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Dedicated to the memory of Cathleen Synge Morawetz 1923–2017

Abstract. We consider scattering by star-shaped obstacles in hyperbolic space and

show that resonances satisfy a universal bound Imλ ≤ −1
2 which is optimal in di-

mension 2. In odd dimensions we also show that Imλ ≤ −µρ for a universal constant

µ, where ρ is the radius of a ball containing the obstacle; this gives an improvement

for small obstacles. In dimensions 3 and higher the proofs follow the classical vector

field approach of Morawetz, while in dimension 2 we obtain our bound by working

with spaces coming from general relativity. We also show that in odd dimensions

resonances of small obstacles are close, in a suitable sense, to Euclidean resonances.

1. Introduction

For κ > 0 we define hyperbolic n-space with constant curvature −κ2 as

(Hn
κ, gκ) = (Rn, dr2 + s2

κh), (1.1)

where (r, ω) are polar coordinates on Rn, h = h(ω, dω) is the round metric on Sn−1,

and sκ(r) = κ−1 sinh(κr). We include Euclidean space as the case of κ = 0, s0(r) = r.
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Figure 1. Left: a star-shaped obstacle in the Poincaré disc with reso-

nances satisfying a universal bound Imλ ≤ −1
2
. Right: resonances of a

disk with radius R = 1 in H2. Highlighted are resonances corresponding

to ` = 12 (in the notation of §2).

Suppose that O ⊂ Rn ' Hn
κ is a bounded open set with smooth boundary, and

denote by

Pκ := −∆gκ −
(
n−1

2

)2
κ2 (1.2)

1
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the self-adjoint operator on L2(Hn
κ \ O, d volgκ) with domain

D(Pκ) := H2(Hn
κ \ O) ∩H1

0 (Hn
κ \ O).

The resolvent of Pκ, κ > 0,

Rκ(λ) := (Pκ − λ2)−1 : L2(Hn
κ \ O)→ L2(Hn

κ \ O), Imλ > 0, (1.3)

continues meromorphically to a family of operators defined on C:

Rκ(λ) : L2
comp(Hn

κ \ O)→ L2
loc(Hn

κ \ O).

For κ = 0, the same result is true when n is odd; in even dimensions the continuation

takes place on the logarithmic plane.

We denote the set of poles of Rκ(λ) (included according to their multiplicities (3.2))

by Res(O, κ). The elements of Res(O, κ) are called scattering resonances and they

determine decay and oscillations of reflected waves outside ofO – see [Zw17] for a recent

survey and references. In the odd-dimensional Euclidean case their study goes back

to classical works of Lax–Phillips [LaPh68] and Morawetz [Mo66a], and the relation

between the distribution of resonances and the geometry of obstacles has been much

studied, especially for high energies (|Reλ| → ∞) – see [Zw17, §2.4].

When the obstacle is star-shaped, a universal lower bound on resonance widths,

| Imλ|, can be given in terms of the radius of the support of the obstacle. Following

earlier contributions of Morawetz [Mo66a, Mo66b, Mo72] and using Lax–Phillips theory

[LaPh68], Ralston [Ra78] obtained the bound

O ⊂ BRn(x0, ρ) =⇒ inf
λ∈Res(O,0)

| Imλ| ≥ ρ−1 (1.4)

for odd n ≥ 3. Remarkably this bound is optimal in dimensions three and five – see

Fig. 2 and [HiZw17] for a discussion of this result.

In this paper we investigate analogues of (1.4) for O ⊂ BHnκ(x0, ρ). The first result

shows that the resonance widths have a universal lower bound independent of the

diameter of the obstacle. Intuitively this is due to the fact that infinity is much

“larger” in the hyperbolic case.

Theorem 1. Suppose that O ⊂ Hn
κ is a star-shaped obstacle. Then

inf
λ∈Res(O,κ)

| Imλ| ≥ κ/2. (1.5)

Here, O being star-shaped means that there exists a point o ∈ O so that for all

p ∈ ∂O, the geodesic segment from o to p is contained in O. The estimate is sharp

when n = 2 and O = ∅.
For the proof, we use the characterization of resonances and resonant states given

by Vasy [Va12, Va13], and use ideas from general relativity to prove estimates on

resonant states directly (§6.2). In dimensions n ≥ 3, we give an alternative argument
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based on the vector field method of Morawetz (§4) and prove exponential energy decay

for solutions of a certain wave equation on Hn
κ with Dirichlet boundary conditions on

∂O. (Relating such decay estimates to bounds for resonances via resonance expansions

of waves, discussed in Theorem 6 below, requires the technical assumption that the

boundary ∂O be nowhere flat to infinite order: this is sufficient in order for the resolvent

to satisfy high energy estimates.) Using a hyperbolic space version of Morawetz’s

estimate for n ≥ 3 and a slight refinement of the argument from [Mo66a] gives an

improvement for small obstacles in odd dimensions; this is due to the sharp Huyghens

principle.

Theorem 2. Suppose that O ⊂ Hn
κ is a star-shaped obstacle and that n ≥ 3 is odd;

assume that the boundary ∂O is nowhere flat to infinite order. Then

O ⊂ BHnκ(x0, ρ) =⇒ inf
λ∈Res(O,κ)

| Imλ| ≥ µρ−1 (1.6)

for a universal constant µ (see (5.10) for a more precise statement).

Remark. Jens Marklof suggested a formulation of Theorems 1 and 2 which does not

depend on κ: there exist constants cn such that for star-shaped obstacles O ⊂ Hn
κ, n

odd,

O ⊂ BHnκ(x0, ρ) =⇒ inf
λ∈Res(O,κ)

| Imλ| ≥ cn
vol(∂BHnκ(0, ρ))

vol(BHnκ(0, ρ)))
.
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Figure 2. Left: resonances for the ball of radius one in R3. For each

spherical momentum ` they are given by solutions ofH
(2)
`+1/2(λ) = 0 where

H
(2)
ν is the Hankel function of the second kind and order ν. Each zero

appears as a resonance of multiplicity 2`+ 1; highlighted are resonances

corresponding to ` = 12. Right: resonances of the ball with radius

R = 0.25 in H3 (red) and in R3 (blue); this illustrates Theorem 3.

We expect that µ = 1 in (1.6). (An adaptation of Ralston’s argument [Ra78] should

work but would require some buildup of scattering theory; for a proof of his crucial



4 PETER HINTZ AND MACIEJ ZWORSKI

estimate without using Lax–Phillips theory, see [DyZw, Exercise 3.5].) That the esti-

mate (1.6) is independent of κ is related to rescaling: identifying an obstacle with a sub-

set of Rn and denoting by x 7→ εx the Euclidean dilation, we see that if σ ∈ Res(εO, 1)

then εσ ∈ Res(O, ε), and εσ should be close to a resonance in Res(O, 0). So even

though the bound (1.5) gets worse for small κ, the bound in odd dimensions is close

to (1.4) and improves for small diameters. This is illustrated by Fig. 2 and confirmed

by the following theorem:

Theorem 3. Suppose that O ⊂ Hn
κ ' Rn is an arbitrary bounded obstacle with smooth

boundary and that n ≥ 3 is odd. Then

Res(O, κ)→ Res(O, 0), κ→ 0,

locally uniformly and with multiplicities.

A more precise version is given in Theorem 7 in §7.

Acknowledgments. We would like to thank Steve Zelditch whose comments on

[Zw17] provided motivation for this project, and Volker Schlue for useful discussions.

We would also like to thank an anonymous referee for a careful reading of the man-

uscript and a number of valuable suggestions which in particular led to the addition

of §6.3. PH is grateful to the Miller Institute at the University of California, Berkeley

for support, and MZ acknowledges partial support under the National Science Foun-

dation grant DMS-1500852. This research was partially conducted during the period

PH served as a Clay Research Fellow.

2. Resonances for balls in Hn
κ

As motivation for the proofs of the main results we present computations of reso-

nances of the geodesic ball of radius R in Hn
κ, with Dirichlet boundary conditions. (See

also Borthwick [Bo10].)

The starting point is the calculation

s
n−1
2

κ

(
−∆Hnκ −

(n− 1

2

)2

κ2 − σ2
)
s
−n−1

2
κ = D2

r + s−2
κ

(
−∆Sn−1 +

(n− 1)(n− 3)

4

)
− σ2

for sκ(r) = κ−1 sinh(κr), see Lemma 4.1 below. Decomposing into spherical harmonics

and using that the eigenvalues of Sn−1 are given by `(`+ n− 2), ` ∈ Z≥0, it suffices to

study the radial operator

Pn,`(σ) := D2
r + s−2

κ

((n− 1)(n− 3)

4
+ `(`+ n− 2)

)
− σ2.

Our objective is to calculate non-trivial solutions of Pn,`(σ)u = 0 which are outgoing,

which means that u = eirσv(cothκr), where v = v(x), x = cothκr, is smooth in

[1,∞)x down to x = 1. (This is precisely the condition (3.1) in Theorem 4 below, after
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rescaling to the case κ = 1.) The space of such u is a 1-dimensional space, and if, for

fixed σ, such a u vanishes at r = R, then σ is a resonance for the R-ball in Hn
κ. By

direct computation, we have

Pn+2,`−1(σ) = Pn,`(σ),

hence Pn,` = Pn+2`,0, and it suffices to calculate outgoing solutions u of Pn,0(σ)u = 0

for all n ≥ 2. Using (sinhκr)−2 = x2− 1, one finds that e−irσPn,0(σ)eirσv(cothκr) = 0

is equivalent to

P̃n(σ)v :=
(
∂x(1− x2)∂x + 2iκ−1σ∂x +

(n− 1)(n− 3)

4

)
v = 0

Changing variables y = (1−x)/2, this is a hypergeometric equation. For odd n = 2k+1,

smooth solutions of this equation are polynomials of x. To see this directly, we make

the ansatz

v(x) =
∞∑
j=0

(x− 1)j

Γ(j + 1− iκ−1σ)
ck,j, ck,0 = 1;

plugged into the ODE, this yields the recursion relation

ck,j =
k(k − 1)− j(j − 1)

2j
ck,j−1, j ≥ 1,

in particular ck,j = 0 for all k ≥ j. Therefore, multiplying through by Γ(k − iκ−1σ)

in order to deal with integer coincidences k − iκ−1σ ∈ Z<0, the non-trivial outgoing

solution un(r;σ) of Pn(σ)un(r;σ) = 0, n = 2k + 1, is given by

u2k+1(r;σ) = eirσ
k−1∑
j=0

(coth(κr)− 1)j

2jj!

j∏
l=1

(
k(k − 1)− l(l − 1)

) k−1∏
m=j+1

(m− iκ−1σ),

where the product
∏0

l=1 is defined to be 1.

Note that e−irσu2k+1(r;σ) is a polynomial in σ of degree k − 1. If the size R of the

obstacle is fixed, the zeros of u2k+1(R;σ) = 0 are the resonances. See Fig. 2.

