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Sub-wavelength resonances Habib Ammari



Concept of super-resolution

• Resolution: smallest detail that can be resolved.

• Gkm : outgoing fundamental solution to ∆ + k2
m; km := ω/

√
εm.

• Helmholtz-Kirchhoff identity ⇒ Resolution: determined by the behavior of the
imaginary part of the Green function.

=mGkm (x , x0) = km

∫
|y|=R

Gkm (y , x0)Gkm (x , y)ds(y), R → +∞.

• min
x

∫
|y|=R

|Gkm (x , y)− Gkm (y , x0)|2ds(y).

• =mGkm : point spread function.

• The more point-like =mGkm is, the sharper the resolution.
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Concept of super-resolution

• Reduce the focal spot size;

• Confine waves to length scales significantly smaller than half the wavelength.
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Sub-wavelength wave physics

• Nanophotonics and nanophononics:

• Focus, control, manipulate, reshape, guide waves at sub-wavelength
scales.

• Mathematical and numerical framework for sub-wavelength wave
physics that explains quantitatively the mechanisms behind the
spectacular properties exhibited by metamaterials in recent physical
experiments.
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Sub-wavelength resonances

• Sub-wavelength resonators: size < 2π/ resonant frequency

• Helmholtz resonators;
• plasmonic nanoparticles;
• Minnaert bubbles.

• Microstructured resonant media.

• Building block microstructure: sub-wavelength resonator.
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Sub-wavelength resonances
• Super-focusing of waves;

• Negative material parameters: invisibility and cloaking; super-lensing;

• Metasurfaces: planar structures that locally modify the polarization, phase and
amplitude of light or sound in reflection or transmission;

• Sub-wavelength band gap materials: microstructure periodicity smaller than the
wavelength; prohibited low-frequency wave propagation.

• Unify the mathematical theory of super-resolution, sub-wavelength bandgap
materials, metamaterials, and cloaking.
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Sub-wavelength resonances

• Microstructured resonant media:

• Dilute regime (Small-volume fraction of the sub-wavelength
resonators): Effective medium theory:
• High contrast materials: slightly below the free space resonant

frequency.
• Super-resolution and super-focusing of waves.
• Negative effective refractive index ⇒ Sub-wavelength bandgap

opening slightly above the free space resonant frequency.

• Non-dilute regime:
• High-frequency homogenization techniques.
• Super-focusing slightly below a critical frequency.
• Sub-wavelength bandgap opening slightly above a critical resonance.
• Critical frequency 6= free space resonant frequency.
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Sub-wavelength resonances

• Hybridization for arbitrary number of strongly interacting sub-wavelength

resonators:

• Singular hybridization method.
• Double-negative materials.
• Broadband metamaterials.
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Super-resolution in resonant media
• Helmholtz resonators: Work with H. Zhang (Comm. Math. Phys., 2015);

• Plasmonic nanoparticles: Works with P. Millien, M. Ruiz, S. Yu, H. Zhang
(Arch. Ration. Mech. Anal., 2016, J. Diff. Equat., 2016, Proc. Royal Soc.,
2015, SIAM Rev., 2018);

• Minnaert bubbles: Works with B. Fitzpatrick, D. Gontier, H. Lee, S. Yu, H.
Zhang (SIAM J. Math. Anal. 2017, SIAM J. Appl. Math. 2017, J. Diff. Equat.
2017, Proc. Royal Soc. A, 2017, Ann. IHP C);

• Lecture Notes (with B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu, H. Zhang).
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Super-resolution in resonant media

• The sharper is =mGkm , the better is the resolution.

• Local resonant media used to make sharp peaks of =mGkm .

• Mechanism of super-resolution in resonant media1 :

• Interaction of the point source x0 with the resonant structure excites
high-modes.

• Resonant modes encode the information about the point source and
can propagate into the far-field.

• Super-resolution: only limited by the resonant structure and the
signal-to-noise ratio in the data.

1with H. Zhang, Proc. Royal Soc. A, 2015.
Sub-wavelength resonances Habib Ammari



Super-resolution in resonant media

• System of weakly coupled sub-wavelength resonators.

• Size of the resonator δ � wavelength 2π/km; distance between the resonators of
order the resonator’s size.

• =mGδ = =mGkm + exhibits sub-wavelength peak with width of order one ⇒
Break the resolution limit.
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Super-resolution in resonant media

• Sub-wavelength resonators

M. Fink et al. S. Nicosia & C. Ciraci

• Asymptotic expansion of the Green function2 (δ: size of the resonator openings;

zj : center of aperture for jth resonator; J: number of resonators; ω = O(
√
δ)):

=mGδ(x , x0, ω) ≈
sinω|x − x0|
4π|x − x0|

+
√
δ

J∑
j=1

cj

|x − zj | |x0 − zj |
.

