STABILITY OF THE EXPANDING REGION OF KERR-DE SITTER
SPACETIMES AND SMOOTHNESS AT THE CONFORMAL BOUNDARY

PETER HINTZ AND ANDRAS VASY

ABSTRACT. We give a new proof of the recent result by Fournodavlos—Schlue on the nonlinear
stability of the expanding region of Kerr—de Sitter spacetimes as solutions of the Einstein vac-
uum equations with positive cosmological constant. Our gauge is a modification of a generalized
harmonic gauge introduced by Ringstrém in which the asymptotic analysis becomes particularly
simple. Due to the hyperbolic character of our gauge, our stability result is local near points on the
conformal boundary. We show furthermore that, in yet another gauge, the conformally rescaled
metric is smooth down to the future conformal boundary, with the coefficients of its Fefferman—
Graham type asymptotic expansion featuring a mild singularity at future timelike infinity of the
black hole.

1. INTRODUCTION

We study the stability of expanding regions of solutions of the Einstein vacuum equations
Ric(g) —Ag=0 (1.1)
where the cosmological constant A is positive; we fix A = 3 (which can always be achieved by

scaling). Here g is a Lorentzian metric (with signature (—,+,+,4)) on a 4-dimensional smooth
manifold M°. The basic example is the de Sitter solution

o —d72 + dz2
M° = (0,00), x R3, gas = ———5 (1.2)
The conformal rescaling 72gqs = —d7? + dz? is smooth down to the boundary of

M :=[0,00),; x R3,

which is called the conformal boundary. The de Sitter metric is often encountered in a different

coordinate system ¢ = —32 log(|z|? — 72), 7 = m, w = £, where it takes the form
2 T ||
gas = — (7 = 1)71di? + (7 — 1) dE* + 74, (1.3)

with ¢ is the standard metric on S2. These coordinates are valid in the expanding region |z| > 7.
(In the static region |z| < 7, setting t = —1 log(7? — |z|?) yields the same expression for the metric.)

The Schwarzschild—de Sitter (SAS) metric describes a (non-rotating) black hole in de Sitter space.
The metric depends on a mass parameter m € R and is given by
2m -1 2m -1
gm=—(P -2 -1) a4 (-2 1) aP Yy
T T
in the expanding region, which is the region where 7 is larger than the largest real root of 72 — 27“‘ —1.
Comparing this expression with (1.3), the mass m thus contributes metric coefficients of relative size
O(773) as r — oo. In the coordinates z = (7, x), one finds that
dzH dz¥

gm = gas + huuTT (1.4)
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where hy, = h,,(7) = O(F73); in fact, 7hy, is smooth in 7! = 1oy Dear 7 = oo. The set (in
an appropriate compactification, introduced below) where < co, #~! = 0 defines the conformal
boundary of the SdS black hole spacetime. A similar construction can be performed for the more
general Kerr—de Sitter (KdS) metric gy, b = (m, a), describing a black hole of mass m and specific
angular momentum a in de Sitter space.

We interpret this geometrically as follows: we blow up the point (7,2) = (0,0) in M to define a

new manifold with corners M ; a neighborhood of the conformal boundary of M is then covered by
the chart

0,00), x [0,00)r x S2 C M,  p:= é — il Ri=la|, (1.5)
with the conformal boundary being the interior of ZT := {0} x [0,00) x S?, while the interior of
K := [0,00) x {0} x S? contains all points at = oo of the level sets of 7 (as is evident from

R= \Z% ~ e~t). See Figure 1.1. Thus, K is a blown-up version of i*.!

|I‘:R:R1 7

FIGURE 1.1. On the left: the manifold M, with level sets of the coordinates T
(blue) and |z| = R (red) on de Sitter space; the level sets of £ in the region above
the solid line p = pg < 1 (green) are approximately the same as those of R and thus
not shown. The level sets of p = 7! are shown in green. The highlighted region is
part of the expanding region of SdS. On the right: part of the Penrose diagram of
SdS, with the part of the expanding region from the left highlighted.

The point is that while the asymptotic behavior of the de Sitter metric is the same at all points
of the conformal boundary, the description of the asymptotic behavior of a KdS metric near its
conformal boundary necessarily involves two asymptotic regimes (Z* and K).

We shall study the initial value problem for (1.1) when the initial data are given on a level set
p = po and asymptote to those of the KdS metric g, as R — 0 (i.e. as one approaches K = iT).
Recall that initial data are the first and second fundamental forms v,k of {p = po}, and they are
subject to the constraint equations

Ry — k2 4 (try k)* —2A =0, &,k +dtr, k=0.

(Here R, is the scalar curvature, and (§,k), = —7"*kux.x.) Note that in the de Sitter and KdS
geometries, the endpoints of future causal curves starting at a point on p = pg lie in the interior of
I+ and are thus far from K. It is thus natural to expect that the spacetime metric evolving from
such initial data still asymptotes to the same KdS metric gy at K. On the other hand, away from
KC, we are, in a sense, studying a perturbation of de Sitter space. (This is rigorously true when
R> Ry > 0and p = py < 1is small depending on R;.) Thus classical theorems by Friedrich [Fri86]
and Ringstrom [Rin08] allow one to control the evolution of this part of the initial data. (We recall
these results below.)

e use the letter /C since i1 is too similar to Z.
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T+

FIGURE 1.2. Initial data are given on the green (spacelike) hypersurface. In the
blue region, one can easily control the evolution of asymptotically-KdS data: the
metrics remain asymptotic to the same KdS metric at /. In the red region, stability
results for de Sitter space apply. In a neighborhood of the corner, new methods are
needed.

The main difficulty is thus to control the evolving spacetime metric near the corner K NZ¥;
see Figure 1.2. This was first overcome in the recent work of Fournodavlos—Schlue [FS24] who
considered initial data posed on a cylinder R; x S2 on which the data asymptote to KdS data near
{£o00} x §? (see Figure 1.3 below). Concretely, [FS24, Theorem 1] shows that, under a smallness
condition on the initial data relative to some fixed KdS data (measured in a Sobolev space with
exponential weights as |f| — c0), the evolving spacetime metric g can be written in the form

g(s,x) = —®(s,2)ds* + g;; (s, v)dz" da?, s >0,

where z = (f,w) denotes points on the cylinder R x S2. (The rough translation to present notation
is p~e®and R~ e ') Here gij(s,x) = gff(x)eQS plus a O(1) remainder as s — oo, while
P(s,z) = 1+ e 250°°(z) plus a O(e™**) remainder. Furthermore, the various pieces of @, g;;,
including ®°°, g7, differ from their KdS reference values by decaying amounts as t — +o0, i.e. as
one approaches either of the two KdS black holes. This entails convergence to the de Sitter type
metric —ds® + e**g2? (z)dz’ da’ (which for gi§ = d;; is the same as (1.2) with 7 =e™%) as s — oo.
We highlight two features of the result and approach of [FS24].

(1) A parabolic gauge is used in which @ is coupled to the mean curvature of the slices s = const.
The non-hyperbolic nature of this gauge explains why Fournodavlos—Schlue work with a
complete initial data set. It would be interesting to see if the arguments in [FS24] can be
adapted to handle incomplete initial data sets.

(2) Passing to p = e™%, we have p’g = —dp® + g% (x)dz" dz’/ + O(p); thus, the conformally
rescaled metric is Lipschitz down to 7 = 0, but no higher order regularity is obtained (and
it is not clear how much regularity one can expect in the chosen gauge).

We revisit the stability problem of the expanding region of KdS spacetimes with the following
goals in mind:

(1*) We use a generalized wave coordinate condition closely related to that of [Rin08]. The
hyperbolic character of this gauge condition allows us to prove a localized stability result.

(2*¥) We show how to upgrade the rough asymptotic control on the metric arising in the basic
stability proof to smoothness of the conformally rescaled metric.

Furthermore,

(3*) we introduce a robust framework for analyzing wave equations near the corner Z+ N K;
see §1.2.2. This includes (higher order) energy estimates as well as a simple linear algebra
mechanism (based on indicial roots) for obtaining sharp decay and asymptotic expansions.
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In order to state our main result, we define the following norm for functions u = u(R,w) defined

for R < Ry:
fo dR
e = 35 [ [ 1R RoR (R ) g (16)
J+lvI<k

here ¥ is the set of vector fields on S? which generate rotations around the three coordinate axes.
Since R ~ 6*5, the regularity here is regularity in £ and the angular variables.> Below, we use the
same notions for norms of tensors, and mean by that the sum of norms of their coefficients in smooth
coordinate charts. We write R*H}F for the space of all functions with finite || - || go pr-norm, and set
RYH® = mkENo RYHY. Furthermore, in order to ensure compatibility of the KdS metric g, with
the precise asymptotic expansion of the dynamical metric g at Z+, we denote by

FG
9b

a presentation of the KdS metric g, which is in Fefferman—Graham form at I+ (a notion we explain
after the statement of the Theorem).

Theorem 1.1 (Main theorem, rough version). Let Ry > 0, and let py > 0 be such that YRy =
{po} x (0, Ro] x S, is spacelike for the KdS metric gy; denote the initial data on X9 - induced by
gb Y Yo, kp. Suppose 7y, k are initial data on 2 Ro (i.e. solutions of the constmmt equations) so
that v := v — Y, k:=k—ky lie in RYHg®, and have R”‘Hb—norms < € where € > 0 is small and
d € N is large. Then the mazimal globally hyperbolic development of the data 7y, k contains a region
isometric to

(0. R009)s
where:

(1) Q5 g, is the domain defined by the inequalities p < po, pR > poRo — 1(Ro — R), and the

boundary hypersurfaces 39 - and E:O ORO = {pR = poRo — 5(Ro — R)} are spacelike for g;
(2) the metric g is of the form g = g£© + h, where, in the frame 70;, 70 (i = 1,2,3),® the

coefficients of h = h(p, R,w) are smooth down to p =0 and of class R*H® in (R,w).

More precisely, there exist hy, = hyp, i; df da’ form=0,2,3,4,... with hy, ;j = hp i (R,w) € R*HX®
so that for all N € N we have

N
g - <g§G+ho+ mehm> =0(pN ), (1.7)

m=2

in the sense that this is the restriction of an element of p™+1C> ([0, po]; R*HE® ([0, Ro] x S?)) to
Q7 R, Furthermore:

(1) ho is nonzero unless the metric gy = dz? + h(gy, h) := ho,i; (||, ) datda’, on {0 <
|z| < Ro} C R? is flat;

(2) denote by g3 the p® coefficient of g. Then the tensor gy := g3,i; (||, ﬁ)dalcZ dz? is a weighted
TT (transverse-traceless) tensor, meaning trg , g3 =0 and 59(0)(|m\*3g(3)) =0.

See Theorem 4.2 for the full result, and Figure 1.3 for an illustration of the domain on which
we work. Our approach to the proof is discussed in §§1.2-1.3 below. The broader context of the
precise asymptotic expansion (1.7), the weighted TT property, and the sense in which Theorem 1.1

2The relationship of this norm with pointwise bounds is as follows. For k > 2, [l go e < 00 implies |u| < R*;
b

see Lemma 2.9. Conversely, R* upper bounds for v and k of its derivatives imply u € R""H]’; for all o’ < a.
3We recall that = Rw and 7 = Rp.
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is optimal are explained in §1.1. We immediately point out that the expansion (1.7) is devoid of
logarithmic terms; it therefore implies in particular that

the conformally rescaled metric T2g, expressed in the frame TO;, TOy1, TOy2, TOys3, 15 sSMooth
across T+ = {p = 0}.

We now explain what it means for g G to be in Fefferman—Graham form: g G has an expansion

g~ g0+ > P Gm,  p—0 (1.8)
m>2

(i.e. equality of Taylor series at p = 0), where gy, = (_gbm)ijd%jd%j, with each (gb,m)i; & smooth
function on [0,00)r x SZ, and with 9b,3) = (gb,3)i;dz" dz’ a weighted TT tensor with respect to

dz?. (The existence of such a presentation gf® of the KdS metric is shown in Proposition 4.15(1).)

(o)
on ,Ro

Ro RO

KdSm o i KdSu o

~‘-_/
t

FIGURE 1.3. On the left: the Cauchy hypersurface ¥9 5 (green), and the domain
po. R, (Plue) on which the spacetime metric is controlled. On the left: Theorem 1.1,

On the right: [FS24, Theorem 1].

Remark 1.2 (Original of initial data). We do not concern ourselves here with the construction of
initial data ~, k satisfying the hypotheses of Theorem 1.1. Recall however that the nonlinear stability
of the exterior region (more precisely, a neighborhood of the domain of outer communications—not to
be confused with the cosmological region) of slowly rotating Kerr—de Sitter black holes was proved in
[HV18, Fan21] (with nontrivial initial data constructed in [HV18, §11.3]). The region on which these
stability results apply extends to any fixed finite value 7, exceeding the radius of the cosmological
horizon (with the required smallness of the initial data in the proofs of the references depending
on 7;). The data induced by the spacetime metric on the corresponding level set p = py = 7’11
then satisfies the assumptions of Theorem 1.1. While subextremality is a crucial requirement for
the nonlinear stability of KdS, the black hole parameters b = (m, a) are unrestricted in the setting
of Theorem 1.1: it does not matter whether they are subextremal, extremal, superextremal, or
even have negative mass, since only the asymptotic (de Sitter) geometry as 7 — oo (which is
valid regardless of b) matters for present purposes. We refer the reader to Remark 3.3 for further
discussion.

Remark 1.3 (Stability of de Sitter space). Our methods apply directly to the stability of (parts of)
de Sitter space in (3+1)-dimensions and thus yield a new proof of [Rin08] (restricted to the case that
the scalar field vanishes identically). In fact, our proof simplifies since one can work with standard
Sobolev spaces on sets of bounded x: there is no more need for R-weights and b-regularity. More
precisely, if 79 > 0, then the spacetime evolving from sufficiently small and regular perturbations of
the de Sitter initial data at* {7 = 79, |z| < 479} contains a region of the form

{r <70, |2| <3190 —2(70 —7)}

4For simplicity, we give ourselves plenty of room; posing data at |z| < 79 + ¢ for any fixed § > 0 would suffice for
the evolving spacetime to contain a piece of the conformal boundary.
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equipped with a metric ¢ which has a full Taylor expansion

dr? dz? da? dz® dad
9(1,2) ~ =—5 + (8ij + ho,ij () —— + Y hmigle)——

T = T T
at 7 = 0, where hy, ;; € C*°(R3) and hj;;(z)dz’ dz? is transverse-traceless with respect to (&;; +
ho,ij(z))dz® dz’. Also the global stability of de Sitter space —dt? + (cosht)?ggs, as first proved in
[Fri86], follows from (a simpler version of) our arguments. — We point out that we are able to
obtain a conformally smooth solution by suitably modifying (in a constructive, and thus essentially
explicit, manner) an already constructed solution in generalized harmonic gauge. In particular,
we expect our approach to allow one to obtain sharp (Fefferman-Graham type) asymptotics for
perturbations of de Sitter space also in odd spacetime dimensions (where the existing results of
[Fri86, And05] do not apply, and logarithmic singularities are known to necessarily appear); we
leave this to future work. Analogous results in the Riemannian setting of conformally compact
Poincaré-Einstein metrics were obtained in [CDLS05]; see [FG85, Kic04] for the analytic setting
and [And03] for the 4-dimensional case.

Remark 1.4 (Stability of larger regions). The methods apply with only minor notational modifica-
tions to the initial data of [FS24]. The main change is that one now needs to work with two weights,
one for each of the boundary hypersurfaces K and K’ corresponding to future timelike infinity of the
two KdS black holes (see Figure 1.3); the proof of our main energy estimate (Proposition 3.11) is
robust enough to handle this setting with only notational modifications. The conclusion is that on
the blue region on the right in Figure 1.3 we can put the dynamical spacetime metric into a form so
that an expansion completely analogous to (1.7) holds, where the coefficients h,, are now elements
of a doubly weighted Sobolev space on the cylinder R; x S%2. We remark that due to the domain-
dependence of the gauge condition we use, we cannot simply patch together the local solutions which
are produced when applying our proof of Theorem 1.1 to various incomplete patches (such as 2 Ro
or the data of Remark 1.3) of initial data, as the various local solutions are constructed in what
might well be (slightly) different gauges; instead we must prove stability directly in the full desired
region.

Valiente Kroon and collaborators have been developing an approach for studying the stability of
the cosmological region of Schwarzschild-de Sitter spacetimes based on an extension of Friedrich’s
conformal field equations [Fri86]. In Friedrich’s equations, the conformal factor (7 in present nota-
tion) is one of the unknowns, and the equations (and their solutions) extend non-degenerately across
the conformal boundary. This allowed Friedrich to reduce the global nonlinear stability of de Sitter
spacetime to a standard local-in-time result for his symmetric hyperbolic system. In the SdS case
however, the conformal field equations cease to be regular at future timelike infinity i+ of the SdS
black hole (essentially because the SAS metric is not smooth in 7, z there, cf. the discussion of (1.4)),
and thus the results obtained using this approach are, at present, incomplete: [GK17] constructs
asymptotically SdS cosmological regions using an asymptotic initial value problem (closely related
to [Fri86, Theorem (3.2)]), and [MK23] controls solutions of initial value problems with near-SdS
data in the domain of dependence of cylinders [—T,T]; x S? in the notation of [FS24] and Fig-
ure 1.3 which, in particular, does not contain a neighborhood of the corner KXNZ* (see also [MK23,
Figure 4]).

Another possible avenue towards the stability of the cosmological region, based on geometric
foliations and control of the Weyl tensor, was explored by Schlue in [Sch19, Sch16]. For scalar waves
propagating in the cosmological region of subextremal KdS spacetimes, decay results were obtained
in [Sch15]. Bernhardt [Ber24] continued the study of linear scalar waves in this setting and obtained
a partial asymptotic expansion at the conformal boundary (analogous to (1.7) for N = 3, and with
a =0) as well as a scattering result.

The plan for the remainder of this introduction is as follows.
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(1) In §1.1, we put the asymptotic expansion (1.7) into context and explain its optimality.

(2) In §1.2, we explain the basic ideas behind the analysis of wave equations near conformal
boundaries, in both the de Sitter type and KdS type settings.

(3) In §1.3, we apply these ideas to the Einstein equations and explain our gauge choices,
constraint damping, and the mechanism underlying the existence of the expansion (1.7).

1.1. Stability of de Sitter space and asymptotics at the conformal boundary. Friedrich’s
stability result for de Sitter space [Fri86] demonstrates that small perturbations of de Sitter initial
data evolve into a spacetime (M,g) where M C M =R x S? is given by the set {Q > 0},
and Q2g extends smoothly to M C M (and beyond). (Note that de Sitter space itself is of this
form for Q = coss and Q%9 = —ds? + gss.) Moreover, [Fri86, Theorem (3.2)] establishes a 1-1
correspondence (at least near the conformal boundary) between such asymptotically simple solutions
of the field equations and scattering data defined at the future conformal boundary S C Q71(0),
also in cases where the spatial manifold S is an arbitrary compact orientable 3-manifold: these data
are a Riemannian metric gy and a TT tensor gy on S. (These are the restriction of 022g and
certain components of the rescaled Weyl tensor of g to S.)

Now, given such gy, g(3), it is a classical result by Fefferman-Graham [FG85, FG12] that one
can construct a formal solution of the Einstein vacuum equations (1.1) of the Fefferman—Graham
form (as described after Theorem 1.1)

g~ T2 (—dT2 + g0y (z,dx) + Z " g(m) (T, dz)), T —0; (1.9)
m>2

furthermore, the terms in the expansion (1.9) are uniquely determined by gy, g(3)- It was moreover
shown in [RSR18, Hin24a] that this formal power series is the Taylor expansion of a true solution
defined for 7 < 79(x) for some sufficiently small positive continuous function 79 > 0. In combination
(albeit in a rather indirect fashion), we can thus conclude that smooth perturbations of de Sitter
space are described by a metric of the form (1.9). (See also [GL9I1, Kic04, GS20] for the construction
of true solutions in the Riemannian setting.)

With this background, it is now clear that the description (1.7) is optimal: the power series
a G £ ho+ Yo P at p = 0 is in Fefferman-Graham form and thus its coefficients are uniquely
determined by the scattering data gy = dz? + h(oy and gy, (3) + h(3) in the notation of Theorem 1.1
and (1.8) and the subsequent discussion. We remark that the weighted TT property of hs), i.e. the
TT property of hi(z,dz) := || 2 h(3)(x,dx), becomes consistent with (1.9) once we observe that
this tensor appears in the Taylor expansion of g at the conformal boundary Z* via (772 times)
P*his) = (plz])>hl = T2h],

Remark 1.5 (Black holes from scattering data). The work of Mars—Peén-Nieto [MPN22] discusses
the characterization of KdS metrics via their data at the conformal boundary. Also the construction
of de Sitter spacetimes containing several black holes in [Hin21, Ver24] is, at least on a conceptual
level, based on this scattering perspective.

It is then natural to make the following conjecture.

Conjecture 1.6 (Scattering data). Fiz KdS parameters b. Suppose we are given tensors by ;; =
h(my,ij(R,w) € R*HE® for m = 0,3 and R < Ry, with small norms in RaHg for some sufficiently
large d, so that g3y := gp,(3) + h(3) is a weighted TT tensor with respect to gy = da? + h(y. Then
there exists a solution g of the Einstein vacuum equations in a neighborhood of {R < Ro} C T
with scattering data g(o), g3y which is asymptotic to the KdS metric with parameters b at K.

Applying the uniqueness statements of [Hin24a] to the restriction of the scattering data g, g(s)
to R > 6 > 0 and letting § N\, 0, the solution g in Conjecture 1.6 is easily seen to be necessarily
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unique (up to isometries) on an appropriate domain of dependence; see Figure 1.4. For the proof of
a version of Conjecture 1.6 for linear scalar waves with o = 0, see [Ber24, Theorem 1.4].

It Ry

K

N\
N

HE
FIGURE 1.4. The domain on which an asymptotically KdS metric is expected to
exist, given scattering data on a part of the conformal boundary (highlighted in
green). The dashed line indicates the cosmological horizon of KdS; to avoid blueshift
instabilities when solving backwards, we stop at a positive distance from there.

1.2. Analysis near conformal boundaries. Our analysis of the Einstein equations will build
on a perspective which turns asymptotic analysis near conformal boundary into problems in linear
algebra. In de Sitter type settings, this perspective already played an important role in many works
including [FG85, Ren04, Vas10, HX21], and in elliptic settings in [MM87, GL91, Maz91]. A novelty
of the present paper is an extension of this perspective which allows one to deal with singularities
on the conformal boundary of the type given by future timelike infinity ™ of KdS.

1.2.1. de Sitter space. For concreteness, we study the following toy model. Fix a smooth Riemannian
metric (g(o))ij(#)dz’ dz’ on the torus z € T?, and consider

06 = (—(70:)" + 370 + 7°g(3 (2) 0405 ) (7, ) = 0. (1.10)

(For géé) = ¢%, this is the covariant wave operator for the metric (1.2).) The initial data, at

T =1, say, are assumed to be smooth in x; one can also allow for a nontrivial right hand side (with
appropriate regularity and decay requirements as 7 — 0), though we shall not do so here for the
sake of exposition. If one only keeps the 79, terms of [J, one obtains the indicial operator, here

I(70y) == —(10,)* + 370,

which is a constant coefficient regular-singular (or Fuchsian) ordinary differential equation (ODE).

The indicial family is its characteristic polynomial, so I(\) := —\2 + 3\, and the indicial Toots are
its roots, A = 0, 3. Since therefore O(t*u) = O(7**1) for A = 0,3 and any u = u(z), one anticipates
that solutions of (1.10) have the form ¢(7,x) = 7%¢¢(z) +73¢3(x) +- - -, where *- - -’ indicates terms

that (at least in Taylor series at 7 = 0) can be computed from ¢q, ¢3.

This heuristic can be made rigorous, as shown in the references above. We outline here a two-step
strategy which generalizes easily to the more singular setting of the present paper.

