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Bio-inspired sensing and imaging Habib Ammari



Bio-inspired sensing and imaging

• Mimic electrolocation by weakly electrical fish and echolocation by bats.

• Enhance the resolution, the robustness, and the specificity of tissue
property imaging modalities.

Long-nosed elephant fish Long-eared bat
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Bio-inspired sensing and imaging

• Biological vision: two types of retina-brain pathways in the visual system.

• Transient magno-cellular pathway and the sustained
parvo-cellular pathway.

• Magno-system: sensitive to changes and movements; detect
dangers that arise in the peripheral vision.

Biological vision
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Bio-inspired sensing and imaging

• Key concepts:

• Resolution: smallest distance between two point reflectors that
can be resolved; limited by half the operating wavelength.

• Robustness: stability of the image formation with respect to
model uncertainty and medium and electronic noises.

• Specificity: physical nature (for tumors: benign or malignant).
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Tissue property imaging
• Tissue property imaging: electromagnetic and elastic waves play a key

role in visualizing contrast information on the electrical, optical,
mechanical properties of tissues.

• Tissue contrasts:

• Highly sensitive to physiological and pathological tissue status.
• Depend on the cell organization and composition.
• Overall parameters, averaged in space over many cells.

• Recognize the microscopic cell organization and composition from
measurements at the macroscopic level.
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Tissue property imaging

• Diagnosis and staging of cancer disease.

• Help surgeons to make sure they removed everything unwanted around
the margin of the cancer tumor.

• Perform biopsy in the operating room.
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Tissue property imaging

• Electrical tissue properties:

• Electrical conductivity: tissue’s ability to transport charges;
• Electrical permittivity (dielectric constant): tissue’s ability to

trap or to rotate molecular dipoles; determined by the
polarization under an external electric field;

• Frequency-dependent or dispersive; anisotropic;
• Capacitive effect generated by the cell membrane structure;
• Macroscopic parameters; represent the electrical properties of

the tissue averaged in space over many cells.
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Bio-inspired dictionary matching based approach

• Electrolocation for weakly electric fish1:

• Electric organ: generates a stable, high-frequency, weak
electric field.

• Electroreceptors: measure the transdermal potential
modulations caused by a nearby target.

• Nervous system: locates the target, perceives its shape,
determines its physical nature.

1with T. Boulier, J. Garnier, and H. Wang, Proc. Natl. Acad. Sci., 2014.
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Shape perception

Mechanism for mimicking shape perception:

• Form an image from the perturbations of the field due to targets.

• Identify and classify the target, knowing by advance that it belongs to a

learned dictionary of shapes.

• Extract the features from the data.
• Construct invariants with respect to rigid transformations and

scaling.
• Compare the invariants with precomputed ones for the

dictionary.

• Biological targets: frequency dependent electrical properties (capacitive
effect generated by the cell membrane structure).

• ⇒ Spectroscopic measurements of the target’s polarization tensor.
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Weakly electric fish

• Wave-type electric signal: f (x , t) = f (x)
∑

n ane
inω0t ; ω0: fundamental

frequency.

• Skin: very thin (δ ∼ 100µm) and highly resistive (σs/σ0 ∼ 10−2);
σb/σ0 ∼ 102 (highly conductive).
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Weakly electric fish

• Target D = z + δ′B; z : location; δ′: characteristic size of the target;
k(ω) = (σ(ω) + iωε(ω))/σ0; k, σ, and ε: the admittivity, the
conductivity, and the permittivity of the target; ωn = nω0: the probing
frequency.

• un : the electric potential field generated by the fish:

∆un = f , x ∈ Ω,

∇ · (1 + (k(ωn)− 1)χ(D))∇un = 0, x ∈ R2 \ Ω,

∂un
∂ν

∣∣∣∣
−

= 0, [un] = ξ
∂un
∂ν

∣∣∣∣
+

x ∈ ∂Ω,

|un(x)| = O(|x |−1), |x | → ∞.

• ξ := δσ0/σs effective thickness.

• λ(ωn) = (k(ωn) + 1)/(2(k(ωn)− 1)).
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Weakly electric fish

• Dipole approximation: un(x)− U(x) ' p · ∇G(x − z).

