Habib Ammari

Department of Mathematics, ETH Zürich

Bio-inspired sensing and imaging

Habib Ammari

- Mimic electrolocation by weakly electrical fish and echolocation by bats.
- Enhance the resolution, the robustness, and the specificity of tissue property imaging modalities.

Long-nosed elephant fish

Long-eared bat

- Biological vision: two types of retina-brain pathways in the visual system.
 - Transient magno-cellular pathway and the sustained parvo-cellular pathway.
 - Magno-system: sensitive to changes and movements; detect dangers that arise in the peripheral vision.

Biological vision

- Key concepts:
 - Resolution: smallest distance between two point reflectors that can be resolved; limited by half the operating wavelength.
 - Robustness: stability of the image formation with respect to model uncertainty and medium and electronic noises.
 - Specificity: physical nature (for tumors: benign or malignant).

Tissue property imaging

- Tissue property imaging: electromagnetic and elastic waves play a key role in visualizing contrast information on the electrical, optical, mechanical properties of tissues.
- Tissue contrasts:
 - Highly sensitive to physiological and pathological tissue status.
 - Depend on the cell organization and composition.
 - Overall parameters, averaged in space over many cells.
- Recognize the microscopic cell organization and composition from measurements at the macroscopic level.

Tissue property imaging

- Diagnosis and staging of cancer disease.
- Help surgeons to make sure they removed everything unwanted around the margin of the cancer tumor.
- Perform biopsy in the operating room.

Tissue property imaging

- Electrical tissue properties:
 - Electrical conductivity: tissue's ability to transport charges;
 - Electrical permittivity (dielectric constant): tissue's ability to trap or to rotate molecular dipoles; determined by the polarization under an external electric field;
 - Frequency-dependent or dispersive; anisotropic;
 - Capacitive effect generated by the cell membrane structure;
 - Macroscopic parameters; represent the electrical properties of the tissue averaged in space over many cells.

Bio-inspired dictionary matching based approach

- Electrolocation for weakly electric fish¹:
 - Electric organ: generates a stable, high-frequency, weak electric field.
 - Electroreceptors: measure the transdermal potential modulations caused by a nearby target.
 - Nervous system: locates the target, perceives its shape, determines its physical nature.

¹with T. Boulier, J. Garnier, and H. Wang, Proc. Natl. Acad. Sci., 2014. ≥ → ૧. Bio-inspired sensing and imaging Habib Ammari

Shape perception

Mechanism for mimicking shape perception:

- Form an image from the perturbations of the field due to targets.
- Identify and classify the target, knowing by advance that it belongs to a learned dictionary of shapes.
 - Extract the features from the data.
 - Construct invariants with respect to rigid transformations and scaling.
 - Compare the invariants with precomputed ones for the dictionary.
- Biological targets: frequency dependent electrical properties (capacitive effect generated by the cell membrane structure).
- \Rightarrow Spectroscopic measurements of the target's polarization tensor.

• Wave-type electric signal: $f(x, t) = f(x) \sum_{n} a_n e^{in\omega_0 t}$; ω_0 : fundamental frequency.

• Skin: very thin ($\delta \sim 100 \mu$ m) and highly resistive ($\sigma_s/\sigma_0 \sim 10^{-2}$); $\sigma_b/\sigma_0 \sim 10^2$ (highly conductive).

- Target $D = z + \delta'B$; z: location; δ' : characteristic size of the target; $k(\omega) = (\sigma(\omega) + i\omega\varepsilon(\omega))/\sigma_0$; k, σ , and ε : the admittivity, the conductivity, and the permittivity of the target; $\omega_n = n\omega_0$: the probing frequency.
- u_n : the electric potential field generated by the fish:

$$\begin{cases} \Delta u_n = f, & x \in \Omega, \\ \nabla \cdot (1 + (k(\omega_n) - 1)\chi(D))\nabla u_n = 0, & x \in \mathbb{R}^2 \setminus \overline{\Omega}, \\ \frac{\partial u_n}{\partial \nu} \bigg|_{-} = 0, \quad [u_n] = \frac{\xi}{2} \frac{\partial u_n}{\partial \nu} \bigg|_{+} & x \in \partial\Omega, \\ |u_n(x)| = O(|x|^{-1}), \quad |x| \to \infty. \end{cases}$$

