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The existence of quasinormal modes (QNMs) for waves propagating on pure de Sitter space has
been called into question in several works. We definitively prove the existence of quasinormal modes
for massless and massive scalar fields in all dimensions and for all scalar field masses, and present
a simple method for the explicit calculation of QNMs and the corresponding mode solutions. By
passing to coordinates which are regular at the cosmological horizon, we demonstrate that certain
QNMs only appear in the QNM expansion of the field when the initial data do not vanish near
the cosmological horizon. The key objects in the argument are dual resonant states. These are
distributional mode solutions of the adjoint field equation satisfying a generalized incoming condition
at the horizon, and they characterize the amplitudes with which QNMs contribute to the QNM
expansion of the field.

I. INTRODUCTION AND SUMMARY

The de Sitter (dS) universe is the simplest solution of
the Einstein vacuum equations with cosmological con-
stant Λ > 0. This makes it an ideal starting point for
the investigation of a large variety of physical phenom-
ena in universes, such as our own [1, 2], which undergo
an accelerated expansion. The decay of classical fields
propagating on dS spacetimes and its generalizations
containing black holes—such as Schwarzschild–de Sit-
ter (SdS), Kerr–de Sitter (KdS), Reissner–Nordström–
de Sitter (RNdS), and Kerr–Newman–de Sitter (KNdS)
spacetimes—has been studied in detail via numerical
evolutions [3–5], the computation of quasinormal modes
(QNMs) [6–23], and mathematical investigations [24–36].

On dS, which has a single temporal scale given by the
cosmological horizon, QNMs capture the temporal de-
pendence at late times of linear and weakly nonlinear
fields Φ [37, 38], in that

Φ(t, x) ∼
∑

e−iωjtcjuj(x), t→∞, (1)

where the uj are normalized mode solutions, and the ex-
pansion coefficients cj are determined by the initial condi-
tions of Φ. On black hole spacetimes such as SdS, QNMs
capture also the ringdown phase [17] on the much smaller
temporal scale given by the mass of the black hole, as
recently demonstrated also experimentally via gravita-
tional wave measurements [39, 40]. There has also been
interest in QNMs of asymptotically dS and anti–de Sit-
ter (AdS) black holes owing to the dS/CFT [8, 41] and
AdS/CFT correspondences [42, 43].

Our objective is to clarify the existence and relevance
of QNMs for massive scalar fields, i.e. solutions of the
Klein–Gordon equation, on (the static model of) dS, and
conclusively explain the discrepancies between contradic-
tory results reported in the literature. Early calculations
[4, 13] find the correct QNMs but discard some of them
due to observed pole cancellations in explicit expressions
for the frequency space Green’s function and by com-
parison with numerical wave evolutions. The pole can-

cellations are ignored (hence, all QNMs are kept) in [8],
while [10] finds no QNMs at all, and [11] finds QNMs
only under a condition on the scalar field mass. The
article [12] asserts the existence of QNMs only for dS
with odd spacetime dimension D. The series of papers
[14–16, 18] computes QNMs for a variety of classical hy-
perbolic equations on dS.

We will demonstrate that QNMs in fact exist for mas-
sive scalar fields on dS in all spacetime dimensions D ≥ 2
and for all scalar field masses (real or complex). The pole
cancellations and matching wave evolutions are shown to
be due to the explicit or implicit assumption that the
initial data of the field are equal to 0 near the dS hori-
zon. Without this restrictive assumption, no QNMs may
be discarded; every frequency for which there exists a
purely outgoing mode solution of the field equation is a
QNM and contributes to the QNM expansion (1).

The key is to understand the dependence of the coeffi-
cients cj in (1) on the initial conditions of the field: cj can
typically be computed as the inner product of an expres-
sion formed from the initial data with a purely incoming
mode solution vj(x) with frequency ω̄. In certain excep-
tional situations however, for example for massless scalar
fields on dS in D = 4 dimensions and for all nonzero
QNMs, no purely incoming mode solution exists. In-
stead, the role of vj is now played by a distribution which
is supported on the dS horizon, i.e. vj is a sum of differen-
tiated δ-distributions. In these exceptional situations, it
is the behavior of the initial data in an arbitrarily small
neighborhood of the horizon which determines cj . We
give a characterization of vj which is valid in all cases,
and call such generalized purely incoming solutions dual
resonant states.1 This characterization requires working
in a hyperboloidal slicing of dS [19, 20, 23]; the failure of
time evolution to be unitary in this slicing is the reason
for the asymmetry between the definitions of mode solu-
tions uj and dual resonant states vj . The notion of dual

1 This term has previously been used in the mathematics literature
[35, 44]; another common term is co-resonant state [45].
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resonant states thus allows one to discern what triggers
the appearance of any particular QNM frequency in the
expansion (1).

On dS specifically, we compute a few dual resonant
states for a variety of dS dimensions and scalar field
masses. We also present a simple method to determine
QNMs and mode solutions for wave type equations on
pure dS, based on an efficient description of the asymp-
totic behavior of waves on the conformal compactifica-
tion of dS in terms of data on the conformal boundary
[29, 35, 46] and the solution of a certain characteristic
polynomial. To the authors’ knowledge, this method ap-
pears here for the first time. We illustrate our results
with the numerical evolution of massive scalar waves in
hyperboloidal slicing [47].

