
THE LINEARIZED EINSTEIN EQUATIONS WITH SOURCES

PETER HINTZ

Abstract. On vacuum spacetimes of general dimension, we study the linearized Einstein
vacuum equations with a spatially compactly supported and (necessarily) divergence-free
source. We prove that the vanishing of appropriate charges of the source, defined in terms
of Killing vector fields on the spacetime, is necessary and sufficient for solvability within the
class of spatially compactly supported metric perturbations. The proof combines classical
results by Moncrief with the solvability theory of the linearized constraint equations with
control on supports developed by Corvino–Schoen and Chruściel–Delay.

1. Introduction

Let (M, g) be a smooth connected globally hyperbolic spacetime, of dimension n + 1
where n ≥ 2, which solves the Einstein vacuum equations

Ein(g) = 0, Ein(g) := Ric(g)− 1

2
Rgg. (1.1)

Here Ric(g) and Rg denote the Ricci and scalar curvature, respectively. Let Σ ⊂M denote
a smooth spacelike Cauchy hypersurface; denote its unit normal by νΣ and the surface
measure by dσ. We study linearized perturbations of g sourced by smooth linearized stress-
energy-momentum tensors f ∈ C∞sc (M ;S2T ∗M) which are spatially compactly supported
(hence the subscript ‘sc’): this means that there exists a compact subset K ⊂ Σ so that
supp f ⊂

⋃
± J
±(K), with J±(K) ⊂ M denoting the causal future (‘+’), resp. past (‘−’),

of K.1 That is, we shall study the equation

DgEin(h) :=
d

ds
Ein(g + sh)

∣∣∣
s=0

= f. (1.2)

Recall the second Bianchi identity, which states δgEin(g) = 0 for all metrics g (where δg is
the negative divergence operator, i.e. (δgh)µ = −hµν ;ν); linearizing this in g and using (1.1)
gives

δg
(
DgEin(h)

)
= 0 ∀h ∈ C∞(M ;S2T ∗M). (1.3)

Therefore, a necessary condition for the solvability of (1.2) is δgf = 0. The main result of
this note precisely determines the extent to which this condition is also sufficient. To state
it, denote by K (M, g) ⊂ V(M) = C∞(M ;TM) the (finite-dimensional) space of Killing
vector fields on (M, g).

Theorem 1.1 (Main theorem, smooth version). The map

C∞sc (M ;S2T ∗M) 3 f 7→
∫

Σ
f(νΣ, X) dσ, X ∈ K (M, g), (1.4)

Date: June 14, 2024.
2010 Mathematics Subject Classification. Primary: 83C05, Secondary: 35L05, 35N10.
1The space C∞sc (M) is well-defined independently of the choice of Cauchy hypersurface.

1



2 PETER HINTZ

induces a linear isomorphism{
f ∈ C∞sc (M ;S2T ∗M) : δgf = 0

}
/
{
DgEin(h) : h ∈ C∞sc (M ;S2T ∗M)

}
→ K (M, g)∗. (1.5)

Here K (M, g)∗ = L(K (M, g),R) is the dual space. This isomorphism is moreover inde-
pendent of the choice of Cauchy hypersurface Σ.

In other words, DgEin(h) = f ∈ C∞sc ∩ ker δg has a solution h ∈ C∞sc if and only if all
‘charges’ (1.4) vanish. (In particular, when K (M, g) = {0}, then δgf = 0 is sufficient for
the solvability of (1.2).) The proof of solvability utilizes the Cauchy problem for a gauge-
fixed version of this equation. The Cauchy data must be chosen to satisfy the linearized
constraint equations on Σ with source ψ = f(νΣ, ·) while being compactly supported; by
results of Corvino–Schoen [CS06] and Chruściel–Delay [CD03], this is possible if and only
if ψ is L2

g-orthogonal to the kernel of the formal L2
g-adjoint of the linearized constraints

map, which can be canonically identified with K (M, g) by a result of Moncrief [Mon75].
We recall Moncrief’s result in Proposition 2.1 and give a new perspective on its proof. For
a finite regularity version of Theorem 1.1, see Theorem 3.3.

In Theorem 3.4, we show that if Σ is noncompact and one drops the support assumptions
on h, there are no obstructions to solvability beyond δgf = 0, the reason being that the
aforementioned cokernel on the dual space E ′(Σ) of C∞(Σ) is trivial. When M and Σ have
more structure, e.g. if they are asymptotically flat, one can make more precise statements
regarding the weights at infinity of f and h depending on which (some of) the additional
obstructions given by (1.4) disappear; we shall not discuss this here.

