductivity problem

V- (oVuw)=0 inQ,
Uug = 1 on 092 .

e 1. Dirichlet data measured as a response to the current
g = g1 in absence of elastic deformation;
e Define the discrepancy between the data and the guessed
solution by
&n

= — 0
|VU0|2

€o -
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Acousto-electric imaging

® Introduce the corrector, du, computed as the solution to

V- (oVéu) = =V - (e0V o) in Q,
ou=0 on 0Q ;
® Update the conductivity

L 511 — 20V6u . VU()
‘ Vuol?

® |[teratively update the conductivity, alternating directions of currents (with
g = g and &1 replaced with £).
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Acousto-electric imaging

e Optimal control algorithm

(g1, 42): proper set of measurements.

Admissible set of conductivities: open subset of W>(Q)
A={oceW"?Q):aw<o<G,|Vo|< G}.

® Minimization problem:

2

-4

Jyl=1

2
Eilo] — £ dx,

jl

8J.(,m): measurements.
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Acousto-electric imaging

® Fréchet derivative of J[o]:

2 2
dJ[o] = % Z(Eﬂ[a] — Sﬂ(m))VUU) vul ¢ Z vl . wplh

=1 J,l=1

e pU: solution of the adjoint problem

V.oVplih = V- (&lo] - EMovu)  inQ,
Ua%(i/) =0 on 99,

/ pU”) =0.
aQ
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Acousto-electric imaging

® For 0 € A, d&j takes the form [ + compact, up to a multiplication by a
continuous function.

° =
HdE[U]Hc(Hg(Q),LQ(Q)) >C.

® Convergence of the Landweber iteration scheme:
e Assume that 0(©: good initial guess for o,.
e As n — +o0, the sequence

o) = 7o) — pd& [ ToM)(E[oM] — £(m)

converges to o.; T: Hilbert projection of H*(2) onto A; o.:
true conductivity distribution, 7: step size;

glm) — (gj(lm) )ji=1.2-
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Acousto-electric imaging

Reconstruct the conductivity distribution knowing the internal energies:

® Linearized versions of the nonlinear (zero-Laplacian) PDE problems.

® Optimal control approach: minimize over the conductivity the
discrepancy between the computed and reconstructed internal energies.

e Optimal control approach: more efficient approach specially with
incomplete internal measurements of the internal energy densities.

® Resolution of order the size of the focal spot + stability (wrt
measurement noise).

® Exact inversion formulas: derivatives of the data = used only to obtain a
good initial guess.
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® Reconstruction algorithm for ultrasound-modulated diffuse optical
tomography.

o Diffuse optical imaging: low resolution.

® By mechanically perturbing the medium — achieve a significant
resolution enhancement.

e Spherical acoustic wave: propagating inside the medium —
optical parameter of the medium: perturbed.

e Cross-correlations of the boundary measurements of the
intensity of the light propagating in the perturbed medium and
in the unperturbed one — two iterative algorithms for
reconstructing the optical absorption coefficient:

® Spherical Radon transform inversion — nonlinear system:
solved iteratively or by optimal control.
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Ultrasound-modulated optical tomography

® Acoustically modulated optical tomography?:

Acoustic source Light source

Focusé‘d_ acoustic beam

Light detectors

Contrasted anomaly

® Record the variations of the light intensity on the boundary due to the
propagation of the acoustic pulses.

2with E. Bossy, J. Garnier, L. Nguyen, L. Seppecher, Proc. AMS, 2014.
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Ultrasound-modulated optical tomography

® g: the light illumination; a: optical absorption coefficient; /: extrapolation
length. Fluence @ (in the unperturbed domain):

—Ad+ad =0 in Q,

I8—¢+¢:g on 0f2.
ov

® Acoustic pulse propagation: a — a,(x) = a(x + u(x)).

Fluence ¢, (in the displaced domain):

—Ad, +a,P, =0 in Q,
od,
ov

/

+ &, =g on IN.

