
SEMICLASSICAL PROPAGATION THROUGH CONE POINTS

PETER HINTZ

Abstract. We introduce a general framework for the study of the diffraction of waves
by cone points at high frequencies. We prove that semiclassical regularity propagates
through cone points with an almost sharp loss even when the underlying operator has
leading order terms at the conic singularity which fail to be symmetric. We moreover
show improved regularity along strictly diffractive geodesics. Applications include high
energy resolvent estimates for complex- or matrix-valued inverse square potentials and
for the Dirac–Coulomb equation. We also prove a sharp propagation estimate for the
semiclassical conic Laplacian.

The proofs use the semiclassical cone calculus, introduced recently by the author, and
combine radial point estimates with estimates for a scattering problem on an exact cone.
A second microlocal refinement of the calculus captures semiclassical conormal regularity
at the cone point and thus facilitates a unified treatment of semiclassical cone and b-
regularity.

1. Introduction

We present a systematic analysis of the propagation of semiclassical regularity through
points which are geometrically singular (cone points), analytically singular (e.g. including
inverse square potentials), or both. The novel aspect of our approach is that it handles
leading order singular terms with ease, regardless of symmetry or sign conditions.

As a simple application of our main microlocal propagation result, we consider high
energy scattering by complex-valued potentials on Rn with an inverse square singularity.
Denote by H2

0 (Rn \ {0}) the closure of C∞c (Rn \ {0}) in the topology of H2(Rn); denote
further by ∆ =

∑n
j=1D

2
xj

(where D = 1
i ∂) the nonnegative Laplacian, and denote polar

coordinates on Rn by (r, ω) ∈ (0,∞)× Sn−1.

Theorem 1.1 (High energy estimates for potential scattering). Let V (x) = V0(x)
|x|2 , where

V0 = V0(r, ω) ∈ C∞c ([0,∞)r×Sn−1;C) and V0(0, ω) ≡ Z ∈ C. (Thus V (x) = Z
|x|2 +O(|x|−1)

near the origin.) Suppose that n ≥ 5 and Re
√

(n−2
2 )2 + Z > 1. Then there exists λ0 > 0

so that for all λ ∈ C with Reλ > λ0 and 0 < Imλ < 1, the operator

∆ + V − λ : H2
0 (Rn \ {0})→ L2(Rn) (1.1)

is invertible, and its inverse obeys the operator norm bound

‖χ(∆ + V − λ)−1χ‖L2→L2 ≤ Cχ,ε|λ|−
1
2

+ε (1.2)

for all χ ∈ C∞c (X) and ε > 0. More generally, ∆ + V − λ : D → L2(Rn) is invertible for
n ≥ 2 and Z ∈ C \ (−∞,−(n−2

2 )2] for a suitable domain D (see (5.29) with l = 1), and the
estimate (1.2) holds in this generality as well.
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The point is that we can allow for Z to be nonreal, in which case ∆+V is not a symmetric
operator on C∞c (Rn\{0}). (The compact support assumption on V is made only to focus the
attention of the reader on a neighborhood of the singularity at x = 0. The result holds also
for V with sufficient decay at infinity, such as |∂αxV | . 〈x〉−1−δ for all α where δ > 0.) For a
general result for matrix-valued inverse square potentials without symmetry conditions, see
Theorem 5.7; Lemma 5.10 verifies the assumptions of Theorem 5.7 for the case considered
in Theorem 1.1. Typical applications of high energy resolvent estimates include decay
and local smoothing estimates for solutions to wave and Schrödinger equations; since such
applications are orthogonal to the focus of the present paper, we shall not discuss them
here.

Burq and Planchon–Stalker–Tahvildar-Zadeh proved Strichartz estimates for exact in-
verse square potentials in the case of real Z > −(n−2

2 )2 [PSTZ03, BPSTZ03]. Duyckaerts
[Duy06] obtained, by means of estimates for semiclassical defect measures, high energy
resolvent estimates (without the ε-loss) in the more general setting of inverse square po-
tentials at a finite collection of points pj in Rn, at each of which the coefficient Zj satisfies
Zj > −(n−2

2 )2. We also mention the work by Baskin–Wunsch [BW13] on lossless resolvent
estimates in a geometric setting, namely in the presence of finitely many conic singularities,
and the work by Hillairet–Wunsch [HW20] on resonances in this setting (see also [Gal17]).

Remark 1.2 (More natural settings). The setting of Theorem 1.1 is chosen here for its
simplicity. More natural examples in which leading order terms without signs or symmetry
properties are present arise in particular in the study of PDEs on vector bundles. As an
example, motivated by the recent work of Baskin–Wunsch [BW23], we prove high energy
resolvent estimates for the Dirac–Coulomb equation in §5.3, see Theorem 5.14.

The heart of the proof of Theorem 1.1 is the propagation of semiclassical regularity
through r = 0,1 which we prove in this paper for a general class of admissible operators, see
Definition 4.1 and Theorem 4.10. Thus, in addition to inverse square singularities (which
may be anisotropic), we allow for the underlying metric g to have a conic singularity at
r = 0, so g = dr2 + r2k(r, y,dr, dy) for some smooth r-dependent tensor k, with k|r=0

a Riemannian metric on a closed manifold Y . We moreover allow for further first order
differential operators of the schematic form r−1Dr, r

−2Dy to be present. All these singular
terms are allowed to be of the same strength at r = 0: they are, to leading order at r = 0,
homogeneous of degree −2 with respect to dilations.

In order to explain the main features of Theorem 1.1, note that the degree −2 homo-
geneity of the Laplacian and of the potential r−2 is reflected also in the Hardy inequality,
which demonstrates that any factor of r−1 should be regarded as a derivative as far as
analysis near the cone point r = 0 is concerned. Therefore, when Z in Theorem 1.1 is
nonreal, the operator ∆ + V − λ is, even to leading order at the cone point, not symmetric.
Therefore, techniques rooted in the spectral theory of self-adjoint operators do not apply.
Furthermore, recall that even for solutions of smooth coefficient PDEs Pu = f where the
principal symbol of P is complex-valued, microlocal regularity of u propagates along the
null-bicharacteristics of ReP only under a sign condition on ImP near the boundary of the
support of ImP [Vas18, §4.5]; on a technical level, the term ImP contributes the leading

1In particular, the choice of the large end of the space, here Rn, is only made for convenience and allows
for simple control of the global structure of the geodesic flow. Thus, we do not discuss the large literature
on limiting absorption principles here.
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term in a positive commutator argument for proving the propagation of regularity along
null-bicharacteristics of ReP . The absence of sign conditions on ImV in Theorem 1.1 is
thus a significant obstacle for the applicability of existing methods.

In general geometric or analytic settings where one cannot separate variables, propa-
gation estimates through cone points and other types of singularities have so far largely
been restricted to self-adjoint settings. Melrose–Wunsch [MW04] studied the diffraction
of waves by conic singularities by combining microlocal propagation estimates in the edge
calculus developed by Mazzeo [Maz91] with the inversion of a suitable model operator on
an exact cone. This point of view is closely related to that adopted in the present paper,
see Remark 1.4, though by contrast to the present work, [MW04] takes full advantage of
the self-adjointness of the underlying Laplace operator.

Later works on wave propagation in singular geometries have been based on positive
commutator arguments relative to a quadratic form domain (thus still in self-adjoint set-
tings), following the blueprint of Vasy’s work [Vas08] on the propagation of singularities on
smooth manifolds with corners (see Lebeau [Leb97] for the analytic setting). Vasy’s work
was extended to the setting of manifolds with edge singularities by Melrose–Vasy–Wunsch
[MVW08], and the same authors established improved regularity of the strictly diffracted
front on manifolds with corners [MVW13]. See Qian [Qia09] for the case of inverse square
potentials. We remark that in these works, the underlying geometry near the singularity is
not reflected in the type of singularities which propagate or diffract—for instance, in the
case of [Vas08], the geometry is that of a manifold with corners equipped with a smooth
(incomplete!) Riemannian metric, but the correct notion of regularity is conormality at the
boundary; thus, these works introduce mixed differential-pseudodifferential calculi which
are compatible with both structures.

Baskin–Marzuola [BM22] combined the techniques of [Vas08] with those developed in
[BVW15] to study the long-time behavior of waves on manifolds with conic singularities.
An important ingredient in their work is a high energy estimate for propagation through
the conic singularity. In the present paper we give an alternative proof which in particular
avoids the use of a mixed calculus; see also Remark 1.5. We also mention that Gannot–
Wunsch [GW18] analyzed the diffraction by conormal potentials in the semiclassical setting
using direct commutator methods involving paired Lagrangian distributions, inspired by
[dHUV15].

The recent work by Baskin–Wunsch [BW23] on diffraction for the Dirac–Coulomb equa-
tion is also rooted in [MW04, MVW08]. While the (first order) Dirac–Coulomb operator is
self-adjoint for the range of Coulomb charges considered in [BW23], the wave type operator
obtained by taking an appropriate square has nonsymmetric leading order terms at the
central singularity; thus, the authors work directly with the first order operator in their
proofs of propagation results. We are able to give a direct proof of high energy estimates
for the resolvent associated with the wave type operator arising in [BW23], see §5.3.

In the high energy regime under study in the present paper, the strategy for overcoming
the issues caused by the absence of symmetry or self-adjointness properties is the following.
We distill the contribution of V to the high frequency propagation of regularity (i.e. in
Theorem 1.1: the inverse powers of |λ| appearing in uniform estimates of L2 norms) into
a model problem right at the cone point, thus decoupling it from the real principal type
propagation away from the cone point (where V plays no role due to its subprincipal nature).
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More precisely, in the setting of Theorem 1.1, set h := |λ|−
1
2 and z = h2λ = 1 +O(h), and

define the semiclassical rescaling

Ph,z = h2(∆ + V − λ) = h2∆− z + h2

|x|2V0

= (hDr)
2 − i(n− 1)hrhDr + h2r−2∆Sn−1 − z + h2

r2
V0.

(1.3)

Recall here that V0 ∈ C∞c ([0,∞)r × Sn−1;C) is equal to a constant Z ∈ C at r = 0. The
operator Ph,z is a semiclassical differential operator in r > 0. Its uniform analysis as h→ 0,
as far as the novel bit near r = 0 is concerned, is based on two ingredients, discussed in
more detail in §1.1.

(1) Symbolic propagation estimates: real principal type propagation in r > 0 in the
spirit of [DH72], and radial point estimates down to r = 0 in the spirit of [Mel94,
Vas13] but taking place in the semiclassical cone algebra introduced by the author
in [Hin22]. The advantage of this algebra in the present setting is that Ph,z has a
smooth and nondegenerate principal symbol in this algebra down to r = 0; in this
algebra, the proofs of the relevant symbolic estimates are then essentially standard.

(2) Inversion of a model problem. Passing to the rescaled variable r̂ = r
h and letting

h→ 0 for fixed r̂ in the resulting expression of Ph,z gives

N(P ) = D2
r̂ − i(n− 1)r̂−1Dr̂ + r̂−2∆Sn−1 − 1 + Z

r̂2
. (1.4)

The inversion of N(P ) is a scattering problem on an exact cone at unit frequency,
and requires the existence of the limiting (outgoing) resolvent. Its analysis is based
on b-analysis near the small end of the cone [Mel93] and on the microlocal approach
to scattering theory on spaces with conic infinite ends pioneered by Melrose [Mel94].

The ε-loss in the estimate (1.2) is then due to the analogous loss in the limiting absorption
principle for the scattering problem, as one needs to exclude incoming but allow outgoing
spherical waves, cf. Remark 5.3. (We shall in fact deduce the lossy estimates stated in
Theorem 1.1 from sharp results—as far as the relationship of domain and codomain of
Ph,z is concerned—on spaces with variable semiclassical orders.) For general admissible
operators, the decay rates of incoming and outgoing solutions of the model problem are
typically different, and the semiclassical loss upon propagation through the cone point is
equal to their difference (up to an additional ε-loss); we give explicit examples in which
this loss indeed occurs in Appendix A, demonstrating that our analysis is sharp up to an
ε-loss. It seems impossible to avoid this ε-loss if one proves the propagation estimates in
the above step-by-step manner: the microlocal radial point estimates force inequalities on
the semiclassical orders (see however [Wan20] in a Besov space setting), and also on the
incoming and outgoing decay orders of the function spaces on which the model problem is
invertible. Thus, avoiding this ε-loss requires the development of propagation arguments
which provide control near r = 0 in one fell swoop. We demonstrate this for operators
Ph,z = h2∆g − z, z = 1 + O(h), on (nonexact) conic manifolds, for which we are able to
obtain a lossless propagation estimate by means of a positive commutator argument which
is global on the level of the normal operator N(P ), i.e. which involves the construction of
a commutator which is positive as an operator on an exact cone, in the spirit of Mourre’s
construction [Mou81] and Vasy’s approach to many-body scattering [Vas00, Vas01]; see
Theorem 5.4, in particular the estimate (5.6). It is not clear at present however how to
generalize such an argument to more general (in particular non-symmetric) settings.
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The close connection between diffraction by conic singularities and scattering on large
ends of cones was recently studied for exact (or ‘product’) cones (i.e. the metric is g =
dr2+r2k(y,dy)) by Yang [Yan20], resulting in a partial improvement of the classical analysis
by Cheeger–Taylor [CT82b, CT82a] which was based on separation of variables and Bessel
function analysis. Recently, Chen Xi [Che22] constructed a detailed parametrix for high fre-
quency diffraction by (nonexact) conic singularities, i.e. for the operator (h2∆g−(1±i0))−1,
with applications to short time Strichartz estimates for the Schrödinger equation; an im-
portant ingredient in his work is the precise resolvent construction by Guillarmou–Hassell–
Sikora [GHS13], applied on an exact cone which arises similarly to (1.4). (The history of
the study of propagation and diffraction phenomena for solutions of wave type equations on
manifolds with singularities is long, starting with Sommerfeld’s example [Som96] and early
developments by Friedlander [Fri58] and Keller [Kel85]. The use of geometric and microlocal
techniques for the analysis of singularities goes back to work on manifolds with boundary
by Melrose–Sjöstrand [MS78, MS82] using commutator techniques, and Melrose and Taylor
[Mel75, Tay76, MT] using parametrix constructions.) We also mention the recent work by
Keeler–Marzuola [KM20] who use estimates for the resolvent on exact cones perturbed by
a radial (but not homogeneous) potential in order to obtain dispersive estimates for the
Schrödinger equation.

Finally, we prove a diffractive improvement which gives finer control on the strength of
singularities as they propagate through the cone point. Combining our framework with
the arguments in [MW04, MVW08] for the propagation of coisotropic regularity, we show
that, under a nonfocusing condition, the strongest singularities propagating towards the
cone point only continue along geometric geodesics (limits of geodesics barely missing the
cone point), whereas away from those, the diffracted front is smoother; see §4.6. We do not
address here the interesting question of whether one can prove estimates in the presence of
multiple scatterers using such diffractive improvements, as done in [BW13]; in particular,
we do not recover Duyckaerts’ results [Duy06] here. See Remark 5.11.

Regarding applications of our high frequency estimates, we content ourselves with a few
conjectural remarks. First, in the context of [BVW15, BVW18, BM22] and Remark 5.12,
it should be possible to use our results to justify contour shifting arguments for obtaining
asymptotic expansions (including radiation fields) of solutions to wave-type equations on
static conic manifolds with rather general inverse square potentials in the forward cone.
Due to the relationship between edge Sobolev spaces and semiclassical cone Sobolev spaces
discussed in Remark 3.4, it is likely not necessary to prove b-regularity at the spatial
cone point r = 0 (unlike in [BM22, §§8.2.2–8.2.3]); instead, edge propagation results at
r = 0 (with uniformity as t → ∞ encoded by b-spaces), which directly apply also to
non-symmetric operators, likely suffice. One does need to show, however, the existence of
global forward solutions by means distinct from energy methods since spectral methods
are no longer available for defining domains of the spatial operator.2 — Second, it is not
immediately clear how to generalize local smoothing estimates for Schrödinger equations
(e.g. as in [Duy06, Corollaire (2)]) if the underlying Hamiltonian is not self-adjoint; it is
an interesting question however whether, say in the context of Theorem 1.1, some version
of local smoothing (with an ε-loss) holds for the evolution defined in terms of the inverse
Fourier transform of the resolvent (∆+V −λ+i0)−1, λ ∈ R, assuming it exists. (Estimates in

2A closely related setting in which many of these points are addressed, with the exception of the analysis
at a spatial inverse square singularity, is described in [Hin23]; see in particular [Hin23, §5.3].
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the elliptic regime λ� −1 are discussed in [Hin22].) A similar remark applies to Strichartz
estimates.

1.1. Sketch of the proof. Consider again the operator Ph,z from (1.3); we work locally
near r = 0, thus on X = [0, 1)r × Sn−1. In order to achieve a clean separation of the
regimes h → 0, r > 0 (corresponding to semiclassical analysis away from the cone point)
and h ∼ r → 0 (where the normal operator N(P ) in (1.4) enters and semiclassical tools
cease to be applicable), we work on a resolution of the total space [0, 1)h ×X obtained by
a real blow-up of h = r = 0,3

Xc~ :=
[
[0, 1)h ×X; {0} × ∂X

]
.

See Figure 1.1. We wish to regard h
h+r as the ‘true’ semiclassical parameter; we proceed to

make this more precise.

h
h+
r

1

0

h+ r

r

h

Figure 1.1. The semiclassical cone single space Xc~.

Note first that for h = 1, the rescaling r2P1,z is a Fuchs-type operator, or b-differential
operator in the terminology of Melrose [Mel93], namely a differential operator built out
of the vector fields r∂r and ∂y (which span the space of b-vector fields), where y ∈ Rn−1

denotes local coordinates on ∂X. In this sense, the rescaled operator r2P1,z has elliptic
principal part given by (rDr)

2 + kijDyiDyj , where kij is the inverse metric on Sn−1. As

h tends to 0, the operator r2Ph,z is built out of the semiclassical vector fields hr∂r and
h∂y (which span the space of semiclassical b-vector fields). In this semiclassical sense (i.e.
ignoring terms with extra powers of h), its principal part is

r2Ph,z ∼ (hrDr)
2 + kijhDyihDyj − r2z.

The characteristic set, i.e. the zero set of its principal symbol ξ2
b~ + |ηb~|2 − r2, becomes

singular at r = 0, which is indicative of the inadequacy of the semiclassical b-setting to
capture the behavior of Ph,z microlocally near h = r = 0 (cf. the above discussion regarding
the tension between the geometry and the notion of regularity in [MW04, Vas08] and
subsequent works). The way out is to divide by (h+ r)2 and thus consider(

r
h+r

)2
Ph,z =: ph,z(r, y,

h
h+rrDr,

h
h+rDy)

3Recall here that the real blow-up gives an invariant way of introducing polar coordinates around {0} ×
∂X. Thus, a neighborhood of h = r = 0 in Xc~ is diffeomorphic to [0, 1)ρ × [0, π

2
]θ × ∂X and equipped

with a smooth map (the blow-down map) to [0, 1) × X = [0, 1) × ([0, 1) × Sn−1) given by (ρ, θ, y) 7→
(ρ sin θ, (ρ cos θ, y)) which is a diffeomorphism away from the front face ρ−1(0). In practice, it is more
convenient to work with the smooth functions h+ r, h

h+r
on Xc~ instead of ρ, θ.
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as a differential operator built out of h
h+rr∂r and h

h+r∂yi , which are the prototypical semi-

classical cone vector fields introduced in [Hin22], see §3.1. In this sense, the principal part
of ( r

h+r )2Ph,z (i.e. ignoring terms of size O( h
h+r )) is(

r
h+r

)2
Ph,z ∼

(
h
h+rrDr

)2
+ kij

(
h
h+rDyi

)(
h
h+rDyj

)
−
(

r
h+r

)2
z. (1.5)

Put differently, we may note that Ph,z ∼ (hDr)
2 + kij(hr−1Dyi)(hr

−1Dyj ) − z is homoge-
neous of degree 0 with respect to scaling in (h, r), and approximately homogeneous of degree
−2 with respect to scaling in r; this suggests expressing Ph,z in terms of r

h+r = 1 − h
h+r ,

leading again to (1.5).

Note that in the regime h
h+r � 1, where we are aiming to use semiclassical methods, the

operator (1.5) is now nondegenerate in the sense that its principal symbol

p0,1(r, y, ξ, η) = ξ2 + |η|2 − 1

(recall z = 1 +O(h)) has a smooth zero set on which p0,1 vanishes simply. (The microlocal
analysis of semiclassical cone operators in the semiclassical regime is thus concerned with

tracking amplitudes of oscillations r
i

h/(h+r)
ξ
e

i
h/(h+r)

η·y
through the phase space over Xc~—

more precisely: over the ‘semiclassical face’ h
h+r = 0—whose fiber variables are (ξ, η).)

The semiclassical cone calculus Ψc~(X), introduced in [Hin22] and developed further
in §3, makes this rigorous. It allows for the symbolic analysis of pseudodifferential operators
of the form

Opc,h(p) = “p( h
h+r , h+ r, y, h

h+rrDr,
h
h+rDy)”

using standard methods from microlocal analysis: there is a semiclassical principal sym-
bol p(0, r, y, ξ, η), which is a symbol on the aforementioned phase space (defined rigorously
after Lemma 3.2). Moreover, as usual, the commutator i[Opc,h(p),Opc,h(q)] is given by
the quantization of the Poisson bracket of p and q up to operators with an extra factor
of h

h+r . For the operator Ph,z in (1.3), the Hamilton vector field of its principal symbol is
nondegenerate except at two submanifolds of critical points over r = 0; these critical sets
are saddle points for the Hamilton flow, and are end or starting points of geodesics hitting
the cone point or emanating from it. (See Figure 4.1.) One can thus prove quantitative
microlocal propagation and radial point estimates on the associated scale of weighted semi-
classical cone Sobolev spaces, which measure L2 norms of derivatives along h

h+rrDr,
h
h+rDy,

and which feature weights which are real powers of r
h+r and h+ r.

Remark 1.3 (Semiclassical cone ps.d.o.s as tools). The (large) pseudodifferential calculus
Ψc~(X) was introduced in [Hin22] as the space in which inverses and complex powers of
elliptic semiclassical cone operators, such as h2∆ + 1, live; the goal there was a precise
description of their Schwartz kernels. Here, by contrast, we use semiclassical cone ps.d.o.s
as tools to understand propagation phenomena. Correspondingly, we only need to consider
the small semiclassical cone calculus, as our analysis will be based on proving estimates,
rather than on the construction and usage of parametrices. (Parametrices are typically
significantly more challenging to construct [Che22] and are very precise tools; on the flipside,
they tend to be less convenient when the need for generalizations or for proofs of sharp
mapping properties on various function spaces arises.) Thus, in §3, we provide a perspective
on Ψc~(X) which makes it easy to work with in nonelliptic settings.
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At this point, we control the semiclassical regularity of solutions of Ph,zu = f at h
h+r = 0.

This means that we have an estimate of the schematic form

‖u‖ . ‖Ph,zu‖+ ‖Eu‖+
∥∥∥ h

h+ r
u
∥∥∥, (1.6)

where Eu controls u on a transversal to the collection of forward geodesics which encounter
r = 0; the function spaces here are semiclassical cone Sobolev spaces. That is, control of
Eu together with weak control of u at h

h+r = 0 (finiteness of the final term) gives stronger

control of u (finiteness of the left hand side), provided the forcing term Ph,zu has suitable

bounds (e.g. equals 0). Notice that the weights 1 and h
h+r in the norms ‖u‖ and ‖ h

h+ru‖
are comparable for h ∼ r, i.e. at the front face in Figure 1.1; thus, the estimate (1.6) does
not provide control of u in this regime.

In order to control u globally, including at h = r = 0, one needs to invert the normal
operator N(P ) of Ph,z, which is the restriction of Ph,z to the front face of Xc~; see (1.3)–
(1.4) for a concrete example. The function spaces on which one inverts N(P ) need to match
the function spaces in which the symbolic propagation estimates are obtained. As already
observed in [Hin22] (see also the earlier paper [Loy02]) and demonstrated in detail on the
level of function spaces in §3.3, the correct function spaces for N(P ) are standard Sobolev
spaces when r̂ = r

h & 1 (i.e. measuring regularity with respect to Dr̂ and r̂−1Dyi) and b-
Sobolev spaces in r̂ . 1 (i.e. measuring regularity with respect to r̂Dr̂ and Dyi). Following
[Mel94], we show in §4.4 that the analysis of N(P ) on spaces with variable orders of decay as
r̂ →∞ precisely matches the above symbolic analysis which involves variable semiclassical
orders (powers of h

h+r ) to accommodate the threshold requirements for propagation into/out

of the radial sets, cf. [DZ19, Appendix E.4].

We stress the global (rather than microlocal or symbolic) nature of the requirement
that the normal operator N(P ) be invertible; while verifying this in concrete situations is
nontrivial, one has many standard techniques at one’s disposal (such as boundary pairing
arguments, unique continuation, separation of variables, etc). We also remark that the
necessity to invert model (or ‘normal’) operators for the purpose of controlling solutions of
PDE in a singular regime is a typical feature of singular PDE, cf. for example the role of the
invertibility of the Mellin-transformed normal operator family in the asymptotic behavior
of waves in [BVW15, BVW18, BM19, BM22].

In combination, the symbolic estimates and the normal operator invertibility provide
control of u at both hypersurfaces h

h+r = 0 and h + r = 0 of Xc~: schematically, one

estimates the final term in (1.6) by ‖ h
h+rN(P )u‖ and then replaces N(P ) by Ph,z, thereby

committing an error term which vanishes to leading order at the front face h+ r = 0, one
obtains

‖u‖ . ‖Ph,zu‖+ ‖Eu‖+
∥∥∥(h+ r)

h

h+ r
u
∥∥∥ . ‖Ph,zu‖+ ‖Eu‖+ h‖u‖.

The final term can be absorbed into the left hand side when h is sufficiently small. Thus, we
have uniform control of u as h → 0. (One can package this into an invertibility statement
for a modification of Ph,z by placing complex absorbing potentials away from r = 0 in the
spirit of [NZ09, WZ11, DV12, Vas13], see §4.5.)

Remark 1.4 (Relation to edge propagation). The proof of symbolic propagation estimates
for wave equations on conic or edge manifolds using the edge calculus [Maz91], as done
in [MW04, §8] and [MVW08, §11], is closely related, via the Fourier transform in time,
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to the semiclassical cone Sobolev spaces associated with Ψc~(X); see Remark 3.4. Going
one step further in the comparison, we note that the fine analysis of diffraction by Melrose
and Wunsch [MW04] for waves on a conic manifolds uses a normal operator at the cone
point which is defined via a rescaled FBI (Fourier–Bros–Iagolnitzer) transform in time; this
normal operator is thus equivalent to the operator N(P ) considered here, but used in a
different manner.

Remark 1.5 (Second microlocalization). Writing hrDr = (h + r) h
h+rrDr and hDy = (h +

r) h
h+rDy suggests that semiclassical conormal regularity at the cone point (regularity under

application of hrDr and hDy) can be captured on the scale of semiclassical cone Sobolev
spaces as well. We present a systematic second microlocal perspective on this in §3.4,
inspired by recent work of Vasy on the limiting absorption principle on asymptotically
conic manifolds [Vas21b, Vas21a] (with the conic nature referring to the large end of the
manifold). In view of the characterization of the quadratic form domain of h2∆g + 1 as a
semiclassical cone Sobolev space in [Hin22, Theorem 6.1], we can thus eliminate the need
of working with a mixed differential-pseudodifferential calculus as in [BM22], and instead
work in a single microlocal framework.

1.2. Outline of the paper. In §2, we review basic notions from b- and scattering analysis,
with an eye towards the relationship with semiclassical cone analysis. In §3, we describe a
hands-on perspective on the semiclassical cone algebra Ψc~(X) with a focus on its use for
symbolic computations. The heart of the paper is §4: we define the general class of operators
to which the analysis sketched in §1.1 applies (§4.1) and analyze in detail their symbolic
properties (§4.2), followed by a general analysis of N(P ) (§4.3). We state and prove the
main microlocal result, Theorem 4.10, in §4.4. We prove the diffractive improvement in §4.6.
Finally, §5 contains applications of the general theory: a sharp version of propagation
estimates for h2∆g − 1 on conic manifolds in §5.1, and high energy resolvent estimates for
scattering by inverse square potentials and the Dirac–Coulomb equation in §§5.2–5.3.

In Appendix B, we provide a brief summary of the Sobolev spaces and pseudodifferential
calculi used, to aid the reader in keeping track of the (meanings of the) various orders
involved.

