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Abstract. We give a short proof of the existence of a small piece of null infinity for
(3 + 1)-dimensional spacetimes evolving from asymptotically flat initial data as solutions
of the Einstein vacuum equations. We introduce a modification of the standard wave
coordinate gauge in which all non-physical metric degrees of freedom have strong decay
at null infinity. Using a formulation of the gauge-fixed Einstein vacuum equations which
implements constraint damping, we establish this strong decay regardless of the validity
of the constraint equations. On a technical level, we use notions from geometric singular
analysis to give a streamlined proof of semiglobal existence for the relevant quasilinear
hyperbolic equation.

1. Introduction

The goal of this paper is to introduce a novel generalized wave coordinate gauge on
asymptotically flat spacetimes, and to demonstrate its utility by proving the existence of a
piece of null infinity for the spacetime evolving from asymptotically flat initial data sets.

Theorem 1.1 (Main theorem, rough version). Let Σ = {x ∈ R3 : |x| > R} for some R > 0,
and suppose γ, k ∈ C∞(Σ;S2T ∗Σ) are a Riemannian metric, resp. smooth symmetric 2-
tensor on Σ satisfying the constraint equations,1 with

γ = γm + γ̃, γm =
(

1− 2m

r

)−1
dr2 + r2

/g (m ∈ R, R > 2m),

where /g is the standard metric on S2. Let `0 ∈ (0, 1). Suppose that γ̃ and k are small in

the sense that2 ∑
|α|≤N

‖r−1/2+`0(r∇)α(γ̃, rk)‖L2 < ε (1.1)

with N large, ε > 0 small. Then there exists a Lorentzian metric g on

Ω = {(t, r, ω) ∈ [0,∞)× (R,∞)× S2 : r∗ − t > R+ 1} ⊂ R4 = {(z0 = t, z1, z2, z3)},

where r∗ = r + 2m log(r − 2m), with the following properties:

(1) g solves the Einstein vacuum equations Ric(g) = 0;
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1These are Rγ −|k|2γ + (trγ k)2 = 0, δγk+ d trγ k = 0, with Rγ the scalar curvature and δγ the (negative)

divergence. As shown by Choquet-Bruhat [CB52], the constraint equations are necessary and sufficient for
the existence of a short time solution of the initial value problem for the Einstein vacuum equations.

2This implies pointwise r−1−`0 decay of γ to γm, and pointwise r−2−`0 decay of k as r →∞.
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(2) identifying Σ ∩ {r∗ > R + 1} with t−1(0) ⊂ Ω, the induced metric and second
fundamental form of g at Σ are given by γ and k;

(3) g is in a modified wave coordinate gauge relative to the Schwarzschild metric gm =
−
(
1− 2m

r

)
dt2 + γm, see (1.5) and (1.3);

(4) g approaches the Schwarzschild metric in a quantitative manner,

g = gm + r−1h,

where all coefficients h(∂zi , ∂zj ) are uniformly bounded. More precisely, if L =
∂t + ∂r∗ and

¯
L = ∂t − ∂r∗ denote outgoing and incoming null vector fields for the

Schwarzschild metric, and Ω denotes an arbitrary vector field on S2, then3

|h(L,L)|, |h(L, r−1Ω)|, | tr/g h|, |h(L,
¯
L)|, |h(

¯
L,Ω)| . r−`0+, (1.2)

while the trace-free part of the restriction of h to TS2 and the component h(
¯
L,

¯
L)

have smooth limits as r →∞, |r∗ − t| . 1, with (r∗ − t)−`0 decay.

More generally, we prove a semiglobal existence theorem and the same asymptotics for
the solution g of a quasilinear hyperbolic (gauge-fixed) version of the Einstein equations for
general (i.e. not necessarily arising from an initial data set) suitably decaying and regular
Cauchy data for h; see Corollary 3.36. Through a combination of the new gauge with
constraint damping and a simple nonlinear iteration scheme, we are able to obtain these
asymptotics in one fell swoop.

I +

t− r∗

Σ

Ω

R0

i0

Ω

Σ

I0
t/r∗

I +

Figure 1.1. Illustration of Theorem 1.1, on the left in a Penrose-
diagrammatic fashion, and on the right in the blow-up of the Penrose dia-
gram at spacelike infinity i0.

We recall that Christodoulou–Klainerman [CK93] gave the first proof of the nonlinear
stability of Minkowski space, with initial data given on all of R3 (requiring stronger de-
cay `0 > 1

2 but less regularity); the evolving spacetime metric is geodesically complete.
Klainerman–Nicolò [KN03] gave a new proof of the stability of the exterior region (as in
Theorem 1.1) using a double null foliation; see [She22] for improvements. Earlier work
by Friedrich [Fri86] established the global nonlinear stability for special initial data (γ, k)
which are equal to (γm, 0) outside a compact set; the existence of such data was proved
by Corvino [Cor00, CD03]. Bieri [BZ09] lowered the decay assumptions to `0 > −1

2 and
required only N = 3 derivatives on the initial data. (There is a vast literature on extensions
and variants of the nonlinear stability problem on asymptotically flat spacetimes, including
[Wan10, LM15, BC16, Chr17, Tay17, LT20, FJS21, KS21a, DHR19, ABBM19, HHV21,
IP22, DHRT21, KS21b, Wan22].)

3In the main body of the text, we will use a more convenient notation for metric coefficients, with h(L,L),
h(

¯
L,

¯
L), h(L, r−1Ω) denoted h00, h11, h0ā etc; see Lemma 3.23.
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Closely related to the present work is the global stability proof by Lindblad–Rodnianski
[LR05, LR10] in the standard wave coordinate gauge �gzµ = 0; due to logarithmic di-
vergences arising in simplistic formal nonlinear iteration arguments (see [LR10, §1] and
also (1.7) below), this gauge condition was considered unsuitable for a proof of global
stability until Lindblad–Rodnianski [LR03] discovered that the Einstein equations in wave
coordinates satisfy a weak null condition at null infinity I +. Lindblad [Lin17] subsequently
proved sharp decay at I + by using vector field multipliers and commutators adapted to the
large scale Schwarzschild geometry (rather than the Minkowski geometry as in [LR10]). In
the wave coordinate gauge, only the first three components in (1.2) have the stated decay,
while all other components of h have leading order terms at I +, with the exception of
h(

¯
L,

¯
L) which blows up logarithmically as r →∞. This result was extended by the author

and Vasy in [HV20] where it was shown that the geodesically complete spacetime metric g,
evolving from initial data close to the trivial data, is polyhomogeneous on a compactifica-
tion of R4 to a manifold with corners; this result utilizes a wave map gauge relative to the
Schwarzschild metric (discussed further below). Furthermore, in this gauge, [HV20] clar-
ified the nature of the logarithmically divergent leading order term of h(

¯
L,

¯
L) by relating

its average over spherical sections of null infinity to the Bondi mass [BvdBM62, Chr91]. In
a different direction, Keir [Kei18], focusing on the analysis of weak null conditions, proved
the global well-posedness of the Einstein equations in harmonic coordinates (in the stan-
dard formulation, i.e. without constraint damping) for general small Cauchy data. We also
mention the work by Lindblad–Schlue [LS23b, LS23a] on scattering problems from future
null infinity, i.e. backward problems, for (systems of) semilinear equations satisfying the
weak null condition; see Wang [Wan13] for such results in n+ 1 dimensions, n ≥ 4.

By contrast, in the novel gauge introduced here, h(
¯
L,

¯
L) remains bounded, the spherical

averages of its limit at I + being related to the Bondi mass; and the trace-free spherical
part of h directly encodes the Bondi news function and outgoing energy flux, as indicated
in Remark 3.38 (following [HV20, §8]). All other metric components have faster decay;
in this sense, our gauge suppresses all ‘non-physical’ degrees of freedom to leading order
at null infinity. We discuss this in §1.1. It would be interesting to see if our novel gauge
might simplify the analysis of scattering problems for the Einstein vacuum equations by
eliminating the need to study weak null conditions as in [LS23b].

In addition to this improved decay, our analysis takes full advantage of notions from
geometric singular analysis, concretely the notions of b- and edge-metrics and -operators
going back to Melrose [Mel93] and Mazzeo [Maz91]; see §1.2.

1.1. Constraint damping and novel gauge. A natural generalized wave coordinate
gauge or generalized harmonic gauge for a spacetime metric g which is a perturbation
of gm is the wave map gauge relative to gm: this requires the identity map (Ω, g)→ (Ω, gm)
to be a wave map. One can solve the Einstein vacuum equations in this gauge by solving
the quasilinear wave equation

Ric(g)− δ∗gΥ(g; gm) = 0, Υ(g; gm)κ := gµν(Γ(g)κµν − Γ(gm)κµν) (gauge 1-form), (1.3)

for g; here, (δ∗gΥ)µν = 1
2(Υµ;ν + Υν;µ) is the symmetric gradient. Constraint damping

amounts to modifying δ∗g by zeroth order terms; it was introduced in [GCHMG05, BFHR99]
and used to by Pretorius [Pre05] as a device in numerical evolution schemes to ensure that
violations of the gauge condition are damped. It also played a key role in the recent proofs of
black hole stability in cosmological spacetimes [HV18, Hin18]: when solving linearizations
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of equation (1.3) (with nontrivial right hand side) in a Nash–Moser iteration scheme, con-
straint damping ensures improved decay of Υ(g; gm) throughout the iteration. Concretely,
we modify (δ∗gΥ)µν in (1.3) by a zeroth order term not involving derivatives of g to

(δ∗g,ECΥ)µν := 1
2(Υµ;ν + Υν;µ) + 2γC(cµΥν + cνΥµ)− γCΥκc

κgµν , EC = (c, γC),

where we take c = r−1 dt and γC > 0. (This is similar to the definition of δ̃∗ in [HV20,
§3.3].) Usage of δ∗

g,EC
instead of δ∗g in the modified gauge-fixed Einstein vacuum equations

Ric(g)− δ∗g,ECΥ(g; gm) = 0 (1.4)

does not change the gauge in which one solves Ric(g) = 0. However, it ensures, for general
Cauchy data which may violate the constraint equations, that Υ satisfies a modified (here:
damped) wave equation δgGgδ

∗
g,EC

Υ(g; gm) = 0 by virtue of the second Bianchi identity.

(Here, Gg = 1− 1
2g trg is the trace reversal operator, and δg is the negative divergence.) On

Minkowski space and with general Cauchy data, this ensures that Υ(g; gm) decays faster
than r−1 at null infinity, which concretely means that certain metric components—4 in
number, matching the number of components of the 1-form Υ(g; gm)—of r−1h = g− gm (in
fact the first three in (1.2), with Ω accounting for 2 components) similarly have stronger
decay; notably, the component h(L,L) controls the deviation of outgoing light cones for
the metric g from the Schwarzschildean ones. This improved decay and the resulting fixing
of the geometry near null infinity allowed for an application of a global nonlinear iteration
scheme for solving (1.4) in [HV20].

The new gauge we introduce here is a modification of Υ(g; gm) by a zeroth order term,

ΥEΥ(g; gm)µ := Υ(g; gm)µ − 2γΥcν(g − gm)µν ; (1.5)

we again use c = r−1dt, and γΥ < 0. (See Definitions 2.2 and 3.27, and Remark 2.3 for the
duality of gauge modifications and constraint damping.) The gauge-fixed Einstein vacuum
equations we shall solve in the proof of Theorem 1.1 are then

Ric(g)− δ∗g,ECΥEΥ(g; gm) = 0. (1.6)

The coefficients of r−1h = g − gm which have improved decay by virtue of ΥEΥ(g; gm) = 0
(or strong decay of ΥEΥ(g; gm) at I + due to constraint damping) are the same as in the
formulation (1.4). On the other hand, upon combining the new gauge with the ungauged
Einstein operator, 2 further components of h (the final two in (1.2)) have improved decay,
and furthermore h(

¯
L,

¯
L) does not diverge logarithmically anymore; see §3.6. We alert

the reader to Appendix A where gauge changes and constraint damping of this sort are
discussed in the context of the Maxwell equations; there, we also give a more conceptual
explanation for why the gauge modification has the advertised effect.

We substantiate this discussion schematically in terms of the often used model for cou-
plings and semilinear interactions for the Einstein vacuum equations in harmonic gauge,

�gφ1 = (∂2
t − ∂2

x)φ1 = 0, �gφ2 = (∂tφ1)2,

with g the Minkowski metric (see [LR10, §1]). Here,

(1) φ1 encodes gravitational radiation escaping to null infinity and corresponds to the
trace-free spherical part of metric perturbations r−1h above;

(2) φ2 ∼ h(
¯
L,

¯
L) encodes the Bondi mass.
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The O(r−1) decay of φ1 creates O(r−2) forcing for φ2, leading to the logarithmic divergence
of φ2 = O(r−1 log r) at I +. We supplement this by two more equations,

�gφ1 = 0, �gφ2 = (∂tφ1)2, �gφ3 = 0, �gφ4 = 0, (1.7)

where we ignore couplings at sub-leading order at I +. Here,

(3) φ3 models the 4 metric coefficients whose leading order behavior at I + is con-
strained by the wave coordinate condition, as discussed after (1.4);

(4) φ4 models the remaining 3 metric coefficients which are affected only once one
combines the new gauge with the ungauged Einstein equations, and which do not
encode any leading order physical degrees of freedom at I +.

Constraint damping turns the equation for φ3 into a damped wave equation of the sort

(�g + 2γCr−1∂t)φ3 = 0;

this leads to φ3 = O(r−1−γC) decay at null infinity. Since a main effect of constraint
damping is of quasilinear nature (namely, it fixes the geometry near null infinity), a more
precise model than (1.7) replaces all occurrences of g by “g+ φ3”; this makes apparent the
advantage of ensuring better decay for φ3.

The improvement afforded by the gauge change leads to the schematic model

�g+φ3φ1 = 0, (�g+φ3 − 2γΥr−1∂t)φ2 = (∂tφ1)2,

(�g+φ3 + 2γCr−1∂t)φ3 = 0, (�g+φ3 − 2γΥr−1∂t)φ4 = 0.
(1.8)

Thus, φ3 and φ4 have better-than-r−1 decay at I +, and the O(r−2) forcing term for φ2 is no
longer borderline, and hence φ2 = O(r−1). This leaves φ1, φ2 as the only components with
nontrivial radiation fields; the other components (φ3 and φ4) decay faster. The relationship
between the model (1.8) and the gauge-fixed Einstein equations is further discussed at the
end of §2, after Definition 3.20, and after the statement of Corollary 3.31.