II. LATE-TIME BEHAVIOR OF MASSIVE
SCALAR FIELDS

The line element of the static model of D-dimensional
dS is given by

ds2 = −F (r) dt2 +
dr2

F (r)
+ r2dΩ2, F (r) = 1− r2

L2
, (2)

where dΩ2 is the line element of the (D− 2)-dimensional
unit sphere, and the dS radius L is related to Λ and the
surface gravity κ of the dS horizon via

Λ =
(D − 1)(D − 2)

2L2
, κ = L−1. (3)

The level sets of the time function

t∗ = t+
1

2κ
logF (4)

are hyperboloidal, i.e. transversal to the future cosmo-
logical horizon, and the dS line element

ds2 = −F (r) dt2∗ −
2r

L
dt∗dr + dr2 + r2dΩ2 (5)

is regular across the horizon r = L. Finally, regarding
r,Ω as the polar coordinates of x = rΩ and setting

τ = e−κt∗ , X =
xτ

L
, (6)

we obtain the expression

ds2 = L2−dτ2 + dX2

τ2
, (7)

or equivalently the more familiar FLRW form of the dS
metric, ds2 = −dt2∗ + e−2κt∗d(LX)2.

A. DATA ON THE CONFORMAL BOUNDARY

In terms of (7), the equation of motion (2−m2)Φ = 0
for the scalar field Φ = Φ(τ,X) of mass m reads

L−2
(
−(τ∂τ )2 + (D − 1)τ∂τ + τ2∆X

)
Φ−m2Φ = 0, (8)

where ∆X =
∑
∂2
Xi is the spatial Laplace operator. We

are interested in the behavior of Φ as τ → 0 (i.e. t∗ →∞),
with initial data

(Φ, ∂t∗Φ)|t∗=0 = (Φ,−τ∂τΦ)|τ=1 = (Φ0,Φ1) (9)

which we assume to be smooth functions of X. Dropping
the term τ2∆X in (8), the characteristic exponents of the
resulting ODE in τ at τ = 0 are the roots

λ±(m) =
D − 1

2
±
√

(D − 1)2

4
− L2m2 (10)

of the quadratic polynomial

p(λ) = λ2 − (D − 1)λ+ L2m2. (11)

Let ∆λ = λ+(m)− λ−(m) =
√

(D − 1)2 − 4L2m2.
The generic case ∆λ /∈ 2N0.— It can be shown [29, 46]

that in this case

Φ(τ,X) =
∑
±
τλ±(m)u±(τ,X), (12)

where u±(τ,X) are smooth functions of (τ,X) ∈ [0, 1]×
RD whose Taylor expansion at τ = 0 only contains even
powers of τ . Moreover, there is a one-to-one correspon-
dence

(Φ0,Φ1)↔ (u
(0)
+ , u

(0)
− ) := (u+, u−)|τ=0 (13)

between the initial data (Φ0,Φ1) of Φ and the asymptotic

data (u
(0)
+ , u

(0)
− ).

We sketch the construction of a solution Φ of (8) given

asymptotic data (u
(0)
+ , u

(0)
− ): we make the ansatz

u±(τ,X) =

∞∑
j=0

τ2ju
(j)
± (X) (14)

in (12) and plug this into (8). This gives a recursion

relation for the functions u
(j)
± , j ≥ 1, with unique solution

u
(j)
± = q

(j)
± ∆j

Xu
(0)
± , q

(j)
± =

j∏
k=1

p(λ±(m) + 2k)−1.

(15)

When u
(0)
± are analytic functions of X, then (14) con-

verges near τ = 0; see Appendix A. When u
(0)
± are merely

smooth, then, as shown in [46], one can still find u± with

Taylor coefficients at τ = 0 given by the u
(j)
± in (14) so

that Φ solves (8) exactly.
The exceptional case ∆λ ∈ 2N0.— This occurs when

m2 = (D−1)2−4n2

4L2 for some n ∈ N0, thus in any fixed
dimension D only for a finite number of real scalar field
masses m. The asymptotics of the field are now

Φ(τ,X) = τλ−(m)u−(τ,X) + τλ+(m)(log τ)u+(τ,X),
(16)

and the one-to-one correspondence (13) still holds: the

full Taylor series of u± at τ = 0 are determined by u
(0)
± .

We omit the explicit formulae.
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B. QNMS AND MODE SOLUTIONS

Quasinormal modes ω are typically defined in terms of
static coordinates (2) as those complex numbers ω ∈ C
for which there exists a purely outgoing solution

e−iωtu(r,Ω), u(r → L) ∼ eiωr∗ , (17)

of the Klein–Gordon equation (2−m2)(e−iωtu) = 0; here
we introduced the tortoise coordinate dr∗ = dr/F . Near
r = 0, u is required to be bounded, which automatically
implies the smoothness of u as a function of x = rΩ ∈ RD
near x = 0 [46]. Now t∗−(t−r∗) = L log(1+ r

L ) is analytic
in r > 0 across r = L, hence outgoing solutions are of
the form

e−iωt∗u, u smooth near x = rΩ = 0 and |x| = L.
(18)

Solutions2 of the field equation of the form (18) are
smooth across the future cosmological horizon of dS,
hence QNMs are indeed those ω for which a nontrivial
solution of this form exists [23, 37, 46, 50, 51]. We re-
mark that smoothness prohibits incoming asymptotics
e−iωte−iωr∗ ∼ e−iωt∗e−2iωr∗ ∼ e−iωt∗ |L − r|iω/2κ as
r → L for all but an exceptional set of values of ω.

For future use, we record that the PDE solved by u
in (18) is(

r−D+2∂rr
D−2F∂r + iκω(2r∂r +D − 1)

+ r−2∆Ω + ω2 −m2
)
u = 0,

(19)

where ∆Ω is the Laplacian on the (D − 2)-sphere.
Denoting by ωj the QNMs and by uj = uj(x) the

corresponding mode solutions (normalized arbitrarily),
the quasinormal mode expansion of the massive scalar
field is

Φ(t∗, x) ∼
∑

cje
−iωjt∗uj(x), t∗ →∞, (20)

for certain complex coefficients cj depending on the ini-
tial conditions of the field.3 4 On the other hand, note
that t∗ →∞ while keeping x bounded implies τ,X → 0.
If we Taylor expand (12) at (τ,X) = (0, 0) and undo the
coordinate change (6), we get the expansion

Φ(t∗, x) ∼
∑
±

∞∑
n=0

e−κ(λ±(m)+n)t∗
∑

2j+|α|=n

c
(j,α)
±

( x
L

)α
,

(21)

2 For analytic spacetimes and time functions t∗, u is automatically
analytic [48, 49].

3 The notation ‘∼’ means that for any C, the difference between Φ
and the sum over all ωj with =ωj ≥ −C is bounded by C′e−Ct∗ .