Acknowledgments. I am grateful to András Vasy and Jared Wunsch for helpful conversa-
tions, and to two anonymous referees for their careful reading of the paper and for excellent
comments and suggestions. I gratefully acknowledge support from a Sloan Research Fel-
lowship and from the NSF under Grant No. DMS-1955614.

2. Review of b- and scattering calculi

We denote by X a smooth n-dimensional compact manifold with nonempty, connected,
and embedded boundary ∂X. The Lie algebra Vb(X) ⊂ V(X) = C∞(X;TX) of b-vector
fields consists of all smooth vector fields on X which are tangent to ∂X. The Lie subalgebra
Vsc(X) ⊂ Vb(X) of scattering vector fields consists of all b-vector fields which vanish, as
b-vector fields, at ∂X. Thus, if x ∈ C∞(X) denotes a boundary defining function (meaning:
∂X = x−1(0), and dx does not vanish on ∂X), then Vsc(X) = xVb(X). In local coordinates
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(x, y) ∈ [0,∞)× Rn−1 near a point on ∂X, b-vector fields are of the form

a(x, y)x∂x +

n−1∑
j=1

bj(x, y)∂yj , a, b1, . . . , bn−1 ∈ C∞, (2.1)

while scattering vector fields are of the form

a(x, y)x2∂x +
n−1∑
j=1

bj(x, y)x∂yj , a, b1, . . . , bn−1 ∈ C∞.

Correspondingly, there are natural vector bundles

bTX → X, scTX → X, (2.2)

isomorphic to TX◦ over X◦, but with local frames (in local coordinates as above) given by
x∂x, ∂y1 , . . . , ∂yn−1 and x2∂x, x∂y1 , . . . , x∂yn−1 respectively, so that Vb(X) = C∞(X; bTX)

and Vsc(X) = C∞(X; scTX). Here, we implicitly use the bundle maps bTX → TX and
scTX → TX (which are isomorphisms over X◦ but not over ∂X) to identify C∞(X; bTX)
and C∞(X; scTX) with subspaces of C∞(X;TX) = V(X). The dual bundles of (2.2) are the
b-cotangent bundle and scattering cotangent bundle, bT ∗X → X and scT ∗X → X, with

local frames dx
x ,dy

1, . . . ,dyn−1 and dx
x2
, dy1

x , . . . ,
dyn−1

x , respectively. (These 1-forms are thus

smooth, nonzero sections of bT ∗X, resp. scT ∗X, down to ∂X.) Writing the canonical 1-form
on T ∗X◦ as

ξb
dx

x
+

n−1∑
j=1

(ηb)j dyj , resp. ξsc
dx

x2
+

n−1∑
j=1

(ηsc)j
dyj

x
, (2.3)

thus defines fiber-linear coordinates (ξb, ηb), resp. (ξsc, ηsc) ∈ R × Rn−1, on bT ∗X, resp.
scT ∗X. The b-density bundle is denoted bΩ1X = |Λn bT ∗X|; in local coordinates, its
smooth sections are of the form a|dxx dy1 · · · dyn−1|, a ∈ C∞.

The space of finite linear combinations of up to k-fold compositions of elements of V•(X),

• = b, sc, is denoted Diffk•(X), and we put Diff•(X) =
⊕

k∈N0
Diffk•(X). The space Diffb(X)

gives rise to the notion of conormality (relative to a fixed function space) of distributions
on X◦: concretely, the space

Aα(X) ⊂ xαL∞(X◦)

consists of all u so that Au ∈ xαL∞(X◦) for all A ∈ Diffb(X). More generally, for δ ≤ 1,
one can consider the space

Aα1−δ(X) ⊂ xαL∞(X◦)

of conormal distributions u of type 1− δ, defined by the condition that for any k ∈ N0 and
A ∈ Diffkb(X), one has Au ∈ xα−kδL∞(X◦). (Thus, Aα(X) = Aα1 (X).) A more restrictive
class than Aα(X) is the class of classical conormal distributions, Aαcl(X), which is defined
simply as

Aαcl(X) = xαC∞(X) ⊂ Aα(X).

Given an element u = xαu0 ∈ Aαcl(X), the function u0 is thus not merely conormal (regu-
larity under x∂x, ∂y), but smooth (regularity under ∂x, ∂y).

As an important example, let E → X denote a smooth real vector bundle of rank N ,
and consider the radial compactification Ē → X, i.e. the fiber bundle whose fiber Ēx over
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x ∈ X is equal to the radial compactification of Ex ∼= RN defined by

RN :=
(
RN t

(
[0,∞)ρ × Sn−1

))
/ ∼,

RN \ {0} 3 ρ−1ω ∼ (ρ, ω) ∈ [0,∞)× Sn−1.

Then the total space Ē is a manifold with corners which has two boundary hypersurfaces,
Ē∂X (the radial compactification of E∂X) and SĒ (fiber infinity, locally defined by ρ = 0).
On Ē, we regard only SĒ as a boundary, in the sense that we declare Vb(Ē) to consist of
all smooth vector fields on Ē which are tangent to SĒ (but not necessarily to Ē∂X). For
s ∈ R, we then put

Ss(Ē) := A−s(Ē).

One can of course consider variants of this, e.g. requiring elements of Vb(Ē) to be tangent
to both boundary hypersurfaces and defining spaces Ss,r(Ē) which are conormal of weight
−s,−r at SĒ, Ē∂X , respectively; or one may require classicality at one or both of the
boundary hypersurfaces.

2.1. b-pseudodifferential operators. We denote fiber infinity of the radial compactifica-

tion bT ∗X of bT ∗X by bS∗X. Elements of Ss(bT ∗X) will be symbols of b-pseudodifferential
operators (of type (1, 0), in Hörmander’s (ρ, δ) terminology [Hör71, §1.1]). Concretely, con-

sider a ∈ Ss(bT ∗X) with support contained in a local coordinate patch near a point on ∂X;
thus, for all i, j ∈ N0 and α, β ∈ Nn−1

0 , there exists a constant Cijαβ so that∣∣∂ix∂αy ∂jξb∂βηba(x, y, ξb, ηb)
∣∣ ≤ Cijαβ(1 + |ξb|+ |ηb|)s−(j+|β|).

The (left) quantization of a is then defined by

(Opb(a)u)(x, y)

:= (2π)−n
∫∫∫∫

exp
(
i
(x− x′

x′
ξb + (y − y′) · ηb

))
φ
(∣∣∣log

x

x′

∣∣∣)φ(|y − y′|)

× a(x, y, ξb, ηb)u(x′, y′)
dx′

x′
dy′ dξb dηb,

where φ ∈ C∞c ((−1, 1)) is identically 1 near 0. The cutoff φ serves to make C−1x′ ≤ x ≤ Cx′
and |y− y′| < c on the support of the Schwartz kernel of Opb(a) for some C > 1, c > 0, i.e.
it localizes near the diagonal. We define

Ψs
b(X) := Opb

(
Ss(bT ∗X)

)
+ Ψ−∞b (X).

Here, if we write πL/R : X2 → X for the left/right projection, the space Ψ−∞b (X) of

residual operators consists of all operators Ċ∞(X) → Ċ∞(X) (with Ċ∞(X) denoting the
space of smooth functions on X vanishing to infinite order at ∂X) whose Schwartz kernels

κ ∈ C−∞(X2;π∗R
bΩ1X) (the dual space of Ċ∞(X2;π∗L

bΩ1X)) pull back to smooth right
b-densities on the b-double space4

X2
b := [X2; (∂X)2] (2.4)

which vanish to infinite order at the left boundary lbb (the lift of ∂X ×X) and the right
boundary rbb (the lift of X × ∂X) but are smooth down to the front face ffb. (See [Vas18,

4For a detailed discussion of real blow-ups such as (2.4), we refer the reader to [Mel96]. See [Hin22,
Appendix A] for a brief summary which is sufficient for our purposes.
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§6] for more details, and also [Mel93, Gri01].) One often encounters weighted operators as
well,

Diffk,lb (X) := xlDiffkb(X), Ψs,l
b (X) := xlΨs

b(X).

More generally still, one can consider quantizations of symbols which are conormal of order

s at bS∗X and of order l at bT ∗∂XX; this level of generality is occasionally useful, see e.g.

[Vas21b, §5] and §3.4. Given an operator A ∈ Ψs,l
b (X), we denote its Schwartz kernel by

KA.

Elements of Ψs,l
b (X) define continuous linear operators on Ċ∞(X), and the composition

of two b-ps.d.o.s is again a b-ps.d.o., with orders equal to the sum of the orders of the two

factors. The principal symbol bσs : Ψs,l
b (X)→ (xlSs/xlSs−1)(bT ∗X) is a *-homomorphism,

and maps commutators into Poisson brackets. In local coordinates (and omitting orders
for brevity), this means that for two operators A,B ∈ Ψb(X) with principal symbols a, b,
we have

bσ(i[A,B]) = {a, b} = Hab,

Ha = (∂ξba)x∂x + (∂ηba)∂y − (x∂xa)∂ξb − (∂ya)∂ηb .
(2.5)

2.2. Scattering pseudodifferential operators. It is important to consider more general
symbol classes than merely Ss(scT ∗X) or x−rSs(scT ∗X). Namely, for δ ∈ [0, 1

2), we shall
consider the class

Ss,r1−δ,δ(
scT ∗X)

of symbols which are conormal at scS∗X with weight −s, and conormal of type 1− δ with
weight −r at scT ∗∂XX. (The presence of both 1− δ and δ as subscripts follows the classical

literature on symbol classes, see e.g. [Hör71].) This means that Ss,r1−δ,δ(
scT ∗X) consists of

all smooth functions a on scT ∗X which over X◦ are symbols of type (1, 0) and order s,
i.e. a|T ∗X◦ ∈ Ss1,0(T ∗X◦) = Ss(T ∗X◦), and which near ∂X satisfy for all i, j ∈ N0 and

α, β ∈ Nn−1
0 an estimate∣∣(x∂x)i∂αy ∂

j
ξsc
∂βηsca(x, y, ξsc, ηsc)

∣∣
≤ Cijαβx−r−(i+j+|α|+|β|)δ(1 + |ξsc|+ |ηsc|)s−(j+|β|).

In the case δ = 0, we omit the subscript ‘1 − δ, δ’. We then define the (left) scattering
quantization of a by

(Opsc(a)u)(x, y)

:= (2π)−n
∫∫∫∫

exp
(
i
[x− x′

x2
ξsc +

y − y′

x
· ηsc

])
φ
(∣∣∣log

x

x′

∣∣∣)φ(|y − y′|)

× a(x, y, ξsc, ηsc)u(x′, y′)
dx′

x′2
dy′

x′n−1
dξsc dηsc.

(In this generality, scattering ps.d.o.s were introduced by Melrose [Mel94].) If one were
working with global coordinates, one could remove the cutoffs here due to the rapid decay

of the partial (in the fiber variables) inverse Fourier transform of a as | 1x−
1
x′ |+|

y
x−

y′

x′ | → ∞.5

5Importantly, one typically does not want to localize more sharply to | 1
x
− 1

x′ | + |
y
x
− y′

x′ | . 1 (which is
a small neighborhood of the lifted diagonal in the scattering double space, see [Mel94, §21]), as this would
thus destroy the leading order commutativity of the scattering calculus at ∂X.
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We then set
Ψs,r

sc,1−δ,δ(X) := Opsc

(
Ss,r1−δ,δ(

scT ∗X)
)

+ Ψ−∞,−∞sc (X),

where Ψ−∞,−∞sc (X) consists of all operators whose Schwartz kernels lie in Ċ∞(X2;π∗RΩ1X).
We shall refer to s as the (scattering) differential order, and to r as the (scattering) decay
order.

The principal symbol of scattering operators captures their leading order behavior for
large frequencies as well as at ∂X:

scσs,r : Ψs,r
sc,1−δ,δ(X)→ (Ss,r1−δ,δ/S

s−1,r−1+2δ
1−δ,δ )(scT ∗X).

This is a *-homomorphism. Thus, for Aj ∈ Ψ
sj ,rj
sc,1−δ,δ(X), j = 1, 2, we have

[A1, A2] ∈ Ψs1+s2−1,r1+r2−1+2δ
sc,1−δ,δ (X);

the principal symbol (which captures the commutator modulo Ψs1+s2−2,r1+r2−2+4δ
sc,1−δ,δ (X)) is

given in terms of the principal symbols a1, a2 of A1, A2 by
scσs1+s2−1,r1+r2−1+2δ(i[A1, A2]) = Ha1a2,

x−1Ha1 = (∂ξsca1)(x∂x + ηsc∂ηsc) + (∂ηsca1)∂y (2.6)

−
(
(x∂x + ηsc∂ηsc)a1

)
∂ξsc − (∂ya1)∂ηsc . (2.7)

We refer the reader to [Vas18, §3] for more details in the special case X = Rn, in which case
the scattering calculus is the same as the standard ps.d.o. calculus on Rn for amplitudes
which are product-type symbols in the base and fiber variables.

A natural setting where one must work with δ > 0 arises when working with operators
which have a variable scattering decay order

r ∈ C∞(scT ∗X).

To wit, for s ∈ R, we define
Ss,r(scT ∗X)

to consist of all a of the form a = x−ra0, where a0 ∈
⋂
δ∈(0, 1

2
) S

s,0
1−δ,δ(

scT ∗X). It is easy to

check that Ss,r(scT ∗X) ⊂
⋂
δ∈(0, 1

2
) S

s,r0
1−δ,δ(

scT ∗X) for any r0 > sup r; in fact, differentiating

variable order symbols produces only logarithmic factors in the boundary defining function
x. Thus, we can quantize such symbols, giving rise to the space

Ψs,r
sc (X) := Opsc

(
Ss,r(scT ∗X)

)
+ Ψ−∞,−∞sc (X) ⊂

⋂
δ∈(0, 1

2
)

Ψs,r0
sc,1−δ,δ(X).

Principal symbols of elements of Ψs,r
sc (X) lie in (Ss,r/

⋂
δ>0 S

s−1,r−1+2δ)(scT ∗X). The (vari-
able) orders are additive under operator composition; this is a consequence of the formula
for the full symbol (in local coordinates) of the composition of two ps.d.o.s.

We point out that for fixed s ∈ R the space Ss,r(scT ∗X) (and thus Ψs,r
sc (X)) only depends

on the restriction of r to scT ∗∂XX. Indeed, given r′ ∈ C∞(scT ∗X) with r′− r = 0 at scT ∗∂XX,

we can write r′ − r = xw, w ∈ C∞(scT ∗X), and therefore x−r
′

= x−r exp(−wx log x); by

direct differentiation, one then finds that exp(−wx log x) ∈ S0,0
1−δ,δ(

scT ∗X) for any δ > 0. In

view of this, we can define Ss,r(scT ∗X) and Ψs,r
sc (X), given a variable order

r ∈ C∞(scT ∗∂XX),
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to be equal to Ss,̃r(scT ∗X) and Ψs,̃r
sc (X), respectively, where r̃ ∈ C∞(scT ∗X) is any smooth

extension of r.

2.3. Sobolev spaces. We next recall the corresponding scales of weighted Sobolev spaces.
We have some flexibility in the choice of the underlying L2-space. Thus, fix any smooth
positive b-density µ0 ∈ C∞(X; bΩ1X), and fix aµ ∈ R. We then set µ := xαµµ0 and

H0
b(X;µ) ≡ L2

b(X;µ) ≡ H0
sc(X;µ) ≡ L2

sc(X;µ) := L2(X;µ). (2.8)

These spaces are independent of the choice of µ0 (but not aµ), up to equivalence of norms;
the same will be true for the spaces defined in the sequel. When the density µ is fixed and
clear from the context, we drop it from the notation. Let • = b, sc. For s ≥ 0, we then let

Hs
•(X) := {u ∈ H0

• (X) : Au ∈ H0
• (X)},

where A ∈ Ψs
•(X) denotes any fixed elliptic operator. For s < 0, we define Hs

•(X) =
(H−s• (X))∗ with respect to the L2

•(X) inner product; an equivalent definition is given by
Hs
•(X) = {u1 + Au2 : u1, u2 ∈ H0

• (X)} where A ∈ Ψ−s• (X) is elliptic. Weighted spaces are
defined by

Hs,l
b (X) = xlHs

b(X), Hs,r
sc (X) = xrHs

sc(X).

Finally, we define scattering Sobolev spaces with variable decay orders r ∈ C∞(scT ∗∂XX) by
taking r0 < inf r and putting

Hs,r
sc (X) := {u ∈ Hs,r0

sc (X) : Au ∈ H0
sc(X)},

where A ∈ Ψs,r
sc (X) is any fixed elliptic operator.

2.4. b-scattering operators and Sobolev spaces. In our application, we shall en-
counter a compact manifold X whose boundary ∂X has two connected components, say
H1, H2, both of which are embedded. We can then consider the space Vb,sc(X) of b-
scattering vector fields (which localized to a neighborhood of H1, resp. H2 lie in Vb, resp.
Vsc), the corresponding b-scattering tangent bundle b,scTX and its dual b,scT ∗X, as well as
weighted b-scattering Sobolev spaces,

Hs,l,r
b,sc (X), s, l ∈ R, r ∈ C∞(scT ∗H2

X).

Localized to a neighborhood of H1, its elements lie in Hs,l
b , and localized to a neighborhood

of H2, they lie in Hs,r
sc .

Let us make this even more concrete in the setting which will arise below,

X = [0,∞]x̂ × Y, H1 = x̂−1(0), H2 = x̂−1(∞), (2.9)

where we write [0,∞] for the closure of [0,∞) inside of R; here Y is a compact (n − 1)-
dimensional manifold without boundary. Then x̂

x̂+1 and (1 + x̂)−1 are defining functions

of H1 and H2, respectively, hence Vb,sc(X) = (1 + x̂)−1Vb(X). Using local coordinates
y1, . . . , yn−1 on an open subset U ⊂ Y , the collection of 1-forms

(1 + x̂)dx̂
x̂ , (1 + x̂)dy1, · · · , (1 + x̂)dyn−1

is a smooth frame of b,scT ∗X over [0,∞] × U . Denoting the corresponding fiber-linear
coordinates on b,scT ∗X by (ξb,sc, ηb,sc) ∈ R × Rn−1, we can then quantize a symbol6 a ∈

6We leave the minor, largely notational, changes to accommodate symbols with variable scattering decay
orders r to the reader.



SEMICLASSICAL PROPAGATION THROUGH CONE POINTS 15

Ss,l,r(b,scT ∗X) =
(

x̂
x̂+1

)−l
(1 + x̂)rSs(b,scT ∗X) by

(Opb,sc(a)u)(x̂, y)

:= (2π)−n
∫∫∫

exp

(
i

(
x̂− x̂′

x̂ 1
1+x̂

ξb,sc +
y − y′

1
1+x̂

· ηb,sc

))
× φ

(∣∣∣log
x̂

x̂′

∣∣∣)φ(|y − y′|)a(x̂, y, ξb,sc, ηb,sc)u(x̂′, y′)

× dx̂′

x̂′ 1
1+x̂′

dy′(
1

1+x̂′

)n−1 dξb,sc dηb,sc.

(2.10)

The space Ψs,l,r
b,sc (X) of b-scattering ps.d.o.s is then the sum

Ψs,l,r
b,sc (X) = Opb,sc

(
Ss,l,r(b,scT ∗X)

)
+ Ψ−∞,l,−∞b,sc (X).

Here, Ψ−∞,l,−∞b,sc (X) =
(

x̂
x̂+1

)−l
Ψ−∞,0,−∞b,sc (X) is defined momentarily. First define the dou-

ble space

X2
b,sc :=

[
[0,∞)2 × Y 2; ({0} × Y )2; ∆ ∩ ({∞} × Y )2

]
, (2.11)

where [0,∞)2 is the radial compactification (equivalently, the closure of [0,∞)2 inside of

R2), and ∆ ⊂ [0,∞)2 × Y 2 is the diagonal. Then the space Ψ−∞,0,−∞b,sc (X) consists of all

operators whose Schwartz kernels are smooth right b-densities on X2
b,sc which vanish to

infinite order at all boundary hypersurfaces except for the lift of ({0}×Y )2. See Figure 2.1.

Moreover, Schwartz kernels of elements of Ψs,0,r
b,sc (X) are conormal of order s to the lifted

diagonal in X2
b,sc smoothly down to the lift of ({0}×Y )2, conormal with weight −r down to

the lift of ∆∩ ({∞}×Y )2, and vanish to infinite order at all other boundary hypersurfaces.

x̂
0 ∞

x̂
′

0
∞

l

r

s

−∞

−∞

−∞

−∞

Figure 2.1. The double space X2
b,sc without the factor Y 2. The dashed

line is the lifted diagonal. Indicated are the symbolic orders of Schwartz

kernels of elements of Ψs,l,r
b,sc (X).

3. Semiclassical cone calculus

We revisit and generalize the algebra Ψc~(X) and the associated scale of weighted Sobolev
spaces from [Hin22], give a user-friendly treatment of the symbol calculus (including Poisson
brackets), and study operators and function spaces with variable (semiclassical) orders and
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their behavior upon restriction to the transition faces of the semiclassical cone single and
double spaces (recalled later in this section). Throughout this section, we denote by X a
compact n-dimensional manifold with nonempty, connected, and embedded boundary ∂X.
We denote by x ∈ C∞(X) a boundary defining function.

3.1. Vector fields, bundles, Poisson brackets. We recall from §1.1 the semiclassical
cone single space

Xc~ :=
[
[0, 1)h ×X; {0} × ∂X

]
,

the boundary hypersurfaces of which we denote by cf (conic face, lift of [0, 1) × ∂X), tf
(transition face, the front face), and sf (semiclassical face, lift of {0} ×X). See Figure 3.1.
Defining functions of these boundary hypersurfaces are x

x+h , x+ h, and h
h+x , respectively.

On Xc~ \ cf, it is convenient to use the local defining functions x of tf and h
x of sf.

h

x

cf

sf

tf

Figure 3.1. The semiclassical cone single space Xc~.

Definition 3.1 (Vector fields). We define the space

Vc~(Xc~)

of semiclassical cone vector fields to consist of all b-vector fields V ∈ Vb(Xc~) which are
horizontal, i.e. tangent to the fibers of Xc~ → [0, 1)h, and whose restriction to sf vanishes.

Lemma 3.2 (Spanning set). Identifying a vector field V ∈ Vb(X) with its horizontal lift to
Xc~ along Xc~ → X, the space Vc~(Xc~) is spanned over C∞(Xc~) by h

h+xVb(X). Moreover,

given V,W ∈ Vc~(Xc~), we have [V,W ] ∈ h
h+xVc~(Xc~).

This allows us to define the graded ring

Diffc~(X) =
⊕
k∈N0

Diffkc~(X)

of differential operators in the usual manner.

Proof. Directly from the definition, we have h
h+xVb(X) ⊂ Vc~(Xc~). Conversely, suppose

V ∈ Vc~(Xc~). Let us work in local coordinates (x, y) ∈ [0,∞)× Rn−1 near a point in ∂X.
Near cf, we use the local coordinates (h, x̂, y) with x̂ := x

h . From the definition, we have

V = a(h, x̂, y)x̂∂x̂ +
n−1∑
j=1

bj(h, x̂, y)∂yj (3.1)

with a, bj ∈ C∞. Since x̂∂x̂ = x∂x, this expresses V in the desired form.
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Near sf on the other hand, we use (ĥ, x, y) with ĥ := h
x . Since V ∈ Vb(Xc~), we can write

V = a(ĥ, x, y)(x∂x − ĥ∂ĥ) + ã(ĥ, x, y)ĥ∂ĥ +

n−1∑
j=1

bj(ĥ, x, y)∂yj .

The horizontal nature of V means 0 = V h = V (xĥ) = ãxĥ, which implies ã ≡ 0 by

continuity from (Xc~)◦ = {x > 0, ĥ > 0}. The vanishing of V at ĥ = 0 as a b-vector field

implies, in addition, that a = ĥa′ and bj = ĥb′j with a′, b′j ∈ C∞. Since the horizontal lifts

of x∂x, ∂yj ∈ Vb(X) to Xc~ are equal to x∂x − ĥ∂ĥ, ∂yj , the claim follows.

Regarding the Lie algebra structure, we compute, for V,W ∈ Vb(X),[
h

h+xV,
h

h+xW
]

= h
h+x

(
h

h+x [V,W ] + V
(

h
h+x

)
W −W

(
h

h+x

)
V
)
.

Since V,W ∈ Vb(Xc~), we have V
(

h
h+x

)
,W
(

h
h+x

)
∈ h

h+xC
∞(Xc~). The proof is complete.

�

There exists a vector bundle
c~TXc~ → Xc~

together with a smooth bundle map c~TXc~ → bTXc~ so that the space Vc~(Xc~) is equal to
the space of smooth sections of c~TXc~. In local coordinates on X, a local frame of c~TXc~
is given by (the horizontal lifts to Xc~ of)

h
h+xx∂x,

h
h+x∂y1 , . . . ,

h
h+x∂yn−1 .

We call c~TXc~ the c~-tangent bundle and its dual c~T ∗Xc~ the c~-cotangent bundle, with
local frame

x+h
h

dx
x ,

x+h
h dy1, . . . , x+h

h dyn−1.

A choice of local coordinates (x, y) ∈ [0,∞) × Rn−1 on an open set U ⊂ X induces a
trivialization of c~T ∗Xc~ over the preimage of [0, 1)× U under Xc~ → X, with fiber-linear
coordinates (ξc~, ηc~) ∈ R× Rn−1 defined by the requirement that the canonical 1-form on
T ∗X◦ be equal to

ξc~
x+ h

h

dx

x
+

n−1∑
j=1

(ηc~)j
x+ h

h
dyj . (3.2)

In Xc~ \ cf, where a smooth frame of c~TXc~ is given by h
xx∂x, h

x∂y1 , . . ., h
x∂yn−1 , it is

computationally simpler to use the fiber-linear coordinates (ξ, η) in which the canonical
1-form takes the form

ξ
x

h

dx

x
+

n−1∑
j=1

ηj
x

h
dyj . (3.3)

We compute the form of the Hamilton vector field Ha of a smooth function a ∈ C∞(c~T ∗Xc~)

in these fiber coordinates, and using (ĥ, x, y) with ĥ = h
x as coordinates on the base. In

terms of the coordinates on bT ∗X used in (2.3), we have (ξ, η) = h
x(ξb, ηb) and thus, by

changing coordinates in the expression (2.5),

Ha = ĥ
(

(∂ξa)(x∂x − ĥ∂ĥ − η∂η) + (∂ηa)∂y

−
(
(x∂x − ĥ∂ĥ − η∂η)a

)
∂ξa− (∂ya)∂η

)
.

(3.4)
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3.2. Symbols, pseudodifferential operators, Sobolev spaces. A simple symbol class

for c~-operators is Ss(c~T ∗Xc~) = A−s(c~T ∗Xc~), where we only regard fiber infinity
c~S∗Xc~ as a boundary, i.e. we require symbols to be smooth down to c~T ∗•Xc~ for • =
cf, tf, sf. In practice, we need more general symbols: for δ ∈ [0, 1

2) and for s, l, α, b ∈ R, we
define

Ss,l,α,b1−δ,δ (c~T ∗Xc~) =
(

x
x+h

)−l
(x+ h)−α

(
h

h+x

)−b
Ss,0,0,01−δ,δ (c~T ∗Xc~)

to consist of all symbols which are conormal with weight −s at c~S∗Xc~, conormal with

weight −l at c~T ∗cfXc~ and with weight −α at c~T ∗tfXc~, and conormal of type 1 − δ at
c~T ∗sfXc~ with weight −b. In the coordinates (3.3), the membership a ∈ Ss,0,0,01−δ,δ (c~T ∗Xc~) is

equivalent to a = a(ĥ, x, y, ξ, η) (with ĥ = h
x) satisfying estimates∣∣(x∂x)i∂αy (ĥ∂ĥ)j∂kξ ∂

β
η a(ĥ, x, y, ξ, η)

∣∣
≤ Cijkαβ(1 + |ξ|+ |η|)s−(k+|β|)ĥ−(i+j+k+|α|+|β|)δ

for all i, j, k ∈ N0 and α, β ∈ Nn−1
0 ; in coordinates (h, x̂, y, ξb, ηb) on the c~-cotangent bundle

over Xc~ \ sf, with x̂ = x
h and with the canonical 1-form given by (2.3), a must satisfy∣∣(x̂∂x̂)i∂αy (h∂h)j∂kξb∂

β
ηb
a(h, x̂, y, ξb, ηb)

∣∣ ≤ Cijkαβ(1 + |ξb|+ |ηb|)s−(k+|β|).