1.2. Energy estimates and edge-b-metrics. Our analysis here is based on energy esti-
mates. The rough ‘background’ estimate uses the vector field multiplier

W =
( r

r∗ − t

)2αI

(r∗ − t)2α0
(
rL+ (r∗ − t)∂t

)
, L = ∂t + ∂r∗ ,

for suitable weights α0, αI ∈ R; this is stronger than ∂t and weaker than the conformal
Morawetz vector field, while still being compatible with the types of metric perturbations
one encounters in the stability problem. Concretely, usage of W allows one to control the
derivatives of the metric perturbation along

r(∂t + ∂r∗), (r∗ − t)(∂t − ∂r∗) (weighted approx. outgoing/incoming derivative),(r∗ − t
r

)1/2
Ω (spherical vector fields with r−1/2 decay at null infinity),

(1.9)

in a weighted spacetime L2-space. (One can replace the incoming null vector field by the
scaling vector field t∂t + r∗∂r∗ .) Higher regularity is proved by commuting stronger vector
fields (see Remark 3.9) through the equation; a minor simplification is that due to our
strong background estimate we can relax the requirements on these commutator vector
fields, cf. Lemma 3.16. By contrast, in [LR10], the background estimate is weaker than the
edge-b-estimate, and thus the commutator vector fields need to be chosen more carefully,
much as in [Kla86].
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Besides proving the improved asymptotics in the new gauge, a secondary goal of this
paper is to contribute to the development of the global analytic point of view for nonelliptic
PDE using techniques from geometric singular analysis. Concretely, as discussed in detail
in §3.2, the Schwarzschild metric is a weighted edge-metric (with Lorentzian signature) at
null infinity in the sense of Mazzeo [Maz91]; see Corollary 3.14. Indeed, pulling back gm to
the interior of

Rt∗ × [0,∞)xI × S2, t∗ = t− r∗, xI = r−1/2, (1.10)

with x−1
I (0) being (the interior of) null infinity, one computes

x2
I gm = 4 dt∗

dxI
xI

+ /gab
dxa

xI

dxb

xI
+ [terms with more decay]

where x2, x3 are local coordinates on S2. Dual to the 1-forms dt∗,
dxI
xI

, dxa

xI
appearing here

are the vector fields ∂t∗ , xI ∂xI , xI ∂xa , which are precisely those smooth vector fields on the
manifold (1.10) which are tangent to the fibers of the fibration (t∗, ω) 7→ ω of the boundary
x−1
I (0); and linear combinations of these vector fields are precisely those listed in (1.9). The

compactification of the domain Ω in Theorem 1.1, as shown on the right in Figure 1.1, has a
second boundary hypersurface I0 where gm is a weighted b-metric [Mel93]; globally, gm is a
weighted edge-b-metric, or eb-metric for short. This observation is key for the streamlining
of the functional analytic setup in the present paper as compared to [HV20].4

The metric perturbations arising in Theorem 1.1 are lower order perturbations of gm as
symmetric edge-b-2-tensors; see Lemma 3.23. Thus, regularity with respect to the vector
fields (1.9) is a very natural notion. Unlike in Riemannian geometry, there are typically
many different types of rescaled vector bundles and boundary fibration structures with
respect to which a given Lorentzian metric is nondegenerate down to boundaries at infinity,
such as x−1

I (0) in (1.10). And indeed, while the edge-b point of view is convenient for
the purpose of proving estimates, controlling the geometry of metric perturbations is more
conveniently done in terms of the standard vector fields ∂zµ on R4 or linear combinations
thereof as used in (1.2) and discussed in detail around Definition 3.10; cf. the significance of
h(L,L) for controlling outgoing light cones. Since the Einstein equations are quasilinear, it
is important to understand the relationship between the two points of view (Lemma 3.13).

1.3. Structure of the paper. In §2, we present calculations for the linearized gauge-
fixed Einstein vacuum equations on Minkowski space, with constraint damping and the
(linearization of the) novel gauge, which lend support to the claims made in §1.1. In §3,
we prove Theorem 1.1. We first introduce edge-b-structures in §3.1; the partial compact-
ification of the spacetime on which we shall work and a basic edge-b-energy estimate are
presented in §3.2. The stability proof starts in §3.3 where we define the class of metric
perturbations arising in the stability problem in our new gauge. In §3.4, we define the
modified gauge-fixed Einstein operator and describe its structure as an edge-b-differential
operator. This is used in §3.5 to prove (tame) energy estimates and in §3.6 to obtain sharp
decay for metric perturbations using a Nash–Moser iteration. Appendix A illustrates the
choice of gauge and constraint damping in the simpler setting of the Maxwell equations.

4The companion paper [HV23], joint with Vasy, goes significantly further by giving a (microlocal) linear
analysis of a large class of tensorial wave type equations; we refer to its introduction for a more detailed
discussion of edge-b-analysis near null infinity. The present paper only uses physical space techniques.
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2. Motivation; calculations on Minkowski space

Fix a background metric g0. Then the operator

P (g) = Ric(g)− δ∗gΥ(g; g0), Υ(g; g0) = g(g0)−1δgGgg
0, (2.1)

is a quasilinear wave operator when g is a Lorentzian metric; that is, its linearization is
principally scalar, and its principal part is equal to 1

2�g (see below).

Lemma 2.1 (Linearizations). The linearization of the Ricci tensor is

DgRic = 1
2�g−δ

∗
gδgGg+Rg, (Rgu)µν = Rκµν

λuκλ+ 1
2(Ric(g)µ

κuκν+Ric(g)κνuµκ), (2.2)

where R is the Riemann curvature tensor of g, and �g = − trg∇2. Moreover,

Υ(g; g0)µ = gµνg
κλ(Γ(g)νκλ − Γ(g0)νκλ),

DgΥ(−; g0) = −δgGg − Cg + Yg,

Cg(u)κ = gκλC
λ
µνu

µν , Cλµν = Γ(g)λµν − Γ(g0)λµν , Yg(u)κ = Υ(g; g0)λuκλ.

(2.3)

Proof. See [GL91], [HV20, §3.3]. �

In the linearization of P around g = g0, given by DgP = DgRic + δ∗gδgGg, we now
generalize δ∗g , resp. δg, for the purpose of (linearized) constraint damping, resp. gauge
change, as follows:

Definition 2.2 (Modifications). Let EC = (cC , γC), where cC is a 1-form on spacetime, and
γC ∈ R. The modified symmetric gradient is then defined as

δ∗g,EC := δ∗g + γC
(
2cC ⊗s (−)− gιg−1(cC)

)
. (2.4)

For a pair EΥ = (cΥ, γΥ), we define the modified divergence by

δg,EΥ = (δ∗g,EΥ)∗ = δg + γΥ
(
2ιg−1(cΥ) − cΥ trg

)
. (2.5)

Finally, the linearized modified gauge-fixed Einstein operator is

P ′g,EC ,EΥ := DgRic + δ∗g,ECδg,EΥGg. (2.6)

Consider now the Minkowski metric

¯
g := −dx0 dx1 + r2

/g, x0 = t+ r, x1 = t− r. (2.7)

In this section, we study the asymptotic behavior of solutions of P ′

¯
g,EC ,EΥ(r−1u) = 0 at null

infinity I +, i.e. for bounded x1 when x0 →∞. In this region, we fix

cC = cΥ = r−1 dt, γC ∈ (0, 1), γΥ ∈ (−1, 0). (2.8)
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We work with the bundle splittings

T ∗R4 = 〈dx0〉 ⊕ 〈dx1〉 ⊕ rT ∗S2,

S2T ∗R4 = 〈(dx0)2〉 ⊕ 〈2dx0dx1〉 ⊕ (2dx0 ⊗s rT ∗S2)

⊕ 〈(dx1)2〉 ⊕ (2dx1 ⊗s rT ∗S2)⊕ 〈r2
/g〉 ⊕ r2 ker /tr .

(2.9)

Here and in the rest of the paper, slashed quantities and operators are those on the unit
sphere S2. Thus, we rescale the spherical part of the cotangent bundle, recording e.g. the
covector ω0 dx0 +ω1 dx1 + r/ω with /ω ∈ T ∗S2 as (ω0, ω1, /ω). We shall only record the ‘main’
terms of

2P ′

¯
g,EC ,EΥ = �

¯
g + 2(δ∗

¯
g,ECδ

¯
g,EΥ − δ∗

¯
gδ

¯
g)G

¯
g + 2R

¯
g

and drop all ‘error’ terms (writing ‘≡’ for an equality up to error terms). Concretely, we
assign the weights 1, −1, 0, 0 to r, ∂0, ∂1, V(S2) (thus regarding r∂0 ∼ r(∂t+∂r) ∂1 ∼ ∂t−∂r,
V(S2) as unweighted vector fields), and only record terms of total weight ≤ 0. In the proof
of Proposition 3.29, we shall find r2�

¯
gr
−1 ≡ 4∂1r∂0 and expressions for δ

¯
g, δ
∗

¯
g , and G

¯
g (the

first terms in (3.39), (3.42), and (3.40), respectively), and for δ∗

¯
g,EC
− δ∗

¯
g , resp. δ

¯
g,EΥ − δ

¯
g

(the first terms in (3.36), resp. (3.43)). They give

L
¯
g,EC ,EΥ := 2r2P ′

¯
g,EC ,EΥr

−1 ≡ 2∂1(2r∂0 +AEC ,EΥ), (2.10)

where the endomorphism AEC ,EΥ of S2T ∗R4 is given by

AEC ,EΥ =



2γC 0 0 0 0 0 0
−γΥ −γΥ 0 0 0 0 0

0 0 γC 0 0 0 0
0 −2γΥ 0 −2γΥ 0 γC 0
0 0 γC − γΥ 0 −γΥ 0 0

2γC 0 0 0 0 γC 0
0 0 0 0 0 0 0


(2.11)

Passing to ρI = (x0)−1 (which, in the region of bounded x1 = t − r, vanishes at future
null infinity I +), we note that 2r = x0 − x1 = ρ−1

I (1− ρI x1) and ∂0 = −ρ2
I ∂ρI ; thus,

r2P ′

¯
g,EC ,EΥr

−1 ≡ −2∂1(ρI ∂ρI −AEC ,EΥ).

By standard regular-singular ODE analysis (and as previously shown rigorously in [HV20,
§3.3]), we can read off the decay at I + of a metric perturbation u solving

P ′

¯
g,EC ,EΥu = 0 (2.12)

from the spectral decomposition of AEC ,EΥ .

Remark 2.3 (Duality of constraint damping and gauge change). By (2.2), the adjoint of
DgRic is (DgRic)∗ = Gg ◦DgRic ◦ Gg (i.e. Gg ◦DgRic is formally self-adjoint); thus,

Gg(P
′
g,EC ,EΥ)∗Gg = P ′g,EΥ,EC , (2.13)

demonstrating a duality between constraint damping and gauge changes. Equation (2.13)
also implies G

¯
gA
∗
EC ,EΥG

¯
g = −AEΥ,EC . Since we would like as many eigenvalues as possible

of AEC ,EΥ to be positive, this suggests taking γC and γΥ to have opposite signs. In view
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of (2.13), this forces the endomorphism AEΥ,EC corresponding to (P ′
g,EC ,EΥ)∗ to have many

negative eigenvalues. See Appendix A for a discussion of this point in a simpler context.

To study AEC ,EΥ , we introduce the bundle projections (respecting the splitting (2.9))

πC : S2T ∗R4 → 〈(dx0)2〉 ⊕ (2dx0 ⊗s rT ∗S2)⊕ 〈r2
/g〉,

πΥ : S2T ∗R4 → 〈2dx0dx1〉 ⊕ (2dx1 ⊗s rT ∗S2),

/π0 : S2T ∗R4 → r2 ker /tr,

π11 : S2T ∗R4 → 〈(dx1)2〉.

(2.14)

Then πCAEC ,EΥ(1 − πC) = 0; in the splitting ranπC ⊕ ran(1 − πC), the top left block of
AEC ,EΥ (capturing rows and columns 1, 3, 6) is then

πCAEC ,EΥπC =

2γC 0 0
0 γC 0

2γC 0 γC

 (2.15a)

Thus, πCu is expected to have components of size O(ρ1+λ
I ) at I +, where λ = γC , 2γC .

Next, the bottom right block (capturing rows 2, 4, 5, 7) is

(1− πC)AEC ,EΥ(1− πC) =


−γΥ 0 0 0
−2γΥ −2γΥ 0 0

0 0 −γΥ 0
0 0 0 0

 , (2.15b)

with eigenvalues −γΥ, −2γΥ, and 0. It is thus natural to further split off the trace-free
spherical part (the final row) using /π0, with /π0AEC ,EΥ/π0 = 0. In §3.4, we will see that
when solving the nonlinear Einstein equations via an iteration scheme, the /π0 part will be
a source term for the (1, 1) component in the subsequent iteration step; this is why we
further split the bundle ran(πΥ + π11) into the ranges of πΥ (rows 2 and 5 of AEC ,EΥ), π11

(row 4).

Altogether then, the solution u of (2.12) can be analyzed step by step for bounded t− r
as follows (we omit error terms throughout):

(1) πCu satisfies a decoupled equation (to leading order), thus πCu = O(ρ1+γC

I ).

(2) πΥu satisfies an equation with source terms given by πCu. Choosing our parameters

so that −γΥ < γC , we then have πΥu = O(ρ1−γΥ

I ).

(3) /π0u has a radiation field, i.e. a leading order term of size O(ρI ) = O(r−1), and has

lower order terms of size ρ1−γΥ

I from coupling to the remaining metric components.

(4) π11u has the same decay as πΥu.

These improved decay rates (compared to the O(ρI ) decay of typical scalar waves on
Minkowski space) will persist for the nonlinear gauge-fixed Einstein vacuum equations,
except for the decay of π11u (which is replaced by a O(ρI )-leading order term), as al-
ready indicated before. In terms of our model (1.8), /π0u, π11u, π

Cu, πΥu thus correspond
to φ1, φ2, φ3, φ4, respectively. Leaving the model (1.8) behind, one can simplify the above
scheme by solving at once for (πC + πΥ)u, which in itself satisfies a decoupled equation
leading to improved decay. This is the path we will take in §3.6.
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3. Nonlinear stability

3.1. Differential operators and function spaces. Consider an n-dimensional manifold
M with corners which has exactly two embedded boundary hypersurfaces H0, H1. Assume
furthermore that H1 is equipped with a fibration φ : H1 → Y with typical fiber F .

Definition 3.1 (b- and edge-b-vector fields). (1) The Lie algebra Vb(M) ⊂ V(M) of
b-vector fields [Mel93] consists of all smooth vector fields V ∈ V(M) which are
tangent to H0 and H1.

(2) The Lie algebra Ve,b(M) ⊂ Vb(M) of edge-b-vector fields consists of all b-vector
fields V ∈ Vb(M) for which V |H1 ∈ Vb(H1) is tangent to the fibers of H1 → Y .

On manifolds with a single embedded boundary hypersurface, edge vector fields were
introduced by Mazzeo [Maz91]. See [AGR17] for iterated structures giving rise to general-
izations of Ve,b(M).

We discuss here only the case of interest for us: H0 and H1 have nonempty intersection,
and a neighborhood of H0 ∩H1 ⊂M is diffeomorphic to

[0,∞)ρ0 × [0,∞)ρ1 × Rn−2
y , y = (y2, . . . , yn−1), (3.1)

where ρ0, ρ1 are defining functions of H0, H1, respectively, and with the fibration of H1

given by (ρ0, y) 7→ y; thus, the fibers F are 1-dimensional. In this case, elements of Vb(M),
resp. Ve,b(M) are linear combinations, with C∞(M) coefficients, of

ρ0∂ρ0 , ρ1∂ρ1 , ∂y2 , . . . , ∂yn−1 , resp. ρ0∂ρ0 , ρ1∂ρ1 , ρ1∂y2 , . . . , ρ1∂yn−1 . (3.2)

The b-tangent bundle and eb-tangent bundle
bTM →M, e,bTM →M,

are then the rank n vector bundles with local frames given by the respective sets of vector
fields (3.2); over the interior M◦, these are naturally isomorphic to the standard tangent
bundle. By continuous extension from M◦, one can thus regard smooth sections of bTM as
vector fields on M , and in this sense, we have Vb(M) = C∞(M ; bTM), likewise Ve,b(M) =

C∞(M ; e,bTM).5 The dual bundles bT ∗M → M and e,bT ∗M → M are called b-cotangent
bundle and eb-cotangent bundle, respectively. Their smooth sections are linear combinations
with C∞(M) coefficients of

dρ0

ρ0
,

dρ1

ρ1
, dy2, . . . ,dyn−1, resp.

dρ0

ρ0
,

dρ1

ρ1
,

dy2

ρ1
, . . . ,

dyn−1

ρ1
.