Suppose now the obstacle is large, so cothκR is close to 1, and fix k. Then

u2k+1(R;σ), as a function of σ, is well-approximated by a constant multiple of

eiRσ
k−1∏
m=1

(m− iκ−1σ),

whose zeros are located at −iκm, m = 1, . . . , k−1. By Rouché’s theorem, this implies

that for n odd, κ > 0, and ε > 0 fixed, there exists R0 > 0 such that for spherical

obstacles in Hn
κ with radius R > R0, there exists a resonance σ with |σ+ iκ| < ε. (For

comparison, Theorem 1 only gives Imσ ≤ −κ/2.)
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One can also numerically compute resonances on even-dimensional hyperbolic spaces

– see Fig. 1. When the diameter of a spherical obstacle in H2 tends to zero, numer-

ical experiments suggest that the topmost resonance converges to −i/2, the topmost

resonance for the free resolvent on H2.

3. Preliminaries

In this section we review the meromorphic continuation of the resolvent on asymp-

totically hyperbolic manifolds with obstacles, resonance free strips and resonance ex-

pansions in the non-trapping case, and the vector field approach via the stress–energy

tensor.

3.1. Meromorphic continuation of the resolvent. Let (M, g) be an (even) asymp-

totically hyperbolic manifold with boundary. This means that M admits a compactifi-

cation to a manifold M̄ with boundary ∂M̄ = ∂M ∪∂1M̄ , where ∂1M̄ is the conformal

boundary of M ; moreover, the Riemannian metric g is smooth on M , while in a

collar neighborhood [0, ε)x × (∂1M̄)y of the conformal boundary, the rescaled metric

ḡ(x, y, dx, dy) := x2g(x, y, dx, dy) is a smooth Riemannian metric on M̄ whose Taylor

expansion x = 0 contains only even powers of x (see also [Gui05]), and |dx|2ḡ = 1 at

∂1M̄ . See [DyZw, §5.1] for further discussion.

An example considered in this paper is (M, g) = (Hn
1 \ O, g1). We discuss the

conformal compactification and its smooth structure explicitly in §6.2.

The following theorem is essentially due to Vasy [Va12, Va13] – see also [Zw16] for

a shorter self-contained presentation:

Theorem 4. Suppose that P := −∆g−(n−1
2

)2 and that R(λ) := (P −λ2)−1 : L2(M)→
L2(M), Imλ > 0 is the resolvent. Then R(λ) continues meromorphically as an opera-

tor

R(λ) : C∞c (M)→ C∞(M).

Moreover, if λ is a resonance of P , then there exists a non-trivial solution (resonant

state) v of (P − λ2)v = 0 which satisfies

ṽ = x
n−1
2
−iλv, v ∈ C∞(M̄even), (3.1)

where M̄even = M̄ as topological spaces, but where smooth functions on M̄even (the ‘even

compactification’) are precisely those smooth functions on M̄ which are smooth in x2

near ∂1M̄ .

For (M, g) = (Hn
1 \ O, g1), this is also discussed in [Bo10]. By rescaling, Theorem 4

applies to (Hn
κ \ O, gκ) as well, with P = Pκ given by (1.2) and the resolvent denoted
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by Rκ(λ). The multiplicity of a non-zero resonance λ of Pκ is then defined as

mκ(λ) = dim
[(∮

λ

Rκ(ζ) dζ
)

(L2
comp(Hn

κ \ O))
]
, (3.2)

where the contour is a small circle around λ, traversed counter-clockwise, which does

not contain any other resonances.

3.2. Resonance free strips for non-trapping obstacles for general hyperbolic

ends. The estimates on resonance width, | Imλ|, will be obtained by studying local

energy decay (see [Mo72, FeLa90, HiZw17] for arguments which use the resonant states

directly). The most conceptual way of relating energy decay to resonances is via

resonance expansions of waves; we will discuss this for general non-trapping obstacles

on manifolds with asymptotically hyperbolic ends. In §6.3, we shall prove that star-

shaped obstacles in hyperbolic space are non-trapping.

For M given in §3.1, Melrose–Sjöstrand [MeSj78, MeSj82] (see also [Hö85, Definition

24.3.7]) defined the broken geodesic flow. We make a general assumption here that the

geodesics do not have points of infinite tangency to ∂M .

A combination of [Bu02, Propositions 4.4, 4.6, Proof of Theorem 1.3] (see also

[BuLe01, §3.3]) and [DyZw, Theorems 6.14, 6.15] immediately gives

Theorem 5. Suppose that (M, g) is an asymptotically hyperbolic manifold with bound-

ary. We assume that the geodesics do not have points of infinite tangency to ∂M , and

that the broken geodesic flow is non-trapping, that is, each geodesic leaves any compact

set. Then for any α > 0 and χ ∈ C∞c (M) there exists C > 0 such that

Imλ > −α, Reλ ≥ C =⇒ ‖χR(λ)χ‖ ≤ C|λ|−1. (3.3)

In particular, there are only finitely many poles of R(λ) in any strip Imλ > −α.

Remark 3.1. In the case of Hn
κ \ O we could get a stronger result using Vainberg’s

method [Va73] (see also [DyZw, §4.6]): namely a logarithmically large resonance free

region. Since that improvement is not necessary for our arguments we opted for a more

general version.

This immediately implies resonance expansions, see for example [Zw12, Proof of

Theorem 5.10]:

Theorem 6. Let (M, g) be an asymptotically hyperbolic manifold satisfying the as-

sumptions of Theorem 5. Suppose that u(t, x) is the solution of

(D2
t − Pk)u(t, x) = 0 in R× (Hn

κ \ O), u(t, x) = 0 on R× ∂O,
u(0, x) = u0(x) ∈ H1

comp(Hn
κ \ O), ∂tu(0, x) = u1(x) ∈ L2

comp(Hn
κ \ O).
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Denote by {λj} ⊂ C the set of resonances of Pκ. Then, for any A > 0,

u(t, x) =
∑

Imλj>−A

mκ(λj)−1∑
`=0

t`e−iλjtuj,`(x) + EA(t),

where the sum is finite,

mκ(λj)−1∑
`=0

t`e−iλjtuj,`(x) = Resλ=λj

(
e−iλt(iRκ(λ)u1 + λRκ(λ)u0)

)
,

(Pκ − λ2
j)
k+1uj,k = 0, and for any K > 0 such that suppuj ⊂ B(0, K), there exist

constants CK,A and TK,A such that

‖EA(t)‖H1(B(0,K)) ≤ CK,Ae
−At(‖u0‖H1 + ‖u1‖L2), t ≥ TK,A.

The remainder EA is only estimated in H1 because (3.3) only gives a strip free of

resonances, rather than a logarithmic region.

3.3. Energy-stress tensor and the vector field method. We briefly recall the gen-

eral formalism for obtaining energy estimates, referring to [Ta11a, §2.6] and [DaRo08,

§4.1.1] for detailed presentations (see also [Dy11, §1.1] for a concise discussion relevant

here). The general setting we use here makes the formulas more accessible and will be

particularly useful in §4.

Let M be an (n+1)-dimensional smooth manifold and G a Lorentzian metric on M ,

that is, a symmetric (0, 2)-tensor of signature (n, 1). The volume form, gradient, and

divergence are defined as in Riemannian geometry, and they give the d’Alembertian,

�Gu = divG(∇Gu). The stress–energy tensor for a Klein–Gordon operator �G−m2 is

a symmetric (0, 2)-tensor associated to u ∈ C∞(M):

Tu(X, Y ) := G(X,∇Gu)G(Y,∇Gu)− 1
2
(G(∇Gu,∇Gu) +m2u2)G(X, Y ),

X, Y ∈ C∞(M ;TM). To Tu and a vector field V we associate the current JV (u) ∈
C∞(M ;TM) by demanding that for all vector fields X,

G(JV (u), X) = Tu(V,X).

The key identity is

(�G −m2)uV u+KV (∇Gu,∇Gu)− 1
4
m2u2 trG(LVG) = divG J

V (u),

where

KV := 1
2
LVG− 1

4
G trG(LVG).

The simplest version of this identity arises in the case that V is a Killing vector field,

i.e. satisfies LVG = 0. In this case the divergence theorem gives

(�G −m2)u = 0, LVG = 0 =⇒
∫
∂Ω

G(JV (u),n) dS = 0, (3.4)
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where Ω ⊂M is an open subset with smooth boundary, n is the unit outward normal

vector and dS is the measure induced on ∂Ω by dvolG. The outward unit normal vector

is defined by the conditions

G(n,n) = 1, G(n, X) > 0,

for any vector field X pointing out of Ω. It may blow up for null hypersurfaces, but

this is then compensated by the vanishing of dS – see [DaRo08, Appendix C].

4. Morawetz estimates in hyperbolic space

We will now apply the general formalism recalled in §3.3 to scattering by obstacles.

It follows the approach of Morawetz [Mo66a, Mo66b], see also [LaPh68, Appendix 3], to

Euclidean scattering. However, our derivation of the generalization of her fundamental

identity [Mo66b, Lemma 3] seems slightly different.

4.1. Conjugated equation and a weighted energy inequality. The Lorentzian

metric corresponding to the metric (1.1) is given by

g̃κ = −dt2 + gκ, (4.1)

and we define

�κ := �g̃κ + κ2

(
n− 1

2

)2

. (4.2)

We then consider a conjugated operator, described in the following lemma; it was

already used implicitly in §2. When no confusion is likely we write

s = sκ, g = gκ, g̃ = g̃κ.

Lemma 4.1. With the notation of (1.1) and (4.2), we have

s2s
n−1
2 �κs

−n−1
2 = �G −

(n− 1)(n− 3)

4
, (4.3)

where

G = Gκ := s(r)−2(−dt2 + dr2) + h. (4.4)

In addition, if w := s
n−1
2 u, then(

u2
t + |∇gu|2 − κ2

(
n−1

2

)2
u2
)
dvolg

=
(
w2
t + w2

r + s−2|∇hw|2h + s−2 (n−1)(n−3)
4

w2
)
dr dvolh−

(
n−1

2
s′

s
w2
)
r
dr dvolh .

(4.5)
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Proof. Since | det g̃| = s2(n−1), we have �g̃ = −∂2
t + s−n−1∂rs

n−1∂r + s−2∆h. Hence we

only need to compute

s
n−1
2 (s−n−1∂rs

n−1∂r)s
−n−1

2 = (s−
n−1
2 ∂rs

n−1
2 )(s

n−1
2 ∂rs

−n−1
2 )

=
(
∂r + n−1

2
s′

s

) (
∂r − n−1

2
s′

s

)
= ∂2

r −
(n−1)2

4
s′2

s2
− n−1

2
s′′s−s′2
s2

= ∂2
r −

(n−1)(n−3)
4s2

− κ2
(
n−1

2

)2
.

