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Abstract. We study the inverse problem of determining a time-dependent globally hyperbolic
Lorentzian metric from the scattering operator for semilinear wave equations.
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1. Introduction

Scattering in physics and mathematics is the comparison of the behavior of waves before and
after they interact with a medium. There is finite time scattering in which one compares properties
of the wave for t < −T and for t > T, for some finite time T > 0. The global scattering experiment
compares the asymptotic behavior of waves as time t→ −∞ and t→ +∞. The inverse scattering
problem consists obtaining information about the medium with which the waves interact from
such experiments. Both scattering and inverse scattering have been very well studied for a variety
of evolution equations, including Schrödinger and wave equations, and we refer the reader to
[43, 68, 67] for an account.

We are concerned with the problem of determining the time-dependent coefficients of nonlinear
wave equations from scattering data. In more precise terms, one wants to recover a globally
hyperbolic Lorentzian metric from the scattering operator, modulo natural obstructions. For such
problems, perhaps the most basic model is to determine a time-independent Riemannian metric
g in Rn, with suitable rate of decay at infinity, from the global scattering operator for the wave
equation, ∂2t − ∆g, again modulo some natural obstructions. Here ∆g is the Laplace-Beltrami
operator induced by the Riemannian metric. This scattering operator can be precisely defined
in several different ways, and the most closely related to what we define here was introduced by
Friedlander [29, 30], using the radiation fields, following the work of Penrose [55, 56], see also [7, 8].
If the metric g is a compactly supported perturbation of the Euclidean metric, this problem can
be reduced to studying the Dirichlet-to-Neumann map, and it has been solved by Belishev and
Kurylev [16] using the boundary control method, which relies on a theorem of Tataru [61, 62], see
also [39]. However, for arbitrary non-compactly supported perturbations, as far as we know, this
problem remains unsolved, even if the metric decays very fast at infinity.

In this work, we study a more general form of this problem, but for a semilinear wave equation.
Although nonlinear equations are typically more challenging to analyze, the interaction of waves
due to the nonlinearity carry additional information about the medium. The central question is
how to measure and interpret this information and how to use it to determine properties about
the medium. Kurylev, Lassas and Uhlmann [46] were the first to observe that this nonlinearity
can be used to obtain information about the medium. This was done for a finite time scattering
experiment called the source-to-solution map. They proved that this source-to-solution map deter-
mines a globally Lorenztian metric, modulo conformal factors and diffeomorphisms, in a Lorentzian
manifold without boundary. The main idea is to use a multi-fold linearization and the nonlinear
interaction of waves. This comes from the observation that the transversal interaction of three
or four conormal waves for a nonlinear wave equation produces new singularities from the set of
interaction. Such results go back to the work Beals [14], Bony [17], Melrose and Ritter [52] and
Rauch and Reed [58]. Specifically, by choosing specially designed sources, one can produce new
singularities caused by the interaction of linear waves, and then detect them from the measure-
ments. Information about the metric and nonlinearity is encoded in these new singularities. One
can extract such information from the principal symbol of the new singularities, using the calculus
of conormal distributions and paired Lagrangian distributions.

Starting with [46, 45], there are many works studying inverse problems for nonlinear hyperbolic
equations, see [10, 12, 20, 21, 23, 24, 65, 28, 35, 44, 5, 47, 49, 64, 69, 71]. For an overview of the
recent progress, see [48, 70]. In particular, in [59] the inverse scattering problem for defocusing
energy critical semilinear wave equations in Minkowski space is studied. The inverse problem of
recovering the metric from a source-to-solution map with different sources and receivers is studied
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in [27]. Inverse boundary value problems of recovering the metric or nonlinearity are considered
for semilinear or quasilinear wave equations in [23, 71, 34, 35, 36, 72, 1, 73, 75].

More explicitly, we consider a smooth manifold Me = (−1, 1)T × R3
X , which is equipped with a

globally hyperbolic Lorentzian metric g given by

g = −β(T,X) dT 2 + κ(T,X),

where β > 0 is smooth and κ is a family of Riemannian metrics on R3 depending on T smoothly.
The region of interest is an open diamond set given by

M = {(T,X) ∈Me : T + |X| < 1, T − |X| > −1}.
With ∂M = S̄+ ∪ S̄−, we shall denote

(1.1) S± = {(T,X) ∈Me : ±T + |X| = 1, 0 < |X| < 1}
to be respectively the future or past null infinity of M . We denote by i± = (±1, 0) respectively
the future and past timelike infinity and by R = {(T,X) : T = 0, |X| = 1} the spacelike infinity.
In addition, we make the following assumptions on the structure of the spacetime.

Assumption 1.1. Let (M, g) be a globally hyperbolic subset defined as above. We assume

• the metric g is smooth up to i±, and
• the future and past null infinity satisfy

S+ = ∂J−(i+) ∩ I+(i−) \ {i+}, S− = ∂J+(i−) ∩ I−(i+) \ {i−},
such that i± have no cut points there and S± are simple characteristic hypersurfaces with
respect to the wave operator □g, and

• (M, g) is nontrapping, in the sense that the projections of all null bicharacteristics tend to
S± as their parameters tend to ±∞.

Here the assumption that i± has no cut points on S± implies a smooth parameterization of S±
by null geodesics, see Section 5.1. The assumption that S± are characteristic hypersurfaces allows
us to choose local coordinates on null infinity where the metric and the Laplace-Beltrami operator
□g are given by certain forms, see Lemma 3.2. The nontrapping assumption can also be found
in the so-called asymptotically Minkowski spaces, see [13, 37]. One example of such a globally
hyperbolic subset is the conformal compactification of the Minkowski metric.

We consider the semilinear wave equation

(1.2)
□gu+ F (T,X, u) = 0 in M,

u = u− on S−,

where □g is the Laplace-Beltrami operator induced by the Lorentzian metric g, F ∈ C∞(M ×R),
and u− is the scattering data posed on the past null infinity. We solve the Cauchy-Goursat problem
with properly chosen data u− supported on the past null infinity S− and define the scattering
operator as the value of the solution of (1.2) restricted to a subset of the future null infinity S+.
This defines the nonlinear scattering operator, see Section 2 for more details. More precisely, for
fixed ρ ∈ (0, 1), we consider consider the set

S−,ρ = {(T,X) ∈ S− : −ρ < T + |X| < 1}.

By Theorem 2.3, the nonlinear problem (1.2) has a unique solution u ∈ Hk(Ωρ) for k ≥ 3, as long
as the scattering data

u− ∈ D(ρ) := {u− ∈ Hk(S−,ρ) : ∥u−∥Hk < ϵ(ρ)},
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with ϵ(ρ) satisfying Theorem 2.3. The nonlinear scattering map is thus a map (or a collection of
maps ) given by

N : u− 7→ u|S+,ρ , where S+,ρ = {(T,X) ∈ S+ : T − |X| < ρ},(1.3)

for any u− ∈ D(ρ). We consider the inverse problem of recovering g from this scattering map.
Moreover, we assume the nonlinearity F is analytic in u and thus can be written as a power series

(1.4) F (T,X, u) =
+∞∑
m=2

βm(T,X)um, βm ∈ C∞(M),

and additionally for each q ∈ M , there exists m ≥ 2 such that βm(q) ̸= 0. Our main theorem is
the following:

Theorem 1.2. Let (M (j), g(j)), j = 1, 2 be globally hyperbolic Lorentzian subsets satisfying As-

sumption 1.1. Consider the semilinear wave equation (1.2) with nonlinearity F (j)(T,X, u) satis-
fying (1.4) and the assumption below, for j = 1, 2. If the nonlinear scattering operators defined by
(1.3) satisfy

N (1)(u−) = N (2)(u−)

for each u− ∈ D(ρ), then there exists a smooth diffeomorphism Ψ : M → M and a function
γ ∈ C∞(M) such that for any q ∈M , we have

Ψ∗(g(1)) = e2γg(2).

To better illustrate the ideas used in proving Theorem 1.2, we first consider the reconstruction
for a cubic wave equation.

Theorem 1.3. Let (M (j), g(j)), j = 1, 2 be globally hyperbolic Lorentzian subsets satisfying As-
sumption 1.1. Consider the cubic wave equation

□gu
(j) + β(j)(T,X)(u(j))3 = 0, j = 1, 2,

where β(j) ∈ C∞(M (j)) are nonvanishing on M . If the nonlinear scattering operators satisfy

N (1)(u−) = N (2)(u−)

for each u− ∈ D(ρ), then there exists a smooth diffeomorphism Ψ : M → M and a function
γ ∈ C∞(M) such that for any q ∈M , we have

Ψ∗(g(1)) = e2γg(2).

In this work, following the approach in [46], we start with the multi-fold linearization and derive
the asymptotic expansion of the measurements, using solutions to linear wave equations. Inspired
by Friedlander [29, 30], we construct receding waves as special solutions to linear wave equations.
The interaction of these waves produces new singularities carrying information to the future null
infinity. Rather than using an observation set outside M to recover the metric, we reconstruct g
withinM , up to conformal diffeomorphisms, using the so-called earliest (or regular) scattering light
observation sets, see Section 6. Essentially, in the absence of caustics (such as conjugate points
or cut points), this earliest (or regular) scattering light observation set is simply the intersection
of the future light cone surface from a point in M restricted to the future null infinity. This is an
analog of the reconstruction from the earliest light observation set in [46] or the boundary light
observation sets in [34]. As caustics naturally exists in Lorentzian geometry, to deal with them,
we use a layer stripping procedure for the reconstruction. This approach allows us to recover the
metric by sending sources and detecting new singularities in small pieces of S− and S+ respectively.
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2. The forward problem and the nonlinear scattering operator

We define the scattering operator for the nonlinear equation

(□g + L)u = F (T,X, u),

where L is a first order differential operator with smooth coefficients and F ∈ C∞(M×R) satisfying
F (T,X, 0) = ∂uF (T,X, 0) = 0. Recall the definition of S± in (1.1). We begin by analyzing the
linear Goursat problem

(□g + L)u = f(T,X),

u
∣∣
S−

= u− ∈ H1(S−),
(2.1)

which has been studied by several people including Baez, Segal and Zhou [4], Hörmander [40] and
followed by [6, 54] and several others. They prove the following global result

Theorem 2.1. Let f ∈ L1
loc(R, L2(R3)) and let u− ∈ H1(S−) then there exists u ∈ E which

satisfies (2.1) on M, where E is the space of functions with finite energy

E(u, T ) =
1

2

∫
R3

[
(∂Tu)

2 +
∑

gjk∂ju∂ku+ u2
]
dν.

where ν is a density on R3, for |T | ≤ R, and

(2.2) sup
|T |≤R

E(u, T ) ≤ C(R)
[
||u0||H1(S−) + ||f ||L1(−R,R);L2(R3)

]
.

Moreover, u is unique on J+(S−).

Hörmander works on Lorentzian manifolds R ×N, where N is compact, but by finite speed of
propagation we can use his result to prove a local theorem, which is what we need. One can also
refer to Theorem 23 or [6], which does not assume N to be compact. This is not an issue for the
existence of solutions to (2.1), however to guarantee uniqueness one needs the fact that J+(S−)
is past compact, which means that J−((T,X)) ∩ J+(S−) is compact for all (T,X) in J+(S−), to
guarantee the uniqueness of the solution on J+(S−). They give a counterexample which shows
that uniqueness is not guaranteed otherwise.

We may assume that the initial data is smoother. Suppose that V(S−) denotes the Lie algebra
of C∞ vector fields that are tangent to S−, and assume that[

V(S−)
∣∣
S−

]k
u0 ∈ L2(S−), 1 ≤ k ≤ K ∈ N.

In the case k > 1 we also obtain more regularity for the solution. We know from Proposition 4.10
of [52] that the commutator of □g and elements of V(S−) satisfy

[□g,V(S−)] ∈ h□g +Diff1 ·V(S−) + Diff1,

where h ∈ C∞, and Diff1 denotes the C∞ first order differential operators. We also know from
Proposition 2.4 of [52] that V(S−) is finitely generated over C∞(M) by C∞ vector fields. By
differentiating the equation (2.1) we obtain a system(

□gI + L)U = F̃ ,

where UT = (u, V1u, . . . , Vku), F
T = (f, V1f, . . . , Vkf), and Vk are the generators of V(S−), I is the

k×k identity matrix and L is a matrix of differential operators of order one. Theorem 2.1 applied
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to this system shows that V(S−)u has finite energy and it satisfies estimate (2.2). Repeating this
process for any integer k ≥ 1, we obtain

sup
|T |≤R

E(V(S−)ku, T ) ≤ C(R)
[
||V(S−)ku0||H1(S−) + ||V(S−)kf ||L1(−R,R);L2(R3)

]
≤

C1(R)
[
||V(S−)ku0||H1(S−) + ||V(S−)kf ||2L2([−R,R]×R3)

]
.

(2.3)

Since away from S−, V(S−) includes all vector fields, this shows that u ∈ Hk+1(M \ S−). In
particular u ∈ L∞

loc(M \ S−), provided k ≥ 2. However we need to control the L∞ norm of u in
terms of the norm of the initial data up to S−. For ρ ∈ (−1, 1), let

S−,ρ = {(T,X) ∈ S− : −1 < −ρ < T + |X| < 1}.

One can find coordinates (x, y) such that

S− = {x = 0},

and the fact that a solution u of (2.1) with u0 supported on S−,ρ we can say that u = 0 for yj < y0j ,
provided 0 < x < ε. The C∞ vector fields tangent to S− are spanned by {∂yj , j = 1, 2, 3.}

This is done in the following

Lemma 2.2. Let u(x, y) ∈ Ck
(
(0, 2)× [0, 1]3

)
, k ≥ 4, be such that

u(x, y1, y2, 0) = u(x, y1, 0, y3) = u(x, 0, y2, y3) = 0,

then for (t, x) ∈ (0, 1)× (0, 1)

|u(x, y1, y2, y3)| ≤ |u(1, y1, y2, y3)|+ C||∂x∂y1∂y2∂y3u||L2((0,1)4).

Proof. This just follows from the identity

u(1, y1, y2, y3)− u(x, y1, y3, y3) =

∫ 1

x

∫ y3

0

∫ y2

0

∫ y1

0
∂s∂µ1∂µ2∂µ3u(s, µ1, µ2, µ3) dsdµ.

□

Theorem 2.3. Let F ∈ C∞(M × R). Then for any ρ ∈ (−1, 1), there exists ε = ε(ρ,G,L) such
that if u− ∈ Hk(S−,ρ), k ≥ 3, and ||u−||Hk(S−) < ε, there exists a unique u which satisfies

(□g + L)u = F (T,X, u) in Ωρ,

u
∣∣
S−

= u−,
(2.4)

where we define Ωρ = {(T,X) : T − |X| < ρ, T + |X| > −ρ}.

Proof. Let u0 satisfy

(□g + L)u0 = 0,

u0
∣∣
S−

= u− ∈ Hk(S−,ρ),
(2.5)

It follows from (2.3) that V(S−)ku0 ∈ E and that for fixed ρ,

(2.6) ||V(S−)ku0||H1(Ωρ) ≤ C1(ρ)||V(S−)ku0||H1(S−) ≤ C1(ρ)ε.

Also, by finite speed of propagation

u0 = 0 outside J+(S−,ρ).
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This means that away from S−, u0 ∈ Hk+1, and hence bounded if k is large. But according to
Lemma 2.2,

(2.7) ∥u0∥L∞ ≤ C∥u0∥Hk+1(Ωρ).

By proposition 2.1.2 of [9], if Ωρ is an open set, the space

u ∈ Hk(Ωρ) := L∞
loc(Ωρ) ∩ {w : V(S−)kw ∈ L2} is a C∞ algebra and moreover

||V(S−)kF (T,X, u)||L2(Ωρ) ≤ K(||u||L∞)||u||Hk(Ω), where K is continuous.
(2.8)

Let
B(0, C1(ρ)ε) =

{
w ∈ Hk(Ωρ), w = 0 outside J+(S−,ρ) : ∥w∥Hk ≤ C1(ρ)ε

}
,

Then, according to (2.3), for w ∈ B(0, C1(ρ)ε), the solution v of(
□+ L

)
v = F (T,X, u0 + w),

v
∣∣
S−

= 0,
(2.9)

satisfies

||v||Hk(Ωρ) ≤ C1(ρ)||F (T,X, u0 + w)||2Hk(Ωρ)
≤

C1(ρ)
(
K(||u0 + w||L∞)

)
||u0 + w||Hk(Ωρ

)2
,

but according to Lemma 2.2, ||w||L∞ ≤ C||w||Hk , and so we find that

||v||Hk(Ωρ) ≤ C1(ρ)
(
K(C||u0 + w||Hk ||u0 + w||Hk(Ωρ

)2 ≤ 4C1(ρ)
3K(2Cε)2ε2.

If we pick ε such that 4C1(ρ)
2K(2Cε)2ε < 1, this gives a bounded nonlinear map

B(0, C1(ρ)ε) −→ B(0, C1(ρ)ε),

w 7−→ v

Next we show that by further restricting ε this map is a contraction. For w1, w2 ∈ B(0, C1(ρ)ε),
let F(T,X, s, t) ∈ C∞ such that

F (T,X, u0 + w1)− F (T,X, u0 + w2) = F(T,X, u0, w1, w2)(w1 − w2)
2.

We appeal to the Gagliardo-Nirenberg estimates proved in Lemma 5.2 of [52] which states that if
V1, V2, . . . Vp ∈ V(S−), then for 0 < |α| < k,

(2.10)
∣∣∣∣(V1, V2, . . . Vp)αu∣∣∣∣

L
2k
|α|

≤ C
(
∥u∥L∞ +

∑
|β|≤k

∥∥(V1, . . . Vp)β∥∥L2

)
,

where C only depends on the vector fields and the domain. A combination of the product rule
and Hölder’s inequality gives∥∥(V1 . . . Vp)α(F(T,X, u0, w1, w2)(w1 − w2)

)∥∥
L2 ≤∑

γ≤α

∥∥(V1 . . . Vp)γF(T,X, u0, w1, w2)
∥∥
L

2|γ|
|α|

∥∥(V1 . . . Vp)α−γ(w1 − w2)
2
∥∥
L

2|α−γ|
|α|

,

and (2.10) gives that∥∥(V1 . . . Vp)α(F(T,X, u0, w1, w2)(w1 − w2)
2
)∥∥
L2 ≤

C

(
∥F∥L∞ +

∑
|β|≤|α|

∥∥(V1, . . . Vp)βF∥∥
L2

)(
∥w1 − w2∥2L∞ +

∑
|β|≤|α|

∥∥(V1, . . . Vp)β(w1 − w2)
2
∥∥
L2

)
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In view of Lemma 2.2, since u0 = w1 = w2 = 0 outside J+(S−,ρ), we obtain

||wj ||L∞ ≤ C||wj ||Hk , j = 1, 2, and ||u0||L∞ ≤ C||u0||Hk , provided k ≥ 2.

We also know from (2.8) that∥∥(V1, . . . Vp)βF(T,X, u0, w1, w2)
∥∥
L2 ≤

K
(
|∥u0∥L∞ , |∥w1∥L∞ , |∥w2∥L∞

)(
|∥u0∥Hk + |∥w1∥Hk + |∥w2∥Hk).

This implies that

(2.11) ∥f(T,X, u0 + w1)− f(T,X, u0 + w2)∥Hk ≤ K(ρ, ε)ε2,

and therefore if v1 and v2 are the solutions of (2.9) corresponding to w1 and w2, it follows from
(2.3) and (2.11) that

||v1 − v2||Hk ≤ C1(ρ)(K(ρ, ε)ε2)2.

We now just pick ε such that C1(ρ)(K(ρ, ε)ε2)2 < 1. This gives a contraction mapping and therefore
we obtain a function w ∈ Hk(Ωρ) such that u = w + u0 satisfies (2.4). □

Then the scattering map is defined on the set

D =
⋃

ρ∈(−1,1)

D(ρ), with D(ρ) := {u− ∈ Hk(S−,ρ) : ∥u−∥Hk < ϵ(ρ)} for k ≥ 3,

where ϵ(ρ) > 0 is chosen so that Theorem 2.3 holds and the nonlinear wave equation, with data
u−, admits a unique solution which is defined in the region t − |X| < ρ. The scattering map is
thus a map (or collection of maps)

D(ρ) ∋ u− 7→ u
∣∣
S+,ρ

,(2.12)

where u is the solution of ((2.4)) and S+,ρ = {(T,X) ∈ S+ : T − |X| < ρ}. Observe that u ∈ Ck

and there is no problem defining the restriction of u to S+.

3. Preliminaries

3.1. Lorentzian manifolds. We recall some notations and preliminaries in [46]. Let (Me, g) be a
globally hyperbolic Lorentzian manifold. For η ∈ T ∗

pMe, the corresponding vector of η is denoted

by η# ∈ TpMe. The corresponding covector of a vector ξ ∈ TpMe is denoted by ξ♭ ∈ T ∗
pMe. We

denote by

LpMe = {ζ ∈ TpMe \ 0 : g(ζ, ζ) = 0}
the set of light-like vectors at p ∈ Me and similarly by L∗

pMe the set of light-like covectors. The

sets of future (or past) light-like vectors are denoted by L+
pMe (or L

−
pMe), and those of future (or

past) light-like covectors are denoted by L∗,+
p Me (or L∗,−

p Me).
The characteristic set Char(□g) is the set b

−1(0) ⊂ T ∗Me, where b(x, ζ) = gijζiζj is the principal
symbol. It is also the set of light-like covectors with respect to g. We denote by Θx,ζ the null
bicharacteristic of □g that contains (x, ζ) ∈ L∗Me, which is defined as the integral curve of the
Hamiltonian vector field Hb. Then a covector (y, η) ∈ Θx,ζ if and only if there is a light-like
geodesic γx,ζ# such that

(y, η) = (γx,ζ#(s), (γ̇x,ζ#(s))
♭), for s ∈ R.

Here we denote by γx,ζ# the unique null geodesic starting from x in the direction ζ#.
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The time separation function τ(x, y) ∈ [0,∞) between two points x < y in Me is the supremum
of the lengths

L(α) =

∫ 1

0

√
−g(α̇(s), α̇(s))ds

of the piecewise smooth causal paths α : [0, 1] → Me from x to y. If x < y is not true, we define
τ(x, y) = 0. Note that τ(x, y) satisfies the reverse triangle inequality

τ(x, y) + τ(y, z) ≤ τ(x, z), where x ≤ y ≤ z.

For (x, v) ∈ L+Me, recall the cut locus function

ρ(x, v) = sup{s ∈ [0, T (x, v)] : τ(x, γx,v(s)) = 0},

where T (x, v) is the maximal time such that γx,v(s) is defined. The cut locus function for past
lightlike vector (x,w) ∈ L−Me is defined dually with opposite time orientation, i.e.,

ρ(x,w) = inf{s ∈ [T (x,w), 0] : τ(γx,w(s), x) = 0}.

For convenience, we abuse the notation ρ(x, ζ) to denote ρ(x, ζ#) if ζ ∈ L∗,±Me. By [15, Theorem
9.15], the first cut point γx,v(ρ(x, v)) is either the first conjugate point or the first point on γx,v
where there is another different geodesic segment connecting x and γx,v(ρ(x, v)).

3.2. Lagrangian distributions. Suppose Λ is a conic Lagrangian submanifold in T ∗Me away
from the zero section. We denote by Iµ(Λ) the set of Lagrangian distributions in Me associated
with Λ of order µ. In local coordinates, a Lagrangian distribution can be written as an oscillatory
integral and we regard its principal symbol, which is invariantly defined on Λ with values in the
half density bundle tensored with the Maslov bundle, as a function in the cotangent bundle. If Λ is
a conormal bundle of a submanifold K ofMe, i.e. Λ = N∗K, then such distributions are also called
conormal distributions. The space of distributions in Me associated with two cleanly intersecting
conic Lagrangian manifolds Λ0,Λ1 ⊂ T ∗Me \ 0 is denoted by Ip,l(Λ0,Λ1). If u ∈ Ip,l(Λ0,Λ1), then
one has WF(u) ⊂ Λ0 ∪ Λ1 and

u ∈ Ip+l(Λ0 \ Λ1), u ∈ Ip(Λ1 \ Λ0)

away from their intersection Λ0 ∩ Λ1. The principal symbol of u on Λ0 and Λ1 can be defined
accordingly and they satisfy some compatible conditions on the intersection.

For more detailed introduction to Lagrangian distributions and paired Lagrangian distributions,
see [46, Section 3.2] and [50, Section 2.2]. The main reference are [41, 42] for conormal and
Lagrangian distributions and [22, 31, 32, 51, 33] for paired Lagrangian distributions.