Definition 3.2 (b- and eb-differential operators). Let k ∈ N0, α0, α1 ∈ R.

(1) The space Diff
k,(α0,α1)
b (M) = ρ−α0

0 ρ−α1
1 Diffkb(M) consists of all differential operators

P on M◦ of the form P = ρ−α0
0 ρ−α1

1 P0, where P0 ∈ Diffkb(M) is a locally finite sum
of compositions of up to k b-vector fields.

(2) The space Diff
k,(α0,α1)
e,b (M) = ρ−α0

0 ρ−α1
1 Diffke,b(M) is defined analogously, with eb-

vector fields replacing b-vector fields.

(3) The space Diffm;k
e,b;b(M) consists of all locally finite sums of operators of the form

P [P ] where P [ ∈ Diffme,b(M), P ] ∈ Diffkb(M).

5The benefit of using bTM and e,bTM is that one can capture the precise behavior (regularity, bound-
edness, decay) of vector fields at ∂M without the need for any irrelevant choices (e.g. metrics).
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Assume for the moment that M is compact. Fix a smooth positive b-density on M ; in
local coordinates as above, this takes the form a(ρ0, ρ1, y)|dρ0

ρ0

dρ1

ρ1
dy| with a > 0 smooth.

We then denote the L2 space on M by L2
b(M).

Definition 3.3 (b- and eb-Sobolev spaces). Let k ∈ N0, α0, α1 ∈ R.

(1) The weighted b-Sobolev space

H
k,(α0,α1)
b (M) = ρα0

0 ρα1
1 Hk

b (M)

consists of all functions u of the form u = ρα0
0 ρα1

1 u0 with u0 ∈ L2
b(M) and Pu0 ∈

L2
b(M) for all P ∈ Diffkb(M). Equivalently, Pu ∈ L2

b(M) for all P ∈ Diff
k,(α0,α1)
b (M).

(2) The weighted eb-Sobolev space H
k,(α0,α1)
e,b (M) = ρα0

0 ρα1
1 Hk

e,b(M) is defined analo-

gously, with Diffe,b replacing Diffb.6

(3) Let m ∈ N0. The mixed eb-b-Sobolev space H
(m;k),(α0,α1)
e,b;b (M) = ρα0

0 ρα1
1 H

(m;k)
e,b;b (M)

consists of all functions u for which Pu ∈ Hm
e,b(M) for all P ∈ Diff

k,(α0,α1)
b (M).

(Equivalently, Pu ∈ L2
b(M) for all P ∈ ρ−α0

0 ρ−α1
1 Diffm;k

e,b;b(M).)

All these spaces can be given the structure of Hilbert spaces; for instance, we can equip
H1

e,b(M) with the squared norm ‖u‖2
H1

e,b
= ‖u‖2

L2
b

+
∑
‖Viu‖2L2

b
, where {Vi} is a finite set of

edge-b-vector fields spanning Ve,b(M) over C∞(M). We also note the L∞ estimate

H
s,(α0,α1)
b (M) ↪→ ρα0

0 ρα1
1 L∞(M), s >

n

2
. (3.3)

This follows from the standard Sobolev embedding after the change of variables z0 = log ρ0,
z1 = log ρ1, which transforms ρj∂ρj into ∂zj and the b-density |dρ0

ρ0

dρ1

ρ1
dy| into |dz0 dz1 dy|.

If M is a manifold with boundary and ρ ∈ C∞(M) denotes a boundary defining function,

then Hk,α
b (M) = ραHk

b (M) is defined completely analogously (with respect to a smooth

b-density). In the setting of Definition 3.3, this allows us to define spaces such as Hk,α
b (H1).

Lastly, if M is noncompact and equipped with a smooth positive b-density, the spaces
Hk

b,loc(M) consist of distributions which upon multiplication with elements of C∞c (M) lie

in L2
b(M) together with all their derivatives along all P ∈ Diffkb(M); weighted spaces, eb-

Sobolev spaces, and mixed edge-b;b-Sobolev spaces are defined analogously. If Ω b M is
an open set with compact closure, then we define

Hk
e,b(Ω) = {u|Ω : u ∈ Hk

e,b,loc(M)};
it can be given the structure of a Hilbert space as before. We analogously define

H
(m;k),(α0,α1)
e,b;b (Ω).

Finally, we introduce the following general notation:

Definition 3.4 (Operators with generalized coefficients). If F ⊂ D ′(M◦) is a linear sub-
space of the space of distributions on M◦ and D denotes a space of differential operators
on M with smooth coefficients, then FD is the space of all operators C∞(M◦) → D ′(M◦)
of locally finite linear combinations

∑
aiPi, where ai ∈ F and Pi ∈ D.

6We still use the b-density though, thus H
0,(0,0)
e,b (M) = L2

b(M).
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Examples of interest in the present paper are spaces such as H
k,(α0,α1)
b Diff2

e,b(M).

3.2. Spacetime manifold; basic energy estimate.

Definition 3.5 (Schwarzschild spacetime). Let m ∈ R. The Schwarzschild spacetime is

Rt ×
(
max(0, 2m),∞

)
r
× S2, gm = −

(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2

/g.

The Regge–Wheeler tortoise coordinate r∗ and the null coordinates x0, x1 are defined by

r∗ := r + 2m log(r − 2m), x0 = t+ r∗, x1 = t− r∗. (3.4)

Lemma 3.6 (Compactification of the far field of the Schwarzschild spacetime). Define

ρ0 :=
1

r∗ − t
, ρI :=

r∗ − t
r

, xI := ρ
1/2
I , ρ := ρ0ρI = r−1. (3.5)

(1) Put x̄I := min
(√

3
2 ,

1√
8m

)
when m > 0 and x̄I :=

√
3/2 when m ≤ 0. Then the

map (ρ0, xI , ω)→ (t, r∗, ω) with domain M◦ = (0, 2)ρ0 × (0, x̄I )xI × S2, where

M := [0, 2)ρ0 × [0, x̄I )xI × S2, (3.6)

is a diffeomorphism onto its image.
(2) Denoting the pullback of gm to M by gm still, the hypersurface x−1

I (c) ⊂ M is

spacelike for all c ∈ (0, x̄I ), and the hypersurface ρ−1
0 (c) is lightlike for all c ∈ (0, 1).

Proof. We have r = ρ−1
0 ρ−1

I = ρ−1
0 x−2

I > 1
2x
−2
I > 4m, hence r∗ = r + 2m log(r − 2m) is

well-defined, and we then have t = r∗ − ρ−1
0 . This proves the first part. For the second

part, we record that in the coordinates (3.4), the Schwarzschild metric reads

gm = −
(

1− 2m

r

)
dx0 dx1 + r2

/g, g−1
m = −4

(
1− 2m

r

)−1
∂0 ⊗s ∂1 + r−2

/g
−1. (3.7)

Thus, ρ−2
0 dρ0 = −d(r∗ − t) = dx1 is null indeed. Furthermore,

r dρI = −r d
(x1

r

)
= −dx1 +

x1

r
dr = −dx1 +

x1

r

(
1− 2m

r

)
dr∗

=
x1

2r

(
1− 2m

r

)
dx0 −

(
1 +

x1

2r

(
1− 2m

r

))
dx1,

the inner product of which with itself is

g−1
m (r dρI , r dρI ) =

2x1

r

(
1 +

x1

2r

(
1− 2m

r

))
< 0. (3.8)

Indeed, x
1

r = −x2
I < 0; and the second factor is positive, too, since |x1

2r | =
1
2x

2
I < 3

4 < 1. �

The upper bound ρ0 < 2 can be increased arbitrarily; choosing a larger upper merely
places a stronger restriction on x̄I .7

7The bound x̄I ≤
√

3/2 can be relaxed to any number less than
√

2—this still ensures that M is disjoint
from a neighborhood of past null infinity in the blow-up of the Penrose diagram of the Schwarzschild
spacetime at spacelike infinity i0 (see Figure 1.1); indeed, in t, r coordinates, the level set x−1

I (c) is O(log r)-

close to t = (1− c2)r..
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Definition 3.7 (Ideal boundaries). The boundary hypersurfaces of the spacetime manifold
M defined by (3.6) are denoted I0 := ρ−1

0 (0) (blown-up spacelike infinity) and I + := x−1
I (0)

(null infinity). Moreover, I + is fibered by the projection I + = [0,∞)ρ0 × S2 → S2.

In the context of Definition 3.1, the boundary hypersurfaces of M are H0 := I0 and

H1 := I +, with defining functions ρ0 and ρ1 := xI = ρ
1/2
I , respectively. Thus, the space

Ve,b(M) is spanned over C∞(M) by

ρ0∂ρ0 , xI ∂xI = 2ρI ∂ρI , xI Ω = ρ
1/2
I Ω, (3.9)

where Ω ranges over all vector fields on S2. (These are, roughly, the spacetime scaling
vector field, the weighted outgoing null vector field, and weighted spherical vector field.)

Remark 3.8 (Comparison of function spaces). The Sobolev space H1
I of [HV20, Defini-

tion 4.1] is the same as H1
e,b(M) (upon restricting to functions with compact support in

M) in view of (3.9); moreover H1,k
I ,b = H

(1,k)
e,b;b (M). Moreover, in the notation of [HV20], if

we adjoin ρ
1/2
I = xI to the smooth structure of the spacetime manifold M there, smooth

sections of the bundle S2 βTM + ρI S
2 bTM in [HV20, Equation (4.17)] are the same as

smooth sections of S2 e,bTM for the manifold M in (3.6).

For later use, we compute

∂0 ≡ ∂x0 =
1

2
(∂t + ∂r∗) = −1

2
ρ0ρ

2
I

(
1− 2m

r

)
∂ρI ∈ ρ0ρI Ve,b(M),

∂1 ≡ ∂x1 =
1

2
(∂t − ∂r∗) = ρ0

(
ρ0∂ρ0 −

(
1− 1

2
ρI

(
1− 2m

r

))
ρI ∂ρI

)
∈ ρ0Ve,b(M),

(3.10)

∂0r =
1

2
∂r∗r =

1

2

(
1− 2m

r

)
= −∂1r. (3.11)

Remark 3.9 (b-regularity). From (3.10), we also obtain

ρI ∂ρI = −r
(

1− 2m

r

)−1
(∂t + ∂r∗), ρ0∂ρ0 = (r∗ − t)∂t + ρI ∂ρI .

Membership in Hk
b (M) is thus equivalent to the condition that up to k derivatives along

r(∂t+∂r∗), (r∗− t)(∂t−∂r∗), V(S2) lie in L2
b(M). (These vector fields were already used by

Lindblad [Lin17] and in [HV20].) Thus, unlike in (1.9), the spherical vector fields do not
have a decaying weight at I + anymore.

Definition 3.10 (Rescaled vector bundle). The vector bundle8 T̃ ∗M →M is defined by

T̃ ∗M := 〈dx0〉 ⊕ 〈dx1〉 ⊕ rT ∗S2.

The prefactor r in front of T ∗S2 here means that over the interior M◦, we identify T̃ ∗M◦M
∼=

T ∗M◦M by identifying a section (ω0, ω1, /ω) of T̃ ∗M with the 1-form ω0 dx0 +ω1 dx1 + r/ω on
M◦.

8This is equal to pullback of the scattering cotangent bundle on a suitable radial compactification of R4

to the blow-up of the future light cone at infinity, denoted β∗S2 scT ∗R4 in [HV20].
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Likewise, we identify sections of S2T̃ ∗M with symmetric 2-tensors over M◦. In order to
make the scaling of spherical tensors apparent, we thus write the bundle splittings as

T̃ ∗M = 〈dx0〉 ⊕ 〈dx1〉 ⊕ rT ∗S2,

S2T̃ ∗M = 〈(dx0)2〉 ⊕ 〈2dx0dx1〉 ⊕ (2dx0 ⊗s rT ∗S2)

⊕ 〈(dx1)2〉 ⊕ (2dx1 ⊗s rT ∗S2)⊕ 〈r2
/g〉 ⊕ r2 ker /tr,

(3.12)

by direct analogy with (2.9). Choosing local coordinates x2, x3 on S2, a smooth section

ω ∈ C∞(M ; T̃ ∗M) is thus a linear combination ω = ω0 dx0 + ω1 dx1 +
∑3

a=2 ωār dxa,
ω0, ω1, ω2̄, ω3̄ ∈ C∞(M). More generally, we use the following index notation:

Definition 3.11 (Weights of spherical indices). For µ1, . . . , µp ∈ {0, 1, 2, 3}, set

s(µ1, . . . , µp) := #
{
i ∈ {1, . . . , p} : µi ∈ {2, 3}

}
.

With x2, x3 denoting coordinates on S2, and for a tensor T on M◦ of type (p, q), we set

T
ν̄1...ν̄q
µ̄1...µ̄p := rs(ν1,...,νq)−s(µ1,...,µp)T

ν1...νq
µ1...µp .

We shall henceforth denote indices in {0, 1, 2, 3} by Greek letters µ, ν, κ, . . ., and spherical
indices in {2, 3} by Roman letters a, b, c, . . ..

Returning to metrics on M , we have, directly from the definitions (3.7) and (3.12):

Lemma 3.12 (Uniform behavior of gm). We have gm ∈ C∞(M ;S2T̃ ∗M), and gm is a
nondegenerate section with Lorentzian signature down to I0 ∪I +.

While S2T̃ ∗M is the appropriate bundle for the unknown in the Einstein equations—the
metric—to take values in, the metric also determines the linearized operators we need to
study; hence, we need to connect gm and its perturbations to the eb-theory in which our
(energy) estimates will take place.

Lemma 3.13 (Relationship between T̃ ∗M and e,bT ∗M). Let /ω ∈ C∞(S2;T ∗S2). Then

dx0 ∈ ρ−1
0 x−2

I C
∞(M ; e,bT ∗M), dx1 ∈ ρ−1

0 C
∞(M ; e,bT ∗M), r/ω ∈ ρ−1

0 x−1
I C

∞(M ; e,bT ∗M).

Writing C∞ = C∞(M ;S2 e,bT ∗M) for brevity, we have, for /h ∈ C∞(S2;S2T ∗S2),

(dx0)2 ∈ ρ−2
0 x−4

I C
∞, dx0 ⊗s dx1 ∈ ρ−2

0 x−2
I C

∞, dx0 ⊗s r/ω ∈ ρ−2
0 x−3

I C
∞,

(dx1)2 ∈ ρ−2
0 C

∞, dx1 ⊗s r/ω ∈ ρ−2
0 x−1

I C
∞, r2/h ∈ ρ−2

0 x−2
I C

∞.
(3.13)

Proof. We only need to prove the first part. It follows by duality from (3.10) and the fact
that if V ∈ V(S2), then r−1V = ρ0xI · xI V ∈ ρ0xI Ve,b(M). �

Corollary 3.14 (gm as an eb-metric). We have gm ∈ ρ−2
0 x−2

I C
∞(M ;S2 e,bT ∗M) and g−1

m ∈
ρ2

0x
2
I C∞(M ;S2 e,bTM). Moreover,

ρ2
0x

2
I gm ≡ 2

(dρ0

ρ0

)2
+ 2

dρ0

ρ0
⊗s

dρI
ρI

+ x−2
I /g mod xI C∞(M ;S2 e,bT ∗M),

ρ−2
0 x−2

I g−1
m ≡ 2(ρ0∂ρ0 − ρI ∂ρI )⊗s ρI ∂ρI + x2

I /g
−1 mod xI C∞(M ;S2 e,bTM).
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Remark 3.15 (Connection of weighted eb-metrics). The Koszul formula, together with the
fact that Ve,b(M) is a Lie algebra (with differentiation along any element of Ve,b(M) being

bounded on ρ`00 x
Ì

I C
∞(M) for any `0, Ì ∈ R), implies that the Levi-Civita connection of

gm ∈ ρ−2
0 x−2

I C
∞(M ;S2 e,bT ∗M) satisfies ∇ ∈ Diff1

e,b(M ; e,bTM, e,bT ∗M ⊗ e,bTM). Writing

eb-tensor bundles as e,bT p,qM = e,bT ∗M⊗p ⊗ e,bTM⊗q, this gives

∇ ∈ Diff1
e,b(M ; e,bT p,qM, e,bT p+1,qM).