(4.6)

Multiplying by s2 gives (4.3). (We direct the reader to (6.12) for a more conceptual

point of view.) To establish (4.5), it again suffices to consider radial derivatives:

(u2
r − κ2(n−1

2
)2u2)sn−1 = sn−1(s−

n−1
2 w)2

r − κ2(n−1
2

)2w2

= (wr − n−1
2

s′

s
w)2 − κ2(n−1

2
)2w2

= w2
r − (n−1

2
s′

s
w2)r +

(
n−1

2

(
s′

s

)
r

+
(
n−1

2

)2 ( s′
s

)2 − κ2
(
n−1

2

)2
)
w2

= w2
r + (n−1)(n−3)

4s2
w2 − (n−1

2
s′

s
w2)r,

where we used the same computation as in (4.6). Since dvolgκ = sn−1drdvolh, (4.5)

follows. �

4.2. An energy identity. We now calculate the stress–energy tensor given by (4.4)

for the metric G and for m2 = (n−1)(n−3)
4

in terms of the decomposition of vectors into

components of ∂t, ∂r, and vectors tangent to the sphere:

Tu =

 u2
t urut ut∇hu

T

urut u2
r ur∇hu

T

∇huut ∇huur ∇hu∇hu
T


− s2(−u2

t + u2
r) + |∇hu|2h +m2|u|2

2

−s−2 0 0

0 s−2 0

0 0 1

 .
Let V := a(t, r)∂t+b(t, r)∂r. Then the orthogonal decomposition of JV (u) with respect

to dt2 + dr2 + h is given by

JV (u) =

−s2 0 0

0 s2 0

0 0 1

Tu
ab

0


= 1

2

−s2(au2
t + 2burut + au2

r)− a|∇hu|2h − am2|u|2
s2(bu2

r + 2aurut + bu2
t )− b|∇hu|2h − bm2|u|2

2aut∇hu+ 2bur∇hu

 .
(4.7)

We now calculate

LVG = 2s−2
(
(−at + bs′/s)dt2 + (bt − ar)dtdr + (br − bs′/s)dr2

)
,
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and hence for V to be a Killing vector field, we need to find a = a(t, r) and b = b(t, r)

such that

at = br, ar = bt, br = bs′/s. (4.8)

An obvious choice is a = 1, b = 0, which in the context of the identity (3.4) gives

energy conservation. As will be clear later, a convenient choice for the purpose of

proving generalized Morawetz (local energy decay) estimates is given by

a := 2κ−2(coshκr coshκt− 1), b := 2κ−2 sinhκr sinhκt. (4.9)

Suppose that w ∈ C(R;H1
comp(Hn

k \ O)). We will use the following notation:

Fa,b(w, T,R) :=∫
B(0,R)\O

(
aw2

t + 2bwtwr + aw2
r + as−2|∇hu|2h + as−2m2w2

)
dr dvolh |t=T ,

(4.10)

Fa,b(w, t) := Fa,b(w, t,∞), B(0,∞) := Hn
κ.

An application of (3.4) then gives

Lemma 4.2. Suppose that a = a(r, t) and b = b(r, t) satisfy (4.8) and that Fa,b is

defined by (4.10). Suppose that w ∈ C(R;H1
comp(Hn

κ \ O)) satisfies

(�G −m2)w(t, x) = 0, x ∈ Hn
κ \ O, w(t, x) = 0, x ∈ ∂O.

Then

Fa,b(w, T ) = Fa,b(w, 0)−
∫ T

0

∫
∂O
b(t, r)g(ν,∇gr)g(ν,∇gw)2s(r)−n+1dσg dt, (4.11)

where g = gκ is given by (1.1), ν is the outward unit (with respect to g) normal vector

and dσg is the measure induced by g on ∂O.

Proof. Since O is star-shaped (with respect to the origin, as can be assumed without

loss of generality) we can write

∂O = {x = rω : r = f(ω), ω ∈ Sn−1}

for some f : Sn−1 → (0,∞). To obtain (4.11), we apply (3.4) to Ω = [0, T ]× (Hn
κ \O),

∂Ω = Γ1 ∪ Γ2, Γ1 := [0, T ]× ∂O, Γ2 := {0, T} × (Hn
κ \ O).

On Γ1 (in the notation of (4.7)),

n = −∇G(r − f)/|∇G(r − f)|G = [0,−s2,∇hf ](s2 + |∇hf |2h)−
1
2 , s = s(f(ω)),

dS = s−2(s2 + |∇hf |2h)
1
2d volh dt,

g(JV (w),n) = −1
2
b(s2w2

r − |∇hw|2h − 2wr〈∇hw,∇hf〉h)(s2 + |∇hf |2h)−
1
2

= −1
2
bw2

r(s
2 + |∇hf |2h)

1
2 ,
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where we used the boundary condition w(t, f(ω), ω) ≡ 0 (thus wt(t, f(ω), ω) = 0 and

(∇hw)(t, f(ω), ω) = −wr∇hf(ω).) On Γ2,

n = ±[s, 0, 0], dS = s−1drdvolh,

g(JV (w),w) = ∓1
2
s
(
aw2

t + bwrwt + aw2
r + as−2|∇hw|2h + am2|w|2

)
.

Hence, (3.4) gives

Fa,b(w, T ) = Fa,b(w, 0)−
∫ T

0

∫
Sn−1

b(t, f(ω))(1 + s−2|∇hf |2h)wr(f(ω), ω)2 dvolh dt.

The more invariant form given in (4.11) follows from explicit expressions:

ν = (1 + s−2|∇hf |2h)−
1
2 (1,−s−2∇hf), dσg = sn−1(1 + s−2|∇hf |2h)

1
2d volh,

and g(ν,∇gw) = wr(1 + s−2|∇hf |2)
1
2 . �

We remark that (4.11) is valid for any obstacle O; the assumption that ∂O be

star-shaped implies however that the second term on the right hand side is negative.

4.3. Proof of Theorem 1 for n ≥ 3. Let a, b be given by (4.9). Lemmas 4.1 and 4.2

give the following energy inequality: Suppose that, in the notation (4.2),

�κu = 0 in [0, T ]×Hn
κ \ O, u = 0 on [0, T ]× ∂O,

(u(0, x), ut(0, x)) ∈ (H1 × L2)(Hn
κ \ O),

and define

Ea,b(u, t, r) := Fa,b(s
n−1
2 u, t, r), Ea,b(u, t) := Ea,b(u, t,∞), (4.12)

then we have

Ea,b(u, t) ≤ Ea,b(u, 0), t ≥ 0.

We now assume that

supp ∂kt u(0, •) ⊂ B(0, R), k = 0, 1.

Since for any a, b ≥ 0,

(a− b)(x2 + y2) ≤ ax2 + 2bxy + ay2 ≤ (a+ b)(x2 + y2)

and since for n ≥ 3, m2 = (n− 1)(n− 3)/4 ≥ 0, we then have

Ec,0(u, t, R) ≤ Ea,b(u, t, R), t ≥ 0,

c(t, r) := a(t, r)− b(t, r) = 2κ−2(coshκ(t− r)− 1)

Hence for t ≥ R, and using that a = c and b = 0 at t = 0,

c(t, R)E1,0(u, t, R) ≤ Ec,0(u, t, R) ≤ Ea,b(u, t, R)

≤ Ea,b(u, 0) = Ec,0(u, 0) ≤ c(0, R)E1,0(u, 0).
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We obtain for t > 2R:

E1,0(u, t, R) ≤ coshκR− 1

coshκ(t−R)− 1
E1,0(u, 0) ≤ Ce−κtE1,0(u, 0). (4.13)

The results of §3.2 then give Theorem 1. This crucially uses that E1,0(u, t, R) is coercive

(unlike the integral of the natural energy density for u, given by the left hand side of

the identity (4.5), over B(0, R) \ O).

We note that the second part of Lemma 4.1 shows that for the quantity

E(u, t, R) :=

∫
B(0,R)\O

(
u2
t + |∇gu|2 − κ2

(
n−1

2

)2
u2
)
dvolg |t=T ,

E(u, T ) := E(u, T,∞), we have

E(u, t) = E1,0(u, t), E(u, t, R) ≤ E1,0(u, t, R).

However, E(u, t, R) is only coercive when κ = 0, and in this case, the argument leading

to (4.13) gives the estimate of Morawetz:

E(u, t, R) ≤ R2

(t−R)2
E(u, 0), (4.14)

when the initial data have support in B(0, R) \ O.

5. Improved estimates in odd dimensions

We now revisit the argument of Morawetz for obtaining exponential decay in odd

dimensions. We use the notation of (1.1) and (4.2) and we denote by ∇κ, | • |κ the

gradient and norm with respect to the Riemannian metric on Hn
κ. We recall that the

obstacle O is star-shaped with respect to the origin 0 ∈ Hn
κ, and we assume that O is

contained in the ball B(0, ρ).

The key fact is the strong Huyghens principle illustrated in Fig. 3: suppose that

�κu = F, F ∈ D′(R×Hn
κ), u(t, x)|t<0 = 0;

if

Γ−(t,x) := {(t′, x′) : t′ ≤ t, dκ(x, x
′) = t− t′}

then

Γ−(t,x) ∩ suppF = ∅, =⇒ u(t, x) = 0. (5.1)

We will make use of the (local) energy

E(u, t, r) := E1,0(u, t, r), E(u, t) := E(u, t,∞),

defined using (4.12). For u(t, •) defined on Hn
κ, we can also integrate over B(0, r) and

we denote the corresponding energies by E0(u, t, r), E0(u, t).
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Hn
κ

t

T

T + ρ

p

Γ−p

ρ

Figure 3. If �κu = F in R+ × Hn
κ, n ≥ 3, odd, and F is supported

in BT,ρ := [0, T ] × B(0, ρ) (shaded region), and u|t=0 and ∂tu|t=0 are

supported in B(0, T + ρ), then u(t, x) ≡ 0 for |x| ≤ t− (T + ρ).

We will now consider

�κu = 0 on [0,∞)×Hn
κ \ O, u|(0,∞)×∂O = 0

supp ∂kt u|t=0 ⊂ B(0, R), ∂kt u|t=0 ∈ H1−k(Hn
κ \ O), k = 0, 1.

(5.2)

For solutions u, the energy E(u, t) does not depend on time.

Lemma 5.1. Let u be the solution to the initial value problem (5.2) with R = 3ρ.

Then for any T ≥ 2ρ, we have a decomposition

u(t, x) = uT (t, x) + rT (t, x) for t ≥ T,

uT (t, x) = 0 for d(x, 0) ≥ t− (T − ρ),

rT (t, x) = 0 for d(x, 0) ≤ t− (T + ρ),

E(uT , T + 2ρ) ≤ 4E(u, T, 3ρ).

(5.3)

Proof. If u|t=T =: fT ∈ H1
0 (Hn

κ \ O), and ∂tu|t=T =: gT ∈ L2(Hn
κ \ O), we define

f̃T ∈ H1(Hn
κ) and gT ∈ L2(Hn

κ) by extending fT and gT by 0 to O. We then solve the

free equation

�κrT = 0 on [T,∞)×Hn
κ, rT |t=T = f̃T , ∂trT |t=T = g̃T .

