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Subwavelength resonances

• Focus, trap, guide, manipulate, and control waves at subwavelength scales.

• Construct a unified mathematical approach for modelling subwavelength
confinement and guiding of waves as well as imaging and sensing using artificial
materials.

• Microstructured resonant materials.

• Building block microstructure: subwavelength resonator.

• Evaluate the robustness of the proposed approaches for subwavelength
confinement and guiding of waves with respect to uncertainties in the
geometrical or physical parameters.
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Subwavelength resonances

• PDE model for a single subwavelength resonator:

∆u + ω2 ρ

κ
u = 0 in Rd \ D, d = 2, 3,

∆u + ω2 ρr

κr
u = 0 in D,

u|+ = u|− on ∂D,

ρr

ρ

∂u

∂ν

∣∣∣∣
+

=
∂u

∂ν

∣∣∣∣
−

on ∂D,

us := u − uin satisfies the (outgoing) Sommerfeld radiation condition.

• κr , ρr , κ, ρ: material parameters inside and outside D.

• kr = ω
√
ρr/κr ; vr =

√
κr/ρr ; k = ω

√
ρ/κ; v =

√
κ/ρ.

• vr , v = O(1); High contrast: δ := |ρr/ρ| � 1.

• Given δ, a subwavelength resonant frequency ω = ω(δ) ∈ C:

(i) there exists a non-trivial solution to the PDE model with uin = 0;
(ii) ω depends continuously on δ and satisfies ω → 0 as δ → 0.
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Subwavelength resonances

• Finite systems of subwavelength resonators:

• Hermitian case: κr , ρr positive;
• Non-Hermitian case: κr , ρr with nonzero imaginary parts;
• Time-modulated case: Wave equation; time-modulated material

parameters inside the resonator: κrκ(t), ρrρ(t).

• Periodic systems subwavelength resonators: crystals, screens, chains.

• Extraordinary confinement and guiding properties of microstructured resonant
materials and their robustness.
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Finite systems of subwavelength resonators

• Finite system of subwavelength resonators1:

• Let D = D1 ∪ · · · ∪ DN ; D1,D2, . . . ,DN ⊂ Rd : N disjoint resonators;
vi : wave speed in resonator Di , ki = ω/vi : wave number in Di ;

• δi = O(δ), |δ| � 1, for i = 1, . . . ,N.

v

δ7
v7

δ1
v1

δ3

v3

δ6

v6

δ4

v4

δ2

v2

δ5

v5

1with B. Davies, Submitted, 2020.
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Finite systems of subwavelength resonators
• Let d = 3. Capacitance matrix: C = (Cij ) ∈ RN×N

Cij = −
∫
∂Di

(SD)−1[χ∂Dj
]︸ ︷︷ ︸

:=ψj

dσ, i , j = 1, . . . ,N.

• SD : Single-layer potential associated with the fundamental solution G to the
Laplacian: SD [φ] =

∫
∂D G(x − y)φ(y) dσ(y).

• Generalized capacitance matrix: C = (Cij ) ∈ CN×N

Cij =
δiv

2
i

|Di |
Cij , i , j = 1, . . . ,N.

• Characterization of the subwavelength resonant frequencies:

•
ωn =

√
λn + O(δ), n = 1, . . . ,N;

• {λn : n = 1, . . . ,N}: eigenvalues of C, which satisfy λn = O(δ) as
δ → 0.
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Finite systems of subwavelength resonators

• Characterization of the subwavelength resonant modes:

• vn: eigenvector of C associated to λn.
• Resonant mode un associated to ωn:

un(x) =

{
vn · Sk

D(x) + O(δ1/2), x ∈ R3 \ D,
vn · Ski

D (x) + O(δ1/2), x ∈ Di .

• Sk
D : R3 → CN :

Sk
D(x) =

Sk
D [ψ1](x)

...
Sk
D [ψN ](x)

 , x ∈ R3 \ ∂D;

• ψi := (SD)−1[χ∂Di ].
• Sk

D : single-layer potential associated with Gk : outgoing fundamental
solution of the Helmholtz operator ∆ + k2.
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Finite systems of subwavelength resonators

• Modal decomposition:

• V : matrix of eigenvectors of C. V = [v1, . . . , vN ].
• If ω = O(

√
δ) as δ → 0, then the solution u to the scattering

problem can be written, uniformly for x in compact subsets of R3, as

u(x)− uin(x) =
N∑

n=1

anun(x)− Sk
D

[(
Sk
D

)−1

[uin]

]
(x) + O(δ1/2);

• an = an(ω) satisfy

V

ω
2 − ω2

1

. . .