4 For QNMs with higher multiplicity—ignored here—there are ad-
ditional terms with time dependence e−iωjt∗ tk∗ .

where c
(j,α)
± = 1

α!q
(j)
± ∂αX∆j

Xu
(0)
± (0). By comparing this

with (20), we can read off the QNMs of the massive scalar
field to be those ω ∈ C for which e−iωt∗ = e−κ(λ±(m)+n)t∗

for some n = 0, 1, 2, . . .; thus, the QNMs are

−iκ(λ−(m)+n), −iκ(λ+(m)+n), n = 0, 1, 2, . . . (22)

Moreover, we can directly read off all mode solutions
corresponding to any one of these QNMs, i.e. all functions
u = u(x) so that e−κ(λ±(m)+n)t∗u(x) (with the choice of
sign and n = 0, 1, 2, . . . fixed) solves the equation (8)
for the scalar field. Indeed, the freedom in the coeffi-

cients c
(j,α)
± , with n = 2j + |α| fixed (thus considering

the QNM −iκ(λ±(m) +n)), is fully accounted for by the

freedom of specifying all derivatives ∂βXu
(0)
± (0) of order

|β| = n (there are
(
n+D−2
D−2

)
of them). As one varies the

complex numbers c
(j,α)
± freely, the innermost sum in (21)

computes all elements of the corresponding
(
n+D−2
D−2

)
-

dimensional space of mode solutions.5 We stress that one

can choose the asymptotic data u
(0)
± so that the innermost

sum in (21) is a nonzero function for any desired value
of n, i.e. for all of the QNMs in (22) a nontrivial mode
solution indeed exists, and thus all QNMs contribute to
the long-time dynamics (20) of the field.

In the literature, QNMs on spacetimes with spherical
symmetry, such as dS, are typically computed by sepa-
rating angular and radial parts of putative mode solu-
tions u(x) via expansion into spherical harmonics, and
by studying a radial ODE for each angular momentum
l. In this manner, one obtains a set of QNMs for each
l = 0, 1, 2, . . ., consisting of those ω ∈ C for which there
exists a separated mode solution with angular momen-
tum l. In order to relate this to our result (21), ob-
serve that in the decomposition of a summand xα (ap-
pearing in (21)) into a sum of products of spherical har-
monics and functions of r = |x|, degree l spherical har-
monics appear if and only if |α| − l ∈ 2N0.6 That is,
for a QNM ω = −iκ(λ±(m) + n), the mode solution∑

2j+|α|=n c
(j,α)
± (x/L)α, expanded into spherical harmon-

ics, has a nontrivial piece with angular momentum l only
if there is a nonzero summand with |α|− l = 2ñ for some
ñ ∈ N0, so

n = 2j + |α| = 2n′ + l (23)

where n′ = j + ñ ∈ N0. Thus, restricting to mode solu-
tions of the separated form u(r,Ω) = Y (Ω)u0(r) where
Y is a degree l spherical harmonic, the QNM spectrum
is equal to

− iκ(λ−(m) + l + 2n′), −iκ(λ+(m) + l + 2n′), (24)

5 In the exceptional case (16), the QNMs are still given by (22),
and the values which are accounted for twice have multiplicity
two.

6 As an example, in R3 with coordinates x = (x1, x2, x3), one

has x33 = r3
√

12π/25Y10(θ, φ)+r3
√

16π/175Y30(θ, φ); note that
only Ylm with l = 1, 3 appear.
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with n′ = 0, 1, 2, . . .. (The fact that every QNM is nec-
essarily of this form is well-known [4, 15].)

III. DUAL RESONANT STATES

So far, we have given a new perspective on the well-
known result (see e.g. [4, §IV.C]) that for each fre-
quency (22) there exists an outgoing mode solution of
the Klein–Gordon equation on pure dS. On the other
hand, the authors in [4, §IV.D] observe a pole cancella-
tion in the Wronskian of outgoing and incoming solutions
at frequencies ω for which

ω = −inκ, n = 1, 2, 3, . . . (25)

and consequently discard such ω from the set of QNMs.
(Similar arguments are presented for other classes of per-
turbations and in general dimension in [12, §4.3]: again,
certain QNMs are discarded despite the existence of out-
going mode solutions.) Moreover, wave evolutions per-
formed in [4, §IV.D], with initial data supported inside
the dS horizon, show that the late time asymptotics of
massm scalar fields change qualitatively—seemingly con-
sistent with discarding the values (25) in the QNM ex-
pansion (20)—when m approaches a value m0 for which
all nonzero QNMs listed in (22) satisfy (25). (This hap-
pens for m0 = 0 and for the conformal mass m0 =
1
2

√
D(D − 2).)

We shall reconcile our late time asymptotics (21) (lead-
ing to the full set of QNMs (22)) with the wave evolution
in [4] by analyzing the dependence of the coefficients cj
in (20) on the initial data (9) of Φ, ultimately show-
ing in §III C that the qualitative change observed in [4,
§IV.D] is not present when the initial data are allowed
to be nonzero near the dS horizon. In §III D, we shall
also connect our analysis to the Green’s function compu-
tations presented in [4, 12, 13].