3.3. Inverses of linear wave equations. On a globally hyperbolic Lorentzian manifold (Me, g),
the wave operator □g with the principal symbol b(x, ζ) = gijζiζj is normally hyperbolic, see
[18, Section 1.5]. It has a unique casual inverse □−1

g according to [18, Theorem 3.3.1]. By [51,
Proposition 6.6], one can symbolically construct a parametrix Qg, which is the solution operator
to the wave equation

□gv = f, on Me,

v = 0, on Me \ J+(supp (f)),

in the microlocal sense. It follows that Qg ≡ □−1
g up to a smoothing operator. We denote the

kernel of Qg by q(x, x̃) and it is a paired Lagrangian distribution in I−
3
2
,− 1

2 (N∗Diag,Λg), where
Diag denotes the diagonal in M × M , N∗Diag is its conormal bundle, and Λg is the flow-out
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of N∗Diag ∩ Char(□g) under the Hamiltonian vector field Hb. Here we construct the microlocal
solution to the equation

□gq(x, x̃) = δ(x, x̃) mod C∞(M ×M),

using the proof of [51, Proposition 6.6]. The symbol of Qg can be found during the construction
there. In particular, the principal symbol of Qg along N∗Diag satisfying σp(δ) = σp(□)σp(Qg) is
nonvanishing. The one along Λg \N∗Diag solves the transport equation

LHb
σp(Qg) + icσp(Qg) = 0,

where LHb
is the Lie action of the Hamiltonian vector field Hb and c is the subprincipal symbol

of □. The initial condition is given by restricting σp(Qg)|N∗Diag to ∂Λg, see (6.7) and Section 4 in
[51]. Then one can solve the transport equation by integrating along the bicharacteristics. This
implies the solution to the transport equation is nonzero and therefore σp(Qg)|Λg is nonvanishing.
See also [22, 18, 32] for more references.

We have the following proposition according to [32, Proposition 2.1], see also [50, Proposition
2.1].

Proposition 3.1. Let Λ be a conic Lagrangian submanifold in T ∗M \ 0. Suppose Λ intersects
Char(□g) transversally, such that its intersection with each bicharacteristics has finite many times.
Then

Qg : I
µ(Λ) → Iµ−

3
2
,− 1

2 (Λ,Λg),

where Λg is the flow-out of Λ ∩Char(□g) under the Hamilton flow. Moreover, for (x, ξ) ∈ Λg \Λ,
we have

σp(Qgu)(x, ξ) =
∑

σp(Qg)(x, ξ, yj , ηj)σp(u)(yj , ηj),

where the summation is over the points (yj , ηj) ∈ Λ that lie on the bicharacteristics from (x, ξ).

Later we would like to consider the solution to

(3.1) □gv = f in M, with R−[v] = 0,

where R−[v] is the restriction of v to the smooth null hypersurface S−. For convenience, we
define the solution operator Qs in the sense that v = Qs(f) solves the linear problem above.
In particular, for f ∈ E ′(M), this solution operator coincides with the causal inverse Qg up to
smoothing operators.

3.4. Receding waves with conormal singularities. Our purpose is to generate solutions of
the Goursat problem (2.5) with scattering data u0 supported in S−,ρ. In addition, these solutions
are supposed to have conormal singularities along a C∞ hypersurface transversal to S−, in a small
neighborhood of a given point p ∈ S−,ρ. We name these receding waves, following Friedlander
[29, 30]. This is a local result and we work in suitable local coordinates given by the following
lemma.

Lemma 3.2. One can choose local coordinates (s, x), with x = (x1, x2, x3), valid near p ∈ S− such
that, modulo lower order terms, we have S− = {x1 = 0} and

□g ≡ a(x, s)x1∂
2
x1 + b0(x, s)∂x1∂s+

∑
j=2,3

(αj∂s + x1βj∂x1)∂xj +

3∑
j,k=2,3

αjk∂xj∂xk ,(3.2)

with b0(x, s) ̸= 0.
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Proof. We may choose local coordinates y = (y1, y2, y3, y4) near p ∈ S− such that

S− = {y1 = 0} and p = (0, 0, 0, 0).

Since S− is characteristic for □g, the principal symbol p(y, η) = σ2(□g) satisfies

p(y, η) = a11(y)y1η
2
1 +

4∑
j=2

a1j(y)η1ηj +
4∑

j,k=2

ajk(y)ηjηk.

Moreover, since S− is simply characteristic, dp ̸= 0 on N∗S− \ 0, and hence

a1j(0) ̸= 0, j = 2, 3, 4.

Now we pick local coordinates (s, x2, x3) defined in a neighborhood of p, but inside the surface
S−, such that

∂s = a12(0, y
′)∂y2 + a13(0, y

′)∂y3 + a14(0, y
′)∂y4 ,

and ∂sxj = 0, for j = 2, 3, ∂x2x3 = ∂x3x2 = 0.

Now we extend these coordinates to a neighborhood of q in Me such that

∂y1s = 0, ∂y1x2 = 0, ∂y1x3 = 0.

It follows that in coordinates (s, x1, x2, x3), where x1 = y1, the principal part of □g satisfies

□g = a11x1∂
2
x1+

( 3∑
j=1

a1j
∂s

∂yj

)
∂s∂x1 +

4∑
j=2

(
a12

∂xj
∂y2

+ a13
∂xj
∂y3

+ a14
∂xj
∂y4

)
∂xj∂x1+

4∑
j,k=2

ajk
( ∂s
∂yj

∂s +
∂x

∂yj
· ∂x

)( ∂s
∂yk

∂s +
∂x

∂yk
· ∂x

)
,

where
∂x

∂yk
· ∂x =

∂x1
∂yk

∂x1 +
∂x2
∂yk

∂x2 +
∂x3
∂yk

∂x3 .

Since ∂sxj = 0 on {x1 = 0}, this proves (3.2). The fact b0 ̸= 0 is due to the fact that S− is simply
characteristic. □

Given a point p ∈ S− and let Ũ ⊆ Me be a neighborhood of p in which coordinates (3.2) are
valid. Let ϕ(x2, x3) ∈ C∞({x1 = 0}) and let

Σ = {(s, x2, x3) ∈ U : s− ϕ(x2, x3) = 0}

be a C∞ surface in U = Ũ ∩{x1 = 0}. Its conormal bundle is parameterized by the phase function
Φ(s, x2, x2, α) = α(s− ϕ(x2, x3)) with α ∈ R \ 0, in the sense that

N∗Σ = {(s, x2, x3, σ, ξ2, ξ3) : ∂αΦ = s− ϕ(x2, x3) = 0, σ = ∂sΦ = α,

ξj = ∂xjΦ = −α∂xjϕ(x2, x3), for j = 2, 3}.
Since here N = 1, let

u(s, x2, x3) =
1

(2π)n

∫
R
eiα(s−ϕ(x2,x3)a(s, x2, x3, α) dα, where a ∈ S

m+2n−1
4 (U × (Rα \ 0)),

with

a(s, x2, x3, α) ∼
∞∑
j=j0

aj(s, x2, x3)α
j0−j .
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According to [38, Chapter 25], this is a conormal distribution on Σ. Now we extend N∗Σ to a
submanifold of V ⊆ T ∗

{x=0}Me, which is characteristic for the operator □g, or in other words, that

V ⊆ p−1(0), where p = σ2(□g). But it follows from (3.2) that at {x1 = 0}, we have

p = b0σξ1 + h(s, x2, x3, σ, ξ2, ξ3),

where h is a homogeneous polynomial of degree two in (σ, ξ2, ξ3), with smooth coefficients depend-
ing on (s, x2, x3). Thus, we set

V =
{
(s, 0, x2, x3,σ, ξ1, ξ2, ξ3) : σ = α, ξj = −∂xjϕ(x2, x3)α, for j = 2, 3,

ξ1 = − 1

b0(0, x2, x3, s)σ
h(s, x2, x3, σ, ξ2, ξ3) = − α

b0(0, x2, x3, s)
h(s, x2, x3, 1, ∂x2ϕ, ∂x3ϕ)}.

Since Hp is transversal to {x1 = 0} when σ ̸= 0, we define

U = exp(−µHp)V,

to be the manifold obtained by flowing-out of V to M, where the negative sign indicates that the
flow goes towards the region {x1 > 0} = M is a C∞ conic Lagrangian submanifold on the entire
T ∗Me \ 0.

Since by construction, the projection

Π : U −→Me,

(s, x, σ, ξ) 7−→ (s, x)

has maximal rank at p, then it must have maximal rank near a and so U is the conormal bundle
of a C∞ surface near {x1 = 0}. Therefore there exists a C∞ surface

Σ̃ ⊂Me, such that Σ̃ ∩ {x1 = 0} = Σ = {ϕ(s, x2, x3) = 0}

and so there exists a C∞ function ψ(s, x1, x3, x3) in a neighborhood Ũ ⊂ Me of p such that

ψ(s, 0, x2, x3) = ϕ(s, x2, x3) and ∂sψ ̸= 0 in Ũ , and therefore

U = N∗{(s, x) ∈ Ũ : ψ(s, x) = 0, ∂sψ ̸= 0 in Ũ}.

The phase function ψ(s, x)α with α ∈ R \ 0 parameterizes N∗Σ̃. Next we want to find v(s, x) such
that Pv = 0 and

v(s, 0, x2, x3) = u0(s, x2, x3) =
1

(2π)n

∫
R
eiα(s−ϕ(x2,x3))a(s, x2, x3, α) dα,

where we write P = □g + L and a ∈ S
m+2n−1

4 (U × Rα). We shall denote p = σ2(P ). We take

v1(s, x) =
1

(2π)n

∫
R
eiαψ(s,x)β(s, x, α) dα,

where β ∈ S
m+2n−1

4 (Ũ × (Rα \ 0)) such that β(s, x, θ, α) ∼
∑∞

j=j0
βj(s, x, θ)α

j0−j . A standard
computation gives

Pv1 =
1

(2π)n

∫
R
eiαψ(s,x)

(
−p(∇ψ)α2β + Pβ + α((Pψ)β +Hp

∣∣
U
β)

)
dα,

where Hp

∣∣
U
is the restriction of the Hamilton vector field Hp to U.We know that U is characteristic,

so p(∇ψ) = 0. We obtain the following transport equations for βj in terms of βk, for k < j. Since
∂sψ(s, 0, x2, x3) = ∂sϕ(s, x2, x3) ̸= 0 near p, then ∂sψ(s, x) ̸= 0 near {x1 = 0}. In particular, the
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vector filed Hp

∣∣
U
is transversal to {x1 = 0} and these equations can be solved in a neighborhood

of {x1 = 0}. This construction gives a function v1(s, x) such that

Pv1 = f ∈ C∞(M), with v(s, 0, x2, x3) = u(s, x2, x3).

We know from (2.3) that the solution w of

Pw = f in M, with w = 0 on S−,

is a C∞ function and therefore so v = v1 − w is the desired solution.
Moreover, the proof of Lemma 3.2 and the analysis above indicates the following proposition.

Proposition 3.3. Let Λ be a conic Lagrangian submanifold in T ∗M \ 0. Suppose Λ intersects
Char(□g)

± transversally finite many times. Let Λg,± be the flow-out of Λ ∩ Char(□g)
± under the

Hamiltonian flow. Then for ε > 0 small enough, Λg,± extend to C∞ Lagrangian submanifolds to
T ∗Me. Moreover, it intersects S± cleanly with

Λ±
∞ = Λg,± ∩ S±

as C∞ Lagrangian submanifolds of T ∗S± \ 0. In addition, if u ∈ Iµ(Me,Λ
g,•) is a Lagrangian

distribution, then its restriction

u|S• ∈ Iµ+1/4(S•,Λ
•
∞)

and the symbol is given by σ(u) restricted to Λ•
∞, where we write • = ±.

4. Interaction of nonlinear waves

4.1. Asymptotic expansions. In the following, let ϵj > 0 be small parameters and let Υj ∈ D(ρ)
for j = 1, 2, 3. Let u solve the nonlinear problem

□gu+ βu3 = 0 in M, with R−[u] = ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3,

where R−[u] is the restriction of u to S−. We consider the nonlinear scattering map

N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3) = R+[u],

where R+[u] is the restriction of u to S+. We derive the asymptotic expansion of u with respect
to these small parameters. Indeed, if we write

u =
∑
j

ϵjvj +
∑
i,j

ϵiϵjA
ij
2 +

∑
i,j,k

ϵiϵjϵkA
ijk
3 +R3

where vj are receding waves constructed before solving

□gvj = 0 in M, with R−[vj ] = Υj ,(4.1)

and R3 is the remainder containing ϵ-terms higher than |ϵ|3. By plugging the formula of u into
the nonlinear equation and equating ϵ-terms, for 1 ≤ i, j, k ≤ 3, we have

□gA
ij
2 = 0, with R−[A

ij
2 ] = 0,

□gA
ijk
3 = −βvivjvk, with R−[A

ijk
3 ] = 0.

Note that Aij2 ≡ 0 and therefore the remainder R3 solves

□gR3 = −β(v +A3)
3 − 3β(v +A3)

2R3 − 3β(v +A3)R
2
3 − βR3

3, R−[R3] = 0,
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where we write v =
∑

j ϵjvj and A3 =
∑

i,j,k ϵiϵjϵkA
ijk
3 for simplification. One can verify that R

is relatively smaller by energy estimates derived in Section 2 to conclude that

N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3) =
∑

1≤i,j,k≤3

ϵiϵjϵkR+[A
ijk
3 ] +OL2(R×S2)(|⃗ϵ|4).(4.2)

In particular, we have

∂ϵ1∂ϵ2∂ϵ3N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3)|ϵ1=ϵ2=ϵ3=0 = R+[U3],

where we write

U3 =
∑

(i,j,k)∈Σ(3)

Aijk3

solving linear problem

□gU3 − 6βv1v2v3 = 0 in M, with R−[U3] = 0.

4.2. Propagation of receding waves. Recall the construction of receding waves in Section 3.4.
For fixed p0 ∈ S−, there exists a small neighborhood Ũ ⊆Me of p0 such that locally

Ũ ∩ S− = {(s, x1, x2, x3) : x1 = 0}.

We write U = Ũ ∩ S−. Let w0 ∈ L+
p0M ∩ T+

p0M , where T+
p0M− is the outward vector space defined

in (6.7). The analysis in Section 3.4 shows we can find φ ∈ C∞(U) such that

∂sφ ̸= 0, φ(p0) = 0, α(1,−∂x2φ(p0),−∂x3φ(p0)) = w0, for some α ̸= 0.

One example is given by φ(s, x2, x3) = s− ϕ(x2, x3) for some ϕ ∈ C∞(U) in Section 3.4.
Now for a small parameter κ0 > 0, we define

Σ(p0, w0, κ0) = {p ∈ U : φ(p) = 0 with dg+(p, p0) < κ0}.

The condition ∂sφ ̸= 0 guarantees that each covector in N∗Σ(p0, w0, κ0) can be uniquely mapped
to an outward future pointing lightlike vector. Thus, we define

W (p0, w0, κ0) = {(p, w) ∈ L+
S−
M ∩ T+

S−
M : (p, π(w)♭) ∈ N∗Σ(p0, w0, κ0)}.

We denote by γp0,w0(R) the unique null geodesic starting from p0 with direction w0, and we define

K(p0, w0, κ0) = {γp,w(ς) ∈M : (p, w) ∈W (p0, w0, s0), ς ∈ (0,∞)}

as the subset of the light cone emanating near (p0, w0) by light-like vectors in W (p0, w0, κ0). As κ
goes to zero, the surface K(p0, w0, κ0) tends to the geodesic γp0,w0(R+). We define

Λ(p0, w0, κ0) ={(γp,w(ς), rγ̇p,w(ς)♭) ∈ T ∗M :

(p, w) ∈W (p0, w0, κ0), s ∈ (0,∞), r ∈ R \ {0}}

as the flow-out from Char(□g) ∩ Σ(y0, w0, κ0) by the Hamiltonian vector field of □g in the future
direction. Note that Λ(p0, w0, κ0) is the conormal bundle of K(p0, w0, κ0) near γp0,w0(R+) before
the first cut point of p0.

Let (pj , wj) ∈ L+
S−
M ∩ T+

S−
M for j = 1, 2, 3 and we construct Υ(pj , wj , κ0) using Section 3.4 as

conormal distributions supported in N∗Σ(pj , wj , κ0). Then vj are constructed as receding waves
using Section 3.4 to satisfy (4.1). Note such vj are Lagrangian distributions microlocally supported
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in Λ(pj , wj , κ0) and they are conormal distributions before the first cut point of γpj ,wj (R+). As in
[46], we consider the interaction of waves in the open set

(4.3) N (p⃗, w⃗) =M \
3⋃
j=1

J+(γpj ,wj (ρ(pj , wj))),

which is the complement of the causal future of the first cut points. In N (p⃗, w⃗), the receding
waves that we constructed are conormal distributions and any two of the null geodesics γpj ,wj (R+)
intersect at most once, by [15, Lemma 9.13].

We introduce the definition of the regular intersection of three null geodesics at a point q, as in
[46, Definition 3.2].

Definition 4.1. We say the geodesics corresponding to (pj , wj)
3
j=1 intersect regularly at a point

q, if one has

(1) there are 0 < ςj < ρ(pj , wj) such that q = γpj ,wj (sj), for j = 1, 2, 3,
(2) the vectors γ̇pj ,wj (sj), j = 1, 2, 3 are linearly independent.

In addition, we introduce the following definition on the intersection of three submanifolds as
in [50, Definition 3.1].

Definition 4.2. We say three 1-codimensional submanifolds K1,K2,K3 intersect 3-transversally
if

(1) Ki,Kj intersect transversally at a codimension 2 manifold Kij, for i < j;
(2) K1,K2,K3 intersect at a codimension 3 submanifold K123, for i < j < k;
(3) for any two disjoint index subsets I, J ⊂ {1, 2, 3}, the intersection of ∩i∈IKi and ∩j∈JKj is

transversal if not empty.

By [50], such K1,K2,K3 intersect with linearly independent normal covectors ζj ∈ N∗
qKj ,

j = 1, 2, 3. If three null geodesics γpj ,wj , j = 1, 2, 3, 4 intersect regularly at q, then we can always
construct Kj with small enough κ0 such that they intersect 3-transversally at q.

For convenience, in some cases we denote the triplet by (p⃗, w⃗) = (pj , wj)
3
j=1. We omit the

parameters pj , wj , s0 and use the following notations

γj = γpj ,wj , Υj = Υ(pj , wj , κ0), Σj = Σ(pj , wj , s0), Kj = K(pj , wj , s0), Λj = Λ(pj , wj , s0),

and

Λij = N∗(Ki ∩Kj), Λ123 = N∗(K1 ∩K2 ∩K3),

when the null geodesics γxj ,ξj intersects regularly at q. We define

Λ(1) = ∪3
j=1Λj , Λ(2) = ∪i<jΛij

and denote by Λg123 the flow-out of Λ123 ∩ Char(□g) under the null bicharacteristics in T ∗Me.
In the following, we consider distinct lightlike vectors (pj , wj)

3
j=1. Note that Υj are chosen to

be supported near pj . Then this condition allows us to choose sources with disjoint supports, i.e.,

(4.4) supp (Υj) ∩ supp (Υk) = ∅, for 1 ≤ j ̸= k ≤ 3.
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4.3. Singularities in nonlinear interaction. Recall vj ∈ Iµ(Λj) for j = 1, 2, 3 by our construc-
tion and U3 is the solution to

□gU3 − 6βv1v2v3 = 0, with R−[U3] = 0.

Using the solution operator Qs defined in Section 3.3, we can write U3 = −6Qs(βv1v2v3). By [50,
Lemma 3.6] and [50, Propostion 3.7], we have the following proposition.

Proposition 4.1. Suppose the submanifolds K1,K2,K3 intersect 3-transversally at K123. Then
in N (p⃗, w⃗) (see (4.3) for the definition), there is a decomposition v1v2v3 = w0 + w1 + w2 with

w0 ∈ I3µ+2(Λ123),

WF(w1) ⊂ Λ(1) ∪ (Λ(1)(ϵ) ∩ Λ123), WF(w2) ⊂ Λ(1) ∪ Λ(2).
(4.5)

In particular, for (q, ζ) ∈ Λ123 the leading term w0 has the principal symbol

σp(w0)(q, ζ) = 6(2π)−1
3∏

m=1

σp(vm)(q, ζ
m), where ζ = ζ1 + ζ2 + ζ3.

Recall Qs(f) coincides with Qg(f) for f ∈ E ′(M). Thus, we have the following proposition.

Proposition 4.2. Suppose K1,K2,K3 intersect 3-transversally at K123. Let Λg123 and Λ(1) be

defined as in Section 4.2. In N (p⃗, w⃗) away from Λ(1), we have

U3 ∈ I3µ+
1
2
,− 1

2 (Λ123,Λ
g
123).

In particular, let (y, η) ∈ L+,∗M lie along a future pointing null bicharactersitic of □g starting

from (q, ζ) ∈ Λ123. Suppose (y, η) is away from Λ(1) and before the first cut point of q. Then
(y, η) ∈ N (p⃗, w⃗) and the principal symbol of U3 is given by

σp(U3)(y, η) = −6(2π)−2σp(Qg)(y, η, q, ζ)β(q)

3∏
m=1

σp(vm)(q, ζ
m), where ζ = ζ1 + ζ2 + ζ3.

Next, recallR± is the restriction operator for the smooth null hypersurfaces S±. By [26, Chapter
5.1], such R± are Fourier integral operators of order 1/4 associated with the canonical relation

Λ± = {(y|, η|, y, η) ∈ T ∗(S±)× T ∗M \ 0 : y| = y, η| = η|T ∗
y S±}.

Although with null hypersurfaces we haveN∗S±∩Char(□g) ̸= ∅, yet the singularities of U3 interests
S+ transversally and thus

σp(∂ϵ1∂ϵ2∂ϵ3N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3)|ϵ1=ϵ2=ϵ3=0)(y|, η|) = σp(R+[U3])(y|, η|) ̸= 0

as long as σp(U3)(y, η) ̸= 0, according to Proposition 3.3.

5. A layer stripping method

In this section, we propose a layer stripping procedure, which allows us to reconstruct the
spacetime in small pieces, starting in a neighborhood of spacelike infinity R. The idea is that in a
sufficiently small region of the spacetime, there are no conjugate points such that one can generate
conormal waves and use them to produce new singularities. By concatenating such local recon-
structions, we cam eventually get to reconstruct the whole spacetime, by a compactness argument.
For this purpose, we consider the radius of injectivity of Lorentzian manifolds, for example see [19].
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To define it, we consider a reference Riemannian metric given by gR = β(T,X) dT 2+κ(T,X). We
consider the geodesic ball

B(0, r) = {v ∈ TqM : gR(v, v) < r} ⊆ TqM

determined by the reference Riemannian inner product at q. Let expq : TqM → M be the
exponential map given by the Lorentzian metric g. For fixed gR, the radius of injectivity Inj(q)
is defined as the largest radius r such that expq is a diffeomorphism from B(0, r) onto B(q, r) ⊆
M . Note that in the compact subset M the Euclidean metric ge = dT 2 + dX2 is equivalent to
the reference Riemannian metric gR. In the following, for convenience we regard B(q, r) as its
equivalence in the Euclidean case.

Lemma 5.1. Let 0 < T0 < 1 be fixed and let K :=
⋃
T<T0

J(S−(T ), S+(T )). There exists δ > 0
such that for any q ∈ K, there are no cut points along any null geodesic segments contained in
B(q, δ) ∩K.

Proof. As K is compact, the radius of injectivity Inj(q) for any q ∈ K has a lower bound r0 > 0.
We choose δ = r0/2. For any q ∈ K, if q′, q′′ ∈ B(q, δ) are connected by a null geodesic segment,
then

distgR(q
′, q′′) ≤ distgR(q

′, q) + distgR(q, q
′′) < r0.