ω2 − ω2
N


a1

...
aN

 =


v2

1 δ1

|D1|

∫
∂D1

(SD)−1[uin] dσ
...

v2
NδN
|DN |

∫
∂DN

(SD)−1[uin] dσ


+O(δ3/2).
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Finite systems of subwavelength resonators

• Boundary integral formulation: A(ω, δ)[Ψ] = 0;

• 0: characteristic value of the limiting operator-valued function: ω 7→ A(ω, 0).

• Gohberg-Sigal theory: perturbation of the characteristic value and the kernel of
A(0, 0).

• Numerical approaches to compute the resonant frequencies:

• Discrete version of the boundary integral formulation and Muller’s
method.

• Use the capacitance matrix to obtain accurate numerical
approximations with significant reduction in computational power.
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Finite systems of subwavelength resonators

• Subwavelength resonant frequencies of a system of N = 10 spherical resonators;
Each resonator has unit radius and δ = 1/5000.

• Comparison between the values computed using the multipole expansion method
to discretize the full boundary integral equation and the values computed using
the capacitance matrix.

• Computations using the full multipole method took 41 seconds while the
approximations from the capacitance matrix took just 0.02 seconds, on the same
computer.
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Effective medium theory
• Effective medium theory for dilute systems of subwavelength resonators2:

• Effective operator: ∆ + k2 + V (x)

V (x) =
1

(ωM
ω

)2 − 1
ΛṼ (x).

• ωM :=
√
λ1;

• Λ: depends only on the size and number
of the subwavelength resonators;

• Ṽ : depends only on the distribution of
the centers of the subwavelength
resonators.

• ω slightly below ωM : high-contrast effective κ ⇒
superresolution imaging: imaginary part of the
Green function sharper peak than the free-space
one.

• ω slightly above ωM : negative effective κ.

Ω

• Effective medium theory does not hold at ω = ωM : adding or removal of one
resonator from the system affects the total field by a magnitude O(uin).

2with H. Zhang, SIAM J. Math. Anal., 2017.
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Effective medium theory

• Double-negative effective material properties3: negative effective κ and ρ for
frequencies near the hybridized resonant frequencies of a single dimer.

Ω

3with B. Fitzpatrick, H. Lee, S. Yu, H. Zhang, Quart. Appl. Math., 2019.
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Exceptional points
• Structures with exceptional points are structures where eigenvalues and

eigenmodes coincide.

• Exceptional points arise in non-Hermitian structures.

• Asymptotic exceptional points of two resonators4:

D1 D2

v1 v2

δ1 δ2

v

• Parity-time-symmetric system: D1 = −D2 and v2
1 δ1 = v2

2 δ2 (v2
i = κi/ρi ).

•
v2

1 δ1 := a+ib, v2
2 δ2 := a−ib,

for a, b ∈ R; |b|: magnitude of the gain and the loss.

• PT -symmetry forces the spectrum of the capacitance matrix to be conjugate
symmetric.

• The operator in the PDE model: not PT -symmetric due to the radiation
condition ⇒ approximate nature of the exceptional points.

4with B. Davies, E.O. Hiltunen, H. Lee, S. Yu, Submitted, 2020.
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Exceptional points

• Generalized capacitance matrix C = (Cij ):

Cij = −
∫
∂Di

(SD)−1 [χ∂Dj
] dσ, i , j = 1, 2,

C := VC =
1

|D1|

(
v2

1 δ1C11 v2
1 δ1C12

v2
2 δ2C21 v2

2 δ2C22

)
, V :=

1

|D1|

(
v2

1 δ1 0
0 v2

2 δ2

)
.

• Eigenvalues of C:

λi =
1

|D1|

(
aC11 + (−1)i

√
a2C2

12 − b2(C2
11 − C2

12)

)
, i = 1, 2.

• As δ → 0,
ωi =

√
λi + O(δ), i = 1, 2.
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Exceptional points
• Asymptotic exceptional point occurs when λ1 = λ2:

• There is a magnitude b0 = b0(a) > 0 of the gain/loss such that ω1

and ω2, and corresponding eigenmodes, coincide to leading order in
δ.

• b0 = aC12√
C2

11−C2
12

corresponds to the point where C has a double

eigenvalue corresponding to a one-dimensional eigenspace.
• b < b0 :

√
λ1 and

√
λ2 are real, and

√
λ1 6=

√
λ2;

• b > b0 :
√
λ1 and

√
λ2 are purely imaginary, and

√
λ1 6=

√
λ2;

• b = b0 : ω1 and ω2 coincide at leading order in δ.
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High-order exceptional points
• Asymptotic Nth order exceptional point:

det(C − xI ) = (λ− x)N , dimKer(C − λI ) = 1.

• If a small particle is introduced into a structure with Nth order exceptional
point, the splitting in the resonant frequencies is of the same order as the Nth
root of the small particle’s volume ⇒ enhanced sensing.