See Figure 3.2. As usual, we omit the subscript ‘1− δ, δ’ when δ = 0.

It is occasionally useful to restrict attention to symbols which are classical conormal
down to tf, which amounts to replacing x∂x, h∂h in the above symbol estimates (which are
for symbols of order 0 at tf) by ∂x, ∂h. We denote the corresponding symbol classes with

a subscript ‘cl’ as in Ss,l,α,bcl (c~T ∗Xc~).

As in §2, the main use of δ > 0 is to accommodate symbols with variable orders. Here,

we only discuss the case of variable semiclassical orders. Thus, consider b ∈ C∞(c~T ∗sfXc~),

an arbitrary extension of which to an element of C∞(c~T ∗Xc~) we denote by the same letter;
we then put

Ss,l,α,b(c~T ∗Xc~) :=

{(
h

h+x

)b
a0 : a0 ∈

⋂
δ∈(0, 1

2
)

Ss,l,α,01−δ,δ (c~T ∗Xc~)

}
,

which is a subset of
⋂
δ∈(0, 1

2
) S

s,l,α,b0
1−δ,δ (c~T ∗Xc~) for any b0 > sup b.

We now proceed to quantize symbols a = a(h, x, y, ξc~, ηc~), thereby giving meaning to the
formal expression “Opc,h(a) = a(h, x, y, h

h+xxDx,
h

h+xDy)”. Thus, fixing φ ∈ C∞c ((−1, 1)),

identically 1 near 0, we define, in local coordinates (x, y) on X,

(Opc,h(a)u)(h, x, y)

:= (2π)−n
∫∫∫∫

exp

(
i

[
x− x′

x h
h+x

ξc~ +
y − y′

h
h+x

· ηc~

])
× φ

(∣∣∣log
x

x′

∣∣∣)φ(|y − y′|)a(h, x, y, ξc~, ηc~)u(h, x′, y′)

dx′

x′ h
h+x′

dy′(
h

h+x′

)n−1 dξc~ dηc~

(3.5)
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x

h
s [c~S∗Xc~]

l [c
~ T
∗
cf
X c~

]

α
[c
~ T
∗
tf
X c~

]

b [c
~ T
∗
sf
X c~

]

Figure 3.2. Illustration of c~T ∗Xc~ (showing only part of the compactified

fibers) and the symbol class Ss,l,α,b(c~T ∗Xc~), indicating the orders at the

various boundary hypersurfaces of c~T ∗Xc~.

for a and u supported in the coordinate chart; for general a, u, one defines Opc,h(a)u using
a partition of unity.

We interpret this in terms of the c~-double space

X2
c~ :=

[
[0, 1)h ×X2

b; {0} × ffb; {0} ×∆b

]
,

where we denote by ∆b ⊂ X2
b the lift of the diagonal in X2 to X2

b; see equation (2.4) and the
subsequent paragraph for the definition of X2

b and its boundary hypersurfaces lbb,ffb, rbb.

First, recall from7 [Hin22, Definition 3.1] that lb2, rb2,ff2, tf2, sf2, and df2 are the lifts of
[0, 1)× lbb, [0, 1)×rbb, [0, 1)×ffb, {0}×ffb, {0}×X2

b, and {0}×∆b, respectively; moreover,
∆c~ denotes the lift of [0, 1)×∆b. See Figure 3.3.

h

ff2

tf2

x

x′

lb2

rb2

df2sf2

∆c~

Figure 3.3. The c~-double space X2
c~.

7We add subscripts ‘2’ here in order to avoid confusion during the frequent changes between Xc~ and
X2

c~ later on.
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Then the Schwartz kernel of Opc,h(a) is a conormal distribution of order s − 1
4 at ∆c~,

conormal down to ff2, tf2,df2 with weights −l,−α,−b, and vanishes identically in a neigh-
borhood of lb2, rb2, sf2.

The composition of two c~-quantizations is almost a c~-quantization itself; one merely
has to allow for additional residual terms: define the space Ψ−∞c~ (X) of residual operators
to consist of all operators whose Schwartz kernels are conormal sections of the right b-
density bundle on X2

c~, with weight 0 at ff2 and tf2, and with infinite order vanishing at
lb2, rb2,df2, sf2. We then put

Ψs
c~(X) := Opc~

(
Ss(c~T ∗Xc~)

)
+ Ψ−∞c~ (X),

where Opc~ = (Opc,h)h∈(0,1); this gives the same space as [Hin22, Definition 3.2]. More gen-

erally, we define the quantization of symbols a ∈ Ss,l,α,b1−δ,δ (c~T ∗Xc~) by the same formula (3.5);

the space of residual operators is now

Ψ−∞,l,α,−∞c~ (X) := ( x
x+h)−l(x+ h)−αΨ−∞c~ (X).

Thus, we can now define the spaces

Ψs,l,α,b
c~,1−δ,δ(X) := Opc~

(
Ss,l,α,b1−δ,δ (c~T ∗Xc~)

)
+ Ψ−∞,l,α,−∞c~ (X),

Ψs,l,α,b
c~ (X) := Opc~

(
Ss,l,α,b(c~T ∗Xc~)

)
+ Ψ−∞,l,α,−∞c~ (X),

where in the second line b ∈ C∞(c~T ∗sfXc~) is a variable order function. Their Schwartz

kernels can be characterized as being conormal distributions (of order s− 1
4 and type (1, 0))

at ∆c~ which are conormal at ff2 (with weight −l), tf2 (with weight −α), and conormal of
type 1− δ at df2 (with weight −b), and which vanish to infinite order at lb2, rb2, sf2. One
can also consider subalgebras which are classical at tf, i.e. the symbols are required to be
classical conormal at tf, and the residual operators are required to have classical conormal
Schwartz kernels at tf2; we denote these algebras by a subscript ‘cl’, such as

Ψs,l,α,b
c~,cl (X).

All such ps.d.o.s define h-dependent families of bounded8 linear maps on Ċ∞(X); com-
positions of two such ps.d.o.s give a ps.d.o. in the same class, with orders given by the sum
of the orders of the two factors. The principal symbol map is

c~σs,l,α,b : Ψs,l,α,b
c~,1−δ,δ(X)→ (Ss,l,α,b/Ss−1,l,α,b−1+2δ)(c~T ∗Xc~),

similarly for the variable order spaces (with δ > 0 then arbitrary), and it is a *-homomorph-
ism. These facts follow from a minor variation of [Hin22, Proposition 3.9] (using weights
instead of index sets), with the statements about principal symbols following by continuity
from the corresponding statements for standard semiclassical operators (of type (1− δ, δ))
in x > 0 and b-ps.d.o.s in h > 0; we leave the details to the reader. We moreover have, for

Aj ∈ Ψ
sj ,lj ,αj ,bj
c~,1−δ,δ (X), j = 1, 2, with principal symbols aj ,

Opc,h(i[A1, A2])−Opc,h(Ha1a2) ∈ Ψs−2,l,α,b−2+4δ
c~,1−δ,δ (X),

analogously for variable order operators. One can evaluate Ha1a2 using the formula (3.4).

8though not uniformly in h unless b ≥ 0
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Since the principal symbol captures operators to leading order at the union of boundary

hypersurfaces c~S∗Xc~ ∪ c~T ∗sfXc~, the latter set is also the locus of the elliptic and wave

front sets of an operator. Thus, for A ∈ Ψs,l,α,b
c~ (X), we define

Ells,l,α,bc~ (A), WF′l,αc~ (A) ⊂ c~S∗Xc~ ∪ c~T ∗sfXc~

as follows: Ells,l,α,bc~ (A) is the set of all ζ so that c~σs,l,α,b(A) is elliptic in a neighborhood

of ζ, and WF′l,αc~ (A) is the complement of the set of ζ so that the full symbol of A lies in

S−∞,l,α,−∞(c~T ∗Xc~) when localized to a sufficiently small neighborhood of ζ. In particular,

we have WF′l,αc~ (A) = ∅ if and only if A ∈ Ψ−∞,l,α,−∞c~ (X). We omit the orders s, l, α, b and
l, α when they are clear from the context. The definitions for type (1 − δ, δ) and variable
order operators are analogous. See Figure 3.4.

x

h
c~S∗Xc~

c~ T
∗
cf
X c~

c~ T
∗
tf
X c~

c~ T
∗
sf
X c~

Figure 3.4. The shaded boundary hypersurfaces are the locus of the elliptic
set as well as of operator and distributional wave front sets. Cf. Figure 3.2.

Finally, we define the corresponding weighted Sobolev spaces. As in (2.8), we first fix a
weighted b-density µ = xαµµ0, where 0 < µ0 ∈ C∞(X; bΩ1X) and αµ ∈ R, and define

H0
c,h(X;µ) := L2(X;µ), H0,l,α,b

c,h (X;µ) :=
(

x
x+h

)l
(x+ h)α

(
h

h+x

)b
H0

c,h(X;µ).

These spaces depend on αµ, but are independent of µ0 (up to equivalence of norms). When
the choice of µ is clear from the context, we will omit it from the notation. For s ≥ 0, we

then define Hs,l,α,b
c,h (X) to consist of all u ∈ H0,l,α,b

c,h (X) so that Au ∈ H0
c,h(X) for any (thus

all) elliptic A ∈ Ψs,l,α,b
c~ (X). We note for s ∈ N0 the equivalent characterization

Hs,l,α,b
c,h (X) =

{
u ∈ H0,l,α,b

c,h (X) : V1 · · ·Vju ∈ H0,l,α,b
c,h (X)

∀Vi ∈ Vc~(Xc~), 0 ≤ i ≤ j ≤ s
}
.

For s < 0, the space Hs,l,α,b
c,h (X) can be defined either as the dual space (H−s,−l,−α,−bc,h (X))∗,

or as the space of all u1 + Au2 where u1, u2 ∈ H0,l,α,b
c,h (X) and A ∈ Ψ−sc~ (X). Lastly, for a

variable order b ∈ C∞(c~T ∗sfXc~), we pick b0 < inf b and put

Hs,l,α,b
c,h (X) := {u ∈ Hs,l,α,b0

c,h (X) : Au ∈ H0
c,h(X)},

where A ∈ Ψs,l,α,b
c~ (X) is any elliptic operator; the space Hs,l,α,b

c,h (X) is independent of the

choices of b0 and A, up to equivalence of norms.
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We can define Sobolev wave front sets in the usual manner. Let l, α ∈ R, and suppose

that we are given a distribution u ∈ H−∞,l,α,−∞c,h (X), meaning u ∈ H−N,l,α,−Nc,h (X) for some

N ∈ R. Let s, b ∈ R. Then

WFs,l,α,bc~ (u) ⊂ c~S∗Xc~ ∪ c~T ∗sfXc~

is the complement of all α so that there exists an operator A ∈ Ψs,l,α,b
c~ (X), elliptic at α,

so that Au ∈ H0
c,h(X). (The a priori assumption on u is familiar from the definition of

the b-wave front set, see e.g. [Vas18, Definition 6.2], and ensures that one then also has

Bu ∈ H0
c,h(X) for any B ∈ Ψs,l,α,b

c~ (X) with WF′c~(B) ⊂ Ell′c~(A).)

Remark 3.3 (Operators on vector bundles). If E,F → X are smooth vector bundles, one
can consider semiclassical cone ps.d.o.s acting between sections of E,F , giving rise to classes
Ψs

c~(X;E,F ) and function spaces Hs
c,h(X;E) etc. More generally, one can allow E,F to

be vector bundles E,F → Xc~ over the semiclassical single space, with Schwartz kernels of
elements of Ψs

c~(X;E,F ) defined by taking the tensor product of Ψs
c~(X) over C∞(X2

c~) with
C∞(X2

c~;π∗LE�π
∗
RF
∗) where πL, πR : X2

c~ → Xc~ are the stretched left and right projections.
Using such ps.d.o.s, one can define Sobolev spaces Hs

c,h(X;E) etc. in this generality.

Remark 3.4 (Relationship with edge Sobolev spaces). For the propagation through cone
points in the spacetime setting, many authors [MW04, MVW08] have utilized Mazzeo’s
edge algebra [Maz91]. A typical example is the operator −D2

t +∆g, where g = g(x, y,dy) is
a conic metric on a manifold X with boundary (see (4.2)); upon multiplication by x2, this
is a second order differential operator, the principal part of which is a Lorentzian signature
quadratic form in the collection (xDt, xDx, Dy) of edge vector fields. The membership u ∈
H1

e (Rt ×X, |dt dg|)—meaning that u, xDtu, xDxu, Dyu ∈ L2—can then be characterized
by taking the Fourier transform in t as

û(σ), x|σ|û(σ), xDxû(σ), Dyû(σ) ∈ L2(Rσ;L2(X; |dg|)).

Introducing h = 〈σ〉−1, this is equivalent to the L2(Rσ;L2(X)) membership of h+x
h û, xDxû,

Dyû. Upon multiplication by h
h+x , we thus find

u ∈ H1
e (Rt ×X, |dt dg|) ⇐⇒ û ∈ L2

(
Rσ;H1,0,0,1

c,〈σ〉−1(X; |dg|)
)
,

and the respective norms of u and û are equivalent. (One can show that similar spectral
characterizations of edge Sobolev spaces remain valid also for spaces with weights and with
variable differential orders; the details will be given elsewhere.)

3.3. Restriction to tf. Symbolic arguments for the analysis of semiclassical cone PDEs

Pu = f can at best control u microlocally at c~S∗Xc~ ∪ c~T ∗sfXc~, i.e. modulo errors which
are trivial at infinite frequencies and at sf. Crucially however, such errors may well be
nontrivial at tf, and thus nontrivial (meaning in particular: not small) as h→ 0. To obtain
control at tf, one needs to invert the normal operator N(P ), defined in [Hin22, §3.1.2]
(denoted Ntf(P ) there) and recalled below. The following result, already implicit in the
definition of the normal operator in [Hin22, §3.1.2], lays the groundwork for the analysis of
N(P ).

Lemma 3.5 (Restriction to tf: vector fields). The restriction map

Vb(Xc~) 3 V 7→ V |tf ∈ Vb(tf)
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restricts to a surjective map

N : Vc~(Xc~)→ Vb,sc(tf) (3.6)

onto the space Vb,sc(tf) = h
h+xVb(tf) of vector fields which are b-vector fields near tf ∩ cf

and scattering vector fields near tf ∩ sf. The map (3.6) induces bundle isomorphisms

c~TtfXc~ ∼= b,scT tf, c~T ∗tfXc~ ∼= b,scT ∗tf. (3.7)

Proof. Near tf \ sf, we write V ∈ Vc~(Xc~) in the coordinates (h, x̂, y), with x̂ = x
h , as

V = a(h, x̂, y)x̂∂x̂ +

n−1∑
j=1

bj(h, x̂, y)∂yj , (3.8)

cf. (3.1). The restriction to tf, in local coordinates given by h−1(0) = [0,∞)x̂ × Rn−1
y , is

the b-vector field

V |tf = a(0, x̂, y)x̂∂x̂ +

n−1∑
j=1

bj(0, x̂, y)∂yj . (3.9)

Conversely, every b-vector field W on [0,∞) × Rn−1 can be written in the form W =

a(x̂, y)x̂∂x̂+
∑n−1

j=1 b
j(x̂, y)∂yj , and upon taking a(h, x̂, y) and bj(h, x̂, y) to be smooth func-

tions which restrict at h = 0 to the coefficients a(x̂, y) and bj(x̂, y) of W defines a c~-vector
field V through (3.8) whose restriction (3.9) to tf is precisely W . We remark moreover

that (3.9) vanishes if and only if a = hã and bj = hb̃j where ã, b̃j are smooth functions of
(h, x̂, y), i.e. if and only if V vanishes at tf as a c~-vector field.

On tf \ cf on the other hand, and using coordinates (ĥ, x, y) with ĥ = h
x , we can write

V ∈ Vc~(Xc~) as

V = ĥa(ĥ, x, y)(x∂x − ĥ∂ĥ) +
n−1∑
j=1

ĥbj(ĥ, x, y)∂yj (3.10)

with smooth coefficients a, b1, . . . , bn−1. Restriction to tf, which in these coordinates is
given by x = 0, produces

V |tf = −a(ĥ, 0, y)ĥ2∂ĥ +
n−1∑
j=1

bj(ĥ, 0, y)ĥ∂yj , (3.11)

which is a scattering vector field on [0,∞)ĥ × Rn−1
y , as claimed. Conversely, every scat-

tering vector field W on [0,∞) × Rn−1 can be written in the form W = a(ĥ, y)ĥ2∂ĥ +∑n−1
j=1 b

j(ĥ, y)ĥ∂yj , and upon taking a(ĥ, x, y) and bj(ĥ, x, y) to be smooth functions which

restrict at x = 0 to the coefficients −a(ĥ, y) and bj(ĥ, y) of W defines a c~-vector field V
through (3.10) whose restriction (3.11) to tf is W . Note also that (3.11) vanishes if and

only if a = xã and bj = xb̃j for smooth ã, b̃j , i.e. if and only if V vanishes at tf as a c~-vector
field.

The surjectivity of (3.6) follows from these two calculations via a partition of unity
subordinate to a cover Xc~ = U ∪V where U ∩ sf = ∅ and V ∩cf = ∅. Our arguments above
also prove that kerN = (x+ h)Vc~(Xc~). Thus, we have an isomorphism

Vc~(Xc~)/(x+ h)Vc~(Xc~)→ Vb,sc(tf).
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This induces the first isomorphism in (3.7) abstractly as follows: if p ∈ tf, then b,scTptf =
Vb,sc(tf)/IpVb,sc(tf) where Ip ⊂ C∞(tf) is the ideal of functions vanishing at p. The ideal of
elements of C∞(Xc~)/(x+h)C∞(Xc~) restricting to elements of Ip at tf is Jp/(x+h)C∞(Xc~)
where Jp ⊂ C∞(Xc~) is the ideal of functions vanishing at p. Since Vc~(Xc~)/JpVc~(Xc~) =
c~TpXc~, we obtain (3.7). Concretely, the first isomorphism in (3.7) maps x̂∂x̂, ∂yj in the

coordinates used in (3.8) to x̂∂x̂, ∂yj (cf. (3.9)), and ĥ(x∂x − ĥ∂ĥ), ĥ∂yj in the coordinates

used in (3.10) to −ĥ2∂ĥ, ĥ∂yj (cf. (3.11)). �

The map (3.6) induces a surjective map

N :
(

x
x+h

)−l( h
h+x

)−b
Diffkc~(X)→

(
x̂
x̂+1

)−l
(x̂+ 1)b Diffkb,sc(tf), x̂ := x

h (3.12)

into weighted b-scattering differential operators on tf. More generally:

Lemma 3.6 (Restriction to the transition face: ps.d.o.s). Let s, l, b ∈ R. Restriction

to tf2 ⊂ X2
c~ induces a surjective map N : Ψs,l,0,b

c~,cl (X) → Ψs,l,b
b,sc(tf).9 More generally, if

b ∈ C∞(c~T ∗sfXc~), then b′ := b|tf∩sf ∈ C∞(b,scT ∗tf∩sftf), and restriction to tf2 ⊂ X2
c~ induces

a surjective map

N : Ψs,l,0,b
c~,cl (X)→ Ψs,l,b′

b,sc (tf). (3.13)

Proof. This can be proved entirely on the level of Schwartz kernels, since memberships in
Ψc~ or Ψb,sc are characterized as conormal distributions with conormal regularity at various
boundary hypersurfaces. The point then is that tf2 is naturally diffeomorphic to the double
space tf2

b,sc in the notation of (2.11), where we note that tf ∼= [0,∞]x̂× ∂X is indeed of the
form (2.9). This is the route taken in [Hin22, §3.1.2].

Alternatively, we can proceed explicitly for the symbolically nontrivial part using the
quantization map (3.5), and use the Schwartz kernel perspective only to deduce the sur-

jectivity of the restriction map for residual operators, Ψ−∞,l,0,−∞c~,cl (X) → Ψ−∞,l,−∞b,sc (tf).

Indeed, on the level of symbols, note that with x̂ = x
h , we have

Ss,l,0,b(c~T ∗Xc~) =
(

x
x+h

)−l( h
h+x

)−b
Ss,0,0,0(c~T ∗Xc~)

=
(

x̂
x̂+1

)−l
(x̂+ 1)bSs,0,0,0(c~T ∗Xc~),

and hence Lemma 3.5 implies that restriction to c~T ∗tfXc~ induces a surjective map

Ss,l,0,bcl (c~T ∗Xc~)→ Ss,l,b(b,scT ∗tf).

But changing variables in the c~-quantization (3.5) to x̂ = x
h , x̂′ = x′

h produces precisely
the b-scattering quantization (2.10). This proves the Lemma for constant orders; the proof
in the variable order case is the same. �

As a consequence, we can relate semiclassical cone Sobolev spaces to b-scattering Sobolev
spaces. In order to state this, we fix a collar neighborhood U = [0, x0)x × ∂X of ∂X, and
define the map

π : [0, 1)h × [0,∞)x̂ × ∂X → [0, 1)h × [0,∞)x × ∂X, π(h, x̂, y) = (h, hx̂, y). (3.14)

9Recall that the subscript ‘cl’ refers to classicality at tf2, i.e. smoothness of the Schwartz kernels down
to tf2.
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Note that (hx̂, y) ∈ U if and only if x̂ < x0h
−1. Now, since tf = [0,∞]x̂ × ∂X, the domain

of π is [0, 1)h× (tf \ sf); moreover, for any fixed x̂ ∈ [0,∞) and y ∈ ∂X, the point π(h, x̂, y)
converges, as h↘ 0, to the point (x̂, y) on the transition face of Xc~. See Figure 3.5.

x̂ < x0h
−1

h

x̂0 ∞

π

x0

h

xsf

cf

tf

x < x0

0

∞
x̂

Figure 3.5. Illustration of the map π defined in (3.14).

With this setup, we have:

Corollary 3.7 (Restriction to tf: Sobolev spaces). Suppose χ ∈ A0([0, 1)h×X) has compact
support in [0, 1)× U . Let 0 < µ0 ∈ C∞(X; bΩ1X) and 0 < µ̂0 ∈ C∞(tf; bΩ1X), let αµ ∈ R,
and put

µ := xαµµ0, µ̂ := x̂αµ µ̂0.

(1) (Constant orders.) Let s, l, α, b ∈ R. Then

‖χu‖
Hs,l,α,b

c,h (X;µ)
∼ h

αµ
2
−α‖π∗(χu)‖

Hs,l,b−α
b,sc (tf;µ̂)

, u ∈ Hs,l,α,b
c,h (X;µ), (3.15)

in the sense that the left hand side is bounded by a uniform constant (independent
of h and u) times the right hand side and vice versa.

(2) (Variable orders.) Let b ∈ C∞(c~T ∗sfXc~) denote a variable order, and let b′ :=
b|tf∩sf . If b is invariant under the lift of the dilation action (x, y) 7→ (λx, y) in U ,
then

‖χu‖
Hs,l,α,b

c,h (X;µ)
∼ h

αµ
2
−α‖π∗(χu)‖

Hs,l,b′−α
b,sc (tf;µ̂)

.

For general b, and given δ > 0, there exists x0(δ) ∈ (0, x0] so that for χ ∈
C∞c ([0, x0(δ))× ∂X), we have

C−1h
αµ
2
−α‖π∗(χu)‖

Hs,l,b′−α−δ
b,sc (tf;µ̂)

≤ ‖χu‖
Hs,l,α,b

c,h (X;µ)
≤ Ch

αµ
2
−α‖π∗(χu)‖

Hs,l,b′−α+δ
b,sc (tf;µ̂)

,
(3.16)

where C does not depend on h, u.

Proof. By factoring out h−α, it suffices to consider the case α = 0. Consider first the case of
constant orders. Factoring out the appropriate powers of x

x+h = x̂
x̂+1 and h

h+x = (x̂+ 1)−1,

we reduce to the case l = b = 0. For s = 0, the equivalence of norms (3.15) then follows
from ∫∫

|χu|2 xαµ dx

x
dy =

∫∫
|π∗(χu)|2 hαµ x̂αµ dx̂

x̂
dy.

For s ∈ Z, the conclusion follows from (3.12); for general s ∈ R, use duality and interpola-
tion.



26 PETER HINTZ

For variable semiclassical orders b (and still with α = 0), and under the assumption of

dilation-invariance near tf2, we first pick an elliptic operator Â ∈ Ψs,l,b′

b,sc (tf); we can then

extend its Schwartz kernel to a neighborhood of tf2 to be constant along the orbits of

(h, x) 7→ (λh, λx), and then extend it further to an elliptic operator A ∈ Ψs,l,0,b
c~,cl (X). In this

manner, we obtain a right inverse (with special properties) of the restriction map (3.13).
For any fixed b0 < inf b, we thus have

‖χu‖2
Hs,l,0,b

c,h (X;µ)
∼ ‖χu‖2

H
s,l,0,b0
c,h (X;µ)

+ ‖A(χu)‖2H0
c,h(X;µ)

∼ h
αµ
2

(
‖π∗(χu)‖2

H
s,l,b0
b,sc (tf;µ̂)

+ ‖Â(π∗(χu))‖2H0
b,sc(tf;µ̂)

)
∼ h

αµ
2 ‖χu‖2

Hs,l,b′
b,sc (tf;µ̂)

.

The lossy estimate (3.16) is a consequence of this, as the dilation-invariant extension of
b′ − δ, resp. b′ + δ is less, resp. greater than b in a sufficiently small (depending on b and
δ) neighborhood of ∂X. �

3.4. Relative semiclassical b-regularity. We now make Remark 1.5 precise and demon-
strate how to combine the notions of semiclassical cone regularity and semiclassical b- (i.e.
conormal) regularity. Recall here that a semiclassical b-vector field is a particular type of
h-dependent b-vector field on X; namely, it is a vector field on [0, 1)h × X which is hori-
zontal and which vanishes at h = 0. In local coordinates as in (2.1), such a vector fields
can be written as

a(h, x, y)hx∂x +
n−1∑
j=1

bj(h, x, y)h∂yj . (3.17)

The main insight is that the semiclassical b-algebra can be embedded into the semiclassical
cone algebra via a phase space resolution, see Lemma 3.8 below; this can alternatively be
phrased as a second microlocalization of the semiclassical b-algebra at the zero section over
∂X at h = 0, see Remark 3.10.

First, we explain a slightly nonstandard perspective on semiclassical (b-)phase spaces.
Let X be an n-dimensional manifold with nonempty embedded boundary ∂X. Thus, par-
alleling Definition 3.1, we define

Xb~ := [0, 1)×X,
Vb~(Xb~) := {V ∈ Vb(Xb~) : V is horizontal, V |h=0 = 0}.

It is then easy to see that Vb~(Xb~) is spanned over C∞(Xb~) by hV for V ∈ Vb(X) (cf.
(3.17)), where we identify V with an h-independent horizontal vector field on Xb~. We then
have Vb~(Xb~) = C∞(Xb~; b~TXb~) for a rank n vector bundle

b~TXb~ → Xb~.

In local coordinates [0,∞)x × Rn−1
y , a smooth frame of this bundle is hx∂x, h∂y1 , . . .,

h∂yn−1 . We can introduce fiber-linear coordinates on the dual bundle b~T ∗Xb~ by writing
the canonical 1-form as

ξb~h
−1 dx

x
+
n−1∑
j=1

(ηb~)jh
−1dyj .
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Thus, for example, the symbol of the semiclassical b-differential operator hxDx is ξb~.10

Denote fiber infinity of the radial compactification b~T ∗Xb~ by b~S∗Xb~. Given a symbol

a ∈ Ss,l,b(b~T ∗Xb~) = x−lh−bSs,0,0(b~T ∗Xb~) (i.e. a is conormal with weight −s at b~S∗Xb~,

conormal with weight −l at b~T ∗[0,1)×XXb~, and conormal with weight −b at h = 0), we can

then define the semiclassical quantization

(Opb,h(a)u)(x, y)

:= (2π)−n
∫∫∫∫

exp
(
i
[x− x′

hx
ξb~ +

y − y′

h
· ηb~

])
φ
(∣∣∣log

x

x′

∣∣∣)φ(|y − y′|)

a(x, y, ξb~, ηb~)u(x′, y′)
dx′

hx′
dy′

hn−1
dξb~ dηb~.

