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Abstract. We study asymptotics for solutions of Maxwell’s equations, in fact

of the Hodge–de Rham equation (d+ δ)u = 0 without restriction on the form
degree, on a geometric class of stationary spacetimes with a warped product

type structure (without any symmetry assumptions), which in particular in-

clude Schwarzschild-de Sitter spaces of all spacetime dimensions n ≥ 4. We
prove that solutions decay exponentially to 0 or to stationary states in every

form degree, and give an interpretation of the stationary states in terms of co-

homological information of the spacetime. We also study the wave equation on
differential forms and in particular prove analogous results on Schwarzschild–

de Sitter spacetimes. We demonstrate the stability of our analysis and deduce

asymptotics and decay for solutions of Maxwell’s equations, the Hodge–de
Rham equation and the wave equation on differential forms on Kerr–de Sitter

spacetimes with small angular momentum.

1. Introduction

Maxwell’s equations describe the dynamics of the electromagnetic field on a 4-
dimensional spacetime (M, g). Writing them in the form (d+ δg)F = 0, where δg is
the codifferential, for the electromagnetic field F (a 2-form) suggests studying the
operator d+ δg, whose square

�g = (d+ δg)
2

is the Hodge d’Alembertian, i.e. the wave operator on differential forms. It is then
very natural to study solutions of (d + δg)u = 0 or �gu = 0 without restrictions
on the form degree or the dimension of the spacetime. Here, we study quasinormal

modes (or resonances) of�g (or d+δg) whenM = Rt×X, X = X
◦

with X compact,
is equipped with a stationary Lorentzian metric g which has a suitable warped
product structure near ∂X: resonances are complex numbers σ ∈ C for which
there exists a smooth t-independent differential form u(x) on M satisfying outgoing
boundary conditions at ∂X, such that �g(e−itσu) = 0 (or (d + δg)(e

−itσu) = 0):
roughly, we show that all such resonances satisfy Imσ < 0, with the exception of
a possible resonance at σ = 0, corresponding to stationary solutions of the wave or
Hodge–de Rham equation, for which we give a (rather subtle) description in terms
of the cohomology of M , thus significantly refining the geometric understanding of
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asymptotics for waves on single black hole spacetimes studied in the literature to
date (see Section 1.2 for references).

Important examples of spacetimes that fit into the class of spacetimes studied in
the present paper are Schwarzschild–de Sitter spacetimes with spacetime dimension
≥ 4; it is important to note that our results are much more general, allowing
for an arbitrary topology of X (thus allowing e.g. for multiple black holes). For
Schwarzschild–de Sitter spaces, or indeed perturbations of these, in particular on
Kerr–de Sitter spaces with small angular momenta, we can use our results on the
location and structure of resonances and prove a partial resonance expansion of
waves into their stationary part plus an exponentially decaying remainder:

Theorem 1. Let (M, ga) denote a neighborhood of the domain of outer commu-
nications of a non-degenerate Kerr–de Sitter space with black hole mass M• > 0,
cosmological constant Λ > 0 and angular momentum a which we assume to be very
small, |a| �M•;

1 Denote by t∗ a smooth time function which is equal to the Boyer–
Lindquist coordinate t away from the horizons, and a suitable (Kerr-star coordinate
type) modification of t near the horizon.2 Suppose u ∈ C∞(M ; ΛM) is a solution of
the equation

(d+ δga)u = 0,

with smooth initial data, and denote by uj the form degree j part of u, j = 0, . . . , 4.
Then u2 decays exponentially in t∗ to a stationary state, which is a linear combi-
nation of the t∗-independent 2-forms ua,1, ua,2. In the standard (Boyer–Lindquist)
local coordinate system on Kerr–de Sitter space, ua,1 and ua,2 have explicit closed
form expressions; in particular, on Schwarzschild–de Sitter space, u0,1 = r−2 dt∧dr,
and u0,2 = ω is the volume element of the round unit 2-sphere. Moreover, u1 and
u3 decay exponentially to 0, while u0 decays exponentially to a constant, and u4 to
a constant multiple of the volume form.

Suppose now u ∈ C∞(M ; ΛM) instead solves the wave equation

�gau = 0

with smooth initial data, then the same decay as before holds for u0, u2 and u4,
while u1 decays exponentially to a member of a 2-dimensional family of stationary
states, likewise for u3.

The Schwarzschild–de Sitter case of this theorem, i.e. the special case a = 0, will
be proved in Section 4.2, and we give explicit expressions for all stationary states,
see Theorems 4.4 and 4.7. Section 5 provides the perturbation arguments, see in
particular Theorem 5.1; we point out that while Schwarzschild–de Sitter spacetimes
fit directly into our framework, Kerr–de Sitter spacetimes do not, as they do not
have the requisite warped product structure described in Section 1.1 below, hence
we can only treat them perturbatively here. For the explicit form of ua,1 and
ua,2, see Remark 5.4. Note that asymptotics and exponential decay of differential
form solutions to the wave equation are stronger statements than corresponding
statements for Maxwell’s equations or for the Hodge–de Rham equation, as any
solution of one of the latter equations is automatically a solution of the former;

1The non-degeneracy requirement ensures that the cosmological horizon lies outside the event

horizon. For example, if M• is fixed and Λ > 0 is small, sufficiently small values of a work.
2See (2.2) for the definition in the warped product setting which applies to Schwarzschild–

de Sitter spacetimes (i.e. a = 0), and Section 5 for references for the Kerr–de Sitter case.
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improved results for the Maxwell or Hodge–de Rham equation can then be obtained
in a second step.

Our arguments strongly use that we are dealing with the Hodge–d’Alembertian
�g = (d + δg)

2 rather than related operators which differ from �g by lower order
terms, e.g. the rough wave operator −tr∇2, or the Klein–Gordon type operator
�g−m2, m ∈ R. Indeed, the factorization of the Hodge–d’Alembertian is essential
for us. Furthermore, as we rely heavily on integration by parts and symmetry
considerations which exploit properties of the form bundle, we do not treat more
general tensor bundles here.

We stress that the main feature of the spacetimes (M, g) considered in this paper
is a warped product type structure of the metric; we do not make any symmetry
assumptions on M . From a geometric point of view then, the main novelty of
this paper is a general cohomological interpretation of stationary states, which in
the above theorem are merely explicitly given. On a technical level, we show how
to analyze quasinormal modes (also called resonances, further discussed below)
for equations on vector bundles whose natural inner product is not positive defi-
nite. To stress the generality of the method, we point out that symmetries only
become relevant in explicit calculations for specific examples such as Schwarzschild–
de Sitter and Kerr–de Sitter spaces. Even then, the perturbation analysis around
Schwarzschild–de Sitter space works without restrictions on the perturbation; only
for the explicit form of the space 〈ua,1, ua,2〉 of stationary states do we need the
very specific form of the Kerr–de Sitter metric. Thus, combining the perturba-
tion analysis with the non-linear framework developed by the authors in [32], we
can immediately solve suitable quasilinear wave equations on differential forms on
Kerr–de Sitter spacetimes; see Remark 5.3. To put this into context, part of the
motivation for the present paper is the black hole stability problem, see the lecture
notes by Dafermos and Rodnianski [15] for background on this, and we expect that
the approach taken here will facilitate the linear part of the stability analysis, which,
when accomplished, rather directly gives the non-linear result when combined with
the non-linear analysis in [32].

1.1. Outline of the general result. Going back to the linear problem studied
in this paper, we proceed to explain the general setup in more detail. Let X be
a connected, compact, orientable (n − 1)-dimensional manifold with non-empty

boundary Y = ∂X 6= ∅ and interior X = X
◦
, and let

M = Rt ×X,

which is thus n-dimensional. Denote the connected components of Y , which are
of dimension (n − 2), by Yi, for i in a finite index set I. We assume that M is
equipped with the metric

g = α(x)2 dt2 − h(x, dx), (1.1)

where h is a smooth Riemannian metric on X (in particular, incomplete) and α
is a boundary defining function of X, i.e. α ∈ C∞(X), α = 0 on Y , α > 0 in X
and dα|Y 6= 0. (As we demonstrate in equations (4.1) and (4.4), (Schwarzschild–
)de Sitter space indeed has this form.) We moreover assume that every connected
component Yi of Y , i ∈ I, has a collar neighborhood [0, εi)α × (Yi)y in which h
takes the form

h = β̃i(α
2, y) dα2 + ki(α

2, y, dy) (1.2)
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with β̃i(0, y) ≡ βi > 0 constant along Yi.
3 In particular, α−2h is an even asymptot-

ically hyperbolic metric in the sense of Guillarmou [27]; for the connection between
horizons and asymptotically hyperbolic spaces, we also refer to [4, 46] and [9, Chap-
ter 4].4 We change the smooth structure on X to only include even functions of α,
and show how one can then extend the metric g to a stationary metric (denoted g̃,

but dropped from the notation in the sequel) on a bigger spacetime M̃ = Rt∗ × X̃,

where X ↪→ X̃◦, and where t∗ is a shifted time coordinate. Since the operator d+ δ
commutes with time translations, it is natural to consider the normal operator
family

d̃(σ) + δ̃(σ) = eit∗σ(d+ δ)e−it∗σ

acting on differential forms (valued in the form bundle of M) on a slice of constant

t∗, identified with X̃; that is, every ∂t∗ is replaced by multiplication by −iσ. The

normal operator family �̃(σ) of � is defined completely analogously.

Since the Hodge d’Alembertian (and hence the normal operator family �̃(σ)) has
a scalar principal symbol, it can easily be shown to fit into the microlocal framework
developed by Vasy [54]; we prove this in Section 2, where we also recall the key

elements of this framework. In particular, the family of inverses �̃(σ)−1 : C∞(X̃)→
C∞(X̃) is a meromorphic family of operators in σ ∈ C,5 and under the assumption

that the inverse family �̃(σ)−1 verifies suitable bounds as |Reσ| → ∞ and Imσ >
−C (for C > 0 small), one can deduce exponential decay of solutions to �u = 0,
up to contributions from a finite dimensional space of resonances. Here, resonances

are poles of �̃(σ)−1, and resonant states (for simple resonances) are elements of the

kernel of �̃(σ) for a resonance σ.6 Therefore, proving wave decay and asymptotics
is reduced to studying high energy estimates, which depend purely on geometric
properties of the spacetime and will be further discussed below, and the location
of resonances as well as the spaces of resonant states. (For instance, resonances in
Imσ > 0 correspond to exponentially growing solutions and hence are particularly
undesirable when studying non-linear problems.) Our main theorem is then:

Theorem 2. Let (M, g) be a manifold satisfying the assumptions stated at the
beginning of this section. The only resonance of d + δ in Imσ ≥ 0 is then σ = 0,

and 0 is a simple resonance. Zero resonant states are smooth, and the space H̃
of these resonant states is equal to ker d̃(0) ∩ ker δ̃(0). (In other words, resonant

states, viewed as t∗-independent differential forms on M̃ , are annihilated by d and

δ.) Using the grading H̃ =
⊕n

k=0 H̃k of H̃ by form degrees, there is a canonical
exact sequence

0→ Hk(X)⊕Hk−1(X, ∂X)→ H̃k → Hk−1(∂X). (1.3)

3The constancy is required for the Fredholm analysis in Section 2, and is satisfied for all

examples considered in this paper; in the case of Schwarzschild–de Sitter spacetimes, it amounts
to the constancy of the surface gravities of the event and the cosmological horizon.

4Thus, as we will show, de Sitter and Schwarzschild–de Sitter spaces fit into this framework,
whereas asymptotically flat spacetimes like Schwarzschild (or Kerr) do not.

5Thus, the same is true for (d̃(σ) + δ̃(σ))−1 = (d̃(σ) + δ̃(σ))�̃(σ)−1.
6The outgoing boundary condition for an element e−itσa(x) in the kernel of �g , with a(x)

a t-independent section of the form bundle on M , is precisely the condition that e−itσa(x) =

e−it∗σa∗(x) where a∗ is smooth down to the boundary ∂X.
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Furthermore, the only resonance of � in Imσ ≥ 0 is σ = 0. Zero resonant states

are smooth, and the space K̃ =
⊕n

k=0 K̃k of these resonant states, graded by form

degree and satisfying K̃k ⊃ H̃k, fits into the short exact sequence

0→ Hk(X)⊕Hk−1(X, ∂X)→ K̃k → Hk−1(∂X)→ 0. (1.4)

Lastly, the Hodge star operator on M̃ induces natural isomorphisms ? : H̃k
∼=−→

H̃n−k and ? : K̃k
∼=−→ K̃n−k, k = 0, . . . , n.

See Theorem 3.20 for the full statement, including the precise definitions of the
maps in the exact sequences. In fact, the various cohomology groups in (1.3) and
(1.4) correspond to various types of resonant differential forms, namely forms which
are square integrable on X with respect to a natural Riemannian inner product on
forms on M , induced by the metric obtained by switching the sign in (1.1), that is,

α2 dt2 + h, (1.5)

as well as ‘tangential’ and ‘normal’ forms in a decomposition u = uT +α−1 dt∧uN
of the form bundle corresponding to the warped product structure of the metric.
Roughly speaking, (1.4) encodes the fact that resonant states for which a certain
boundary component vanishes are square integrable with respect to the natural
Riemannian inner product on X and can be shown to canonically represent absolute
(for tangential forms) or relative (for normal forms) de Rham cohomology of X,
while the aforementioned boundary component is a harmonic form on Y and can
be specified freely for resonant states of �. (Notice by contrast that the last map
in the exact sequence (1.3) for d+ δ is not necessarily surjective.)

The proof of Theorem 2 proceeds in several steps. First, we exclude resonances
in Imσ > 0 in Section 3.1; the idea here is to relate the normal operator family of

d+ δ (a family of operators on the extended space X̃) to another normal operator

family d̂(σ) + δ̂(σ) = eitσ(d + δ)e−itσ, which is a family of operators on X that
degenerates at ∂X, but has the advantage of having a simple form in view of
the warped product type structure (1.1) of the metric: since one formally obtains

d̂(σ) + δ̂(σ) by replacing each ∂t in the expression for d+ δ by −iσ, we see that on

a formal level d̂(σ) + δ̂(σ) for purely imaginary σ resembles the normal operator
family of the Hodge–de Rham operator of the Riemannian metric (1.5); then one

can show the triviality of ker(d̂(σ) + δ̂(σ)) in a way that is very similar to how one
would show the triviality of ker(A + σ) for self-adjoint A and Imσ > 0. For not
purely imaginary σ, but still with Imσ > 0, one can change the tangential part
of the metric on M in (1.1) by a complex phase and then run a similar argument,
using that the resulting ‘inner product,’ while complex, still has some positivity
properties. Next, in Section 3.2, we exclude non-zero real resonances by means of a
boundary pairing argument, which is a standard technique in scattering theory, see
e.g. Melrose [42]. Finally, the analysis of the zero resonance in Section 3.3 relies on
a boundary pairing type argument, and we again use the Riemannian inner product
on forms on M . The fact that this Riemannian inner product is singular at ∂X
implies that resonant states are not necessarily square integrable, and whether or
not a state is square integrable is determined by the absence of a certain boundary
component of the state. This is a crucial element of the cohomological interpretation
of resonant states in Section 3.4.
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As already alluded to, deducing wave expansions and decay from Theorem 2
requires high energy estimates for the normal operator family. These are easy to
obtain if the metric h on X is non-trapping, i.e. all geodesics escape to ∂X, as is
the case for the static patch of de Sitter space (discussed in Section 4.1). Another
instance in which suitable estimates hold is when the only trapping within X is
normally hyperbolic trapping, as is the case for Kerr–de Sitter spaces with parame-
ters in a certain range. (See [24, §5.1] for the definition of (r-)normal hyperbolicity,
and [23] for details in the Kerr and Kerr–de Sitter settings.) In the scalar setting,
such estimates are now widely available, see for instance Wunsch and Zworski [60],
Dyatlov [25] and their use in Vasy [54]: the proof of exponential decay relies on high
energy estimates in a strip below the real line. For � acting on differential forms,
obtaining high energy estimates requires a smallness assumption on the imaginary
part of the subprincipal symbol of � relative to a positive definite inner product
on the form bundle; the choice of inner product affects the size of the subprincipal
symbol. Conceptually, the natural framework in which to find such an inner prod-
uct involves pseudodifferential inner products. This notion was introduced by Hintz
[30] and used there to prove high energy estimates for � on tensors of arbitrary
rank on perturbations of Schwarzschild–de Sitter space. In the present paper, we
use the estimates provided in [30] as black boxes.

1.2. Previous and related work. The present paper seems to be the first to
describe asymptotics for differential forms solving the wave or Hodge–de Rham
equation in all form degrees and in this generality, and also the first to demon-
strate the forward solvability of non-scalar quasilinear wave equations on black
hole spacetimes, but we point out that for applications in general relativity, our
results require the cosmological constant to be positive, whereas previous works on
Maxwell’s equations deal with asymptotically flat spacetimes: Sterbenz and Tataru
[49] showed local energy decay for Maxwell’s equations on a class of spherically sym-
metric asymptotically flat spacetimes including Schwarzschild.7 Blue [6] established
conformal energy and pointwise decay estimates in the exterior of the Schwarzschild
black hole; Andersson and Blue [2] proved similar estimates on slowly rotating Kerr
spacetimes. These followed earlier results for Schwarzschild by Inglese and Nicolo
[34] on energy and pointwise bounds for integer spin fields in the far exterior of
the Schwarzschild black hole, and by Bachelot [3], who proved scattering for elec-
tromagnetic perturbations. There are further works which in particular establish
bounds for certain components of the Maxwell field, see Donninger, Schlag and
Soffer [19] and Whiting [59]. Dafermos [11], [12] studied the non-linear Einstein-
Maxwell-scalar field system under the assumption of spherical symmetry.

