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Abstract. In this paper we show the small data solvability of suitable semi-

linear wave and Klein-Gordon equations on geometric classes of spaces, which
include so-called asymptotically de Sitter and Kerr-de Sitter spaces, as well as

asymptotically Minkowski spaces. These spaces allow general infinities, called

conformal infinity in the asymptotically de Sitter setting; the Minkowski type
setting is that of non-trapping Lorentzian scattering metrics introduced by

Baskin, Vasy and Wunsch. Our results are obtained by showing the global

Fredholm property, and indeed invertibility, of the underlying linear operator
on suitable L2-based function spaces, which also possess appropriate algebra

or more complicated multiplicative properties. The linear framework is based

on the b-analysis, in the sense of Melrose, introduced in this context by Vasy
to describe the asymptotic behavior of solutions of linear equations. An inter-

esting feature of the analysis is that resonances, namely poles of the inverse
of the Mellin transformed b-normal operator, which are ‘quantum’ (not purely

symbolic) objects, play an important role.

1. Introduction

In this paper we consider semilinear wave equations in contexts such as asymp-
totically de Sitter and Kerr-de Sitter spaces, as well as asymptotically Minkowski
spaces. The word ‘asymptotically’ here does not mean that the asymptotic behav-
ior has to be that of exact de Sitter, etc., spaces, or even a perturbation of these at
infinity; much more general infinities, that nonetheless possess a similar structure
as far as the underlying analysis is concerned, are allowed. Recent progress [45, 2]
allows one to set up the analysis of the associated linear problem globally as a Fred-
holm problem, concretely using the framework of Melrose’s b-pseudodifferential
operators [35] on appropriate compactifications M of these spaces. (The b-analysis
itself originates in Melrose’s work on the propagation of singularities for the wave
equation on manifolds with smooth boundary, and Melrose described a systematic
framework for elliptic b-equations in [35]. Here ‘b’ refers to analysis based on vec-
tor fields tangent to the boundary of the space; we give some details later in the
introduction and further details in §2.1, where we recall the setting of [45].) This
allows one to use the contraction mapping theorem to solve semilinear equations
with small data in many cases since typically the semilinear terms can be considered
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perturbations of the linear problem. That is, as opposed to solving an evolution
equation on time intervals of some length, possibly controlling this length in some
manner, and iterating the solution using (almost) conservation laws, we solve the
equation globally in one step.

As Fredholm analysis means that one has to control the linear operator L mod-
ulo compact errors, which in these settings means modulo terms which are both
smoother and more decaying, the underlying linear analysis involves both argu-
ments based on the principal symbol of the wave operator and on its so-called

(b-)normal operator family, which is a holomorphic family N̂(L)(σ) of operators
on ∂M . In settings in which there is a R+-action in the normal variable, and the
operator is dilation invariant, this simply means Mellin transforming in the normal
variable. Replacing the normal variable by its logarithm, this is equivalent to a
Fourier transform.

At the principal symbol level one encounters real principal type phenomena as
well as radial points of the Hamilton flow at the boundary of the compactified
underlying space M ; these allow for the usual (for wave equations) loss of one (b-
)derivative relative to elliptic problems. Physically, in the de Sitter and Kerr-de
Sitter type settings radial points correspond to a red shift effect. In Kerr-de Sitter
spaces there is an additional loss of derivatives due to trapping. On the other hand,
the b-normal operator family enters via the poles σj of the meromorphic inverse

N̂(L)(σ)−1; these poles, called resonances, determine the decay/growth rates of
solutions of the linear problem at ∂M , namely Imσj > 0 means growing while
Imσj < 0 means decaying solutions. Translated into the nonlinear setting, tak-
ing powers of solutions of the linear equation means that growing linear solutions
become even more growing, thus the non-linear problem is uncontrollable, while
decaying linear solutions become even more decaying, thus the non-linear effects
become negligible at infinity. Correspondingly, the location of these resonances
becomes crucial for non-linear problems. We note that in addition to providing
solvability of semilinear problems, our results can also be used to obtain the as-
ymptotic expansion of the solution.

In short, we present a systematic approach to the analysis of semilinear wave
and Klein-Gordon equations: Given an appropriate structure of the space at infin-
ity and given that the location of the resonances fits well with the non-linear terms,
see the discussion below, one can solve (suitable) semilinear equations. Thus, the
main purpose of this paper is to present the first step towards a general theory
for the global study of linear and nonlinear wave-type equations; the semilinear
applications we give are meant to show how far we can get in the nonlinear regime
using relatively simple means, and lend themselves to meaningful comparisons with
existing literature, see the discussion below. In particular, our approach readily
generalizes to the analysis of quasilinear equations, provided one understands the
necessary (b-)analysis for non-smooth metrics. Since the first version of the present
paper, the authors described such generalizations in detail in the context of asymp-
totically de Sitter [20] and asymptotically Kerr-de Sitter spaces [22].

We now describe our setting in more detail. We consider semilinear wave equa-
tions of the form

(�g − λ)u = f + q(u, du)

on a manifold M where q is (typically; more general functions are also considered)
a polynomial vanishing at least quadratically at (0, 0) (so contains no constant
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or linear terms, which should be included either in f or in the operator on the
left hand side). The derivative du is measured relative to the metric structure
(e.g. when constructing polynomials in it). Here g and λ fit in one of the following
scenarios, which we state slightly informally, with references to the precise theorems.
We discuss the terminology afterwards in more detail, but the reader unfamiliar
with the terms could drop the word ‘asymptotically’ and ‘even’ to obtain specific
examples.

(1) A neighborhood of the backward light cone from future infinity in an asymp-
totically de Sitter space. (This may be called a static region/patch of an
asymptotically de Sitter space, even when there is no time like Killing vec-
tor field.) In order to solve the semilinear equation, if λ > 0, one can allow
q an arbitrary polynomial with quadratic vanishing at the origin, or indeed
a more general function. If λ = 0 and q depends on du only, the same
conclusion holds. Further, in either case, one obtains an expansion of the
solution at infinity. See Theorems 2.25 and 2.37, and Corollary 2.28.

(2) Kerr-de Sitter space, including a neighborhood of the event horizon, or
more general spaces with normally hyperbolic trapping, discussed below.
In the main part of the section we assume λ > 0, and allow q = q(u)
with quadratic vanishing at the origin. We also obtain an expansion at
infinity. See Theorems 3.7 and 3.11, and Corollary 3.10. However, in §3.3 we
briefly discuss non-linearities involving derivatives which are appropriately
behaved at the trapped set.

(3) Global even asymptotically de Sitter spaces. These are in some sense the
easiest examples as they correspond, via extension across the conformal
boundary, to working on a manifold without boundary. Here λ = (n −
1)2/4 + σ2. While the equation is unchanged if one replaces σ by −σ, the
process of extending across the boundary breaks this symmetry, and in §4
we mostly consider Imσ ≤ 0. If Imσ < 0 is sufficiently small and the
dimension satisfies n ≥ 6, quadratic vanishing of q suffices; if n ≥ 4 then
cubic vanishing is sufficient. If q does not involve derivatives, Imσ ≥ 0
small also works, and if Imσ > 0, n ≥ 5, or Imσ = 0, n ≥ 6, then quadratic
vanishing of q is sufficient. See Theorems 4.10, 4.12 and 4.15. Using the
results from ‘static’ asymptotically de Sitter spaces, quadratic vanishing of
q in fact suffices for all λ > 0, and indeed λ ≥ 0 if q = q(du), but the decay
estimates for solutions are lossy relative to the decay of the forcing. See
Theorem 4.17.

(4) Non-trapping Lorentzian scattering (generalized asymptotically Minkowski)
spaces, λ = 0. If q = q(du), we allow q with quadratic vanishing at 0 if
n ≥ 5; cubic if n ≥ 4. If q = q(u), we allow q with quadratic vanishing if
n ≥ 6; cubic if n ≥ 4. Further, for q = q(du) quadratic satisfying a null
condition, n = 4 also works. See Theorems 5.12, 5.14 and 5.20.

We now recall these settings in more detail. First, see [47], an asymptotically de
Sitter space is an appropriate generalization of the Riemannian conformally com-
pact spaces of Mazzeo and Melrose [31], namely a smooth manifold with boundary,

M̃ , with interior M̃◦ equipped with a Lorentzian metric g̃, which we take to be of
signature (1, n− 1) for the sake of definiteness, and with a boundary defining func-
tion ρ, such that ĝ = ρ2g̃ is a smooth symmetric 2-cotensor of signature (1, n− 1)

up to the boundary of M̃ and ĝ(dρ, dρ) = 1 (thus, the boundary defining function
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is timelike, and thus the boundary is spacelike; the = 1 statement makes the cur-

vature asymptotically constant), and in addition ∂M̃ has two components (each

of which may be a union of connected components) X̃±, with all null-geodesics

c = c(s) of g̃ tending to X̃+ as s → +∞ and to X̃− as s → −∞, or vice versa.

Notice that in the interior of M̃ , the conformal factor ρ−2 simply reparameterizes

the null-geodesics, so equivalently one can require that null-geodesics of ĝ reach X̃±
at finite parameter values. Analogously to asymptotically hyperbolic spaces, where
this was shown by Graham and Lee [17], on such a space one can always introduce

a product decomposition (∂M̃)z × [0, δ)ρ near ∂M̃ (possibly changing ρ) such that
the metric has a warped product structure ĝ = dρ2 − h(ρ, z, dz), g̃ = ρ−2ĝ; the
metric is called even if h can be taken even in ρ, i.e. a smooth function of ρ2. We
refer to Guillarmou [18] for the introduction of even metrics in the asymptotically
hyperbolic context, and to [47], [45] and [44] for further discussion.

Blowing up a point p at X̃+, which essentially means introducing spherical co-

ordinates around it, we obtain a manifold with corners [M̃ ; p], with a blow-down

map β : [M̃ ; p] → M̃ , which is a diffeomorphism away from the front face, which
gets mapped to p by β. Just like blowing up the origin in Minkowski space desin-
gularizes the future (or past) light cone, this blow-up desingularizes the backward

light cone from p on M̃ , which lifts to a smooth submanifold transversal to the

front face on [M̃ ; p] which intersects the front face in a sphere Y . The interior of
this lifted backward light cone, at least near the front face, is a generalization of
the static patch in de Sitter space, and we refer to a neighborhood Mδ, δ > 0, of

the closure of the interior M+ of the lifted backward light cone in [M̃ ; p] which

only intersects the boundary of [M̃ ; p] in the interior of the front face (so Mδ is a
non-compact manifold with boundary, with boundary Xδ, and with say boundary
defining function τ) as the ‘static’ asymptotically de Sitter problem. See Figure 1.
Via a doubling process, Xδ can be replaced by a compact manifold without bound-
ary, X, and Mδ by M = X × [0, τ0)τ , an approach taken in [45] where complex
absorption was used, or indeed one can instead work in a compact region Ω ⊂ Mδ

by adding artificial, spacelike, boundaries, as we do here in §2.1. With such an Ω,
the distinction between M and Mδ is irrelevant, and we simply write M below.

Figure 1. Setup of the ‘static’ asymptotically de Sitter problem.

Indicated are the blow-up of M̃ at p and the front face, the lift of

the backward light cone to [M̃ ; p] (solid), and lifts of backward light
cones from points nearby p (dotted); moreover, Ω ⊂ M (dashed
boundary) is a submanifold with corners within M (which is not
drawn here; see [45] for a description of M using a doubling pro-
cedure in a similar context). The role of Ω is explained in §2.1.
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See [47, 45] for relating the ‘global’ and the ‘static’ problems. We note that the
lift of g̃ to M in the static region is a Lorentzian b-metric, i.e. is a smooth symmetric
section of signature (1, n−1) of the second tensor power of the b-cotangent bundle,
bT ∗M . The latter is the dual of bTM , whose smooth sections are smooth vector
fields on M tangent to ∂M ; sections of bT ∗M are smooth combinations of dτ

τ
and smooth one forms on X, relative to a product decomposition X × [0, δ)τ near
X = ∂M . See also §2.1.

As mentioned earlier, the methods of [45] work in a rather general b-setting,
including generalizations of ‘static’ asymptotically de Sitter spaces. Kerr-de Sitter
space, described from this perspective in [45, §6], can be thought of as such a
generalization. In particular, it still carries a Lorentzian b-metric, but with a
somewhat more complicated structure, of which the only important part for us is
that it has trapped rays. More concretely, it is best to consider the bicharacteristic
flow in the b-cosphere bundle (projections of null-bicharacteristics being just the
null-geodesics), bS∗M , quotienting out by the R+-action on the fibers of bT ∗M \o.
On the ‘static’ asymptotically de Sitter space each half of the spherical b-conormal
bundle bSN∗Y consists of (a family of) saddle points of the null-bicharacteristic flow
(these are called radial sets, the stable/unstable directions are normal to bSN∗Y
itself), with one of the stable and unstable manifolds being the conormal bundle
of the lifted light cone (which plays the role of the event horizon in black hole
settings), and the other being the characteristic set within the boundary X (so
within the boundary, the radial sets bSN∗Y , are actually sources or sinks). Then
on asymptotically de Sitter spaces all null-bicharacteristics over M+\X either leave
Ω in finite time or (if they lie on the conormal bundle of the event horizon) tend
to bSN∗Y as the parameter goes to ±∞, with each bicharacteristic tending to
bSN∗Y in at most one direction. The main difference for Kerr-de Sitter space is
that there are null-bicharacteristics which do not leave M+ \X and do not tend to
bSN∗Y . On de Sitter-Schwarzschild space (non-rotating black holes) these future
trapped rays project to a sphere, called the photon sphere, times [0, δ)τ ; on general
Kerr-de Sitter space the trapped set deforms, but is still normally hyperbolic, a
setting studied by Wunsch and Zworski in [50] and by Dyatlov in [15].

We refer to [2, §3] and to §5.1 here for a definition of asymptotically Minkowski
spaces, but roughly they are manifolds with boundary M with Lorentzian metrics
g on the interior M◦ conformal to a b-metric ĝ as g = τ−2ĝ, with τ a boundary
defining function1 (so these are Lorentzian scattering metrics in the sense of Melrose
[32], i.e. symmetric cotensors in the second power of the scattering cotangent bun-
dle, and of signature (1, n− 1)), with a real C∞ function v defined on M with dv,
dτ linearly independent at S = {v = 0, τ = 0}, and with a specific behavior of the
metric at S which reflects that of Minkowski space on its radial compactification
near the boundary of the light cone at infinity (so S is the light cone at infinity in

1In §5 we switch to ρ as the boundary defining function for consistency with [2].
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this greater generality). Concretely, the specific form is2

τ2g = ĝ = v
dτ2

τ2
−
(dτ
τ
⊗ α+ α⊗ dτ

τ

)
− h̃,

where α is a smooth one form on M , equal to 1
2 dv at S, h̃ is a smooth 2-cotensor on

M , which is positive definite on the annihilator of dτ and dv (which is a codimension
2 space). The difference between the de Sitter-type and Minkowski settings is in
part this conformal factor, τ−2, but more importantly, as this conformal factor again
does not affect the behavior of the null-bicharacteristics so one can consider those
of ĝ on bS∗M , at the spherical conormal bundle bSN∗S of S (see §2) the nature
of the radial points is source/sink rather than a saddle point of the flow. (One also
makes a non-trapping assumption in the asymptotically Minkowski setting.)

Now we comment on the specific way these settings fit into the b-framework,
and the way the various restrictions described above arise.

(1) Asymptotically ‘static’ de Sitter. Due to a zero resonance for the linear
problem when λ = 0, which moves to the lower half plane for λ > 0, in this
setting λ > 0 works in general; λ = 0 works if q depends on du but not
on u. The relevant function spaces are L2-based b-Sobolev spaces (see §2)
on the bordification (partial compactification) of the space, or analogous
spaces plus a finite expansion. Further, the semilinear terms involving du
have coefficients corresponding to the b-structure, i.e. b-objects are used to
create functions from the differential forms, or equivalently b-derivatives of
u are used.

(2) Kerr-de Sitter space. This is an extension of (1), i.e. the framework is
essentially the same, with the difference being that there is now trapping
corresponding to the ‘photon sphere’. This makes first order terms in the
non-linearity non-perturbative, unless they are well-adapted to the trap-
ping. Thus, we assume λ > 0. The relevant function spaces are as in the
asymptotically de Sitter setting.

(3) Global even asymptotically de Sitter spaces. In order to get reasonable
results, one needs to measure regularity relatively finely, using the mod-
ule of vector fields tangent to what used to be the conformal boundary in
the extension. The relevant function spaces are thus Sobolev spaces with
additional (finite) conormal regularity. Further, du has coefficients corre-
sponding to the 0-structure of Mazzeo and Melrose, in the same sense the
b-structure was used in (1). The range of λ here is limited by the process of
extension across the boundary; for non-linearities involving u only, the re-
striction amounts to (at least very slowly) decaying solutions for the linear
problem (without extension across the conformal boundary).

Another possibility is to view global de Sitter space as a union of static
patches. Here, the b-Sobolev spaces on the static parts translate into 0-
Sobolev spaces on the global space, which have weights that are shifted by a
dimension-dependent amount relative to the weights of the b-spaces. This

2More general, ‘long-range’ scattering metrics also work for the purposes of this paper without

any significant changes; the analysis of these is currently being completed by Baskin, Vasy and

Wunsch. The difference is the presence of smooth multiples of τ dτ
2

τ2 in the metric near τ = 0,

v = 0. These do not affect the normal operator, but slightly change the dynamics in bS∗M . This,
however, does not affect the function spaces to be used for our semilinear problem.
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approach allows many of the non-linearities that we can deal with on static
parts; however, the resulting decay estimates on u are quite lossy relative
to the decay of the forcing term f .

(4) Non-trapping Lorentzian scattering spaces (generalized asymptotically Min-
kowski spaces), λ = 0. Note that if λ > 0, the type of the equation changes
drastically; it naturally fits into Melrose’s scattering algebra3 rather than
the b-algebra which can be used for λ = 0. While the results here are quite
robust and there are no issues with trapping, they are more involved as
one needs to keep track of regularity relative to the module of vector fields
tangent to the light cone at infinity. The relevant function spaces are b-
Sobolev spaces with additional b-conormal regularity corresponding to the
aforementioned module. Further, du has coefficients corresponding to Mel-
rose’s scattering structure. These spaces, in the special case of Minkowski
space, are related to the spaces used by Klainerman [26], using the infini-
tesimal generators of the Lorentz group, but while Klainerman works in an
L∞L2 setting, we remain purely in a (weighted) L2 based setting, as the
latter is more amenable to the tools of microlocal analysis.

We reiterate that while the way de Sitter, Minkowski, etc., type spaces fit into
it differs somewhat, the underlying linear framework is that of L2-based b-analysis,
on manifolds with boundary, except that in the global view of asymptotically de
Sitter spaces one can eliminate the boundary altogether.

In order to underline the generality of the method, we emphasize that, corre-
sponding to cases (1) and (2), in b-settings in which one can work on standard
b-Sobolev spaces the restrictions on the solvability of the semilinear equations are
simply given by the presence of resonances for the Mellin-transformed normal op-
erator in Imσ ≥ 0, which would allow growing solutions to the equation (with
the exception of Imσ = 0, in which case the non-linear iterative arguments pro-
duce growth unless the non-linearity has a special structure), making the non-
linearity non-perturbative, and the losses at high energy estimates for this Mellin-
transformed operator and the closely related b-principal symbol estimates when one
has trapping. (It is these losses that cause the difference in the trapping setting
between non-linearities with or without derivatives.) In particular, the results are
necessarily optimal in the non-trapping setting of (1), as shown even by an ODE,
see Remark 2.31. In the trapping setting it is not clear precisely what improve-
ments are possible for non-linearities with derivatives, though when there are no
derivatives in the non-linearity, we already have no restrictions on the non-linearity
and to this extent the result is optimal.

On Lorentzian scattering spaces more general function spaces are used, and it is
not in principle clear whether the results are optimal, but at least comparison with
the work of Klainerman and Christodoulou for perturbations of Minkowski space [7,
26, 25] gives consistent results; see the comments below. On global asymptotically
de Sitter spaces, the framework of [45] and [43] is very convenient for the linear
analysis, but it is not clear to what extent it gives optimal results in the non-
linear setting. The reason why more precise function spaces become necessary is
the following: There are two basic properties of spaces of functions on manifolds

3In many ways the scattering algebra is actually much better behaved than the b-algebra, in
particular it is symbolic in the sense of weights/decay. Thus, with numerical modifications, our

methods should extend directly.
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with boundaries, namely differentiability and decay. Whether one can have both
at the same time for the linear analysis depends on the (Hamiltonian) dynamical
nature of radial points: when defining functions of the corresponding boundaries
of the compactified cotangent bundle have opposite character (stable vs. unstable)
one can have both at the same time, otherwise not; see Propositions 2.1 and 5.2
for details. For non-linear purposes, the most convenient setting, in which we are
in (1), is if one can work with spaces of arbitrarily high regularity and fast decay,
and corresponds to saddle points of the flow in the above sense. In (4) however,
working in higher regularity spaces, which is necessary in order to be able to make
sense of the non-linearity, requires using faster growing (or at least less decaying)
weights, which is problematic when dealing with non-linearities (e.g., polynomials)
since multiplication gives even worse growth properties then. Thus, to make the
non-linear analysis work, the function spaces we use need to have more structure;
it is a module regularity that is used to capture some weaker regularity in order to
enable work in spaces with acceptable weights.

While all results are stated for the scalar equation, analogous results hold in
many cases for operators on natural vector bundles, such as the d’Alembertian (or
Klein-Gordon operator) on differential forms, since the linear arguments work in
general for operators with scalar principal symbol whose subprincipal symbol satis-
fies appropriate estimates at radial sets, see [45, Remark 2.1], though of course for
semilinear applications the presence of resonances in the closed upper half plane has
to be checked. This already suffices to obtain the well-posedness of the semilinear
equations on asymptotically de Sitter spaces that we consider in this paper; for this
purpose one needs to know the poles of the resolvent of the Laplacian on forms
on exact hyperbolic space only. On asymptotically Minkowski spaces, the absence
of poles of an asymptotically hyperbolic resolvent in a region has to be checked in
addition, see Theorem 5.3, and the numerology depends crucially on the delicate
balance of weights and regularity, as alluded to above. Note that on perturbations
of Minkowski space, this absence of poles follows from the appropriate behavior of
the poles of the resolvent of the Laplacian on forms on exact hyperbolic space.

The degree to which these non-linear problems have been studied differ, with
the Minkowski problem (on perturbations of Minkowski space, as opposed to our
more general setting) being the most studied. There semilinear and indeed even
quasilinear equations are well understood due to the work of Christodoulou [7] and
Klainerman [26, 25], with their book on the global stability of Einstein’s equation
[8] being one of the main achievements. (We also refer to the work of Lindblad
and Rodnianski [28, 29] simplifying some of the arguments, of Bieri [4, 5] relaxing
some of the decay conditions, of Wang [49] obtaining asymptotic expansions, and
of Lindblad [27] for results on a class of quasilinear equations. Hörmander’s book
[24] provides further references in the general area. There are numerous works on
the linear problem, and estimates this yields for the non-linear problems, such as
Strichartz estimates; here we refer to the recent work of Metcalfe and Tataru [36]
for a parametrix construction in low regularity, and references therein.) Here we
obtain results comparable to these (when restricted to the semilinear setting), on
a larger class of manifolds, see Remark 5.17. For non-linearities which do not in-
volve derivatives, slightly stronger results have been obtained, in a slightly different
setting, in [9]; see Remark 5.18.
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On the other hand, there is little (non-linear) work on the asymptotically de
Sitter and Kerr-de Sitter settings; indeed the only paper the authors are aware of is
that of Baskin [1] in roughly comparable generality in terms of the setting, though
in exact de Sitter space Yagdjian [52, 51] has studied a large class of semilinear
equations with no derivatives. Baskin’s result is for a semilinear equation with no
derivatives and a single exponent, using his parametrix construction [3], namely up

with4 p = 1 + 4
n−2 , and for λ > (n − 1)2/4. In the same setting, p > 1 + 4

n−1

works for us, and thus Baskin’s setting is in particular included. Yagdjian works
with the explicit solution operator (derived using special functions) in exact de
Sitter space, again with no derivatives in the non-linearity. While there are some
exponents that his results cover (for λ > (n − 1)2/4, all p > 1 work for him)
that ours do not directly (but indirectly, via the static model, we in fact obtain

such results), the range ( (n−1)2

4 − 1
4 ,

(n−1)2

4 ) is excluded by him while covered by
our work for sufficiently large p. In the (asymptotically) Kerr-de Sitter setting, to
our knowledge, there has been no similar semilinear work, however Luk [30] and
Tohaneanu [42] studied semilinear waves on Kerr spacetimes. We recall finally that
there is more work on the linear problem in de Sitter, de Sitter-Schwarzschild and
Kerr-de Sitter spaces. We refer to [45] for more detail; some references are Polarski
[38], Yagdjian and Galstian [53], Sá Barreto and Zworski [39], Bony and Häfner [6],
Vasy [47], Baskin [3], Dafermos and Rodnianski [10], Melrose, Sá Barreto and Vasy
[33], Dyatlov [14, 13]. Also, while it received more attention, the linear problem on
Kerr space does not fit directly into our setting; see the introduction of [45] for an
explanantion and for further references, [11] for more background and additional
references.

While the basic ingredients of the necessary linear b-analysis were analyzed in
[45], the solvability framework was only discussed in the dilation invariant setting,
and in general the asymptotic expansion results were slightly lossy in terms of
derivatives in the non-dilation invariant case. We remedy these issues in this paper,
providing a full Fredholm framework. The key technical tools are the propagation
of b-singularities at b-radial points which are saddle points of the flow in bS∗M ,
see Proposition 2.1, as well as the b-normally hyperbolic versions, proved in [21],
of the semiclassical normally hyperbolic trapping estimates of Wunsch and Zworski
[50]; the rest of the Fredholm setup is discussed in §2.1 in the non-trapping and
§3.1 in the normally hyperbolic trapping setting. The analogue of Proposition 2.1
for sources/sinks was already proved in [2, §4]; our Lorentzian scattering metric
Fredholm discussion, which relies on this, is in §5.1.

We emphasize that our analysis would be significantly less cumbersome in terms
of technicalities if we were not including Cauchy hypersurfaces and solved a globally
well-behaved problem by imposing sufficiently rapid decay at past infinity instead (it
is standard to convert a Cauchy problem into a forward solution problem). Cauchy
hypersurfaces are only necessary for us if we deal with a problem ill-behaved in the
past because complex absorption does not force appropriate forward supports even
though it does so at the level of singularities; otherwise we can work with appro-
priate (weighted) Sobolev spaces. The latter is the case with Lorentzian scattering
spaces, which thus provide an ideal example for our setting. It can also be done
in the global setting of asymptotically de Sitter spaces, as in setting (3) above,

4The dimension of the spacetime in Baskin’s paper is n + 1; we continue using our notation
above.
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essentially by realizing these as the boundary of the appropriate compactification
of a Lorentzian scattering space, see [44]. In the case of Kerr-de Sitter black holes,
in the presence of dilation invariance, one has access to a similar luxury; complex
absorption does the job as in [45]; the key aspect is that it needs to be imposed
outside the static region we consider. For a general Lorentzian b-metric with a
normally hyperbolic trapped set, this may not be easy to arrange, and we do work
by adding Cauchy hypersurfaces, even at the cost of the resulting, rather artifi-
cial in terms of PDE theory, technical complications. For perturbations of Kerr-de
Sitter space, however, it is possible to forego the latter for well-posedness by an
appropriate gluing to complete the space with actual Kerr-de Sitter space in the
past for the purposes of functional analysis. We remark that Cauchy hypersurfaces
are somewhat ill-behaved for L2 based estimates, which we use, but match L∞L2

estimates quite well, which explains the large role they play in existing hyperbolic
theory, such as [26] or [23, Chapter 23.2]. We hope that adopting this more com-
monly used form of ‘truncation’ of hyperbolic problems will aid the readability of
the paper.

We also explain the role that the energy estimates (as opposed to microlocal
energy estimates) play. These mostly enter to deal with the artificially introduced
boundaries; if other methods were used to truncate the flow, their role reduces to
checking that in certain cases, when the microlocal machinery only guarantees Fred-
holm properties of the underlying linear operators, the potential finite dimensional
kernel and cokernel are indeed trivial. Asymptotically Minkowski spaces illustrate
this best, as the Hamilton flow is globally well-behaved there; see §5.1.

The other key technical tool is the algebra property of b-Sobolev spaces and
other spaces with additional conormal regularity. These are stated in the respective
sections; the case of the standard b-Sobolev spaces reduces to the algebra property
of the standard Sobolev spaces on Rn. Given the algebra properties, the results are
proved by applying the contraction mapping theorem to the linear operator.

In summary, the plan of this paper is the following. In each of the sections below
we consider one of these settings, and first describe the Sobolev spaces on which
one has invertibility for the linear problems of interest, then analyze the algebra
properties of these Sobolev spaces, finally proving the solvability of the semilinear
equations by checking that the hypotheses of the contraction mapping theorem are
satisfied.

The authors are grateful to Dean Baskin, Rafe Mazzeo, Richard Melrose, Gun-
ther Uhlmann, Jared Wunsch and Maciej Zworski for their interest and support. In
particular, the overall strategy reflects Melrose’s vision for solving non-linear PDE
globally. The authors are also very grateful to an anonymous referee for many
comments which improved the exposition in the paper.

2. Asymptotically de Sitter spaces: generalized static model

In this section we discuss solving semilinear wave equations on asymptotically
de Sitter spaces from the ‘static perspective’, i.e. in neighborhoods (in a blown-up
space) of the backward light cone from a fixed point at future conformal infinity;
see Figure 1. The main ingredient is extending the linear theory from that of [45]
in various ways, which is the subject of §2.1. In the following parts of this section
we use this extension to solve semilinear equations, and to obtain their asymptotic
behavior.



SEMILINEAR WAVE EQUATIONS 11

First, however, we recall some of the basics of b-analysis. As a general reference,
we refer the reader to [35]. Thus, let M be an n-dimensional manifold with bound-
ary X, and denote by Vb(M) the space of b-vector fields, which consists of all vector
fields on M which are tangent to X. Elements of Vb(M) are sections of a natural
vector bundle over M , the b-tangent bundle bTM . Its dual, the b-cotangent bundle,
is denoted bT ∗M . In local coordinates (τ, z) ∈ [0,∞) × Rn−1 near the boundary,
the fibers of bTM are spanned by τ∂τ , ∂z1 , . . . , ∂zn−1

, with τ∂τ being a non-trivial
b-vector field up to and including τ = 0 (even though it degenerates as an ordi-
nary vector field), while the fibers of bT ∗M are spanned by dτ

τ , dz1, . . . , dzn−1. A
b-metric g on M is then simply a non-degenerate section of the second symmetric
tensor power of bT ∗M , i.e. of the form

g = g00(τ, z)
dτ2

τ2
+

n−1∑
i=1

g0i(τ, z)
(dτ
τ
⊗ dzi + dzi ⊗

dτ

τ

)
+

n−1∑
i,j=1

gij(τ, z)dzi ⊗ dzj ,

gij = gji, with smooth coefficients gk`. In terms of the coordinate t = − log τ ∈ R,

thus dτ
τ = −dt, the b-metric g therefore approaches a stationary (t-independent in

the local coordinate system) metric exponentially fast, as τ = e−t.
The b-conormal bundle bN∗Y of a boundary submanifold Y ⊂ X of M is the

subbundle of bT ∗YM whose fiber over p ∈ Y is the annihilator of vector fields on M
tangent to Y and X. In local coordinates (τ, z′, z′′), where Y is defined by z′ = 0
in X, these vector fields are smooth linear combinations of τ∂τ , ∂z′′j , z′i∂z′j , τ∂z′k ,

whose span in bTpM is that of τ∂τ and ∂z′′j , and thus the fiber of the b-conormal

bundle is spanned by the dz′j , i.e. has the same dimension as the codimension of Y

in X (and not that in M , corresponding to dτ
τ not annihilating τ∂τ ).

We define the b-cosphere bundle bS∗M to be the quotient of bT ∗M \ o by the
R+-action; here o is the zero section. Likewise, we define the spherical b-conormal
bundle of a boundary submanifold Y ⊂ X as the quotient of bN∗Y \ o by the R+-
action; it is a submanifold of bS∗M . A better way to view bS∗M is as the boundary

at fiber infinity of the fiber-radial compactification bT
∗
M of bT ∗M , where the fibers

are replaced by their radial compactification, see [45, §2] and also §5.1. The b-

cosphere bundle bS∗M ⊂ bT
∗
M still contains the boundary of the compactification

of the ‘old’ boundary bT
∗
XM , see Figure 2.