If we make the change of variables

(ξb~, ηb~) = (x+ h)(ξc~, ηc~), (3.18)

cf. (3.2), this exactly matches the c~-quantization (3.5). The key point is now that this
match has a clean interpretation on the level of symbol classes on a joint resolution of the
semiclassical cone and b-phase spaces:

Lemma 3.8 (Relationship between semiclassical cone and b-phase spaces). Define the
cb~-phase space

cb~T ∗Xc~ :=
[
c~T ∗Xc~; c~S∗tfXc~

]
. (3.19)

Denote by C := b~T ∗{0}×∂XXb~ the semiclassical b-phase space over the corner h = x = 0,

and denote by oC ⊂ C the zero section. Then the identity map on (0, 1)h × T ∗X◦ extends
by continuity to a diffeomorphism

cb~T ∗Xc~
∼=−→
[
b~T ∗Xb~; C; oC

]
. (3.20)

We refer to the front face of (3.19) as fbf (‘finite b-frequencies’). See Figure 3.6.

Proof of Lemma 3.8. We work in polar coordinates ρ = x + h, θ = (x,h)
|(x,h)| in the (x, h)

variables. Thus, local coordinates near c~T ∗tfXc~ are (ρ, y, θ, ζc~), ζc~ := (ξc~, ηc~), while local

coordinates near the front face of [b~T ∗Xb~; C], away from fiber infinity, are (ρ, y, θ, ζb~),
ζb~ = (ξb~, ηb~). Coordinates near the interior of the front face of the final blow-up in (3.20)

are then (ρ, y, θ, ζb~ρ ) = (ρ, y, θ, ζc~), see (3.18). Near the intersection of the lift of oC
with that of C, smooth coordinates can be constructed by introducing polar coordinates
in the fiber variables, giving ( ρ

|ζb~| , y, θ, |ζb~|, ζb~|ζb~|); this matches, up to a permutation, the

local coordinates on cb~T ∗Xc~ near the lift of c~T ∗tfXc~ given by ( ρ
|ζc~|−1 , y, θ, |ζc~|−1, ζc~|ζc~|).

Lastly, near the lift of fiber infinity on the resolved b-phase space, we can use coordinates
(ρ, y, θ, |ζb~|−1, ζb~|ζb~|), which matches the local coordinates near the lift of c~S∗Xc~ given by

(ρ, y, θ, |ζc~|
−1

ρ , ζc~|ζc~|). �

10By contrast, the standard convention is to introduce fiber-linear coordinates (ξb, ηb) on bT ∗X as in (2.3)
and declare the principal symbol of hxDx to be ξb; the translation to the present convention is accomplished
by using (the adjoint of) the bundle isomorphism b~TXb~ ∼= [0, 1)h × bTX induced by division by h (i.e.
induced by the map Vb~(Xb~) 3 V 7→ (h−1V )h∈[0,1)).
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x

h

ζc~
ζb~

∼=

x

h
ζb~

ζc~

Figure 3.6. On the left: the resolution cb~T ∗Xc~ of the fiber-compactified
semiclassical cone phase space at fiber infinity over tf; see (3.19). (Unlike
in Figure 3.2, we show the full compactified fibers here.) On the right: the
resolution of the fiber-compactified semiclassical b-phase space at x = h = 0
and at the zero section over x = h = 0; see (3.20).

The blow-up of a boundary face does not enlarge the space of conormal distributions,
but allows for more precise accounting of weights. Concretely, define for s, s′, l, α, b ∈ R the
symbol space

Ss,s
′,l,α,b(cb~T ∗Xc~), (3.21)

where the orders refer, in this order, to fiber infinity, the front face fbf of (3.19), and the
phase space over the lifts of cf, tf and sf, see Figure 3.7. Then we have

Ss,l,α,b(c~T ∗Xc~) = Ss,s+α,l,α,b(cb~T ∗Xc~),

Ss,s
′,l,α,b(cb~T ∗Xc~) ⊂ Smax(s,s′−α),l,α,b(c~T ∗Xc~).

(3.22)

Note that the second inclusion is false if we use spaces of classical symbols on both sides;
after all, blow-ups do enlarge the space of smooth functions (but preserve the space of
conormal functions). Since we worked with general conormal symbols and ps.d.o.s in §3.2,
we can immediately quantize symbols on the cb~-phase space:

Definition 3.9 (cb~-pseudodifferential operators). Let s, s′, l, α, b ∈ R. Then we define

Ψs,s′,l,α,b
cb~ (X) := Opc~

(
Ss,s

′,l,α,b(cb~T ∗Xc~)
)

+ Ψ−∞,l,α,−∞c~ (X),

Operators with variable semiclassical orders b ∈ c~T ∗sfXc~ are defined similarly.

Remark 3.10 (Second microlocalization). In view of Lemma 3.8, one can view Ψcb~(X) as
a second microlocalization of the (conormal) semiclassical b-algebra Ψb~(X) at the zero
section over h = x = 0. In terms of symbol classes, we have

Ss,l,b(b~T ∗Xb~) = Ss,l+b,l,l+b,b(cb~T ∗Xc~),

Ss,s
′,l,α,b(cb~T ∗Xc~) ⊂ Ss,l,max(b,s′−l,α−l)(b~T ∗Xb~),

(3.23)

and analogous statements hold for ps.d.o.s. However, similarly to [Vas21b, §5] in the con-
text of b- and scattering algebras, it is analytically advantageous to resolve Ψc~(X) as in
Definition 3.9, as the second microlocal/resolved algebra involves global (noncommutative)
phenomena at h = x = 0 (i.e. the lift of tf, associated to which is the normal operator
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x

h s
l

s′

s′

α

b

Figure 3.7. Illustration of the orders of (symbols of) cb~-pseudodifferential
operators in (3.21) and Definition 3.9.

homomorphism into a noncommutative algebra) which are directly inherited from Ψc~(X),
but which are not visible on the level of Ψb~(X).

For two ps.d.o.s Aj ∈ Ψ
sj ,s
′
j ,lj ,αj ,bj

cb~ (X), one can compute the full symbol, i.e. the symbol
modulo

S−∞,l1+l2,α1+α2,−∞(c~T ∗Xc~) = S−∞,−∞,l1+l2,α1+α2,−∞(cb~T ∗Xc~),

of the composition A1 ◦A2 ∈ Ψ
max(s1,s′1−α1)+max(s2,s′2−α2),l1+l2,α1+α2,b1+b2
cb~ (X) in local coor-

dinates using the usual symbol expansion to be the sum of products of derivatives of the

full symbols of the two factors along b-vector fields on c~T ∗Xc~ which vanish, as b-vector
fields, at c~S∗Xc~ (thus vanishing as b-vector fields at the lift of c~S∗Xc~ as well as at the

front face of (3.19)) and at the lift of c~T ∗sfXc~. Plugging the cb~-symbols of A1, A2 into
such an expansion thus shows that, in fact,

A1 ◦A2 ∈ Ψ
s1+s2,s′1+s′2,l1+l2,α1+α2,b1+b2
cb~ (X).

Similar arguments show that the principal symbol map

cb~σ : Ψs,s′,l,α,b
cb~ (X)→ (Ss,s

′,l,α,b/Ss−1,s′−1,l,α,b−1)(cb~T ∗Xc~)

is well-defined (and a *-homomorphism as usual). One can moreover define an associated
scale of Sobolev spaces

Hs,s′,l,α,b
cb,h (X) =

{
u ∈ Hmin(s,s′−α),l,α,b

c,h (X) :

Au ∈ L2(X) ∀A ∈ Ψs,s′,l,α,b
cb~ (X)

}
.

(3.24)

The relationships (3.22) and (3.23) imply:

Proposition 3.11 (Relationships between Sobolev spaces). Let s, s′, l, α, b ∈ R. Define L2

using the volume density µ = xαµµ0, 0 < µ0 ∈ C∞(X; bΩ1X) with αµ ∈ R. Then

Hs,l,α,b
c,h (X) = Hs,s+α,l,α,b

cb,h (X),

Hs,l,b
b,h (X) = Hs,l+b,l,l+b,b

cb,h (X).

One can conversely embed Hs,s′,l,α,b
cb,h (X) into H s̃,l̃,α̃,b̃

c,h (X) and H s̃,l̃,b̃
b,h (X) under suitable

inequalities (which can be read off from Proposition 3.11) between the orders. In particular,
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this allows us to give a direct proof of [Hin22, Proposition 3.18] on the relationship between
Hc,h(X) and Hb,h(X); for instance, for s, l, α ∈ R (denoted s, α, τ in the reference), we have

Hs,l,α,0
c,h (X) = Hs,s+α,l,α,0

cb,h (X) ⊂ Hs,l,min(0,α−l,α−l+s)
b,h (X), (3.25)

which implies (and is slightly sharper than) the first part of [Hin22, Proposition 3.18]. If
one wishes to translate estimates on cone spaces to b-spaces, the advantage of the resolved
cb~-Sobolev spaces, compared with c~-Sobolev spaces, is that one can reduce losses in
powers of h (or in regularity) in the conversion; as a simple concrete example, we have

Hs,s′+α,l,α,0
cb,h (X) ⊂ Hs,l,min(0,α−l,α−l+s′)

b,h (X),

which for s′ ≥ −s− gives an improved bound at h = 0, and for s′ ≥ 0 a bound which is
independent of the differential orders s, s′, unlike (3.25) which gets lossier as s decreases.

Remark 3.12 (Variable semiclassical orders). The above discussion applies, mutatis mutan-
dis, to symbols and operators with variable semiclassical orders b as well; here b is a smooth

function on the lift of c~T ∗sfXc~ to cb~T ∗Xc~.

4. Microlocal propagation estimates at cone points and generalizations

Let n ≥ 1. We work locally near a cone point, thus on an n-dimensional manifold

X = [0, 2x0)x × Y, x0 > 0, (4.1)

where Y is a closed connected (n− 1)-dimensional manifold, and where X◦ = (0, 2x0)× Y
is equipped with a smooth Riemannian metric g of the form

g = dx2 + x2k(x, y,dy), (4.2)

where k ∈ C∞([0, x0); C∞(Y, S2T ∗Y )) is a smooth family of smooth Riemannian metrics on
the cross section Y . Any metric which locally near ∂X is of the form dx̃2 + x̃2k(x̃, y,dx̃,dy)
with k|∂X a Riemannian metric on ∂X is of the form (4.2) in a suitable smooth collar
neighborhood of ∂X, as shown in [MW04, §1].

While the above X is not compact, all calculations and estimates will take place in the
compact subset [0, x0]×Y of X; thus, we shall commit a slight abuse of notation and write
‖u‖Hs

c,h(X) etc. for norms of functions u on X which will always have support in x−1([0, x0]).

We fix the volume density

µ = |dg| = xn−1|dx dk| ∈ xnC∞(X; bΩ1X) (4.3)

on X, and define Sobolev spaces relative to L2(X) := L2(X;µ). We moreover define

x̂ := x
h , ĝ := dx̂2 + x̂2k(0, y, dy),

ĥ := x̂−1 = h
x , µ̂ := |dĝ| = x̂n−1|dx̂ dk(0)|.

(4.4)

4.1. Admissible operators. The class of operators of interest to us is the following.

Definition 4.1 (Admissible operators). We call an h-dependent differential operator Ph,z
on X◦ admissible if it is of the form

Ph,z = h2∆g − z + h2x−2Q1,z + hx−1q0,z, (4.5)

where Q1,z ∈ Diff1
b(X) and q0,z ∈ C∞(X) depend smoothly on z ∈ C, |z − 1| < Ch.
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We shall henceforth take z = z(h) to be a smooth function of h ∈ [0, 1) with z(0) = 1.

Remark 4.2 (Vector bundles). Our analysis applies also to operators acting on sections of a
vector bundle E → X; we explain the necessary (largely notational) changes in Remark 4.11.

Using local coordinates y ∈ Rn−1 on ∂X, let us write

Q1,z = q1,z(x, y, xDx, Dy), q0,z = q0,z(x, y).

The normal operator of Ph,z is

N(P ) := ∆ĝ − 1 + x̂−2q1,1(0, y, x̂Dx̂, Dy) + x̂−1q0,1(0, y)

= D2
x̂ − i(n− 1)Dx̂ + x̂−2∆k(0) − 1

+ x̂−2q1,1(0, y, x̂Dx̂, Dy) + x̂−1q0,1(0, y)

(4.6)

on tf = [0,∞]x̂ × ∂X.11

Lemma 4.3 (Structural properties). We have Ph,z ∈ ( x
x+h)−2Diff2

c~(X) and N(P ) ∈
( x̂
x̂+1)−2Diff2

b,sc(tf). Furthermore, we have

Ph,z −N(P ) ∈ (x+ h)
(

x
x+h

)−2
Diff2

c~(X),

where we abuse notation and write N(P ) ∈ ( x
x+h)−2Diff2

c~(X) for any operator whose nor-

mal operator is equal to N(P ).

Proof. In local coordinates y1, . . . , yn−1 on Y , the metric k(x, y,dy) is given by an (n−1)×
(n− 1) matrix (kij) with determinant |k| > 0 and inverse (kij), and we have

∆g = |k|−
1
2x−n+1Dx

(
|k|

1
2xn−1Dx

)
+ x−2∆k(x)

= D2
x − i(n− 1 + xγ)x−1Dx +

n−1∑
i,j=1

x−2|k|−
1
2Dyi

(
|k|

1
2kijDyj

)
,

where γ = 1
2∂x log |k| ∈ C∞. Since

hDx = x+h
x ·

h
h+xxDx ∈ x+h

x Vc~(Xc~),

hx−1Dyi = x+h
x ·

h
h+xDyi ∈ x+h

x Vc~(Xc~),

hx−1 = x+h
x ·

h
h+x ∈ x+h

x Diff1
c~(X),

(4.7)

we find h2∆g ∈ ( x
x+h)−2Diff2

c~(X), and its normal operator is D2
x̂ − i(n − 1)x̂−1Dx̂ +

x̂−2∆k(0) = ∆ĝ. The remaining terms in (4.5) are analyzed similarly. �

11This can be defined more invariantly as an operator on the inward pointing normal bundle +N∂X,
which is the natural place for the b-normal operators q1,1(0, y, xDx, Dy) and q0,1(0, y) to live; see [Mel93,
§4.15] and [Hin22, §3] for details.
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4.2. Characteristic set, Hamilton flow. Using the fiber-linear coordinates (ξc~, ηc~) on
c~T ∗Xc~ from (3.2), we can read off the principal symbol from (4.7) to be

p :=
(

x
x+h

)2 · c~σ(Ph,z) = ξ2
c~ + |ηc~|2k−1 − 1.

(Here, we use that z = 1 + O(h), hence the principal symbol of z is 1.) This is elliptic
at fiber infinity c~S∗Xc~, but has a nonempty characteristic set at finite frequencies. Near
sf, it is more convenient to use the fiber coordinates (ξ, η) from (3.3), and ĥ = h

x , x, y as
coordinates on the base, so that

p = ξ2 + kij(x, y)ηiηj − 1,

Σ = p−1(0) ∩ c~T ∗sfXc~ = {ĥ = 0, ξ2 + |η|2k−1 = 1}.
(4.8)

Using (3.4) and writing |η|2 = kijηiηj , we then compute

H := ĥ−1Hp = 2ξ(x∂x − ĥ∂ĥ − η∂η) +
(
2|η|2 − x∂xkijηiηj

)
∂ξ

+ 2kijηi∂yj − (∂ykk
ij)ηiηj∂ηk .

(4.9)

Restricted to x = 0 as a b-vector field on c~T ∗Xc~, this is

H|x=0 = 2ξ(x∂x − ĥ∂ĥ − η∂η) + 2|η|2∂ξ +
(
2kijηi∂yj − (∂ykk

ij)ηiηj∂ηk
)
. (4.10)

This vanishes as a standard vector field on ĥ = x = 0 if and only if η = 0. The intersection
of η−1(0) with Σ ∩ x−1(0) has two components: the incoming and outgoing radial sets
Rin/out ⊂ c~T ∗sfXc~,

Rin := {(ĥ, x, y, ξ, η) : ĥ = 0, x = 0, y ∈ ∂X, ξ = −1, η = 0},

Rout := {(ĥ, x, y, ξ, η) : ĥ = 0, x = 0, y ∈ ∂X, ξ = +1, η = 0}.
(4.11)

These are saddle points for the rescaled Hamilton vector field H since

x−1Hx = ∓2, ĥ−1Hĥ = ±2, |η|−2H|η|2 = ±4 at Rin/out. (4.12)

(The top sign is for ‘in’, the bottom sign for ‘out’.) See Figure 4.1.

Σ

Rout

Rin

ξ

η
ĥ

x

Figure 4.1. Illustration of the flow along the rescaled Hamilton vector field
H, see (4.9), through the radial setsRin andRout. Shown is the characteristic
set, the fibers of which over sf are spheres (here 1-spheres); one fiber is drawn
as a dotted circle. Also indicated is (in gray) the linearization of H at Rin/out

over tf.

Over c~T ∗tfXc~, the setRin is a radial source (though this really only makes sense infinites-
imally at tf ∩ sf since the c~-calculus is not symbolic over tf \ sf), and Rout is a radial sink.
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This matches precisely the familiar situation of scattering theory on the asymptotically
conic space (tf, ĝ), see [Mel94], which we discuss in detail in §4.3.

In x > 0, the flow of H is a reparameterization of the flow of h−1Hp = x−1H. Integral
curves of H starting over a point in X◦ never reach ∂X in finite time. Instead, we consider

Hsf := h−1Hp|ĥ=0 = 2ξ(∂x − x−1η∂η) +
(
2x−1|η|2 − ∂xkijηiηj

)
∂ξ

+ x−1
(
2kijηi∂yj − (∂ykk

ij)ηiηj∂ηk
)
.

(4.13)

Given y0 ∈ ∂X, the curves

γI,y0(s) := (−2s, y0,−1, 0), s ∈ (−x0, 0),

γO,y0(s) := (2s, y0, 1, 0), s ∈ (0, x0)
(4.14)

are integral curves of Hsf . Here, γI,y0 strikes ∂X at s = 0 at the incoming radial set over
point y0, whereas γO,y0 emanates from the outgoing radial set over y0 at s = 0.

Lemma 4.4 (Incoming/outgoing null-bicharacteristics). Let 0 < s0 < x0, and suppose that
γ : (0, s0)→ Σ∩ c~T ∗sf\tfXc~, is an integral curve of Hsf tending to ∂X as s↘ 0 in the weak

sense that lim infs↘0 x(γ(s)) = 0. Then in the coordinates (x, y, ξ, η), γ is necessarily of

the form γ(s) = γO,y0(s) for some y0 ∈ ∂X. Similarly, if γ : (−s0, 0) → Σ ∩ c~T ∗sf\tfXc~ is

an integral curve of Hsf with lim infs↗0 x(γ(s)) = 0, then γ(s) = γI,y0(s) for some y0 ∈ ∂X.

Proof. The vector field

xHsf = H|x=0 = 2ξ(x∂x − η∂η) + (2|η|2 − x∂xkijηiηj)∂ξ + (2kijηi∂yj − (∂ykk
ij)ηiηj∂ηk)

vanishes identically at Rout. We study the behavior of xHsf as a vector field on Σ near
Rout; we may use the coordinates x ≥ 0, y ∈ Rn−1, and η ∈ Rn−1, in which ξ is determined
by p = 0 as the positive square root of 1 − kij(x, y)ηiηj . The linearization of (xHsf)|Σ
in the normal directions at Rout, defined by mapping df to d(xHsff) where f ∈ C∞(Σ),
f |Rout = 0, maps

dx 7→ 2 dx, dη 7→ −2 dη,

and is thus hyperbolic; the unstable and stable subbundles of TRoutΣ for the (xHsf)|Σ-flow
are correspondingly the span of ∂x and ∂η. The unstable manifold theorem, in the form
given in [HPS77, Theorem 4.1], thus applies inside Σ at Rout and produces an unstable
manifold whose tangent space at a point ζ ∈ Rout is the sum of Tζ(Rout) and R∂x. (See
the proof of [MW04, Theorem 1.2] for similar, albeit more general, considerations.) Since
the manifold Rout ∪ {γO,y0(s) : y0 ∈ ∂X, s ∈ (0, s0)} is H-invariant with the same tangent
space, it must be equal to this unstable manifold. The first part of the lemma follows from
this observation; the second part is completely analogous. �

Definition 4.5 (Generalized broken bicharacteristics). Denote by Σ̇ the topological space
defined as the quotient Σ/∂Σ. Let I ⊂ R denote an open interval. We then say that a

continuous curve γ : I → Σ̇ is a generalized broken bicharacteristic (GBB) if either γ(I) ⊂
Σ \ ∂Σ and γ is an integral curve of Hsf , or there exist s0 ∈ I and yI , yO ∈ ∂X so that
γ(s0 + t) = γO,yO(t) for t > 0, s0 + t ∈ I and γ(s0 + t) = γI,yI (t) for t < 0, s0 + t ∈ I.12

If yO is at distance π from yI with respect to the metric k(0) on ∂X, we say that γ is a
geometric GBB, otherwise γ is a strictly diffractive GBB.

12In light of Lemma 4.4, this is equivalent to the condition that γ is an Hsf -integral curve outside of ∂Σ,
but may enter and exit the characteristic set over ∂X at different points.
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See Figure 4.2. We remark without proof that geometric GBB are uniform limits of
Hsf -integral curves just barely missing ∂X (see also [MW04, Lemma 1.5]).

∂X
∂X

Figure 4.2. The projection of strictly diffractive (blue) and geometric (red)
GBBs to the base X, as well as geodesics (green) just barely missing the
cone tip ∂X. On the left: the geometric picture, where ∂X is collapsed to a
point. On the right: the resolved picture.

4.3. Scattering theory for the normal operator. Propagation through the ‘cone point’
∂X will require global control of the normal operator, namely the absence of purely out-
going or purely incoming solutions (depending on the direction in which one wants to
propagate estimates). Let us define fiber-linear coordinates on the scattering cotangent
bundle scT ∗(tf \ cf) via

ξsc
dĥ

ĥ2
+
n−1∑
j=1

(ηsc)j
dyj

ĥ
.

Via the identification (3.7), the radial sets Rin/out defined in (4.11) are then equal to the
sets scRin/out ⊂ scT ∗(tf \ cf), where

scRin := {(ĥ, y, ξsc, ηsc) : ĥ = 0, y ∈ ∂X, ξsc = +1, ηsc = 0},
scRout := {(ĥ, y, ξsc, ηsc) : ĥ = 0, y ∈ ∂X, ξsc = −1, ηsc = 0}.

Invariantly, Rin = scRin is the graph of −x
h

dx
x = −d(ĥ−1) = dĥ

ĥ2
, likewise for Rout = scRout

but with an overall sign switch.

Definition 4.6 (Conditions on the normal operator). Let l, l′ ∈ R, and recall (4.4).

(1) We say that N(P ) is injective at weight l on outgoing functions if the only solution

u to the equation N(P )u = 0 satisfying u ∈
⋃
N∈RH

∞,l,−N
b,sc (tf; µ̂) and WFsc(u) ⊂

scRout is trivial: u ≡ 0.
(2) We say that N(P )∗ (the formal adjoint with respect to L2(tf; µ̂)) is injective at

weight l′ on incoming functions if the only solution v to the equation N(P )∗v = 0

satisfying v ∈
⋃
N∈RH

∞,l′,−N
b,sc (tf; µ̂) and WFsc(v) ⊂ scRin is trivial: v ≡ 0.

(3) If condition (1) and condition (2) with l′ = −l + 2 hold, we say that N(P ) is
invertible at weight l.

The wave front set assumptions here are the microlocal formulations of outgoing/incom-
ing radiation conditions. In the special case that N(P ) = ∆ĝ − 1, these assumptions are
indeed equivalent to the standard Sommerfeld radiation condition. Our goal is to elevate
the qualitative conditions of Definition 4.6 to quantitative estimates, see Lemma 4.8.
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Changing variables in the expression (4.6) for N(P ) to (ĥ, y) gives

N(P ) = (ĥ2Dĥ)2 + i(n− 1)ĥ2Dĥ + ĥ2∆k(0) − 1

+ ĥ2q1,1(0, y,−ĥDĥ, Dy) + ĥq0,1(0, y),

with scattering principal symbol at scT ∗tf∩sftf given by

ptf = ξ2
sc + |ηsc|2 − 1. (4.15a)

Its Hamilton vector field is

Htf := ĥ−1Hptf = 2ξsc(ĥ∂ĥ + ηsc∂ηsc)− 2|ηsc|2∂ξsc + ĥ−1H|ηsc|2 (4.15b)

by (2.6), which has a source, resp. sink structure at scRin, resp. scRout within the char-
acteristic set p−1

tf (0). Recall then that microlocal propagation estimates near the radial
sets scRin/out require suitable orders—here the decay order—of weighted Sobolev spaces
to be above or below certain threshold values, see [Mel94, §9], [Vas18, §4.7], and [DZ19,
Appendix E.4].

Definition 4.7 (Threshold quantities). Define the functions

r1 := Im
(

bσ1(Q1,1)(−dx
x )|x=0

)
∈ C∞(∂X),

r0 := Im
(
q0,1|x=0

)
∈ C∞(∂X).

Then the threshold quantities rin/out ∈ R are defined as

rin := −1
2 + 1

2 sup
∂X

(r1 + r0), rout := −1
2 + 1

2 inf
∂X

(r1 − r0).

We next recall that at the other end of tf, i.e. the ‘b-end’ tf ∩ cf, the weights l, l′ in
Definition 4.6 are related to the boundary spectrum of N(P ). Concretely, from the expres-
sion (4.6), we read off

x̂2N(P ) ∈ (x̂Dx̂)2 − i(n− 2)x̂Dx̂ + ∆k(0) + q1,1(0, y, x̂Dx̂, Dy) + x̂Diffb(tf \ sf). (4.16)

Its (dilation-invariant in x̂) normal operator at x̂ = 0 is given by the sum of the first four
terms, and the Mellin transformed normal operator family is defined by formally replacing
x̂Dx̂ by multiplication with λ ∈ C, giving

N̂(P )(λ, y,Dy) := λ2 − i(n− 2)λ+ ∆k(0) + q1,1(0, y, λ,Dy). (4.17)

This is a holomorphic family in λ taking values in elliptic elements of Diff2(∂X). The
boundary spectrum of N(P ) is then

specb(N(P )) := {λ ∈ C : N̂(P )(λ) : C∞(∂X)→ C∞(∂X) is not invertible};

it is a discrete subset of C, and its intersection with | Imλ| < C is finite for any fixed value
of C [Mel93, §5.3]. Let us now put

Λ := {− Imλ : λ ∈ specb(N(P ))}; (4.18)

this is a discrete subset of R.

Lemma 4.8 (Estimates for N(P )). Let s, l ∈ R and r ∈ C∞(scT ∗tf∩sftf). Suppose that r is
constant near scRin/out and satisfies r > rin at scRin, r < rout at scRout. Suppose moreover

that Htf r ≤ 0 and
√
−Htf r ∈ C∞ on scT ∗tf∩sftf ∩{ptf = 0} in the notation of (4.15a)–(4.15b).
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(1) If N(P ) is injective at weight l on outgoing functions and l − n
2 /∈ Λ, then

‖u‖
Hs,l,r

b,sc (tf;µ̂)
≤ C‖N(P )u‖

Hs−2,l−2,r+1
b,sc (tf;µ̂)

(4.19)

for all u for which both sides are finite.
(2) If N(P )∗ is injective at weight −l + 2 on incoming functions and −l + 2 − n

2 /∈ Λ,
then

‖v‖
H−s+2,−l+2,−r−1

b,sc (tf;µ̂)
≤ C‖N(P )∗v‖

H−s,−l,−r
b,sc (tf;µ̂)

(4.20)

for all v for which both sides are finite.
(3) If N(P ) is invertible at weight l and l− n

2 /∈ Λ,13 then the operator N(P ) is invertible
as a map{

u ∈ Hs,l,r
b,sc (tf; µ̂) : N(P )u ∈ Hs−2,l−2,r+1

b,sc (tf; µ̂)
}
→ Hs−2,l−2,r+1

b,sc (tf; µ̂).

Proof. This is a standard application of elliptic b-theory at tf∩cf and radial point estimates
at tf ∩ sf in the scattering calculus as in [Mel94] and [Vas18, §4.8].