Vasy’s proof of the meromorphy of the (modified) resolvent of the Laplacian
on differential forms on asymptotically hyperbolic spaces [56] makes use of the
same microlocal framework as the present paper, and it also shows how to link
the ‘intrinsic’ structure of the asymptotically hyperbolic space and the form of the
Hodge-Laplacian with a ‘non-degenerately extended’ space and operator. For Kerr–
de Sitter spacetimes, Dyatlov [21] defined quasinormal modes or resonances in the
same way as they are used here, and obtained exponential decay to constants away
from the event horizon for scalar waves. This followed work of Melrose, Sá Barreto

7One needs to assume the vanishing of the electric and the magnetic charge. For a positive

cosmological constant, this precisely corresponds to assuming the absence of the r−2 dt ∧ dr and
ω asymptotics in form degree 2 in the Schwarzschild–de Sitter case of Theorem 1.
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and Vasy [43], where this was shown up to the event horizon of a Schwarzschild–
de Sitter black hole, the work of Bony and Häfner [7] (following Sá Barreto and
Zworski [46]) on full resonance expansions away from the horizons, and of Dafermos
and Rodnianski [14] who proved polynomial decay in this setting. Dyatlov proved
exponential decay up to the event horizon for Kerr–de Sitter in [20], and significantly
strengthened this in [22], obtaining a full resonance expansion for scalar waves.

In the scalar setting too, the wave equation on asymptotically flat spacetimes
has received more attention. Dafermos, Rodnianski and Shlapentokh-Rothman
[18], building on [17, 16, 47], established the decay of scalar waves on all non-
extremal Kerr spacetimes, following pioneering work by Kay and Wald [35, 57] in
the Schwarzschild setting. Tataru and Tohaneanu [50, 51] proved decay and Price’s
law for slowly rotating Kerr using local energy decay estimates, and Strichartz
estimates were proved by Marzuola, Metcalfe, Tataru and Tohaneanu [39].

Non-linear results for wave equations on black hole spacetimes include [32], see
also the references therein, Luk’s work [38] on semilinear forward problems on Kerr,
and the scattering construction of dynamical black holes by Dafermos, Holzegel and
Rodnianski [13]. Fully general stability results for Einstein’s equations specifically
are available for de Sitter space by the works of Friedrich [26], Anderson [1], Rod-
nianski and Speck [45] and Ringström [44], and for Minkowski space by the work of
Christodoulou and Klainerman [10], partially simplified and extended by Lindblad
and Rodnianski [36, 37], Bieri and Zipser [5] and Speck [48].

1.3. Structure of the paper. In Section 2, we show how to put the Hodge–de
Rham and wave equation on differential forms into the microlocal framework of [54];
this is used in Section 3 in the analysis of resonances in Imσ ≥ 0, and we prove
Theorem 2 there. In Section 4, we apply this result on de Sitter space, where we
can take a global point of view which simplifies explicit calculations considerably,
and on Schwarzschild–de Sitter space, where such a global picture is not available,
but using Theorem 2, the necessary computations are still very straightforward.
In Section 5, we show the perturbation stability of the analysis, in particular deal
with Kerr–de Sitter space, and indicate how this gives the forward solvability for
quasilinear wave equations on differential forms.

2. Analytic setup

Recall that we are working on a spacetime M = Rt×X, equipped with a metric
g as in (1.1)-(1.2), where X is the interior of a connected, compact, orientable
manifold X with non-empty boundary Y = ∂X 6= ∅ and boundary defining function
α ∈ C∞(X). Fixing a collar neighborhood of Y identified with [0, ε)α × Y , denote
by Xeven the manifold X with the smooth structure changed so that only even
functions in α are smooth, i.e. smooth functions are precisely those for which all
odd terms in the Taylor expansion at all boundary components vanish. For brevity,
we assume from now on that Y is connected,

h = β̃(α2, y)2 dα2 + k(α2, y, dy) (2.1)

in a collar neighborhood of Y , with β̃(α2, y) a positive constant at the boundary

α = 0, so β̃(0, y) = β > 0; all of our arguments readily go through in the case
of multiple boundary components. The main examples of spaces which directly fit
into this setup are the static patch of de Sitter space (with 1 boundary component)
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and Schwarzschild–de Sitter space (with 2 boundary components); see Section 4 for
details.

On M , we consider the Hodge–de Rham operator d + δ, acting on differential
forms. We put its square, the Hodge d’Alembertian

� = (d+ δ)2,

which is principally scalar, into the microlocal framework developed in [54], which
we briefly recall below. We shall mainly only make use of two of its consequences:
one obtains a precise description of the regularity of resonant states (see Lemma 2.1
below) and, under additional dynamical hypotheses on the null-geodesic flow (which

yield high energy estimates for the operator �̃(σ), discussed below), resonance
expansions of waves as in Theorem 1. The reader unfamiliar with the details of [54]
may simply view these as black boxes; the main results in the present paper are
orthogonal to those in the reference.

We renormalize the time coordinate t in the collar neighborhood of Y by writing

t = t∗ + F (α), ∂αF (α) = − β̃
α
− 2αc(α2, y) (2.2)

with c smooth, hence F (α) ∈ −β logα+ C∞(Xeven); notice that the above require-
ment on F only makes sense near Y . We introduce the boundary defining function
µ = α2 of Xeven; then one computes

g = µdt2∗ − (β̃ + 2µc) dt∗ dµ+ (µc2 + β̃c) dµ2 − k(µ, y, dy). (2.3)

In particular, the determinant of g in these coordinates equals − β̃
2

4 det(k), hence g
is non-degenerate up to Y . Furthermore, we claim that we can choose c(µ, y) such
that dt∗ is timelike on Rt∗ ×Xeven; indeed, with G denoting the dual metric to g,
we require

G(dt∗, dt∗) = −4β̃−2(µc2 + β̃c) > 0. (2.4)

This is trivially satisfied if c = −β̃/2µ, which corresponds to undoing the change
of coordinates in (2.2), however we want c to be smooth at µ = 0. But for µ ≥ 0,

(2.4) holds provided −β̃/µ < c < 0; hence, we can choose a smooth c verifying (2.4)

in µ ≥ 0 and such that moreover c = −β̃/2µ in µ ≥ µ1 (intersected with the collar
neighborhood of Y ) for any fixed µ1 > 0. Thus, we can choose F as in (2.2) with
F = 0 in α2 ≥ µ1 (in particular, F is defined globally on X) such that (2.4) holds.

Since the metric g in (2.3) is stationary (t∗-independent) and non-degenerate on

Xeven, it can be extended to a stationary Lorentzian metric on an extension X̃ into

which Xeven embeds. Concretely, one defines X̃δ = (Xevent([−δ, ε)µ×Yy))/ ∼ with
the natural smooth structure, where ∼ identifies elements of [0, ε)µ×Yy with points

in Xeven by means of the collar neighborhood of Y . Then, extending β̃, k, and c,

and thus g, in an arbitrary t∗-independent manner to X̃δ, the extended metric,

which we denote by g̃, is non-degenerate on X̃δ, and dt∗ remains timelike uniformly

on Rt∗ × X̃δ, provided one fixes δ > 0 to be sufficiently small: indeed, in µ < 0,

(2.4) (with the dual metric G̃ of g̃ in place of G) holds for any negative function

c as long as β̃ remains positive on X̃δ. Note that µ−1G(dµ, dµ) = −4β̃−2 < 0 in

µ > 0, so the level set {µ = −δ} is spacelike for the extended dual metric G̃ if one
reduces δ > 0 even further (if necessary). We let

X̃ := X̃δ
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for such a choice of δ. There are two reasons for extending the spacetime a bit
beyond the ‘horizon’ Y : first, this makes the microlocal radial point estimates of
[54] applicable; the microlocal approach is crucial later on, as it is the most stable
and straightforward way to obtain the high energy estimates which are needed to
deduce an expansion of solutions of the wave equation into quasinormal modes
up to exponentially decaying (in t∗) remainders—this is discussed in the proofs
of Theorems 4.2 and 4.5 below. Second, the microlocal framework is stable under
perturbations that do not respect the warped product structure near Y .8 We remark

that instead of the complex absorption in the extension region {µ < 0} ⊂ X̃ which

was used in [54], we have introduced Cauchy hypersurfaces at {µ = −δ} ⊂ X̃
(which may have several connected components) as in9 [31, §2.1.3] and [29, §8];
these are spacelike by construction.

The operator d+ δg on M now extends to an operator d+ δg̃ on M̃ = Rt∗ × X̃.
Correspondingly, the wave operator �g on M extends to the wave operator �g̃ on

M̃ . Consider �g̃, which is invariant under translations in t∗, acting on differential
forms which have time dependence e−it∗σ; that is, consider the operator

�̃(σ) = eit∗σ�e−it∗σ.

(This amounts to formally replacing each ∂t∗ in the expression for � by −iσ.) The

operator �̃(σ) acts on sections of the pullback ΛX̃M̃ of the form bundle ΛM̃ under

the map X̃ → M̃ , x̃ 7→ (0, x̃); Writing differential forms ũ on M̃ as

ũ = ũT + dt∗ ∧ ũN (2.5)

with ũT and ũN valued in forms on X̃, we can identify ΛX̃M̃ with ΛX̃ ⊕ ΛX̃.10

We also record that �̃(σ) is elliptic in X: indeed, on X, we have

�̃(σ) = e−iFσeitσ�e−itσeiFσ = e−iFσ�̂(σ)eiFσ, (2.6)

where �̂(σ) = eitσ�e−itσ is the conjugation of � by the Fourier transform in −t,
and F is as in (2.2); here, we view �̂(σ) as an operator acting on sections of

ΛX̃M̃ |X . Now, the latter bundle is isomorphic to ΛX ⊕ΛX, with the isomorphism
given by writing differential forms as u = uT + dt ∧ uN , with uT and uN valued

in forms on X; the relation of the expression of �̂(σ) as a 2 × 2 block matrix in
this bundle decomposition with the decomposition (2.5) is given by conjugation by
a bundle isomorphism on ΛX ⊕ ΛX, which preserves ellipticity.11 The principal

symbol of �̂(σ) as a second order operator acting on sections of ΛX ⊕ΛX is given
by (−H) ⊕ (−H), where H is the dual metric to h, here identified with the dual

8If one is not interested in these two issues, i.e. microlocal control and stability under per-
turbations, one can alternatively use Warnick’s approach [58] to the definition of quasinormal
modes.

9In the notation of the reference, t2 = µ+δ, while t1 is only used to define a Cauchy hypersurface
{t1 = 0} where one can impose Cauchy data for the wave or Hodge–de Rham equation; the choice

of the latter is very flexible, and we could e.g. take t1 = t∗.
10At this point, �̃(σ) is simply a family of operators depending on σ ∈ C. Its relation to the

wave operator �g̃ and use for the description of solutions of the wave equation, e.g. in the form of

partial resonance expansions, requires precise control of �̃(σ) as an operator on suitable function
spaces as |Reσ| → ∞—these are the high energy estimates mentioned before.

11Ellipticity is the invertibility of the principal symbol—which in the present case is valued in

endomorphisms of Λ
X̃
M̃ |X—away from the zero section of T ∗X; invertibility of endomorphisms

is preserved by conjugation with isomorphisms.
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metric function on T ∗X; this follows from the calculations in the next section. Since

H is Riemannian, this implies that �̂(σ), hence �̃(σ), is elliptic in X.

Consider now �̃(σ) as an operator

�̃(σ) : X s → Ys−1, (2.7)

where

X s = {u ∈ H̄s(X̃◦; ΛX̃ ⊕ ΛX̃) : �̃(σ)u ∈ Ys−1}, Ys−1 = H̄s−1(X̃◦; ΛX̃ ⊕ ΛX̃);

here, using the notation introduced in [33, Appendix B.2], the bar denotes ex-

tendible distributions, i.e. H̄s(X̃◦) denotes the space of restrictions to X̃◦ of Hs

functions on a compact manifold without boundary containing X̃◦ as an open sub-
manifold. The key result of [54] is that for any fixed C ∈ R and for regularity above
a certain threshold,

s > 1/2 + β̂ − βC, Imσ > −C, (2.8)

the operator (2.7) is Fredholm, and indeed invertible for Imσ � 1: this is [54,

Theorem 1.2] with Qσ = 0, λ = 0, Pσ = �̃(σ). The additional shift β̂ is due to

the fact that �̂(σ), σ ∈ R, is not symmetric with respect to a positive definite fiber
inner product on the form bundle; see the proof of [54, Propositions 2.3 and 2.4],

esp. Equation (2.15) there, for the contribution of �̂(σ)∗− �̂(σ) to the radial point
estimate, as well as [31, Footnote 5] for the spacetime version of this estimate, i.e.
prior to conjugating by the Fourier transform in t∗. The Fredholm property of (2.7)

follows from the ellipticity of �̃(σ) in X, from real principal type propagation
estimates (or more simply, energy estimates) in the extension region {µ < 0} where

�̃(σ) is a hyperbolic (wave-type) operator, and the radial point estimates atN∗{µ =
0} which use the source/sink nature of the Hamilton flow of the principal symbol

of �̃(σ) there (this is the phase space manifestation of the classical red-shift effect);
see [54, §4.8] for a verification of these facts for metrics of the form (2.3).12

We remark that since �̃(σ) = (d̃(σ) + δ̃(σ))2 : X s → Ys−1 is an analytic family
of Fredholm operators with meromorphic inverse, the map

(d̃(σ) + δ̃(σ))−1 := (d̃(σ) + δ̃(σ))�̃(σ)−1 : Ys−1 → Ys−1

is meromorphic as well for the same s and σ as above, and is a right inverse (away
from its poles) of

d̃(σ) + δ̃(σ) : Zs−1 → Ys−1, (2.9)

where Zs−1 = {u ∈ H̄s−1(X̃; ΛX̃ ⊕ ΛX̃) : (d̃(σ) + δ̃(σ))u ∈ Ys−1}. Increasing the

lower bound on s required in (2.8) by 1, an element u ∈ kerYs−1 d̃(σ) + δ̃(σ) of

course satisfies u ∈ X s−1, hence u ∈ kerX s−1 �̃(σ), thus has above threshold regu-
larity, which means it lies in a finite-dimensional space. Thus, with this increased
requirement on s, the map (2.9) is Fredholm, invertible for Imσ � 1, and satisfies

high energy estimates provided �̃(σ) does.

12See also [54, §2.2], where Λ± = {∓c dµ : c > 0} denotes the two components of N∗{µ = 0},
for a precise description of the relevant dynamical properties: Λ− is a source, Λ+ a sink for the

Hamilton flow of the principal symbol of �̃(σ).
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To summarize this to the extent needed in the sequel, �̃(σ) is an analytic
family of Fredholm operators on suitable function spaces, and the inverse fam-

ily �̃(σ)−1 : C∞(X̃; ΛX̃ ⊕ ΛX̃) → C∞(X̃; ΛX̃ ⊕ ΛX̃) (where we use the identi-
fication (2.5)) admits a meromorphic continuation from Imσ � 0 to the com-
plex plane. Moreover (see [54, Lemma 3.5]), the Laurent coefficient at the poles
are finite rank operators mapping sufficiently regular distributions to elements of

C∞(X̃; ΛX̃⊕ΛX̃). Note however that without further assumptions on the geodesic
flow (for instance, semiclassical non-trapping or normally hyperbolic trapping), we
do not obtain any high energy bounds, i.e. polynomial (in σ) estimates on the oper-

ator norm of �̂(σ)−1 : Ys−1 → X s when |Reσ| → ∞ and Imσ ≥ −C for (suitable)
C > 0.

Lemma 2.1. A complex number σ ∈ C is a resonance of �, i.e. �̃(σ)−1 has a pole
at σ, if and only if there exists a non-zero u ∈ α−iβσC∞(Xeven; ΛXeven ⊕ ΛXeven)

(using the identification (2.5)) such that �̂(σ)u = 0.

Proof. If σ ∈ C is a resonance, then there exists a non-zero ũ ∈ C∞(X̃; ΛX̃ ⊕ ΛX̃)

with �̃(σ)ũ = 0. Restricting to X, this implies by (2.6) and (2.2) that �̂(σ)u = 0
for u = eiFσũ|X ∈ α−iβσC∞(Xeven; ΛXeven⊕ΛXeven). If u = 0, then ũ vanishes to

infinite order at Y , and since �̃(σ) is a conjugate of a wave or Klein-Gordon operator
on an asymptotically de Sitter space, see [55], unique continuation at infinity on
the de Sitter side as in [53, Proposition 5.3] (which is in the scalar setting, but
works similarly in the present context since it relies on a semiclassical argument
in which only the principal symbol of the wave operator matters, and this is the

same in our setting) shows that ũ ≡ 0 on X̃. This is the place where we use that

we capped off X̃ outside of Xeven by a Cauchy hypersurface: (pseudodifferential)
complex absorption in principle would have the mildly undesirable effect of allowing

for the existence of resonant states supported in X̃ \X, see [54, Proposition 3.9].
Hence, u 6= 0, as desired.

Conversely, given a u ∈ α−iβσC∞(Xeven; ΛXeven ⊕ ΛXeven) with �̂(σ)u = 0, we

define ũ′ ∈ C∞(X̃; ΛX̃ ⊕ΛX̃) to be any smooth extension of e−iFσu from Xeven to

X̃. Then �̃(σ)ũ′ is identically zero in X and thus vanishes to infinite order at Y ;
hence, we can solve

�̃(σ)ṽ = −�̃(σ)ũ′

in X̃ \ X with ṽ vanishing to infinite order at Y : this is a wave equation on an
asymptotically de Sitter space, as mentioned above, hence solvability is provided
by [53, Proposition 3.4 and Corollary 3.6]. Thus, extending ṽ by 0 to X, we find

that ũ = ũ′ + ṽ is a non-zero solution to �̃(σ)ũ = 0 on X̃. �

Since � = (d + δ)2, we readily obtain the following analogue of Lemma 2.1 for
d+ δ:

Lemma 2.2. The map13 kerC∞(X̃)(d̃(σ) + δ̃(σ))→ kerα−iβσC∞(Xeven)(d̂(σ) + δ̂(σ)),

ũ 7→ eiFσũ|X , is an isomorphism.