The following arguments are very general and apply
not only to the Klein–Gordon equation on dS, but gen-
eralize in a straightforward manner to any (not neces-
sarily scalar) wave equation on any stationary spacetime
foliated by level sets (of a time function t∗) which are
transversal to all future horizons; this in particular in-
cludes KNdS spacetimes (and its special cases SdS, KdS,
RNdS), and with some modifications also asymptotically
flat (Λ = 0) and anti–de Sitter (Λ < 0) black hole space-
times. We study the forced equation

(2−m2)Φ = f, Φ|t∗<0 = 0, (26)

where the forcing f = f(t∗, x) satisfies f = 0 for t∗ <
0 and t∗ � 1. We remark that this covers also initial
value problems, in the following manner: denoting, for
clarity, by ΦIVP = ΦIVP(t∗, X) the solution of (8)–(9),
let Φ(t∗, X) = Θ(t∗)ΦIVP(t∗, X) where Θ is the Heaviside
function. Then (2−m2)ΦIVP = 0 allows us to write

(2−m2)Φ = (2−m2)(Θ(t∗)ΦIVP)

= [2−m2,Θ(t∗)]ΦIVP =: f,
(27)

where [A,B] = AB − BA is the commutator. But since
2 −m2 is a second order differential operator, we have
[2−m2,Θ(t∗)] = δ(t∗)A1(X,DX) + δ′(t∗)A0(X), where
A0 is a smooth function and A1 is a first order dif-
ferential operator. In particular, for the calculation of
f in (27) one may replace ΦIVP by its linearization at
t∗ = 0 which in terms of (9) is Φ0 + t∗Φ1. Thus, the
solution of the initial value problem (8)–(9) in t∗ > 0
is equal to the solution of the forced equation (26) for
f = [2−m2,Θ(t∗)](Φ0 + t∗Φ1).

We now return to the equation (26) for general f . As-
suming that the j-th QNM ωj is simple, the map assign-
ing to f the coefficient cj in the QNM expansion (20) is
linear, hence given by the formula

cj [f ] =

∫∫
f(t∗, x)Ψj(t∗, x) dt∗ dD−1x (28)

for some (necessarily nonzero) distribution Ψj . We shall
deduce the key properties of Ψj by plugging special
choices of f into (26)–(28).

First, for any f so that f ≡ 0 inside the horizon (i.e.
for r = |x| ≤ L in the dS case), we have Φ ≡ 0 inside the
horizon by finite speed of propagation for (26); therefore,

Ψj(t∗, x) = 0 outside the horizon (i.e. for r > L on dS).
(29)

Next, if f = (2−m2)g for a function g with g = 0 for t∗ <
0 and t∗ � 1, then the solution of (26) is given by Φ = g
and thus vanishes for large t∗, hence cj [(2 −m2)g] = 0.
Plugging this into (28) and integrating by parts, we find
that Ψj must solve the adjoint equation7

(2−m2)∗Ψj = (2− m̄2)Ψj = 0. (30)

Finally, if Φ solves (26), then Ψ = (∂t∗ + iωj)Φ solves
(2−m2)Ψ = (∂t∗ + iωj)f ; but since (∂t∗ + iωj)e

−iωjt∗ =
0, the j-th coefficient in the expansion of Ψ is zero, so
cj [(∂t∗ + iωj)f ] = 0. Integrating by parts in (28) implies
that

(−∂t∗ − iω̄j)Ψj = 0 =⇒ Ψj(t∗, x) = e−iω̄jt∗vj(x).
(31)

A crucial point is that vj may vanish also inside the hori-
zon, i.e. in r < L on dS, in which case it must be a sum
of differentiated δ-distributions supported at the horizon.
This happens e.g. for D = 4, m = 0 or m =

√
2, with

important consequences for wave evolution and the pole
structure of the Green’s function, as discussed later.

Summarizing (29)–(31), we arrive at the following def-
inition: a dual resonant state at frequency ω is a distri-
bution8 v = v(x) such that

(2− m̄2)(e−iω̄t∗v) = 0,

v = 0 outside the horizon (i.e. for r > L on dS).
(32)

7 Thus Ψj can be interpreted as a massive scalar field with mass
m̄ (= m for real masses) which propagates backwards in time.

8 One can show that v is necessarily smooth where ∂t∗ is timelike,
hence on dS v can be singular only at r = L.
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We have moreover proved the existence of a dual resonant
state for every QNM frequency.

One can show [37] that the space of solutions of (32)
for fixed ω has the same dimension as the space of mode
solutions (18). On spherically symmetric spacetimes such
as dS or RNdS, these spaces are typically 1-dimensional
upon restricting to modes or dual resonant states which
are of the separated form w(r)Y (Ω) where Y (Ω) is a fixed
spherical harmonic.

Assume that for the QNM ωj there indeed exist a
unique mode solution uj and dual resonant state vj (up
to scalar multiples, and restricting to fixed angular de-
pendence if necessary). We shall determine the normal-
ization constant aj so that

Ψj = aje
−iω̄jt∗vj (33)

computes cj [f ] in (28). To this end, note that the
function Φ = Θ(t∗)e

−iωjt∗uj solves (26) with forcing
f = [2 − m2,Θ(t∗)](e

−iωjt∗uj), as follows by the same
calculation as (27). Since the QNM expansion of Φ has
cj = cj [f ] = 1, the constant aj in (33) satisfies

aj

∫∫
[2−m2,Θ(t∗)](e

−iωjt∗uj)e−iω̄jt∗vj dt∗ dD−1x = 1.