We first prove symbolic estimates for N(P ) and N(P )∗ which do not use the injectivity
assumptions. In tf \ sf, the operator N(P ) is an elliptic weighted b-differential operator.
Let φj ∈ C∞c (tf \ sf), j = 0, 1, 2, 3, be identically 1 near tf ∩ cf, with φj+1 ≡ 1 on suppφj .
Then, only recording the b-regularity and the weight at cf, we have

‖φ1u‖Hs,l
b
≤ C

(
‖φ2N(P )u‖

Hs−2,l−2
b

+ ‖φ2u‖H−N,lb

)
(4.21)

for any fixed N . Now, recalling (4.4), we have

Hs,l
b ([0,∞)x̂ × ∂X; µ̂) = H

s,l−n
2

b

(
[0,∞)× ∂X;

∣∣dx̂
x̂ dk(0)

∣∣).
Using now that l − n

2 /∈ Λ, we can estimate

‖φ2u‖H−N,lb
≤ C‖x̂−2N̂(P )(x̂Dx̂, y,Dy)(φ2u)‖

H−N−2,l−2
b

by passing to the Mellin transform. Since N(P ) − x̂−2N̂(P )(x̂Dx, y,Dy) ∈ x̂−1Diffb

by (4.16), this can be plugged into (4.21) and yields (putting back the scattering decay
orders, which at this point are still arbitrary due to the localizers)

‖φ1u‖Hs,l,r
b,sc
≤ C

(
‖φ3N(P )u‖

Hs−2,l−2,r+1
b,sc

+ ‖φ3u‖H−N,l−1,−N
b,sc

)
. (4.22)

Turning to the scattering end, and with ψj = 1−φj , we claim that (now with the b-decay
orders being arbitrary)

‖ψ1u‖Hs,l,r
b,sc
≤ C

(
‖ψ0N(P )u‖

Hs−2,l−2,r+1
b,sc

+ ‖ψ0u‖H−N,−N,−Nb,sc

)
. (4.23)

This is proved by means of the scattering calculus by a combination of elliptic estimates
(controlling ψ1u away from Σtf := p−1

tf (0)), radial point estimates at scRin/out, and microlo-
cal real principal type estimates on Σtf \ (scRin ∪ scRout). We only sketch the argument for
the radial points in order to explain the emergence of the threshold condition on r; details
can be found e.g. in [Vas18, §4.7].

13This condition is automatically satisfied since for l− n
2
/∈ Λ, the operator N(P ) is not even Fredholm,

cf. [Mel93, §6.2].



SEMICLASSICAL PROPAGATION THROUGH CONE POINTS 37

We work in [0, 1)ĥ×∂X ⊂ tf, and consider estimates near scRin. Fixing a cutoff function

χ ∈ C∞c ([0, 1
2)), identically 1 near 0 and with χ′ ≤ 0 on [0, 1

2), we consider a commutant

a := ĥ−2r−1χ(ĥ/δ)χ(|ηsc|2)χ((ξsc − 1)2),

A := 1
2(Opsc(a) + Opsc(a)∗) ∈ Ψ−∞,2r+1

sc ,

where δ > 0 controls the localization near ĥ = 0. We compute the commutator

2 Im〈N(P )u,Au〉 =
〈(
i[N(P ), A] + 2N(P )−N(P )∗

2i A
)
u, u

〉
.

(This holds directly for sufficiently decaying u, and for u as in the statement of the Lemma
can be justified using a regularization argument.) The principal symbol of i[N(P ), A] is

equal to ĥHtfa. When Htf falls on the cutoff in ĥ, the result is supported in the elliptic
set of N(P ), hence easily controlled. When Htf falls on either of the second or third cutoff
functions, the result is ≤ 0 on supp a in view of the source character of scRin (or directly
using (4.15b)), provided δ > 0 is sufficiently small; at scRin then, the principal symbol of

i[N(P ), A] + 2N(P )−N(P )∗

2i A has a matching definite sign, i.e. is a negative multiple of ĥ−2r,
provided that

2 · (+1) · (−2r − 1) + 2 · scσ
(Q−Q∗

2i

)
< 0,

Q := ĥq1,1(0, y,−ĥDĥ, Dy) + q0,1(0, y),
(4.24)

at scRin. But scRin is the graph of the 1-form dĥ
ĥ2

, hence scσ
(Q−Q∗

2i

)
= Im scσ(Q) at scRin

is equal to

Im bσ(q1,1(0, y,−ĥDĥ, Dy))
(

dĥ
ĥ

)
+ Im q0,1 = r1 + r0

in the notation of Definition 4.7. The condition (4.24) thus becomes −2r−1+(r1 +r0) < 0,
which is satisfied on all of scRin provided that r > −1

2 + 1
2 sup(r1 + r0) = rin there. Under

this assumption, one thus obtains control on u microlocally near scRin in the space Hs,r
sc by

N(P )u measured in Hs−2,r+1
sc .

The analysis at scRout is similar, now using the commutant

ĥ−2r−1χ(ĥ/δ)χ(|ηsc|2)χ((ξsc + 1)2).

The derivatives of the latter two cutoffs along Htf are now positive due to the sink character
of scRout, and the principal symbol of the commutator at the radial set is a negative multiple
of ĥ−2r (thus allowing us to propagate control from a punctured neighborhood of the radial
set into the radial set itself) provided that

2 · (−1) · (−2r − 1) + 2 · scσ
(Q−Q∗

2i

)
< 0 at scRout. (4.25)

In view of scRout being the graph of −dĥ
ĥ2

and the calculation

Im scσ(Q)|scRout = Im bσ(q1,1(0, y,−ĥDĥ, Dy))
(−dĥ

ĥ

)
+ Im q0,1 = −r1 + r0,

the condition (4.25) reads 2r + 1− r1 + r0 < 0, so r < −1
2 + 1

2 inf(r1 − r0) = rout.

Putting (4.22) and (4.23) together, we obtain the estimate

‖u‖
Hs,l,r

b,sc
≤ C

(
‖N(P )u‖

Hs−2,l−2,r+1
b,sc

+ ‖u‖
H−N,l−1,−N

b,sc

)
(4.26)

for any N ; we choose N to satisfy −N < s and −N < min r.
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The estimate (4.26) implies that N(P ), acting on Hs,l,r
b,sc , has finite-dimensional kernel;

any element u in the kernel automatically lies in H∞,l,r
′

b,sc for any variable order function r′

satisfying r′ < rout at scRout. Thus, WFsc(u) ⊂ scRout. Under the injectivity assumption
on N(P ), we thus conclude that u = 0. A standard functional analytic argument then
allows one to drop the error term in (4.26), which gives the estimate (4.19).

The proof of part (2) is analogous; the direction of propagation in the characteristic
set is now reversed, which is precisely matched by the sign switches in the orders in the
estimate (4.20). Part (3) is an immediate consequence of the first two parts. �

Remark 4.9 (Flexibility in the choice of l). If the assumptions of part (1) of the Lemma

are satisfied for some value of l, then they continue to hold for all values l̃ with l̃ − n
2 /∈ Λ

for which either l̃ > l, or l̃ ≤ l but l̃ − n
2 and l − n

2 lie in the same connected component

(a, b) of R \ Λ. (Indeed, the claim for l̃ ≤ l follows from the fact—proved using the Mellin

transform upon localizing near tf ∩ cf—that any element in the kernel of N(P ) on Hs,l̃,r
b,sc

automatically lies in H
s,b+n

2
−ε,r

b,sc for any ε > 0.) A similar statement holds for part (2): we

may increase −l+ 2 (or stay in the same connected component of (R\Λ) + n
2 ), i.e. decrease

l. Altogether then, there typically only exists an interval of finite length (possibly empty)
of weights l so that the invertibility condition of part (3) is satisfied.

4.4. Statement and proof of the microlocal propagation estimate. We are now
ready to state the main result of the paper:

Theorem 4.10 (Microlocal propagation through the cone point). Let Ph,z denote an admis-
sible operator in the sense of Definition 4.1, and define the threshold quantities rin, rout as
in Definition 4.7. Let Σ ⊂ c~T ∗sfXc~ denote the characteristic set of Ph,z (see (4.8)). Denote

by H = x
hHp ∈ V(c~T ∗sfXc~) the rescaled Hamilton vector field (see (4.9)). Let s, l, α ∈ R,

b ∈ C∞(c~T ∗sfXc~). Assume that b is constant near the radial sets Rin/out (see (4.11)) and
satisfies b − α > rin at Rin and b − α < rout at Rout; assume moreover that Hb ≤ 0 and√
−Hb ∈ C∞ on Σ. Let χ, χ̃ ∈ C∞c (X) be cutoffs, identically 1 near ∂X, and with χ̃ ≡ 1 on

suppχ. Let E ∈ Ψ0
c~(X), with Schwartz kernel supported in [0, 1)h × (χ̃−1(1)× χ̃−1(1)).

(1) (Forward propagation.) Suppose N(P ) is injective at weight l on outgoing functions
(see Definition 4.6(1)). Suppose that (the preimage in Σ of) all backward GBBs (see
Definition 4.5) starting in Σ ∩ suppχ reach Ellc~(E) in finite time while remaining
inside χ̃−1(1). Then for some small δ > 0, we have

‖χu‖
Hs,l,α,b

c,h (X)
≤ C

(
‖χ̃Ph,zu‖Hs−2,l−2,α,b+1

c,h (X)

+ ‖Eu‖
Hs,l,α,b

c,h (X)
+ hδ‖χ̃u‖

H−N,l,α,bc,h (X)

)
.

(4.27)

(2) (Backward propagation.) Suppose N(P )∗ is injective at weight −l+ 2 on incoming
functions, see Definition 4.6(2). Suppose that (the preimage in Σ of) all forward
GBBs starting in Σ ∩ suppχ reach Ellc~(E) in finite time while remaining inside
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χ̃−1(1). Then for some small δ > 0, we have

‖χu‖
H−s+2,−l+2,−α,−b−1

c,h (X)

≤ C
(
‖χ̃P ∗h,zu‖H−s,−l,−α,−b

c,h (X)

+ ‖Eu‖
H−s+2,−l+2,−α,−b−1

c,h (X)
+ hδ‖χ̃u‖

H−N,−l+2,−α,−b−1
c,h (X)

)
.

(4.28)

Since by Lemma 4.3 and the calculations in §4.2, the operator Ph,z ∈ Ψ2,2,0,0
c~ (X) is

elliptic at fiber infinity, and is of real principal type (except at the radial points) at sf, the
estimates (4.27) and (4.28) are sharp as far as the relative orders in the norms on u on the

left and P
(∗)
h,zu on the right are concerned. Indeed, it has the well-known real principal type

loss of one order at sf and is an elliptic estimate in the c~-differentiability sense.

The improvement of the final (error) terms on the right hand sides in (4.27) and (4.28)
relative to the space on the left hand sides is accomplished at sf by microlocal symbolic
means, and at tf using global normal operator estimates. The overall improvement by a
positive power of h between error term and left hand side allows for the inversion of Ph,z for
small h > 0 under suitable assumptions on the global behavior of the null-bicharacteristic
flow; see §§4.5 and 5 for examples.

Remark 4.11 (Operators on vector bundles). Let E → X denote a smooth vector bundle.
Theorem 4.10 then holds (with the same proof) also for operators Ph,z acting on sections
of E, provided Ph,z is admissible in the sense that

Ph,z = h2x−2Q2,z + hx−1q0,z − z,
Q2,z ∈ Diff2

b(X;E), q0,z ∈ C∞(X; End(E)),

where x−2Q2,z (replacing the combination h2∆g + h2x−2Q1,z in Definition 4.1) has scalar

principal symbol bσ(x−2Q2,z) = bσ(x−2∆g). That is, bσ(x−2Q2,z)(ζ) = |ζ|2g−1 for ζ ∈
bT ∗X, with g the conic metric (4.2). The normal operator is of class

N(P ) ∈ ( x̂
x̂+1)−2Diff2

b,sc(tf;π
∗E∂X),

where π : tf = [0,∞]x̂ × ∂X → ∂X denotes the projection map. The injectivity conditions
of Definition 4.6 are unchanged. The definition of the threshold quantities rin/out in Def-
inition 4.7 requires a minor change; to wit, with respect to a choice of a positive definite
fiber inner product on E∂X , we set (top sign for ‘in’, bottom sign for ‘out’)

rin/out := −1
2 ±

1
2 sup
∂X

scσ
(x−2Q2,1 − (x−2Q2,1)∗ + q0,1 − q∗0,1

2i

)∣∣∣
∓ dx
x2

, (4.29)

where the sup is defined to be the supremum of the largest eigenvalue of the scattering
symbol (which takes values in self-adjoint endomorphisms of E). One may choose different
fiber inner products in the calculation of rin and rout, respectively. A (near-)optimal choice
of fiber inner products, resulting in (almost) the smallest possible rin and largest possible
rout, is typically easy to read off in concrete situations. For example, if Q2,1 = 0 and q0,1|∂X
is block-diagonal (or more generally lower triangular) with respect to some bundle splitting
of E|∂X , then the supremum in (4.29) can be made to be arbitrarily close to the supremum
of Imλ where λ ranges over all eigenvalues of the diagonal entries of q0,1(y), y ∈ ∂X, if one
chooses the fiber inner product appropriately.
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Remark 4.12 (Technical assumptions on the variable order). One can replace the assump-
tions that b be locally constant near Rin/out and satisfy

√
−Hb ∈ C∞ on Σ by the simpler

assumption that Hb ≤ 0 on Σ. This would require the use of the sharp G̊arding inequality
for the c~-calculus, which however we do not prove here.

Proof of Theorem 4.10. We give details for the proof of part (1); the proof of part (2) is
completely analogous. If backward GBBs starting in WF′c~(B) never pass through ∂Σ ⊂
c~T ∗sf∩tfXc~, the orders l and a are irrelevant, and the estimate (4.27) follows from standard
elliptic regularity and real principal type propagation in the (variable order) semiclassical
calculus on X◦. We shall thus work in a small neighborhood of x = 0.

• Step 1: symbolic positive commutator estimate. We first work near the incoming radial

set Rin defined in (4.11); we shall use the coordinates (ĥ, x, y, ξ, η) near c~T ∗sf∩tfXc~ defined
by (3.3) and (4.4). Fix cutoffs χ∂ , χsf , χR ∈ C∞c ([0, 1)), identically 1 near 0 and satisfying

χ′• ≤ 0 and
√
−χ•χ′• ∈ C∞([0, 1)). Denote a smooth extension of b to c~T ∗Xc~ by the same

symbol. For small δ > 0, fixed momentarily, we then consider a commutant

ǎ = ĥ−b−
1
2x−αχ∂

(
x
δ

)
χsf

(
ĥ
δ

)
χR
(
ω
δ

)
, ω :=

√
|η|2 + |ξ + 1|2. (4.30)

Thus, supp a is contained in any fixed open neighborhood of Rin when δ > 0 is sufficiently

small. We have ǎ ∈ S−∞,−∞,α,b+ 1
2 (c~T ∗Xc~). Let

Ǎ ∈ Ψ
−∞,−∞,α,b+ 1

2
c~ (X), c~σ(Ǎ) = ǎ, A := Ǎ∗Ǎ.

Using the L2(X;µ) inner product, we then evaluate the commutator

2 Im〈ǍPh,zu, Ǎu〉 = 〈Cu, u〉,

C = i[Ph,z, A] + 2
Ph,z−P ∗h,z

2i A ∈ Ψ−∞,−∞,2a,2bc~ (X).
(4.31)

The principal symbol of C is

2ĥǎHǎ+ 2 · c~σ
(
Ph,z−P ∗h,z

2iĥ

)
ĥǎ2. (4.32)

When H hits χ∂ , we obtain a nonnegative contribution (in fact, the square e2 of a smooth
function e), while differentiation of χR gives a nonpositive contribution (in fact, a negative
square −b2R), consistently with the saddle point structure of H at Rin. Differentiation of
χsf produces a symbol with semiclassical order −∞.

The main term of ĥǎHǎ nearRin arises from differentiation of the weight ĥ−b−
1
2x−α; since

Hp = ĥH is, modulo ĥxVb, given by the expression (4.10), we can compute this modulo

xS−∞,−∞,2a,2b by substituting the expression (4.10) of H|x=0 for H. Thus, the main term is

ĥ−2bx−2α
(
2ξ
(
−2α+ 2b + 1

)
+O(x)

)
χ2
∂χ

2
sfχ

2
R.

A further contribution arises from the skew-adjoint part of Ph,z at Rin, which is the same
as the skew-adjoint part of N(P ) at scRin upon making the identification (3.7); this was
already computed in the proof of Lemma 4.8. Overall then, we can write

c~σ(C ) = e2 − b2R − εĥǎ2 − f2ĥǎ2, (4.33)

where f =
√
−
[
2(−2(b− α)− 1) + 2(r1 + r0)

]
− ε is positive (and smooth) atRin for small

ε > 0. Denoting c~-quantizations of the lower case symbols by the corresponding upper
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case letters, we thus have

C = E∗E −B∗RBR − ε‖ĥ
1
2 Ǎu‖2 − ‖ĥ

1
2FǍu‖2 +R,

where R ∈ Ψ−∞,−∞,2α,2b−1
c~ (X) has WF′c~(R) ⊂ supp ǎ and arises as the remainder term

not controlled by the previous symbolic considerations. We will plug this into the right
hand side of (4.31); the left hand side is bounded from below by

− ε‖ĥ
1
2 Ǎu‖2 − ε−1‖ĥ−

1
2 ǍPh,zu‖2

≥ −ε‖ĥ
1
2 Ǎu‖2 − Cε−1‖GPh,zu‖H−N,−N,α,b+1

c,h
− Cε−1‖χ̃u‖2

H−N,−N,α,−Nc,h

,

where G ∈ Ψ0
c~(X) is elliptic on supp ǎ; here N ∈ R is arbitrary. Putting B0 := ĥ

1
2FǍ ∈

Ψ−∞,−∞,α,bc~ (X) and dropping the contribution of BR, we thus obtain the estimate

‖B0u‖2 . ‖GPh,zu‖2H−N,−N,α,b+1
c,h

+ ‖Eu‖2 + |〈Ru, u〉|+ ‖χ̃u‖2
H−N,−N,α,−Nc,h

, (4.34)

which provides H−N,−N,α,bc,h -control of u microlocally near Rin provided one has microlocal

H−N,−N,−N,bc,h -control of u on WF′c~(E) ⊂ {0 < x < δ, |ξ + 1| < δ}, and provided |〈Ru, u〉|
is finite; since G is elliptic near WF′c~(R), we can insert the estimate

|〈Ru, u〉| . ‖Gu‖2
H
−N,−N,α,b− 1

2
c,h

+ ‖χ̃u‖2
H−N,−N,α,−Nc,h

into the right hand side of (4.34).

Concatenating this radial point estimate with the propagation of regularity from a punc-
tured neighborhood of Rin to a punctured neighborhood of Rout and then a radial point
estimate at Rout—proved by the same method, with the commutant ǎ again given by (4.30)

but now with ω = (|η|2 + |ξ − 1|2)1/2 and using that 2(b− α) + 1− r1 + r0 < 0—and using
elliptic estimates away from Σ, we obtain the propagation estimate

‖B1u‖Hs,l,α,b
c,h

. ‖GPh,zu‖Hs−2,l−2,α,b+1
c,h

+ ‖Eu‖
Hs,−N,−N,b

c,h
+ ‖χ̃u‖

H
−N,l,α,b− 1

2
c,h

; (4.35)

the operators B1, G,E ∈ Ψ0,0,0,0
c~ (X) appearing here are subject to the following conditions:

WF′c~(B1) ⊂ Ellc~(G), furthermore G is elliptic on Σ ∩ x−1(0), and all backward null-
bicharacteristics from WF′c~(B1) either tend to Rout or enter Ellc~(E). The orders at cf
are unconstrained at this point, but chosen for compatibility with the normal operator
argument below.

Fixing a variable order function b[ so that

b[ − α > rin at Rin, (4.36)

we then have the estimate

‖χu‖
Hs,l,α,b

c,h
. ‖χ̃Ph,zu‖Hs−2,l−2,α,b+1

c,h
+ ‖Eu‖

Hs,−N,−N,b
c,h

+ ‖χ̃u‖
H−N,l,α,b

[

c,h

(4.37)

under the assumptions on E,χ, χ̃ stated in the Theorem. For b[ ≥ b− 1
2 , this follows directly

from (4.35) (upon replacing the microlocal cutoff G by the less precise cutoff χ̃). For general

b[, note that as long as (4.36) is satisfied, one can apply this estimate inductively to the
error term χ̃u provided supp χ̃ is sufficiently close to suppχ (so that the same operator
Eu satisfies the geometric control assumption for χ̃ in place of χ), increasing supports of
the involved cutoff functions by an arbitrarily small but positive amount and gaining half
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a semiclassical order at each step. Thus, away from Rin, one can ultimately take b[ to be
arbitrarily negative, while at Rin, one always needs to have (4.36).

• Step 2: normal operator estimate. We now work on the error term χ̃u in (4.37).

We first prove the desired estimate (4.27) under the stronger condition that b−α > rin+1

at Rin. We split χ̃u = χ[u + (1 − χ[)χũ, where χ[ ∈ C∞(X) is identically 1 near ∂X and

supported in a very small neighborhood of ∂X; the part (1−χ[)χ̃u is supported away from

cf ∪ tf, hence ‖(1 − χ[)χ̃u‖
H−N,l,α,b

[

c,h

. ‖(1 − χ[)χ̃u‖
H−N,−N,−N,b

[

c,h

for any N . To estimate

χ[u, we use the injectivity assumption on N(P ) and the resulting estimate (4.19) together

with Corollary 3.7(2) (with αµ = n). For 0 < δ < 1 with b[ + 2δ < b, and choosing suppχ[

sufficiently small, we obtain

‖χ[u‖
H−N,l,α,b

[

c,h

. h
n
2
−α‖π∗(χ[u)‖

H
−N,l,b[|sf∩tf−α+δ
b,sc

(4.38)

. h
n
2
−α‖N(P )(π∗(χ[u))‖

H
−N−2,l−2,b[|sf∩tf−α+δ+1

b,sc

. ‖N(P )(χ[u)‖
H−N−2,l−2,α,b[+1+2δ

c,h

.

In the final line, we abuse notation and denote by N(P ) ∈ Ψ2,2,0,0
c~ (X) any operator whose

normal operator is equal to N(P ). Put b] := b[ + 1 + 2δ. Using Lemma 4.3, which gives

N(P )− Ph,z ∈ Ψ2,2,−1,0
c~ (X), we further estimate

‖N(P )(χ[u)‖
H−N−2,l−2,α,b]

c,h

≤ ‖χ[Ph,zu‖
H−N−2,l−2,α,b]

c,h

+ ‖χ[(Ph,z −N(P ))u‖
H−N−2,l−2,α,b]

c,h

+ ‖[N(P ), χ[]u‖
H−N−2,l−2,α,b]

c,h

(4.39)

. ‖χ[Ph,zu‖
H−N−2,l−2,α,b]

c,h

+ ‖χ[u‖
H−N,l,α−1,b]

c,h

+ ‖χ]u‖
H−N−1,−N,−N,b]−1

c,h

, (4.40)

where χ] ≡ 1 on suppχ[. Under the present condition that b− α > rin + 1 at Rin, we can
choose b[ as in (4.36) so that b] < b still. Plugging this into (4.37) finishes the proof of
part (1) under this condition.

In order to prove the Theorem as stated, thus only assuming b−α > rin at Rin, we note
that the norm on second term on the right in (4.40) is 1 order weaker at tf than the left

hand side of the desired estimate (4.27), but only b]−b = b[+1+2δ−b < 1 orders stronger
at sf. This suggests revisiting the estimates (4.38)–(4.40) using a more precise cutoff which

distinguishes between the regimes ĥ . x and ĥ & x. To wit, consider ψ[ = ψ̃[( ĥx), where

ψ̃[ ≡ 0 on [0, 1] and ψ̃[ ≡ 1 on [2,∞). This is a smooth function on [Xc~; sf ∩ tf], and thus
conormal on Xc~; in fact, we have

1− ψ[ ∈ A0,ζ,−ζ(Xc~) = (x+ h)ζ
(

h
h+x

)−ζA0(Xc~) ⊂ Ψ0,0,−ζ,ζ
c~ (X) (4.41)

for any ζ ≥ 0, since on supp(1 − ψ[) we have x . ĥ, thus x + h . h
h+x . Taking ζ = δ, we

can therefore estimate

‖(1− ψ[)χ̃u‖
H−N,l,α,b

[

c,h

. ‖χ̃u‖
H−N,l,α−δ,b

[+δ
c,h

≤ hδ‖χ̃u‖
H−N,l,α,bc,h
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Next, the estimate (4.38) holds without change. (Note that Corollary 3.7 applies for merely
conormal cutoffs.) Finally, we need to estimate (4.39) more carefully. Note that

ψ[ ∈ A0,−ζ,ζ(Xc~) ⊂ Ψ0,0,ζ,−ζ
c~ (X)

for any ζ ≥ 0. Taking ζ = 1− δ, this gives ψ[(Ph,z −N(P )) ∈ Ψ2,2,−δ,−1+δ
c~ (X), hence

‖ψ[(Ph,z −N(P ))u‖
H−N−2,l−2,α,b]

c,h

. ‖χ̃u‖
H−N,l,α−δ,b

]−1+δ
c,h

≤ hδ‖χ̃u‖
H−N,l,α,bc,h

.

For the final, commutator, term in (4.39), we note that we can replace ψ[ by 1 − ψ[ and

use (4.41) with ζ = δ, so [N(P ), ψ[] ∈ Ψ1,−∞,−δ,−1+δ
c~ (X), which gives

‖[N(P ), ψ[]u‖
H−N−2,l−2,α,b]

c,h

. ‖χ̃u‖
H−N−1,−N,α−δ,b]−1+δ

c,h

≤ hδ‖χ̃u‖
H−N−1,−N,α,b

c,h
.

Altogether, we have shown

‖χ̃u‖
H−N,l,α,b

[

c,h

. ‖χ̃Ph,zu‖
H−N−2,l−2,α,b]

c,h

+ hδ‖χ̃u‖
H−N,l,α,bc,h

.

Plugged into (4.37), we have now established the desired estimate (4.27). This finishes the
proof of the Theorem. �

We can sharpen Theorem 4.10 by working with the resolved Sobolev spaces defined
in (3.24). This is straightforward since admissible operators

Ph,z ∈ Ψ2,2,0,0
c~ (X) ⊂ Ψ2,2,2,0,0

cb~ (X)

are elliptic at the front face fbf of cb~T ∗Xc~; indeed, this follows from the ellipticity at

fiber infinity c~S∗tfXc~ ⊂ c~T ∗Xc~ and the classical nature of the principal symbol of Ph,z.
Therefore:

Theorem 4.13 (Propagation estimates with relative b-regularity). In the notation of The-
orem 4.10, and for any s′ ∈ R, the forward propagation estimate (4.27) generalizes to an
estimate on cb~-Sobolev spaces,

‖χu‖
Hs,s′,l,α,b

cb,h (X)
≤ C

(
‖χ̃Ph,zu‖Hs−2,s′−2,l−2,α,b+1

cb,h (X)

+ ‖Eu‖
Hs,s′,l,α,b

cb,h (X)
+ hδ‖χ̃u‖

H−N,−N,l,α,bcb,h (X)

)
.

The backward propagation estimate (4.28) generalizes similarly.

4.5. Global estimates with complex absorption. We upgrade the microlocal estimate
proved above into a quantitative invertibility statement for an operator which effectively lo-
calizes the interesting nonelliptic phenomena near the cone point into a small neighborhood
of ∂X via complex absorption.

Let us assume first for simplicity that Y is null-cobordant; see Remark 4.16 below on
how to remove this assumption. With X = [0, 2x0) × Y and g as in (4.1)–(4.2), consider
then a compact n-dimensional manifold X ′ ⊃ X with boundary ∂X ′ = ∂X, equipped with
a smooth metric g′ which is equal to g on X[ := [0, x0]× Y . Given an admissible operator
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Ph,z on X, let P ′h,z ∈ ( x
x+h)−2Diff2

c~(X ′) denote an extension of Ph,z from [0, 1) × X[ to

[0, 1)×X ′ with principal part equal to h2∆g′ . For c ∈ (0, 1), denote

Kc := X ′ \ ([0, cx0]× Y ).