Proof. Since ũ ∈ ker(d̃(σ) + δ̃(σ)) implies ũ ∈ ker �̃(σ), injectivity follows from the

proof of Lemma 2.1. To show surjectivity, take u ∈ eiFσC∞(Xeven) with (d̂(σ) +

13We drop the bundles from the notation for simplicity.
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δ̂(σ))u = 0 and choose any smooth extension ũ′ of e−iFσu to X̃. Solving �̃(σ)ṽ′ =

−(d̃(σ) + δ̃(σ))ũ′ with supp ṽ′ ⊂ X̃ \X and then defining ṽ = (d̃(σ) + δ̃(σ))ṽ′, we

see that ũ = ũ′ + ṽ extends ũ′ to X̃ and is annihilated by d̃(σ) + δ̃(σ). �

Thus, when studying the location and structure of resonances, we already have
very precise information about regularity and asymptotics (on X) of potential res-
onant states.

3. Resonances in Imσ ≥ 0

Using Lemma 2.2, we now study the resonances of in Imσ ≥ 0 by analyzing the

operator d̂(σ) + δ̂(σ) (and related operators) on Xeven. Recall that a resonance at
σ ∈ C and a corresponding resonant state ũ yield a solution (d + δ)(e−it∗σũ) = 0,
hence Imσ > 0 implies in view of |e−it∗σ| = et∗ Imσ that e−it∗σũ grows exponen-
tially in t∗, whereas resonances with Imσ = 0 yield solutions which at most grow
polynomially in t∗ (and do not decay). We will continue to drop the metric g or g̃
from the notation for brevity.

In order to keep track of fiber inner products and volume densities, we will use
the following notation.

Definition 3.1. For a density µ on X and a complex vector bundle E → X
equipped with a positive definite Hermitian form B, let L2(X,µ; E , B) be the space
of all sections u of E for which ‖u‖2µ,B :=

∫
X
B(u, u) dµ <∞.

If B is merely assumed to be sesquilinear (but not necessarily positive definite),
we define the pairing

〈u, v〉µ,B :=

∫
X

B(u, v) dµ

for all sections u, v of E for which B(u, v) ∈ L1(X,µ). If the choice of the density µ
or inner product B is clear from the context, it will be dropped from the notation.

Remark 3.2. It will always be clear what bundle E we are using at a given time, so E
will from now on be dropped from the notation; also, X will mostly be suppressed.

Since the metric g in (1.1) has a warped product structure and αdt has unit
squared norm, it is natural to write differential forms on M = Rt ×Xx as

u(t, x) = uT (t, x) + αdt ∧ uN (t, x), (3.1)

where the tangential and normal forms uT and uN are t-dependent forms on X,
and we will often write this as

u(t, x) =

(
uT (t, x)
uN (t, x)

)
.

Thus, the differential d on M is given in terms of the differential dX on X by

d =

(
dX 0

α−1∂t −α−1dXα

)
. (3.2)

Since the dual metric is given by G = α−2∂2
t −H, the fiber inner product Gk on

k-forms is given by

Gk =

(
(−1)kHk 0

0 (−1)k−1Hk−1

)
, (3.3)



ASYMPTOTICS FOR DIFFERENTIAL FORMS 13

where Hq denotes the fiber inner product on q-forms on X. Furthermore, the
volume density on M is |dg| = α|dt dh|, and we therefore compute the L2(M, |dg|)-
adjoint of d to be

δ =

(
−α−1δXα −α−1∂t

0 δX

)
, (3.4)

where δX is the L2(X, |dh|; ΛX,H)-adjoint of dX ; the signs here are due to the
signs in (3.3) which depend on the form degree. Thus,

d̂(σ) =

(
dX 0

−iσα−1 −α−1dXα

)
, δ̂(σ) =

(
−α−1δXα iσα−1

0 δX

)
. (3.5)

In the course of our arguments we will need to justify various integrations by
parts and boundary pairing arguments. This requires a precise understanding of
the asymptotics of uT and uN for potential resonant states u at Y = ∂Xeven. To
this end, we further decompose the bundle ΛX ⊕ ΛX near Y by writing uT as

uT = uTT + dα ∧ uTN (3.6)

and similarly for uN , hence

u = uTT + dα ∧ uTN + αdt ∧ uNT + αdt ∧ dα ∧ uNN , (3.7)

where the u•• are forms on X valued in ΛY . Now for a resonant state u, we have

u = α−iβσ(ũ′TT + d(α2) ∧ ũ′TN + dt∗ ∧ ũ′NT + dt∗ ∧ d(α2) ∧ ũ′NN ) (3.8)

near Y with ũ′•• ∈ C∞(Xeven; ΛY ), which we rewrite in terms of the decomposition
(3.7) using (2.2), obtaining

u = α−iβσ
(
ũ′TT + dα ∧ (2αũ′TN − F ′(α)ũ′NT )

+ αdt ∧ α−1ũ′NT + 2αdt ∧ dα ∧ ũ′NN
)
;

hence introducing the ‘change of basis’ matrix

C =


1 0 0 0
0 α βα−1 0
0 0 α−1 0
0 0 0 1


and defining the space

C∞(σ) := Cα−iβσ


C∞(Xeven; ΛY )
C∞(Xeven; ΛY )
C∞(Xeven; ΛY )
C∞(Xeven; ΛY )

 ⊂


α−iβσC∞(Xeven; ΛY )
α−iβσ−1C∞(Xeven; ΛY )
α−iβσ−1C∞(Xeven; ΛY )
α−iβσC∞(Xeven; ΛY )

 , (3.9)

we obtain 
uTT
uTN
uNT
uNN

 = Cα−iβσ


ũTT
ũTN
ũNT
ũNN

 ∈ C∞(σ) (3.10)

with ũ•• ∈ C∞(Xeven; ΛY ), where the u•• are the components of u in the decom-
position (3.7).
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We will also need the precise form of d̂(σ) and δ̂(σ) near Y . Since in the decom-

position (3.6), the fiber inner product on ΛX-valued forms is H = K ⊕ β̃−2K in
view of (2.1), we have

dX =

(
dY 0
∂α −dY

)
and δX =

(
δY ∂∗α
0 −β̃2δY β̃

−2

)
, (3.11)

where dY is the differential on Y and ∂∗α is the formal adjoint of ∂α : C∞(X; ΛY ) ⊂
L2(X, |dh|; ΛY,K) → L2(X, |dh|; ΛY, β̃−2K). Thus, if β̃ and k are independent of
α near Y , we simply have ∂∗α = −β−2∂α, and in general

∂∗α = −β−2∂α + α2p1∂α + αp2, p1, p2 ∈ C∞(Xeven). (3.12)

Finally, we compute the form of d̂(σ) near Y acting on forms as in (3.10):

d̂(σ)C =


dY 0 0 0
∂α −αdY −βα−1dY 0

−iσα−1 0 −α−1dY 0
0 −iσ −iσβα−2 − α−1∂α dY

 . (3.13)

Thus, applying d̂(σ) to u ∈ C∞(σ) yields an element

d̂(σ)u ∈


α−iβσC∞(Xeven; ΛY )
α−iβσ−1C∞(Xeven; ΛY )
α−iβσ−1C∞(Xeven; ΛY )
α−iβσC∞(Xeven; ΛY )

 ,

where we use that there is a cancellation in the (4, 3) entry of d̂(σ)C in view of
(iσβα−2 + α−1∂α)α−iβσ = 0; without this cancellation, the fourth component of

d̂(σ)u would only lie in α−iβσ−2C∞(Xeven; ΛY ). Similarly, we compute

δ̂(σ)C =


−δY −α−1∂∗αα

2 −βα−1∂∗α + iσα−2 0

0 αβ̃2δY β̃
−2 βα−1β̃2δY β̃

−2 iσα−1

0 0 α−1δY ∂∗α
0 0 0 −β̃2δY β̃

−2

 , (3.14)

thus applying δ̂(σ) to u ∈ C∞(σ) also gives an element

δ̂(σ)u ∈


α−iβσC∞(Xeven; ΛY )
α−iβσ−1C∞(Xeven; ΛY )
α−iβσ−1C∞(Xeven; ΛY )
α−iβσC∞(Xeven; ΛY )

 ,

where there is again a cancellation in the (1, 3) entry of δ̂(σ)C ; without this can-

cellation, the first component of δ̂(σ)u would only lie in α−iβσ−2C∞(Xeven; ΛY ).

In fact, a bit more is true: namely, one checks that14 αiβσC−1d̂(σ)Cα−iβσ

and αiβσC−1δ̂(σ)Cα−iβσ preserve the space C∞(Xeven; ΛY )4 (in the decomposi-

tion (3.8)), hence if u ∈ C∞(σ), then also d̂(σ)u, δ̂(σ)u ∈ C∞(σ). Since it will be useful

14Either, this follows by a direct computation; or one notes that these operators are equal (up
to a smooth phase factor) to the matrices of the Fourier transforms in t∗ of d and δ with respect

to the form decomposition (3.8), which are smooth on the extended manifold X̃.
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later, we check this explicitly for σ = 0 by computing

C−1d̂(0)C =


dY 0 0 0

α−1∂α −dY 0 0
0 0 −dY 0
0 0 −α−1∂α dY

 (3.15)

and

C−1δ̂(0)C =


−δY −α−1∂∗αα

2 −α−1∂∗αβ 0

0 β̃2δY β̃
−2 βα−2β̃2[δY , β̃

−2] −βα−1∂∗α
0 0 δY α∂∗α
0 0 0 −β̃2δY β̃

−2

 . (3.16)

3.1. Absence of resonances in Imσ > 0. The fiber inner product on the form
bundle is not positive definite, thus we cannot use standard arguments for (formally)

self-adjoint operators to exclude a non-trivial kernel of d̂(σ) + δ̂(σ). We there-
fore introduce a different inner product (by which we mean here a non-degenerate
sesquilinear form), related to the natural inner product induced by the metric,
which does have some positivity properties. Concretely, for θ ∈ (−π/2, π/2), we
use the inner product H ⊕ e−2iθH, i.e. on pure degree k-forms on M , the fiber
inner product is given by Hk⊕ e−2iθHk−1 in the decomposition into tangential and
normal components as in (3.1).

Lemma 3.3. Let θ ∈ (−π/2, π/2). Suppose that u ∈ L2(α|dh|;H⊕H) is such that
〈u, u〉H⊕e−2iθH = 0. Then u = 0.

Proof. With u = uT+αdt∧uN , we have ‖uT ‖2L2(α|dh|;H)+e
−2iθ‖uN‖2L2(α|dh|;H) = 0.

Multiplying this equation by eiθ and taking real parts gives

cos(θ)‖u‖2L2(α|dh|;H⊕H) = 0,

hence u = 0, since cos θ > 0 for θ in the given range. �

Using the volume density α|dh| to compute adjoints,15 we have

〈d̂(σ)u, v〉H⊕e−2iθH = 〈u, δ̂θ(σ)v〉H⊕e−2iθH , u, v ∈ C∞c (X; ΛX ⊕ ΛX)

for the operator

δ̂θ(σ) =

(
α−1δXα ie2iθσ̄α−1

0 −δX

)
,

which equals −δ̂(σ) provided e2iθσ̄ = −σ, i.e. σ ∈ eiθ · i(0,∞).

Remark 3.4. Since the inner product H⊕ e−2iθH is not Hermitian, we do not have

〈δ̂θ(σ)u, v〉H⊕e−2iθH = 〈u, d̂(σ)v〉H⊕e−2iθH in general. Rather, one computes

〈δ̂θ(σ)u, v〉H⊕e2iθH = 〈v, δ̂θ(σ)u〉H⊕e−2iθH

= 〈d̂(σ)v, u〉H⊕e−2iθH = 〈u, d̂(σ)v〉H⊕e2iθH .
(3.17)

15See Definition 3.1 for the notation used here.
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Now suppose u ∈ C∞(σ) is a solution, with Imσ > 0, of

(d̂(σ) + δ̂(σ))u = 0. (3.18)

We claim that every such u must vanish. To show this, we apply d̂(σ) to (3.18) and
pair the result with u; this gives

0 = 〈d̂(σ)δ̂(σ)u, u〉H⊕e−2iθH = 〈δ̂(σ)u, δ̂θ(σ)u〉H⊕e−2iθH

= −〈δ̂(σ)u, δ̂(σ)u〉H⊕e−2iθH ,
(3.19)

where we choose θ ∈ (−π/2, π/2) so that σ ∈ eiθ · i(0,∞); the integration by parts

will be justified momentarily. By Lemma 3.3, this implies δ̂(σ)u = 0. On the other

hand, applying δ̂(σ) to (3.18) and using (3.17), we get, for σ ∈ eiθ · i(0,∞),

0 = 〈δ̂(σ)d̂(σ)u, u〉H⊕e2iθH = −〈δ̂θ(σ)d̂(σ)u, u〉H⊕e2iθH
= −〈d̂(σ)u, d̂(σ)u〉H⊕e2iθH ,

(3.20)

hence d̂(σ)u = 0 by Lemma 3.3, again modulo justifying the integration by parts.

Using the splitting (3.1) and the form (3.5) of d̂(σ), the second component of

the equation d̂(σ)u = 0 gives iσuT + dXαuN = 0. Taking the L2(α|dh|;H)-pairing
of this with uT gives (the integration by parts to be justified below)

0 = iσ‖uT ‖2 + 〈dXαuN , uT 〉 = iσ‖uT ‖2 + 〈uN , δXαuT 〉, (3.21)

and then the first component of δ̂(σ)u = 0, i.e. δXαuT = iσuN , can be used to
rewrite the pairing on the right hand side; we obtain 0 = i(σ‖uT ‖2 − σ̄‖uN‖2).
Writing σ = ieiθσ̃ with σ̃ > 0 real, this becomes

0 = σ̃(eiθ‖uT ‖2 + e−iθ‖uN‖2), (3.22)

and taking the real part of this equation gives uT = 0 = uN , hence u = 0.
We now justify the integrations by parts used in (3.19) and (3.20), which is only

an issue at Y . First of all, since u ∈ C∞(σ) and Imσ > 0, the pairings are well-defined

in the strong sense that all functions which appear in the pairings are elements of
L2(α|dh|;H ⊕H); in fact, all functions in these pairings lie in C∞(σ). In view of the

block structure H⊕e−2iθH = K⊕β̃−2K⊕e−2iθK⊕β̃−2e−2iθK of the inner product,
the only potentially troublesome term for the integration by parts is the pairing
of the first components, since this is where we need the cancellation of two too

singular summands mentioned after (3.14) to ensure that δ̂(σ)u ∈ L2. Integrating
by parts separately in each of the summands of one factor of the L2 pairing, one
can only use the cancellation in (i.e. the L2-membership of) the other factor; that
is, we integrate by parts in a pairing (of the first components) of an element of
α−iβσC∞(Xeven; ΛY ) (using the cancellation) with one in α−iβσ−2C∞(Xeven; ΛY )
(not using the cancellation), thus this pairing is still absolutely integrable and the
integration by parts is justified. Likewise, the integration by parts used in (3.20)
only has potential issues in the pairing of the fourth components, since we need the

cancellation mentioned after (3.13) to ensure that d̂(σ)u ∈ L2. But again, if we
only use this cancellation in one of the terms, we pair α−iβσC∞(Xeven; ΛY ) against
α−iβσ−2C∞(Xeven; ΛY ), which is absolutely integrable.
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In order to justify (3.21), we observe using (3.11) that near Y ,

uT , dXαuN ∈
(
α−iβσC∞
α−iβσ−1C∞

)
, uN , δXαuT ∈

(
α−iβσ−1C∞
α−iβσC∞

)
,

where we write C∞ = C∞(Xeven; ΛY ). These membership statements do not rely
on any cancellations, and since all these functions are in L2(α|dh|; ΛY,K) near Y ,
the integration by parts in (3.21) is justified.

We summarize the above discussion and extend it to a quantitative version:

Proposition 3.5. There exists a constant C > 0 such that for all σ ∈ C with
Imσ > 0, we have the following estimate for u ∈ C∞(σ):

‖u‖L2(α|dh|;H⊕H) ≤ C
|σ|
| Imσ|2

‖(d̂(σ) + δ̂(σ))u‖L2(α|dh|;H⊕H). (3.23)

Proof. Write σ = ieiθσ̃, θ ∈ (−π/2, π/2), σ̃ > 0, as before. Let f = (d̂(σ) + δ̂(σ))u;

in particular f ∈ C∞(σ). Then d̂(σ)δ̂(σ)u = d̂(σ)f , so

〈δ̂(σ)u, δ̂(σ)u〉H⊕e−2iθH = −〈d̂(σ)δ̂(σ)u, u〉H⊕e−2iθH = 〈f, δ̂(σ)u〉H⊕e−2iθH , (3.24)

and similarly

〈d̂(σ)u, d̂(σ)u〉H⊕e2iθH = 〈f, d̂(σ)u〉H⊕e2iθH . (3.25)

Multiply (3.24) by eiθ, (3.25) by e−iθ and take the sum of both equations to get

eiθ(‖(δ̂(σ)u)T ‖2 + ‖(d̂(σ)u)N‖2) + e−iθ(‖(δ̂(σ)u)N‖2 + ‖(d̂(σ)u)T ‖2)

= eiθ〈f, δ̂(σ)u〉H⊕e−2iθH + e−iθ〈f, d̂(σ)u〉H⊕e2iθH .

Here, the norms without subscript are L2(α|dh|;H ⊕ H)-norms as usual. Taking
the real part and applying Cauchy–Schwarz to the right hand side produces the
estimate

‖d̂(σ)u‖+ ‖δ̂(σ)u‖ ≤ 4

cos θ
‖f‖ =

4|σ|
Imσ

‖f‖. (3.26)

We estimate u in terms of the left hand side of (3.26) by following the arguments

leading to (3.22): put v = d̂(σ)u and w = δ̂(σ)u. Then iσuT + dXαuN = −αvN ;
we pair this with uT in L2(α|dh|;H) and obtain

iσ‖uT ‖2 + 〈uN , δXαuT 〉 = −〈αvN , uT 〉.

Using −δXαuT + iσuN = αwT , this implies

iσ‖uT ‖2 − iσ̄‖uN‖2 = −〈αvN , uT 〉+ 〈uN , αwT 〉,

thus

σ̃(eiθ‖uT ‖2 + e−iθ‖uN‖2) = 〈αvN , uT 〉 − 〈uN , αwT 〉.

Taking the real part and applying Cauchy–Schwarz, we get

(cos θ)‖u‖ ≤ |σ|−1(‖αv‖+ ‖αw‖) . |σ|−1(‖v‖+ ‖w‖).