In particular, the tensor wave operator satisfies

�gm ∈ ρ2
0x

2
I Diff2

e,b(M ; e,bT p,qM), p, q ∈ N0, (3.14)

Lemma 3.16 (�gm as an eb-operator; commutators). Consider �gm acting on functions.

The operator L := ρI ρ
−3�gmρ ∈ Diff2

e,b(M) is equal to

L = −2ρI ∂ρI (ρ0∂ρ0 − ρI ∂ρI ) + x2
I /∆ + L̃, L̃ ∈ xI Diff2

e,b(M). (3.15)

If Ω ∈ V(S2) is a spherical vector field, then9

[L, ρ0∂ρ0 ], [L, ρI ∂ρI ], [L,Ω] ∈ xI Diff1,1
e,b;b(M). (3.16)

Proof. The membership L ∈ Diff2
e,b(M) is an immediate consequence of (3.14), and will be

confirmed here by a direct calculation. The expression for L mod xI Diff2
e,b(M) only de-

pends on gm modulo ρ−2
0 x−1

I C
∞(M ;S2 e,bT ∗M); we may thus replace g−1

m by the Minkowski

dual metric
¯
g−1 = −4∂0 ⊗s ∂1 + r−2/g−1, cf. (2.7), for which, in view of (3.10)–(3.11),

�
¯
g = 2r−2∂0r

2∂1 + 2r−2∂1r
2∂0 + r−2 /∆

≡ −2ρ2
0ρI (ρI ∂ρI − 1)(ρ0∂ρ0 − ρI ∂ρI ) + ρ2

0ρ
2
I /∆

(3.17)

modulo ρ2
0x

3
I Diff2

e,b(M). Multiplying this on the left by ρI ρ
−3 = ρ−2

I ρ−3
0 and on the right

by ρ = ρ0ρI proves (3.15).

The expression (3.15) together with ρ0∂ρ0 ∈ Ve,b(M) immediately gives [L, ρ0∂ρ0 ] =

[L̃, ρ0∂ρ0 ] ∈ xI Diff2
e,b(M) since Ve,b(M) is a Lie algebra. Similarly,

[L, ρI ∂ρI ] = −ρI /∆ + [L̃, ρI ∂ρI ],

with the commutator lying in xI Diff2
e,b(M); in the first term on the other hand, we can write

/∆ as a finite sum /∆ =
∑

k Ωk,1Ωk,2+Ω[+f with spherical vector fields Ωk,1,Ωk,2,Ω
[ ∈ V(S2)

and f ∈ C∞(S2); but V(S2) ⊂ x−1
I Ve,b(M) ∩ Vb(M), and hence

ρI /∆ = xI ·
∑
k

(xI Ωk,1)Ωk,2 + xI · xI Ω[ + x2
I f

∈ xI Diff1,1
e,b;b(M) + xI Diff1

e,b(M) + x2
I Diff0

e,b(M) = xI Diff1,1
e,b;b(M).

(3.18)

Finally, we consider

[L,Ω] = ρI [Ω, /∆] + [L̃,Ω].

The term [Ω, /∆] ∈ Diff2(S2) contributes ρI [Ω, /∆] ∈ xI Diff1,1
e,b;b(M) by the same argument as

in (3.18). In the second term, we use the fact that lifts of vector fields from the base S2 of the
fibration I + → S2 enjoy improved commutation properties with eb-differential operators,

9In fact, we have [L, ρ0∂ρ0 ], [L,Ω] ∈ xI Diff2
e,b(M) when Ω is a rotation vector field.
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cf. [HV23, §5.1]. Concretely, in local coordinates (3.1) (with y2, y3 local coordinates on S2),

we have Ω =
∑3

j=2 Ωj(y)∂yj where the Ωj are smooth in y (and independent of ρ0); writing

any V ∈ Ve,b(M) as V = a0ρ0∂ρ0 + a1ρI ∂ρI +
∑3

j=2 a
jxI ∂yj with aµ ∈ C∞(M), this gives

[Ω, V ] = (Ωa0)ρ0∂ρ0 + (Ωa1)ρI ∂ρI + xI
∑
j

[Ω, aj∂yj ] ∈ Ve,b(M). (3.19a)

(This improves over the naive expectation coming from Ω ∈ x−1
I Ve,b(M) that one only has

[Ω, V ] ∈ x−1
I Ve,b(M).) Using the Leibniz rule, we infer that

[−,Ω]: Diff
2,(α0,α1)
e,b (M)→ Diff

2,(α0,α1)
e,b (M), α0, α1 ∈ R. (3.19b)

Applying this to L̃ ∈ xI Diff2
e,b(M) gives [L̃,Ω] ∈ xI Diff2

e,b(M). This finishes the proof. �

Proposition 3.17 (Energy estimate). In the notation (3.6), let c < x̄I . Define

Ω = {xI < c, ρ0 < 1} ⊂M, Σ = x−1
I (c) ⊂M.

Let k ∈ N0. Let α0, αI ∈ R with αI < min(α0, 0). Suppose f ∈ H
k,(α0,2αI )
b (Ω) =

ρα0
0 x2αI

I Hk
b (Ω) = ρα0

0 ραI
I Hk

b (Ω) vanishes near Σ. Then the unique forward solution u
(i.e. with vanishing Cauchy data at Σ) of

Lu = f, L = ρI ρ
−3�gmρ, (3.20)

satisfies u ∈ H(1;k),(α0,2αI )
e,b;b (Ω), with an estimate10

‖u‖
H

(1;k),(α0,2αI )

e,b;b (Ω)
≤ C‖f‖

H
k,(α0,2αI )

b (Ω)
= C‖f‖

H
(0;k),(α0,2αI )

e,b;b (Ω)
. (3.21)

Proof. We follow the arguments used in the proof of [HV20, Propositions 4.3 and 4.8] and
shall thus be brief. While one can work directly with �gm (as done in [HV23, §6]), we work
with L in order to simplify the weight arithmetic. Note now that �gm is symmetric with
respect to the volume density

|dgm| ∈ ρ−4
0 x−4

I C
∞(M ; |Λ4 e,bT ∗M |) = ρ−4

0 ρ−3
I C

∞(M ; |Λ4 bT ∗M |),

where we use Lemma 3.13 and the relationship |dρ0

ρ0

dρI
ρI

d/g

xdim S2
I

| = ρ−1
I |

dρ0

ρ0

dρI
ρI

d/g| between

smooth nonzero eb- and b-densities. Since �gm is formally self-adjoint on L2(M ; |dgm|),
the operator L is formally self-adjoint on L2

b(M) := L2(M,µb), where µb = ρ4
0ρ

3
I |dgm| is a

smooth positive b-density on M .

In order to prove (3.21), one can cut and paste energy estimates using domain of de-
pendence properties. Away from M◦, the estimate (3.21) estimates the Hk+1-norm of u
by the Hk-norm of f ; it thus suffices to work near I0 ∪ I +. But away from I +, L is a
b-differential operator, L ∈ Diff2

b(M \I +), for which xI is, near I0 \I +, a (past directed)
time function, the gradient of which can thus be used as a vector field multiplier giving the
estimate (3.21) away from I +—this was discussed in detail in [HV20, Proposition 4.3].

We thus work in a small neighborhood of I +, in coordinates ρ0, ρI . For k = 0, (3.21)
follows from an energy estimate on Ω with the vector field multiplier

W = w2V, w := ρ−α0
0 ρ−αI

I , V = −(1 + c)ρI ∂ρI + ρ0∂ρ0 ∈ Ve,b(M), (3.22)

10Thus, u gains 1 eb-derivative relative to f ; and u inherits the full amount of b-regularity from f .
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with c > 0 (one may take c = 1);11 W is future timelike. Consider the L2
b(Ω)-pairing

2〈wLu,wV u〉 = 〈Qu, u〉+ [boundary terms],

Q := L∗W +W ∗L = [L,W ]− (divµb
W )L ∈ ρ−2α0

0 x−4αI
I Diff2

e,b(M).
(3.23)

We compute the principal symbol of Q at I +. Since

µb ≡
¯
µb mod xI C∞(M ; |Λ4 bT ∗M |),

¯
µb :=

∣∣∣dρ0

ρ0

dρI
ρI

d/g
∣∣∣, (3.24)

we may replace L by its leading order term in (3.15), and µb by
¯
µb. Thus,

−div
¯
µb
W = w2V + (w2V )∗ = −[V,w2] = w2

(
−2(1 + c)αI + 2α0

)
,

and a quick calculation then gives Q ≡
¯
Q mod ρ−2α0

0 x−4αI +1
I Diff2

e,b(M) for

¯
Q = w2

(
−4αI (ρ0Dρ0 − ρIDρI )2 + 4c(α0 − αI )(ρIDρI )2

+
(
1 + 2(α0 − αI ) + c(1− 2αI )

)
x2
I /∆

)
.

(3.25)

Since αI < 0 and c > 0, α0 − αI > 0, and recalling that /∆ = − /tr /∇2, this is a positive
elliptic element of ρ−2α0

0 x−4αI
I Diff2

e,b(M). Therefore, 〈
¯
Qu, u〉 controls one eb-derivative of

u in ρα0
0 ραI

I L2
b. Using a Poincaré inequality to control ‖u‖ρα0

0 ρ
αI
I L2

b
by ‖ρI ∂ρI u‖ρα0

0 ρ
αI
I L2

b

(using αI < 0), an application of the Cauchy–Schwarz inequality to (3.23) (and using the
fact that the boundary terms vanish at Σ and have a good sign at ρ−1

0 (1) due to the future
causal nature of W and −dρ0, and can thus be dropped) implies the estimate (3.21) for
k = 0.

We prove higher b-regularity by commuting the vector fields from Lemma 3.16 through

the equation. Suppose we have established (3.21) for k ∈ N0. Let f ∈ Hk+1,(α0,2αI )
b (Ω).

Let X0 = ρ0∂ρ0 , X1 = ρ1∂ρ1 , and let X2, X3, X4 ∈ V(S2) be vector fields spanning TS2

pointwise (e.g. rotation vector fields); put moreover X5 ≡ 1. Thus, the Xk span Diff1
b(M)

over C∞(M). By Lemma 3.16, we can write

[L,Xj ] =

5∑
k=0

xI YjkXk, Yjk ∈ Diff1
e,b(M).

Applying the inductive hypothesis to L(Xju) = XjLu+ [L,Xj ]u gives

‖Xju‖H(1;k),(α0,2αI )

e,b;b

≤ C
(
‖Xjf‖Hk,(α0,2αI )

b

+
∑
k

‖xIXku‖H(1;k),(α0,2αI )

e,b;b

)
Summing these estimates over j = 0, . . . , 5, the sums over k on the right can be absorbed
into the sum over j on the left, provided we localize to a neighborhood of I + where xI is
small. This gives (3.21) for k + 1 in place of k, and completes the proof. �

Remark 3.18 (Multiplier in (t, r∗)-coordinates). In the coordinates t < r∗ and modulo
irrelevant lower order terms, the vector field multiplier (3.22) is (using Remark 3.9)

W = r2αI (r∗ − t)2(α0−αI )
(
(r∗ − t)∂t + cr(∂t + ∂r∗)

)
.

11See [HV20, Lemma 4.4], and also [HV23, Proof of Theorem 6.4] where a positive multiple of V is used
(with a different value of c).
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3.3. Metric perturbations. Following the rough discussion of couplings of metric coeffi-
cients in §2, we now define the function space for metric perturbations of the Schwarzschild
metric gm in (3.7) near spacelike and null infinity.

Definition 3.19 (Projections to subbundles). The projections πC , πΥ, /π0, π11 : S2T̃ ∗M →
S2T̃ ∗M respecting the splitting (3.12) are defined as in (2.14). (If we write /gab for the

components of the standard metric on S2 in local coordinates on S2, and similarly /gab for

the components of the dual metric, then in the notation of Definition 3.11 we have πC(h) =
(h00, h0ā,

1
2/g
abhāb̄), π

Υ(h) = (h01, h1ā), /π0(h) = (h − 1
2/g
abhāb̄/g), and π11(h) = (h11).) We

set πCΥ := πC + πΥ (mapping h 7→ (h00, h01, h0ā, h1ā,
1
2/g
abhāb̄)).

Definition 3.20 (Metric perturbations). Let `0, Ì ∈ R with Ì < min(−γΥ, `0,
1
2), and

let k ∈ N, k ≥ 3. With x̄I as in (3.6), fix c ∈ (0, x̄I ) and put

Ω =
{
xI < c, ρ0 < 1 +

1

2
ρ Ì
I

}
. (3.26)

Then the space G̃ k,(`0, Ì ) ⊂ Hk,(`0,−1)
b (Ω;S2T̃ ∗M) consists of all h for which there exist

h
(0)
11 ∈ H

k,`0
b (Ω ∩I +;π11S

2T̃ ∗M), /h(0) ∈ Hk,`0
b (Ω ∩I +; /π0S

2T̃ ∗M),

so that πCΥh, /π0h− /h(0), π11h− h(0)
11 ∈ H

k,(`0,2 Ì )
b (Ω;S2T̃ ∗M). The norm on G̃ k,(`0, Ì ) is

‖h‖G̃ k,(`0, Ì ) := ‖/h(0)‖
H
k,`0
b (Ω∩I +)

+ ‖h(0)
11 ‖Hk,`0

b (Ω∩I +)

+ ‖/π0h− /h(0)‖
H
k,(`0,2 Ì )

b (Ω)
+ ‖π11h− h(0)

11 ‖Hk,(`0,2 Ì )

b (Ω)
+ ‖πCΥh‖

H
k,(`0,2 Ì )

b (Ω)
,

where the norms of tensors with spherical components, such as /h(0) and πCΥh, are defined
as the sums of the norms of their āb̄ or ā-components (and moreover summing over a finite
cover of S2 by coordinate systems). We finally define the affine space

G k,(`0, Ì ) := {gm + r−1h : h ∈ G̃ k,(`0, Ì )}.

Matching the model (1.8) with /π0h, π11h, π
Ch, πΥh corresponding to φ1, φ2, φ3, φ4, the

trace-free spherical tensor /π0h has a radiation field, and the leading order term of π11h at
I + is sourced by it. See Remark 3.38 for an interpretation of these terms.

Remark 3.21. Note that all components of h, modulo the leading order terms of /π0h and
π11h, have the same decay rates at I +. This is a significant simplification of [HV20, Defi-
nition 3.1], made possible by the absence of logarithmic terms in π11h due to our new choice
of gauge (cf. by contrast the logarithmic coupling term Bh,11 in [HV20, Equation (3.26c)]).

Notation 3.22 (Remainder space). For k ∈ N0, α, β ∈ R, we shall use the abbreviation

Oα,βk := H
k,(α,2β)
b (Ω).

When using this notation for tensors, we mean the membership of their components in the
splittings (3.12) (thus in particular using the ā or āb̄ components for spherical components).