® 1 thin spherical shell growing at a constant speed; y: source point; r: radius.

Cross-correlation formula:

My, ) ::/ ("Lq’q)u, 8¢“¢) :/(aufa)¢d>,,z/ u-Valof?.
a0 ov ov Q Q
N

Taylor+Born
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Ultrasound-modulated optical tomography

® Helmholtz decomposition: $°Va = Vi) + V x A.

1 "M
® Spherical Radon transform: Vi = —ZVR™! [/ (v, p) dp} .
c 0

pd—2

® System of nonlinearly coupled elliptic equations: V - ®2Va = At and
Ad + ad =0.

® Fixed point and Optimal control algorithms.

® Convergence result for the fixed point scheme provided that ||Ad)[ o0 (q): small.
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Ultrasound-modulated optical tomography

e Optimal control and Landweber schemes:
Fla] := V - (#?[a]Va);

Optimal control: min ||F[a] — Avy|;
Landweber sequence:

am ) = 3 — udF[aM]*(F[a™] — AY),

u > 0: relaxation parameter.

Convergence results assuming a good initial guess.
dF|a]: well-defined on H}(£2) and there exists a positive
constant C s.t. for all h € H}(Q),

[dF[al(M)llH-1(@) = CllhllHyq)-

dF[a)(h) : v € HNQ) — dF[a](h, v).
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Ultrasound-modulated optical tomography

Realistic biological light absorption map:

1

0.8 18
0.6 16
0.4 i 14
0.2 12
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Ultrasound-modulated optical tomography

e Reconstruction for a realistic absorption map: proofs of
convergence for highly discontinuous absorption maps3
(bounded variation).

e Minimal regularity assumption on a (SBV°; change of
function):

v
¢?

a:=a—ay—

e a and : same set of discontinuities.

Swith L. Nguyen, L. Seppecher, J. Funct. Anal., 2014.
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Full-field optical coherence elastography

e Full-field optical coherence tomography (OCT): optical image with
sub-cellular resolution.

® Elastography: mechanical tissue properties.
® Biological tissues: quasi-incompressible.
® Apply a load on the sample.

® OCTE: Use a set of optical images before and after mechanical
solicitation to reconstruct the shear modulus distribution inside the
sample.

® Map of mechanical properties: added as a supplementary contrast
mechanism to enhance specificity.

Mathematical imaging Habib Ammari



Full-field optical coherence elastography

CCD
Camera
S —
White light source Mi Piezoelectric
= 1COSOPE - gcillation < 1pm
Objectives s K
Beam
J Splitter
Mirror (reference)
Microscope
Objectives

Scattering
Sample
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Full-field optical coherence elastography
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Full-field optical coherence elastography

® Reconstruct the shear modulus x from € and e,*.
e ¢(x)=¢e,(x+u(x));
® Displacement field u:
V. (u(Vu + VuT)) +Vp=0 in Q

V-u=0 in Q
u="f on 900.

“with E. Bretin, P. Millien, L. Seppecher, J.K. Seo, SIAM J. Appl. Math.,
2015.
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Full-field optical coherence elastography

® u” the true displacement; £ the measured deformed optical:

F=co(l+u")"".

Optical image: discontinuous.

® Optimal control algorithm:
I(u) = /|so (I+u) —e|* dx.

® | has a nonempty subgradient.
£ eol:

£:h— /Q[g(x + u) — e(x)]h(x) - Dg o (I 4 u)(x) dx
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Full-field optical coherence elastography

Initial guess:

® Detect the surface of jumps of the optical image (edge detection
algorithm).

® Local recovery by linearization: data =& — e,(~ Ve - u)

Am)zx)v4w-u—dmawfmux—ﬂwy

* w5 = 5%,W (5) w: a mollifier supported on [—1,1].