Remark 1.2 (Cosmological constant). Our arguments go through with purely notational
modifications if Ein(g) − Λg = 0 where Λ ∈ R is the cosmological constant. In this case,
Theorem 1.1 becomes a characterization of those f ∈ C∞sc ∩ker δg for which DgEin(h)−Λh =
f has a solution h ∈ C∞sc .

Our motivation for solving DgEin(h) = f with nontrivial f , and understanding the
obstructions to solvability, comes from perturbation theory. To give a concrete example,
suppose (M, g) is a vacuum spacetime, and we wish to modify it near a timelike geodesic
γ, in local Fermi normal coordinates (t, x) given by γ = {(t, 0) : t ∈ R}, by gluing in
a small black hole; in 3 + 1 dimensions this could be a Schwarzschild black hole with
mass ε > 0, given by the metric −dt2 + dx2 + 2ε

r (dt2 + dr2) + O(ε2r−2) where r = |x|.
The naive ansatz gε = g + χ(r)2ε

r (dt2 + dr2) for the modified spacetime metric leads to

Ein(gε) = Ein(g) + εf + O(ε2) where f = O(1) near the gluing region suppχ′ ⊂ {r > 0}
(ignoring the singularity of f at r = 0, which one must deal with separately), and δgf = 0
by the second Bianchi identity for gε = g + O(ε). One then wishes to eliminate the error
f by replacing gε by gε + εh where h solves DgEin(h) = −f (while being more regular at
r = 0 than 2ε

r (dt2 + dr2)). For the details of such a gluing procedure, see [Hin23].

Prior work on solutions of the linearized Einstein equations has largely focused on so-
lutions of the homogeneous equation DgEin(h) = 0. Control of solutions modulo pure
gauge solutions (i.e. symmetric gradients δ∗gω of 1-forms ω on M , which always satisfy
this equation) is one important problem, especially in the context of stability problems
[RW57]. More pertinent to this work is the problem of linearization stability as introduced
by Fischer–Marsden [FM75, FM73], namely whether such an infinitesimal deformation h
can be integrated to a nonlinear solution, i.e. whether there exists a family gs of met-
rics with Ein(gs) = 0 and h = d

dsgs|s=0. This is the original context of [Mon75], which



THE LINEARIZED EINSTEIN EQUATIONS WITH SOURCES 3

shows that linearization stability at (M, g) holds for the Einstein equations if and only if
K (M, g) = {0}. The necessary conditions for the existence of gs whose linearization is h
in the presence of nontrivial Killing vector fields were found in [Mon76, AMM82, FMM80].

In this context, Theorem 1.1 gives a necessary and sufficient condition on f ∈ C∞sc ∩ker δg
so that there exist spacetime metrics gs, s ∈ (−1, 1), with Ein(gs) = sf +O(s2). (Absent
a general natural physical prescription of further lower order terms beyond sf , we do not
study the problem of determining when a metric g̃ near g with, say, Ein(g̃) = sf , s small,
exists.) The problem of prescribing the nonlinear Ricci curvature tensor of a Lorentzian
metric on a given smooth manifold has been studied by DeTurck [DeT83]; the question
of the solvability of the analogue of the constraint equations with source, see [DeT83,
Equations (3.1)–(3.2)], is however not discussed there.

2. Killing vector fields and the linearized constraint equations

We recall classical results by Moncrief [Mon75] and Fischer–Marsden–Moncrief [FMM80].
For any Lorentzian metric g for which Σ is spacelike, the 1-form

Ein(g)(νΣ, ·) ∈ C∞(Σ;T ∗ΣM)

depends only on the first and second fundamental forms γ(X,Y ) = g(X,Y ), k(X,Y ) =
〈∇XνΣ, Y 〉, X,Y ∈ TΣ, of Σ; this gives rise to the constraints map

P (γ, k) := Ein(g)(νΣ, ·) =
(1

2

(
Rγ − |k|2γ + (trγ k)2

)
,−δγk − d trγ k

)
. (2.1)

We write Dγ,kP for the linearization of P at (γ, k); thus Dγ,kP ∈ Diff2(Σ;S2T ∗Σ ⊕
S2T ∗Σ;T ∗ΣM), i.e.Dγ,kP is a second order differential operator mapping sections of S2T ∗Σ⊕
S2T ∗Σ → Σ to sections of T ∗ΣM → Σ. (Here we identify TΣM = R ⊕ TΣ using the or-
thogonal projections onto RνΣ and TΣ, and likewise for the cotangent bundles.) Suppose

that Ein(g) = 0. If h ∈ C∞(M ;S2T ∗M), and γ̇, k̇ ∈ C∞(Σ;S2T ∗Σ) denote the induced
linearized initial data at Σ (i.e. the derivatives at s = 0 of the initial data of g + sh), then
linearizing (2.1) implies