To prove the support condition on rT , define ũ ∈ L2(R × Hn
κ) to be equal to u in

(0,∞)×Hn
κ \O, and equal to 0 otherwise; let then F = 1t<T�κũ, which has suppF ⊂

[0, T ] ×O. Then the forward solution of �κr̃T = F is equal to ũ in t < T , hence has
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the same Cauchy data as rT at t = T , and we conclude that rT = r̃T in t ≥ T ; it

remains to apply (5.1). (See Fig. 3.)

We then see that uT := u− rT solves the mixed problem

�κuT = 0 on [T,∞)×Hn
κ \ O, uT |t=T = 0, ∂tuT |t=T = 0,

uT |[T,∞)×∂O = −rT |[T,∞)×∂O.

It remains to estimate the energy of uT . Note that the support of uT and ∂tuT at

t = T + 2ρ is contained in B(0, 3ρ). Thus, using the Killing vector field ∂t (for the

metric G and the function w = s
n−1
2 u) to obtain energy estimates, we have

E(uT , T + 2ρ) ≤ 2E(u, T + 2ρ, 3ρ) + 2E(rT , T + 2ρ, 3ρ)

≤ 2E(u, T, 5ρ) + 2E0(rT , T, 5ρ) = 4E(u, T, 5ρ).
(5.4)

The improved estimate in (5.3) is obtained as follows. The boundary data −rT |[T,∞)

of uT depend only on the values of rT in the backwards solid cone slice

CT,ρ := {(t, x) : d(x, 0) ≤ T + 3ρ− t, T ≤ t ≤ T + 2ρ}

and hence on u(T, •) and ut(T, •) in B(0, 3ρ)\O – see Fig. 4. In (5.4), we estimated the

energy of uT by writing it as the difference of two solutions, u and rT , each of which

satisfied simple energy estimates that did not involve data on timelike boundaries.

In order avoid contributions from outside B(0, 3ρ), we place a timelike boundary at

[T, T+2ρ]×∂B(0, 3ρ), which does not affect waves inside the cone CT,ρ. Thus, consider

the boundary value problem

�κr
′
T = 0 on [T, T + 2ρ]×B(0, 3ρ), r′T |t=T = rT , ∂tr

′
T |t=T = ∂trT ,

r′T |[T,T+2ρ]×∂B(0,3ρ) = rT |{T}×∂B(0,3ρ).

Note that the data on the artificial boundary are independent of t.1 The above do-

main of dependence argument implies r′T |[T,T+2ρ]×∂O = rT |[T,T+2ρ]×∂O. Moreover, since

∂tr
′
T ≡ 0 on the artificial boundary [T, T +2ρ]×∂B(0, 3ρ), we have the energy identity

E(r′T , T + 2ρ) = E(r′T , T ) = E(rT , T, 3ρ) = E(u, T, 3ρ),

where we measure the energy of r′T in B(0, 3ρ). On the other hand, the function u′T ,

defined by

�κu
′
T = 0 on [T, T + 2ρ]×B(0, 3ρ) \ O, u′T |t=T = 0, ∂tu

′
T |t=T = 0,

u′T |[T,T+2ρ]×∂O = −r′T |[T,T+2ρ]×∂O, u′T |[T,T+2ρ]×∂B(0,3ρ) = 0,

1Since we are working on the level of H1 only, there are no additional compatibility conditions on

∂tr
′
T at {T} × ∂B(0, 3ρ). One can also see this directly by taking ∂tr

′
T |t=T = 1r<3ρ−δ∂trT for δ > 0

small, and letting δ → 0.
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CT,ρ

Hnκ

t

T

T + ρ

T + 2ρ

T + 3ρ

ρ 3ρ

rT ≡ 0

supp uT (T, •)

Figure 4. Domain of dependence relations for uT .

is equal to uT in [T, T + 2ρ] × B(0, 3ρ) \ O. To estimate the energy of uT , hence u′T ,

at t = T + 2ρ in B(0, 3ρ), we note that u′ := u′T + r′T solves the wave equation

�κu
′ = 0 on [T, T + 2ρ]×B(0, 3ρ) \ O, u′|t=T = rT , ∂tu

′|t=T = ∂trT ,

u′|[T,T+2ρ]×∂O = 0, u′|[T,T+2ρ]×∂B(0,3ρ) = rT |{T}×∂B(0,3ρ)

Thus, u′ satisfies the energy identity

E(u′, T + 2ρ) = E(u′, T ) = E(u, T, 3ρ);

and therefore we have

E(uT , T + 2ρ, 3ρ) ≤ 2E(u′, T + 2ρ) + 2E(r′T , T + 2ρ) = 4E(u, T, 3ρ),

as claimed in (5.3). �

Lemma 5.2. Suppose that n ≥ 3 is odd and that solutions u of (5.2) with R = 3ρ

satisfy

E(u, t, 3ρ) ≤ p(t)E(u, 0), t > 0, (5.5)

for some decreasing function t 7→ p(t). Then solutions to (5.2) satisfy

E(u, t, 3ρ) ≤ Ce−2αtE(u, 0), t > 0, (5.6)

where

α = −min
τ≥4ρ

log(4p(τ − 2ρ))

2τ
. (5.7)
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Proof. Suppose uT is given by Lemma 5.1. We can then apply (5.5) to uT (with the

time origin shifted by T + 2ρ) to obtain

E(uT , T + 2ρ+ t, 3ρ) ≤ p(t)E(uT , T + 2ρ) ≤ 4p(t)E(u, T, 3ρ), (5.8)

provided T ≥ 2ρ; for the first inequality we use that the support of the Cauchy data of

uT at t = T+2ρ is contained in B(0, 3ρ). From the support properties of rT we see that

u(t, x) = uT (t, x) if d(0, x) ≤ t− (T +ρ) and hence uT (T + 2ρ+ t, x) = u(T + 2ρ+ t, x)

for d(x, 0) ≤ 3ρ and t ≥ 2ρ. This and (5.8) (with t = τ − 2ρ, and τ ≥ 4ρ) imply that

E(u, T + τ, 3ρ) ≤ 4p(τ − 2ρ)E(u, T, 3ρ), τ ≥ 4ρ.

Starting with T = τ − 2ρ, τ ≥ 4ρ, with E(u, T, 3ρ) ≤ p(τ − 2ρ)E(u, 0), and iterating

this estimate we see that

E(u, nτ, 3ρ) ≤ 4n−1p(τ − 2ρ)nE(u, 0), τ ≥ 4ρ,

from which the conclusion (5.6) is immediate. �

The function t 7→ p(t) appearing in (5.5) is given by (4.13) and (4.14):

p(t) =

{
(cosh(3κρ)− 1)/(cosh(κ(t− 3ρ))− 1), κ > 0,

9ρ2/(t− 3ρ)2, κ = 0,

for t > 3ρ.

For κ = 0, α(ρ) = ρ−1α(1) and we obtain (taking into account that for ρ = 1 our

expression for p(τ − 2) is only valid for τ − 2 > 3)

α = −1

ρ
min
t>5

log 36− 2 log(t− 5)

2t
=
µ

ρ
, (5.9)

which gives

µ ' 0.0482,

more than twenty times worse than the bound (1.4) obtained using complex analysis

methods applied to the scattering matrix [Ra78].

For κ > 0, we put τ = (t+ 5)ρ in (5.7). This gives

α =
A(κρ)

ρ
, (5.10)

where

A(ρ̃) := max
t>0

a(ρ̃, t), a(ρ̃, t) :=
1

2(t+ 5)
log
( cosh(ρ̃t)− 1

4(cosh(3ρ̃)− 1)

)
.

Letting t → ∞, one finds A(ρ̃) ≥ 1
2
ρ̃, hence (5.10) recovers α ≥ 1

2
κ. We get an

improvement over this unconditional rate κ when A(ρ̃) > 1
2
ρ̃, which happens when

there exists t > 0 such that

1

2
(1− e−ρ̃t)2 > 4e5ρ̃

(
cosh(3ρ̃)− 1

)
;
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this has a solution if the right hand side is < 1/2, which happens for ρ̃ < 0.1221. One

can show that A(ρ̃) is monotonically increasing, and A(ρ̃) → µ as ρ̃ → 0. See Fig. 5.

Thus, we obtain the unconditional gap α > µ/ρ.

0.00 0.05 0.10 0.15

ρ
˜

0.00

0.02

0.04

0.06

0.08

A

Figure 5. Estimates for the resonance width α = A/ρ. Blue: graph

of A(ρ̃). Green: A ≡ µ, corresponding to the Euclidean estimate (5.9).

Red: A = 1
2
ρ̃, corresponding to the unconditional bound (1.5).

6. Hyperbolic space and general relativity

The connection between hyperbolic space and de Sitter space of general relativity was

emphasized by Vasy [Va12, Va13] in his approach to the meromorphic continuation of

the resolvent on asymptotically hyperbolic spaces (see §3.1). The key aspect which will

be used in §6.2 is the characterization of resonant states as solutions to a conjugated

equation which extend smoothly across the boundary at infinity. We begin by reviewing

explicit connections between various models.

6.1. Models of de Sitter space. Let κ > 0. De Sitter space in (1 + n) dimensions

is the manifold dSn+1
κ = Rt0 × Sn with the metric

gdSn+1
κ

= −dt20 +
(
κ−1 cosh(κt0)

)2
H,

where H is the usual metric on Sn. This is an Einstein metric, Ric(gdSn+1
κ

) = nκ2gdSn+1
κ

,

hence the scalar curvature is Rg
dSn+1
κ

= n(n+ 1)κ2.

First, we introduce the conceptually useful Einstein universe En+1 = Rs × Sn,

equipped with the metric gEn+1 = −ds2 +H. If we take s = 2 arctan(eκt0) ∈ (0, π), so

κ−1 cosh(κt0)ds = dt0, then

gdSn+1
κ

=
(
κ−1 cosh(κt0)

)2
gEn+1 = (κ sin s)−2gEn+1 .

The coordinate change tM = κ−1 sinh(κt0), so dt0 = (1 + κ2t2M)−1/2 dtM , expresses

the de Sitter metric as

gdSn+1
κ

= − dt2M
1 + κ2t2M

+ (κ−2 + t2M)H,
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s = 0

s = π
s

SndSn+1
κt0

∞

−∞

Figure 6. The Einstein universe En+1 = Rs × Sn, with dSn+1
κ confor-

mally diffeomorphic to the finite cylinder (0, π)× Sn.

which is equal to the metric on the two-sheeted hyperboloid {t2M − |xM |2 = −κ−2} ⊂
(R1+(n+1)

tM ,xM
,−dt2M + dx2

M) within Minkowski space, as can be seen by parametrizing

dSn+1
κ using the map R× Sn 3 (tM , ω) 7→ (tM , (κ

−2 + t2M)1/2ω) ∈ R1+(n+1).