In order to implement complex absorption, let us take c ∈ (0, 1
2) small and fix an operator

Q ∈ Ψ−∞h ((X ′)◦)

whose Schwartz kernel is supported in Kc × Kc, and so that Q is elliptic on T ∗K2c with
nonnegative principal symbol. We then consider

Ph,z := P ′h,z − iQ, (4.42)

and assume that

all backward GBBs of P ′h,z enter Ell~(Q) in finite time. (4.43)

By construction, Ph,z is a semiclassically elliptic second order semiclassical ps.d.o. on
(X ′)◦ which is elliptic over K2c. Moreover, due to the sign condition on the principal symbol
of Q, one can propagate semiclassical regularity for solutions of Ph,zu = f along forward
null-bicharacteristics of P ′h,z, see [Vas13, §2.5] and [DZ19, §5.6.3]. For our fixed metric g on

[0, 2x0) × Y , the control condition (4.43) is satisfied if we choose c > 0 sufficiently small.
Indeed, from the expression (4.13), one finds that if Hsfx = 2ξ = 0 on the characteristic
set, then |η|2 = 1 and thus H2

sfx = 2Hξ ≥ 2x−1|η|2 − C|η|2 = 2x−1 − C > c−1 − C > 0
in x < 2c when c is sufficiently small; hence the level sets of x are geodesically convex in
x < 2c, which implies the claim.

Remark 4.14 (Relaxed conditions on Q). One can more generally allow Q to be a second
order operator with real principal symbol; a concrete choice is then Q = ψ · (h2∆g′ + 1)
where ψ ∈ C∞c (K◦c ) is identically 1 on K2c.

We then have:

Proposition 4.15 (Global estimates with complex absorption). Let s, l, α, b be as in the
statement of Theorem 4.10 (for the operator Ph,z). Fix the volume density on X ′ to be the
metric density |dg′|. Then for small h > 0, the operator Ph,z defined by (4.42) is invertible

as a map Hs,l
b (X ′)→ Hs−2,l−2

b (X ′), and it satisfies the uniform estimate

‖u‖
Hs,l,α,b

c,h (X′)
≤ C‖Ph,zu‖Hs−2,l−2,α,b+1

c,h (X′)

= Ch−1‖(x+ h)Ph,zu‖Hs−2,l−2,α,b
c,h

.
(4.44)

More generally, for any s′ ∈ R, we have

‖u‖
Hs,s′,l,α,b

cb,h (X′)
≤ C‖Ph,zu‖Hs−2,s′−2,l−2,α,b+1

cb,h

.

Proof. By our assumptions on the complex absorbing potential Q, we can apply Theo-
rem 4.10(1) with E and χ supported in X ′ \Kc. We thus have

‖χu‖
Hs,l,α,b

c,h
≤ C

(
‖Ph,zu‖Hs−2,l−2,α,b+1

c,h
+ ‖Eu‖

Hs,−N,−N,b
c,h

+ hδ‖χ̃u‖
H−N,l,α−1,b[

c,h

)
.

On the other hand, we can control Eu and (1− χ)u in Hs,l,α,b
c,h (or simply hbHs

h if we take

E to be localized away from x = 0, as we may arrange) by Ph,zu in Hs−2,l−2,α,b+1
c,h using
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a combination of elliptic estimates and real principal type propagation estimates (with
complex absorption), starting either from Ell~(Q) or {χ = 1}. Altogether, we obtain

‖u‖
Hs,l,α,b

c,h
≤ C

(
‖Ph,zu‖Hs−2,l−2,α,b+1

c,h
+ hδ‖u‖

H−N,l,α,bc,h

)
. (4.45)

For h0 > 0 with Chδ0 <
1
2 , we can now drop the error term in (4.45) for 0 < h < h0. This

proves the injectivity of Ph,z (with a quantitative estimate). Analogous arguments prove
the dual estimate

‖v‖
H−s+2,−l+2,−α,−b−1

c,h
≤ C‖P∗h,zv‖H−s,−l,−α,−b

c,h
,

which implies the surjectivity of Ph,z. The proof is complete. �

Remark 4.16 (Links Y that are not null-cobordant). When Y is not null-cobordant, we
cannot choose X ′ as above. This is a technical issue, independent of the analysis near
the cone point x−1(0), which we circumvent here with the following artificial device: we
set X ′ := [0, 4x0] × Y , and consider h-dependent families of operators on X ′ which are
semiclassical cone operators near x−1(0) and semiclassical scattering operators [VZ00] near
x−1(4x0). We then take P ′h,z ∈ ( x

x+h)−2Diff2
c~,sc~(X ′)—the second subscript referring to the

semiclassical scattering behavior near x−1(4x0)—to be equal to Ph,z on [0, 1) × X[. We
can arrange for P ′h,z to be elliptic near x−1(4x0) in the semiclassical scattering algebra,

e.g. by taking it to be equal to h2∆g′ + 1 near x = 4x0 where g′ is a scattering metric
on (x0, 4x0] × Y . We choose the complex absorbing operator Q as before, and so that
Ph,z = P ′h,z − iQ is elliptic in x > 1

2x0. Proposition 4.15 then remains valid upon using

function spaces for u which near x−1(4x0) are semiclassical scattering Sobolev spaces with
differential order s, semiclassical order b, and arbitrary decay order r, and similarly for
Ph,zu with orders s − 2, b + 1, r; this uses elliptic estimates in the semiclassical scattering
algebra near x−1(4x0). (This usage of the semiclassical scattering algebra is only one of
several possibilities in which the invertibility of Ph,z for small h is easy to obtain despite
the presence of a boundary.)

4.6. Propagation of Lagrangian regularity; diffractive improvement. By adapting
arguments from [MW04, MVW08], we improve upon Theorem 4.10 by demonstrating that,
under a non-focusing condition, strong singularities can only propagate along geometric
GBBs. The key technical result concerns the propagation of Lagrangian regularity with
respect to the incoming and outgoing Lagrangian submanifolds, localized near geometric
continuations of a GBB striking the cone point. Using the coordinates (ĥ, x, y, ξ, η) and the
notation of (4.14), the incoming and outgoing Lagrangians are given by

F• :=
⋃

y0∈∂X
F•,y0 , • = I,O,

where
FI,y0 := γI,y0((−x0, 0)) = {(0, x, y0,−1, 0) : x < 2x0},
FO,y0 := γO,y0((−x0, 0)) = {(0, x, y0, 1, 0) : x < 2x0}.

(4.46)

(We are making the ĥ-coordinate, which was set to 0 in (4.14), explicit here.)

We shall first show that one can control the Lagrangian regularity of a solution u of
Ph,zu = f , with sufficiently regular forcing f , near FO,y0 by propagating Lagrangian regu-
larity from the union of all F◦I,y′ , with y′ at distance π from y0, into ∂X and then within

∂X to FO,y0 ∩ x−1(0). Localization within the radial sets Rin/out requires a more careful
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choice of commutants compared to the symbolic part of the proof of Theorem 4.10, and the
extra Lagrangian regularity is captured using test modules, as introduced in [HMV08] and
used for this purpose in [MVW08, MVW13]; see also [HV13]. (Test modules also feature
prominently in [BVW15, BVW18, GRHSZ20].) Fix x0 < x1 < x2 < x3 < 2x0 and cutoffs

χj ∈ C∞c ([0, xj)), χj ≡ 1 on [0, xj−1], j = 1, 2, 3.

Mirroring [MVW08, Definition 4.2], we then introduce:

Definition 4.17 (Test module). Let F = FI ∪ FO. Define the Ψ0
c~(X)-module14

M :=
{
A ∈ Ψ0,0,0,1

c~ (X) : suppKA ⊂ [0, 1)h × (suppχ2)2,

c~σ0( h
h+xA)|F = 0

}
.

Denote by Mk ⊂ Ψ0,0,0,k
c~ (X) the set of finite linear combinations of up to k-fold products

of elements ofM. If X is a function space on which Ψ0
c~(X) acts continuously, we say that

u has Lagrangian regularity of order k relative to X if Mku ⊂ X . We say that elements of
the space MkX satisfy the nonfocusing condition of degree k relative to X .

Since Ψ0,0,0,1
c~ (X) =

(
h

h+x

)−1
Ψ0

c~(X), regularity with respect to elements ofMmeans that

the semiclassical order improves upon differentiation along suitable elements of Ψ0
c~(X). A

concrete example of an element of M in local coordinates is h+x
h ( h

h+xDyj ) = Dyj .

Lemma 4.18 (Properties ofM). (Cf. [MVW08, Lemma 4.4].) The set M is closed under
commutators. Moreover, M is finitely generated in the sense that there exist A1, . . . , AN ∈
Ψ0,0,0,1

c~ (X) with suppKAj ∈ [0, 1)h × (suppχ3)2 so that with A0 := I, we have

M =

{
A ∈ Ψ0,0,0,1

c~ (X) : ∃Qj ∈ Ψ0
c~(X), A =

N∑
j=0

QjAj

}
.

Concretely, one can take AN to have principal symbol h+x
h ·

c~σ(( x
x+h)2Ph,z); and one may

take Aj, 1 ≤ j ≤ N − 1, to have principal symbol h+x
h aj, where aj ∈ C∞(c~T ∗Xc~) vanishes

on F and has differential daj which at a point ζ ∈ Rin, resp. ζ ∈ Rout lies in the unstable,
resp. stable eigenspace of the linearization of H (as a vector field on c~T ∗sfXc~) at ζ.

Proof. Let B = h+x
h B0, C = h+x

h C0 ∈M. Denote the principal symbols of B0, C0 ∈ Ψ0
c~(X)

by b0, c0. We then have [B,C] ∈ Ψ−1,0,0,1
c~ (X), and

d := c~σ0( h
h+x i[B,C]) = h

h+xHb(
h+x
h c0) = h

h+xHb(
h+x
h )c0 +Hbc0.

But by (3.4), Hb|ĥ=0 is a smooth b-vector field for b ∈ S0,0,0,1, thus d ∈ S0(c~T ∗Xc~).
Moreover, since F is a Lagrangian submanifold, Hb is tangent to F ; therefore, Hbc0 = 0 on
F since c0|F = 0, and thus d|F = 0 as well. This proves [B,C] ∈M.

Let us now work in local coordinates (ĥ, x, y, ξ, η) in which the rescaled Hamilton vector

field H = ĥ−1Hp of Ph,z takes the form (4.9). The linearization of H at Rout/in as a vector

field on c~T ∗Xc~ is (top sign for ‘in’, bottom sign for ‘out’)

∓2(x∂x − ĥ∂ĥ − η∂η) + 2kijηi∂yj , (4.47)

14Recall that KA denotes the Schwartz kernel of A.
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which thus has eigenvalue ∓2 (with eigenvector dx), ±2 (with eigenspace spanned by dĥ
and dηj), and 0 (with eigenspace spanned by dξ and dyj ± kijdηi). Upon restriction to

ĥ = 0, the same statements remain true except there is no contribution from dĥ anymore.
Since F is locally the joint zero set of η1, . . . , ηn−1, and p, which have linearly independent
differentials, every smooth function vanishing on F can be written as a linear combination
(with smooth coefficients) of p and ηj . Thus, we may take quantizations of ĥ−1ηj for the
operators Aj in local coordinates. The full collection of Aj can be defined using a partition
of unity. �

The fact that M is a Ψ0
c~(X)-module and a Lie algebra implies that

Mk =

{∑
|α|≤k

QαA
α : Qα ∈ Ψ0

c~(X)

}
, Aα :=

N∏
i=1

Aαii , (4.48)

where α = (α1, . . . , αN ) ∈ NN0 . Modulo Ψ0
c~(X), the operator AN is a multiple of Ph,z;

therefore, regularity of solutions u of Ph,zu = f , with f having Lagrangian regularity of

order k, under application of an element Qα
∏N
i=1A

αi
i ∈ Mk with αN > 0 is automatic

once Lagrangian regularity of order k−1 has been established. In order to prove regularity
of solutions of Ph,zu = f under application of Aj , 1 ≤ j ≤ N − 1, we need to control the
commutators of Ph,z with the Aj chosen in Lemma 4.18:

Lemma 4.19 (Commutators). (Cf. [MVW08, Lemma 4.5].) With the Aj chosen as in
Lemma 4.18, we have, for j = 1, . . . , N − 1,

i[Ph,z, Aj ] =
N∑
k=0

CjkAk, Cjk ∈ Ψ1,2,0,−1
c~ (X),

and c~σ1,2,0,−1(Cjk)|F∩x−1(0) = 0 for k 6= 0.

Proof. Denote by aj the principal symbol of ĥAj for j = 1, . . . , N − 1, so c~σ(Aj) = ĥ−1aj .

Since Ph,z ∈ Ψ2,2,0,0
c~ (X), we have i[Ph,z, Aj ] ∈ Ψ1,2,0,0

c~ (X), with principal symbol at sf

given by ĥH(ĥ−1aj) in the notation used in (4.9). It thus suffices to prove the existence of

cjk ∈ S1,2,0,0(c~T ∗Xc~) such that near ĥ = 0,

ĥH(ĥ−1aj) =

N∑
k=1

ĥcjkĥ
−1ak, cjk|F∩x−1(0) = 0 (k 6= 0); (4.49)

indeed, if Cjk ∈ Ψ1,2,0,−1
c~ (X) is a quantization of ĥcjk times a cutoff to a neighborhood of

sf, then (4.49) implies that

Cj0 := i[Ph,z, Aj ]−
N∑
k=1

CjkAk ∈ Ψ0,2,0,−1
c~ (X).

In order to verify (4.49), we note that the left hand side equals ĥ−1(ĥHaj−ajHĥ); but since

at F ∩ x−1(0), the differentials daj and dĥ are eigenvectors of the linearization of H with
the same eigenvalue, as discussed after (4.47), this vanishes quadratically at F ∩ x−1(0),
completing the proof. �
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We are now ready to propagate Lagrangian regularity through the radial sets. For
s, l, α, b ∈ R and k ∈ N0, and using the notation (4.48), denote

Hs,l,α,b;k
c,h (X) :=

{
u ∈ Hs,l,α,b

c,h (X) : Aαu ∈ Hs,l,α,b
c,h (X) ∀ |α| ≤ k

}
.

We recall that we will only encounter distributions on X with compact support, justifying
the convenient, albeit slightly imprecise, notation here.

Proposition 4.20 (Microlocalized propagation near the radial sets). Let s, l, α, b ∈ R. Let
B,E,G ∈ Ψ0

c~(X) denote operators with Schwartz kernels supported in [0, 1)h× (suppχ1)2.
Recall the quantities rin/out from Definition 4.7.

(1) (Propagation into Rin.) Suppose that all backward integral curves of H starting in
Σ∩WF′c~(B) either tend to a subset S ⊂ Rin or enter Ell′c~(E) in finite time while
remaining inside Ellc~(G); and suppose that for all incoming null-bicharacteristics
γI,y0 : (−x0, 0) → Σ with γI,y0(0) ∈ S, there exists s ∈ (−x0, 0) (depending on
y0) such that γI,y0((s, 0]) ⊂ Ellc~(G) and γI,y0(s) ∈ Ellc~(E). Under the condition
b− α > rin, we then have

‖Bu‖
Hs,l,α,b;k

c,h (X)
≤ C

(
‖GPh,zu‖Hs−2,l−2,α,b+1;k

c,h (X)

+ ‖Eu‖
H−N,l,α,b;kc,h (X)

+ ‖χ2u‖
H
−N,l,α,b− 1

2
c,h (X)

)
.

(4.50)

(2) (Propagation out of Rout.) Suppose that all backward integral curves of H starting
in Σ ∩WF′c~(B) either tend to a subset S ⊂ Rout or enter WF′c~(E) in finite time
while remaining inside Ellc~(G). Suppose moreover that S ⊂ Ellc~(G), and that for
every integral curve γ ⊂ Σ ∩ x−1(0) \ Rout of H with lims→∞ γ(s) ∈ S, there exists
s so that γ((s,∞)) ⊂ Ellc~(G) and γ(s) ∈ Ellc~(E). Then the estimate (4.50) holds
under the condition b− α < rout.

Proof. We begin with the proof of part (1). By compactness of Rin/out and since Ellc~ is
open, it suffices to prove microlocal estimates near a single point ζ0 ∈ Rin, which in the
coordinate system (ĥ, x, y, ξ, η) used in (4.46) has coordinates ζ0 = (0, 0, y0,−1, 0).

Now, restricted to x = ĥ = 0 and writing k = k(y, η) for the dual metric function of the
metric k(0) on ∂X in local coordinates, we have

H = −2ξη∂η + 2|η|2∂ξ + (∂ηk)∂y − (∂yk)∂η.

Following [MZ96, Lemma 2], introducing |η|, η̂ = η
|η| , one has

∂sy = (∂ηk)(y, η̂)|η|, ∂sη̂ = −(∂yk)(y, η̂)|η|

along H-integral curves; reparameterizing to t = t(s) satisfying t′ = 2|η|, one thus obtains

∂ty = 1
2(∂ηk)(y, η̂), ∂tη̂ = −1

2(∂yk)(y, η̂), ∂t|η| = −ξ, ∂tξ = |η|.

Thus, ξ(t) = a cos(t + ϕ0) and |η(t)| = a sin(t + ϕ0) where a =
√
ξ2 + |η|2 is constant,

and ϕ0 ∈ [0, π]. Therefore, the function Υ assigning to (y, ξ, η) near (y0,−1, 0) the limiting
point along the backward H-integral curve is given by evaluation at t = −ϕ0, so

Υ(y, ξ, η) =
(

expy

(
(− arccos ξ√

ξ2+|η|2
) η
|η|

)
,−1, 0

)
.
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In particular, Υ is smooth, and HΥ = 0 at ĥ = x = 0. Extending Υ to a smooth function
in a neighborhood of x = ĥ = 0, with values in Rn−1×R×Rn−1, we thus have HΥ = O(x)

at ĥ = 0. Since x−1Hx = −2 at ζ0, we can choose C so that in any sufficiently small
neighborhood V of ζ0,

H
(
|Υ− ζ0|2 − Cx

)
≥ x > 0 in V. (4.51)

Fix now cutoffs χS , χ∂ , χsf , χF , χΣ ∈ C∞c ([0, 1)), identically 1 near 0, with nonpositive

derivative and with
√
−χ•χ′• ∈ C∞, and consider the commutant

ǎ = ĥ−b−
1
2x−αχ∂

(
x
δ

)
χsf

(
ĥ
δ

)
χF

(
δ−1

N−1∑
j=1

a2
j

)
χΣ

(p2
δ

)
χS
(
δ−1(|Υ− ζ0|2 − Cx)

)
,

where δ > 0 controls the size of supp ǎ. We now proceed as in the first step of the proof
of Theorem 4.10. Thus, in the symbol (4.32) of the commutator appearing in (4.31), and

specifically in the term 2ĥǎHǎ, the main contribution near ζ0 arises from differentiation
of the weights (and then the subprincipal symbol of Ph,z enters in the threshold condition

on b − α as there), giving a negative multiple of ĥ−2bx−2α. Differentiation of χF gives a
term of the same sign, namely a negative square, since

∑
a2
j is a local quadratic defining

function of Rin inside of Σ ∩ x−1(0). In view of (4.51), differentiation of χS produces x
times the negative of a square, thus another term with sign matching that of the main
term. Derivatives falling on χ∂ produce a nonnegative square, corresponding to the a priori
control required along γI,y, for y near y0, at x ∼ δ. Finally, differentiation of χΣ produces a
term vanishing near Σ which thus can be controlled by elliptic regularity, and differentiation
of χsf produces a semiclassically trivial (namely, vanishing near ĥ = 0) term. We can then
proceed as in (4.33), obtaining the desired propagation estimate.

For k ≥ 1, we argue as in the proof of [BVW15, Proposition 4.4]: rather than using
Ǎ = Opc,h(ǎ) as the commutant, we use (in the notation (4.48)) the vector of ps.d.o.s

(ǍAα)α∈I where I ⊂ NN0 consists of all α ∈ NN0 with |α| = k and α0 = αN = 0. The main
term of the commutator arises from Ǎ as before; the new contributions, from commutators
of Ph,z with a factor Aj , can be expanded as in Lemma 4.18, and those which have the
maximal number of module factors Al, 1 ≤ l ≤ N − 1, can be absorbed into this main term
due to the vanishing property of the Cjk in Lemma 4.18. Thus, one can control k module
derivatives of u in a neighborhood of ζ0 provided one has control of k−1 module derivatives
in a slightly bigger neighborhood. Thus, one obtains the estimate (4.50) inductively.

The proof of part (2) is completely analogous; one now takes Υ at x = ĥ = 0 to be the
limiting point along forward H-integral curves. �

Note that for any ζ ∈ c~T ∗sfXc~ \ F , there exists an element A ∈ M which is elliptic

at ζ; hence microlocally near such ζ, membership in Hs,l,α,b;k
c,h is equivalent to membership

in Hs,l,α,b+k
c,h .15 In particular, in Σ ∩ x−1(0) but away from the radial sets, the propaga-

tion of Hs,l,α,b;k
c,h regularity is equivalent to the standard (real principal type) propagation

15That is, for B, B̃ ∈ Ψ0
c~(X) with WF′c~(B) ⊂ Ellc~(B̃) \ F , one has ‖Bu‖

H
s,l,α,b+k
c,h

. ‖B̃u‖
H
s,l,α,b;k
c,h

+

‖u‖
H
−N,l,α,−N
c,h

.
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of Hs,l,α,b+k
c,h regularity. One can thus concatenate the radial point estimates of Proposi-

tion 4.20 with such real principal type estimates. To state this succinctly, we introduce:

Definition 4.21 (Integral curves connecting the radial sets). (1) For a point y ∈ ∂X,
denote by Γ→(y) ⊂ C0([0, π]; Σ) the set of integral curves of H inside Σ ∩ x−1(0),
smoothly reparameterized to uniformly continuous curves γ : (0, π) → Σ ∩ x−1(0),
which satisfy γ(π) = (0, 0, y, 1, 0) ∈ Rout and γ(0) ∈ Rin. Denoting by Π: Σ ∩
x−1(0) → ∂X the projection to the base, define the set of starting points of such
curves by

Y→(y) = {Π(γ(0)) : γ ∈ Γ→(y)}.
(2) We call a continuous curve γ : I → Σ a resolved GBB if it is either an integral curve

of h−1Hp disjoint from x−1(0), or otherwise if for some y ∈ ∂X and y0 ∈ Y→(y),
the curve γ is the concatenation of γI,y0 , an element γ of Γ→(y) with Π(γ(0)) = y0,
Π(γ(π)) = y, and the curve γO,y.

See Figure 4.3.

FO

FI

Rout

Rin

∂X

y

y0

γO,y

γI,y0

Figure 4.3. Illustration of a part of the characteristic set, with the La-
grangians FI and FO in red, and a resolved GBB in blue.

Corollary 4.22 (Microlocalized propagation of Lagrangian regularity). Let s, l, α ∈ R,

b ∈ C∞(c~T ∗sfXc~) and χ ∈ C∞c (X) with suppχ ⊂ suppχ1 be as in Theorem 4.10, with
b − α satisfying the monotonicity and threshold conditions stated there. Let k ∈ N0. Let
B,E,G ∈ Ψ0

c~(X), with Schwartz kernels supported in [0, 1)h× (χ−1(1)×χ−1(1)). Suppose
that all backward resolved GBBs starting at a point in WF′c~(B) reach Ellc~(E) in finite
time while remaining in Ellc~(G). Then the estimate (4.50) holds.

A dualization argument gives the propagation of the nonfocusing condition through ∂X.
The simplest setting uses the modification of Ph,z via extension to an operator P ′h,z on

compact manifold X ′ ⊃ X and the inclusion of a complex absorbing term Q ∈ Ψ−∞~ ((X ′)◦)
as in §4.5, resulting in the operator

Ph,z = P ′h,z − iQ

in (4.42). (This requires ∂X to be null-cobordant; if this is not true, one can use the
modification described in Remark 4.16.) Recall that the Schwartz kernel of Q has empty
intersection with x−1([0, cx0]) × x−1([0, cx0]) where 0 < c � 1

2 . We shall use the notation
of Proposition 4.15.
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Theorem 4.23 (Diffractive improvement). Let s, l, α, b be as in the statement of Theo-
rem 4.10 (for the operator Ph,z). Let E,G ∈ Ψ0

c~(X ′) be such that all forward resolved GBBs
starting at a point in WF′c~(E) ⊂ Ellc~(G) remain in Ellc~(G) until they enter Ellh(Q). Let

f+ ∈ Hs−2,l−2,α,b+1
c,h (X ′), f− ∈ MkHs−2,l−2,α,b+1

c,h (X ′) be such that supp f± ⊂ x−1([0, cx0]).

Then the solution u of
Ph,zu = f := f+ + Ef−

can be written in the form

u = u+ +Gu−, u+ ∈ Hs,l,α,b
c,h (X ′), u− ∈MkHs,l,α,b

c,h (X ′).

Note that on the scale of semiclassical cone Sobolev spaces, we have Ef− ∈ Hs−2,l−2,α,b′+1
c,h

with b′ = b − k, but typically Ef− is no better than this. Thus, Theorem 4.23 (for
f+ = 0 for concreteness) implies that the strong semiclassical singularities of u resulting
from the forcing term Ef− only propagate along geometric GBBs (resulting in the term

Gu−), whereas microlocally away from these, u has Hs,l,α,b
c,h -regularity.

In a simple case, a formulation of Theorem 4.23 which highlights regularity rather than
singularities reads as follows: fix y0 ∈ ∂X, and define the set

K := γO,y0 ∪
⋃

γ∈Γ→(y0)

γ([0, π]) ∪
⋃

y∈Y→(y0)

γI,y.

Thus, the quotient K/(K ∩ x−1(0)) contains the image of all backward geometric GBB
continuing γO,y0 , and K in addition contains all curves inside of Σ∩x−1(0) which connect an
incoming base point y (at distance π from y0) with the outgoing base point y0 of geometric
GBBs. Fixing any E ∈ Ψ0

c~(X ′) with WF′c~(E)∩K = ∅, there then exists G ∈ Ψ0
c~(X ′) with

WF′c~(G) ∩K = ∅ which satisfies the conditions of Theorem 4.23. Thus, if f satisfies the

nonfocusing condition (of some degree k) relative to Hs−2,l−2,α,b+1
c,h , and with f microlocally

near K lying in Hs−2,l−2,α,b+1
c,h (thus f in particular does not have strong singularities along

the incoming directions γI,y), then the semiclassical wave u forced by f lies in Hs,l,α,b
c,h

microlocally near K (thus u in particular does not have a strong singularity along γO,y0).

Proof of Theorem 4.23. As follows from Proposition 4.15 by taking adjoints (or directly
from the proof of Proposition 4.15), the adjoint P∗h,z is invertible, and

(P∗h,z)−1 : H−s,−l,−α,−bc,h → H−s+2,−l+2,−α,−b−1
c,h

is uniformly bounded. We now apply a backward propagation version of Corollary 4.22 to
P ∗h,z: for E∗, G∗ the adjoints of the operators E,G in the statement of the Theorem, and for

B∗ ∈ Ψ0
c~(X ′) so that all forward resolved GBBs starting at a point in WF′c~(E∗) remain

in Ellc~(G∗) until they enter Ellc~(B∗), we have

‖E∗v‖
H−s+2,−l+2,−α,−b−1;k

c,h

≤ C
(
‖G∗P ∗h,zv‖H−s,−l,−α,−b;k

c,h
+ ‖B∗v‖

H−s+2,−l+2,−α,−b−1;k
c,h

+ ‖χu‖
H
−N,−l+2,−α,−b− 3

2
c,h

)
for any k ∈ N0. In particular, we may take B∗ so that all forward null-bicharacteristics of
Ph,z starting in WF′c~(B∗) miss the cone point and enter Ellc~(Q∗) in finite time. The term
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B∗u is then automatically controlled for solutions of P∗h,zv = w when G∗w ∈ H−s,−l,−α,−b;kc,h

by elliptic regularity (on Ellc~(Q)) and real principal type propagation (along the backward
null-bicharacteristic flow) with complex absorption. We conclude that

(P∗h,z)−1 :
{
w ∈ H−s,−l,−α,−bc,h : G∗w ∈ H−s,−l,−α,−b;k

c,h

}
→
{
v ∈ H−s+2,−l+2,−α,−b−1

c,h : E∗v ∈ H−s+2,−l+2,−α,−b−1;k
c,h

}
.

Upon taking adjoints (see also [MVW13, Appendix A]), this implies that

P−1
h,z : Hs−2,l−2,α,b+1

c,h + E(MkHs−2,l−2,α,b+1
c,h )→ Hs,l,α,b

c,h +G(MkHs,l,α,b
c,h )

is a bounded map. This completes the proof. �

Remark 4.24 (Second microlocalization at F). A sharper approach would be to second
microlocalize at FI and FO, thus cleanly decoupling the semiclassical orders at FI and FO
(subject to threshold conditions at the radial sets) and the semiclassical order away from
F ; this would allow for a unified treatment of Lagrangian and nonfocusing spaces and thus
for a direct proof of Theorem 4.23. We leave such refinements for future work. We note
that second microlocalization in the semiclassical setting was studied by Sjöstrand–Zworski
[SZ07] and Vasy–Wunsch [VW09] following Bony’s work [Bon86]; a second microlocal re-
finement (at the outgoing radial set) for the scattering theory of the corresponding normal
operator was recently obtained by Vasy [Vas21c].

