
 

1 1 Recapof basicnotions
Definition 1.1 ITA topological manifold M of dimension in is a second
countable Hausdorfftopologicalspace sit PEM U CM open
neighborhood of p f U U CIR homeomorphism

we call Y U a chart

iiTwocharts y U XU are compatible if the coordinatechange
pop

1
x UN y UN is a smooth diffeomorphism
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liia A smoothmanifold is a topological manifold M equippedwith
a smoothstructure maximalatlas maximal systemofcharts
Ux a with U U M sit Y Yp are compatible aβ

Remark 12 Wewillnotconcernourselvesherewith limiteddifferentiability
allmanifolds andmostobjects wewilldealwith will be infinitely
differentiable smooth C

Fromnow on Mwill denote a C manifold

Definition1.3 i For peM the tangentspaceTpM is definedas

TpM e v y chart ERM



where Y V 4 w deeply of v w

Since deep4091 IRM IRMis an invertiblelinearmap TPM is an
m dimensionalvectorspace Write e u p forthe equivalenceclassoffe
ii For a smoothmap F M N between 2 smoothmanifolds
lineHeyFy is a smoothmap smoothcharts y onMyonN
definethe differential dpF TPM TapN by
dpF CpNp 4 deep v

Fep

74
We can interpret lyUp Tp thatayst can

i Tangentvectorof curvesthroughp If y 11,15M p
then y IM is definedas 8 Etiii Directional derivative Given f M IR

ofthecurveyV yuIp TpM define

Vf foy g pitted17 0
localEdinatrepresentation
ofthefunctionf

One writes filpETpM forthetangentvector y to p
so every veTPM canbewritten v Vi

p implicitsummation over

repeatedindex for vie IR it m the coefficientsof inthecharty



Remark 1 4 Physics books on GeneralRelativity typicallydefine a

tangentvector at pen to be a collection Vi in of numbers
which transform contravariantly whenchangingcoordinatesThemath
definitionabovepackages all localcoordinaterepresentations into a

single object the equivalenceclass yuJp

Definition 1.5 Asmoothvectorfield is a map V M TM WemTPM
VpETpM so that in all charts y U on M wehave

Vp 4 up p peu with v U RM smooth
Write P TM for the spaceofall vectorfields

VE TCTM defines a derivation on C M smoothfunctionsM 12

by f to Vf with Vf p Upf
Conversely given D C M C M linear D fg fDg gDf

VE T TM sit Df Vf f E C M
Given V WETCTM also VW ET TM commutator lie bracket

where VW isthe derivation frs vwtf Vwf wVf
Exercise

Definition 1.6 The cotangentspace ofM at p is the dualvectorspace
Tp M 5 TpM IR linear Its elements are calledcorrectors

Given a chart y aroundp a basis ofTYM is givenbythe
coordinate differentials

dpy ftp.lp to Sf



Moregenerally given f M IR define its differentialat p by
dpf V Vf for VETPM



1 2 Riemannianmetrics firstpass
We can now give a practical definitionof a Riemannianmetric
Definition 1.7 i ARiemannianmetric g on M assigns to every p
a positivedefinite symmetricbilinearform gpTpMXTpM IR
which depends smoothly on p EM i e

V WETCTM the mapMFpts gpUpWp EIR is smooth
ii ARiemannianmanifold is a pair Mg where M is a smoothmanifold
andg a Riemannianmetric

Consider a localcoordinatechart m this is more common
notationthan y 4m We canthendefinethe metriccoefficients

gig p gp ilp Elp
They satisfy i gij gji symmetry

iii vigg.us g YU 0 V vi ilp ve 1PM v 0

positivedefiniteness

iii gijp is 8 in p
We canmoreoverwrite

Gp 5 9 p dpx dpxi

where for n TYM we write y forthe bilinearform onTPM
50m VW V qW VWETPM

Remark 1.8 Bypolarization a Riemannianmetric is uniquely determined

by the associated quadratic form TPMAV to NPgp GpVV
with the interpretation of squared length



As abasicguideline all objectsin differential geometryshould besections

ofvectorbundlesThe relevantbundlesfor a Riemannianmetric and
all furtherobjects associatedwith it are introduced in thenextsection

Example 19 i M IRM chart m standard coordinates

g dxi dx If ldxis Euclideanmetric

Indeedg Qi 9k fjk ej.ee
standardbasisvectors
identifiedwithQiQi

ii M 10,0 10,2T chart r p g dr r dy
Againthe Euclideanmetric but expressed in polar coordinates

iii On any M there exists a Riemannianmetric Exercise

Motivatedby liil weintroducethe pullbackof ametricg on M
along a smoothmap F N M for V WETpN

F g VW gap d Vl dpF w

When I is an immersion i e dpF TpN TapM is injective p
then F g is a Riemannianmetricon N

Definition 1.10 i A map F Nih Mg betweenRiemannianmanifold
is a localisometry if F is a local diffeomorphism i e p EN
UCN neighborhood of p sit Fly U Flus is a diffeomorphism

and F g h



ii Mg and Nh are isometric if thereexists an isometry
F Nih Mg i e F is a diffeomorphismand F g h F hag