- $\xi := \delta \sigma_0 / \sigma_s$ effective thickness.
- $\lambda(\omega_n) = (k(\omega_n) + 1)/(2(k(\omega_n) 1)).$

- Dipole approximation: $u_n(x) U(x) \simeq \mathbf{p} \cdot \nabla G(x-z)$.
 - G: Green's function associated to Robin boundary conditions.
 - Dipole moment $\mathbf{p} = \underbrace{\mathcal{M}(\lambda(\omega_n), D)}_{\mathcal{V}} \nabla U(z).$

Polarization tensor

• Neumann-Poincaré operator:

$$\mathcal{K}_{D}^{*}[\varphi](x) = \frac{1}{2\pi} \int_{\partial D} \frac{\langle x - y, \nu_{x} \rangle}{|x - y|^{2}} \varphi(y) \, ds(y) \,, \quad x \in \partial D.$$

•
$$M(\lambda(\omega_n), D) = \int_{\partial D} x(\lambda(\omega_n)I - \mathcal{K}_D^*)^{-1}[\nu](x) ds(x).$$

- *K*^{*}_D: compact operator on *L*²(∂*D*); Spectrum of *K*^{*}_D lies in (-¹/₂, ¹/₂] (Kellog).
- Spectral decomposition formula in $H_0^{-1/2}(\partial D)$,

$$\mathcal{K}_D^*[\psi] = \sum_{j=0}^{\infty} \lambda_j(\psi, \varphi_j)_{\mathcal{H}^*} \varphi_j.$$

- $(\lambda_j, \varphi_j), j = 0, 1, 2, \ldots$: eigenvalue and normalized eigenfunction pair of \mathcal{K}_D^* in $\mathcal{H}^*(\partial D); \lambda_j \in (-\frac{1}{2}, \frac{1}{2}]$ and $\lambda_j \to 0$ as $j \to \infty$;
- $\mathcal{H}^*(\partial D) = H_0^{-\frac{1}{2}}(\partial D)$ equipped with

 $(u, v)_{\mathcal{H}^*} = -(u, \mathcal{S}_D[v])_{-\frac{1}{2}, \frac{1}{2}}; \quad \mathcal{S}_D : \text{single layer potential.}$

向 ト イヨ ト イヨ ト

Space-frequency response matrix: (Vⁿ_{sr})_{rn}

$$V_{sr}^{n} = \left(\left. \frac{\partial u_{n}}{\partial \nu}(x_{r}) \right|_{+} - \left. \frac{\partial U}{\partial \nu}(x_{r}) \right|_{+} \right),$$

 x_s : position of the electric organ; (x_r) : receptors on the skin of the fish.

- Space-frequency location search algorithm.
- Movement: Fish takes measurement at different positions around the target ⇒ can use only one frequency.

A 1

• Dipole approximation:

$$V_{sr}^n \simeq -\nabla U(z) \cdot \overbrace{\mathcal{M}(\lambda(\omega_n), D)}^{\propto l} \cdot \left(\nabla \frac{\partial \mathcal{G}}{\partial \nu_x}(x_r - z) \right);$$

• z^{s} in the search domain; Vector field $g(z^{s})$ given by

$$\left(\nabla U(z^{S}) \cdot \nabla \left(\frac{\partial G}{\partial \nu_{x}}\right)(x_{1}-z^{S}),\ldots,\nabla U(z^{S}) \cdot \nabla \left(\frac{\partial G}{\partial \nu_{x}}\right)(x_{L}-z^{S})\right)^{T};$$

• Subspace imaging functional:

$$\mathcal{I}(z^{S}):=\frac{1}{|(I-P)g(z^{S})|};$$

P: orthogonal projection onto the first singular vector of $(V_{sr}^n)_{rn}$;

• $\mathcal{I}(z^{S})$: large peak at $z^{S} = z$.

• σ, ε : determined by minimizing a quadratic misfit functional.

Dictionary matching based approach

Habib Ammari

- Multi-frequency approach: $\omega \mapsto M(\lambda(\omega), D)$.
 - Invariance with respect to translation, rotation, and scaling.
 - τ_j(ω): eigenvalues of ℑm M(λ(ω), D); ω_∞: highest probing frequency. Plot

$$\omega \mapsto \frac{\tau_j(\omega)}{\tau_j(\omega_\infty)},$$

for j = 1, ..., d.