(34)
Defining the spectral family

P (ω) := eiωt∗(2−m2)e−iωt∗ (35)

(which on dS is equal to the operator in parentheses
in (19)), we thus obtain from (28), (33), (34) after a brief
calculation the formula

cj [f ] = i

∫
f̂(ωj , x)vj(x) dD−1x∫

(∂ωP (ωj)uj)vj dD−1x
, (36)

where f̂(ω, x) =
∫
eiωt∗f(t∗, x) dt∗ is the Fourier trans-

form in time. This is directly related to the pole structure
of the Green’s function G(ω;x, x′) of P (ω), which near
ωj takes the form

G(ω;x, x′) =
uj(x)vj(x′)

(ω − ωj)
∫

(∂ωP (ωj)uj)vj dD−1x
+ hol.

(37)
It is important here that x, x′ are not restricted to lie
inside the horizon.

A. CONNECTION WITH PURELY INCOMING
MODES

Taking the adjoint of (19) (or directly from (32)), a
dual resonant state v on dS at frequency ω and with
angular dependence given by a fixed degree l spherical
harmonic solves the equation

P (ω)∗v =
(
r−D+2∂rr

D−2F∂r + iκω̄(2r∂r +D − 1)

− r−2l(l +D − 3) + ω̄2 − m̄2
)
v = 0.

(38)

Multiplying this equation by F and using that ∂r ∼
−2κ∂F near r = L = κ−1 (where F ≈ 0), it reads(

4κ2(F∂F )2 − 4iω̄κF∂F
)
v ≈ 0 for F ≈ 0. (39)

This has solutions F z with homogeneity z = 0 and
z = iω̄/κ. One can show [37] that the dual resonant
state must have the latter homogeneity (i.e. precisely the
behavior disallowed for outgoing modes), so

e−iω̄t∗v = e−iω̄tvs, vs(r → L) ∼ e−iω̄r∗ (40)

upon restricting to the static patch of dS. Thus, vs is a
purely incoming mode with frequency ω̄; or vs ≡ 0 if v is
supported on r = L. The latter situation can only hap-
pen in special circumstances: a distribution supported
on F = 0 has as its leading order term δ(n−1)(F ) for
some n = 1, 2, 3, . . ., which is homogeneous of degree −n.
Therefore, v can be supported on the dS horizon if and
only if iω̄/κ = −n, which is equivalent to condition (25).
If ω is not of this form, then a dual resonant state at fre-
quency ω is the same (upon extension by 0 beyond the
horizon) as a purely incoming mode as in (40).

We can gain further insight by re-writing the equa-
tion P (ω)u = 0 satisfied by a mode solution u = u(r,Ω)
in static coordinates (2), so P sm(ω)us = 0 where us =
F−iω/2κu and

P sm(ω) = r−D+2∂rr
D−2F∂r + r−2∆Ω + F−1ω2 −m2.

(41)
Since only the square of ω appears in the coefficients of
P sm(ω), taking complex conjugates gives

0 = P sm(ω)us = P sm̄(ω̄)us = P sm̄(−ω̄)us. (42)

Therefore, (2− m̄2)(eiω̄tus) = 0, and hence

(2− m̄2)(eiω̄t∗F iω̄/κū) = 0. (43)

But F iω̄/κū is purely incoming at the horizon, so taking
into account the vanishing requirement for dual states,
one is tempted to conclude that9

v = F
iω̄/κ
+ ū = (1− r2/L2)

iω̄/κ
+ ū (44)

is a dual state. And indeed, as long as z := iω̄/κ is not
a negative integer (i.e. ω is not of the form (25)), this is
correct.10 The delicate point is that the distribution F z+
depends only meromorphically on z and has simple poles
at z ∈ −N. Its regularization χz+(F ) = Γ(z + 1)−1F z+
on the other hand is well-defined (see [52, §III.3.2]) and
satisfies χ−n+ (F ) = δ(n−1)(F ). Thus, in the exceptional
case (25), one needs to replace (44) by

v = δ(n−1)(F )ū, n = −iω̄/κ ∈ N. (45)

9 We use the notation x+ = max(0, x).
10 Indeed, by construction, v solves (38) in r < L and r > L,

hence P (ω)∗v must be supported at r = L, so it is a sum of
differentiated δ-distributions. But δ(n−1)(F ) is homogeneous of
degree −n ∈ −N at F = 0, whereas v is homogeneous of degree
iω̄/κ /∈ −N to leading order at F = 0. Therefore, necessarily
P (ω)∗v = 0.
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B. EXPLICIT EXAMPLES

For concreteness, we fix the scale of the cosmological
horizon to be

L = 1. (46)

As an independent verification of formula (45), we may
find those dual states (corresponding to QNMs satisfy-
ing (25)) which are sums of differentiated δ-distributions
as follows. We make the ansatz

v(r) = a0δ(r−1)+a1δ
′(r−1)+ · · ·+anδ

(n)(r−1). (47)

Differentiation in r maps δ(k) to δ(k+1), and (r−1)δ(k)(r−
1) = −kδ(k−1)(r − 1). Thus, combining the coefficients
ak into a vector, we have

∂r →



0 0 0 0 . . .

1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .
...

...
...

...
. . .

 , r− 1→



0 −1 0 0 . . .

0 0 −2 0 . . .

0 0 0 −3 . . .

0 0 0 0 . . .
...

...
...

...
. . .

 .

(48)
We then express the second order operator P (ω)∗ acting
on (47) as an N × N matrix, N = n + 2. Its nullspace
consists of the sought-after dual states. As a consistency
check, one can either verify the dual states by hand, or
one can increase N further and check that the subspace
of the nullspace consisting of vectors with many trailing
0’s is independent of N .

In Tables I–IV, we list a few examples of dual states
supported at the dS horizon found in this manner. For
brevity, we write

δ ≡ δ(r − 1), δ′ ≡ δ′(r − 1), . . . (49)

The dual state Θ(1 − r) for l = 0, ω = 0 in D = 4 and
D = 6 is not covered by the previous considerations, but
can easily be verified by hand.