Step 1.1. Basic energy estimate. One can easily obtain a spacetime energy bound

1
dr
I // [0 + 170,012 + [V 70,012 du < data (1.11)
T 0

for some N > 0. The particular value of IV will be of no concern to us; this will be advantageous when
passing to tensorial equations for which precise energy estimates may be more difficult to obtain
(e.g. due to computational complexities). The notation 7= H} reflects the weight (¢ is allowed to
grow like 77) and the notion of regularity (70, 70,), which is 0-regularity on [0,00), x T2 in the
parlance of Mazzeo—Melrose [MMS87]. Importantly, the same value of N works if O is perturbed by
terms which, relative to 70, 70,, decay at 7 = 0; we write such terms as O(7) below.
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Step 1.2. Higher regularity. Discarding z-derivatives in the above heuristic requires 79,¢ to be
of lower order (in the sense of decay) than 79,¢. The estimate (1.11) does not entail this. We
thus need to improve (1.11) to a higher regularity estimate, with the same weight =", in which we
control J,-derivatives of ¢. Concretely, we claim that

1012 s g = 2 N0V O26]2 vy S data, (1.12)

j+lal<k

(The notation Hé;,’j reflects the derivative types: we now control k b-derivatives (19,,0;) in the
parlance of [Mel81, MM83, Mel93] in addition to 1 0-derivative.) We accomplish this via a highly
robust commutation argument which only relies on the structural properties of 70,,70, and their
relationships with 79;,0,. We illustrate this only for £ = 1: we then have the commuted equations

O(r0-¢) = 70,06 — 2729} (€)03:10ps ¢ = O(7 - 70,) 06,
D(05¢) = 8:06 + 7°(009(3) )02 00s 0 = O(7 - 70:) 006
Therefore, the vector ® := (70,¢, 0,¢) satisfies a principally scalar system of equations which is
(04 0(r)® =0.
To this equation, the estimate (1.11) applies with the same value of N, giving (1.12) for k = 1.

Remark 1.7 (General situation: triangular structure). If one replaced 370, in (1.10) by (3+a(z))70;,
the equation for d,¢ would have an additional term (9,a)70,¢ on the right hand side, whose
coefficients do not decay. Instead, one now gets a strictly lower triangular system of the schematic

o (S 2)+om)ono o

For this system, one can still prove (1.11) for the same N, essentially by using (1.11) for each
component of ¢ separately (with the ‘data’ term now involving a norm on a spacetime source term)
and taking a weighted sum of the two estimates to absorb the size of J,a. In the tensorial equations
of interest in this paper, we do encounter variable coefficients of this type (although they will leave
the indicial roots unaffected, unlike (3 + a)70; here).

Step 2. Decay. Having arbitrarily many b-derivatives—in particular, xz-derivatives—under con-
trol, we can now justify putting z-derivatives of ¢ on the right hand side of (1.10). This leads
to

I(10;) = O(1%)d2¢.
Ifgp € T*NHéf,];, the right hand side lies in T7N+2H01_;§72. Integrating this ODE in 7, with x acting
merely as a parameter, gives ¢ € 7V +2Hé;§_2, when the indicial roots 0,3 fall outside of the

interval [—-N,—N + 2]. Iterating this argument thus allows one to show ¢ € T*‘sHéf{f = for some
J (depending only on the growth rate N allowed for by the basic energy estimate) for any 6 > 0;
repeating the argument one more time, the indicial root 0 enters and produces

¢(r,7) = ¢o(x) mod T2 HyF /72 ¢ € HF7(T). (1.14)

One can easily continue this scheme further and extract a full asymptotic expansion for ¢. This is
the place where logarithmic terms can arise due to repeated roots and integer coincidences; see in
particular [Vas10, Cic23, Ber24]. In our proof of a basic nonlinear stability result (see Theorem 3.1),
it will suffice to get a leading order term plus a decaying remainder, and therefore we stop here.
(The Fefferman—Graham asymptotics are largely obtained via formal arguments at p = 0 and thus
of a different flavor; see §1.3.3 below.)

We emphasize that the proofs of the (higher order) energy estimates in Step 1 do not rely on
any particular structure of the underlying operator beyond the fact that it is built from 79,,70,; in
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particular, they apply immediately to tensorial wave equations (with arbitrary lower order terms) as
well. Similarly, the arguments in Step 2 only rely on the properties of the indicial family I()\), which
in the case of tensorial equations is a polynomial with values in square matrices of the appropriate
dimension; the asymptotic behavior of ¢ is then determined by the indicial roots (A € C with
det I(\) = 0) and the corresponding spaces ker I(\) of indicial solutions.”

This approach to linear decay estimates can easily be combined with simple nonlinear methods
(Moser-type product estimates, tame estimates combined with bootstrap arguments or a Nash—
Moser iteration) to show the small data global well-posedness of suitable nonlinear equations,
where ‘suitable’ refers to the requirement that the nonlinear terms, when applied to ¢ of the
form (1.14) given by linear theory, produce decaying spacetime terms. (A simple toy example
is ¢ = (70,;¢)(70:¢).) The proof of tame estimates in the present paper is essentially straight-
forward, although it does cause a significant bookkeeping overhead; thus we shall not comment on
these standard nonlinear issues in the remainder of this introduction, instead referring the interested
reader directly to §3.2.

1.2.2. Expanding regions of de Sitter black hole spacetimes. We wish to apply a similar approach
in the expanding region of SdS and KdS spacetimes. As a consequence of the structure (1.4), the
scalar wave operator [, ~will again be a O-differential operator, i.e. built from 70;, 79,, but its
coefficients will no longer be smooth in (7,z) (i.e. on M) but only in p, R,w (i.e. on M), as defined
n (1.5). The expressions for 70,, 70, in terms of p, R, w are linear combinations of

p0,, pROR, pO., (1.15)

where we schematically write 9, for derivatives on S2. (In R > 1, i.e. in the cosmological region
far from " ~ K, these are pd, ~ 70, and pdg, pd,, ~ TO,; on the other hand, in p 2 1, i.e. far
from the conformal boundary, they are 0, ~ 0z, ROr ~ 0;, and 0., i.e. the natural derivatives for
analysis in spatially compact regions of a(n asymptotically) stationary black hole spacetime.) The
wave operator is thus of the form

Ogw = D Lijy(p Bow)(p0,) (pROR) (p0..)7, gy € C((0, 5], x [0, Ro]r x §?).
i+i+]v[<2
(Here p, Ry > 0. The key point is that the coefficients ¢;;, are smooth down to p =0 and R = 0.)

Analogously to (1.10), we consider an initial value problem for
ng ¢ = 07

with initial data posed at p = pg > 0 (i.e. 7 = pal), which we assume to be a spacelike hypersurface
as in Figure 1.1; this happens for sufficiently large 7. The analogues of the 2 steps in §1.2.1 are as
follows. (For easier readability, we are imprecise with the specification of domains of integrations
etc. below; they are to be taken according to domain of dependence considerations.)

Step 1.1. Basic energy estimate. Since we now need to distinguish weights near the black hole
(K) from weights at the conformal boundary (Z1), we work with doubly weighted norms

flo-reo dpdR
2 — Np-«o <1429PEt
ooy, = [ [ [ 1 R0y pR0m. p0) <t 2 T
(The notation reflects the 0-nature—i.e. the vanishing—of the derivatives (1.15) at p = 0, and the

b-nature—i.e. the tangency to R = 0—at R = 0. Note also that the integral over p = pg without

5In full generality, the indicial roots may depend on z, as they do in the setting of Remark 1.7. This does not
happen in the settings considered in the present paper. Asymptotic expansions in the presence of variable indicial
roots are studied in [KM13].



STABILITY OF THE EXPANDING REGION OF KDS 11

the pd,-derivative matches (1.6).) For fixed «, given by the decay rate (or growth) of the initial
data of ¢, there then exists N so that

||¢HP*NR(’H5,L) < data.

The initial data norm here is the R*H} & R*H{-norm. For the proof of this estimate, one can use
the (future timelike) vector multiplier —R~2%p?N pd, for which the bulk term (deformation tensor)
has a good sign when N is large enough. (See Step 1 in the proof of Proposition 3.11.)

Step 1.2. Higher regularity. This step is completely analogous to before: one now considers the
system of commuted equations satisfied by pd,¢, ROr¢, 0,,¢ (which away from R = 0 are equivalent
to 70-¢, 0z¢ as known from the de Sitter discussion, and away from p = 0 to 9z¢, 0z, O,¢). Due
entirely to structural properties of the vector fields (1.15) in relation to the vector fields pd,, RORr,
0., this system has, at worst, a lower triangular structure analogous to (1.13). This gives

||¢>||;NJQQH&;&b = > p0,) (RORY OL6|2 ~ oy, S data,
' i+j+|v|<k
where N is fized and k is only limited by the regularity of the initial data. (See Step 2 in the proof
of Proposition 3.11.)

Step 2. Decay. We can now regard all derivatives in the expression for [
involving pd, as error terms. That is, we rewrite the equation for ¢ as

9w €xcept for those only

2
1(pdy, R,w)p = error € p NV TRUHFY 2 1(pdy, R,w) := > Lioo(0, R, w)(pd,)".
=0

This is a family of ODEs in p with parametric dependence on R,w, and can be integrated from
initial data (or indeed from p = p; for any p; € (0,pp)). Since gm and gqs agree to leading order
at the conformal boundary p = 0, the indicial operator is in fact the same as for the wave equation
on de Sitter space (and in the toy model under consideration here independent of R,w). Therefore,
the asymptotic behavior of ¢ = ¢(p, R,w) at p = 0 is fully determined by the indicial roots (here
0,3). In the present case, if —N < 0 < —N + 1, we encounter the indicial root 0 and thus obtain

¢(p, R,w) = ¢o(R,w) mod p~ VHRHGILE g € ROH}T?
(See Proposition 3.13 for details.) The only differences to the de Sitter setting are thus:
the expansion is in terms of powers of p, not 7 = ;
(1) th ion is i f fp PR

(2) the terms in the expansion do not lie in standard Sobolev spaces in z, but in R*H} (with
the same « for all terms in the expansion).

We stress that the asymptotics of ¢ at X = {R = 0} and Zt+ = {p = 0} are completely decoupled:
the decay rate a (or growth rate, if negative) of the initial data at & propagates along /C, but it has
no bearing on the powers of p appearing in the asymptotic expansion at the conformal boundary.

1.3. The Einstein equations, gauges, constraint damping. Analogously to §1.2, we first con-
sider the de Sitter setting (in (3 + 1) dimensions) before explaining the simple modifications (given
the framework explained in §1.2.2) required for the Schwarzschild—de Sitter case.

1.3.1. de Sitter space. The Einstein vacuum equations (1.1) being nonlinear, we first consider their
linearization

Ly, i= Dy, Ric— A
around gqg; this is § times Oy + 2%, — 05 0945 Ggas — 2A where (Ogu)uy = —g" uppien is

the tensor wave operator, %y, is a curvature operator, and we write (8w),w = 3 (Wuw + Wuip),
(6gh) = =" hyusn, and Ggh = h — Lgtrg h.
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Expressing metric perturbations in (the symmetric second tensor power of) the frame %, dT“f
(¢ =1,2,3), one can then write L, ¢ as a matrix of 0-differential operators (i.e. built from 70,, 70,).
(It is not of wave type and not principally scalar, due to gauge issues addressed below.) The indicial
family I(Lg,, A) is correspondingly a matrix-valued second order polynomial in A (see (4.16) for the
explicit expression). It is not invertible for any A, corresponding to the infinitesimal diffeomorphism
invariance of the linearized Einstein equations, i.e. Ly, 0d; - =0 (so ranI(d; ., \) C ker I(Lg,q, A)
for all \). Since one wishes to disregard infinitesimal diffeomorphisms (Lie derivatives) as unphysical
and expects to be able to eliminate them by suitable gauge choices, the more pertinent question is
then to characterize the quotient space

ker I(Lgyq, \)/ran I(67.  \). (1.16)

gas’
This is a simple problem in linear algebra and solved in Lemma 4.10. The upshot is that this space
(with a mild modification required for the special value A = —1) is trivial unless A = 0,3.% (This
is already highly suggestive of the fact that the asymptotic degrees of freedom of perturbations
of de Sitter space are the coefficients gy, g(3) in expansions such as (1.9).) Furthermore, the
quotient space for A = 0, 3 is spanned by tangential-tangential tensors h;; de" % which are trace-free
(Z?:1 hy; = 0). For now, our aim is to understand the nonlinear stability, in particular asymptotics
and decay (however mild) towards 7 = 0, and thus we focus on the indicial root A = 0. Since the
indicial family governs asymptotics at each point of the conformal boundary individually, one may
thus reasonably expect that a perturbation of de Sitter space asymptotes to a metric of the form
2 i .7
gdas + ho = —% + ’7'_2((211'2 + ho,ij(x)dxi dil"j)7 ho = ho’”(fﬂ)d?xd% (117)

To go beyond heuristics, we need to supplement the (linearized) Einstein equations with a gauge
condition in order to turn them into a wave equation admitting a well-posed initial value problem.

Gauges, I: eliminating non-decaying pure gauge solutions. We deal with the diffeomorphism
invariance by working with a (generalized) harmonic gauge. To motivate our particular choice,
consider first the simple wave map (or DeTurck [DeT82]) gauge

Y,.(9: 9as) = guvg™ (L(9)%x — T'(gas)in) = 0. (1.18)

(This is a well-defined 1-form since the difference of two connections is a tensor; see (3.2) for a
manifestly covariant expression.) The standard procedure for solving Ric(g) — Ag = 0 in the gauge
T(g; gas) = 0 is then to consider the gauge-fixed Einstein equation

Py(g) = Ric(g) — Ag — 6,1 (g; gas) = 0.

Given initial data v, k, one then constructs Cauchy data for g inducing v,k at p = pp for which
moreover Y(g;gas) = 0 at p = po; once one has solved Py(g) = 0, the constraint equations imply
that also the transversal derivative of Y(g;gdqs) at p = po vanishes, and since the second Bianchi
identity d,G4Ric(g) = 0 implies the decoupled equation d,G,4d;Y(g;gas) = 0, we conclude that
Y(g; gas) = 0 and thus Ric(g) — Ag = 0.

Consider now the linearization Ly := Dy, Py. (This equals 10, + %,,s — A and is thus a wave

operator on symmetric 2-tensors.) Let us determine the residual gauge freedom by computing those
indicial solutions which are ‘pure gauge’: this amounts to computing the indicial roots of

I(D1|gdST(~;gds) o (5;8,)\) =1(—044sGgus © 7. s A). (1.19)

gas’

It turns out that A = $(3—+/33) € (=2, —1) is one of them, with indicial solution denoted w. Thus,
solutions of Lyh = 0 typically feature 7 growth (with spatial profile an z-dependent multiple of the

symmetric 2-tensor I(d; ., \)w).

bwe argue that this should be regarded as the correct statement of mode stability in the de Sitter context!
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It is advantageous (see also Remark 1.8 below) to devise a better gauge condition, namely one
for which all ‘pure gauge’ indicial roots have Re A > 0. This would ensure that, modulo decaying
remainders, solutions of Loh = 0 are free of non-decaying gauge artefacts (and thus should be of
the form hq ;; (:B)djzld% +o(1), following the previous discussion). We arrange this by working with
the gauge condition

Y £(9; 9as) = Y (g3 gas) + Egas (9 — gas) =0,
where E,, is a suitably chosen bundle map mapping 1-forms to symmetric 2-tensors; the require-
ment is simply that ‘pure gauge mode stability holds’, i.e. all indicial roots of (1.19) with T in

place of T are all positive. A possible choice for E,, is given in (3.2).”

Remark 1.8 (Harmonic gauge). In [HV18, Appendix C], the nonlinear stability of the static patch
of de Sitter space, or more precisely of the slightly larger region ‘f—' < 146, is proved using an
unmodified harmonic gauge. The indicial root %(3— \/33) arises there as a resonance. The nonlinear
iteration scheme of [HV18] is capable of dealing with growing modes of the linearized equation by
means of a black-box mechanism which, from a growing pure gauge mode §*w, computes a 1-form
modification 8 = 6(w) of the gauge condition so that in the gauge condition T — 6 = 0, the mode
0*w does not arise at that particular iteration step. (The modification 6 in which global stability
ultimately holds is thus part of the unknown.) — In the present setting, where we are interested in
the stability of a region of de Sitter space which contains a nonempty open subset of the conformal
boundary, the required gauge modifications would need to lie in an infinite-dimensional space in order
to eliminate the xz-dependent growing mode contribution 6*w at all points (0, ) on the conformal
boundary at once. It is, however, not clear at present how to implement the black-box mechanism
in this infinite-dimensional setting in a sufficiently robust manner so that it applies in a nonlinear
iteration scheme.

Remark 1.9 (Ringstrom’s gauge, I). In [Rin08, (46)—(50)], Ringstrom introduces a gauge condition
which is expressed in the particular global coordinate system (—logT,z), namely g*’T(g),ap —
390, = 0. (Since gggf(gds)uag = —300u = 3(9gas)ou, this gauge condition, at least for metrics with
Jou = —6ou + o(1), is equivalent to g**T(g),ap — gggf(gds)uag = 0.) While somewhat similar
to (1.18), it has the conceptual disadvantage of not being covariant. Nonetheless, pure gauge mode
stability does hold for this gauge (see Remark 3.8), albeit just barely since 0 is an indicial root.

Remark 1.10 (Weak global stability via patching static patches). In the context of Remark 1.9, we
remark that one could modify the nonlinear stability proof of [HV18, Appendix C] to take place in
Ringstrom’s gauge (and with constraint damping, discussed below); one could then dispense of all
gauge modifications (i.e. work in the fized gauge), and allow the final metric to deviate from the
de Sitter model. Applying such a result on each static patch (parameterized by the point (0, z) on
the conformal boundary) separately, one would thus obtain a global stability result for de Sitter
space since all perturbed static patches would automatically fit together. However, the regularity of
the resulting solution would only be b-regularity in each static patch, meaning 0-regularity globally,
which is far too weak to draw conclusions such as strong asymptotic expansions (1.7). See however
[HV15, §4.5] for such an approach for the solution of nonlinear toy models.

Gauges, II: adjusting the background metric. For the linearization of
Pi(g) := Ric(g) — Ag — 0, r(g; gas) (1.20)
around g = gqs, the ‘physical’ indicial root at 0 (cf. the discussion following (1.16)) persists, and

indeed one may expect solutions to asymptote to some tensor hg = hg ;; () dfz d%j. (It turns out that

"There is a small caveat, namely —1 is an indicial root, regardless of the choice of gauge modification, since
(8zi)b = 772da? = 7*1%H (corresponding to spatial translations) is a Killing 1-form on de Sitter space. Since
the symmetric gradient of this vanishes, it does not contribute non-decaying terms to solutions of the linearized
gauge-fixed Einstein equations. See §3.1.1.
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general solutions of the linearized equation still grow due to the existence of an indicial root which
is not physical or pure gauge, but rather arises from an unfortunate cancellation of the Einstein and
the gauge part of the operator; we deal with this using constraint damping below, and ignore this
issue for the time being.) In a nonlinear iteration scheme, one might, in the next step, expect to
have to consider the linearization of P, around a metric of the form g = gas + ho + h (cf. (1.17)),
with h decaying towards 7 = 0.

It turns out, however, that the gauge condition Y g(gas + ho + iz; gas) = 0 (and also Y (gas + ho +
]N“L;gds)) cannot hold, even to leading order at 7 = 0 (i.e. ignoring iL)7 for general ho.® The idea is
thus to replace the background metric gqs, which no longer captures the correct final geometry, by
the new final geometry gqs + ho. We implement this by regarding the leading order term hy and
the decaying tail h as separate unknowns, thus considering

Py(ho,h) == Ric(g) — Ag — 03T p(gi 90), where g=gas+ho+h, go= gas+ ho.

For any fixed hg, this is a quasilinear wave equation for h. The change of the final background metric
from gqs to gas + ho couples to the decaying remainder h of the spacetime metric when evaluating
the gauge 1-form Y g; this necessitates the introduction of a further, decaying, gauge modification
0. (Concretely, 6 will lie in 7# HF([0,1) x T3) for some 8 € (0,1).) See Lemma 3.15.

Remark 1.11 (Ringstrom’s gauge, IT). An advantage of Ringstrom’s gauge [Rin08, (46)—(50)] is that
it is satisfied to leading order at 7 = 0 for all metrics of the form gqs + ho. Thus, no adjustments
of the gauge condition at 7 = 0 are needed in this case. The fact that in our more geometric
gauge we do adjust the background metric ultimately leads to significantly simpler computations of
the indicial families (which end up being independent of the background metric in suitable bundle
splittings, see (3.29)), at a very minor technical expense (essentially Lemma 3.15).

Constraint damping. For now, we return to the linearization L; of the operator (1.20) around
g = gqs- In the above discussion, we have in effect assumed that solutions of L;A = 0 are sums of
physical solutions (as in (1.17)), pure gauge solutions, and decaying remainders. This is, however,
not true: there is a negative indicial root, again at A = (3 — v/33) € (—2,-1), for which the
corresponding indicial solution neither lies in ker I(Dg,Ric — A, X) nor satisfies the linearized gauge
condition. The corresponding growing (O(7*)) solution would arise for general initial data, which
one does need to consider in a Nash—Moser iteration scheme for the solution of the nonlinear equation

(or when solving the gauge-fixed Einstein equations numerically, as already pointed out in [Rin08]).

The fix, going back to [BFHR99, GCHMGO05, Pre05], is to modify the symmetric gradient 5
coupling the gauge condition and the Ricci tensor. This was also used in an ad hoc fashion in
[Rin08, (51)—(54)], and played a crucial role in the nonlinear stability proof [HV18]. (In a bootstrap
approach, it can be avoided [Fan21], but since it is easy to arrange, we might as well arrange it.)
To wit, we replace d; in (1.20) by S; =0y + E for a suitably chosen bundle map from symmetric
2-tensors to 1-forms. The only requirement is that

all indicial roots of I(d,,cGyyuq © 0

*
gds ~4gds gdas’

A) are positive. (1.21)

Possible choices of E are given in (3.4) (corresponding to [Rin08, (51)-(54)]) or [HV18, (C.8)] (see
Remark 3.7). We then consider the linearization Ly of

Pi(g) == Ric(g) — Ag — 6; T 5(g; gas)-

8More precisely, in the second step of the iteration, hwy = hgyijdxi da? is trace-free with respect to dz2, as
discussed before (1.17); this saves the gauge condition Y = 0 at 7 = 0. But the next step would involve the
linearization around gqs + ho + h6 where h6 is trace-free with respect to dz2 + h(oy; but h(gy + h’(o) is typically no
longer trace-free with respect to da?. This is why we need to study the gauge condition for gqs + ho assuming only
that hg is tangential-tangential.
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The utility of (1.21) is the following: if A < 0 and I(L1,A\)h = 0, then the linearized second Bianchi
identity implies that also I(dg,5Ggug © 5st,)\)n = 0 where n = I(D1]g,s TE(; gas), A)h measures the
extent to which h violates the linearized gauge condition. But then n must vanish in view of (1.21),
and thus A is in fact automatically an indicial solution of the linearized Einstein vacuum equations,
i.e. I(DgcRic — A, A\)h = 0. Since A < 0, it is pure gauge, and since the gauge condition disallows
growing pure gauge solution, it must vanish.

For the gauge-fixed Einstein equation with gauge modification and constraint damping,
P(hg, h,0) := Ric(g) — Ag — Sg(TE(g;go) —0),

; (1.22)
where g = gas +ho+h, go = gas + ho,

we thus expect that all indicial roots are > 0; and this is indeed the case. See Lemma 3.9.

Using the analytic techniques explained in §1.2, one can then prove the existence of a global
solution ho, h, 0 of P(hg, h,0) = 0 with given (gauged) initial data close to those of de Sitter space.
(See Theorem 3.1 for the black hole case.) The strategy is to obtain precise asymptotics for solutions
of the linearization of P in h (which is a tensorial wave equation), read off updates for hg (related to

the final spatial metric), h (the decaying remainder of the metric perturbation), and 6 (the decaying
gauge modification), and close the iteration using a Nash-Moser scheme.

1.3.2. Ezxpanding regions of de Sitter black hole spacetimes. The considerations in §1.3.1 are entirely
on the level of indicial roots (except for the adjustment of the background metric). Using the analytic
modifications needed to pass from de Sitter to KdS already discussed in §1.2.2, it is thus clear that
we can prove the nonlinear stability of the expanding region of KdS using the same nonlinear
operator (1.22), except we need to replace gqs by the KdS metric g,. See Theorem 3.1 for the
resulting nonlinear small data global existence result.

Remark 1.12 (Ringstrom’s gauge, IIT). It is conceivable that one can prove the nonlinear stability
of the expanding region entirely in Ringstrom’s gauge, though for reasons of conceptual clarity (as
explained in Remarks 1.9 and 1.11) we do not pursue this here.

1.3.3. Fefferman—Graham type expansion at the conformal boundary. Having solved the Einstein
equations (1.1) in a gauge Tg(g;90) — 6 = 0, the spacetime metric g is typically not conformally
smooth. At this point, we disregard the evolution character of the initial value problem, and instead
aim to construct diffeomorphisms ¢ = Id+O(p?) (8 € (0,1)) so that ¢*g becomes as regular as
possible at the conformal boundary p = 0. We do this in two steps.