2with H. Zhang, Comm. Math. Phys., 2015.
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Plasmonic resonances for nanoparticles

• Gold nano-particles: accumulate selectively in tumor cells; bio-compatible;
reduced toxicity.

• Detection: localized enhancement in radiation dose (strong scattering).

• Ablation: localized damage (strong absorption).

• Functionalization: targeted drugs.

M.A. El-Sayed et al.
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Plasmonic resonances for nanoparticles

• D: nanoparticle in Rd , d = 2, 3; C1,α boundary ∂D, α > 0.

• εc (ω): complex permittivity of D; εm > 0: permittivity of the background
medium;

• Permittivity contrast: λ(ω) = (εc (ω) + εm)/(2(εc (ω)− εm)).

• Causality ⇒ Kramer-Krönig relations (Hilbert transform); Drude model for the
dielectric permittivity εc (ω) = 1− ω2

p/ω
2; εm = 1.

• G : Fundamental solution to the Laplacian; SD : Single-layer potential.

• Neumann-Poincaré operator K∗D :

K∗D [ϕ](x) :=

∫
∂D

∂G

∂ν(x)
(x − y)ϕ(y) ds(y) , x ∈ ∂D.

ν: normal to ∂D.

• K∗D : compact operator on L2(∂D); Spectrum of K∗D lies in ]− 1
2
, 1

2
] (Kellog).
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Plasmonic resonances for nanoparticles

• K∗D self-adjoint on L2(∂D) iff D is a disk or a ball.

• Symmetrization technique for Neumann-Poincaré operator K∗D :

• Calderón’s identity: KDSD = SDK∗D ;
• In three dimensions, K∗D : self-adjoint in the Hilbert space

H∗(∂D) = H−
1
2 (∂D) equipped with

(u, v)H∗ = −(u,SD [v ])− 1
2
, 1

2

(·, ·)− 1
2
, 1

2
: duality pairing between H−

1
2 (∂D) and H

1
2 (∂D).

• In two dimensions: ∃!ϕ̃0 s.t. SD [ϕ̃0] = constant on ∂D and

(ϕ̃0, 1)− 1
2
, 1

2
= 1. SD → S̃D :

S̃D [ϕ] =

{
SD [ϕ] if (ϕ, 1)− 1

2
, 1

2
= 0,

−1 if ϕ = ϕ̃0.
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Plasmonic resonances for nanoparticles

• Symmetrization technique for Neumann-Poincaré operator K∗D :

• Spectrum σ(K∗D) discrete in ]− 1/2, 1/2[;
• Ellipse: ± 1

2
( a−b
a+b

)j , elliptic harmonics (a, b: long and short axis).

• Ball: 1
2(2j+1)

, spherical harmonics.
• Twin property in two dimensions;
• (λj , ϕj), j = 0, 1, 2, . . .: eigenvalue and normalized eigenfunction pair

of K∗D in H∗(∂D); λj ∈]− 1
2
, 1

2
] and λj → 0 as j →∞;

• ϕ0: eigenfunction associated to 1/2 (ϕ̃0 multiple of ϕ0);
• Spectral decomposition formula in H−1/2(∂D),

K∗D [ψ] =
∞∑
j=0

λj(ψ,ϕj)H∗ϕj .
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Plasmonic resonances for nanoparticles

• ui : incident plane wave; Helmholtz equation: ∇·
(
εmχ(Rd \ D̄) + εc (ω)χ(D)

)
∇u + ω2u = 0,

us := u − ui satisfies the outgoing radiation condition.

• Uniform small volume expansion3 with respect to the contrast: D = z + δB,
δ → 0, |x − z| � 2π/km,

us = −M(λ(ω),D)∇zGkm (x − z) · ∇ui (z) + O(
δd+1

dist(λ(ω), σ(K∗D))
).

• Gkm : outgoing fundamental solution to ∆ + k2
m; km := ω/

√
εm;

• Polarization tensor:

M(λ(ω),D) :=

∫
∂D

x(λ(ω)I −K∗D)−1[ν](x) ds(x).

3with P. Millien, M. Ruiz, H. Zhang, Arch. Ration. Mech. Anal., 2016.
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Plasmonic resonances for nanoparticles

• Spectral decomposition: (l ,m)-entry

Ml,m(λ(ω),D) =
∞∑
j=1

(νm, ϕj )H∗ (νl , ϕj )H∗

(1/2− λj )(λ(ω)− λj )
.