• G : Green’s function associated to Robin boundary conditions.
• Dipole moment p = − M(λ(ωn),D)︸ ︷︷ ︸

Polarization tensor

∇U(z).

• Neumann-Poincaré operator:

K∗D [ϕ](x) =
1

2π

∫
∂D

〈x − y , νx〉
|x − y |2

ϕ(y) ds(y) , x ∈ ∂D.

• M(λ(ωn),D) =

∫
∂D

x(λ(ωn)I −K∗D)−1[ν](x) ds(x).
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Weakly electric fish

• K∗D : compact operator on L2(∂D); Spectrum of K∗D lies in (− 1
2
, 1

2
]

(Kellog).

• Spectral decomposition formula in H
−1/2
0 (∂D),

K∗D [ψ] =
∞∑
j=0

λj(ψ,ϕj)H∗ϕj .

• (λj , ϕj), j = 0, 1, 2, . . .: eigenvalue and normalized eigenfunction pair of
K∗D in H∗(∂D); λj ∈ (− 1

2
, 1

2
] and λj → 0 as j →∞;

• H∗(∂D) = H
− 1

2
0 (∂D) equipped with

(u, v)H∗ = −(u,SD [v ])− 1
2
, 1

2
; SD : single layer potential.
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Weakly electric fish

• Space-frequency response matrix: (V n
sr )rn

V n
sr =

(
∂un
∂ν

(xr )

∣∣∣∣
+

− ∂U

∂ν
(xr )

∣∣∣∣
+

)
,

xs : position of the electric organ; (xr ):
receptors on the skin of the fish.

• Space-frequency location search algorithm.

• Movement: Fish takes measurement at
different positions around the target ⇒ can
use only one frequency.
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Weakly electric fish

• Dipole approximation:

V n
sr ' −∇U(z) ·

∝I︷ ︸︸ ︷
M(λ(ωn),D) ·

(
∇ ∂G
∂νx

(xr − z)

)
;

• zS in the search domain; Vector field g(zS) given by(
∇U(zS) · ∇

(
∂G

∂νx

)
(x1 − zS), . . . ,∇U(zS) · ∇

(
∂G

∂νx

)
(xL − zS)

)T

;

• Subspace imaging functional:

I(zS) :=
1

|(I − P)g(zS)| ;

P: orthogonal projection onto the first singular vector of (V n
sr )rn;

• I(zS): large peak at zS = z .
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Weakly electric fish
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Number of frequencies: 10; number of receptors: 64.

• σ, ε: determined by minimizing a quadratic misfit functional.
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Dictionary matching based approach
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Weakly electric fish

• Multi-frequency approach: ω 7→ M(λ(ω),D).

• Invariance with respect to translation, rotation, and scaling.
• τj(ω): eigenvalues of =mM(λ(ω),D); ω∞: highest probing

frequency. Plot

ω 7→ τj(ω)

τj(ω∞)
,

for j = 1, . . . , d .
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Dictionary matching based approach
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Probability of detection in terms of the noise level. Stability of classification
based on differences between ratios of eigenvalues of =mM(λ(ω),D).
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Weakly electric fish
Nonbiological targets (frequency-independent electrical parameters):

F. Boyer

• Use multipolar approximation:

un(x)− U(x) '
∑
α,β

∂αG(x − z)Mαβ(λ,D)∂βU(z).

• Mαβ(λ,D): high-order polarization tensors.

Mαβ(λ,D) :=

∫
∂D

xβ(λI −K∗D)−1[∂xα/∂ν](x) ds(x).
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Weakly electric fish

Properties of high-order polarization tensors:

• Recover high-frequency information on the
shape;

• Separate topology;

• Determine uniquely the shape and the
material parameter.
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Weakly electric fish

• Positivity and symmetry properties on
harmonic coefficients; optimal bounds.

• Harmonic coefficients:

(x1 + ix2)m =
∑
|α|=m

amαx
α + i

∑
|β|=m

bm
β x

β .

• Translation, rotation, and scaling formulas.

• Construct shape descriptors invariant with
respect to translation, rotation, and scaling.
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Weakly electric fish

• Reconstruction of high-order polarization tensors from the data by a least
squares method.