In combination with (3.26), this yields (3.23). �
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3.2. Boundary pairing and absence of non-zero real resonances. We pro-
ceed to exclude non-zero real resonances for d+ δ by means of a boundary pairing
argument similar to [42, §2.3].

Proposition 3.6. Suppose σ ∈ R, σ 6= 0. If u ∈ C∞(σ) solves (d̂(σ) + δ̂(σ))u = 0,

then u = 0.

Proof. We proceed in the usual three steps: (1) vanishing of the leading coefficient
at the horizon, (2) rapid decay at the horizon, (3) unique continuation.

Step (1). Writing u = uT +αdt∧uN as usual, we can expand (d̂(σ)+ δ̂(σ))u = 0
as

(αdX − δXα)uT + iσuN = 0 (3.27)

−iσuT + (−dXα+ αδX)uN = 0.

Applying (−dXα + αδX) to the first equation and using the second equation to
simplify the resulting expression produces a second order equation for uT ,

(dXαδXα+ αδXαdX − dXα2dX − σ2)uT = 0. (3.28)

Writing uT = uTT + dα ∧ uTN as in (3.6), we see from the definition of the space
C∞(σ) that

uT ∈ C∞(σ),T := α−iβσC∞(Xeven; ΛY )⊕ α−iβσ−1C∞(Xeven; ΛY )

near Y . Notice that for σ ∈ R, the space C∞(σ),T barely fails to be contained in

L2(α|dh|).
We will deduce from (3.28) that uT = 0; equation (3.27) then gives uN = 0,

as σ 6= 0. Now, the L2(α|dh|;H)-adjoint of dXα is δXα, hence even ignoring the
term dXα

2dX , the operator in (3.28) is not symmetric. However, we can obtain a
simpler equation from (3.28) by applying dX to it; write vT = dXuT ∈ C∞(σ),T , and

near Y ,

vT =

(
α−iβσ ṽTT
α−iβσ−1ṽTN

)
, ṽTT , ṽTN ∈ C∞(Xeven; ΛY ).

Then vT satisfies the equation

(dXαδXα− σ2)vT = 0,

and dXαδXα is symmetric with respect to the L2(α|dh|;H)-inner product. We now
compute the boundary pairing formula (using the same inner product); to this end,
pick a cutoff function χ ∈ C∞(X) such that in a collar neighborhood [0, δ)α × Yy
of Y in X, χ = χ(α) is identically 0 near α = 0 and identically 1 in α ≥ δ/2, and
extend χ by 1 to all of X. Define χε(α) = χ(α/ε) and χ′ε(α) = χ′(α/ε). Then

0 = lim
ε→0

(〈(dXαδXα− σ2)vT , χεvT 〉 − 〈vT , χε(dXαδXα− σ2)vT 〉)

= lim
ε→0
〈vT , [dXαδXα, χε]vT 〉.

(3.29)

The coefficients of the commutator are supported near Y , hence we use (3.11) and
(3.12) to compute its form as

[dXαδXα, χε] =

[(
dY αδY α dY α∂

∗
αα

∂ααδY α ∂αα∂
∗
αα+ dY αβ̃

2δY β̃
−2α

)
, χε

]
=

(
0 dY α[∂∗α, χε]α

[∂α, χε]αδY α [∂αα∂
∗
αα, χε]

)
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= ε−1

(
0 −β−2(α2 +O(α4))χ′εdY + α4χ′ε[dY , p1]

χ′εαδY α χ′εα∂
∗
αα− ∂α(α2 +O(α4))β−2χ′ε

)
.

In (3.29), the off-diagonal terms of this give terms of the form∫
Y

∫
α∓iβσα±iβσ−1ε−1α2χ′εṽ dα |dk| (3.30)

with ṽ ∈ C∞(Xeven), and are easily seen to vanish in the limit ε→ 0. The non-zero
diagonal term gives16 a term which comes from the O(α4) summand and vanishes
in the limit ε→ 0, plus

ε−1〈α−iβσ−1ṽTN , (χ
′
εα∂

∗
αα− ∂αα2β−2χ′ε)α

−iβσ−1ṽTN 〉L2(X;αβ dα|dk|;ΛY ;β̃−2K)

= 2

∫
Y

∫
〈ṽTN , iβ−2σṽTN 〉Kε−1χ′ε dα|dk|+ o(1)

ε→0−−−→ −2iβ−2σ‖ṽTN |Y ‖2L2(Y,|dk|;K);

here, both summands in the pairing yield the same result, as is most easily seen
by integrating by parts in α, hence the factor of 2, and the o(1)-term comes from
differentiating ṽTN , which produces a term of the form (3.30). We thus arrive at

0 = 〈(dXαδXα− σ2)vT , vT 〉 − 〈vT , (dXαδXα− σ2)vT 〉 = −2iβ−2σ‖ṽTN |Y ‖2,
whence ṽTN |Y = 0 in view of σ 6= 0, so we in fact have

vT =

(
α−iβσ ṽTT
α−iβσ+1ṽ′TN

)
, ṽ′TN ∈ C∞(Xeven; ΛY ). (3.31)

Step (2). For the next step, recall that on a manifold with boundary X, 0-vector
fields, introduced by Mazzeo and Melrose [41] to analyze the resolvent of the Lapla-
cian on asymptotically hyperbolic spaces, are smooth vector fields that vanish at
∂X, i.e. are of the form αV , where V is a smooth vector field on X, and α, as in
our case, is a boundary defining function, i.e. in local coordinates a linear combina-
tion, with smooth coefficients, of α∂α and α∂yj . Further, 0-differential operators,

A ∈ Diff0(X), are the differential operators generated by these (taking finite sums of
finite products, with C∞(X) coefficients). As a contrast, b-vector fields are merely
tangent to ∂X, so in local coordinates they are linear combinations, with smooth
coefficients, of α∂α and ∂yj , and they generate b-differential operators Diffb(X).
Often, as in our case, one is considering solutions of 0-differential equations with
additional properties, such as having an expansion in powers of α (and perhaps
logα) with smooth coefficients, i.e. polyhomogeneous functions. In these cases
αDiffb(X) ⊂ Diff0(X) acts ‘trivially’ on an expansion in that it maps each term
to one with an additional order of vanishing, so in particular, one can analyze the
asymptotic expansion of solutions of 0-differential equations in this restrictive class
by ignoring the αDiffb(X) terms. Notice that α∂yj ∈ αDiffb(X) in particular, so
the tangential 0-derivatives can be dropped for this purpose. The indicial equation
is then obtained by freezing the coefficients of A ∈ Diff0(X) at ∂X, i.e. writing it
as
∑
k,β ak,β(α, y)(α∂α)k(α∂y)β , where ak,β are bundle endomorphism valued, and

restricting α to 0, and dropping all terms with a positive power of α∂y, to obtain∑
k ak,0(0, y)(α∂α)k. This can be thought of as a regular-singular ODE in α for

each y; its indicial roots are called the indicial roots of the original 0-operator, and

16Recall that the volume density is given by α|dh| = αβ dα|dk|, and the fiber inner product in

the (TN)-component is β̃−2K.
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they determine the asymptotics of solutions of the homogeneous PDE with this a
priori form.

Now dXαδXα− σ2 ∈ Diff2
0(X) is a 0-differential operator which equals

dXαδXα− σ2 =

(
−σ2 0

0 −β−2∂αα∂αα− σ2

)
modulo αDiff2

b(X); its indicial roots (i.e. the values of λ for which α−λ(dXαδXα−
σ2)αλ, which is a matrix depending polynomially on λ, is not invertible) are ±iβσ−
1. In particular, −iβσ+j, j ∈ N0, is not an indicial root. Thus, a standard inductive
argument starting with (3.31) shows that vT ∈ Ċ∞(X; ΛX).

Step (3). Next, we note that vT lies in the kernel of the operator

dXαδXα+ α2δXdX − σ2 ∈ Diff2
0(X; 0ΛX), (3.32)

which has the same principal part as α2∆X (computed with respect to the metric
h), hence is principally a 0-Laplacian; thus, we can apply Mazzeo’s result [40, The-
orem (13)] on unique continuation at infinity for elliptic second order 0-differential
operators such as (3.32) to conclude that the rapidly vanishing vT must in fact
vanish identically.

We thus have proved dXuT = 0. Since uT satisfies (3.28), we deduce that uT
itself satisfies

(dXαδXα− σ2)uT = 0,

thus repeating the above argument shows that this implies uT = 0, hence u = 0,
and the proof is complete. �

3.3. Analysis of the zero resonance. We have shown now that the only potential
resonance for d+δ in Imσ ≥ 0 is σ = 0, and we proceed to study the zero resonance
in detail, in particular giving a cohomological interpretation of it in Section 3.4.

We begin by establishing the order of the pole of (d̃(σ) + δ̃(σ))−1:

Lemma 3.7. (d̃(σ) + δ̃(σ))−1 has a pole of order 1 at σ = 0.

Proof. Since d̃(0) + δ̃(0) annihilates constant functions (which are indeed elements

of C∞(0)), (d̃(σ) + δ̃(σ))−1 does have a pole at 0. Denote the order of the pole by

N . Then there is a holomorphic family ũ(σ) ∈ C∞(X̃) with ũ(0) 6= 0 such that

(d̃(σ) + δ̃(σ))ũ(σ) = σN ṽ, where ṽ ∈ C∞(X̃). Define u(σ) = eiFσũ(σ)|X ∈ C∞(σ)

and v(σ) = eiFσ ṽ|X ∈ C∞(σ), then (d̂(0) + δ̂(0))u(σ) = σNv(σ). Moreover, since

(d̃(0) + δ̃(0))ũ(0) = 0 and ũ(0) is non-zero, Lemma 2.2 shows that u(0) 6= 0.
Let us assume now that N ≥ 2. For σ ∈ i(0,∞) close to 0, the quantitative

estimate in Proposition 3.5 now gives

‖u(σ)‖ . |σ|−1+N‖v(σ)‖ ≤ |σ|‖v(σ)‖, (3.33)

where we use the norm of L2(α|dh|;H ⊕ H).17 Notice that this does not imme-
diately give u(0) = 0 since v(0) /∈ L2(α|dh|;H ⊕ H). However, we can quantify
the degeneration of the L2-norm of v(σ) as σ → 0. To see this, we first ob-
serve that the L2-norm of v(σ) restricted to the complement of any fixed neigh-
borhood of Y does stay bounded, so it remains to analyze the L2-norms of the

17Observe that in the notation of Section 3.1, we have δ̂0(0) = −δ̂(0), hence using the Rie-
mannian fiber inner product H ⊕H is natural when studying the zero resonance.
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four components of v(σ) near Y in the notation of (3.7); denote these compo-
nents by α−iβσ ṽTT (σ), α−iβσ−1ṽTN (σ), α−iβσ−1ṽNT (σ) and α−iβσ ṽNN (σ), so that
the ṽ••(σ) ∈ C∞(Xeven; ΛY ) uniformly. Since the fiber metric in this basis has
a block diagonal form and any C∞(Xeven)-multiple of α−iβσ is uniformly square-
integrable with respect to the volume density α|dh|, the degeneration of the L2-norm
of v is caused by the (TN) and (NT ) components. For these, we compute, with
w̃(σ) ∈ C∞(Xeven; ΛY ) denoting any continuous family supported near Y ,∫

Y

∫
α2(−iβσ−1)‖w̃‖2K αdα|dk|

= ‖w̃(0)‖2L2(Y,|dk|;K)

∫
α−2iβσ−1χ(α) dα+O(1),

where χ ∈ C∞(X) is a cutoff, equal to 1 near α = 0. We can rewrite the integral
using an integration by parts, which yields∫

α−2iβσ−1χ(α) dα =
1

2iβσ

∫
α−2iβσχ′(α) dα = O(|σ|−1).

Therefore, we obtain the bound ‖v(σ)‖ = O(|σ|−1/2). Plugging this into (3.33), we
conclude using Fatou’s Lemma that u(0) = 0, which contradicts our assumption
that u(0) 6= 0. Hence, the order of the pole is N ≤ 1, but since it is at least 1, it
must be equal to 1. �

Next, we identify the resonant states. For brevity, we will write d̂ = d̂(0),

δ̂ = δ̂(0) and �̂ = �̂g(0).

Proposition 3.8. kerC∞
(0)

(d̂+ δ̂) is equal to the space

H = {u ∈ C∞(0) : d̂u = 0, δ̂u = 0}. (3.34)

Proof. Given u ∈ C∞(0) with (d̂+ δ̂)u = 0, we conclude that �̂u = 0. We observe now

that �̂ is symmetric on L2(α|dh|;H⊕H): indeed, d̂(σ) and δ̂(σ) are block diagonal
for σ = 0, see (3.5), hence are adjoints of one another with respect to ±H⊕±H for
any choice of signs, with opposite signs giving the natural inner product (3.3), and
both signs positive giving the Riemannian fiber metric H⊕H. Thus, we can obtain
information about u by a boundary pairing type argument: concretely, for a cutoff
χ ∈ C∞(X) as in the proof of Proposition 3.6, identically 0 near Y , identically 1
outside a neighborhood of Y and a function of α in a collar neighborhood of Y ,
and with χε(α) = χ(α/ε), χ′ε(α) = χ′(α/ε), we have18

0 = − lim
ε→0
〈χε(d̂ δ̂ + δ̂ d̂)u, u〉 = lim

ε→0
(〈δ̂u, δ̂χεu〉+ 〈d̂u, d̂χεu〉)

= lim
ε→0

(‖χ1/2
ε δ̂u‖2 + ‖χ1/2

ε d̂u‖2) + lim
ε→0

(〈δ̂u, [δ̂, χε]u〉+ 〈d̂u, [d̂, χε]u〉). (3.35)

18The minus sign disappears after the second equality sign due to the change of signs in the
used inner product, cf. the discussion around (3.4).
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Since the commutators are supported near Y , we can compute them in the basis
(3.7). Let us write u = C ũ as in (3.10) with σ = 0, then in view of (3.14), we have

[δ̂C , χε] = ε−1χ′ε


0 β−2α+O(α3) β−1α−1 +O(α) 0
0 0 0 0
0 0 0 −β−2 +O(α2)
0 0 0 0

 ,

(3.36)

and since therefore only the (TT ) and (NT ) components of [δ̂C , χε]ũ are non-zero,
we merely compute

(δ̂C ũ)TT = −δY ũTT − α−1∂∗αα
2ũTN − βα−1∂∗αũNT

∈ −δY ũTT + 2β−2ũTN − βα−1∂∗αũNT + α2C∞(Xeven; ΛY ),

(δ̂C ũ)NT = α−1δY ũNT + ∂∗αũNN ∈ α−1δY ũNT + α C∞(Xeven; ΛY ).

Notice here that α−1∂α = 2∂µ indeed preserves elements of C∞(Xeven; ΛY ). Now
in (3.35), the pairing corresponding to the (1, 2)-component of (3.36) is of the form

(3.30) (recall that the volume density is α|dh| = αβ̃ dα|dk|) and hence vanishes in
the limit ε→ 0, and we conclude that

lim
ε→0
〈δ̂u, [δ̂, χε]u〉 = −〈δY ũTT |Y , ũNT |Y 〉+ 2β−2〈ũTN |Y , ũNT |Y 〉

− β〈(α−1∂∗αũNT )|Y , ũNT |Y 〉 − β−1〈δY ũNT |Y , ũNN |Y 〉,
(3.37)

where we use the L2(Y, |dk|;K) inner product on the right hand side;19 we absorbed

the factor β̃|Y = β from the volume density αβ̃ dα|dk| into the functions in the
pairings.

In a similar vein, we can use (3.13) to compute

[d̂C , χε] = ε−1χ′ε


0 0 0 0
1 0 0 0
0 0 0 0
0 0 −α−1 0

 (3.38)

and

(d̂C ũ)TN = ∂αũTT − αdY ũTN − α−1dY βũNT

∈ −βα−1dY ũNT + C∞(Xeven; ΛY ),

(d̂C ũ)NN = −α−1∂αũNT + dY ũNN .

Correspondingly,

lim
ε→0
〈d̂u, [d̂, χε]u〉 = −〈dY ũNT |Y , ũTT |Y 〉+ β−1〈(α−1∂αũNT )|Y , ũNT |Y 〉

− β−1〈dY ũNN |Y , ũNT |Y 〉,
(3.39)

where we again use the L2(Y, |dk|;K) inner product on the right hand side; notice
with regard to the powers of β that on the (TN) and (NN) components, the fiber
inner product is β−2K.

As a consequence of these computations, we conclude that the pairings in (3.35)

stay bounded as ε → 0, hence d̂u, δ̂u ∈ L2(α|dh|;H ⊕ H) by Fatou’s Lemma.

19Recall here that H⊕H = K⊕ β̃−2K⊕K⊕ β̃−2K, so the (TT ) and (NT ) components which

we are concerned with here do not come with an extra factor of β̃−2.
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Looking at the most singular terms of d̂C ũ and δ̂C ũ (again using (3.13) and (3.14)),
this necessitates

dY ũNT |Y = 0, δY ũNT |Y = 0. (3.40)

Therefore, taking (3.37) and (3.39) into account, (3.35) simplifies to

0 = ‖δ̂u‖2+‖d̂u‖2 + β−1〈(α−1∂αũNT )|Y , ũNT |Y 〉
− β〈(α−1∂∗αũNT )|Y , ũNT |Y 〉+ 2β−2〈ũTN |Y , ũNT |Y 〉.

(3.41)

Moreover, the fourth component of the equation (d̂+ δ̂)C ũ = 0 yields

−(α−1∂αũNT )|Y + dY ũNN |Y − δY ũNN |Y = 0,

which we can pair with ũNT |Y relative to L2(Y, |dk|;K), and then an integration by
parts together with (3.40) shows that the first boundary pairing in (3.41) vanishes.