Thus, q′′ is contained in B(q′, r0), within the radius of injectivity, and therefore the exponential
map there is a diffeomorphism. □

5.1. Parameterize S± using null geodesics. The fact that no cut points of i± along the past
and future null infinity S± implies that S± can be smoothly parameterized by a family of null
geodesics. Assuming the conformal class of g|S+ , one can follow the ideas in [66, Section 2.1.1] to
construct a family of null pregeodesics

µ+a : [−ς+a , 0] → S̄+, with µ+a (0) = i+ and µa(−ς+a ) ∈ R,

which covers S̄+ and smoothly depends on the parameter a ∈ S2. Similarly, one can construct a
family of null pregeodesics

µ−b : [0, ς−b ] → S̄−, with µ−b (0) = i− and µ−b (ς
−
b ) ∈ R,

which covers S̄− and smoothly depends on the parameter b ∈ S2. Moreover, the proof of [66,
Lemma 2.1.1] implies the following properties about the spacelike infinity

R := ∂J+(i−) ∩ ∂J−(i+) = {(0, X) ∈Me : |X| = 1}.

Lemma 5.2. Then for any p ∈ R, we have

(1) L−
p ∩M = J−(p) ∩M = ∅ and L+

p ∩M = J+(p) ∩M = ∅;
(2) for q ∈M , one has q /∈ J−(p) and q /∈ J+(p).

5.2. Null normal geodesic congruences. In the following, recall some results about null normal
geodesic congruences in [3].

Definition 5.1. We say S ⊆ M̄ is a regular 2-surface if it is a smooth 2-codimensional submanifold
of Me contained in a Cauchy surface and is homeomorphic to S2.

Note that such S is compact and acausal, in the sense that no causal curve meets S more than
once. The Lorentzian metric restricted to TpS for any p ∈ S is positive definite and therefore

(TpS)
⊥ is a 2-dimensional Lorentzian space.
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There are exactly 2 future pointing null vectors in (TpS)
⊥. One of them projects to the exterior

of S and we call it vout ∈ L+Me. Another one projects to the interior of S and we call it vin ∈ L+Me.
Similarly, there are exactly 2 past pointing null vectors (TpS)

⊥, which are outward and inward
respectively. We consider the future pointing null geodesics γp,vout starting from p in the direction
of vout and γp,vin starting from p in the direction of vin. We define the following sets in M formed
by these null geodesics for each point in S, i.e.,

(5.1) Cout,+ =
⋃
p∈S

γp,vout(R+) ∩M and Cin,+ =
⋃
p∈S

γp,vin(R+) ∩M

as the future pointing outward null geodesic congruences and the future pointing inward null
geodesic congruences normal to S. In general, these sets are not smooth hypersurfaces as caustics
may exist. By [3, Proposition 2.2.2], they are null hypersurfaces and one can use the null geodesics
γp,vout or γp,vin to parameterize them. Similarly, we can define the past pointing null geodesic
congruences Cout,− and Cin,− normal to S.

Now consider the causal future J+(S) and the causal past J−(S), which are future set and past
set respectively. We consider the boundaries of them.

Lemma 5.3. [15, Chap 3 Theorem 3.9] The boundary ∂J+(S) and ∂J−(S) are closed achronal
Lipschitz topological hypersurfaces, in the sense that no timelike curve meets them more than once.

By [3, Proposition 2.4.2], these boundaries are contained in the null normal geodesic congruences,
i.e.,

∂J+(S) ⊆ Cout,+(S) ∪ Cin,+(S) ∂J−(S) ⊆ Cout,−(S) ∪ Cin,−(S).

In addition, we have the following results.

Lemma 5.4. [2, Theorem 1] A point y is on ∂J+(S) if and only if

(1) y lies on a future pointing null geodesic γ normal to S, i.e., y ∈ Cout,+(S) ∩ Cin,+(S),
before conjugate points; and

(2) γ does not intersect any other null geodesic orthogonal to S strictly between S and y.

Thus, for any regular 2-surface, we can construct its null normal conjugate congruences. Before
caustics and focal points, these congruences are smooth null hypersurfaces and they form the
boundary of ∂J+(S) or ∂J−(S). In the following, we consider the regular 2-surfaces given by

S+(T0) := {p ∈ S+ : T (p) = T0}, S−(T0) := {p ∈ S− : T (p) = −T0},
for some 0 < T0 < 1.

5.3. Layer stripping steps. We state a layer stripping method in the following. For fixed 0 <
T0 < 1, we use the following steps to reconstruct the metric in the open set

I(T0) := I(S−(T0), S+(T0)).

5.3.1. Step 1. Recall R = {(0, X) ∈Me : |X| = 1} is the spacelike infinity. In this step, we would
like to reconstruct g up to conformal diffeomorphisms in a small neighborhood of R in M , i.e., we
consider the reconstruction in I(T1) for small T1 > 0.

For this purpose, suppose T1 is small and to be specified later. First, we pick an arbitrary
p0 ∈ R. By Section 5.1, there exist unique null geodesics

µ+a : [−ς+a , 0] → S̄+ such that µa(−ς+a ) = p0 and µ+a (0) = i+

and
µ−b : [0, ς−b ] → S̄− such that µ−b (0) = i− and µb(ς

−
b ) = p0.
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for some a, b ∈ S2. Let δ > 0 satisfy Lemma 5.1 such that B(p0, δ) has no cut points along any

Figure 1. Step 1.

null geodesic segments. With T1 > 0 given, we can find ς1, ς2 > 0 such that

p+ = µ+a (−ς1) with T (p+) = T1, p− = µ−b (ς2) with T (p−) = −T1.
We observe we can choose T1 small enough such that p− and p+ are arbitrarily close to p0. Thus,
there exists T1 > 0 such that

J(p−, p+) ⊆ B(p0, δ).
Further, let U+ ⊆ S+(0, T1) be a small open neighborhood of the geodesic segment µ+a ([−ς+a ,−ς1]).
Let U− ⊆ S−(0, T1) be a small open neighborhood of the geodesic segment µ+b ([ς2, ς

−
b ]). Here we

use the notation
S±(T1, T2) := S± ∩ {T1 < ±T < T2}.

As J(p−, p+) is closed and contained in an open set B(p0, δ), we can find U+, U− small enough
such that

I(U−, U+) ⊆ B(p0, δ),
where there are no cut points along any null geodesic segment. Indeed, for sufficiently small U±,
the set I(U−, U+) is an open small neighborhood of I(p−, p+).

For each p0 ∈ R, we find such p± and U±. and set W = I(U−, U+). We use Scheme 1 in
Section 7.3.1 to reconstruct the metric in W , by sending receding waves on U− and detecting new
singularities on U+. Thus, we choose

T1 = sup{T ∈ (0, 1) : for each p0 ∈ R, we have J(p−, p+) ⊆ B(p0, δ),
where p± ∈ S±(T ) are constructed for p0 as above}.

This enables us to we reconstruct a connected region given by the union of these diamond
sets. Note this region does not necessarily fully cover I(T1), but part of its boundary is given by
cl(S±(0, T1)). For this purpose, we consider the set

Y0 := ∂J−(S+(T
′
1)) ∩ ∂J+(S−(T

′
1))

for some small T ′
1 > 0 to be specified later. If Y0 ̸= ∅, we pick arbitrary y0 ∈ Y0 and consider

the following construction. With y0 ∈ ∂J−(S+(T
′
1)), by Lemma 5.4, there exists a unique future

pointing null geodesic γ+(R+) starting from y0 and hits S+(T
′
1) at point y+, on or before the first

conjugate point and the first focal point. With y0 ∈ ∂J+(S−(T
′
1)), there exists a unique past

pointing null geodesic γ−(R−) starting from y0 and hits S−(T
′
1) at point y−, on or before the first

conjugate point and the first focal point. As before, by Section 5.1 there exist unique null geodesics

µ+a : [−ς+a , 0] → S̄+ such that µ+a (−ς1) = y+ and µa(−ς+a ) = y+,0,
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Figure 2. Step 1, part 2.

and

µ−b : [0, ς−b ] → S̄− such that µb(ς
−
b ) = y−,0 and µ−b (ς2) = y−.

for some a, b ∈ S2 and ς1, ς2 > 0. We choose small T ′
1 such that

J(y−, y+) ⊆ B(y0, δ).

As before, we set U+ ⊆ S+(0, T
′
1) be a small open neighborhood of the null geodesic segment

µ+a ([−ς+a ,−ς1]) and U− ⊆ S−(0, T
′
1) be that of the null geodesic segment µ+b ([ς2, ς

−
b ]). As J(y−, y+)

is closed and contained in an open set B(y0, δ), we can find U+, U− small enough such that

I(U−, U+) ⊆ B(y0, δ),

where there are no cut points along any null geodesic segment. ForW = I(U−, U+), we reconstruct
the metric there using Scheme 1 in Section 7.3.1. In this case, we choose

T ′
1 = sup{T ∈ (0, 1) : for each y0 ∈ Y0, we have J(y−, y+) ⊆ B(y0, δ),

where y± ∈ S±(T ) are constructed for y0 as above}.

This enables us to reconstruct a region given by the union of such I(y−, y+). Note this region has
the same boundary as I(T ′

1) within M , i.e., the part(
∂J−(S+(T

′
1)) ∩ J+(S−(T

′
1))

)
∪
(
J−(S+(T

′
1)) ∩ ∂J+(S−(T

′
1))

)
.

Indeed, the set S+(T
′
1) is a regular 2-surface by Definition 5.1. Its past set has a boundary

∂J−(S+(T1)), which is an achronal Lipschitz topological hypersurface contained in the null normal
geodesic congruences by [3, Proposition 2.4.2] 5.4. In particular, we have

P−(T1) := ∂J−(S+(T
′
1)) ∩M ⊆ Cin,−(S+(T

′
1)),

and similarly we have

P+(T1) := ∂J+(S−(T
′
1)) ∩M = Cin,+(S−(T

′
1)),

where Cin,− and Cin,+ are defined in (5.1). Thus, the union of such I(y−, y+) gives us the same
boundary as that of I(T1) within M .

Now we set T1 = T ′
1, if we have T

′
1 < T1. Combining these two parts, we reconstructed the open

region I(T1).
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5.3.2. Step 2. In the following, assume we have reconstructed I(T1), for some T1 > 0. Now the
goal is to use the reconstructed region to recover g in a small neighborhood of S̄+, i.e., in the
future set I+(S−(T2)) for some 0 < T2 ≤ T1.

We emphasize the metric g in I(T1) is reconstructed up to conformal diffeomorphisms. Thus we
can pick an arbitrary representative in the equivalent class, say ĝ = ϕ∗(ρ2g), where ρ ∈ C∞(M) is
a conformal factor. Then by the identity, one has

(5.2) ρ−(n−2)/2□g(ρ
(n−2)/2u) = ρ2□ρ2gu− ρ2(ρ(n−2)/2□ρ2gρ

(−n−2)/2)u,

where γ := ρ(n−2)/2□ρ2gρ
(−n−2)/2 is smooth on M . As is stated in [37], a conformal factor only

reparameterizes bicharacteristics, and thus the interaction of conormal waves for ĝ and g essentially
have the same structure of singularities. In particular, ĝ and g determines the same lens relation.

Now suppose (I(T1), ĝ|I(T1)) is known. First, we pick a new p0 ∈ S+(T1). Recall in Step
1 we reconstruct a slightly larger region I(U−, U+), with U−, U+ defined there. Thus, we may
assume we reconstructed a small neighborhood of I(T1). Recall we denote by P−(T1) the boundary
∂J−(S+(T1)) within M . It is an achronal Lipschitz topological hypersurfaces contained in the
null normal geodesic congruences of S+(T1). Thus, we may assume P−(T1) is contained in the
reconstructed region.

Figure 3. Step 2.

Let δ > 0 be given by Lemma 5.1 and we focus on the reconstruction in B(p0, δ), for p0 ∈ S+(T1).
Let T2 > 0 be small and to be specified in the following. Again, there exists a unique null
pregeodesic µ+a : [−ς+a , 0] → S̄+ passing through p0 and we write

p0 = µ+a (−ς0) for some 0 < ς0 < ς+a and p′′0 := µ+a (−ς+a ) ∈ R.

With T2 > 0 given, we can find some 0 < ς1 < ς0 < ς+a such that

p+ = µ+a (−ς1) and T (p+) = T1 + T2.

Then we consider the unique past pointing null geodesic starting from p0 normal to S+(T1) and
we denote it by γ−(R+). We consider the future set J+(S−(T2)) and the achronal boundary

P+(T2) := ∂J+(S−(T2)) ∩M.

Note that γ−(R+) intersects P+(T2) exactly at one point

p− ∈ γ−(R+) ∩ P+(T2).

Write a lemma about this. By Lemma 5.4, such p− lies in a normal null geodesic starting from
S−(T2) and thus we can find a p′− ∈ S−(T2) satisfying p

′
− < p−. Further, by considering the null
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geodesics on S−, we can find a unique µ−b : [0, ς−b ] → S̄− passing through p′− and some 0 < ς3 < ς−b
such that

p′0 = µ−b (ς
−
b ) ∈ R and p′− = µ−b (ς3) ∈ S−(T2).

We emphasize that the point p′′0 ∈ R that we found before may not be exactly p′0 and we do not
necessarily have p′0 < p+. But these do not affect the reconstruction.

Moreover, we observe one can choose T2 such that p+ is arbitrarily close to p0 and p
′
− arbitrarily

close to p′0, which enables p− to be arbitrarily close to p0 as well. Thus, there exists T2 > 0 such
that p+ and p− are contained in a given small neighborhood of p0. Then we can find T2 > 0 such
that

J(p−, p+) ⊆ B(p0, δ)
has no cut points along any null geodesic segments. Then let U+ ⊆ S+(T1, T1 + T2) be a small
open neighborhood of the null geodesic segment µ+a ([−ς0,−ς1]) from p0 to p+. Let U− ⊆ S+(0, T2)
be that of the null geodesic segment µ−b ([ς3, ς

−
b ]) from p′− to p′0.

In addition, with the achronal boundary P−(T1) = ∂J−(S+(T1))∩M , the diamond set I(U−, U+)
can be partitioned as

I(U−, U+) =W ∪ U in
− ∪W0,

where we denote by

W = I(U−, U+) \ J−(S+(T1)), U in
− = I(U−, U+) ∩ P−(T1), W0 = I(U−, U+) ∩ I−(S+(T1)).

Note such W is a precompact set near p0 and it can be contained in a small neighborhood of p0
when T2 is sufficient small. By choosing small T2 > 0, we can expect

W ⊆ B(p0, δ)

has no cut points along any null geodesic segments.
We emphasize in general U in

− is an achronal Lipschitz hypersurface. Observe null geodesics
starting from future pointing lightlike vectors transversal to U− will stay in J+(S−(T2)). Such null
geodesics might enter the region W or might not. If it enters W , then it will intersect U in

− exactly

once. This guarantees such U in
− is enough for our reconstruction.

In Section 4, we would like to construct conormal distributions propagating along the null
geodesic γp̃,w̃(R+) for (p̃, w̃) ∈ L+M with p̃ ∈ U in

− , by sending proper Lagrangian distributions
singular near some (p, w) ∈ L(U−). Using these waves, we would like to reconstruct the metric in
W by detecting new singularities on U+, using the scattering light observation sets in Section 6.
A more detailed reconstruction can be found in Section 7.3.2.

Note for each p0 ∈ S+(T1), we can find p±, U±, and U in
− as above. We perform the same

reconstruction for each p0 and this recovers a connected new region given by the union of diamond
sets I(p−, p+). Then we choose

T2 = sup{T ∈ (0, 1) : for each p0 ∈ S+(T1), we have W ⊆ B(p0, δ),
where W are constructed for p0 as above}.

Note the boundary of this new region includes

cl(S+(T1, T1 + T2)) ∪ (P−(T1) ∩ J+(S−(T2)),

as they are contained in the normal null geodesics congruences starting from S+(T1). Although
this new region might not fully cover

I(S−(T2), S+(T1 + T2)) \ I−(S+(T1)),
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we can follow a similar argument as Step 1. More explicitly, for T ′
2 to be specified later, one can

consider the compact set

Y0 := ∂J−(S+(T1 + T ′
2)) ∩ ∂J+(S−(T

′
2)).

If Y0 ̸= ∅, we pick arbitrary y0 ∈ Y0 and consider the same construction as in Step 1. This enables
us to reconstruct a new region, whose boundary includes(

∂J−(S+(T1 + T ′
2)) ∩ J+(S−(T

′
2))

)
∪
(
J−(S+(T1 + T ′

2)) ∩ ∂J+(S−(T
′
2))

)
.

By choosing the smaller one of T2, T
′
2 as T2, we reconstruct I(S−(T2), S+(T1 + T2)).

Next, we repeat this procedure to reconstruct

I(T1) ∪ I(S−(T2), S+(T1 + T2 + T3)),

for some 0 < T3 ≤ T2 ≤ T1, if the radius of S+(T2) is not too small. Otherwise, we can cover the
rest region using a δ-neighborhood of one point. With our assumptions, such T1, T2, . . . cannot be
too small so we have finite steps to reconstruct a small neighborhood of S+ given by I+(S−(T0)),
for some T0 > 0.

5.3.3. Step 3. In the following, assume we have reconstructed I+(S−(T1)), for some T1 > 0. Now
we flip the positive and negative sign to consider a region below I(T1). The goal is to use the recon-
structed region to recover g in this new region. More explicitly, suppose (I+(S−(T1)), ĝ|I+(S−(T1)))
is known. First, we pick a new p0 ∈ S−(T1). In Step 2, we reconstruct a slightly larger re-
gion I(U−, U+) and therefore we may assume we have reconstructed a small neighborhood of
I+(S−(T1)).

Figure 4. Step 3.

Recall we denote by P+(T1) the boundary ∂J+(S−(T1)) within M . It is an achronal Lipschitz
topological hypersurface contained in the null normal geodesic congruences of S−(T1). Thus, we
may assume P+(T1) is contained in the reconstructed region.

Let δ > 0 be given by Lemma 5.1 and we focus on the reconstruction in B(p0, δ), for p0 ∈ S−(T1).
Let T2 > 0 be small and to be specified in the following. Again, there exists a unique null geodesic
µ−b : [0, ς−b ] → S̄− passing through p0 and we write

p0 = µ−b (ς0) for some 0 < ς0 < ς−b and p′′0 := µ−b (ς
−
b ) ∈ R.

With T2 > 0 given, we can find some 0 < ς1 < ς0 < ς−b such that

p− = µ−b (ς1) and T (p−) = −(T1 + T2).
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Then we consider the unique future pointing null geodesic starting from p0 normal to S−(T1) and
we denote it by γ+(R+). We consider the future set J−(S+(T2)) and the achronal boundary

P−(T2) := ∂J−(S+(T2)) ∩M.

Note that γ+(R+) intersects P−(T2) exactly at one point

p+ ∈ γ+(R+) ∩ P−(T2).

By Lemma 5.4, such p+ lies in a normal null geodesic starting from S+(T2) and thus we can find
a p′+ ∈ S+(T2) satisfying p

′
+ > p+. Further, by considering the null geodesics on S+, we can find

a unique µ+a : [−ς+a , 0] → S̄+ passing through p′+ and some 0 < ς3 < ς+a such that

p′0 = µ+a (−ς+a ) ∈ R and p′+ = µ+a (−ς3) ∈ S+(T2).

We emphasize that the point p′′0 ∈ R that we found before may not be exactly p′0 and we do not
necessarily have p′0 < p+. But these do not affect the reconstruction.

Moreover, we observe one can choose T2 such that p− is arbitrarily close to p0 and p
′
+ arbitrarily

close to p′0, which enables p+ to be arbitrarily close to p0 as well. Thus, there exists T2 > 0 such
that p− and p+ are contained in a given small neighborhood of p0. Then we can find T2 > 0 such
that

J(p−, p+) ⊆ B(p0, δ)
has no cut points along any null geodesic segments. Then let U+ ⊆ S+(0, T2) be a small open
neighborhood of the null geodesic segment µ+a ([−ς+a ,−ς3]) from p′0 to p

′
+. Let U− ⊆ S−(T1, T1+T2)

be that of the null geodesic segment µ−b ([ς1, ς0]) from p− to p0.
In addition, with the achronal boundary P+(T1) = ∂J+(S−(T1))∩M , the diamond set I(U−, U+)

can be partitioned as
I(U−, U+) =W ∪ U in

+ ∪W0,

where we denote by

W = I(U−, U+) \ J+(S−(T1)), U in
+ = I(U−, U+) ∩ P+(T1), W0 = I(U−, U+) ∩ I+(S−(T1)).

Note such W is a precompact set near p0 and it can be contained in a small neighborhood of p0
when T2 is sufficient small. By choosing small T2 > 0, we can expect

W ⊆ B(p0, δ)
has no cut points along any null geodesic segments.

We emphasize in general U in
+ is an achronal Lipschitz hypersurface. Observe null geodesics

starting from future pointing lightlike vectors transversal to U− will enter the region W . Such
null geodesics might enter the reconstructed region W0 or might not. If it enters W0, then it will
intersect U in

+ exactly once and then leave M from U+ . This guarantees such U in
+ is enough for our

reconstruction.
In Section 4, we would like to construct conormal waves propagating along the null geodesic

γp,w(R+) for (p, w) ∈ L(U−) and detect new singularities on U+. To avoid new singularities
produced in the reconstructed region W0, we use U in

+ to observe when the conormal waves enter
W0. A more detailed reconstruction can be found in Section 7.3.3.

Note for each p0 ∈ S+(T1), we can find p±, U±, and U in
+ as above. We perform the same

reconstruction for each p0 and this recovers a connected new region given by the union of diamond
sets I(p−, p+). Then we choose

T2 = sup{T ∈ (0, 1) : for each p0 ∈ S−(T1), we have W ⊆ B(p0, δ),
where W are constructed for p0 as above}.
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Note the boundary of this new region includes

cl(S−(T1, T1 + T2)) ∪ (P+(T1) ∩ J−(S+(T2)),

as they are contained in the normal null geodesics congruences starting from S−(T1). Although
this new region might not fully cover

I(S−(T1 + T2), S+(T2)) \ I+(S−(T1)),
we can follow a similar argument as Step 1. More explicitly, for T ′

2 to be specified later, one can
consider the compact set

Y0 := ∂J+(S−(T1 + T ′
2)) ∩ ∂J−(S+(T

′
2)).

If Y0 ̸= ∅, we pick arbitrary y0 ∈ Y0 and consider the same construction as in Step 1. This enables
us to reconstruct a new region, whose boundary includes(

∂J+(S−(T1 + T ′
2)) ∩ J−(S+(T

′
2))

)
∪
(
J+(S−(T1 + T ′

2)) ∩ ∂J−(S+(T
′
2))

)
.

By choosing the smaller one of T2, T
′
2 as T2, we reconstruct I(S−(T1 + T2), S+(T2)) \ I+(S−(T1)).

5.3.4. Step 4. In the following, assume we have reconstructed the region given by

I(S−(T1 + T2), S+(T2)) ∪ I+(S−(T1))
for some T1, T2 > 0. The goal to find T3 > 0 such that we can reconstruct

I(S−(T1 + T3), S+(T2 + T3)) ∪ I+(S−(T1))
for some 0 < T3 ≤ T2, which includes the pink region given by(

I−(S+(T2 + T3)) \ I−(S+(T2))
)
∩
(
I+(S1(T1 + T3)) \ I+(S1(T1))

)
.

For this purpose, we want to cover the pink region by a sequence of small diamond sets as before,
such that each diamond set is contained in a small neighborhood without cut points.

First, consider the intersection of two achronal Lipschitz boundaries

R− := ∂J−(S+(T2)) ∩ ∂J+(S−(T1 + T3)).

We pick an arbitrary p− ∈ R−. With p− ∈ ∂J+(S−(T1 + T3)), there exists a future pointing
normal null geodesic γ−(R+) connecting p− with a point p′− ∈ S−(T1 + T2) on or before the first
conjugate point and the first focal point, by Lemma 5.4. Similarly, with p− ∈ ∂J−(S+(T2)), there
exists a future pointing normal null geodesic γ+(R+) connecting p− with a point p̃− ∈ S+(T2) on
or before the first conjugate point and the first focal point. Moreover, the null geodesic γ+(R+)
intersects P+(T1) = ∂J+(S−(T1)) ∩M exactly at one point

p0 ∈ γ+(R+) ∩ P+(T1).

Note p0 is connected with p′′− ∈ S+(T2) by the same γ+(ς) and is before the first conjugate point
and the first focal point. Then by Lemma 5.4 again, we have p0 ∈ P−(T2) := ∂J−(S+(T2))∩M as
well. Recall p0 ∈ P+(T1). There exists a future pointing normal null geodesic γ0(R+) connecting
p0 with a point p′′0 ∈ S−(T1) on or before the first conjugate point and the first focal point. We
consider γ0(R+) and its unique intersection with the achronal boundary

P−(T2 + T3) := ∂J−(S+(T2 + T3)) ∩M
at the point p+. We emphasize such p+ may not locate on the boundary of P+(T1) but it is always
contained in J+(S−(T1)). Later we can repeat the same procedure by starting from an arbitrary
p+ ∈ R+, see (5.3). Now for p+, similarly, we can find p′+ ∈ S+(T2 + T3) such that p′+ < p+ along
a future pointing normal null geodesic on or before the first conjugate point or focal point.
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Figure 5. Step 4.