• (νm, ϕ0)H∗ = 0; ϕ0: eigenfunction of K∗D associated to 1/2.

• Quasi-static plasmonic resonance: dist(λ(ω), σ(K∗D)) minimal (<e εc (ω) < 0).
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Plasmonic resonances for nanoparticles

• Scattering amplitude:

us(x) = −ie−
πi
4

e ikm|x|√
8πkm|x |

A∞[D, εc , εm, ω](θ, θ′) + o(|x |−
1
2 ),

|x | → ∞; θ, θ′: incident and scattered directions.

• Scattering cross-section:

Qs [D, εc , εm, ω](θ′) :=

∫ 2π

0

∣∣∣∣A∞[D, εc , εm, ω](θ, θ′)

∣∣∣∣2 dθ.
• Enhancement of Qs at plasmonic resonances:

Qs ∝
∣∣tr(M(λ(ω),D))

∣∣2.
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Plasmonic resonances for nanoparticles

• Quasi-plasmonic resonances for multiple particles: D1 and D2: C1,α-bounded
domains; dist(D1,D2) > 0; ν(1) and ν(2): outward normal vectors at ∂D1 and
∂D2.

• Neumann-Poincaré operator K∗D1∪D2
associated with D1 ∪ D2:

K∗D1∪D2
:=

(
K∗D1

∂
∂ν(1) SD2

∂
∂ν(2) SD1

K∗D2

)
.

• Symmetrization of K∗D1∪D2
.

• Behavior of the eigenvalues of K∗D1∪D2
as dist(D1,D2)→ 0.
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Plasmonic resonances for nanoparticles
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Plasmonic resonances for nanoparticles

• Two nearly touching disks: infinite number of quasi-static plasmonic resonances.

λj = ±
1

2
e−2|j|ξ, ξ = sinh−1(

√
δ

R
(1 +

δ

4R
);

• R: radius of the particles; δ: separating distance.

• Blow-up of the electric field between the particles at plasmonic resonances4:

∇u = O(
R

δ
×

1

=mλ(ω)
) in two dimensions.

• Singular interaction between nearly touching plasmonic nanoparticles:
applications in nanosensing.

4with M. Putinar, M. Ruiz, S. Yu, H. Zhang, J. Math. Pures Appl., 2018.
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Plasmonic resonances for nanoparticles

• Fully analytic solution for two plasmonic spheres5.

• Capture analytically the singularity in the gap between the plasmonic spheres.

• Efficient and accurate hybrid scheme valid for arbitrary number of plasmonic
spheres which can be nearly touching.

• Key idea: clarify the connection between Transformation optics and the method
of image charges.

5with S. Yu, SIAM Rev., 2018.
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Plasmonic resonances for nanoparticles
• Uniform incident field (0, 0,E0) in the direction of the z-axis. In the case of the

x or y -axis, a high field concentration in the gap does not happen.

• Method of image charges: infinite series of image charges of strength ±uk at
zk := (0, 0,±zk )

u(r) =
∞∑
k=0

uk (G(r − zk )− G(r + zk ));

τ = (εc − 1)/(εc + 1) = 1/(2λ), s = cosh−1(δ/R) and α = R sinh s.

zk = α coth(ks + s + t0), uk = τk
sinh(s + t0)

sinh(ks + s + t0)
.

t0 s.t. z0 = α coth(s + t0).

• Not valid for plasmonic spheres due to non-convergence.

……

R R
(0, 0, +zk)(0, 0,�zk)

u2 u1 u0-u0 -u1 -u2

x

z

B� B+
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Plasmonic resonances for nanoparticles
• Transformation Optics (TO) basis:

Mm
n,±(r) = |r′ − R′0|(r ′)

±(n+ 1
2

)− 1
2 Ym

n (θ′, φ′),

Ym
n : spherical harmonics.

• TO solution:

u(r) = −E0z +
∞∑
n=0

An
(
M0

n,+(r)−M0
n,−(r)

)
.

• TO solution: not fully analytic.
B+

a

2d

✏0 = 1

B+

B�
✏B

�

R

b

R0

R00

R0
0�0

✏0 = R2
T |r0 � R0

0|�2✏
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Plasmonic resonances for nanoparticles

• Convert the image charge solution into a Transformation optics solution: for
r ∈ R3 \ (B+ ∪ B−),

ukG(r ∓ zk ) =
sinh(s + t0)

4πα

∞∑
n=0

[
τe−(2n+1)s

]k
e−(2n+1)(s+t0)M0

n,±(r).