Step 1. Simplify the gauge condition. The idea is that, for ¢ = ¢V with V = O(p?) a small 0-vector
field, Y g(¢*g; go) differs from Y g(g; go) by a term which is roughly equal to D1 |, T g(Lvg; go); this is
a wave operator acting on V. By inverting the indicial operator of this wave operator, one can then
find successively better choices of V' so that Tg(¢*g; go) has successively higher orders of vanishing
at p = 0. A Borel lemma type argument produces a diffeomorphism ¢ with Yg(¢*g;90) = 0
(i.e. infinite order vanishing at p = 0); see Proposition 4.4. Once this is done, an indicial root
based analysis of the gauge-fixed Einstein equations shows that ¢*¢ is log-smooth down to p = 0
(Lemma 4.7).

Step 2. Obtaining Fefferman—Graham asymptotics. This part of the argument applies to any
solution of Ric(g) — Ag = 0 which asymptotes to an asymptotically de Sitter metric at the conformal
boundary and is log-smooth there. To wit, we consider each term in the generalized Taylor expansion
of g separately (starting with the p(log p)™ terms); using the Einstein equation and simple linear
algebra based on the description of (1.16), one can easily eliminate all p* and all p?(log p)™, m > 1,
terms. The p? and p* levels are more delicate due to the fact that the solvability theory for
I(DRic — A,\)h = f for A = 3,4 is somewhat delicate and requires f to have a special structure
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which must be verified. The elimination of log terms at subsequent levels (p°, p%, etc.) is again
straightforward using the triviality of the quotient space (1.16). The details are given in (the proof
of) Proposition 4.15.

The full nonlinear stability result for the Einstein equations is then Theorem 4.2.

1.4. Outline of the paper. In §2, we discuss 0-, b-, and (0,b)-operators (as motivated in §1.2)
in more detail, and how to describe de Sitter and Kerr—de Sitter metrics using related notions.
Furthermore, we define the corresponding weighted Sobolev spaces and prove some of their properties
as required for linear and nonlinear analysis.

In §3, we analyze the gauge-fixed Einstein vacuum equations (in the form motivated in §1.3.1)
in detail. This includes the study of the indicial roots of their linearizations, and the proofs of
(higher order) energy estimates and sharp asymptotics, with tame estimates, for solutions of their
linearizations (following the outline given in §§1.2.1-1.2.2). This section concludes with a proof of
Theorem 3.1, i.e. small data global existence for the gauge-fixed Einstein equations.

In §4, we demonstrate how to improve the asymptotic behavior of the spacetime metrics g pro-
duced by Theorem 3.1 when they arise from initial data satisfying the constraint equations (and
thus g satisfies the Einstein vacuum equations). The main result are the precise asymptotics stated
in Theorem 4.2.
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for many fruitful conversations on the topic of this paper. A.V. gratefully acknowledges support from
the National Science Foundation under grant number DMS-2247004 as well as a Simons Visiting
Professorship at the Mathematisches Forschungsinstitut Oberwolfach.

2. KERR-DE SITTER SPACE AND 0-B-STRUCTURES

2.1. Kerr—de Sitter metrics as asymptotically de Sitter metrics. Recall from (1.2) that the
half space model of (1 4 3)-dimensional de Sitter space is
o —dr? + da?
M° := (0,00),; x R3, gas 1= ———5—— (2.1)
(This is more commonly expressed in terms of 7 = e~ as —dt2 + e~ 2!*dz2.) The Kerr—de Sitter
metric g, [Car68] with parameters b = (m,a), m,a € R, and A = 3 is

() _a sin?6 N2 o/ dr? LHQ Agsin? @ /72 + a? 3 2
w=-"3 (at A d9) +o <T ol A9> + = ( A9 adt)’,
o= (7"2 + GQ)(l - 7"2) —2mr, Ag =1+ a2, Ag =1+ a® cos? 0, ,92 =12+ a?cos? 6.

(2.2)

(This differs from the expression in Boyer-Lindquist coordinates by a constant rescaling of ¢ by Ag;
cf. [Sch15, (5.2)-(5.4)].) Both metrics satisfy (1.1) with A = 3. To explain the sense in which gy
can be regarded as a black hole in de Sitter space, tending to a point p on the conformal boundary
of de Sitter space (2.1), say (7,x) = (0,0) at p, we first rewrite the dS metric in two steps. The first
step, following [Hin21, §2.1], is to introduce polar coordinates

R :=|z| € [0, 00), w:i= % €s? (2.3)
T

sodx? =dR? + Rzg where ¢ is the standard metric on S2, and then defining

- 1 R
t:= -3 log(R2 — 72), 7= — (2.4)
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(This change of variables is valid outside the cosmological region, not in the whole region where the
metric (2.1) is defined.) Write 6, ¢ for polar coordinates on S?. In the coordinates (£, 7,6, $), we
then have

gas = —(7% — 1)72di? + (72 — 1) di® + 72(dF? + sin” 6 d¢?). (2.5)
The second step, following [Sch15, Appendix BJ, is to define ¢, 7,0, ¢ in # > 1 via®
- 1 ~ ~
t=t, 72 = A—(rzAg + a?sin?9), 7cosf = rcosd, ¢ = ¢ —at. (2.6)
0
In the ‘co-rotating coordinates’ t,r, 6, ¢, one then finds'®
2 2 2, .2
2 2 2 2 Y 2, @ 2 T ta” .o 2
= sin“ 9 — 1)dt d —df sin“ 6 d
gas = (r“ + a”sin ) +(r2+a2)(1—r2) r +A9 + A, sin 10)
2 .2
— 20 G029 dt dg.
Ao

Comparing this with (2.2), we find that

2mr (dt— asin29d )2 n 2mrg?

= gas + ho, hy = —— dr?. 2.7
gb = gas + hy b= "3 Ay - (2.7)

Note that the coefficients of hy are of size 1, and the coefficient of dr? is of size r~5.

We interpret this on a structural level as follows. Define first the manifold
M :=[0,00); x X, X =R3, (2.8)

whose boundary M = 77(0) is the future conformal boundary of dS. We recall from [MMS87] that
the 0-cotangent bundle is the smooth vector bundle °T*M — M with frame d{, dTr% (1 =1,2,3).
In the present paper, we always work in the splitting

dr

T*M =R— @ 'T*X. (2.9)
T
Correspondingly, we split the second symmetric tensor power of this bundle via
dr? d
S2OT* M =R @ (2—7 ®s T_lT*X> @282 T X, (2.10)
T T

In this splitting, the dS metric is thus given by (—1,0, dz?).

Next, blow up the point p € M given by (r,z) = (0,0). This produces a manifold with cor-
ners [Mel96], in which we will only work in the region where |z| > 7. Concretely, we introduce
(consistently with (2.3)) the coordinates

T

-
R:= ‘$|E[0,00), p::m€[071)7 Wf:m€S2.

In terms of R, p, the expressions in (2.4) become

. 1
t=—logR— ilog(l—pQ), F=pt (2.11)

2. 25
9The equation for #2 can be solved for r using sin2 =1 — = CTOQS 9. explicitly,

- ~ 2
7201 4 a2sin2 0) — a2 F2(1 4+ a2sin20) — a2 _
r2:r( +a“sin®0) —a " 72(1+ a?sin®6) — a 4 272 cos? B,
2 2
Moreover, (1 + a2 cos? 0)r2 = (1 + a?)72 — a?sin? 0 > (1 + a?)72 — a? sin? 072 = (1 + a? cos? 0)72 implies that r > 7,
and thus 6 € (0, 7) is well-defined if we require & — 7 have the same sign as 6 — 7.
2
10The coefficient of df? is erroneously given as i—g in [Sch15, (B.6)], [Hin21, §4.1].
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Definition 2.1 (Manifold). We define
M = [Oaﬁ}P x [0,00)r % Sia (2.12)

where p = p(b) € (0,1) is chosen so that g, is well-defined and d(p~!) is timelike on M° :=
(0,p] x (0,00) x S2. We denote the blow-down map by

B: M — M, (p,Rw)— (r,z) = (pR,wR),
and the boundary hypersurfaces of M by
Tt :=p 0), K := R7(0). (2.13)
We moreover define Zf :=ZT N{R < Ro} = [0,Ro] x S* C T*.
See Figure 2.1. The requirements on p > 0 in Definition 2.1 are satisfied for all sufficiently small

-1 ~
p since d(pp,l) = d% is timelike, and indeed has squared norm 1 — 72 > % for gas in 7 > 2 (by

inspection of (2.5)); in view of the decay of hy, in (2.7) as r — oo (equivalently, 7 — 00), this timelike
character persists for sufficiently small 71,

p

T=0 T
T=c

T =X R=c¢

FIGURE 2.1. On the left: the de Sitter spacetime manifold M and its conformal
boundary at 7 = 0; some level sets of 7 are shown in red, and level sets of z in blue.
The image B(M) C M is shaded in gray. On the right: the blow-up [M;{p}], the
manifold with corners M (in gray), and level sets of 7 (dashed red), R = |z| (blue),
p (green).

The benefit of working with M for the purpose of studying the KdS metric is thus that smooth
functions of 7!, say, are smooth on M , whereas they are singular on M near p; we return to this
below. Since 7 = pR and z = Rw, we can write elements of °7*M as linear combinations (with
d—pp — %7 77 'R, and 7' Rdw, or equivalently in terms of d—pp,
and %“. This motivates the following definition, which is studied further in §2.2 below.

smooth coefficients on M) of dT—T =
dR
pR’
Definition 2.2 (0-b-cotangent bundle). We define the 0-b-cotangent bundle over the manifold M
defined by (2.12) to be the direct sum

obreir = RY g rIZ ©p TS (2.14)
p PR

By this we mean that ObT* N = RPR@T*S? as a vector bundle where R = M x R is the

trivial bundle; and an element (a,b,n) with a,b € R and 1 € T*S? is identified with the covector
aSl + b3 4 p~ln € T*M°.

The above discussion shows that the identity map on T*M*° over M?° extends to a smooth bundle
isomorphism*!

ObpenT = B*(OT* M) over M. (2.15)

HAs an illustration, gqg is a smooth non-degenerate Lorentzian signature section of S2 O*bT*]\;I; explicitly,

gds = —(d?pf —2,0%2% +@1 —PQ)(ZTI:Y + 212



STABILITY OF THE EXPANDING REGION OF KDS 19

From (2.11) and (2.6), it follows that e™* = e~f = Ry/T—p2 and 7~ are smooth positive
multiples of R and p on M. Therefore, the coefficients of h, in (2.7) in the frame rdt, %, rdf,

rd¢ are smooth multiples of 3 on M; and this persists in the frame 7 df, %, 7d, 7d¢. Since
Fdi = —48 4 pr and & = —@, we conclude that in the decomposition of hy according to (2.14)
pR 1—p T P

T

dr? odr dz®  da? da?
27 ®s T ®s T

(or equivalently according to (2.10), i.e. into <%, ), each component is p?

times a smooth function on M. Using (2.15), we can summarize our discussion as follows.

Lemma 2.3 (Structure of KdS and dS metrics). Define gas by (2.1), and define g, as a metric on
M® by (2.2) via the coordinate transformations (2.3), (2.4), and (2.6). Then'? gy, gas are smooth
Lorentzian signature sections of S?PT*M = B3*(S?9T*M) over M, and

gb — gas € p3C°°(M; 52 O,bT*M) _ pSCoo (M’ {5*(52 OT*M)>

Furthermore, d—p’) s uniformly timelike for gy in the sense that

0> gb(%7 %) e C=(M). (2.16)

The perturbations of g, arising in the solution of nonlinear stability problem will similarly be
considered as sections of 3*(S?°T*M) with suitable regularity and decay properties on M. For
concreteness, we fix the types of domains on which we will study perturbations of g, as follows:

Definition 2.4 (Domains with spacelike boundaries). We use the notation of Definition 2.1. Let
Ry € (0,00). For all py € (0, p] so that E,jo,Ro = {p < po, p=R ' (poRo— 3(Ro— R))} is spacelike
for gy, we set

on,Ro = {(,0’ R, W) S M: p < po, R< R07 p> R_l(poRo — %(RQ — R))} (2.17)

We denote by ¥, r, := {(p,R,w): p = po, R < Ry} the initial boundary hypersurface of Q,, r,.
The final boundary hypersurface is E:;h Ro-

Note that the final inequality in the definition of ©, g, is equivalent to 7 = pR > po Ro— % (Ro—R);
the hypersurface E:O_’ R, (which intersects 7 =0 at R = (1 —2po)Ro) is a spacelike hypersurface for
gas, and therefore it is also one for g, in the region where p < pg, provided pq is sufficiently small.
Moreover, the future timelike vector field 9, is outward pointing, and thus it is a final boundary
hypersurface for purposes of solving wave equations (i.e. no data need to be imposed there). We
will pose initial data at X, r,. See Figure 2.2.

+
L(1-2p0) o R =Ry

FIGURE 2.2. Illustration of a domain Q,, r, C M, only showing the coordinates p, R.

12This sharpens [Hin21, §4.1] insofar as we now control gy, gqs and their difference uniformly down to K.
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2.2. Basics of 0-b-analysis; weighted b-Sobolev spaces. We now introduce the operator
classes and function spaces used in the analysis of the stability problem. For definiteness, we
work on the 4-dimensional manifold M from Definition 2.1, although all notions and results in this
section admit straightforward generalizations to the case of general dimensions.

2.2.1. Vector fields and operators. The bundle dual to (2.14) is the 0-b-tangent bundle
ObTAN = R(pd,) © R(pRAR) ® pTS>.

The space of its smooth sections is denoted Vo,b(l\zf); it is spanned over C*(M) by p0,, pROR,
and pf) where ) € V(S?). Thus, a smooth vector field V on M is a 0-b-vector field (i.e. lies in
Von(M)) if and only if V vanishes at Z+ = p~1(0) (hence the subscript ‘0’ [MMS87]) and is tangent
to K = R71(0) (hence the subscript ‘b’ [MMB83, Mel93]).

Definition 2.5 (0-b-operators). For m € Ny, we write Diffg} (M) for the space of all differential
operators on M which are finite sums of up to m-fold compositions of elements of V, b(M ). If

E — M is a vector bundle, we write Diff, (M; E) for operators C°(M?®; E) — C°(M?°; E) which
in each local trivialization of E are matrices of operators of class Diff(’,.

In this paper, we only work with trivial(ized) bundles, and thus with matrices of scalar opera-
tors. A scalar operator can conversely be regarded as an operator on a trivialized bundle by acting
component-wise. We will henceforth only discuss scalar operators explicitly, leaving the straightfor-
ward notational modifications to operators on trivial(ized) bundles (and the simple generalization
to non-trivial bundles) to the reader.

By duality from (2.15), we can equivalently define Vo1,(M) to be the C>(M)-span of the set
{V]o: V € Vo(M)} of 0-vector fields on M; here Vo(M) consists of all smooth vector fields on M
which vanish at M, and we thus have V(M) = C*°(M;°T M) where °TM = R(79,) & 7T X is the
dual bundle to “T*M in (2.9).

A larger class of operators is

Diff}" (M),
which is defined analogously to Diffgfb(M ) but using b-vector fields V, (M), which are precisely
those smooth vector fields on M Which are tangent to all boundary hypersurfaces Z7,K of M.
Thus, V(M) is spanned over C*°(M) by pd,, RO, and V(S?).'* One can also consider spaces of
weighted operators

R*pDiffy, (M) = {R*p’L: L € Diff, (M)},
similarly for R*pPDiff{" (M). Elements of these spaces define bounded linear maps on C°(M?®).

Fixing a finite spanning set ¥ = {V,} C V(S?) over C>*(S?) (e.g. rotation vector fields around
coordinate axes), we can express any L € Diffg", (M) in the form

L= S ialp, Rew) (0, (pRIR (07)%, s € C(IT); (2.18)
jt+k+|al<m
here (p7)® := (pV1)* (pV2)®2 - - -. The indicial operator of L is defined by
)= > Lioo 0, R w)(pd,)” € Diffy! (A);

js<m

13The benefit of the definitions of Vo,bs Vo, W solely in terms of the smooth structure of M is that it allows one to
determine frames for %PTM in local coordinates on M without the need for, say, change of variables computations.
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it is a family (parameterized by (R,w) € ZT) of elements of Diff{' ([0, 00),). We shall often regard
a function u = u(R,w) as a function (p, R,w) — u(R,w) (without spelling this out explicitly); with
this convention, we have £jo0 — €jo0|p,=0 € pC>. Since pRORg, pV, € pVy, we thus conclude that

L —I(L) € pDiff* (M),

that is, I(L) captures L to leading order at I+ as a b-differential operator. The indicial family is
obtained by formally conjugating I(L) by the Mellin transforming in p, thus

I(L, /\) = Z gjoo(o, R, w)/\j.
j<m
For each (R,w) € ZT, this is a polynomial in A whose roots are called indicial roots. (They can
depend on (R,w), though the indicial roots of all operators appearing in this paper will be constant
along Z7.)
The wave operators of main interest in this paper will be of 0-b type, but their solutions will

be shown to be regular under application of b-vector fields (which are stronger). One underlying
structural reason is the following.

Lemma 2.6 (Ideal). Vo1,(M) C Vy(M) is an ideal. That is, if V € Vo, (M) and W € Vy,(M), then
(W, V] € Vop(M).

Proof. If the conclusion holds for V, then it also holds for fV where f € C>(M) since [W, fV] =
(WF)V + f[W,V], with both summands lying in Vy . Similarly, if the conclusion holds for W,
then for f € C®(M) we have [fW,V] = f[W,V] — (Vf)W; note then that Vf € pC>(M), and
therefore (V)W € pVo(M) C Vou(M). Tt thus suffices to consider V = pd,, pROg, pV, and
W = pd,, ROR, V,, in which case the membership [W, V] € Vy, is straightforward to check. O

2.2.2. Function spaces. We fix on M and ZT the (unweighted b-)densities |42 4B dg| and |9Z dgl,
p ) )
respectively.

Definition 2.7 (b- and (0,b)-spaces). Fix a finite spanning set ¥ = {V,} € V(S?). Let Q ¢ M
be compact and equal to the closure of its interior £2°. Then for «, 8 € R and k € Ny, we define
RepPHE() to be the space of elements of L _(2°) with finite norm'*

loc
[ull o ps i (02) = Z IR™*p?(p0,)? (ROR)"V "ul| L2()-
JHHYI<E
The space RO‘pBH(’ib(Q) is defined analogously but using (pd,)? (pROR)!(p?)7; and the space
RepPCE () is defined analogously but using the C2(Q2)-norm which is defined to be the sup norm on

the space C2(£2) of all bounded continuous functions on Q\ (K UZT). We similarly define R*H*(U)
for precompact U C ZT with U = U°, with norm

lull go 1 ey == Z IR~ “(ROR)"Y "ull L2,
I+|yI<k

and analogously R*CF(U).

When Q C [0,00) x U, operator classes with non-smooth coefficients are denoted

RpPH (Q)Diff, (), RYHY (U)DIg), ();

Iywhile this definition uses a concrete set pOp, ROR, V" of vector fields to test for b-regularity, we remark that
any other finite set which spans the set V},,(£2) of smooth vector fields tangent to Z+ and K over C*(f2) produces
equivalent norms. Similarly, the functions R and p used as weights can be replaced by any smooth defining functions
of KC and Z%, respectively, without changing the norms (up to equivalence). In this sense, the function spaces defined
here only depend on the structure of 2 as a smooth manifold with corners.
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elements of these spaces are finite sums of products aL where a lies in the stated function space and
L € Diff§",(€2). (Recall here our convention of regarding a function of (R,w) as a p-independent
function of (p, R,w).) Given L € RapBH{j(Q)Diﬁ'g?b(Q), we define its norm as follows: there is a
unique way of writing

L= > £(10:)(10.)", Ly € R*pPHL(9),
Jtv<m
and we then set
1| Re s 1 (2 Dirge, (@) = Z 1€ || e s e () (2.19)
J+lyI<m
similarly for L € R*HE(U)Diffg", (). Since Vy,(M) is spanned over C*°(M) by 70, p~170,: = R,
we can similarly define'® the norm of L € R®pP HF (Q)Diff"(Q2) via

L= Z Ejv(Tar)j(Ra:r)v = HLHR“pﬁH{j(Q)Diff{)”(Q) = Z ||£j’Y||Rap/3H1’j(Q)' (2-20)
Jt+lvI<m Jtlylsm

We next discuss the algebra properties of weighted b-Sobolev spaces. For concreteness, we
henceforth work only on U = IEO =TT N{R< Ry} =[0,Ro|r x S* and domains Q = Q,, g, from
Definition 2.4. (In particular, [0,00), x U D €2.) As a useful technical tool, we introduce extension
operators. We write C>(Q) for the space of smooth functions which vanish to infinite order at
Z7 UK; we stress that we do not require its elements to vanish at any other boundary hypersurfaces
of Q.

Lemma 2.8 (Extension operators). Let 0 < Ry < Ry < R1, 0 < pg < p1 < p1. Then there exists
a continuous linear map =: C*(Q,, ry) = C(Qp, r,) with the following properties.

(1) (Extension.) For all u € C®(Qy,.r,), we have (Ew)la,, r,

(2) (Support.) For all u € C®(Qy.r,), we have supp(Zu) C Q. g, -
(3) (Boundedness.) Z defines a bounded map R®pPHE(Qp0 r,) — ROpPHE(Q,, r,) for all
a,B € R and k € Ny, similarly for weighted CF-spaces.

= Uu.

There ezist extension operators C> (T3,) = C.OO(I;) with the analogous properties.

Proof. This is a variant of Seeley’s theorem [See64]. We only discuss the extension problem near the
boundary hypersurface y := R(1—2p) — Ro(1—2po) = 0 of Q,, r,, and thus consider u with support
in - <y<0and 0 < p <. (Local extension operators can be patched together using a partition
of unity.) Write r = —log p, and denote by w € R?, |w| < 2, local coordinates on S?. Set B(0,1) =
{w € R?: |w| < 1}. Then the norm of a function u € C2°([—logd, o0), x (=4,0], x B(0,1),) on Hy,
and Cy, spaces are L?-, resp. C’-norms of the derivatives of u along 9,, 8y, 9,,. Fix x € C°((—1,0])
to be equal to 1 near 0, and with supp x C (— min(d,n),0] for some small n > 0 fixed below. Set

then
. _ Julry,w), y <0,
U’(rv Y, OJ) T [ee]
Zl:o CIX(_y/(Sl)u(r7 _y/617 w)v Yy > 0,
where we take §; = 37! and define ¢; via sin(52) = 32 ¢;z'. This ensures that Y, 67 = (=1)7
and >°,° |a]d, 7 < oo for all j € Ny, and thus @ is smooth across y = 0. Moreover, by the support
property of x, we have & = 0 for y > 7, which implies supp @ is contained in (the intersection of

{r > —logd, we B(0,1)} with) Q,, r, when 7 is sufficiently small. The boundedness of u — % on
Hy,- and Cp-spaces follows by direct differentiation. O

15We take advantage of the particular geometry of M here. A more systematic approach towards defining a norm,
which ends up giving an equivalent norm, is to cover 2 by coordinate charts and to sum the norms of the coefficients
in the local coordinate chart expressions of L as a b-differential operator.
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Lemma 2.9 (Boundedness, restriction, and algebra properties). Write d,,, := fmTHW for the small-

est integer larger than 7, so dy = 3 and d3 = 2. We write DY for any p-fold composition (p € Ny)

of elements of {p0,, ROr, V,}, resp. {ROR, Va} acting on a function on Q = Q, g,, resp. U = I;go,
(1) (Sobolev embedding.) For every k € Ny, there exist constants C, ., C ,; so that
lullesiey < Callull goraseys Iollesen < Clallvlperas ey, 221)

2) (Restrictions.) Let p1 € (0, po], and write X2 := Q,, r, N{p = p1}. Then the restriction map
PO, 10
u — u|s defines a bounded linear map

HE(Q) - HF (D), keN. (2.22)

(3) (Estimates for products.) For every k € Ny, there exist constants Car, Cuk, and Cau i
so that for all functions ui,us on 0 and vi,ve on U, and for a,b € Ng with a +b =k, we

have
I(DFu1)(Dyuz) | r20) < Cra(lull s g luzll g o) + luall gras o lluzll 22y ) (2.23a)
I(DFv) (Dhv2) 2w < Crar(llvall s g loall g ey + lvtl gisas g 102l 22 @), (2.23b)
I(D5o) (DRu2)llzz(@) < Crau(lvrll as g 2l g o + 01ll s g w2l z2e)- (2.23¢)

(4) (Estimates for nonlinear expressions.) Let § > 0, and let F': [-§,6] — R be a smooth
function which vanishes at 0. Then for all u € HF(Q) with!'® Hu||Hs4 < 5/Cg7d4, we have
F(u) € HF(Q) and

IE @ ap @) < Crarllulgreas g
Similarly, for v € HEU) with ”U”H{f?’ < 6/057(13 we have F(v) € HE(U), with norm bounded

by a constant times [[v]| r+as -
b

It is straightforward to prove stronger bounds using classical Moser estimates, see e.g. [Tayll,
Chapter 13]; we opt for weaker statements which have simple self-contained proofs.