The factor of 2 in the I +-weight is included so that β measures the decay rate in ρI ,

as Oα,β3 ↪→ ρα0x
2β
I L∞(Ω) = ρα0 ρ

β
IL
∞(Ω). We shall repeatedly use that for k ≥ 3,

u1 ∈ Oα1,β1

k , u2 ∈ Oα2,β2

k =⇒ u1u2 ∈ Oα1+α2,β1+β2

k ,
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Ω

Σ

Σf

ρ0

I +

xI

I0

Figure 3.1. The domain Ω defined in (3.26) inside the manifold M defined
in (3.6). Also shown are the spacelike hypersurfaces Σ,Σf from Lemma 3.24.

u2 ∈ Hk,α2

b (I +) =⇒ u1u2 ∈ Oα1+α2,β1

k .

Lemma 3.23 (Metric coefficients). Let k ≥ 3 and h ∈ G̃ k,(`0, Ì ). Suppose ‖h‖G̃ 3,(`0, Ì ) is

sufficiently small. Then g = gm + r−1h is a Lorentzian metric on Ω◦. In the notation of
Definition 3.11, we have

g00 ∈ O1+`0,1+ Ì
k , g01 ∈ −

1

2
+ mr−1 +O1+`0,1+ Ì

k , g0b ∈ O`0, Ì
k ,

g11 = r−1h11, g1b ∈ O`0, Ì
k , gab = r2

/gab + rhāb̄,

and the coefficients of the dual metric g−1 are

g00 ∈ −4r−1h11 +O1+`0,1+ Ì
k , g01 ∈ −2− 4mr−1 +O1+`0,1+ Ì

k ,

g0b ∈ O2+`0,2+ Ì
k , g11 ∈ O1+`0,1+ Ì

k ,

g1b ∈ O2+`0,2+ Ì
k , gab ∈ r−2

/g
ab − r−3hāb̄ +O3+`0,3+ Ì

k .

As a symmetric eb-2-tensor, r−1h is a decaying perturbation of gm (cf. Corollary 3.14):

g − gm ∈ ρ−2
0 x−2

I H
k,(1+`0,2 Ì )
b (Ω;S2 e,bT ∗M). (3.27)

Proof. Sobolev embedding (3.3) implies the pointwise bound |hµ̄ν̄ | ≤ C‖h‖G̃ 3,(`0, Ì )ρ
`0
0 . The

Lorentzian nature of g then follows for small h from the nondegenerate Lorentzian nature of

gm as a section of S2T̃ ∗M (see Lemma 3.12). The expressions for the inverse metric follow

from (3.7) by working in the bundle S2T̃ ∗M and writing g−1 = g−1
m −r−1g−1

m hg−1
m +r−2E(h),

where E(h) vanishes quadratically at h = 0, so E(h) ∈ O2`0,0−
k since h ∈ O`0,0−k . This gives

g00 ∈ −r−1g01
m h11g

01
m +O2+2`0,2−

k ⊂ −4r−1h11 + r−2C∞(M) · O`0,0−k +O2+2`0,2−
k ,

similarly for the other coefficients.

The statement (3.27) follows from (3.13); for instance, this gives

r−1h00(dx0)2 ∈ O1+`0,1+ Ì
k · ρ−2

0 ρ−2
I C

∞(Ω;S2 e,bT ∗M)

⊂ ρ−2
0 x−2

I H
k,(1+`0,2 Ì )
b (Ω;S2 e,bT ∗M). �

Lemma 3.24 (Causal nature of ∂Ω). For h ∈ G̃ 3,(`0, Ì ) with sufficiently small norm,

Σ =
{
xI = c, ρ0 < 1 +

1

2
ρ Ì
I

}
and Σf =

{
xI < c, ρ0 = 1 +

1

2
ρ Ì
I

}
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are spacelike hypersurfaces for g = gm + r−1h.

Proof. We recall from the proof of Lemma 3.6 that

r dρI = a0 dx0 − a1 dx1, a0 :=
x1

2r

(
1− 2m

r

)
< −θρI , a1 := 1 + a0, (3.28)

for some θ > 0; note here that x1

r = −ρI . The expression (3.8) gives an upper bound

g−1
m (r dρI , r dρI ) ≤ −θρI with θ > 0; since a0 and a1 are bounded, we have∣∣(g−1 − g−1

m )(r dρI , r dρI )
∣∣ ≤ Cr−1‖h‖G̃ 3,(`0, Ì ) ≤

1

2
θρI

on Ω for small h. Therefore, dxI is (past) timelike for g.

For Σf , we compute for the differential of its defining function, using ρ0 = −(x1)−1,

2ρ1− Ì
I r d

(
ρ0 −

1

2
ρ Ì
I

)
= 2ρ1− Ì

I

(
ρ0ρ
−1
I dx1 − 1

2
Ì ρ

Ì−1
I · r dρI

)
= − Ì a0 dx0 +

(
2ρ0ρ

− Ì
I + Ì a1

)
dx1.

The squared length of the 1-form with respect to g−1 is

(4 +O(r−1)) Ì a0(2ρ0ρ
− Ì
I + Ì a1) +O(r−1) ·

(
O(ρ2

I )O(ρ`00 ) +O(ρ2
0ρ
−2 Ì
I + 1)O(ρ`00 ρ

Ì
I )
)
.

For small h, the first term is positive, and in view of (3.28) dominates the second term

(collecting the contributions from h00, h11) which is of size O(‖h‖G̃ 3,(`0, Ì )ρ
1+`0
0 ρ1− Ì

I ). �

Lemma 3.25 (Connection coefficients). Let g ∈ G k,(`0, Ì ), with g − gm ∈ G̃ 3,(`0, Ì ) small.
Then the Christoffel symbols of the first kind Γκµν = 1

2(∂µgνκ + ∂νgµκ − ∂κgµν) are12

Γ000 ∈ O2+`0,1+ Ì
k−1 , Γ001 ∈ O2+`0,1+ Ì

k−1 ,

Γ100 ∈ −1
2mr

−2+O2+`0,1+ Ì
k−1 , Γ101 ∈ O2+`0,1+ Ì

k−1 ,

Γc00 ∈ O1+`0, Ì
k−1 , Γc01 ∈ O1+`0, Ì

k−1 ,

Γ00b ∈ O1+`0, Ì
k−1 , Γ011 ∈ 1

2mr
−2+O2+`0,1+ Ì

k−1 ,

Γ10b ∈ O1+`0, Ì
k−1 , Γ111 ∈ 1

2r
−1∂1h11+O2+`0,1+ Ì

k−1 ,

Γc0b ∈ 1
2(r−2m)/gbc+O`0,−1+ Ì

k−1 , Γc11 ∈ O1+`0, Ì
k−1 ,

Γ01b ∈ O1+`0, Ì
k−1 , Γ0ab ∈ −1

2(r−2m)/gab+O`0,−1+ Ì
k−1 ,

Γ11b ∈ O1+`0, Ì
k−1 , Γ1ab ∈ 1

2(r−2m)/gab−1
2r∂1hāb̄+O

`0,−1+ Ì
k−1 ,

Γc1b ∈ −1
2(r−2m)/gbc+

1
2r∂1hb̄c̄+O

`0,−1+ Ì
k−1 , Γcab ∈ r2/Γcab+O−1+`0,−2+ Ì

k−1 ,

where /Γcab denotes the Christoffel symbols on S2. The Christoffel symbols of the second
kind, Γκµν = gκλΓλµν , are

Γ0
00 ∈ mr−2+O2+`0,1+ Ì

k−1 , Γ0
01 ∈ O

2+`0,1+ Ì
k−1 ,

Γ1
00 ∈ O

2+`0,1+ Ì
k−1 , Γ1

01 ∈ O
2+`0,1+ Ì
k−1 ,

12Since the asymptotics and decay rates of the metric coefficients here are stronger than those in [HV20],
the expressions here and in Corollary 3.26 can also be read off from those in [HV20, §A.2]; many terms, due
to the stronger metric asymptotics and weaker error spaces here, can be regarded as error terms. Note that
our signature convention for g is different from the reference, which causes a number of sign switches.
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Γc00 ∈ O
3+`0,2+ Ì
k−1 , Γc01 ∈ O

3+`0,2+ Ì
k−1 ,

Γ0
0b ∈ O

1+`0, Ì
k−1 , Γ0

11 ∈ −r−1∂1h11+O2+`0,1+ Ì
k−1 ,

Γ1
0b ∈ O

1+`0, Ì
k−1 , Γ1

11 ∈ −mr−2+O2+`0,1+ Ì
k−1 ,

Γc0b ∈ 1
2r
−1(1−2m

r )δcb+O
2+`0,1+ Ì
k−1 , Γc11 ∈ O

3+`0,2+ Ì
k−1 ,

Γ0
1b ∈ O

1+`0, Ì
k−1 , Γ0

ab ∈ −r/gab+r∂1hāb̄+O
`0,−1+ Ì
k−1 ,

Γ1
1b ∈ O

1+`0, Ì
k−1 , Γ1

ab ∈ r/gab+O
`0,−1+ Ì
k−1 ,

Γc1b ∈ −1
2r
−1(1−2m

r )δcb+
1
2r
−1∂1hb̄

c̄+O2+`0,1+ Ì
k−1 , Γcab ∈ /Γcab+O

1+`0, Ì
k−1 .

Proof. Direct computation using Lemma 3.23 and equation (3.11). �

Corollary 3.26 (Curvature coefficients). Let g = gm + r−1h ∈ G k,(`0, Ì ), k ≥ 4, with
‖h‖G̃ 3,(`0, Ì ) small. Define the Riemann curvature tensor by Rκλµν = ∂µΓκλν − ∂νΓκλµ +

ΓκµρΓ
ρ
λν−ΓκνρΓ

ρ
λµ. Use the notation from Definition 3.11. Then, modulo r−3C∞+O3+`0,1+ Ì

k−2 ,

R0
b̄1d̄ ≡ r−1∂2

1hb̄d̄, Rā11d̄ ≡ 1
2r
−1∂2

1hd̄
ā,

while Rκ̄λ̄µ̄ν̄ ≡ 0 for all other κ, λ, µ, ν with µ < ν; and Rκ̄λ̄µ̄ν̄ = −Rκ̄λ̄ν̄µ̄. The Ricci tensor

Ric(g)λ̄ν̄ = Rκ̄λ̄κ̄ν̄ satisfies Ric(g) ∈ O3+`0,1+ Ì
k−2 .

Proof. Direct computation. The stated membership of Rκ̄λ̄µ̄ν̄ gives Ric(g) ∈ r−3C∞ +

O3+`0,1+ Ì
k−2 , with the r−3C∞ term coming from gm which satisfies Ric(gm) = 0. �

3.4. Gauge-fixed Einstein operator. Encouraged by the calculations in §2, we now
define the nonlinear gauge-fixed Einstein operator whose linearization will be shown to
have the main properties of L

¯
g,EC ,EΥ discussed after (2.10).

Definition 3.27 (Nonlinear modified gauge-fixed Einstein operator). Set cC = cΥ :=
r−1 dt = 1

2r
−1(dx0 + dx1) as in (2.8), and choose γC ∈ (0, 1), γΥ ∈ (−1, 0) with −γΥ < γC .

Write E• = (c•, γ•), • = C,Υ, and define δ∗
g,EC

, δg,EΥ by (2.4)–(2.5). Given a Lorentzian

metric g, and denoting by gm the Schwarzschild metric from Definition 3.5, put

ΥEΥ(g; gm) := Υ(g; gm)− (δgm,EΥ − δgm)Ggm(g − gm),

where Υ(g; gm) = g(gm)−1δgGggm as in (2.1). We then define13

PEC ,EΥ(g) := Ric(g)− δ∗gm,ECΥEΥ(g; gm),

P ′g,EC ,EΥ := DgPEC ,EΥ , Lg,EC ,EΥ := 2ρI ρ
−3P ′g,EC ,EΥρ.

Lemma 3.28 (Gauge 1-form). For g as in Lemma 3.25, we have ΥEΥ(g; gm) ∈ O2+`0,1+ Ì
k−1 .

Proof. We have Υ(g; gm)µ = gκλ(Γ(g)µκλ − Γ(gm)µκλ); lowering the index using g gives

Υ(g; gm)0 ≡ −1
2Υ(g; gm)1 and Υ(g; gm)1 ≡ −1

2Υ(g; gm)0 modulo O2+`0,1+ Ì
k−1 . For EΥ =

(0, 0, 0), the result can now be read off from Lemma 3.25. Likewise,

ΥEΥ(g; gm)−Υ(g; gm) = −(δgm,EΥ − δgm)Ggm(g − gm) ∈ O2+`0,1+ Ì
k−1

13The definition of P ′g,EC ,EΥ is consistent with the motivational Definition 2.2 for g = gm, as follows from

a brief calculation using Lemma 2.1.
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since δgm,EΥ − δgm ∈ r−1C∞(M ; Hom(S2T̃ ∗M, T̃ ∗M)) and g − gm ∈ O1+`0,1−
k . �

Proposition 3.29 (Structure of the linearized gauge-fixed Einstein operator). Write sym-

metric scattering 2-tensors in the splitting (3.12). Let g = gm + r−1h ∈ G k,(`0, Ì ), k ≥ 4,
with ‖h‖G̃ 3,(`0, Ì ) small. Then the operator Lg,EC ,EΥ from Definition 3.27 takes the form

Lg,EC ,EΥ = L0
g,EC ,EΥ + L̃g,EC ,EΥ ,

L0
g,EC ,EΥ = −2(ρI ∂ρI −Ag,EC ,EΥ)(ρ0∂ρ0 − ρI ∂ρI ) + x2

I /∆ + 2Bg,EC ,EΥ , (3.29a)

L̃g,EC ,EΥ ∈
(
xI C∞(Ω) +H

k−2,(`0,2 Ì )
b (Ω)

)
Diff2

e,b(M ;S2T̃ ∗M), (3.29b)

where the endomorphisms Ag,EC ,EΥ and Bg,EC ,EΥ of S2T̃ ∗M are defined by

Ag,EC ,EΥ =



2γC 0 0 0 0 0 0
−γΥ −γΥ 0 0 0 0 0

0 0 γC 0 0 0 0

0 −2γΥ 0 −2γΥ 0 γC −1
2∂1h

āb̄

0 0 γC−γΥ 0 −γΥ 0 0
2γC 0 0 0 0 γC 0

2∂1hāb̄ 0 0 0 0 0 0


,

Bg,EC ,EΥ =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2ρ−1
0 ∂2

1h11 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2ρ−1
0 ∂2

1hāb̄ 0 0 0 0 0 0


.

If h = 0, then Ag,EC ,EΥ equals AEC ,EΥ from (2.11). General h contribute bounded terms

at I + and do not affect the block triangular structure of Ag,EC ,EΥ ; see §3.6.

Proof of Proposition 3.29. We will analyze the terms in the expression

2P ′g,EC ,EΥ = �g + 2(δ∗gm,EC − δ
∗
g)δgGg + 2δ∗gm,EC(δgm,EΥ − δgm)Ggm

+ 2δ∗gm,ECCg − 2δ∗gm,ECYg + 2Rg,
(3.30)

with Cg and Yg defined in (2.3), one by one.

• Tensor wave operator. Following Definition 3.11, we set

Γκ̄µ̄ν̄ = rs(κ)−s(µ,ν)Γκµν , Γκ̄µ̄ν̄ = r−s(κ,µ,ν)Γκµν .