• PT -symmetric systems with high-order exceptional points5:

5with B. Davies, E.O. Hiltunen, H. Lee, S. Yu, Studies in Appl. Math., 2021.
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Time-modulated systems of subwavelength resonators

• Wave equation in a time-modulated structure:(
∂

∂t

1

κ(x , t)

∂

∂t
−∇ ·

1

ρ(x , t)
∇
)
u(x , t) = 0, x ∈ Rd , t ∈ R.

• Time-modulation of the resonators:

κ(x , t) =

{
κ, x ∈ Rd \ D,
κrκi (t), x ∈ Di ,

, ρ(x , t) =

{
ρ, x ∈ Rd \ D,
ρrρi (t), x ∈ Di .

• ρi (t) and κi (t): modulation inside the i th resonator Di ; ρi , κi : periodic with
period T ; κi ∈ C1(R) and κ′i (t) = O(δ1/2) for each i = 1, ...,N.
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Time-modulated systems of subwavelength resonators
• Floquet transform in t:

(
∂

∂t

1

κ(x , t)

∂

∂t
−∇ ·

1

ρ(x , t)
∇
)
u(x , t) = 0,

u(x , t)e−iωt is T -periodic in t.

• Time-Brillouin zone: ω ∈ Y ∗t := C/(ΩZ); Ω = (2π)/T = O(δ1/2).

• A quasifrequency is a subwavelength quasifrequency if the corresponding solution
is essentially supported in the subwavelength frequency regime:

u(x , t) = e iωt
∞∑

n=−∞
vn(x)e inΩt , ω : Floquet exponent,

where
ω → 0 and MΩ→ 0 as δ → 0,

for some integer-valued function M = M(δ) such that, as δ → 0, we have

∞∑
n=−∞

‖vn‖L2(K) =
M∑

n=−M

‖vn‖L2(K) + o(1), K compact set containing D.
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Time-modulated systems of subwavelength resonators

• Capacitance matrix formulation of the problem6:

• As δ → 0, the quasifrequencies ω ∈ Y ∗t are, to leading order, given by
the quasifrequencies of the system of ordinary differential equations:

N∑
j=1

Cijcj(t) = − 1

ρi (t)

d

dt

(
1

κi (t)

d(ρici )

dt

)
,

for i = 1, . . . ,N. (cj(t) = e iωt
∑

n cj,ne
inΩt).

• Rewrite as a system of Hill equations:

Ψ′′(t) + M(t)Ψ(t) = 0.

• Compute the Floquet exponents of the Hill system of equations.

6with E.O. Hiltunen, submitted, 2020.
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Time-modulated systems of subwavelength resonators

• If κi (t) = 1, ρi (t) = ρ1(t), t ∈ R, i = 1, . . . ,N:

Ψ′′(t) + CΨ(t) = 0.

• ⇒ Static case: Quasifrequencies ωi read at leading order in δ:

ωi =
√
λi .
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Periodic systems of subwavelength resonators

• dl : dimension of periodicity of the lattice. d : dimension of the ambient space.
P⊥ : Rd → Rd−dl : projection onto the last d − dl coordinates.

• Three different cases:

• d − dl = 0: crystal;
• d − dl = 1: screen;
• d − dl = 2: chain.

· · · · · ·

.

• Λ: periodic lattice; l1, . . . , ldl : lattice vectors (P⊥li = 0, i = 1, . . . , dl ).

Λ :=
{
m1l1 + . . .+ mdl ldl |mi ∈ Z

}
.

• Y : fundamental domain

Y :=
{
c1l1 + . . .+ cdl ldl |0 ≤ c1, . . . , cdl ≤ 1

}
.

• Λ∗: dual lattice of Λ generated by α1, . . . , αdl satisfying αi · lj = 2πδij ,
P⊥αi = 0, i = 1, . . . , dl ;

• Brillouin zone Y ∗ :=
(
Rdl × {0}

)
/Λ∗; 0: zero-vector in Rd−dl .
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Periodic systems of subwavelength resonators
• Periodically repeated i th resonator Di and the full periodic structure D:

Di =
⋃
m∈Λ

Di + m, D =
N⋃
i=1

Di .

• Floquet-Bloch theory:

• f (x) ∈ L2(Rd): α-quasiperiodic, with quasiperiodicity α ∈ Y ∗, if
e−iα·x f (x): Λ-periodic.

• Floquet transform: F [f ](x , α) :=
∑

m∈Λ f (x −m)e iα·m.

• F : L2(Rd)→ L2(Y × Y ∗): invertible with inverse

F−1[g ](x) =
1

(2π)dl

∫
Y∗

g(x , α) dα, x ∈ Rd .

• uα(x) := F [u](x , α); Subwavelength spectrum σ(α), α ∈ Y ∗, of the
quasiperiodic problem consists of discrete values ωαi : σ(α) = {ωαi }.