The estimates in this Lemma admit straightforward generalizations to weighted spaces, for exam-
ple [[ul|gapscrio) < CQJC’O“ﬁHU||Rapﬁch+d4(Q) for all o, 8 € R, which we do not spell out here (but
b

use frequently in §3 below). Regarding (2.22), the weighted generalization reads R*p® HF () —
RO‘H]’;*l(Z) where «a, 5 € R; note that the p-weight is irrelevant since we restrict to p = p; > 0.

The main application of part (4) is to control fﬁ where f is a smooth function bounded away

from 0 and u € Hf*(2). (This arises when inverting matrices with Sobolev-regular coefficients.)

Note that fﬁ = %(1 — F(u/[)) where F(z) = 177 is smooth on [-4, 4] for any § < 1; if ||u||Hg4 <
)

o5, Iz, we thus obtain || 735 — 7l < Crusellullag.

Proof of Lemma 2.9. Defining @, := Zu; using the extension operator from Lemma 2.9, and defining
g, U1, Uy similarly, it suffices to prove the claimed estimates with 2,4 replaced by Q,, r, ,I?%'l (where
p1 > po and Ry > Rg are arbitrary), and with all functions now vanishing near the boundary
hypersurfaces of Q, resp. U at p = p1, R(1 —2p) = R1(1 — 2py), resp. R = Ry. We now relabel py,
R, 11, etc. as pg, Ro, u1, etc.

In the coordinates ¢ = —log R and r = —logp then, we have pd, = —0, and ROg —0.
Therefore, the estimates in (2.21) are simply instances of standard Sobolev embedding on R; x R, x
S?, resp. R; x S?. Similarly, part (2) is an instance of the standard trace theorem, in the form of

161t suffices to assume |ju||pos < & (which is implied by the stated Sobolev bound), though we do not need this
(classical) result here.
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the continuity of the restriction map H*(R x R x §?) — H*"2(R x {0} x S§?), s > 1; we work only
with integer orders here and thus a fortiori obtain (2.22).

We follow the proof of [Hin23a, Lemma 3.33] for part (3). Introducing local coordinates w € R? on

S?, we need to prove estimates for functions on Rf}_,w, resp. R? . It suffices to consider compactly

supported u;,v;. We write x = (t,w), and we write d € {0, 0,1,0,2,0,} for any coordinate
derivative. Then

|Oul|. = //8(1&%) dxdr—i—//u%dxdr = //u%dxdr < lul 2 ||0%u|| 12,

which implies for any 0 < p < ¢ the estimate

a-p ya
[0Pull 2 < Cpqllull 3 [[0%ullf.- (2.24)
Passing back to b-spaces in our notation, we now estimate

I(DFu1)(Dyuz)| 2 < [Dguallze | Diuzllze < ClIDGual| yos || Dya| 12

using Sobolev embedding), further || Duq || ,,as < C d4: D&ty || 12, and finally, ford =0, ..., d4
b H d=0 b
b
and recalling that a + b = k,

b a a b
IDE (D)2 [ Dhuslle S [1Dgun | Fa | D uall 2 - lluall 22 | Db usl}-
S (Nl gaalluzll g + lluall greas fluslz2),

which is (2.23a). The proofs of (2.23b)—(2.23c) are completely analogous, now using Sobolev em-
bedding on R3.

To prove part (4), write F(z) = xFi(x); then F(u) = uFi(u) with Fj(u) bounded (since
llul| L= < &), and therefore |F(u)||pe < |lullpe. Next, DEF(u) is a sum of terms of the form
Hj-v:l(Dlgju)F(N)(u) where ky,...,ky > 1 with Zjvzl k;j = k (thus N < k). It thus remains to
estimate, via Sobolev embedding on the first N — 1 factors,

dy
k k ki pyd kn—1/yd k
I(Df ) - (D )|z S D IDEH (D) 2 - | DY (D) g2 | DY | 2
d=0
L RNt e T e T
S IDRul ID5ull g -~ [Dbullpe * 1 Dpull gt Mlull 2" [ull g
d=0
’i‘v k—kpy k—kpy kN
S ol o 5, el el
which is bounded by OHU||H§+d, as claimed. O

For Nash—Moser purposes, we record:
Lemma 2.10 (Smoothing operators). Let a, 8 € R. There exist continuous linear maps
So: R*pPL2(Qpy.ry) — Rp HE (o o) 0> 1,
so that
k <k = [Sou—ullgepspr < Ck,kf9k7k'||uHRapaHg"
k> k = |Soul gepsur < Ok,k’okik/”uHR&pﬁH]’;/'

There exist continuous linear maps R*L*(Tf, ) — R*H°(I5;, ) with the analogous properties.
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Proof. Given u € R*pPL%(Q,, r,), set @& := Zu where Z is an extension operator from Lemma 2.8.
Pass to t = —log R and r = —log p, and work in local coordinates w € R?, |w| < 3 on S?; using
a partition of unity, we only consider the case that @ is supported in the subset {|w| < 1} of R}
where z = (t,7,w). Fix ¢ € C2°(R*) so that its Fourier transform ¢(¢) is equal to 1 near ¢ = 0. Let
X € C(R2) be equal to 1 for |w| < 2 and supported in {|w| < 3}. We then define

(Spu)(z) := X(w)/ 04¢)(0w)u(z — w) dw, z = (t,r,w).

]RAL
Without the cutoff x, this is the same construction as in [SR89, Appendix]. With the cutoff x
present, only the estimate on Spu — w requires a bit of care; but the point is simply that (1 —
X (w)) fps 0*¢(0w)u(z —w) dw is bounded in every Sobolev space by 8~ for all N since the supports
of 1—x and w are disjoint. (See [Hin24b, Lemma 6.12] for details in a more precise construction.) O

3. INITIAL VALUE PROBLEMS FOR THE GAUGE-FIXED EINSTEIN EQUATIONS

We study perturbations of the KdS metric gy from (2.2) on the domain €2, r, from Definition 2.4,
with initial data posed at ¥, r,. We fix cutoffs

X = X(p) € Cé)o([ov %pO))v X [0,2p0] — 1, )2 = X(p) € CSO([OJ)O)); X|[O,%p0] = 17 (31)

and regard them as functions on M (which thus equal 1 near Z1). We shall work in the generalized
harmonic gauge Y (g; go) + Eq4,(9 — go) = 0 for a suitable (dynamically chosen) ‘background metric’
go where
Y(g; 90) := 9(90) ' 04Gggo  (in coordinates: T(g; g0)u = gug™ (F(9)ix — T(g0)%)),
0 o dr (32)
Egh := xe’(—2trg, h — h(eo, €0)), ey :=710;, € = —

For sections hg of B*(7725*T*X) over Z}; (which will capture the leading order change to gy at
Z*) and h of B*(S?0T*M) over Q,, g, (which will capture further decaying corrections to gy), we
then define the gauge-fixed Einstein operator

P(ho, h, 8) = 2(Ric(gy + xho + B) = Mgy + xho + )

~ - - (3.3)
=07+ nosi (T(96 +Xho + 5 gb + xho) + Eg,txnoh — 29)),
where (fOI‘ g = 3gb + Xho + il) we set
5; = 5; + E, Fuw:= X(?w(eo)eo ® e — 4e% @, w). (3.4)

The structure of this operator was already motivated in §1.3.1. The specific choices for the gauge
modification E,, and the modified symmetric gradient S; will be explained in §3.1.1 below. The
choice g, + xho of background metric ensures that, for h = g — go which decay towards ZT (together
with their derivatives along 0-vector fields), the gauge condition is always satisfied to leading order
at ZT. The decision to use the modified symmetric gradient with respect to gy + xho + h is due
to the fact that then its indicial operator involves the induced boundary metric dz? + h(oy (where
hoy = 7°hg), which is geometrically more natural than just dz* (cf. (3.23) below) and thus ultimately
makes the computation of the indicial roots Lh(o),ﬁ in Lemma 3.9 more transparent.

The main goal of this section, achieved in §3.3, is the global solution of small data initial value
problems for P in the following sense.

Theorem 3.1 (Solution of the gauge-fixed Einstein equations in the cosmological region). Let
a>0,deN, § > 0. Then there exist D € Ny and € > 0 so that the following holds. Let

ho, b1 € R*H® (S, Ry B7(S* "T M),
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and suppose that [|hs || gagp <€, j=0,1. Let B € (0,1). Then there exist
ho € R*H{® (T B* (17 25°T* X)),
h € ROpPHY (Qpy,ros B (S °T* M), (3.5)
0 € R®p" Hy® (Qpo.y; B*(°T* M),

with weighted H-norms less than &y, so that P(ho, h, 0) = 0, and so that h (and thus also xho + fl)
satisfies the initial conditions hls, n = ho, (L—po,h)|s,, r, = M-

The nonlinear stability of the expanding region €2, r, of KdS is a simple consequence. This is
proved in §4, together with sharper asymptotics for the metric in this case.

Remark 3.2 (Domain of definition of hg). Since R < Ry on €, g,, the tensor g, + xho + h is

well-defined on Q,, g,. Note that Q,, r, NZT = Ia—on)Ro c IEO; thus, hg is defined on a larger

set than the set where asymptotic data for h should live or be relevant. In the proof, hg will simply
+

arise via an extension operator from Lemma 2.8 applied to a tensor on 1(1—2,)0) Ry

Remark 3.3 (Origin of initial data). The nonlinear stability result for slowly rotating KdS black
holes proved in [HV18, Fan21] produces a solution of the (gauge-fixed) Einstein vacuum equations
in a neighborhood {r_ —d§_ <r <ry +4d;}, d+ > 0, of the domain of outer communications of the
black hole; here r_ and ry are the radii of the event and cosmological horizon, respectively. In fact,
04 > 0 can be taken to be arbitrarily large (but fixed), with the smallness requirement on the initial
data depending on §,. The set {p = pp, R < Ry} is then contained in = ((r,,ry + d4]), and the
decay assumptions on the initial data correspond exactly to exponential decay of the coefficients of
hin in the frame 0;,0,,0, int =t~ —logR (cf. (2.11)) together with all coordinate derivatives. —
More generally, without assuming that gy, is slowly rotating, if initial data for (1.1) of class R*Hg°
are posed at p = pg, then these data can be evolved in a standard generalized harmonic gauge (i.e.
Y (g; g5) = 0 in the notation of (3.2) below) up to any fixed hypersurface p = p;, provided the data
are sufficiently small (depending on pg, p1) in the R"‘Hév -norm for some fixed N. This holds more
generally for the solution of the corresponding gauge-fixed Einstein equations, without the need to
require the validity of the constraint equations at p = py. This follows easily from energy estimates
with multipliers R~2%e~79,. (or e2e~79,.) for sufficiently large C' > 1, due to the timelike nature
of dr in the cosmological region; we leave the details to the reader. In a similar vein, one can evolve
R>Hg-perturbations of KdS data posed at r = ry, with ry larger than the largest root of pu(r)
in (2.2) up to r = ry for any fixed finite r; > rg, and thus again cover the set {p = py, R < Ro}.

Remark 3.4 (Gauge choices here and in [HV18]). Theorem 3.1 will yield the nonlinear stability of
the expanding region in the gauge

T(g; go) + Egy (9 — g0) — X0 = 0. (3.6)
Near the Cauchy hypersurface X, gr,, this reduces to Y(g; g) = 0. By contrast, the gauge in which
the asymptotically KdS metric g is found in [HV18] is

T(g;gbo) - T(gb;gbo) -0 = Oa (37)
where b = (m,a) denotes the parameters of the final KdS black hole, by := (m,0), and ¢’ €
C(M°; T*M°®). To make the output of [HV18] directly compatible with the input of Theorem 3.1
(and Theorem 4.2 below), one can simply modify the present gauge condition (3.6) so that near

Y0,y —and thus away from p = 0 which is the main focus of the current work—it becomes (3.7).
A concrete such choice is

T(g; xg0 + (1 = X)gbo) — (1 = X)T(gb; gby) — (1 = Xx)8" + Eg4y (g — go) — X0 = 0. (3.8)

The unperturbed KdS case corresponds to hg = h =0 and # = 0, in which case the gauge 1-form
(i.e. the left hand side of (3.8), with = 0) equals 6y := Y (gb; xgb + (1 — X)) — (1 — X) YT (gb; b, )
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(which satisfies 8y = x6p). In the proof of Theorem 3.1 with general initial data, one thus constructs
6 in the form 6y + 6°, with 6° € R*p’ HP° determined by the iteration scheme.

For the remainder of this section, we fix o > 0 and 8 € (0,1).

3.1. Linearized gauge-fixed Einstein operator I: structure and indicial family. Assuming
that g :== gp + xho + h and go := gb + xho are Lorentzian metrics on €, r, NMP°, we can use [GLI1,
§2] to compute the linearization of P(hg,-) at h to be

Ly, i == D2Plj(ho,) = Og — 2A + 2E06,Gy + 2%, + 257 © (Ey:g0 — Egy)

- - (3.9)
+ (Dg07)(Y(g; 90) + Egoh)

. o 1, . .
(Zgu) = Riem(g) epvru Ay §(R1c(g)u,\u/\ + Rlc(g)u,\u;ﬂ)7

(‘g)g;gou)u = (F(g)ﬁu - ]‘—‘(90)21/) (g,Mu’W - Uu/\gw)7
where we raise and lower indices using g; moreover, (Dggf‘)n = (Dy6*)n, for a fixed 1-form 7, maps
a symmetric 2-tensor h to %(5;+sh77)|s:0~ We recall A = 3 and record
D1Y[4(:390) = —04Gg — Egsge- (3.10)
Proposition 3.5 (Structure of Ly, i indicial operator). Let k > 2 and
ho € R*HF(T} ; B*(S*T*X)),  h € R*pPHE(Qy o B*(S? T M)

Suppose that ||ho|| pa yis+z < 0o and ||hHRa o priat? < do for some small &g > 0 (independently of k).

ReH
Set g :== gp + xho + h and go = gb + Xxho-

(1) (Structure.) As differential operators on Q,, r, acting on sections of B*(S?T*M), we can
write

Lyo i = Loo + Loy,ne + Ly s

. (3.11)
Loo € Diffy ,,,  Lioyn, € R*HE (T} )Diff5y,, Ly, 5 € R*pPHE2(Qp, r,)DIff]
where Loy n, and Lho,ﬁ satisfy the tame estimates
||L(O),ho HROLH[§72Diﬂ%,b < Cy HhO”RQH:+d3 , (3 12)

HLhOJLHRapBHI’j—QDiﬁg,b < Ck(HhO”RaH:*'ds + ||h||Rf’pffH§+d4)

in the notation of Lemma 2.9 and equation (2.19).
(2) (Indicial operator.) Write

g(o) = 9(0) (.T, d.’IJ) = dil'2 + h(o), h(O) = ’7’2h0 = ho(Tawi,Ta,L.j) dJIl d(,Cj, (313)
for the (rescaled) B*(772S?T*X) part of g|1}+a in the splitting (2.10). Then the indicial
0
operator of Ly, i, is given by

—2p0, +5 0 (P9, —2) g0,
Iy, (p8)) = (pD,)? — 3pD, +2- 0 —2p0, + 6 0 : (3.14a)
—9(0) 0 90) g0,

in the sense that we can write

Lo i = Loy (p0p) = Ro + Rho,fw (3.14b)
Ro € pDiffy, R, ; € R*p” H}*Diff},
and so that

||Rho,ﬁ||RQp5H§72DiHE S Ck(||h0||RaH:+d3 + ||h||Rap5H§+d4)~ (314C)
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Proof. We work with the (dual) frames

d da? ;
€y = ia € = ° ) 60 = 7_67'7 e = Tazi (315)
T T

of 9T*M and °T M, respectively. We use Greek letters for spacetime indices 0,1,2,3 and Latin
letters for spatial indices 1,2, 3. The metric coefficients are

uv = g(e#a eu) = (gb),uu + X(hO);w + iL,uV = (90);”/ + E,uua

where the coeficients of hg and h are real-valued functions of class R H}! (IEO) and R*pPHE(Qpo Ry,
respectively, and (ho),, = 0 if at least one of p1, v equals 0. In the splitting (2.10), this means

9= (gas + ho) + (go — gas) + h € (—1,0,da? + h(p)) + p*C> + R*p  HE.

The components g"¥ = g~1(e#, e”) of the inverse metric (which is well-defined when hy, h are small
in L°°) are given by Cramer’s rule; and we have g~! = gal — galhgfl, which implies that

(7" = (90 )" € R*pPH{ (o R0 (3.16)

with norm bounded by Ck||7~“b||RapBHk+d4 by Lemma 2.9. Similarly, the norm of ggl —gp =
b

—Xgp "hogy ' € R*HE(Z} ) is bounded by CthO”RaH{;“S' In the bundle splitting (2.10), we
therefore have
3 0 3 o)
Gy=| 0 I 0 mod p*C* + R*H} (I} ) + R*pPHE Q. 1,) (3.17)
390) 0 I = 390 tryq
as an endomorphism of B*(S2°T*M).
e Structure of L, 7. We note that [eo, eo] = 0 = [e;, ¢;] and [eo, e;] = e; = —[e;, e9]. Moreover,

e0(ho)uw = €0(gas)w = 0; by Lemma 2.3, we thus have eo(gp),m € p°C* and epg, = €0(gb), mod
R>pP H]’; ~1. We can now compute the connection coefficients

F(Q)A/w = Q(Vguew ex)
= %(el‘gl’)‘ + CvGur — ExGuv — g(el“ [61/’ 6)\]) - g(el/’ [e#a 6)\]) + g(ek, [e#a 61,])).
Recall that eg, e; € Vo(M) and thus eq, e; € VO,b(M) C Vb(M). Therefore,

—

(9)e00 = (€0 — 1)goe — 3€egoo,

(9)eio = %(eigoe + €eogie — €090i) — it

(9)e0j = %(eogje + €jg0¢ — €egoj)s
1
2

9)oij = %(eigoj + €j90i — €0gij) + Gij L'(9)eij = 5(€igje + €jgie — €09ij);

I'(g)oo0 = %60900,
I'(9)oi0 = %eiQOOa
(

—
(=}

(3.18)

—

I'(9)o0; = %ejgoo + 9ojs
I

and we have

F(g),\;w - F(go))\;w € RQPBH{jil(QPO,RO)v
F(g)/\pu - F(gb))\uu € RaHllj_l(Igo) + RapﬁH]];_l(on,Ro)'

In particular, I'(g)x,, € pC™ + R“H{f*l + R“pBH{;*1 for all p,v, A. In view of (3.16), we also
obtain

I'(g)r, —T(g0)i, € RO°HE™Y,  T(g)k, —T(gv)f, € R*Hy ™' + R*pPHI,

and T'(g)r, € p°C> + ROHF™' + R*pPH[~!. This implies the same memberships but with k — 2
in place of k — 1 for the components of Riem(g) — Riem(go) (here Riem(g)* . = €, — e,,F;\m +
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Fﬁpfﬁn - I‘f,‘pl"ﬁﬁ), Riem(g) — Riem(gp), and Riem(g) itself. By expressing O, d4, Gy, 5;, R, 490

in the frame e*, and noting that for 1 := Y(g; go) + Egoit € RO‘pBHé*l(QpO,RO) we have
((Dgg-*)n)ul/: h 7%(hﬂﬁ;l/ +h" = h;wm)nm
we thus obtain (3.11). The tame bounds (3.12) follow easily from Lemma 2.9.
e Indicial family. Since e; € TVb(M), we only need to keep track of the eg-derivatives (including

those of order 0) acting on the argument of Ly, i» whereas all e;-derivatives can be dropped. More-

over, all contributions to L, ; arising from h are (a fortiori) of class R*p” HF7?Diff} and thus do
not contribute to the indicial operator either; thus, we only need to compute the indicial operator
of Ly, o, which amounts to working with g = go; the terms involving &4, and Dggf" in (3.9) thus
vanish. Now, I'(¢) ., = 0 mod p*C™ + Ro‘pﬁH]f_1 for all A, u, v except for

I'(9)ei0 = —9ie, I'(9)oij = 9ij,

and therefore also F(g)f‘w = 0 except for

F(g)fo = _557 F(g)?j = —Gij- (3.19)

(Carefully note that I'(g)§; = 0. The connection coefficients in the frame e, are not symmetric.)
This gives Ryux = g(ex, ([Ve,, Ver] = Vie, ea])en) = 0 mod p*C> + RpP HI™? except for Romoe =
—9me, Riemne = GknGme — 9regmn, and those coefficients obtained from these via the symmetries
Rijwx = —Ruwur = —Ripxw. Therefore, Ric(g)oo = —3, Ric(g)me = gme, Ric(g)oe = 0; that is,
Ric(g) = 3g. From this, one easily computes that, in the bundle splitting (2.10),

31 0 trg .,
Zy=| 0 ar 0 . (3.20)
9(0) 0 41— 9(0) trg(o)
(Cf. [Hin21, Lemma 2.4].)

Next, we compute the indicial operator of O,. If u is a section of p*(S?°T*M), then modulo
operators acting on u which do not contribute to the indicial operator, we have Ugu = 00 —
g uyppe. Using (3.19) and wp,.x = ey, — I upw — I 1y, we then compute

U0:0 = €oUoo, Ugo;k = 2uok,
Upj;0 = €U, Uoj:k = Ujk + G500,
Ui5;0 = €oUij, Uijsk = U0j9ik T Wi0Gjks
and then
U00;00 = €0€0U00, U0k = 2U0€;k + gkeUo0;0,
05,00 = €0€oU0;, U0j;ke = Uej;k + U00;k9j¢ + W05;09ke,
U;5;00 = €0€oUi5, Wij:ke = GieWoj;k + gjetiok + JreWij:o-

In the splittings (2.9) and (2.10), this gives

—6 0 —2trg,, B _
Oy = epeg — 3ep + 0 —6 0 , 6y = (600 3 600_ 4 tgg(0)> ) (3.21)
—2g(0) 0 —2

The modification terms E,, and E in (3.2) and (3.4) are given by

go
-2 0
1 0 —2trg(0) Fo_ B
( 0 ., E=[0 —2]. (3.22)

EQO
0 0 0 0
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Similarly, if w is a 1-form, we compute the covariant derivatives wy,, = e,w, —I'},w, to be wo, =
eowo, Wo;j = Wj, Wi;0 = €oWi, Wi;j = gijwo, and therefore

€o 0 B €y — 2 0
s;=1 0 3F(eo+1)], oy = 0  3(e0—3)]. (3.23)

9(0) 0 9(0) 0
With the indicial operator of Ly, ; being equal to that of Oy — 2A + 2E59Gg + 2%, — 25; oE, we
thus obtain (3.14b). O

As a by-product of the computations in the above proof, we record:

Lemma 3.6 (Mapping properties of P). For ho,h,0 as in (3.5), with |lho a2 < g and
b

ez
||i~z||RapﬂHd4+2 < 0o for some small 69 > 0, we have
b

P(ho, h,0) € R*pPHE®(Qy4 g3 B (ST M)).
Moreover, for all k € Ng, we have the tame estimate

1P o, B )l < Cr(lol g + 1ll i i + 161 e o)

3.1.1. Indicial roots of the constraint propagation and gauge potential wave operators. Before con-
tinuing the study of Ly, i we make the following observations regarding the linearization Lgg of
g — 2(Ric(g) — Ag — Sz(T(g;go) + E4,(9 — g0)) around g = go = gas. (This is the linear operator
one would need to invert when using a Newton type iteration to study the stability of de Sitter
space.) These observations are only made to motivate the choices of Ey,, E in (3.2) and (3.4).
To wit, if Lqgh = 0, then by the linearized second Bianchi identity, we have 259G95;77 = 0 where
n = D1],Y(h; go) + Eg4 . Refining the splitting (2.10) using

S*T*X = Ry o) ® ker try, , (3.24)
we can use (3.17) and (3.21)—(3.23) to compute the indicial family of 259G95; as
10 2 0 A 0 -2 0
A-3 0 -3 0|0 1 0 O 0 2(A+1) I
0 Ax—-4 0 0/|3 0 —3 O 1 0 0 0
00 0 1 0 0 0 0 (3.25)

B <()\2)(>\3) 0 )
- 0 A—3)A—4) )

Its indicial roots are thus A = 2, 3,4 and in particular all positive. Therefore, for any indicial solution
of I(Las, \)h = 0 with Re A < 0 (or more generally Re \ < 2), i.e. Lag(7*h) = O(7**1), the gauge
1-form 7 defined above necessarily vanishes modulo O(7**1). Therefore, h is an indicial solution also
for the linearization of the ungauged operator Ric(g) — Ag around g = gqs, and in particular satisfies
an indicial operator version of the linearized constraints. (Moreover, it satisfies the linearized gauge
condition on the indicial operator level.) Thus, the particular choice of E in (3.4) leads to a damping
of violations of the constraints, and in this sense acts as constraint damping.