By Lemma 3.25, we have

Γσ̄0µ̄ ∈ r−2C∞ +O2+`0,1+ Ì
k−1 , s(σ, ν) < 2, (3.31a)

Γσ̄0µ̄ ∈ 1
2r
−1δσµ + r−2C∞ +O2+`0,1+ Ì

k−1 , s(σ, ν) = 2, (3.31b)

Γσ̄κ̄µ̄ ∈ r−1C∞ +O2+`0,1−
k−1 ∀σ, κ, µ. (3.31c)

Given a symmetric 2-tensor u on Ω ⊂M , we begin by calculating the form of

uµ̄ν̄;κ̄ = r−s(µ,ν,κ)∂κ
(
rs(µ,ν)uµ̄ν̄

)
− Γσ̄κ̄µ̄uσ̄ν̄ − Γσ̄ν̄κ̄uµ̄σ̄.
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For κ = 0, note that r−s(µ,ν)[∂0, r
s(µ,ν)] ≡ 1

2s(µ, ν)r−1 mod r−2C∞, which cancels the con-
tribution of the leading order term of (3.31b). Thus, by (3.10),

uµ̄ν̄;0 ∈ ∂0uµ̄ν̄ +
(
r−2C∞ +O2+`0,1+ Ì

k−1

)
u ⊂

(
ρ0x

2
I C∞ +O2+`0,1+ Ì

k−1

)
Diff1

e,b(M)u, (3.32a)

uµ̄ν̄;1 ∈ ∂1uµ̄ν̄ +
(
r−1C∞ +O2+`0,1−

k−1

)
u ⊂

(
ρ0C∞ +O2+`0,1−

k−1

)
Diff1

e,b(M)u, (3.32b)

uµ̄ν̄;c̄ ∈ r−1∂cuµ̄ν̄ +
(
r−1C∞ +O2+`0,1−

k−1 )u ⊂
(
ρ0xI C∞ +O2+`0,1−

k−1

)
Diff1

e,b(M)u. (3.32c)

We use this to compute the form of

(�gu)µ̄ν̄ = −r−s(µ,ν,κ,λ)gκ̄λ̄∂λ
(
rs(µ,ν,κ)uµ̄ν̄;κ̄

)
+ gκ̄λ̄

(
Γσ̄µ̄λ̄uσ̄ν̄;κ̄ + Γσ̄ν̄λ̄uµ̄σ̄;κ̄ + Γσ̄κ̄λ̄uµ̄ν̄;σ̄

)
.

(3.33)

In the second line of (3.33), those terms in which u is covariantly differentiated along

∂0, ∂a lie in (ρ2
0x

3
I C∞ +O3+`0,3/2−

k−2 )Diff1
e,b(M)u by (3.31c), (3.32a), and (3.32c) (using that

multiplication by xI maps Oα,1−k−2 → O
α,3/2−
k−2 ). Next, Lemmas 3.23 and 3.25 give gκ̄λ̄Γ1

κ̄λ̄
∈

2r−1 +O2+`0,1+ Ì
k−1 ; using (3.32b), the terms in the second line of (3.33) involving derivatives

of u along ∂1 are thus modulo (r−2C∞ +O3+`0,1+ Ì
k−1 )Diff1

e,b(M)u equal to

g10Γσ̄µ̄0uσ̄ν̄;1 + g10Γσ̄ν̄0uµ̄σ̄;1 + gκ̄λ̄Γ1
κ̄λ̄uµ̄ν̄;1 ≡ (−s(µ, ν) + 2)r−1∂1uµ̄ν̄ .

For the first term on the right in (3.33), all terms with (κ, λ) 6= (0, 1), (1, 0), (a, b) produce

terms in O3+`0,1+ Ì
k−2 Diff2

e,b(M)u. The remaining terms sum to

2r−s(µ,ν)∂0

(
rs(µ,ν)∂1uµ̄ν̄

)
+ 2∂1∂0uµ̄ν̄ +

(
r−2C∞ +O3+`0,1+ Ì

k−1

)
Diff2

e,b(M)u

− r−2
/g
ab∂a∂buµ̄ν̄ +

(
ρ2

0x
3
I C∞ +O3+`0,3/2−

k−2

)
Diff2

e,b(M)u,

with the first line capturing the non-spherical, the second line the spherical terms. Plugging

in (3.10) and using 2 Ì < 1 (so ρI ρ
−3O3+`0,3/2−

k−2 ρ ⊂ O1+`0, Ì
k−2 ), we thus obtain

(ρI ρ
−3�gρu)µ̄ν̄ ∈ −2ρI ∂ρI (ρ0∂ρ0 − ρI ∂ρI )uµ̄ν̄ − /gab(xI ∂a)(xI ∂b)uµ̄ν̄

+
(
xI C∞ +O1+`0, Ì

k−2

)
Diff2

e,b(M)u.
(3.34)

The coordinate derivatives ∂a on S2 can be replaced by covariant derivatives /∇a, the dif-
ference in local coordinates being xI ( /∇a − ∂a)xI ∂a ∈ xI Diff1

e,b.

• Modified symmetric gradient. Next, consider the second summand in (3.30). We have(
(δ∗gm,EC − δ

∗
g)ω
)
µ̄ν̄

=
(
(δ∗gm,EC − δ

∗
gm)ω

)
µ̄ν̄

+
(
(δ∗gm − δ

∗
g)ω
)
µ̄ν̄

=
(
(δ∗gm,EC − δ

∗
gm)ω

)
µ̄ν̄

+ C κ̄µ̄ν̄ωκ̄, (3.35)

where C κ̄µ̄ν̄ = Γ(g)κ̄µ̄ν̄ − Γ(gm)κ̄µ̄ν̄ . In the splittings (3.12), we have cC = cΥ = (1
2 ,

1
2 , 0), so

δ∗gm,EC − δ
∗
gm ∈ γ

Cr−1



1 0 0
0 0 0
0 0 1

2
0 1 0
0 0 1

2
1 1 0
0 0 0


+ r−2C∞(M ; Hom(T̃ ∗M,S2T̃ ∗M)). (3.36)
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For the second term in (3.35), we infer from Lemma 3.25 that, modulo O2+`0,1+ Ì
k−1 , we have

C0
11 ≡ −r−1∂1h11, C c̄1b̄ = C c̄b̄1 ≡

1
2r
−1∂1hb̄

c̄, C0
āb̄ ≡ r

−1∂1hāb̄, (3.37)

while C κ̄µ̄ν̄ ≡ 0 for all other κ, µ, ν. Using /trh ∈ O`0, Ì
k , the operator ω 7→ (C κ̄µ̄ν̄ωκ̄) is thus

r−1



0 0 0
0 0 0
0 0 0

−∂1h11 0 0

0 0 1
2∂1hā

b̄

0 0 0
∂1hāb̄ 0 0


+O2+`0,1+ Ì

k−1 . (3.38)

We compute (δgu)µ̄ = −gλ̄κ̄uµ̄λ̄;κ̄ using (3.32a)–(3.32c) and Lemma 3.23. The terms with

κ 6= 1 contribute
(
ρ0xI C∞ +O2+`0,1−

k−1

)
Diff1

e,b(M)u, as do the terms with κ = 1, λ 6= 0, so

δg ∈

2∂1 0 0 0 0 0 0
0 2∂1 0 0 0 0 0
0 0 2∂1 0 0 0 0

+
(
ρ0xI C∞ +O2+`0,1−

k−1

)
Diff1

e,b. (3.39)

Lastly, Lemma 3.23 implies

Gg ∈



1 0 0 0 0 0 0
0 0 0 0 0 1

2 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 2 0 0 0 0 0
0 0 0 0 0 0 1


+ r−1C∞ +O1+`0,1−

k . (3.40)

Combining (3.35), (3.36), and (3.38)–(3.40) gives

ρI ρ
−3
(
2(δ∗gm,EC − δ

∗
g)δgGg

)
ρ

∈ 2



2γC 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 γC 0 0 0 0

−2∂1h11 0 0 0 0 γC 0

0 0 γC + ∂1hā
b̄ 0 0 0 0

2γC 0 0 0 0 γC 0
2∂1hāb̄ 0 0 0 0 0 0


ρ−1

0 ∂1

+
(
xI C∞ +O1+`0, Ì

k−1

)
Diff1

e,b.

(3.41)
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• Modified divergence. Using Lemma 3.25 with h = 0, the third summand in (3.30) is

δ∗gm,EC ∈



0 0 0
1
2 0 0
0 0 0
0 1 0
0 0 1

2
0 0 0
0 0 0


∂1 + ρ0xI Diff1

e,b, (3.42)

δgm,EΥ − δgm ∈ γΥr−1

−2 0 0 0 0 −1 0
0 0 0 −2 0 −1 0
0 0 −2 0 −2 0 0

+ r−2C∞. (3.43)

Therefore,

ρI ρ
−3
(
2δ∗gm,EC(δgm,EΥ − δgm)Ggm

)
ρ

∈ 2



0 0 0 0 0 0 0
−γΥ −γΥ 0 0 0 0 0

0 0 0 0 0 0 0
0 −2γΥ 0 −2γΥ 0 0 0
0 0 −γΥ 0 −γΥ 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(ρ0∂ρ0 − ρI ∂ρI ) (3.44)

+
(
xI C∞ +O1+`0, Ì

k−1

)
Diff1

e,b.

• Term involving Cg. We turn to the fourth summand in (3.30). When calculating

(Cgu)κ̄ = gκ̄λ̄g
µ̄σ̄gν̄τ̄C λ̄µ̄ν̄uσ̄τ̄ , one can replace g ∈ gm + O1+`0,1−

k by gm at the expense of

an error term in O3+2`0,2−
k−1 since C λ̄µ̄ν̄ ∈ O

2+`0,1−
k−1 (cf. (3.37)); furthermore, the components

of the tensor C other than those in (3.37) contribute terms in O2+`0,1+ Ì
k−1 . Therefore,

Cg =

 0 0 0 0 0 0 0

2r−1∂1h11 0 0 0 0 0 −1
2r
−1∂1h

āb̄

0 0 −2r−1∂1hā
b̄ 0 0 0 0

+O2+`0,1+ Ì
k−1 .

Together with (3.42), and using again that Ì < 1
2 , we thus have

2ρI ρ
−3δ∗gm,ECCgρ ∈ 2ρ−1

0 ∂1 ◦



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2∂1h11 0 0 0 0 0 −1
2∂1h

āb̄

0 0 −∂1hā
b̄ 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


+O1+`0, Ì

k−1 Diff1
e,b.

(3.45)
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• Term involving Yg. For the fifth summand in (3.30), note that δ∗
gm,EC

∈ ρ0Diff1
e,b

by (3.42). Together with Υ(g; gm)ν̄ ∈ O2+`0,1+ Ì
k−1 from Lemma 3.28, we get

− 2ρI ρ
−3δ∗gm,ECYgρ ∈ O

1+`0, Ì
k−1 Diff1

e,b. (3.46)

• Curvature term. The final term of (3.30) can be computed using Corollary 3.26. A

fortiori, all components of the Riemann and Ricci tensor lie in r−3C∞+O3+`0,1−
k−2 , and hence

replacing g by gm in the definition of Rg produces O4+`0,2−
k−2 error terms. One computes

2ρI ρ
−3Rgρ ∈ 2ρ−1

0



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 1
2∂

2
1h

āb̄

0 0 ∂2
1hā

b̄ 0 0 0 0
0 0 0 0 0 0 0

2∂2
1hāb̄ 0 0 0 0 0 0


+ ρ0x

4
I C∞ +O1+`0, Ì

k−2 .

Combining this with (3.34), (3.41), and (3.44)–(3.46), and recalling that ρ−1
0 ∂1 ≡ ρ0∂ρ0 −

ρI ∂ρI mod xI Diff1
e,b, proves the Proposition. �

Definition 3.30 (Forcing terms). For k ∈ N0 and `0, Ì ∈ R, Ì > 0, we define

F k,(`0, Ì ) :=
{
f = f̃ + f

(0)
11 (dx1)2 : f̃ ∈ Hk,(`0,2 Ì )

b (Ω;S2T̃ ∗M), f
(0)
11 ∈ H

k,`0
b (I + ∩ Ω)

}
,

with norm ‖f‖Fk,(`0, Ì ) := ‖f̃‖
H
k,(`0,2 Ì )

b (Ω)
+ ‖f (0)

11 ‖Hk,`0
b (I +∩Ω)

.

Corollary 3.31 (Nonlinear error term). Let g = gm + r−1h ∈ G k,(`0, Ì ), k ≥ 4, with h

small in G̃ 3,(`0, Ì ). Then 2ρ−1
I ρ3PEC ,EΥ(g) ∈ F k−2,(`0, Ì ); more precisely,14

2ρ−1
I ρ3PEC ,EΥ(g) ∈ ρ−1

0

(
−4γΥ∂1h11 −

1

2
|∂1/π0h|2/g−1

)
(dx1)2 +O`0, Ì

k−2 . (3.47)

By contrast to [HV20, Lemma 3.5], it is the leading order term of h11 that enters in (3.47),
rather than a logarithmically divergent term of h11. The term |∂1/π0h|2 is captured by the
term (∂tφ1)2 in the equation for φ2 in (1.8) (with φ1, φ2 being models for /π0h, h11).

Proof of Corollary 3.31. Instead of a direct computation, we integrate up the linearization
of PEC ,EΥ : the fundamental theorem of calculus gives

PEC ,EΥ(gm + r−1h) = PEC ,EΥ(gm) +

∫ 1

0
P ′gm+r−1sh,EC ,EΥ(r−1h) ds;

since PEC ,EΥ(gm) = 0, we can therefore use Proposition 3.29 to compute

2ρ−1
I ρ3PEC ,EΥ(g) =

∫ 1

0
Lgm+r−1sh,EC ,EΥ(h) ds

Using Definition 3.20 and (3.29b), the error term of the Proposition contributes

L̃gm+r−1sh,EC ,EΥ(h) ∈ O`0, Ì
k−2 . (3.48)

14We can replace h11 and /π0h by their I +-leading order terms h
(0)
11 and /h(0), cf. Definition 3.20.
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Regarding the main term (3.29a), the contribution x2
I
/∆h ∈ ρI Diff2

b(M)h ⊂ O`0,1−k−2 lies,

a fortiori, in the space (3.48); and Bgm+r−1sh,EC ,EΥh ∈ O`0, Ì
k since h00 ∈ O`0, Ì

k . In the
first term of (3.29a),

ρI ∂ρI (ρ0∂ρ0 − ρI ∂ρI )h = (ρ0∂ρ0 − ρI ∂ρI )ρI ∂ρI h ∈ O
`0, Ì
k−2

is an error term as well since ρI ∂ρI annihilates the leading order terms of h at I +; thus,

2ρ−1
I ρ3PEC ,EΥ(g) ≡ 2

∫ 1

0
Agm+r−1sh,EC ,EΥ(ρ−1

0 ∂1h) ds mod O`0, Ì
k−2 . (3.49)

All coefficients of h in the splitting (3.12) except for π11h and /π0h lie in O`0, Ì
k and thus

contribute error terms. The π11h, resp. /π0h component only contributes through the (4, 4),
resp. (4, 7) entry of Agm+r−1sh,EC ,EΥ . Therefore, only the 4-th, i.e. (dx1)2, component

of (3.49) does not lie in O`0, Ì
k−2 , and modulo O`0, Ì

k−2 it equals

2ρ−1
0

∫ 1

0

(
−2γΥ∂1h11 −

1

2
∂1(shāb̄)∂1hāb̄

)
ds = ρ−1

0

(
−4γΥ∂1h11 −

1

2
∂1hāb̄∂1h

āb̄
)
. �

3.5. Tame energy estimate. With the modification parameters EC , EΥ fixed as in Defi-
nition 3.27, we shall now drop them from the notation, and thus simply write

P (g) := PEC ,EΥ(g), Lg := Lg,EC ,EΥ , Ag := Ag,EC ,EΥ , etc.