DgEin(h)(νΣ, ·) = Dγ,kP (γ̇, k̇). (2.2)

Proposition 2.1 (Killing vector fields and the linearized constraints map). (See [Mon75]
and also [FMM80, Lemma 2.2].) Let (M, g) be globally hyperbolic with Ein(g) = 0. Then
the map V(M) 3 X 7→ g(X|Σ, ·) ∈ C∞(Σ;T ∗ΣM) induces a linear isomorphism

K (M, g)→ ker(Dγ,kP )∗. (2.3)

Our proof of the surjectivity of (2.3) is based on a distributional characterization of
ker(Dγ,kP )∗ which seems to not have been noted before; see (2.7)–(2.8). Before starting
the proof in earnest, we observe that K (M, g) 3 X 7→ X|Σ ∈ C∞(Σ;TΣM) is injective, in
view of the following result:

Lemma 2.2 (Unique determination of Killing vector fields). (Cf. [Mon75, Lemma 4.1].)
Let (M, g) be a smooth connected N -dimensional pseudo-Riemannian manifold. Then the
dimension of the space K (M) of Killing vector fields on (M, g) satisfies dim K (M) ≤
N(N+1)

2 . Moreover, if X ∈ K (M) vanishes along a hypersurface Σ ⊂ M , then X = 0 on
M .
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Proof. This follows from the well-known fact that X is uniquely determined by X(p) ∈ TpM
and ∇X(p) ∈ T ∗pM ⊗ TpM . (Since the Killing equation imposes 1

2N(N + 1) linearly
independent constraints on X(p),∇X(p), the space of Killing vector fields has dimension
≤ N + N2 − 1

2N(N + 1) = 1
2N(N + 1).) We recall a prolongation argument for the proof

of this statement. The Killing equation

〈∇VX,W 〉+ 〈∇WX,V 〉 = 0, V,W ∈ V(M), (2.4)

implies for Z ∈ V(M) the following identity, where we write ‘≡’ for equality modulo terms
involving only X and ∇X but no higher derivatives:

∇Z(∇X)(V,W ) ≡ 〈∇Z∇VX,W 〉 = Z〈∇VX,W 〉 − 〈∇VX,∇ZW 〉 ≡ −Z〈∇WX,V 〉
≡ −〈∇Z∇WX,V 〉 ≡ −〈∇W∇ZX,V 〉 ≡ −∇W (∇X)(Z, V ).

Cyclically permuting the vector fields (Z, V,W ) twice more, we obtain ∇Z(∇X)(V,W ) ≡
−∇Z(∇X)(V,W ), and thus ∇Z(∇X)(V,W ) is an (explicit) expression involving only X
and ∇X. Therefore, if α : [0, 1] → M is a smooth curve, then there exists a smooth
bundle endomorphism F on the restriction of TM ⊕ (T ∗M ⊗ TM) to α([0, 1]) so that
Z(t) = (X,∇X)|α(t) satisfies the ODE

DZ

dt
= F (Z).

In particular, if Z(0) = 0, then Z = 0 on α([0, 1]), and thus Z = 0 on M since M is
connected.

To prove the final claim, note that if V,W are vector fields on M , then (2.4) gives
V 〈X,W 〉 + W 〈X,V 〉 = 0 at Σ (where X = 0). Fix V to be transversal to Σ at a point
p ∈ Σ. For all W which are tangent to Σ, we have W 〈X,V 〉 = W (0) = 0 and thus
V 〈X,W 〉 = 0, while for W = V we obtain V 〈X,V 〉 = 0. Therefore, ∇X = 0 at p, from
where X = 0 follows from the first part of the proof. �

Proof of Proposition 2.1. • Well-definedness; injectivity. Let X ∈ K (M, g). Given h ∈
C∞sc (M ;S2T ∗M), write γ̇, k̇ ∈ C∞c (Σ;S2T ∗Σ) for the linearized initial data at Σ. Since
δg(DgEin(h)) = 0, the fact that X is Killing implies that also DgEin(h)(·, X) is divergence-
free. Therefore, if Σt, t ∈ [−1, 1], is a smooth family of spacelike hypersurfaces, with unit
normal νΣt and surface measure dσt, so that Σt equals Σ outside a large compact set, then

I(t) :=

∫
Σt

DgEin(h)(νΣt , X) dσt

is independent of t and thus equals

I(0) =

∫
Σ
DgEin(h)(νΣ, X) dσ =

∫
Σ
〈Dγ,kP (γ̇, k̇), X〉dσ =

∫
Σ
〈(γ̇, k̇), (Dγ,kP )∗(X)〉 dσ.