Remark 3.7 (Origin of the choice of E) The choice (3.4) corresponds exactly to the damping terms
M,,, in [Rin08, (51)—(53)]. Another choice is the one made in [HV18, Appendix C.3-C.4], which

amounts to Fw = —2e° @, w + w(ep)go (which now depends on gg), the indicial operator of which is
-1 0
0 -1
-1 0
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The indicial roots of 259G95; for this choice would be 1,4,6. — There is of course an open set
of choices with the same damping effect, and for all such choices our arguments below go through
(except for possibly having to reduce 8 > 0 if an indicial root A in the right half plane gets close to
{Re X =0}).

Next, we consider the linearization —(6,G, — Ey,) of the gauge 1-form g — Y(g; go) + Eq4, (9 — 90)
around g = go = gas (cf. (3.10)), and specifically ask about the indicial solutions which are pure
gauge. By this we mean indicial solutions of the form I (5;, A)w where w is an indicial solution of

the gauge potential wave operator 2(6,G4 — Eg,)d;—whose indicial family, using (3.22), is

10 2 0 A 0
A—3 0 -3 0 01 0 0] (10 -6 0 0 %()\—1—1)
0 A—4 0 O % 0 —% 0 00 0 O 1 0
00 0 1 0 0 (3.26)
((A=2)(A=3) 0
a 0 A=A+ 1) /)"
The indicial roots are thus —1, 2, 3,4, and the indicial root —1 corresponds, on exact de Sitter space,
to the fact that d,: = 7~ 'e; is a Killing vector field. (More generally &7 (7~ 'e;) = o(7~") for general

g of the form studied in Proposition 3.5, as follows from (3.23).)

Remark 3.8 (Origin of the choice of E, ). We found the modification Eg, of the (generalized)
harmonic gauge by trial and error. The gauge modification used in [Rin08, (50)] corresponds to

Rinog] _ (0 0 =3 0
ER 1_<0 - o)’ (3.27)

This leads to the gauge potential wave operator having an indicial root at 0 (see Remark 3.10 for
the consequence of this for the gauge-fixed linearized Einstein equation); our choice avoids this. If
one took E4 = 0, then there would, for example, be an indicial root at (3 — v/33) € (=2,-1),
corresponding to an exponentially growing pure gauge solution which would need to be removed
from the asymptotics of the linearized metric perturbation by a gauge modification, as done in static
patches in [HV18, Appendix C], as discussed in Remark 1.8.

3.1.2. Indicial family of the linearized gauge-fized Finstein operator. We now compute the indicial
roots of the linearized gauge-fixed Einstein operator (3.9).

Lemma 3.9 (Indicial roots of L, 7). Let h, h be as in Proposition 3.5, define 900> hoy by (3.13),
and write I, (A) = I(Lho,ﬁv A). Then the indicial roots of Ly, 5 are0,2,3,4. The space of indicial

g(0)
solutions corresponding to the root 0 is ker I, (0) = 772 ker trg,, (as a subbundle of B*(S20T* M)

(0)

over I;FO); and the root 0 is simple in that Iy, (A)~! has a simple pole at A = 0.

Proof. We split
SPT*X = Rg(p) @ ker trg, (3.28)

(so T7282T*X = R7 2g(o) ® 7~ *kertry, C B*(S*°T*M)). From (3.14a), we then have
2045 0 3(A—2) 0

0 —2\+6 0 0
Igoy(A) = A =3XA+2- . 0 3 0 (3.29)
0 0 0 0

The solutions of det I, (A\) = 0 are A = 0,2,3,4. Moreover, ker I, (0) is spanned by kertr, .
The final statement is a consequence of the fact that the determinant of the 4 x 4 matrix given by

the right hand side of (3.29) has a simple zero at A = 0. O
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Remark 3.10 (Comparison with Ringstrom’s operator). Using the gauge modification (3.27) from

[Rin08], one finds that I, ()) is diagonal and given by diag((A — 2)(A — 3), (A = 2)(A = 3), \(A —
3), A(A —3)). Thus, the space of indicial solutions at A = 0 now consists of all tangential-tangential

tensors.

3.2. Linearized gauge-fixed Einstein operator II: estimates for solutions. The control of
solutions of initial value problems for L, ; lies at the heart of our stability proof. We proceed in
two steps.

(1) First, we obtain an estimate on a space allowing for growth at Z* but with arbitrary
regularity (Proposition 3.11).
(2) We then use the information about the indicial operator of L, 7 from Lemma 3.9 to improve
decay while giving up regularity (Proposition 3.13).
For definiteness, we fix ¥ C V(S?) to be the set ¥ = {Vi, Va, V3} where V, is the rotation vector

field around the a-th coordinate axis in R O S2. Throughout this section, we assume that a > 0,
B€(0,1), and

[ho < do, ) < do. (3.30)

||R0H§d3+4(zgo;[3*(7—2s2:r*x)) Hh”R%ﬁHﬁ““(Qm,RO;ﬁ*(S? 0T M

and 69 > 0 is small. Under these assumptions, we have Hg4— and thus C%-bounds on the coefficients
of L, j by (3.12).

3.2.1. High regularity estimate on growing spaces. Following the strategy outlined in §1.2, we prove:

Proposition 3.11 (Tame bounds on growing spaces). There exists N > 0 so that the following
holds. Let

vo,v1 € RYH® (2,0, mo; B*(S? 0T M), fe R NHX(Qy r; B*(S?°T*M)),
and define the norm
1(f; 00, v)llpr.es = 1 Fll Rapo g + V0]l o i1 + [[01]l R -
Then the initial value problem
Ly, iv= /s (v,ﬁ_papv)bpoﬁo = (vg, v1), (3.31)

has a unique solution v € R®p~N HE(Qp, s B*(S? °T* M)) which, moreover, for all k € Ny satisfies
the tame estimate

ol s sy < Cr(I1(Fv0,00) v
(3.32)

o (1Roll g g s + Nl g gocssia 2 1(F, v, 1) | o )

Proof. We first prove an energy estimate on the level of H' (or more precisely weighted H&b).
Higher regularity follows by commuting b-vector fields through the equation (3.31) and using an
H'-level energy estimate for a system of wave equations (each of which involves L ho,,:L). To facilitate
this second step, we immediately phrase the basic energy estimate for such systems.

e Step 1. Basic energy estimate. Let K € N, and suppose that A;y;, 1 < I,J < K, is a first
order differential operator acting on sections of B*(S2°T*M) over Qp, R, Which is of the form
Ary = Ao1s + Aoy,r5 + Ary where

Aors €Diffy, A5 € R°Co(Z} )Diffg,,, Ay € R*pPCo(Qpy,r, )DIfff -
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Assume moreover that A = (Ary)1<r,s<k has an lower triangular structure at Z* in that'”
I1<J = AOJJ € pDiﬁ‘(l),b, A(O),I.] =0.
For the system

L= (6rsLy,, j + Ars)i<ri<k, (3.33)
we then consider the initial value problem
Lv = f, (U’E—f’apv)‘zpoﬂo = (vp, v1), (3.34)

where now f and vg,v; are K-tuples of elements of R*p~N H2° and R*H°, respectively. We claim
that there exists a constant N which is independent of hy, h, K, Ary so that

[0l o p-nm < ClI(S, 00, 01) || po.e - (3.35)
(The constant C' is allowed to depend on K, Ary.)

(1.1) Energy estimate for the scalar wave equation. Note that d—p” is timelike with respect to
g = gb + xho + h on Q0. Ry; this follows from the corresponding property for g, in (2.16) since,
by Sobolev embedding, ho,h are small in L™ as sections of B*(S2OT*M) (which implies that
(xho —i—iL)(d—pp, g—g) is small in L>°). This timelike nature implies that a weight p"¥ can be used to give
a positive bulk term in an energy estimate. In order to ensure that the value of N required to get
this positivity does not depend on the terms Ag ;; and Apjof L (which are lower order not just in
the differential order, but importantly also in the sense of decay at p = 0), we employ an additional
weight el P*7/28  For any fixed value of f, this additional weight is smooth and bounded away from
0 and oo, but choosing f > 1 allows us to give less weight to energy densities close to p = 0 than
near p = pp, and thus gain some additional positivity for the bulk term away from ZT (see (3.36)
below); moreover, this weight allows us to absorb lower order terms (in the sense of decay) to wave
operators (see e.g. the discussion of (3.39) below). Let thus

Vo = 7R72°‘p5'p, Vi=w?Vy, w=uwp):= erpw/pr,
acting component-wise both in the index I and in the trivialization of p*(S*°T*M) induced by
d =95 el =dr (j=1,23).

We first prove an estimate for the scalar wave operator [g; so consider Oyv = f, with initial
data (vo,v1) for v. The stress-energy-momentum tensor ' = T'[v] of v is T, = (e,v)(e,v) —
%gwg“(e,ﬂv) (exv) where we recall e¢g = 70;, €; = 70,:. The J-current associated with v and V is

Mg=1,), divg(VJ)=-(O0)\Vo+ VK, MK=T.Lyg,
with ‘- denoting tensor contraction (using g). For p; € (0, po), define the domain
QE(I),RO = QP(MRO N {p > p1}7
with boundary hypersurfaces ¥, r, = {p = po} and 2! = {p=p1} U{(2 - R)p=(2— Ro)po}-
Then

/2”1 (), 0) da+/ VK dg

P11
ro>Ro onvRo

).

where v denotes the future unit normal at the respective boundary hypersurface. Since R2*V} is
future timelike uniformly down to R = 0, the integral over X, gr, is bounded in absolute value by

(V) g,v) do + / (Og4v)Vudg

p1
,0:Ro on,RO

17In the actual setting arising in Step 2 below, the indexing is by b-derivatives applied to v solving (3.31). The
lower triangular structure will arise from the inclusion of Vg 1, < V4, with the treatment of elements of V4, which are
in the range of this inclusion (i.e. pd,) different from those which are not (ROg, spherical derivatives). Cf. also the
discussion of higher regularity in §1.2.
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lvol|%a it [v1]/%a 2. The integral over ¥ o is non-negative, and will be dropped in the estimate
below. Now,
2
MK =@V =2 VWK 20T (Vw, V),
where we further compute
dp\#
T(Veo, Vo) = B2/ ()T (). 00,
Since d—pp and —p0d, are are uniformly (future) timelike in 2, gr,, there exists a constant co > 0 so that
T((d—pp)u7—p6p) > ¢ Zi:o(euv)2~ Using the simple upper bound |Y) K| < CoR™2* Zi:o(eu“)2v
we thus obtain (upon taking p; — 0) the energy estimate
3

/ R™2*(copw’ — Cow)w Z(euv)Q dg
)

p0:Ro u=0
< ClenlBon gy + ler o) + [ R By0llp0,0ldg
Q0. Ro
(The choice w = p» where N > % would ensure that the term in parentheses on the left is bounded
from below by Cow, and thus one immediately gets an H' type estimate.) We compute
pw' = (N + F p*P)w. (3.36)

We control v itself by integrating (i.e. via a version of the Hardy inequality which is uniform in

F); to wit, for W = w?W, where Wy = R™2%pd,, we have
div,W = w? div, Wy + 2wg(Vw, Wy)
= w? divyWo + 2wpw’ (p) R™2* = w? (div,Wo + 2(N + F p*)R72%).

In the identity

J

we then note that (W, v) is bounded from above and below by a positive multiple of R~ and
it is positive on Zg(lh Ry)» While div, W > (3N +F p*P)R~2*w? for sufficiently large N (independently
of F); this uses that |div,Wo| < R72*. Since div, (v2W) = v? div,W +20W v, this gives (for a larger
constant Cp)

(W, v) do + /

div, (v*W)dg = / (v*W,v) do,
Q

P

P1 P1
ro-Ro rosRo po,Ro

2(xp2N (

3
/ R™2« ((N + F p*?)w?v? + (copw’ — Cow)w Z |euvz> dg
Qp0.Ro n=0 (3.37)
< Cov (ool g + loalaoss) + [ B2 O0llpdy0ldo.
Qp0,Ro
We leave this estimate as it is, but point out that choosing N large enough and applying Cauchy—
Schwartz to the final term, one would obtain an estimate of the form |lv|

Rep=NH; 1, (2pg,Ro) <
C||ng||RaprL2(Q,,0,RO)~
(1.2) The case that Ag 1y € pDiff(l)fb, Ay,17 =0 for all I,J. Write
Ly, 7 = Uy ®Idgio +Q, Q=Qo+ Q)+ Q,
Qo € Diffyy,, Qo) € R*C°(Z# )Diff},,,  Q € R*p°CO(Qyy,r,)Diffg 1,

with 10 being the rank of B*(S?°T*M); here Qo is independent of ho, h, while Qo) and Q have
small coefficients in view of (3.30). Applying (3.37) to a 10-component vector v, the replace-
ment of [Jyv on the right by L, ; creates error terms: the term arising from o is bounded by
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Cq, proyRD R™2%0%(v? + Z#:O(euvf) dg, while the terms arising from Q) and Q are bounded

by the same expression (in fact with a small constant in view of (3.30)). We put these terms on

the left hand side and estimate fQ - R*2“<JLJ2|Lh0 ;,v||leov| dg using Cauchy—Schwartz; this way we
PO 0 ’

obtain the estimate (3.37) for Ly, 5 in place of ;, with a new constant Cy which can be taken to
be independent of hg, k. Using (3.36), we have

copw’ — Cow = (Ncg — Co + F p*?)w,

so fixing N with, say,
Ncy—Co > 1,

we obtain, with |0=1v|? .= v? + Zi:o(e;ﬂ))za

/ R72aw2(1_’_Fp2B)|a§1v|2dg
onyRo (338)

< OB~ WLy, vllZe + Cnor (ol ke + lo1llRe z2)-

The estimate (3.37) holds also for £ = O, ® Idgiox (with 10K being the rank of the direct
sum of K copies of B*(S29T*M)). Under the present assumptions on the A;;, we can write the
operator (3.33) in the form

L =0, ® Idgiox +Q @ Idgx +A,
A= (A h<rg<x € pDiffgy, + R*pPCO (2,4 R, )Diffg -

Now, the estimate (3.38) holds, with the same constants, also for the operator £ when A = 0. The
contribution of A can be estimated by

C R “wAv|2s < Ca / R20528,2|9<1y 2 dg. (3.39)
Qg Ro
For sufficiently large F, this can be absorbed into the left hand side of (3.38).
(1.3) The general lower triangular case. Writing v = (v!,...,v%), the estimate (3.38) can be

applied to each v! separately. The equation for v! reads Ly, ;le = fI- 25{:1 Agyv”’. Splitting the
sum into ), _; Ars + > ;5 A1y, we thus get

/ R—QaWQ(l + Fp26)|831v1|2 dg
Qpg.Rg

< Ck (||R—%f’||%2 +Cay / R72w?9= 1072 dg
Q

J<I r0,Ro

+CAZ/Q

R—Qap2ﬂw2‘8gl,u.]|2 dg) .
J>I ro-Ro
Calling this estimate (*r), we then consider the sum of estimates Zﬁil €l (1) with € > 0 to be de-
termined. The left hand side of the resulting estimate controls a weighted norm of Zﬁl ef|lostol|?,
while the second term on the right hand side is bounded by CrC4 Z?:z 25;11 el|osto’ 2 <

KCxCae Y 5_, €7|0="7|%; this can be absorbed into the left hand side when KCrxCue < 3.
Having thus fixed €, we can then argue as in Step (1.2) in order to absorb also the last term on the
right (arising from the sums over J > I) into the left hand side upon choosing F sufficiently large.

This completes the proof of the estimate (3.35).
e Step 2. Higher regqularity. Trivializing B*(S? °T* M) using the frame e*, we have

Lho,ﬁ = Z gj"/(TaT)j(Tax)wa Ciy = Lo jy + E(O);jv + gj’w
J+vI<2
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logr €CF(Qo,re)s L0).5y € ROE(Z4,), sy € ROPPH® Qo r,),  (3:40)

where the coefficients are 10 x 10 matrices, with £(g) ;, and lﬁj,y satisfying tame estimates in terms

Vil
of hg, h; this is the content of (3.12). It is more transparent to pass to the coordinates R = |z,
p= ‘;—l, and w = ﬁ We thus write

Liyi= 3. linip, Rw)(pROR) (07 (p0,)",
JHly|+i<L2

where 5
gjvi = fjryi(p, R,UJ) = f(),j,yi(p, R,w) + g(O),j'yi(va) + fjw'(/L R,w) (341)
analogously to (3.40). We study the initial value problem (3.31).
(2.1) Warm-up: gaining 1 b-derivative. Step 1 gives ||/U||Rap7NHol)b < C||(f,vo,v1)|| po.e.-n. We
claim that for all £ € N,

10l oy gt = N0l rg + (700l gy s + 700 s
. - (3.42)
< ool g 2205 1Bl g o gss2as ) (1 005 00) Lk 10 o )
which gives
ol < O ol szt [l g gzszas 1 00, 00) [ . (3.43)

We shall prove this for & = 1 to illustrate the structural properties of (0,b)-differential operators
and their interaction with b-regularity. (We do not use the estimate (3.42) later on, and thus leave
the discussion of k > 2 to the interested reader. Only the tame estimate, proved in Step 2.2 below,
will be used.)

To wit, we consider the equations satisfied by b-derivatives of v. The derivatives along pd, and
ROR, Vo (a = 1,2,3) play different roles (cf. Remark 1.7, with 70, and 0, playing the roles of pd,
and ROg,V,). Thus,

Ly 1 (POpv) = pOpf + [Ly, 1, pO,]v

=p0pf = Y (p0plii) (pRORY (p7)7 (pDy)'v
JHIyI+i<2 (3.44a)

— > yilG+ WD (eRORY (p7) (pd,)' v,

JHly+i<2

Ly #(ROr0) = ROrf — > (ROrli)(pROR)Y (07 (pD,)"v, (3.44b)

JHIvl+i<2

Lho,ﬁ(vav) =Vof - Z (Vaéj'yi)(PRaR)j(qu/)v(f’ap)iv
JHlv+i<2

— > yilpROR)Y Ve, (07))(p,) .

JH|v|+i<2

(3.44c¢)

Those terms on the right hand sides in which j+|y|+4 < 1 can be estimated in the space R~%p~N L?

by > |€j'7i||cll)HU”R_(’p_NHé;g;b' By Sobolev embedding (Lemma 2.9) and using (3.12) (with

the values k — 2 = 1+ ds, resp. k —2 = 1 + dy), this is bounded by C(1 + |hol| o gya+245 +
b

1l g o200l g

Consider thus the terms with j + |y| + ¢ = 2. In the first sum of (3.44a), note that pd,
annihilates the leading order terms of £;,; at p = 0, so pdylj; € pC® + RpPHE®, with the
R2pPCP-norm of the non-smooth contribution pd,l;.; (cf. (3.41)) bounded by [1€jxill Raprcy <

C||gj7i||RapﬁH1+d4 < C'([lholl ga gy+24s + HiL||RapBH3+2d4). When ¢ = 1 or 2, we can thus regard
b b b
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(pOpljni) (PROR) (p7 )Y (pD,)~1 as a contribution to Ajq (i.e. this is applied to pd,v) in the nota-
tion of (3.33) (where K =1+ 1+ 3). When ¢ = 0 on the other hand, and j > 1, say, then the term
(pOpljni) (pPROR)I—(p?¥) 0 pROR gives rise to a contribution p(pd,l;:)(pROR) ~  (p¥)7 to A1z (ie.
this is applied to ROgv), and more precisely to Ay in view of the vanishing factor of p; when j = 0
and || = 2, we instead get an analogous contribution to A, (in fact, to A1,) for a = 3,4, 5.

Turning to the second sum of (3.44a), note that now at least one of j, |y| is nonzero. Say j > 1
(the case |y| > 1 being completely analogous); then we can write

(PROR) (p¥)(pD,)" = p(pRIR)’ ™' (p¥) (p8,)" © RO, (3.45)
and thus regard pl;;(j + 7)) (pROR) ™1 (p7)7(pd,)" as a further contribution to Ajo (i.e. this acts

on ROgrv), more precisely to Ajo—note again the presence of the factor p here.

Turning to (3.44b), we can regard those terms for which ¢ > 1 as contributions to As; (i.e. acting
on pd,v) by writing them as (ROrL;~:)(pROR) (p7)? (p0,)" "t 0 pd,. (The coefficient ROgl;; is of
class C*®° + ROH® + R®pPHE; it does not need to vanish at p = 0, which is why we allowed for
such lower-triangular terms in Step 1.) When ¢ = 0 and thus one of j,|vy| is nonzero, say j > 1,
we again write (3.45) to obtain a contribution to Ass (with coefficient vanishing at p = 0). The
equation (3.44c) is treated completely analogously (using that'® [V, V3] = €apeVe).

Altogether, we thus obtain a 5 x 5 system of the form (3.33)—(3.34), with v and f replaced by
v' = (p0,v, RORv, Viv, Vou, Vav) and [’ = (fr)i<i<s, respectively, where fi, fa, foy2 (a = 1,2,3)
is given by the right hand sides of (3.44a)—(3.44c) without the terms with j + |y| +¢ = 2. The
initial datum U/|200)R0 can be computed in terms of vg, ROrvg, Vavp,v1. For the initial datum
(pOpV')|5,y 5, » We only need to determine (pd,)*v|,=p,; but

<pap>%:£2loo(Lho,av— > fjwz—(pRaR)J‘(m"(pap)iv). (3.46)

JHlvFi<2
i<1

Note that fag = —g_l(%p, %p) = —gl:l(%p, d—pp) mod R*H® (I ) + R*pP HE®(Qy,.r,) is equal to

—gb_l(d—p”, d—p”) > 0 (cf. Definition 2.1) plus a small correction (by (3.30)), and thus bounded away

from 0. Furthermore, the restriction of L, jv = f € Rep~NH} to p = py lies in R*L?*(X,, r,) by
Lemma 2.9(2). The estimate (3.35), with C' depending on the Ay, now gives (3.42) for k = 1.

(2.2) Higher b-regularity with tame estimates. We claim that
HUHR‘*p*NHéj’;b
< Ci (II(£, v, 01) | - (3.47)
+ (Hh0||RQH:+2+2d3 + ||h||RapﬂH:+2+2d4 ) ||'UHRap—NH&b + ||1)“RQP,NH35§;;1).
For the proof, we commute the equation Ly wv= f with
W = (00, ROm, Vi, Vo Va))S, = (mym,0), [C|i=m+n+ o] = k.