Further, we consider the unique µ+a : [−ς+a , 0] → S̄+ passing through p′+. There exists 0 < ς1 <
ς2 < ς+a such that

p′+ = µ+a (−ς1)S+(T2 + T3) and p′′+ = µ+a (−ς2) ∈ S+(T2).

There exists a unique null geodesic µ−b : [0, ς−b ] → S̄− passing through p′− with 0 < ς3 < ς4 < ς−b
such that

p′− = µ−b (ς3) ∈ S−(T1 + T3) and p′′− = µ−b (ς4) ∈ S−(T1).

As before, we might have p′′+ ̸= p̃− and p′′− ̸= p′′0. Moreover, it is not necessarily true that p0 < p′′+
or p0 > p′′−. However, with p− < p0 < p+ and p+ ∈ J+(S−(T1)), our construction works.

Moreover, we observe one can choose T3 such that p− and p+ are arbitrarily close to p0. Thus,
there exists T3 > 0 such that p− and p+ are contained in a given small neighborhood of p0. Then
we can find T3 > 0 such that

J(p−, p+) ⊆ B(p0, δ)
has no cut points along any null geodesic segments as before. Then let U+ ⊆ S+(T2, T2 + T3)
be a small open neighborhood of the null geodesic segment µ+a ([−ς2,−ς1]) from p′′+ to p′+. Let

U− ⊆ S−(T1, T1 + T3) be that of the null geodesic segment µ−b ([ς3, ς4]) from p′− to p′′−.
In addition, with the achronal boundary P+(T1) and P−(T2), the diamond set I(U−, U+) can

be partitioned as
I(U−, U+) =W0 ∪ U in

− ∪W ∪ U in
+ ∪W1,

where we denote by

W = I(U−, U+) \ (J+(S−(T1)) ∪ J−(S+(T2))),

U in
− = I(U−, U+) ∩ P−(T2), U in

+ = I(U−, U+) ∩ P+(T1),

W0 = I(U−, U+) ∩ I−(S+(T2)), W1 = I(U−, U+) ∩ I+(S−(T1)).
Note such W is a precompact set near p0 and it can be contained in a small neighborhood of p0
when T3 is sufficient small. By choosing small T3 > 0, we can expect

W ⊆ B(p0, δ)
has no cut points along any null geodesic segments.

In this case, we would like to combine the ideas for Step 2 and 3. On the one hand, we would like
to construct conormal distributions propagating along the null geodesic γp̃,w̃(R+) for (p̃, w̃) ∈ L+M

with p̃ ∈ U in
− , by sending proper Lagrangian distributions singular near some (p, w) ∈ L(U−). On
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the other hand, we would like to detect new singularities on U+ and to avoid new singularities
produced in W1 by using the information on U in

+ . A more detailed reconstruction can be found in
Section 7.3.4.

Note for each p− ∈ R−, we can find p±, U±, U
in
− , and U in

+ as above. We perform the same
reconstruction for each p− and this recovers a connected new region given by the union of diamond
sets I(p−, p+). We choose

T3 = sup{T ∈ (0, 1) : for each p− ∈ R−, we have W ⊆ B(p0, δ),
where p0 and W are constructed for p− as above}.

Note the boundary of this new region includes

P+(T1) ∩ J−(S+(T2)),

as they are contained in the normal null geodesics congruences starting from R−. Although this
new region might not fully cover

I(S−(T1 + T3), S+(T2 + T3)) ∪ I+(S−(T1)),

we can follow a similar argument as Step 1. More explicitly, for T ′
3 to be specified later, we consider

(5.3) R+ := ∂J−(S+(T2 + T3)) ∩ ∂J+(S−(T1)).

and perform a similar construction for each p+ ∈ R+. Next, for T
′′
3 , we consider the compact set

Y0 := ∂J+(S−(T1 + T ′′
3 )) ∩ ∂J−(S+(T2 + T ′′

3 )).

This enables us to reconstruct a new region, whose boundary includes the boundary of the desired
region. By choosing the smaller one of T3, T

′
3, T

′′
3 as T3, we reconstruct I(S−(T1 + T3), S+(T2 +

T3)) ∪ I+(S−(T1)).
Then we repeat these steps until we reconstruct the region I(T0) for some fixed T0 ∈ (0, 1). We

emphasize that in each steps, the parameters, such as T1, T2, that we choose above do not get too
small, due to a compactness argument. This allows us to reconstruct the desired region in finitely
many steps. Moreover, the choice of such T1, T2 may not be clear during the reconstruction but
one can use the following strategy. First, we consider some ε0 > 0 such that by choosing T1 = ε0
in Step 1, we have all scattering light observation sets observed in U+ are smooth. Although ε0
might be much bigger than the actually step size, yet we could use it to recover the spacetime
in this ε0-size domain, which might be the wrong one. Next, our task is to determine if this
reconstruction does produce the actual spacetime. To this end, consider the value εN = ε0/N ,
for N = 1, 2, 3, . . .. One can try to reconstruct the original ε0-size domain using a layer-stripping
procedure proposed above by reconstructing spacetime region of size εN . Note that this may fail
for small N , if εN is too big. Indeed, some scattering observation sets in some εN -diamond regions
may end up being singular because of conjugate points. In this case, we know ε0 was too big.
On the other hand, if this layer-stripping succeeds for all N large enough (we denote the ε0-size
spacetime region reconstructed using εN by DN , then we know that if N is big enough so that
εN < ε′, then DN correctly reconstructs the ε0-piece of our spacetime. Thus, the idea is to pick
the smallest N0 so that DN0 = DN for all N ≥ N0. Such an N0 does exist. Finally, take the
largest ε0 so that N0 = 1 works. We can then reconstruct the ε0-size region, and be certain that
we have reconstructed the correct smooth and conformal structure.
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6. The scattering light observation Sets

In each step of Section 5, we need to reconstruct g from measurements in an open set U+ ⊆ S+
under the assumption that there are no cut points in the region of interest. For this purpose, we
consider the following model and prove the reconstruction in a slightly more general setting. Let
M be a globally hyperbolic subset equipped with a Lorentzian metric g. Now let U+ ⊆ S+ and
U− ⊆ S− be open subsets. We consider

W = I(U−, U+),

which is an precompact open set, where we would like to reconstruct the topological, differential,
and conformal structure using U+. In the following, for convenience we denote U+ by U .

For q ∈ M and v ∈ LqM , we denote by γq,v : (ς0, ς1) → M the inextendible null geodesic that
starts from q in the lightlike direction v. For an open subset U ⊆ S+, we define

CU (q) := {(p, w) ∈ L+U : p = γq,v(1), w = γ̇q,v(1) for some v ∈ L+
q M},(6.1)

as the union of null geodesic flow from a point q ∈M restricted to U . Note that CU (q) is always a
smooth submanifold in TUM , even with cut points or conjugate points. We consider the following
subsets

Cear
U (q) := {(p, w) ∈ L+U : p = γq,v(1), w = γ̇q,v(1),

for some v ∈ L+
q M with 1 ≤ ρ(q, v)},

(6.2)

and its regular part

Creg
U (q) := {(p, w) ∈ L+U : p = γq,v(1), w = γ̇q,v(1),

for some v ∈ L+
q M with 1 < ρ(q, v)}.

(6.3)

We call Cear
U (q) the earliest scattering direction set and Creg

U (q) the regular scattering direction set
of q within U . Let π : TU → U be the canonical projection and we define

Lear
U (q) := π(Cear

U (q)), Lreg
U (q) := π(Creg

U (q))(6.4)

as the earliest or regular scattering light observation set of q within U . We prove in Proposition
6.3 that we can reconstruct Creg

U (q) from knowing Cear
U (q) for all q ∈ W . We would like to follow

the idea in [34] to prove the collection of such earliest scattering direction sets

Cear
U (W ) = {Cear

U (q) : q ∈W}(6.5)

determines the topological, differential, and conformal structure of W . This is a simplified but
localized version of the result proved in [66].

Theorem 6.1. For j = 1, 2, let (M (j), g(j)) be two globally hyperbolic subsets satisfying Assumption

1.1. Let U (j), W (j) be defined as above. Assume for each q ∈W (j), we have

Creg

U(j)(q) ̸= ∅, j = 1, 2.

Suppose there exists a conformal diffeomorphism Φ : U (1) → U (2) such that

Cear
U(1)(W2) = {Φ∗(C) : C ∈ Cear

U(2)(W1)}.

Then there is a conformal diffeomorphism Ψ : (W (1), g(1)|W (1)) → (W (2), g(2)|W (2)).
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Remark 6.1. If there are no cut points along any null geodesic segments in W , then we have

CU (q) = Cear
U (q) = Creg

U (q),

which implies the result that we need for Step 1 and 2 in Section 5. The other steps of Section 5
uses the reconstruction from Creg

U (W ).

Remark 6.2. In this theorem, we assume there exists a conformal diffeomorphism Φ : U (1) → U (2)

such that the two collections of the earliest light observation sets for W (j) are related by Φ. For
the inverse problems we consider, this assumption is satisfied if we have N (1)(u−) = N (2)(u−)

for each u− ∈ D(ρ). Indeed, by considering the first order linearization of N (j) for j = 1, 2, one
obtain the linear scattering operator. Recall in Section 3.4, we find local coordinates such that the
past null infinity is locally given by x1 = 0 and the metric is given in certain forms. Then one can
use a similar idea as in [60] to prove this linear scattering operator determines the lens relation
and moreover the jets of the metric on the boundary up to conformal diffeomorphisms.

6.1. Null hypersurfaces and cut points.

6.1.1. The structure of null hypersurfaces. In the following, we focus on the smooth part of ∂M ,
that is, the future or past null infinity S±. For p ∈ ∂M , we use Tp∂M to denote the set of tangent
vectors in ∂M at p. We define the normal vector space

T⊥
p ∂M = {v ∈ TpM : g(v, w) = 0 for any w ∈ Tp∂M}.

By our assumption, ∂M = S̄+∪ S̄−, where S+ and S− are null hypersurfaces, in the sense that the
restriction of g to S± is degenerate. Then Tp∂M and T⊥

p ∂M have a nontrivial intersection and
their direct sum does not equal to TpM , which is not the case for timelike or spacelike submanifolds.
Instead, one can introduce the so called radical space of Tp∂M given by

Rad(Tp∂M) = {v ∈ Tp∂M : g(v, w) = 0 for any w ∈ Tp∂M} = Tp∂M ∩ T⊥
p ∂M.

for more details see [25]. In our case Rad Tp∂M = T⊥
p ∂M is a one-dimensional subspace. Fur-

thermore, one can define the radical distribution Rad T∂M such that

Rad(T∂M) : p 7→ Rad(Tp∂M).

Moreover, we can define the complementary vector space S(Tp∂M) of Rad(Tp∂M) in the sense
that

S(Tp∂M) + Rad(Tp∂M) = Tp∂M, S(Tp∂M) ∩ Rad(Tp∂M) = {0}.(6.6)

In this work, we call such S(Tp∂M) a screen space of Tp∂M . Note that with the definition
of Rad(Tp∂M), the direct sum (6.6) is actually an orthogonal one. This implies S(Tp∂M) is a
nondegenerate subspace, in the sense that g restricted to S(Tp∂M) is nondegenerate. Actually
in our case the restriction of g is a Riemannian metric and therefore S(Tp∂M) is spacelike. In
addition, the choice of a screen space is not unique. Based on these definitions, we have the
following lemma.

Lemma 6.1. Suppose dim(Rad(Tp∂M)) = 1. Let V ⊆ Tp∂M be a vector space with codimension
one. If V ∩ Rad(Tp∂M) = {0}, then V is a screen space of Tp∂M .

In the following, we show there is a one-to-one correspondence between a screen space and a
future pointing lightlike vector that is outwardly transversal to ∂M . For this purpose, we consider
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the set LpM of all lightlike vectors in TpM for p ∈ ∂M . Let ϖ be a future-pointing timelike vector
field, for example, φ = dT . We define the set of future or past pointing lightlike vectors as

L±
pM ={v ∈ TpM : ±g(v,ϖ) < 0}.

For p ∈ ∂M , one can also introduce the following subspaces

T±
p M = {v ∈ TpM : ±g(v, ν) < 0}(6.7)

of outward or inward vectors that are transversal to the boundary, where ν is a future pointing
normal vector to ∂M . Indeed, a light vector v ∈ LpM is outward to ∂M if and only if v is future
pointing and not tangential to ∂M , i.e., g(v, ν) < 0.

The following lemma for lightlike boundary ∂M is an analog to [34, Lemma 2.5] for timelike
boundaries. It is proved in [66, Lemma 2.1.9].

Lemma 6.2. Let (M, g) be as above. For p ∈ ∂M , we denote by

S := {S(Tp∂M) ⊆ Tp∂M is a screen space},
V := {R+v ⊆ TpM : v ∈ L+

pM ∩ T+
p M}.

the set of all screen spaces of Tp∂M and the set of all future pointing outward lightlike rays in
TpM . Then there exists an isomorphism ϕ : S → V, given by mapping S(Tp∂M) to the unique

future pointing outward lightlike ray R+v contained in S(Tp∂M)⊥.

6.1.2. Null geodesics and cut points. Recall for (q, v) ∈ LM , we denote by γq,v the unique null
geodesic starting from q in the direction v.

Lemma 6.3 ([66, Lemma 2.1.1]). If γq,v : (−ςo, 0] →M is a future pointing null geodesic segment
with p = γq,v(1) ∈ ∂M and γq,v(ς) ∈M for ς < 1, then γ̇q,v(1) ∈ L+

pM ∩ T+
p M .

The following lemma is a variant of [34, Proposition 2.10].

Lemma 6.4. Let (q, v) ∈ L+M such that γq,v(ς) hits ∂M at ς = ςq,v > 0. Then ςq,v depends on
(q, v) smoothly and so does the point p = γq,v(ςq,v).

More explicitly, for fixed (q0, v0) ∈ L+M , there exists an open neighborhood N0 of (q0, v0) and
a smooth function d0 : N0 → R such that ςq,v = d0(q, v).

Proof. We follow the proof in [34, Proposition 2.10]. Let Rc : LM → LM be the map acting by
dilation in the fibers such that Rc(q, v) = (q, cv), for c ∈ R. Let x ∈ C∞(M) be the boundary
defining function locally near p ∈ ∂M . We consider the exponential map exp : LM → M written
as exp(q, v) = γq,v(1). This map can be regarded as the null geodesic flow on LM projected to the
manifold. For fixed (q0, v0) ∈ L+M , for simplification we write ς0 = ς(q0, v0). Then we define the
set

Z0 = F−1(0), where F = x ◦ exp ◦Rς0 .
Certainly we have (q0, v0) ∈ Z0. Moreover, we claim, in a neighborhood of (q0, v0), this set is a
smooth submanifold of LM of codimension one, which is transversal to R+v0. Indeed, we compute
the differential of F at (q0, v0) to have

dF (q0, v0) = (
∂xq,v
∂q

(ς0), ς0
∂xq,v
∂v

(ς0)), where we write xq,v(ς) = x ◦ γq,v(ς).

By Lemma 6.3, we have
∂xq,v
∂ς (ς0) ̸= 0, as γ̇q,v(ς0) /∈ Tp∂M . Note that

∂xq,v
∂ς (ς0) is in the span of

∂xq,v
∂v (ς0) and therefore the smooth map F has a nonzero differential at (q0, v0). Then the claim
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comes from the implicit function theorem and Z0 is transversal to R+v0 at q0, as the null geodesic
γq0,v0(R+) hits ∂M transversally by Lemma 6.3.

Now we choose a small neighborhood N0 ⊆ L+M of (q0, v0) such that

N0 ⊆
⋃
c∈(1−ϵ,1+ϵ)Rc(Z0)

for some ϵ > 0. Additionally, we choose N0 sufficiently small such that N̄0 ∩ Z0 is a smooth
connected submanifold traversal to all dilation orbits intersecting N0. Then for (q, v) ∈ N0, we
define d0 ∈ C∞(N0) by

d0(q, v) = rς0,

where r is the unique real number such that Rr(q, v) ∈ Z0. Note that d0(q0, v0) = ς0. The
uniqueness of r and its smooth dependence on (q, v) comes from the transversal intersection of Z0

and all dilation orbits. Thus, for any (q, v) ∈ N0, we have x ◦ exp ◦Rd0(q,v)(q, v) = 0, which implies
γq,v(d0(q, v)) ∈ ∂M and thus ςq,v = d0(q, v) is smooth.

Next, to show the boundary point p = γq,v(ςq,v) depends on (q, v) smoothly, we consider its
extension across ∂M . Indeed, as γq,v(ς) hits ∂M transversally, we can extend it smoothly to
ς ∈ [0, ςq,v + ϵ) in (Me, ĝe), for some ϵ > 0. Then γq,v(ς) is the solution to the geodesic equation
in (Me, ĝe), for ς ∈ [0, ςq,v + ϵ), which smoothly depends on the initial conditions γq,v(0) = q and
γ̇q,v(0) = v. With ςq,v smooth, we have desired result. □

6.1.3. The Cut Locus Function. We recall the definition of cut points and the cut locus function
in Section 3. Recall the following lemmas about cut points.

Lemma 6.5 ([53, Proposition 10.46]). If there is a future pointing causal curve from q to y that
is not a null pregeodesic, then there is a timelike curve from q to y arbitrarily close to this curve
and therefore q ≪ y (equivalently τ(q, y) > 0).

Lemma 6.6 ([15, Lemma 9.13]). In a causal spacetime, if there are two future directed null geodesic
segments from q to y, then y comes on or after the null cut point of q on each of the two segments.

In other words, if y is before the first cut point along a null geodesic segment from y to q, then
this null geodesic segment is the only pregeodesic from q to y. We have the following lemma.

Lemma 6.7. Let q ∈ M and y ∈ ∂M . Then y ∈ Lreg
U (q) if and only if there is a future pointing

null geodesic segment from q to y and y is before the first cut point.

The following lemma is inspired by [27, Lemma 6.7].

Lemma 6.8. Let (qj , vj) → (q, v) in L+M . Suppose γqj ,vj (1) ∈ ∂M is on or before the first cut
point. Then γq,v(ς) hits ∂M at ς = 1 on or before the first cut point.

Proof. Since γq,v(ς) smoothly depends on (q, v), with ∂M closed, we have γq,v(1) ∈ ∂M . It remains
to prove 1 ≤ ρ(q, v). We assume for contradiction that 1 > ρ(q, v), which implies τ(q, γq,v(1)) > 0.
As γqj ,vj (1) is on or before the first cut point, we have 1 ≤ ρ(qj , vj), which implies τ(qj , γqj ,vj (1)) =
0. Since τ is continuous on M ×M , we must have

0 < τ(q, γq,v(1)) = lim
j→+∞

τ(qj , γqj ,vj (1)) = 0,

which leads to contradiction. □

We need the following auxiliary lemma.
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Lemma 6.9. Let qj → q in W . Let pj → p in U , where pj = γqj ,vj (1) with vj ∈ L+
qjM . Then

we can find a subsequence of (qj , vj) and v ∈ L+
q M such that (qkj , vkj ) → (q, v) in L+M with

p = γq,v(1).

Proof. Consider a smooth Riemannian metric g+ on M . Let wj = vj/∥vj∥g+ , which correspond
to the direction of each vj . For large j, we can assume (qj , wj) is contained in a compact set of
L+M . Then by passing through a subsequence, we can assume (qj , wj) → (q, w) in LM .

By Lemma 6.4, there exists a small neighborhood N0 ⊆ L+M of (q, w) and a smooth function
d0 : N0 → R+ such that for any (q′, w′) ∈ N0, one has γq′,w′(d0(q

′, w′)) ∈ ∂M . Note that
{d0(qj , wj)} is contained in a compact set of R+ for large j, as d0 is smooth and we can assume
(qj , wj) is contained in a compact subset of N0. Thus, we set v = d0(q, w)w and use Lemma 6.4
to have

p = lim
j→∞

pj = lim
j→∞

γqj ,wj (d0(qj , wj)) = γq,w(d0(q, w)) = γq,v(1).

With vj = d0(qj , wj)wj , we have (qj , vj) → (q, v) in N0. □

Lemma 6.10. Let (q0, v0) ∈ L+M such that γq0,v0(ς) hits ∂M at ς = ς0 before the first cut point.
Then there exists an open neighborhood N0 ⊆ L+M of (q0, v0) such that for any (q, v) ∈ N0, one
has γq,v(ς) hits ∂M at ς = ςq,v before the first cut point.

Proof. As γq,v(ς0) is before the first cut point, we have ς0 < ρ(q0, v0). Then there exists ϵ > 0 such
that ς0 + ϵ < ρ(q0, v0). Since ρ is lower semi-continuous, there exists a small open neighborhood
N0 of (q0, v0) such that

ς0 + ϵ < ρ(q, v), for any (q, v) ∈ N0.

By choosing sufficiently small N0, using Lemma 6.4, we can assume ςq,v depends on (q, v) smoothly
such that ςq,v < ς0 + ϵ. Thus, we have ςq,v < ρ(q, v), which implies γq,v(ςq,v) ∈ ∂M is before the
first cut point. □

By [15, Theorem 9.15], the first null cut point comes at or before the first future conjugate point
in a globally hyperbolic spacetime. Then the following lemma applies if we assume p is before the
first cut point along the null geodesic γq,v.

Lemma 6.11. Let (q, v) ∈ LM and p = expq(v) ∈ ∂M . If (q, v) and p are not conjugate, then

(1) There exists an open neighborhood Nv ⊆ LqM of v such that the restriction of expq in Nv

is a diffeomorphism. Thus, L := expq(Nv) ∩ ∂M is a smooth 1-codimensional submanifold
of ∂M .

(2) Denoting γq,v(t) = expq(tv), one has γ̇q,v(1) ∈ (TpL)
⊥. Moreover, this conclusion holds for

any point in L that is sufficiently close to p.

Proof. The first statement comes from the implicit function theorem. We prove the second state-
ment in the following.

Note that p = γq,v(1) ∈ L and we would like to parameterize L near p. For this purpose, let
v(r) ∈ Nv be a smooth family of lightlike vectors, for r ∈ (−ϵ, ϵ), with v(0) = v and v̇(0) ̸= 0
such that expq(v(r)) ∈ L ⊆ ∂M . This can be done according to Lemma 6.4 by shrinking Nv if
necessary. Further, we define

p(r) := expq(v(r)) = γq,v(r)(1) ∈ L,

which is a smooth function depending on r. With TpL spanned by several such {ṗ(0)}, our goal is
to prove

g(ṗ(r), γ̇q,v(r)(1)) = 0 for any r ∈ (−ϵ, ϵ).
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For this purpose, we consider the family of curves given by γ(r, t) := γq,v(r)(t). We observe that

g(ṗ(r), γ̇q,v(r)(1)) = g(∂rγ(r, 1), γ̇q,v(r)(1)) = g(∂rγ(r, 1), ∂tγ(r, 1)) =: f(r, 1),

where we define a function

f(r, t) := g(∂rγ(r, t), ∂tγ(r, t)), r ∈ (−ϵ, ϵ), t ∈ [0, 1].

Note that f is smooth in (−ϵ, ϵ)× (0, 1) and continuous up to t0 and t = 1. Then we compute

∂tf(r, t) = g(Dt∂rγ(r, t), ∂tγ(r, t)) + g(∂rγ(r, t), Dt∂tγ(r, t))

= g(Dr∂tγ(r, t), ∂tγ(r, t))

= (1/2)∂rg(∂tγ(r, t), ∂tγ(r, t)) = 0,

where for the second line we use the symmetric property and the fact that γ(r, ·) are null geodesics.
Then it suffices to prove g(ṗ(r), γ̇q,vr(1)) = f(r, 1) = f(r, 0) = 0. Indeed, we observe that γ(r, 0) ≡
q and therefore ∂rγ(r, 0) = 0. This proves the desired result. □

Even with q and p that are not conjugate, there might be two or more null geodesics connecting
them, as the exponential map is only a local diffeomorphism there. However, with Lemma 6.6, we
have the following lemma.

Lemma 6.12. Let (q, v) ∈ LM and p = γq,v(1) ∈ ∂M . If p is before the first cut point, then
v ∈ LqM for which expq(v) = p is unique.