• If |τ | ≈ 1, the following approximation for the electric potential V (r) holds: for
r ∈ R3 \ (B+ ∪ B−),

V (r) ≈ −E0z +
∞∑
n=0

Ãn

(
M0

n,+(r)−M0
n,−(r)

)
;

Ãn: explicit.
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Plasmonic resonances for nanoparticles

• Approximate resonance condition given by∑
n

(τ − e(2n+1)s)−1 = 0.

• Eigenvalue estimates:

1

2
e−(2n+3)s < λn <

1

2
e−(2n+1)s , s =

√
δ

R
+ O(δ3/2).

• Blow-up of the electric field in the gap at the plasmonic resonances:

∇u = O(
1

(δ/R)3/2 ln(R/δ)
×

1

=mλ(ω)
).

• Non-local effect (quantum origin) ⇒ in the touching case, gap distance
effectively non-zero.
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Plasmonic resonances for nanoparticles
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Plasmonic resonances for nanoparticles

• Efficient and accurate hybrid scheme valid for arbitrary number of plasmonic
spheres which can be nearly touching.

• Modify Cheng and Greengard’s hybrid scheme by replacing image source series
with their TO versions.

• 2000 times faster than the multipole expansion method.
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Plasmonic resonances for nanoparticles

image source series

multipole sources

TO-type solution

multipole sources
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Plasmonic resonances for nanoparticles
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Plasmonic resonances for nanoparticles
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Plasmonic resonances for nanoparticles

• Singular hybridization (SH) model for plasmons of strongly interacting
many-particle systems6.

• SH model combines the advantages of both the hybridization and TO
approaches, thus providing a simple and intuitive picture when the particles are
close-to-touching.

• SH model leads to new physical insights into the relation between geometry and
plasmons: how global and local information of the system’s complex geometry
are encoded into the spectrum of the plasmons.

• SH model enables us to decompose the spectrum into singularly and regularly
shifted parts. The singular (resp. regular) part is controlled by local (resp.
global) features of the geometry.

• SH model informs us on how we can control them in a systematic way, opening
up new degrees of freedom for light manipulation at the nanoscale.

6with S. Yu, submitted, 2018.
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Plasmonic resonances for nanoparticles
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Plasmonic resonances for nanoparticles
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Plasmonic resonances for nanoparticles

• Coupled mode equations for the hybridization of dimer plasmons:[
(ωTO

n )2 ∆n

∆n (ωTO
n )2

] [
an
bn

]
= ω2

[
an
bn

]
.

• ∆n: coupling between the two TO modes.

• Spectral theory of the Neumann–Poincaré operator ⇒ hybrid modes for the
trimer:

|ω±n 〉 ≈
1
√

2

(
|ωTO

n (B1,B2)〉 ∓ |ωTO
n (B2,B3)〉

)
, n = 1, 2, 3, · · · ,

and their resonance frequencies

ω±n ≈ ωTO
n ±∆n, n = 1, 2, 3, · · · .

• As the bonding angle between the two gap-plasmons decreases, the coupling
strength ∆n increases, which is to be expected since the two gaps get closer.
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Plasmonic resonances for nanoparticles
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Plasmonic resonances for nanoparticles

• Metasurfaces:

• Effective boundary condition: uapp + Z(ω)
∂uapp

∂x2
= 0.

• Effective impedance7:

Z(ω) = δ
+∞∑
j=1

(ϕj , ν2)2

λ(ω)− λj
1

1
2
− λj

.

• (ϕj , λj ): eigenvectors and eigenvalues of the associated Neumann-Poincaré
operator.

• Pointwise estimate in the far-field: u = uapp(1 + O(δ)).

7with M. Ruiz, S. Yu, W. Wu, H. Zhang, Proc. Royal Soc. A, 2016
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Plasmonic resonances for nanoparticles

• Broadband metasurfaces: singular hybridization ⇒ dense spectrum.
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Plasmonic resonances for nanoparticles

• K∗D : scale invariant ⇒ Quasi-static plasmonic resonances: size independent.

• Analytic formula for the first-order correction to quasi-static plasmonic
resonances in terms of the particle’s characteristic size δ:

M.A. El-Sayed et al.
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Plasmonic resonances for nanoparticles
• Helmholtz equation: ∇·

(
εmχ(Rd \ D̄) + εc (ω)χ(D)

)
∇u + ω2u = 0,

us := u − ui satisfies the outgoing radiation condition.

ui : incident plane wave; km := ω
√
εm, kc := ω

√
εc (ω).