Since we can choose (γ̇, k̇) ∈ C∞c (Σ;S2T ∗Σ)⊕ C∞c (Σ;S2T ∗Σ) to be arbitrary at Σ and 0 at

Σ1, we deduce that I(0) = 0 for all γ̇, k̇, and therefore (Dγ,kP )∗(X) = 0. Together with
Lemma 2.2, we conclude that the map (2.3) is well-defined and injective. (This argument
is taken from [FMM80, Lemma 1.5 and Corollary 1.9].)

• Surjectivity. Suppose that ω(0) ∈ C∞(Σ;T ∗ΣM) satisfies

(Dγ,kP )∗(ω(0)) = 0. (2.5)
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Write δ∗g for the symmetric gradient on 1-forms; this is related to the Lie derivative via

δ∗gω = 1
2Lω]g, where we use the musical isomorphism for g. The task is thus to show that

there exists a solution ω ∈ C∞(M ;T ∗M) of the Killing equation δ∗gω = 0 which satisfies
ω|Σ = ω(0). At Σ, the requirements ω = ω(0) and 0 = 2(δ∗gω)(νΣ, V ) = ∇νΣω(V )+∇V ω(νΣ)

for V = νΣ and V ∈ TΣ uniquely determine the 1-jet ω(1) of ω at Σ. Write Gg = I− 1
2g trg;

then we may extend ω(1) to a 1-form on M by solving the wave equation

δgGgδ
∗
gω = 0

on M , with the Cauchy data of ω matching ω(1), by means of [BGP07, Theorem 3.2.11];

here we use that δgGgδ
∗
g equals 1

2�g plus lower order terms. Let now

π := δ∗gω;

thus π|Σ = 0 ∈ C∞(Σ;S2T ∗ΣM) and δgGgπ = 0 globally. Our aim is to show π = 0. Note
that since Ein(g) = 0 and DgEin = Gg ◦DgRic, we have

0 = DgEin(δ∗gω) = GgDgRic(π) = Gg
(1

2
�g − δ∗gδgGg + Rg

)
π =

1

2
Gg(�g + 2Rg)π,

see [GL91, Equation (2.4)], where Rg is a 0-th order operator involving the curvature of g.
In view of this hyperbolic equation for π, we only need to show that

the 1-jet of π vanishes at Σ (2.6)

to conclude the proof. This is where the equation satisfied by ω(0) will enter.

To wit, (2.5) is equivalent to the following statement: for all h ∈ C∞sc (M ;S2T ∗M), and

its induced initial data γ̇, k̇ ∈ C∞c (Σ;S2T ∗Σ) at Σ,2

0 =

∫
Σ
〈(γ̇, k̇), (Dγ,kP )∗ω(0)〉 dσ =

∫
Σ
〈Dγ,kP (γ̇, k̇), ω(0)〉 dσ

=

∫
Σ
DgEin(h)(νΣ, (ω(0))

]) dσ =

∫
Σ
〈DgEin(h), ν[Σ ⊗s ω(0)〉 dσ

= 〈DgEin(h), (ν[Σ ⊗s ω(0))δ(Σ)〉.

Here we use the distributional pairing on M in the final expression; and δ(Σ) is the dis-
tribution which integrates a test function over Σ with the volume density dσ (and hence

(ν[Σ ⊗s ω(0))δ(Σ) is an S2T ∗ΣM -valued distribution). With (DgEin)∗ = DgEin denoting the

formal L2
g-adjoint, this is further equivalent to

0 = (DgEin)∗
(
(ν[Σ ⊗s ω(0))δ(Σ)

)
= DgEin(dH ⊗s ω(0)) (2.7)

where H ∈ L1
loc(M) is 1, resp. 0 in the causal past J−(Σ), resp. future of Σ. The relevant

distributional identity here is dH = ν[Σδ(Σ); this is proved by computing, for a compactly
supported test vector field X ∈ C∞c (M ;TM),

〈dH,X〉 = 〈H,−divX〉 = −
∫
J−(Σ)

divX dg =

∫
Σ
〈X, νΣ〉dσ = 〈X, ν[Σδ(Σ)〉,

2We recall, see e.g. [Hin23, Remark 4.1], that for all γ̇, k̇ ∈ C∞(Σ;S2T ∗Σ) there exists h ∈
C∞(M ;S2T ∗M) which induced the data γ̇, k̇. The construction in the reference also implies that one

can take h to be spatially compactly supported when γ̇, k̇ are compactly supported.