Figure 2. The radially compactified cotangent bundle bT
∗
M near

bT
∗
XM ; the cosphere bundle bS∗M , viewed as the boundary at

fiber infinity of bT
∗
M , is also shown, as well as the zero section

oM ⊂ bT
∗
M and the zero section over the boundary oX ⊂ bT

∗
XM .
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Next, the algebra Diffb(M) of b-differential operators generated by Vb(M) con-
sists of operators of the form

P =
∑

|α|+j≤m

aα(τ, z)(τDτ )jDα
z ,

with aα ∈ C∞(M), writing D = 1
i ∂ as usual. (With t = − log τ as above, the

coefficients of P are thus constant up to exponentially decaying remainders as
t→∞.) Writing elements of bT ∗M as

σ
dτ

τ
+
∑
j

ζj dzj , (2.1)

we have the principal symbol

σb,m(P) =
∑

|α|+j=m

aα(τ, z)σjζα,

which is a homogeneous degree m function in bT ∗M \ o. Principal symbols are
multiplicative, i.e. σb,m+m′(P ◦ P ′) = σb,m(P)σb,m′(P ′), and one has a connection
between operator commutators and Poisson brackets, to wit

σb,m+m′−1(i[P,P ′]) = Hpp
′, p = σb,m(P), p′ = σb,m′(P ′),

where Hp is the extension of the Hamilton vector field from T ∗M◦ \ o to bT ∗M \ o,
which is thus a homogeneous degree m− 1 vector field on bT ∗M \ o tangent to the
boundary bT ∗XM . In local coordinates (τ, z) on M near X, with b-dual coordinates
(σ, ζ) as in (2.1), this has the form

Hp = (∂σp)(τ∂τ )− (τ∂τp)∂σ +
∑
j

(
(∂ζjp)∂zj − (∂zjp)∂ζj

)
, (2.2)

see [2, Equation (3.20)], where a somewhat different notation is used, given by [2,
Equation (3.19)].

While elements of Diffb(M) commute to leading order in the symbolic sense,
they do not commute in the sense of the order of decay of their coefficients. (This
is in contrast to the scattering algebra, see [32].) The normal operator captures the
leading order part of P ∈ Diffmb (M) in the latter sense, namely

N(P) =
∑

j+|α|≤m

aα(0, z)(τDτ )jDα
z .

One can define N(P) invariantly as an operator on the model space MI := [0,∞)τ×
X by fixing a boundary defining function of M , see [45, §3]. Identifying a collar
neighborhood of X ⊂ M with a neighborhood of {0} × X in MI , we then have
P−N(P) ∈ τDiffmb (M) (near ∂M). Since N(P) is dilation-invariant (equivalently:
translation-invariant in t = − log τ), it is naturally studied via the Mellin transform
in τ (equivalently: Fourier transform in−t), which leads to the (Mellin transformed)
normal operator family

N̂(P)(σ) ≡ P̂(σ) =
∑

j+|α|≤m

aα(0, z)σjDα
z ,

which is a holomorphic family of operators P̂(σ) ∈ Diffm(X).
Passing from Diffb(M) to the algebra of b-pseudodifferential operators Ψb(M)

amounts to allowing symbols to be more general functions than polynomials; apart
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from symbols being smooth functions on bT ∗M rather than on T ∗M if M was
boundaryless, this is entirely analogous to the way one passes from differential to
pseudodifferential operators, with the technical details being a bit more involved.
One can have a rather accurate picture of b-pseudodifferential operators, however,
by considering the following: For a ∈ C∞(bT ∗M), we say a ∈ Sm(bT ∗M) if a
satisfies

|∂αw∂
β
ξ a(w, ξ)| ≤ Cαβ〈ξ〉m−|β| for all multiindices α, β

in any coordinate chart, where w are coordinates in the base and ξ coordinates
in the fiber; more precisely, in local coordinates (τ, z) near X, we take ξ = (σ, ζ)
as above. We define the quantization Op(a) of a, acting on smooth functions u
supported in a coordinate chart, by

Op(a)u(τ, z) = (2π)−n
∫
ei(τ−τ

′)σ̃+i(z−z′)ζφ

(
τ − τ ′

τ

)
× a(τ, z, τ σ̃, ζ)u(τ ′, z′) dτ ′ dz′ dσ̃ dζ,

where the τ ′-integral is over [0,∞), and φ ∈ C∞c ((−1/2, 1/2)) is identically 1 near 0.
The cutoff φ ensures that these operators lie in the ‘small b-calculus’ of Melrose, in
particular that such quantizations act on weighted b-Sobolev spaces, defined below.
For general u, define Op(a)u using a partition of unity. We write Op(a) ∈ Ψm

b (M);
every element of Ψm

b (M) is of the form Op(a) for some a ∈ Sm(bT ∗M) modulo the
set Ψ−∞b (M) of smoothing operators. We say that a is a symbol of Op(a). The

equivalence class of a in Sm(bT ∗M)/Sm−1(bT ∗M) is invariantly defined on bT ∗M
and is called the principal symbol of Op(a).

If A ∈ Ψm1

b (M) and B ∈ Ψm2

b (M), then AB,BA ∈ Ψm1+m2

b (M), while [A,B] ∈
Ψm1+m2−1

b (M), and its principal symbol is 1
iHab ≡

1
i {a, b}, with Ha as above.

Lastly, we recall the notion of b-Sobolev spaces: Fixing a volume b-density ν on
M , which locally is a positive multiple of |dττ dz|, we define for, s ∈ N,

Hs
b(M) =

{
u ∈ L2(M,ν) : V1 · · ·Vju ∈ L2(M,ν), Vi ∈ Vb(M), 1 ≤ i ≤ j ≤ s

}
,

which one can extend to s ∈ R by duality and interpolation. Weighted b-Sobolev
spaces are denoted Hs,α

b (M) = ταHs
b(M), i.e. its elements are of the form ταu with

u ∈ Hs
b(M). Any b-pseudodifferential operator P ∈ Ψm

b (M) defines a bounded

linear map P : Hs,α
b (M) → Hs−m,α

b (M) for all s, α ∈ R. Correspondingly, there is

a notion of wave front set WFs,αb (u) ⊂ bS∗M for a distribution u ∈ H−∞,αb (M),
defined analogously to the wave front set of distributions on Rn or closed manifolds.
A point $ ∈ bS∗M is not in WFs,αb (u) if and only if there exists P ∈ Ψ0

b(M), elliptic
at $ (i.e. with principal symbol non-vanishing on the ray corresponding to $), such
that Pu ∈ Hs,α

b (M). Notice however that we do need to have a priori control on

the weight α (we are assuming u ∈ H−∞,αb (M)), which again reflects the lack of
commutativity of Ψb(M) even to leading order in the sense of decay of coefficients
at ∂M .

2.1. The linear Fredholm framework. The goal of this section is to fully extend
the results of [45] on linear estimates for wave equations for b-metrics to non-dilation
invariant settings, and to explicitly discuss Cauchy hypersurfaces since [45] concen-
trated on complex absorption. Namely, while the results of [45] on linear estimates
for wave equations for b-metrics are optimally stated when the metrics and thus
the corresponding operators are dilation-invariant, i.e. when near τ = 0 the normal
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operator can be identified with the operator itself, see [45, Lemma 3.1], the esti-
mates for Sobolev derivatives are lossy for general b-metrics in [45, Proposition 3.5],
essentially because one should not treat the difference between the normal operator
and the actual operator purely as a perturbation. Therefore, we first strengthen
the linear results in [45] in the non-dilation invariant setting by analyzing b-radial
points which are saddle points of the Hamilton flow. This is similar to [2, §4], where
the analogous result was proved when the b-radial points are sources/sinks. This is
then used to set up a Fredholm framework for the linear problem. If one is mainly
interested in the dilation invariant case, one can use [45, Lemma 3.1] in place of
Theorems 2.18-2.21 below, either adding the boundary corresponding to H2 below,
or still using complex absorption as was done in [45].

So suppose P ∈ Ψm
b (M), M a manifold with boundary. (The dilation-invariant

analysis of [45, §2] applies to the Mellin transformed normal operator P̂(σ).) Let
p be the principal symbol of P, which we assume to be real-valued, and let Hp be
the Hamilton vector field of p. Let ρ̃ denote a homogeneous degree −1 defining
function of bS∗M . Then the rescaled Hamilton vector field

V = ρ̃m−1Hp

is a C∞ vector field on bT
∗
M away from the 0-section, and it is tangent to all

boundary faces. The characteristic set Σ is the zero-set of the smooth function
ρ̃mp in bS∗M . We refer to the flow of V in Σ ⊂ bS∗M as the Hamilton, or
(null)bicharacteristic flow; its integral curves, the (null)bicharacteristics, are repa-
rameterizations of those of the Hamilton vector field Hp, projected by the quotient
map bT ∗M \ o→ bS∗M .

2.1.1. Generalized b-radial sets. The standard propagation of singularities theorem
in the characteristic set Σ in the b-setting is that for u ∈ H−∞,rb (M), within Σ,

WFs,rb (u) \WFs−m+1,r
b (Pu) is a union of maximally extended integral curves (i.e.

null-bicharacteristics) of P. This is vacuous at points where V vanishes (as a smooth
vector field); these points are called radial points, since at such a point Hp itself
(on bT ∗M \ o) is radial, i.e. is a multiple of the generator of the dilations of the
fiber of the b-cotangent bundle. At a radial point α, V acts on the ideal I of C∞

functions vanishing at α, and thus on T ∗α
bT
∗
M , which can be identified with I/I2.

Since V is tangent to both boundary hypersurfaces, given by τ = 0 and ρ̃ = 0, dτ
and dρ̃ are automatically eigenvectors of the linearization of V . We are interested
in a generalization of the situation in which we have a smooth submanifold L of
bS∗XM consisting of radial points which is a source/sink for V within bT ∗XM but
if it is a source, so in particular dρ̃ is in an unstable eigenspace, then dτ is in the
(necessarily one-dimensional) stable eigenspace, and vice versa. Thus, L is a saddle
point of the Hamilton flow.

In view of the bicharacteristic flow on Kerr-de Sitter space (which, unlike the
non-rotating de Sitter-Schwarzschild black holes, does not have this precise radial
point structure), it is important to be slightly more general, as in [45, §2.2]. Thus,
we assume that dp does not vanish where p does, i.e. at Σ, and is linearly inde-
pendent of dτ at {τ = 0, p = 0} = Σ ∩ bS∗XM , so Σ is a smooth submanifold of
bS∗M transversal to bS∗XM . For L assume simply that L = L+ ∪ L−, L± smooth
disjoint submanifolds of bS∗XM , given by L±∩bS∗XM where L± are smooth disjoint
submanifolds of Σ transversal to bS∗XM (these play the role of the two halves of
the conormal bundles of event horizons), defined locally near bS∗XM , with ρ̃m−1Hp
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tangent to L±, with a homogeneous degree zero quadratic defining function ρ0

(explained below) of L within Σ such that

ρ̃m−2Hpρ̃|L± =∓ β0, −ρ̃m−1τ−1Hpτ |L± = ∓β̃β0,

β0, β̃ ∈ C∞(L±), β0, β̃ > 0,
(2.3)

and, with β1 > 0,
∓ ρ̃m−1Hpρ0 − β1ρ0 (2.4)

is ≥ 0 modulo cubic vanishing terms at L±. Here the phrase ‘quadratic defining
function ρ0’ means that ρ0 vanishes quadratically at L (and vanishes only at L),
with the vanishing non-degenerate, in the sense that the Hessian is positive defi-
nite, corresponding to ρ0 being a sum of squares of linear defining functions whose
differentials span the conormal bundle of L within Σ.

Under these assumptions L− is a source and L+ is a sink within bS∗XM in the
sense that nearby bicharacteristics within bS∗XM all tend to L± as the parameter
along them goes to ±∞, but at L− there is also a stable, and at L+ an unstable,
manifold, namely L−, resp. L+. Indeed, bicharacteristics in L± remain there by
the tangency of ρ̃m−1Hp to L±; further τ → 0 along them as the parameter goes
to ∓∞ by (2.3), at least sufficiently close to τ = 0, since L± are defined in L± by
τ = 0.

In order to simplify the statements, we assume that

β̃ is constant on L±; β̃ = β > 0;

we refer the reader to [45, Equation (2.5)-(2.6)], and the discussion throughout that

paper, where a general β̃ is allowed, at the cost of either sup β̃ or inf β̃ playing a
role in various statements depending on signs. Finally, we assume that P − P∗ ∈
Ψm−2

b (M) for convenience (with respect to some b-metric), as this is the case for
the Klein-Gordon equation.5

Proposition 2.1. Suppose P is as above.
If s ≥ s′, s′ − (m − 1)/2 > βr, and if u ∈ H−∞,rb (M) then L± (and thus a

neighborhood of L±) is disjoint from WFs,rb (u) provided L±∩WFs−m+1,r
b (Pu) = ∅,

L± ∩WFs
′,r

b (u) = ∅, and in a neighborhood of L±, L± ∩ {τ > 0} are disjoint from
WFs,rb (u).

On the other hand, if s−(m−1)/2 < βr, and if u ∈ H−∞,rb (M) then L± (and thus

a neighborhood of L±) is disjoint from WFs,rb (u) provided L±∩WFs−m+1,r
b (Pu) = ∅

and a punctured neighborhood of L±, with L± removed, in Σ ∩ bS∗XM is disjoint
from WFs,rb (u).

Remark 2.2. The decay order r plays the role of − Imσ in [45] in view of the
Mellin transform in the dilation invariant setting identifying weighted b-Sobolev
spaces with weight r with semiclassical Sobolev spaces on the boundary on the line
Imσ = −r, see [45, Equation (3.8)-(3.9)]. Thus, the numerology in this proposition
is a direct translation of that in [45, Propositions 2.3-2.4].

5The natural assumption is that the principal symbol of 1
2i

(P − P∗) ∈ Ψm−1
b (M) at L± is

±β̂β0ρ̃
−m+1, β̂ ∈ C∞(L±).

If β̂ vanishes, Proposition 2.1 is valid without a change; otherwise it shifts the threshold quantity

s − (m − 1)/2 − βr below in Proposition 2.1 to s − (m − 1)/2 − βr + β̂ if β̂ is constant, with
modifications as in [45, Proof of Propositions 2.3-2.4] otherwise.
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Proof. We remark first that ρ̃m−1Hpρ0 vanishes quadratically on L± since ρ̃m−1Hp
is tangent to L± and ρ0 itself vanishes there quadratically. Further, this quadratic
expression is positive definite near τ = 0 since it is such at τ = 0. Correspondingly,
we can strengthen (2.4) to

∓ ρ̃m−1Hpρ0 −
β1

2
ρ0 (2.5)

being non-negative modulo cubic terms vanishing at L± in a neighborhood of τ = 0.
Notice next that, using (2.5) in the first case and (2.3) in the second, and that

L± is defined in Σ by τ = 0, ρ0 = 0, there exist δ0 > 0 and δ1 > 0 such that

α ∈ Σ, ρ0(α) < δ0, τ(α) < δ1, ρ0(α) 6= 0⇒ (∓ρ̃m−1Hpρ0)(α) > 0

and

α ∈ Σ, ρ0(α) < δ0, τ(α) < δ1 ⇒ (±ρ̃m−1τ−1Hpτ)(α) > 0.

Similarly to [45, Proof of Propositions 2.3-2.4], which is not in the b-setting, and [2,
Proof of Proposition 4.4], which is but concerns only sources/sinks (corresponding
to Minkowski type spaces), we consider commutants

C ∈ τ−rΨs−(m−1)/2
b (M) = Ψ

s−(m−1)/2,−r
b (M)

with principal symbol

c = φ(ρ0)φ0(p0)φ1(τ)ρ̃−s+(m−1)/2τ−r, p0 = ρ̃mp,

where φ0 ∈ C∞c (R) is identically 1 near 0, φ ∈ C∞c (R) is identically 1 near 0 with
φ′ ≤ 0 in [0,∞) and φ supported in (−δ0, δ0), while φ1 ∈ C∞c (R) is identically 1
near 0 with φ′1 ≤ 0 in [0,∞) and φ1 supported in (−δ1, δ1), so that

α ∈ supp d(φ ◦ ρ0) ∩ supp(φ1 ◦ τ) ∩ Σ⇒ ∓(ρ̃m−1Hpρ0)(α) > 0,

and

±ρ̃m−1τ−1Hpτ

remains positive on supp(φ1 ◦ τ) ∩ supp(φ ◦ ρ0).
The main contribution then comes from the weights, which give

ρ̃m−1Hp(ρ̃
−s+(m−1)/2τ−r) = ∓(−s+ (m− 1)/2 + βr)β0ρ̃

−s+(m−1)/2τ−r,

where the sign of the factor in parentheses on the right hand side being negative,
resp. positive, gives the first, resp. the second, case of the statement of the proposi-
tion. Further, the sign of the term in which φ1(τ), resp. φ(ρ0), gets differentiated,

yielding ±τ β̃β0φ
′
1(τ), resp. φ′(ρ0)ρ̃m−1Hpρ0, is, when s− (m− 1)/2− βr > 0, the

opposite, resp. the same, of these terms, while when s − (m − 1)/2 − βr < 0, it is
the same, resp. the opposite, of these terms. Correspondingly,

σ2s(i[P, C∗C]) = ∓2
(
− β0

(
s− m− 1

2
− βr

)
φφ0φ1 − β0β̃τφφ0φ

′
1

∓ (ρ̃m−1Hpρ0)φ′φ0φ1 +mβ0p0φφ
′
0φ1

)
φφ0φ1ρ̃

−2sτ−2r.

We can regularize using using Sε ∈ Ψ−δb (M) for ε > 0, uniformly bounded in Ψ0
b(M),

converging to Id in Ψδ′

b (M) for δ′ > 0, with principal symbol (1+ερ̃−1)−δ, as in [45,
Proof of Propositions 2.3-2.4], where the only difference was that the calculation
was on X = ∂M , and thus the pseudodifferential operators were standard ones,
rather than b-pseudodifferential operators. The a priori regularity assumption on
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WFs
′,r

b (u) arises as the regularizer has the opposite sign as compared to the contri-
bution of the weights, thus the amount of regularization one can do is limited. The
positive commutator argument then proceeds completely analogously to [45, Proof
of Propositions 2.3-2.4], except that, as in [45], one has to assume a priori bounds
on the term with the sign opposite to that of s− (m− 1)/2− βr, of which there is
exactly one for either sign (unlike in [45], in which only s− (m− 1)/2 + β Imσ < 0
has such a term), thus on Σ∩supp(φ′1◦τ)∩supp(φ◦ρ0) when s−(m−1)/2−βr > 0
and on Σ ∩ supp(φ1 ◦ τ) ∩ supp(φ′ ◦ ρ0) when s− (m− 1)/2− βr < 0.

Using the openness of the complement of the wave front set we can finally choose
φ and φ1 (satisfying the support conditions, among others) so that the a priori
assumptions are satisfied, choosing φ1 first and then shrinking the support of φ in
the first case, with the choice being made in the opposite order in the second case,
completing the proof of the proposition. �

2.1.2. Complex absorption. In order to have good Fredholm properties we either
need a complete Hamilton flow, or need to ‘stop it’ in a manner that gives suitable
estimates; one may want to do the latter to avoid global assumptions on the flow
on the ambient space. The microlocally best behaved version is given by complex
absorption; it is microlocal, works easily with Sobolev spaces of arbitrary order, and
makes the operator elliptic in the absorbing region, giving rise to very convenient
analysis. The main downside of complex absorption is that it does not automatically
give forward mapping properties for the support of solutions in wave equation-like
settings, even though at the level of singularities, it does have the desired forward
property. It was used extensively in [45] – in the dilation invariant setting, the
bicharacteristics on X × (0,∞)τ are controlled (by the invariance) as τ → ∞ as
well as when τ → 0, and thus one need not use complex absorption there, instead
decay as τ → ∞ (corresponding to growth as τ → 0 on these dilation invariant
spaces) gives the desired forward property; complex absorption was only used to
cut off the flow within X. Here we want to localize in τ as well, and while complex
absorption can achieve this, it loses the forward support character of the problem.
Thus, complex absorption will not be of use for us when solving semilinear forward
problems later on; however, as it is conceptually much cleaner, we discuss Fredholm
properties using it first before turning to adding artificial (spacelike) boundary
hypersurfaces in the next section, which allow for the solution of forward problems
but require additional technicalities.

Thus, we now consider P − iQ ∈ Ψm
b (M), Q ∈ Ψm

b (M), with real principal
symbol q, being the complex absorption similarly to [45, §§2.2 and 2.8]; we assume
that WF′b(Q)∩L = ∅. Here the semiclassical version, discussed in [45] with further
references there, is a close parallel to our b-setting; it is essentially equivalent to
the b-setting in the special case that P, Q are dilation-invariant, for then the
Mellin transform gives rise exactly to the semiclassical problem as the Mellin-dual
parameter goes to infinity. Thus, we assume that the characteristic set Σ of P has
the form

Σ = Σ+ ∪ Σ−,

with each of Σ± being a union of connected components, and

∓q ≥ 0 near Σ±.

Recall from [45, §2.5], which in turn is a simple modification of the semiclassical
results of Nonnenmacher and Zworski [37], and Datchev and Vasy [12], that under
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these sign conditions on q, estimates can be propagated in the backward direction
along the Hamilton flow on Σ+ and in the forward direction for Σ−, or, phrased as a
wave front set statement (the property of being singular propagates in the opposite
direction as the property of being regular!), WFs(u) is invariant in (Σ+ \ bS∗XM) \
WFs−m+1((P − iQ)u) under the forward Hamilton flow, and in (Σ− \ bS∗XM) \
WFs−m+1((P − iQ)u) under the backward flow. (That is, the invariance is away
from the boundary X; we address the behavior at the boundary in the rest of the
paragraph.) Since this is a principal symbol argument, given in [45, §2.5] and [12,
Lemma 5.1], its extension to the b-setting only requires minimal changes. Namely,
assuming one is away from radial points as one may (since at these the statement is
vacuous), one constructs the principal symbol c of the commutant on bT ∗M \ o as
a C∞ function c0 on bS∗M with derivative of a fixed sign along the Hamilton flow
in the region where one wants to obtain the estimate (exactly the same way as for
real principal type proofs) multiplied by weights in τ and ρ̃, making the Hamilton
derivative of c0 large relative to c0 to control the error terms from the weights,

and computes 〈u,−i[C∗C, P̃]u〉, where P̃ is the symmetric part of P − iQ (so has

principal symbol p) and Q̃ is the antisymmetric part. This gives

−2 Re〈u, iC∗C(P − iQ)u〉 − 2 Re〈u,C∗CQ̃u〉.

The issue here is that the second term on the right hand side involves C∗CQ̃, which

is one order higher that [C∗C, P̃], so while it itself has a desirable sign, one needs
to be concerned about subprincipal terms.6 However, one rewrites

2 Re〈u,C∗CQ̃u〉 = 2 Re〈u,C∗Q̃Cu〉+ 2 Re〈u,C∗[C, Q̃]u〉.
Now the first term is positive modulo a controllable error by the sharp G̊arding
inequality, or if one arranges that q is the square of a symbol. This controllability

claim uses the derivative of c, arising in the symbol of the commutator with P̃, to

provide the control: since Q̃ is positive modulo an operator one order lower, and in
the term involving this operator, the principal symbol c of C is not differentiated,
writing c as c0 times a weight, where c0 is homogeneous of degree zero, taking
the derivative of c0 large relative to c0, as is already used to control weights, etc.,
controls this error term (modulo which we have positivity) as well. On the other

hand, the second can be rewritten in terms of [C, [C, Q̃]], (C∗ − C)[C, Q̃], etc.,

which are all controllable as they drop two orders relative to the product C∗CQ̃.
This gives rise to the result, namely that for u ∈ H−∞,rb , WFs,rb (u) is invariant

in Σ+ \WFs−m+1,r((P − iQ)u) under the forward Hamilton flow, and in Σ− \
WFs−m+1,r((P − iQ)u) under the backward flow.

In analogy with [45, Definition 2.12], we say that P − iQ is non-trapping if all
bicharacteristics in Σ from any point in Σ\(L+∪L−) flow to Ell(q)∪L+∪L− in both
the forward and backward directions (i.e. either enter Ell(q) in finite time or tend to
L+ ∪L−). Notice that as Σ± are closed under the Hamilton flow, bicharacteristics
in L± \ (L+ ∪ L−) necessarily enter the elliptic set of Q in the forward (in Σ+),
resp. backward (in Σ−) direction. Indeed, by the non-trapping hypothesis, these
bicharacteristics have to reach the elliptic set of Q as they cannot tend to L+, resp.
L−: for L+ and L− are unstable, resp. stable manifolds, and these bicharacteristics

6In fact, as the principal symbol of C∗CQ̃ is real, the real part of its subprincipal symbol is
well-defined, and is the real part of c2q where c and q include the real parts of their subprincipal

terms, and is all that matters for this argument, so one could proceed symbolically.
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cannot enter the boundary (which is preserved by the flow), so cannot lie in the
stable, resp. unstable, manifolds of L+ ∪ L−, which are within bS∗XM . Similarly,
bicharacteristics in (Σ ∩ bS∗XM) \ (L+ ∪ L−) necessarily reach the elliptic set of Q
in the backward (in Σ+), resp. forward (in Σ−) direction. Then for s, r satisfying

s− (m− 1)/2 > βr

one has an estimate

‖u‖Hs,rb
≤ C‖(P − iQ)u‖Hs−m+1,r

b
+ C‖u‖

Hs
′,r

b

, (2.6)

provided one assumes s′ < s,

s′ − (m− 1)/2 > βr, u ∈ Hs′,r
b .

Indeed, this is a simple consequence of u ∈ Hs′,r
b , (P − iQ)u ∈ Hs−m+1,r

b implying
u ∈ Hs,r

b via the closed graph theorem, see [23, Proof of Theorem 26.1.7] and [43,
§4.3]. This implication in turn holds as on the elliptic set of Q one has the stronger

statement u ∈ Hs+1,r
b under these conditions, and then using real-principal type

propagation of regularity in the backward direction on Σ+ and the forward direction
on Σ−, one can propagate the microlocal membership of Hs,r

b (i.e. the absence of
the corresponding wave front set) in the backward, resp. forward, direction on Σ+,
resp. Σ−. Since bicharacteristics in L± \ (L+∪L−) necessarily enter the elliptic set
of Q in the forward, resp. backward direction, and thus one has Hs,r

b membership
along them by what we have shown, Proposition 2.1 extends this membership to
L±, and hence to a neighborhood of these, and by our non-trapping assumption
every bicharacteristic enters either this neighborhood of L± or the elliptic set of
Q in finite time in the backward, resp. forward, direction, so by the real princi-
pal type propagation of singularities we have the claimed microlocal membership
everywhere.

Reversing the direction in which one propagates estimates, one also has a similar
estimate for the adjoint P∗ + iQ∗, except now one needs to have

s− (m− 1)/2 < βr

in order to propagate through the saddle points in the opposite direction, i.e. from
within bS∗XM to L±. Then for s′ < s,

‖u‖Hs,rb
≤ C‖(P∗ + iQ∗)u‖Hs−m+1,r

b
+ C‖u‖

Hs
′,r

b

. (2.7)

The issue with these estimates is that Hs,r
b does not include compactly into the

error term Hs′,r
b on the right hand side due to the lack of additional decay. Thus,

these estimates are insufficient to show Fredholm properties, which in fact do not
hold in general.

We thus further assume that there are no poles of the inverse of the Mellin
conjugate (P − iQ)̂(σ) of the normal operator, N(P − iQ), on the line Imσ = −r.
Here we refer to [45, §3.1] for a brief discussion of the normal operator and the Mellin
transform; this cited section also contains more detailed references to [35]. Then
using the Mellin transform, which is an isomorphism between weighted b-Sobolev
spaces and semiclassical Sobolev spaces (see Equations (3.8)-(3.9) in [45]), and the
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estimates for (P− iQ)̂(σ) (including the high energy, i.e. semiclassical, estimates,7

all of which is discussed in detail in [45, §2] — the high energy assumptions of [45,
§2] hold by our assumptions on the b-flow at bS∗XM , and which imply that for
all but a discrete set of r the aforementioned lines do not contain such poles), we
obtain that on R+

ρ × ∂M
‖v‖Hs,rb

≤ C‖N(P − iQ)v‖Hs−m+1,r
b

(2.8)

when
s− (m− 1)/2 > βr.

Again, we have an analogous estimate for N(P∗ + iQ∗):
‖v‖Hs,rb

≤ C‖N(P∗ + iQ∗)v‖Hs−m+1,r
b

, (2.9)

provided −r is not the imaginary part of a pole of the inverse of (P∗ + iQ∗)̂, and
provided

s− (m− 1)/2 < βr.

As (P∗ + iQ∗) ̂ (σ) = (P̂ − iQ̂)∗(σ), see the discussion in [45] preceding Equa-
tion (3.25), the requirement on −r is the same as r not being the imaginary part

of a pole of the inverse of P̂ − iQ̂.
We apply these results by first letting χ ∈ C∞c (M) be identically 1 near ∂M

supported in a collar neighborhood of ∂M , which we identify with (0, ε)τ × ∂M of
the normal operator space. Then, assuming s′ − (m− 1)/2 > βr,

‖u‖
Hs
′,r

b

≤ ‖χu‖
Hs
′,r

b

+ ‖(1− χ)u‖
Hs
′,r

b

≤ C‖N(P − iQ)χu‖
Hs
′−m+1,r

b

+ ‖(1− χ)u‖
Hs
′,r

b

.
(2.10)

Now, if K = supp(1− χ), then

‖(1− χ)u‖
Hs
′,r

b

≤ C‖u‖Hs′ (K) ≤ C
′‖u‖

Hs
′,r̃

b

≤ C ′′‖u‖
Hs
′+1,r̃

b

for any r̃. On the other hand, N(P − iQ)− (P − iQ) ∈ τΨm
b ([0, ε)× ∂M), so

N(P − iQ)χu = (P − iQ)χu+ (N(P − iQ)− (P − iQ))χu

= χ(P − iQ)u+ [P − iQ, χ]u+ (N(P − iQ)− (P − iQ))χu

plus the fact that [P − iQ, χ] is supported in K and ‖χ(P − iQ)u‖
Hs
′−m+1,r

b

≤
‖(P − iQ)u‖

Hs
′−m+1,r

b

show that for all r̃

‖N(P − iQ)χu‖
Hs
′−m+1,r

b

≤ ‖(P − iQ)u‖
Hs
′−m+1,r

b

+ C‖u‖
Hs
′+1,r̃

b

+ C‖u‖
Hs
′+1,r−1

b

.

(2.11)
Combining (2.6), (2.10) and (2.11) we deduce that (with new constants, and taking
s′ sufficiently small and r̃ = r − 1)

‖u‖Hs,rb
≤ C‖(P − iQ)u‖Hs−m+1,r

b
+ C‖u‖

Hs
′+1,r−1

b

, (2.12)

where now the inclusion Hs,r
b → Hs′+1,r−1

b is compact when we choose, as we may,
s′ < s − 1, requiring, however, s′ − (m − 1)/2 > βr. Recall that this argument
required that s, r, s′ satisfied the requirements preceding (2.6), and that −r is not
the imaginary part of any pole of (P − iQ)̂.

7The high energy estimates are actually implied by b-principal symbol based estimates on

the normal operator space, M∞ = X × R+, X = ∂M , on spaces τrHs
b(M∞) corresponding to

Imσ = −r, but we do not explicitly discuss this here.
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Analogous estimates hold for (P − iQ)∗ where now we write s̃, r̃ and s̃′ for the
Sobolev orders for the eventual application:

‖u‖
H s̃,r̃b

≤ C‖(P − iQ)∗u‖
H s̃−m+1,r̃

b
+ C‖u‖

H s̃
′+1,r̃−1

b

, (2.13)

provided s̃, r̃ in place of s and r satisfy the requirements stated before (2.7), and

provided −r̃ is not the imaginary part of a pole of (P∗ + iQ∗)̂ (i.e. r̃ of P̂ − iQ̂).
Note that we do not have a stronger requirement for s̃′, unlike for s′ above, since
upper bounds for s imply those for s′ ≤ s.

Via a standard functional analytic argument, see [23, Proof of Theorem 26.1.7]
and also [45, §2.6] in the present context, we thus obtain Fredholm properties of
P−iQ, in particular solvability, modulo a (possible) finite dimensional obstruction,
in Hs,r

b if
s− (m− 1)/2− 1 > βr. (2.14)

Concretely, we take s̃ = m− 1− s, r̃ = −r, s′ < s− 1 sufficiently close to s− 1 so
that s′ − (m− 1)/2 > βr (which is possible by (2.14)). Thus, s− (m− 1)/2 > βr
means s̃−(m−1)/2 = (m−1)/2−s < −βr = βr̃, so the space on the left hand side
of (2.12) is dual to that in the first term on the right hand side of (2.13), and the
same for the equations interchanged, and notice that the condition on the poles of
the inverse of the Mellin transformed normal operators is the same for both P − iQ
and P∗ + iQ∗: −r is not the imaginary part of a pole of (P − iQ)̂. Let

Ys,r = Hs,r
b (M), X s,r = {u ∈ Hs,r

b (M) : (P − iQ)u ∈ Hs−1,r
b (M)},

and note that Ys,r, X s,r are complete, in the case of X s,r with the natural norm be-
ing ‖u‖2X s,r = ‖u‖2

Hs,rb (M)
+‖(P− iQ)u‖2

Hs−1,r
b (M)

; see Remark 2.19. Our discussion

thus far yields:

Proposition 2.3. Suppose that P is non-trapping. Suppose s, r ∈ R, s − (m −
1)/2− 1 > βr, −r is not the imaginary part of a pole of (P − iQ)̂ where P − iQ
is a priori a map

P − iQ : Hs,r
b (M)→ Hs−2,r

b (M).