® | east-squares solution:
—1
o7 = ([ wslx =TIV ) [ datami(xy)Va)ay.
Q x+6B
e If all vectors Ve in {y : ws(|y — x|) # 0} not collinear, then
/W5(|xfy|)Vs(y)VsT(y)dy invertible.
Q

® Resolution = variation of ¢.
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Full-field optical coherence elastography

Optical image € of the medium:

1
09 1
08 i
o7 16
06
15
05
1
04
1
03
»
02
01 n
o 10
o o1 02 03 04 05 06 07 08 09 1
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Full-field optical coherence elastography

Averaging kernel wg:
w
o
o
o

% o1 02 03 04 05 06 07 08 09

Conditioning of the matrix ws x VeVe:
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Full-field optical coherence eIastography

u ey

1 1 -10-°
0.8 0.8 4
0.6 0.6
0.4 0.4 2
0.2 0.2

0 02 04 06 08 1 O0 02 04 06 08 1 0

Initial guess u; - e; 10 Initial guess u; - e> 102
1
4 08 4
0.6
2 04 2
0.2
02 04 06 08 1 0 00 02 04 06 08 1 0
Reconstructed u - e; Reconstructed u - e2 10

1 1
0.8 0.8 4
0.6
0.4 X 2
0.2 02

0 04 06 08 1 00 02 04 06 08 1 0

Displacement field and its reconstruction.
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Full-field optical coherence elastography

Shear modulus distribution Reconstructed shear modulus distribution firc.

0 01 02 03 04 05 06 07 08 09 1

Shear modulus reconstruction.
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Spectroscopic electrical tissue property imaging

® Differentiate between normal, pre-cancerous and cancerous tissues from
electrical measurements at tissue level.

® Frequency dependence of the (anisotropic) homogenized admittivity:
w = K*(w).
® Relaxation times:
e 1/argmax, eigenvalues of Im K*(w);
e Classification: invariance properties;
e Measure of anisotropy: ratios of the eigenvalues of Im K*(w).

Invasive
Normal CIN1 | CIN2 [CIN3| Cancer

o
o
s
2
>
3
3
(0

s]e]+ o] e1+]") - S

M | 0t 10° 0 107 107 100
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Spectroscopic electrical tissue property imaging

® Cell: homogeneous core covered by a thin membrane of contrasting
electric conductivities and permittivities.

e Intra and extra-cellular media: ko := 0g + iweg (conducting
effect; transport of charges);

e Membrane: ky, := oy + iwen, with o, /09 < 1 (capacitance
effect; storage or charges or rotating molecular dipoles);

o Thickness of the membrane < typical size of the cell.
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Spectroscopic electrical tissue property imaging

—V - kVui =0 in Qf UQy,
ouy Oouy

ko on = ko an on r§,

uf — —65(9“5 = on s,

duf

W = on BQ

® s = ug[ in Q(;i;
® ¢ = thickness X km/ko : effective thickness;

® g: electric field applied at 9Q of frequency w ([, gdo = 0).
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Spectroscopic electrical tissue property imaging

The effective admittivity of a periodic dilute suspension®:
£ -1
K* = ko </+f/w (I—§M> )+o(f2).

® f: volume fraction; &: effective thickness of the membrane; 0D: cell

membrane; D = D/\/?: rescaled cell.

® M: membrane polarization tensor

M=— (g /35 v (1 +€Lg) ™ [w](y)ds(y))

i,j=1,2

* Lylel(x) = %p'V- 5 %w(ﬂdﬂy% x € dD.

Swith J. Garnier, L. Giovangigli, W. Jing, J.K. Seo, J. Math. Pures Appl.,
2016.

Mathematical imaging Habib Ammari



Spectroscopic electrical tissue property imaging

® Properties of the membrane polarization tensor:

M: symmetric; invariant by translation;

M(sC, &) = s>M(C, %) for any scaling parameter s > 0.
M(RC,&) = RM(C,&)R" for any rotation R.

S'm M is positive and its eigenvalues, A1 > A;, have one
maximum with respect to w.