The following lemma is a direct result of Lemma 6.4 and 6.12.

Lemma 6.13. Let p ∈ Lreg
U (q), where q ∈ M . Then there exists an open neighborhood O ⊆ ∂M

of p such that L+
q ∩O is a smooth 1-codimensional submanifold and Lreg

U (q) ∩O = L+
q ∩O.

Proof. Suppose (q, v) ∈ LM such that p = γq,v(1) ∈ ∂M . Since p is before the first cut point,
using Lemma 6.12 the choice of v for which p = expq(v) is unique. By Lemma 6.11, there exists a

small neighborhood Nv ⊆ L+
q M of v such that L := expq(Nv) ∩ ∂M is a smooth submanifold of

∂M of codimension one. For vectors in L+
q \Nv, their images under the exponential map are away

from p, by Lemma 6.9 and the fact that the choice of v is unique. Thus, we can find a small open
neighborhood O of p such that L+

q ∩ O = L. It remains to show any p ∈ L is before the first cut
point of q. Indeed, by Lemma 6.10, for (q, v′) sufficiently close to (q, v), the null geodesic γq,v′(ς)
hits ∂M before the first cut point. By shrinking O if necessary, □

Next, we prove these results are stable under small perturbation on q and then p.

Lemma 6.14. Let p ∈ Lreg
U (q), where q ∈M . Then there exist open small neighborhoods N ⊆W

of q and O ⊆ ∂M of p, such that for any q′ ∈ N , if one has p′ ∈ L+
q′ ∩O, then p′ is before the first

cut point, i.e., p′ ∈ Lreg
U (q′).

Proof. Suppose (q, v) ∈ LM such that p = γq,v(1) ∈ ∂M . Assume for contradiction that such open
neighborhoods N of q and O of p do not exist. Then we can find a sequence qj → q in W and
vj ∈ L+

qjM , such that pj = γqj ,vj (1) ∈ ∂M converges to p with 1 ≥ ρ(qj , vj). By Lemma 6.9, by

passing through a subsequence, we can assume (qj , vj) → (q, v) with p = γq,v(1). As p is before
the first cut point, we have 1 < ρ(q, v). Since ρ is lower semi-continuous, for (q′, v′) sufficiently
close to (q, v), one has 1 < ρ(q′, v′). This contradiction with 1 ≥ ρ(qj , vj). □

Lemma 6.14 implies the following result.
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Lemma 6.15. Let p ∈ Lreg
U (q), where q ∈ M . Then there exists open neighborhoods N ⊆ W of q

and O ⊆ ∂M of p, such that L+
q′ ∩O is a smooth 1-codimensional submanifold for any q′ ∈ N and

Lreg
U (q′) ∩O = L+

q′ ∩O.

Lemma 6.16. Let q ∈ M and p ∈ Lreg
U (q). Then Lreg

U (q) is locally a spacelike 1-codimensional
submanifold near p.

Proof. Recall ∂M is a null hypersurface with a normal vector field ν ∈ Rad(T∂M). Then Lreg
U (q)

is spacelike if it is not tangential to ν at any p′ ∈ Lreg
U (q) near p. We write L = Lreg

U (q). Assume
for contradiction that ν is tangential to L at p0 ∈ L. Then we find p1, p2 ∈ L such that they are
connected by an integral curve of ν (a null geodesic in ∂M). Suppose without loss that p1 < p2.
Then we find a causal path from q to p1 and then to p2, which is not a pregeodesic. By Lemma
6.5, we must have q ≪ p2, which contradicts with p2 is on or before the first cut point. □

Lemma 6.17. For any q, q′ ∈W , if for some open subsets O ⊆ L+U we have

∅ ≠ Creg
U (q) ∩O ⊆ Cear

U (q′) ∩O,

then q = q′.

Proof. A similar argument can be found in [66, Proposition 2.2.9]. Assume for contradiction that
∅ ≠ Creg

U (q)∩O ⊆ Cear
U (q′)∩O but q ̸= q′. By Lemma 6.13, for (p1, w1) ∈ Creg

U (q)∩O, there exists
a distinct point p2 such that (p2, w2) ∈ Creg

U (q) ∩ O. By our assumptions (pj , wj) ∈ Creg
U (q′) ∩ O

for j = 1, 2. The definition (6.3) implies there exists vj ∈ L+
q M and v′j ∈ L+

q′M such that

(pj , wj) = (γq,vj (1), γ̇q,vj (1)) = (γq′,v′j (1), γ̇q′,v′j (1)), for j = 1, 2.

Now γj := γpj ,−wj (R+) are two past pointing null geodesics starting from pj to q or q
′, for j = 1, 2.

Thus, we must have either q < q′ or q′ < q. In the first case, consider the geodesic segments from
q to q′ along γ1 and from q′ to p2 along γ2. By Lemma 6.5, we have τ(q, p2) > 0, which contradicts
with (p2, w2) ∈ Creg

U (q). In the second case, consider the geodesic segments from q′ to q along γ1
and from q to p2 along γ2. By Lemma 6.5 again, we have τ(q′, p2) > 0, which contradicts with
(p2, w2) ∈ Cear

U (q).
□

Proof. We can prove it using Lemma 6.4 and the proof in Section 6.3.2. □

Lemma 6.18. Suppose Creg
U (q) ̸= ∅ for each q ∈W . Then the map given by

ψreg :W → Creg
U (W )

q 7→ Creg
U (q).

is a bijection, where we denote by Creg
U (W ) = {Creg

U (q) : q ∈W}.

Proof. By Lemma 6.17, if Creg
U (q) = Creg

U (q′), then q = q′ and thus ψreg is one-to-one. It is onto
by the definition of Creg

U (W ). □

As ∅ ≠ Creg
U (q) ⊆ Cear

U (q) for each q ∈W , this indicates the map

ψ :W → Cear
U (W )

q 7→ Cear
U (q).

(6.8)

is a bijection as well.
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6.2. The regular scattering light observation sets. In this part, we discuss the difference
between Cear

U (q) and Creg
U (q). Moreover, we propose a way to reconstruct Creg

U (q) from the
knowledge of Cear

U (W ). Recall from Lemma 6.13, we know Lreg
U (q) = π(Creg

U (q)) is a smooth
1-codimensional submanifold of U . In the following, we would like to first collect all smooth parts
of Lear

U (q) = π(Cear
U (q)). We define

L∞
U (q) = {p ∈ Lear

U (q) : there is an open neighborhood O of p such that

Lear
U (q) ∩O is a smooth 1-codimensional submanifold of O}.

(6.9)

Note that L∞
U (q) is the union of smooth pieces of Lear

U (q) and clearly we have Lreg
U (q) ⊆ L∞

U (q).
For each p ∈ L∞

U (q), there exists open neighborhood O of p such that

Lp(q) := L∞
U (q) ∩O(6.10)

is a smooth 1-codimensional submanifold. By definition such Lp(q) may contain points on or before
the first cut point and therefore even conjugate points. To reconstruct Lreg

U (q) from Cear
U (W ), we

introduce the following definition and prove the following sequences of lemmas, which are also used
in the reconstruction of the conformal structure.

Definition 6.1. Let qj ∈ M and p ∈ L∞
U (qj) with Lp(qj) defined in (6.10) for j = 1, 2. We say

L∞
U (q1) and L

∞
U (q2) are tangential at p if

(1) p ∈ Lp(qj) such that (p, v) ∈ Cear
U (qj) for some v ∈ L+

pM and j = 1, 2;
(2) TpLp(q1) = TpLp(q2).

Lemma 6.19. Let q1, q2 ∈W be distinct and p ∈ ∂M . If L∞
U (q1) and L

∞
U (q2) are tangential at p,

then either q1 < q2 or q2 < q1.

Proof. By definition, with (p, v) ∈ Cear
U (qj) for j = 1, 2, we must have q1, q2 in the same null

geodesic. In particular, this lemma holds for Lreg
U (qj), j = 1, 2. □

Lemma 6.20. Let q1, q2 ∈W be distinct and p ∈ ∂M . If L∞
U (q1) and L

∞
U (q2) are tangential at p,

then
Lp(q1) ∩ Lp(q2) = {p}.

Proof. By the Lemma 6.19, we can assume with loss that q1 < q2. Assume for contradiction there
exists another p′ ∈ Lp(q1) ∩ Lp(q2). Consider the causal path from q1 to q2 to p′, which is not a
pregeodesic segment. By Lemma 6.5, we must have τ(q1, p

′) > 0, which contradicts with p′ on or
before the first cut point. □

Definition 6.2. Let q1, q2 ∈ W and p ∈ ∂M . We write L∞
U (q1) <p L

∞
U (q2) if they are tangential

at p and there exist y1 ∈ Lp(q1) and y2 ∈ Lp(q2) such that y1 < y2.

Lemma 6.21. Let q1, q2 ∈ W and p ∈ ∂M . If L∞
U (q1) <p L

∞
U (q2), then q1 < q2. Moreover, for

any y1 ∈ Lp(q1) and y2 ∈ Lp(q2) different from p, either they are not causally related or y1 < y2.

Proof. As q1 ̸= q2, by Lemma 6.19, we have either q1 < q2 or q2 < q1. Assume for contradiction
that q2 < q1. Then by Definition 6.2, there exists p1 ∈ Lp(q1) and p2 ∈ Lp(q2) such that p1 < p2.
Consider the causal paths from q2 to q1 and then to p1 and then to p2, which is not a null
pregeodesics. By Lemma 6.5, we have τ(q2, p2) > 0, which contradicts with p2 ∈ Lear

U (q2). The
second statement can be proved by a similar shortcut argument. □

Next, we define

(6.11) L∞
U (W ) = {L∞

U (q) : q ∈W}.
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Lemma 6.22. Let q ∈M and p ∈ Lreg
U (q). Then there exists L ∈ L∞

U (W ) such that L <p L
reg
U (q).

Proof. Suppose p = γq,v(1) ∈ U for some v ∈ L+
q M . Consider qϵ = γq,v(−ϵ) for some ϵ > 0. Note

that p is before the first cut point of qϵ and therefore p ∈ Lreg
U (qϵ). Then we claim Lreg

U (qϵ) and
Lreg
U (q) are tangential at p and moreover Lreg

U (qϵ) <p L
reg
U (q). □

Lemma 6.23. Let p ∈ Lp(q) ⊆ Lear
U (q) \Lreg

U (q). Then there does not exist L ∈ L∞
U (W ) such that

L <p L
reg
U (q).

Proof. Assume for contradiction there exists q′ ∈ M such that L∞
U (q′) <p L

reg
U (q). By Lemma

6.21, we have q′ < q. Now p ∈ Lear
U (q) \ Lreg

U (q), the point p = γq,v(1) is on the first cut point of
q, for some v ∈ L+

q M . As q′ < q, we must have p is after the first cut point of q′ and therefore
τ(q′, p) > 0, which contradicts with p ∈ Lear

U (q′). □

Combining Lemma 6.22 and 6.23, we prove the following proposition.

Proposition 6.3. Let q ∈ M . Given Cear
U (q) for each q ∈ W , we can construct L∞

U (W ) using
(6.9) and (6.11). Then we have

Lreg
U (q) = {p ∈ L∞

U (q) : there is L ∈ L∞
U (W ) such that L <p L

∞
U },

and therefore

Creg
U (q) = {(p, w) ∈ Cear

U (q) : p ∈ Lreg
U (q)}.

6.3. Proof of Theorem 6.1. Recall U ⊆ S+ and W ⊆ M are open subsets. In Section 6, we
define Cear

U (q) as the earliest scattering light observation set in U for q ∈ W and Cear
U (W ) is the

collection of such sets for all q ∈W .
Moreover, by Lemma 6.18, the map ψ : W → Cear

U (W ) is a bijection. As is stated in [34],
it induces a conformal diffeomorphism which pushes the topological, differential, and conformal
structures on W to those on Cear

U (W ). Using this map, we can identify the set W with the set
Cear
U (W ). Then reconstructing the structures onW is the same as reconstructing those on Cear

U (W ).

6.3.1. Topology. Recall by Proposition 6.3, we can construct the collection of regular scattering
direction set Creg

U (W ) from the knowledge of Cear
U (W ). Then for O ⊆ L+U open, we define

UO := {C ∈ Creg
U (W ) : C ∩O ̸= ∅},

We collect sets of the form as above for any open set O ⊆ L+U . Then we define a topology T on
Creg
U (W ) by using these sets as a subbasis. The bijection ψ :W → Creg

U (W ) induces a topology on
W . We prove this induced topology coincides with the subspace topology given by that of M in
the proposition below, using the same idea as in [34, Proposition 3.8].

Proposition 6.4. The topology T of Creg
U (W ) is equal to the subspace topology TM of W ⊆M , if

we identify Creg
U (W ) with W using the map ψ in (6.8).

Proof. T ⊂ TM : For any open set O of L+U , we would like to prove ψ−1(UO) are open sets in

W ⊆M . We only need to consider that case when O ̸= ∅. To prove ψ−1(UO) is open in W ⊆M ,
let q0 ∈ ψ−1(UO). This means Creg

U (q0) ∩ O ̸= ∅ and therefore we can find v0 ∈ L+
q0M such that

(γq0,v0(1), γ̇q0,v0(1)) ∈ O before the first cut point, i.e., 1 < ρ(q0, v0). The goal is to prove for any
(q, v) ∈ L+M that is sufficiently close to (q0, v0), there exists ςq,v such that

(γq,v(ςq,v), γ̇q,v(ςq,v)) ∈ O with ςq,v < ρ(q, v),
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and therefore Creg
U (q)∩O ̸= ∅. Then we can conclude that ψ−1(UO) contains a small neighborhood

of q0, for arbitrary q0 in this set, and thus ψ−1(UO) is open. Indeed, by Lemma 6.10, we can find a
small neighborhood N0 ⊆ L+M of (q0, v0) such that for any (q, v) ∈ N0, the point γq,v(ςq,v) ∈ S+
smoothly depends on (q, v) and is before the first cut point. Moreover, one has γ̇q,v(ςq,v) smoothly
depends on (q, v). Thus, with (q, v) ∈ L+M sufficiently close to (q0, v0), we are able to have
(γq,v(ςq,v), γ̇q,v(ςq,v)) ∈ O with ςq,v < ρ(q, v).

TM ⊂ T : For this part, the goal is to show for any TM -open set OM ⊆ W , each fixed q ∈ OM
has a T -open neighborhood contained in OM . More explicitly, we would like to find an open
neighborhood U0 ⊆ Creg

U (W ) of Creg
U (q) such that for any Creg

U (q′) ∈ U0, we have q′ ∈ OM . For this
purpose, we consider an open set O and a compact set K such that O ⋐ K ⊆ L+U \ {0}. We
denote by

C := Creg
U (q) ∩O

the regular light observation set of q within O. In particular, we choose O as the open neighborhood
such that its projeciton π(O) onto U satisfies Lemma 6.15, i.e.,

π(Creg
U (q) ∩O) = Lreg

U (q) ∩ π(O) = L+
q ∩ π(O).

We pick a countable dense subset

P := {(pi, wi) ∈ L+U : i ∈ Z+} ⊆ C

and define Oi,ϵ = {(p, w) ∈ U : dg+((p, w), (pi, wi)) < ϵ}, where g+ is the auxiliary Riemannian
metric. As C ⊆ K is compact, for each fixed ϵ > 0, there exists a finite number I(ϵ) such that

C ⊆
⋃I(ϵ)
i=1(ϵ)Oi,ϵ. Then we define a nested sequence given by

Uj :=
I(1/j)⋂
i=1

UOi,1/j
, j ∈ Z+.

We observe Uj contains Creg
U (q) and ψ−1(Uj) are open subsets of W in T .

We claim ψ−1(Uj) ⊆ OM for large j and thus we find a T -open neighborhood of q in OM .
Indeed, assume for contradiction that ψ−1(Uj) ⊈ OM for all large j. Then we can pick a sequence
qj ∈ ψ−1(Uj) \OM ⊆W . Further, by passing through a subsequence, we can assume qj converges

to q′ in W . Then we consider the earliest light observation set

C ′ := Cear
U (q′) ∩O

of q′ within O. The goal is to prove C ⊆ C ′ and therefore by Lemma 6.17 we must have q′ = q,
which contradicts with qj /∈ OM and q ∈ OM .

Indeed, assume for contradiction that C ⊈ C ′. Then we can find i0 ∈ Z+ such that (pi0 , wi0) ∈
P \ C ′. Moreover, by the definition of Oi,ϵ, we can find j0 ∈ Z+ such that Oi0,1/j ∩ C ′ = ∅ for

j ≥ j0. However, since qj ∈ ψ−1(Uj), we must have Creg
U (qj)∩Oi0,1/j is nonempty. Then there exists

(xj , wj) ∈ Creg
U (qj) ∩Oi0,1/j for any j ≥ j0. Thus, we must have (pi0 , w)i0 = limj→∞(xj , wj). Now

using Lemma 6.9, we can find a subsequence (qj , vj) → (q′, v′) ∈ L+M such that pi0 = γq′,v′(1).
Moreover, this implies wi0 = γ̇q′,v′(1) By Lemma 6.8, one has pi0 is on or before the first cut point
of q′ and thus (pi0 , wi0) ∈ C ′, which is a contradiction. Therefore, we must have C ⊆ C ′, which
leads to q = q′.

□
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6.3.2. Smooth Structure. To reconstruct the smooth structure in W , we would like to define a
coordinate system locally near any fixed q ∈ W , by using earliest observation time (see (6.12))
along suitable curves passing through the regular part Lreg

U (q). This is the idea used in [34]. We
emphasize that for each q ∈ W , the set Lreg

U (q) is nonempty, and by Lemma 6.13, there exists an
open subset O ⊆ U such that L := Lreg

U (q) ∩ O is a smooth 1-dimensional submanifold. Now let
µ : [−1, 1] → O be a smooth curve in ∂M such that

(1) µ is traversal to L;
(2) µ′(s) ̸= 0 for s ∈ [−1, 1];
(2) µ(0) ∈ L and µ(s) /∈ L for s ̸= 0.

By Lemma 6.15, we can shrink O such that there exists an open neighborhood N ⊆W of q, such
that Lreg

U (q′) ∩O = L+
q′ ∩O is a smooth 1-dimensional submanifold, for any q′ ∈ N . We define

R′(µ) := {q′ ∈W : Lreg
U (q′) intersect µ once and transversally}.

as the set of all points such that their smooth part of the future light cone surface intersects µ
transversally. As is pointed out in [34], R′(µ) is neither open nor closed in general but it contains
an open neighborhood of q by Lemma 6.15. One can further define

R(µ) :=
⋃

R ⊆ R′(µ) open in W

R,

which is a nonempty open neighborhood of q. Moreover, we define the earliest observation time
along µ as

xµ : R(µ) → [−1, 1]

q 7→ s,

where s is determined by µ(s) ∈ Lreg
U (q). Note that xµ is a well-defined function, due to the

definition of R(µ). Moreover, by Lemma 6.4, the point p = γq,v(ςq,v) ∈ Lreg
U (q) smoothly depends

on (q, v) and therefore xµ is smooth function on R(µ). As [34], we would like to show that a
suitable family of curves µ give us functions xµ, which provides local coordinates near q. The key
step is to prove there are always enough curves µ for which xµ is non-degenerate at q.

Lemma 6.24. For fixed q ∈W , consider the set

M := {µ ∈ C∞([−1, 1];U) : µ satisfies assumptions (1)-(3) above},

which contains curves that intersects Lreg
U (q) once and transversally. Then we have⋂

µ∈M
ker(dxµ |q) = {0} ⊆ TqM.

Proof. We follow the same ideas as in [34], but with Lemma 6.3, 6.4, 6.2 in our setting. Assume
for contradiction there exists a nonzero V ∈ TqM such that

dxµ(V ) = 0 for any µ ∈ M.

Then there is a smooth curve q(r) in W for r ∈ (−1, 1), with q(0) = q and V = q̇(0). For fixed
µ ∈ M, with sufficiently small r, the point q(r) ∈ R(µ) and xµ(q(r)) ∈ [−1, 1] is well-defined. If
a curve µ̃(r) in U is defined by µ̃(r) = µ(xµ(q(r))), then we must have µ̃(0) = q and ˙̃µ(0) = 0, as
µ(0) = q and dxµ(q̇(0)) = 0. In the following, we would like to use this argument to derive the
contradiction.
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For this purpose, let p0 ∈ Lreg
U (q) and O ⊆ ∂M be an open neighborhood of p0 as is chosen in

Lemma 6.15. Let O′ ⋐ O be nonempty and we denote by L := Lreg
U (q)∩O′ the intersection. Recall

L is a smooth 1-codimensosubmanifold of O of codimension one. There exists a smooth open map

υ : L× (−2, 2) → O

such that for each fixed p ∈ L, the smooth curve υp : s 7→ υ(p, s) is transversal to L with υp(0) = p
and υ is a diffeomorphism onto its range Oυ ⊆ U . Note that for fixed p ∈ L, υp ∈ M and we can
define R(υp) and x

υp as above.
Now we denote by L(r) = Lreg

U (q(r)) ∩ Oυ the intersection of the future light cone surface at
q(r) with the range of υ. For sufficiently small r, the preimage υ−1(L(r)) can be written as the
graph of a smooth function f(r, ·) : L→ (−2, 2). Indeed, we can define f by

f(r, p) = xυp(q(r)), for (r, p) ∈ (−ϵ, ϵ)× L.

Then we have υ(p, f(r, p)) ∈ Lreg
U (q) by the definition of xυp and therefore υ(p, f(r, p)) ∈ L(r).

Moreover, we have f(0, p) = xυp(q) ≡ 0 as υp(0) = p and we have ∂rf(0, p) ≡ 0 as dxυp(q̇(0)) = 0.
This implies

υ(p, f(0, p)) = p, ∂rυ(p, f(0, p)) = 0.

It follows that the tangent space

T (r, p) := Tυ(p,f(r,p))L
reg
U (q(r))

is r2-close to T (0, p) = TpL
reg
U (q), uniformly for all p ∈ O′.

We claim T (r, p) is a screen space of Tp∂M . Indeed, T (r, p) is the projection to M of a null
bicharacteristic, which hits ∂M transversally. Then we have T (r, p) ∩ Tυ(p,f(r,p))∂M = {0}, by
Lemma 6.1, T (r, p) is a screen space. According to Lemma 6.2, there is an isomorphism mapping
T (r, p) to a future pointing outward lightlike ray R+w ⊆ T (r, p)⊥, with w ∈ L+

pM ∩ T+
p M . We

call this unique ray l(r, p). Thus, such l(r, p) is also r2-close to l(0, p).
Next, let v1, v2 ∈ L+

q M be two distinct lightlike vectors such that pj = expq(vj) ∈ L for j = 1, 2.
Note that we have υ(pj , f(0, pj)) = pj and we set wj = γ̇q,vj (1), for j = 1, 2. It turns out wj ∈
T (0, pj)

⊥, by Lemma 6.11, and therefore R+wj = l(0, pj). Now for (r, p) ∈ (−ϵ, ϵ)× L, since each
l(r, p) is well-defined, we can consider a generator w(r, p) of l(r, p), which depends on (r, p) smoothly
and is r2-close to w(0, p). Observe that the two null geodesics s 7→ exppj (−sw(0, pj)) intersect

cleanly at q by our construction. For small r, the null geodesics s 7→ expυ(p,f(r,p))(−sw(r, pj))
intersect exactly at q(r), by Lemma 6.11 again. This implies q(r) depends smoothly on υ(p, f(r, p))
and w(r, pj) and therefore is r2-close to q(0) = q. It follows that V = q̇(0) = 0, which contradicts
with our assumption. □

Thus, for every q ∈W , there exist (n+1) curves µj ∈ M such that the set {dxµj : j = 0, . . . , n}
is linearly independent at q and thus xµj forms a smooth local coordinate system near q. Then
the argument in [34] shows one can recover the algebra of smooth functions on W from the family
of sets Cear

U (W ).

6.3.3. Conformal Structure. We follow [34]. By the assumption in Theorem 6.1, for each q ∈ W ,
the set Lreg

U (q) is nonempty. Using Proposition 6.3, we construct the collection of regular scattering
light observation set Lreg

U (W ) from the knowledge of Cear
U (W ). Now let p ∈ Lreg

U (q) such that
p = γq,v(1) for some v ∈ L+

q M . Recall Definition 6.1 and 6.2. We define the set

Q = {µ ∈ C∞((−1, 1);W ) : µ(0) = q and p ∈ Lreg
U (µ(r)) for any r ∈ (−ϵ, ϵ)

such that Lreg
U (µ(r)) and Lreg

U (q) are tangential at p}.
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By Lemma 6.2 and Lemma 6.11, this set contains all smooth curves which have the same tangent
space at p and therefore the same future pointing lightlike ray there. Then from {µ̇(0) : µ ∈ Q} =
R+v ∈ L+

q M , we recover a one-dimensional lightlike subspace of LqM .