• Subwavelength spectrum of the original problem:

σ =
⋃
α∈Y∗

σ(α).

• α 7→ ωαi : band functions.
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Periodic systems of subwavelength resonators

• k = ω/v : k 6= |α+ q| for all q ∈ Λ∗.

• Quasi-periodic Green’s function:

Gα,k (x , y) =
∑
m∈Λ

e ik|x−y−m|

4π|x − y −m|
e iα·m.

• Uniform convergence for x and y in compact sets of Rd , x 6= y , and k 6= |α+ q|
for all q ∈ Λ∗.

• Single layer potential associated with Gα,k :

Sα,kD [φ] =

∫
∂D

Gα,k (x , y)φ(y) dσ(y).

• Sα,kD : L2(∂D)→ H1(∂D) is invertible if k is small enough and k 6= |α+ q| for
all q ∈ Λ∗.

• For α 6= 0,

Sα,kD = Sα,0D + O(k2) as k → 0.
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Periodic systems of subwavelength resonators

• System of N resonators D1, . . . ,DN in Y .

• Quasiperiodic capacitance matrix

• For α 6= 0, Cα = (Cαij ) ∈ CN×N :

Cαij = −
∫
∂Di

(Sα,0D )−1[χ∂Dj ] dσ, i , j = 1, . . . ,N.

• Cα: Hermitian.

• Generalized quasiperiodic capacitance matrix

• For α 6= 0, Cα = (Cαij ) ∈ CN×N :

Cαij =
δiv

2
i

|Di |
Cαij , i , j = 1, . . . ,N.
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Periodic systems of subwavelength resonators
• Let d = 2, 3, and 0 < dl ≤ d . Assume |α| > c > 0 for some constant c

independent of ω and δ. As δ → 0, the N subwavelength resonant frequencies
satisfy the asymptotic formula

ωαn =
√
λαn + O(δ3/2), n = 1, . . . ,N.

• {λαn : n = 1, . . . ,N}: eigenvalues of the generalized quasiperiodic capacitance
matrix Cα, which satisfy λαn = O(δ) as δ → 0.

• Resonant mode uαn associated to ωαn :

uαn (x) =

{
vαn · S

α,k
D (x) + O(δ1/2), x ∈ Rd \ D,

vαn · S
α,ki
D (x) + O(δ1/2), x ∈ Di .

• Sα,kD : Rd → CN :

Sα,kD (x) =

S
α,k
D [ψα1 ](x)

...
Sα,kD [ψαN ](x)

 , x ∈ Rd \ ∂D,

with ψαi := (Sα,0D )−1[χ∂Di
].
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Subwavelength bandgap opening

• Square crystal in two dimensions (d = dl = 2)7:

α1

α2

Brillouin zone Band functions

7with B. Fitzpatrick, H. Lee, S. Yu, H. Zhang, J. Diff. Equat., 2017.
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Subwavelength bandgap opening

• Two-scale behaviour of the resonant mode of a square crystal for α close to
(π, π): rapidly oscillating on the small scale, and a large scale envelope which
satisfies a homogenized equation8.

8with H. Lee, H. Zhang, SIAM J. Math. Anal., 2018.
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Honeycomb lattice of subwavelength resonators
• Honeycomb lattice:

D2D1

Y

l1

Y1

l2l2

Y2

x1

x0 x2

• Subwavelength band structure:

    M    K    M   

0.5

1

1.5

2

2.5

Sub-wavelength bands for the honeycomb bubble structure

    M    K    M   

0.05

0.1

0.15

0.2

0.25

0.3
Sub-wavelength bands for the honeycomb bubble structure
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Honeycomb lattice of subwavelength resonators

• At α = α∗, the first eigenfrequency ω∗ := ω(α∗) of multiplicity 2.

• Conical behavior of subwavelength bands9: The first band and the second band
form a Dirac cone at α∗, i.e.,

ω1(α) = ω(α∗)−λ|α− α∗|[1 + O(|α− α∗|)],

ω2(α) = ω(α∗)+λ|α− α∗|[1 + O(|α− α∗|)];

λ = |c|
√
δλ0 6= 0 for sufficiently small δ.

• Dirac point at α = α∗.

9with B. Fitzpatrick, E.O. Hiltunen, H. Lee, S. Yu, SIAM Math. Anal., 2020.
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Honeycomb lattice of subwavelength resonators

• For α close to α∗, eigenmodes:

ũ1(x)S1( x
s

) + ũ2(x)S2( x
s

) + O(δ + s);

• Effective equation: ũj satisfies

|c|2λ2
0∆ũj +

(ω − ω∗)2

δ︸ ︷︷ ︸
near zero

ũj = 0.