• Instability:

Mαβ(k,D) = O(|D||α|+|β|+d−2), |∂αG(x − z)| = O(|x |−|α|)(|x | → +∞).

• Resolving power= number of high-order polarization tensors reconstructed
from the data: depends on the signal-to-noise ratio (SNR) in the data.

• ε = characteristic size of the target/ the distance to the fish.

• SNR = ε2/standard deviation of the measurement noise (Gaussian).

• Formula for the resolving power m as function of the SNR:

(mε1−m)2 = SNR.

Bio-inspired sensing and imaging Habib Ammari



Weakly electric fish
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Stability of classification based on Shape Descriptors.
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Spectroscopic electrical tissue property imaging
• Differentiate between normal, pre-cancerous and cancerous tissues from

electrical measurements at tissue level.

• Frequency dependence of the (anisotropic) homogenized admittivity:
ω 7→ K∗(ω).

• Relaxation times:

• 1/ arg maxω eigenvalues of =mK∗(ω);
• Classification: invariance properties;
• Measure of anisotropy: ratios of the eigenvalues of =mK∗(ω).
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Spectroscopic electrical tissue property imaging

The effective admittivity of a periodic dilute suspension2:

K∗ = k0

(
I + f M

(
I − f

2
M

)−1
)

+ o(f 2).

• f : volume fraction; ξ: effective thickness of the membrane; ∂D: cell
membrane; D̃ = D/

√
f : rescaled cell.

• M: membrane polarization tensor

M = −
(
ξ

∫
∂D̃

νj
(
I + ξLD̃

)−1
[νi ](y)ds(y)

)
i,j=1,2

.

• LD̃ [ϕ](x) =
1

2π
p.v.

∫
∂D̃

∂2 ln |x − y |
∂ν(x)∂ν(y)

ϕ(y)ds(y), x ∈ ∂D̃.

2with J. Garnier, L. Giovangigli, W. Jing, and J.K. Seo, J. Math. Pures
Appl., 2016.
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Spectroscopic electrical tissue property imaging

• Properties of the membrane polarization tensor:

• M: symmetric; invariant by translation;
• M(sC , ξ) = s2M(C , ξs ) for any scaling parameter s > 0.
• M(RC , ξ) = RM(C , ξ)Rt for any rotation R.
• =mM is positive and its eigenvalues, λ1 ≥ λ2, have one

maximum with respect to ω.

• Relaxation times for the arbitrary-shaped cells:

1

τi
:= argmax

ω
λi (ω).

• (τi )i=1,2: invariant by translation, rotation and scaling.

• Concentric circular-shaped cells: Maxwell-Wagner-Fricke formula
(λ1 = λ2).

• Nondilute regime: Assume f known ⇒ Classification based on relaxation
times.
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Bats

• Dictionary matching based approach for target classification in
echolocation3.

• ui : incident wave; κ: bulk modulus; ρ: density. Helmholtz equation:
∇·
(
χ(R2 \ D̄) +

1

ρ
χ(D)

)
∇u + ω2

(
χ(R2 \ D̄) +

1

κ
χ(D)

)
u = 0,

us := u − ui satisfies the outgoing radiation condition.

3with P. Tran and H. Wang, SIAM J. Imag. Sci., 2014.
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Bats

• Scattering coefficients4:

Wmn(D, κ, ρ, ω) =

∫
∂D

ψm(y)Jn(ω|y |)e−inθy ds(y).

• ψm:
Jm(ω|x |)e imθx︸ ︷︷ ︸

cylindrical wave

+SωD [ψm] x ∈ Rd \ D;

• Jm: Bessel function.

4with M. Lim, H. Kang, H. Lee, Comm. Math. Phys., 2014.
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Bats
Properties of the scattering coefficients:

• Wmn decays rapidly:

|Wmn| .
C |m|+|n|

|m||m||n||n|
, m, n ∈ Z.