• Integral formulation on ∂D: SkcD [φ]− SkmD [ψ] = ui ,

εc
(
I
2
− (Kkc

D )∗
)
[φ]− εm

(
I
2

+ (Kkm
D )∗

)
[ψ] = εm∂ui/∂ν.

• Operator-valued function δ 7→ Aδ(ω) ∈ L(H∗(∂B),H∗(∂B)):

Aδ(ω) =

A0(ω)︷ ︸︸ ︷
(λ(ω)I −K∗B) +(ωδ)2A1(ω) + O((ωδ)3).

• Quasi-static limit:

A0(ω)[ψ] =
∞∑
j=0

τj (ω)(ψ,ϕj )H∗ϕj , τj (ω) :=
1

2

(
εm + εc (ω)

)
−
(
εc (ω)− εm

)
λj .
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Plasmonic resonances for nanoparticles

• Shift in the plasmonic resonances8:

arg min
ω

∣∣1
2

(
εm + εc (ω)

)
−
(
εc (ω)− εm

)
λj + (ωδ)2τj,1

∣∣
• τj,1 := (A1(ω)[ϕj ], ϕj )H∗.

8with P. Millien, M. Ruiz, H. Zhang, Arch. Ration. Mech. Anal., 2016.
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Minnaert resonances for bubbles

• Oscillation: Spherical gas bubbles in liquid oscillate at a natural frequency called
the Minnaert resonance.

• Sub-wavelength resonance: Associated wavelength several orders of magnitude
larger than bubble size.

• Scattering: Bubbles are very strong monopole scatterers of sound.

Sub-wavelength resonances Habib Ammari



Minnaert resonances for bubbles

A single bubble D in a liquid:

• Model:

∇ ·
1

ρ
∇u +

ω2

κ
u = 0 in Rd \ D,

∇ ·
1

ρb
∇u +

ω2

κb
u = 0 in D,

u|+ = u|− on ∂D,

1

ρ

∂u

∂ν

∣∣∣∣
+

=
1

ρb

∂u

∂ν

∣∣∣∣
−

on ∂D,

us := u − uin satisfies the Sommerfeld radiation condition.

• ρb, ρ: densities inside and outside the bubble; κb, κ: bulk moduli inside and
outside the bubble.

• High contrast: δ := ρb/ρ� 1; τ := κb/κ = O(1).

• v =
√
κ/ρ; vb =

√
κb/ρb; k = ω

√
ρ/κ.
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Minnaert resonances for bubbles

• Minnaert resonance frequency for a bubble of arbitrary shape9:

ωM(δ) =

(√
CapD

|D|
vb
√
δ − i

Cap2
Dv

2
b

8πv |D|
δ + O(δ

3
2 )

)
.

• Capacity CapD :=

∫
∂D
S−1
D [1] dσ.

• Monopole approximation near the Minnaert resonance frequency:

us(x) = g(ω, δ,D)(1 + O(ω) + O(δ) + o(1))uin(x0)Gk (x , x0).

• Scattering coefficient g :

g(ω, δ,D) =
CapD

1− (ωM
ω

)2 + iγ
.

• Scattering enhancement near the Minnaert resonance frequency.

9with B. Fitzpatrick, D. Gontier, H. Lee, H. Zhang, Ann. IHP C, 2018.
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Minnaert resonances for bubbles
• Integral formulation: A(ω, δ)[Ψ] = F ;

•

A(ω, δ) =

(
SkbD −SkD

− 1
2

+Kkb,∗
D −δ( 1

2
+ (Kk

D)∗)

)
, Ψ =

(
ψb

ψ

)
, F =

(
uin

δ ∂u
in

∂ν

)
.

• 0: characteristic value of the limiting operator-valued function:

A0(0, 0) =

(
SD −SD

− 1
2

+K∗D 0

)
.

• Gohberg-Sigal theory:

• Generalization of argument principle.
• V : complex neighborhood of 0:

ωM(δ) =
1

2πi
tr

∫
∂V

ωA(ω, δ)−1 ∂

∂ω
A(ω, δ) dω.

• Muller’s method: compute characteristic
eigenvalues.
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Super-focusing in bubbly media
• Dilute regime: When excited slightly below the Minnaert resonance frequency
ωM a large number of small bubbles acts as an effective medium with high
refractive index in which super-focusing and super-resolution is achievable10:

10with B. Fitzpatrick, D. Gontier, H. Lee, H. Zhang, Proc. Royal Soc. A, 2017.
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Super-focusing in bubbly media

• Effective operator11:

∆ + k2 + V (x); V (x) =
1

(ωM
ω

)2 − 1
ΛṼ (x).