    M    K    M   

0.05

0.1

0.15

0.2

0.25

0.3
Sub-wavelength bands for the honeycomb bubble structure

• Dirac equation:10

λ0

[
0 (−ci)(∂1 − i∂2)

(−ci)(∂1 + i∂2) 0

] [
ũ1

ũ2

]
=
ω − ω∗
√
δ

[
ũ1

ũ2

]
.

• Single near-zero effective material property: 1/κ near zero;

• Zero-phase shift propagation.

• High transmittance: double-zero effective material properties ⇐ Dirac cone near
Γ.

10with E.O. Hiltunen, S. Yu, Arch. Ration. Mech. Anal., 2020.
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Honeycomb lattice of subwavelength resonators
• One-dimensional plot along the x−axis of the real part of the Bloch

eigenfunction of the honeycomb lattice shown over many unit cells:

• Square lattice:
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Periodic time-modulated systems

• Wave equation in a periodic time-modulated structure:(
∂

∂t

1

κ(x , t)

∂

∂t
−∇ ·

1

ρ(x , t)
∇
)
u(x , t) = 0, x ∈ Rd , t ∈ R.

• Y : unit cell; D =
⋃

m∈Λ D + m; Di =
⋃

m∈Λ Di + m; Di , i = 1, . . . ,N.

• Time-modulation of the resonators:

κ(x , t) =

{
κ, x ∈ Rd \ D,
κrκi (t), x ∈ Di ,

, ρ(x , t) =

{
ρ, x ∈ Rd \ D,
ρrρi (t), x ∈ Di .

D =
⋃N

i=1 Di

l1
Y

l2

Λ

· · ·

··· · · ·

···
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Periodic time-modulated systems

• Floquet transform in both x and t:

(
∂

∂t

1

κ(x , t)

∂

∂t
−∇ ·

1

ρ(x , t)
∇
)
u(x , t) = 0,

u(x , t)e−iα·x is Λ-periodic in x ,

u(x , t)e−iωt is T -periodic in t.

• Space-Brillouin zone: α ∈ Y ∗ := Rd/Λ∗; Time-Brillouin zone:
ω ∈ Y ∗t := C/(ΩZ); Ω = (2π)/T .

• As δ → 0, the quasifrequencies ω = ω(α) ∈ Y ∗t are, to leading order, given by
the quasifrequencies of the system of ordinary differential equations:

N∑
j=1

Cαij cj (t) = −
1

ρi (t)

d

dt

(
1

κi (t)

d(ρici )

dt

)
,

for i = 1, ...,N. (cj (t) = e iωt
∑

n cj,ne
inΩt).
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Trimer honeycomb lattice

• Dirac cone degeneracy at Γ in trimer honeycomb lattice

• Fundamental domain Y now contains six resonators Di :

l2

Y

l1

1
2
3

4
5

6

· · ·
··· · · ·
···

• Modulation given by κi (t) = 1, i = 1, ..., 6 and

ρ1(t) = ρ4(t) =
1

1 + ε cos(Ωt)
, ρ2(t) = ρ5(t) =

1

1 + ε cos
(
Ωt + 2π

3

) , ρ3(t) = ρ6(t) =
1

1 + ε cos
(
Ωt + 4π

3

) , for 0 ≤ ε < 1.
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Trimer honeycomb lattice

Unmodulated case Modulated case
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Exceptional points in time-modulated systems

• Exceptional point degeneracy in square lattice of dimers:

• ρ1(t) = ρ2(t) = 1, κ1(t) =
1

1 + ε cos(Ωt)
, κ2(t) =

1

1 + ε cos(Ωt + π)
, t ∈ R,

for 0 ≤ ε < 1.

l1

l2
Y

· · ·· · ·

··
·

··
·
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PT -symmetric screens

• Band structure and exceptional points of PT -symmetric screens (periodically
repeated PT -symmetric dimers):

−

+
· · ·· · ·

uin

−

+

−

+

−

+

−

+

• ωαi =
√
λαi + O(δ), i = 1, 2;

λαi =
(
aCα11 ±

√
a2|Cα12|2 − b2

(
(Cα11)2 − |Cα12|2

))
/|D1|.

• Exceptional point occurs when b = b0(α) =
a|Cα

12|√
(Cα

11)2−|Cα
12|

2
.

• Exceptional point depends both on the geometry and on the quasiperiodicity α.
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PT -symmetric screens
• Close to Γ, the system is always below the exceptional point.

• For larger α and for large enough b, there is a point α0 where b = b0(α0).

• For α above α0, the band structure of the system has a non-zero imaginary part
and the two bands are complex conjugate to each other.
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PT -symmetric screens
• Unidirectional transmission: there is a frequency such that the screen’s reflection

coefficient is asymptotically close to zero when the incident wave is from one
side and non-zero when the incident wave is from the other side of the screen.