6 PETER HINTZ

using the divergence theorem in the third equality. Finally, we record the distributional
identity

dH ⊗s ω(0) = dH ⊗s ω = δ∗g(Hω)−Hδ∗gω,
where the first equality follows from the fact that the product of δ(Σ) with the 1-form
ω − ω(0), which vanishes at Σ, is 0 as a distribution on M . Together with the identity
DgEin(δ∗gω) = 0 (valid for all ω), we conclude from (2.7) that (2.5) is equivalent to the dis-
tributional equation 0 = DgEin(Hδ∗gω) = [DgEin, H](δ∗gω), or equivalently (upon applying

G−1
g to [DgEin, H](δ∗gω) = 0)

[DgRic, H]π = 0, π = δ∗gω. (2.8)

Expanding this equation (using 2DgRic = �g − 2δ∗gδgGg + 2Rg) and using π|Σ = 0 gives

0 = [�g, H]π − 2[δ∗gδgGg, H]π = [�g, H]π − 2[δ∗g , H](δgGgπ)− 2δ∗g
(
[δgGg, H]π

)
,

with the final term on the right being zero since [δgGg, H]π = −(Ggπ)(∇H, ·) = 0 (this
being the product of a δ-distribution at Σ with a tensor vanishing at Σ). In abstract index
notation, we thus have

−gµν
(
H;µνπκλ +H;µπκλ;ν +H;νπκλ;µ

)
−H;κ(δgGgπ)λ −H;λ(δgGgπ)κ = 0.

Since H;µπκλ = 0, the first two terms in parentheses cancel. Using δgGgπ = δgπ+ 1
2d trg π =

1
2d trg π yields the equation −H;µπκλ;

µ− 1
2

(
H;κπµ

µ
;λ+H;λπµ

µ
;κ

)
= 0. Choosing coordinates

z0, . . . , zn so that Σ = {z0 = 0} and dz0 is a unit covector, this gives

0 = πκλ;0 −
1

2

(
δ0κπµ

µ
;λ + δ0λπµ

µ
;κ

)
= πκλ;0 + δ0κδ0λ(π00;0 − πmm;0)

at Σ, where m runs from 1 to n; here we use that π and therefore also its spatial covariant
derivatives vanish at Σ. For κ = i ≥ 1, λ ≥ 0, this gives πiλ;0 = 0. For κ = λ = 0 then, we
get π00;0 = 0. This shows (2.6) and finishes the proof. �

3. Proof of the main result; variants

The independence of the map (1.4) of the choice of Cauchy hypersurface Σ in (1.4)
follows from the divergence theorem, since δgf = 0 and X ∈ K (M, g) implies that f(X, ·)
is divergence-free. The vanishing of

∫
Σ f(νΣ, X) dσ for f = DgEin(h) was shown in the first

step of the proof of Proposition 2.1. Thus, (1.5) is well-defined.

For the proof of Theorem 1.1, we require the following result:

Theorem 3.1 (Solvability of the linearized constraints). Let (Σ, γ) be a smooth connected
Riemannian manifold, and let k ∈ C∞(Σ;S2T ∗Σ).

(1) (Smooth version.) Suppose ψ ∈ C∞c (Σ;R ⊕ T ∗Σ) satisfies 〈ψ, f∗〉 = 0 for all f∗ ∈
ker(Dγ,kP )∗ ⊂ C∞(Σ;R⊕ T ∗Σ). Then there exist γ̇, k̇ ∈ C∞c (Σ;S2T ∗Σ) so that

Dγ,kP (γ̇, k̇) = ψ. (3.1)

(2) (Finite regularity version.) Let s ≥ 0. If ψ ∈ Hs
c (Σ;R ⊕ T ∗Σ) is L2-orthogonal

to ker(Dγ,kP )∗, then one can find γ̇ ∈ Hs+2
c (Σ;S2T ∗Σ) and k̇ ∈ Hs+1

c (Σ;S2T ∗Σ)
solving (3.1).
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Proof. The existence of regular solutions with controlled support is due to Corvino–Schoen
[CS06], with the existence of smooth solutions proved by Chruściel–Delay [CD03]; see
[Del12] for general results of this flavor. The key point is that (Dγ,kP )∗ is an overde-
termined (Douglis–Nirenberg) elliptic partial differential operator for which a priori esti-
mates hold on spaces of tensors defined on a smoothly bounded open precompact subset
U ⊂ Σ, containing suppψ, which allow for exponential growth at ∂U . By duality, this gives
the solvability of Dγ,kP (γ̇, k̇) = ψ provided ψ is L2

g-orthogonal to the cokernel, with γ̇, k̇
exponentially decaying at ∂U ; their extension by 0 to Σ \ U furnishes the desired solution.