5. Applications

We now present applications of the propagation estimates proved in §4. First, we discuss
the familiar geometric case of h2∆g − 1 in §5.1, where we can moreover prove a result
sharpening both Theorem 4.10 and the propagation results of [BM22]. We discuss high
frequency scattering by inverse square potentials on Euclidean space in §5.2, and high
frequency scattering for the Dirac–Coulomb equation in §5.3.

5.1. Propagation estimates for conic Laplacians. For a conic metric g as in (4.2) on
the manifold X = [0, 2x0)x × Y of dimension n = dimX ≥ 3, we consider

Ph,z = h2∆g − z, |z − 1| < Ch.

We fix the volume density µ = |dg| on X.

Lemma 5.1 (Admissibility, thresholds, invertibility). The operator Ph,z is admissible in

the sense of Definition 4.1, with threshold quantities rin = −1
2 and rout = −1

2 (see Defini-
tion 4.7). Moreover, the normal operator N(P ) = ∆ĝ−1, with ĝ given in (4.4), is invertible
at weight l in the sense of Definition 4.6(3) for all

l ∈
(
1− n−2

2 , 1 + n−2
2

)
. (5.1)

Proof. Only the final statement is nontrivial. In the notation (4.17), and passing to a
spectral decomposition of ∆k(0) whose eigenvalues we denote by 0 ≤ λ2

j , j = 0, 1, 2, . . ., one

finds that λ ∈ specb(N(P )) if and only if there exists j with λ2 − i(n− 2)λ+ λ2
j = 0, so

specb(N(P )) =

{
i

(
n− 2

2
±
√(n− 2

2

)2
+ λ2

j

)
: j = 0, 1, 2, . . .

}
.
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Therefore, the complement of the set Λ defined in (4.18) contains (−n+ 2, 0). As noted in
Remark 4.9, the invertibility of N(P ) at weight l is independent of the choice of l inside
the shifted interval n

2 + (−n+ 2, 0) = (1− n−2
2 , 1 + n−2

2 ).

The choice l = 1 is particularly natural, as the space H1,1,0
b,sc (tf; µ̂) is the quadratic form

domain of ∆ĝ (as follows from Hardy’s inequality). The invertibility of N(P ) at weight
l = 1 is then equivalent to the limiting absorption principle for the exact conic metric ĝ,
the proof of which is a standard application of a boundary pairing argument [Mel95, §2.3]
and unique continuation at infinity. See Lemma 5.10 below for a proof is a more general
setting. �

As a consequence, we may apply Theorem 4.10 for l in the range (5.1), any value of
s ∈ R, α = 0, and variable orders b satisfying in particular b > −1

2 at Rin, b < −1
2 at

Rout, and we may arrange that |b − (−1
2)| < ε for any fixed ε > 0. Packaged in the form

of Proposition 4.15 using complex absorption, we thus have, using the volume density |dg|
near ∂X,

‖u‖
Hs,l,0,b

c,h
≤ C‖Ph,zu‖Hs−2,l−2,0,b+1

c,h
; (5.2)

this estimate is sharp in the sense explained after the statement of Theorem 4.10. Lossy
estimates on constant order spaces are given by∥∥(x+ h)−

1
2
−εu
∥∥
Hs,l,0,0

c,h
∼ h−

1
2
−ε‖u‖

H
s,l,0,− 1

2−ε
c,h

. h−
1
2
−ε‖Ph,zu‖

H
s−2,l−2,0, 12+ε

c,h

∼ h−1−2ε
∥∥(x+ h)

1
2

+εPh,zu
∥∥
Hs−2,l−2,0,0

c,h
.

In the special case s = l, and recalling from [Hin22, Theorem 6.3] that the domain

Dlh = D
(
(h2∆g′ + 1)l/2

)
of the (l/2)-th power of the Friedrichs extension of the conic Laplacian h2∆g′ + 1 is equal

to H l,l,0,0
c,h in present notation, this gives:

Proposition 5.2 (Constant order estimates). In the above setting and with l as in (5.1),
we have for all ε > 0 the estimates∥∥(x+ h)−

1
2
−εu‖Dlh ≤ Cεh

−1−2ε
∥∥(x+ h)

1
2

+εPh,zu
∥∥
Dl−2
h
, (5.3a)

‖u‖Dlh ≤ Cεh
−1−2ε‖Ph,zu‖Dl−2

h
, (5.3b)

as well as more general estimates with Dlh and Dl−2
h replaced by Hs,l,0,0

c,h and Hs−2,l−2,0,0
c,h .

The estimate (5.3b) is an immediate consequence of (5.3a). We recall that in the case
l = 1, the (arbitrarily small) 2ε-loss in (5.3b) can be removed, as shown in the semiclassical
cone setting by Baskin–Marzuola [BM22] following arguments by Melrose, Wunsch, and
Vasy [MW04, MVW08]; in the full range of weights l considered here, a lossless estimate
was obtained by the author in [Hin22, §6.2] via reduction to the case l = 1 via conjugation

by (1+h2∆g′)
(l−1)/2 and reduction to the case l = 1. On the other hand, the estimate (5.3b),

even for ε = 0, loses a full order at tf compared to the sharper estimate (5.3a).
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Remark 5.3 (Limiting absorption principle). The h−1−2ε loss in Proposition 5.2 is familiar
from (and essentially arises from) the loss of slightly more than one power of 〈z〉 in the
limiting absorption principle

(∆− 1± i0)−1 : 〈z〉−
1
2
−εL2(Rn)→ 〈z〉

1
2

+εH2(Rn)

on Euclidean space, which is a consequence of a sharp variable order estimate akin to (5.2),
see Lemma 4.8.

A natural question is whether one can prove an estimate which removes both the ε-loss
of (5.3b) while retaining the lossless character of (5.3a) (or (5.2)) at tf. We answer this in
the affirmative:

Theorem 5.4 (Sharp propagation estimate). Consider a conic manifold (X, g) as in (4.1)–
(4.2) and with dimX ≥ 3. Let Ph,z = h2∆g − z, |z − 1| < Ch. Denote the characteristic

set of Ph,z by Σ ⊂ c~T ∗sfXc~, see (4.8). Let χ, χ̃ ∈ C∞c (X), with χ̃ ≡ 1 near suppχ, and

E ∈ Ψ−∞c~ (X). Suppose that all backward GBB from Σ ∩ suppχ enter Ellc~(E) in finite
time while remaining inside supp χ̃. Then, for any s,N ∈ R, we have an estimate

‖χu‖
Hs,1,0,0

c,h (X)
≤ C

(
‖χ̃Ph,zu‖Hs−2,−1,0,1

c,h (X)

+ ‖Eu‖
H−N,−N,−N,0c,h (X)

+ h
1
2 ‖χ̃u‖

H−N,−N,0,0c,h (X)

)
.

(5.4)

This holds more generally if one replaces the norms in the first line by ‖χu‖
Hs,s′,1,0,0

cb,h

and

‖χ̃Ph,zu‖Hs−2,s′−2,−1,0,1
cb,h

, with s′ ∈ R arbitrary. Taking s = 1, N = 0 in (5.4) gives

‖χu‖D1
h
. h−1‖(x+ h)χ̃Ph,zu‖D−1

h
+ ‖Eu‖L2 + h

1
2 ‖χ̃u‖L2 , (5.5)

and upon adding complex absorption as in §4.5 and equation (4.42), we have

‖u‖D1
h

= ‖u‖
H1,1,0,0

c,h
. h−1‖(x+ h)Ph,zu‖D−1

h
= ‖Ph,zu‖H−1,−1,0,1

c,h
. (5.6)

For comparison, the h-lossless version of (5.3b) for l = 1 reads

‖u‖
H1,1,0,0

c,h
. h−1‖Ph,zu‖H−1,−1,0,0

c,h
= ‖Ph,zu‖H−1,−1,1,1

c,h
; (5.7)

which is weaker than Theorem 5.4 in that the required control on Ph,z at tf is one order
stronger than in the Theorem.

As discussed after Theorem 4.10, the estimate (5.4) is sharp in the sense that the relative
orders on u on the left and Ph,zu on the right cannot be improved; but here the semiclassical
order remains fixed upon propagation through the cone point.

The proof of Theorem 5.4 uses the global positivity (as an operator) of a commutator
on tf, reminiscent of proofs of similar lossless results in N -body scattering [Vas00, Vas01],
as well as a splitting of u, using the functional calculus for h2∆g, into a part localized near
the characteristic set and a part where h2∆g − 1 is elliptic and can be inverted by spectral
theory. The following technical result is proved at the end of this section.

Lemma 5.5 (Functional calculus). Let φ ∈ C∞c (R). Then for all ε > 0,

φ(h2∆g) ∈ A−ε,n−ε,n−ε,0,0,∞(X2
c~; bΩ

1
2 ), (5.8)

where the orders of the conormal space refer to lb2,ff2, rb2, tf2,df2, sf2 ⊂ X2
c~ in this order.
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Remark 5.6 (Dimension). We only study the case dimX ≥ 3 here. The methods used in
[MVW08, BM22], which are based on quadratic forms, and also the methods in [MW04],
work in the case dimX = 2 as well. However, the identification of the quadratic form do-
main with a semiclassical cone Sobolev space fails in this case (see [MW04, Equation (3.11)]
for h = 1), which is why we do not consider it here.

Proof of Theorem 5.4. We present the proof in the case that Ph,z agrees with its normal
operator, equivalently Ph,z = h2∆g − 1 with g = dx2 + x2k(y,dy) an exact conic metric.

In the general case, the error terms arising from Ph,z −N(P ) ∈ Ψ2,−2,−1,0
c~ (X) are handled

easily; we leave the details to the reader. (In particular, since we shall use a global com-
mutator argument which controls u at sf and tf in one fell swoop, there is no need for a
delicate argument for the combination of the symbolic estimate at sf and a normal operator
estimate at tf as in the end of the proof of Theorem 4.10.) We write P ≡ Ph,z for brevity.

• Positive commutator argument. Define the operator

A := h
2

(
xDx + (xDx)∗

)
− 1 = hxDx − inh

2 − 1, a := c~σ(A) = xξ − 1, (5.9)

where we use the coordinates (3.3). This will be the main piece of the commutant in a
positive commutator calculation, and it is in essence the key term both in the commutator
argument of [Vas08] as well as in the Mourre commutant in classical scattering theory
[Mou81]. Let χ = χ(x) be identically 1 near ∂X = x−1(0), with support in any pre-
specified neighborhood of ∂X, and so that χ′ ≤ 0,

√
−χχ′ ∈ C∞, and so that a < 0 has a

constant (negative) sign on Σ ∩ suppχ; arranging the latter property is what the constant
term in (5.9) is for. We then consider the operator

Ã := χAχ,

and estimate in two different ways the expression

2h−1 Im〈Pu, Ãu〉 =
〈
i
h [P, Ã]u, u

〉
. (5.10)

Consider first the commutator term. Since h2∆g is homogeneous of degree −2, we have
i
h [P,A] = −[x∂x, P ] = 2h2∆g, which is the crucial global positive commutator. Therefore,

i
h [P, χAχ] = 2χh2∆gχ+ i

h

(
χA[P, χ] + [P, χ]Aχ

)
.

The contribution of the first term to the right hand side of (5.10) is

2‖h∇g(χu)‖2,

where we write ‖ ·‖ ≡ ‖ ·‖L2 . The second term on the other hand consists of operators with
coefficients supported strictly away from x = 0. It suffices to merely capture its principal
symbol, which by (4.9) is 2χah−1Hpχ = ax−1H(χ2) = 4aξχχ′; near incoming directions,
where ξ < 0, this is negative, whereas near outgoing directions, where ξ > 0, this is positive
and thus has a sign matching that of the above main commutator term. For a suitable
microlocal cutoff E ∈ Ψ0

c~(X) which is elliptic on Σ in the region ξ < ε for some fixed small
ε ∈ (0, 1), we thus conclude from (5.10) that

2‖h∇g(χu)‖2 ≤ 2 Im
〈(
hDx − in

2
h
x

)
(χu), h−1xχPu

〉
− 2h−1 Im〈χu, χPu〉+ ‖Eu‖2.

(5.11)
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Hardy’s inequality gives ‖hxχu‖ ≤ Cn‖hDx(χu)‖, hence the first term on the right is
bounded from above by

ε‖hDx(χu)‖2 + Cε‖h−1xχPu‖2

For the second term in (5.11), we rewrite

〈χu, χPu〉 = −‖χu‖2 + 〈h∇g(χ2u), h∇gu〉
= −‖χu‖2 + ‖χh∇gu‖2 + 〈h(∇gχ2)u, h∇gu〉;

taking the imaginary part annihilates the first two terms, while for the final term we have

〈h(∇gχ2)u, h∇gu〉 − 〈h∇gu, h(∇gχ2)u〉
=
〈
h2∇g

(
(∇gχ2)u

)
− h2(∇gχ2) · ∇gu, u

〉
= 〈h2∆g(χ

2)u, u〉, (5.12)

with no derivatives falling on u anymore. Altogether, we obtain from (5.11) the estimate

(2− Cε)‖h∇g(χu)‖2 ≤ Cε‖h−1xχPu‖2 + Ch‖χ̃u‖2 + ‖Eu‖2, (5.13)

where χ̃ ≡ 1 on suppχ, used to bound the contribution of (5.12).

• Control of χu in H1,1,0,0
c,h . Since the principal symbol of

h∇g ∈ Ψ1,1,0,0
c~ (X;C, c~T ∗Xc~)

(mapping complex-valued functions into sections of c~T ∗Xc~, cf. Remark 3.3) is not injective

at the zero section over sf, the estimate (5.13) does not yet give full control of χu in H1,1,0,0
c,h :

an estimate of ‖χu‖2L2 is lacking at this point. (Note that the control of h
xχu via Hardy’s

inequality degenerates precisely at sf, i.e. the lift of h = 0.) The key observation is that the
characteristic set of P and the set where the principal symbol of h∇g fails to be injective

are disjoint. Thus, for some A1 ∈ Ψ−1,−1,0,0
c~ (X; c~T ∗Xc~,C) and A2 ∈ Ψ−2,−2,0,0

c~ (X), we
have

I = A1 ◦ h∇g +A2P +R, R ∈ Ψ−∞,0,0,−∞c~ (X);

this implies

‖χu‖ ≤ C
(
‖h∇g(χu)‖

H−1,−1,0,0
c,h (X)

+ ‖P (χu)‖
H−2,−2,0,0

c,h (X)

)
+ ‖R(χu)‖L2 . (5.14)

Using [P, χ] ∈ Ψ1,−∞,−∞,−1
c~ (X), we can estimate the second term by

‖P (χu)‖
H−2,−2,0,0

c,h
≤ ‖χPu‖

H−2,−2,0,0
c,h

+ ‖[P, χ]u‖
H−2,−2,0,0

c,h

. ‖h−1xχPu‖
H−2,−1,0,−1

c,h
+ ‖χ̃u‖

H−1,−N,−N,−1
c,h

for any N ∈ R. The remainder term in (5.14) is simply estimated by

‖R(χu)‖L2 ≤ C
∥∥ h
h+xχu

∥∥
L2 ≤ C

∥∥h
xχu

∥∥
L2 .

Applying Hardy’s inequality to this term, the estimate (5.14) then implies, a fortiori,

‖χu‖L2 ≤ C ′
(
‖h∇g(χu)‖L2 + ‖h−1xχPu‖L2 + h‖χ̃u‖L2

)
.

We can now add η times this, with ηC ′ < 1
2 , to the estimate (5.13) (in which we fix

ε < C−1), in order to obtain

‖χu‖2D1
h

= ‖χu‖2 + ‖h∇g(χu)‖2 . ‖h−1xχPu‖2 + ‖Eu‖2 + h‖χ̃u‖2. (5.15)
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As far as weights in h and x are concerned, this is already the desired estimate. However,
the differential order is forced to be 1 here, and in addition the order of differentiability
required on Pu in (5.15) is too strong (0 instead of −1) even in this special case.

• Sharp improvement at tf. The basic idea is to apply the estimate (5.15) to φ(h2∆g)u,

where φ ∈ C∞c (R) is equal to 1 on [−4, 4]; on the remaining piece (1 − φ(h2∆g))u, the
operator h2∆g − 1 can be inverted directly using the functional calculus. In order to define
h2∆g as a self-adjoint operator, we need to pass from X to a compact manifold X ′. If
Y = ∂X is null-cobordant, we may choose X ′ so that ∂X ′ = ∂X, and we then extend g to
a Riemannian metric on X ′ which we continue to denote by g. The operator φ(h2∆g) does
depend on the choice of extension, but its structural properties, as used in the following
argument, do not. If Y is not null-cobordant, we may set X ′ = [0, 6x0]x × Y and define
a smooth metric on X ′ which is equal to g on [0, 2x0) × Y and equal to the pullback of g
along the map (x, y) 7→ (6x0−x, y) on (4x0, 6x0]×Y ; we denote this metric g again. Thus,
we have two identical cone points at x = 0 and at 6x0 − x = 0.

Concretely then, Φ := φ(h2∆g) is given by Lemma 5.5, the notation of which we shall
use here. Now, in order to remain localized near ∂X, we apply the estimate (5.15) to

u1 := χ̃Φχ̃u.

Using [P,Φ] ≡ 0 and χ[P, χ̃] ≡ 0, we estimate the first term on the right in (5.15) by

‖h−1xχPχ̃Φχ̃u‖
≤
∥∥x
hχΦ h

h+x

(
h−1(x+ h)χ̃Pu

)∥∥+ ‖h−1xχΦ[P, χ̃]u‖. (5.16)

Denoting the lift of x to the left, resp. right factor of X2
c~ by x, resp. x′, we note that

x
h

h
x′+h ∈ A

1,1,0,0,0,0(X2
c~) =⇒ Ψ := x

hχΦ h
x′+h ∈ A

1−ε,n+1−ε,n−ε,0,0,∞(X2
c~).

Passing to a b-density 0 < µ0 ∈ C∞(X; bΩ1X), we claim that Ψ is continuous as a map

H−∞,−1,0,0
c,h (X; |dg|) = H

−∞,−1−n
2
,−n

2
,0

c,h (X;µ0)

→ H
∞,−n

2
,−n

2
,0

c,h (X;µ0) = H∞,0,0,0c,h (X; |dg|);

but since Ψ is smoothing in the sense of c~-differentiability, it suffices to show the bound-
edness on L2(X;µ0) of

x
n
2 Ψ(x′)−

n
2
(

x′

x′+h

)−1 ∈ A
n
2

+1−ε,n−ε,n
2
−1−ε,0,0,∞(X2

c~; bΩ
1
2 ). (5.17)

Since this kernel is bounded section of bΩ
1
2 (all indices being ≥ 0), this is a consequence of

Schur’s lemma.

The operator acting on u in the second term on the right in (5.16) has Schwartz kernel
supported in x′ ≥ c > 0 and |x − x′| > c > 0 (since suppχ ∩ supp dχ̃ = ∅), hence lies in
A1−ε,∞,∞,∞,∞,∞(X2

c~); therefore, the second term in (5.16) can be bounded by hN‖χ̃]u‖ for

any N , where χ̃] = 1 on supp χ̃. Altogether, forgetting the cutoff χ̃ and renaming χ̃] as χ̃,
we have proved

‖χu1‖HN,1,0,0
c,h

. h−1‖(x+ h)χ̃Pu‖
H−N,−1,0,0

c,h
+ ‖Eu‖

H−N,−N,−N,0c,h

+ h
1
2 ‖χ̃u‖

H−N,0,0,0c,h

(5.18)

for any s,N ∈ R.
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It remains to control χu2, where

u2 := u− u1 = u− χ̃Φχ̃u.

Let φ[ ∈ C∞c ((−3, 3)) be identically 1 on [−2, 2], and let Φ[ = φ[(h2∆g). Then χu2 is
localized near high frequencies, in the sense that its localization to low frequencies

Φ[(χu2) = Φ[(χu) + Φ[[Φ, χ]χ̃u− Φ[Φχχ̃u = Φ[[Φ, χ]χ̃u (5.19)

(using Φ[Φ = Φ[ and χχ̃ = χ) is O(h∞) (due to the presence of [Φ, χ]) near x = 0 and
vanishes to an order h more than u near supp dχ ⊂ X◦. Moreover, χu2 satisfies the equation

P (χu2) = (χ− χΦχ̃)Pu+
(
[P, χ]u− [P, χ]Φχ̃u− χΦ[P, χ̃]u

)
, (5.20)

Altogether, if we put

P ] := P + 2Φ[,

then we have

P ](χu2) = f2 := (χ− χΦχ̃)Pu+ [P, χ]u

−
(
[P, χ]Φχ̃u+ χΦ[P, χ̃]u− 2Φ[[Φ, χ]χ̃u

)
.

(5.21)

We moreover have P ] = p](h2∆g), where p](σ) := (σ − 1) + 2φ[ ≥ 1
2(σ + 1) for σ ≥ 0;

hence we can invert P ] using the functional calculus for ∆g by (P ])−1 = q](h2∆) where

q](σ) = 1
p](σ)

is equal to (σ− 1)−1 for large σ. One can then show, by a combination of the

arguments leading to Lemma 5.5 and [Hin22, Theorem 5.2], that

(P ])−1 ∈
(

x
x+h

)2
Ψ−2

c~ (X) + Ψ−∞,Ec~ (X)

where the collection E of index sets is equal to E(−1) in the notation of [Hin22, Theo-
rem 6.1]. Therefore, using (5.21), the mapping properties of elements of ( x

x+h)2Ψ−2
c~ (X),

and estimating the smoothing contribution in the space Ψ−∞,Ec~ (X) to (P ])−1 by means of
Schur’s lemma, we have

‖χu2‖Hs,1,0,0
c,h

= ‖(P ])−1f2‖Hs,1,0,0
c,h

. ‖χ̃Pu‖
Hs−2,−1,0,0

c,h
+ ‖χ̃[P, χ]u‖

Hs−2,−1,0,0
c,h

+ h‖χ̃u‖
H−N,−N,0,0c,h

.
(5.22)

Here, the first term on the right comes from the first term in (5.21) and the boundedness

of χ − χΦχ̃] (with χ̃] ≡ 1 on supp χ̃) on Hs−2,−1,0,0
c,h ; this boundedness follows from the

boundedness of the Schwartz kernel of

x
n
2 x
x+hΦ

(
x′

x′+h

)−1
(x′)−

n
2 ∈ A

n
2

+2−ε,n+1−ε,n
2
−1−ε,0,0,∞(X2

c~; bΩ
1
2 )

similarly to the discussion of Ψ in (5.17). The final term in (5.22) comes from the big paren-
thesis in (5.21), every term of which involves the localizer Φ to low frequencies as well as a

commutator with a cutoff χ or χ̃. But χ̃[P, χ] ∈ Ψ1,−∞,−∞,−1
c~ (X), hence the second term on

the right is bounded from above by ‖χ̃u‖
Hs−1,−N,−N,−1

c,h
for any N . By elliptic regularity at

infinite semiclassical cone frequencies, this can be bounded by C(‖χ̃]Pu‖
Hs−3,−N−2,−N,−1

c,h
+

‖χ̃]u‖
H−N,−N,−N,−1

c,h
). Combining the resulting estimate with (5.18) proves the Theorem

for Hc,h-spaces. The proof of the more general statement for Hcb,h-spaces requires only
notational changes which are left to the reader. �

To complete the proof, it remains to prove Lemma 5.5.
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Proof of Lemma 5.5. This can be proved using the Helffer–Sjöstrand formula [HS89] simi-
larly to [Vas00, Lemma 10.1 and Proposition 10.2]. Choosing a compactly supported almost

analytic extension φ̃ ∈ C∞c (C) of φ (that is, φ̃|R = φ and |∂z̄φ̃| = O(| Im z|N ) for all N), we
have

φ(h2∆g) =
1

2πi

∫
∂z̄φ̃(z)(h2∆g − z)−1 dz̄ ∧ dz. (5.23)

For z /∈ R, [Hin22, Theorem 3.10 and §6.1] gives

(h2∆g − z)−1 ∈
(

x
x+h

)2
Ψ−2

c~ (X) + Ψ−∞,Ec~ (X) (5.24)

where E = (Elb, Eff , Erb, Etf) with Re z ≥ 0 for (z, k) ∈ Elb; Re z ≥ n for (z, k) ∈ Erb;
Re z ≥ 2 for (z, k) ∈ Eff ; and Re z ≥ 0 for (z, k) ∈ Etf . Using that the principal symbol
of h2∆g is real-valued and its normal operator ∆ĝ is self-adjoint, we claim that any fixed

seminorm (5.24) is moreover bounded by | Im z|−k for some k (depending on the seminorm).

To justify this claim, it is instructive to first consider the corresponding statement for
(∆−z)−1 ∈ Ψ−2, z ∈ C\R, where ∆ is the Laplacian on a closed Riemannian manifold: for
any N , the construction of a symbolic parametrix of ∆ − z of order N gives QN,z, Q

′
N,z ∈

Ψ−2, with seminorms bounded by | Im z|−C for some C depending on N and the seminorm,
so that (∆ − z)QN,z = I − RN,z and Q′N,z(∆ − z) = I − R′N,z, where RN,z, R

′
N,z ∈ Ψ−N

obey such bounds as well. But then (∆− z)−1 = QN,z +Q′N,zRN,z + R′N,z(∆− z)−1RN,z,

where the first two summands as pseudodifferential operators and the third summand (the
‘remainder operator’) R′N,z(∆ − z)−1RN,z as a map H−N → HN obey such bounds; this

uses that ‖(∆ − z)−1‖ = | Im z|−1 as an operator on L2. But any seminorm on Ψ−2 is
continuous on the space of bounded operators H−N → HN for sufficiently large N . This
implies that any Ψ−2-seminorm of (∆ − z)−1 is bounded by | Im z|−k for some k. (In this
simple example, the claim follows also directly from Beals’ Theorem [Bea77].)

Analogous arguments can be used to control the inverse of the normal operator ∆ĝ − z:
in addition to carrying out N steps of the symbolic parametrix construction, one uses the
inverse of the b-normal operator (which is independent of z) to solve away to order N at the
left/right boundary (for the left/right parametrix) and the b-front face of tf2

b,sc; by virtue of

taking only finitely many steps, one ensures the validity of | Im z|−k bounds on seminorms.
The true inverse (∆ĝ−z)−1 then obeys such bounds as well since any seminorm on the space
of large b-scattering ps.d.o.s in which (∆ĝ − z)−1 lies (see [Hin22, Equation (3.28)] for a

general statement) is continuous on the space of remainder operators H−N,l1,−Nb,sc → HN,l2,N
b,sc

(for appropriate orders l1, l2, with l2 = −N , resp. l1 = −N in the case of the left, resp.
right parametrix construction) for sufficiently large N .

The | Im z|−k bounds for seminorms of (5.24) can then be proved by completely analogous
means, namely by constructing a parametrix which is accurate to some finite order, and
observing that any fixed seminorm on the space (5.24) is continuous on the relevant space
of remainder operators.

Plugging these into (5.23), we conclude that φ(h2∆g) is of the same class as the resolvent.
To improve the orders, let m ∈ N and write φ(σ) = (σ+C)−mφm(σ) with C > − inf suppφ,
then

φ(h2∆g) = (h2∆g + C)−mφm(h2∆g).
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Applying the previous discussion to φm and using [Hin22, Theorem 6.3(3)] (with w = −m)

to control (h2∆g + C)−m implies, upon letting m→∞, that φ(h2∆g) ∈ Ψ−∞,−∞,0,0c~ (X) +
A−ε,n−ε,n−ε,0,∞,∞(X2

c~). This gives (5.8). �

5.2. Scattering by potentials with inverse square singularities. Complex absorption
is a somewhat drastic method for gaining microlocal control along incoming directions. As
a more natural setting, let us thus consider scattering by potentials on Rn, n ≥ 2, which are
singular at the origin 0 ∈ Rn, as in Theorem 1.1. (Working on more general conic manifolds
requires only minor modifications.) That is, the underlying spatial manifold is

X = [Rnx; {0}] ∼= [0,∞)r × Sn−1, g = dx2 = dr2 + r2gSn−1 . (5.25)

We write ∆ ≡ ∆g =
∑
D2
xj

for the (nonnegative) Laplacian. Let N ∈ N, and denote by ∆

the Laplacian acting component-wise on CN -valued functions. We consider scattering by
matrix-valued potentials

V (x) = |x|−2V0(x), V0 ∈ C∞c (X;CN×N ).