• Critical frequency range: first radiation continuum
|α| < k = ω/v < infq∈Λ∗\{0}|α+ q|.

• Extraordinarily high transmittance: for a critical gain/loss parameter b.

• Gain and loss allows the scattering matrix to be non-unitary and the reflectance
and transmittance to exceed one.

• Compute explicit expressions for the subwavelength band structure close to the
origin.

0.113 0.114 0.115 0.116 0.117 0.118

0

2

4

6
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Resonances in the first radiation continuum
• For any α0 ∈ Y ∗ with |α0| < 1/v ,

(
Sωα0,ω
D

)−1
: holomorphic operator-valued

function of ω in a neighbourhood of ω = 0:(
Sωα0,ω
D

)−1
= Sα0

0 + ωSα0
−1 + O(ω2) as ω → 0.

• Periodic capacitance matrix: For α0 with |α0| < 1/v :

C0 = (C0
ij ) ∈ RN×N , C0

ij = −
∫
∂Dj

Sα0
0 [χ∂Di

]dσ.

• C0: independent of α0.

• Generalized periodic capacitance matrix:

C0
ij =

δiv
2
i

|Di |
C0
ij , i , j = 1, . . . ,N.

• Let d − dl = 1 and assume that α = ωα0 for some α0 independent of ω and δ
such that |α0| < 1/v . As δ → 0, there are N subwavelength resonant frequencies

ωαn =
√
λ0
n + O(δ), n = 1, . . . ,N, {λ0

n}: eigenvalues of C0.

• High-order correction:

det(C0 + ωC1,α0 − ω2I ) = 0; C1,α0
ij = −(δiv

2
i /|Di |)

∫
∂Di

Sα0
−1[χ∂Dj

] dσ.
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Bound states in the continuum and Fano resonances

• Subwavelength band structure close to the origin.

• Symmetric screen of dimers repeated periodically:

• ω2: real and corresponds to an eigenvalue that is embedded within
the continuous radiation spectrum, which is the spectrum of waves
that can propagate into the far field.

• Bound state in the continuum: eigenmode associated with this
real-valued resonant frequency vanishes in the far field ⇒ it will not
interact with incoming waves and the corresponding resonance peak
will therefore not appear in the transmission spectrum.

• Symmetry broken: the real eigenvalue ω2 will be shifted into the complex plane
and the corresponding mode will be coupled to the far field.

• Design the system so that the two resonances interfere: ω1 with large imaginary
part.

• Derive an expression for the scattering matrix ⇒ demonstrate the occurrence of
a Fano-type transmission anomaly.

• Existence of asymmetric peaks in transmission spectra due to the interference
between a “discrete state” and a “continuum”.
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Bound states in the continuum and Fano resonances
• Resonators arranged in a symmetric dimer that is inclined at an angle of θ to the

plane of the screen.

θ · · ·· · ·
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Subwavelength defect modes
• Defect modes: Create a detuned resonator with an upward shifted resonance

frequency (within the subwavelength band gap).

• Weak interaction ⇒ decrease the radius of one resonator (from R to
R + ε; ε < 0);

• Strong interaction ⇒ increase the radius of one resonator (from R to
R + ε; ε > 0);

• Shift at resonator radius = resonator separation.

D

Dε

· · ·· · ·

...

...
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Subwavelength defect modes

• Real part of the defect eigenmode:
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Subwavelength guided modes

• Line defect:11

• Defect band within the subwavelength
band gap: large perturbation of the
radius;

• Defect modes: localized to and guided
along the line defect;

• Absence of bound modes.

· · ·· · ·

...

...

11with E.O. Hiltunen, S. Yu, J. Eur. Math. Soc., 2020.
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Subwavelength guided modes

• Real part of the defect eigenmode for α1 = π/2 in the dilute case. Each peak
corresponds to one resonator, and the defect line is located at y = 0:
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Topological properties of Hermitian systems

• General principle for trapping and guiding waves at subwavelength scales:
introduce a defect to a periodic arrangement of subwavelength resonators.

• Sensitivity to imperfections in the crystal’s design:

G X M G

0.05

0.1

0.15

0.2

0.25

0.3

0.35

• Goal: design subwavelength wave guides whose properties are robust with
respect to imperfections.

• Idea: Topological invariant which captures the crystal’s wave propagation
properties.

• Topologically protected edge mode.
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Topological properties of Hermitian systems

• Bulk-boundary correspondence:

• Take two crystals with topologically different wave propagation
properties (different values of the topological invariant);

• Join half of crystal A to half of crystal B;
• At the interface, a topologically protected edge mode will exist12.