Dictionary matching based approach

Probability of detection in terms of the noise level. Stability of classification based on differences between ratios of eigenvalues of $\Im m M(\lambda(\omega), D)$.

Nonbiological targets (frequency-independent electrical parameters):

F. Boyer

• Use multipolar approximation:

$$u_n(x) - U(x) \simeq \sum_{\alpha,\beta} \partial^{\alpha} G(x-z) M_{\alpha\beta}(\lambda, D) \partial^{\beta} U(z).$$

• $M_{\alpha\beta}(\lambda, D)$: high-order polarization tensors.

$$M_{\alpha\beta}(\lambda,D) := \int_{\partial D} x^{\beta} (\lambda I - \mathcal{K}_{D}^{*})^{-1} [\partial x^{\alpha} / \partial \nu](x) \, ds(x)$$

Properties of high-order polarization tensors:

- Recover high-frequency information on the shape;
- Separate topology;
- Determine uniquely the shape and the material parameter.

- Positivity and symmetry properties on harmonic coefficients; optimal bounds.
- Harmonic coefficients:

$$(x_1+ix_2)^m = \sum_{|\alpha|=m} a^m_{\alpha} x^{\alpha} + i \sum_{|\beta|=m} b^m_{\beta} x^{\beta}.$$

- Translation, rotation, and scaling formulas.
- Construct shape descriptors invariant with respect to translation, rotation, and scaling.

< 67 ▶

- Reconstruction of high-order polarization tensors from the data by a least squares method.
- Instability:

 $M_{lphaeta}(k,D)=O(|D|^{|lpha|+|eta|+d-2}), |\partial^{lpha}G(x-z)|=O(|x|^{-|lpha|})(|x|
ightarrow+\infty).$

- Resolving power= number of high-order polarization tensors reconstructed from the data: depends on the signal-to-noise ratio (SNR) in the data.
- SNR = ϵ^2 /standard deviation of the measurement noise (Gaussian).
- Formula for the resolving power *m* as function of the SNR:

$$(m\epsilon^{1-m})^2 = \text{SNR}.$$

Stability of classification based on Shape Descriptors.

_ र ≣ ≯

< □ > < 同 > < 回 >

Spectroscopic electrical tissue property imaging

- Differentiate between normal, pre-cancerous and cancerous tissues from electrical measurements at tissue level.
- Frequency dependence of the (anisotropic) homogenized admittivity: $\omega \mapsto K^*(\omega).$
- Relaxation times:
 - 1/ arg max_ω eigenvalues of ℑm K^{*}(ω);
 - Classification: invariance properties;
 - Measure of anisotropy: ratios of the eigenvalues of $\Im m K^*(\omega)$.

Spectroscopic electrical tissue property imaging

The effective admittivity of a periodic dilute suspension²:

$$K^* = k_0 \left(I + fM \left(I - \frac{f}{2}M \right)^{-1} \right) + o(f^2).$$

- *M*: membrane polarization tensor

$$M = -\left(\xi \int_{\partial \widetilde{D}} \nu_j \left(I + \xi L_{\widetilde{D}}\right)^{-1} [\nu_i](y) ds(y)\right)_{i,j=1,2}$$

•
$$L_{\widetilde{D}}[\varphi](x) = \frac{1}{2\pi} \text{p.v.} \int_{\partial \widetilde{D}} \frac{\partial^2 \ln |x - y|}{\partial \nu(x) \partial \nu(y)} \varphi(y) ds(y), \quad x \in \partial \widetilde{D}.$$

 2 with J. Garnier, L. Giovangigli, W. Jing, and J.K. Seo, J. Math. Pures Appl., 2016.