Next, we introduce the upper half space model : define the map

Un+1 := (0,∞)× Rn 3 (τ, x) 7→
(1− κ2(τ 2 − |x|2)

2κ2τ
,
1 + κ2(τ 2 − |x|2)

2κ2τ
,
x

κτ

)
∈ R2+n,

(6.1)

where we write points in R2+n as (tM , xM1, x
′
M), i.e. splitting xM = (x1

M , x
′
M). This map

is a diffeomorphism from the upper half space Un+1 to the subset dSn+1
κ,∗ = {tM +x1

M >

0} ∩ dSn+1
κ of de Sitter space, and the de Sitter metric takes the simple form

gdSn+1
κ

=
−dτ 2 + dx2

κ2τ 2
. (6.2)

The map (6.1) is the inverse of the map

dSn+1
κ 3 (tM , x

1
M , x

′
M) 7→

( κ−2

x1
M + tM

,
x′Mκ

−1

x1
M + tM

)
, (6.3)

defined for x1
M + tM > 0, from which one deduces that the set dSn+1

κ,∗ ⊂ dSn+1
κ in

which the coordinates (τ, x) are valid is the causal future of the set x1
M + tM = 0

within dSn+1
κ . As we will see below, this is equal to the causal future, within the

Einstein universe, of the point i− at the past conformal boundary of dSn+1
κ , given by

(1, 0) ∈ Sn ↪→ Rn+1 at s = 0. (We remark that the map (6.3), when instead restricted

to Hn+1
κ = {t2M − |xM |2 = κ−2, tM > 0}, takes one component of the two-sheeted

hyperboloid in Minkowski space to the upper half space model of hyperbolic space.)

For our purposes, the connection of hyperbolic space and de Sitter space, exhibited

in equation (6.9) below, takes place in the static model of de Sitter space, which we
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i−

dSn+1
κ,∗

i+

i−

Sn+1
κ

Figure 7. Left: the region dSn+1
κ,∗ where the coordinates of the upper

half space model are valid, within the Einstein universe, bounded in the

past by the future light cone emanating from i−. Also shown are level

sets of the function τ . Right: the static patch Sn+1
κ of de Sitter space (see

(6.4)) as a subset of the embedding of dSn+1
κ into the Einstein universe

En+1, together with level sets of s (or tM) within Sn+1
κ .

proceed to define. Fix the point i+0 = (1, 0) ∈ Sn ↪→ Rn+1, thought of as lying in the

conformal boundary of dSn+1
κ at future infinity. The static patch of de Sitter space is

the open submanifold

Sn+1
κ = {(tM , x1

M , x
′
M) ∈ dSn+1

κ : x1
M ≥ 0, |x′M | < κ−1}, (6.4)

see Fig. 7 and Fig. 8. Sn+1
κ is the static patch of an observer who limits to the point

i+ = (π, i+0 ) ∈ En+1 at future infinity and to the point i− = (0, i−0 ) at past infinity.

dSn+1
κ

Sn+1
κ

tM

x1
M

x′M

Figure 8. The static patch Sn+1
κ of de Sitter space as a subset of the

embedding of dSn+1
κ into (n + 2)-dimensional Minkowski space. Also

shown are select level sets of tM within Sn+1
κ .
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We introduce static coordinates (t, ρ, θ) ∈ R× [0, κ−1)× Sn−1 on Sn+1
κ via

tM = (κ−2 − ρ2)1/2 sinh(κt),

x1
M = (κ−2 − ρ2)1/2 cosh(κt),

x′M = ρθ,

(6.5)

and the de Sitter metric on Sn+1
κ takes the well-known form

gSn+1
κ
≡ gdSn+1

κ
|Sn+1
κ

= −(1− κ2ρ2) dt2 + (1− κ2ρ2)−1 dρ2 + ρ2gSn−1 . (6.6)

The singularity of this expression at ρ = κ−1 is clearly a coordinate singularity since the

global de Sitter metric gdSn+1
κ

extends smoothly to |x′M | = κ−1 and beyond. Concretely,

introduce the Kerr-star type coordinate

t∗ = t+
1

2κ
log(1− κ2ρ2), (6.7)

then dt = dt∗ + κρ
1−κ2ρ2dρ, so

gSn+1
κ

= −(1− κ2ρ2) dt2∗ − 2κρ dt∗ dρ+ dρ2 + ρ2θ2

= −(1− κ2|X|2) dt2∗ − 2κX dt∗ dX + dX2,

where X = ρθ ∈ Rn; this does extend beyond |X| = κ−1 as a Lorentzian metric.

Furthermore, this is closely related to the upper half space model: indeed, with

τ = κ−1e−κt∗ , x = e−κt∗X, (6.8)

we have

gSn+1
κ

=
−dτ 2 + dx2

κ2τ 2
,

which is the same expression as (6.2). (In fact, the coordinate change (6.1) equals the

composition of the two coordinate changes (6.5) and (6.8).) See also Fig. 9, whose

right panel combines the τ level sets of Fig. 6 with the depiction of the static patch

within En+1 in Fig. 7.

The coordinates (t∗, ρ, θ) are valid in the same set dSn+1
∗ in which (τ, x) are valid.

Observe that on the subset {x1
M + tM = 0} ⊂ dSn+1

κ , we have |x′M | = κ−1; it follows

that in tM ≤ 0, dSn+1
∗ coincides with the static patch corresponding to the point i−,

while in tM ≥ 0, dSn+1
∗ is the complement of the static patch corresponding to the

antipodal point of i+0 as a point on future infinity (that is, (π,−i+0 ) in the Einstein

universe).

Remark 6.1. Writing (6.8) as X = x
κτ

exhibits (τ,X) as coordinates near the interior

of the front face of the (homogeneous) blowup of [0,∞)τ × Rn
x at (0, 0).
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x

dSn+1
κ,∗

Sn+1
κ

τ

i+

Sn+1
κ

i+

i−

Figure 9. Left: the domain dSn+1
κ,∗ in which the coordinates (τ, x) are

valid, together with the static patch Sn+1
κ , bounded by |x| = τ , and level

sets of the function τ (or t∗) within Sn+1
κ . Right: Penrose diagram of

the static patch, together with the same level sets.

6.2. Estimates on resonance widths via general relativity. We recall that hy-

perbolic space (1.1) is an Einstein metric, Ric(gκ) = −(n−1)κ2gκ, with scalar curvature

Rgκ = −n(n− 1)κ2. Upon setting ρ = κ−1 tanh(κr) ∈ (0, κ−1), this becomes

gκ =
dρ2

(1− κ2ρ2)2
+

ρ2

1− κ2ρ2
gSn−1 ,

which is the Klein model of hyperbolic space.

Remark 6.2. The coordinate change ρ = 2r0
1+κ2r20

, z = r0ω, expresses the hyperbolic

metric as

gκ =
4

(1− κ2|z|2)2
dz2.

For κ = 1, this is an asymptotically hyperbolic metric in the sense explained in §3.1 if

we take e.g. x = 1 − κ2|z|2 as the defining function of the conformal boundary. Note

that

x2 =
4r2

0

ρ2
(1− κ2ρ2),

hence smooth functions on the even compactification are precisely those functions which

are smooth in (1− κ2ρ2).

Recall from (4.1) the static Lorentzian metric g̃κ on Rt×Hn
κ: this metric is conformal

to the static de Sitter metric (6.6), namely

(1− κ2ρ2)g̃κ = gSn+1
κ

(6.9)

upon identifying the coordinate systems (t, ρ, θ) on Rt ×Hn
κ and Sn+1

κ .
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Returning to the analysis of scattering resonances on hyperbolic space, we first

discuss the case with no obstacle present. Thus, suppose ṽ is a resonant state of Pκ,

ṽ = (1− κ2ρ2)
n−1
4
− iλ

2κv,

where is v smooth on the even compactification (Hn
κ)even of Hn

κ by Theorem 4, that is,

v extends to a smooth function of (1− κ2ρ2) for 0 < ρ ≤ κ−1 – see Remark 6.2. Thus,

ṽ solves

eiλt
(
�g̃κ +

(n− 1

2

)2

κ2
)
e−iλtṽ = 0.

Put

ũ := (1− κ2ρ2)−
iλ
2κ e−iλtv = e−iλt∗v, (6.10)

where we use the function t∗ defined in (6.7); then ũ is a smooth function on Sn+1
κ

which extends smoothly across the boundary of Sn+1
κ in t ≥ 0, and in fact ũ extends

smoothly to the region of validity dSn+1
κ,∗ of the coordinates (t∗, ρ, θ). Moreover, it solves

(1− κ2ρ2)−1(1− κ2ρ2)−
n−1
4

(
�g̃κ +

(n− 1

2

)2

κ2
)

(1− κ2ρ2)
n−1
4 ũ = 0, (6.11)

Remark 6.3. Note that 1− κ2ρ2 = cosh(κr)−2, hence we can also write

gSn+1
κ

= cosh(κr)−2(−dt2 + dr2) + κ−2 tanh(κr)2gSn−1 .

Compare this with Lemma 4.1.

Recall now the transformation of a wave operator under conformal transformations:

if (M, g) is an (n+ 1)-dimensional Lorentzian manifold, then

e−2φe−
n−1
2
φ
(
�g −

n− 1

4n
Rg

)
e
n−1
2
φ = �e2φg −

n− 1

4n
Re2φg. (6.12)

Applying this to equation (6.11), with e2φ = 1 − κ2ρ2, g = g̃κ, for which we indeed

have (n−1)Rg
4n

= −(n−1
2

)2κ2, we find(
�g

Sn+1
κ
− n2 − 1

4
κ2
)
ũ = 0. (6.13)

Let now O denote a star-shaped obstacle in Hn
κ with smooth boundary. If λ ∈ C is

a resonance of Pκ, then an associated resonant state ṽ on Hn
κ with Dirichlet boundary

conditions on ∂O is a function ṽ as above which in addition satisfies ṽ|∂O = 0. Thus,

the function ũ defined in (6.10) solves equation (6.13) and satisfies

ũ|∂Õ ≡ 0, Õ := Rt∗ ×O. (6.14)

For any non-trivial resonant state ṽ, the function ũ must be non-constant on the level

sets of t∗ in the static patch Sn+1
κ = {ρ < κ−1}. Thus, in order to obtain a lower bound

on | Imλ|, it suffices to prove exponential decay (in t∗) of spatial derivatives of ũ in

Sn+1
κ . To state this precisely, we use the coordinates t∗ and X = rθ ∈ Rn:
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Lemma 6.4. Suppose α > 0 is such that for all solutions ũ of equation (6.13) defined

in Sn+1
κ ∩ {t∗ ≥ 0}, smooth up to the cosmological horizon ∂Sn+1

κ = {|X| = κ−1}, and

satisfying the Dirichlet boundary condition (6.14), there exists a constant C such that∫
|X|<κ−1

|∂X ũ|2 dX ≤ Ce−2αt∗ , t∗ > 0. (6.15)

Then all resonances λ of Pκ satisfy

Imλ ≤ −α.