Likewise, the first component of (d̂+ δ̂)C ũ = 0 gives

dY ũTT |Y − δY ũTT |Y + 2β−2ũTN |Y − β(α−1∂∗αũNT )|Y = 0,

which we can again pair with ũNT |Y , and in view of (3.40), we conclude that the

second line of (3.41) vanishes as well. Thus, finally, (3.41) implies that d̂u = 0 and

δ̂u = 0.
Conversely, every u ∈ C∞(0) satisfying d̂u = 0 and δ̂u = 0 trivially lies in the kernel

of d̂+ δ̂. �

The above proof in particular shows:

Corollary 3.9. Let u = C ũ ∈ C∞(0) be such that d̂ δ̂u = 0 (resp. δ̂ d̂u = 0),

and assume that ũNT |Y = 0.20 Then δ̂u = 0 (resp. d̂u = 0). In particular,

kerC∞
(0)
∩L2 �̂ = H ∩ L2.

Proof. Suppose d̂ δ̂u = 0. With a cutoff function χε as above, we obtain

0 = − lim
ε→0
〈χεd̂ δ̂u, u〉 = lim

ε→0
‖χ1/2

ε δ̂u‖2 + lim
ε→0
〈δ̂u, [δ̂, χε]u〉.

In view of (3.37) and ũNT |Y = 0, the second term on the right hand side vanishes,

and we deduce δ̂u = 0. The proof that δ̂ d̂u = 0 implies d̂u = 0 is similar and uses
(3.39). �

Corollary 3.10. We have ker �̂ = ker d̂ δ̂ ∩ ker δ̂ d̂.

Proof. If u ∈ ker �̂, then (d̂+ δ̂)u ∈ H, thus δ̂(d̂+ δ̂)u = δ̂ d̂u = 0 and d̂ δ̂u = 0. �

We record another setting in which the boundary terms in the proof of Proposi-
tion 3.8 vanish:

Lemma 3.11. Suppose v ∈ C∞(0) is a solution of δ̂ d̂ δ̂v = 0. Then d̂ δ̂v = 0.

Likewise, if v ∈ C∞(0) is a solution of d̂ δ̂ d̂v = 0, then δ̂ d̂v = 0.

20The latter is equivalent to assuming u ∈ L2(α|dh|).
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Proof. Write w = δ̂v ∈ C∞(0). Then δ̂ d̂w = 0 implies, by the proof of Proposi-

tion 3.8, that d̂w ∈ L2(α|dh|;H ⊕H). Writing w = C w̃, this in particular implies
dY w̃NT |Y = 0; but writing v = C ṽ, we have

w̃NT = (C−1δ̂C ṽ)NT = δY ṽNT + α∂∗αṽNN ,

as follows from (3.16). Restricting to Y , we thus have w̃NT |Y = δY ṽNT |Y , and
hence 0 = dY δY ṽNT |Y . We pair this in L2(Y, |dk|;K) with ṽNT and integrate by
parts, obtaining δY ṽNT |Y = 0. But this implies that w̃NT |Y = 0. By Corollary 3.9,

this gives d̂w = d̂ δ̂v = 0.

For the second part, we proceed analogously: letting w = d̂v ∈ C∞(0), we have

d̂ δ̂w = 0, thus δ̂w ∈ L2. This gives δY w̃NT |Y = 0; but by (3.15), w̃NT |Y =
−dY ṽNT |Y , therefore δY w̃NT |Y = 0 implies dY ṽNT |Y = 0, so w̃NT |Y = 0, which in

turn gives δ̂w = 0 by Corollary 3.9, hence δ̂ d̂v = 0. �

3.4. Cohomological interpretation of zero resonant states. In this section,

we will always work with σ = 0 and hence simply write d̂ = d̂(0), δ̂ = δ̂(0), d̃ = d̃(0),

δ̃ = δ̃(0), �̂ = �̂(0) and �̃ = �̃(0).
The space H defined in Proposition 3.8 is graded by the form degree, i.e.

H =

n⊕
k=0

Hk, (3.42)

where Hk is the space of all u ∈ H of pure form degree k. In the decomposition
(3.1), this means that uT is a differential k-form on X, and uN is a differential

(k − 1)-form. Likewise, K := ker �̂ is graded by form degree, and we write

kerC∞
(0)
�̂ =

n⊕
k=0

Kk. (3.43)

We aim to relate the spaces Hk and Kk to certain cohomology groups associated
with X. As in the Riemannian setting, the central tool is a Hodge type decompo-

sition adapted to d̂ and δ̂:

Lemma 3.12. The following Hodge type decomposition holds on X:

C∞(0) = kerC∞
(0)
�̂⊕ ranC∞

(0)
�̂. (3.44)

Proof. We first claim that such a decomposition holds on X̃, i.e. we claim that

C∞(X̃) = ker �̃⊕ ran �̃. (3.45)

First of all, recall that �̃ is Fredholm with index 0 as an operator (2.7) for all
sufficiently large s, and a complement to its range is given by an s-independent

finite-dimensional subspace of C∞(X̃), namely, the kernel of its adjoint. Thus, the

range of �̃ : C∞(X̃)→ C∞(X̃) is closed, and its codimension equals the dimension

of the kernel of �̃. Hence, in order to show (3.45), we merely need to check that

the intersection of ker �̃ and ran �̃ is trivial.
Thus, let ũ ∈ ker �̃ ∩ ran �̃, and write ũ = �̃ṽ. Let v = ṽ|X . Then ũ ∈ ker �̃

means, restricting to X and using Corollary 3.10, that d̂ δ̂ d̂ δ̂v = 0 and δ̂ d̂ δ̂ d̂v = 0.

Repeated application of Lemma 3.11 thus implies δ̂ d̂v = 0 and d̂ δ̂v = 0, hence

δ̃ d̃ṽ and d̃ δ̃ṽ are supported in X̃ \ X. (This argument shows the uniqueness of
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the decomposition (3.44).) Therefore ũ is a solution of �̃ũ = 0 which is supported

in X̃ \X. By unique continuation at infinity on the asymptotically de Sitter side

X̃ \X of X̃, this implies ũ ≡ 0, as claimed.

Now if u ∈ C∞(0) is given, extend it arbitrarily to ũ ∈ C∞(X̃), apply (3.45) and

restrict both summands back to X. This establishes (3.44). �

Remark 3.13. The decomposition (3.44) does not hold if we replace �̂ in (3.44) by

d̂+ δ̂. Indeed, if it did hold, this would say that �̂u = 0 implies (d̂+ δ̂)u = 0, since

(d̂+δ̂)u lies both in ker(d̂+δ̂) and ran(d̂+δ̂) in this case. Since certainly (d̂+δ̂)u = 0

conversely implies �̂u = 0, this would mean that ker �̂ = ker(d̂ + δ̂). Now by

Lemmas 2.1 and 2.2, this in turn would give ker �̃ = ker(d̃+ δ̃). Now since �̃ and

d̃+δ̃ are Fredholm with index 0, we could further deduce ker �̃∗ = ker(d̃+δ̃)∗, where

the adjoints act on the space Ċ−∞(X̃) of supported distributions at the (artificial)

Cauchy hypersurface ∂X̃, see [33, Appendix B]. Since we have ker(d̃+ δ̃)∗ ⊂ ker �̃∗

unconditionally, we can show the absurdity of this last equality by exhibiting an

element u in ker �̃∗ which does not lie in ker(d̃ + δ̃)∗. This however is easy: just
let u = 1X be the characteristic function of X. Then from (3.15) and (3.16), we

see that (d̃ + δ̃)u = d̃u is a non-zero delta distribution supported at Y which is

annihilated by δ̃.

This argument shows that we always have ker �̂ ) ker(d̂ + δ̂). It is possible
though that Hk = Kk for some form degrees k (but this must fail for some value of
k). For instance, this holds for k = 0 by Corollary 3.9. We will give a more general
statement below, see in particular Remark 3.18.

We now define a complex whose cohomology we will relate to the spaces Hk and
Kk: the space C∞(0) ∩ L

2(α|dh|) of smooth forms u = C ũ with ũNT |Y = 0 has a

grading corresponding to form degrees, thus

D := C∞(0) ∩ L
2(α|dh|) =

n⊕
k=0

Dk.

Since in the above notation u ∈ L2(α|dh|) (and thus ũNT |Y = 0) is equivalent to

ũNT ∈ α2C∞(Xeven; ΛY ) near Y , one can easily check using (3.15) that d̂ acts on
C∞(0) ∩ L

2(α|dh|). We can then define the complex

0→ D0 d̂−→ D1 → . . .
d̂−→ Dn → 0.

We denote its cohomology by

HkL2,dR = ker(d̂ : Dk → Dk+1)/ ran(d̂ : Dk−1 → Dk). (3.46)

There is a natural map from HkL2,dR into Hk:

Lemma 3.14. Every cohomology class [u] ∈ HkL2,dR has a unique representative

u′ ∈ Hk, and the map i : [u] 7→ u′ is injective.

Proof. Let [u] ∈ HkL2,dR, hence d̂u = 0 and, writing u = C ũ, ũNT |Y = 0. We first

show the existence of a representative, i.e. an element u− d̂v with v ∈ D, which is

annihilated by δ̂. (Since it is clearly annihilated by d̂, this means u − d̂v ∈ Hk.)
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That is, we need to solve the equation δ̂ d̂v = δ̂u with v ∈ D. To achieve this, we
use Lemma 3.12 to write

u = u1 + (d̂ δ̂ + δ̂ d̂)u2, u1 ∈ ker �̂.

By our assumption on u and Corollary 3.10, u and u1 are annihilated by δ̂ d̂, giving

δ̂ d̂ δ̂ d̂u2 = 0. By Lemma 3.11, this implies δ̂ d̂u2 = 0, hence

u = u1 + d̂ δ̂u2. (3.47)

Applying d̂ δ̂, we obtain

d̂ δ̂ d̂ δ̂u2 = d̂ δ̂u ∈ L2. (3.48)

Now writing u2 = C ũ2, and noting that for any w = C w̃ ∈ C∞(0), (C−1d̂C w̃)NT |Y =

−dY w̃NT |Y as well as (C−1δ̂C w̃)NT |Y = δY w̃NT |Y by (3.15) and (3.16), the (NT )
component of C−1 times equation (3.48) reads dY δY dY δY ũ2,NT |Y = 0, which yields

δY ũ2,NT |Y = 0. As a consequence of this, v := δ̂u2 ∈ L2 and therefore d̂ δ̂u2 ∈ L2.
Hence (3.47) gives u1 ∈ L2; by Corollary 3.9 then, u1 ∈ H, in particular u1 is

annihilated by δ̂. Therefore, applying δ̂ to (3.47) yields δ̂(u− d̂v) = 0, as desired.

Next, we show that the representative is unique: thus, suppose u− d̂v1, u− d̂v2 ∈
Hk with u, v1, v2 ∈ D, then with v = v1 − v2 ∈ D, we have d̂v ∈ Hk, thus δ̂ d̂v = 0,

and by Corollary 3.9, we obtain d̂v = 0. Therefore, u− d̂v1 = u− d̂v2, establishing
uniqueness, which in particular shows that the map i is well-defined.

Finally, we show the injectivity of i: suppose u ∈ D satisfies d̂u = 0. There

exists an element v ∈ D such that u − d̂v ∈ Hk. Now if i[u] = 0, this precisely

means that u− d̂v = 0; but then [u] = [d̂v] = 0 in HkL2,dR. �

From the definition of the space D, it is clear that u ∈ Hk lies in the image of i
if and only if u ∈ L2, i.e. if and only if r(u) = 0, where r is the map

r : C∞(0) → C
∞(Y ; ΛY ), u = C ũ 7→ ũNT |Y . (3.49)

Thus, r extracts the singular part of u and thereby measures the failure of a given
form u ∈ C∞(0) to lie in D. Observe that if u = C ũ ∈ Hk, then dY ũNT |Y = 0 and

δY ũNT |Y = 0, i.e. r(u) is a harmonic form on Y . Since the space ker(∆Y,k−1) of
harmonic forms on the closed manifold Y is isomorphic to the cohomology group
Hk−1(Y ) by standard Hodge theory, we thus obtain:

Proposition 3.15. The sequence

0→ HkL2,dR
i−→ Hk r−→ Hk−1(Y ) (3.50)

is exact. Here, i is the map defined in Lemma 3.14, and r is the restriction map
(3.49) (composed with the identification ker(∆Y,k−1) ∼= Hk−1(Y )). Moreover, the
map i : HkL2,dR → Hk ∩ D is an isomorphism with inverse Hk ∩ D 3 u 7→ [u] ∈
HkL2,dR.

Proof. We only need to check the last claim. If u ∈ Hk ∩ D, then [u] does define
a cohomology class in HkL2,dR, and i([u]) is the unique representative of [u] which

lies in Hk. Since u itself is such a representative, we must have i([u]) = u. For the

converse, we note that for any [u] ∈ HkL2,dR we have i([u]) = u− d̂v for some v ∈ D,

hence [i([u])] = [u− d̂v] = [u]. �
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We can make a stronger statement: if we merely have u ∈ ker �̂, then the proof

of Proposition 3.8 shows that d̂u, δ̂u ∈ L2, hence r(u) is harmonic.

Proposition 3.16. We have a short exact sequence

0→ HkL2,dR
i−→ Kk r−→ Hk−1(Y )→ 0, (3.51)

where the first map is i defined in Lemma 3.14 (composed with the inclusion Hk ↪→
Kk), and the second map is the restriction r, defined in (3.49) (composed with the
identification ker(∆Y,k−1) ∼= Hk−1(Y )).

Proof. The second map is well-defined by the comment preceding the statement of
the proposition. Since the range of HkL2,dR in Kk consists of L2 forms, we have

r ◦ i = 0. Moreover, if u ∈ ker r, then u is an L2 element of ker �̂, thus u ∈ Hk by
Corollary 3.9. By the remark following the proof of Lemma 3.14, therefore u ∈ ran i.

It remains to show the surjectivity of r: thus, let w ∈ ker(∆Y,k−1), and let

u′ = C ũ′ ∈ C∞(0) be any extension of w, i.e. ũ′NT |Y = w. Then (d̂ + δ̂)u′ ∈ D,

since its (NT ) component vanishes, and thus �̂u′ ∈ D. Writing u′ = u1 + �̂u2

with u1 ∈ ker �̂, we conclude that �̂u′ = �̂2u2; taking the (NT ) component of
this equation gives 0 = ∆2

Y ũ2,NT |Y (where we write u2 = C ũ2 as usual), hence

dY ũ2,NT |Y = 0 and δY ũ2,NT |Y = 0. But then �̂u2 ∈ L2. Therefore, w = r(u′) =

r(u1 + �̂u2) = r(u1). Since the degree k part of u1 lies in Kk by the definition of
u1, we are done. �

Remark 3.17. Remark 3.13, which states thatHk ( Kk for some values of k, implies
in particular that the last map of (3.50) is not always onto.

Remark 3.18. Since dimY = n − 2, we have Hk−1(Y ) = 0 for k = 0 and k = n.
Hence, for these extreme values of k, Propositions 3.15 and 3.16 show Hk = Kk ∼=
HkL2,dR, and this holds more generally for all k for which Hk−1(Y ) = 0.

The spaces HkL2,dR are related to standard cohomology groups associated with

the manifold with boundary X: first, notice that elements of the space D = C∞(0)∩L
2

are not subject to any matching condition on singular terms, simply because the
singular term (ũNT |Y in the notation used above) vanishes. This means that we
can split D into tangential and normal forms, D = DT ⊕DN ,21 where DT consists
of all uT ∈ C∞(X; ΛX) which are of the form

uT =

(
uTT
αuTN

)
, uTT , uTN ∈ C∞(Xeven; ΛY ),

near Y . Thus, elements uT ∈ DT are forms of the type uT = uTT + dα ∧ αuTN =
uTT + 1

2dµ∧uTN with uTT , uTN smooth ΛY -valued forms on Xeven; hence, we sim-

ply have DT = C∞(Xeven; ΛXeven). Likewise, DN consists of all uN ∈ C∞(X; ΛX)
which are of the form

uN =

(
αuNT
uNN

)
, uNT , uNN ∈ C∞(Xeven; ΛY ),

near Y . Thus, elements uN ∈ DT are forms of the type αuN = µuNT + 1
2dµ ∧

uNN ; therefore, αDN = C∞R (Xeven; ΛXeven) := {u ∈ C∞(Xeven; ΛXeven) : j∗u = 0},
where j : ∂Xeven ↪→ Xeven is the inclusion.

21Thus, elements (uT , uN ) ∈ DT ⊕DN are identified with uT + αdt ∧ uN ∈ D.
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Since the differential d̂ on D acts as dX ⊕ (−α−1dXα) on DT ⊕ DN , the coho-

mology of the complex (D, d̂) in degree k is the direct sum of the cohomology of
(DT , dX) in degree k and of (αDN , dX) in degree (k− 1). Since we identified DT as
simply the space of smooth forms on Xeven, the cohomology of (DT , dX) in degree
k equals the absolute cohomology Hk(Xeven) ∼= Hk(X).22 Moreover, since DN is
the space of smooth forms on Xeven which vanish at the boundary in the precise
sense described above, the cohomology of (αDN , dX) in degree k equals the relative
cohomology Hk(Xeven; ∂Xeven) ∼= Hk(X; ∂X) (see e.g. [52, §5.9]). In summary:

Proposition 3.19. With HkL2,dR defined in (3.46), there is a canonical isomor-
phism

HkL2,dR
∼= Hk(X)⊕Hk−1(X, ∂X). (3.52)

Let us summarize the results obtained in the previous sections:

Theorem 3.20. The only resonance of d+δ in Imσ ≥ 0 is σ = 0, and 0 is a simple

resonance. Zero resonant states of the extended operator (d+ δ on M̃) are uniquely
determined by their restriction to X, and the space H of these resonant states on

X is equal to kerC∞
(0)
d̂(0) ∩ kerC∞

(0)
δ̂(0). Also, resonant states on X̃ are elements of

ker d̃(0)∩ ker δ̃(0). Using the grading H =
⊕n

k=0Hk of H by form degrees, there is
a canonical exact sequence

0→ Hk(X)⊕Hk−1(X, ∂X)→ Hk → Hk−1(∂X), (3.53)

where the first map is the composition of the isomorphism (3.52) with the map i
defined in Lemma 3.14, and the second map is the composition of the map r defined
in (3.49) with the isomorphism ker(∆∂X,k−1) ∼= Hk−1(∂X).