Next we repeat this procedure for all points p ∈ Lreg
U (q). Since Lreg

U (q) is an open set, this
allows us to reconstruct an open subset of the light cone L+

q M ⊆ TqM . As LqM is a real-analytic
submanifold of TqM determined by a quadratic equation, this determines LqM uniquely.

6.3.4. Time orientation. One can proof follow the following lemmas using the same idea as [34]
or [66].

Lemma 6.25. Suppose (q(r), v(r)) ∈ L+M for r ∈ (−1, 1) is a smooth path such that p(r) :=
expbq(r) v(r) ∈ ∂M . Let γ(r, s) := expbq(r)(sv(r)) and γ(s) := γ(0, s). Then we have

g(q′(0), v(0)) = g(p′(0), γ′(1)).

Lemma 6.26. Let p(r) ∈ Lreg
U (q(r))∩U be a smooth path and denote by N ∈ Tp(0)∂M the future-

directed unit normal to the spacelike hypersurface Tp(0)L
reg
U (q(0)). Then q is future timelike if and

only if g(p′(0), N) < 0.

7. Reconstruction of the scattering light observation sets

In this section, we propose schemes to reconstruct the scattering light observation sets in each
step of the layer stripping method in Section 5.3. Recall in Step 1, we would like to reconstruct
the scattering light observation sets by sending receding waves in an open subset U− of the past
null infinity S− and detecting new singularities in an open subset U+ of the future null infinity
S+. In particular, we assume there are no caustics in the region of interest W = I(U−, U+).
First, in Section 7.1, we prove the scattering light observation sets for all points in W can be
reconstructed from a so-called three-to-one scattering relation. Essentially, this relation indicates
how suitable lightlike vectors on U− are related with lightlike vectors on U+ by nonlinear wave
interaction. Next, in Section 7.2, we show how to extract such a three-to-one scattering relation
using the nonlinear scattering operator N . Then, in Section 7.3, we explain how to use these two
ingredients to reconstruct the scattering light observation sets in each step of Section 5.3.

7.1. Reconstruction from a three-to-one scattering relation. In the following, let U± ⊆ S±
be open subsets such that I(U−, U+) is nonempty. We consider an open subset

W ⊆ I(U−, U+),

for which we would like to reconstruct the metric. In Step 1, we chooseW = I(U−, U+), but laterW
can be a proper subset of I(U−, U+). For example, in Step 2 we chooseW = I(U−, U+)\J−(S+(T1))
and in Step 3 we chooseW = I(U−, U+)\J+(S−(T1)). By the construction in Section 5, we assume
there are no cut points along any geodesic segments restricted to W .

For convenience, we use the notation υ = (p, w) ∈ L+M to denote a lightlike vector and γυ(ς) to
denote a null geodesic starting from υ. Our goal is to reconstruct the scattering light observation
sets from a relation between lightlike vectors on U− and U+. Recall the definition of a three-to-one
scattering relation in [27] defined for lightlike vectors in open sets. As an analog, we introduce the
following definition for lightlike vectors on U±, in a simplified but localized setting, in the sense
that we assume there are no caustics in W but our reconstruction works for a subset of lightlike
vectors on U−.

For this purpose, first we define

(7.1) L(U+) := L+U+ ∩ T+
U+
M and L(U−) := L+U− ∩ T+

U−
M
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as the set of future pointing lightlike vectors that are transversal to U±, where T
+
p M is defined in

(6.7) for p ∈ U±. The following lemma comes from [27, Lemma 7.2] and a shortcut argument.

Lemma 7.1. Suppose there are no cut points along any geodesic segments in W . Let υ1, υ2 ∈
L(U−) be distinct. Then the set

F := γυ1(R+) ∩ γυ2(R+) ∩W
contains at most one point.

Then we consider a subset V− ⊆ (L(U−))
3 and introduce the following definition.

Definition 7.1. Let V− ⊆ (L(U−))
3. We define

V−,1(q) = {υ1 ∈ L(U−) : there is a neighborhood N1 ⊆ L(U−) of υ1 such that if υ̃j ∈ N1

are distinct with q = γυ̃j (ςj) for some ςj > 0, then (υ̃1, υ̃2, υ̃3) ∈ V−.}

We say V− ⊆ (L(U−))
3 is sufficient for W ⊆ I(U−, U+), if

(a) for each (υ1, υ2, υ3) ∈ V−, there does not exist q0 ∈ γυi(R+)∩ γυj (R+)∩ (M \W ) such that

q0 < q for some q ∈W , and
(b) for each q ∈W , the set V−,1(q) ̸= ∅.

Note that for Step 1 we chooseW = I(U−, U+) and V− = (L(U−))
3, which satisfies the definition

above. For Step 2 and later, we choose V− to be a subset containing lightlike vectors such that
the corresponding null geodesics do not intersect before entering W .

Definition 7.1. Let V− ⊆ (L(U−))
3 be sufficient for W ⊆ I(U−, U+) as in Definition 7.1. We

say a relation R ⊆ L(U+)× V− is a three-to-one scattering relation for W , if it has the following
two properties:

(R1) If (υ0, υ1, υ2, υ3) ∈ R, then there exists an intersection point

q ∈ (∩3
j=1γυj (R+)) ∩ γυ0(R−) ∩W.

(R2) Assume that γυj for j = 0, 1, 2, 3 are distinct and there exists

q ∈ (∩3
j=1γυj (R+)) ∩ γυ0(R−) ∩W

such that q = γυj (ςj) with ςj > 0 for j = 1, 2, 3 and

q = γυ0(ς0) with ς0 ∈ (−ρ(υ−0 ), 0),
where υ−0 := (y,−w) ∈ L−

U+
M if we write υ0 = (y, w). In addition, assume γ̇υ0(ς0) ∈

span(γ̇υ1(ς1), γ̇υ2(ς2), γ̇υ3(ς3)). Then, it holds that (υ0, υ1, υ2, υ3) ∈ R.

We remark that, compared to [27], for (R2) we do not assume q is before the first cut point
along each γυj for j = 1, 2, 3. Moreover, such a three-to-one scattering relation is only defined in

a subset of L(U+) × (L(U−))
3 and we assume a stronger (R1) due to our construction in Section

5. The sufficient condition guarantees V− is large enough for the reconstruction.
Next, we would like to consider lightlike vectors that are corresponding to null geodesics inter-

secting at points away from U±. Thus, we introduce the following definition.

Definition 7.2. We say (υ0, υ1, υ2, υ3) ∈ L(U+)× (L(U−))
3 are proper if

(1) the points π(υj) for j = 1, 2, 3 are distinct;
(2) the points π(υ0) and π(L(υj)) for j = 1, 2, 3 are distinct, where L : L(U−) → L(U+) is the

lens relation.
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Note that (υ0, υ1, υ2, υ3) is proper if and only if they are corresponding to distinct null geodesics
and do not intersect with each other at U±. Combining Lemma 7.1, (R1), and Definition 7.2, we
have the following lemma.

Lemma 7.2. Suppose there are no cut points along any geodesic segments in W . Let R be a
three-to-one scattering relation and (υ0, υ1, υ2, υ3) ∈ R be proper. Then there exists a unique q
such that

(∩3
j=1γυj (R+)) ∩ γυ0(R−) ∩W = {q}.

Next for two lightlike vectors υ1, υ2 in U+, we consider conical pieces given by

(7.2) CP (υ1, υ2) = {υ0 ∈ L(U+) : there is υ3 ∈ L(U−) such that (υ0, υ1, υ2, υ3) ∈ R}.
We emphasize if there are no such υ3 that (υ1, υ2, υ3) ∈ V−, then CP (υ1, υ2) = ∅.

Lemma 7.3. Suppose there are no cut points along any geodesic segments in W . Let υ1, υ2 ∈
L(U−) such that (υ′0, υ1, υ2, υ

′
3) ∈ R is proper, for some υ′0 ∈ L(U+) and υ′3 ∈ L(U−). Then there

exists a unique q such that γυ1(R+) ∩ γυ2(R+) ∩W = {q} and moreover

CP (υ1, υ2) ⊆ CU+(q),

where CU+(q) is defined in (6.1).

Proof. Indeed, applying Lemma 7.2 to (υ′0, υ1, υ2, υ
′
3) and using Lemma 7.1, we can find a unique

q such that γυ1(R+) ∩ γυ2(R+) ∩W = {q}. Now let υ0 ∈ CP (υ1, υ2). There exists υ3 ∈ L(U−)
such that (υ0, υ1, υ2, υ3) ∈ R. (R1) implies (∩3

j=1γυj (R+)) ∩ γυ0(R−) ∩ W ̸= ∅ and therefore

by Lemma 7.1 again, this set must equal to {q}. Thus, such υ0 ∈ CU+(q) and we conclude
CP (υ1, υ2) ⊆ CU+(q). □

Now we would like to use these conical pieces to generate the future light cone surface of q
within U+. For this purpose, for υ1, υ2 ∈ L(U−) we define

C(υ1, υ2) := {C ⊆ L(U+) : C is a smooth submanifold of dimension n− 1 such that

C ⊆ CP (υ1, υ
′
1) ∩ CP (υ2, υ′2) for some υ′1, υ

′
2 ∈ L(U+) with υ1 ̸= υ′1 and υ2 ̸= υ′2}.

and define
C(υ1, υ2) :=

⋃
C∈C(υ1,υ2)

C̄.

Proposition 7.2. Suppose there are no cut points along any geodesic segments in W . Let υ1, υ2 ∈
L(U−) such that (υ′0, υ1, υ2, υ

′
3) ∈ R is proper, for some υ′0 ∈ L(U+) and υ

′
3 ∈ L(U−). Recall there

exists a unique q such that γυ1(R+) ∩ γυ2(R+) ∩W = {q}. Then we have

C(υ1, υ2) ⊆ CU+(q).

Proof. Let υ ∈ C(υ1, υ2). Then by the definition, such υ is contained in CP (υ1, υ
′
1) ∩ CP (υ1, υ′1)

for some υ′1, υ
′
2 ∈ L(U−) with υ1 ̸= υ′1 and υ2 ̸= υ′2. By Lemma 7.3, there exists qj ∈ γυj (R+) ∩

γυ′j (R+) ∩W such that

CP (υj , υ
′
j) ⊆ CU+(qj),

and thus υ ∈ CU+(qj) for j = 1, 2. We claim that q = q1 = q2. With υ ∈ CU+(qj) for j = 1, 2,
we have either q1 ≤ q2 or q2 < q1. We may assume for contradiction that q2 < q1 along γυ(R−).
Note that both q and q1 are contained in γυ1(R+) and both q and q2 are contained in γυ2(R+).
If q > q1, then we have causal path from q2 to q1 along γυ(R−) and from q1 to q along γυ1(R+).
This causal path is not a null pregeodesic and by Lemma 6.5 we have q ≪ q2 is after the first cut
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point, which contradicts with our assumption. If q < q1, we can use a similar shortcut argument.
Thus, we must have q = q1. This implies q ∈ γυ1(R+) ∩ γυ2(R+) ∩ γυ(R−) ∩W . By Lemma 7.1
again, we have q = q2. This proves υ ∈ CU+(q). □

Next, we define

Cear(υ1, υ2) := {υ ∈ C(υ1, υ2) : there is no υ̃ ∈ C(υ1, υ2) such that π(υ̃) < π(υ) in S+}
as the earliest part of the conical pieces given by υ1, υ2.

Proposition 7.3 ([66, Proposition 2.2.7]). Let q ∈M and recall the definition of Cear
U+

(q) in (6.2).

Then

Cear
U+

(q) = {υ ∈ CU+(q) : there is no υ′ ∈ CU+(q) such that π(υ′) < π(υ) in S+}.

Combining Proposition 7.3 and Proposition 7.2, we have the following lemma.

Lemma 7.4. Let υ1, υ2 and q be defined as in Proposition 7.2. Then we have

Cear(υ1, υ2) ⊆ Cear
U+

(q).

Proposition 7.4. Let υ1, υ2 and q be as in Proposition 7.2. Suppose υ1, υ2 ∈ V−,1(q) and V−
only contains lightlike vectors of which the corresponding null geodesics do not intersect before W .
Then we have

Creg
U+

(q) ⊆ Cear(υ1, υ2),

where Creg
U+

(q) is defined in (6.3).

Proof. Let υ ∈ Creg
U+

(q) in the sense that there exists w0 ∈ L+
q M such that

υ = (γq,w0(ς0), γ̇q,w0(ς0)) for some 0 < ς0 < ρ(q, w0).

The goal is to show υ ∈ Cear(υ1, υ2). First we prove υ ∈ C(υ1, υ2). Indeed, we want to find
υ′1, υ

′
2 ∈ L(U−) with υ1 ̸= υ′1 and υ2 ̸= υ′2 such that there is a small neighborhood C of υ in Creg

U+
(q)

satisfying
C ⊆ CP (υ1, υ

′
1) ∩ CP (υ2, υ′2).

It suffices to find such υ′1 for υ1. For this purpose, we write

(q, w1) = (γυ1(ς1), γ̇υ1(ς1)) and υ = (γq,w0(ς0), γ̇q,w0(ς0)),

for some ς0, ς1 > 0. By Lemma 6.10, there exists a small neighborhood N ′
0 ⊆ L+

q M of w0 such
that for any w′

0 ∈ N ′
0, the null geodesic γq,w0 hits U+ before the first cut point. By [27, Lemma

6.23], for any neighborhood N1 ⊆ L+
q M of w1, there exists a neighborhood N0 ⊆ L+

q M of w0 and
w3 ∈ N1 such that for any w′

0 ∈ N0, there exists w4 ∈ N1 satisfying

w′
0 ∈ span(w1, w3, w4) and w′

0 /∈ span(wj), for j = 1, 3, 4.

We can shrink N ′
0 and N0 if necessary to set them equal. Now let

υj = (γq,wj (−ςj), γ̇q,wj (−ςj)) such that γq,wj (ςj) ∈ S−

for some ςj > 0, where j = 3, 4. Recall υ1 ∈ V−,1(q), which implies there is a small neighborhood

Ñ1 ⊆ L(U−) of υ1 given by Definition 7.1. In particular, we can choose N1 sufficiently small such

that υj = (γq,wj (ςj), γ̇q,wj (ςj)) are sufficiently close to υ1 and therefore are contained in Ñ1, for
j = 3, 4. Then we must have (υ1, υ3, υ4) ∈ V−. Let

υ′0 = (γq,w′
0
(ς ′0), γ̇q,w′

0
(ς ′0)) such that γq,w′

0
(ς ′0) ∈ S+
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for some ς ′0 > 0 . As υ ∈ Creg
U+

(q), by our choice of N ′
0, there are no cut points from q to π(υ′0).

Moreover, by Lemma 6.3, one has υ0 ∈ L(U+). Thus, by Condition (R2), we have (υ′0, υ1, υ3, υ4) ∈
R and therefore υ′0 ∈ CP (υ1, υ

′
1) for any υ

′
0 sufficiently close to υ. This implies υ ∈ C(υ1, υ2) and

it remains to show it is actually in Cear(υ1, υ2). We assume for contradiction that there exists
υ′ ∈ C(υ1, υ2) such that π(υ′) < π(υ). A shortcut argument using Lemma 6.5 shows we must have
π(υ) ≫ q, which contradicts with υ ∈ Creg

U+
(q). □

To reconstruct Creg
U+

(q), we recall that the analysis in Section 6.2 motivates us to define

C∞(υ1, υ2) := {υ ∈ Cear(υ1, υ2) : there is an open neighborhood O of π(υ) such that

π(E(υ1, υ2)) ∩O is a smooth 1-codimensional submanifold of O}
as the set of lightlike vectors whose projection to U+ is contained in a smooth part. Further, recall
Definition 6.2 and we define

Creg(υ1, υ2) := {υ ∈ C∞(υ1, υ2) : there are υ′1, υ
′
2 ∈ L(U−) such that

C∞(υ′1, υ
′
2) <π(υ) C∞(υ1, υ2)}.

as the regular part.

Proposition 7.5. Suppose there are no cut points along any geodesic segments in W . Let υ1, υ2 ∈
L(U−) such that (υ′0, υ1, υ2, υ

′
3) ∈ R is proper, for some υ′0 ∈ L(U+) and υ′3 ∈ L(U−). Then exists

a unique q such that γυ1(R+) ∩ γυ2(R+) ∩W = {q} and moreover

Creg(υ1, υ2) ⊆ Creg
U+

(q).

Proof. By Lemma 7.4, first we have Cear(υ1, υ2) ⊆ Cear
U+

(q) and therefore Creg(υ1, υ2) ⊆ Cear
U+

(q).

Then we consider the set Cear
U+

(q) \Creg
U+

(q). By Lemma 6.23, this part is disjoint from Creg(υ1, υ2).

Thus, we must have Creg(υ1, υ2) ⊆ Creg
U+

(q). □

Lemma 7.5 ([27, Lemma 6.23]). For q ∈ W , let w0, w1 ∈ L+
q M be linearly independent and let

N1 ⊆ L+
q M be a small neighborhood of w1. Then there exists a neighborhood N0 ⊆ L+

q M of w0

and w2 ∈ N1 such that for any w′
0 ∈ N0, we can find w3 ∈ N1 satisfying

w′
0 ∈ span(w1, w2, w3) and w′

0 /∈ span(wj), for j = 1, 2, 3.

Proposition 7.6. Suppose there are no cut points along any geodesic segments in W . Let υ1, υ2 ∈
L(U−) such that (υ′0, υ1, υ2, υ

′
3) ∈ R is proper, for some υ′0 ∈ L(U+) and υ

′
3 ∈ L(U−). There exists

a unique q such that
γυ1(R+) ∩ γυ2(R+) ∩W = {q}.

In addition, suppose υ1, υ2 ∈ V−,1(q) and V− only contains lightlike vectors of which the corre-
sponding null geodesic do not intersect before W . Then we have

Creg(υ1, υ2) = Creg
U+

(q).

Proof. By Proposition 7.5, we have Creg(υ1, υ2) ⊆ Creg
U+

(q). It remains to prove the opposite

direction. By Proposition 7.4, we have

Creg
U+

(q) ⊆ Cear(υ1, υ2).

Now recall some results in Section 6.2. First by the definition of C∞(υ1, υ2) and Lemma 6.15, we
have Creg

U+
(q) ⊆ C∞(υ1, υ2). Next by Proposition 6.3, we must have Creg

U+
(q) ⊆ Creg(υ1, υ2). Thus,

we conclude that Creg
U+

(q) = Creg(υ1, υ2). □
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Next, for suitable υ1, υ2 ∈ L(U−), we state how to determine whether they are in V−,1(q) or

not. More precisely, we consider υ1, υ2 ∈ L(U−) that satisfies γυ1(R+) ∩ γυ2(R+) ∩ W = {q}
and Creg(υ1, υ2) ̸= ∅. By Lemma 7.4, the second assumption enables us to find distinct υ0, υ̃0 ∈
Creg(υ1, υ2) such that

γυ0(R+) ∩ γυ̃0(R+) ∩W = {q}.
We define

V(υ0, υ̃0) := {υ1 ∈ L(U−) :(υ0, υ1, υ3, υ̃3) ∈ R for some υ3, υ̃3 ∈ L(U−) and

(υ̃0, υ1, υ4, υ̃4) ∈ R for some υ4, υ̃4 ∈ L(U−)}.

Lemma 7.6. Let q and υ0, υ̃0 be defined as above. If υ̃1 ∈ V(υ0, υ̃0), then υ̃1 ∈ C−
U−

(q), where

C−
U−

(q) = {υ ∈ L(U−) : q = γυ(ςq) for some ςq > 0}.

Proof. By the definition of V(υ0, υ̃0), we have (υ0, υ1, υ3, υ̃3) ∈ R and (υ̃0, υ1, υ4, υ̃4) ∈ R for some
υ3, υ̃3, υ4, υ̃4 ∈ L(U−). Condition (R7.1) implies there exists q1, q2 such that

γυ0(R+) ∩ γυ1(R+) ∩W = {q1}, γυ̃0(R+) ∩ γυ1(R+) ∩W = {q2}.
On the other hand, as υ0, υ̃0 ∈ Creg(υ1, υ2), by Lemma 7.5 and Lemma 7.1, we have

γυ0(R+) ∩ γυ̃0(R+) ∩W = {q}.
A same shortcut argument as in the proof of Proposition 7.2 implies q = q1 = q2. Thus, we have
υ1 ∈ C−

U−
(q). □

Then we define

V∞(υ0, υ̃0) := {C ⊆ V(υ0, υ̃0) : C is a smooth (n− 1)-dimensional submanifold}

and then

V1(υ0, υ̃0) := {υ1 ∈ L(U−) : υ1 ∈ C for some C ∈ V∞(υ0, υ̃0) and ∃ a small neighborhood

N1 ⊆ L(U−) of υ1 satisfying if υ̃j ∈ N1 ∩ C are distinct, then (υ̃1, υ̃2, υ̃3) ∈ V−.}

(7.3)

We emphasize the set V1(υ0, υ̃0) is determined by R and V−.

Proposition 7.7. Suppose there are no cut points along any geodesic segments in W . Let υ1, υ2 ∈
L(U−) such that (υ′0, υ1, υ2, υ

′
3) ∈ R is proper, for some υ′0 ∈ L(U+) and υ

′
3 ∈ L(U−). There exists

a unique q such that γυ1(R+) ∩ γυ2(R+) ∩W = {q}. If Creg(υ1, υ2) ̸= ∅, then υ1 ∈ V−,1(q) if and
only if υ1 ∈ V1(υ0, υ̃0) for some υ0, υ̃0 ∈ Creg(υ1, υ2).

Proof. Suppose Creg(υ1, υ2) ̸= ∅. First assume υ1 ∈ V−,1(q). Let υ0, υ̃0 ∈ Creg(υ1, υ2) and the goal
is to prove υ1 ∈ V(υ0, υ̃0). Indeed, by the definition of V−,1(q), there exists a small neighborhood
N1 ⊆ L(U−) of υ1 such that if υ̃j ∈ N1 are distinct with q = γυ̃j (ςj) for some ςj > 0, then
(υ̃1, υ̃2, υ̃3) ∈ V−. Now we write

(q, w1) = (γυ1(ς1), γ̇υ1(ς1)) and υ0 = (γq,w0(ς0), γ̇q,w0(ς0)),

Thus, using the same idea as the proof of Proposition 7.4, for any w̃1 near w1, we can find w̃3, w̃3

near w̃1 such that

w0 ∈ span(w̃1, w̃2, w̃3) and w0 /∈ span(w̃j), for j = 1, 3, 4.

By choosing w̃1 sufficiently close to w1, we can assume υ̃j = (γw̃j
(ςj), γ̇w̃j

(ςj)) ∈ L(U−) is contained

in N1 of υ1 and therefore (υ̃1, υ̃2, υ̃3) ∈ V−. As υ0 ∈ Creg
U+

(q) by Proposition 7.5, Condition (R2)
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implies (υ0, υ̃1, υ̃2, υ̃3) ∈ R. Similarly, we have (υ0, υ̃1, υ̃4, υ̃5) ∈ R for some υ̃4, υ̃5 ∈ L(U−).
Thus, the set V(υ0, υ̃0) contains a small neighborhood of υ1 in C−

U−
(q) and it follows υ1 ∈ C

for some C ∈ V∞(υ0, υ̃0). Indeed, there exists small neighborhood Ñ1 ⊆ L(U−) of υ1 such that

C ∩ Ñ1 = C−
U−

(q) ∩ Ñ1. Now for any υ̃j ∈ C ∩ Ñ1, by the definition, if they are distinct, then

(υ̃1, υ̃2, υ̃3) ∈ V−. This proves υ1 ∈ V1(υ0, υ̃0).
Next, we assume υ1 ∈ V1(υ0, υ̃0). Suppose υ1 ∈ C for some C ∈ V∞(υ0, υ̃0). Note that by

Lemma 7.6 we have υ1 ∈ V(υ0, υ̃0) ⊆ C−
U−

(q), which is a smooth (n− 1)-dimensional submanifold.