Then
P − iQ : X s,r → Ys−1,r

is Fredholm.

2.1.3. Initial value problems. As already mentioned, the main issue with this ar-
gument using complex absorption that it does not guarantee the forward nature
(in terms of supports) of the solution for a wave-like equation, although it does
guarantee the correct microlocal structure. So now we assume that P ∈ Diff2

b(M)
and that there is a Lorentzian b-metric g such that

P −�g ∈ Diff1
b(M), P − P∗ ∈ Diff0

b(M). (2.15)

Then one can run a completely analogous argument using energy type estimates by
restricting the domain we consider to be a manifold with corners, where the new
boundary hypersurfaces are spacelike with respect to g, i.e. given by level sets of
timelike functions. Such a possibility was mentioned in [45, Remark 2.6], though
it was not described in detail as it was not needed there, essentially because the
existence/uniqueness argument for forward solutions was given only for dilation
invariant operators. The main difference between using complex absorption and
adding boundary hypersurfaces is that the latter limit the Sobolev regularity one
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can use, with the most natural choice coming from energy estimates. However, a
posteriori one can improve the result to better Sobolev spaces using propagation of
singularities type results.

So assume now that U ⊂ M is open, and we have two functions t1 and t2 in
C∞(M), both of which, restricted to U , are timelike (in particular have non-zero
differential) near their respective 0-level sets H1 and H2, and

Ω = t−1
1 ([0,∞)) ∩ t−1

2 ([0,∞)) ⊂ U.
Notice that the timelike assumption forces dtj to not lie in N∗X = N∗∂M (for
its image in the b-cosphere bundle would be zero), and thus if the Hj intersect
X, they do so transversally. We assume that the Hj intersect only away from X,
and that they do so transversally, i.e. the differentials of tj are independent at the
intersection. Then Ω is a manifold with corners with boundary hypersurfaces H1,
H2 and X (all intersected with Ω). We however keep thinking of Ω as a domain
in M . The role of the elliptic set of Q is now played by bS∗HjM , j = 1, 2. The

non-trapping assumption becomes that

(1) all bicharacteristics in ΣΩ = Σ ∩ bS∗ΩM from any point in ΣΩ ∩ (Σ+ \ L+)
flow (within ΣΩ) to bS∗H1

M ∪L+ in the forward direction (i.e. either enter
bS∗H1

M in finite time or tend to L+) and to bS∗H2
M ∪ L+ in the backward

direction,
(2) and from any point in ΣΩ∩(Σ−\L−) the bicharacteristics flow to bS∗H2

M ∪
L− in the forward direction and to bS∗H1

M ∪L− in the backward direction;

see Figure 3. In particular, orienting the characteristic set by letting Σ− be the
future oriented and Σ+ the past oriented part, dt1 is future oriented, while dt2 is
past oriented.

Figure 3. Setup for the discussion of the forward problem. Near
the spacelike hypersurfaces H1 and H2, which are the replace-
ment for the complex absorbing operator Q, we use standard
(non-microlocal) energy estimates, and away from them, we use
b-microlocal propagation results, including at the radial sets L±.
The bicharacteristic flow, in fact its projection to the base, is only
indicated near L+; near L−, the directions of the flowlines are
reversed.

On a manifold with corners, such as Ω, one can consider supported and ex-
tendible distributions; see [23, Appendix B.2] for the smooth boundary setting,
with simple changes needed only for the corners setting, which is discussed e.g.
in [46, §3]. Here we consider Ω as a domain in M , and thus its boundary face
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X ∩ Ω is regarded as having a different character from the Hj ∩ Ω, i.e. the sup-
port/extendibility considerations do not arise at X – all distributions are regarded
as acting on a subspace of C∞ functions on Ω vanishing at X to infinite order,
i.e. they are automatically extendible distributions at X. On the other hand, at
Hj we consider both extendible distributions, acting on C∞ functions vanishing to
infinite order at Hj , and supported distributions, which act on all C∞ functions
(as far as conditions at Hj are concerned). For example, the space of supported
distributions at H1 extendible at H2 (and at X, as we always tacitly assume) is the
dual space of the subspace of C∞(Ω) consisting of functions vanishing to infinite
order at H2 and X (but not necessarily at H1). An equivalent way of characterizing
this space of distributions is that they are restrictions of elements of the dual of
Ċ∞(M) (consisting of C∞ functions on M vanishing to infinite order at X) with
support in t1 ≥ 0 to C∞ functions on Ω which vanish to infinite order at X and
H2, thus in the terminology of [23], restriction to Ω \ (H2 ∪X).

The main interest is in spaces induced by the Sobolev spaces Hs,r
b (M). Notice

that the Sobolev norm is of completely different nature at X than at the Hj , namely
the derivatives are based on complete, rather than incomplete, vector fields: Vb(M)
is being restricted to Ω, so one obtains vector fields tangent to X but not to the
Hj . As for supported and extendible distributions corresponding to Hs,r

b (M), we
have, for instance,

Hs,r
b (M)•,−,

with the first superscript on the right denoting whether supported (•) or extendible
(−) distributions are discussed at H1, and the second the analogous property at H2,
consists of restrictions of elements of Hs,r

b (M) with support in t1 ≥ 0 to Ω\(H2∪X).
Then elements of C∞(Ω) with the analogous vanishing conditions, so in the example
vanishing to infinite order at H1 and X, are dense in Hs,r

b (M)•,−; further the dual

of Hs,r
b (M)•,− is H−s,−rb (M)−,• with respect to the L2 (sesquilinear) pairing.

First we work locally. For this purpose it is convenient to introduce another
timelike function t̃j , not necessarily timelike, and consider

Ω[t0,t1] = t−1
j ([t0,∞)) ∩ t̃−1

j ((−∞, t1]), Ω(t0,t1) = t−1
j ((t0,∞)) ∩ t̃−1

j ((−∞, t1)),

and similarly on half-open, half-closed intervals. Thus, Ω[t0,t1] becomes smaller as
t0 becomes larger or t1 becomes smaller.

We then consider energy estimates on Ω[T0,T1]. In order to set up the following
arguments, choose

T− < T ′− < T0, T1 < T ′+ < T+,

and assume that Ω[T−,T+] is compact, Ω[T0,T1] is non-empty, and tj is timelike on
Ω[T−,T+]. The energy estimates propagate estimates in the direction of either in-
creasing or decreasing tj . With the extendible/supported character of distributions

at t̃j = T+ being irrelevant for this matter in the case being considered and thus
dropped from the notation (so (−) refers to extendibility at tj = T0), consider

P : Hs,r
b (Ω[T0,T+])

− → Hs−2,r
b (Ω[T0,T+])

−, s, r ∈ R.

The energy estimate, with backward propagation in tj , from t̃−1
j ([T ′+, T+]), in this

setting takes the form:
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Lemma 2.4. Let r ∈ R. There is C > 0 such that for u ∈ H2,r
b (Ω[T0,T+])

−,

‖u‖H1,r
b (Ω[T0,T1])−

≤ C
(
‖Pu‖H0,r

b (Ω[T0,T+])−
+ ‖u‖H1,r

b (Ω[T0,T+]∩t̃−1
j ([T ′+,T+]))−

)
(2.16)

This also holds with P replaced by P∗, acting on the same spaces.

Remark 2.5. The lemma is also valid if one has several boundary hypersurfaces,
i.e. if one replaces t−1

j ([t0,∞)) by t−1
j ([tj,0,∞)) ∩ t−1

k ([tk,0,∞)) in the definition of

Ω[t0,t1], and/or t̃−1
j ((−∞, t1]) by t̃−1

j ((−∞, tj,1]) ∩ t̃−1
k ((−∞, tk,1]), i.e. regarding tj

and/or t̃j as vector valued, and propagating backwards in tj0 for some fixed j0, under
the additional hypothesis that tj0 is timelike in Ω[t0,t1], and all tj , j 6= j0, are timelike
near their respective zero sets, with the same timelike character at tj0 . (One can also
have more than two such functions.) To see this, replace χ(tj) by χj0(tj0)χk(tk), and
analogously with χ̃ in the definition of V in (2.17), where χk is the characteristic
function of [tk,0,∞), while letting W = G(bdtj0 , ·). Then χ′χ̃ταA] is replaced
by χ′jχkχ̃jχ̃kτ

αA]+χjχ
′
kχ̃jχ̃kτ

αA], etc., and our additional hypothesis guarantees

that the matrix A] is indeed positive definite: The contribution from differentiating
χj0 is positive definite by the timelike nature of dtj0 , while the contribution from

differentiating χj , j 6= j0, giving δ-distributions at the hypersurfaces t−1
j (tj,0), is

positive definite by the second part of the above additional hypothesis and can
therefore be dropped as in the proof of Lemma 2.4 below. Thus χ′j0 can still be
used to dominate χj0 ; and the terms in which χ̃j is differentiated have support

where t̃j is in (T ′+,j , T+,j), so the control region on the right hand side of (2.16) is
the union of these sets.

In our application this situation arises as we need the estimates on t−1
1 ([T0, T1])∩

t−1
2 ([0,∞)) and t−1

1 ([0,∞))∩ t−1
2 ([T0, T1]), with T0 = 0, T1 > 0 small. For instance,

in the latter case t2 plays the role of tj above, while −t1 and t2 play the role of t̃j
and t̃k; see Figure 4.

Figure 4. A domain Ω̃ = t−1
2 ([0,∞)) ∩

(
(−t1)−1((−∞, 0]) ∩

t−1
2 ((−∞, T1])

)
on which we will apply the energy estimate (2.16).

The a priori control region is indicated in dark gray.

Proof of Lemma 2.4. To see (2.16), one proceeds as in [45, §3.3] and considers

V = −iχ(tj)χ̃(̃tj)τ
αW (2.17)
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with W = G(dtj , .) a timelike vector field and with χ, χ̃ ∈ C∞(R), both non-
negative, to be specified. Then choosing a Riemannian b-metric g̃,

−i(V ∗�g −�∗gV ) = bd∗g̃C
[ bd,

with the subscript on the adjoint on the right hand side denoting the metric with
respect to which it is taken, bd : C∞(M)→ C∞(M ; bT ∗M) being the b-differential,
and with

C[ = χ′χ̃ταA] + χχ̃′ταÃ] + χχ̃ταR[

where A], Ã] and R[ are bundle endomorphisms of CbT ∗M and A], Ã] are positive
definite. Proceeding further, replacing �g by P, one has

−i(V ∗P − P∗V ) = bd∗g̃C
] bd+ (Ẽ1)∗g̃τ

αχχ̃bd+ bd∗g̃τ
αχχ̃Ẽ2,

C] = χ′χ̃ταA] + χχ̃′ταÃ] + χχ̃ταR̃]
(2.18)

with Ẽj bundle maps from the trivial bundle over M to CbT ∗M , A], Ã] as before,

and R̃] a bundle endomorphism of CbT ∗M , as follows by expanding

−i(V ∗(P −�g)− (P −�g)∗V )

using that P −�g ∈ Diff1
b(M). We regard the second term on the right hand side

of (2.18) as the one requiring a priori control by ‖u‖H1,r
b (Ω[T0,T+]∩t̃−1

j ([T ′+,T+]))− ; we

achieve this by making χ̃ supported in (−∞, T+), identically 1 near (−∞, T ′+], so
dχ̃ is supported in (T ′+, T+). Now making χ′ ≥ 0 large relative to χ on supp(χχ̃),

as in8 [45, Equation (3.27)], allows one to dominate all terms without derivatives
of χ. In order to obtain a non-degenerate estimate up to tj = T0, one cuts off χ at
tj = T0 using the Heaviside function, so χ′ gives a (positive!) δ-distribution there.
Applying (2.18) to v, pairing with v and integrating by parts, the δ-distributions
have the same sign as χ′A] and can thus be dropped. Put differently, without the
sharp cutoff, one again computes the same pairing, but this time on the domain
Ω[T0,T+], thus picking up boundary terms with the correct sign in the integration
by parts, so these terms can be dropped. This proves the energy estimate (2.16)
when one takes α = −2r. �

Propagating in the forward direction, from t−1
j ([T−, T

′
−]), where now (−) denotes

the character of the space at T1 (so (−) refers to extendibility at tj = T1)

‖u‖H1,r
b (Ω[T0,T1])−

≤ C
(
‖Pu‖H0,r

b (Ω[T−,T1])−
+ ‖u‖H1,r

b (Ω[T−,T1]∩t−1
j ([T−,T ′−]))−

)
(2.19)

In particular, for u supported in tj ≥ T0, the last estimate becomes, with the
first superscript on the right denoting whether supported (•) or extendible (−)
distributions are discussed at t = T0, the second superscript the same at t = T1,

‖u‖H1,r
b (Ω[T0,T1])•,−

≤ C‖Pu‖H0,r
b (Ω[T0,T1])•,−

, (2.20)

when

P : Hs,r
b (Ω[T0,T1])

•,− → Hs−2,r
b (Ω[T0,T1])

•,−

and u ∈ H2,r
b (Ω[T0,T1])

•,−. To summarize, we state both this and (2.16) in terms of
these supported spaces:

8In [45, Equation (3.27)] the sign of χ′ is opposite, as the estimate is propagated in the opposite
direction.
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Corollary 2.6. Let r, r̃ ∈ R. For u ∈ H2,r
b (Ω[T0,T1])

•,−, one has

‖u‖H1,r
b (Ω[T0,T1])•,−

≤ C‖Pu‖H0,r
b (Ω[T0,T1])•,−

, (2.21)

while for v ∈ H2,r̃
b (Ω[T0,T1])

−,•, the estimate

‖v‖
H1,r̃

b (Ω[T0,T1])−,•
≤ C‖P∗v‖

H0,r̃
b (Ω[T0,T1])−,•

(2.22)

holds.

A duality argument, combined with propagation of singularities, thus gives:

Lemma 2.7. Let s ≥ 0, r ∈ R. Then there is C > 0 with the following property.
If f ∈ Hs−1,r

b (Ω[T0,T1])
•,−, then there exists u ∈ Hs,r

b (Ω[T0,T1])
•,− such that

Pu = f and

‖u‖Hs,rb (Ω[T0,T1])•,− ≤ C‖f‖Hs−1,r
b (Ω[T0,T1])•,−

.

Remark 2.8. As in Remark 2.5, the lemma remains valid in more generality, namely
if one replaces t−1

j ([t0,∞)) by t−1
j ([tj,0,∞)) ∩ t−1

k ([tk,0,∞)), and/or t̃−1
j ((−∞, t1])

by t̃−1
j ((−∞, tj,1])∩ t̃−1

j ((−∞, tk,1]) in the definition of Ω[t0,t1], provided that the tj
have linearly independent differentials on their joint zero set, and similarly for the
t̃j . The place where this linear independence is used (the energy estimate above
does not need this) is for the continuous Sobolev extension map, valid on manifolds
with corners, see [46, §3].

Proof. We work on the slightly bigger region Ω[T ′−,T
′
+], applying the energy estimates

with T0 replaced by T ′−, T1 replaced by T ′+. First, by the supported property at

tj = T0, one can regard f as an element of Hs−1,r
b (Ω[T ′−,T1])

•,− with support in

Ω[T0,T1]. Let

f̃ ∈ Hs−1,r
b (Ω[T ′−,T

′
+])
•,− ⊂ H−1,r

b (Ω[T ′−,T
′
+])
•,−

be an extension of f , so f̃ is supported in Ω[T0,T ′+], and restricts to f ; by the

definition of spaces of extendible distributions as quotients of spaces of distributions
on a larger space, see [23, Appendix B.2], we can assume

‖f̃‖Hs−1,r
b (Ω[T ′−,T

′
+

])
•,− ≤ 2‖f‖Hs−1,r

b (Ω[T ′−,T1])
•,− . (2.23)

By (2.16) applied with P replaced by P∗, r̃ = −r,

‖φ‖
H1,r̃

b (Ω[T ′−,T
′
+

])
−,• ≤ C‖P∗φ‖H0,r̃

b (Ω[T ′−,T
′
+

])
−,• , (2.24)

for φ ∈ H2,r̃
b (Ω[T ′−,T

′
+])
−,•. Correspondingly, by the Hahn-Banach theorem, there

exists

ũ ∈ (H0,r̃
b (Ω[T ′−,T

′
+])
−,•)∗ = H0,r

b (Ω[T ′−,T
′
+])
•,−

such that

〈Pũ, φ〉 = 〈ũ,P∗φ〉 = 〈f̃ , φ〉, φ ∈ H2,r̃
b (Ω[T ′−,T

′
+])
−,•,

and

‖ũ‖H0,r
b (Ω[T ′−,T

′
+

])
•,− ≤ C‖f̃‖H−1,r

b (Ω[T ′−,T
′
+

])
•,− . (2.25)

One can regard ũ as an element of H0,r
b (Ω[T−,T ′+])

•,− with support in Ω[T ′−,T
′
+], with

f̃ similarly extended; then 〈Pũ, φ〉 = 〈f̃ , φ〉 for φ ∈ Ċ∞c (Ω(T−,T ′+)) (here the dot over
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C∞ refers to infinite order vanishing at X = ∂M !), so Pũ = f̃ in distributions.
Since ũ vanishes on Ω(T−,T ′−), and

f̃ ∈ Hs−1,r
b (Ω[T−,T ′+])

•,−,

propagation of singularities applied on Ω(T−,T ′+) (which has only the boundary

∂M = X) gives that ũ ∈ Hs,r
b,loc(Ω(T−,T ′+)) (i.e. here we are ignoring the two bound-

aries, tj = T−, T
′
+, not making a uniform statement there, but we are not ignoring

∂M = X). In addition, for χ, χ̃ ∈ C∞c (Ω(T−,T ′+)), χ̃ ≡ 1 on suppχ, we have the

estimate

‖χũ‖Hs,rb (Ω[T−,T ′+])
≤ C

(
‖χ̃Pũ‖Hs−1,r

b (Ω[T−,T ′+])
+ ‖χ̃ũ‖H0,r

b (Ω[T−,T ′+])

)
. (2.26)

In view of the support property of ũ, this gives that restricting to Ω(T−,T1], we

obtain an element of Hs,r
b (Ω(T−,T1])

−, with support in Ω[T0,T1], i.e. an element of

Hs,r
b (Ω[T0,T1])

•,−. The desired estimate follows from (2.25), controlling the second

term of the right hand side of (2.26), and (2.23) as well as using Pũ = f̃ . �

At this point, u given by Lemma 2.7 is not necessarily unique. However:

Lemma 2.9. Let s, r ∈ R. If u ∈ Hs,r
b (Ω[T0,T1])

•,− is such that Pu = 0, then
u = 0.

Proof. Propagation of singularities, as in the proof of Lemma 2.7, regarding u as
a distribution on (T−, T1) with support in [T0, T1) gives that u ∈ H∞,rb,loc(Ω(T−,T1)).

Taking T0 < T ′1 < T1, letting u′ = u|[T0,T ′1], (2.21) shows that u′ = 0. Since T ′1 is
arbitrary, this shows u = 0. �

Corollary 2.10. Let s ≥ 0, r ∈ R. Then there is C > 0 with the following property.
If f ∈ Hs−1,r

b (Ω[T0,T1])
•,−, then there exists a unique u ∈ Hs,r

b (Ω[T0,T1])
•,− such

that Pu = f .
Further, this unique u satisfies

‖u‖Hs,rb (Ω[T0,T1])•,− ≤ C‖f‖Hs−1,r
b (Ω[T0,T1])•,−

.

Proof. Existence is Lemma 2.7, uniqueness is linearity plus Lemma 2.9, which to-
gether with the estimate in Lemma 2.7 prove the corollary. �

Corollary 2.11. Let s ≥ 0, r, r̃ ∈ R.
For u ∈ Hs,r

b (Ω[T0,T1])
•,− with Pu ∈ Hs−1,r

b (Ω[T0,T1])
•,−,

‖u‖Hs,rb (Ω[T0,T1])•,− ≤ C‖Pu‖Hs−1,r
b (Ω[T0,T1])•,−

, (2.27)

while for v ∈ Hs,r̃
b (Ω[T0,T1])

−,• with P∗v ∈ Hs−1,r̃
b (Ω[T0,T1])

−,•,

‖v‖
Hs,r̃b (Ω[T0,T1])−,•

≤ C‖P∗v‖
Hs−1,r̃

b (Ω[T0,T1])−,•
. (2.28)

Remark 2.12. Again, this estimate remains valid for vector valued tj and t̃j , see
Remarks 2.5 and 2.8, under the linear independence condition of the latter.

Proof. It suffices to consider (2.27). Let f = Pu ∈ Hs−1,r
b (Ω[T0,T1])

•,−, and let u′ ∈
Hs,r

b (Ω[T0,T1])
•,− be given by Corollary 2.10. In view of the uniqueness statement

of Corollary 2.10, u = u′. Then the estimate of Corollary 2.10 proves the claim. �

This yields the following propagation of singularities type result:
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Proposition 2.13. Let s ≥ 0, r ∈ R. If u ∈ H−∞,−∞b (Ω[T0,T1])
•,− with Pu ∈

Hs−1,r
b (Ω[T0,T1])

•,−, then u ∈ Hs,r
b (Ω[T0,T1])

•,−.

If instead u ∈ H−∞,−∞b (Ω[T0,T1])
−,− with Pu ∈ Hs−1,r

b (Ω[T0,T1])
−,− and for

some T̃0 > T0, u ∈ Hs,r
b (Ω[T0,T1] \ Ω(T̃0,T1])

−,−, then u ∈ Hs,r
b (Ω[T0,T1])

−,−.

Remark 2.14. One can ‘mix and match’ the two parts of the proposition in the
setting of Remark 2.5, with say a supportedness condition at t̃j , and only an

extendibility assumption at t̃k, but with Hs,r
b membership assumption on u in

Ω[T0,T1] \ t̃−1
k ((−∞, T̃1)), T̃1 < T1, with a completely analogous argument. For

instance, in the setting of Figure 4, one gets the regularity under supported-
ness assumptions at H1, just extendibility at t2 = T1, but a priori regularity for

t2 ∈ (T̃1, T1).

Proof. Let u′ ∈ Hs,r
b (Ω[T0,T1])

•,− be the unique solution in Hs,r
b (Ω[T0,T1])

•,− of

Pu′ = f where f = Pu ∈ Hs−1,r
b (Ω[T0,T1])

•,−; we obtain u′ by applying the exis-

tence part of Corollary 2.10. Then u, u′ ∈ H−∞,−∞b (Ω[T0,T1])
•,− and P(u−u′) = 0.

Applying Lemma 2.9, we conclude that u = u′, which completes the proof of the
first part.

For the second part, let χ ∈ C∞(R) be supported in (T0,∞), identically 1 near

[T̃0,∞), and consider u′ = (χ ◦ tj)u ∈ H1,r
b (Ω[T0,T1])

•,−, with the support property
arising from the vanishing of χ near T0. Then Pu′ = [P, (χ◦ tj)]u+(χ◦ tj)Pu. Now

the first term on the right hand side is in Hs−1,r
b (Ω[T0,T1])

•,− as on the support of dχ,
which is in Ω[T0,T1] \Ω(T̃0,T1], u is in Hs,r

b , and the commutator is first order, while

the second term is in the desired space since Pu ∈ Hs−1,r
b (Ω[T0,T1])

−,−, and as for
u itself, the cutoff improves the support property. Thus, the first part of the lemma
is applicable, giving that χu ∈ Hs,r

b (Ω[T0,T1])
•,−. Since (1−χ)u ∈ Hs,r

b (Ω[T0,T1])
−,−

by the a priori assumption, the conclusion follows. �

We take T0 = 0 and thus consider, for s ≥ 0,

P : Hs,r
b (Ω)•,− → Hs−2,r

b (Ω)•,− (2.29)

and

P∗ : Hs,r
b (Ω)−,• → Hs−2,r

b (Ω)−,•. (2.30)

In combination with the real principal type propagation results and Proposition 2.1
this yields under the non-trapping assumptions, much as in the complex absorbing
case, that9

‖u‖Hs,rb (Ω)•,− ≤ C‖Pu‖Hs−1,r
b (Ω)•,− + C‖u‖H0,r

b (Ω)•,− , βr < −1/2, s > 0, (2.31)

and

‖u‖
Hs,r̃b (Ω)−,•

≤ C‖P∗u‖
Hs−1,r̃

b (Ω)−,•
+C‖u‖

H0,r̃
b (Ω)−,•

, βr̃ > s−1/2, s > 0. (2.32)

We could proceed as in the complex absorption case to make the space on the
left hand side include compactly into the ‘error term’ on the right hand using the
normal operators. As this imposes some constraints, cf. (2.14), which together with
the requirements of the energy estimates, namely that the Sobolev order is ≥ 0,

9In fact, the error term on the right hand side can be taken to be supported in a smaller region,
since at H1 in the first case and at H2 in the second, there are no error terms due to the energy

estimates (2.21), applied with P∗ in place of P in the second case.
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mean that we would get slightly too strong restrictions on s, see Remark 2.20, we
proceed instead with a direct energy estimate. We thus assume that Ω is sufficiently
small so that there is a boundary defining function τ of M with dτ

τ timelike on Ω,
of the same timelike character as t2, opposite to t1. As explained in [45, §7], in this

case there is C > 0 such that for Imσ > C, P̂ (σ) is necessarily invertible.
The energy estimate is:

Lemma 2.15. There exists r0 < 0 such that for r ≤ r0, −r̃ ≤ r0, there is C > 0

such that for u ∈ H2,r
b (Ω)•,−, v ∈ H2,r̃

b (Ω)−,•, one has

‖u‖H1,r
b (Ω)•,− ≤ C‖Pu‖H0,r

b (Ω)•,− ,

‖v‖
H1,r̃

b (Ω)−,•
≤ C‖P∗v‖

H0,r̃
b (Ω)−,•

.
(2.33)

Proof. We run the argument of Lemma 2.4 globally on Ω using a timelike vector
field (e.g. starting with W = G(dττ , .)) that has, as a multiplier, a sufficiently large
positive power α = −2r of τ , i.e. replacing (2.17) by

V = −iταW.
Then the term with τα differentiated (which in (2.18) is included in the R̃] term),
and thus possessing a factor of α, is used to dominate the other, ‘error’, terms in
(2.18), completing the proof of the lemma as in Lemma 2.4. �

This can be used as in Lemma 2.7 to provide solvability, and using the propaga-
tion of singularities, which in this case includes the use of Proposition 2.1, noting
that s− 1/2 > βr is automatically satisfied, improved regularity. In particular, we
obtain the following analogues of Corollaries 2.10-2.11.

Corollary 2.16. There is r0 < 0 such that for r ≤ r0 and for s ≥ 0 there is C > 0
with the following property.

If f ∈ Hs−1,r
b (Ω)•,−, then there exists a unique u ∈ Hs,r

b (Ω)•,− such that Pu = f .
Further, this unique u satisfies

‖u‖Hs,rb (Ω)•,− ≤ C‖f‖Hs−1,r
b (Ω)•,− .

Corollary 2.17. There is r0 < 0 such that if r < r0, −r̃ < r0 and s ≥ 0 then there
is C > 0 such that the following holds.

For u ∈ Hs,r
b (Ω)•,− with Pu ∈ Hs−1,r

b (Ω)•,−, one has

‖u‖Hs,rb (Ω)•,− ≤ C‖Pu‖Hs−1,r
b (Ω)•,− , (2.34)

while for v ∈ Hs,r̃
b (Ω)−,• with P∗v ∈ Hs−1,r̃

b (Ω)−,•, one has

‖v‖
Hs,r̃b (Ω)−,•

≤ C‖P∗v‖
Hs−1,r̃

b (Ω)−,•
. (2.35)

We restate Corollary 2.16 as an invertibility statement.

Theorem 2.18. There is r0 < 0 with the following property. Suppose s ≥ 0,
r ≤ r0, and let

Ys,r = Hs,r
b (Ω)•,−, X s,r = {u ∈ Hs,r

b (Ω)•,− : Pu ∈ Hs−1,r
b (Ω)•,−},

where P is a priori a map P : Hs,r
b (Ω)•,− → Hs−2,r

b (Ω)•,−. Then

P : X s,r → Ys−1,r

is a continuous, invertible map, with continuous inverse.
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Remark 2.19. Note that Ys,r, X s,r are complete, in the case of X s,r with the natural
norm being ‖u‖2X s,r = ‖u‖2

Hs,rb (Ω)•,−
+‖Pu‖2

Hs−1,r
b (Ω)•,−

, as follows by the continuity

of P as a map Hs,r
b (Ω)•,− → Hs−2,r

b (Ω)•,− and the completeness of the b-Sobolev
spaces Hs,r

b (Ω)•,−.

Remark 2.20. Using normal operators as in the discussion leading to Proposi-
tion 2.3, one would get the following statement: Suppose s > 1, s − 3/2 > βr.
Then with X s,r, Ys,r as above, P : X s,r → Ys,r is Fredholm. Here the main loss
is that one needs to assume s > 1; this is done since in the argument one needs to
take s′ with s′ + 1 < s in order to transition the normal operator estimates from
N(P)u to Pu and still have a compact inclusion, but the normal operator estimates
need s′ ≥ 0 as, due to the boundary H2, they are again based on energy estimates.
Using the direct global energy estimate eliminates this loss, which is an artifact of
combining local energy estimates with the b-theory. In particular, in the complex
absorption setting, this problem does not arise, but on the other hand, one need
not have the forward support property of the solution.

The results of [45] then are immediately applicable to obtain an expansion of
the solutions; the main point of the following theorem being the elimination of the
losses in differentiability in [45, Proposition 3.5] due to Proposition 2.1.

Theorem 2.21. (Strengthened version of [45, Proposition 3.5].) Let M be a man-
ifold with a non-trapping b-metric g as above, with boundary X and let τ be a
boundary defining function, P as in (2.15). Suppose the domain Ω is as defined
above, and dτ

τ timelike.

Let σj be the poles of P̂−1, and let ` be such that Imσj + ` /∈ N for all j. Let
φ ∈ C∞(R) be such that suppφ ⊂ (0,∞), and φ ◦ t1 ≡ 1 near X ∩Ω. Then for s >

3/2 + β`, there are mjl ∈ N such that solutions of Pu = f with f ∈ Hs−1,`
b (Ω)•,−,

and with u ∈ Hs0,r0
b (Ω)•,−, s ≥ s0 ≥ 1, s0 − 1/2 > βr0 satisfy that for some

ajlκ ∈ C∞(X ∩ Ω),

u′ = u−
∑
j

∑
l∈N

∑
κ≤mjl

τ iσj+l(log τ)κ(φ ◦ t1)ajlκ ∈ Hs,`
b (Ω)•,−, (2.36)

where the sum is understood to be over a finite set with − Imσj + l < `.

Here the (semi)norms of both ajlκ in C∞(X ∩ Ω) and u′ in Hs,`
b (Ω)•,− are

bounded by a constant times that of f in Hs−1,`
b (Ω)•,−.

The analogous result also holds if f possesses an expansion modulo Hs−1,`
b (Ω)•,−,

namely

f = f ′ +
∑
j

∑
κ≤m′j

ταj (log τ)κ(φ ◦ t1)ajκ,

with f ′ ∈ Hs−1,`
b (Ω)•,− and ajκ ∈ C∞(X ∩ Ω), where terms corresponding to the

expansion of the f are added to (2.36) in the sense of the extended union of index
sets [35, §5.18], recalled below in Definition 2.32.

Remark 2.22. Here the factor φ ◦ t1 is added to cut off the expansion away from
H1, thus assuring that u′ is in the indicated space (a supported distribution).

Also, the sum over l is generated by the lack of dilation invariance of P. If we
take ` such that − Imσj > `− 1 for all j then all the terms in the expansion arise
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directly from the resonances, thus l = 0 and mj0 + 1 is the order of the pole of P̂−1

at σj , with the aj0κ being resonant states.

Proof. First assume that − Imσj > ` for every j; thus there are no terms subtracted
from u in (2.36). We proceed as in [45, Proposition 3.5], but use the propagation of
singularities, in particular Propositions 2.1 and 2.13, to eliminate the losses. First,
by the propagation of singularities, using s0 − 1/2 > βr0 and s ≥ s0, s ≥ 0,

u ∈ Hs,r0
b (Ω)•,−.