Furthermore, the only resonance of �g in Imσ ≥ 0 is σ = 0. Zero resonant

states23 of the extended operator (�g on M̃) are uniquely determined by their re-
striction to X. The space K =

⊕n
k=0Kk ⊂ C∞(0) of these resonant states on X,

graded by form degree, satisfying Kk ⊃ Hk, fits into the short exact sequence

0→ Hk(X)⊕Hk−1(X, ∂X)→ Kk → Hk−1(∂X)→ 0, (3.54)

with maps as above. We moreover have

Kk ∩ L2 = Hk ∩ L2 ∼= Hk(X)⊕Hk−1(X, ∂X)

where L2 = L2(X,α|dh|;H ⊕ H). More precisely then, the summand Hk(X) in
(3.53) and (3.54) corresponds to the tangential components (in the decomposition
(3.1)) of elements of Hk ∩L2, and the summand Hk−1(X, ∂X) to the normal com-
ponents.

Lastly, the Hodge star operator on M induces isomorphisms ? : Hk
∼=−→ Hn−k and

? : Kk
∼=−→ Kn−k, k = 0, . . . , n.

Proof. We prove the statement about resonant states for d + δ on the extended

space M̃ : thus, if ũ ∈ ker(d̃(0) + δ̃(0)), then the restriction of ũ to X lies in

ker d̂(0) ∩ ker δ̂(0), therefore d̃(0)ũ = −δ̃(0)ũ is supported in X̃ \ X; but then

22We use that Xeven is diffeomorphic to X, with diffeomorphism given by gluing the map
α2 7→ α near Y to the identity map away from Y .

23More precisely, we mean elements of ker �̃(0); the latter space equals the space of zero
resonant states if the zero resonance is simple.
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�̃(0)(d̃(0)ũ) = d̃(0)δ̃(0)d̃(0)ũ = 0 and the asymptotically de Sitter nature of X̃ \X
implies d̃(0)ũ ≡ 0, hence also δ̃(0)ũ ≡ 0, as claimed.

The only remaining part of the statement that has not yet been proved is the
last: viewing u ∈ Hk as a t-independent k-form on M = Rt ×X (with the metric
(1.1)), we have (d + δ)u = 0, and for any t-independent k-form u on M , we have
that (d + δ)u = 0 implies u ∈ Hk, where we view the t-independent form as a
form on X valued in the form bundle of M , as explained in Section 2. Then
u ∈ Hk is equivalent to du = 0, δu = 0, which in turn is equivalent to δ(?u) = 0,
d(?u) = 0, and thus ?u ∈ Hn−k. The proof for the spaces Kk is the same and uses
?� = �?. �

This in particular proves Theorem 2.

4. Results for static de Sitter and Schwarzschild–de Sitter
spacetimes

We now supplement the results obtained in the previous section by high energy
estimates for the inverse normal operator family and deduce expansions and decay
for solutions to Maxwell’s equations as well as for more general linear waves on de
Sitter and Schwarzschild–de Sitter backgrounds. The rather detailed description of
asymptotics in the Schwarzschild–de Sitter setting will be essential in our discussion
of Kerr–de Sitter space in Section 5.

4.1. de Sitter space. De Sitter space is the hyperboloid {|x|2 − t̃2 = 1} in (n +
1)-dimensional Minkowski space, equipped with the induced Lorentzian metric.

Introducing τ = t̃−1 in t̃ ≥ 1 and adding the boundary at future infinity τ = 0 to
the spacetime, we obtain the bordified space N = [0, 1)τ × Z with Z = Sn−1, and
the metric has the form

g0 = τ−2ḡ, ḡ = dτ2 − h0(τ, x, dx),

with h0 even in τ , i.e. h0 is a metric on Z which depends smoothly on τ2; see
Vasy [54, §4] for details. Thus, g0 is a 0-metric in the sense of Mazzeo and Melrose
[41]. Fixing a point p at future infinity, the static model of de Sitter space, denoted
M , is the interior of the backward light cone from p.24 We introduce static coordi-
nates on M , denoted (t, x) ∈ R×X, where X = B1 ⊂ Rn−1 is the open unit ball in
Rn−1 and x ∈ Rn−1 are the standard coordinates on Rn−1, with respect to which
the induced metric on M is given by

g = α2 dt2 − h, α = (1− |x|2)1/2,

h = dx2 +
1

1− |x|2
(x · dx)2 = α−2 dr2 + r2 dω2,

(4.1)

using polar coordinates (r, ω) on Rn−1
x near r = 1, and denoting the round metric

on the unit sphere Sn−2 by dω2. We compactify X to the closed unit ball Xeven =
B1 ⊂ Rn−1, and denote by X the space which is Xeven topologically, but with
α added to the smooth structure. In order to see that the metric g fits into the
framework of Theorem 3.20, note that dr = −αr−1 dα, so

h = r−2 dα2 + r2 dω2,

24Since g0 and the metric ḡ, which is smooth down to τ = 0, are conformally related, the
images of null-geodesics for both metrics agree.
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and r = (1 − α2)1/2, thus h is an even metric on the space X and has the form
(1.2) with β = 1. Using Theorem 3.20, we can now easily compute the spaces of
resonances:

Theorem 4.1. On an n-dimensional static de Sitter spacetime, n ≥ 4, the spaces
of resonances of � and d+ δ are

K0 = H0 = 〈1〉, Kn = Hn = 〈rn−2 dt ∧ dr ∧ ω〉,

where ω denotes the volume form on the round sphere Sn−2. Furthermore,

K1 = 〈−α−2r dr + α−1 dt〉,H1 = 0, Kn−1 = 〈?(−α−2r dr + α−1 dt)〉,Hn−1 = 0,

Kk = Hk = 0, k = 2, . . . , n− 2.

Proof. We compute the cohomological data that appear in (3.53) and (3.54) using
X ∼= B1 and ∂X ∼= Sn−2:

dimHk−1(∂X) =

{
0, k = 0, 2, . . . , n− 2, n,

1, k = 1, n− 1

dimHk(X) =

{
1, k = 0

0, 1 ≤ k ≤ n,

dimHk−1(X, ∂X) =

{
0, 0 ≤ k ≤ n− 1

1, k = n.

Thus, we immediately deduce

dimK0 = dimK1 = dimKn−1 = dimKn = 1, dimKk = 0, 2 ≤ k ≤ n− 2,

dimH0 = dimHn = 1, dimHk = 0, 2 ≤ k ≤ n− 2.

Now, since d + δ annihilates constants, we find 1 ∈ K0 = H0 and ?1 ∈ Kn =
Hn, which in view of the 1-dimensionality of these spaces already concludes their
computation.

In order to compute K1, notice that we have K1 ∼= H0(∂X) from (3.54), thus an
element u spanning K1 has non-trivial singular components at α = 0. One is led to
the guess u = α−1 dα+α−1 dt = −α−2r dr+α−1 dt, which is indeed annihilated by
�; we will give full details for this computation in the next section when discussing
Schwarzschild–de Sitter spacetimes, which in the case of vanishing black hole mass
are static de Sitter spacetimes, with a point removed, see in particular the calcula-
tions following (4.12); but since u as defined above is smooth at r = 0, we obtain
�u = 0 at r = 0 as well by continuity. Since K1 is 1-dimensional, we therefore
deduce K1 = 〈u〉. One can then check that (d+ δ)u 6= 0, and this implies H1 = 0.
The corresponding statements for Kn−1 and Hn−1 are immediate consequences of
this and the fact that the Hodge star operator induces isomorphisms H1 ∼= Hn−1

and K1 ∼= Kn−1. �

In particular:

Theorem 4.2. On 4-dimensional static de Sitter space, if u is a solution of
(d + δ)u = 0 with smooth initial data, then the degree 0 component of u decays
exponentially to a constant, the degree 1, 2 and 3 components decay exponentially
to 0, and the degree 4 component decays exponentially to a constant multiple of
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the volume form. Analogous statements hold on any n-dimensional static de Sitter
space, n ≥ 5.

Proof. The high energy estimates for d + δ required to deduce asymptotic expan-
sions for solutions of (d + δ)u = 0 follow from those of its square �, which is
principally scalar and fits directly into the framework recalled in Section 2 above,
and is described in detail in [54, §2-4]: we can apply [54, Theorem 2.14], with

R(σ) = �̃(σ)−1 for the high energy estimates and then use [54, Lemma 3.1] (with
P = �, Q = 0, τ = e−t∗) to obtain the resonance expansion. �

By studying the space of dual resonant states, one can in fact easily show that the
0-resonance of � is simple and thus deduce exponential decay of smooth solutions
to �u = 0 to an element of Kk in all form degrees k = 0, . . . , n. We give details in
the next section on Schwarzschild–de Sitter space.

In the present de Sitter setting, one can deduce asymptotics very easily in a
different manner using the global de Sitter space picture, by analyzing indicial
operators in the 0-calculus: concretely, we write differential k-forms (by which we
mean smooth sections of the k-th exterior power of the 0-cotangent bundle of N)
as

u = τ−kuT +
dτ

τ
∧ τ1−kuN , (4.2)

where uT and uN are smooth forms on Z of form degrees k and (k−1), respectively.
One readily computes the differential dk acting on k-forms to be

dk =

(
τdZ 0

−k + τ∂τ −τdZ

)
.

Furthermore, by the choice of basis in (4.2), the inner product on k-forms induced
by g0 is given by

G0
k =

(
(−1)kH0

k 0
0 (−1)k−1H0

k−1

)
.

Using that the volume density is |dg0| = τ−n dτ |dh0|, we compute the codifferential
δk acting on k-forms to be

δk =

(
−τδZ −(k − 1) + τn−1τ∂∗τ τ

1−n

0 τδZ

)
=

(
−τδZ n− k − τ∂τ +OC∞(N)(τ)

0 τδZ

)
,

where ∂∗τ is the L2(N, |dḡ|)-adjoint (suppressing the bundles in the notation) of ∂τ ,
and we use the even-ness of g0 in the second step to deduce ∂∗τ = −∂τ +OC∞(N)(τ).
Therefore, the indicial roots of d+ δ on the degree k-part of the form bundle are k
and n− k.

Next, for 0 ≤ k ≤ n, we compute the Hodge d’Alembertian:25

�k = dk−1δk + δk+1dk

=

(
−τdZτδZ − τδZτdZ − Pk τdZ

−τδZ −τdZτδZ − τδZτdZ − Pk−1

)
+ODiff1

0
(τ)

25We deal with the cases k = 0 and k = n simultaneously with 1 ≤ k ≤ n − 1 by implicitly
assuming that for k = 0, only the (1, 1)-part of this operator acts on 0-forms, and for k = n, only

the (2, 2)-part acts on n-forms.
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where Pk = (τ∂τ )2 − (n − 1)τ∂τ + k(n − k − 1). Thus, the indicial polynomial of
�k is

I(�k)(s) =

(
s2 − (n− 1)s+ k(n− k − 1) 0

0 s2 − (n− 1)s+ (k − 1)(n− k)

)
.

On tangential forms, the indicial roots of �k are therefore k, n − 1 − k, and on
normal forms, they are k − 1, n− k. We thus have:

form degree 0 1 2 ≤ k ≤ n− 2 n− 1 n

tgt. ind. roots 0, n− 1 1, n− 2 k, n− 1− k 0, n− 1 −
norm. ind. roots − 0, n− 1 k − 1, n− k 1, n− 2 0, n− 1

Hence in particular, all roots are ≥ 0, and 0 is never a double root. Thus, the
arguments of [53] (which are in the scalar setting, but work in the current setting
as well with only minor modifications) show that solutions u to the wave equation on
differential k-forms on N with smooth initial data at τ = τ0 > 0 decay exponentially
(in − log τ) if 0 is not an indicial root, and decay to a stationary state if 0 is an
indicial root.26 Explicitly, scalar waves decay to a smooth function on Z, 1-form
waves decay to an element of dτ

τ C
∞(Z), k-form waves decay exponentially to 0 for

2 ≤ k ≤ n − 2, (n − 1)-form waves decay to an element of C∞(Z; Λn−1Z), and
n-form waves finally decay to an element of dτ

τ ∧ C
∞(Z; Λn−1Z).

Since the static model of de Sitter space arises by blowing up a point p at future
infinity of compactified de Sitter space and considering the backward light cone from
p, we can find the resonant states for the static model by simply finding the space
of restrictions to p of the asymptotic states described above; but since the fibers of
Λ0(Z) and Λn−1(Z) are 1-dimensional, hence we have reproved Theorem 4.1.

We point out that if one wants to analyze differential form-valued waves or
solutions to Maxwell’s equations on Schwarzschild–de Sitter space, there is no global
picture (in the sense of a 0-differential problem) as in the de Sitter case. Thus, the
direct approach outlined in the proof of Theorem 4.1 is the only possible one in this
case, and it is very instructive as it shows even more clearly how the cohomological
interpretation of the space of zero resonant states can be used very effectively.

4.2. Schwarzschild–de Sitter space. The computation of resonant states for
Schwarzschild–de Sitter spacetimes of any dimension is no more difficult than the
computation in 4 dimensions, thus we directly treat the general case of n ≥ 4
spacetime dimensions. Recall that the metric of n-dimensional Schwarzschild–de
Sitter space M = Rt ×X, X = (r−, r+)r × Sn−2

ω , with r± defined below, is given
by

g = µdt2 − (µ−1 dr2 + r2 dω2),

where dω2 is the round metric on the sphere Sn−2, and µ = 1 − 2M•
rn−3 − λr2,

λ = 2Λ
(n−2)(n−1) , where the black hole mass M• and the cosmological constant Λ are

positive. We assume that

M2
•λ

n−3 <
(n− 3)n−3

(n− 1)n−1
, (4.3)

which guarantees that µ has two unique positive roots 0 < r− < r+. Indeed, let
µ̃ = r−2µ = r−2 − 2M•r

1−n − λ. Then µ̃′ = −2r−n(rn−3 − (n − 1)M•) has a

26Of course, since we know all indicial roots, we could be much more precise in describing the
asymptotics, but we only focus on the 0-resonance here.
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unique positive root rp = [(n−1)M•]
1/(n−3), µ̃′(r) > 0 for r ∈ (0, rp) and µ̃′(r) < 0

for r > rp; moreover, µ̃(r) < 0 for r > 0 small and µ̃(r) → −λ < 0 as r → ∞,
thus the existence of the roots 0 < r− < r+ of µ̃ is equivalent to the requirement
µ̃(rp) = n−3

n−1r
−2
p − λ > 0, which leads precisely to the inequality (4.3).

Define α = µ1/2, thus dα = 1
2µ
′α−1 dr, and

β± := ∓ 2

µ′(r±)
> 0,

then the metric g can be written as

g = α2 dt2 − h, h = β̃2
± dα

2 + r2 dω2, (4.4)

where β̃± = ∓2/µ′(r). Thus, if we let Xeven = [r−, r+]r × Sn−2
ω with the standard

smooth structure, then β̃± = β± modulo α2C∞(Xeven), where we note that r is a
smooth function of µ, thus an even function of α, near r = r± in view of µ′(r±) 6= 0.
The manifoldX isXeven topologically, but with smooth functions of α = µ1/2 added
to the smooth structure. We denote Y = ∂X = Sn−2 t Sn−2.

By the analysis in Section 2, all zero resonant states u, written in the form (3.7)
near Y , lie in the space C∞(0), defined in (3.9). In the current setting, it is more

natural to write differential forms as

u = uTT + α−1 dr ∧ uTN + αdt ∧ uNT + αdt ∧ α−1 dr ∧ uNN , (4.5)

since α−1 dr has squared norm −1 (with respect to the metric g). We compute how
the matching condition on the singular terms of u, encoded in the β±α

−1 entry of
the matrix C , changes when we thus change the basis of the form bundle: namely,
we have β±α

−1 dα = (∓1+α2C∞(Xeven))α−1α−1 dr; thus, for u written as in (4.5),
we have

u ∈ C∞(0) ⇐⇒


uTT
uTN
uNT
uNN

 ∈ C±


C∞(Xeven; ΛSn−2)
C∞(Xeven; ΛSn−2)
C∞(Xeven; ΛSn−2)
C∞(Xeven; ΛSn−2)


near r = r±, where

C± =


1 0 0 0
0 α ∓α−1 0
0 0 α−1 0
0 0 0 1

 . (4.6)

We now proceed to compute the explicit form of the operators dp, δp and �p, where
the subscript p indicates the form degree on which the operators act. First, we
recall (3.2) and (3.4) in the form

dp =

(
dX,p 0
α−1∂t −α−1dX,p−1α

)
, δp =

(
−α−1δX,pα −α−1∂t

0 δX,p−1

)
,

and these operators act on forms u = uT + αdt ∧ uN , with uT and uN differential
forms on X. Writing forms on X as v = vT + α−1 dr ∧ vN , we have

dX,p =

(
dSn−2,p 0
α∂r −dSn−2,p−1

)
. (4.7)

In order to compute the codifferential, we observe that the volume density on X
induced by h is given by α−1rn−2 dr|dω|, while the induced inner product on the
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fibers on the bundle of p-forms is

Hp =

(
r−2pΩp 0

0 r−2(p−1)Ωp−1

)
,

where Ωp is the fiber inner product on the p-form bundle on Sn−2. Therefore,

δX,p =

(
r−2δSn−2,p ∂∗r,p−1

0 −r−2δSn−2,p−1

)
,

∂∗r,p−1 = −αr−(n−2)r2(p−1)∂rr
−2(p−1)rn−2.