Thus, there exists small neighborhood N1 ⊆ L(U−) of υ1 such that C ∩N1 = C−
U−

(q) ∩N1. Now

for any distinct υ̃j ∈ N1 with q = γυ̃j (ςj) for some ςj > 0, we have υ̃j ∈ C ∩ N1. This implies
(υ̃1, υ̃2, υ̃3) ∈ V− and therefore υ1 ∈ V−,1(q). □

We are ready to prove the following results for the reconstruction.

Proposition 7.8. Suppose there are no cut points along any geodesic segments in W . Suppose
V− is sufficient for W . We consider the set

V− := {(υ1, υ2) ∈ (L(U−))
2 : (υ′0, υ1, υ2, υ

′
3) ∈ R is proper for some υ′0 ∈ L(U+) and υ

′
3 ∈ L(U−)

and υ1, υ2 ∈ V1(υ0, υ̃0) for some υ0, υ̃0 ∈ Creg(υ1, υ2)}.
Then we have

{Creg(υ1, υ2) : (υ1, υ2) ∈ V−} = {Creg
U+

(q) : q ∈W}.

Proof. We denote the left-hand side by S1 and the right-hand side by S2. First, we prove S1 ⊆ S2.
Let (υ1, υ2) ∈ V−, which by definition implies there exist υ0, υ̃0 ∈ Creg(υ1, υ2) such that υ1, υ2 ∈
V1(υ0, υ̃0). As (υ′0, υ1, υ2, υ

′
3) ∈ R for some υ′0 ∈ L(U+) and υ′3 ∈ L(U−), we can find a unique

q such that γυ1(R+) ∩ γυ2(R+) ∩W = {q}. Then by Proposition 7.7, we have υ1, υ2 ∈ V−,1(q).
As V− is sufficient for W , by Definition 7.1, the lightlike vectors in V− are corresponding to null
geodesics that do not intersect before W . Using Proposition 7.2, we have Creg(υ1, υ2) = Creg

U+
(q)

and therefore Creg(υ1, υ2) ∈ S2.
Next, we prove S2 ⊆ S1. Let q ∈ W . As V− is sufficient for W , the set V−,1(q) is nonempty.

One can choose υ1 ∈ V−,1(q) and we write (q, w1) = (γυ1(ς1), γ̇υ1(ς1)) for some ς1 > 0. We want
to prove Creg

U+
(q) = Creg(υ1, υ2) for some υ2 ∈ V−,1(q). With Creg

U+
(q), there exists w0 ∈ L+

q M

such that γq,w0(ς0) ∈ U+ for some 0 < ς0 < ρ(q, w0). In addition, we can perturb w0 such that
w0 /∈ span(w1), since by Lemma 6.10 again we still have π(w0) before the first cut point of q
under small perturbation. Then we set υ0 = (γq,w0(ς0), γ̇q,w0(ς0)) and by Lemma 6.3, we have
υ0 ∈ L(U+). Using [27, Lemma 6.23] again, we can find wj ∈ L+

q M sufficiently close to w1 such
that

w0 ∈ span(w1, w2, w3) and w0 /∈ span(wj), for j = 1, 2, 3.

We set

υj = (γq,wj (ςj), γ̇q,wj (ςj)) such that γq,wj (ςj) ∈ U−,

for some ςj < 0, where j = 2, 3. As before, by choosing wj close to w1, we can assume υj are
sufficiently close to υ1 and therefore (υ1, υ2, υ3) ∈ V−, as υ1 ∈ V−,1. Then by Lemma 6.3 again
υ0 ∈ L(U+) and therefore (υ0, υ1, υ2, υ3) ∈ R. Note such γυj are not identical and cannot intersect
at other points inW by Lemma 7.1, for j = 0, 1, 2, 3. Then such υ1, υ2 ∈ V−,1(q) and by Proposition
7.3, we have Creg

U+
(q) = Creg(υ1, υ2) ∈ S1. □

To conclude, we state the following theorem.
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Theorem 7.1. Let V− be sufficient for W ⊆ I(U−, U+), see Definition 7.1. Suppose there no cut
points along any null geodesic segments in W . Let R ⊂ L(U+) × V− be a three-to-one scattering
relation as in Definition 7.1. Then V− and R determines the set

{Creg
U+

(q) : q ∈W}.

7.2. Detection of singularities. In this part, we explain how to extract a three-to-one scattering
relation as in Definition 7.1, from observed new singularities of nonlinear wave interaction. In the
following, we focus on the simplest case, i.e., the detection of singularities in Step 1 of Section
5. Recall in Section 4.2, for given lightlike vectors υj = (pj , wj) ∈ L(U−), we construct conormal

distributions Υj ∈ Iµ+1/4(Σ(pj , wj , s0)) and let vj be the solution to

□gvj = 0 in M with vj |U− = Υj , where j = 1, 2, 3.

Note that vj ∈ Iµ(Λj(pj , wj , s0)) are conormal distributions before the first cut point, for j = 1, 2, 3.
Now to extract a three-to-one scattering relation using the scattering operator, we introduce the
following singularities detection condition as in [46], see also a modified version for the boundary
value problems in [72].

Definition 7.3. Let V− ⊂ (L(U−))
3 be sufficient for W = I(U−, U+). We say a vector υ0 ∈ L(U+)

satisfies the condition (D) with light-like vectors (υ1, υ2, υ3) ∈ V− and κ̂ > 0, if

(a) υ0, υ1, υ2, υ3 are proper as in Definition 7.2, and

(b) for any 0 < κ0 < κ̂ and j = 1, 2, 3, there exists Υj ∈ Iµ+1/4(Σ(pj , wj , κ0)) satisfying the
support condition (4.4), where υj = (pj , wj),

such that (y|, η|) is contained in WF(∂ϵ1∂ϵ2∂ϵ3N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3)|ϵ1=ϵ2=ϵ3=0), where (y|, η|) is

the restriction of υ♯0 = (y, η) to T ∗S+.

By this singularity detection condition, we can tell if singularities produced by the interaction
of three conormal waves emanating from (pj , wj)

3
j=1 at the past null infinity can be detected

at the corresponding covector of (p0, w0) at the future infinity, where (pj , wj)
3
j=1 are given by

(υ1, υ2, υ3) ∈ V− and (p0, w0) is given by υ0 ∈ L(U+). We introduce the following lemmas. These
lemmas may be slightly more general than Step 1 as we would like to use them for later steps.

Lemma 7.7. Let υ1, υ2 ∈ L(U−) be distinct and let F = γυ1(R+)∩ γυ2(R+)∩J(i−, i+). Note that
F must be finite. Then we have the following statements.

(1) Suppose F = {q1, . . . , qm}. Let Nk be disjoint small open neighborhoods of qk ∈ F , for
k = 1, . . . ,m. Suppose υ′i is in the κ-neighborhood of υi, for i = 1, 2. Then with sufficiently
small κ > 0, we have

γυ′1(R+) ∩ γυ′2(R+) ∩ J(i−, i+) ⊆ ∪mk=1Nk.

(2) If F = ∅, then with sufficiently small κ > 0, we have

γυ′1(R+) ∩ γυ′2(R+) ∩ J(i−, i+) = ∅.

Proof. We prove this by contradiction. To prove (1), assume this is not true. Then we can find
two sequences υi,j ∈ L+Ωin, i = 1, 2 such that υi,j is in the κ1,j-neighborhood of υi with

q′j ∈ γυ1,j (R+) ∩ γυ2,j (R+) ∩ J(i−, i+) and q′j ∈ J(i−, i+) \ (∪mk=1Nk).

Since J(i−, i+) is compact, the sequence {q′j} has a subsequence converging to some point q′ and

we abuse the notation to denote it still by {q′j}. Since J(i−, i+) \ (∪mk=1Nk) are closed, we have

q′ ∈ J(i−, i+)\ (∪mk=1Nk). For each j, since q
′
j is the intersection point, we can write q′j = γυi,j (ςi,j)
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for i = 1, 2 for some ςi,j ≥ 0. Note that q′j = γυj (ςi,j) → q′. By [27, Lemma 6.4], there exists ςi
such that ςi,j → ςi for i = 1, 2. On the other hand, since the geodesic flow are continuous, we have
γυi,j (ςi,j) → γυi(ςi) for i = 1, 2, as j → +∞. It follows that q′ = γυi(ςi) ∈ F , which contradicts
with the fact that q′ ∈ J(i−, i+) \ (∪mk=1Nk).

To prove (2), we can choose Nk = ∅ for k = 1, . . . ,m and repeat the same analysis as above to
get a point p = γυi(ti) in J(i−, i+), i = 1, 2. This contradicts with F = ∅. □

Lemma 7.8. Let υ1, υ2 ∈ L(U−) be distinct. Let F = γυ1(R+)∩γυ2(R+)∩J(i−, i+) = {q1, . . . , qm}
and we write υj = (pj , wj), for i = 1, 2. Let Nk be disjoint small open neighborhoods of each qk ∈ F .
Then with κ0 > 0 sufficiently small, we have

K(p1, w1, κ0) ∩K(x2, w2, κ0) ∩ J(i−, i+) ⊆
⋃m
k=1Nk.

If F = ∅, then κ0 > 0 sufficiently small K(p1, w1, κ0) ∩K(x2, w2, κ0) ∩ J(i−, i+) = ∅.

Proof. In the following, we denote K(pi, wi, κ0) by Ki and W (pi, wi, κ0) by Wi, for i = 1, 2. We
notice that if q′ ∈ K1 ∩K2, then there exist (p′i, w

′
i) ∈ Wi satisfying q

′ ∈ γp′1,w′
1
(R+) ∩ γp′2,w′

2
(R+).

Therefore, it suffices to show that with small enough κ0, we have

γp′1,w′
1
(R+) ∩ γp′2,w′

2
(R+) ∩ J(i−, i+) ⊆

⋃m
k=1Nk,

for any (p′i, w
′
i) ∈Wi, for i = 1, 2. This is true according to Lemma 7.7. □

Lemma 7.9. Let (pj , wj)
3
j=1 ⊆ (L(U−))

3 be distinct. If q′ ∈ W such that (q′, ζj) ∈ Λ(pj , wj , s0),
for j = 1, 2, 3, then with sufficiently small κ0 > 0 we have

(1) ζi + ζj ̸= 0, for 1 ≤ i < j ≤ 3,
(2) ζ1 + ζ2 + ζ3 ̸= 0.

Proof. We claim that with κ0 > 0 small enough, we can find q ∈ ∩3
j=1γpi,wi(R+) and q′ is in a

small neighborhood of q. Indeed, let F = ∩3
j=1γpj ,wj (R+) ∩ J(i−, i+) and we can assume F =

{q1, . . . , qm}. Let Nk be disjoint arbitrarily small open neighborhoods of each qk ∈ F . Then
Lemma 7.8 implies q′ ∈ Nk for some k ∈ {1, . . . ,m}, with κ0 sufficiently small. Now suppose
qk = γpj ,wj (ςj) for each j = 1, 2, 3. We note that γ̇pij,wj (ςj) ∈ L+

qk
M for j = 1, 2, 3 are not

multiples of each other, which implies

ciγ̇pi,wi(ςi) + cj γ̇xj ,wj (ςj) ̸= 0, if ci, cj ̸= 0, for i ̸= j ∈ {1, 2, 3}.

and by [27, Lemma 6.21] one has

c1γ̇p1,w1(ς1) + c2γ̇p2,w2(ς2) + c3γ̇p3,w3(ς3) ̸= 0, if c1, c2, c3 ̸= 0.

With κ0 small enough, the lightlike covector (q′, ζj) are sufficiently small perturbations of lightlike
covectors (qk, (cj γ̇pj ,wj (tj))

b) for some nonzero constant cj , where j = 1, 2, 3. Thus, we have the
desired result. □

The following lemma is the result of the propagation of singularities, for example, see [63,
Theorem 2.1].

Lemma 7.10. Let (p, η) ∈ L∗,+M and v be the solution to

(□g + V )v = f in M, with R−[v] = 0.

Then (p, η) ∈ WF(v) only if (y, η) ∈ WF(f) or there exists (q, ζ) such that (q, ζ) ∈ WF(f) and
(p, η) is contained in the null bicharacteristics starting from (q, ζ).
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Assuming no cut points in W , the following proposition is a direct result of the product of
conormal distributions and the lemmas above. Moreover, by our construction in Step 1, null
geodesics starting from lightlike vectors in L(U−) and ending at lightlike vectors in L(U+) only
intersect in W .

Proposition 7.9. Suppose there are no cut points along any geodesic segments in W . Let
(υ0, υ1, υ2, υ3) ∈ L(U+)× V− be proper. If one has

(∩3
j=1γυj (R+)) ∩W = ∅,

then υ0 does not satisfy the condition (D) with (υ1, υ2, υ3) and small κ0 > 0.

Proof. In the following, we write υj = (pj , wj) ∈ L(U+) or L(U−), for j = 0, 1, 2, 3. To check the
condition (D), recall vj ∈ Iµ(Λ(pj , wj , κ0)), j = 1, 2, 3 are Lagrangian distributions in M . With no

cut points in W , they are actually conormal distributions. Recall U3 is the solution to

□gU3 − 6αv1v2v3 = 0 in M, with R−[U3] = 0.

The goal is to show (y, η) = (p0, w
♭
0) /∈ WF(U3). Recall we assume (∩3

j=1γυj (R+)) ∩W = ∅. First,
we consider the case where locally there are exactly two null geodesics intersecting at one point.
Without cut points, two null geodesics intersect at most one point in W . Suppose γi(R+) and
γj(R+) intersect at q with q /∈ γk(R+), where {i, j, k} = {1, 2, 3}. With κ0 small enough, we may
assume q /∈ Kk. Since vk is smooth near q, the wave front set of vivjvk at p is in the span of Λi and
Λj , by the Hörmander-Sato Lemma, for example see [26, Theorem 1.3.6]. Next, we consider the
case that none of three geodesics intersect with each other. Then we have WF(αvivjvk) ⊆ ∪3

j=1Λj .
In both cases, we have

WF(αv1v2v3) ∈ Λ(1) ∩ Λ(2),

where these notations are defined in Section 4.2. Note that if (p, η) ∈ WF(U3), then we must have
either (p, η) ∈ WF(αv1v2v3) or (q, ζ) ∈ WF(αv1v2v3) such that (p, η) is in the null bicharacteristics
starting from (q, ζ) by Lemma 7.10.

For the first situation, we must have (p, η) contained in Λj for some j = 1, 2, 3, which is
impossible for sufficiently small κ0, as (υ0, υ1, υ2, υ3) is proper. For the second situation, first we
consider if there exists (q, ζ) ∈ Λj for some j ∈ {1, 2, 3}. This is impossible, otherwise we have
(p, η) ∈ Λj again. Next, we consider if (q, ζ) ∈ Λij for some i, j ∈ {1, 2, 3}. If so, then we must have
ζ = ζi+ ζj with (q, ζi) ∈ Λi and (q, ζj) ∈ Λj . Recall that if a covector ζ = ζi+ ζj is lightlike, then
we must have ζ is propositional to either ζi or ζj by Lemma 7.9. Then (q, ζ) is contained in either
Λi or Λj . By the analysis above, this is impossible. Thus, we can conclude that (p, η) /∈ WF(U3)
for small κ0. Therefore, the condition (D) is not satisfied. □

Next, by Proposition 4.2, we have the following result.

Proposition 7.10. Suppose there are no cut points along any geodesic segments in W . Let
(υ0, υ1, υ2, υ3) ∈ L(U+)× V− be proper. Suppose there exists

q ∈ (∩3
j=1γυj (R+)) ∩ γυ0(R−) ∩W

such that q = γυj (ςj) with ςj > 0 for j = 1, 2, 3 and

q = γυ0(ς0) with ς0 ∈ (−ρ(υ−0 ), 0),
where υ−0 := (y,−w) ∈ L−

U+
M if we write υ0 = (y, w). In addition, assume

γ̇υ0(ς0) ∈ span(γ̇υ1(ς1), γ̇υ2(ς2), γ̇υ3(ς3)).

Then υ0 satisfies the condition (D) with (υ1, υ2, υ3) and small enough κ̂ > 0.
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Now we define the following relation

Rs = {(υ0, υ1, υ2, υ3) ∈ L(U+)× V− : they are proper and there exists κ̂ > 0

such that (D) is valid for υ0 with (υ1, υ2, υ3) and κ0}.

We verify that Rs is a three-to-one scattering relation by the following proposition.

Proposition 7.11. The relation Rs defined above is a three-to-one scattering relation for W .
Moreover, using the nonlinear scattering map, one can determine whether (υ0, υ1, υ2, υ3) ∈ L(U+)×
V− is in the relation Rs.

Proof. Let (υ0, υ1, υ2, υ3) ∈ L(U+)×V−. One can check if (υ0, υ1, υ2, υ3) is proper by using the lens
relation determined by the scattering operator. For proper (υ0, υ1, υ2, υ3) and Rs defined above,
Proposition 7.9 shows the first condition (R1) in Definition 7.1 is satisfied and Proposition 7.10
shows the second condition (R2) is satisfied. In particular, the condition (D) is determined by the
nonlinear scattering operator. □

7.3. Schemes to reconstruct the scattering light observation sets. In the following, we
explain how to reconstruct the scattering light observation sets in each step of the layer stripping
method in Section 5.3.

7.3.1. Scheme 1. We start from the reconstruction of the scattering light observation sets for Step
1. In this step, we send conormal waves in U− and detect new singularities in U+. By Section 7.2,
from the third-order linearization of the nonlinear scattering operator, we determine a three-to-one
scattering relation Rs ⊆ L(U+) × V−. In this case, we take V− = (L(U+))

3 for Theorem 7.1. As
there are no cut points in W = J(U−, U+), by Theorem 7.1, this Rs determines the scattering
light observation sets of any points in I(U−, U+) restricted to U+. Then by Theorem 6.1, this
collection of the scattering light observation sets determines the metric in W up to conformal
diffeomorphisms.

7.3.2. Scheme 2. We follow a similar idea in the reconstruction of scattering light observation sets
for Step 2. Recall in Step 2, we construct small open neighborhoods U± ⊆ S± of null geodesic
segments and we write

I(U−, U+) =W ∪ P ∪W0,

where

W = I(U−, U+) \ J−(S+(T1)), U in
− = I(U−, U+) ∩ P−(T1), W0 = I(U−, U+) ∩ I−(S+(T1)).

Recall U in
− andW0 are contained in the reconstructed region (I(T1), ĝ|I(T1)). Moreover, by choosing

small T2 > 0, the region of interest

W ⊆ B(p0, δ)
has no cut points along any null geodesic segments. Now let ϕs : L+M → L+M be the null
geodesic flow for s ∈ R. For each (p, w) ∈ L(U−), there exists at most one (p̃, w̃) ∈ L+M with
p̃ ∈ U in

− such that (p̃, w̃) = ϕs(p, w) for some s ∈ R+, where L(U−) is defined (7.1). This defines a
restricted lens relation

L : L(U−) → L+
U in
−
M,

where we denote by L+
U in
−
M = {υ̃ ∈ L+M : π(υ̃) ∈ U in

− }. We emphasize such L is determined by

the reconstructed ĝ in I(T1). We would like to derive a localized three-to-one scattering relation
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R ⊆ L(U+)× V− for a properly chosen subset V− ⊆ (L(U in
− ))3. For this purpose, we consider

V− = {(υ1, υ2, υ3) ∈ (L(U−))
3 : γυi(R+) ∩ γυj (R+) ∩W 0 = ∅ for 1 ≤ i ≤ j ≤ 3

and π(L(υj)) ∈ U in
− for j = 1, 2, 3}.

(7.4)

Indeed, as we have reconstructed ĝ near W0, we can determine if υj(R−) intersect there and if
π(L(υj)) ∈ U in

− . Then it remains to prove such V− is sufficient for W , see Definition 7.1. This

comes from the fact that we can construct null geodesics starting from U in
− and passing q before

the first cut point, for any q ∈W . We prove the following lemmas.

Lemma 7.11. Let q ∈W . There exists υ1 ∈ L(U−) such that

(q, w1) = (γυ1(ς1), (γ̇υ1(ς1))) for some 0 < ς1 < ρ(υ1)

and moreover γυ1(R+) hits U
in
− exactly once.

Proof. Recall U− ⊂ S+ is a small neighborhood of the null geodesic segment from p′− to p′0. We
can find a timelike smooth curve in Me \M sufficiently close to this segment and use [46, Lemma
3.5] to construct such null geodesic υ1. We can expect υ1(R+) is contained in I(U−, U+) and by

our construction it must intersects once with the achronal boundary Ũ+. □

Lemma 7.12. The set V− that we defined in (7.4) is sufficient for W by Definition 7.1. In
particular, for each q ∈W , the set V−,1(q) is nonempty.

Proof. By (7.4), the condition (a) in Definition 7.1 is satisfied. It suffices show V−,1(q) is nonempty
for each q ∈W . For each q ∈W , we choose υ1 ∈ L(U−) as in Lemma 7.11. Note γυ1(R+) hits U

in
−

exactly once, which implies π(L(υj)) ∈ U in
− . We claim υ1 ∈ V−,1(q). Indeed, by Lemma 7.11, such

υ1 satisfies
(q, w1) = (γυ1(ς1), (γ̇υ1(ς1))) for some 0 < ς1 < ρ(υ1).

By the proof of Lemma 6.10, there exists a small neighborhood N ⊆ L+
q M of w1 such that for

any w ∈ N , the null geodesic γq,w(ς) hits U− at ςq < 0 before the first cut point of q. We set
υ = (γq,w(ςq), γ̇q,w(ςq)) and this gives us a small neighborhood of υ1 in L(U−). Thus, there exists
N1 ⊂ L(U−) of υ1 such that for any υ ∈ N1 with q ∈ γυ(R+), we have q is before the first cut point
of π(υ) ∈ U−. Now we pick arbitrary υ̃j ∈ N1 that are distinct and satisfy q = γυ̃j (ςj) for some
ςj > 0, for j = 1, 2, 3. Note that such γυj (R+) cannot intersect before U−, otherwise a shortcut
argument shows q is on or after the first cut point. Thus, we have (υ̃1, υ̃2, υ̃3) ∈ V−. □

Next, we introduce the following singularities detection condition as a modified version for Step
1. Note for (pj , wj) ∈ L(U−), j = 1, 2, 3, instead of constructing Υj as conormal distributions on
U− as before, we would like to choose Γj such that vj solving

□gvj = 0 in M with vj |U− = Γj

are conormal waves in W . For this purpose, we consider the following construction in the known
region W0. For fixed (υ1, υ2, υ3) ∈ V−, we consider the null geodesics γυj (R+) and set

qj = γυj (ς
−
j ) = π(L(υj)) ∈ U in

− .

We choose small ϵ0 > 0 such that

(xj , wj) = (γυj (ς
−
j − 2ϵ0), γ̇υj (ς

−
j − 2ϵ0))

are lightlike covectors contained in B(p0, δ) given by Lemma 5.1. In this case, we define

W(xj , wj , κ0) = {w ∈ L+
xjM : ∥w − wj∥g+ < κ0 with ∥w∥g+ = ∥wj∥g+}
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as a neighborhood of wj at the point xj . We define

K(xj , wj , κ0) = {γxj ,w(ς) ∈M : w ∈ W(xj , wj , κ0), ς ∈ (0,∞)}

as the subset of the light cone emanating from xj by light-like vectors in W(xj , wj , κ0). As κ0
goes to zero, the surface K(xj , wj , κ0) tends to the geodesic γxj ,wj (R+). Consider the Lagrangian
submanifold

Σ(xj , wj , κ0) = {(xj , rw♭) ∈ T ∗Me : η ∈ W(xj , wj , κ0), r ̸= 0},

which is a subset of the conormal bundle N∗{x0}. We define

Λ(xj , wj , κ0) ={(γxj ,w(s), rγ̇xj ,w(s)♭) ∈ T ∗Me :

w ∈ W(xj , wj , κ0), ς ∈ (0,∞), r ∈ R \ {0}}

as the flow-out from Char(□g) in the future direction. Note that Λ(xj , wj , κ0) is the conormal
bundle of K(xj , wj , κ0) near γxj ,wj (R+) before the first cut point of xj .