Thus, as P −N(P) ∈ τDiff2
b(M),

N(P)u = f − f̃ , f̃ = (P −N(P))u ∈ Hs−2,r0+1
b (Ω)•,− (2.37)

We apply [45, Lemma 3.1] (using s ≥ s0 ≥ 1), which is the lossless version of
[45, Proposition 3.5] in the dilation invariant case. Note that in [45], Lemma 3.1
is stated on the normal operator space M∞, which does not have a boundary
face corresponding to H2, i.e. S2 × (0,∞), with complex absorption being used
instead. However, given the analysis on X∩Ω discussed above, all the arguments go
through essentially unchanged: this is a Mellin transform and contour deformation
argument.

One thus obtains (2.36) with ` replaced by `′ = min(`, r0 + 1) except that u =

u′ ∈ Hs−1,`′

b (Ω)•,− corresponding to the f̃ term in N(P)u rather than u = u′ ∈
Hs,`′

b (Ω)•,− as desired. However, using Pu = f ∈ Hs−1,`′

b (Ω)•,−, we deduce by
the propagation of singularities, using s − 1 > β`′ + 1/2, s ≥ 0, that u = u′ ∈
Hs,`′

b (Ω)•,−. If ` ≤ r0 + 1, we have proved (2.36). Otherwise we iterate, replacing
r0 by r0 + 1. We thus reach the conclusion, (2.36), in finitely many steps.

If there are j such that − Imσj < `, then in the first step, when using [45,
Lemma 3.1], we obtain the partial expansion u1 corresponding to `′ = min(`, r0 +1)
in place of `; here we may need to decrease `′ by an arbitrarily small amount to make
sure that `′ is not − Imσj for any j. Further, the terms of the partial expansion
are annihilated by N(P), so u′ satisfies

Pu′ = Pu−N(P)u1 − (P −N(P))u1 ∈ Hs−1,`′

b (Ω)•,−

as (P − N(P))u1 ∈ H∞,r0+1
b (Ω)•,− in fact due to the conormality of u1 and P −

N(P) ∈ τDiff2
b(M). Correspondingly, the propagation of singularities result is

applicable as above to conclude that u′ ∈ Hs,`′

b (Ω)•,−. If ` ≤ r0 + 1 we are done.

Otherwise we have better information on f̃ in the next step, namely

f̃ = (P −N(P))u = (P −N(P))u′ + (P −N(P))u1

with the first term in Hs−2,r0+1
b (Ω)•,− (same as in the case first considered above,

without relevant resonances), while the expansion of u1 shows that (P −N(P))u1

has a similar expansion, but with an extra power of τ (i.e. τ iσj is shifted to τ iσj+1).
We can now apply [45, Lemma 3.1] again; in the case of the terms arising from the
partial expansion, u1, there are now new terms corresponding to shifting the powers
τ iσj to τ iσj+1, as stated in the referred Lemma, and possibly causing logarithmic

terms if σj−i is also a pole of P̂−1. Iterating in the same manner proves the theorem

when f ∈ Hs−1,`
b (Ω)•,−. When f has an expansion modulo Hs−1,`

b (Ω)•,−, the same
argument works; [45, Lemma 3.1] gives the terms with the extended union, which
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then further generate additional terms due to P − N(P), just as the resonance
terms did. �

There is one problem with this theorem for the purposes of semilinear equations:
the resonant terms with Imσj ≥ 0 which give rise to unbounded, or at most just
bounded, terms in the expansion which become larger when one takes powers of
these, or when one iteratively applies P−1 (with the latter being the only issue if
Imσj = 0 and the pole is simple).

Concretely, we now consider an asymptotically de Sitter space (M̃, g̃). We then

blow up a point p at the future boundary X̃+, as discussed in the introduction,

to obtain the analogue of the static model of de Sitter space M = [M̃ ; p] with the
pulled back metric g, which is a b-metric near the front face (but away from the

side face); let P = �g − λ. If M̃ is actual de Sitter space, then M is the actual
static model; otherwise the metric of the asymptotically de Sitter space, frozen at
p, induces a de Sitter metric, g0, which is well defined at the front face of the blow
up M (but away from its side faces) as a b-metric. In particular, the resonances
in the ‘static region’ of any asymptotically de Sitter space are the same as in the
static model of actual de Sitter space.

On actual de Sitter space, the poles of P̂−1 are those on the hyperbolic space
in the interior of the light cone equipped by a potential, as described in [47,
Lemma 7.11], or indeed in [45, Proposition 4.2] where essentially the present nota-
tion is used.10 As shown in Corollary 7.18 of [47], converted to our notation, the
only possible poles are at

iŝ±(λ)− iN, ŝ±(λ) = −n− 1

2
±
√

(n− 1)2

4
− λ. (2.38)

In particular, when λ = m2, m > 0, then we conclude:

Lemma 2.23. For m > 0, P = �g −m2, g induced by an asymptotically de Sitter

metric as above, all poles of P̂−1 have strictly negative imaginary part.

In other words, for small mass m > 0, there are no resonances σ of the Klein-
Gordon operator with Imσ ≥ −ε0 for some ε0 > 0. Therefore, the expansion of u
as in (2.36) no longer has a constant term. Let us fix such m > 0 and ε0 > 0, which
ensures that for 0 < ε < ε0, the only term in the asymptotic expansion (2.36), when

s > 1/2+ε and f ∈ Hs−1,ε
b (Ω)•,−, is the ‘remainder’ term u′ ∈ Hs,ε

b (Ω)•,−. Here we
use that β = 1 in de Sitter space, hence on an asymptotically de Sitter space, see
[45, §4.4], in particular the second displayed equation after Equation (4.16) there
which computes β in accordance with Remark 2.2.

Being interested in finding forward solutions to (non-linear) wave equations on
asymptotically de Sitter spaces, we now define the forward solution operator

SKG : Hs−1,ε
b (Ω)•,− → Hs,ε

b (Ω)•,− (2.39)

using Theorems 2.18 and 2.21.

Remark 2.24. If M̃ ⊂ M is an asymptotically de Sitter space with global time
function t, τ = e−t is the defining function for future infinity, and the domain Ω

is such that Ω ∩ M̃ = {τ < τ0}, then SKG in fact restricts to a forward solution

10In [47, Lemma 7.11] −σ2 plays the same role as σ2 here or in [45, Proposition 4.2].
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operator on M̃ itself; indeed, if E : Hs−1,ε
b ({τ < τ0}) → Hs−1,ε

b (Ω)•,− is an exten-
sion operator, then the forward solution operator on {τ < τ0} is given by extending

f ∈ Hs−1,ε
b ({τ < τ0}) using E, finding the forward solution on Ω using SKG, and

restricting back to {τ < τ0}. The result is independent of the extension operator, as
is easily seen from standard energy estimates; see in particular [45, Proposition 3.9].

2.2. A class of semilinear equations. Let us fix m > 0 and ε0 > 0 as above
for statements about semilinear equations involving the Klein-Gordon operator; for
equations involving the wave operator only, let−ε0 be equal to the largest imaginary
part of all non-zero resonances of�g. In Theorem 2.25 and further in the subsequent
sections bundles like bT ∗Ω refer to bT ∗ΩM ; the boundaries Hj of Ω are regarded as
artificial, and do not affect the cotangent bundle or the corresponding vector fields.

Theorem 2.25. Let 0 ≤ ε < ε0 and s > 3/2 + ε. Moreover, let q : Hs,ε
b (Ω)•,− ×

Hs−1,ε
b (Ω; bT ∗Ω)•,− → Hs−1,ε

b (Ω)•,− be a continuous function with q(0, 0) = 0 such
that there exists a continuous non-decreasing function L : R≥0 → R satisfying

‖q(u, bdu)− q(v, bdv)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R,

where we use the norms corresponding to the map q. Then there is a constant
CL > 0 so that the following holds: If L(0) < CL, then for small R > 0, there

exists C > 0 such that for all f ∈ Hs−1,ε
b (Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u, bdu) (2.40)

has a unique solution u ∈ Hs,ε
b (Ω)•,−, with norm ≤ R, that depends continuously

on f .
More generally, suppose

q : Hs,ε
b (Ω)•,− ×Hs−1,ε

b (Ω; bT ∗Ω)•,− ×Hs−1,ε
b (Ω)•,− → Hs−1,ε

b (Ω)•,−

satisfies q(0, 0, 0) = 0 and

‖q(u, bdu,w)− q(u′, bdu′, w′)‖ ≤ L(R)(‖u− u′‖+ ‖w − w′‖)

provided ‖u‖ + ‖w‖, ‖u′‖ + ‖w′‖ ≤ R, where we use the norms corresponding to
the map q, for a continuous non-decreasing function L : R≥0 → R. Then there is a
constant CL > 0 so that the following holds: If L(0) < CL, then for small R > 0,

there exists C > 0 such that for all f ∈ Hs−1,ε
b (Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u, bdu,�gu) (2.41)

has a unique solution u ∈ Hs,ε
b (Ω)•,−, with ‖u‖Hs,εb

+‖�gu‖Hs−1,ε
b

≤ R, that depends

continuously on f .
Further, if ε > 0 and the non-linearity is of the form q(bdu), with

q : Hs−1,ε
b (Ω; bT ∗Ω)•,− → Hs−1,ε

b (Ω)•,−

having a small Lipschitz constant near 0, then for small R > 0, there exists C > 0
such that for all f ∈ Hs−1,ε

b (Ω)•,− with ‖f‖ ≤ C, the equation

�gu = f + q(bdu)

has a unique solution u with u − (φ ◦ t1)c = u′ ∈ Hs,ε
b (Ω)•,−, where c ∈ C, that

depends continuously on f , i.e. c ∈ C and u′ ∈ Hs,ε
b (Ω)•,− depend continuously on
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f . Here, φ ∈ C∞(R) with support in (0,∞) and t1 are as in Theorem 2.21. In fact,
the statement even holds for non-linearities q(u, bdu) provided

q : (C(φ ◦ t1)⊕Hs,ε
b (Ω))×Hs−1,ε

b (Ω; bT ∗Ω)•,− → Hs−1,ε
b (Ω)•,−

has a small Lipschitz constant near 0.

Proof. To prove the first part, let SKG be the forward solution operator for �g−m2

as in (2.39). We want to apply the Banach fixed point theorem to the operator
TKG : Hs,ε

b (Ω)•,− → Hs,ε
b (Ω)•,−, TKGu = SKG(f + q(u, bdu)).

Let CL = ‖SKG‖−1, then we have the estimate

‖TKGu− TKGv‖ ≤ ‖SKG‖L(R′)‖u− v‖ ≤ C0‖u− v‖ (2.42)

for ‖u‖, ‖v‖ ≤ R and a constant C0 < 1, granted that L(R) ≤ C0‖SKG‖−1,
which holds for small R > 0 by assumption on L. Then, TKG maps the R-ball in
Hs,ε

b (Ω)•,− into itself if ‖SKG‖(‖f‖+L(R)R) ≤ R, i.e. if ‖f‖ ≤ R(‖SKG‖−1−L(R)).
Put

C = R(‖SKG‖−1 − L(R)).

Then the existence of a unique solution u ∈ Hs,ε
b (Ω)•,− with norm ≤ R to the

PDE (2.40) with ‖f‖Hs−1,ε
b

≤ C follows from the Banach fixed theorem.

To prove the continuous dependence of u on f , suppose we are given uj ∈
Hs,ε

b (Ω)•,−, j = 1, 2, with norms ≤ R, fj ∈ Hs−1,ε
b (Ω)•,− with norms ≤ C, such

that

(�g −m2)uj = fj + q(uj ,
bduj), j = 1, 2.

Then

(�g −m2)(u1 − u2) = f1 − f2 + q(u1,
bdu1)− q(u2,

bdu2),

hence

‖u1 − u2‖ ≤ ‖SKG‖(‖f1 − f2‖+ L(R)‖u1 − u2‖),
which in turn gives

‖u1 − u2‖ ≤
‖f1 − f2‖

1− C0
.

This completes the proof of the first part.
For the more general statement, we use that one can think of �g in the non-

linearity as a first order operator. Concretely, we work on the coisotropic space

X = {u ∈ Hs,ε
b (Ω)•,− : �gu ∈ Hs−1,ε

b (Ω)•,−}

with norm

‖u‖X = ‖u‖Hs,εb (Ω)•,− + ‖�gu‖Hs−1,ε
b (Ω)•,− .

This is a Banach space: Indeed, if (uk) is a Cauchy sequence in X , then uk → u

in Hs,ε
b (Ω)•,−, and �guk → v in Hs−1,ε

b (Ω)•,−; in particular, �guk → �gu and

�guk → v in τ εHs−2
b (Ω)•,−, thus �gu = v ∈ Hs−1,ε

b (Ω)•,−, which was to be shown.

We then define TKG : X → X by TKGu = SKG(f + q(u, bdu,�gu)) and obtain the
estimate

‖TKGu− TKGv‖X = ‖TKGu− TKGv‖Hs,εb
+ ‖q(u, bdu,�gu)− q(v, bdv,�gv)‖Hs−1,ε

b

≤ (‖SKG‖+ 1)L(R)(‖u− v‖Hs,εb
+ ‖�gu−�gv‖Hs−1,ε

b
)

= (‖SKG‖+ 1)L(R)‖u− v‖X ≤ C0‖u− v‖X
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for u, v ∈ X with norms ≤ R, with C0 < 1 if R > 0 is small enough, provided we
require L(0) < CL := (‖SKG‖+ 1)−1. Then, for u ∈ X with norm ≤ R,

‖TKGu‖X ≤ (‖SKG‖+ 1)(‖f‖Hs−1,ε
b

+ L(R)R) ≤ R

if ‖f‖ ≤ C, C > 0 small. Thus, TKG is a contraction on X , and we obtain the
solvability of equation (2.41). The continuous dependence of the solution on the
forcing term f is proved as above.

For the third part, we use the forward solution operator S : Hs−1,ε
b (Ω)•,− → Y :=

C⊕Hs,ε
b (Ω)•,− for �g; note that Y is a Banach space with norm ‖(c, u′)‖Y = |c|+

‖u′‖Hs,εb (Ω)•,− . (See §2.3 for related and more general statements.) We will apply

the Banach fixed point theorem to the operator T : Y → Y, Tu = S(f + q(u, bdu)):

We again have an estimate like (2.42), since bdu ∈ Hs−1,ε
b (Ω; bT ∗Ω)•,− for u ∈ Y,

and for small R > 0, T maps the R-ball around 0 in Y into itself if the norm of f
in Hs−1,ε

b (Ω)•,− is small, as above. The continuous dependence of the solution on
the forcing term is proved as above. �

The following basic statement ensures that there are interesting non-linearities
q that satisfy the requirements of the theorem; see also §2.3.

Lemma 2.26. Let s > n/2, then Hs
b(Rn+) is an algebra. In particular, Hs

b(N)
is an algebra on any compact n-dimensional manifold N with boundary which is
equipped with a b-metric.

Proof. The first statement is the special case k = 0 of Lemma 4.4 after a logarithmic
change of coordinates, which gives an isomorphism Hs

b(Rn+) ∼= Hs(Rn); the lemma
is well-known in this case, see e.g. [41, Chapter 13.3]. The second statement follows
by localization and from the coordinate invariance of Hs

b. �

More and related statements will be given in §4.2.

Remark 2.27. The algebra property of Hs
b(N) for s > dim(N)/2 is a special case

of the fact that for any F ∈ C∞(R), for real valued u, or F ∈ C∞(C), for complex
valued u, with F (0) = 0, the composition map Hs

b(N) 3 u 7→ F ◦ u ∈ Hs
b(N)

is well-defined and continuous, see for example [41, Chapter 13.10]. In the real
valued u case, if F (0) 6= 0, then writing F (t) = F (0) + tF1(t) shows that F ◦ u ∈
C + Hs

b(N). If r > 0, then Hs,r
b (N) ⊂ Hs

b(N) shows that F1(u) ∈ Hs
b(N), thus

F ◦ u = F (0) + uF1(u) ∈ C + Hs,r
b (N); and if F vanishes to order k at 0 then

F (t) = tkFk(t), so F ◦u = uk(Fk ◦u), and the multiplicative properties of Hs,r
b (N)

show that F ◦ u ∈ Hs,kr
b (N). The argument is analogous for complex valued u,

indeed for RL-valued u, using Taylor’s theorem on F at the origin.

As a corollary we have

Corollary 2.28. If s > n/2, the hypotheses of Theorem 2.25 hold for non-linearities
q(u) = cup, p ≥ 2 integer, c ∈ C, as well as q(u) = q0u

p, q0 ∈ Hs
b(M).

If s− 1 > n/2, the hypotheses of Theorem 2.25 hold for non-linearities q

q(u, bdu) =
∑

2≤j+|α|≤d

qjαu
j
∏
k≤|α|

Xα,ku, (2.43)

qj,α ∈ C +Hs
b(M), Xα,k ∈ Vb(M).
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Thus, in either case, for m > 0, 0 ≤ ε < ε0, s > 3/2 + ε and for small R > 0,

there exists C > 0 such that for all f ∈ Hs−1,ε
b (Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u, bdu) (2.44)

has a unique solution u ∈ Hs,ε
b (Ω)•,−, with norm ≤ R, that depends continuously

on f .
The analogous conclusion also holds for �gu = f + q(u, bdu) provided ε > 0 and

q(u, bdu) =
∑

2≤j+|α|≤d,|α|≥1

qjαu
j
∏
k≤|α|

Xα,ku, (2.45)

with the solution being in C(φ ◦ t1) ⊕Hs,ε
b (Ω)•,−, φ ◦ t1 identically 1 near X ∩ Ω,

vanishing near H1.

Remark 2.29. For such polynomial non-linearities, the Lipschitz constant L(R) in
the statement of Theorem 2.25 satisfies L(0) = 0.

Remark 2.30. In this paper, we do not prove that one obtains smooth (i.e. conormal)
solutions if the forcing term is smooth (conormal); see [20] for such a result in the
quasilinear setting.

Since in Theorem 2.25 we allow q to depend on �gu, we can in particular solve
certain quasilinear equations if s > max(1/2+ε, n/2+1): Suppose for example that
q′ : Hs,ε

b (Ω)•,− → Hs−1
b (Ω)•,− is continuous with ‖q′(u)−q′(v)‖ ≤ L′(R)‖u−v‖ for

u, v ∈ Hs,ε
b (Ω)•,− with norms ≤ R, where L′ : R≥0 → R is locally bounded, then

we can solve the equation

(1 + q′(u))(�g −m2)u = f ∈ Hs−1,ε
b (Ω)•,−

provided the norm of f is small. Indeed, put q(u,w) = −q′(u)(w − m2u), then
q(u,�gu) = −q′(u)(�g −m2)u and the PDE becomes

(�g −m2)u = f + q(u,�gu),

which is solvable by Theorem 2.25, since, with ‖ · ‖ = ‖ · ‖Hs−1,ε
b

, for u, u′ ∈
Hs,ε

b (Ω)•,−, w,w′ ∈ Hs−1,ε
b (Ω)•,− with ‖u‖+ ‖w‖, ‖u′‖+ ‖w′‖ ≤ R, we have

‖q(u,w)− q(u′, w′)‖
≤ ‖q′(u)− q′(u′)‖‖w −m2u‖+ ‖q′(u′)‖‖w − w′ −m2(u− u′)‖
≤ L′(R)((1 +m2)R+m2R)‖u− u′‖+ L′(R)R‖w − w′‖
≤ L(R)(‖u− u′‖+ ‖w − w′‖)

with L(R)→ 0 as R→ 0.
By a similar argument, one can also allow q′ to depend on bdu and �gu.

Remark 2.31. Recalling the discussion following Theorem 2.21, let us emphasize

the importance of P̂ (σ)−1 having no poles in the closed upper half plane by looking
at the explicit example of the operator P = ∂x in 1 dimension. In terms of τ = e−x,

we have P = −τ∂τ , thus P̂ (σ) = −iσ, considered as an operator on the boundary

(which is a single point) at +∞ of the radial compactification of R; hence P̂ (σ)−1

has a simple pole at σ = 0, corresponding to constants being annihilated by P. Now
suppose we want to find a forward solution of u′ = u2 + f , where f ∈ C∞c (R). In
the first step of the iterative procedure described above, we will obtain a constant
term; the next step gives a term that is linear in x (x being the antiderivative of
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1), i.e. in log τ , then we get quadratic terms and so on, therefore the iteration does
not converge (for general f), which is of course to be expected, since solutions to
u′ = u2 +f in general blow up in finite time. On the other hand, if P = ∂x+1, then

P̂ (σ)−1 = (1− iσ)−1, which has a simple pole at σ = −i, which means that forward
solutions u of u′ + u = u2 + f with f as above can be constructed iteratively, and
the first term of the expansion of u at +∞ is cτ i(−i) = ce−x, c ∈ C.

2.3. Semilinear equations with polynomial non-linearity. With polynomial
non-linearities as in (2.43), we can use the second part of Theorem 2.21 to obtain an
asymptotic expansion for the solution; see Remark 2.38 and, in a slightly different
setting, §3.2 for details on this. Here, we instead define a space that encodes
asymptotic expansions directly in such a way that we can run a fixed point argument
directly.

To describe the exponents appearing in the expansion, we use index sets as
introduced by Melrose, see [35].

Definition 2.32.

(1) An index set is a discrete subset E of C× N0 satisfying the conditions
(i) (z, k) ∈ E ⇒ (z, j) ∈ E for 0 ≤ j ≤ k, and
(ii) If (zj , kj) ∈ E , |zj |+ kj →∞ ⇒ Re zj →∞.

(2) For any index set E , define

wE (z) =

{
max{k ∈ N0 : (z, k) ∈ E }, (z, 0) ∈ E

−∞ otherwise.

(3) For two index sets E ,E ′, define their extended union by

E∪E ′ = E ∪ E ′ ∪ {(z, l + l′ + 1): (z, l) ∈ E , (z, l′) ∈ E ′}
and their product by E E ′ = {(z + z′, l + l′) : (z, l) ∈ E , (z′, l′) ∈ E ′}. We
shall write E k for the k-fold product of E with itself.

(4) A positive index set is an index set E with the property that Re z > 0 for
all z ∈ C with (z, 0) ∈ E .

Remark 2.33. To ensure that the class of polyhomogeneous conormal distributions
with a given index set E is invariantly defined, Melrose [35] in addition requires
that (z, k) ∈ E implies (z + j, k) ∈ E for all j ∈ N0. In particular, this is a natural
condition in non dilation-invariant settings as in Theorem 2.21. A convenient way
to enforce this condition in all relevant situations is to enlarge the index set cor-
responding to the poles of the inverse of the normal operator accordingly; see the
statement of Theorem 2.37.

Observe though that this condition is not needed in the dilation-invariant cases
of the solvability statements below.

Since we want to capture the asymptotic behavior of solutions near X ∩ Ω, we
fix a cutoff φ ∈ C∞(R) with support in (0,∞) such that φ ◦ t1 ≡ 1 near X ∩Ω (we
already used such a cutoff in Theorem 2.21), and make the following definition.

Definition 2.34. Let E be an index set, and let s, r ∈ R. For ε > 0 with the
property that there is no (z, 0) ∈ E with Re z = ε, define the space X s,r,εE to consist
of all tempered distributions v on M with support in Ω̄ such that

v′ = v −
∑

(z,k)∈E
Re z<ε

τz(log τ)k(φ ◦ t1)vz,k ∈ Hs,ε
b (Ω)•,− (2.46)
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for certain vz,k ∈ Hr(X ∩ Ω).

Observe that the terms vz,k in the expansion (2.46) are uniquely determined by
v, since ε > Re z for all z ∈ C for which (z, 0) appears in the sum (2.46); then also
v′ are uniquely determined by v. Therefore, we can use the isomorphism

X s,r,εE
∼=
( ⊕

(z,k)∈E
Re z<ε

Hr(X ∩ Ω)
)
⊕Hs,ε

b (Ω)•,−

to give X s,r,εE the structure of a Banach space.

Lemma 2.35. Let P,F be positive index sets, and let ε > 0. Define E ′0 = P∪F
and recursively E ′N+1 = P∪

(
F ∪

⋃
k≥2(E ′N )k

)
; put EN = {(z, k) ∈ E ′N : 0 < Re z ≤

ε}. Then there exists N0 ∈ N such that EN = EN0
for all N ≥ N0; moreover, the

limiting index set E∞(P,F , ε) := EN0 is finite.

Proof. Writing π1 : C× N0 → C for the projection, one has

π1E1 =
{
z : 0 < Re z ≤ ε, z =

k∑
j=1

zj : k ≥ 1, zj ∈ π1E0

}
,

and it is then clear that π1EN = π1E1 for all N ≥ 1. Since E0 is a positive index
set, there exists δ > 0 such that Re z ≥ δ for all z ∈ E0; hence π1E∞ = π1E1 is
finite.

To finish the proof, we need to show that for all z ∈ C, the number wEN (z)
stabilizes. Defining p(z) = wP(z)+1 for z ∈ π1P and p(z) = 0 otherwise, we have
a recursion relation

wEN (z) = p(z) + max

{
wF (z), max

z=z1+···+zk
k≥2,zj∈π1E∞

{ k∑
j=1

wEN−1
(zj)

}}
, N ≥ 1. (2.47)

For each zj appearing in the sum, we have Im zj ≤ Im z − δ. Thus, we can use
(2.47) with z replaced by such zj and N replaced by N − 1 to express wEN (z) in
terms of a finite number of p(zα) and wF (zα), Im zα ≤ Im z, and a finite number
of wEN−2

(zβ), zβ ≤ Im z − 2δ. Continuing in this way, after N0 = b(Im z)/δc + 1
steps we have expressed wEN (z) in terms of a finite number of p(zγ) and wF (zγ),
Im zγ ≤ Im z, only, and this expression is independent of N as long as N ≥ N0. �

Definition 2.36. Let P,F be positive index sets, and let ε > 0 be such that
there is no (z, 0) ∈ E∞(P,F , ε) with Re z = ε, with E∞(P,F , ε) as defined in the
statement of Lemma 2.35. Then for s, r ∈ R, define the Banach spaces

X s,r,εP,F := X s,r,εE∞(P,F ,ε),

0X s,r,εP,F := X s,r,εE∞(P,F ,ε)∪{(0,0)}.

Note that the spaces (0)X s,s,εP,F are Banach algebras for s > n/2 in the sense

that there is a constant C > 0 such that ‖uv‖ ≤ C‖u‖‖v‖ for all u, v ∈ (0)X s,s,εP,F .

Moreover, X s,s,εP,F interacts well with the forward solution operator SKG of �g −m2

in the sense that u ∈ X s,s,εP,F , k ≥ 2, with P being related to the poles of P̂(σ)−1,

where P = �g − m2, as will be made precise in the statement of Theorem 2.37
below, implies SKG(uk) ∈ X s,s,εP,F .

We can now state the result giving an asymptotic expansion of the solution of
(�g −m2)u = f + q(u, bdu) for polynomial non-linearities q.
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Theorem 2.37. Let ε > 0, s > max(3/2+ε, n/2+1), and q as in (2.43). Moreover,

if σj ∈ C are the poles of the inverse family P̂(σ)−1, where P = �g−m2, and mj+1

is the order of the pole of P̂(σ)−1 at σj, let P = {(iσj +k, `) : 0 ≤ ` ≤ mj , k ∈ N0}.
Assume that ε 6= Re(iσj) for all j, and that moreover m > 0, which implies that P
is a positive index set; see Lemma 2.23. Finally, let F be a positive index set.

Then for small enough R > 0, there exists C > 0 such that for all f ∈ X s−1,s−1,ε
F

with norm ≤ C, the equation

(�g −m2)u = f + q(u, bdu)

has a unique solution u ∈ X s,s,εP,F , with norm ≤ R, that depends continuously on f ;

in particular, u has an asymptotic expansion with remainder term in Hs,ε
b (Ω)•,−.

Further, if the polynomial non-linearity is of the form q(bdu), then for small

R > 0, there exists C > 0 such that for all f ∈ X s−1,s−1,ε
F with norm ≤ C, the

equation

�gu = f + q(bdu)

has a unique solution u ∈ 0X s,s,εP,F , with norm ≤ R, that depends continuously on f .

Proof. By Theorem 2.21 and the definition of the space X = X s,s,εP,F , we have a

forward solution operator SKG : X → X of �g − m2. Thus, we can apply the
Banach fixed point theorem to the operator T : X → X , Tu = SKG(f + q(u, bdu)),
where we note that q : X → X , which follows from the definition of X and the
fact that q is a polynomial only involving terms of the form uj

∏
k≤|α|Xα,ku for

j+ |α| ≥ 2. This condition on q also ensures that T is a contraction on a sufficiently
small ball in X+.

For the second part, writing 0X = 0X s,s,εP,F , we have a forward solution operator

S : X → 0X . But q(bdu) : 0X → X , since bd annihilates constants, and we can thus
finish the proof as above.

The continuous dependence of the solution on the right hand side is proved as
in the proof of Theorem 2.25. �

Note that ε > 0 is (almost) unrestricted here, and thus we can get arbitrarily
many terms in the asymptotic expansion if we work with arbitrarily high Sobolev
spaces.

The condition that the polynomial q(u, bdu) does not involve a linear term is
very important as it prevents logarithmic terms from stacking up in the iterative
process used to solve the equation. Also, adding a term νu to q(u, bdu) effectively
changes the Klein-Gordon parameter from −m2 to ν −m2, which will change the

location of the poles of P̂ (σ)−1; in the worst case, if ν > m2, this would even
cause a pole to move to Imσ > 0, corresponding to a resonant state that blows up
exponentially in time. Lastly, let us remark that the form (2.45) of the non-linearity
is not sufficient to obtain an expansion beyond leading order, since in the iterative
procedure, logarithmic terms would stack up in the next-to-leading order term of
the expansion.

Remark 2.38. Instead of working with the spaces (0)X s,s,εP,F , which have the expan-
sion built in, one could alternatively first prove the existence of a solution u in a
(slightly) decaying b-Sobolev space, which then allows one to regard the polynomial
non-linearity as a perturbation of the linear operator �g − m2; then an iterative
application of the dilation-invariant result [45, Lemma 3.1] gives an expansion of
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the solution to the non-linear equation. We will follow this idea in the discussion
of polynomial non-linearities on asymptotically Kerr-de Sitter spaces in the next
section.

3. Kerr-de Sitter space

In this section we analyze semilinear waves on Kerr-de Sitter space, and more
generally on spaces with normally hyperbolic trapping, discussed below. The effect
of the latter is a loss of derivatives for the linear estimates in general, but we show
that at least derivatives with principal symbol vanishing on the trapped set are
well-behaved. We then use these results to solve semilinear equations in the rest of
the section.

3.1. Linear Fredholm theory. The linear theorem in the case of normally hy-
perbolic trapping for dilation-invariant operators P = �g − λ is the following:

Theorem 3.1. (See [45, Theorem 1.4].) Let M be a manifold with a b-metric g
as above, with boundary X, and let τ be the boundary defining function, P as in
(2.15). If g has normally hyperbolic trapping, t1,Ω are as above, φ ∈ C∞(R) as in
Theorem 2.21, then there exist C ′ > 0, κ > 0, β ∈ R such that for 0 ≤ ` < C ′

and s > 1/2 + β`, s ≥ 0, solutions u ∈ H−∞,−∞b (Ω)•,− of (�g − λ)u = f with

f ∈ Hs−1+κ,`
b (Ω)•,− satisfy that for some ajκ ∈ C∞(Ω∩X) (which are the resonant

states) and σj ∈ C (which are the resonances),

u′ = u−
∑
j

∑
κ≤mj

τ iσj (log τ)κ(φ ◦ t1)ajκ ∈ Hs,`
b (Ω)•,−. (3.1)

Here the (semi)norms of both ajκ in C∞(Ω∩X) and u′ in Hs,`
b (Ω)•,− are bounded

by a constant times that of f in Hs−1+κ,`
b (Ω)•,−. The same conclusion holds for

sufficiently small perturbations of the metric as a symmetric bilinear form on bTM
provided the trapping is normally hyperbolic.

In order to state the analogue of Theorems 2.18-2.21 when one has normally
hyperbolic trapping at Γ ⊂ bS∗XM , we will employ non-trapping estimates in cer-
tain so-called normally isotropic functions spaces, established in [21]. To put our
problem into the context of [21], we need some notation in addition to that in §2: In
the setting of §2, as leading up to Theorem 2.18, see the discussion above Figure 3,
we define

(1) the forward trapped set in Σ+ as the set of points in ΣΩ ∩ (Σ+ \ L+) the
bicharacteristics through which do not flow (within ΣΩ) to bS∗H1

M ∪L+ in

the forward direction (i.e. they do not reach bS∗H1
M in finite time and they

do not tend to L+),
(2) the backward trapped set in Σ+ as the set of points in ΣΩ ∩ (Σ+ \ L+) the

bicharacteristics through which do not flow to bS∗H2
M∪L+ in the backward

direction,
(3) the forward trapped set in Σ− as the set of points in ΣΩ ∩ (Σ− \ L−) the

bicharacteristics through which do not flow to bS∗H2
M ∪L− in the forward

direction,
(4) the backward trapped set in Σ− as the set of points in ΣΩ ∩ (Σ− \ L−) the

bicharacteristics through which do not flow to bS∗H1
M∪L− in the backward

direction.
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The forward trapped set Γ− is the union of the forward trapped sets in Σ±, and
analogously for the backward trapped set Γ+. The trapped set Γ is the intersection
of the forward and backward trapped sets. We say that P is normally hyperbol-
ically trapping, or has normally hyperbolic trapping, if Γ ⊂ bS∗XM is b-normally
hyperbolic in the sense discussed in [21, §3.2].