Proof of Theorem 1 for all n ≥ 2. We will obtain the estimate (6.15) by relating equa-

tion (6.13) to yet another wave equation via a conformal transformation. Namely, in

the coordinates (τ, x) ∈ (0,∞) × Rn defined in (6.8), we have (κτ)2gSn+1
κ

= gM :=

−dτ 2 +dx2, hence the rescaled function u = (κτ)−
n−1
2 ũ satisfies the equation �gMu = 0

with Dirichlet boundary conditions on

Õ =
{

(τ, x) :
x

κτ
∈ O

}
. (6.16)

Note that for ũ defined in Sn+1
κ ∩ {t∗ ≥ 0}, the function u is defined in |x| < τ < κ−1.

Notice however that the Cauchy data (u0, u1) of u at τ = κ−1 can be extended to

compactly supported data (w0, w1) on {τ = κ−1, |x| < 2τ} whoseH1 norm is controlled

by a uniform constant times the H1 norm of (u0, u1), and the solution w of the Cauchy

problem�gMw = 0 with Cauchy surface τ = κ−1 exists (and is smooth) on τ−1((0, κ−1])

and equals u in Sn+1
κ ∩{0 < τ ≤ κ−1}, the domain of dependence of {|x| < τ, τ = κ−1}.

See Fig. 10.

τ = 0

τ = 1

i+

Õ
u′ ≡ u

Sn+1
κ

suppu′0, u
′
1

Figure 10. The obstacle Õ = Rt∗×O in the static de Sitter patch Sn+1
κ ,

which itself is embedded in the upper half plane model dSn+1
κ,∗ , which in

turn is conformally diffeomorphic to a half space τ > 0 of Minkowski

space with the metric −dτ 2 + dx2.
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Without the obstacle, w would satisfy arbitrary order energy estimates uniformly

up to τ = 0 and beyond. With the obstacle present, we can only control first order

energies when using the future timelike vector field −∂τ ; note that this vector field

points out of Õ at the boundary ∂Õ of the obstacle. Since the latter is smooth in

τ > 0, we have∫
τ=τ0

|∂τw|2 + |∂xw|2 dx ≤
∫
τ=1

|∂τw|2 + |∂xw|2 dx ≤ C, τ0 > 0;

the key is that this holds uniformly for all τ0 > 0. Dropping the τ -derivative on the

left, restricting the domain of integration to |x| < τ0, and using ∂x = (κτ)−1∂X as well

as dx = (κτ)n dX, this gives

C ≥ (κτ)n−2

∫
|X|<κ−1

|∂Xw|2 dX = (κτ)−1

∫
|X|<κ−1

|∂X ũ|2 dX. (6.17)

Since τ = e−t∗ , the estimate (6.15) holds with α = κ/2, giving the universal lower

bound κ/2 for the resonance width and thus proving Theorem 1. �

We remark that all resonances with Imλ = −κ/2 must be semisimple, as otherwise

there would be solutions ũ with L2 norm of ũX bounded from below by e−κt∗/2t∗,

contradicting (6.17).

Remark 6.5. The estimate (6.15) is in fact false for α > κ/2; this is related to the

fact that H1 is the threshold regularity for radial point estimates at the decay rate κ/2,

see [HiVa15a, Proposition 2.1], and says that control of H1 alone is not sufficient for

proving a lower bound for resonance widths which is better than κ/2. Indeed, take

λ ∈ C with Imλ = −κ/2− ε, ε > 0 small, which is not a resonance of Pκ. Define

ṽ′ := (1− κ2ρ2)
n−1
4

+ iλ
2κχ(1− κ2ρ2),

where χ ∈ C∞([0, 1)), χ(0) = 1, is chosen such that (Pκ − λ2)ṽ′ vanishes to infinite

order at 1− κ2ρ2 = 0. Let then

ṽ = ṽ′ −Rκ(λ)
(
(Pκ − λ2)ṽ′

)
,

which solves (Pκ − λ2)ṽ = 0. Since Rκ(λ) produces an outgoing function, while ṽ′ is

ingoing, we have ṽ 6= 0. Let

v = (1− κ2ρ2)−
n−1
4

+ iλ
2κ ṽ,

then v ∈ H1((Hn
κ)even) by our assumption on λ. The function ũ := e−iλt∗v solves

equation (6.13), and satisfies the estimate (6.15) only when α ≤ κ/2 + ε.
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6.3. Non-trapping property of star-shaped obstacles. In order to justify the

relationship between resonance widths and exponential energy decay for waves in the

exterior of star-shaped obstacles, we prove:

Proposition 6.6. Let O ⊂ Hn be star-shaped. Then Hn \ O is non-trapping.

Proof. As in the proof of the analogous result in Euclidean space given in [PS92], we

will identify a quantity which is monotone along suitably rescaled broken geodesics.

Suppose O ⊂ B(0, R), R > 0. As in the reference, it suffices to prove that if γ : R →
Hn \ O is a unit speed broken geodesic with γ(0) ∈ B(0, R) all of whose intersections

with ∂O are transversal, then γ(t) /∈ B(0, R) for all sufficiently large t > 0. Recall the

definition (4.1) of the Lorentzian metric g̃1, and note that the curve γ̃(t) := (t, γ(t))

is a broken null-geodesic on (Rt × (Hn \ O), g̃1). Now, images of null-geodesics are

invariant under conformal changes of the metric, so let us consider the image of γ̃ as

the image of a broken null-geodesic γM(t) in Minkowski space Rτ × Rn
x with obstacle

Õ, as discussed around (6.16) and in Figure 10. Writing γM(t) = (τM(t), xM(t)), we

may assume without loss that τM(0) = −1, τ ′M(0) = 1, and thus |x′M(0)| = 1; we then

have |xM(0)| ≤ c for some c < 1. By reparameterizing γM between any two reflection

points, we can arrange that τM(t) = −1 + t, hence also |x′M(t)| = 1 for all t < 1.

If we define f(t) := xM(t) · x′M(t) using the Euclidean inner product, then f ′(t) = 1

whenever γM(t) /∈ ∂Õ, while at a reflection point γM(t0), we have

f(t0 + 0) ≥ f(t0 − 0), (6.18)

as we will prove momentarily. Therefore,

f(t) ≥ f(0) + t ≥ −c+ t ≥ ε > 0

for ε ∈ (0, 1 − c) and t > c + ε. Since |x′M(t)| = 1, this forces xM(t) > ε for such

t. Therefore, γM(t) lies beyond the cosmological horizon of the static de Sitter patch

Sn+1
1 for t close to 1, which means that γM is not trapped.

To prove (6.18), we consider (after rescaling) a point p = (−1, x) ∈ ∂Õ ⊂ Rτ × Rn
x,

|x| < 1. Within {τ = −1} ∼= Rn, denote the outward pointing unit normal of O ∼=
Õ ∩ {τ = −1} by n ∈ Rn, so TpÕ is spanned by n⊥ ⊂ Rn ⊂ R1+n and (−1, x). A

(Lorentzian) normal vector to (̃O) at p is thus ν := (−n·x, n). Given an inward pointing

vector v− := γ′M(t0−0) = (1, w), |w| = 1, we thus have 0 ≤ gM(ν, (1, w)) = −n·(x+w).

The reflection of v− is

v′+ = v− −
2gM(ν, v−)

gM(ν, ν)
ν = (1− (n · x)2)−1

(
1 + (n · x)2 + 2(n · w)(n · x),

w − (n · x)2w − 2(n · (x+ w))n
)
.
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Let v+ = v′+/λ =: (1, w′), where λ is the first component of v′+; then γ′M(t0 + 0) = v+,

and we need to verify x · w′ ≥ x · w, i.e. after clearing denominators and simplifying,

(n · x)(1 + x · w)
(
n · (x+ w)

)
≤ 0,

which indeed holds, since n · x ≥ 0 since O is star-shaped. �

7. Small obstacles and Euclidean resonances

Let n ≥ 3 be odd. Suppose O ⊂ Rn is a compact domain with smooth boundary. We

can then identifyO with a smooth domain Hn
κ via the identification Hn

κ
∼= Rn of smooth

manifolds in (1.1). Formally taking the limit κ→ 0, we denote by g0 = dr2 + r2h the

usual Euclidean metric on Rn =: Hn
0 . We recall that for κ ≥ 0, the operator Pκ

given in (1.2) is self-adjoint with Dirichlet boundary conditions, that is, with domain

(H2 ∩H1
0 )(Hn

κ \O), where we use the metric gκ to define Sobolev spaces. As reviewed

in §3.1, the resolvent (Pκ − λ2)−1 admits a meromorphic continuation from Imλ� 0

to Cλ; we denote the set of its poles, counted with multiplicity, by Res(O, κ).

In this section we will prove a precise version of Theorem 3:

Theorem 7. We have Res(O, κ) → Res(O, 0) locally uniformly, with multiplicities,

as κ→ 0. More precisely, the set of accumulation points of Res(O, κ) is contained in

Res(O, 0), and for any K b C there exist r0 and κ0 such that if λ0 ∈ Res(O, 0) ∩K
has multiplicity m then for any κ < κ0,

Res(O, κ) ∩D(λ0, r0) = {λj(κ)}mj=1, lim
κ→0

λj(κ) = λ0.

We begin by computing the kernel of the free resolvent

R0
κ(λ) =

(
−∆gκ −

(
n−1

2

)
κ2 − λ2

)−1
.

Lemma 7.1. For fixed y, the resolvent kernel R0
κ(λ;x, y) of Hn

κ is L1
loc in x. It only

depends on the geodesic distance dκ(x, y) between x and y, and is given explicitly by

R0
κ(λ;x, y) = − 1

2iλ

(
− 1

2πsκ
∂r

)n−1
2
eiλr
∣∣∣
r=dκ(x,y)

.

In particular, R0
κ(λ) is entire in λ.

Proof. See [Ta11b, §8.6]; we present a direct proof, based on induction on j = (n −
1)/2 ∈ Z≥0. The asserted dependence only on dκ(x, y) follows from the fact that Hn

κ

is a symmetric space. Dropping the subscript κ, denote

f0(r) := −e
iλr

2iλ
, fj+1(r) := − 1

2πsκ
∂rfj(r).

We will identify fj, which is a function on (0,∞)r, with the function fj(dκ(0, x)),

x ∈ Hn
κ. Since |fj(r)| ≤ s1−2j

κ for j ≥ 1 and |dgκ| = s2j
κ dr|dh|, we have fj ∈ L1

loc(Hn
κ).
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Fix λ ∈ C and κ ≥ 0. Denote Pj := −∆g
H2j+1
κ

− j2κ2 − λ2, and write

Qj := s−2j
κ Drs

2j
κ Dr − j2κ2 − λ2

for its radial part, which is an operator on (0,∞). Now for j = 0, f0 indeed solves

P0f0 = δ0. For the inductive step, we note the intertwining relation

Qj+1 ◦ s−1
κ ∂r = s−1

κ ∂r ◦Qj,

which is verified by direct calculation. In verifying that Pj+1fj+1 = δ0, we note that,

due to the spherical symmetry of fj+1, it suffices to check this for radial test functions

ϕ ∈ C∞c (H2(j+1)+1
κ ); but for such ϕ, we compute the distributional pairing

〈Pj+1s
−1
κ ∂rfj, ϕ〉L2(H2(j+1)+1

κ )
= vol(S2j+2)〈Qj+1s

−1
κ ∂rfj, ϕ〉L2(R+;s

2(j+1)
κ dr)

= vol(S2j+2)〈s−1
κ ∂rQjfj, ϕ〉L2(R+;s

2(j+1)
κ dr)

= − vol(S2j+2)〈Qjfj, s
−2j
κ ∂rs

2j+1
κ ϕ〉L2(R+;s2jκ dr)

= −vol(S2j+2)

vol(S2j)
〈Pjfj, (2j + 1) cosh(κr)ϕ+ sκ∂rϕ〉L2(H2j+1

κ )

= −(2j + 1) vol(S2j+2)

vol(S2j)
ϕ(0) = −2πϕ(0).