Example 1.11 0,0 10,27 dr'tRdp F r Y

rcosy r siny IR dx dx 2

is a localisometry Exercise

Example 1.12 spheres let m 112M 1 1 1 withtheinducedmetricg
Then Isom SM F m

isometry Olmti

Hee AEOlmel is identifiedwith the isometry 7 MAX
Proof later Inparticular m g is

i homogeneous p q E8m FE IsomSm withFlp g
Allpoints arethe same

ii isotropic p E
M VWETpSM NgklWlg l FEIsom

withFlp p d F U W Alldirectionsarethesame

Example1.13 Hyperbolicspaces Let HIM IRM 1 1 14 withmetric

gum 172 dx aIT.pe dxif

Then HIM gym is homogeneousandisotropic
Thisis the Poincarédiscmodel of hyperbolicspace It is isometric
to the upperhalfplanemodel x X IRM x IR Xm 04

g Imp dx dm

will bediscussedin exercises



1 3 Tensor bundles

First we recall
Definition 1.14 i A vectorbundleof rank k is atriple E M T

oftenwritten IT E M suchthat

M is an m dim smoothmanifold

E is an Mtk dim smoothmanifold totalspace

IT is a smoothmap projection whose fibers it p Ep carry
the structure of a k dimensional realvector space
peM openneighborhood UCM ofp and a C diffeomorphism

4 it U Ux IR sit Y Eg Eg g R
is a linear

isomorphism g EU Localtriviality
ii A section S of E is a smooth map s M EwithTos idµ
Wewrite T E S M E section forthe spaceofall
smooth sections

Example 1.15 i TMI M T 4Vp p with local
trivializationsinducedby charts y via

4 U Yau 7 Y V q V EUXRM

ii T M Is M exercise

In a localtrivialization 4 IT U UxIRK a smooth section slu is
given by s g y q 5191 for a C function 5 U IRK

Using this observation you can checkthat T TM givenby



Def 1.14 is the same as TCTM fromDef 1.5

Given a cover Ux of M withlocal trivializations α Ua UNR

we candefine the transitionfunctions

Tpa UanUp GL K R by 4,042 D 9,5291

They satisfy the cocyclecondition Typ Tpa Tya tax 11am
Conversely given such a cover1421and collectionoffunctionsgpa
one can construct a rank k vectorbundlefromthesedata

If the datacomefrom a vectorbundle E this constructionproduces
a vectorbundle isomorphic to E

Given vectorbundles E E M of rank k k one can construct

furthervectorbundles out of them
i Direct sum or sometimesWhitneysum E E M ofrankktle
with total space

E E Z Z E EXE ITCZ IT 17

and projection 2,21 TH TH

Thus E E p Ep Ep which we equipwith the linear
structure of Ep Ep Exercise showthat E E is a smoothmanifold
The transition maps for E E are gpαlpl gfa p when
9ps g'pα are transitionmapsfor E E for a cover of M by
opensets Ux onwhich bothbundles aretrivialized IT_ 4 Uα R

UαFUαXRK



Iii Tensorproduct E E M This is constructedfrom local
trivializationsover a cover 4 4 and the transition functionstpa.tk
for E E using Uα 12ᵗʰ and transition functions

Tpa p Tpap E GL IR Rh GL Kk IR

Thus EOE'lp Ep Ep and E E is a rank kk vectorbundle

Definition 1 16 Let r S ENoThen the Iris tensorbundle is

T.sn T.MIL
M ot

jgIM
Thus TrSM p TpM 0 TPM T M TFM is the space

of res multilinearforms

T M TYM TOM TOM IR
Lemma1.17Every TE T T sM defines a CTM multilinear

map

4 I causa
vectorfields

Wi Wr V Us to T Wi WpV Vg
Conversely every suchmap defines uniquely a sectionofT.sn

Proof Exercise

Remark1.18A 11 s tensorT canequivalentlybe regarded as a CO M
multilinearmap T TM S T TM Later the curvaturetensor of
a Riemannianmetric is a 1,3 tensor



Directly from Lemma1.17 we get
Lemma 1.19 Riemannianmetrics secondpass A Riemannianmetric g

onM in the sense of Definition 1.7 defines an element of
T TopM T T M TM

Conversely get To2M is a Riemannianmetric iff gp is
symmetri

and positivedefinite forallpeM

Thus the smoothness in p is builtinto the definition of T To2M

Remark 1.20 Havinggonethrough allthistroubleto defineRiemannian
metrics in an abstractsetting it turns outthat it is enoughto

study submanifolds of Euclideanspace with the inducedmetric
Theorem Nash 1956 f IN IN fml11m 2Mt works

sit M.gl dimM m submanifold McRfm
and an isometry Mg M inducedmetric

Nonetheless it is in general a goodideato avoidtheintroduction

ofextraneous structures e.g embeddingsintoEuclideanspace
andthus we shallhappilycontinuewith a detailedstudyof
abstract Riemannianmanifolds

On a Riemannian manifold one has a preferredidentification ofTM TM
Lemma 1.21 Let Mg be a RiemannianmanifoldThen

TPM 7 VM Vb gp V TFM PEM



defines an isomorphism TM E M Theinverse ofthis

map is denoted TYMFE.ME ETpM
Proof Followsfromthe non degeneracy ofthe bilinearformgp
The maps V1 Vt E are calledmusicalisomorphisms for
physicists indexlowering indexraising In localcoordinates

g gig dxiod
i V V V gijV did Vjdxi

where Vj gijV
Write g j m gig for theinversematrixthen

3 dxi g is I

where 95 gis

Using we can define a positivedefinitesymmetricbilinearform on

TFM via g En gp 5 1 1 Wethenhave

gf dxidxil gpfgihfxu.gl gihguegil lgtgg.it gig

Corollary 1.22 g git p localcoordinate

expressionfor g