Following [21], we introduce replacements for the b-Sobolev spaces used in §2
which are called normally isotropic at Γ; these spaces Hsb,Γ, see also (3.2), and

dual spaces H∗,−sb,Γ are just the standard b-Sobolev spaces Hs
b(M), resp. H−sb (M),

microlocally away from Γ.
Concretely, suppose Γ is locally (in a neighborhood U0 of Γ) defined by τ = 0,

φ+ = φ− = 0, p̂ = 0 in bS∗M , with dτ, dφ+, dφ−, dp̂, p̂ = ρ̃mp, linearly independent
at Γ. Here one should think of φ− as being a defining function of Γ± ∩ Σ± (with
the either the top or the bottom choice of sign in both ±) within bS∗M , and φ+

of Γ± ∩ Σ∓ within bS∗XM . Then taking any Q± ∈ Ψ0
b(M) with principal symbol

φ±, P̂ ∈ Ψ0
b(M) with principal symbol p̂, and Q0 ∈ Ψ0

b(M) elliptic on U c0 with
WF′b(Q0) ∩ Γ = ∅, we define the (global) b-normally isotropic spaces at Γ of order
s, Hsb,Γ = Hsb,Γ(M), by the norm

‖u‖2Hsb,Γ = ‖Q0u‖2Hsb + ‖Q+u‖2Hsb + ‖Q−u‖2Hsb + ‖τ1/2u‖2Hsb + ‖P̂ u‖2Hsb + ‖u‖2
H
s−1/2
b

,

(3.2)

and let H∗,−sb,Γ be the dual space relative to L2 which is

Q0H
−s
b +Q+H

−s
b +Q−H

−s
b + τ1/2H−sb + P̂H−sb +H

−s+1/2
b .

In particular,

Hs
b(M) ⊂ Hsb,Γ(M) ⊂ Hs−1/2

b (M) ∩Hs,−1/2
b (M),

H
s+1/2
b (M) +H

s,1/2
b (M) ⊂ H∗,sb,Γ(M) ⊂ Hs

b(M).
(3.3)

Microlocally away from Γ, Hsb,Γ(M) is indeed just the standard Hs
b space while

H∗,−sb,Γ is H−sb since at least one of Q0, Q±, τ , P̂ is elliptic; the space is independent

of the choice of Q0 satisfying the criteria since at least one of Q±, τ , P̂ is elliptic on
U0 \ Γ. Moreover, every operator in Ψk

b(M) defines a continuous map Hsb,Γ(M)→
Hs−kb,Γ (M) as for A ∈ Ψk

b(M), Q+Au = AQ+u+ [Q+, A]u and [Q+, A] ∈ Ψk−1
b (M);

the analogous statement also holds for the dual spaces.
The non-trapping estimates then are:

Proposition 3.2. (See [21, Theorem 3].) With P,Hsb,Γ,H
∗,s
b,Γ as above, for any

neighborhood U of Γ and for any N there exist B0 ∈ Ψ0
b(M) elliptic at Γ and

B1, B2 ∈ Ψ0
b(M) with WF′b(Bj) ⊂ U , j = 0, 1, 2, WF′b(B2) ∩ Γ+ = ∅ and C > 0

such that

‖B0u‖Hsb,Γ ≤ ‖B1Pu‖H∗,s−m+1
b,Γ

+ ‖B2u‖Hsb + C‖u‖H−Nb
, (3.4)

i.e. if all the functions on the right hand side are in the indicated spaces: B1Pu ∈
H∗,s−m+1

b,Γ , etc., then B0u ∈ Hsb,Γ, and the inequality holds.

The same conclusion also holds if we assume WF′b(B2) ∩ Γ− = ∅ instead of
WF′b(B2) ∩ Γ+ = ∅.

Finally, if r < 0, then, with WF′b(B2) ∩ Γ+ = ∅, (3.4) becomes

‖B0u‖Hs,rb
≤ ‖B1Pu‖Hs−m+1,r

b
+ ‖B2u‖Hs,rb

+ C‖u‖H−N,rb
, (3.5)
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while if r > 0, then, with WF′b(B2) ∩ Γ− = ∅,

‖B0u‖Hs,rb
≤ ‖B1Pu‖Hs−m+1,r

b
+ ‖B2u‖Hs,rb

+ C‖u‖H−N,rb
, (3.6)

Remark 3.3. Note that the weighted versions (3.5)-(3.6) use standard weighted
b-Sobolev spaces.

Next, if Ω ⊂M , as in §2, is such that bS∗HjΩ ∩ Γ = ∅, j = 1, 2, then spaces such
as

H∗,sb,Γ(Ω)•,−

are not only well-defined, but are standard Hs
b-spaces near the Hj . The inclusions

analogous to (3.3) also hold for the corresponding spaces over Ω.

Notice that elements of Ψp
b(M) only map Hsb,Γ(M) to H∗,s−p−1

b,Γ (M), with the

issues being at Γ corresponding to (3.3) (thus there is no distinction between the
behavior on the Ω vs. the M -based spaces). However, if A ∈ Ψp

b(M) has principal
symbol vanishing on Γ then

A : Hsb,Γ(M)→ Hs−p
b (M), A : Hs

b(M)→ H∗,s−pb,Γ (M), (3.7)

as A can be expressed as A+Q+ +A−Q−+A∂τ + ÂP̂ +A0Q0 +R, A±, A0, A∂ , Â ∈
Ψ0

b(M), R ∈ Ψ−1
b (M), with the second mapping property following by dual-

ity as Ψp
b(M) is closed under adjoints, and the principal symbol of the adjoint

vanishes wherever that of the original operator does. Correspondingly, if Aj ∈
Ψ
mj
b (M), j = 1, 2, have principal symbol vanishing at Γ then A1A2u : Hsb,Γ(M)→
H∗,s−m1−m2

b,Γ (M).
We consider P as a map

P : Hsb,Γ(Ω)•,− → Hs−2
b,Γ (Ω)•,−,

and let

YsΓ = H∗,sb,Γ(Ω)•,−, X sΓ = {u ∈ Hsb,Γ(Ω)•,− : Pu ∈ Ys−1
Γ }.

While X sΓ is complete,11 it is a slightly exotic space, unlike X s in Theorem 2.18
which is a coisotropic space depending on Σ (and thus the principal symbol of P)

only, since elements of Ψp
b(M) only map Hsb,Γ(M) to H∗,s−p−1

b,Γ (M) as remarked

earlier. Correspondingly, X sΓ actually depends on P modulo Ψ0
b(M) plus first order

pseudodifferential operators of the form A1A2, A1 ∈ Ψ0
b(M), A2 ∈ Ψ1

b(M), both
with principal symbol vanishing at Γ – here the operators should have Schwartz
kernels supported away from the Hj ; near Hj (but away from Γ), one should say

P matters modulo Diff1
b(M), i.e. only the principal symbol of P matters.

We then have:

11 Also, elements of C∞(Ω) vanishing to infinite order at H1 and X ∩ Ω are dense in X sΓ.

Indeed, in view of [34, Lemma A.3] the only possible issue is at Γ, thus the distinction between
Ω and M may be dropped. To complete the argument, one proceeds as in the quoted lemma,

using the ellipticity of σ at Γ, letting Λn ∈ Ψ−∞b (M), n ∈ N, be a quantization of φ(σ/n)a,

a ∈ C∞(bS∗M) supported in a neighborhood of Γ, identically 1 near Γ, φ ∈ C∞c (R), noting

that [Λn,P] ∈ Ψ−∞b (M) is uniformly bounded in Ψ0
b(M) + τΨ1

b(M) in view of (2.2), and thus

for u ∈ X sΓ, PΛnu = ΛnPu + [P,Λn]u → Pu in H∗,s−1
b,Γ since [P,Λn] is uniformly bounded

H
s−1/2
b ∩Hs,−1/2

b → H
s−1/2
b ∩Hs−1,1/2

b , and thus Hsb,Γ →H
∗,s−1
b,Γ by (3.3).
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Theorem 3.4. Suppose s ≥ 3/2, and that the inverse of the Mellin transformed

normal operator P̂(σ)−1 has no poles with Imσ ≥ 0. Then

P : X sΓ → Ys−1
Γ

is invertible, giving the forward solution operator.

Proof. First, with r < −1/2, thus with dual spaces having weight r̃ > 1/2, The-
orem 2.18 holds without changes as Proposition 3.2 gives non-trapping estimates
in this case on the standard b-Sobolev spaces. In particular, if r � 0, KerP
is trivial even on H

s−1/2,r
b (Ω)•,−, hence certainly on its subspace Hsb,Γ(Ω)•,−.

Similarly, KerP∗ is trivial on Hs,r̃
b (Ω)−,•, r̃ � 0, and thus with r < −1/2, for

f ∈ H−1,r
b (Ω)•,− there exists u ∈ H0,r

b (Ω)•,− with Pu = f . Further, making use of

the non-trapping estimates in Proposition 3.2, if r < 0 and f ∈ Hs−1,r
b (Ω)•,−, then

the argument of Theorem 2.21 improves this statement to u ∈ Hs,r
b (Ω)•,−.

In particular, if f ∈ H∗,s−1
b,Γ (Ω)•,− ⊂ Hs−1,0

b (Ω)•,−, then u ∈ Hs,r
b (Ω)•,− for

r < 0. This can be improved using the argument of Theorem 2.21. Indeed, with
−1 ≤ r < 0 arbitrary, P −N(P) ∈ τDiff2

b(M) implies as in (2.37) that

N(P)u = f − f̃ , f̃ = (P −N(P))u ∈ Hs−2,r+1
b (Ω)•,−. (3.8)

But f ∈ H∗,s−1
b,Γ (Ω)•,− ⊂ Hs−1,0

b (Ω)•,−, hence the right hand side is inHs−2,0
b (Ω)•,−;

thus the dilation-invariant result, [45, Lemma 3.1], gives u ∈ Hs−1,0
b (Ω)•,−. This

can then be improved further since in view of Pu = f ∈ H∗,s−1
b,Γ (Ω)•,−, propaga-

tion of singularities, most crucially Proposition 3.2, yields u ∈ Hsb,Γ(Ω)•,−. This
completes the proof of the theorem. �

This result shows the importance of controlling the resonances in Imσ ≥ 0.
For the wave operator on exact Kerr-de Sitter space, Dyatlov’s analysis [14, 13]
shows that the zero resonance of �g is the only one in Imσ ≥ 0, the residue at 0
having constant functions as its range. For the Klein-Gordon operator �g −m2,
the statement is even better from our perspective as there are no resonances in
Imσ ≥ 0 for m > 0 small. This is pointed out in [14]; we give a direct proof based
on perturbation theory.

Lemma 3.5. Let P = �g on exact Kerr-de Sitter space. Then for small m > 0,

all poles of (P̂(σ)−m2)−1 have strictly negative imaginary part.

Proof. By perturbation theory, the inverse family of P̂(σ)− λ has a simple pole at
σ(λ) coming with a single resonant state φ(λ) and a dual state ψ(λ), with analytic
dependence on λ, where σ(0) = 0, φ(0) ≡ 1, ψ(0) = 1{µ>0}, where we use the

notation of [45, §6]. Differentiating P̂(σ(λ))φ(λ) = λφ(λ) with respect to λ and
evaluating at λ = 0 gives

σ′(0)P̂ ′(0)φ(0) + P̂(0)φ′(0) = φ(0).

Pairing this with ψ(0), which is orthogonal to Ran P̂(0), yields

σ′(0) =
〈ψ(0), φ(0)〉

〈ψ(0), P̂ ′(0)φ(0)〉
,

Since φ(0) = 1 and ψ(0) = 1{µ>0}, this implies

sgn Imσ′(0) = − sgn Im〈ψ(0), P̂ ′(0)φ(0)〉. (3.9)
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To find the latter quantity, we note that the only terms in the general form of
the d’Alembertian that could possibly yield a non-zero contribution here are terms
involving τDτ and either Dr, Dφ or Dθ. Concretely, using the explicit form of the

dual metric G, see Equation (6.1) in [45], in the new coordinates t = t̃+ h(r), φ =

φ̃+ P (r), τ = e−t, with h(r), P (r) as in [45, Equation (6.5)],

G = −ρ−2

(
µ̃(∂r − h′(r)τ∂τ + P ′(r)∂φ)2 +

(1 + γ)2

κ sin2 θ
(−a sin2 θτ∂τ + ∂φ)2 + κ∂2

θ

− (1 + γ)2

µ̃
(−(r2 + a2)τ∂τ + a∂φ)2

)
,

and its determinant |detG|1/2 = (1+γ)2ρ−2(sin θ)−1, we see that the only non-zero
contribution to the right hand side of (3.9) comes from the term

(1 + γ)2ρ−2(sin θ)−1Dr

(
(1 + γ)−2ρ2 sin θρ−2µ̃h′(r)

)
τDτ

= −iρ−2∂r(µ̃h
′(r))τDτ

of the d’Alembertian. Mellin transforming this amounts to replacing τDτ by σ;
then differentiating the result with respect to σ gives

〈ψ(0), P̂ ′(0)φ(0)〉 = −i
∫
µ̃>0

ρ−2∂r(µ̃h
′(r)) dvol

= −i
∫ π

0

∫ 2π

0

∫ r+

r−

(1 + γ)−2 sin θ ∂r(µ̃h
′(r)) dr dφ dθ

= − 4πi

(1 + γ)2
[(µ̃h′(r))|r+ − (µ̃h′(r))|r− ]. (3.10)

Since the singular part of h′(r) at r± (which are the roots of µ̃) is h′(r) = ∓ 1+γ
µ̃ (r2+

a2), the right hand side of (3.10) is positive up to a factor of i; thus Imσ′(0) < 0
as claimed. �

In other words, for small mass m > 0, there are no resonances σ of the Klein-
Gordon operator with Imσ ≥ −ε0 for some ε0 > 0. Therefore, the expansion of
u as in (3.1) no longer has a constant term. Correspondingly, for ε ∈ R, ε ≤ ε0,
Theorem 3.1 gives the forward solution operator

SKG,I : Hs−1+κ,ε
b (Ω)•,− → Hs,ε

b (Ω)•,− (3.11)

in the dilation-invariant case.
Further, Theorem 3.4 is applicable and gives the forward solution operator

SKG : H∗,s−1
b,Γ (Ω)•,− → Hsb,Γ(Ω)•,− (3.12)

on the normally isotropic spaces.
For the semilinear application, for non-linearities without derivatives, it is im-

portant that the loss of derivatives κ in the space Hs−1+κ,ε
b is ≤ 1. This is not

explicitly specified in the paper of Wunsch and Zworski [50], though their proof
directly (see especially the part before Section 4.4 of [50]) gives that, for small
ε > 0, κ can be taken proportional to ε, and there is ε′0 > 0 such that κ ∈ (0, 1] for
ε < ε′0. We reduce ε0 > 0 above if needed so that ε0 ≤ ε′0; then (3.11) holds with
κ = cε ∈ (0, 1] if ε < ε0, where c > 0.

In fact, one does not need to go through the proof of [50], for the Phragmén-
Lindelöf theorem allows one to obtain the same conclusion from their final result:
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Lemma 3.6. Suppose h : U → E is a holomorphic function on the half strip U =
{z ∈ C : 0 ≤ Im z ≤ c,Re z ≥ 1} which is continuous on U , with values in a Banach
space E, and suppose moreover that there are constants A,C > 0 such that

‖h(z)‖ ≤ C|z|k1 , Im z = 0,

‖h(z)‖ ≤ C|z|k2 , Im z = c,

‖h(z)‖ ≤ C exp(A|z|), z ∈ U.

Then there is a constant C ′ > 0 such that

‖h(z)‖ ≤ C ′|z|k1(1− Im z
c )+k2

Im z
c

for all z ∈ U .

Proof. Consider the function f(z) = zk1−i k2−k1
c z, which is holomorphic on a neigh-

borhood of U . Writing z ∈ U as z = x+ iy with x, y ∈ R, one has

|f(z)| = |z|k1 exp

(
Im

(
k2 − k1

c
z log z

))
= |z|k1 |z|

k2−k1
c Im z exp

(
k2 − k1

c
x arctan(y/x)

)
.

Noting that |x arctan(y/x)| = y|(x/y) arctan(y/x)| is bounded by c for all x+ iy ∈
U , we conclude that

e−|k2−k1||z|k1(1− Im z
c )+k2

Im z
c ≤ |f(z)| ≤ e|k2−k1||z|k1(1− Im z

c )+k2
Im z
c .

Therefore, f(z)−1h(z) is bounded by a constant C ′ on ∂U , and satisfies an expo-
nential bound for z ∈ U . By the Phragmén-Lindelöf theorem, ‖f(z)−1h(z)‖E ≤ C ′,
and the claim follows. �

Since for any δ > 0, we can bound | log z| ≤ Cδ|z|δ for |Re z| ≥ 1, we obtain that

the inverse family R(σ) = P̂(σ)−1 of the normal operator of �g on (asymptotically)
Kerr-de Sitter spaces as in [45], here in the setting of artificial boundaries as opposed
to complex absorption, satisfies a bound

‖R(σ)‖|σ|−(s−1)Hs−1

|σ|−1 (X∩Ω)→|σ|−sHs
|σ|−1 (X∩Ω) ≤ Cδ|σ|

−1+κ′+δ (3.13)

for any δ > 0, Imσ ≥ −cκ′ and |Reσ| large. Therefore, as mentioned above, by the
proof of Theorem 3.1, i.e. [45, Theorem 1.4], in particular using [45, Lemma 3.1],
we can assume κ ∈ (0, 1] in the dilation-invariant result, Theorem 3.1, if we take
C ′ > 0 small enough, i.e. if we do not go too far into the lower half plane Imσ < 0,
which amounts to only taking terms in the expansion (3.1) which decay to at most
some fixed order, which we may assume to be less than − Imσj for all resonances
σj .

3.2. A class of semilinear equations; equations with polynomial non-
linearity. In the following semilinear applications, let us fix κ ∈ (0, 1] and ε0 as
explained before Lemma 3.6, so that we have the forward solution operator SKG,I

as in (3.11).
We then have statements paralleling Theorems 2.25, 2.37 and Corollary 2.28,

namely Theorems 3.7, 3.11 and Corollary 3.10, respectively.
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Theorem 3.7. Suppose (M, g) is dilation-invariant. Let −∞ < ε < ε0, s > 1/2 +

βε, s ≥ 1, and let q : Hs,ε
b (Ω)•,− → Hs−1+κ,ε

b (Ω)•,− be a continuous function with
q(0) = 0 such that there exists a continuous non-decreasing function L : R≥0 → R
satisfying

‖q(u)− q(v)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R.
Then there is a constant CL > 0 so that the following holds: If L(0) < CL, then for

small R > 0, there exists C > 0 such that for all f ∈ Hs−1+κ,ε
b (Ω)•,− with norm

≤ C, the equation

(�g −m2)u = f + q(u)

has a unique solution u ∈ Hs,ε
b (Ω)•,−, with norm ≤ R, that depends continuously

on f .
More generally, suppose

q : Hs,ε
b (Ω)•,− ×Hs−1+κ,ε

b (Ω)•,− → Hs−1+κ,ε
b (Ω)•,−

satisfies q(0, 0) = 0 and

‖q(u,w)− q(u′, w′)‖ ≤ L(R)(‖u− u′‖+ ‖w − w′‖)
provided ‖u‖ + ‖w‖, ‖u′‖ + ‖w′‖ ≤ R, where we use the norms corresponding to
the map q, for a continuous non-decreasing function L : R≥0 → R. Then there
is a constant CL > 0 so that the following holds: If L(0) < CL, then for small

R > 0, there exists C > 0 such that for all f ∈ Hs−1+κ,ε
b (Ω)•,− with norm ≤ C,

the equation

(�g −m2)u = f + q(u,�gu)

has a unique solution u ∈ Hs,ε
b (Ω)•,−, with ‖u‖Hs,εb

+ ‖�gu‖Hs−1+κ,ε
b

≤ R, that

depends continuously on f .

Proof. We use the proof of the first part of Theorem 2.25, where in the current
setting the solution operator SKG,I maps Hs−1+κ,ε

b (Ω)•,− → Hs,ε
b (Ω)•,−, and the

contraction map is T : Hs,ε
b (Ω)•,− → Hs,ε

b (Ω)•,−, Tu = SKG,I(f + q(u)).
For the general statement, we follow the proof of the second part of Theorem 2.25,

where we now instead use the Banach space

X = {u ∈ Hs,ε
b (Ω)•,− : �gu ∈ Hs−1+κ,ε

b (Ω)•,−}
with norm

‖u‖X = ‖u‖Hs,εb
+ ‖�gu‖τεHs−1+κ

b
.

which is a Banach space by the same argument as in the proof of Theorem 2.25. �

We have a weaker statement in the general, non dilation-invariant case, where
we work in unweighted spaces.

Theorem 3.8. Let s ≥ 1, and suppose q : Hs
b(Ω)•,− → Hs

b(Ω)•,− is a continuous
function with q(0) = 0 such that there exists a continuous non-decreasing function
L : R≥0 → R satisfying

‖q(u)− q(v)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R.
Then there is a constant CL > 0 so that the following holds: If L(0) < CL, then
for small R > 0, there exists C > 0 such that for all f ∈ Hs

b(Ω)•,− with norm ≤ C,
the equation

(�g −m2)u = f + q(u)
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has a unique solution u ∈ Hs
b(Ω)•,−, with norm ≤ R, that depends continuously on

f .
An analogous statement holds for non-linearities q = q(u,�gu) which are con-

tinuous maps q : Hs
b(Ω)•,− × Hs

b(Ω)•,− → Hs
b(Ω)•,−, vanish at (0, 0) and have a

small Lipschitz constant near 0.

Proof. Since

SKG : Hs
b(Ω)•,− ⊂ H∗,s−1/2

b,Γ (Ω)•,− → Hs+1/2
b,Γ (Ω)•,− ⊂ Hs

b(Ω)•,−,

by (3.3) and (3.12), this follows again from the Banach fixed point theorem. �

Remark 3.9. The proof of Theorem 3.4 shows that equations on function spaces
with negative weights (i.e. growing near infinity) behave as nicely as equations
on the static part of asymptotically de Sitter spaces, discussed in §2. However,
naturally occurring non-linearities (e.g., polynomials) will not be continuous non-
linear operators on such growing spaces.

Corollary 3.10. If s > n/2, the hypotheses of Theorem 3.8 hold for non-linearities
q(u) = cup, p ≥ 2 integer, c ∈ C, as well as q(u) = q0u

p, q0 ∈ Hs
b(M).

Thus for small m > 0 and R > 0, there exists C > 0 such that for all f ∈
Hs

b(Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u)

has a unique solution u ∈ Hs
b(Ω)•,−, with norm ≤ R, that depends continuously on

f .

If f satisfies stronger decay assumptions, then u does as well. More precisely,
denoting the inverse family of the normal operator of the Klein-Gordon operator

with (small) mass m by Rm(σ) = (P̂(σ)−m2)−1, which has poles only in Imσ < 0
(cf. Lemma 3.5 and [14, 45]), and moreover defining the spaces X s,r,εF and X s,r,εP,F

analogously to the corresponding spaces in §2.3, we have the following result:

Theorem 3.11. Fix 0 < ε < min{C ′, 1/2} and let s� s′ ≥ max(1/2+βε, n/2, 1+
κ). (A concrete bound for s will be given in the course of the proof, see equa-
tion 3.15.) Let

q(u) =

d∑
p=2

qpu
p, qp ∈ Hs

b(M).

Moreover, if σj ∈ C are the poles of the inverse family Rm(σ), and mj + 1 is the
order of the pole of Rm(σ) at σj, let P = {(iσj + k, `) : 0 ≤ ` ≤ mj , k ∈ N0}.
Assume that ε 6= Re(iσj) for all j, and that m > 0 is so small that P is a positive
index set. Finally, let F be a positive index set.

Then for small enough R > 0, there exists C > 0 such that for all f ∈ X s,s,εF
with norm ≤ C, the equation

(�g −m2)u = f + q(u) (3.14)

has a unique solution u ∈ X s
′,s′,ε

P,F , with norm ≤ R, that depends continuously on f ;

in particular, u has an asymptotic expansion with remainder in Hs′,ε
b (Ω)•,−.
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Proof. Let us write P = �g − m2. Let δ < 1/2 be such that 0 < 2δ < Re z

for all (z, 0) ∈ F , then f ∈ Hs,2δ
b (Ω)•,−. Now, for u ∈ Hs,δ

b (Ω)•,−, consider

Tu := SKG(f + q(u)). First of all, f + q(u) ∈ Hs,2δ
b (Ω)•,− ⊂ Hs

b(Ω)•,−, thus the

proof of Theorem 3.4 shows that we have Tu ∈ Hs+1,r
b (Ω)•,−, r < 0 arbitrary.

Therefore,

N(P)u = f+q(u)+(N(P)−P)u ∈ Hs,2δ
b (Ω)•,−+Hs−1,r+1

b (Ω)•,− ⊂ Hs−1,2δ
b (Ω)•,−,

and thus if δ > 0 is sufficiently small, namely, δ < inf{− Imσj}/2, Theorem 3.1

implies u ∈ Hs−κ,2δ
b (Ω)•,−. Since we can choose κ = cδ for some constant c > 0,

we obtain

Tu ∈
⋂
r>0

Hs+1,r
b (Ω)•,− ∩Hs−cδ,2δ

b (Ω)•,− ⊂
⋂
r′>0

H
s,2δ−2cδ2/(1+cδ)−r′
b (Ω)•,−

by interpolation. In particular, choosing δ > 0 even smaller if necessary, we obtain

Tu ∈ Hs,δ
b (Ω)•,−. Applying the Banach fixed point theorem to the map T thus

gives a solution u ∈ Hs,δ
b (Ω)•,− to the equation (3.14).

For this solution u, we obtain

N(P)u = Pu+ (N(P)− P)u ∈ Hs,2δ
b +Hs−2,δ+1

b ⊂ Hs−2,2δ
b

since q only has quadratic and higher terms. Hence Theorem 3.1 implies that

u = u1 + u′, where u1 is an expansion with terms coming from poles of P̂−1 whose

decay order lies between δ and 2δ, and u′ ∈ Hs−1−κ,2δ
b (Ω)•,−. This in turn implies

that f + q(u) has an expansion with remainder term in H
s−1−κ,min{4δ,ε}
b (Ω)•,−,

thus
N(P)u ∈ Hs−3−κ,min{4δ,ε}

b (Ω)•,− plus an expansion,

and we proceed iteratively, until, after k more steps, we have 4 · 2kδ ≥ ε, and

then u has an expansion with remainder term Hs−3−2k−κ,ε
b (Ω)•,− provided we can

apply Theorem 3.1 in the iterative procedure, i.e. provided s− 3− 2k − κ =: s′ >
max(1/2 + βε, n/2, 1 + κ). This is satisfied if

s > max(1/2 + βε, n/2, 1 + κ) + 2dlog2(ε/δ)e+ κ − 1. (3.15)
�

3.3. Semilinear equations with derivatives in the non-linearities. Theo-
rem 3.4 allows one to solve even semilinear equations with derivatives in some
cases. For instance, in the case of de Sitter-Schwarzschild space, within Σ∩ bS∗XM ,
Γ is given by r = rc, σ1(Dr) = 0, where rc = 3

2rs is the radius of the photon

sphere, see e.g. [45, §6.4]. Thus, non-linear terms such as (r− rc)(∂ru)2 are allowed
for s > n

2 + 1 since ∂r : Hsb,Γ(M) → Hs−1
b (M), with the latter space being an

algebra, while multiplication by r− rc maps this space to H∗,s−1
b,Γ by (3.7). Thus, a

straightforward modification of Theorem 3.8, applying the fixed point theorem on
the normally isotropic spaces directly, gives well-posedness.

4. Asymptotically de Sitter spaces: global approach

We can approach the problem of solving non-linear wave equations on global
asymptotically de Sitter spaces in two ways: Either, we proceed as in the previous
two sections, first showing invertibility of the linear operator on suitable spaces and
then applying the contraction mapping principle to solve the non-linear problem;
or we use the solvability results from §2 for backward light cones from points at
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future conformal infinity and glue the solutions on all these ‘static’ parts together
to obtain a global solution. The first approach, which we will follow in §§4.1-4.4,
has the disadvantage that the conditions on the non-linearity that guarantee the
existence of solutions are quite restrictive, however in case the conditions are met,
one has good decay estimates for solutions. The second approach on the other
hand, detailed in §4.5, allows many of the non-linearities, suitably reinterpreted,
that work on ‘static parts’ of asymptotically de Sitter spaces (i.e. backward light
cones), but the decay estimates for solutions are quite weak relative to the decay
of the forcing term because of the gluing process.

4.1. The linear framework. Let g be the metric on an n-dimensional asymp-
totically de Sitter space X with global time function t [47]. Then, following [45,
Section 4], the operator12

Pσ = µ−1/2µiσ/2−(n+1)/4

(
�g −

(n− 1

2

)2

− σ2

)
µ−iσ/2+(n+1)/4µ−1/2 (4.1)

extends non-degenerately to an operator on a closed manifold X̃ which contains
the compactification X of the asymptotically de Sitter space as a submanifold with
boundary Y , where Y = Y− ∪ Y+ has two connected components, which we call
the boundary of X at past, resp. future, infinity. The expression ‘non-degenerately’
here means that near Y±, Pσ fits into the framework of [45]. Here, µ = 0 is the
defining function of Y , and µ > 0 is the interior of the asymptotically de Sitter
space. Moreover, null-bicharacteristics of Pσ tend to Y± as t→ ±∞.

Following Vasy [44], let us in fact assume that X̃ = C− ∪X ∪C+ is the union of
the compactifications of asymptotically de Sitter space X and two asymptotically

hyperbolic caps C±; one might need to take two copies of X to construct X̃ as
explained in [44]. For the purposes of the next statement we recall that variable

order Sobolev spaces Hs(X̃) were discussed in [2, Section 1, Appendix]. Then Pσ
is the restriction to X of an operator P̃σ ∈ Diff2(X̃), which is Fredholm as a map

P̃σ : X̃ s → Ỹs−1, X̃ s = {u ∈ Hs : P̃σu ∈ Hs−1}, Ỹs−1 = Hs−1,

where s ∈ C∞(S∗X̃), monotone along the bicharacteristic flow, is such that s|N∗Y− >
1/2− Imσ, s|N∗Y+ < 1/2− Imσ, and s is constant near S∗Y±. Note that the choice
of signs here is opposite to the one in [44], since here we are going to construct the
forward solution operator on X.

Restricting our attention to X, we define the space Hs(X)•,− to be the comple-
tion in Hs(X) of the space of C∞ functions that vanish to infinite order at Y−; thus
the superscripts indicate that distributions in Hs(X)•,− are supported distributions
near Y− and extendible distributions near Y+. Then, define the spaces

X s = {u ∈ Hs(X)•,− : Pσu ∈ Hs−1(X)•,−}, Ys−1 = Hs−1(X)•,−.

Theorem 4.1. Fix σ ∈ C and s ∈ C∞(S∗X) as above. Then Pσ : X s → Ys−1 is
invertible, and P−1

σ : Hs−1(X)•,− → Hs(X)•,− is the forward solution operator of
Pσ.