On the set K := {¢ € N}: |¢| = k}, we introduce a weak ordering by declaring ¢ = (m,n,0) < (' =
(m/,n’,0") if and only if m > m’. For ( = (m,n,o) with |{| = k, consider then

Ly sV o) =W f =W Ly lo=Wf = Y W lynilpRORY (07) (pD,) 0
j+hl+i<2

181t is not important that the V,, are rotation vector fields here; it suffices that, by virtue of them spanning V(S?)
over C*(S?), we can write [Va, V3] = 3. £, Ve for some f&, € C*°(S?).
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=Wf— Y POt (pRORY (07) (p0,)'
JHlv+i<2

— D> Ll (pRIRY (07) (D) o

JHv|+i<2

(3.48)

(2.2.1) Lower order terms I. On the right hand side of (3.48), consider first the terms with
i+ |y| +Jj < 1. We shall estimate these in R*p~NL?(Q,, r,). By Lemma 2.6, we can write

7%, (0RORY (07 ) (p0p)' 1 = D eI W (pRORY () (p0,)"

314y |+ <1
I¢/|<h—1

for suitable cg}jj"’,z;y,i, € C>°(M). Therefore,

16527 (pRORY (07) (p0p) Tl R 12 < Cllill o 0l oy s

and [|€il[zee < C(1 + |[hol| ga ggas+2 + Hil”RapﬁHd(lJrZ) by Sobolev embedding and (3.12). Turning
b b

to [WC,ZJM] and writing #'¢ = Wy - - - Wy, where W; € {pd,, ROr, V1, V2, V3}, we note that, for any
function ¢,

k
wea=> > (WiOw,, (3.49)

where I = {i1,...,9p} with 1 <41 < ip < -+ < ip < kand J = {j1,...,Jk—p} with 1 < ji <
J2 < o < jr—p < k, and Wy := Wy, Wy, - -- W, . Therefore, schematically writing D} for a p-fold
composition of b-vector fields,

7€, €5l (pROR) (p7 ) (p0p) 0]l pe - 12
k
< O I(DFi)(Dy " (pRORY (p7) (p8,) )l 2

p=1
We split £;,; as in (3.41). The contribution from ¢y j,; is bounded by C||v||RQp,NH33§;1. The
contributions from £ j,; and £;; can be bounded using Lemma 2.9(3) (applied with a = p — 1,
v1 = Dul(0),jvyis tesp. u1 = Dypljy; and b=k —p, up = (pROR)? (p?")?(p0d,)"v) by a constant times
(1 Do) grill aa + 1D Lyill s 10l v e
+ (||Db€(0),jw‘||H§fl+ds + ”DijWHH:*H%)”vHRap*NH(},bu
which in view of (3.12) and (3.30) is bounded by a constant times

0l g przeor + (0]l o prs2e2as + [0l o o prpeaezan ) [Vl Repv g -

(2.2.2) Lower order terms II. We now turn to the terms in the first sum on the right in (3.48)
with i + || + j = 2; we expand [#¢,{;.;] using (3.49). Those terms with p = |I| > 2 and thus
|J| <k —2 can be estimated, using Vo, C W, and writing Dy 1, for a derivative along an element of
Vo,b, by

1(Wi50) W (pROR) (p7) (pDp) 0 e pw 12 < CI(DEjaa) (DY~ Do) | e 2

Lemma 2.9(3) (now with a = p — 2,01 = D2{(q) ji, T€SP. Uy = D2l;.;) allows us to estimate this
further by a constant times

(DL, gmill s+ 1P6 il g el e o g

+ (HDIQDE(O)JW”HQ*“% + “D§£j7i||H§*2+d4)||U||R°‘p*NHéyb



STABILITY OF THE EXPANDING REGION OF KDS 39

S0l ge pn st + (1Poll g griaaas + 10l oo riemszss) [0 Ro v -

(We use here that |[DZ€(g) jyill yas < Cllholl ;ycas+2)+s+2) by (3.12), which is the origin for the
b

I

assumption (3.30); similarly for A.)
(2.2.3) Remaining terms; lower triangular structure. Continuing the study of those terms in the

first sum in (3.48) with ¢ 4 |y| + j = 2, and using the notation introduced for (3.49), it remains to
deal with

(Wl Wi+ Wy - Wi pROR) (67 (pB,)'v
where the hat indicates the omission of a term. By Lemma 2.6, the commutator of W7 - - - VI/ZZ Wi
with (pROR)? (p7)7(pd,)" is schematically of the form D]];72D(2)7b and thus a fortiori of the form

D’g_lDé’b. Therefore, its contribution is bounded by || Dyp¥jyil| e |v|| Up to terms

Rep—N pglik—1.
with these bounds, we can thus freely rearrange all vector fields. Suppose first t(i;;x}cj Wy = p0,; then
Wyljyi € pC= + RYpPHE®, so we can write (W, lj:)(pROR) (p?) (p0,) Wy - - - I/I/ZI - Wy as the
action of
(pOplii) Doy € pDiffg ), + R*p CODIffy )

(which contributes to the appropriate A¢¢ term, ¢’ € K, in (3.33)) on Dfv. On the other hand,
when W, = ROg (and similarly when W, = V1, V5, Vi), we need to distinguish two cases: the first
case is that ¢ = 2, in which case we have the term

—~

(Walini)pOp(pOp Wy - - - Wy - - - Wy),

which contributes (Wyf;;)p0, to A¢er where ¢! = (m+1,n — 1,0) < ¢ (by which we man that
¢ < ¢’ does not hold). (Thus Ace is a strictly lower triangular term, with coefficients that need not
vanish at p = 0.) When i < 1, then among the two factors in (pRAOr)’ (p?)7(pd,)" there is at least
one (namely, one of pRIg and p¥) of the form pDy, and thus we get a term (W,¢;.;) Do pp(Dfv),
which is again a trivial contribution to A = (A¢¢/) due to the factor of p.

Finally, consider the terms in the second sum in (3.48) with ¢ + |y| + 7 = 2. Upon expand-
ing the commutator, i.e. applying (3.49) with Wl for ¢ = (pROg)’(p?)"(pd,)" now meaning
(Wi, Wiy - [W;,, £]---]], all terms with [I| = p > 2 are of the schematic form Dg’bD]g_pv, SO a
fortiori Dy, Df v, and can thus be estimated by ngfyi.D(l),bD{iilfl)HRap—NLZ < ||Zjvi||L°°||UHH3;’L§;1~

It thus suffices to analyze the terms
(W, (0ROR)Y (0) (p3,) [Wy -+ W - - Wi (3.50)

When |y| > 1 and W, = V;,V5, Vs, the commutator is a sum of terms which are of the form
(pROR) (p¥ ) (pd,)* where |7/| = ||. We then shift one factor of ¥ to the right and obtain a term
of the form

plini(PRORY (0¥ )" (p0,) (VaWr -+ Wy -+ Wiw), || =y — 15

thus plji(pROR) (py )" (pd,)t is a trivial contribution to the appropriate coefficient Acer. If
Wy = ROg, the commutator in (3.50) vanishes. If W, = pd,, the commutator is equal to (j +
V) (pROR) (p¥)7(pD,)%; for it to be nonzero, we must have j + |y| > 1. Say j > 1; then we
can shift one factor of ROg to the right and remain with (j + |v|)plji(pROR)~(p¥)Y (pd,)" o
(ROgW7y - - I/I//\q -+« Wyv), with the operator on the left again giving a trivial contribution (due to
the factor of p) to the appropriate A¢er (here ' = (m —1,n+1,0))

Altogether, we have shown that there exist Acer = Aocer + Aqoy,cer + flcg/ for (,{’ € K with
Agccr € Diffg,, Aqgyccr € ROCY(ZY )Diffg y, and Acer € R*pPC) (2, v, )Diffg ), with the following
properties:

e for ¢ < (’, we have Ag¢cr € pDiff(l)}b, Awycer = 0;
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e by Sobolev embedding to control Wy¢;; in L™ spaces, and again using (3.12),
1A0).cc'lracopinry , » [ Acc I Raprcgminy, < Ck(||h0HRaH§ds+4 + ||hHRapsH§d4+4)a

0,b —
which are in turn bounded by (3.30);
e set

L= (0ccr Ly, i — Ace)ecer, v = (W 0)cek, (3.51)
then Lv' = f’ where f’ satisfies the bound

1" | R p=~ L2(0p o)

< Ok (Il + (Vo g goszvain + [l o isasaas ) 10l oy,

L
(2.2.4) Initial data for the commuted equation. It remains to control the Cauchy data of v’
in (3.51) at ¥,, r, C {p = po}. Since ROR,V, are tangent to X, r,, we only need to prove a tame
estimate for v, := (p0,)Pv|p=p, in R‘XH{EH_”(meRO), p=0,....,k+ 1. For p = 0,1, we simply
have vg, = vp,. For p > 2, we use the spacetime identity (3.46), written as

1 .
(Pap)QU = o (f — Lov — Ll(papv)), L, := Z Livg(pROR) (p7)?, q=0,1,
JHvI<2—q

to deduce that

p—2
p— 2 —2—a 1 a @ N
v, = Z( a )(<pap>” o) (090 = (09" Lov = (0O L (po) | (352)
We claim that
HUO-,P||RO‘H§+17P(EP()=R0)
< G (IF 00,00l (3:53)

o (1Roll o gv2+2s + 1Bl g o gocssenas IS v, 1) | Do )

We shall only prove this estimate for the term in (3.52) with a = p — 2, and indeed for fogg := 1; we
leave the simple modifications required to treat the full expression (based on further applications of
the tame product estimates of Lemma 2.9) to the reader.

The term in (3.52) involving f is bounded using Lemma 2.9(2) by
109p) 2 Fll e 125, gy < Cl 002

< Ol re o mE 0y mg)-

Rap—NH{TJr?*;D(QpOYRO)

For the estimate of the RaH{fH*p -norm of the term involving L; (the term Ly is treated similarly
and left to the reader), we only consider derivatives along (ROg)*+1~P; derivatives along (ROR)47 7
for ¢+ || < k+1—p can then be handled in the same fashion with purely notational modifications.
We thus need to prove a bound in R*L*(Z,, g,) for (ROr)*17P(pd,)P~2L1(pd,v), which is a sum
of terms of the form

((ROR)T (p0p)? 1) - (ROR)T (pRORY (7)Y (p0,)" o,
where ¢ +¢" =k+1—pand p' +p” <p—2, and j + |y| < 1; schematically, this is thus

/+ ’ //+1
(Df " s g .my ) (DF T V0,p741)-
Since p” +1 < p—1, we can iteratively express vg 41 using the formula (3.52), and proceed in this

fashion until we obtain an expression involving only f, vgo = vo, vo,1 = v1, and the coefficients of
Ly, - We discuss here only the case p” =0 and p’ = p — 2, in which case we can use Lemma 2.9
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(specifically, the estimate (2.23b), which also applies on i = £, g,) and Lemma 2.9(2) (which gives
an estimate |[{j 1] re gy (s,, 7y < Cugﬂl”R“PBH{T“(Q%,RO)) to bound

I+ 72 II+1
(D8 i ]900,5,) (D5 " v0,1)l| Re L2

S (1 + ||€(0)7jw1HRaHs3 + ||£jv1\|RapaH§4)Hvo,1|

RoHE

+(1+ 1€0),571 | g rivts + ||€j71|\3a,,ﬁHg+d4)||vo,1 |Rar2

S 100,0,01) | prc= + (1holl g gri+2+20 + IRl g o griva+200 ) 110, 0, 01) | povon -

here we use (¢ +p —2) + (¢” + 1) = k. In this fashion one proves (3.53).

We can finally apply the estimate (3.35) to the initial value problem for £'v' = f’ to finish the
proof of (3.47) and thus of the Proposition. O

3.2.2. Asymptotics and decay. We continue assuming (3.30), and drop the bundle B*(S?°T*M)
from the notation. We recall the cutoff x from (3.1). Starting from the estimate (3.32) (for large
k) for the solution of an initial value problem for L, #v = [, we now extract stronger information
about the asymptotic behavior of v near p = 0 (assuming appropriate decay for f) using an indicial
operator argument.
It is convenient to straighten out the domain €, r, from Definition 2.4: introduce

o =p, R =(1-2p)R, (3.54)

and set R} := (1 — 2pg) Ry, then
Qpoosis = 10 < po, B < R} = [0, pol,y x [0, Rl x S

The product nature of Q,, r, in these coordinates is closely related to the fact that the vector field
2
C1-2p’
is tangent to the (final spacelike) boundary hypersurface Z:o,Ro ={(1-2p)R = (1 —2po)Ro} of
Qy,,R,- It is in these adapted coordinates that we now discuss the inversion of the indicial operator.

POy = pd, + c(p)pROR,  clp): (3.55)

Lemma 3.12 (Inversion of the indicial operator). Let a € R and p1 € (0, pg), further 1 < mnz <1
withmi,ne # 0, and k € No. Recall the operator Iy, from Proposition 3.5(2), where gy = dmz—l—h(o)
is defined as in (3.13). Suppose v € R*p™ H(Q, r,) vanishes for p > p1 >0, and I, (p'0y)v €
RQPUQHS(QP(J,RO)'

(1) (Improving the weight.) If g <nm2 <0 or 0 <m <ng < 1, then v € R*p"™ HE(Qp, r,) and

(0)

[oll e < O (g vlls g + ool g g vl 2. (3.56)
(2) (Extracting asymptotics.) If ;1 < 0 < g, then there exist vg € R“H{j(IEO;T*Q kertrg, ),
o' € Rp™ H(Qpy ry) S0 that
v(p, R w) = x(p")vo(R',w) +0'(p', R',w), (3.57)
and ||voll g gri + 10| g pnz e is bounded by the right hand side of (3.56).

The proof, given below, relies on a contour shifting argument on the Mellin transform side. Our
convention for the Mellin transform is

[e ) dp/

(M)A, B w) ;:/ 7o Rw) 2

0 p

(p'0p) with Iy

M: p""L?((0,00), x 175'0) — L?({Re A = n}; LZ(IEB)), (3.58)

This intertwines 1,

90 (M). The Plancherel theorem gives an isomorphism



42 PETER HINTZ AND ANDRAS VASY

where on Z};, we use the density p := |d£/ dg|, and on the left the density |dp‘fl\ ® p. The inverse
0
Mellin transform is
(M w)(p, R w) = L[ (A, R',w) dA
77w P y W _2’/TZ n_ioop WA, y W .
For \ € C, let us write H{;f (IE(,)) for the space HE’Q(IIJ%) = RH} (IE(,)) with norm
lolsy = D IR EORY Y Nl
0 JHly|+i<k 0
Then (3.58) generalizes to the isomorphism
M: REp"MH}((0,00),0 x T, ) = L*({Re A = n}; Hg’f(Igé)); (3.59)

the b-Sobolev space on the left is defined via testing with p’'0,/, R'Or, Vo (a =1,2,3).

Proof of Lemma 3.12. Write f := I, (p'0y)v. For clarity, we write I, (A, R',w) for the indicial
family; this is, for fixed R’,w, a linear map on the fiber of p*(S2°T*M) over (R',w) € IT C M.
Since by Lemma 3.9 Iy, (A, R’,w) is invertible when Re A < 1, A # 0, and thus in particular for
Re A =1y, we can then express

1 71+00
v(p, R ,w) = — / P My (AR w) HME)(A R w) dA. (3.60)
n

278 S —ico

Since f vanishes for large p’, its Mellin transform M f(),-) is holomorphic in Re A < 7o with values
in R"H{f(IE&).

We aim to exploit the meromorphicity of Iy, (A, R',w)~!in Re A < 1, with only a simple pole at
A = 0. It is convenient to use the expression (3.29) in the g()-dependent splitting (3.28) of S2T*X.
Now, (3.29) has a (34 1) x (3 + 1) block structure, with a 3 x 3 minor without poles in Re A < 1,
while the (4,4) entry is A™'(A — 3)~". The map S*T*X — Rgg) ® ker trg,,, is given by

S*T*X 5 h (390 trg by 1o = 39(0) g, h).
Therefore, we can write
Iyoy (N R w) ™= AT A=3)"" Ay (R, w) + By, (A, R, w)

where A, = diag(0,0,1 — %g(o) trg(o)) in the splitting (2.10), while the matrix coefficients of By,
are rational functions of A without poles in ReA < 1 whose coefficients are linear combinations
of constants, g(o) (third row), try, (third column), and g try,, ((3,3) entry). Fixing any fixed
positive definite fiber inner product on B*(S%°7T* M), we moreover have'?

”Bg(o)()‘vR,vw)” < Cu m < ReA < 2.
Using Lemma 2.9(3), specifically the estimate (2.23b), we can now estimate

|| (R@R)jﬂj/ﬁ (Bg(o) (>‘7 )(Mf)()‘v ))

e sz,
0
< O+ o g o MDY g1
(L ol o s MDA ez )-

Multiplying this with A' and summing over all j,~, with j + |y| +4 < k, we obtain (using (3.30))
1By HMA O g

19The bound can be sharpened to C(1 + |A|)~2, though this will not be of use in what follows.
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k
< C(IMAA g + 3 Mol g gras MO g )

p=0

In the sum, the estimate (2.24) shows that it suffices to keep the terms with p = 0, k, and thus

1By, s YMA O ggig < UMD g + Mol g s MO, o2 ).

The same estimate applies for Ay, () in place of By, (A, ).

In part (1) then, we shift the contour in the integral (3.60) to 72 + i(—o00,00) and use these
estimates together with (3.59) to conclude. The proof of part (2) is completely analogous, except
now the pole of Ig(o)()\, )1 at A = 0 causes a contribution due to the residue theorem given by

f%Ag(O) (R',w)(M[)(0, R ,w) =: vo(R',w), while the integral over the final contour 7, + i(—00, )
gives rise to @ € R*p'" HE([0,00), I;t{[,]); we then set ' := xw + (1 — x)vo to conclude. O

In order to switch back to the original p, R coordinates in (3.57), we first use Lemma 2.8 to
extend vy to an element of R®H}' (IEO). We then have
v=x(p)vo((1 = 2p)R,w) + 0" = xvo(R,w) + 0,
where?”
1
o:=0 + x(vo((1 = 2p)R,w) — vo(R,w)) =0’ — 2px/ RORuo((1 —2ps)R,w) ds
0

€ RapnzHl{f(meRo) + pRaHl]f_l(I}—go) - Rapn2H§_1(on7Ro);

and we have the tame estimate

||U0HRQH§(I;;O) + ||1~)HRapnzH}’j*1(meR0)
(3.61)
< Ck (”IQ(O)U”RQp’QH{; + ||h0HRaH:+d3 ||Ig(0)vHR‘3‘p"2L2) .

Proposition 3.13 (Tame bounds on decaying spaces). There exists d € N so that the following
holds whenever ||ho]

Re HE || repomad < 1. The unique solution v of the initial value problem

Lhoyﬁv =f € RapBHgo(onyRo%

(U7 £7p8pv)|zpo,RO = (/0071)1) € RaHgo(Eﬂo,Ro) @ RaHgo(Epo,Ro)

can be written as
v = XV + 9,

where vy € R“Hgo(Igo) and © € RCpPHX(Q,, r,) satisfy for all k € Ny a tame estimate

ool ez + 190 gz < Co (10, 01) s
(3.62)

+ (1Roll g gev + 1ll s ) I1F 00, 01) | o ).

Remark 3.14 (Value of d). An inspection of the proof produces a concrete value for d > 2dy + 2.
For example, any number d > 2% + 16 works. Thus, if in Proposition 3.11 one obtained a specific
value for N (by applying more care in the basic energy estimate for [ly), one could specify d also
here. (The value of § can be fixed arbitrarily close to 1, cf. the statement of Theorem 3.1.)

201 one worked from the outset with the coordinates p’', R, the loss of one derivative here would be avoided.
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Proof of Proposition 3.13. Let d’ € Ny (chosen at various places in the argument below to ensure the
positivity of all differentiability orders); and let k € Ny be arbitrary. Given (f,vg,v1) € Dk+d" o
we have v € R*p~NH T (Q,, g,), with a tame estimate (3.32), so

||’UHRap7NH:+dl
< Ci (£, 00, 01) | s (3.63)
o (ol g g s2assa + 1Bl g o g s s2) 1CFs 0, 02) [ s )

In the notation used in Proposition 3.5(2), we now rewrite the equation Ly zv= f as

Igo, (P0p) (xv) = = (L, 1. = La0) (p00)) (XV) + Ly, 1o XU + XS (3.64)

Replacing pd, on the left by p'd, = pd, + pR, R := c(p)Rdr € V(M) (cf. (3.55)), creates a further
error term given by the action on yv of the operator

Loy (POp) = 190, (0'8pr) = Ly, (D)) = Ly(o) (pDp + PR);

this operator is of class pDiffy + pR*H}FDiff; (by inspection of (3.14a)) and can be written and
estimated in the same fashion as (3.14b)—(3.14c). In the estimates below, we continue writing R p”
for weights (for notational simplicity—the weight R'®p’? is a positive smooth multiple), but we

write Ly, = Iy, (p'0p).

By slightly increasing /N, we can ensure that for

-5

we have —N + JB € (—f3,0). For easier bookkeeping, we moreover require J > 1.
e Step 1. Almost boundedness. We shall prove that for all j € Ny, j < J (so with —N + j5 < 0),

we have v € Rap_N+jBH§+d,_2j, with a tame estimate. For j = 0, this is the content of (3.63).
N+(j—1)BH§+d’*2(jfl>.

For the inductive step, we assume that, for some j > 1, we have v € R*p~
We require d’ > 2j. We can then estimate the right hand side of (3.64), with p'0, in place of pd,,
using (3.14b)—(3.14c) by

”Ig(o) (X’U) ||Rap7N+jﬁH§+dl—2j
< ||RO(X'U)||Rap_N+jﬂHll)c+d/,zj + ||Rh0’il(X’U)||Rap_N+jﬁH{j+d/,2j
+ Mgy 0 X]v”RaP—NﬂﬁHL’jM/*ZJ + ||Xf||Rocp7N+jBH{j+dl*2j'

The first term is bounded by C’”'U”Rap_N+7»ﬁ_1Hk:+dl_2(j_1). Using Lemma 2.9, we can estimate the
: b

second term by
1R OO s pgisar—2s S Ci (Il ooy pgisar—a-
+ (||h0HRaH§+d'+2+ds + ||ﬁ||Rap5H§+d’+2+d4)HXUHRap—NmmBL?)

For the third term, we note that [Lh0 i X € pDiffzb + R%pP H§°Diff,23, with the second summand
obeying tame estimates by (3.12). Altogether, we therefore obtain

HIQ(O) (X'U) HRap—NJrjﬁHl’;*d'*?J'
< C5 (51 i -2+ 110l g 5100 g —2-1 (3.65)

o (holl o yrsarsnsy + Wl o g szas [0l e p-vs-is2).
b
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We can now apply Lemma 3.12(1) and deduce that yv € Rap_NHﬁH{jJ“d/_zj, with norm bounded
by the right hand side of (3.65) but with L? replaced by H? (arising from the low regularity term
in (3.56) which we estimate using (3.65) with k = 0, d’ = 2j). Since (1 — x)v € RapN/H{erd —20-1)
for all N/, we conclude that

||U||Rap—N+_7‘/3Hklj+d'72j
< C5 (11| g o grar—ss + [ A (3.66)

+ (||h0|\RaHg+d'+2+ds + ||h||Rang§+d'+2+d4)||U||Rap—N+(j—1>BH§>~
As a special case, for j > 1 we take k = 0 and d’ = 2j + ¢ to get the low regularity estimate

ol p-nsnrmg < C(If gy + (1+ Mol g gzivasra + Il g gzrassa) 1ol o pscsmsoosgs= )
(3.67)

Consider now (3.66) for j = J (which requires taking d’ > 2.J). The high regularity norm (the
second term on the right) will be bounded using the estimate for j = J — 1. The low regularity
norm (the norm on v in the third term on the right) on the other hand can be bounded using (3.67)
with j = J—1, ¢ = 2 in terms of ||'U||Rap—N+(J—1)BH{)l, which again using (3.67) with j =J—2,¢=4
is bounded by |[v[|ga,-~+(s-2)s 46, and so on, until after J such applications of (3.67) we obtain a
bound by ||v] Rep-N 2742 which in turn we bound using (3.63) with d' = 0, k = 2J + 2; in this last

step, we use 2J 4 2d4 + 4 many derivatives on h. Altogether then, we have thus proved
HUHRQP_NH[;H{;M’—N < Cy (||(f7 v0, V1) prtar,ap

o (ol g g s2ss + 10l o g sasas 1CFs 0, 01) [ s )

where d' > 2J is any fixed integer; here Cj is a constant which is allowed to depend on the low
regularity norms ||fol| 5o 2s+a+24s, ||h||Rap6H2J+4+2d4. (In the statement of the Proposition, we shall
b b

thus in particular take d > 2J 4+ 4 + 2d, = 2J + 10.)

e Step 2. Leading order term and decaying remainder. The estimate (3.65) remains valid for j =
J+1, in which case we get an estimate for I, (xv) in a decaying space since —N +(J+1)3 € (0, 8).
We can thus apply Lemma 3.12(2) in the form (3.61) to show that

v = XUy + 7,
where vg € R‘D‘H{?d/d(‘”l)@a; T % kertry, ) and 0 € R“p‘N+(J+1)5H§+d/72(']+1)71, with norms
obeying tame estimates. (Here we require d’ > 2(J 4+ 1) + 1.) Plugging this expression for v

into (3.64), the right hand side lies in Rc‘pﬁH,’;+d/_2(‘]+2)_1 (with tame estimates), where for the
control of the first term we use (2.23c). Applying Lemma 3.12(2) yet again thus shows that o €

RopPHITT2URD72 getting d = 2(J +2) + 2 and d = (2(J +2) +2) + 4 + 2dy = 2J + 16, the
proof is now complete. O

3.3. Solution of the gauge-fixed Einstein equations: proof of Theorem 3.1. We begin by
explaining how Proposition 3.13 fits into a solution scheme for the gauge-fixed Einstein equation.
Recalling (3.3), we thus consider

P(ho,h,0) = 2(Ric(g) — Ag — 3 (T (g3 90) + Eo 9 — 90) ~ X0) ),
g:=gb+xho+h, go:=gb+ xho,

where x, X are as in (3.1), and ho, h, 0 are as in (3.5). Let us write Dal; P(ho,v,0) := 4 P(ho, h+
sv,0), similarly D1 ol 7P (vo,0,0) := 4 P(ho + svo, h+ s0,0) (which is the sum of Dy |, P(v, h,0)
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and Dy|; P(ho, 0,0)), and so on. Then Proposition 3.13 shows that the solution of the initial value
problem

Dol P(ho,v,0) = f (3.68)
with f € R*pPHZ®(Q,,,R,) and initial data in R*H°(Z,, g,) can be written as v = yvy + ¥ where
vy € R“HgO(IEO; B*(T % kertry, ) and v € RpPH(Q,, R, ); such an initial value problem will
arise in a nonlinear iteration scheme. Since we require he RpP Hpe, the metric perturbation v is
not an acceptable correction to k; we thus need to rewrite (3.68) so that the only arguments of the
linearization of P are elements of the same spaces as hy, iL, f. To this end, we note that

%D1|,L0P(vo, h,0) = DyRic(xve) — Axvo — (Dggf)(xvo)('f(g;go) + Eg,(9 — go) — X0)
— 83 (D1lg Y (xv0; 90) + D2lgy T (g3 xv0) + (Dg B-) (x00) (9 = g0) ).
5 D215 P(ho, 5,6) = DyRie(5) ~ A — (Dyb*)(7) (X(g: 90) + By (9 — g0) — 76)
= 3y (D1lg Y (T 90) + By, ),
3 DsloPho, 1, 0) = ~55 (36).
Therefore, (3.68) is equivalent to
f = Di2lj, Pvo,0,0) + 25; (D2lgo Y (g5 xv0) — Ego (xv0) + (DQOE.)(XUO)B) (3.69)
= Dﬁ,ho,OP(Uovﬁvé)’ 0 = —Da|g, Y (g5 xv0) + Egy (xv0) — (Dgo E.)(xv0)h. (3.70)
Note here that for this definition of 9, we have suppé C supp x and thus )29 = §. We make the
following important observation regarding the size of 6.
Lemma 3.15 (Bounds on the gauge modification). Let hg € R*H{* (I} ; B*(S?*T*X)) and h e
ROpPHE (Do 1ys B (S2OT*M)); suppose that ”hO”RaH,jf?'“ < 6o and ||iLHR°‘pﬁHg4+2 < 6o for some
small g > 0. Define g, h(oy by (3.13), and suppose that
vo € RYH® (T ; B* (7% ker trgq))-
Define 0 by (3.70). Then 6 € R*p® HZ*(Qyy 1y; B*(°T*M)), and we have a tame estimate

||9HRQP5H§ <y, (HUOHRQHSH + (Hh0||RaH}l)c+l+d3 + ||h||RapﬁH§+l+d4) ||v0||RaL2) . (3.71)

Proof. We write

6= =D (g:90) T (xv0: Xv0) + D1lgT (xv03 go) + Egy (xv0) — (DgoE)(XUO)iL (3.72)
The first summand is equal to minus
d -
25 1 (90 + x(ho + sv0) + hi go + x(ho + sv0))|

The metrics in both arguments of Y(-;-) agree up to the term h e R”‘pBHgO, and thus the same
holds true for the inverse metrics. Evaluating the Christoffel symbols of the two metrics in the
frame e, as in the proof of Proposition 3.5 and using the expression for T given in (3.2) implies
that —D(g.40)Y (Xvo; Xv0) € R*pPH®, and it satisfies the tame bound (3.71).