The assumption of compact support of V can of course be relaxed considerably, but since
our interest lies in understanding the effect of the singularity at r = 0, we shall not concern
ourselves with more general conditions on V at infinity here.

We are interested in high energy estimates for the resolvent of ∆ + V ; concretely, we
shall consider ∆ + V − σ2, where Imσ > 0 is bounded and |Reσ| � 1. Upon introducing

h = |σ|−1, z = (hσ)2 = 1 +O(h), (5.26)

we define

Ph,z := h2(∆ + V − σ2) = h2∆− z + h2r−2V0. (5.27)

This is admissible in the sense of Definition 4.1, with Q1,z = V0 and q0,z = 0. Since Q1,z

has differential order 0, the threshold quantities in Definition 4.7 are rin = rout = −1
2 . The

normal operator of Ph,z is computed by passing to r̂ = r
h and setting h = 0:

N(P ) = ∆ĝ − 1 + r̂−2V∂ ,

ĝ := dr̂2 + r̂2gSn−1 , V∂ := V0|∂X ∈ C∞(∂X;CN×N ).
(5.28)

(Thus V∂(ω) = V0(0, ω) in the coordinates (r, ω) ∈ [0,∞)× S2 on X.)

Theorem 5.7 (Potential scattering). Assume that the operator N(P ) defined in (5.28) is
invertible at weight l ∈ R in the sense of Definition 4.6(3). Let C > 0, and let χ0 ∈ C∞c (X)
be identically 1 near r = 0. Then there exists C ′ > 0 so that for 0 < Imσ < C and
|Reσ| > C ′, the operator ∆ + V − σ2 is invertible as a map

∆ + V − σ2 : {u ∈ H2
loc(X

◦) : χ0u ∈ rlH2
b(X), (1− χ0)u ∈ H2(Rn)}

→ {f ∈ L2
loc(X

◦) : χ0f ∈ rl−2L2(X), (1− χ0)f ∈ L2(Rn)}.
(5.29)

Moreover, in the notation (5.26)–(5.27), the following uniform estimate holds for all ε, δ >
0, a suitable constant Cε,δ > 0, and all 0 < Imσ < C, |Reσ| > C ′:

‖χ0u‖
H
s,l, 12+ε,0

c,h

+ ‖(1− χ0)u‖
H
s,− 1

2−δ
sc,h

≤ Cε,δh−1−2ε
(
‖χ0Ph,zu‖

H
s−2,l−2,− 1

2−ε,0
c,h

+ ‖(1− χ0)Ph,zu‖
H
s−2, 12+δ

sc,h

)
;

(5.30)
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here, Hs,γ
sc = Hs,γ

sc (Rn) = 〈r〉−γF−1(〈hD〉−sL2(Rn)) is the semiclassical scattering Sobolev
space. In particular, for l1 ≤ min(l, 1

2 + ε), l2 ≥ max(l − 2,−1
2 − ε), and for any fixed

χ ∈ C∞c (X) we have

‖χ(∆ + V − σ2)−1χf‖rl1L2 ≤ Cε,χ|σ|−1+2ε‖f‖rl2L2 . (5.31)

We recall that for V (x) = |x|−2V0(x), with real-valued V0 satisfying V0(0) > −(n−2
2 )2

(and indeed under relaxed regularity requirements on V0, and allowing for the presence
of several such inverse square singularities), Duyckaerts [Duy06] obtained cutoff resolvent
estimates of the form (5.31) without the 2ε-loss. It is an interesting question—which we
do not address here—whether in this setting, or perhaps even in the general setting of
Theorem 5.7, one can prove a lossless estimate using a global commutator argument similar
to the one used in §5.1.

Remark 5.8 (Meromorphic continuation). For V with compact support as above, the re-
solvent (∆ + V − σ2)−1 can be meromorphically continued to the complex plane when
n is odd, and the logarithmic cover of C× when n is even; the estimate (5.31) holds in
strips of bounded Imσ for large |Reσ|. The construction of this continuation can be ac-
complished along the lines of black box scattering [SZ91] (see also [DZ19, §4]), with those
estimates in the references in Imσ � 1 relying on self-adjointness replaced by estimates on
the off-spectrum resolvent that follow from [Hin22, Theorem 3.10]. For applications of such
estimates to expansions of scattered waves for n odd, we refer the reader to [DZ19, §3.2.2].

Remark 5.9 (Vector bundles). One may more generally consider potentials valued in endo-
morphisms of a vector bundle E → X, with ∆ denoting an operator acting on sections of
E with scalar principal symbol given by the dual metric function. The main difference to
the case of a trivial bundle is that the threshold quantities rin, rout depend on subprincipal
terms of ∆ (and their calculation requires the choice of a fiber inner product on E, cf.
Remark 4.11). In the special case of tensor bundles E, and with ∆ denoting the tensor
Laplacian, the fiber inner product on E induced by g does give rin = rout = −1

2 .

Proof of Theorem 5.7. Semiclassical propagation estimates near infinity of Rn are standard,
see e.g. [VZ00, Theorem 1] (following [Mel94]) in a general geometric setting, and can
be combined with the propagation estimates through the singularity at r = 0 given in
Theorem 4.10 (where we shall take α = 1

2 + ε, b = 2ε near Rin, and b = 0 near Rout).
Altogether, upon simplifying to constant orders, we obtain, for any δ > 0, and for 0 < h <
h0 with h0 > 0 sufficiently small,

‖χ0u‖
H
s,l, 12+ε,0

c,h

+ ‖(1− χ0)u‖
H
s,− 1

2−δ
sc,h

. ‖χ0Ph,zu‖
H
s−2,l−2, 12+ε,1+2ε

c,h

+ h−1−2ε‖(1− χ0)Ph,zu‖
H
s−2, 12+δ

sc,h

,

which is the estimate (5.30). (The loss of h−2ε in the second term on the right is due to the
fact that the propagation through r = 0 comes with this loss, which then gets propagated
out to infinity.) This estimate also entails the injectivity of Ph,z for small h > 0 and
|z − 1| < Ch, with surjectivity following from the analogous estimate for the adjoint; this

proves the first part of the Theorem, albeit on function spaces with weights 〈r〉±( 1
2

+δ) at
infinity. But for any fixed σ with σ2 /∈ [0,∞), ∆ + V − σ2 is an elliptic scattering operator
near infinity, hence these weights can be removed. (It is only in the high energy limit
|Reσ| → ∞ with | Imσ/Reσ| → 0 that one loses uniform (in σ) ellipticity.)
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The simplified estimate (5.31) follows by setting s = 2 in

h−1−2ε‖χPh,zu‖
H
s−2,l−2,− 1

2−ε,0
c,h

≤ h1−2ε‖χ(∆ + V − σ2)u‖
H
s−2,l2,l2,0
c,h

,

‖χu‖
H
s,l, 12+ε,0

c,h

≤ ‖χu‖
H
s,l1,l1,0
c,h

. �

We describe a few scenarios in which the invertibility assumption on N(P ) can be verified:

(1) The operator N(P ) is invertible for an open set of V∂ ∈ C∞(Sn−1;CN×N ). In
particular, it holds when n ≥ 3, l ∈ (1−n−2

2 , 1+n−2
2 ), and V∂ ≡ 0 by Lemma 5.1, and

therefore also when ‖V∂‖Ck is sufficiently small (depending on l) for some sufficiently
large k.

(2) Consider V∂ which depends holomorphically on a parameter w ∈ Ω, where Ω ⊂ C
is open and contains 0. (For example, this is the case when V∂(w) = wV∂,0.)
Let us write N(Pw) for the w-dependent normal operator, and assume that N(P0)
is invertible at weight l0; assume moreover that there is a continuous function
l : Ω → R with l(0) = l0 so that l(w) /∈ − Im specb(N(Pw)). Then there exists a
discrete set D ⊂ Ω so that N(Pw) is invertible at weight l(w) for w ∈ Ω \D. This
follows from analytic Fredholm theory in w; we leave the details to the reader.

A very concrete third scenario is the following:

Lemma 5.10 (Scalar inverse square potentials). Let n ≥ 2, consider the scalar case N = 1,
and suppose V∂ = Z ∈ C \ (−∞,−(n−2

2 )2] is a constant (so V (x) = Z
|x|2 +O(|x|−1)). Then

N(P ) is invertible at weight l iff |l − 1| < Re
√

(n−2
2 )2 + Z.

Proof of Lemma 5.10. The boundary spectrum of N(P ) can be computed, via expansion
into spherical harmonics, as

specb(N(P )) =

{
i

(
n− 2

2
±
√(n− 2

2
+ `
)2

+ Z

)
: ` ∈ N0

}
.

The condition on Z ensures that Re
√

(n−2
2 )2 + Z > 0, and thus for l as in the statement of

the Lemma, one has l − n
2 /∈ − Im specb(N(P )).

Expanding an outgoing solution u of N(P )u = 0 at weight l into spherical harmonics,
u(r̂, ω) =

∑
|m|≤` u`m(r̂)Y`m(ω), the coefficient u`m satisfies a Bessel ODE

−u′′`m −
n− 1

r̂
u′`m +

`(`+ n− 2) + Z

r̂2
u`m − u`m = 0,

and hence is a linear combination of r̂−
n−2
2 H

(1)
ν` (r̂) and r̂−

n−2
2 H

(2)
ν` (r̂) where we set ν` =√

(n−2
2 + l)2 + Z. The outgoing condition can only be satisfied if u`m is a multiple of

r̂−
n−2
2 H

(1)
ν` (r̂). But for 0 < r̂ � 1, one has∣∣r̂−n−2

2 H(1)
ν`

(r̂)
∣∣ ≥ c`r̂−n−2

2
−Re ν` ≥ c`r̂−

n−2
2
−Re ν0

with c` > 0, which lies in r̂l
′
L2(r̂n−1dr̂) iff l′ < 1−Re ν0, which is violated for l′ = l. Hence

necessarily u`m = 0. This proves that N(P ) is injective at weight l on outgoing functions;
the injectivity of N(P )∗ at weight −l + 2 on incoming functions is proved similarly. �
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Theorem 1.1 follows from Theorem 5.7 and Lemma 5.10 upon taking σ =
√
λ and l = 2,

which allows for the choice l1 = l2 = 0. Note that for l = 2, the target space in (5.29) in
L2(X) = L2(Rn), and the domain is H2

0 (Rn \ {0}) for n ≥ 5 by Hardy’s inequality.

Remark 5.11 (Multiple scatterers). By exploiting the diffractive improvement obtained
in §4.6 as in the work of Baskin–Wunsch [BW13], it is conceivable that one can generalize
(up to ε-losses) Duyckaerts’ high energy resolvent estimates [Duy06] for scattering by a
finite number of real-valued inverse square potentials and analyze the complex-valued case
Zj ∈ C \ (−∞,−(n−2

2 )2] (or more generally the case of finitely many matrix-valued inverse
square potentials). However, the study of this problem exceeds the scope of this paper.

Remark 5.12 (Operators with inverse square singularities arising in the study of wave equa-
tions). Following [BM22], consider a static metric g = −dt2 + dr2 + r2k, where k is a
Riemannian metric on a closed manifold Z; e.g. (Z, k) = (Sn−1, gSn−1), in which case g is
the Minkowski metric. In the region t > 1, r

t <
1
2 , we introduce T = 1

t , R = r
t (in the

notation of the reference: ρ, x) and compute

t2�g = −(TDT +RDR)2 + i(TDT +RDR) +D2
R −

i(n− 1)

R
DR +R−2∆k.

Restricting the coefficients to T = 0 (as a b-operator) and formally passing to the Mellin
transform by replacing TDT with multiplication by σ ∈ C gives

Pσ = ∆G − (RDR + σ)2 + i(RDR + σ) = ∆G − σ2 +Q, G := dR2 +R2k,

where Q = iσ− (2σ− i)RDR. When | Imσ| is bounded and |Reσ| → ∞, we let h = |σ|−1;
then the rescaling

Ph,z = h2Ph−1z = h2∆G − z2 + h2Q (5.32)

is an admissible operator on [0, 1
2)R × Z in the sense of Definition 4.1. — More generally,

consider the coupling of �g with a potential V = V (r, z) which asymptotes to an inverse

square potential as r →∞, i.e. V (r, z) = r−2V0(z) +O(r−2−δ) with V0 ∈ C∞(Z). Then we
have t2(�g + V ) = t2�g +R−2V0(z) +O(T δR−2−δ), and therefore the rescaling (5.32) has
an additional h2R−2V0 term, as studied in the present section; that is, a stationary asymp-
totically inverse square potential on [0,∞)r × Z gives rise to an inverse square singularity
of Ph,z at R = 0.16 (If V = r−2V0(z) is an exact inverse square potential, then Ph,z has the
same additional term.) Operators of this type, acting on sections of vector bundles without
natural positive definite fiber inner products (and correspondingly without symmetry con-
ditions on V0), appear in the study of the equations of linearized gravity on stationary and
asymptotically flat spacetimes in certain gauges, and indeed this was the author’s original
motivation for the investigations in the present paper; the details will appear elsewhere.

5.3. Scattering for the Dirac–Coulomb equation. Motivated by recent work of Baskin
and Wunsch [BW23], we consider the stationary scattering theory for the Dirac–Coulomb
equation on Minkowski space at high energies. As discussed in §1, our framework allows us
to deal directly with the associated matrix-valued Klein–Gordon operator—which has non-
symmetric leading order terms at the Coulomb singularity—albeit with an arbitrarily small
loss upon propagation through the singularity. Moreover, our results include a larger range
of Coulomb charges Z ∈ R than [BW23] (which requires |Z| < 1

2 for technical reasons); we

16After the original version of the present paper appeared, this has been worked out in detail by the
author in the preprint [Hin23].
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can even allow for Z which |Z| >
√

3
2 , in which case the Dirac–Coulomb Hamiltonian is not

essentially self-adjoint.

The underlying spatial manifold is again given by (5.25), now with n = 3. We recall
relevant notation from [BW23]. Denote the Pauli matrices by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Put further

β := γ0 :=

(
I 0
0 −I

)
, γj :=

(
0 σj
−σj 0

)
,

αj := βγj =

(
0 σj
σj 0

)
, αr :=

3∑
j=1

xj
r
αj .

The equation governing a massive Dirac field (with mass m ∈ R) minimally coupled to an
electromagnetic potential A = (A0, A1, A2, A3) is

(i/∂A −m)ψ = 0, /∂A := γµ(∂µ + iAµ),

where ψ takes values in C4. We now take

A0 =
Z

r
+ V, V ∈ C∞(X), Aj ∈ C∞(X), (5.33)

with Z ∈ R the charge of the Coulomb field. As shown in [BW23, §4.3], the operator
−(i/∂A +m)(i/∂A −m) is then of the form

P = −
(
Dt +

Z

r

)2
+ ∆ +m2 + i

Z

r2
αr + r−1R, R ∈ Diff1

b(X;C4). (5.34)

Let us pass to a fixed temporal frequency σ ∈ C, thus replacing Dt in (5.34) by −σ,

resulting in the operator family P̂ (σ). Introducing h = |σ|−1 and z = (hσ)2 and multiplying

P̂ (σ) = P̂ (h−1√z) by h2 gives

Ph,z = h2∆−
(√

z − hZ

r

)2
+
h2

r2

(
iZαr + r2m2

)
+
h2

r2
rR (5.35)

= h2∆− z + h2r−2Q1,z + hr−1q0,z,

Q1,z = −Z2 + iZαr + r2m2 + rR, q0,z = 2
√
zZ.

When Imσ is bounded while |Reσ| → ∞, one has z = 1+O(h); thus, Ph,z is an admissible
operator in the sense of Definition 4.1. The threshold quantities in Definition 4.7 take the
values

rin = rout = −1
2

since q0,1 is real and the principal symbol of Q1,z (as a first order b-differential operator)
vanishes at r = 0.

The normal operator of Ph,z is obtained by passing to r̂ = r
h and restricting to h = 0,

giving in polar coordinates (r̂, ω) ∈ [0,∞]× S2

N(P ) = D2
r̂ −

2i

r̂
Dr̂ −

(
1− Z

r̂

)2
+ r̂−2

(
/∆ + iZαr(ω)

)
. (5.36)

For Z = 0, the operator N(P ) is equal to (∆ĝ − 1) ⊗ IdC4 where ĝ = dr̂2 + r̂2gS2 , hence

is invertible at weight l ∈ (1
2 ,

3
2) by Lemma 5.1. For fixed l, this will remain true for Z in
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a small neighborhood of 0. The determination of the largest set of Z for which N(P ) is
invertible at some weight requires explicit calculations:

Lemma 5.13 (Invertibility of N(P )). Let Z ∈ R be such that |Z| 6=
√
κ2 − 1

4 for all κ ∈ N.

Then the operator N(P ) is invertible at weight l = 1.

The conclusion of the Lemma in particular holds in the range |Z| <
√

3
2 ; this is related

to the essential self-adjointness of Dirac operators, see [Wei71, Les97] and [BW23, §4.1].

Proof of Lemma 5.13. We begin by separating into spinor spherical harmonics following
[BW23, §2.1]: for

κ ∈ Z \ {0}, µ ∈ {−|κ|+ 1
2 , . . . , |κ| −

1
2},

define the C2-valued function on S2

Ωκ,µ(ω) =

− sgn(κ)
(κ+ 1

2
−µ

2κ+1

)1/2
Yl,µ− 1

2
(ω)(κ+ 1

2
+µ

2κ+1

)1/2
Yl,µ+ 1

2
(ω)

 , l = |κ+ 1
2 | −

1
2 .

Thus /∆Ωκ,µ = κ(κ+ 1)Ωκ,µ. Moreover,

αr

(
aΩκ,µ

bΩ−κ,µ′

)
=

(
−bΩκ,µ′

−aΩ−κ,µ

)
,

as follows from [BW23, Equations (3), (4), (9)] or [Szm07, Equation (3.1.3)]. Thus, the
action of the spherical operator /∆ + iZαr ∈ Diff2(S2;C4) appearing in (5.36) on the 2-
dimensional space with basis (Ωκ,µ, 0) and (0,Ω−κ,µ) is given by the matrix(

κ(κ+ 1) −iZ
−iZ κ(κ− 1)

)
. (5.37)

This can be diagonalized when |Z| 6= |κ|, and it has eigenvalue λ±κ = κ2 ±
√
κ2 − Z2 on the

eigenspace spanned by

Y±κ,µ(ω) :=

(
iZΩκ,µ(ω)

(κ∓
√
κ2 − Z2)Ω−κ,µ(ω)

)
, µ ∈ {−|κ|+ 1

2 , . . . , |κ| −
1
2}.

Thus, the action of N(P ) on separated functions of the form u(r̂)Y±κ,µ(ω) is given by the
action on u of the differential operator

N±κ = D2
r̂ −

2i

r̂
Dr̂ −

(
1− Z

r̂

)2
+ r̂−2λ±κ .

The Mellin-transformed normal operator of r̂2N±κ at r̂ = 0 is the polynomial

λ2 − iλ− Z2 + λ±κ , λ ∈ C;

for its roots, we have

−(Imλ) + 3
2 ∈

{
1−

(
1
2 ±

√
κ2 − Z2

)
, 1 +

(
1
2 ±

√
κ2 − Z2

)}
Now if Z2 > κ2, then these two roots have real parts 1

2 and 3
2 , whereas if Z2 < κ2, they are

disjoint from an open interval (1−δ, 1+δ) around 1 due to the assumption that κ2−Z2 6= 1
4 .

An outgoing solution of N(P ) at weight l = 1, expanded into the spherical eigenfunctions
Y±κ,µ, is an outgoing solution of N±κ ; one easily finds u = u∞r̂

−1−iZeir̂ +O(r̂−2) as r̂ →∞,
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where u∞ ∈ C, and the O(r̂−2) term is conormal at r̂ = 0; near r̂ = 0 on the other hand,

we have u = A−
1
2

+δ([0, 1)r̂). A boundary pairing argument, i.e. the evaluation of

0 = lim
ε→0

∫ 1/ε

ε

(
(N±κ u)ū− uN±κ u

)
r̂2 dr̂ = 2i lim

ε→0
Im(r̂2uu′|1/εε ) = −2i|u∞|2,

gives u∞ = 0, and thus u ≡ 0 by standard ODE analysis near r̂ = ∞. This shows that
N(P ) is injective at weight l = 1 on outgoing solutions. Since (N±κ )∗ = N∓κ with respect to
the L2(r̂2 dr̂) inner product, the injectivity of N(P )∗ at weight −l+2 on incoming functions
is proved similarly. This completes the proof when Z is not a nonzero integer.

When Z ∈ Z \ {0} and κ satisfies |Z| = |κ|, then the action of /∆ + iZαr on the span of
(Ωκ,µ, 0) and (0,Ω−κ,µ′) is not diagonalizable anymore. By inspection of (5.37), it still has

the eigenvalue κ2 with eigenspace spanned by Y+
κ,µ = Y−κ,µ. Let Ỹκ,µ = (Ωκ,µ, 0), then an

outgoing solution u = u1Y+
κ,µ + u2Ỹκ,µ of N(P ) satisfies a lower triangular ODE system,

with a decoupled equation for u1 which implies u1 ≡ 0 by the previous arguments, whence
u2 is now an outgoing solution to the same equation as u1 and must therefore also vanish.
The proof is complete. �

If we cut A off via multiplication by a cutoff χ ∈ C∞c (X), the operator Ph,z is equal to
h2∆ − z near infinity and can thus be analyzed as in §5.2. In this setting, we thus obtain
invertibility and quantitative estimates for Ph,z:

Theorem 5.14 (High energy estimates for the Dirac–Coulomb equation). Suppose A =

(A0, A1, A2, A3) as in (5.33) has compact support. Let Z ∈ R be such that |Z| 6=
√
κ2 − 1

4

for all κ ∈ N. Then for l = 1 (and indeed for l sufficiently close to 1), 0 < Im z < Ch, and

for all sufficiently small h > 0, the operator Ph,z = h2P̂ (h−1z) defined in (5.34)–(5.35) is
invertible as a map between the spaces (5.29) and satisfies the uniform bound (5.30) as well

as the bound (5.31) (with ∆g + V − σ2 replaced by P̂ (σ), where σ = h−1z) for l1 = l2 = 0.

Remark 5.15 (Complex charges). One can also analyze the case of non-real Z ∈ C, in which
case rin = −1

2 + ImZ and rout = −1
2 − ImZ. The difference rout − rin = −2 ImZ results

in an additional 2 ImZ loss of powers of the semiclassical parameter h when propagating
through the singularity at r = 0. Nonetheless, the invertibility of N(P ) automatically holds
for values of Z close to those allowed in Theorem 5.14, as discussed prior to Lemma 5.10.

Appendix A. A class of examples with sharp semiclassical loss

Note that the semiclassical order b in Theorem 4.10 must decrease from Rin to Rout by
more than

D = max(rin − rout, 0); (A.1)

thus, the estimate (4.27) controls u in L2, say, microlocally near the flow-out of Rout by
h−D−ε (for any ε > 0) times the L2-norm of the microlocalization of u near the flow-in of
Rin. While in many natural settings, such as those discussed in §5, one has D = 0, it is
easy to construct examples where D > 0. The following example (placed into a general
context at the end of this appendix) shows that a loss of h−D typically does occur, whence
our estimates are sharp up to an ε-loss. This ε-loss may be avoidable, though we are not
able to prove or disprove this here.
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Consider X = [0, 2)r, µ = |dr|, and

Ph,z = h2(−∂2
r − 2

r∂r)− z + 2ih
r q, z = 1 +O(h),

where q ∈ C is a parameter. (The term in parentheses is the radial part of the Laplacian
on R3 in polar coordinates.) The normal operator is

N(P ) = −∂2
r̂ − 2

r̂∂r̂ − 1 + 2i
r̂ q.

For q = 0, the kernel of N(P ) is spanned by r̂−1e±ir̂; since r̂−1 barely fails to lie in

r̂−
1
2L2([0, 1)r̂, |dr̂|), it is easy to see that N(P ) is invertible at weight l in the sense of

Definition 4.6 for l ∈ (−1
2 ,

1
2); this persists for small values of q ∈ C. (The boundary

spectrum of N(P ) at r̂ = 0 is independent of q.) In the notation of Definition 4.7, we have

rin = 1
2 + Re q, rout = 1

2 − Re q, (A.2)

so D = max(2 Re q, 0). The quantities (A.2) correspond precisely to the L2-decay rates of
incoming and outgoing solutions ûin, ûout ∈ kerN(P ), which have the asymptotic behavior

ûin ∼ r̂−1−Re qe−ir̂, ûout ∼ r̂−1+Re qeir̂, r̂ →∞. (A.3)

(We omit the explicit expressions involving confluent hypergeometric functions.)

We can now construct an element û ∈ kerN(P ) which lies in r̂lL2, l ∈ (−1
2 ,

1
2), near

r̂ = 0 and which is uniquely specified by requiring its incoming data at r̂ =∞ to be given
by ûin. Indeed, û is necessarily of the form

û(r̂) = ûin + cûout,

where c ∈ C is the ‘scattering matrix’; necessarily c 6= 0 (since ûin fails to lie in r̂lL2 near
r̂ = 0). But then

Ph,1uh(r) = 0, uh(r) := û(r/h).

(This exact formula uses the invariance of Ph,1 under dilations in (h, r).) Considering a
neighborhood of r = 1 then, the asymptotics (A.3) for

u•,h(r) := u•(r/h), • = in, out,

imply

uh = uin,h + cuout,h,

uin,h ∼ h1+Re qe−ir/h, uout,h ∼ h1−Re qeir/h (near r = 1).

This demonstrates the loss of h−2 Re q between the amplitudes h1+Re q, resp. h1−Re q of the
incoming, resp. outgoing pieces of uh. (The fact that there is in fact a gain when Re q < 0
is a peculiar feature of the 1-dimensional situation considered here: the characteristic set
of Ph,z has two connected components, with the incoming and outgoing radial sets lying in
different components, and the monotonicity requirement in Theorem 4.10 does not relate
the two components.)

The same idea can applied to produce many more examples with sharp loss D. Indeed,
when N(P ) is invertible at weight l, then the solution û = û(r̂, y) (with y denoting points on
∂X) of N(P )û = 0, where û has prescribed incoming data and lies in r̂lL2 near r̂ = 0, gives
rise to a solution uh(r, y) = û(r/h, y) of Ph,1uh(r, y) = 0 where Ph,1 = N(P ) (upon changing
coordinates r̂ = r/h). The relative decay rates of incoming/outgoing solutions of N(P ) are
then directly reflected in the relative semiclassical orders of uh near the flow-in/flow-out
of the cone point. (Since the characteristic set of Ph,1 is connected when dimX ≥ 2, the
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loss is at least 0, cf. (A.1); after all, even away from the cone point, semiclassical regularity
cannot improve under real principal type propagation.)

Appendix B. Sobolev spaces and pseudodifferential calculi

This section consists entirely of figures which illustrate the orders of weighted Sobolev
spaces as well as of spaces of pseudodifferential operators, with references to the original
definitions. Concretely, labeling a boundary hypersurface H by ‘l’ means that the order l of

some weighted Sobolev space H ··· ,l,······ refers to ρlH decay at H of its elements, where ρH is a
defining function of H, or l orders of regularity when H is a boundary hypersurface at fiber
infinity of some compactified phase space. For spaces of pseudodifferential operators on the
other hand, the same label ‘l’ refers to a ρ−lH bound of the full symbol of the operator, or
of its Schwartz kernel at the hypersurface of the double space corresponding to H.

See Figure B.1 for b- and scattering Sobolev spaces (or operators), Figure B.2 for b, sc-
Sobolev spaces, Figure B.3 for semiclassical cone Sobolev spaces, and Figure B.4 for cb~-
Sobolev spaces.

bT ∗∂XX

bS∗X

l

s

Hs,l
b (X) scT ∗∂XX

scS∗X

r

s

Hs,r
sc (X)

Figure B.1. X is a manifold with boundary ∂X. On the left: the orders

of Hs,l
b (X); see §2.1. On the right: the orders of Hs,r

sc (X); see §2.2.

b,scT ∗H1
X

b,scS∗X

b,scT ∗H2
Xl

s

rHs,l,r
b,sc (X)

Figure B.2. X is a manifold with two connected and embedded boundary

hypersurfaces ∂X = H1 tH2. Indicated are the orders for Hs,l,r
b,sc (X).
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