The finite regularity statement proved in [CS06, §4.3], or [Hin22, Proposition 4.15(1),
Footnote 23] (where for present purposes we work away from ρ̂ = 0 and thus may take
ρ̂ = 1, w◦ = 1 in the notation of the reference) produces for ψ ∈ Hs−1

c (Σ) ⊕ Hs
c (Σ;T ∗Σ)

a solution (γ̇, k̇) ∈ Hs+1
c (Σ;T ∗Σ)⊕Hs+1

c (Σ;T ∗Σ) of (3.1): in the notation of [Hin22], one
takes U to contain suppψ, and then [Hin22, Footnote 23] (with β > 0) produces a solution

(γ̇, k̇) ∈ e−β/ρ2Hs+1
00 (U) where ρ2 ∈ C∞(U) is positive in U and vanishes simply at ∂U ;

and the extension of (γ̇, k̇) by 0 is of class Hs+1
c (Σ). (This follows for s ∈ N by direct

differentiation, and for general s ≥ 0 by complex interpolation.)

The regularity orders in this statement are not quite sufficient for later purposes,3 and
therefore we indicate the changes required to obtain the presently required result. Namely,
analogously to [Hin22] we set

Lγ,k := eβ/ρ2 ◦ w2Dγ,kP ◦ e−β/ρ2 ∈ (Diff
tj+si
00 (U))i,j=1,2, s1 = 2, s2 = 1, t1 = t2 = 0,

where w2 = diag(ρ4
2, ρ

2
2). But now we consider the operator

L̃ := Lγ,kDL∗γ,k ∈ Diff4
00(U), D := diag(1, ρ2

2(∇∗∇+ 1)ρ2
2).

Denote the (i, j) component of Lγ,k by Lij . Using that L12 is, in fact, of order 0, not 2 (see
[Hin22, Equation (4.4)]), one finds that the off-diagonal terms of Lγ,kDL∗γ,k are of order 3,

while the diagonal terms are the elliptic operators L11L∗11, L22ρ
2
2(∇∗∇+ 1)ρ2

2L∗22 ∈ Diff4
00.

By elliptic regularity in the 00-setting as in the reference,

L̃ : Hs+4
00 (U ;R⊕ T ∗Σ)→ Hs

00(U ;R⊕ T ∗Σ)

is therefore Fredholm (in fact, for all s ∈ R). We can characterize its cokernel: for q∗ ∈
kerH−s00

L̃∗, we have q∗ ∈ H∞00 by elliptic regularity, and thus we can integrate by parts to

find 〈L̃q∗, q∗〉L2 = 〈DL∗γ,kq∗,L∗γ,kq∗〉L2 = 0. Writing L∗γ,kq∗ = (a, b), this means ‖a‖2 +

‖∇ρ2
2b‖2L2 +‖ρ2

2b‖2L2 = 0 and thus a = b = 0; this means that eβ/ρ2w2q
∗ ∈ ker(Dγ,kP )∗, and

we conclude that
kerH−s00

L̃∗ = e−β/ρ2w−1
2 ker(Dγ,kP )∗. (3.2)

Let now ψ ∈ Hs
c be given, with ψ orthogonal to ker(Dγ,kP )∗. Fix U containing suppψ, and

set ψ̃ = eβ/ρ2w2ψ ∈ Hs
00(U); we can then find a solution q̃ ∈ Hs+4

00 (U) of L̃q̃ = ψ̃ since ψ̃ is
L2-orthogonal to (3.2) by assumption on ψ. But then

(γ̇, k̇) := e−β/ρ2De−β/ρ2(Dγ,kP )∗w2e
β/ρ2 q̃ ∈ e−β/ρ2Hs+2

00 ⊕ e−β/ρ2Hs+1
00

solves Dγ,kP (γ̇, k̇) = ψ on U . As before, the extensions by 0 of γ̇, k̇ are the desired solutions
on Σ. �

3See the proof of Theorem 3.3: it would cause a partial loss of regularity in that h0, h1 there would both
be of class Hs+1

c only, ultimately leading to the solution h there to only be of class Hs
sc, assuming s ≥ 1.
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Proof of Theorem 1.1. • Injectivity of (1.5). Suppose f ∈ C∞sc (M ;S2T ∗M) satisfies δgf = 0

and
∫

Σ f(νΣ, X) dσ = 0 for all X ∈ K (M, g). By Proposition 2.1, f(νΣ, ·) ∈ C∞c (Σ;T ∗ΣM)
is orthogonal to kerC∞(Σ;T ∗ΣM)(Dγ,kP )∗.