12with B. Davies, E.O. Hiltunen, S. Yu, J. Math. Pures Appl., 2020.
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Topological properties of Hermitian systems

• An infinite chain of resonator dimers:13

D1

D2

d d ′

· · · · · ·

Y

Two assumptions of geometric symmetry:

• dimer is symmetric, in the sense that D(:= D1 ∪ D2) = −D,

• each resonator has reflective symmetry.

13Analogue of the Su-Schrieffer-Heeger model in topological insulator theory in
quantum mechanics.
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Topological properties of Hermitian systems

• The Zak phase:

ϕz
n :=

∫
Y∗

An(α) dα; Y ∗ = R/2πZ ' (−π, π] (first Brillouin zone);

• Berry-Simon connection:

An(α) := i

∫
D
uαn

∂

∂α
uαn dx ; n = 1, 2.

• For any α1, α2 ∈ Y ∗, parallel transport from α1 to α2 gives uα1
n 7→ e iθuα2

n ,
where θ is given by

θ =

∫ α2

α1

Andα.

• ⇒ The Zak phase corresponds to parallel transport around the whole of Y ∗.

Subwavelength resonances Habib Ammari



Topological properties of Hermitian systems

• Quasi-periodic capacitance matrix: C = (Cαij )i,j=1,2.

• The Zak phase is given by the change in the argument of Cα12 as α varies over
the Brillouin zone:

ϕz
n = −

1

2
[arg(Cα12)]Y∗ .

• Further, it holds that

Cα12
′ = e−iαCα12,⇒ if d = d ′then Cπ12 = 0,

where the prime denotes that d and d ′ have been swapped.

• Thus,
|ϕz

n
′ − ϕz

n| = π,

i.e. the cases d > d ′ and d < d ′ have different Zak phases.
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Topological properties of Hermitian systems

• Dilute computations: Assume that the dimer is a rescaling of fixed domains B1

and B2:

D1 = εB1 −
(
d

2
, 0, 0

)
, D2 = εB2 +

(
d

2
, 0, 0

)
,

for 0 < ε.

• In the dilute regime, as ε→ 0:

ϕz
n =

{
0, if d < d ′,

π, if d > d ′,

• There exists a band gap for all d 6= d ′,

• The dilute crystal has a degeneracy precisely when d = d ′.

• The dispersion relation has a Dirac cone at α = π.

• Band inversion occurs between d < d ′ and d > d ′.
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Topological properties of Hermitian systems

• Band inversion:

d < d ′ d > d ′

u
π/L
1 u

π/L
2 u

π/L
1 u

π/L
2

The monopole/dipole natures of the 1st and 2nd eigenmodes have swapped between
the d < d ′ and d > d ′ regimes.
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Topological properties of Hermitian systems

• A finite chain of resonators

d ′d ′d d

ϕz
n = 0 ϕz

n = π

• Capacitance matrix of the finite chain D =
⋃N

l=1 Dl :

C = (Cij ), Cij := −
∫
∂Dj

(SD)−1[χ∂Di
], i , j = 1, . . . ,N.

• Odd number of resonators ⇒ odd number of eigenvalues; middle frequency:
midgap frequency ⇒ robust to imperfections.
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Topological properties of Hermitian systems

• Finite chain - localisation: There is a localized eigenmode
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Topological properties of Hermitian systems

• Finite chain–stability to imperfections: Simulation of band gap frequency (red)
and bulk frequencies (black) with Gaussian N (0, σ2) errors added to the
resonator positions. σ: expressed as a percentage of the average resonator
separation.

• Even for relatively small errors, the frequency associated with the point defect
mode exhibits poor stability and is easily lost amongst the bulk frequencies.

Finite chain with topological interface Classical, point defect chain.
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Topological properties of Hermitian systems

• Finite chain - effect of diluteness.

• The variance of each frequency is consistent across both dilute and non-dilute
regimes.

• In both the dilute and non-dilute regimes, the structure supports a localized
mode whose resonant frequency is in the middle of the band gap.

• In the dilute regime, the nearest-neighborhood approximation,
Cij = 0 if |i − j | > 1 does not give an accurate approximation ⇒ significant
difference between classical wave propagation problems and topological insulator
theory in quantum mechanics.

Dilute chain, d = 12, d ′ = 42, R = 1 Non-dilute chain, d = 3, d ′ = 6, R = 1
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Topological properties of Hermitian systems

• Short finite chains: The stable mode exists also in very short chains of
subwavelength resonators.

• With only 9 resonators, there is a midgap frequency which is much more stable
than the bulk frequencies.

N = 41 resonators N = 9 resonators
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Topological properties of Hermitian systems

• A second approach for creating robust localized subwavelength modes14:

• We start with an array of pairs of subwavelength resonators, known
to have a subwavelength band gap. A dislocation (with size d > 0) is
introduced to create mid-gap frequencies.