® Relaxation times for the arbitrary-shaped cells:

1
= = argmax \j(w).
Ti w

(7)i=1,2: invariant by translation, rotation and scaling.

® Concentric circular-shaped cells: Maxwell-Wagner-Fricke formula
(A1 = X2).

Nondilute regime: Assume f known = Classification based on relaxation
times.
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Plasmonic resonant nanoparticles

® Gold nano-particles: accumulate selectively in tumor cells; bio-compatible;
reduced toxicity.

® Detection: localized enhancement in radiation dose (strong scattering).
® Ablation: localized damage (strong absorption).

® Functionalization: targeted drugs.

Coy i R
Ao | T g

M.A. El-Sayed et al.
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Plasmonic resonances for nanoparticles

® Spectral decomposition: (/, m)-entry
Vm»‘PJ H* Vl7 ‘PJ)H*
Mym( A (
Z:(1/2—)\) (Aw) =)
® (vm,po)u= = 0; po: eigenfunction of K} associated to 1/2.

® Quasi-static far-field approximation®: § — 0,
5d+1

uF = —8M(\w), B)V. Gy, (x — z) - Vu'(z) + O(m).

® Quasi-static plasmonic resonance: dist(A(w), o(Kp)) minimal
(Reec(w) <0).

Swith P. Millien, M. Ruiz, H. Zhang, Arch. Ration. Mech: Anal., 2017.
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Plasmonic resonances for nanoparticles
o MO, 8) = (<) 1) [ Tuinay

{ v-(smx(R" \ B) + sc(w)X(E))vV =0,
v(y) =y =0, |yl = +oo.
e Corrector v:
v(y) =y + Ss(A W) = Ki) ' [MI(y), y €R?.
® Inner expansion: 6 — 0, |x — z| = O(9),
52

X —2Zz

u(x) = u'(z) + dv( 3 )-Vi'(z) + O(

e Monitoring of temperature elevation due to nanoparticle heating”:

{ pCOL 9 rVT = 2 (3(ee(w)) luPx(D).
T|i=0 = 0.

p: mass density; C: thermal capacity; 7: thermal conductivity.
"with F. Romero, M. Ruiz, SIAM MMS, 2018.
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Plasmonic resonances for nanoparticles

® Scattering amplitude:

ikm | x|

e
\/ 8T km|x|

|x| = oc0; 0, 0": incident and scattered directions.

Ui (x) = —ie™ Aco[D, ec,em, w](6,0') + o(|x|7%),

® Scattering cross-section:
2

27
Q°[D, ec, em, w](6") ::/ Aco[D, ec,em,w](6,60")| db.
0

® Enhancement of the absorption and scattering cross-sections Q? and Q°
at plasmonic resonances®:

Q? 4+ Q°(= extinction cross-section Q¢) oc Im Trace(M(\(w), D));

Q° o |Trace(M(A\(w), D))/’

Swith P. Millien, M. Ruiz, H. Zhang, Arch. Ration. Mech: Anal., 2017.
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Single particle imaging
e Single nanoparticle imaging®:

max (2>, w)
zS

e /(z°,w): imaging functional; z°: search point.

® Resolution: limited only by the signal-to-noise-ratio.

® Cross-correlation techniques: robustness with respect to medium

Medium wihout the reflector

08 s 04 02 0 o0z o4 o0s 08 1 T os 08 04 02 0

with J. Garnier, P. Millien, SIAM J. Imag. Sci., 2014.
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Concluding remarks

® Scale separation techniques, multi-wave imaging, single particle imaging.
e Source!® and dynamic separation techniques®!.

® Functional conductivity imaging: Neuro-activity: localized conductivity
change. Inject a dc current through electrodes and measure the change in
the current density.

® Stem cells monitoring and tissue engineering: Image each layer and
measure noninvasively its composition.

Owith G.S. Alberti, ACHA, 2017.
"yith G.S. Alberti, F. Romero, T. Wintz, submitted, 2018.
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