For D = 4, we also list the corresponding mode so-
lutions which can be found via expansion of (21) into
spherical harmonics, or directly by solving (19). The re-
lationship between mode solutions uj and vj is consistent
with equation (45), except that we normalized the dual
states vj so that formulas (28) and (33) with aj = 1 com-
pute the expansion coefficient of uj in the QNM expan-
sion (20). (The spherical harmonics Ylm are normalized
so that

∫∫
S2 |Ylm(θ, φ)|2 sin θ dθ dφ = 1.)

C. CONNECTION WITH WAVE EVOLUTION

Consider a QNM ωj so that the associated dual res-
onant state vj is supported on the dS horizon r = L.
When the forcing f or the initial data (Φ0,Φ1) vanish
near r = L, then the corresponding mode solution uj

l ω mode sol. (uj) dual state (vj)

0 0 Y00 Y00Θ(1− r)
1 −i Y1mr

1
3
Y1mδ

0 −2i Y2m(r2 − 3) 1
6
Y0m(2δ + δ′)

2 −2i Y2mr
2 1

15
Y2m(δ − δ′)

0 −3i Y00
1
3
Y00(3δ + 3δ′ + δ′′)

1 −3i Y1m(r3 − 5r) 1
30
Y1m(2δ′ + δ′′)

3 −3i Y3mr
3 1

105
Y3m(−3δ′ + δ′′)

TABLE I. The first few normalized mode solutions (uj) and
dual states (vj) for a massless scalar field in D = 4.

l ω mode sol. (uj) dual state (vj)

0 −i Y00 Y00δ

0 −2i Y00 Y00(δ + δ′)

1 −2i Y1mr − 1
3
Y1mδ

′

0 −3i Y00(r2 + 3) 1
6
Y00(2δ + 2δ′ + δ′′)

1 −3i Y1mr − 1
3
Y1m(δ′ + δ′′)

2 −3i Y2mr
2 1

15
Y2m(−δ − δ′ + δ′′)

TABLE II. Normalized mode solutions and dual states for a
scalar field with conformal mass m =

√
2 in D = 4.

never contributes to the late-time asymptotics of the field
Φ. This is the setup of the wave evolution in [4, §IV.D].

This is further connected to the sharp Huygens prin-
ciple [53–55]: in the cases where all dual resonant states
are supported on the horizon, Φ in (20) decays faster
than any exponential in t∗, (and in fact can be shown to
vanish inside the horizon for late times). The converse is
true as well: if the sharp Huygens principle holds, then
all dual resonant states are supported on r = L. The
validity of the sharp Huygens principle for even space-
time dimensions D ≥ 4 and for the conformal mass
m = 1

2

√
D(D − 2) follows directly from the fact that

by (8),

τ−1−D/2L2(2−m2)Φ = (−∂2
τ + ∆X)(τ1−D/2Φ) = 0

(50)
is the wave equation on D-dimensional Minkowski space,
which satisfies the sharp Huygens principle.

Figure 1, which concerns the conformally coupled
scalar field on D = 4 dS, demonstrates this phenomenon.
(The solutions shown in Figure 1 were obtained by solv-

l ω dual state

0 0 Θ(1− r)
1 −i δ

0 −2i 4δ + δ′

2 −2i −δ + δ′

1 −3i 4δ′ + δ′′

3 −3i −3δ′ + δ′′

TABLE III. Dual states for a massless scalar field in D = 6.
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l ω dual state

0 −2i δ + δ′

0 −3i 3δ + 3δ′ + δ′′

1 −3i δ′ + δ′′

0 −4i 12δ + 12δ′ + 5δ′′ + δ′′′

1 −4i 3δ′ + 3δ′′ + δ′′′

2 −4i −3δ − 3δ′ + δ′′′

TABLE IV. Dual states for a scalar field with conformal mass
m =

√
6 in D = 6.

FIG. 1. Logarithm of the value of solutions of the conformal
wave equation in D = 4 at a point x0 with |x0| < L = 1. The
initial data are (0, (r2 − |x|2)Θ(r2 − |x|2)) for various values
of r.

ing the initial value problem for τ1−D/2Φ on D = 4
Minkowski space—see (50)—using the well-known ex-
plicit solution formula, with numerical evaluation of the
relevant integral over the base of the past light cone.)
For initial data which are supported in r < L = 1, the
conformally coupled scalar field on D = 4 dS decays to 0
superexponentially fast in r < 1 as t∗ → ∞, and in fact
vanishes for sufficiently late times. By contrast, when
the initial data are nonzero near r = 1, the rate of de-
cay of the amplitude of the field is exponential, and in-
deed ∼ e−t∗ ; this is consistent with the fact that the
dominant QNM is ω = −i, see Table II. Therefore, Fig-
ure 1 demonstrates that the exceptional QNMs—which
in this case constitute the full set of QNMs—that were
discarded in [4] must be kept and do contribute to the
late time asymptotics when the initial data of the field
are nonzero near the dS horizon. In particular, if one
allows for such general initial data, a qualitative change
in the late time asymptotics when the scalar field mass
approaches special values (such as the conformal mass)
observed in [4, §IV.D] does not take place.

In some cases such as D = 2,m = 0 or D = 4,m = 0,
only a single dual resonant state (at frequency ω = 0)
is nonzero in r < L, thus Φ|r<L is equal to a constant11

11 Constant functions are the mode solutions at frequency ω = 0.

-2 -1 0 1 2

0

0.02

0.04

0.06

X1

Φ

FIG. 2. Amplitude of a real massless scalar field Φ(t∗, X)
at points X = (X1, 0, 0), with initial data (0,−(0.49 −
|x|2)Θ(0.49− |x|2)), after evolving for a long time in the co-
ordinates (t∗, X) from (6)–(7).