The proof is complete. �

We will use a direct construction of the meromorphic continuation (1.3) using layer

potentials. This is convenient for the control of multiplicities. As preparation for this,

we study the operator P i
κ, defined by the same expression (1.2), but now in the interior

of O: P i
κ is self-adjoint with domain (H2 ∩H1

0 )(O).

Lemma 7.2. We have Pκ ≥ 0 and P i
κ ≥ 0.

For Neumann boundary conditions, P i
κ is not non-negative for κ > 0, as then

〈P i
κ1, 1〉 = −(n− 1)2κ2 volgκ(O)/4 < 0.

Proof of Lemma 7.2. We use the upper half space model of hyperbolic space (Hn
κ, gκ)

∼=
((0,∞)x × Rn−1

y , dx
2+dy2

κ2x2
). For u ∈ C∞c (O), we then have

〈P i
κu, u〉 =

∫
O
|∇gκu|2 −

(
n−1

2

)2
κ2|u|2 dgκ

= κ2

∫∫
O
x2−n|ux|2 − x−n

(
n−1

2

)2|u|2 + x2−n|uy|2 dx dy

= κ2

∫∫
O
x
∣∣(x−n−1

2 u)x
∣∣2 + x2−n|uy|2 +

(
n−1

2
x1−n|u|2

)
x
dx dy ≥ 0,

where in the last step we used the vanishing of u on ∂O. The argument for Pκ is the

same. �
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By the spectral theorem, the non-negativity of Pκ implies that Rκ(λ) is holomorphic

in Imλ > 0 as an operator on L2(Hn
κ).

Lemma 7.3. The meromorphically continued resolvent Rκ(λ) is regular for λ ∈ R if

κ = 0, and for 0 6= λ ∈ R if κ > 0.

Proof. For κ = 0, this is a standard consequence of the fact that putative resonant

states are outgoing, that is, they satisfy the Sommerfeld radiation condition. For

λ 6= 0 then, Rellich’s theorem, [DyZw, Theorem 3.32], yields the result, while for

λ = 0, one applies the maximum principle, see [DyZw, Theorem 4.19]. For κ > 0

and λ 6= 0, a boundary pairing argument together with unique continuation at the

conformal boundary of Hn
κ yields the result – see [HiVa15b, §3.2] and [Ma91]. �

Remark 7.4. For star-shaped obstacles in Hn
κ, κ > 0, one can deal with all real λ

at once by observing that a non-trivial resonant state with real frequency would give

rise to a stationary or polynomially growing solution ũ of the Klein–Gordon equation(
�g

dSn+1
κ

+ n2−1
4

)
ũ = 0 on static de Sitter space, with ũ|R×∂O = 0, which is smooth up

to (and across) the cosmological horizon of dSn+1
κ . The energy estimates proved in §6.2

show however that non-trivial such ũ do not exist.

Our proof of Theorem 7 implies the absence of a resonance at 0 for small κ > 0

(depending on the obstacle). In order to analyze resonances in Imλ < 0 in an effective

manner, we consider the closely related boundary value problem{(
−∆gκ −

(
n−1

2

)2
κ2 − λ2

)
u = 0 in Hn

κ \ O,
u|∂O = f on ∂O,

(7.1)

with f ∈ H3/2(∂O) given, and where we seek an outgoing solution u ∈ H2
loc(Hn

κ \ O).

For Imλ > 0, this means finding a solution u ∈ L2(Hn
κ \ O), which is given by

u = Bκ(λ)f := Ef −Rκ(λ)(−∆gκ −
(
n−1

2

)2
κ2 − λ2

)
Ef, (7.2)

where E : H3/2(∂O)→ H2
comp(Hn

κ \O) is a continuous extension operator. Since Rκ(λ)

is meromorphic, equation (7.2) provides the meromorphic continuation of Bκ(λ) to the

complex plane in λ. On the other hand, one can reconstruct Rκ(λ) from Bκ(λ):

Lemma 7.5. We have

Rκ(λ;x, y) = R0
κ(λ;x, y)− Bκ(λ)

(
R0
κ(λ; ·, y)|∂O

)
. (7.3)

Proof. Applying the operator −∆gκ −
(
n−1

2

)2
κ2− λ2 to either side yields δy(x). More-

over, for Imλ > 0, multiplying either side with f(y), f ∈ C∞c (Hn
κ \O), and integrating

over y gives two L2 solutions uL and uR of Pκu = f , u|∂O = 0; but by the spectral

theorem, we must have uL = uR. This establishes (7.3) for Imλ > 0; for general λ ∈ C
it then follows by meromorphic continuation. �
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Defining the multiplicity of a resonance λ of Bκ as

mBκ (λ) := dim
[(∮

λ

Bκ(ζ) dζ
)

(H3/2(∂O))
]
,

we conclude that

mκ(λ) = mBκ (λ), λ ∈ C. (7.4)

In fact, equation (7.2) implies mBκ (λ) ≤ mκ(λ), while equation (7.3) implies the reverse

inequality. In order to study Bκ(λ), we introduce the single layer potential

S`κ(λ)f(x) :=

∫
∂O
R0
κ(λ;x, y)f(y) dσκ(y), x ∈ Hn

κ \ ∂O,

where dσκ is the surface measure on ∂O induced by the volume form dvolgκ . Denote

by ∂ν the normal vector field of ∂O pointing into O, and for a function u on Hn
κ for

which u|O and u|Hnκ\O are smooth up to ∂O, denote by u+, resp. u−, the limits of u to

∂O from Hn
κ \ O, resp. O. We then recall the formulæ

(S`κ(λ)f)± = Gκ(λ)f, Gκ(λ)f(x) :=

∫
∂O
R0
κ(λ;x, y)f(y) dσκ(y), x ∈ ∂O,

and

(∂νS`κ(λ)f)± =
1

2
(∓f +N ]

κ(λ)f),

N ]
κ(λ)f(x) := 2

∫
∂O
∂νxR

0
κ(λ;x, y)f(y) dσκ(y), x ∈ ∂O;

moreover, Gκ(λ), N ]
κ(λ) ∈ Ψ−1(∂O) are entire in λ, where Ψs(∂O) denotes the space

of pseudodifferential operators of order s ∈ R on the closed manifold ∂O [Hö85, §18.1].

The principal symbol of Gκ(λ) is given by
∣∣gκ|x(ξ, ξ)∣∣−1/2

, ξ ∈ T ∗x∂O, in particular it

is independent of λ. We note some basic properties:

Lemma 7.6. Gκ(λ) is injective for Imλ > 0, and for λ ∈ R \ {0} for which λ2 is not

an eigenvalue of the interior Dirichlet problem (P i
κ − λ2)u = 0. Furthermore,

S`κ(λ) : H3/2(∂O)→ L2
loc(Hn

κ \ O)

is injective for λ 6∈ R.

Proof. This is proved for R3 in [Ta11b, §9.7]; we give the proof in general for com-

pleteness, in particular highlighting the use of the Dirichlet (rather than Neumann)

boundary condition. Suppose Gκ(λ)g = 0, Imλ ≥ 0, λ 6= 0, then u := S`κ(λ)g, de-

fined on Hn
κ \∂O, solves the exterior problem (7.1) with f = 0, hence u ≡ 0 outside O.

Therefore, the restriction ui := u|O to the interior of the obstacle solves the Dirichlet

problem (P i
κ − λ2)ui = 0, with Neumann data

∂νu
i = (∂νu)− − (∂νu)+ = g.
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For Imλ > 0, Lemma 7.2 implies ui ≡ 0, hence g = 0; for real λ on the other hand, if

λ2 is not an eigenvalue of the interior Dirichlet problem, then ui ≡ 0 as well.

To prove the final claim, suppose S`κ(λ)f = 0 outside O, then ui := S`κ(λ)f ∈
H2(O) solves (P i

κ − λ2)ui = 0 with vanishing Dirichlet data. Since λ 6∈ R, Lemma 7.2

implies ui ≡ 0, therefore f = ∂νu
i = 0, as desired. �

Moreover, Gκ(λ) is self-adjoint for real λ, hence by ellipticity it is Fredholm with

index 0 as a map Hs(∂O)→ Hs+1(∂O) for all s ∈ R. Fix λ0 ∈ R such that Gκ(λ0) is

injective, hence invertible, then formula

Gκ(λ)−1 = Gκ(λ0)−1(I + Γκ(λ)Gκ(λ0)−1)−1, Γκ(λ) := Gκ(λ)−Gκ(λ0) ∈ Ψ−2(∂O),

with Γκ(λ)Gκ(λ0)−1 ∈ Ψ−1(∂O) entire, gives the meromorphic continuation of

Gκ(λ)−1 : Hs(∂O)→ Hs+1(∂O)

from Imλ > 0 to the complex plane; Gκ(λ)−1 has poles of finite order, and the operators

in the Laurent series at a pole have finite rank. Then

Bκ(λ) = S`κ(λ)Gκ(λ)−1 : H1/2(∂O)→ H2
loc(Hn

κ \ O) (7.5)

furnishes a direct way of meromorphically continuing Bκ(λ). (By Lemma 7.3, the poles

of Gκ(λ) in the case that λ2 is an interior Dirichlet eigenvalue do not give rise to poles

of Bκ(λ).) Moreover, the set of poles of Bκ(λ) agrees in Imλ < 0 with the set of poles

of Gκ(λ)−1. The crucial fact is then:

Proposition 7.7. For a resonance λ ∈ C \ R, we have

mBκ (λ) = mG
κ (λ) := tr

1

2πi

∮
λ

∂λGκ(ζ)Gκ(ζ)−1 dζ,

where we integrate along a small circle around λ, oriented counter-clockwise, which

does not intersect the real line and does not contain any other resonances.

In order to prove this, we first give more general formulæ for mκ(λ) and mBκ (λ) –

see also [HiVa16, §5.1.1].

Lemma 7.8. For λ 6= 0, we have

mκ(λ) = dim
{

Resζ=λ e
−iζtRκ(ζ)f(ζ) :

f(ζ) holomorphic with values in L2
comp(Hn

κ \ O)
}
,

(7.6)

where the space on the right hand side is a subspace of L2
loc(Rt× (Hn

κ \O)). Similarly,

mBκ (λ) = dim
{

Resζ=λ e
−iζtBκ(ζ)f(ζ) :

f(ζ) holomorphic with values in H3/2(∂O)
}
.