Choose γ̇, k̇ ∈ C∞c (Σ;S2T ∗Σ) according to Theorem 3.1 with ψ = f(νΣ, ·). Pick then

h0, h1 ∈ C∞c (Σ;S2T ∗ΣM) so that γ̇, k̇ are the linearized initial data corresponding to any

metric perturbation h̃ ∈ C∞sc (M ;S2T ∗M) with Cauchy data h0 = h̃|Σ, h1 = ∇νΣ h̃. Let

θ ∈ C∞c (M ;T ∗M) be any extension of θ(0) := δgGgh̃|Σ ∈ C∞c (Σ;T ∗ΣM). We then solve the
initial value problem for the gauge-fixed linearized Einstein vacuum equation

DgRic(h) + δ∗g(δgGgh− θ) = G−1
g f, (h|Σ,∇νΣh) = (h0, h1) (3.3)

using [BGP07, Theorem 3.2.11]; the solution h satisfies h ∈ C∞sc (M ;S2T ∗M) by finite speed
of propagation. If we set η := δgGgh− θ, then we have

η|Σ = (δgGgh̃− θ)|Σ = 0 (3.4)

by definition of θ. Moreover, applying Gg to (3.3) and recalling (2.2), we obtain

(Ggδ
∗
gη)(νΣ, ·) = f(νΣ, ·)−DgEin(h)(νΣ, ·) = 0.

Together with (3.4), this implies ∇νΣη = 0. Finally, applying δgGg to (3.3) and using the
linearized second Bianchi identity together with δgf = 0 gives the hyperbolic equation

δgGgδ
∗
gη = 0

for η, whence η = 0 on M and thus DgRic(h) = G−1
g f . Therefore, f = DgEin(h) projects

to 0 in the quotient space (1.5).

• Surjectivity of (1.5). Given λ ∈ K (M, g)∗, there exists a 1-form ψ ∈ C∞c (Σ;T ∗ΣM) with

〈ψ,X|Σ〉 = λ(X) for all X ∈ K (M, g). Indeed, it suffices to arrange this for X in a basis of
K (M, g), in which case it follows from the linear independence of the restrictions of the basis
elements to Σ (a consequence of Lemma 2.2). Pick then any f(0) ∈ C∞c (Σ;S2T ∗ΣM) with

f(0)(νΣ, ·) = ψ, and let f̃ ∈ C∞c (M ;S2T ∗M) denote any compactly supported symmetric 2-

tensor with f̃ = f(0) at Σ. We claim that there exists ω ∈ C∞sc (M ;T ∗M) with (ω|Σ,∇νΣω) =
0 so that

f := f̃ + Ggδ
∗
gω ∈ ker δg.

Indeed, we simply solve the initial value problem

δgGgδ
∗
gω = −δgf̃ ∈ C∞c (M ;S2T ∗M), (ω|Σ,∇νΣω) = (0, 0),

using [BGP07, Theorem 3.2.11]. Since Ggδ
∗
gω vanishes at Σ for such ω, we have∫

Σ
f(νΣ, X) dσ =

∫
Σ
f(0)(νΣ, X) dσ =

∫
Σ
〈ψ,X〉 dσ = λ(X)

for all X ∈ K (M, g) still, and the surjectivity of (1.5) follows. This completes the proof of
Theorem 1.1. �

Remark 3.2 (Equivalence to solving the linearized constraints). Not only did Theorem 3.1
play a key role in the argument; one can conversely deduce Theorem 3.1 from Theorem 1.1.
Indeed, given ψ satisfying the assumptions of Theorem 3.1, one constructs f ∈ ker δg ∩
C∞sc (M ;S2T ∗M) with f(νΣ, ·) = ψ as in the last part of the above proof. Theorem 1.1
produces h ∈ C∞sc (M ;S2T ∗M) with DgEin(h) = f ; evaluating this on Σ at (νΣ, ·) gives

Dγ,kP (γ̇, k̇) = ψ where γ̇, k̇ ∈ C∞c (Σ;S2T ∗Σ) are the linearized initial data induced by h.
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Theorem 3.3 (Finite regularity). Let s ≥ 0. Suppose that f ∈ Hs
sc(M ;S2T ∗M) (i.e.

f lies in Hs
loc(M ;S2T ∗M) and has spatially compact support) satisfies δgf = 0, and∫

Σ f(νΣ, X) dσ = 0 for all X ∈ K (M, g).4 Then there exists h ∈ Hs+1
sc (M ;S2T ∗M) with

DgEin(h) = f .

