
 

We return to Corollary Cto and ask what can one say
aboutthe eigenvalues o d E Iz E of o

as an operator on ECR with domain Hari others
where r CIR is bounded and of class C

Theorem T 35 Weyl'sLaw Let r er be 0 let
Oct EXE o denotethe Dirichleteigenvalues off
on R and let
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It is important that we can work in less regulardomains

Lemma L 19 Let r e IR be bounded Let
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ii we have the min max characterization
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This largely generalizes corollary c 10 except it is not
true anymorethat the eigenfunctions une lie in CTE

or even in Hers

Proofstep1 Wedefine A Hd r H r Hari by
Au u 74 Mccoy

To understandwhatthis is note that there is a continuous

embedding Ecu H as givenby
Ent f to Honor to fi ears

and then Au f an equation in H Ir means
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i e ou f weakly
1 1 A is an isomorphism
Indeed since up Aulus this is precisely the

contentof the Riesz representationtheoremfor H r

1 2 We compose At H r H r withembeddings
from into Eu and get the operator
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The inclusionmap H r Eir is compact exercise

this doesnotrequireany regularity on da unlike
Corollary C 8 Therefore T is a compact operator

One can also easily check exercise that T is symmetric

Finally T is positive if f e Ers then

Tf f an u f egg where u Tf EH r

solves ou f
Tu Tu yrs

20
with equality iff u 0 in Ho r andthas f 0
Step 2 i followsfrom the spectraltheoremfor compact

self adjoint operators with the Xj reciprocals

ofthe eigenvalues of T which are all so

Lii followseitherfrom a similarcharacterization of the
eigenvaluesof T see FA Il or directly using
the completeOND of eigenfunctionsof 0 exercise D
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i Claim for K E Inn let

Uk x E R IT sin I kjxj
Then une H lol out Ifl knew and

valueinn is a complete ONB of Ecu
Indeed only the final claim is not clear Extend unto
an odd function in on St 42in i.e
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that is Tuck E I sin Ekjxj simply
Every Efunctionon I can be expanded intoFourierseries
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If now we ECM let ve Ect be its odd extension

to St Let k ki kn

If k 0 for some i then Enl Xi Eat xi

is even in Xi but u is odd in Xi so Vu 0

If ki kn 0 and k fkn Ikn then
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the Fourierseriesof v a totalof x x o I x
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Therefore v Fenn invie tu in Ect

and thus also u Fanninguh in 454 as required

Iii We conclude that the set of Dirichleteigenvalues of
0 on D o c is
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We nexthavethefollowingmonotonicity resultfor eigenvalues
Lemma L203 Let tales denotethe 4theigenvalue

Kat countingwithmultiplicity of o on R EIR

If r or then Auld E Zulu t KEIN

ProofThisfollowsdirectly from Lemma 2.19 ii if VCH r

dinkk then extending the elements of V by 0 to r gives a

subspace VC H ri So tutor is an infimum over

a smaller set of linearsubspaces of How of dimension
k than Auld's so Zulu Z InCoil D

We can now already prove one half of Weyl's law



Proof that living If a Ein Inco

Given e 0 we can choose 270 sosmall that there

exists a disjointunion Q Cr of cubesQj qjtQ
Q Lo Li sit EEFL r e Ln YQ L Q Ence

Write It exe for the DirichleteigenvaluesofDj
see Example E211 and

79 e age for the sequence74 Xi C times
72 ti gtimes
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We claimthat 18 Antsy forall KE IN
Indeed by lemma 2.193
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Since E 0 is arbitrary we are done D

The idea here was to use only test functions u in
the min max characterization of tales which are the
functions on each cube Oj to get an upperband on
Tu r That this gives a sharp asymptotic lowerband

for NCT equivalently a sharp asymptoticupperband on

AnGl exercise is not obvious we shall provethis

i.e the other inequality requiredfor a proofof Weyl's
law by getting a lowerband on Auld by using a

larger space of test functionsthan H r

Wehave few choices apartfrom considering e.g for v10.4

s
dimV k

What is this We havethe following analogueofLemma12.19
Lemma L213 Let r E IR Assume H r Ews is compact
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isomorphismByassumption
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is compact Its symmetry is a simplecalculation let f ge Ea
andset u Tt v Tg E H Cn then Br g regarded as an

elementof Ctt Int na H'mo u ti lgWey andtherefore
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ie
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workingwithrealvaluedfunctionshere
T is positive Tf fl u ulyin 0 unless 4 0
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implies for Ku 11out Alull andhence 720 indeed D

Remark R 29 i For re rn H'us Lou mayfail to be
compact Example D E Bi tu O 0 Disjointunion

no G let u 5 Energie I 9 o
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Then all derivativesof uj vanish so
lighting Hujllea I Cry dawn

is bounded yet lug welling2wn for
the all jtl

So lug doesnothave a convergent subsequence in Ecu
Iii For d o un the inclusion H'd co Er is compact

Exercise For r of class C compactnessof the
inclusionfollows from Corollary C 8

Now what are the Neumanneigenvalues v v2 of 0 on

R EIR as in Lemma L 21 If u E H'd on f
in the sense that ou ou fi t vet rt supposethat

Ris COand a fE CTE Then for ve Cat
f ou or dx for v do Lou v dxr
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so I lout flu dx for v do

Plugging in v e CE la we concludethat our f in r
Thus for v do o f v e Oct Eulogio
Therefore we are in fact workingwith a weakformulation

of the Neumannproblem

f ou f in r
0 on or

Remark R303 One can develop a regularitytheoryanalogous to
Theorem IT32 also for this problem

Inparticular the Unfrom Lemma L21 are weak solutions of
the eigenvalue problem
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Example E 221 Consider It 10 L Then H Cri as Ecr
is compact exercise
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Indeed note that gtfo at Xi O L for it n

this implies via an integrationby parts that un is a
weak solution of the Neumann eigenvalueequationindeed
The completeness of uh followsby a variation of the
argumentused in Example E211

Iii We conclude that the set of Neumann eigenvalues of
0 on D o c is

S LETMR KE INT
Ciii Claim Weyl's law holds on D 0,4 withNeumann

boundaryconditions i.e
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Proof via a minor modification of the argumentin ExampleE2

We can now already prove the otherhalf of Weyl's law

Proof that tipsy If I Ygn Incr
Theorem CT351

Given e 0 we choose L 0 so small that thereexistdistinctpoints
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Indeedby Lemma 12.191
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andfollowing the arguments in the proofof the min max
formulafromhere
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Since E 0 is arbitrary we are done D