• Λ: depends only on the size and number of the bubbles;
• Ṽ : depends only on the distribution of the centers of the bubbles.

• ω slightly below ωM : high-contrast refractive index;

• ω slightly above ωM : negative bulk modulus;

• Effective medium theory: does not hold at ω = ωM .

11with H. Zhang, SIAM J. Math. Anal., 2017.
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Super-focusing in bubbly media

• Mechanism of super-focusing in high-contrast media:

• Mixing of resonant modes: intrinsic nature of non-hermitian systems.
• Sub-wavelength resonance modes excited ⇒ dominate over the other

ones in the expansion of the Green function.
• Imaginary part of the Green function may have sharper peak than

the one of G due to the excited sub-wavelength resonant modes.
• Sub-wavelength modes: determine the super-resolution.
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Sub-wavelength bandgap opening

• Sub-wavelength phononic bandgaps12: Due to the phenomena of sub-wavelength
resonance, bubbles can be used to create phononic crystals in which low
frequency wave propagation is prohibited.

• Sub-wavelength bandgaps: appear slightly above the Minnaert resonance ω∗.

• Super-focusing: appear slightly below the Minnaert resonance ω∗.

α1

α2

12with B. Fitzpatrick, H. Lee, S. Yu, H. Zhang, J. Diff. Equat., 2017.
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Sub-wavelength bandgap opening

• For α ∈ [0, 2π)3,

A(ω, δ, α) =

(
SkbD −Sα,kD

− 1
2

+Kkb,∗
D −δ( 1

2
+ (K−α,kD )∗)

)
, Ψ =

(
ψb

ψ

)
.

• Sα,kD and K−α,kD associated with quasi-periodic Green’s function:

Gα,k (x , y) =
∑
n∈Z3

e i(2πn+α)·(x−y)

k2 − |2πn + α|2
.

• Characteristic values of A(ω, δ, α):

0 ≤ ωα1 ≤ ωα2 ≤ . . .
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Sub-wavelength bandgap opening

• ω0: characteristic value of A(ω, 0) iff (ω0/vb)2: Neumann eigenvalue of D or
(ω0/v)2: Dirichlet eigenvalue of Y \D with α-quasiperiodicity on ∂Y .

• For any δ sufficiently small, there exists one and only one characteristic value
ω0 = ω0(δ) in a complex neighborhood of 0 to A(ω, δ).

• ω0(0) = 0 and ω0(δ) depends on δ continuously.

• Asymptotic behavior of ωα1 :

• For α 6= 0 and sufficiently small δ,

ωα1 = ωM
√
c2 + O(δ3/2);

• ωM : free space Minnaert resonant frequency;
• c2 := CapD,α/CapD ;
• Quasi-periodic capacity:

CapD,α := −
∫
∂D

(Sα,0D )−1[1] dσ.
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Sub-wavelength bandgap opening
• Sub-wavelength bandgap opening:

• For every sufficiently small ε > 0, there exists δ0 > 0 and ω̃ > ω∗1 + ε
s.t., for δ < δ0,

[ω∗1 + ε, ω̃] ⊂ [max
α
ωα1 ,min

α
ωα2 ].

• D: symmetric with respect to planes {(x1, x2, x3) : xj = 0}, j = 1, 2, 3.

• CapD,α and ωα1 attain their maxima at α∗ = (π, π, π) (ωα1 attained at the
corner M of the Brillouin zone).

• v = vb: wave speed inside the bubble is equal to the one outside.

• For ε > 0 small enough,

CapD,α∗+εα̃ = CapD,α∗ + ε2Λα̃D + O(ε4).

• Λα̃D : negative semi-definite quadratic function of α̃ ⇒

v2
b

|D|
Λα̃D = −

∑
1≤i,j≤3

λij α̃i α̃j .

• (λij ): symmetric and positive semi-definite.
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Sub-wavelength bandgap opening

• Dilute regime:

• ω∗ ≈ ωM .
• Effective medium theory near Minnaert resonant frequency ω∗.
• High contrast effective medium ⇒ super-focusing.
• Negative effective medium ⇒ sub-wavelength bandgap opening.

• Band structure of a square array of circular bubbles with radius R = 0.05 and
contrast δ−1 = 5000:
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Sub-wavelength bandgap opening

• Non-dilute regime:

• High-frequency homogenization.

• Band structure of a square array of circular bubbles with radius R = 0.25 and
contrast δ−1 = 1000:
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Sub-wavelength bandgap opening

• s: period of the crystal; δ = O(s2).

• ωs
∗ = (1/s)ω1

∗; Critical frequencies = O(1) as s → 0.