We evaluate the second and third summand of (3.72) using the formula (3.10). Write vy =
vy = vo(70,,70,)dz* dz”. The indicial operator of Di|,Y(-;g0) + Ey, can be computed us-
ing (3.17) and (3.21) to be

30 ; 0 2 Ty 10 —2
- <6° N _tr9<0>> 0 I 0 4 ( - tr9<0>> ; (3.73)
0 €y — 4 O 0 I B %g(o) trg(o) 0 O 0

s=0"
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the key point is that this annihilates (0,0,v(g)) since trg, o) = 0. The difference between
Dy|,Y (5 90) + Ey, and its indicial operator is of class (pC> + R®pP H°)Diff}, (with tame esti-
mates for its coefficients), and thus the sum of the second and third summands of (3.72) lies in
R®pP H® indeed.

Finally, the fourth summand of (3.72) is of class R*pPH® as a consequence of h e RYpPHEe.
This proves (3.71). O

Remark 3.16 (Origin of the decay of §). In view of the formula (3.72), the fact that 6 decays (even
though the input yvg in (3.69) does not) has an entirely conceptual explanation. First of all, the
vanishing of the first and fourth terms in (3.72) is automatic since the solution metric and the
background metric (i.e. the first and second argument of T, and the argument of E,,) are changed
in lockstep. The second ingredient is the fact that the indicial operator of D1|, Y+ E,, annihilates vg.
This is also automatic by the following reasoning: the term v arises as an indicial solution of L; ;.
corresponding to the indicial root 0. By virtue of constraint damping, as discussed after (3.25),
it must therefore necessarily satisfy the linearized gauge condition on the indicial operator level,
ie. I(D1]gY + Eg4,,0)vg = 0. (The computation (3.73) merely verifies this through an explicit
computation.)

We can now prove the main result of this section.

Proof of Theorem 3.1. Let d € N be as in Proposition 3.13. For k € Ny, we define the spaces
B* := R*H} (T}, 1 B*(772S°T* X)) @ R*p" HE (Qpy, 105 B (S °T* M)
© RO P HE (Qp s B°(OT* X)),
BF — Ro‘pﬂH{)“ (on,R(ﬁ [3*(5'2 OT*M))
S ROHE (S0, 10 B*(S?°T*M)) @ RHE (29,703 B* (S °T* M)).
For k > d and (hg, h,6) € B® with ||(ho, h, 0)||gsa < d for &, > 0 sufficiently small, set
®(ho, h,0) := (P(ho,h,0), hls L_po, s, ) — (0, ko, ha),
which is a map from a subset of B> to B°°. The task is then to solve
®(ho, h,0) = 0. (3.74)

We accomplish this by applying the main result of [SR89] (see also [SR89, Remark on p. 220]).
The required tame estimates for ® follow from Lemma 3.6 and, for the initial data part of ®, from
Lemma 2.9(2). The required low regularity estimates for the linearization and second derivative of
® are straightforward consequences of the algebra properties of Hg. The right inverse of Dy io®
is constructed using Proposition 3.13 via (3.69)—(3.70) (using Lemma 3.15): this produces, for
f € R*pPH(Qp,Rr,) and vo,v1 € RYHZ(E,0 Rk, ), tensors vy € RYH, © € R*pPH®, and a
1-form @ € R*pP H® so that

rosRo?

Dhoﬁ,eé(vovﬁaa) = (DhO’B,GP(U()?’D?9)’ﬂlpo,Ro7ﬁ_pap6|2p0,Ro) = (f7 1)0,1)1);

and vy, 7,0 satisfy tame estimates. Using the smoothing operators from Lemma 2.10, applied
component-wise to vy, v, in the bundle splitting induced by the frame e,, we can thus apply
the Nash—Moser iteration of [SR89] to solve the desired equation (3.74). O

4. NONLINEAR STABILITY; SMOOTHNESS AT THE CONFORMAL BOUNDARY

We continue working on the domains €, r, from Definition 2.4. In this section, we will work with
the gauge-fixed Einstein operator P = P(hg, h,#) from (3.3) to solve initial value problems for the
Einstein vacuum equations (1.1); the metric solving the Einstein equations will be g = gy + xho + A,
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with the KdS metric g, defined by Lemma 2.3, and with x = x(p) € C°([0, 3p0)) equal to 1 on
[0, 4p0] as in (3.1). We remark that in this section, we use Theorem 3.1 as a black box; our goal
is to get sharper control on the solution g given by this Theorem via careful modifications of the
gauge.

Note that given a solution hg, h, 6 of the initial value problem for P(ho, h, 0) = 0 as in Theorem 3.1,
the fact that 6 lies in R*p? Hpe and in particular does not necessarily have an asymptotic expansion
at ZT means that also h does not necessarily have an asymptotic expansion. When, however,
g = gb + xho + h solves the Einstein vacuum equations Ric(g) — Ag = 0 (in the gauge Y(g; go) +
Eg(9—g0) — X0 = 0), we will begin by demonstrating how to exploit the diffeomorphism invariance
of these equations and pull back g by suitable diffeomorphisms to put it into the same type of gauge
but now with # vanishing to infinite order at p = 0 (see Proposition 4.4 below). In this new gauge
then, we can prove that g is log-smooth at Z+ (Lemma 4.7). We can then eliminate all logarithms
via further pullbacks (Proposition 4.15). For a comparison with the method of proof of [CDLSO05]
in the Riemannian setting, see Remarks 4.9 and 4.16 below.

The initial data of g at the Cauchy hypersurface X, r, of Q,, g, are its first and second funda-
mental form, denoted v and k, respectively. To capture the behavior of «, k uniformly down to the
boundary at infinity K NX,, g, of X, Rr,, we work with the b-cotangent bundle of ¥, r,, which is

dR
ST o ke = R & T*s?.

Lemma 4.1 (Initial data of g,). Denote by v and ky the first and second fundamental form of gy
at Xy, R, respectively. Then

b, kb € COO(EPOVRO; S? bT*EPoyRo)v
with ~p positive definite.

Proof. Recall that g, € C>(M;S2%PT*M) is a Lorentzian signature section over Qpy,R,- Near
Y po,Ro» Where p is bounded away from 0, local frames of O.bT* AT are given by dp, %, and a frame
of T*S2. Since dp = d(77!) is timelike for gy, with 0 > gb_l(cvlp, dp) € C®(X,,.Rr,), the future
unit normal vector to X, g, is an element of C>(3,, ry; “°TM) with negative squared length.

This implies the statement about 4,. The membership of k, now follows, for example, from the
smoothness of the Christoffel symbols in the (smooth) frame (3.15) of “*T'M. O

Proposition 4.15(1), proved in §4.2 (which is self-contained, i.e. does not rely on any other results
proved here), produces a smooth diffeomorphism ¢ of M which preserves Z* pointwise and maps K
to itself so that

bG =g 4.1)
9o =9 gb (4.
is in Fefferman—Graham form (see the explanation after Theorem 1.1) and still satisfies gf ¢ — gas €
P3C™ (Qpy ro; B*(S2OT*M)). We shall then prove:

Theorem 4.2 (Nonlinear stability of the cosmological region). Let Ry > 0 and py € (0,p] in the
notation of Definitions 2.1 and 2.4. Let « > 0 and d = d4 + 2 (or more generally d € N). Then
there exists D € N so that the following holds. For all 5 € (0,1) and 69 > 0, there exists an € > 0
so that if

Y=+, k=ko+k, 4 k€RHX (S RS> TS0y R)s
with |5/ gagp < € and HI~€||RQHE < €, and with (v, k) satisfying the constraint equations, the mazimal
globally hyperbolic development of the initial data 7y, k contains a region isometric to

(on,Rovg)7 g:ngG+ha

where h is as follows. There exist hoyw,iLin € R“HgO(IEO), 1 =2,3,..., so that, in the frame
{eu} = {TaTaTaxlaTazQ7Tam3}:
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(1) ho and iLl are tangential-tangential tensors, i.e. hg ;. = }NLZ-’W =0 unless p,v > 1;
(2) for all N € N, we have

N .~

hyuw (P, R, w) = ho (R w) = > phi s (R, w) € R*pN H® (Qp ry; B (S °T*M));

i=2
(3) write h(P) := hg ;jdz’ @ dx?. Then hy # 0 unless 9(0) = da® + hgy is flat;
(4) h = hs,i;dzt ®, da? is weighted transverse traceless, i.e.

tl"gm) h(g) = 5g<0) (|x\73h(3)) =0; (4.2)

(5) lhouwllgema < do and |[hyuy — Xxho vl gepsma < do-

The smallness of the low regularity norms in part (5) implies, by Sobolev embedding, that the
geometry of (2, r,,9) is qualitatively the same as that of (2, r,, gb), S0 in particular the boundary
hypersurfaces ¥, r, and Z;m R, are spacelike. As already remarked in §1, the weight ||~ in (4.2)
is due to the fact that we Taylor expand not in the defining function 7 of the conformal boundary
of de Sitter space, but in the defining function p = 7|z|~! of the conformal boundary Z+ C M of
Kerr—de Sitter.

Proof of Theorem 4.2. Write X := X,  gr,.

e Step 1. Construction of Cauchy data. We need to prove the existence of

ho, h1 € R*Hp®(S; B*(S*°T* M),

with Ro‘HbD_l—norms bounded by a constant times ¢, so that for a metric g with (g —gp, £ ,0,(9 —
b))|s = (ho, h1), the first and second fundamental form of g at ¥ are v and k, respectively, and
furthermore the gauge condition Y(g; gp) = 0 is satisfied at X.

We proceed as in the proof of [HV18, Proposition 3.10]. We work in a product neighborhood
(—%po, %po)t x ¥ of ¥ where t := pg — p; we can thus regard S?PT*Y as a subbundle of S2 “PT% M.
Writing g, = adt® + 2dt ®4 b + vy, where a € C*°(X) and b € C®(X;T*Y), we then set

ho == 7 € RCHX(%; 82 OPTEN).

Thus go := gp + ho = adt® + 2dt ®, b + v has first fundamental form v at t = 0 indeed. If vy
and v denote the future unit normals at ¥ for g, and gg, respectively, we then have v = v, + U
where U € RaHgo(E;O’ng]\Zf ). To match the desired second fundamental form, we require for all
X,Y € PTY the equality

B(X,Y) = g(VY,v)
= go(VEY, ) + ho(VRY, 1) + g(VRY, D) + g((V% — VE)Y,v),
where we write g := g, + ho + th1 = go + thy; equivalently,
go(VET™ = VY, v) = k(X,Y) = ho(VEY, 1) — go(VEY, 7) — go (VX — V)Y v).  (4.3)

Since k,hy € RYH*, the right hand side of this equation is the evaluation of an element of
RYH®(%;82PT*Y) on (X, Y), which is moreover small in RO‘H{? ~! due to the smallness assumption
on 7y € RQH{? . To ensure the desired gauge condition, we need

tr, (V9T —y790) = 0, (4.4)
In any frame of 0BT, we compute at t =0
2(F(90 + tbl)ﬁy - F(QO)/)EV) = t;/L(hl)u)\ + t;v(hl)p)\ - t;)\(bl)uuv

where the indices are raised using gg.
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Let us take a frame with ey = v, while the e;, i = 1,2, 3, span e(J)- = PT3: then t.,, = 0 unless
p = 0, in which case t,y = egt > 0 is of class C* + R*H° and bounded away from zero. The left
hand side of (4.3), for X = e; and Y = ¢, equates to 3(egt)(h1);;; this thus uniquely determines
(h1)i; € R*Hg®. The ej-component of the gauge condition (4.4) reads

0 = 26" (hy) 5 = 26°(h1)oj + 27 (1) 5.
This uniquely determines (h1)o; € R*Hp°. The eg-component of (4.4) finally reads
0 = 26*(h1) 0 — to(h1)," = —2t0(h1)oo + 26°(h1)io + (to(h1)oo — to(B1)s’),
and this uniquely determines (hq)oo € R*HE°.

e Step 2. Solution of the gauge-fixed equation. We now use Theorem 3.1 to find hy, l~1, 0 so that
P(ho,h,0) =0, (h, L_pa,h)|s = (ho, b1). Writing

g=g+xho+h,  go =g+ xho, (4.5)
we thus have
Ric(g) —Ag—0o;n =0,  n:=T(gig0) + Eg(g — go) — X0.
By the support conditions on Ej, X, we have 5|z = 0. Since the initial data v, k satisfy the con-
straint equations, a standard argument (see e.g. [CBG69, Chapter 6, Lemma 8.2]) implies that also

L_,5,m = 0 at ¥. But since 7 satisfies the homogeneous wave type equation 5gG95;n = 0, we
conclude that n = 0 throughout €,, r,, and therefore Ric(g) = Ag on Q,, g, as well.

e Step 3. Improved asymptotics in a new gauge. As a starting point to improve the asymptotics

of the spacetime metric, it is convenient to perform Steps 1 and 2 above for gf“ in place of gy
(and in particular using gf'® in the definition of the operator P in (3.3)). Applying Proposition 4.4,
Lemma 4.7, and Proposition 4.15 below then produces the desired solution h. [

4.1. Improving the gauge condition; log-smoothness. In order to facilitate the construction
of suitable pullbacks of g required to complete Step 3 of the above proof, we define a class of maps
between (subsets of) M in the coordinates 7 > 0, x € R® on M by?!

Gap: (T, ) — (T(l +a(r,x)),x + 7b(T, x)) (4.6)

We require a (real-valued) and b (R3-valued) to be conormal on M and to decay at Z+. Concretely,
we will have a,b € p3C™ + RapﬁHgo(meRo), and we always tacitly require that a,b vanish near
p = po. If a,b are small in p3C! + RO‘pBCé, then an inverse function argument shows that ¢, p
restricted to Q,, g, \ (Z+ UK) is a diffeomorphism onto its image (whose inverse is then again of
the form ¢ 4 for some a’,b’. Note that the vector field

d
Vap = $¢Sa75b =a(r,z)10; + b(7,x) - 7O,

is then a section of the bundle p*(°T*M) = “PT* M of class pC> + R*p® H®; this is the natural
bundle of which generators of diffeomorphisms of the metric g (which is a nondegenerate section of
B*(S20T*M)) are sections of. In an iterative construction of a, b, we need the following result.

Lemma 4.3 (Pullbacks along ¢g). Let Ry € (0, Ro), o, 8 > 0,and & > «, B> B. Suppose that
a,b € R*pPH(Qp.r,) and abe RYpPHX(Q), r,) are small in R*pPCL so that ¢g and ¢
map Qp, r, Mto Qp r,. Let u € deBHgo(onvRo) where &, 3 € R. Then

a+a,b+b

¢Z+d,b+i)u — P pt = Vi pu mod Ra+d+&Pﬁ+ﬂ+ﬁH§o(on,R1)-

T
|z

pO(a), R + pRO(b),w + pO(b)).

211 the coordinates p = , R=|z|, w = ﬁ, the map ¢, roughly maps (p, R,w) into (p’, R',w’) = (p +
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Proof. This follows from a second order Taylor expansion. To wit,

(¢Z+a7b+bu)(77 JJ) = U(T(l +a+ CL), x + T(b + b))

=u(r(l+a),x + 7b) + a(r,2) (70, u)(7(1 + a), z + 7b)
+ (7, ) - (10u)(T(1 4 a), x + 7b)

9 1 . .
+ Z = / (1=29)(ra,70)7((0r, 0z) u)(7(1 + a + sa),x + 7(b + sb)) ds.
=2 "0
The first term on the right is ¢ ,u; the last term involves quadratic expressions in a and b and thus

is of class Rd+2dpﬁ+2BH§°. We rewrite the second term as
1
(10-u)(r(1 4+ a),z + 7b) = (10,u) (T, x) + / ((aT0r + b 705)T0;u)(7(1 + sa), x + Tsb) ds.
0

Multiplied by @, the integral contributes a term of class ROTa+& pS+0+58 Hp°. We rewrite the third
term in an analogous fashion. (]

Analogous results, with the same proof, can be obtained for other classes of u. Of particular
relevance for us is the following instance, with & = «, in the notation of (4.5):

¢Z+a,b+z}9 — Papg = 52;&,590 mod R**p" TP HY, (4.7)

Wy j 1= 290(V"5, )€ RO‘,OﬁH];>O (onle; B*(OT*M)).

a

(The p-weight arises from the fact that g is equal to a non-decaying tensor gy plus a decaying
correction term.)

Proposition 4.4 (Improving the gauge). Suppose hg, h,0 are as in (3.5) with small weighted H-
norms, and let Ry € (0, Ro). Let g = go+xho+h and go = go+xho, and suppose that Ric(g)—Ag = 0
and Y (g; go)+E,(9—g0)—X0 = 0. Let B~ € (0, 8) and € > 0. Then there exist a € R*pP H*(Qp, ro,)
and b € R pPH(Qpy py; R?) with R*pP ™ Cl-norms less than € (which implies that ¢o 1, maps Q. R,
diffeomorphically into a subset of Qp, r,) so that, for g’ == b5 b9, we have??

0" :=T(g';90) + Eg (9" — 90) € R*p™H{® (Qpy, .3 B (°T* M)). (4.8)

Remark 4.5 (Eliminating 6’ altogether). While the infinite order vanishing of 6’ at p = 0 suffices
for our purposes, one may ask whether one can choose a, b so that, in fact, #’ = 0. We expect this
to be possible by solving a suitable wave map equation backwards from ZT using extensions of the
methods of [Hin24a, Ber24], but do not pursue this question further here.

Remark 4.6 (Presentation of the KdS metric). The same conclusions hold, by the same proof, for
gt ¢ in place of gy. Since we construct gt ¢ only later, we formulate Proposition 4.4 with g.

Proof of Proposition 4.4. We may assume that § is irrational by reducing it by an arbitrarily small
amount. (This ensures that k5 ¢ N for all k € N, and thus avoids integer coincidences with indicial
roots.) We will iteratively construct

ap € Rap(kH)BH{fo(on,Ro), i)k € Rap(k+1)BHgo(Qﬂo,Ro;R3)
with the following properties for § := 5 — 5~ > 0 and for all £ € Ng:

(1) ax and by, are supported in p < %po;

(2) “dkllRap(k+1)5*5Hs4+l+k < €27F and ||bk||Rap(k+1>ﬂ*5Hg4+1+k < 62_k;

220f course, we have Ric(g’) — Ag’ =0 as well.
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3) setting a := bl a; and by := bl I}i, as well as g, := ¢* , g, we have
=0 =0 k ag,b

0 = Y (935 90) = T(9i; 90) + By (91, — 90) € R*pM VP HP(Q, 1y ) (4.9)
where R, :== Ry > R} > R, > --- > Ry.

The radii R}, are chosen so that ¢, 5, maps Q,, ), into Qp0, Ry in view of the smallness requirement
on the ay, by, in Cl, a sequence R}, with the required properties will indeed exist. We also note that
ag, b, € Ro‘pﬁHgo. The domains of definition of the a, by can be fixed to be Q,,,R, since even if
they are initially defined on Q,, Ry, they can be extended, with controlled norms, using Lemma 2.8.
We shall thus omit the specification of domains in what follows.

Now, if for some k € No the functions a;,b;, i = 0,...,k — 1, have already been constructed, we
need to find a, by with
Y585, o, 0040,9:90) = TE(0h, 5,9:90) — O € RpFF2P Hpe.

Using (4.7) with 8 = (k + 1), this is equal to
YE(Pay 009 T 050Wa, i + i 90) — TE(P4, 5,95 90) — 0%

where 6;%5,‘,90 € Rop*+B 2 and hy, € ROp*+2P . Expanding T in the first argument,
this is further equal to

Dilg; , oV B(0g,ws, 4,3 90) = 0y,
modulo R*pR+2)B o0 4 R2a p2(k+ 1B free — R p(k+2)8 [10: and finally we can replace the point of
linearization ¢ , g = go mod Ro‘pﬁH{)’o by go upon committing another error in R“p(k”)BHgo.
We must therefore construct w € R*pFTVBH> so that

D14, Y £(6},w; go) = 0}, mod R*p*FT2)F e, (4.10)

Once we have such an w, the cut-off 1-form x(p/ex)w satisfies the same equation and, when ey is
chosen sufficiently small, it moreover has small norm in R®p(+1)# _5Hg4+1+k.23 One can then read
off ag, by, with the analogous properties from the coefficients of x(p/ex)w.

*

In order to solve (4.10), we can further replace Di|4 Y r(d;

operator) by its indicial operator
I(Dl |90TE(5;D'; 90)) = I(_(SQOGQO + Ego) © 1(5;0)

whose indicial family, which we denote here by I(\), was computed in (3.26); in particular, T()\) is
invertible for A ¢ {—1,2,3,4}. Passing to the Mellin transform side, we are thus led to set

O\ Ryw) :=TA) L (M) (N, R,w),  Rel=(k+1)B.

,73g0) (the gauge potential wave

In view of the isomorphism (3.59), we then have w := Maﬂlﬂ)ﬁoﬁ) € RopFHDB X as desired.

To complete the proof, it remains to set a := Y5> a; and b := > b;. By construction, both
sums converge in every R%p? H}Y-norm and define elements of R ’56% with small norm. Since
Tr(9;49;90) = YE(9], 4,95 90) mod RepF+DB 2 lies in RYpFTDA 2 for all k, we obtain (4.8).

O

Note that g' can be written as g’ = gy + xho + h where hg, h are of the same class (3.5) as before
(and in fact only h is changed). To avoid cumbersome notation, we now relabel ¢', Ry as g, Ro.

233uch an argument is familiar from proofs of Borel’s lemma.
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Lemma 4.7 (Log-smoothness in the improved gauge). Suppose hg,h are as in (3.5), with small
weighted Hg-norms. Suppose that

P(ho,h,0) =0, 0 € R*p™H® (o ry; B (T M)). (4.11)

Then h is log-smooth down to I7T; that is, for each i € N there exist m; € Ny and izi,m S
RO‘H{?O(IEO; B*(S2°T*M)) so that, for all N € N,
h(p, Row) =Y > p'(10g p) " him(R,w) € R*pN H® (Qpy,ro; B (S 0T M)). (4.12)

i=1 m=0

The assumption (4.11) is satisfied by the metric produced by Proposition 4.4; in fact, both
lines of (3.3) vanish separately. The conclusion holds (with the same proof) assuming only that
P(hg, h,8) € R*p>H®.