(4.8)

We obtain:

Lemma 4.3. In the bundle decomposition (4.5), we have

dp =


dSn−2,p 0 0 0
α∂r −dSn−2,p−1 0 0
α−1∂t 0 −dSn−2,p−1 0

0 α−1∂t −∂rα dSn−2,p−2

 (4.9)

and

δp =


−r−2δSn−2,p −α−1∂∗r,p−1α −α−1∂t 0

0 r−2δSn−2,p−1 0 −α−1∂t
0 0 r−2δSn−2,p−1 ∂∗r,p−2

0 0 0 −r−2δSn−2,p−2

 . (4.10)

Moreover,

−r2�p =


∆Sn−2,p −2αrdp−1 0 0
−2αr−1δp ∆Sn−2,p−1 −r2µ−1µ′∂t 0

0 −r2µ−1µ′∂t ∆Sn−2,p−1 −2αrdp−2

0 0 −2αr−1δp−1 ∆Sn−2,p−2



+


r2α−1∂∗r,pα

2∂r 0 0 0
0 r2α∂rα

−1∂∗r,p−1α 0 0
0 0 r2∂∗r,p−1∂rα 0
0 0 0 r2∂rα∂

∗
r,p−2



+


r2µ−1∂2

t 0 0 0
0 r2µ−1∂2

t 0 0
0 0 r2µ−1∂2

t 0
0 0 0 r2µ−1∂2

t

 .

(4.11)

We can now compute the spaces K and H of zero resonances for � and d+δ and
deduce asymptotics for solutions of (d+ δ)u = 0:

Theorem 4.4. On an n-dimensional Schwarzschild–de Sitter spacetime, n ≥ 4,
there exist two linearly independent 1-forms u± = f1,±(r)µ−1 dr + f2,±(r) dt ∈
K1 = ker �̂1 ⊂ C∞(0),

27 and we then have:

K0 = H0 = 〈1〉, Kn = Hn = 〈rn−2 dt ∧ dr ∧ ω〉,
where ω denotes the volume form on the round sphere Sn−2. Furthermore,

K1 = 〈u+, u−〉,H1 = 0, Kn−1 = 〈?u+, ?u−〉,Hn−1 = 0,

Kk = Hk = 0, k = 3, . . . , n− 3.

27The forms u± have a simple explicit form, see (4.12) and Footnote 28.
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For n = 4,

K2 = H2 = 〈ω, r−2 dt ∧ dr〉,

while for n > 4,

K2 = H2 = 〈r−(n−2) dt ∧ dr〉, Kn−2 = Hn−2 = 〈ω〉.

Proof. First, we observe that Hk(X) ∼= Hk(Sn−2), Hk−1(X, ∂X) ∼= Hn−k(X) ∼=
Hn−k(Sn−2) by Poincaré duality, and Hk−1(∂X) ∼= Hk−1(Sn−2) ⊕ Hk−1(Sn−2).
Thus, the short exact sequence (3.54) immediately gives the dimensions of the
spaces Kk, and (3.53) gives the dimensions of Hk for all values of k except k = 1
and k = n− 1.

We now compute H and K in the case n = 4. For k = 0, the short exact sequence
(3.54) reads 0→ H0(X)⊕0→ K0 → 0→ 0, and since H0(X) = 〈[1]〉, this suggests
1 as a resonant state for � on 0-forms (i.e. functions), and indeed �1 = 0, hence
K0 = 〈1〉. Theorem 3.20 also shows that H0 = K0. Then we immediately obtain
H4 = K4 = 〈?1〉 = 〈r2 dt ∧ dr ∧ ω〉.

Next, we treat the form degree k = 2. Then (3.54) reads 0 → H2(X) ⊕
H1(X, ∂X)→ K2 → 0→ 0. Now H2(X) = 〈[ω]〉, and a generator of H1(X, ∂X) is
given by the Poincaré dual of ω (which generates H2(X)). This suggests the ansatz
u = f(r)ω for an element of K2 = H2 (the latter equality following from (3.53)),
and then ?u will be the second element of a basis of K2. Now, in the decomposition

(4.5), we compute using Lemma 4.3 that δ̂2(0)u = 0 for u = f(r)ω, and

d̂2(0)u = d̂2(0)


f(r)ω

0
0
0

 =


0

αf ′(r)ω
0
0

 ,

which vanishes precisely if f(r) is constant.
The analysis of resonant states in form degree k = 1 is just a bit more involved.

Since (3.54) now reads 0 → 0 ⊕ 0 → K1 → H0(S2 t S2) → 0, every non-trivial
element u of K1 fails to be in L2(α|dh|), and in fact the singular behavior is expected
to be u = C±ũ with ũNT |r=r± = c± ∈ C, since H0(S2 t S2) is generated by locally
constant functions, which are therefore constant on r = r− as well as on r = r+.
We thus make the ansatz

u = α−1f1(r)α−1 dr + αdt ∧ α−1f2(r). (4.12)

We then compute

−�̂1(0)u =


0

α∂rα
−1∂∗r,0f1

∂∗r,0∂rf2

0

 ,

and by definition of ∂∗r,p in (4.8), this vanishes if and only if f1 and f2 satisfy the
ODEs

∂rr
−2∂rr

2f1 = 0,

r−2∂rr
2∂rf2 = 0.
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The general form of the solution is28

f1(r) = f11r + f12r
−2,

f2(r) = f21 + f22r
−1,

fjk ∈ C, j, k = 1, 2. Now recall that resonant states are elements of C∞(0) and thus

satisfy a matching condition in the singular components, which is captured by the
matrix (4.6). Concretely, we require f2(r−) = f1(r−) and f2(r+) = −f1(r+); in
terms of fjk, j, k = 1, 2, these conditions translate into

(
r− r−2

− −1 −r−1
−

r+ r−2
+ 1 r−1

+

)
f11

f12

f21

f22

 =

(
0
0

)
.

Since the 2 × 4 matrix on the left has rank 2, we get a 2-dimensional space of
solutions. In fact, it is easy to see that we can freely specify the values f1(r−)
and f1(r+), and f1 and f2 are then uniquely determined. To be specific, we can for
instance define u+ ∈ K1 to be the 1-form with f1(r−) = 0, f1(r+) = 1, and u− ∈ K1

to be the 1-form with f1(r−) = 1, f1(r+) = 0, and we then have K1 = 〈u+, u−〉, as
claimed.

Next, since H1 ⊂ K1, computing H1 simply amounts to finding all linear com-

binations of u− and u+ which are annihilated by both d̂1(0) and δ̂1(0). But

d̂1(0)


0

α−1f1(r)
α−1f2(r)

0

 =


0
0
0

−∂rf2

 = 0

requires f2 to be constant, and

δ̂1(0)


0

α−1f1(r)
α−1f2(r)

0

 =


−α−1∂∗r,0f1

0
0
0

 = 0

implies r−2∂rr
2f1 = 0, hence f1(r) = f1(r−)(r/r−)−2. The matching condition

requires f1(r+) = f1(r−)(r+/r−)−2 = −f2(r+) = −f2(r−) = −f1(r−) and is there-
fore only satisfied if f1(r−) = 0, which implies f1 ≡ 0 and f2 ≡ 0. This shows that
H1 = 0 and finishes the computation of the spaces of resonances for n = 4. The
computation for spacetime dimensions n ≥ 5 is completely analogous. �

In particular:

Theorem 4.5. On 4-dimensional Schwarzschild–de Sitter space, if u is a solution
of (d + δ)u = 0 with smooth initial data, then the degree 0 component of u decays
exponentially to a constant, the degree 1 and degree 3 components decay exponen-
tially to 0, the degree 2 component decays exponentially to a linear combination of
ω and r−2 dt ∧ dr, and the degree 4 component decays exponentially to a constant

28On n-dimensional Schwarzschild–de Sitter space, the exponents 2 and −2 in these ODEs get

replaced by n − 2 and 2 − n, and the general forms of the solutions are f1(r) = f11r + f12r2−n

and f2(r) = f21 + f22r3−n. The subsequent analysis of the matching conditions goes through

with obvious modifications.
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multiple of the volume form. Analogous statements hold on any n-dimensional
Schwarzschild–de Sitter space, n ≥ 5.

Proof. This follows from the above computations combined with high energy esti-
mates for d+δ, which follow from those for �, and Lemma 3.7.29 Once we check the
normally hyperbolic nature of the trapping and show that the subprincipal symbol
of � (or a conjugated version thereof), relative to a positive definite fiber inner
product, at the trapping is smaller than νmin/2, where νmin is the minimal expan-
sion rate in the normal direction at the trapped set, we can use Dyatlov’s result
[25] to obtain a spectral gap below the real line, i.e. the absence of resonances in a
small strip below the reals, which combines with the general framework of [54] to
yield the desired resonance expansion of solutions with exponentially decaying error
terms: concretely, the semiclassical estimate [25, Theorem 1], in the microlocalized
form given in [32, Theorem 4.7], can be combined with the semiclassical estimates
at the horizons (i.e. radial points) given in [54, Propositions 2.10 and 2.11], the real
principal type propagation estimates elsewhere on the semiclassical characteristic
set, as well as semiclassical elliptic estimates away from the characteristic set; see
[32, §§4.4, 5] for further details.

The dynamics of the Hamilton flow at the trapping only depend on properties
of the scalar principal symbol g of �. For easier comparison with [23, 54, 60], we
consider the operator P = −r2�. We take the Fourier transform in −t, obtaining a
family of operators on X depending on the dual variable τ , and then do a semiclas-

sical rescaling, multiplying P̂ by h2, giving a second order semiclassical differential
operator Ph, with h = |τ |−1, and we then define z = hτ . Introduce coordinates on
T ∗X by writing 1-forms as ξ dr + η dω, and let

∆r := r2µ = r2(1− λr2)− 2M•r
5−n,

then the semiclassical principal symbol p of Ph is

p = ∆rξ
2 − r4

∆r
z2 + |η|2,

and correspondingly the Hamilton vector field is

Hp = 2∆rξ∂r −
(
∂r∆rξ

2 − ∂r
( r4

∆r

)
z2
)
∂ξ +H|η|2

We work with real z, hence z = ±1. We locate the trapped set: if Hpr = 2∆rξ =
0, then ξ = 0, in which case H2

pr = 2∆rHpξ = 2∆r∂r(r
4/∆r)z

2. Recall the

definition of the function µ̃ = µ/r2 = ∆r/r
4, then we can rewrite this as H2

pr =

−2∆rµ̃
−2(∂rµ̃)z2. We have already seen that ∂rµ̃ has a single root rp ∈ (r−, r+),

and (r−rp)∂rµ̃ < 0 for r 6= rp. Therefore, H2
pr = 0 implies (still assuming Hpr = 0)

r = rp. Thus, the only trapping occurs in the cotangent bundle over r = rp: indeed,
define F (r) = (r − rp)2, then HpF = 2(r − rp)Hpr and H2

pF = 2(Hpr)
2 + 2(r −

rp)H
2
pr. Thus, if HpF = 0, then either r = rp, in which case H2

pF = 2(Hpr)
2 > 0

unless Hpr = 0, or Hpr = 0, in which case H2
pF = 2(r − rp)H2

pr > 0 unless r = rp.

So HpF = 0, p = 0 implies either H2
pF > 0 or r = rp, Hpr = 0. Therefore, the

29If (d̂(σ) + δ̂(σ))−1 had a second order pole at 0, then solutions to (d + δ)u = 0 would
generically blow up linearly; the simplicity of the pole ensures that solutions stay bounded with

the asymptotic stationary state given by an element of H.
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trapped set in T ∗X is given by

(r, ω; ξ, η) ∈ Γ~ :=
{

(rp, ω; 0, η) :
r4

∆r
z2 = |η|2

}
,

and F is an escape function. The linearization of the Hp-flow at Γ~ in the normal
coordinates r − rp and ξ equals

Hp

(
r − rp
ξ

)
=

(
0 2r4

pµ̃|r=rp
2(n− 3)r−4

p (µ̃|r=rp)−2z2 0

)(
r − rp
ξ

)
+O(|r − rp|2 + |ξ|2),

where we used ∂rrµ̃|r=rp = −2(n − 3)r−4
p , which gives ∂rµ̃ = −2(n − 3)r−4

p (r −
rp)+O(|r−rp|2). The eigenvalues of the linearization are therefore equal to ±νmin,
where

νmin = 2rp

(
n− 1

1− n−1
n−3r

2
pλ

)1/2

> 0.

The expansion rate of the flow within the trapped set is 0 by spherical symmetry,
since integral curves of Hp on Γ~ are simply unit speed geodesics of Sn−2. This
shows the normal hyperbolicity (in fact, r-normal hyperbolicity for every r) of the
trapping.

It remains to bound the imaginary part of P = −r2�g in terms of νmin in order
to obtain high energy estimates below the real line. More precisely, we need to
show that

Q := |τ |−1σ1

(
1

2i
(P − P∗)

)
<
νmin

2

at the trapped set (cf. the discussion in [32, §5.4]), where we take the adjoint
with respect to some Riemannian inner product B, to be chosen, on the bundle
ΛpSn−2⊕Λp−1Sn−2⊕Λp−1Sn−2⊕Λp−2Sn−2; notice that Q is a self-adjoint section
of the endomorphism bundle of this bundle.

If one does not allow more general pseudodifferential inner products B, one can
arrange this for a restricted range of black hole parameters in 3 + 1 dimensions.
Indeed, a natural guess is to use B = H ⊕H in the tangential-normal decomposi-
tion (3.6), thus

B = r−2pΩp ⊕ r−2(p−1)Ωp−1 ⊕ r−2(p−1)Ωp−1 ⊕ r−2(p−2)Ωp−2.

In this case, the expression (4.11) shows that the only parts of P that are not
symmetric with respect to B at the spacetime trapped set

Γ = {(t, rp, ω; τ, 0, η) :
r4

∆r
τ2 = |η|2},

are the (2, 3) and (3, 2) components; thus, taking adjoints with respect to B, we
compute

Q =


0 0 0 0
0 0 ±r2µ−1µ′ 0
0 ±r2µ−1µ′ 0 0
0 0 0 0


at Γ, with the sign depending the sign of τ . Now (µ/r2)′ = 0 at r = rp implies
µ−1µ′r2

p = 2rp; the eigenvalues of Q are therefore ±2rp, and they are bounded by
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νmin/2 if and only if

r2
pλ >

(5− n)(n− 3)

4(n− 1)
,

which in spacetime dimensions n ≥ 5 is always satisfied. In dimension n = 4
however, the condition becomes r2

pλ > 1/12, or

9ΛM2
• >

1

4
,

while the non-degeneracy condition (4.3) requires 9ΛM2
• < 1. Therefore, only for

very massive black holes or very large cosmological constants does the above choice
of positive definite inner product B yield a sufficiently small imaginary part of P.30

To overcome this problem, one needs to allow B to be a pseudodifferential inner
product on the form bundle, introduced by Hintz [30]: such an inner product de-
pends on the position in phase space rather than physical space; equivalently, one
can replace P by QPQ−1, where Q, an elliptic pseudodifferential operator acting
on the form bundle, is chosen in such a way that QPQ−1, relative to a Riemannian
inner product on the form bundle, e.g. B, has (arbitrarily) small imaginary part,
which is in particular bounded by νmin/2. That such an inner product can be cho-
sen is proved for general tensor-valued waves on Schwarzschild–de Sitter spacetimes
with spacetime dimension n ≥ 4 in [30, Theorem 4.8]; see also [30, Theorem 2.1]
for the resulting resonance expansion of tensor-valued waves. The point of view of
pseudodifferential inner products shows precisely which structure of the subprinci-
pal part of � at the trapped set makes such a choice of a pseudodifferential inner
product (equivalently, a choice of a conjugating operator Q) possible. �

We can in fact prove boundedness and asymptotics for solutions of the wave
equation on differential forms in all form degrees as well. To begin, write

(d̃(σ) + δ̃(σ))−1 = σ−1A−1 +O(1), A−1 =

4∑
j=1

〈·, ψj〉φj , (4.13)

near σ = 0, where {φj}j=1,...,4 is a basis of the space of resonant states and

{ψj}j=1,...,4 is a basis of the space H∗ = ker(d̃(0) + δ̃(0))∗ of dual states.31 There-
fore, we need to understand the dual states of d + δ in order to understand the

order and structure of the pole of �̃(σ)−1 =
(
(d̃(σ) + δ̃(σ))−1

)2
as σ = 0. Notice

here that the adjoint (d̃(σ) + δ̃(σ))∗ acts on distributions on X̃ which are supported

at the Cauchy hypersurface ∂X̃ (see [33, Appendix B] for this and related notions).

In particular, an element ũ ∈ ker(d̃(σ) + δ̃(σ))∗ satisfies ũ ∈ ker �̃(σ) and is a sup-

ported distribution at ∂X̃, thus by local uniqueness, ũ vanishes in the hyperbolic

region X̃ \X, hence supp ũ ⊂ X.

Lemma 4.6. The spaces H∗ and K∗ of dual states for d + δ and �, respectively,
on n-dimensional Schwarzschild–de Sitter space, n ≥ 4, are graded by form degree,
H∗ =

⊕n
k=0Hk∗, K∗ =

⊕n
k=0Kk∗ , and have the following explicit descriptions:

K0
∗ = 〈1X〉,H0

∗ = 0, Kn∗ = 〈1Xrn−2 dt ∧ dr ∧ ω〉,Hn∗ = 0,

H1
∗ = 〈δr=r− dr, δr=r+ dr〉, Hn−1

∗ = 〈δr=r− dr ∧ ω, δr=r+ dr ∧ ω〉,

30In fact, one can check that for parameters M• and Λ with 9ΛM2
• ≤ 1/4, the endomorphism

Q is not bounded by νmin/2 for any choice of B.
31After choosing the φj , say, the ψj are uniquely determined.
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Hk∗ = 0, k = 2, . . . , n− 2,

where ω denotes the volume form on the round sphere Sn−2. Furthermore, K1
∗ = H1

∗,
Kn−1
∗ = Hn−1

∗ and

Kk∗ = 0, k = 3, . . . , n− 3.

For n = 4,

K2
∗ = 〈1Xω, 1Xr−2 dt ∧ dr〉,

while for n > 4,

K2
∗ = 〈1Xr2−n dt ∧ dr〉, Kn−2

∗ = 〈1Xω〉.
We have 〈φ, ψ〉 = 0 for all φ ∈ H, ψ ∈ H∗.