• Near the critical frequency ωs
∗: eigenfunctions can be decomposed into two

parts13:

• One part: slowly varying and satisfies a homogenized equation;
• Second part: periodic across each elementary crystal cell and is

varying.

• (ωs
∗)

2 − ω2 = O(s2); Asymptotic of Bloch eigenfunction u
α∗/s+α̃
1,s :

u
α∗/s+α̃
1,s (x) = e iα̃·xS

( x
s

)
+ O(s);

• Macroscopic plane wave e iα̃·x satisfies:∑
1≤i,j≤3

λij∂i∂j û(x) +
ω2
∗ − ω2

δ
û(x) = 0.

13with H. Lee, H. Zhang, submitted, 2018.
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Sub-wavelength bandgap opening

• (ωs
∗)

2 − ω2 = βδ;

• ∑1≤i,j≤3 λij α̃i α̃j = β + O(s2):

• β > 0 ⇒ plane wave Bloch eigenvalues:
• Homogenized equation for the bubbly phononic crystal;
• Microscopic field: periodic and varies on the scale of s;
• Microscopic oscillations of the field at the period of the crystal justify

the super-focusing phenomenon.

• β < 0 ⇒ exponentially growing or decaying functions ⇒ bandgap
opening.
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Sub-wavelength cavities

• Sub-wavelength localized modes ⇐ increase the radius of one bubble (from R to
R + ε) to create a detuned resonator with an upward shifted resonance frequency
(within the sub-wavelength bandgap).

• As ε→ 014,

ωε − ω∗ ≈ exp
(
−

cδ

2ε

R2

2
ω∗(− lnω∗)

(R2

2
(ω∗)2(− lnω∗) + δ)

)
;

cδ: positive constant.

14with B. Fitzpatrick, E. Orvehed Hiltunen, S. Yu, submitted, 2018.
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Sub-wavelength cavities
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Double-negative acoustic metamaterials

• Bubble dimers ⇒ double-negative acoustic metamaterials15:

15with B. Fitzpatrick, H. Lee, S. Yu, H. Zhang, submitted, 2018.
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Double-negative acoustic metamaterials

• Capacitance coefficients:

• D = D1 ∪ D2; ψ1, ψ2 ∈ L2(∂D):

S0
D [ψ1] =

{
1 on ∂D1,

0 on ∂D2,
S0
D [ψ2] =

{
0 on ∂D1,

1 on ∂D2.

• ker
(
− 1

2
I +K0,∗

D

)
= span {ψ1, ψ2}.

• ψ1±ψ2: symmetric and anti-symmetric modes.
• Capacitance coefficients matrix C = (Cij):

Cij := −
∫
∂Dj

ψi , i , j = 1, 2.

• C : positive definite and symmetric.
• D1 and D2 identical balls: C11 = C22, C12 = C21, C11 > 0, and

C12 < 0.
• Explicit formulas: bispherical coordinates.
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Double-negative acoustic metamaterials

• Resonances for a dimer consisting of two identical bubbles:

• Two quasi-static resonances with positive real part for the bubble
dimer D.

• As δ → 0,

ωM,1 =
√

(C11 + C12)vb
√
δ − iτ1δ + O(δ3/2),

ωM,2 =
√

(C11 − C12)vb
√
δ + δ3/2η̂1 + iδ2η̂2 + O(δ5/2).

• η̂1 and η̂2: real numbers determined by D, v , and vb;

τ1 =
v 2
b

4πv
(C11 + C12)2.

• Resonances ωM,1 and ωM,2: hybridized resonances of the bubble
dimmer D.
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Double-negative acoustic metamaterials

• Bubble dimer: approximated as a point scatterer with monopole and dipole
modes.

• For ω = O(δ1/2) and δ → 0, |x |: sufficiently large,

u(x)− uin(x) = g0(ω)uin(0)Gk (x , 0)

+∇uin(0) · g1(ω)∇Gk (x , 0) + O(δ|x |−1).

• Scattering coefficients:

g0(ω) =
C(1, 1)

1− ω2
M,1/ω

2
(1 + O(δ1/2)), C(1, 1) := C11 + C12 + C21 + C22;

g1(ω) = (g1
ij (ω));

g1
ij (ω) =

∫
∂D

(S0
D)−1[xi ](y)yj −

δv2
b

ω2|D|(1− ω2
M,2/ω

2)
P2δi,1δj,1;

P :=

∫
∂D

y1(ψ1 − ψ2)dσ(y).
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Double-negative acoustic metamaterials

• Effective medium theory:

• Bubble dimers: {zNi : 1 ≤ i ≤ N}; orientation {dN
i : 1 ≤ i ≤ N}.