-2 -1 0 1 2

0

0.2

0.4

0.6

0.8

X1

Φ

FIG. 3. Amplitude of a real massless scalar field Φ(t∗, X) with
initial data (0,−(1.44−|x|2)Θ(1.44−|x|2)), after evolving for
a long time in the coordinates (t∗, X).

(and the energy density is zero) for late times when the
initial data vanish near the horizon. This is closely re-
lated to the incomplete Huygens principle [54]. Figure 2
provides a perspective on this phenomenon from the per-
spective of the global dS spacetime (7) for D = 4,m = 0
and L = 1: the scalar field Φ, given by (12), (14), (15)
with λ−(0) = 0 and λ+(0) = 3, is plotted at a time
t∗ � 1 (i.e. 0 < τ � 1); thus, the plot shows a very pre-

cise approximation of the asymptotic datum u
(0)
− . The

flat middle segment is independent of t∗ in this regime.
Hence, in coordinates (t∗, x) adapted to the static patch
as in (6) (which zoom in exponentially fast in time around
X = 0), the scalar field is constant for large t∗.

By contrast, Figure 3 shows Φ(t∗, X) for t∗ � 1 for ini-
tial data which are nontrivial near the dS horizon. Again
Φ(t∗, X) is independent of t∗ up to error terms of size

e−2t∗ , hence the Figure approximately shows u
(0)
− . Since

therefore u
(0)
− is not constant near X = 0, switching back

to (t∗, x) coordinates reveals that Φ(t∗, x) approaches a
constant value exponentially fast in time, with the expo-
nential rate of convergence an integer multiple of κ.

Figures 2–3 were obtained via numerical evaluation of
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an analytic representation formula: by finite speed of
propagation, one may replace the spatial manifold RD
by a large torus. Upon expanding the field Φ(t∗, X)
into Fourier modes eiX·k in X (where k lies on an ap-
propriate D-dimensional lattice), one obtains from (8)
(with D = 4 and m = 0) an infinite family of ODEs
(−(τ∂τ )2 + 3τ∂τ − τ2|k|2)Φk(τ) = 0. Each ODE has
an explicit solution which is a linear combination of
cos(|k|τ) + |k|τ sin(|k|τ) and −|k|τ cos(|k|τ) + sin(|k|τ);
the coefficients are determined from the initial condi-
tions. Fourier inversion and evaluation at τ � 1 pro-
duces the figures.

For other values of the scalar field mass or spacetime
dimension, and especially if one is interested in the pre-
cise behavior of the field in or near the static patch as
t∗ →∞, a full numerical evolution scheme (e.g. as in [4])
may be needed. The above special choices of D and m
allow us to avoid this; and in any case they demonstrate
most clearly our main arguments.

D. CONNECTION WITH THE GREEN’S
FUNCTION IN STATIC COORDINATES

The Green’s function on dS in frequency space was ex-
plicitly computed in static coordinates (2) in [4, 12, 13].
This amounts to constructing an inverse Gs(ω;x, x′)
of the spectral family in static coordinates, P sm(ω) =
eiωt(2 − m2)e−iωt (see (41) for the explicit expres-
sion), with the requirement that Gs(ω;x, x′) (defined for
|x|, |x′| < L) be outgoing as |x| → L and regular at x = 0.
QNMs were then defined as the poles ω of Gs(ω;x, x′).
Since

Gs(ω) = e−iω(t∗−t)G(ω)eiω(t∗−t) ∼ eiωr∗G(ω)e−iωr∗ ,
(51)

the pole of G in (37) does not survive upon restricting
x, x′ to the static patch |x|, |x′| < L precisely when the
dual resonant state vj(x

′) vanishes in |x′| < L, i.e. when
it is supported on the dS horizon.

Thus, the set of poles of Gs can be strictly smaller
than that of G, with explicit instances where this hap-
pens given in §III B. This is the reason for the con-
tradictory statements regarding the existence of QNMs
in the literature when they are defined in terms of the
poles of the meromorphically continued Green’s function
in static coordinates. It would be interesting to derive
an explicit formula for the Green’s function G(ω;x, x′)
in coordinates which are regular across the dS hori-
zon, though such a construction is necessarily quite sub-
tle since G(ω;x, x′) is a very singular distribution at
|x′| = L.

IV. CONCLUSIONS AND OUTLOOK

We have conclusively shown the existence of QNMs for
massive scalar fields on dS, and produced an explicit for-

mula for the amplitude with which any QNM and mode
solution appears in the QNM expansion of the field.

We have moreover produced explicit formulas which
demonstrate that the QNMs as well as the mode solu-
tions depend continuously on the mass m of the scalar
field. One can moreover show that also the dual res-
onant states depend continuously (as distributions, i.e.
when paired against any fixed test function) on m. In
particular, the qualitative changes suggested in [4] when
m tends to special values (such as 0 or the conformal
mass) do, in fact, not take place for general initial data
which are allowed to be nonzero near the dS horizon.
Our analysis gives the correct late time behavior for all
initial conditions of the scalar field: while prior results,
such as those in [4], suggested a very rapidly decaying
late time tail of the field for special values of m, we have
demonstrated that the decay rate is, in fact, given in
terms of an explicit QNM, though the amplitude of the
corresponding mode solution in the QNM expansion of
the field vanishes for initial data which vanish near the
dS horizon. Note however that there is no a priori reason
why the scalar field (or other fields of interest, see below)
should initially vanish near the horizon. In other words,
we are able to explain the correct (numerically observed)
late time tails, and can moreover do so entirely within
the framework of QNM expansions.

As another setting in which the QNMs of dS play an
important role, we mention the QNM spectrum of SdS
black holes as the black hole mass M• tends to 0. This
is the subject of [46], where it is shown that the QNM
spectrum tends to that of dS in any bounded subset of
the complex plane. Again, it is crucial to keep also those
dS QNMs whose dual resonant states are supported on
the dS horizon, as otherwise some SdS QNMs would dis-
appear in the limit M• → 0.