Recall we have reconstructed the metric inW0 up to conformal diffeomorphisms. We can pick an
arbitrary representative in the equivalent class, say ĝ = ϕ∗(ρ2g), where ρ ∈ C∞(M) is a conformal
factor. According to [46, Lemma 3.1], we can construct distorted plane waves

vj,1 ∈ Iµ(Λ(xj , ξj , s0)) satisfying □ĝuj = fj in M, j = 1, . . . , 3,

where fj ∈ Iµ+3/2(Σ(xj , wj , κ0)) are sources singular near (xj , w
♯
j). Such vj,1 are Lagrangian

distributions with nonzero principal symbol along (γxj ,wj (R+), (γ̇xj ,xj (R+))
♭). In particular, as

there are no cut point in W , we have vj,1 are conormal distributions there. With µ negative
enough, one has vj,1 ∈ Hs(M) for some s ≥ 2, for example see [74, Section 4.1]. Now let

Tj := T (γυj (ς
−
j − ϵ)) > T (xj), for j = 1, 2, 3,

and consider the reconstructed region

W̃0 = J+(S−(T1)) ∩ {T < T (γυj (ς
−
j − ϵ))}.

We can restrict vj,1 to the Cauchy surface{T = Tj} to get the Cauchy data. In particular, by
choosing small enough κ0, we can assume these data are contained in the reconstructed region.
Then we solve the backward problem

□ĝvj,2 = 0 in W̃0,

vj,2(Tj) = vj,1(Tj), ∂tvj,2(Tj) = ∂tvj,1(Tj).

Note such vj,2 have singularities propagating near γxj ,wj (R−) and arriving U− near υj . For small

enough κ0, we set Γj = vj,2|S− ∈ Hs− 1
2 (S−). Combing vj,1 for T > Tj with vj,2 for T < Tj , we

obtain a solution to

□ĝṽj = 0 in M, with ṽj |S− = Γj , for j = 1, 2, 3.

Note we must have ṽj ∈ Iµ(Λ(xj , wj , κ0)) and it is a conormal distribution in W . Now we consider
the solution vj to

□gvj = 0 in M, with vj |S− = Γj , for j = 1, 2, 3.

We emphasize that ṽj and vj have the same singularities structure by (5.2) and thus vj are

conormal distributions in W as well. With the construction above we introduce the following
detection conditions for Step 2.
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Definition 7.4. Let V− ⊆ (L(U−))
3 be sufficient for W = I(U−, U+). We say a vector υ0 ∈ L(U+)

satisfies the condition (D2) with light-like vectors (υ1, υ2, υ3) ∈ V− and κ̂ > 0, if

(a) υ0, υ1, υ2, υ3 are proper as in Definition 7.2, and
(b) for any 0 < κ0 < κ̂ and j = 1, 2, 3, there exists Γj constructed as above for each υj, with

disjoint the support,

such that (y|, η|) is contained in WF(∂ϵ1∂ϵ2∂ϵ3N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3)|ϵ1=ϵ2=ϵ3=0), where (y|, η|) is

the restriction of υ♯0 = (y, η) to T ∗S+.

As before, we define a relation given by

Rs = {(υ0, υ1, υ2, υ3) ∈ L(U+)× V− : they are proper and there exists κ̂ > 0

such that (D2) is valid for υ0 with (υ1, υ2, υ3) and κ̂}.

We can verify such Rs is indeed a three-to-one scattering relation in Definition 7.1, by Proposition
7.9 and 7.10. Indeed, although the null geodesic γυj (R+) may have conjugate points in W , yet
with Υj we constructed as above, the linear waves vj are still conormal distributions in W . Thus,
the same analysis in Proposition 7.9 and 7.10 still work in this case. After we reconstruct Rs,
Theorem 7.1 proves it determines the scattering light observation sets of any point in W restricted
to U+. Then by Theorem 6.1 again, we reconstruct the metric in W up to diffeomorphisms.

7.3.3. Scheme 3. Recall in Step 3, we construct small open neighborhoods U± ⊆ S± of null geodesic
segments and we write

I(U−, U+) =W ∪ P ∪W0,

where

W = I(U−, U+) \ J+(S−(T1)), U in
− = I(U−, U+) ∩ P+(T1), W0 = I(U−, U+) ∩ I+(S−(T1)).

Recall U in
+ and W0 are contained in the reconstructed region (I+(S−(T1)), ĝ|I+(S−(T1))). Moreover,

by choosing small T2 > 0, the region of interest

W ⊆ B(p0, δ)

has no cut points along any null geodesic segments. Recall U in
+ is part of the boundary of the

future set J+(S−(T1)) and thus is an achronal Lipschitz hypersurface. It separates W and W0 in
a chronological way.

For this step, compared to Step 1 and 2, the main difference is that the null geodesics starting
from U− may intersect in W0 after conjugate points. Then the corresponding receding waves
may interact there and produce new singularities, even though they may not interact in W . To
distinguish the new singularities produced in W and those in W0, we would like to propose a new
singularities detection condition. Next, we use Section 7.1 to reconstruct the regular scattering
light observation sets for points inW restricted to U+. Then Section 6 shows the regular scattering
light observation sets determined the metric in W .

As Section 7.1 and Section 6 are ready for this step, it remains for us to modify the new
singularities detection condition in Section 7.2. For this purpose, first we observe any future
pointing null geodesic starting from υ ∈ L(U−) either will intersect U in

+ , enter J+(S−(T1)), and

stay there until arrive S+, or will avoid U in
+ , enter J+(S−(T1)) later, and arrive S+. Thus, we

consider the following restricted lens relation

L1 : L(U−) → L(S+),
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which relates lightlike vectors on U− with those on the future null infinity. Note that L1 is an
injective map due to the nontrapping property. Then we consider the restricted lens relation

L2 : L(S+) → L(U in
+ ),

which relates lightlike vectors on S+ with those on the achronal hypersurface U in
+ and may fail

to be a map. Note that both L1 and L2 are determined by the conformal class the metric up to
rescaling the lightlike vector. Next, for each υ ∈ L(U−), we consider the set

A(υ) = {υ′ ∈ L(U in
+ ) : if υ′ = L2(L1(υ)) exists},

which contains at most one element. If A(υ) is empty, it means γυ(R+) ∩W0 = ∅ and thus the
corresponding waves we send do not cause the wave interaction in W0. If A(υ) = {υ′} ⊆ L(U in

+ ),

it means γυ(R+) enters W0 from the point p′ = π(υ′) ∈ U in
+ . To avoid singularities from the

wave interaction in W0, we would like to focus on new singularities away from the causal future
of p′. As the goal is to reconstruct the regular scattering light observation sets, these part of new
singularities are sufficient for the reconstruction, as they will always arrive U+ earlier due to a
shortcut argument. More explicitly, we introduce the following singularities detection condition as
a modified version for Step 3 and later. For Step 3, we actually choose V− = (L(U−))

3.

Definition 7.5. Let V− ⊆ (L(U−))
3 be sufficient for W ⊆ I(U−, U+). We say a vector υ0 ∈ L(U+)

satisfies the condition (D3) with lightlike vectors (υ1, υ2, υ3) ∈ V− and κ̂ > 0, if

(a) υ0, υ1, υ2, υ3 are proper as in Definition 7.2, and

(b) for any 0 < κ0 < κ̂ and j = 1, 2, 3, there exists Υj ∈ Iµ+1/4(Σ(pj , wj , κ0)) satisfying the
support condition (4.4), where (pj , wj) = υj, and

(c) π(υ0) /∈ J+(π(υ′j)), if there exists υ′j ∈ A(υj), for j = 1, 2, 3,

such that (y|, η|) is contained in WF(∂ϵ1∂ϵ2∂ϵ3N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3)|ϵ1=ϵ2=ϵ3=0), where (y|, η|) is

the restriction of υ♯0 = (y, η) to T ∗S+.

As before, we define a relation given by

Rs = {(υ0, υ1, υ2, υ3) ∈ L(U+)× V− : they are proper and there exists κ̂ > 0

such that (D3) is valid for υ0 with (υ1, υ2, υ3) and κ̂}.
We verify such Rs is indeed a three-to-one scattering relation in Definition 7.1, by Proposition 7.10
and the following. We emphasize in Definition 7.1, the condition (R1) requires the intersection
point q contained in W , which is guaranteed by the detection condition (c) above.

Proposition 7.12. Suppose there are no cut points along any geodesic segments in W . Let
(υ0, υ1, υ2, υ3) ∈ L(U+)× V− be proper. If one has

(∩3
j=1γυj (R+)) ∩W = ∅,

then υ0 does not satisfy the condition (D3) with (υ1, υ2, υ3) and small κ0 > 0.

Proof. In the following, we write υj = (pj , wj) ∈ L(U+) or L(U−), for j = 0, 1, 2, 3. To check the
condition (D3), recall vj ∈ Iµ(Λ(pj , wj , κ0)), j = 1, 2, 3 are Lagrangian distributions in M . With

no cut points in W , they are actually conormal distributions there. Recall U3 is the solution to

□gU3 − 6αv1v2v3 = 0 in M, with R−[U3] = 0.

The goal is to show (y, η) = (p0, w
♭
0) /∈ WF(U3). In particular, we assume p0 /∈ J+(π(υ′j)) if there

exists υ′j ∈ A(υj), for j = 1, 2, 3. Such υ′j = (p′j , w
′
j) are lightlike vectors on the achronal boundary

U in
+ .
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To have (p, η) ∈ WF(U3), we must have either (p, η) ∈ WF(αv1v2v3) or (q, ζ) ∈ WF(αv1v2v3)
such that (p, η) is in the null bicharacteristics starting from (q, ζ) by Lemma 7.10. If there do not
exist 1 ≤ i < j ≤ 3 satisfying γυi(R+)∩γυj (R+)∩W 0 ̸= ∅, then the proof of Proposition 7.9 implies
the desired result. Otherwise, the product αv1v2v3 may have new singularities produced in W0.
However, such new singularities must be contained in J+(p′j) for υ′j ∈ A(υj). With p0 /∈ J+(p′j),

we have (p, η) /∈ WF(U3). □

7.3.4. Scheme 4. For Step 3, we combine the reconstruction scheme for Step 2 and 3. Recall we
construct small open neighborhoods U± ⊆ S± of null geodesic segments and we write

I(U−, U+) =W0 ∪ U in
− ∪W ∪ U in

+ ∪W1.

Recall U in
− , U in

+ , W0, and W1 are contained in the reconstructed region. Moreover, by choosing
small T3 > 0, the region of interest

W ⊆ B(p0, δ)
has no cut points along any null geodesic segments. We consider the restricted lens relation

L0 : L(U−) → L+
U in
−
M.

As in Step 2, we define

V− = {(υ1, υ2, υ3) ∈ (L(U−))
3 : γυi(R+) ∩ γυj (R+) ∩W 0 = ∅ for 1 ≤ i ≤ j ≤ 3

and π(L0(υj)) ∈ U in
− for j = 1, 2, 3}.

Indeed, as we have reconstructed ĝ near W0, we can determine if υj(R−) intersect there and if
π(L0(υj)) ∈ U in

− . The same proof shows such V− is sufficient for W , see Definition 7.1.
Next, we consider the following singularities detection condition as a modified version for Step 2

and 3. Note for (pj , wj) ∈ L(U−), j = 1, 2, 3, instead of constructing Υj as conormal distributions
on U− as before, we could like to choose Γj such that vj solving

□gvj = 0 in M with vj |U− = Γj

are conormal waves in W . Here we consider the same construction as in Scheme 2. Now we
introduce the following detection conditions for Step 4.

Definition 7.6. Let V− ⊆ (L(U−))
3 be sufficient for W = I(U−, U+). We say a vector υ0 ∈ L(U+)

satisfies the condition (D4) with light-like vectors (υ1, υ2, υ3) ∈ V− and κ̂ > 0, if

(a) υ0, υ1, υ2, υ3 are proper as in Definition 7.2, and
(b) for any 0 < κ0 < κ̂ and j = 1, 2, 3, there exists Γj constructed as in Section 7.3.2 for each

υj, with disjoint the support, and
(c) π(υ0) /∈ J+(π(υ′j)), if there exists υ′j ∈ A(υj), for j = 1, 2, 3,

such that (y|, η|) is contained in WF(∂ϵ1∂ϵ2∂ϵ3N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3)|ϵ1=ϵ2=ϵ3=0), where (y|, η|) is

the restriction of υ♯0 = (y, η) to T ∗S+.

As before, we define a relation given by

Rs = {(υ0, υ1, υ2, υ3) ∈ L(U+)× V− : they are proper and there exists κ̂ > 0

such that (D4) is valid for υ0 with (υ1, υ2, υ3) and κ̂}.
We can verify such Rs is indeed a three-to-one scattering relation in Definition 7.1, by Proposition
7.12 and 7.10. After we reconstruct Rs, Theorem 7.1 shows it determines the scattering light
observation sets of any point in W restricted to U+. Then by Theorem 6.1 again, we reconstruct
the metric in W up to diffeomorphisms.
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8. Higher-order linearization for general nonlinearity

In this section, we consider the general nonlinearity and we explain how to use the ideas proposed
above to recover the metric in this case.

8.1. The asymptotic expansion for general nonlinearity. In the following, let ϵj > 0 be
small parameters and let Υj for j = 1, 2, 3. Let u solve the nonlinear problem

□gu+

+∞∑
m=2

βm(T,X)um = 0 in M, with R−[u] = ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3,

where R−[u] is the restriction of u to S−. We consider the nonlinear scattering map

N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3) = R+[u],

where R+[u] is the restriction of u to S+. Let vj solve the homogeneous linear problem (4.1)
with scattering data Υj on the past null infinity and recall we write w = Qs(h) if w solves the
in-homogeneous linear problem (3.1).

We write v =
∑3

j=1 ϵjvj and plug it in the nonlinear equation we have

□g(u− v) = −
+∞∑
m=2

βm(T,X)um.

We further write

u = v −
∑
m=1

Qs(βmu
m) = v +A2 +A3 +A4 + . . .,(8.1)

where we rearrange these terms by the order of ϵ, such that A2 denotes the terms with ϵiϵj , A3

denotes those with ϵiϵjϵk, and A4 denotes those with ϵiϵjϵkϵl, for 1 ≤ i, j, k, l ≤ 3. By plugging
(8.1) into itself, one can find

A2 = Qs(β2v
2),

A3 = Qs(2β2vA2 + β3v
3),

A4 = Qs(2β2vA3 + β2A
2
2 + 3β3v

2A2 + β4v
4).

For N ≥ 5, we can write

AN = Qs(βNv
N ) +QN (β2, β3, . . . , βN−1),

where QN (β2, β3, . . . , βN−1) contains the terms involved only with β2, . . . , βN−1. Note that v

appears j times in each Aj , for j = 2, 3, 4. Therefore, we introduce the notation Aij2 to denote the

result if we replace v by vi, vj in A2 in order, and similarly the notations Aijk3 , Aijkl4 , such that

A2 =
∑
i,j

ϵiϵjA
ij
2 , A3 =

∑
i,j,k

ϵiϵjϵkA
ijk
3 , A4 =

∑
i,j,k,l

ϵiϵjϵkϵlA
ijkl
4 .

More explicitly, for 1 ≤ i, j, k, l ≤ 3, we have

Aij2 = Qs(β2vivj),

Aijk3 = Qs(2β2viA
jk
2 + β3vivjvk),

Aijkl4 = Qs(2β2viA
jkl
3 + β2A

ij
2 A

kl
2 + 3β3vivjA

kl
2 + β4vivjvkvl).

(8.2)



INVERSE NONLINEAR SCATTERING 57

In the following, for N ≥ 3, we define

UN = ∂N−2
ϵ1 ∂ϵ2∂ϵ3u|ϵ1=ϵ2=ϵ3=0.

Note that UN is not the Nth order linearization of the scattering operator but they are related by

∂N−2
ϵ1 ∂ϵ2∂ϵ3N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3)|ϵ1=ϵ2=ϵ3=0 = R+(UN ).(8.3)

8.2. Singularities of nonlinear interaction when N ≥ 3. First by [50, Lemma 3.3], one has

β2vivj ∈ Iµ+1,µ(Λij ,Λi) + Iµ+1,µ(Λij ,Λj), when i ̸= j.

In the following, let (q, ζj) ∈ Λj for j = 1, 2, 3. With Ki,Kj intersecting transversally, any
(q, ζ) ∈ Λij has a unique decomposition ζ = ζi + ζj . Away from Λi and Λj , the principal symbol
of β2vivj equals to

−(2π)−1β2σp(vi)(q, ζ
i)σp(vj)(q, ζ

j)

at (q, ζ) ∈ Λij . In N (p⃗, w⃗), with vivj vanishes on S−, we can identify Qs by Qg (the causal inverse
of □g on Me) to have

Aij2 ∈ Iµ,µ−1(Λij ,Λi) + Iµ,µ−1(Λij ,Λj),

by [50, Lemma 3.4]. Additionally, at (q, ζ) ∈ Λij away from Λi and Λj , the principal symbol equals
to

σp(A
ij
2 )(q, ζ) =

−(2π)−1

|ζi + ζj |2g∗
β2(q)σp(vi)(q, ζ

i)σp(vj)(q, ζ
j).

Next, recall the singularities of Qs(β3v1v2v3) in Proposition 4.1 and 4.2. Following a similar
analysis, we have the following proposition describing the singularities of U3, see also [50] for more
details.

Proposition 8.1. Suppose the submanifolds K1,K2,K3 intersect 3-transversally at K123. Let Λ
g
123

and Λ(1) be defined as in Section 4.2. We decompose U3 as

U3 = U3,0 + U3,1 = −2
∑

(i,j,k)∈Σ(3)

Qs(β2viA
jk
2 )− 6Qs(β3v1v2v3).

In N (p⃗, w⃗) away from Λ(1), we have

U3,0 ∈ I3µ+
1
2
,− 1

2 (Λ123,Λ
g
123), U3,1 ∈ I3µ−

1
2
,− 3

2 (Λ123,Λ
g
123).

In particular, let (y, η) ∈ L+,∗M lies along a future pointing null bicharactersitic of □g starting

from (q, ζ) ∈ Λ123. Suppose (y, η) is away from Λ(1) and before the first cut point of q. Then
(y, η) ∈ N (p⃗, w⃗) and the principal symbol is given by

σp(U3,0)(y, η) = −6(2π)−2σp(Qg)(y, η, q, ζ)β3(q)

3∏
m=1

σp(vm)(q, ζ
m),

σp(U3,1)(y, η) = −2(2π)−2σp(Qg)(y, η, q, ζ)β
2
2(q)

∑
(i,j,k)∈Σ(3)

1

|ζi + ζj |2g∗

3∏
m=1

σp(vm)(q, ζ
m),

where ζ = ζ1 + ζ2 + ζ3 with (q, ζj) ∈ Λj.
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Next, we consider a special type of conormal distributions first introduced by Rauch and Reed,
and then discussed in [57]. This class of conormal distributions vanish to certain order at K, where
K is a 1-codimensional submanifold of M . Note the order of conormal distributions in [57] is the
same as that of symbols and we shift it by −n

4 + N
2 following the definition in [41]. The following

analysis can also be found in [73].

Definition 8.1. Let m < −1 and k(m) ∈ N such that −m − 2 ≤ k(m) < −m − 1. We say

u ∈ I̊m−n
4
+ 1

2 (K) if u ∈ Im−n
4
+ 1

2 (K) vanishing to order k(m) + 1 at K.

By [57, Propostion 2.3 and 2.4], a distribution u ∈ I̊m(K) if and only if there exists h ∈ C∞

vanishing to order k(m) such that u = hv with v ∈ I̊m+k(m)(K), for m < −1. Additionally,

by [11], for any u ∈ Im−n
4
+ 1

2 (K) with compact support, by subtracting a compactly supported
smooth function whose derivatives at K up to order k(m) + 1 coincide with those of u, one can

modify u such that u ∈ I̊m−n
4
+ 1

2 (K). This can be done since we can show that u is continuous up
to order k(m)+1 at K, for m < −1. In particular, the receding waves we construct in Section 3.4.

Moreover, we have the following lemma, see [57, Theorem 2.1] and also [11, Proposition 2.5].

Lemma 8.1. Let m ∈ N with m ≥ 2. Suppose v1 ∈ I̊µ(Λ1). Then

vm1 ∈ I̊µ+(m−1)(µ+ 3
2
)(Λ1),

with the principal symbol given by m-fold fiberwise convolution

σp(v
m
1 ) = (2π)−(m−1) σp(v1) ∗ . . . ∗ σp(v1)︸ ︷︷ ︸

m

.

Now we state the following lemma about vm1 v2v3, see also [73, Lemma 8] for four waves interac-
tion.

Lemma 8.2. Let m ∈ N with m ≥ 2. Suppose K1,K2,K3 intersect 3-transversally at a point
q ∈ N (p⃗, w⃗). Suppose v1 ∈ I̊µ(Λ1) and vj ∈ Iµ(Λj) for j = 2, 3. Then in N (p⃗, w⃗) away from Λ(1),
we have

vm1 v2v3 ∈ I3µ+2+(m−1)(µ+ 3
2
)(Λ123).

Moreover, for (q, ζ) ∈ Λ123, the principal symbol is given by

(8.4) σp(v
m
1 v2v3)(q, ζ) = (2π)−(m+1)σp(v

m
1 )(q, ζ1)σp(v2)(q, ζ

2)σp(v3)(q, ζ
3),

where the decomposition ζ =
∑3

j=1 ζ
j with (q, ζj) ∈ Λj is unique. Note that σp(v

m
1 ) is given by the

m-fold fiberwise convolution in Lemma 8.1.

Lemma 8.3. Let m ∈ N with m ≥ 2. Suppose K1,K2,K3 intersect 3-transversally at K123. Let
Λg123 and Λ(1) be defined as in Section 4.2. Let v1 ∈ I̊µ(Λ1) and vj ∈ Iµ(Λj) for j = 2, 3. Let
(y, η) ∈ L+,∗M lie along a future pointing null bicharactersitic of □g starting from (q, ζ) ∈ Λ123.

Suppose (y, η) is away from Λ(1) and before the first cut point of q. Then (y, η) ∈ N (p⃗, w⃗) and

σp(Qs(∂
2
t (v

m
1 v2v3))(y, η)

=− (2π)−(m+1)σp(Qg)(y, η, q, ζ)βN (q)σp(v
m
1 )(q, ζ1)σp(v2)(q, ζ

2)σp(v3)(q, ζ
3),

where the decomposition ζ =
∑3

j=1 ζ
j with (q, ζj) ∈ Λj is unique and the homogeneous term σp(v

m
1 )

is given by the m-fold fiberwise convolution in Lemma 8.1.
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8.3. Proof of Theorem 1.2. To prove Theorem 1.2, we use the following strategy in each step
of the layer stripping method, based on the proof of Theorem 1.3. Indeed, the only difference lies
in the detection condition of new singularities. To determine the three-to-one scattering relation,
instead of just using the third-order linearization, in Definition 7.3 - 7.6 we consider whether (y|, η|)
is contained in the wave front set of

∂m−2
ϵ1 ∂ϵ2∂ϵ3N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3)|ϵ1=ϵ2=ϵ3=0

for some m ≥ 3, where (y|, η|) is the restriction of υ♯0 = (y, η) to T ∗S+.
With such a detection condition in each step, we can prove Proposition 7.9 using the same idea

as before and an inductive procedure. It remains to prove Proposition 7.10 for this setting. Indeed,
let (υ0, υ1, υ2, υ3) and q be as in Proposition 7.10. In particular, we have

q ∈ (∩3
j=1γυj (R+)) ∩ γυ0(R−) ∩W.

On the one hand, if there exists m ≥ 3 such that βm(T,X) ̸= 0 at q, then we consider the
smallest integer m0 ≥ 3 to make this happen. With βm(q) = 0 for m < m0, we have Um0 =

Qs(βNv
m0−2
1 v2v3) and therefore

∂m0−2
ϵ1 ∂ϵ2∂ϵ3N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3)|ϵ1=ϵ2=ϵ3=0 = R+[Um0 ].

Then Lemma 8.3 implies

σp(Um0)(y, η) ̸= 0

as βm0(q) ̸= 0. The same analysis as before shows (y|, η|) is contained in the wave front set of
R+[Um0 ] and thus the detection condition is satisfied. On the other hand, if βm(T,X) = 0 near q
for all m ≥ 3. We must have β2(q) ̸= 0. This implies

∂ϵ1∂ϵ2∂ϵ3N (ϵ1Υ1 + ϵ2Υ2 + ϵ3Υ3)|ϵ1=ϵ2=ϵ3=0 = R+[U3] = R+[U3,1]

and by Lemma 8.3 we can show (y|, η|) is contained in the desired wave front set and thus the
detection condition is satisfied. With Proposition 7.10 proved, we determine the three-to-one
scattering relation in each step as before and then reconstruct the scattering light observation sets
as before.
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[8] A. Sá Barreto and J. Wunsch. The radiation field is a fourier integral operator. Ann. Inst. Fourier (Grenoble),

55(1):213–227, 2005.
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