• Scattering of an incident acoustic plane wave uin by N identical
bubble dimers with random orientations:

∇ · 1
ρ
∇uN + ω2

κ
uN = 0 in R3\DN ,

∇ · 1
ρb
∇uN + ω2

κb
uN = 0 in DN ,

uN
+ − uN

− = 0 on ∂DN ,

1
ρ
∂uN

∂ν

∣∣∣∣
+

− 1
ρb

∂uN

∂ν

∣∣∣∣
−

= 0 on ∂DN ,

uN − uin : Sommerfeld radiation condition.

• System of boundary integral equations: AN(ω, δ)[ΨN ] = FN .
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Double-negative acoustic metamaterials

• Assumptions:

• s: characteristic size of a bubble dimer; sN = Λ for some positive
number Λ > 0.

• Volume fraction of the bubble dimers is of the order of s3N.
• Bubble dimers: very dilute with the average distance between

neighboring dimers being of the order of N−1/3.
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Double-negative acoustic metamaterials
• uN(x)→ u(x) uniformly for x ∈ ΩN .

• u: homogenized model

∇ ·
(
I−Λg̃1B̃

)
∇u(x) + (k2−Λg̃0Ṽ )u = 0, in Ω.

• B̃ ∈ C1(Ω̄): s.t. for f ∈ (C0,α(Ω))3 with 0 < α ≤ 1,

max
1≤j≤N

| max
1≤j≤N

|
1

N

∑
i 6=j

(f (zNi ) · dN
i )(dN

i · ∇Gk (zNi , z
N
j ))

−
∫

Ω
f (y)B̃∇yGk (y , zNj )dy | ≤ C

1

N
α
3

‖f ‖C0,α(Ω);

• Ṽ ∈ C1(Ω̄): s.t. for any f ∈ C0,α(Ω) with 0 < α ≤ 1,

max
1≤j≤N

|
1

N

∑
i 6=j

Gk (zNj , z
N
i )f (zNi )−

∫
Ω
Gk (zNj , y)Ṽ (y)f (y)dy |

≤ C
1

N
α
3

‖f ‖C0,α(Ω)

for some constant C independent of N.
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Double-negative acoustic metamaterials

• δ = µ2s2;

•
ωM,1 = vbµ

√
(C11 + C12), ωM,2 = vbµ

√
(C11 − C12);

• Monopole and dipole coefficients:

g̃0 =
2(C11 + C12)

1− ω2
M,1/ω

2
M,2

, g̃1 =
µ2v2

b

2|D|ωM,2(µ3η̂1 − a)
P2.

• Bubble dimers distributed s.t. B̃: positive matrix with B̃(x) ≥ C > 0 for some
constant C for all x ∈ Ω ⇒ both the matrix I − Λg̃1B̃ and the scalar function
k2 − Λg̃0Ṽ : negative.

• Effective double-negative medium with both negative mass density and negative
bulk modulus.

Sub-wavelength resonances Habib Ammari



Double-negative acoustic metamaterials
• Effective properties:
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Honeycomb-lattice Minnaert bubbles
• Rectangular array of bubble dimers:
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Sub-wavelength bands for rectangular array of bubble dimers
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Sub-wavelength bands for rectangular array of bubble dimers

• Honeycomb-lattice:
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Honeycomb-lattice Minnaert bubbles

• At α = α∗, the first Bloch eigenfrequency ω∗ := ω(α∗) of multiplicity 2.

• Conical behavior of sub-wavelength bands16: The first band and the second band
form a Dirac cone at α∗, i.e.,

ω1(α) = ω(α∗)−λ|α− α∗|[1 + O(|α− α∗|)],

ω2(α) = ω(α∗)+λ|α− α∗|[1 + O(|α− α∗|)];

λ 6= 0 for sufficiently small δ.

• Dirac point at α = α∗.

16with B. Fitzpatrick, H. Lee, E. Orvehed Hiltunen, S. Yu, submitted, 2018.
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Concluding remarks

• Sub-wavelength resonances:

• Helmoholtz resonators.
• Plasmonic nanoparticles.
• Minnaert bubbles.

• Effective medium theory:

• High contrast material ⇒ super-focusing.
• Sub-wavelength bandgap opening ⇒ negative materials.
• Dimers ⇒ double-negative materials.

• High-frequency homogenization:

• Below the critical frequency: super-focusing.
• Below the critical frequency: Sub-wavelength bandgap opening ⇒

negative materials.

• Sub-wavelength cavities; topological properties at sub-wavelength scales.

• Optimal design methodologies.
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