Proof. First, let us assume Reσ � 0 so semiclassical/large parameter estimates are

applicable to P̃σ, and let T0 ∈ R be such that s is constant in {t ≤ T0}. Then for

12Pσ in our notation corresponds to P ∗σ̄ in [45], the latter operator being the one for which

one solves the forward problem.
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any T1 ≤ T0, we can paste together microlocal energy estimates for P̃σ near C−
and standard energy estimates for the wave equation in {t ≤ T1} away from Y− as
in the derivation of Equation (3.29) of [45], and thereby obtain

‖u‖H1({t≤T1}) . ‖P̃σu‖H0({t≤T1}); (4.2)

thus, for f ∈ C∞(X̃), supp f ⊂ {t ≥ T1} implies supp P̃−1
σ f ⊂ {t ≥ T1}. Choosing

φ ∈ C∞c (X) with support in {t ≥ T1} and ψ ∈ C∞(X̃) with support in {t ≤ T1}, we

therefore obtain ψP̃−1
σ φ = 0. Since P̃−1

σ is meromorphic, this continues to hold for
all σ ∈ C such that Imσ > 1/2− s. Since T1 ≤ T0 is arbitrary, this, together with
standard energy estimates on the asymptotically de Sitter space X, proves that
P−1
σ propagates supports forward, provided Pσ is invertible. Moreover, elements of

ker P̃σ are supported in C+.
The invertibility of Pσ is a consequence of [2, Lemma 8.3], also see Footnote 15

there: Let E : Hs−1(X)•,− → Hs−1(X̃) be a continuous extension operator that

extends by 0 in C− and R : Hs(X̃)→ Hs(X)−,− the restriction, then R ◦ P̃−1
σ ◦E

does not have poles; and since⋃
T1≤T0

Hs({t > T1})•,− ⊂ Hs(X)•,−

(where (•) denotes supported distributions at {t = T1}, resp. Y−) is dense, R ◦
P̃−1
σ ◦ E in fact maps into Hs(X)•,−, thus P−1

σ = R ◦ P̃−1
σ ◦ E indeed exists and

has the claimed properties. �

In our quest for finding forward solutions of semilinear equations, we restrict
ourselves to a submanifold with boundary Ω ⊂ X containing and localized near
future infinity, so that we can work in fixed order Sobolev spaces; moreover, it will
be useful to measure the conormal regularity of solutions to the linear equation
at the conormal bundle of the boundary of X at future infinity more precisely.

So let Hs,k(X̃, Y+) be the subspace of Hs(X̃) with k-fold regularity with respect

to the Ψ0(X̃)-module M of first order ΨDOs with principal symbol vanishing on
N∗Y+. A result of Haber and Vasy, [19, Theorem 6.3], with s0 = 1/2 − Imσ

in our case, shows that f ∈ Hs−1,k(X̃, Y+), P̃σu = f , u a distribution, in fact

imply that u ∈ Hs,k(X̃, Y+). So if we let Hs,k(Ω)•,− denote the space of all u ∈
Hs(X)•,− which are restrictions to Ω of functions in Hs,k(X̃, Y+), supported in
Ω ∪ C+, the argument of Theorem 4.1 shows that we have a forward solution
operator Sσ : Hs−1,k(Ω)•,− → Hs,k(Ω)•,−, provided

s < 1/2− Imσ. (4.3)

4.1.1. The backward problem. Another problem that we will briefly consider below
is the backward problem, i.e. where one solves the equation on X backward from Y+,
which is the same, up to relabelling, as solving the equation forward from Y−. Thus,
we have a backward solution operator S−σ : Hs−1,k(Ω)−,• → Hs,k(Ω)−,• (where Ω
is chosen as above so that we can use constant order Sobolev spaces), provided
s > 1/2 − Imσ. Similarly to the above, (−) denotes extendible distributions at
∂Ω∩X◦ and (•) supported distributions at Y+; the module regularity is measured
at Y+.
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4.2. Algebra properties of Hs,k(Ω)•,−. Let us call a polynomially bounded mea-
surable function w : Rn → (0,∞) a weight function. For such a weight function w,
we define

H(w)(Rn) = {u ∈ S′(Rn) : wû ∈ L2(Rn)}.
The following lemma is similar in spirit to, but different from, Strichartz’ result on
Sobolev algebras [40]; it is the basis for the multiplicative properties of the more
delicate spaces considered below.

Lemma 4.2. Let w1, w2, w be weight functions such that one of the quantities

M+ := sup
ξ∈Rn

∫ (
w(ξ)

w1(η)w2(ξ − η)

)2

dη

M− := sup
η∈Rn

∫ (
w(ξ)

w1(η)w2(ξ − η)

)2

dξ

(4.4)

is finite. Then H(w1)(Rn) ·H(w2)(Rn) ⊂ H(w)(Rn).

Proof. For u, v ∈ S(Rn), we use Cauchy-Schwarz to estimate

‖uv‖2H(w) =

∫
w(ξ)2|ûv(ξ)|2 dξ

=

∫
w(ξ)2

(∫
w1(η)|û(η)|w2(ξ − η)|v̂(ξ − η)|w1(η)−1w2(ξ − η)−1 dη

)2

dξ

≤
∫ (∫ (

w(ξ)

w1(η)w2(ξ − η)

)2

dη

)

×
(∫

w1(η)2|û(η)|2w2(ξ − η)2|v̂(ξ − η)|2 dη
)
dξ

≤M+‖u‖2H(w1)‖v‖2H(w2)

as well as

‖uv‖2H(w) ≤
∫ (∫

w2(ξ − η)2|v̂(ξ − η)|2 dη
)

×

(∫ (
w(ξ)

w1(η)w2(ξ − η)

)2

w1(η)2|û(η)|2 dη

)
dξ

= ‖v‖2H(w2)

∫
w1(η)2|û(η)|2

(∫ (
w(ξ)

w1(η)w2(ξ − η)

)2

dξ

)
dη

≤M−‖u‖2H(w1)‖v‖2H(w2) .

Since S(Rn) is dense in H(w1)(Rn) and H(w2)(Rn), the lemma follows. �

In particular, if ∥∥∥∥ w(ξ)

w(η)w(ξ − η)

∥∥∥∥
L∞ξ L

2
η

<∞, (4.5)

then H(w) is an algebra.
For example, the weight function w(ξ) = 〈ξ〉s for s > n/2 satisfies (4.5) as we will

check below, which implies that Hs(Rn) is an algebra for s > n/2; this is the special
case k = 0 of Lemma 4.4 below, and is well-known, see e.g. [41, Chapter 13.3]. Also,
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product-type weight functions wd(ξ) = 〈ξ′〉s〈ξ′′〉k (where ξ = (ξ′, ξ′′) ∈ Rd+(n−d))
for s > d/2, k > (n− d)/2 satisfy (4.5).

The following lemma, together with the triangle inequality 〈ξ〉α . 〈η〉α+〈ξ−η〉α
for α ≥ 0, will often be used to check conditions like (4.4).

Lemma 4.3. Suppose α, β ≥ 0 are such that α+ β > n. Then∫
Rn

dη

〈η〉α〈ξ − η〉β
∈ L∞(Rnξ ).

Proof. Splitting the domain of integration into the two regions {〈η〉 < 〈ξ− η〉} and
{〈η〉 ≥ 〈ξ − η〉}, we obtain the bound∫

Rn

dη

〈η〉α〈ξ − η〉β
≤ 2

∫
Rn

dη

〈η〉α+β
,

which is finite in view of α+ β > n. �

Another important consequence of Lemma 4.2 is that Hs′(Rn) is an Hs(Rn)-
module provided |s′| ≤ s, s > n/2, which follows for s′ ≥ 0 from M+ < ∞, and
for s′ < 0 either by duality or from M− <∞ (with M± as in the statement of the
lemma, with the corresponding weight functions).

Lemma 4.4. Write x ∈ Rn as x = (x′, x′′) ∈ Rd+(n−d). For s ∈ R, k ∈ N0, let

Ys,kd (Rn) = {u ∈ Hs(Rn) : Dk
x′′u ∈ Hs(Rn)}.

Then for s > d/2, s+ k > n/2, Ys,kd (Rn) is an algebra.

Proof. Using the Leibniz rule, we see that it suffices to show: If u, v ∈ Ys,kd , then

Dα
x′′uD

β
x′′v ∈ Hs, provided |α| + |β| ≤ k. Since Dα

x′′u ∈ Y
s,k−|α|
d and Dβ

x′′v ∈
Ys,k−|β|d , this amounts to showing that

Ys,ad · Ys,bd ⊂ H
s if a+ b ≥ k. (4.6)

Using the characterization Ys,ad = H(w) for w(ξ) = 〈ξ〉s〈ξ′′〉k, Lemma 4.2 in turn
reduces this to the estimate∫

〈ξ〉2s

〈η〉2s〈η′′〉2a〈ξ − η〉2s〈ξ′′ − η′′〉2b
dη

.
∫

dη

〈η′′〉2a〈ξ − η〉2s〈ξ′′ − η′′〉2b
+

∫
dη

〈η〉2s〈η′′〉2a〈ξ′′ − η′′〉2b

≤
∫

dη′

〈ξ′ − η′〉2s′
∫

dη′′

〈η′′〉2a〈ξ′′ − η′′〉2b+2(s−s′)

+

∫
dη′

〈η′〉2s′
∫

dη′′

〈η′′〉2a+2(s−s′)〈ξ′′ − η′′〉2b
,

where we choose d/2 < s′ < s such that a+ b+ s− s′ > (n− d)/2, which holds if
k+s > (n−d)/2+s′, which is possible by our assumptions on s and k. The integrals
are uniformly bounded in ξ: For the η′-integrals, this follows from s′ > d/2; for the
η′′-integrals, we use Lemma 4.3. �

We shall now use this (non-invariant) result to prove algebra properties of spaces
with iterated module regularity: Consider a compact manifold without boundary



SEMILINEAR WAVE EQUATIONS 53

X and a submanifold Y . Let M ⊃ Ψ0(X) be the Ψ0(X)-module of first order
ΨDOs whose principal symbol vanishes on N∗Y . For s ∈ R, k ∈ N0, define

Hs,k(X,Y ) = {u ∈ Hs(X) : Mku ∈ Hs(X)}.

Proposition 4.5. Suppose dim(X) = n and codim(Y ) = d. Assume that s > d/2
and s+ k > n/2. Then Hs,k(X,Y ) is an algebra.

Proof. Away from Y , Hs,k(X,Y ) is just Hs+k(X), which is an algebra since s+k >
dim(X)/2. Thus, since the statement is local, we may assume that we have a

product decomposition near Y , namely X = Rdx′ × Rn−dx′′ , Y = {x′ = 0}, and
that we are given arbitrary u, v ∈ Hs,k(X,Y ) with compact support close to (0, 0)
for which we have to show uv ∈ Hs,k(X,Y ). Notice that for f ∈ Hs(X) with
such small support, f ∈ Hs,k(X,Y ) is equivalent to M′kf ∈ Hs(X), where M′
is the C∞(M)-module of differential operators generated by Id, ∂x′′i , x

′
j∂x′k , where

1 ≤ i ≤ n− d, 1 ≤ j, k ≤ d.
Thus the proposition follows from the following statement: For s, k as in the

statement of the proposition,

Hs,k(Rn,Rn−d) := {u ∈ Hs(Rn) : (x′)α̃Dα
x′D

β
x′′u ∈ H

s(Rn), |α̃| = |α|, |α|+ |β| ≤ k}
is an algebra. Using the Leibniz rule, we thus have to show that

((x′)α̃Dα
x′D

β
x′′u)((x′)γ̃Dγ

x′D
δ
x′′v) ∈ Hs, (4.7)

provided |α̃| = |α|, |γ̃| = |γ|, |α| + |β| + |γ| + |δ| ≤ k. Since the two factors in
(4.7) lie in Hs,k−|α|−|β| and Hs,k−|γ|−|δ|, respectively, this amounts to showing that
Hs,a ·Hs,b ⊂ Hs for a + b ≥ k. This however is easy to see, since Hs,c ⊂ Ys,cd for

all c ∈ N0, and Ys,ad · Ys,bd ⊂ Hs was proved in (4.6). �

In order to be able to obtain sharper results for particular non-linear equations
in §4.3, we will now prove further results in the case codim(Y ) = 1, which we will
assume to hold from now on; also, we fix n = dim(X).

Proposition 4.6. Assume that s > 1/2 and k > (n − 1)/2. Then Hs,k(X,Y ) ·
Hs−1,k(X,Y ) ⊂ Hs−1,k(X,Y ).

Proof. Using the Leibniz rule, this follows from Ys,a1 · Ys−1,b
1 ⊂ Hs−1 for a+ b ≥ k.

This, as before, can be reduced to the local statement on Rn = Rx1
× Rn−1

x′ with

Y = {x1 = 0}. We write ξ = (ξ1, ξ
′) ∈ R1+(n−1) and η = (η1, η

′) ∈ R1+(n−1). By
Lemma 4.2, the case s ≥ 1 follows from the estimate∫

〈ξ〉2(s−1)

〈η〉2s〈η′〉2a〈ξ − η〉2(s−1)〈ξ′ − η′〉2b
dη

.
∫

dη

〈η〉2〈η′〉2a〈ξ − η〉2(s−1)〈ξ′ − η′〉2b
+

∫
dη

〈η〉2s〈η′〉2a〈ξ′ − η′〉2b

≤ 2

∫
dη1

〈η1〉2s

∫
dη′

〈η′〉2a〈ξ′ − η′〉2b
∈ L∞ξ

by Lemma 4.3.
If 1/2 < s ≤ 1, then ξ1 and ξ′ play different roles. Indeed, the background

regularity to be proved is Hs−1, s − 1 ≤ 0, thus the continuity of multiplication
in the conormal direction to Y is proved by ‘duality’ (i.e. using Lemma 4.2 with
M− < ∞), whereas the continuity in the tangential (to Y ) directions, where both
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factors have k > (n−1)/2 derivatives, is proved directly (i.e. using Lemma 4.2 with

M+ <∞). So let u ∈ Ys,a1 , v ∈ Ys−1,b
1 , and put

u0(ξ) = 〈ξ〉s〈ξ′〉au(ξ) ∈ L2(Rn), v0(ξ) = 〈ξ〉s−1〈ξ′〉bv(ξ) ∈ L2(Rn).

Then

〈ξ〉s−1ûv(ξ) =

∫
〈η〉1−s

〈ξ〉1−s〈η′〉b〈ξ − η〉s〈ξ′ − η′〉a
u0(ξ − η)v0(η) dη,

hence by Cauchy-Schwarz and Lemma 4.3∫
〈ξ〉2(s−1)|ûv(ξ)|2 dξ

≤
∫ (∫

dη′

〈η′〉2b〈ξ′ − η′〉2a

)(∫ ∣∣∣∣∫ 〈η〉1−s

〈ξ〉1−s〈ξ − η〉s
u0(ξ − η)v0(η) dη1

∣∣∣∣2 dη′
)
dξ

.
∫∫ (∫

|u0(ξ − η)|2 dη1

)(∫
〈η〉2(1−s)

〈ξ〉2(1−s)〈ξ − η〉2s
|v0(η)|2 dη1

)
dη′ dξ

.
∫∫
‖u0(·, ξ′ − η′)‖2L2 |v0(η)|2

×
(∫

1

〈ξ − η〉2s
+

1

〈ξ〉2(1−s)〈ξ − η〉2(2s−1)
dξ1

)
dξ′ dη

. ‖u‖2Ys,a1
‖v‖2Ys−1,b

1

,

since 1/2 < s ≤ 1, thus 1 − s ≥ 0 and 2s − 1 > 0, and the ξ1-integral is thus
bounded from above by∫

1

〈ξ1 − η1〉2s
+

1

〈ξ1〉2(1−s)〈ξ1 − η1〉2(2s−1)
dξ1 ∈ L∞η1

.

The proof is complete. �

For semilinear equations whose non-linearity does not involve any derivatives,
one can afford to lose derivatives in multiplication statements. We give two useful
results in this context, the first being a consequence of Proposition 4.6.

Corollary 4.7. Let µ ∈ C∞(X) be a defining function for Y , i.e. µ|Y ≡ 0, dµ 6= 0
on Y , and µ vanishes on Y only. Suppose s > 1/2 and ` ∈ C are such that
Re `+3/2 > s. Then multiplication by µ`+ defines a continuous map Hs,k(X,Y )→
Hs−1,k(X,Y ) for all k ∈ N0.

Proof. By the Leibniz rule, it suffices to prove the statement for k = 0. We have
µ`+ ∈ HRe `+1/2−ε;∞(X,Y ) for all ε > 0: Indeed, the Fourier transform of χ(x)x`+
on R, with χ ∈ C∞c (R), is bounded by a constant multiple of 〈ξ〉−Re `−1, which is an
element of 〈ξ〉−rL2

ξ if and only if r−Re `− 1 < −1/2, i.e. if Re `+ 1/2 > r. Hence,

the corollary follows from Proposition 4.6, since one has Re `+ 1/2− ε ≥ s− 1 for
some ε > 0 provided Re `+ 3/2 > s. �

Proposition 4.8. Let 0 ≤ s′, s1, s2 < 1/2 be such that s′ < s1 + s2 − 1/2, and let

k > (n− 1)/2. Then Hs1,k(X,Y ) ·Hs2,k(X,Y ) ⊂ Hs′,k(X,Y ).
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Proof. Using the Leibniz rule, this reduces to the statement that Ys1,a1 ·Ys2,b1 ⊂ Hs′

if a+ b ≥ k. Splitting variables ξ = (ξ1, ξ
′), η = (η1, η

′), Lemma 4.2 in turn reduces
this to the observation that∫

〈ξ〉2s′

〈η〉2s1〈η′〉2a〈ξ − η〉2s2〈ξ′ − η′〉2b
dη

.

(∫
dη1

〈η1〉2(s1−s′)〈ξ1 − η1〉2s2
+

∫
dη1

〈η1〉2s1〈ξ1 − η1〉2(s2−s′)

)
×
∫

dη′

〈η′〉2a〈ξ′ − η′〉2b

is uniformly bounded in ξ by Lemma 4.3 in view of s′ < s1 +s2−1/2 < min{s1, s2},
thus s1−s′ > 0 and s2−s′ > 0, and s1+s2−s′ > 1/2, as well as a+b > (n−1)/2. �

Corollary 4.9. Let p ∈ N and s = 1/2−ε with 0 ≤ ε < 1/2p, and let k > (n−1)/2.
Then u ∈ Hs,k(X,Y ) ⇒ up ∈ H0,k(X,Y ).

Proof. Proposition 4.8 gives u2 ∈ H1/2−2ε−ε′2,k for all ε′2 > 0, thus u3 ∈ H1/2−3ε−ε′3,k

for all ε′3 > 0, since ε′2 > 0 is arbitrary; continuing in this way gives up ∈
H1/2−pε−ε′p,k for all ε′p > 0, and the claim follows. �

4.3. A class of semilinear equations. Recall that we have a forward solution
operator Sσ : Hs−1,k(Ω)•,− → Hs,k(Ω)•,− of Pσ, defined in (4.1), provided s <
1/2− Imσ. Let us fix such s ∈ R and σ ∈ C. Undoing the conjugation, we obtain
a forward solution operator

S = µ−1/2µ−iσ/2+(n+1)/4Sσµ
iσ/2−(n+1)/4µ−1/2,

S : µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,− → µ(n−1)/4+Imσ/2Hs,k(Ω)•,−

of (�g − (n − 1)2/4 − σ2). Since g is a 0-metric, the natural vector fields to
appear in a non-linear equation are 0-vector fields; see §4.5 for a brief discussion
of these concepts. However, since the analysis is based on ordinary Sobolev spaces
relative to which one has b-regularity (regularity with respect to the module M),
we consider b-vector fields in the non-linearities. In case one does use 0-vector
fields, the solvability conditions can be relaxed; see §4.4.

Theorem 4.10. Suppose s < 1/2− Imσ. Let

q : µ(n−1)/4+Imσ/2Hs,k(Ω)•,− × µ(n−1)/4+Imσ/2Hs,k−1(Ω; bT ∗Ω)•,−

→ µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,−

be a continuous function with q(0, 0) = 0 such that there exists a continuous non-
decreasing function L : R≥0 → R satisfying

‖q(u, bdu)− q(v, bdv)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R.
Then there is a constant CL > 0 so that the following holds: If L(0) < CL, then for
small R > 0, there exists C > 0 such that for all f ∈ µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,−

with norm ≤ C, the equation(
�g −

(n− 1

2

)2

− σ2

)
u = f + q(u, bdu)

has a unique solution u ∈ µ(n−1)/4+Imσ/2Hs,k(Ω)•,−, with norm ≤ R, that depends
continuously on f .
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Proof. Use the Banach fixed point theorem as in the proof of Theorem 2.25. �

Remark 4.11. As in Theorem 2.25, we can also allow non-linearities q(u, bdu,�gu),
provided

q : µ(n−1)/4+Imσ/2Hs,k(Ω)•,− × µ(n−1)/4+Imσ/2Hs−1,k(Ω; bT ∗Ω)•,−

× µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,−

→ µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,−

is continuous, q(0, 0, 0) = 0 and q has a small Lipschitz constant near 0.

4.4. Semilinear equations with polynomial non-linearity. Next, we want to
find a forward solution of the semilinear PDE(

�g −
(n− 1

2

)2

− σ2

)
u = f + cµAupX(u) (4.8)

where c ∈ C∞(X̃), and X(u) =
∏q
j=1Xju is a q-fold product of derivatives of u

along vector fields Xj ∈M. The purpose of the following computations is to obtain
conditions on A, p, q which guarantee that the map u 7→ cµAupX(u) satisfies the
conditions of the map q in Theorem 4.10. Note that the derivatives in the non-
linearity lie in the module M (in coordinates: µ∂µ, ∂y), whereas, as mentioned
above, the natural vector fields are 0-derivatives (in coordinates: x∂x = 2µ∂µ
and x∂y = µ1/2∂y), but since it does not make the computation more difficult,
we consider module instead of 0-derivatives and compensate this by allowing any
weight µA in front of the non-linearity.

Rephrasing the PDE in terms of Pσ using ũ = µiσ/2−(n+1)/4+1/2u and f̃ =
µ−1/2+iσ/2−(n+1)/4f , we obtain

Pσũ = f̃ + cµAµ−1/2+iσ/2−(n+1)/4µ(p+q)(−iσ/2+(n−1)/4)ũp
q∏
j=1

(fj +Xj ũ)

= f̃ + cµ`ũp
q∏
j=1

(fj +Xj ũ),

where fj ∈ C∞(X̃) and

` = A+ (p+ q − 1)(−iσ/2 + (n− 1)/4)− 1. (4.9)

Therefore, if ũ ∈ Hs,k(Ω)•,−, we obtain that the right hand side of the equation

lies in Hs,k−1(Ω)•,− if f̃ ∈ Hs,k−1(Ω)•,−, s > 1/2, k > (n+ 1)/2, which by Propo-
sition 4.5 implies that Hs,k−1(Ω)•,− is an algebra, and if

Re `+ 1/2 = A+ (p+ q − 1)(Imσ/2 + (n− 1)/4)− 1/2 > s, (4.10)

since this condition ensures that µ` ∈ Hs,∞(X), which implies that multiplication
by µ` is a bounded map Hs,k−1(Ω)•,− → Hs,k−1(Ω)•,−.13 Given the restriction

13If one works in higher regularity spaces, s ≥ 3/2, we in fact only need Re `+ 3/2 > s, since

then multiplication by µ` is a bounded map Hs,k−1(Ω)•,− ⊂ Hs−1,k(Ω)•,− → Hs−1,k(Ω)•,−.
However, the solvability criterion (4.11) would be weaker, namely the role of the dimension n

shifts by 2, since in order to use s ≥ 3/2, we need Imσ < −1.
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(4.3) on s and Imσ, we see that by choosing s > 1/2 close to 1/2, Imσ < 0 close
to 0, we obtain the condition

p+ q > 1 +
4(1−A)

n− 1
. (4.11)

If these conditions are satisfied, the right hand side of the re-written PDE lies in
Hs,k−1(Ω)•,− ⊂ Hs−1,k(Ω)•,−, so Theorem 4.10 is applicable, and thus (4.8) is
well-posed in these spaces.

From (4.11) with A = 0, we see that quadratic non-linearities are fine for n ≥ 6,
cubic ones for n ≥ 4.

To sum this up, we revert back to u = µ(n−1)/4−iσ/2ũ and f = µ(n+3)/4−iσ/2f̃ :

Theorem 4.12. Let s > 1/2, k > (n + 1)/2, and assume A ∈ R and p, q ∈ N0,
p + q ≥ 2 satisfy condition (4.10). Moreover, suppose σ ∈ C satisfies (4.3), i.e.

Imσ < 1/2 − s. Finally, let c ∈ C∞(M̃) and X(u) =
∏q
j=1Xju, where Xj are

vector fields in M. Then for small enough R > 0, there exists a constant C > 0
such that for all f ∈ µ(n+3)/4+Imσ/2Hs,k(Ω)•,− with norm ≤ C, the PDE(

�g −
(n− 1

2

)2

− σ2

)
u = f + cµAupX(u)

has a unique solution u ∈ µ(n−1)/4+Imσ/2Hs,k(Ω)•,−, with norm ≤ R, that depends
continuously on f .

The same conclusion holds if the non-linearity is a finite sum of terms of the
form cµAupX(u), provided each such term separately satisfies (4.3).

Proof. Reformulating the PDE in terms of ũ and f̃ as above, this follows from an
application of the Banach fixed point theorem to the map

Hs,k(Ω)•,− 3 ũ 7→ Sσ

(
f̃ + µ`ũp

q∏
j=1

(fj +Xj ũ)

)
∈ Hs,k(Ω)•,−

with ` given by (4.9) and fj ∈ C∞(X̃). Here, p + q ≥ 2 and the smallness of R
ensure that this map is a contraction on the ball of radius R in Hs,k(Ω)•,−. �

Remark 4.13. Even though the above conditions force Imσ < 0, let us remark
that the conditions of the theorem, most importantly (4.10), can be satisfied if
m2 = (n− 1)2/4 + σ2 > 0 is real, which thus means that we are in fact considering
a non-linear equation involving the Klein-Gordon operator �g − m2. Indeed, let
σ = iσ̃ with σ̃ < 0, then condition (4.10) with A = 0, p + q = 2, becomes σ̃ >
2 − (n − 1)/2 (where we accordingly have to choose s > 1/2 close, depending on
σ̃, to 1/2), and the requirement σ̃ < 0 forces n ≥ 6. On the other hand, we want
(n− 1)2/4− σ̃2 = m2 > 0; we thus obtain the condition

0 < m2 <

(
n− 1

2

)2

−
(

2− n− 1

2

)2

for masses m that Theorem 4.12 can handle, which does give a non-trivial range of
allowed m for n ≥ 6.

Remark 4.14. Let us compare the numerology in Theorem 4.12 with the numerology
for the static model of an asymptotically de Sitter space in §2: First, we can solve
fewer equations globally on asymptotically de Sitter spaces, and second, we need
stronger regularity assumptions in order to make an iterative argument work: In
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the static model, we needed to be in a b-Sobolev space of order > (n+2)/2, which in
the non-blown-up picture corresponds to 0-regularity of order > (n+ 2)/2, whereas
in the global version, we need a background Sobolev regularity > 1/2, relative to
which we have ‘b-regularity’ (i.e. regularity with respect to the moduleM) of order
> (n+ 1)/2. This comparison is of course only a qualitative one, though, since the
underlying geometries in the two cases are different.

Using Proposition 4.6 and Corollary 4.7, one can often improve this result. Thus,
let us consider the most natural case of equation (4.8) in which we use 0-derivatives
Xj , corresponding to the 0-structure on the not even-ified manifold X, and no addi-
tional weight. The only difference this makes is if there are tangential 0-derivatives
(in coordinates: µ1/2∂y). For simplicity of notation, let us therefore assume that

Xj = µ1/2X̃j , 1 ≤ j ≤ α, and Xj = X̃j , α < j ≤ q, where the X̃j are vector fields

in M. Then the PDE (4.8), rewritten in terms of Pσ, ũ and f̃ , becomes

Pσũ = f̃ + cµ`ũp
q∏
j=1

(f̃j + X̃j ũ) (4.12)

with f̃j ∈ C∞(X̃), where

` = α/2 + (p+ q − 1)(−iσ/2 + (n− 1)/4)− 1.

First, suppose that there are no derivatives in the non-linearity so that p ≥ 2, q =
α = 0. Then µ`ũp ∈ Hs−1,k(Ω)•,− provided Re `+ 3/2 > s > 1/2 by Corollary 4.7;
choosing s arbitrarily close to 1/2, this is equivalent to

Imσ/2 + (n− 1)/4 > 0. (4.13)

This is a very natural condition: The solution operator for the linear wave equation
produces solutions with asymptotics µ(n−1)/4±iσ/2; see (2.38), and recall that we
are working with the even-ified manifold with boundary defining function µ = x2.
The non-linear equation (4.8) should therefore only be well-behaved if solutions to
the linear equation decay at infinity, i.e. if ± Imσ + (n − 1)/4 ≥ 0. Since we need
Imσ < 0 to be allowed to take s > 1/2, condition (4.13) is equivalent to the (small)
decay of solutions to the linear equation at infinity (where µ = 0).

Next, let us assume that q > 0. Then the non-linear term in equation (4.12) is
an element of

µ`Hs,k(Ω)•,− ·Hs,k−1(Ω)•,− ⊂ Hs,k−1(Ω)•,−

by Proposition 4.6, provided Re `+ 1/2 > s > 1/2, which gives the condition

Imσ/2 + (n− 1)/4 > 1− α/2
where we again choose s > 1/2 arbitrarily close to 1/2, i.e. for α = 2, we again get
condition (4.13), and for α > 2, we get an even weaker one.

Finally, let us discuss a non-linear term of the form cµAup, p ≥ 2, in the setting
of even lower regularity 0 ≤ s < 1/2, the technical tool here being Corollary 4.9:

Rewriting the PDE (4.8) with this non-linearity in terms of Pσ, ũ and f̃ , we get

Pσũ = f̃ + cµ`ũp, ` = A+ (p− 1)(−iσ/2 + (n− 1)/4)− 1.

Let s = 1/2− ε with 0 ≤ ε < 1/2p. Then if ũ ∈ H1/2−ε,k(Ω)•,− with k > (n− 1)/2,
Corollary 4.9 yields ũp ∈ H0,k(Ω)•,−, thus

µ`ũp ∈ H0,k(Ω)•,− ⊂ Hs−1,k(Ω)•,−
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provided Re ` ≥ 0, i.e.

n > 1 +
4(1−A)

p− 1
− 2 Imσ, (4.14)

where we still require Imσ < 1/2− s = ε, which in particular allows σ to be real if
ε > 0.

In summary:

Theorem 4.15. Let p ≥ 2 be an integer, 1/2 − 1/2p < s ≤ 1/2, k > (n − 1)/2,
and suppose σ ∈ C is such that Imσ < 1/2− s. Moreover, assume A ∈ R and the
dimension n satisfy condition (4.14). Then for small enough R > 0, there exists
a constant C > 0 such that for all f ∈ µ(n+3)/4+Imσ/2Hs,k(Ω)•,− with norm ≤ C,
the PDE (

�g −
(n− 1

2

)2

− σ2

)
u = f + cµAup

has a unique solution u ∈ µ(n−1)/4+Imσ/2Hs,k(Ω)•,−, with norm ≤ R, that depends
continuously on f .

In particular, if 1/4 < s < 1/2, 0 < Imσ < 1/2 − s and A = 0, then quadratic
non-linearities are fine for n ≥ 5; if Imσ = 0 and A = 0, then they work for n ≥ 6.

4.4.1. Backward solutions to semilinear equations with polynomial non-linearity.
Recalling the setting of §4.1.1, let us briefly turn to the backward problem for (4.8),
which we rephrase in terms of Pσ as above. For simplicity, let us only consider the
‘least sophisticated’ conditions, namely s > 1/2, k > (n+ 1)/2,

A+ (p+ q − 1)(Imσ/2 + (n− 1)/4)− 1/2 > s, (4.15)

and, this is the important change compared to the forward problem, s > 1/2−Imσ,
where the latter guarantees the existence of the backward solution operator S−σ .
Thus, if Imσ > 0 is large enough and s > 1/2 satisfies (4.15), then (4.8) is solvable
in any dimension.

In the special case that we only consider 0-derivatives and no extra weight, which
corresponds to putting A = q + α/2, we obtain the condition

Imσ >
4(1− q − α/2)− (p+ q − 1)(n− 1)

2(p+ q + 1)

if we choose s > 1/2− Imσ close to 1/2, which in particular allows Imσ ≥ 0, and
thus σ2 arbitrary, if p > 1 + 4

n−1 (so p ≥ 2 is acceptable if n ≥ 6) or q + α/2 ≥ 1.

4.5. From static parts to global asymptotically de Sitter spaces. Let us
consider the equation

(�g −m2)u = f + q(u, 0du), (4.16)

where the reason for using the 0-differential 0d, see below, will be given momentarily.
The idea is that every point in X lies in the interior of the backward light cone
from some point p at future infinity Y+, denoted Sp; that is, the blow-up of X
at p contains the static part Sp of an asymptotically de Sitter space where the
solvability statements have been explained in §2. Consider a suitable neighborhood
Ωp ⊂ [X; p] of the static patch as in §2, so the boundary of Ωp is the union of ∂Sp
and an ‘artificial’ spacelike boundary, which on the non-blown-up space X all meet
at the point p, and a Cauchy surface. In fact, we may choose the Ωp in a fashion
that is uniform in p. We then solve equation (4.16) on Ωp, thereby obtaining a
forward solution up, and by local uniqueness for �g −m2 in X, all such solutions
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agree on their overlap, i.e. up ≡ uq on Ωp ∩Ωq. Therefore, we can define a function
u by setting u = up on Ωp, p ∈ Y+, which then is a solution of (4.16) on X. To
make this precise, we need to analyze the relationships between the function spaces
on the Ωp, p ∈ Y+, and X. As we will see in Lemma 4.16 below, b-Sobolev spaces

on the blow-ups Ωp of X at boundary points are closely related to 0-Sobolev spaces
on X.