The first key step is an energy estimate for the linearized operator from Definition 3.27
on spaces with fixed weights but arbitrarily high b-regularity; precise decay is obtained in
a second step in §3.6.

Proposition 3.32 (Tame energy estimate). Fix `0, Ì as in Definition 3.20, and let g =

gm + r−1h ∈ G k,(`0, Ì ), with h small in G̃ 8,(`0, Ì ). Let α0, αI ∈ R with αI < min(α0, 0),

and let k,m ∈ N0 with k ≥ 8 and m ≤ k−3. Suppose f ∈ Hm,(α0,2αI )
b (Ω;S2T̃ ∗M) vanishes

near Σ (in the notation of Lemma 3.24). Then the unique forward solution u of

Lgu = f (3.50)

satisfies u ∈ H(1;m),(α0,2αI )
e,b;b (Ω;S2T̃ ∗M). For m ≥ 3, we moreover have the tame estimate

‖u‖
H

(1;m),(α0,2αI )

e,b;b

≤ C
(
‖f‖

H
m,(α0,2αI )

b

+ ‖h‖G̃m+3,(`0, Ì )‖f‖
H

3,(α0,2αI )

b

)
, (3.51)

where C depends on m, k, α0, αI , `0, Ì , but not on f, h.

We shall give a proof based on elementary (and rather imprecise) considerations.

Lemma 3.33 (Tame product estimate). Write points x ∈ Rn = R× Rn−1 as x = (x1, x
′).

Let q ≤ m ∈ N0. For p ∈ N0, denote by dp = dp+1
2 e the smallest integer > p

2 . Then there

exists a constant C = C(m, q) so that for all h ∈ C∞c (Rn−1) and u ∈ C∞c (Rn),

‖(Dqh)(Dm−qu)‖L2(Rn) ≤ C
(
‖h‖Hdn−1 (Rn−1)‖u‖Hm(Rn) + ‖h‖Hm+dn−1 (Rn−1)‖u‖L2(Rn)

)
.

Proof. We repeatedly use the following estimate for integers 0 ≤ a < b < c:

‖Dbu‖L2 ≤ Cabc‖Dau‖
c−b
c−a
L2 ‖Dcu‖

b−a
c−a
L2 ; (3.52)
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this follows by an inductive argument from the base case

‖Du‖2L2 =

∫
D(uDu) dx+

∫
uD2udx =

∫
uD2udx ≤ ‖u‖L2‖D2u‖L2 .

We then estimate, using Sobolev embedding Hdn−1(Rn−1) ↪→ L∞(Rn−1),

‖(Dqh)(Dm−qu)‖2L2(Rn) ≤ ‖D
qh‖L∞(Rn−1)‖Dm−qu‖L2(Rn)

. ‖Dqh‖Hdn−1 (Rn−1)‖D
m−qu‖L2(Rn).

Since ‖Dqh‖Hdn−1 . ‖Dq+dn−1h‖L2 + ‖Dqh‖L2 , we can further estimate, using (3.52),

‖Dq(Ddn−1h)‖L2‖Dm−qu‖L2 . ‖Ddn−1h‖
m−q
m

L2 ‖Dm+dn−1h‖
q
m

L2‖u‖
q
m

L2‖Dmu‖
m−q
m

L2

≤ ‖h‖Hm+dn−1‖u‖L2 + ‖h‖Hdn−1‖u‖Hm .

We can estimate ‖Dqh‖L2‖Dm−qu‖L2 by the same right hand side. �

Lemma 3.34 (Commutator identity). Let A be an algebra. Let L,X1, . . . , XN ∈ A. Write
adXj = [−, Xj ]. Then

[L,X1 · · ·XN ] =

N∑
q=1

(−1)q−1
∑

i1<···<iq

(
adXi1 . . . adXiqL

) N∏
j=1

j 6=i1,...,iq

Xj .

Proof. The case N = 1 is clear. The inductive step follows from [L,X1 · · ·XN+1] =
[L,X1 · · ·XN ]XN+1 + [L,XN+1]X1 · · ·XN − [adXN+1

L,X1 · · ·XN ]. �

Proof of Proposition 3.32. • Basic energy estimate. For fixed α0 ∈ R, we first prove the
Proposition for m = 3 and fixed but large negative αI < α0. We use the vector field
multiplier W = w2V from (3.22) with, say, c = 1, the volume density

¯
µb from (3.24),

and a pairing calculation analogous to (3.23). Using the L2 inner product on sections of

S2T̃ ∗ΩM → Ω relative to
¯
µb and any fixed smooth, positive definite fiber inner product on

S2T̃ ∗M , we shall evaluate

2 Re〈wLgu,wV u〉 = 〈Qu, u〉+ [boundary terms],

Q := [Lg,W ]− (div
¯
µb
W )Lg + (L∗g − Lg)W,

The first two summands of Q were computed to leading order at I + to be equal to
¯
Q

in (3.25); the point now is that for αI sufficiently large and negative,
¯
Q dominates the prin-

cipal symbol of the skew-adjoint part (L∗g−Lg)W ∈ w2L∞(Ω)Diff2
e,b (using Proposition 3.29

and Sobolev embedding) whose bound in this space only depending on ‖h‖G̃ 5,(`0, Ì ) .15 Fol-
lowing the proof of Proposition 3.17, this gives

‖u‖
H

1,(α0,2αI )

e,b

≤ C0‖Lgu‖H0,(α0,2αI )

b

, (3.53)

with C0 independent of h as long as ‖h‖G̃ 5,(`0, Ì ) is small. One can commute any number
b-derivatives through the equation Lgu = f as in the proof of Proposition 3.17; we give

15The boundedness of h11 at I + comes in handy here and allows for a proof of the energy estimate
without the need for using the block triangular structure of Ag yet, unlike in [HV20, §4.1].
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details in a tame setting momentarily. We content ourselves with 3 b-derivatives for now;
thus, for a constant C3 only depending on ‖h‖G̃ 8,(`0, Ì ) , we have

‖u‖
H

(1;3),(α0,2αI )

e,b;b

≤ C3‖Lgu‖H3,(α0,2αI )

b

. (3.54)

• Tame estimate. We shall localize to small neighborhoods of I + whenever convenient
below; proofs of tame estimates away from I + follow from simplifications of the arguments
below. Recall from the proof of Proposition 3.17 the set of commutators

X = {X0, . . . , X5} ⊂ Diff1
b(M ;S2T̃ ∗M)

given by X0 = ρ0∂ρ0 , X1 = ρ1∂ρ1 , spherical vector fields X2, X3, X4 ∈ V(S2) (acting by co-
variant differentiation on spherical 1-forms and symmetric 2-tensors in the splitting (3.12)),
and X5 ≡ 1. The estimate (3.53) and Lemma 3.34 applied to V1 · · ·Vlu for l ≤ m and
V1, . . . , Vl ∈ X give

‖u‖
H

(1;m),(α0,2αI )

e,b;b

≤ C0

(
‖Lgu‖Hm,(α0,2αI )

b

+
∑
l≤m

∑
V1,...,Vl∈X

l∑
q=1

∑
i1<···<iq

‖(adVi1 · · · adViqLg)V1 . . . V̂i1 . . . V̂iq . . . Vlu‖H0,(α0,2αI )

b

)
,

which we schematically write as

‖u‖
H

(1;m),(α0,2αI )

e,b;b

≤ C0

(
‖Lgu‖Hm,(α0,2αI )

b

+
∑

q≤l≤m
‖(adqXLg)X

l−qu‖
H

0,(α0,2αI )

b

)
. (3.55)

Consider first the contributions from L̃g to (3.55). We can write L̃g in (3.29b) as

L̃g =
∑

(xI aj + ãj)Pj , aj ∈ C∞, ãj ∈ Hk−2,(`0,2 Ì )
b , (3.56)

where the operators Pj ∈ Diff2
e,b(M ;S2T̃ ∗M) span Diff2

e,b(M ;S2T̃ ∗M) over C∞(M), and
so that, for some constant C = C(k, `0, Ì ),

‖L̃g‖k−2,(`0,2 Ì ) := max
j
‖ãj‖Hk−2,(`0,2 Ì )

b

≤ C‖h‖G̃ k,(`0, Ì ) ; (3.57)

this uses: (1) the coefficients of L̃g are rational functions of up to 2 b-derivatives of h; (2) for

k ≥ 5, Hk−2
b (Ω) is an algebra, with a Moser estimate for the norm of products (which is a

consequence of the corresponding result on Rn, see e.g. [Tay11, §13, Proposition 3.7], upon
passing to coordinates log ρ0 and log ρI ).

We will use the fact that commutators with elements Xj ∈ X preserve the space

Diffke,b(M ;S2T̃ ∗M) for all k; this is clear for j = 0, 1, 5 (in which case Xj is itself an
eb-operator), and for spherical vector fields (j = 2, 3, 4) relies on their ρ0-independence, as
discussed in (3.19a) and (3.19b). Thus, for 1 ≤ q ≤ l ≤ m, we have (using (3.56))

‖(adqX L̃g)X
l−qu‖

H
0,(α0,2αI )

b

≤ ‖xI L 2
e,bL l−q

b u‖
H

0,(α0,2αI )

b

+ ‖(L q
b ã)L 2

e,bL l−q
b u‖

H
0,(α0,2αI )

b

≤ Cm‖u‖H(1;m),(α0,2αI−1)

e,b;b

+ ‖(L q
b ã)(L 1

e,bLm−q+1
b u)‖

H
0,(α0,2αI )

b

, (3.58)
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where we write L a
b and L b

e,b for elements of Diffab and Diffbe,b, respectively, whose precise

forms do not matter; and in passing to the second line, we used Diff1
e,b ⊂ Diff1

b. The second

term of (3.58) is ≤ ‖L q
b ã‖ρ`00 x

2 Ì
I L∞

‖u‖
H

(1;m−q+1),(α0−`0,2(αI− Ì ))

e,b;b

; due to the weaker weight

at I +, we can conclude that upon working in a sufficiently small neighborhood of I +, this
is bounded by a small constant times ‖u‖

H
(1;m),(α0,2αI )

e,b;b

and can thus be absorbed into the

left hand side of (3.55); similarly for the first term. To get a tame estimate, we use [Tay11,
§13, Proposition 3.6] and Sobolev embedding (3.3) to bound the second term in (3.58) by

Cm

(
‖L 1

b ã‖ρ`00 x
2 Ì
I L∞

‖L 1
e,bu‖Hm,(α0−`0,2(αI− Ì ))

b

+ ‖L 1
b ã‖Hm,(`0,2 Ì )

b

‖L 1
e,bu‖ρα0

0 x
2αI
I L∞

)
≤ C ′m

(
‖ã‖

H
4,(`0,2 Ì )

b

‖u‖
H

(1;m),(α0,2(αI− Ì ))

e,b;b

+ ‖ã‖
H
m+1,(`0,2 Ì )

b

‖u‖
H

(1;3),(α0,2αI )

e,b;b

)
≤ C ′′m

(
‖h‖G̃ 6,(`0, Ì )‖u‖

H
(1;m),(α0,2(αI− Ì ))

e,b;b

+ ‖h‖G̃m+3,(`0, Ì )‖Lgu‖H3,(α0,2αI )

b

)
,

where in passing to the final line we used the estimates (3.57) and (3.54). The first term only
involves a fixed low regularity norm of h, and upon localizing to a sufficiently small (only
depending on m) neighborhood of I + can be absorbed into the left hand side of (3.55).
The second term already fits into the estimate (3.51).

Next, we decompose the main term L0
g of Lg in (3.29a) into L0

gm+(L0
g−L0

gm), with the first
term capturing the smooth terms and the second term capturing the terms involving h. Us-
ing [L0

gm , Xi] ∈ xI Diff1,1
e,b;b as in Lemma 3.16, the contribution of L0

gm to the second summand

on the right in (3.55) can be estimated by Cm‖xI u‖H(1;m),(α0,2αI )

e,b;b

= Cm‖u‖H(1;m),(α0,2αI−1)

e,b;b

,

which can again be absorbed into the left hand side of (3.55) for small xI .

Turning to the term AhL
1
e,b of L0

g − L0
gm , where Ah := Ag − Agm , we decompose Ah =

A0
h + Ãh into the ρI -independent leading order term A0

h ∈ Hk−1,1+`0
b (I + ∩ Ω) plus a

remainder term Ãh ∈ H
k−1,(1+`0,2 Ì )
b (Ω). The contribution from Ãh to the second term on

the right in (3.55) can be treated like the contribution from L̃g. For the contribution from

A0
h, which is linear in ∂1/h

(0) in the notation of Definition 3.20, we apply Lemma 3.33 in
logarithmic coordinates log ρ0, log ρI (with log ρI playing the role of x1 in the lemma) with

n = 4, and h,m there replaced by L 1
b ∂1/h

(0), l − 1 where l ≤ m, so

‖(adqXA
0
h)(X l−qL 1

e,bu)‖
H

0,(α0,2αI )

b

= ‖(adq−1
X adXA

0
h)(X l−1−(q−1)L 1

e,bu)‖
H

0,(α0,2αI )

b

≤ Cm
(
‖L 1

b ∂1/h
(0)‖

H
2,1+`0
b (I +∩Ω)

‖L 1
e,bu‖Hm−1,(α0−1−`0,2αI )

b (Ω)

+ ‖L 1
b ∂1/h

(0)‖
H
m+1,1+`0
b (I +∩Ω)

‖L 1
e,bu‖H0,(α0−1−`0,2αI )

b (Ω)

)
≤ C ′m

(
‖h‖G̃ 4,(`0, Ì )‖u‖

H
(1;m−1),(α0,2αI )

e,b;b

+ ‖h‖G̃m+3,(`0, Ì )‖u‖
H

1,(α0,2αI )

e,b

)
,

We can then use (3.53) to bound the second term on the right. The contribution from Bg
to the right hand side of (3.55) is analyzed similarly. This finishes the proof of (3.51).

• Estimate with sharp weights. Ag is lower triangular in the bundle splitting S2T̃ ∗M =

ran(πCΥ)⊕ran /π0⊕ranπ11, with scalar diagonal entries that are independent of h; see (3.59a)
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below for the explicit expression.16 We may thus choose a positive definite fiber inner

product on S2T̃ ∗M with respect to which the skew-adjoint part of Ag is as small as we like

along I + in ρ1+`0
0 L∞(I + ∩ Ω) (using only that ‖h‖G̃ 3,(`0, Ì ) . 1). The calculation (3.25)

thus shows that the condition αI < min(α0, 0) suffices to obtain the estimate (3.51). �

3.6. Recovery of decay; proof of nonlinear stability. In the splitting S2T̃ ∗M =
ran(πC + πΥ)⊕ ran /π0⊕ ranπ11, the endomorphisms Ag and Bg from Proposition 3.29 are

Ag =

ACΥ 0 0
/ACΥ 0 0
ACΥ11 /A11 A11

 , (3.59a)

ACΥ =


2γC 0 0 0 0
0 γC 0 0 0

2γC 0 γC 0 0
−γΥ 0 0 −γΥ 0

0 γC−γΥ 0 0 −γΥ

 , A11 = −2γΥ,

/ACΥ = (2∂1hāb̄, 0, 0, 0, 0), ACΥ11 = (0, 0, γC ,−2γΥ, 0), /A11 = −1
2∂1h

āb̄,

Bg =

 0 0 0
/BCΥ 0 0
BCΥ11 0 0

 , /BCΥ = (2ρ−1
0 ∂2

1hāb̄, 0, 0, 0, 0), BCΥ11 = (2ρ−1
0 ∂2

1h11, 0, 0, 0, 0).