Spectroscopic electrical tissue property imaging

- Properties of the membrane polarization tensor:
 - *M*: symmetric; invariant by translation;
 - $M(sC,\xi) = s^2 M(C,\frac{\xi}{s})$ for any scaling parameter s > 0.
 - $M(\mathcal{RC},\xi) = \mathcal{R}M(\mathcal{C},\xi)\mathcal{R}^t$ for any rotation \mathcal{R} .
 - Sm M is positive and its eigenvalues, λ₁ ≥ λ₂, have one maximum with respect to ω.
- Relaxation times for the arbitrary-shaped cells:

 $rac{1}{ au_i} := rg\max_{\omega} \lambda_i(\omega).$

- $(\tau_i)_{i=1,2}$: invariant by translation, rotation and scaling.
- Concentric circular-shaped cells: Maxwell-Wagner-Fricke formula (λ₁ = λ₂).
- Nondilute regime: Assume f known ⇒ Classification based on relaxation times.

御 と くきと くきとう

Bats

- Dictionary matching based approach for target classification in echolocation³.
- u^i : incident wave; κ : bulk modulus; ρ : density. Helmholtz equation:

$$\begin{cases} \nabla \cdot \left(\chi(\mathbb{R}^2 \setminus \bar{D}) + \frac{1}{\rho} \chi(D) \right) \nabla u + \omega^2 \left(\chi(\mathbb{R}^2 \setminus \bar{D}) + \frac{1}{\kappa} \chi(D) \right) u = 0, \\ u^s := u - u^i \text{ satisfies the outgoing radiation condition.} \end{cases}$$

³with P. Tran and H. Wang, SIAM J. Imag. Sci., 2014.

• Scattering coefficients⁴:

$$W_{mn}(D,\kappa,\rho,\omega) = \int_{\partial D} \psi_m(y) J_n(\omega|y|) e^{-in\theta_y} ds(y).$$

$$\underbrace{J_m(\omega|x|)e^{im\theta_x}}_{J_m(\omega|x|)} + \mathcal{S}^{\omega}_D[\psi_m] \quad x \in \mathbb{R}^d \setminus \overline{D};$$

cylindrical wave

• J_m : Bessel function.

⁴with M. Lim, H. Kang, H. Lee, Comm. Math. Phys., 2014. () + ()

Bats

Properties of the scattering coefficients:

• *W_{mn}* decays rapidly:

$$|W_{mn}| \lesssim \frac{C^{|m|+|n|}}{|m|^{|m|}|n|^{|n|}}, \ m,n \in \mathbb{Z}.$$

• For any
$$z\in \mathbb{R}^2, heta\in [0,2\pi), s>0$$
,

• Translation:

$$W_{mn}(D^{\mathbf{z}}) = \sum_{m',n'\in\mathbb{Z}} J_{n'}(\omega|\mathbf{z}|) J_{m'}(\omega|\mathbf{z}|) e^{i(m'-n')\theta_{\mathbf{z}}} W_{m-m',n-n'}(D);$$

• Rotation:

$$W_{mn}(D^{\theta}) = e^{i(m-n)\theta} W_{mn}(D);$$

• Scaling:

$$W_{mn}(D^{s},\omega)=W_{mn}(D,s\omega).$$

• Scattering amplitude:

$$u^{s}(x) = -ie^{-\frac{\pi i}{4}} \frac{e^{i\omega|x|}}{\sqrt{8\pi\omega|x|}} A_{\infty}[D,\kappa,\rho,\omega](\theta,\theta') + o(|x|^{-\frac{1}{2}}),$$

 $|x| \to \infty; \; u^i :$ plane wave; $\theta, \; \theta' :$ incident and scattered directions.

• Graf's formula:

$$A_{\infty}[D,\kappa,\rho,\omega](\theta,\theta') = \sum_{n,m\in\mathbb{Z}} (-i)^n i^m e^{in\theta'} W_{nm}(D,\kappa,\rho,\omega) e^{-im\theta}.$$

Feature extraction:

- *V*: measurements; *W*: features; L: linear operator.
- Extract W by solving a least-squares method

$$\mathbf{W} = \underset{\mathbf{W}}{\operatorname{arg\,min}} \|\mathbf{L}(\mathbf{W}) - \mathbf{V}\|.$$

- L: ill-conditioned.
- Formula for the resolving power as function of the SNR: Maximum resolving order K satisfies

$$\mathcal{K}^{\mathcal{K}+1/2} = \mathcal{C}(\omega)$$
SNR.

Bats

Shape descriptor matching in a multi-frequency dictionary.