Recall the definition of 0-Sobolev spaces on a manifold with boundary M (for us,
M = X) with a 0-metric, i.e. a metric of the form x−2ĝ with x a boundary defining
function, where ĝ extends non-degenerately to the boundary: If V0(M) = xV(M)
denotes the Lie algebra of 0-vector fields, where V(M) are smooth vector fields on
M , and Diff∗0(M) the enveloping algebra of 0-differential operators, then

Hk
0 (M) = {u ∈ L2(M,dvol) : Pu ∈ L2(M,dvol), P ∈ Diffk0(M)},

and Hk,`
0 (M) = x`Hk

0 (M). For clarity, we shall write L2
0(M) = L2(M,dvol). We

also recall the definition of the 0-(co)tangent spaces: If Ip denotes the ideal of
C∞(M) functions vanishing at p ∈ M , then the 0-tangent space at p is defined as
0TpM = V0(M)/Ip · V0(M), and the 0-cotangent space at p, 0T ∗pM , as the dual of
0TpM . In local coordinates (x, y) ∈ Rx × Rn−1

y near the boundary of M , we have

dvol = f(x, y)dxx
dy
xn−1 with f smooth and non-vanishing, and V0(M) is spanned by

x∂x and x∂y; also x∂x and x∂yj , j = 2, . . . , n, form a basis of 0TpM (for p ∈ ∂M ,

which is the only place where 0-spaces differ from the standard spaces), and dx
x ,

dyj
x , j = 2, . . . , n, form a basis of 0T ∗pM . The exterior derivative d induces the first

order 0-differential operator 0d on sections of Λ0TM ; this follows from

df = (∂xf) dx+ (∂yf) dy = (x∂xf)
dx

x
+ (x∂yf)

dy

x
.

Now, let Ω ⊂ X be a domain as in §4.1. Moreover, let βp : Ωp → X be the
blow-down map. We then have:

Lemma 4.16. Let k ∈ N0, ` ∈ R. Then there are constants C > 0 and Cδ > 0
such that for all δ > 0,

‖f‖
H
k,`−(n−1)/2−δ
0 (Ω)•

≤ Cδ sup
p∈Y+

‖β∗pf‖Hk,`b (Ωp)•,− ≤ CCδ‖f‖Hk,`0 (Ω)• . (4.17)

Here, (•) indicates supported distributions at the ‘artificial’ boundary and (−) ex-
tendible distributions at all other boundary hypersurfaces.

Proof. Let us work locally near a point p ∈ Y+; since Y+
∼= Sn−1 is compact, all

constructions below can be made uniformly in p. The only possible issues are near
the boundary Y+ = {x = 0}, with x a boundary defining function; hence, let us
work in a product neighborhood Y+ × [0, 2ε)x, ε > 0, of Y+, and let us assume u is
supported is Y+ × [0, ε].

We use coordinates x, y2, . . . , yn such that yj = 0 at p. Coordinates on Sp
are then x, z2, . . . , zn with zj = yj/x, i.e. βp(x, z) = (x, xz), with the restriction∑n
j=2 |zj |2 ≤ 1. Therefore,

‖β∗pf‖2L2
b
≈
∫
Sp

|β∗pf(x, z)|2 dx
x
dz =

∫
βp(Sp)

|f(x, xz)|2 dx
x
dz

≤
∫
|f(x, y)|2 dx

x

dy

xn−1
≈ ‖f‖2L2

0
.
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Adding weights to this estimate is straightforward. Next, we observe

x∂x(β∗pf)(x, z) = x∂xf(x, xz) + zx∂yf(x, xz)

∂z(β
∗
pf)(x, z) = x∂yf(x, xz),

(4.18)

and since |z| ≤ 1, we conclude that β∗pf ∈ H1
b(Sp) is equivalent to f, x∂xf, x∂yf ∈

L2
0(βp(Sp)), which proves the second inequality in (4.17) in the case k = 1; the

general case is similar.
For the first inequality in (4.17), we first note that the additional weight comes

from the number of static parts, i.e. interiors of backward light cones from points in
Y+, that one needs to cover any fixed half space {x ≥ x0}: Namely, for 0 < x0 ≤ ε,
let B(x0) ⊂ Y+ be a set of points such that every point in {x ≥ x0} lies in Sp for

some p ∈ B(x0); then we can choose B(x0) such that |B(x0)| ≤ Cx
−(n−1)
0 , where

| · | denotes the number of elements in a set. This follows from the observation
that the area of the slice x = x0 of Sp within Y+

∼= Sn−1 (keeping in mind that

we are working in a product neighborhood of Y+) is bounded from below by cxn−1
0

for some p-independent constant c > 0. Indeed, note that null-geodesics of the 0-
metric g are, up to reparametrization, the same as null-geodesics of the conformally
related metric x2g, which is a non-degenerate Lorentzian metric up to Y+. See also
Figure 5 below.

Thus, putting α = (n− 1)/2 + δ, δ > 0, we estimate∫
x≤ε
|xαf(x, y)| dx

x

dy

xn−1
=

∞∑
j=0

∫
2−j−1ε<x≤2−jε

|xαf(x, y)|2 dx
x

dy

xn−1

.
∞∑
j=0

2−2αj
∑

p∈B(2−j−1ε)

‖β∗pf‖2L2
b
.
∞∑
j=0

2−2αj(2−j−1ε)−n+1 sup
p∈Y+

‖β∗pf‖2L2
b

.
∞∑
j=0

2−j(2α−n+1) sup
p∈Y+

‖β∗pf‖2L2
b
,

with the sum converging since 2α − n + 1 = 2δ > 0. Weights and higher order
Sobolev spaces are handled similarly, using (4.18). �

In particular, this explains why in equation (4.16) we take d = 0d : Hk,`
0 (X) →

Hk−1,`
0 (X; 0T ∗X), namely this is necessary in order to make the global equation

interact well with the static patches.
Since we want to consider local problems to solve the global one, the non-linearity

q must be local in the sense that q(u, 0du)(p) for p ∈ X only depends on p and its
arguments evaluated at p; let us for simplicity assume that q is in fact a polynomial
as in (2.43).

Using Corollary 2.28, we then obtain:

Theorem 4.17. Let 0 ≤ ε < ε0 with ε0 as in §2.2, and s > max(3/2 + ε, n/2 + 1),
s ∈ N. Let

q(u, 0du) =
∑

2≤j+|α|≤d

qjαu
j
∏
k≤|α|

Xα,ku,

qj,α ∈ C + Hs
0(X), Xα,k ∈ V0(M). Then there exists C > 0 such that for all

f ∈ Hs−1,ε
0 (Ω)• with norm ≤ C, the equation

(�g −m2)u = f + q(u, 0du)
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has a unique solution u ∈
⋂
δ>0H

s,ε−(n−1)/2−δ
0 (Ω)• that depends continuously on

f . Here, we allow m = 0 if every summand of q contains at least one 0-derivative,
and require m > 0 if this is not the case, e.g. if q = q(u) is simply the sum of
(multiple of) powers of u.

The analogous conclusion also holds for �gu = f + q(0du) provided ε > 0, with

the solution u being in
⋂
δ>0H

s,−(n−1)/2−δ
0 (Ω)•. Moreover, for all p ∈ Y+, the limit

u∂(p) := limp′→p,p′∈X u(p′) exists, u∂ ∈ C0,ε(Y+), and u − u∂(φ ◦ t1) ∈ xεC0(X),
where φ ◦ t1 is identically 1 near Y+ and vanishes near the ‘artificial’ boundary of
Ω.

Proof. We start by proving the first part: If f ∈ Hs−1,ε
0 (Ω)•, then fp = β∗pf ∈

Hs−1,ε
b (Sp) is a uniformly bounded family in the respective norms by Lemma 4.16.

We can then use Corollary 2.28 to solve

(�g −m2)up = fp + q(up,
bdup)

in the static part Sp, where we use that q is a polynomial and the fact that bT ∗p′Sp
naturally injects into 0T ∗βp(p′)Ω for p′ ∈ Sp to make sense of the non-linearity;

we thus obtain a uniformly bounded family up = ũp|Sp ∈ Hs,ε
b (Sp)

•,−. By local
uniqueness and since f vanishes near Y−, we see that the function u, defined by
u(βp(p

′)) = up(p
′) for p ∈ Y+, p′ ∈ Sp, is well-defined, and by Lemma 4.16, we

indeed have u ∈ Hs,ε−(n−1)/2−δ
0 (Ω)• for all δ > 0.

For the second part, we follow the same strategy, obtaining solutions up = cp(φ◦
t1) + u′p of

�gup = fp + q(bdup),

where cp ∈ C and u′p ∈ H
s,ε
b (Sp)

•,− are uniformly bounded, thus up is uniformly

bounded in Hs,−δ
b (Ω)• for every fixed δ > 0, and therefore the existence of a unique

solution u follows as before. Put u∂(p) := cp, then u∂(p) = limp′→p,p′∈Sp u(p′),

since u′p ∈ xεC0(Sp) by the Sobolev embedding theorem. We first prove that u∂ so
defined is ε-Hölder continuous. Let us work in local coordinates (x, y) near a point
(0, y0) in Y+. Now, u′p is uniformly bounded in xεC0(Sp), and since for x0 > 0
arbitrary, we have cp1 + u′p1

(x0, y∗) = cp2 + u′p2
(x0, y∗) for all p1, p2 ∈ Y+, provided

|p1 − p2| ≤ cx0 for some constant c > 0, which ensures that Sp1
∩ Sp2

∩ {x = x0} is
non-empty and thus contains a point (x0, y∗) (see Figure 5), we obtain

|cp1
− cp2

| = |u′p1
(x0, y∗)− u′p2

(x0, y∗)| ≤ Cxε0, |p1 − p2| ≤ cx0

for all x0, thus
|u∂(p1)− u∂(p2)|
|p1 − p2|ε

≤ C, p1, p2 ∈ Y+.

This in particular implies that

|u(x, y)− u∂(0, y0)| ≤ |u(x, y)− u∂(0, y)|+ |u∂(0, y)− u∂(0, y0)|

≤ C(|y − y0|ε + xε)
x→0,y→y0−−−−−−−→ 0,

(4.19)

hence we in fact have u∂(p) = limp′→p,p′∈X u(p′). Finally, putting y = y0 in (4.19)

proves that u− u∂(φ ◦ t1) ∈ xεC0(X). �

The major lossy part of the argument is the conversion from f to the family β∗pf :
Even though the second inequality in Lemma 4.16 is optimal (e.g., for functions
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Figure 5. Setup for the proof of u∂ ∈ C0,ε(Y+): Shown are the
backward light cones from two nearby points p1, p2 ∈ Y+ that
intersect within the slice {x = x0} at a point (x0, y∗).

which are supported in a single static patch), one loses (n − 1)/2 orders of decay
relative to the gluing estimate, i.e. the first inequality in Lemma 4.16, which is used
to pass from the family up to u.

Observe on the other hand that the decay properties of u, without regard to those
of f , in the first part of the theorem are very natural, since the constant function

1 is an element of
⋂
δ>0H

∞,−(n−1)/2−δ
0 (X), thus u has an additional decay of ε

relative to constants.

Remark 4.18. Notice that for the proof of Theorem 4.17 it is irrelevant whether
certain 0-Sobolev spaces are algebras, since the main analysis, Corollary 2.28, is
carried out on b-Sobolev spaces.

5. Lorentzian scattering spaces

5.1. The linear Fredholm framework. We now consider n-dimensional non-
trapping asymptotically Minkowski spacetimes (M, g), a notion which includes the
radial compactification of Minkowski spacetime. This notion was briefly recalled in
the introduction; here we restate this in the notation of [2, §3] where this notion
was introduced.

Thus, M is compact with smooth boundary, with a boundary defining function
ρ (we switch the notation from τ mainly to emphasize that ρ is not everywhere
timelike), and scattering vector fields V ∈ Vsc(M), introduced by Melrose [32], are
smooth vector fields of the form ρV ′, V ′ ∈ Vb(M). Hence, if the zj are local coor-
dinates on ∂M extended to a neighborhood in M , then a local basis of these vector
fields over C∞(M) is ρ2∂ρ, ρ∂zj . Correspondingly, Vsc(M) is the set of smooth

sections of a vector bundle scTM , which is therefore, roughly speaking, ρbTM .
The vector field ρ2∂ρ is well-defined up to a positive factor at ρ = 0, and is called
the scattering normal vector field of ∂M . The dual bundle of scTM , called the
scattering cotangent bundle, is denoted by scT ∗M . If M is the radial compacti-
fication of Rn, by gluing a sphere at infinity via the reciprocal polar coordinate
map (r, ω) 7→ (r−1, ω) ∈ (0, 1)ρ × Sn−1

ω , i.e. adding ρ = 0 to the right hand side
(corresponding to ‘r =∞’), then Vsc(M) is spanned by (the lifts of) the translation
invariant vector fields over C∞(M).

A Lorentzian scattering metric g is a Lorentzian signature, taken to be (1, n−1),
metric on scTM , i.e. a smooth symmetric section of scT ∗M ⊗ scT ∗M with this
signature with the following additional properties:
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(1) There is a real C∞ function v defined on M with dv, dρ linearly independent
at ‘the light cone at infinity’, S = {v = 0, ρ = 0},

(2) g(ρ2∂ρ, ρ
2∂ρ) has the same sign as v at ρ = 0, i.e. ρ2∂ρ is timelike in v > 0,

spacelike in v < 0,
(3) near S,

g = v
dρ2

ρ4
−
(dρ
ρ2
⊗ α

ρ
+
α

ρ
⊗ dρ

ρ2

)
− h̃

ρ2
,

where α is a smooth one-form on M ,

α =
1

2
dv +O(v) +O(ρ),

h̃ is a smooth 2-cotensor on M , which is positive definite on the (codimen-
sion two) annihilator of dρ and dv.

A Lorentzian scattering metric is non-trapping if

(1) S = S+ ∪S− (each a disjoint union of connected components), in X = ∂M
the open set {v > 0} ∩ X decomposes as C+ ∪ C− (disjoint union), with
∂C+ = S+, ∂C− = S−; we write C0 = {v < 0} ∩X,

(2) the projections of all null-bicharacteristics in scT ∗M \ o to M tend to S±
as their parameter tends to ±∞ or vice versa.

Since a conformal factor only reparameterizes bicharacteristics, this means that
with ĝ = ρ2g, which is a b-metric on M , the projections of all null-bicharacteristics
of ĝ in bT ∗M \ o tend to S±. As already pointed out in the introduction, the
difference between the de Sitter-type and Minkowski settings is that at the spherical
conormal bundle bSN∗S of S the nature of the radial points is source/sink rather
than a saddle point of the flow at L± discussed in §2.1.

We first state solvability properties, namely we show that under the assumptions
of [2, §3], the problem of finding a tempered solution to �gw = f is a Fredholm
problem in suitable weighted Sobolev spaces. In particular, there is only a finite di-
mensional obstruction to existence. Then we strengthen the assumptions somewhat
and show actual solvability in the strong sense that in these spaces the solution w
satisfies that if f is vanishing to infinite order near C−, then so does w.

Let

L = ρ−(n−2)/2ρ−2�gρ
(n−2)/2 ∈ Diff2

b(M)

be the ‘conjugated’ b-wave operator (as in [2, §4]), which is formally self-adjoint
with respect to the density of the Lorentzian b-metric ĝ = ρ2g, further L = �ĝ−γ,
where γ ∈ C∞(M) is real valued. Let

m ∈ C∞(bS∗M) a variable (Sobolev) order function, decreasing along

the direction of the Hamilton flow oriented to the future, i.e. towards S+.
(5.1)

Remark 5.1. In the actual application of asymptotically Minkowski spaces, one can
take m to be a function on M rather than bS∗M by making it take constant values
near C+, resp. C−, corresponding to the requirements at R+, resp. R− below,
and transitioning in between using a time function as in the discussion preceding
Theorem 5.3, i.e. making m of the form F ◦ t̃ for appropriate F . Since this simplifies
some arguments below, we assume this whenever it is convenient.

With

R+ = bSN∗S+, resp. R− = bSN∗S−,
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the future, resp. past, radial sets in bS∗M , see [2, §3.6], and with

m+ l < 1/2 at R+, m+ l > 1/2 at R−,
m constant near R+ ∪R−, one has an estimate

‖u‖Hm,lb
≤ C‖Lu‖Hm−1,l

b
+ C‖u‖

Hm
′,l

b

, (5.2)

provided one assumes m′ < m,

m′ + l > 1/2 at R−, u ∈ Hm′,l
b .

To see this, we recall and record a slight improvement of [2, Proposition 4.4]:

Proposition 5.2. Suppose L is as above.

If m + l < 1/2, and if u ∈ H−∞,lb (M) then R± (and thus a neighborhood of

R±) is disjoint from WFm,lb (u) provided R± ∩WFm−1,l
b (Lu) = ∅ and a punctured

neighborhood of R±, with R± removed, in Σ ∩ bS∗M is disjoint from WFm,lb (u).

On the other hand, if m′+ l > 1/2, m ≥ m′, u ∈ H−∞,lb (M) and if WFm
′,l

b (u)∩
R± = ∅ then R± (and thus a neighborhood of R±) is disjoint from WFm,lb (u)

provided R± ∩WFm−1,l
b (Lu) = ∅.

Proof. The first statement is proved in [2, Proposition 4.4]. The second statement
follows the same way, but in that case the product of the required powers of the
boundary defining functions, ρ−2lρ̃−2m+1, with ρ̃ the defining function of fiber in-
finity14 as in §2.1, in the commutant of [2, Proposition 4.4] provides a favorable
sign, thus [2, Equation (4.1)] holds without the E term. However, when regular-
izing, the regularizer contributes a term with the opposite sign, exactly as in [45,
Proof of Propositions 2.3-2.4]; this forces the requirement on the a priori regularity,

namely WFm
′,l

b (u) ∩ R± = ∅, exactly as in the referred results of [45]; see also
Proposition 2.1 above. �

Indeed, due to the closed graph theorem, (5.2) follows immediately from the
b-radial point regularity statements of Proposition 5.2 for sources/sinks, and the
propagation of b-singularities for variable order Sobolev spaces, which is not proved
in [2], but whose analogue in standard Sobolev spaces is proved there in [2, Propo-
sition A.1] (with additional references given to related results in the literature),
and as it is a purely symbolic argument, the extension to the b-setting is straight-
forward. (We refer to Proposition 2.1 here and [2, Proposition 4.4] extending the
radial point results, Propositions 2.3-2.4, of [45], from the boundaryless setting to
the b-setting.)

One also has a similar estimate for L when one replaces m by a weight m̃ which
is increasing along the direction of the Hamilton flow oriented towards the past,

m̃+ l̃ > 1/2 at R+, m̃+ l̃ < 1/2 at R−,
provided one assumes m̃′ < m̃,

m̃′ + l̃ > 1/2 at R+, u ∈ Hm̃′,l̃
b .

Further L can be replaced by L∗. Thus,

‖u‖
Hm̃,l̃b

≤ C‖L∗u‖
Hm̃−1,l̃

b

+ C‖u‖
Hm̃
′,l̃

b

. (5.3)

14This defining function is denoted by ν in [2].
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Just as in the asymptotically de Sitter/Kerr-de Sitter settings, one wants to im-

prove these estimates so that the space Hm,l
b , resp. Hm̃,l̃

b , on the left hand side
includes compactly into the error term on the right hand side. This argument is
completely analogous to §2.1 using the Mellin transformed normal operator esti-
mates obtained in [2, §5]. We thus further assume that there are no poles of the

Mellin conjugate L̂(σ) on the line Imσ = −l. Then using the Mellin transform and

the estimates for L̂(σ) (including the high energy estimates, which imply that for
all but a discrete set of l the aforementioned lines do not contain such poles), as in
§2.1, we obtain that on R+

ρ × ∂M

‖v‖
Hm̂,lb

≤ C‖N(L)v‖
Hm̂−1,l

b
(5.4)

when m̂ ∈ C∞(S∗∂M) is a variable order function decreasing along the direction
of the Hamilton flow oriented to the future, Λ+, resp. Λ−, the future, resp. past,
radial sets in S∗∂M , and with

m̂+ l < 1/2 at Λ+, m̂+ l > 1/2 at Λ−.

One can take

m̂ = m|T∗∂M ,
for instance, under the identification of T ∗∂M as a subspace of bT ∗∂MM , taking into
account that homogeneous degree zero functions on T ∗∂M \o are exactly functions
on S∗∂M , and analogously on bT ∗∂MM . However, in the limit σ →∞, one should
use norms depending on σ reflecting the dependence of the semiclassical norm on h.
We recall from Remark 5.1 that in the main case of interest one can take m to be a
pullback from M , and thus the Mellin transformed operator norms are independent
of σ. In either case, we simply write m in place of m̂.

Again, we have an analogous estimate for N(L∗):

‖v‖
Hm̃,l̃b

≤ C‖N(L∗)v‖
Hm̃−1,l̃

b

, (5.5)

provided −l̃ is not the imaginary part of a pole of L̂∗, and provided m̃ satisfies the

requirements above. As L̂∗(σ) = (L̂)∗(σ), the requirement on −l̃ is the same as l̃

not being the imaginary part of a pole of L̂.
At this point the argument of the paragraph of (2.10) in §2.1 can be repeated

verbatim to yield that for m with m+ l > 3/2 at R− (with the stronger restriction
coming from the requirements on m′ at R−, m̃′ at R+, and m′ < m−1, m̃′ < m̃−1;
recall that one needs to estimate the normal operator on these primed spaces), and
m+ l < 1/2 at R+,

‖u‖Hm,lb
≤ C‖Lu‖Hm−1,l

b
+ C‖u‖

Hm
′+1,l−1

b

, (5.6)

where now the inclusion Hm,l
b → Hm′+1,l−1

b is compact (as we choose m′ < m− 1);
this argument required m, l,m′ satisfied the requirements preceding (5.2), and that

−l is not the imaginary part of any pole of L̂.
Analogous estimates hold for L∗:

‖u‖
Hm̃,l̃b

≤ C‖L∗u‖
Hm̃−1,l̃

b

+ C‖u‖
Hm
′+1,l̃−1

b

, (5.7)

provided m̃, l̃, m̃′ satisfy the requirements stated before (5.3), m̃′ < m̃ − 1, and

provided −l̃ is not the imaginary part of a pole of L̂∗ (i.e. l̃ of L̂).
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Via the same functional analytic argument as in §2.1 we thus obtain Fredholm
properties of L, in particular solvability, modulo a (possible) finite dimensional

obstruction, in Hm,l
b if

m+ l > 3/2 at R−, m+ l < −1/2 at R+.

More precisely, we take m̃ = 1 − m, l̃ = −l, so m + l < −1/2 at R+ means

m̃+ l̃ = 1− (m+ l) > 3/2, so the space on the left hand side of (5.6) is dual to that
in the first term on the right hand side of (5.7), and the same for the equations
interchanged. Then the Fredholm statement is for

L : Xm,l → Ym−1,l,

with
Ys,r = Hs,r

b , X s,r = {u ∈ Hs,r
b : Lu ∈ Hs−1,r

b }.
Note that, by propagation of singularities, i.e. most importantly using Proposi-

tion 5.2, with KerL ⊂ Hm,l
b , KerL∗ ⊂ H1−m,−l

b a priori,

KerL ⊂ Hm[,l
b , KerL∗ ⊂ H1−m[,−l

b if

m[ + l > 1/2 at R−, m[ + l < 1/2 at R+.
(5.8)

We can improve this further using the propagation of singularities. Namely,
suppose one merely has

m+ l > 3/2 at R−, m+ l < 1/2 at R+, (5.9)

so the requirement at R+ is weakened. Then let m] = m − 1 near R+, m] ≤ m
everywhere, but still satisfying the requirements for the order function along the
Hamilton flow, so the Fredholm result is applicable with m] in place of m. Now,

if u ∈ Xm],l, Lu = f , f ∈ Ym−1,l ⊂ Ym]−1,l, then Proposition 5.2 gives u ∈ Xm,l.
Further, if KerL and KerL∗ are trivial, this gives that for m, l as in (5.9), satisfying
also the conditions along the Hamilton flow, L : Xm,l → Ym−1,l is invertible.

Now, as invertibility (the absence of kernel and cokernel) is preserved under suffi-
ciently small perturbations, it holds in particular for perturbations of the Minkowski
metric which are Lorentzian scattering metrics in our sense, with closeness mea-
sured in smooth sections of the second symmetric power of bT ∗M . (Note that
non-trapping is also preserved under such perturbations.)

For more general asymptotically Minkowski metrics we note that, due to The-
orem 2.21 (which does not have any requirements for the timelike nature of the
boundary defining function, and which works locally near C− either by working
on (extendible) function spaces or by using the localization given by wave prop-

agation as in §3.3 of [45] or §4.1 here) elements of KerL on Hm,l
b , with m, l as

above, lie in Ċ∞(M) locally near C− provided all resonances, i.e. poles of L̂(σ),
in Imσ < −l have polar parts (coefficients of the Laurent series) that map into

distributions supported on C+. As shown in [44, Remark 4.17] when L̂(σ) arises
from a Lorentzian conic metric as in15 [44, Equation (3.5)], but with the arguments
applicable without significant changes in our more general case, see also [2, §7] for

15In [44], the boundary defining function used to define the Mellin transform is replaced by

its reciprocal, which effectively switches the sign of σ in the operator, but also the backward

propagator is considered (propagating toward the past light cone), which reverses the role of σ and
−σ again, so in fact, the signs in [44] and [2] agree for the formulae connecting the asymptotically

hyperbolic resolvents and the global operator, L̂(σ).
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our general setting, and [45, Remark 4.6] for a related discussion with complex

absorption, the resonances of L̂(σ) consist of the resonances of the asymptotically
hyperbolic resolvents on the caps, namely RC+

(σ), RC−(−σ), as well as possibly
imaginary integers, σ ∈ iZ \ {0}, with resonant states when Imσ < 0 being differ-
entiated delta distributions at S+ = ∂C+ while the dual states are differentiated
delta distributions at S− = ∂C− when Imσ > 0; the latter arise, e.g. as poles on
even dimensional Minkowski space. More generally, when composed with extension
of C∞c (C− ∪C0) by zero to C∞(X) from the right and with restriction to C− ∪C0

from the left, the only poles of L̂(σ) are those of RC−(−σ) as well as the possible
σ ∈ iN+. Thus, fixing l > −1, one can conclude that elements of KerL are in

Ċ∞(M) locally near C− provided RC−(σ̃) has no poles in Im σ̃ > l. (The only
change for l ≤ −1 is that one needs to exclude the potential pure imaginary integer

poles as well.) The analogous statement for KerL∗ on Hm̃,l̃
b is that fixing l̃ > −1,

elements are in Ċ∞(M) near C+ provided RC+
(σ̃) has no poles in Im σ̃ > l̃. As

l̃ = −l for our duality arguments, the weakest symmetric assumption (in terms of
strength at C+ and C−) is that RC± do not have any poles in the closed upper half

plane; here the closure is added to make sure L is actually Fredholm on Hm,l
b with

l = 0. In general, if one wants to use other values of l, one needs to assume the
absence of poles in Imσ ≥ −|l| (if one wants to keep the hypotheses symmetric).

Note that assuming dρ
ρ is timelike (with respect to ĝ) near C−, one automatically

has the absence of poles of RC− in an upper half plane, and the finiteness (with
multiplicity) of the number of poles in any upper half plane, by the semiclassical
estimates of [45], see §3.2 and 7.2 (one can ignore the complex absorption discussion
there), so in this case the issue is that of a possible finite number of resonances.

There is an analogous statement if dρ
ρ is timelike near C+ for RC+

.

Now, assuming still that dρ
ρ is timelike at, hence near C−, it is easy to construct

a function t which has a timelike differential near C−, and appropriate sublevel sets
are small neighborhoods of C−. Once one has such a function t, energy estimates
can be used to conclude that rapidly vanishing, in such a neighborhood, solutions
of Lu = 0 actually vanish in this neighborhood, so elements of KerL have support
disjoint from C−; similarly elements of KerL∗ have support disjoint from C+.

Concretely, with Ĝ the dual b-metric of ĝ, let U− be a neighborhood of C−, and
let 0 < ε0 < ε1, ε̃ > 0, δ > 0 be such that {ρ ≤ ε̃, v ≥ −ε1} ∩ U− is a compact
subset of U−, and on U−

ρ < ε̃, v > −ε1 ⇒ Ĝ
(dρ
ρ
,
dρ

ρ

)
> δ,

ρ < ε̃, −ε1 < v < −ε0 ⇒ Ĝ
(dρ
ρ
, dv
)
< 0, Ĝ(dv, dv) > 0.

Such U− and constants indeed exist. First, there is U− and ε̃′ > 0, ε′1 > 0 such
that {ρ ≤ ε̃′, v ≥ −ε′1} ∩ U− is a compact subset of U− since C− is defined by
{ρ = 0, v ≥ 0} in a neighborhood of C− with dρ 6= 0 there and dv 6= 0 near

v = 0; we then consider ε̃ < ε̃′, ε1 < ε′1 below. Next, since Ĝ(dρρ ,
dρ
ρ ) is positive

on a neighborhood of C− by assumption (thus for any sufficiently small ε1, ε̃ there

is a desired δ so that the first inequality is satisfied) and Ĝ(dρρ , dv)|S− = −2, any

sufficiently small ε1 and ε̃ give Ĝ(dρρ , dv) < 0 in the desired region, and finally
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Ĝ(dv, dv) > 0 on C0 near S− (as Ĝ(dv, dv) = −4v + O(v2) there), so choosing ε1
sufficiently small, ε0 < ε1, and then ε̃ sufficiently small satisfies all criteria.

Now let ε−, ε+ be such that 0 < ε− < ε+ < ε̃, and let φ ∈ C∞(R) have φ′ ≤ 0,
φ = 0 near [−ε0,∞), φ > ε̃ near (−∞,−ε1], φ′ < 0 when φ takes values in [ε−, ε+].
Then t = ρ+ φ(v) has the property that on U−

t ≤ ε+ ⇒ ρ, φ(v) ≤ ε+ ⇒ ρ < ε̃, v > −ε1,
and

v ≥ −ε0 ⇒ t = ρ.

Thus, on U− if v ≥ −ε0 and t ≤ ε+ then dt is timelike as dρ is such, while if v < −ε0,
t ≤ ε+ then

Ĝ(dt, dt) = ρ2Ĝ
(dρ
ρ
,
dρ

ρ

)
+ 2φ′(v)ρĜ

(dρ
ρ
, dv
)

+ (φ′(v))2Ĝ(dv, dv)

and all terms are ≥ 0 in view of −ε1 < v < −ε0, ρ ≤ ε̃, with the inequality being
strict when t ∈ [ε−, ε+] (as well as in M◦∩t−1((−∞, ε+])). Thus, near t−1([ε−, ε+])∩
U−, t is a timelike function; the same is true on M◦ ∩ t−1((−∞, ε+]) ∩ U−. Let
χ ∈ C∞(R) with χ′ ≤ 0, χ = 1 near (−∞, ε−], χ = 0 near [ε+,∞), and let
χ ◦ t, defined by this formula in U−, be extended to M as 0 outside U−; since
t−1((−∞, ε+]) ∩ U− is a compact subset of U−, this gives a C∞ function. Further,

ρ is also timelike, with dρ
ρ and dt in the same component of the timelike cone;

see Figure 6. Correspondingly, one can apply energy estimates using the timelike

vector field V = (χ ◦ t)ρ−`Ĝ(dρρ , .), cf. [45, §3.3] leading up to Equation (3.24) and

the subsequent discussion, which in turn is based on [48, §§3-4]. Here one needs to
make both −χ′ large relative to χ and ` > 0 large (making the b-derivative of ρ−`

large relative to ρ−`), as discussed in the Mellin transformed setting in [45, §3.3], in
[48, §§3-4], as well as §2.1 here (with τ in place of ρ, but with the sign of ` reversed
due to the difference between b-saddle points and b-sinks/sources). Notice that
taking ` large is exactly where the rapid decay near C− is used.

Figure 6. Setup for energy estimates near C−: The shaded region
is the support of χ′ ◦ t, where −χ′ is used to dominate χ to give
positivity in the energy estimate; near ρ = 0 and on supp(χ◦t), i.e.
in the region between ρ = 0 and the shaded region, a sufficiently
large weight ρ−` gives positivity.