Proof. For computing the dual resonant states, we need to compute the form of �̃(0)
near the two components of ∂X = Sn−2 t Sn−2. Since dual states are supported

in Xeven, it suffices to compute C−1
± �̂(0)C±, since any smooth extension of this

operator to X̃ agrees with �̃(0) in X and to infinite order at ∂Xeven,32 thus the
difference annihilates dual states. Using Lemma 4.3, we compute

−C−1
± �̂p(0)C± = r−2


∆p 0 0 0
0 ∆p−1 0 0
0 0 ∆p−1 0
0 0 0 ∆p−2



+


α−1∂∗r,pα

2∂r −2α2r−1dp−1 ±2r−1dp−1 0
−2r−3δp ∂rα

−1∂∗r,p−1α
2 ±(2(p− 1)− (n− 2))r−2 ∓2r−1dp−2

0 0 α∂∗r,p−1∂r −2α2r−1dp−2

0 0 −2r−3δp−1 ∂rα∂
∗
r,p−2

 ,

where the Laplace operators, differentials and codifferentials are the operators on
Sn−2. This does extend to an operator acting on smooth functions on (r±− δ, r±+
δ)× Sn−2, δ > 0 small, near r±.

Now for p = 0, clearly α−1∂∗r,0α
2∂r1X = ∓α−1∂∗r,0(µδr=r±) = 0, hence K0

∗ =

〈1X〉. (Observe that since �̃0(0) is Fredholm of index 0 and has a 1-dimensional ker-
nel according to Theorem 4.4, the space of dual 0-form resonances is 1-dimensional
as well.) Likewise, for p = n, we have

∂rα∂
∗
r,n−2(1Xr

n−2 dt ∧ dr ∧ ω) = −∂rµrn−2∂r(1X dt ∧ dr ∧ ω) = 0,

confirming Kn∗ = 〈1Xrn−2 dt ∧ dr ∧ ω〉. By completely analogous arguments, we
find 1Xr

2−n dt ∧ dr ∈ K2
∗ and 1Xω ∈ Kn−2

∗ .

In order to proceed, notice that d̃(0) + δ̃(0) maps K∗ into H∗. Hence, we can

find dual states for d + δ by applying d̃(0) + δ̃(0) to the dual states of � that we
have already identified. For this computation, we note

C−1
± d̂p(0)C± =


dSn−2,p 0 0 0
∂r −dSn−2,p−1 0 0
0 0 −dSn−2,p−1 0
0 0 −∂r dSn−2,p−2

 ,

32Since the Schwarzschild–de Sitter metric is analytic, we in fact do not have to make any
choices.
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C−1
± δ̂p(0)C± =


−r2δSn−2,p −α−1∂∗r,p−1α

2 ±α−1∂∗r,p−1 0
0 r−2δSn−2,p−1 0 ±α−1∂∗r,p−2

0 0 r−2δSn−2,p−1 α∂∗r,p−2

0 0 0 −r−2δSn−2,p−2

 .

Thus, (d̃0(0) + δ̃0(0))1X and (d̃2(0) + δ̃2(0))(1Xr
2−n dt∧ dr) are both linear combi-

nations of δr=r± dr, hence δr=r± dr ∈ H1
∗ ⊂ K1

∗, and similarly (d̃n(0)+ δ̃n(0))(1X ?1)

and (d̃n−2(0) + δ̃n−2(0))(1Xω) are both linear combinations of δr=r± dr ∧ ω, hence
δr=r± dr ∧ ω ∈ Hn−1

∗ ⊂ Kn−1
∗ .

We have therefore identified 4 and 8 linearly independent dual states for d+δ and

�, which is equal to the dimensions of H and K, respectively, and since d̃(0) + δ̃(0)

and �̃(0) have index 0, all dual states are linear combinations of these, i.e. we have
thus identified a basis of the spaces of dual states. The orthogonality of resonant
and dual states for d+δ follows immediately from the explicit forms of both derived
in Theorem 4.4 and in this lemma: all dual states have form degree 1 or n − 1,
while all resonant states have form degree 0, 2, n− 2 or n. �

The orthogonality statement in Lemma 4.6 combined with (4.13) immediately

gives A2
−1 = 0, hence the coefficient of σ−2 in the Laurent expansion of �̂(σ)−1

at σ = 0 vanishes. For precisely those form degrees 0 ≤ p ≤ n for which Kp is

non-trivial, �̂(σ)−1 does have a simple pole at σ = 0, and

�̂p(σ)−1 = σ−1
dimKp∑
j=1

〈·, ψ′j〉φ′j +O(1),

where φ′j and ψ′j run over a basis of ker �̂p(0) ∼= Kp and Kp∗ = ker �̂p(0)∗, respec-

tively.33

Theorem 4.7. On 4-dimensional Schwarzschild–de Sitter space, if 0 ≤ p ≤ 4 and
u is a differential form of degree p which solves �u = 0 with smooth initial data,
then u decays exponentially to

• a constant for p = 0,
• a linear combination of u+ and u−, defined in the statement of Theorem 4.4,

for p = 1,
• a linear combination of ω and r−2 dt ∧ dr for p = 2,
• a linear combination of ?u+ and ?u− for p = 3 and
• a constant multiple of r2 dt ∧ dr ∧ ω for p = 4.

Analogous statements hold on any n-dimensional Schwarzschild–de Sitter space,
n ≥ 5.

5. Results for Kerr–de Sitter space

We now prove that some of the results obtained in the previous section for the
4-dimensional Schwarzschild–de Sitter spacetime are stable under perturbations
which do not respect the warped product structure imposed in §2, which in particular
allows us to draw conclusions about asymptotics for solutions of (d + δ)u = 0 or
�u = 0 on Kerr–de Sitter space with very little effort, even though the latter does
not satisfy the requirements of Section 2. Thus, fixing the black hole mass M•

33After choosing the φ′j , the ψ′j are uniquely determined, and vice versa.
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and the cosmological constant Λ > 0, denote by ga the Kerr–de Sitter metric with
angular momentum a; thus, g0 is the Schwarzschild–de Sitter metric.34 Only very
basic facts about the metric will be used; we refer the reader to [54, §6] for details
and further information. We will write δga for the codifferential with respect to
the metric ga. We furthermore denote by M = Rt × X the domain of exterior

communications, and by M̃ = Rt∗ × X̃ the ‘extended’ spacetime, with t∗ defined
in35 [54, Equation (6.4) and beginning of §6.4].

To begin, recall that the scalar wave equation (and by essentially the same
arguments the wave equation on differential forms, since the principal symbol of the
Hodge d’Alembertian is scalar, see also [56, §4] for a discussion in a related context)
on the Kerr–de Sitter spacetime fits into the microlocal framework developed in [54].
In particular, asymptotics for waves follow directly from properties of the Mellin
transformed normal operator family, and moreover the analysis of the latter is
stable under perturbations. In the present context, this concretely means that for
any ε > 0, there exists aε > 0 such that for all angular momenta a with |a| < aε, the

meromorphic family of operatorsRa(σ) := (d̃(σ)+δ̃ga(σ))−1 has no poles in |σ| ≥ ε,
Imσ ≥ 0, and such that moreover all poles in |σ| < ε are perturbations of the pole of
R0(σ) at 0, in the sense the sum of the ranks of the resonances (i.e. poles of Ra(σ))
in |σ| < ε equals the corresponding sum for the Schwarzschild–de Sitter metric,
which equals 4 by Theorem 4.4; we refer the reader to [28, Appendix A] (which
extends the perturbative discussion of [54, §2.7]) for definitions and details, and here
merely point out the presently relevant consequence that sum of the dimensions of

the kernels of d̃(σ) + δ̃ga(σ) for |σ| < ε is at most 4-dimensional. Now, Lemma 4.6
suggests considering dual resonant states instead (which have a simpler form); the

same stability result as forRa(σ) holds forR∗a(σ) := ((d̃(σ)+δ̃ga(σ))∗)−1. However,
just as in the case of Schwarzschild–de Sitter space, we can immediately write down

4 linearly independent dual 0-resonant states for d+δga : namely, apply d̃(0)+δ̃ga(0)
to 1X (this is a dual resonant state for �ga), which produces a sum of δ-distributions
supported at the horizons r = r±, and splitting this up into the part supported at
r− and the part supported at r+, we obtain 2 linearly independent dual resonant
states for d + δ in form degree 1. The same procedure can be applied to ?ga1X ,
yielding 2 linearly independent dual resonant states for d+δ in form degree 3 (which
are simply the Hodge duals of the dual states in form degree 1). Hence,

Ha := ker(d̃(0) + δ̃ga(0)), (5.1)

which has the same dimension as

Ha,∗ := ker(d̃(0) + δ̃ga(0))∗, (5.2)

is at least 4-dimensional for small |a|, but it is also at most 4-dimensional by the
above perturbation stability argument! Hence, for small |a|, we deduce that 0 is
the only pole of Ra(σ), i.e. the only resonance of d+ δga , in Imσ ≥ 0 (and also the
only pole of R∗a(σ) in this half space), and is simple.

34Assuming the non-degeneracy condition (4.3), which ensures that the cosmological horizon
lies outside the black hole event horizon, the same will be true for small |a|, which is the setting
in which work here. In general, one would need to assume that Λ, M• and a are such that the

non-degeneracy condition [54, (6.2)] holds.
35Our t, t∗ are denoted t̃, t, respectively in the reference.
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We can use this in turn to prove the stability of the zero resonance for �ga in

all form degrees. Let πk : C∞(M̃ ; ΛM̃) → C∞(M̃ ; ΛM̃) denote the projection onto
differential forms with pure form degree k ∈ {0, . . . , 4}, which induces a map on

C∞(X̃; ΛX̃ ⊕ ΛX̃). Let

Ka := ker �̃ga(0) =

4⊕
k=0

Kka (5.3)

be the grading of the zero resonant space of �ga by form degree, likewise

Ka,∗ := ker �̃ga(0)∗ =

4⊕
k=0

Kka,∗ (5.4)

for the space of dual resonant states. Observe that πkHa ⊆ Kka, since u ∈ Ha
implies 0 = πk�gau = �gaπku. Now, since �ga1 = 0, we have K0

a = 〈1〉 for small
|a| by stability, likewise K4

a = 〈?ga1〉. Furthermore, K2
a is at most 2-dimensional

for small |a| (since K2
0 is 2-dimensional), but also K2

a ⊇ π2Ha; now π2H0 is 2-
dimensional by Theorem 4.4 and Ha depends smoothly on a, thus K2

a = π2Ha is
2-dimensional for small |a|; therefore K2

a = π2Ha is 2-dimensional. Finally, we have
H1
a,∗ ⊆ K1

a,∗, hence by the analysis of d + δga above, K1
a,∗, hence K1

a, is at least

2-dimensional, but since K1
0 is 2-dimensional, we must in fact have dimK1

a = 2 for
small |a|; likewise dimK3

a = 2. Hence, we have dimKka = dimKk0 for k = 0, . . . , 4,
which in particular means that the zero resonance of �ga is the only resonance in
Imσ ≥ 0, and the resonance is simple.

We now summarize the above discussion, including a small improvement. The
following theorem is completely parallel to Theorem 4.4, Lemma 4.6 and Theo-
rem 4.7 for Schwarzschild–de Sitter spacetimes, extending these to Kerr–de Sitter
spacetimes with small angular momentum:

Theorem 5.1. For small |a|, the only resonance of d+ δga in Imσ ≥ 0 is a simple
resonance at σ = 0, likewise for �ga . The spaces Ha and Ha,∗ of resonant and

dual resonant states for d + δga are graded by form degree as Ha =
⊕4

k=0Hka,

Ha,∗ =
⊕4

k=0Hka,∗, in particular Hka = ker d̃k(0) ∩ ker(δ̃ga)k(0),36 with

H0
a = 〈1〉, H1

a = 0, H2
a = 〈ua,1, ua,2〉, H3

a = 0, H4
a = 〈?ga1〉

for some 2-forms ua,1, ua,2, which can be chosen to depend smoothly on a,37 with
u0,1 = r−2 dt ∧ dr, u0,2 = ω in the notation of Theorem 4.4, and

H0
a,∗ = 0, H1

a,∗ = 〈δr=r− dr, δr=r+ dr〉,
H2
a,∗ = 0, H3

a,∗ = ?gaH1
a,∗, H4

a,∗ = 0.

For the spaces Ka and Ka,∗ of resonant and dual resonant states for �ga , we have

K0
a = H0

a, K1
a = 〈ua,+, ua,−〉, K2

a = H2
a, K3

a = ?gaK1
a, K4

a = H4
a

for some 1-forms ua,±, which can be chosen to depend smoothly on a, with u0,± =
u± in the notation of Theorem 4.7, and

K0
a,∗ = 〈1X〉, K1

a,∗ = H1
a,∗,

K2
a,∗ = 〈1Xua,1, 1Xua,2〉, K3

a,∗ = H3
a,∗, K4

a,∗ = 〈?ga1X〉.

36The subscript denotes the degree of differential forms on which the respective operator acts.
37We derive an explicit expression in Remark 5.4 below.
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In particular, the form degree k part of a solution u to (d + δga)u = 0, resp.
�gau = 0, with smooth initial data decays exponentially to an element of Hka, resp.
Kka, for k = 0, . . . , 4.

Remark 5.2. Since for all k = 0, . . . , 4, either Hka = 0 or Hka,∗ = 0, hence Ha and
Ha,∗ are orthogonal, we obtain another proof, as in the Schwarzschild–de Sitter
case, of the fact that �ga acting on differential forms only has a simple resonance
at 0.

Proof of Theorem 5.1. We only need to prove that the space Ha is graded by form
degree: let πeven = π0 +π2 +π4 denote the projection onto even form degree parts,
then since d + δga maps even degree forms to odd degree forms and vice versa,
πeven maps Ha into itself. Now suppose u ∈ πevenHa, and write u = u0 + u2 + u4

with uk = πku, k = 0, 2, 4. Then 0 = π1(d + δga)u = du0 + δgau2,38 and applying
δga to this equation gives 0 = �gau0, which implies u0 ∈ K0

a, i.e. u0 is a constant,
as discussed before the statement of the theorem. Likewise, u4 ∈ K4

a, so u4 is
the Hodge dual of a constant. Therefore, d + δga annihilates both u0 and u4,
hence u2 ∈ Ha. This argument shows that in fact π2Ha ⊂ Ha. Since π2Ha is
2-dimensional, as noted above, we have

〈1〉 ⊕ π2Ha ⊕ 〈?ga1〉 ⊆ Ha,
with both sides having the same dimension (namely, 4), and thus equality holds,
providing the grading of Ha by form degree. �

This in particular proves Theorem 1.

Remark 5.3. Observe that all ingredients in the Fredholm analysis of the normal
operator family, which here in particular involves estimates at normally hyperbolic
trapping, as well as all of the above arguments which lead to a characterization of
the spaces of resonances are stable in the sense that they apply to any stationary
perturbation of a given Schwarzschild–de Sitter spacetime (4-dimensional for the
above, but similar arguments apply in all spacetime dimensions ≥ 4), not only to
slowly rotating Kerr–de Sitter black holes.

In fact, using the analysis of operators with non-smooth coefficients developed
in [29] and extended in [32], we can deduce decay and expansions in the exact
same form as in the above theorem for waves on spacetimes which are merely
‘asymptotically stationary’ and close to Schwarzschild–de Sitter, i.e. for which the
metric tensor differs from a stationary metric close to Schwarzschild–de Sitter by an
exponentially decaying symmetric 2-tensor (with suitable regularity). This shows at
once that quasilinear wave equations on differential forms of the form �g(u,∇u)u =
q(u,∇u) with small initial data can be solved globally, provided g(0, 0) is close to
the Schwarzschild–de Sitter metric, and the non-linearity q annihilates 0-resonant
states; to give an (artificial) example, on 2-forms, one could take q(u,∇u) = |du|2u.

Remark 5.4. In the case of the Kerr–de Sitter metric, we can in fact explicitly write
down ua,1 ∈ H2

a (and then take ua,2 = ?gaua,1 to obtain a basis of H2
a). Indeed,

on the Kerr spacetime, Andersson and Blue [2] give the values of the spin coeffi-
cients of the Maxwell field for the Coulomb solution in [2, §3.1], and reconstructing
the Maxwell field itself (in the basis given by wedge products of differentials of

38We use the identification of resonant states with t∗-independent forms as in the proof of
Theorem 3.20.
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the Boyer–Lindquist coordinates t, r, θ, φ) is then an easy computation using the
explicit form of the null tetrad given in [2, Introduction, §2.4].39 A tedious but
straightforward calculation shows that the resulting 2-form

ua,1 := Fa,TR(r,θ) (dt− a sin2 θ dφ) ∧ dr
+ Fa,ΘΦ(r, θ) sin θ dθ ∧ (a dt− (r2 + a2) dφ)

with

Fa,TR(r, θ) =
r2 − a2 cos2 θ

(r2 + a2 cos2 θ)2
, Fa,ΘΦ(r, θ) =

2ar cos θ

(r2 + a2 cos2 θ)2

is a solution of Maxwell’s equations on Kerr–de Sitter space as well, i.e. when the
cosmological constant is positive.
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[17] Mihalis Dafermos and Igor Rodnianski. A proof of the uniform boundedness of solutions to the

wave equation on slowly rotating Kerr backgrounds. Inventiones mathematicae, 185(3):467–

559, 2011.
[18] Mihalis Dafermos, Igor Rodnianski, and Yakov Shlapentokh-Rothman. Decay for solutions of

the wave equation on Kerr exterior spacetimes III: The full subextremal case |a| < M . Ann.

of Math. (2), 183(3):787–913, 2016.
[19] Roland Donninger, Wilhelm Schlag, and Avy Soffer. On pointwise decay of linear waves on a

Schwarzschild black hole background. Communications in Mathematical Physics, 309(1):51–

86, 2012.
[20] Semyon Dyatlov. Exponential energy decay for Kerr–de Sitter black holes beyond event hori-

zons. Mathematical Research Letters, 18(5):1023–1035, 2011.

[21] Semyon Dyatlov. Quasi-normal modes and exponential energy decay for the Kerr–de Sitter
black hole. Comm. Math. Phys., 306(1):119–163, 2011.

[22] Semyon Dyatlov. Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black
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[46] Antônio Sá Barreto and Maciej Zworski. Distribution of resonances for spherical black holes.
Mathematical Research Letters, 4:103–122, 1997.

[47] Yakov Shlapentokh-Rothman. Quantitative mode stability for the wave equation on the Kerr

spacetime. Ann. Henri Poincaré, 16(1):289–345, 2015.
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