Acoustic cloaking

- Make a target invisible when probed by acoustic waves.
- Cloaking: scattering coefficient cancellation⁵:
 - Small layered object with vanishing first-order scattering coefficients.
 - Transformation optics:

$$(F_{\eta})_*[\phi](y) = \frac{DF_{\eta}(x)\phi(x)DF_{\eta}(x)^t}{\det(DF_{\eta}(x))}, \quad x = F_{\eta}^{-1}(y).$$

 Change of variables F_η sends the annulus [η, 2η] onto a fixed annulus.

⁵with M. Lim, H. Kang, H. Lee, Comm. Math. Phys., 2014. $\leftarrow = \rightarrow$

Acoustic cloaking

• Scattering cross-section:

$$Q^s[D,\kappa,
ho,\omega](heta'):=\int_0^{2\pi} \left| A_\infty[D,\kappa,
ho,\omega](heta, heta')
ight|^2 d heta.$$

• Scattering coefficients vanishing structures of order *N*:

$$Q^{s}\Big[D,(F_{\eta})_{*}(\rho\circ\Psi_{\frac{1}{\eta}}),(F_{\eta})_{*}(\kappa\circ\Psi_{\frac{1}{\eta}}),\omega\Big](\theta')=o(\eta^{4N}).$$

 η : size of the small object; *N*: number of layers; $\Psi_{1/\eta}(x) = (1/\eta)x$.

- Anisotropic density and bulk modulus distributions.
- Invisibility at $\omega \Rightarrow$ invisibility at all frequencies $\leq \omega$.

Acoustic cloaking

• Cloaking: scattering coefficient cancellation

Cancellation of the scattered field and the scattering cross-section: 4 orders of magnitude (with wavelength of order 1, $\eta = 10^{-1}$, and N = 1).

- Ultrasound-modulated optical tomography
- Cross-correlation techniques.
- Hybrid imaging modality: one single imaging system based on the combined use of different imaging modalities.

• Acoustically modulated optical tomography⁶:

• Record the variations of the light intensity on the boundary due to the propagation of the acoustic pulses.

⁶with E. Bossy, J. Garnier, L. Nguyen, L. Seppecher; Proc. AMS, 2014. Bio-inspired sensing and imaging Habib Ammari

 g: the light illumination; a: optical absorption coefficient; *I*: extrapolation length. Fluence Φ (in the unperturbed domain):

$$\begin{cases} -\Delta \Phi + a\Phi = 0 \text{ in } \Omega, \\ I \frac{\partial \Phi}{\partial \nu} + \Phi = g \text{ on } \partial \Omega \end{cases}$$

- Acoustic pulse propagation: $a \rightarrow a_u(x) = a(x + u(x))$.
- Fluence Φ_u (in the displaced domain):

$$\begin{cases} -\Delta \Phi_u + a_u \Phi_u = 0 \text{ in } \Omega, \\ I \frac{\partial \Phi_u}{\partial \nu} + \Phi_u = g \text{ on } \partial \Omega. \end{cases}$$

- *u*: thin spherical shell growing at a constant speed; *y*: source point; *r*: radius.
- Cross-correlation formula:

$$M(y,r) := \int_{\partial\Omega} \left(\frac{\partial \Phi}{\partial \nu} \Phi_u - \frac{\partial \Phi_u}{\partial \nu} \Phi \right) = \int_{\Omega} (a_u - a) \Phi \Phi_u \approx \underbrace{\int_{\Omega} u \cdot \nabla a |\Phi|^2}_{Taylor + Born}.$$

- Helmholtz decomposition: $\Phi^2 \nabla a = \nabla \psi + \nabla \times A$.
- Spherical Radon transform: $\nabla \psi = -\frac{1}{c} \nabla \mathcal{R}^{-1} \left[\int_0^r \frac{M(y,\rho)}{\rho^{d-2}} d\rho \right].$
- System of nonlinearly coupled elliptic equations: $\nabla \cdot \Phi^2 \nabla a = \Delta \psi$ and $-\Delta \Phi + a \Phi = 0$.
- Fixed point and Optimal control algorithms.
- Convergence result for the fixed point scheme provided that $\|\Delta\psi\|_{L^{\infty}(\Omega)}$: small.
- Convergence result for the optimal control algorithm assuming a good initial guess.