. . .. . .

. . .. . .

d

14with B. Davies, E.O. Hiltunen, submitted, 2020.
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Topological properties of Hermitian systems

• As the dislocation size d increases from zero, a mid-gap frequency appears from
each edge of the subwavelength band gap. These two frequencies converge to a
single value within the subwavelength band gap as d →∞.

d

ω

mid-gap frequencies
band gap

essential spectrum

essential spectrum

subwavelength
regime
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Topological properties of non-Hermitian systems

• Edge modes in the non-Hermitian case15:

• Protected edge modes in crystals where the periodic geometry is
intact, and a defect is placed in the parameters.

• A topological winding number: the non-Hermitian Zak phase, which
describes the winding of the complex eigenvalues.

• Exceptional point degeneracies can open into non-trivial band gaps
enabling topologically protected non-Hermitian edge modes.

κ2 κ1

m = 1

κ1 κ2

m = 0

κ1 κ2

m = −1

· · · κ2 κ1

m = 2

· · ·

15with E.O. Hiltunen, submitted, 2020.
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Topological properties of non-Hermitian systems

• Generalized quasiperiodic capacitance matrix:

Cα =
1

ρ|D1|

(
κ1Cα11 κ1Cα12

κ2Cα21 κ2Cα22

)
.

• Eigenvalues λαi of Cα:

λαj =
1

ρ|D1|

Cα11

κ1 + κ2

2
+ (−1)j

√(
κ1 − κ2

2

)2

(Cα11)2 + κ1κ2|Cα12|2

 .

• As δ → 0, ωαi =
√
λαi + O(δ), i = 1, 2.

• Degeneracy to occur for small δ: λα1 = λα2 at some α ∈ Y ∗.

• Non-Hermitian Zak phase: uαj : right eigenmode; vαj : left eigenmode

corresponding to ωαj ,

ϕzak
j :=

i

2

∫
Y∗

(〈
vαj ,

∂uαj

∂α

〉
+
〈
uαj ,

∂vαj

∂α

〉)
dα.
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Topological properties of non-Hermitian systems
• Hermitian counterpart of the structure is topologically trivial:

ϕzak
j (Re(κ1),Re(κ2)) = 0.

• ⇒

ϕzak
j (κ1, κ2) = −ϕzak

j (κ2, κ1) + O(δ), ϕzak
j (κ1, κ2) = ϕzak

j (κ1, κ2) + O(δ).

• ⇒ If κ1 = κ2 := κ, ϕzak
j (κ, κ) = O(δ).

• Degeneracy occurs when κ1 = κ2 = κ for sufficiently large κ:

• β1 = Cπ11 + Cπ12, β2 = 2C 0
11; l = (β1 + β2)/(β2 − β1).

• If κ1 = κ2 := κ with |Im(κ)| ≤ Re(κ)√
l2−1

(unbroken PT -symmetry),

the structure does not support localized modes in the subwavelength
regime.

• If κ1 = κ2 := κ with |Im(κ)| > Re(κ)√
l2−1

(broken PT -symmetry) or if

κ1 6= κ2 (no PT -symmetry): characterization of the localized mode
in the subwavelength regime.

Subwavelength resonances Habib Ammari



Topological properties of non-Hermitian systems

• Non-Hermitian Zak phase: not quantized but can nevertheless predict the
existence of localized edge modes. Edge modes can be achieved by swapping κ1

and κ2 while keeping the distance between the resonators fixed.

• Purely non-Hermitian effect: as Imκ1 and Imκ2 → 0, the effect disappears.
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Topological properties of non-Hermitian systems

• Edge mode in a non-Hermitian system:
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Concluding remarks

• Mathematical and numerical framework for subwavelength wave physics: focus,
guide, manipulate, and control waves at subwavelength scales.

• Quantitative explanation of the mechanisms behind the spectacular properties
exhibited by subwavelength resonators in recent physical experiments.

• Non-Hermitian subwavelength resonators: existence and implications of
exceptional points; non-quantized topological invariants to predict the existence
of edge modes.

• Time-modulated subwavelength resonators: conceptually similar properties can
arise, which nevertheless have fundamentally different physical implications.

• Avenue for understanding the topological properties of non-hermitian and
time-modulated systems of subwavelength resonators.
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Concluding remarks

Classical wave problems Quantum mechanics
PDE model Hamiltonian
Capacitance matrix:
discrete approximation of the differential problem
resonant frequencies & resonant modes
Dilute regime: Tight-binding model:
approximation of the capacitance matrix Hamiltonian: small correction to

sum of Hamiltonians of single
isolated atoms

Not accurate: slow decay of the off-diagonal Nearest-neighborhood approximation:
terms of the capacitance matrix Tridiagonal tight-binding matrix
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