On pure dS, our method for calculating QNMs and
mode solutions can be generalized to many other equa-
tions, such as the Maxwell and linearized Einstein equa-
tions; related results appear in [44, §4.1], [35, Ap-
pendix C]. On the other hand, we do not have an equally
efficient method for the calculation of dual resonant
states in such general settings at this time; we only ob-
tained explicit formulas (44)–(45) in the scalar case.

We end by suggesting an intriguing potential appli-
cation of dual resonant states on black hole spacetimes,
namely that via their connection to the coefficients in
QNM expansions—which can be experimentally mea-
sured [40]—they may give useful information about the
conditions close to the black hole from far field gravi-
tational wave measurements. The key observation here
is that, just like the mode solutions themselves, the
dual states corresponding to QNMs with large real part
(and small imaginary part) are localized near the photon
sphere, hence the coefficients of the QNM expansion give
averaged information on initial conditions there.
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Appendix A: CONVERGENCE OF (14) FOR
ANALYTIC DATA

We shall need a general estimate, adapted from [56,
§2], for bounding powers of the Laplacian applied to real-
analytic functions. For R0 > 0, denote B(R0) = {X ∈
RD : |X| < R0} and B̃(R0) = {λX : X ∈ B(R0), λ ∈
C, |λ| = 1}. If u = u(X) is real-analytic in X ∈ RD,
and extends to a holomorphic function of X ∈ CD in a
neighborhood of B̃(R0) for some R0 > 0,12 then for all
j = 0, 1, 2, . . ., we have

|∆j
Xu(0)| ≤ C(D)R−2j

0 22jj!2(j + 1)
D
2 −1 sup

B̃(R0)

|u|. (A1)

The proof will be given below. In the context of (14)–

(15), we apply (A1) to u = u
(0)
± . Further note that since

p(λ) ∼ λ2 for large λ, there exists, for any θ ∈ (0, 1) (and
with the scalar field mass m fixed), an integer k0 ≥ 1 so
that for all k ≥ k0 one has |p(λ±(m)+2k)| ≥ θ(2k)2, and
therefore

|q(j)
± | ≤ C(θ)θ−j(2jj!)−2. (A2)

This implies

|u(j)
± (0)| ≤ C(D, θ)(R0θ

1/2)−2j(j + 1)
D
2 −1 sup

B̃(R0)

|u|,

(A3)
and therefore the series

u±(τ, 0) =

∞∑
j=0

τ2ju
(j)
± (0) (A4)

converges absolutely for |τ | < R0 since θ < 1 was ar-
bitrary. Working at general points X ∈ RD, we have
shown that the series (14) converges absolutely and de-
fines a real-analytic function of (τ,X) in a neighborhood
of τ = 0, as claimed.

We now turn to the proof of (A1). By passing to

X̃ = X/R0 and thus ∆X = R−2
0 ∆X̃ , we may assume

that R0 = 1. Moreover, dividing u by supB̃(1) |u| (un-

less u is identically 0, in which case (A1) is trivial), we

may assume supB̃(1) |u| = 1. Note moreover that (A1) is

trivial for j = 0, hence we only consider j ≥ 1.
To proceed, we note that when p = p(X) is a homoge-

neous polynomial of degree 2j, then X · ∂Xp = 2jp and
thus ∫

RD
e−X

2/2p(X) dX

=
1

2j

∫
RD
−∂X · (Xe−X

2/2)p(X) dX

=
1

2j

∫
RD

∆X(e−X
2/2)p(X) dX

=
1

2j

∫
RD

e−X
2/2∆Xp(X) dX.

(A5)

Since ∆Xp(X) is homogeneous of degree 2(j−1), we can
proceed inductively and obtain∫

RD
e−X

2/2p(X) dX = (2π)D/2
∆j
Xp

j!2j
, (A6)

with ∆j
Xp a constant. Applying this to the polynomial

p(X) =
∑
|α|=2j

∂αXu(0)
α! Xα (with ∆j

Xp = ∆j
Xu(0)) gives

|∆j
Xu(0)| ≤ (2π)−D/2j!2j

∫
RD

e−X
2/2|p(X)|dX. (A7)

Fixing any unit vector X̂ ∈ RD, consider uX̂(z) = u(zX̂)
as a function of the single complex number z ∈ C, de-
fined in a neighborhood of |z| ≤ 1. Then the Cauchy
integral formula gives |∂2j

z uX̂(0)| ≤ (2j)! sup|z|≤1 |uX̂(z)|
and therefore

|p(X̂)| =
∂2j
z uX̂(0)

(2j)!
≤ sup
B̃(1)

|u| = 1. (A8)

Since p is homogeneous of degree 2j, we conclude from
this and (A7), and using the identity (A6) to the poly-
nomial |X|2j , that

|∆j
Xu(0)| ≤ (2π)−D/2j!2j

∫
e−X

2/2|X|2j dX

= ∆j
X |X|

2j .

(A9)

This can be computed in the radial coordinate R = |X|
and equals (R−D+1∂RR

D−1∂R)jR2j , which evaluates to

(2j)(2j +D − 2) · (2j − 2)(2j +D − 4) · · · 2 ·D

= 22jj!(j − 1)!
(j − 1 + D

2 ) · · · (1 + D
2 )

(j − 1) · · · 1
· D

2

≤ C(D)22jj!(j − 1)!jD/2
D

2
.

(A10)

(The final inequality follows from Stirling’s formula,

since the fraction is equal to Γ(j+D/2)
Γ(j)Γ(D/2) .) Plugging this

into (A9) and simplifying finishes the proof of (A1).
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