• For any z ∈ R2, θ ∈ [0, 2π), s > 0,
• Translation:

Wmn(Dz) =
∑

m′,n′∈Z
Jn′(ω|z |)Jm′(ω|z |)e i(m

′−n′)θzWm−m′,n−n′(D);

• Rotation:
Wmn(Dθ) = e i(m−n)θWmn(D);

• Scaling:
Wmn(Ds , ω) = Wmn(D, sω).
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Bats

• Scattering amplitude:

us(x) = −ie−
πi
4

e iω|x |√
8πω|x |

A∞[D, κ, ρ, ω](θ, θ′) + o(|x |−
1
2 ),

|x | → ∞; ui : plane wave; θ, θ′: incident and scattered
directions.

• Graf’s formula:

A∞[D, κ, ρ, ω](θ, θ′) =
∑

n,m∈Z
(−i)nime inθ′Wnm(D, κ, ρ, ω)e−imθ.
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Bats

Feature extraction:

• V : measurements; W : features; L: linear operator.

• Extract W by solving a least-squares method

W = arg min
W
‖L(W)− V‖.

• L: ill-conditioned.

• Formula for the resolving power as function of the SNR: Maximum
resolving order K satisfies

KK+1/2 = C(ω)SNR.
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Bats
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Shape descriptor matching in a multi-frequency dictionary.
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Acoustic cloaking

• Make a target invisible when probed by acoustic waves.

• Cloaking: scattering coefficient cancellation5:

• Small layered object with vanishing first-order scattering
coefficients.

• Transformation optics:

(Fη)∗[φ](y) =
DFη(x)φ(x)DFη(x)t

det(DFη(x))
, x = F−1

η (y).

• Change of variables Fη sends the annulus [η, 2η] onto a fixed
annulus.

5with M. Lim, H. Kang, H. Lee, Comm. Math. Phys., 2014.
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Acoustic cloaking

• Scattering cross-section:

Qs [D, κ, ρ, ω](θ′) :=

∫ 2π

0

∣∣∣∣A∞[D, κ, ρ, ω](θ, θ′)

∣∣∣∣2 dθ.
• Scattering coefficients vanishing structures of order N:

Qs
[
D, (Fη)∗(ρ ◦Ψ 1

η
), (Fη)∗(κ ◦Ψ 1

η
), ω
]
(θ′) = o(η4N).

η: size of the small object; N: number of layers; Ψ1/η(x) = (1/η)x .

• Anisotropic density and bulk modulus distributions.

• Invisibility at ω ⇒ invisibility at all frequencies ≤ ω.
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Acoustic cloaking

• Cloaking: scattering coefficient cancellation

Cancellation of the scattered field and the scattering cross-section: 4
orders of magnitude (with wavelength of order 1, η = 10−1, and N = 1).
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Differential imaging

• Ultrasound-modulated optical tomography

• Cross-correlation techniques.

• Hybrid imaging modality: one single imaging
system based on the combined use of
different imaging modalities.
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Differential imaging
• Acoustically modulated optical tomography6:

Light source

Light detectors

Focused acoustic beam

Acoustic source

Spherical acoustic
pulses

Ω y

6

Contrasted anomaly

• Record the variations of the light intensity on the boundary due to the
propagation of the acoustic pulses.

6with E. Bossy, J. Garnier, L. Nguyen, L. Seppecher, Proc. AMS, 2014.
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Differential imaging
• g : the light illumination; a: optical absorption coefficient; l : extrapolation

length. Fluence Φ (in the unperturbed domain):
−∆Φ + aΦ = 0 in Ω,

l
∂Φ

∂ν
+ Φ = g on ∂Ω.

• Acoustic pulse propagation: a→ au(x) = a(x + u(x)).

• Fluence Φu (in the displaced domain):
−∆Φu + auΦu = 0 in Ω,

l
∂Φu

∂ν
+ Φu = g on ∂Ω.

• u: thin spherical shell growing at a constant speed; y : source point; r : radius.

• Cross-correlation formula:

M(y , r) :=

∫
∂Ω

(
∂Φ

∂ν
Φu −

∂Φu

∂ν
Φ

)
=

∫
Ω

(au − a)ΦΦu ≈
∫

Ω
u · ∇a |Φ|2︸ ︷︷ ︸

Taylor+Born

.
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Differential imaging

• Helmholtz decomposition: Φ2∇a = ∇ψ +∇× A.