(3.59b)

Theorem 3.35 (Tame estimate with sharp decay). Fix `0, Ì as in Definition 3.20. Let

k,m ∈ N0 with k ≥ m + 11. Let g = gm + r−1h ∈ G k,(`0, Ì ), with h small in G̃ 8,(`0, Ì ).
Consider f ∈ Fm+8,(`0, Ì ) (see Definition 3.30) which vanishes near Σ. Then the unique

forward solution u of Lgu = f satisfies u ∈ G̃m,(`0, Ì ) and a tame estimate

‖u‖G̃m,(`0, Ì ) ≤ C
(
‖f‖Fm+8,(`0, Ì ) + ‖h‖G̃m+11,(`0, Ì )‖f‖F3,(`0, Ì )

)
. (3.60)

Proof. For α0 = `0 and αI ∈ (− Ì , 0), we can apply Proposition 3.32 to obtain u ∈
H

(1;m+8),(`0,2αI )
e,b;b (Ω) satisfying the estimate (3.51) with m+ 8 in place of m. Write

Lg = −2(ρI ∂ρI−Ag)(ρ0∂ρ0−ρI ∂ρI )+2Bg+L
[
g, L[g ∈ (xI C∞(Ω)+H

k−2,(`0,2 Ì )
b (Ω))Diff2

b,

where spherical derivatives are error terms since we work in the b-setting now. We now use

2(ρI ∂ρI −Ag)(ρ0∂ρ0 − ρI ∂ρI )u = f + 2Bgu+ L[gu (3.61)

repeatedly, together with the spectral information on Ag given in (3.59a), to prove sharp
decay for the various components of h at I +.

• First improvement. Applying πCΥ to (3.61), we get

(ρI ∂ρI −A
CΥ)(ρ0∂ρ0 − ρI ∂ρI )(πCΥu) ∈ Hm+8,(`0,2 Ì )

b +H
m+6,(`0,2(αI + Ì ))
b

⊂ Hm+6,(`0,2(αI + Ì ))
b .

16For g = gm, a simpler version of this is (2.15a)–(2.15b).
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Definition 3.20 ensures that all eigenvalues of ACΥ are > Ì . Thus, we get improved decay

(ρ0∂ρ0 − ρI ∂ρI )(πCΥu) ∈ Hm+6,(`0,2(αI + Ì ))
b at the cost of 2 b-derivatives. Integrating this

from Σ (see [HV20, Lemma 7.7(1)]) and using that αI + Ì < Ì < `0 gives

πCΥu ∈ Hm+6,(`0,2(αI + Ì ))
b . (3.62)

Applying /π0 to (3.61) and using (3.62) to estimate the contributions from /ACΥ(ρ0∂ρ0 −
ρI ∂ρI ) and /BCΥ, we obtain

(ρ0∂ρ0−ρI ∂ρI )ρI ∂ρI (/π0u) ∈ Hm+6,(`0,2(αI + Ì ))
b +H

m+5,(1+2`0,2(αI + Ì ))
b ⊂ Hm+5,(`0,2(αI + Ì ))

b .

Integrating ρ0∂ρ0 − ρI ∂ρI gives ρI ∂ρI (/π0u) ∈ Hm+5,(`0,2(αI + Ì ))
b and therefore

/π0u = /u(0) + /̃u, /u(0) ∈ Hm+5,`0
b (I + ∩ Ω), /̃u ∈ Hm+5,(`0,2(αI + Ì ))

b . (3.63)

Lastly, we apply π11 to (3.61) and use (3.62)–(3.63), and note that /π0u is coupled to

π11u via /A11 ∈ Hk−1,1+`0
b (I + ∩ Ω) to obtain

(ρI ∂ρI −A11)(ρ0∂ρ0 − ρI ∂ρI )(π11u) ∈ Hm+4,1+2`0
b (I + ∩ Ω) +H

m+4,(`0,2(αI + Ì ))
b (Ω).

Since A11 = −2γΥ > Ì > αI + Ì , integration of this implies

π11u = u
(0)
11 + ũ11, u

(0)
11 ∈ H

m+4,1+2`0
b (I + ∩ Ω), ũ11 ∈ Hm+4,(`0,2(αI + Ì ))

b (Ω). (3.64)

• Second improvement. We again apply πCΥ to (3.61); exploiting the sharper (as far as
decay is concerned) information (3.62)–(3.64), we now get

(ρI ∂ρI −A
CΥ)(ρ0∂ρ0 − ρI ∂ρI )(πCΥu) ∈ Hm+8,(`0,2 Ì )

b +H
m+2,(`0,2 Ì )
b ,

with the second term coming from the second order operator L[g acting on /π0u, π11u.

Integrating this gives πCΥu ∈ Hm+2,(`0,2 Ì )
b . For /π0u, this improved information gives

ρI ∂ρI (ρ0∂ρ0 − ρI ∂ρI )(/π0u) ∈ Hm+1,(`0,2 Ì )
b ,

which implies that /̃u ∈ Hm+1,(`0,2 Ì )
b in (3.63). This in turn gives

(ρI ∂ρI −A11)(ρ0∂ρ0 − ρI ∂ρI )(π11u) ∈ Hm+4,1+2`0
b (I + ∩ Ω) +H

m,(`0,2 Ì )
b (Ω),

and hence ũ11 ∈ H
m,(`0,2 Ì )
b (Ω) in (3.64). This demonstrates that u ∈ Gm,(`0, Ì ). The

tame estimate (3.60) follows from that in Proposition 3.32 together with tame estimates
for products, as already exploited in the proof of Proposition 3.32. �

Corollary 3.36 (Nonlinear stability near the far end). Let Ω and Σ be as in Definition 3.20
and Lemma 3.24, and consider the quasilinear wave operator P (g) from Definition 3.27.

Let `0 > 0, and let Ì ∈ (0,min(`0,
1
2)). Suppose h0, h1 ∈ H∞,`0b (Σ;S2T̃ ∗M); putting

‖(h0, h1)‖m := ‖h0‖Hm+1,`0
b

+ ‖h1‖Hm,`0
b

, assume that (h0, h1) is small in the sense that

‖(h0, h1)‖22 < C where C = C(‖(h0, h1)‖2433), with C = C(q) positive and continuous in
q ∈ [0,∞).17 Then the initial value problem

P (gm + r−1h) = 0, (h,LxI h)|Σ = (h0, h1) (3.65)

has a unique solution h ∈ G̃∞,(`0, Ì ).18

17Thus, there exists ε > 0 so that any (h0, h1) with ‖(h0, h1)‖2433 < ε is small in this sense.
18Recall the causal structure of Ω recorded in Lemma 3.6.
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In particular, if the induced metric and second fundamental form of g := gm + r−1h ∈
G∞,(`0, Ì ) at Σ satisfy the constraint equations, and ΥEΥ(g; gm) = 0 at Σ, then g solves the
Einstein vacuum equations Ric(g) = 0 in the gauge ΥEΥ(g; gm) = 0.

Remark 3.37 (Initial data). Given geometric initial data (i.e. a Riemannian metric and
second fundamental form) on Σ satisfying the constraint equations, it is easy to construct
h0, h1 so that g = gm + r−1h, with h having initial data h0, h1 at Σ, attains these data at
Σ and satisfies ΥEΥ(g; gm) = 0 at Σ, see e.g. [HV20, Lemma 6.2] (for a slightly different
choice of gauge).

Proof of Corollary 3.36. While so far we have only discussed forcing problems, our energy
estimate based arguments apply to initial value problems as well. Alternatively, one can
piece together a short time solution hin on x−1

I ([1
2c, c]), say, with the forward solution of

Pfw(h) := ρI ρ
−3P

(
gm + r−1(χhin + h)

)
= 0,

where χ ∈ C∞c ((1
2c, c]) is 1 on [3

4c, c]. Since Pfw(h) ∈ H
∞,(`0,∞)
b (Ω;S2T̃ ∗M) is small in

H
22,(`0,1)
b (Ω) and has support in x−1

I ([1
2c,

3
4c]), Nash–Moser iteration can be applied to the

nonlinear map

G̃∞,(`0, Ì ) 3 h 7→ Pfw(h) ∈ F∞,(`0, Ì )

in view of Corollary 3.31 and Theorem 3.35, upon restricting to inputs h vanishing on
x−1
I ([1

2c, c]). Indeed, applying the main theorem of [SR89] with loss of derivatives parameter

d = 11 (cf. (3.60)) produces the solution of (3.65); here, 2433 = 16d2 + 43d+ 24.

The second part is standard: given a solution g = gm + r−1h of (3.65) satisfying
the constraint equations and the gauge condition initially, one first concludes that also
L∂xI ΥEΥ(g; gm) = 0 at Σ. The second Bianchi identity implies the homogeneous wave-

type equation 2δgGgδ
∗
g,EC

(ΥEΥ(g; gm)) = 0 which gives ΥEΥ(g; gm) ≡ 0 and therefore, by

definition of P (g), also Ric(g) = 0. �

Remark 3.38 (Gravitational radiation and Bondi mass). Given a Ricci-flat metric g =

gm + r−1h ∈ G∞,(`0, Ì ) in the gauge ΥEΥ(g; gm) = 0, one can (with some effort) adapt the
arguments in [HV20, §8] to identify the Bondi mass at retarded time u := −ρ−1

0 = t− r∗ as

MB(u) = m+
γΥ

4π

∫
S(u)

h
(0)
11 d/g, S(u) := I + ∩ ρ−1

0 (−1/u),

using the notation of Definition 3.20. By (3.47), MB(u) satisfies the mass loss formula

d

du
MB(u) = − 1

32π

∫
S(u)
|∂u/h(0)|2

/g−1 d/g.

Remark 3.39 (Polyhomogeneity of the metric). The methods of [HV20, §7] apply, mutatis
mutandis, to demonstrate the polyhomogeneity of the spacetime metric g = gm + r−1h on
M provided the initial data h0, h1 are polyhomogeneous. Since the metric perturbation h
here has stronger decay at I + compared to the reference, the index sets will be smaller
than in [HV20, Theorem 7.1].
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Appendix A. Constraint damping and gauge change for the Maxwell
equations

As a simpler analogue to the Einstein vacuum equations, we consider the Maxwell equa-
tions for a 1-form (gauge potential) A on the domain of dependence t < r−1 of the comple-
ment of the ball of radius 1 inside t−1(0) inside Minkowski space (R4, g), g = −dx0 dx1+r2/g,

δgdA = 0. (A.1)

A standard way to break the gauge invariance A→ A+ dχ is the imposition of the Lorenz
gauge δgA = 0. The most simple-minded gauge-fixed Maxwell equations are then δgdA +
dδgA = 0; this is the tensor wave equation on 1-forms on (R4, g). Constraint damping and
a gauge change amount to modifications in the second, gauge breaking, term: letting

dEC := d + 2γCcC , δg,EΥ := δg + 2γΥιcΥ

for E• = (c•, γ•), • = C,Υ, we consider

P ′EC ,EΥA := δgdA+ dECδg,EΥA = 0. (A.2)

On Minkowski space, we concretely take cC = cΥ = r−1 dt, γC > 0, γΥ < 0. Writing 1-forms
in the splitting (3.12), we compute on functions, resp. 1-forms,

d =

 ∂0

∂1

r−1/d

 , dEC − d = r−1

γCγC
0

 ,

δg = (2r−2∂1r
2, 2r−2∂0r

2, r−1/δ), δg,EΥ − δg = r−1(−2γΥ,−2γΥ, 0).

In the notation of §3.1 and Lemma 3.6, recall that ∂0, r
−1/d, r−1/δ ∈ xI Ve,b(M) decay at

I +, whereas ∂1 = ρ0(ρ0∂ρ0−ρI ∂ρI ) does not; the analogue of Proposition 3.29 then reads

L := ρI ρ
−3P ′EC ,EΥρ = L0 + L̃,

L0 = −2(ρI ∂ρI − SEC ,EΥ)(ρ0∂ρ0 − ρI ∂ρI ) + x2
I /∆, L̃ ∈ xI Diff2

e,b(M ; T̃ ∗M),

SEC ,EΥ =

 γC 0 0
γC−γΥ −γΥ 0

0 0 0

 .

Thus, if ω = (ω0, ω1, /ω) solves Lω = 0 with sufficiently decaying initial data, then ω0

(the Maxwell analogue of πCh in Definition 3.20 or φ3 in the model (1.8)) and ω1 (the
Maxwell analogue of πΥh or φ4) decay at I +, while /ω has a leading order term at I +. For
initial data satisfying the Maxwell constraint equations and the gauge condition δg,EΥω =

0 initially, A := r−1ω solves (A.1) and globally satisfies the gauge condition (using an
argument in which the Bianchi identity δgGgRic(g) ≡ 0 is replaced by δgδg ≡ 0)

δg,EΥA = 0. (A.3)

Now to leading order at I +, this gauge condition reads ∂1ω0 = 0 (independently of
γΥ) and thus, by itself, only recovers the improved decay of ω0 at I +. The improvement
coming from the gauge change encoded by EΥ only arises once one considers (A.3) together
with the Maxwell equations (A.1); on an algebraic level, the gauge condition (A.3) allows
one to exchange occurrences of ∂1ω0 in (A.1) (in particular in second order terms ∂2

1ω0,
which do appear for (A.1) but not for gauge-fixed equations such as (A.2)) by lower order
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terms in the sense of decay, and one particular such combination is (A.2) which implies the
desired improved decay of ω1 due to the structure of SEC ,EΥ .

We give a more conceptual (but more abstract) reason for the fact that the gauge change
improves decay for a component (ω1) other than ω0 (which is affected by constraint damping
and the accompanying improved decay of the gauge condition), based on duality consid-
erations. Namely, since d∗

EC
= δg,EC , constraint damping with strength γC > 0, resp. a

gauge change with strength γΥ < 0, is dual to a gauge change with strength γC > 0, resp.
constraint damping with strength γΥ < 0 (note the ‘wrong’ signs), in the sense that EΥ and
EC get interchanged when passing from P ′

EC ,EΥ in (A.2) to its adjoint (P ′
EC ,EΥ)∗ = P ′

EΥ,EC
.

Taking for simplicity EC = 0, ‘negative’ constraint damping (encoded by EΥ for the adjoint

operator) allows one to solve the adjoint (thus, backwards) forcing problem (P ′
0,EΥ)∗ũ = f̃

for ũ, f̃ having additional terms with more growth at I + than without ‘inverse’ constraint
damping—concretely, f̃ may have growing contributions which are sections of the bundle
〈dx0 + dx1〉 spanned by the nonzero eigenvector of SEΥ,0, or equivalently f̃ lies in a space

of more growing 1-forms so that πf̃ has standard bounds, with π any bundle projection
with kerπ = 〈dx0 + dx1〉. Dually, this means that one can solve the forward problem for
P0,EΥω = f on function spaces encoding extra decay in certain components—concretely,
for suitably decaying f , the solution ω is the sum of a 1-form with improved decay and
a 1-form valued in ranπ∗ = (kerπ)⊥ = 〈dx0 − dx1〉 ⊕ rT ∗S2 with standard r−1 decay at
I +. Since the annihilator of ranπ∗ is ∂0 +∂1, this means that ω0 +ω1 has improved decay.
Combined with constraint damping (which gives the improved decay of ω0 as discussed
after (A.3)), this finally provides improved decay of ω1. Analogous remarks apply to the
(linearized) gauge-fixed Einstein equations; see Remark 2.3.

References
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