We have seen that the existence of appropriate timelike functions, such as t, in
a neighborhood of C+ and C− is automatic (in a slightly degenerate sense at C±
themselves) when dρ

ρ is timelike in these regions; indeed these functions could be
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extended to a neighborhood of C0 if v is appropriately chosen. In order to conclude
that elements of KerL and KerL∗ vanish globally, however, we need to control all
of the interior of M . This can be accomplished by showing global hyperbolicity16

of M◦, which in turn can be seen by applying a result due to Geroch [16]. Namely,
by [16, Theorem 11] it suffices to show that a suitable S is a Cauchy surface, which
by [16, Property 6] follows if we show that S is achronal, closed, and every null-
geodesic intersects and then re-emerges from S. In order to define S, it is useful to
define t̂ = ψ ◦ t in U−, where ψ ∈ C∞(R), ψ′ ≥ 0, ψ(t) = t near t ≤ ε−, ψ′(t) > 0

for t < ε+, ψ′(t) = 0 for t ≥ ε+; let T = ψ(ε+) > ε−. Further, extend t̂ to M as
= T outside U−; since U− ∩ t−1((−∞, ε+]) is compact, this gives a C∞ function on

M . Thus, t̂ ∈ C∞(M) is a globally weakly time-like function in that Ĝ(d̂t, d̂t) ≥ 0,
and it is strictly time-like in M◦ ∩ t−1((−∞, ε+)). In particular, it is monotone

along all null-geodesics. Further, t̂ = 0 at S− and t̂ = T > 0 at S+, indeed near
S+. Then we claim that S = t̂−1(ε−) ∩M◦ is a Cauchy surface.

Now, S is closed in M◦ since S is closed in M ; indeed it is a closed embedded
submanifold. By our non-trapping assumption, every null-geodesic in M◦ tends
to S+ in one direction and S− in the other direction, so on future oriented null-
geodesics (ones tending to S+), t̂ is monotone increasing, attaining all values in

(0, T ]. Since at the ε− level set of t, hence of t̂, d̂t is strictly time-like, the value

ε− is attained exactly once for t̂ along null-geodesics. Thus, every null-geodesic
intersects S and then re-emerges from it. Finally, S is achronal, i.e. there exist no
time-like curves connecting two points on S: any future oriented time-like curve
(meaning with tangent vector in the time-like cone whose boundary is the future

light cone) in M◦ ∩ t−1((−∞, ε+)) has t̂ monotone increasing, with the increase
being strict near S, so again the value ε− can be attained at most once on such a
curve. In summary, this proves that M◦ is globally hyperbolic, so every solution
of Lu = 0 with vanishing Cauchy data on S vanishes identically, in particular by
what we have observed, KerL and KerL∗ are trivial on the indicated spaces.

In summary:

Theorem 5.3. If (M, g) is a non-trapping Lorentzian scattering metric in the sense
of [2], |l| < 1, and

(1) The induced asymptotically hyperbolic resolvents RC± have no poles in
Imσ ≥ −|l|,

(2) dρ
ρ is timelike near C+ ∪ C−,

then for order functions m ∈ C∞(bS∗M) satisfying (5.1) and (5.9), the forward
problem for the conjugated wave operator L, i.e. with L considered as a map

L : Xm,l → Ym−1,l,

is invertible.

Extending the notation of [2], especially §4, we denote by Hm,l,k
b (M), where

m, l ∈ R, k ∈ N0, the space of all u ∈ Hm,l
b (M) (i.e. u ∈ ρlHm

b (M), where

ρ is the boundary defining function of M) such that Mju ∈ Hm,l
b (M) for all

0 ≤ j ≤ k. Here, M ⊂ Ψ1
b(M) is the Ψ0

b(M)-module of pseudodifferential
operators with principal symbol vanishing on the radial set R+ of the operator
L = ρ−(n−2)/2ρ−2�gρ(n−2)/2; in the coordinates ρ, v, y as in [2] (ρ being as above,

16In Geroch’s notation, our M◦ is M .
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v a defining function of the light cone at infinity within ∂M , y coordinates within
in the light cone at infinity), M has local generators ρ∂ρ, ρ∂v, v∂v, ∂y. Then the
results of [2], concretely Proposition 4.4, extend our theorem to the spaces with
module regularity.

Namely the reference, [2, Proposition 4.4], guarantees the module regularity

u ∈ Hm,l,k
b (M) of a solution u of Lu = f if f has matching module regularity

f ∈ Hm−1,l,k
b (M) and if u is in Hm+k,l

b (M) near C−. To be precise, this Proposition

in [2] is stated making the stronger assumption, f ∈ Hm−1+k,l
b (M). However, the

proof goes through for just f ∈ Hm−1,l,k
b (M) in a completely analogous manner to

the result of Haber and Vasy [19, Theorem 6.3], where (in the boundaryless setting,
for a Lagrangian radial set) the result is stated in this generality.

If f ∈ Hm−1,l,k
b (M), then in particular f is locally in Hm+k−1,l

b near C−, thus,

taking into account that m + l > 1/2 already there, u is in Hm+k,l
b in that region

by Proposition 5.2 (by the first case there, i.e. in the high regularity regime). Thus,
an application of the closed graph theorem gives the following boundedness result:

Theorem 5.4. Under the assumptions of Theorem 5.3, L−1 has the property that
it restricts to

L−1 : Hm−1,l,k
b → Hm,l,k

b , k ≥ 0,

as a bounded map.

In particular, letting Ω = {̃t ≥ 0}, where t̃ = t̂ − ε− so that it attains the value
0 within M \ (C+ ∪ C−), we have a forward solution operator S of L which maps

Hm−1,l,k
b (Ω)• into Hm,l,k

b (Ω)•, given that m + l < 1/2; let us assume that m is

constant in Ω. Here, Hm,l,k
b (Ω)• consists of supported distributions at ∂Ω ∩ C◦0 =

{̃t = 0}.
Remark 5.5. Using the arguments leading to Theorem 5.3 in the current, forward
problem, setting, but now also using standard energy estimates near the artificial
boundary t̃ = 0 of Ω, we see that if suffices to control the resonances of the asymp-
totically hyperbolic resolvent in the upper cap C+ in order to ensure the invertibility
of the forward problem.

5.2. Algebra properties of Hm,−∞,k
b . In order to discuss non-linear wave equa-

tions on an asymptotically Minkowski space, we need to discuss the algebra prop-

erties of Hm,−∞,k
b =

⋃
l∈RH

m,l,k
b . Even though we are only interested in the space

Hm,−∞,k
b (Ω)•, we consider Hm,−∞,k

b (M), where m is constant on M for notational

simplicity, and the results we prove below are valid for Hm,−∞,k
b (Ω)• by the same

proofs.
We start with the following lemma:

Lemma 5.6. Let l1, l2 ∈ R, k > n/2. Then H0,l1,k
b ·H0,l2,k

b ⊂ H0,l1+l2−1/2,k
b .

Proof. The generators ρ∂ρ, ρ∂v, v∂v, ∂y of M take on a simpler form if we blow up
the point (ρ, v) = (0, 0). It is most convenient to use projective coordinates on the
blown-up space, namely:

(1) Near the interior of the front face, we use the coordinates ρ̃ = ρ ≥ 0 and
s = v/ρ ∈ R. We compute ρ∂ρ = ρ̃∂ρ̃ − s∂s, v∂v = s∂s, ρ∂v = ∂s; and since
dρ
ρ dv dy = dρ̃ ds dy (this is the b-density from H0,l,k

b ), the space H0,l,k
b becomes

Al,k := {u ∈ ρ̃lL2(dρ̃ ds dy) : Aju ∈ ρ̃lL2(dρ̃ ds dy), 0 ≤ j ≤ k},



72 PETER HINTZ AND ANDRAS VASY

where A is the C∞-module of differential operators generated by ∂s, ρ̃∂ρ̃, ∂y.

Now, observe that ρ̃lL2(dρ̃ ds dy) = ρ̃l−1/2L2(dρ̃ρ ds dy); therefore, we can
rewrite

Al,k = {u ∈ ρ̃l−1/2L2(dρ̃ρ ds dy) : Aju ∈ ρ̃l−1/2L2(dρ̃ρ ds dy), 0 ≤ j ≤ k}

= ρ̃l−1/2Hk
b (dρ̃ρ ds dy).

In particular, by the Sobolev algebra property, Lemma 2.26, and the locality
of the multiplication, choosing k > n/2 ensures that ρ̃l1−1/2Hk

b · ρ̃l2−1/2Hk
b ⊂

ρ̃l1+l2−1Hk
b , which is to say Al1,k ·Al2,k ⊂ Al1+l2−1/2,k.

(2) Near either corner of the blown-up space, we use ṽ = v and t = ρ/v (say,
ṽ ≥ 0, t ≥ 0). We compute ρ∂ρ = t∂t, v∂v = ṽ∂ṽ − t∂t, ρ∂v = tṽ∂ṽ − t2∂t; and

since dρ
ρ dv dy = dt

t dṽ dy, the space H0,l,k
b becomes

Bl,k := {u ∈ (tṽ)lL2(dtt dṽ dy) : Bju ∈ (tṽ)lL2(dtt dṽ dy), 0 ≤ j ≤ k},

where B is the C∞-module of differential operators generated by t∂t, ṽ∂ṽ, ∂y.
Again, we can rewrite this as

Bl,k = tlṽl−1/2Hk
b (dtt

dṽ
ṽ dy),

which implies that for k > n/2,

Bl1,k ·Bl2,k ⊂ tl1+l2vl1+l2−1Hk
b (dtt

dṽ
ṽ dy) ⊂ Bl1+l2−1/2,k.

To relate these two statements to the statement of the lemma, we use cutoff func-
tions χA, χB to localize within the two coordinate systems. More precisely, choose
a cutoff function χ ∈ C∞c (Rs) such that χ(s) ≡ 1 near s = 0, χ(s) = 0 for |s| ≥ 2,
and χ1/2 ∈ C∞c (Rs). Then multiplication with χA(ρ, v) := χ(v/ρ) is a continuous

map H0,l,k
b → Al,k. Indeed, to check this, one simply observes that MjχA ∈ L∞

for all j ∈ N0. Similarly, letting χB(ρ, v) := 1− χA(ρ, v), multiplication with χB is

a continuous map H0,l,k
b → Bl,k. Finally, note that we have Al,k, Bl,k ⊂ H0,l,k

b .

To put everything together, take uj ∈ H
0,lj ,k
b (j = 1, 2), then

u1u2 = (χAu1)(χAu2) + (χBu1)(χBu2) + (χAu1)(χBu2) + (χBu1)(χAu2).

The first two terms then lie in H
0,l1+l2−1/2,k
b . To deal with the third term, write

(χAu1)(χBu2) = (χ
1/2
A u1)(χ

1/2
A χBu2) ∈ Al1,k ·Al2,k ⊂ H0,l1+l2−1/2,k

b ;

likewise for the fourth term. Thus, u1u2 ∈ H0,l1+l2−1/2,k
b , as claimed. �

Remark 5.7. The proof actually shows more, namely that

H0,l,k
b H0,l′,k

b ⊂ ρ−1/2
ff H0,l+l′,k

b , (5.10)

where ρff is the defining function of the front face ρ = v = 0, e.g. ρff = (ρ2 + v2)1/2.
The reason for (5.10) to be a natural statement is that module- and b-derivatives
are the same away from ρ = v = 0, hence regularity with respect to the moduleM
is, up to a weight, which is a power of ρff, the same as b-regularity.

More abstractly speaking, the above proof shows the following: If ρb denotes
a boundary defining function of the other boundary hypersurface of [M ;S+], i.e.
∂[M ;S+] \ ff, then

H0,l,k
b
∼= ρ
−1/2
ff (ρffρb)

lHk
b ([M ;S+]).
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Note that one can also show this in one step, introducing the coordinates ρff ≥ 0
and s = v/(ρ+ρff) ∈ [−1, 1] on [M ;S+] in a neighborhood of ff, and mimicking the
above proof, which however is computationally less convenient.

Remark 5.8. We can extend the lemma to Hm,l,k
b Hm,l′,k

b ⊂ H
m,l+l′−1/2,k
b for m ∈

N0 using the Leibniz rule to distribute the m b-derivatives among the two factors,
and then using the lemma for the case m = 0.

The following corollary, which will play an important role in §5.5, improves
Lemma 5.6 if we have higher b-regularity.

Corollary 5.9. Let k > n/2, 0 ≤ δ < 1/n and l, l′ ∈ R. Then

(1) H1,l,k
b H0,l′,k

b ⊂ H0,l+l′−1/2+δ,k
b .

(2) H1,l,k
b H1,l′,k

b ⊂ H1,l+l′−1/2+δ,k
b .

Proof. Take s = 1/(2δ) > n/2, then

Hs,l,k
b H0,l′,k

b ⊂ H0,l+l′,k
b ; (5.11)

indeed, using the Leibniz rule to distribute the k module derivatives among the two

factors and cancelling the weights, this amounts to showing that Hs,0,k1

b H0,0,k2

b ⊂
H0,0,0

b for k1 +k2 ≥ k; but this is true even for k1 = k2 = 0, since Hs
b is a multiplier

on H0
b provided s > n/2.

The lemma on the other hand gives

H0,l,k
b H0,l′,k

b ⊂ ρ−1/2H0,l+l′,k
b . (5.12)

Interpolating in the first factor between (5.11) and (5.12) thus gives the first state-
ment.

For the second statement, use the Leibniz rule to distribute the one b-derivative

to either factor; then, one has to show H1,l,k
b H0,l′,k

b ⊂ H0,l+l′−1/2+δ,k
b , and the same

inclusion with l and l′ switched, which is what we just proved. �

Lemma 5.6 and the remark following it imply that for u ∈ Hm,l,k
b , p ≥ 1, with

m ≥ 0, k > n/2, we have up ∈ Hm,pl−(p−1)/2,k
b ; in fact, up ∈ ρ−(p−1)/2

ff Hm,pl,k
b , see

Remark 5.7. Using Corollary 5.9, we can improve this to the statement u ∈ Hm,l,k
b

⇒ up ∈ Hm,pl−(p−1)/2+(p−1)δ,k
b for m ≥ 1.

For non-linearities that only involve powers up, we can afford to lose differen-
tiability, as at the end of §4.2, and gain decay in return, as the following lemma
shows.

Lemma 5.10. Let α > 1/2, l ∈ R, k ∈ N0. Then ρ−αff H0,l,k
b ⊂ ρ1/2−αH−1,l,k

b ,

where ρff = (ρ2 + v2)1/2.

Proof. We may assume l = 0, and that u is supported in |v| < 1, ρ < 1. First,
consider the case k = 0. Let u ∈ ρ−αff H0

b , and put

ũ(ρ, v, y) =

∫ v

−∞
u(ρ, w, y) dw,

so ∂vũ = u. We have to prove χũ ∈ ρ1/2−αH0
b if χ ≡ 1 near suppu, which implies

u ∈ H−1
b , as ∂v : H0

b → H−1
b , and the b-Sobolev space are local spaces. But

|ũ(ρ, v, y)|2 ≤
(∫ 1

−1

ρff(ρ, w)2α|u(ρ, w, y)|2 dw
)∫ 1

−1

ρff(ρ, w)−2α dw; (5.13)



74 PETER HINTZ AND ANDRAS VASY

now, ∫ 1

−1

ρ−2α
ff dw = ρ1−2α

∫ 1/ρ

−1/ρ

dz

(1 + |z|2)α
. ρ1−2α

for α > 1/2, therefore, with the v integral considered on a fixed interval, say |v| < 2
(notice that the right hand side in (5.13) is independent of v!),∫∫∫

ρ2α−1|ũ(ρ, v, y)|2 dρ
ρ
dv dy .

∫∫∫
ρ2α

ff |u(ρ, w, y)|2 dρ
ρ
dw dy,

proving the claim for k = 0. Now, ρ∂ρ and ∂y just commute with this calculation,
so the corresponding derivatives are certainly well-behaved. On the other hand,
∂vũ = u, so the estimates involving at least one v-derivative are just those for u
itself. �

Corollary 5.11. Let k, p ∈ N be such that k > n/2, p ≥ 2. Let l ∈ R, u ∈ H0,l,k
b .

Then up ∈ H−1,lp−(p−1)/2+1/2−δ,k
b with δ = 0 if p ≥ 3 and δ > 0 if p = 2.

Proof. This follows from up ∈ ρ
−(p−1)/2−δ
ff H0,lp,k

b and the previous lemma, using
that (p− 1)/2 + δ > 1/2 with δ as stated. �

In other words, we gain the decay ρ1/2−δ if we give up one derivative.

5.3. A class of semilinear equations. We are now set to discuss solutions to non-
linear wave equations on an asymptotically Minkowski space. Under the assump-

tions of Theorem 5.3, we obtain a forward solution operator S : Hm−1,l,k
b (Ω)• →

Hm,l,k
b (Ω)• of P = ρ−(n−2)/2ρ−2�gρ(n−2)/2 provided |l| < 1,m+l < 1/2 and k ≥ 0.
Undoing the conjugation, we obtain a forward solution operator

S̃ = ρ(n−2)/2Sρ−2ρ−(n−2)/2,

S̃ : H
m−1,l+(n−2)/2+2,k
b (Ω)• → H

m,l+(n−2)/2,k
b (Ω)•

of �g.
Since g is a Lorentzian scattering metric, the natural vector fields to appear in a

non-linear equation are scattering vector fields; more generally, since the analysis is
carried out on b-spaces, we indeed allow b-vector fields in the following statement:

Theorem 5.12. Let

q : H
m,l+(n−2)/2,k
b (Ω)• ×Hm−1,l+(n−2)/2,k

b (Ω; bT ∗Ω)• → H
m−1,l+(n−2)/2+2,k
b (Ω)•

be a continuous function with q(0, 0) = 0 such that there exists a continuous non-
decreasing function L : R≥0 → R satisfying

‖q(u, bdu)− q(v, bdv)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R.
Then there is a constant CL > 0 so that the following holds: If L(0) < CL, then

for small R > 0, there exists C > 0 such that for all f ∈ Hm−1,l+(n−2)/2+2,k
b (Ω)•

with norm ≤ C, the equation

�gu = f + q(u, bdu)

has a unique solution u ∈ Hm,l+(n−2)/2,k
b (Ω)•, with norm ≤ R, that depends con-

tinuously on f .

Proof. Use the Banach fixed point theorem as in the proof of Theorem 2.25. �
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Remark 5.13. Here, just as in Theorem 4.10, we can also allow q to depend on �gu
as well.

5.4. Semilinear equations with polynomial non-linearity. Next, we want to
find a forward solution of the semilinear PDE

�gu = f + cupX(u),

where c ∈ C∞(M), p ∈ N0, and X(u) =
∏q
j=1 ρVj(u) is a q-fold product of deriva-

tives of u along scattering vector fields; here, Vj are b-vector fields. Let us assume
p+ q ≥ 2 in order for the equation to be genuinely non-linear. We rewrite the PDE
as

L(ρ−(n−2)/2u) = ρ−(n−2)/2−2f + cρ−2ρ(p−1)(n−2)/2(ρ−(n−2)/2u)p

×
q∏
j=1

ρVj(ρ
(n−2)/2ρ−(n−2)/2u).

Introducing ũ = ρ−(n−2)/2u and f̃ = ρ−(n−2)/2−2f yields the equation

Lũ = f̃ + cρ(p−1)(n−2)/2−2ũp
q∏
j=1

ρn/2(fj ũ+ Vj ũ)

= f̃ + cρ(p−1)(n−2)/2+qn/2−2ũp
q∏
j=1

(fj ũ+ Vj ũ), (5.14)

where the fj are smooth functions. Now suppose that ũ ∈ Hm,l,k
b (Ω)• with m+ l <

1/2,m ≥ 1, k > n/2 (so that Hm−1,−∞,k
b (Ω)• is an algebra), then the second

summand of the right hand side of (5.14) lies in Hm−1,`,k
b (Ω)•, where

` = (p− 1)(n− 2)/2 + qn/2− 2 + pl − (p− 1)/2 + ql − (q − 1)/2− 1/2.

For this space to lie in Hm−1,l,k
b (Ω)• (which we want in order to be able to apply

the solution operator S and land in Hm,l,k
b (Ω)• so that a fixed point argument as

in §2 can be applied), we thus need ` ≥ l, which can be rewritten as

(p− 1)(l + (n− 3)/2) + q(l + (n− 1)/2) ≥ 2. (5.15)

For m = 1 and l < 1/2−m less than, but close to −1/2, we thus get the condition

(p− 1)(n− 4) + q(n− 2) > 4.

If there are only non-linearities involving derivatives of u, i.e. p = 0, we get the
condition q > 1 + 2/(n − 2), i.e. quadratic non-linearities are fine for n ≥ 5, cubic
ones for n ≥ 4.

Note that if q = 0, we can actually choose m = 0 and l < 1/2 close to 1/2, and we
have Corollary 5.11 at hand. Thus we can improve (5.15) to (p−1)(1/2+(n−3)/2) >
2− 1/2, i.e. p > 1 + 3/(n− 2), hence quadratic non-linearities can be dealt with if
n ≥ 6, whereas cubic non-linearities are fine as long as n ≥ 4. Observe that this
condition on p always implies p > 1, which is a natural condition, since p = 1 would
amount to changing �g into �g −m2 (if one chooses the sign appropriately). But
the Klein-Gordon operator naturally fits into a scattering framework, as mentioned
in the Introduction, i.e. requires a different analysis; we will not pursue this further
in this paper.
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To summarize the general case, note that ũ ∈ Hm,l,k
b (Ω)• is equivalent to u ∈

H
m,l+(n−2)/2,k
b (Ω)•, and f̃ ∈ Hm−1,l,k

b (Ω)• to f ∈ Hm−1,l+(n−2)/2+2,k
b (Ω)•; thus:

Theorem 5.14. Let |l| < 1,m + l < 1/2, k > n/2, and assume that p, q ∈ N0,
p + q ≥ 2, satisfy condition (5.15) or the weaker conditions given above in the
cases where p = 0 or q = 0; let m ≥ 0 if q = 0, otherwise let m ≥ 1. Moreover,
let c ∈ C∞(M) and X(u) =

∏q
j=1Xju, where Xj is a scattering vector field on

M . Then for small enough R > 0, there exists a constant C > 0 such that for all

f ∈ Hm−1,l+(n−2)/2+2,k
b (Ω)• with norm ≤ C, the equation

�gu = f + cupX(u)

has a unique solution u ∈ Hm,l+(n−2)/2,k
b (Ω)•, with norm ≤ R, that depends con-

tinuously on f .
The same conclusion holds if the non-linearity is a finite sum of terms of the

form cupX(u), provided each such term separately satisfies (5.15).

Proof. Reformulating the PDE in terms of ũ and f̃ as above, this follows from an
application of the Banach fixed point theorem to the map

Hm,l,k
b (Ω)• 3 ũ 7→ S

(
f̃ + cρ(p−1)(n−2)/2+qn/2−2ũp

q∏
j=1

(fj ũ+ Vj ũ)

)
∈ Hm,l,k

b (Ω)•

with m, l, k as in the statement of the theorem. Here, p+q ≥ 2 and the smallness of

R ensure that this map is a contraction on the ball of radius R in Hm,l,k
b (Ω)•. �

Remark 5.15. If the derivatives in the non-linearity only involve module derivatives,

we get a slightly better result since we can work with ũ ∈ H0,l,k
b (Ω)•: Indeed, a

module derivative falling on ũ gives an element of H0,l,k−1
b (Ω)•, applied to which

the forward solution operator produces an element of H1,l,k−1
b (Ω)• ⊂ H0,l,k

b (Ω)•.
The numerology works out as follows: In condition (5.15), we now take l < 1/2

close to 1/2, thus obtaining

(p− 1)(n− 2) + qn > 4.

Thus, in the case that there are only derivatives in the non-linearity, i.e. p = 0, we
get q > 1 + 2/n, which allows for quadratic non-linearities provided n ≥ 3.

Remark 5.16. Observe that we can improve (5.15) in the case p ≥ 1, q ≥ 1, m ≥ 1
by using the δ-improvement from Corollary 5.9, namely, the right hand side of

(5.14) actually lies in Hm−1,`,k
b (Ω)•, where now

` = (p− 1)(n− 2)/2 + qn/2− 2 + pl− (p− 1)/2 + (p− 1)δ+ ql− (q− 1)/2− 1/2 + δ,

which satisfies ` ≥ l if

(p− 1)(l + (n− 3)/2 + δ) + q(l + (n− 1)/2) + δ ≥ 2,

which for l < −1/2 close to −1/2 means: (p− 1)(n− 4 + 2δ) + q(n− 2) + 2δ > 4,
where 0 < δ < 1/n.

Remark 5.17. Let us compare the above result with Christodoulou’s [7]. A spe-
cial case of his theorem states that the Cauchy problem for the wave equation on
Minkowski space with small initial data in17 Hk,k−1(Rn−1) admits a global solution

17Note that n is the dimension of Minkowski space here, whereas Christodoulou uses n+ 1.
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u ∈ Hk
loc(Rn) with decay |u(x)| . (1 + (v/ρ)2)−(n−2)/2; here, k = n/2 + 2, and n is

assumed to ≥ 4 and even; in case n = 4, the non-linearity is moreover assumed to
satisfy the null condition. The only polynomial non-linearity that we cannot deal
with using the above argument is thus the null-form non-linearity in 4 dimensions.

To make a further comparison possible, we express Hk,δ(Rn−1) as a b-Sobolev
space on the radial compactification of Rn−1: Note that u ∈ Hk,δ(Rn−1) is equiv-
alent to (〈x〉Dx)αu ∈ 〈x〉−δL2(Rn−1), |α| ≤ k. In terms of the boundary defining

function ρ of ∂Rn−1 and the standard measure dω on the unit sphere Sn−2 ⊂ Rn−1,
we have L2(Rn−1) = L2(dρρ2

dy
ρn−2 ) = ρ(n−1)/2L2(dρρ dy), and thus Hk,δ(Rn−1) =

ρ(n−1)/2+δHk
b (̃t = 0). Therefore, converting the Cauchy problem into a forward

problem, the forcing lies in H
k,(n−1)/2+k−1,0
b (Ω)• = H

n/2+2,n+1/2,0
b (Ω)•. Compar-

ing this with the spaceH
0,l+(n−2)/2+2,n/2+1
b (with l < 1/2) needed for our argument,

we see that Christodoulou’s result applies to a regime of fast decay which is disjoint
from our slow decay (or even mild growth) regime.

Remark 5.18. In the case of non-linearities up, the result of Christodoulou [7] im-
plies the existence of global solutions to �gu = f +up if the spacetime dimension n
is even and n ≥ 4 if p ≥ 3; in even dimensions n ≥ 6, p ≥ 2 suffices; the above result
extends this to all dimensions satisfying the respective inequalities. In a somewhat
similar context, see the work of Chruściel and  Lȩski [9], it has been proved that
p ≥ 2 in fact works in all dimensions n ≥ 5.

5.5. Semilinear equations with null condition. With g the Lorentzian scat-
tering metric on an asymptotically Minkowski space satisfying the assumptions of
Theorem 5.3 as before, define the null form Q(scdu, scdv) = gjk∂ju∂kv, and write
Q(scdu) for Q(scdu, scdu). We are interested in solving the PDE

�gu = Q(scdu) + f.

The previous discussion solves this for n ≥ 5; thus, let us from now on assume
n = 4. To make the computations more transparent, we will keep the n in the
notation and only substitute n = 4 when needed. Rewriting the PDE in terms of
the operator L = ρ−2ρ−(n−2)/2�gρ(n−2)/2 as above, we get

Lũ = f̃ + ρ−(n−2)/2−2Q(scd(ρ(n−2)/2ũ)),

where ũ = ρ−(n−2)/2u and f̃ = ρ−(n−2)/2−2f . We can write Q(scdu) = 1
2�g(u

2)−
u�gu, thus the PDE becomes

Lũ = f̃ + ρ−(n−2)/2−2
(

1
2�g(ρ

n−2ũ2)− ρ(n−2)/2ũ�g(ρ
(n−2)/2ũ)

)
= f̃ + 1

2L(ρ(n−2)/2ũ2)− ρ(n−2)/2ũLũ.

Since the results of §5.2 give small improvements on the decay of products of H1,∗,∗
b

functions with Hm,∗,∗
b functions (m ≥ 0), one wants to solve this PDE on a function

space that keeps track of these small improvements.

Definition 5.19. For l ∈ R, k ∈ N0 and α ≥ 0, define the space X l,k,α := {v ∈
H1,l+α,k

b (Ω)• : Lv ∈ H0,l,k
b (Ω)•} with norm

‖v‖X l,k,α = ‖v‖H1,l+α,k
b (Ω)• + ‖Lv‖H0,l,k

b (Ω)• . (5.16)
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By an argument similar to the one used in the proof of Theorem 2.25, we see
that X l,k,α is a Banach space.

On X l,k,α, which α > 0 chosen below, we want to run an iteration argument:

Start by defining the operator T : X l,k,α → H1,−∞,k
b (Ω)• by

T : ũ 7→ S
(
f̃ − ρ(n−2)/2ũLũ

)
+ 1

2ρ
(n−2)/2ũ2.

Note that ũ ∈ X l,k,α implies, using Corollary 5.9 with δ < 1/n,

ρ(n−2)/2ũ2 ∈ ρ(n−2)/2H
1,2(l+α)−1/2+δ,k
b (Ω)• = H

1,2l+α+(n−3)/2+δ+α,k
b (Ω)•,

ρ(n−2)/2ũLũ ∈ H0,2l+α+(n−3)/2+δ,k
b (Ω)•, (5.17)

S(ρ(n−2)/2ũLũ) ∈ H1,2l+α+(n−3)/2+δ,k
b (Ω)•,

where in the last inclusion, we need to require 1 + (2l + α+ (n− 3)/2 + δ) < 1/2,
which for n = 4 means

l < −1/2− (α+ δ)/2; (5.18)

let us assume from now on that this condition holds. Furthermore, (5.17) implies

T ũ ∈ H1,2l+α+(n−3)/2+δ,k
b (Ω)•. Finally, we analyze

L(T ũ) ∈ H0,2l+α+(n−3)/2+δ,k
b (Ω)• +

1

2
L(ρ(n−2)/2ũ2).

Using that L is a second-order b-differential operator, we have

ρ(n−2)/2L(ũ2) ∈ 2ρ(n−2)/2ũLũ+ ρ(n−2)/2H0,l+α,k
b (Ω)•H0,l+α,k

b (Ω)•

⊂ H0,2l+α+(n−3)/2+δ,k
b (Ω)• +H

0,2(l+α)+(n−3)/2,k
b (Ω)•

= H
0,2l+α+(n−3)/2+min{α,δ},k
b (Ω)•,

which gives

L(ρ(n−2)/2ũ2) ∈ L(ρ(n−2)/2)ũ2 + ρ(n−2)/2L(ũ2)

+ ρ(n−2)/2H1,l+α,k
b (Ω)•H0,l+α,k

b (Ω)•

⊂ H1,2l+α+(n−3)/2+δ+α,k
b (Ω)• +H

0,2l+α+(n−3)/2+min{α,δ},k
b (Ω)•

+H
0,2l+α+(n−3)/2+δ+α
b (Ω)•

= H
0,2l+α+(n−3)/2+min{α,δ},k
b (Ω)•.

Hence, putting everything together,

L(T ũ) ∈ H0,2l+α+(n−3)/2+min{α,δ},k
b (Ω)•.

Therefore, we have T ũ ∈ X l,k,α provided

2l + α+ (n− 3)/2 + δ ≥ l + α

2l + α+ (n− 3)/2 + min{α, δ} ≥ l,
which for 0 < α < δ and n = 4 is equivalent to

l ≥ −1/2− δ, l ≥ −1/2− 2α. (5.19)

This is consistent with condition (5.18) if −1/2 − (α + δ)/2 > −1/2 − 2α, i.e. if
α > δ/3.

Finally, for the map T to be well-defined, we need Sf̃ ∈ X l,k,α, hence f̃ ∈
RanX l,k,α L, which is in particular satisfied if f̃ ∈ H0,l+α,k

b (Ω)•. Indeed, since
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1 + l + α < 1 − 1/2 − (δ − α)/2 < 1/2 by condition (5.18), the element Sf̃ ∈
H1,l+α,k

b (Ω)• is well-defined.
We have proved:

Theorem 5.20. Let c ∈ C, 0 < δ < 1/4, δ/3 < α < δ, and let −1/2 − 2α ≤ l <
−1/2 − (α + δ)/2. Then for small enough R > 0, there exists a constant C > 0

such that for all f ∈ H0,l+3+α,k
b (Ω)• with norm ≤ C, the equation

�gu = f + cQ(scdu)

has a unique solution u ∈ X l+1,k,α, with norm ≤ R, that depends continuously on
f .
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[33] Richard B. Melrose, Antônio Sá Barreto, and András Vasy. Asymptotics of solutions of the

wave equation on de Sitter-Schwarzschild space. Comm. in PDE, to appear.

[34] Richard B. Melrose, András Vasy, and Jared Wunsch. Diffraction of singularities for the wave
equation on manifolds with corners. Astérisque, 351, vi+136pp, 2013.
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