- Reconstruction for a realistic absorption map: proof of convergence for highly discontinuous absorption maps (bounded variation)⁷.
- Minimal regularity assumption on the absorption coefficient: $a \in SBV^{\infty}$.

⁷with L. Nguyen and L. Seppecher, J. Funct. Anal., 2014, \triangleright

- Gold nano-particles: accumulate selectively in tumor cells; bio-compatible; reduced toxicity.
- Detection: localized enhancement in radiation dose (strong scattering).
- Ablation: localized damage (strong absorption).
- Functionalization: targeted drugs.

(日) (同) (三) (三)

- D: nanoparticle; ε_c(ω): complex permittivity of D; ε_m > 0: permittivity of the background medium;
- Permittivity contrast: $\lambda(\omega) = (\varepsilon_c(\omega) + \varepsilon_m)/(2(\varepsilon_c(\omega) \varepsilon_m)).$
- G_{k_m} : outgoing fundamental solution to $\Delta + k_m^2$; $k_m := \omega/\sqrt{\varepsilon_m}$.
- Quasi-static far-field approximation⁸: $|D| \rightarrow 0$,

$$u^s = -M(\lambda(\omega), D)
abla_z G_{k_m}(x-z) \cdot
abla u^i(z) + O(rac{|D|^{3/2}}{\operatorname{dist}(\lambda(\omega), \sigma(\mathcal{K}_D^*))}).$$

• Spectral decomposition: (1, m)-entry

$$M_{l,m}(\lambda(\omega),D) = \sum_{j=1}^{\infty} \frac{(\nu_m,\varphi_j)_{\mathcal{H}^*}(\nu_l,\varphi_j)_{\mathcal{H}^*}}{(1/2-\lambda_j)(\lambda(\omega)-\lambda_j)}.$$

- $(\nu_m, \varphi_0)_{\mathcal{H}^*} = 0$; φ_0 : eigenfunction of \mathcal{K}_D^* associated to 1/2.
- Quasi-static plasmonic resonance: dist $(\lambda(\omega), \sigma(\mathcal{K}_D^*))$ minimal $(\Re e \varepsilon_c(\omega) < 0)$.

⁸with P. Millien, M. Ruiz, H. Zhang, Arch. Ration. Mecha Anal., 2017. Bio-inspired sensing and imaging Habib Ammari

• Enhancement of the scattering and absorption cross-sections Q^s and Q^a at plasmonic resonances⁹:

 $Q^{s} + Q^{s} (= \text{extinction cross-section } Q^{e}) \propto \Im m \operatorname{Trace}(M(\lambda(\omega), D));$ $Q^{s} \propto |\operatorname{Trace}(M(\lambda(\omega), D))|^{2}.$

⁹with P. Millien, M. Ruiz, H. Zhang, Arch. Ration. Mech. Anal., 2017. ≥ ∽ a Bio-inspired sensing and imaging Habib Ammari

• Single nanoparticle imaging¹⁰:

$\max_{z^S} I(z^S, \omega)$

- $I(z^{s}, \omega)$: imaging functional; z^{s} : search point.
- Resolution: limited only by the signal-to-noise-ratio.
- Cross-correlation techniques: robustness with respect to medium noise.

¹⁰with J. Garnier, P. Millien, SIAM J. Imag. Sci., 2014.

• Blow-up of the electric field in the gap at the plasmonic resonances¹¹:

$$\nabla u = O(\frac{1}{(\delta/R)^{3/2} \ln(R/\delta)}).$$

Reconstruction from plasmonic spectroscopic data¹². ٠

¹²with M. Ruiz, S. Yu, H. Zhang, SIAM J. Imag. Sci., Parts I & II, 2018. Habib Ammari

Concluding remarks

- Resolution, stability, and specificity bio-inspired enhancement techniques:
 - Physics-based learning approach.
 - Multi-frequency imaging.
 - Differential imaging.
 - Nanoparticle imaging.
- Other applications: autonomous robotics
 - Equip autonomous robots with a "electric and acoustic sense perception".
 - Provide autonomous robots, by mimicking weakly electric fish and bats, with detection and classification capabilities in dark or turbid environments.
 - Complex targets; tracking of the position and orientation of mobile targets by extended Kalman filtering; autonomous navigation,