(7.7)
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Remark 7.9. These two formulas describe the multiplicity of a resonance λ as the

dimension of the space of generalized mode solutions, with frequency λ, of the forward

problem for {
(D2

t − Pκ)ũ = f ∈ C∞c (Rt;L
2
comp(Hn

κ \ O)),

ũ|Rt×∂O = 0,

in the case of (7.6), and of the forward problem for{
(D2

t − Pκ)ũ = 0,

ũ|Rt×∂O = f ∈ C∞c (Rt;H
3/2(∂O)),

in the case of (7.7); the connection is via the Fourier transform in t, with λ the Fourier

dual variable.

Proof of Lemma 7.8. Denoting the right hand sides of equations (7.6) and (7.7) by

m̃κ(λ) and m̃Bκ (λ), respectively, we note that the formulas (7.2) and (7.3) imply

m̃κ(λ) = m̃Bκ (λ). In view of (7.4), it therefore suffices to prove mκ(λ) = m̃κ(λ).

The inequality mκ(λ) ≤ m̃κ(λ) is trivial; if Rκ(λ) were a general finite-meromorphic

operator family, the reverse inequality would in general be false. The key here is the

special structure of Rκ(λ) as the meromorphic continuation of the spectral family of a

fixed operator, see [DyZw, Theorem 4.7], which holds in great generality:

Rκ(λ) =

Mλ∑
j=1

(Pκ − λ2)j−1Π

(ζ2 − λ2)j
+ A(ζ),

with A holomorphic near ζ = λ, and Π: L2
comp(Hn

κ \ O) → L2
loc(Hn

κ \ O) a finite rank

operator. Moreover, Pκ − λ2 : ran Π→ ran Π, and (Pκ − λ2)MλΠ = 0.

Pick a finite-dimensional vector space V ⊂ L2
comp such that Π: V → ran Π isomor-

phically. Identifying ran Π with V via Π|V and choosing a basis of V , Π is an M ×M
matrix, with M = rank Π, and N := (Π|V )−1(Pκ − λ2)Π|V is nilpotent. We note that

mκ(λ) = rank Π; this follows from

1

2πi

∮
λ

Rκ(ζ) dζ = (2λ)−1 Id +

Mλ−1∑
j=1

(−1)j(2j)!

j!2(2λ)2j+1
N j

on V , and the invertibility of operators, such as the one appearing on the right hand

side, which differ from the identity by a nilpotent operator.

Expanding f(ζ) in (7.6) in Taylor series in ζ2 − λ2 around ζ = λ, the statement of

the lemma is reduced to the linear algebra problem to show that

M = dim

{
Resζ=λ

∑
0≤`<j≤Mλ

e−iζt(ζ2 − λ2)`−jN jf` : f0, . . . , fMλ−1 ∈ CM

}
,
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with N a nilpotent element of CM×M , NMλ = 0. It suffices to show this when N is a

single nilpotent Jordan block. But when (abusing notation) N is a nilpotent M ×M
Jordan block, and when fj = (fj,p)p=0,...,M−1, then the space of vectors of the form∑

0≤`<j≤M

1

(j − `− 1)!
∂j−`−1
ζ

e−iζt

(ζ + λ)j−`

∣∣∣∣
ζ=λ

N jf`

=
M−1∑
`=0

1

`!
∂`ζ

e−iζt

(ζ + λ)`+1

∣∣∣∣
ζ=λ

(M−1−`∑
j=0

N `+jfj

)
has the same dimension as the space of M -tuples of vectors in CM(M−1−`∑

j=0

N `+jfj

)
`=0,...,M−1

=

(M−1−(`+p)∑
q=0

fq,q+`+p

)
`,p=0,...,M−1

,

which is the space of M × M Hankel matrices, and this space is M -dimensional,

finishing the proof. �

Using the characterization (7.7), we now prove Proposition 7.7:

Proof of Proposition 7.7. Putting Gκ(ζ) near a resonance λ, Imλ < 0, into a normal

form, see [DyZw, Theorem C.7], it suffices to prove the following abstract statement:

if

G(ζ) =
M∑
j=1

(ζ − λ)jΠj +
(

Id−
M∑
j=1

Πj

)
with M ≥ 1, the Πj finite rank projections, ΠM 6= 0, ΠjΠk = 0 for j 6= k, is a

holomorphic family of Fredholm operators acting on a Banach spaceX, and S(ζ) : X →
Y is a holomorphic family of injective operators from X into a Fréchet space Y , then

W := dim
{

Resζ=λ e
−iζtS(ζ)G(ζ)−1f(ζ) : f(ζ) holomorphic with values in X

}
=

1

2πi
tr

∮
λ

∂ζG(ζ)G(ζ)−1 dζ.

By direct computation, the right hand side is equal to
∑M

j=1 j rank Πj. If we denote by

Wk := W ∩
{ k∑
j=1

e−iλttj−1fj : fj ∈ X
}
, k = 1, . . . ,M,

the space of all generalized mode solutions of (D2
t − Pκ)ũ = 0 with frequency λ for

which the highest power of t is at most tk−1, it therefore suffices to show

dimWk/Wk−1 =
∑
j≥k

rank Πj, (7.8)
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To see this, expand S(ζ) =
∑

j≥0(ζ − λ)jSj, and note that, for f` ∈ X,

Resζ=λ e
−iζtS(ζ)G(ζ)−1

∑
`<M

f`(ζ − λ)` (7.9)

lies in WM \WM−1 unless ΠMf0 = 0, due to the injectivity of S0 = S(λ); in this case,

the coefficient of e−iλt(−it)M−2/(M − 2)! equals

S0(ΠM−1f0 + ΠMf1) + S1ΠMf0 = S0(ΠM−1f0 + ΠMf1),

which is non-zero unless ΠM−1f0 = 0 and ΠMf1 = 0; and so forth. In general, the

generalized mode (7.9) lies in WM \Wk unless

Πk+1+j+`fj = 0, 0 ≤ j < M − k, 0 ≤ ` ≤M − (k + 1 + j),

and it lies in Wk−1 if and only if this holds true for k replaced by k−1. In other words,

the map

M⊕
j=k

ran Πj 3
M∑
j=k

Πjfj−k 7→
[

Resζ=λ

(
e−iζtS(ζ)G(ζ)−1

M−k∑
`=0

f`(ζ − λ)`
)]
∈ Wk/Wk−1

is an isomorphism. This proves (7.8), and hence the proposition. �

Proof of Theorem 7. Let us fix a precompact open set Λ ⊂ C with smooth boundary

such that Res(O, 0) ∩ ∂Λ = ∅. We will show that∑
λ∈Λ∩Res(O,κ)

mκ(λ) =
∑

λ∈Λ∩Res(O,0)

m0(λ) (7.10)

for small 0 ≤ κ < κ0. This suffices to prove the theorem; indeed, to show that the

resonances of Pκ in a precompact open set Λ′ ⊂ C with Res(O, 0)∩∂Λ′ = ∅ are ε-close to

those of P0 for κ small (depending on Λ′ and ε), denote Res(O, 0)∩Λ′ = {λ1, . . . , λN}
(N ≥ 0); one then applies (7.10) to the sets Λj := {λ ∈ C : |λ − λj| < ε′}, with

ε′ ∈ (0, ε) chosen such that |λj − λk| > ε′ for all j 6= k; this shows that Λj contains

m0(λj) resonances of Pκ, counted with multiplicity, for κ small. On the other hand,

applying (7.10) to the complement Λc := {λ ∈ Λ′ : |λ − λj| > ε′/2, j = 1, . . . , N}
shows that Pκ has no resonances in Λc either for small κ, as desired.

As a preliminary step towards (7.10), we show:

There exists an open neighborhood U ⊃ R which contains

no resonances of Pκ for all 0 ≤ κ < κ0, κ0 small.
(7.11)

The proof of this relies on a slight modification of the construction (7.5). Namely, we

use the double layer potential

D`κ(λ)g(x) :=

∫
∂O
∂νyR

0
κ(λ;x, y)g(y) dσκ(y), x ∈ Hn

κ \ ∂O,
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which satisfies

(D`κ(λ)g)± =
1

2
(±g +Nκ(λ)g),

Nκ(λ)g(x) := 2

∫
∂O
∂νyR

0
κ(λ;x, y)g(y) dσκ(y), x ∈ ∂O,

with Nκ(λ) ∈ Ψ−1(∂O), and (∂νD`κ(λ)g)+ = (∂νD`κ(λ)g)−. In order to solve the

outgoing boundary value problem (7.1), we make the new ansatz

u = (iS`κ(λ) +D`κ(λ))g, (7.12)

which satisfies the boundary condition provided (I + Nκ(λ) + 2iGκ(λ))g = f . Since

the operator I + Nκ(λ) + 2iGκ(λ) : Hs(∂O) → Hs(∂O) is Fredholm with index 0, we

conclude that this is solvable provided this operator is injective. Consider λ ∈ R.

If g is an element of the kernel, then u, defined as in (7.12), satisfies u+ = 0 and

(Pκ− λ2)u = 0 in Hn
κ \O, hence u ≡ 0 there if κ = 0, or if κ > 0 and λ ∈ R \ {0}, and

we conclude that in these cases

u− = iGκ(λ)g +
1

2
(−I +Nκ(λ))g = −g,

∂νu− = i
(
(∂νS`κ(λ)g)− − (∂νS`κ(λ)g)+

)
= ig.

Thus, integrating over O, we have

0 = Im
〈
(∆gκ −

(
n−1

2

)2
κ2 − λ2)u, u

〉
=

1

2i

∫
∂O
∂νuu− u∂νu dσκ = −

∫
∂O
|g|2 dσκ,

hence g = 0, proving injectivity. Therefore, we can write

Bκ(λ) = (iS`κ(λ) +D`κ(λ))(I +Nκ(λ) + 2iGκ(λ))−1, (7.13)

which we have just shown is regular for λ ∈ R if κ = 0, and 0 6= λ ∈ R if κ > 0.

From the expression (7.13) and using Lemma 7.1, one sees that the regularity of B0(λ)

at λ = 0 implies that of Bκ(λ) there when κ > 0 is sufficiently small. Hence, Bκ(λ)

is regular for all λ ∈ R for sufficiently small κ. A simple continuity argument proves

(7.11).

Thus, it suffices to prove (7.10) when Λ is precompact in the lower half plane, that

is, Λ ⊂ {Imλ < 0}. In this case, we can use Proposition 7.7, together with Rouché’s

Theorem for operator-valued functions, see [DyZw, Theorem C.9]; concretely, if κ is

so small that ‖G0(ζ)−1(G0(ζ)−Gκ(ζ))‖L2 < 1 for ζ ∈ ∂Λ, then

tr
1

2πi

∮
∂Λ

∂λGκ(ζ)Gκ(ζ)−1 dζ = tr
1

2πi

∮
∂Λ

∂λG0(ζ)G0(ζ)−1 dζ,

which is the same as (7.10). �
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