• Spherical Radon transform: ∇ψ = −
1

c
∇R−1

[∫ r

0

M(y , ρ)

ρd−2
dρ

]
.

• System of nonlinearly coupled elliptic equations: ∇ · Φ2∇a = ∆ψ and
−∆Φ + aΦ = 0.

• Fixed point and Optimal control algorithms.

• Convergence result for the fixed point scheme provided that ‖∆ψ‖L∞(Ω): small.

• Convergence result for the optimal control algorithm assuming a good initial
guess.
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Differential imaging

• Reconstruction for a realistic absorption map: proof of convergence for highly
discontinuous absorption maps (bounded variation)7.

• Minimal regularity assumption on the absorption coefficient: a ∈ SBV∞.

7with L. Nguyen and L. Seppecher, J. Funct. Anal., 2014.
Bio-inspired sensing and imaging Habib Ammari



Nanoparticle imaging

• Gold nano-particles: accumulate selectively in
tumor cells; bio-compatible; reduced toxicity.

• Detection: localized enhancement in radiation
dose (strong scattering).

• Ablation: localized damage (strong
absorption).

• Functionalization: targeted drugs.
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Nanoparticle imaging

• D: nanoparticle; εc(ω): complex permittivity of D; εm > 0: permittivity
of the background medium;

• Permittivity contrast: λ(ω) = (εc(ω) + εm)/(2(εc(ω)− εm)).

• Gkm : outgoing fundamental solution to ∆ + k2
m; km := ω/

√
εm.

• Quasi-static far-field approximation8: |D| → 0,

us = −M(λ(ω),D)∇zGkm (x − z) · ∇ui (z) + O(
|D|3/2

dist(λ(ω), σ(K∗D))
).

• Spectral decomposition: (l ,m)-entry

Ml,m(λ(ω),D) =
∞∑
j=1

(νm, ϕj)H∗(νl , ϕj)H∗

(1/2− λj)(λ(ω)− λj)
.

• (νm, ϕ0)H∗ = 0; ϕ0: eigenfunction of K∗D associated to 1/2.

• Quasi-static plasmonic resonance: dist(λ(ω), σ(K∗D)) minimal
(<e εc(ω) < 0).

8with P. Millien, M. Ruiz, H. Zhang, Arch. Ration. Mech. Anal., 2017.
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Nanoparticle imaging

• Enhancement of the scattering and absorption cross-sections Qs and Qa

at plasmonic resonances9:

Qa + Qs(= extinction cross-section Qe) ∝ =mTrace(M(λ(ω),D));

Qs ∝
∣∣Trace(M(λ(ω),D))

∣∣2.

9with P. Millien, M. Ruiz, H. Zhang, Arch. Ration. Mech. Anal., 2017.
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Nanoparticle imaging
• Single nanoparticle imaging10:

max
zS

I (zS , ω)

• I (zS , ω): imaging functional; zS : search point.

• Resolution: limited only by the signal-to-noise-ratio.

• Cross-correlation techniques: robustness with respect to medium noise.

Medium without the reflector
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10with J. Garnier, P. Millien, SIAM J. Imag. Sci., 2014.
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Nanoparticle imaging

• Blow-up of the electric field in the gap at the plasmonic resonances11:

∇u = O(
1

(δ/R)3/2 ln(R/δ)
).

11with S. Yu, SIAM Rev., 2018.
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Nanoparticle imaging

• Reconstruction from plasmonic spectroscopic data12.
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12with M. Ruiz, S. Yu, H. Zhang, SIAM J. Imag. Sci., Parts I & II, 2018.
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Concluding remarks

• Resolution, stability, and specificity bio-inspired enhancement techniques:

• Physics-based learning approach.
• Multi-frequency imaging.
• Differential imaging.
• Nanoparticle imaging.

• Other applications: autonomous robotics

• Equip autonomous robots with a ”electric and acoustic sense
perception”.

• Provide autonomous robots, by mimicking weakly electric fish
and bats, with detection and classification capabilities in dark
or turbid environments.

• Complex targets; tracking of the position and orientation of
mobile targets by extended Kalman filtering; autonomous
navigation, . . ..
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