Together with the surjectivity of (1.5), this shows that (1.4) induces an isomorphism

{f ∈ Hs
sc : δgf = 0}/{DgEin(h) : h ∈ Hs+1

sc with DgEin(h) ∈ Hs
sc} → K (M, g)∗.

Proof of Theorem 3.3. Foliating a neighborhood of Σ by level sets Στ := t−1(τ) (which
we identify with Σ), τ ∈ (−1, 1), of a time function t ∈ C∞(M), we have, a fortiori,
f ∈ L1

loc((−1, 1), Hs
c (Σ;S2T ∗ΣM)), whence f |t=τ ∈ Hs

c for almost all τ . (This uses s ≥ 0.)
Fix such a τ ∈ (−1, 1). Using the finite regularity version of Theorem 3.1, one can then

find γ̇ ∈ Hs+2
c (Σ;S2T ∗Σ), k̇ ∈ Hs+1

c (Σ;S2T ∗Σ), so that Dγ,kP (γ̇, k̇) = f(νΣτ , ·) at Στ ,

and thus Cauchy data h0 ∈ Hs+2
c , h1 ∈ Hs+1

c inducing γ̇, k̇. We can then compute
θ(0) ∈ Hs+1

c (Σ;T ∗ΣM) as in the proof of Theorem 1.1, extend it to be constant in t fol-

lowed by cutting it off to a neighborhood of t = τ to obtain θ ∈ C∞c ((−1, 1);Hs+1
c ). The

equation (3.3) we then solve for h has spatially compactly supported forcing in L1
locH

s
c and

thus a spatially compactly supported solution of class C0Hs+1
c ∩C1Hs

c . The arguments lead-
ing to DgEin(h) = f then go through without changes since η = δgGgh−θ and Ggδ

∗
gη(νΣτ , ·)

vanish at Στ . Finally, h ∈ Hs+1
sc follows by standard hyperbolic theory [Hör07, §23.2]. �

Theorem 3.4 (Solvability without support conditions). Suppose the Cauchy hypersurface
Σ inside the globally hyperbolic spacetime (M, g) with Ein(g) = 0 is noncompact. Let

f ∈ C∞(M ;S2T ∗M), δgf = 0.

Then there exists h ∈ C∞(M ;S2T ∗M) with DgEin(h) = f .

Thus, there are no obstructions to solvability if we drop the support assumptions on
h, and one can even drop the support assumptions on the source term f . (Even for f ∈
C∞sc (M ;S2T ∗M), the solution h produced below is typically large at infinity.)

Proof of Theorem 3.4. We need to prove the existence of γ̇, k̇ ∈ C∞(Σ;S2T ∗Σ) so that

Dγ,kP (γ̇, k̇) = f(νΣ, ·). Once this is done, the arguments using the gauge-fixed equa-

tion (3.3) apply verbatim to produce a solution of DgEin(h) = f . The existence of (γ̇, k̇)
follows from [Trè67, Theorem 37.2] once we show that the adjoint operator

(Dγ,kP )∗ : E ′(Σ;R⊕ T ∗Σ)→ E ′(Σ;S2T ∗Σ⊕ S2T ∗Σ)

has trivial kernel and weak* closed range. The injectivity follows from the fact that an ele-
ment of the kernel vanishes outside some compact set and is thus identically zero by unique
continuation, as follows from the relationship of ker(Dγ,kP )∗ with Killing vector fields on
(M, g) and Lemma 2.2 (or directly on the level of (Dγ,kP )∗ via [Hin22, Lemma 4.3]). The
weak* closed range property follows, via the characterization [Trè67, Theorem 37.1], from
the fact that (Dγ,kP )∗ is overdetermined (Douglis–Nirenberg) elliptic, which indeed implies

that for all s ∈ R and compactK ⊂ Σ, the operator (Dγ,kP )∗ : Ḣs+2(K)⊕Ḣs+1(K;T ∗KΣ)→

4In coordinates (z0, . . . , zn) in which dz0 is a unit conormal at Σ = {z0 = 0}, we have f0µ;0 = fjµ;
j .

Therefore f(νΣ, ·) ∈ H
s− 1

2
c (Σ;T ∗ΣM) is well-defined for s > − 1

2
.
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Ḣs(K;S2T ∗KΣ⊕ S2T ∗KΣ) has closed range. (Here Ḣs(K) denotes the subspace of Hs
loc(Σ)

consisting of distributions with support in K.) �
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