Remark 4.8 (Integer indicial roots). The fact that the indicial roots of Ly, ;, are integers is the
reason for the log-smoothness of h. This fact should, however, be regarded as coincidental. If we
used a different gauge for which, say, the indicial root 0 and the corresponding space of indicial
solutions was the same, but the remaining indicial roots in Re A > 0 were different (non-integers,
and possibly even in complex conjugate pairs), then h would be polyhomogeneous. This would still
suffice for the proof of Proposition 4.15 below to go through, as follows from part (1) of Lemma 4.10
below.

Proof of Lemma 4.7. We again arrange for 8 € (0,1) to be irrational by reducing it slightly if
necessary. Write go = gp + xho- In the computations below, we write ‘=’ for equality modulo
R*p>° Hg°. We thus have

1

1
0= P(h(], h,&) = P(h(], 0,9) + / Lh07sﬁhds = Q(Rlc(go) — Ag(]) + / Lho,sﬁh ds. (413)
0 0

The computations in the proof of Proposition 3.5 imply that Ric(gg) — Age vanishes at p = 0.
Working in the splitting [0, po], x IEO and noting that go € C*°([0, po]; R*H® (IEO)), we thus have

f=2(Ric(g0) — Ago) € pC>([0, pol; R HE®).

(See Lemma 4.14 below for a more precise statement.) Using (3.14b) with gy = da® 4+ 72hg (cf.
(3.13)), we thus have

Iy (pOp)(xh) = = f + f,
where f arises from the action of Ry, fol Rho o, ds on h and thus lies in RopPHLH® + R2p2P 2 C
Rp?PH®. (The insertion of the cutoff x produces an error g0y (POp), x]h which vanishes near
p = 0 and thus lies in R*p> Hp°.) We can replace pd, by p'0, (see (3.54)—(3.55)) upon committing
a further error of the schematic form pDifff ([0, c0) x Igo)h, which thus lies in R¥p#+1H®.
At this point, we pass to the Mellin transform in p’. The Mellin transform of f is meromorphic
with poles at the positive integers 1,2, 3, . ... Using the indicial root computation of Lemma 3.9 and a

contour shifting argument in the inverse Mellin transform similarly to the proof of Lemma 3.12 (but
no longer keeping track of tame estimates), we can now draw the follow conclusions. If 5 € (0, %),

then yh € R*p?P. If B (3,1), then

my

Xh=x>_ p(logp)"hym + (4.14)

m=0
where
him € ROHZ®(Zf ), I € R*p*H®. (4.15)
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(The logarithmic terms arise from the residue theorem when on the Mellin transform side there is
a pole of order > 2 at A = 1.) In the former case, we repeat the same argument with 2/ in place
of B until, after finitely many steps, we are in the latter case and thus extract the first term in the
expansion of h.

With 28 € (1,2), we now proceed inductively to extract an expansion for hb. The key point is that
the coefficients of L, in (4.13) inherit the partial log-smoothness of h, as follows by inspection
of the explicit computations in the proof of Proposition 3.5. To wit, armed with (4.14), we first use
that the coefficients of L, are log-smooth modulo R%p 28 Hpe, and therefore the action of this
operator on xp(log p)™h1 m is log-smooth modulo R*p?*+1=0H for any § > 0 (or § = 0 when

=0). Since (Ly, . — Iy )h* € Rp*PTLHE®, we thus conclude that

(P'0,)1’ = f> mod R*p* ' HX 5> 0,

L4
where f” is log-smooth in p and of class R*H* in (R,w). Using the (inverse) Mellin transform as
before, this equation allows us to extract p?(log p)™ leading order terms of h®, with a remainder of
class RYp?A*+1=9 H2° which thus vanishes to almost a full order more at p = 0 compared to (4.15).
Proceeding iteratively in this fashion produces the expansion (4.12) and finishes the proof. O

Remark 4.9 (Comparison with the Riemannian setting, I). The idea to put g into a convenient gauge
condition in order to improve its asymptotic behavior is used in [CDLS05, §4] (where a harmonic
map gauge is used), with polyhomogeneity being deduced in [CDLS05, §5] using [AC96].

4.2. Smoothness and precise Taylor expansion at the conformal boundary. The gauge
condition serves no further purpose now: we only used it as a means to ensure that h has simple
asymptotics (namely, log-smoothness) at p = 0. We shall now reduce the task of further sharpening
the asymptotic behavior of h to the level of indicial operators of the (ungauged) linearized Einstein
vacuum equations and the symmetric gradient (or Lie derivative), somewhat analogously to (but
simpler than) the analysis in [Hin23b, §7]. We work in the splitting (2.9) of °T* M and (via combining
the splittings (2.10) with (3.24))

d dr
S20T* M = ]RL &) (2— Rs T _1T*X) D ]RT_Zg(O) @72 kertrg

and recall A = 3. We thus proceed to analyze the kernel of

2I(DRic — A, X) := I(g, — 207 84,Gg, + 2%, — 2A, N)
3>\—6 0 —3X2+6A 0
B 0 0 0 0 (4.16)
T2 +6 0 AZ—6) 0
0 0 0 A2 — 3\
and its relationship with the range of
A 0
. . 0 fn+1
I((sa ) <6g07 )_ 1 2( 0 )
0 0

(We use (3.17), (3.20), (3.21), and (3.23) to derive these expressions.) Dually, we study the range
of I(DRic — A, A) and its relationship with the kernel of
A—6 0 3A—-6 0
21(0G, \) := 21 (84, Ggy, A) = ( 0 9\_38 0 o) . (4.17)
The dependence of these operators on R,w is only through g(g), i.e. through the bundle splitting.

Note that I(DRic—A, X\)oI(0*,A) = 0, which is due to the diffeomorphism covariance of the Einstein
operator, and I(6G, \)oI(DRic— A, \) = 0, which arises from the linearized second Bianchi identity.
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We proceed to analyze the above A-dependent 4 x 4 and 4 x 2 matrices, which define linear maps
C* — C* and C? — C* (denoted by the same symbols). Acting on functions h = h(p), note that
I(DRic — A, pd,)(p*h) = p [ (DRic — A, pd,)h, and thus

I(DRic — A, pd,)(p*(log p)™h) = 05" (p*I(DRic — A, \)h)
m
m m’ WL—TVI/ :
= Z (m’) p*(log p)™ O I(DRic — A, M)k
m’=0

In particular, when k > 1, we have the implication

k
I(DRic — A, pd,) > p*(log p)hy = 0

m=0

= hy € ker I(DRic — A, ), O\I(DRic— A, \)hy € ran I(DRic — A, ).

(4.18)

Lemma 4.10 (Kernel of linearized Einstein modulo pure gauge). Let A € C and h € C*; suppose
that I(DRic — A, \)h = 0.

(1) If A # —1,0,3, then h € ran I(6*, \).
(2) If A =0,3 and O\I(DRic — A, \)h € ran I(DRic — A, \), then h € ranI(6*, \). Moreover,

ker I(DRic — A, \)/ran I(6*, X) = span{(0,0,0,1)}, A=0,3. (4.19)
(3) If \ = —1, then h = O\I(6*, —1)wo+1(6*,0)w; for some wo,w; € C? withwy € ker I(6*, —1).

When X is real, all statements hold also for real vectors.

Proof. If A # 0,3, we have
ker I(DRic — A, \) = span{(},0,1,0), (0,1,0,0)}. (4.20)

This uses that when A # 2, resp. A\ # 6, the first, resp. third row of I(DRic — A, ) is a nonzero
multiple of (1,0, —A,0). For A # —1, this equals the range of I(6*,\).

We next compute

30 —6A+6 0
20, (0Ric - AN = 0 0]
00 0 2A-3

Consider the case A = 0. The basis elements of
ker I(DRic — A, 0) = span{(0, 1,0,0), (0,0,1,0), (0,0,0,1)}
get mapped by 20,\I(DRic — A, 0) to (0,0,0,0), (6,0,—6,0) (0,0,0,—3). But ran I(DRic — A,0) =
span{(1,0,—1,0)}. It remains to observe that (0,1,0,0), (0,0,1,0) € ranI(6*,0).
The arguments for A = 3 are similar: now the basis elements of
ker I(DRic — A, 3) = span{(0, 1,0,0), (3,0,1,0), (0,0,0,1)},
get mapped by 20, I(DRic — A, 3) to (0,0,0,0), (—3,0,—3,0), (0,0,0,3). But ran I(DRic — A,3) =
span{(1,0,1,0)}. The claim then follows from (0,1,0,0),(3,0,1,0) € ran I(§*, 3).
The final part follows again from (4.20), now for A = —1, and the observation that (—1,0,1,0) €
ran (0%, —1), while (0,1,0,0) = 9xI(6*,—1)(0,2) with (0,2) € ker I(6*,—1). O

Remark 4.11 (Indicial roots modulo pure gauge and stability of de Sitter space). Lemma 4.10 is a
mode stability statement for de Sitter space: all modes, i.e. here indicial solutions of the linearization
of Ric— A, with Re A < 0, A # 0, are pure gauge; and in fact the only modes which are not pure gauge
occur at A = 0, 3. Moreover, modulo pure gauge solutions, the A =3 mode lies in ker try, , i.e. it is
a trace-free tangential-tangential tensor. Once one puts back the (R, w)-dependence, one can draw
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further conclusions related to the results in [Fri86] (see also [FG85, FG12, Hin24a]) concerning the
asymptotic degrees of freedom of asymptotically de Sitter type metrics solving the Einstein vacuum
equations, which are given by a Riemannian metric (g()) and a transverse-traceless tensor (i.e. an
element of ker tr,,, Nkerdg ) on the conformal boundary; we recover one direction of this in (4.23)
below.

Note that by basic linear algebra (or by an inspection of the proof), Lemma 4.10 also applies to
families. Thus, if & depends on a parameter (R,w) € Ij{o in an R*Hy® fashion, then in part (1),
one can find w with the same parameter dependence so that I (5;0, A)w = h; similarly in the other
parts.

For brevity, we now focus on A > 0, as positive indicial roots are the only ones of interest in our
quest to improve the asymptotic behavior of the decaying tensor h. We study generalized mode
solutions, i.e. those which may feature log p factors.

Corollary 4.12 (Quasihomogeneous nullspace modulo pure gauge). Let A > 0. Let hg, ..., hy € R*
and set h(p) = me:o p(log p)™hp,. Suppose that I(DRic — A, pd,)h = 0. Then there exist
Wo, - - ., wi € R? s0 that for w(p) := 251:0 p* (log p)™wyy, the following holds.

(1) In the case A # 3: h = I(6*, p0,)w.

(2) In the case A =3: h—I(6%, p0,)w is a scalar multiple of {(0,0,0,1)}.
Proof. We have hy, € ker I(DRic — A, \). When \ # 3, this implies the existence of wy € R? with
hi, = 1(6*, \)wy,. Therefore,

h = 1(6*, p9,) (p* (1og p)*wr) = p*(log p)* ( hm — 1(*, Nwim )

=0
k—1
+ Z p*(1og p)™ by — kp*(log p)*~LONT (6%, N)wy,
m=0

is of the same form as h except with k£ reduced by 1. An iterative argument thus finishes the proof
in this case.

For \ = 3, the same argument eliminates hy,, provided that k > 1. We thus find wy,...,w; € R?
so that h — I(6*, pap)(Z:lzl p*(log p)™w,,) =: hg is p-independent. Using then (4.19), we can find
wo € R? so that hg — I(8*, pd,)wp lies in the span of (0,0,0,1). O

We now turn to the range of I(DRic— A, \), which is necessarily contained in ker I(dG, A). Again
we only consider A > 0.

Lemma 4.13 (Solvability of linearized Einstein). Let A > 0 and f € R*; suppose that I(6G,\)f = 0.

(1) If X # 3,4, then f € ranI(DRic — A, )\), and indeed we can find a solution h of f =
I(DRic — A, A)h of the form h = (0,0, hs, hy).

(2) If \=3 and f = (0, f2,0,0), then fo =0.

(3) If x =4 and f = (f1,0, f3, f1), then we can write f = I(DRic — A, \)h for some h of the
form h = (0,0, hs, hy).

The assumptions on the form of f in the second and third part will arise from evenness consid-
erations.

Proof of Lemma 4.13. For A # 3, the range of I(DRic — A, \) is 2-dimensional due to (4.20), and
so is the kernel of I(§G, \) when A # 4 due to (4.17). To prove the full statement of the first part,
we compute for A # 3,4

ker I(6G, A) = span{(3A — 6,0, -\ +6,0), (0,0,0,1)}
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and note that
(3\ — 6,0, =\ +6,0) = 2I(DRic — A, \)(0,0, —=\"*,0),

4.21
(0,0,0,1) = 2I(DRic — A, \)(0,0,0, (A% —3X)~1). (4.21)

For A = 3, the non-vanishing of 2\ — 8 in (4.17) implies the second part. For A = 4, the
assumptions on f imply —2f; + 6f3 = 0, so f € span{(3,0,1,0),(0,0,0,1)} C ran I(DRic — A, 4);
and the existence of h = (0,0, hg, hs) solving I(DRic — A,4)h = f follows from (4.21). O

As a final preparation, we record:

Lemma 4.14 (Ricci tensor of go). We work in the frame (3.15) on M, and with the frame
dzt,dz?,da® on IT. Consider a tensor hg € RO‘H]‘;O(IEO; B*(r72S?T* X)) with small R*C}-norm.
Set go = g + xho where** g, = gas mod PPC=(Qpy:ros B*(S?OT*M)) and 90) = Yo)(z,dz) =
da? + h(o) where hy = h(T@WTG )dat dz”. Modulo p*C™ 4+ R*p™° H*(Qpq. R, ), we then have

. 72Ric ids V)= (1,7),
(Ric(go) — Ago)w :{ @i (v) = (0. J) (4.22)
0 otherwise.

(We recall that the indices u,v run from 0 to 3, and the indices i,j from 1 to 3.)

Proof. For the computation, we can drop the cutoff x and consider gy = gy + hg. The result
then follows from the expressions in the proof of Proposition 3.5, which give, modulo p3C,
['(g0)auw = 0 except for I'(go)eio = —(9(0))ie, I'(90)oij = (9(0))ij» and I'(go)eij = TF(Q(O))L’”, and
therefore I'(go), = 0 except for T'(go)fy = —67, ['(90); = —(9(0))ij> and T'(go)§; = 7T(g(0))5;- This
gives (4.22) after a short computation. O

Proposition 4.15 (Taylor expansion at the conformal boundary). Let
ho € ROH°(Tf ;B (r725*T* X)),
with small R*Hg-norm. Suppose h € ROpPHX®(Qpy ry; B*(S?OT*M)) (where B € (0, 1) is arbi-
trary) is log-smooth at I, i.e. it satisfies (4.12) for all N. Suppose that g := g, + xho + h satisfies
Ric(g) —Ag=0 on Q, R,-

Let Ry € (0, Rg). Then there exist

a € pPC>=(Qpy ry) + RUPPHZ (o Ry )

b€ pPC%(Qpo,roi R?) + R p7HE® (Qpy, o3 R?)
which are log-smooth at IT, small in p5C&, and vanish for p > & so that (recalling the definition of

Ga,p from (4.6)) the pullback metric ¢}, ,g € C*° + RepPH® is smooth down to I+. More precisely,
there exist

hy € ROH® (T4 ;s B*(72S?T* X)), h; € (C* + RUH®)(Zh ;7 2S*T*X), i=34,...,
so that, for all N € N,

N
(9a.09)(p, R, w) — gas(p, R, w Z € ROpNH® (g, 1,3 B*(S?°T* M), (4.23)

and so that g(3y 1= 713(78u,78V) dz* dx¥ is a weighted transverse-traceless tensor, that is,

g3y € (C* + ]"E'C“I{go)(fgo;kertrg(o))7 8900, (=~ 9(3)) =0. (4.24)

24We shall first apply this with g/ = gp; this is the case that will be used for the proof of the existence of gEG in
Proposition 4.15(1) below. Only once g FG has been constructed will we use Lemma 4.14 with g9 = gEG.
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Moreover, (4.23) is sharp in the sense that hy # 0 unless the metric gy = da? + hey on I is flat;
here h(gy = ho(70y,70,) dxt dx¥. Furthermore:

(1) if ho = h=0, sog= gy, then the conclusions hold with a,b € p>C>, hy =0, and h; € C>,
i > 3. This produces gy = ¢% ,gp with giG — gp € pPC®(Qpg.ro; B*(S2OT*M));

(2) if g = g5C + xho + h, then the conclusions hold with a,b € R*pPH® and h; € R*H{®,
i=2,3,4,..., with gas in (4.23) replaced by g£¢, and with 9(3) equal to the p3 coefficient of

g'lo

Proof. We discuss the general case and scenario (1) simultaneously. In scenario (1), the arguments
simplify since gp has no logarithmic terms in its Taylor expansion at p = 0, and all tensors on IEO

arising in the proof in this case are smooth. Once gf“ has been constructed, the same arguments
then apply if we replace gp by gf G throughout the proof; all smooth terms, starting with ap,3, i)b,g €
C® prior to (4.32) below, can then be taken to be equal to 0 since the relevant smooth metric
coefficients (which are the Taylor coefficients of gt @) are already free of logarithmic terms and valued
in B*(7728*T*X) (and B* (7> kertry, ) in the case of the p* term). With these modifications in
mind, the reader may thus read the following proof as is, or with kg = 0, h = 0 (for scenario (1)),
or with ¢gf¢ in place of g, (for scenario (2)) throughout.

We write go = gp + xho and
1
0 = Ric(go + ) — A(go + h) = (Ric(go) — Ago) + / D, . sRic(h) — Ahds. (4.25)
0

e Step 1. Eliminating the p' terms. We work modulo log-smooth terms with almost p? decay at
Z" (and R*H{° behavior in (R,w))—we shall write ‘almost-O(p?)’ in short (and omit the ‘almost’
if there are no log terms at leading order). We can thus replace D, . Ric —Ain (4.25) by the
indicial operator I(DRic — A, pd,). In view of Lemma 4.14, we obtain the equation

mi

I(Dy,Ric — A, p0,) »  p(log p)" him = 0.

m=0

Corollary 4.12, applied with R*H°-dependence on (R,w) € I];O, then produces 1-forms wj ,, €
ROH (T B*(°T*M)), m =0,...,my, so that

mi mi
> pllog p)"ham = —1(5},.p0,) > plog p)™ w1 m-
m=0 m=0

Writing wy »,, = w in the notation (4.7), with @1 m, Z.)Lm € RYHY® (IEO), we then set

al,nni)l,'nz
mi mi1
ar = Z p(log p)™ a1 m, by = Z p(log p)"b1,m,
m=0 m=0

and a; = a1, by = by. But then, modulo almost-O(p?),
Qb:;l,blg =g+ 6;0wa1,bl =go+ (]:L + I((S;o?pap)wm,bl)'
The term in parentheses is log-smooth, and its generalized Taylor expansion now starts with p?

(times logarithmic factors).

25Gince the p> coefficient of g4g vanishes, this is consistent with the definition of g(3) in the other settings considered

in this Proposition.
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e Step 2. Simplification of the p? terms. Repeating Step 1 but starting with ®4, 5,9 — 9o in place

of h in (4.25), the main change is now that TzRic(g(O)) from (4.22) gives rise to a forcing term, i.e.
we need to analyze

I(Dg,Ric — A, pd,) > p*(log p)"ha.m = p*f, (4.26)

m=0
where f = f(R,w) € ROHX(Zy; ; B*(r725*T*X)). We have f € ker I(8y,Gyg,,2): this follows
directly from (4.17), and more conceptually from the second Bianchi identity. By Lemma 4.13, we

can find
hy € ROH® (T} B* (77 2S°T* X)) (4.27)
with I(Dg,Ric — A,2)hy = f. By Corollary 4.12, S-72  p?(log p)™ham — p*ha € ker I(D, Ric —

A, pd,) can be expressed as —I(8},, pd,) Y2 p?(log p)"wa m. Extracting ag, by from the 1-forms
wa m as above and setting as = a1 + a2, b = b1 + i)g, we then find that, modulo almost-O(p?),

G = By 20 = By 5,9+ Oy Win iy = G0 + P ha. (4.28)
Note also that if Ric(g()) = 0, which due to dimZ" = 3 is equivalent to Riem(g()) = 0, i.e. g(
being flat, then f = 0, and thus we can take hy = 0.

o Step 3. Simplification of the p® terms. The deviation of the KdS metric from the dS metric
appears at this stage in view of Lemma 2.3. This will be the reason why (except in setting (2))
the corrections to the diffeomorphism ¢g, p, already constructed will involve COO(IEO )-terms (with

powers p3, p%, etc.), in addition to the log-smooth R* Hi°-terms which already appeared in previous
steps. We thus write
90 = gb + xho = go + hu, 90 := gas + xho, ho = gb — gas € p°C™.

From (4.28), we thus get ¢ = g, + p2hy + B> where b’ = fzb(p, R,w) is thus the sum of hy, € p3C>
and an almost-O(p3) term. Now,

0 = Ric(gh) — Agh = Ric(gh + p*ha) — Algh + p*h2) + I(Dy Ric — A, pd,)h° (4.29)
modulo almost-O(p*) terms. In particular, setting go := g} + p2ha,

f:=Ric(g2) — Ags
is almost-O(p3); since g, is smooth in p, we in fact have
f=p3fs, fs € ROH (T}, ; B* (5% °T* M),

modulo O(p*). In the frame (3.15), we moreover claim that

(f3)oo = (f3)i; = 0, 1<i,j<3. (4.30)

This uses the information (4.27), which implies that the (0, ;) and (i,0) components of go vanish:
from (3.18), we then see that I'(g2)x. is even, resp. odd in p if and only if the number of indices
A, 1, v which are > 1 is even, resp. odd. The same is then true for I‘(gg)ﬁy. Consider then

RiC(QZ)nV = 6,\1—‘3,{ - GVF§H + Fﬁprﬁn - Fl)/\prin' (431)

Note that eg preserves parity (i.e. evenness and oddness), whereas e;, i = 1,2, 3, maps even functions
to odd functions and vice versa. For k = v = 0, the term e Iy, = eo'J +e; L}, is thus even, likewise
for eol"ﬁo. Similarly, Fj\\ pI‘SO is even since, upon expanding the sum, every term features an even
number of indices > 1; likewise for the final term Fépf‘io. The same considerations apply in the case
(k,v) = (4,7) since now 2 (thus, an even number of) further indices are > 1. Thus Ric(gz2)oo and
Ric(gz)i; are even. Since (p3 f3)oo and (p3f3);; are evidently odd, (4.30) follows. (For an alternative
argument, see [Hin24a, (A.5)].)
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Returning to (4.29), we have, modulo pC* plus almost-O(p?),
I(Dg Ric — A, pd, )1 = —p fs.
The second Bianchi identity gives dg, Gy, f = 0, which implies f3 € ker (0,4, Gy ,3). In view of (4.30),

we can apply Lemma 4.13(2) to conclude that, in fact, f3 = 0. Therefore, the p? leading order term
Sms, pP(log p)™h2, of h® satisfies

ms
I(DgRic — A, pd,) > p’(log p)™h2, = 0.

m=0
In view of Corollary 4.12, we can thus find coefficients az = ab3 + Yo g p3(log p)™as ,, and by =
bb,3 + 223:0 p3(log p)mbgﬂn, with C.lb73,bb73 S COO(ZEO) and C.L3,7,L,bg7m c RaHgO(IEU), SO that, for
as = as + a3 and bs :bg—f—i)g,

b = % 0,9 = g0 + p°ha + pPhs,  hg € (C° + ROHP) (T ; B* (7 kertry, ), (4.32)

modulo p*C> plus almost-O(p*). Henceforth, we re-define ‘almost-O(p*)’ to mean ‘pFC>
almost-O(p*)’.

e Step 4. Simplification of the p* terms. Writing g4 = g2 + pPhs + h” where now h’ is almost-
O(p*), we have

0 = Ric(gs) — Ags
= Ric(gz + p*hs) — A(gz + p*hs) + I(Dg Ric — A, pd,)h’ (4.33)
= (Ric(g2) — Agz) + (DgyRic(phs) — Ap’hs) + I(Dg Ric — A, pd,)h’ (4.34)

plus

modulo almost-O(p%).

The parity arguments used to show (4.30) imply that the p*-coefficient f; of the first parenthesis
Ric(ga2) — Age on the right in (4.34) has mixed coefficients equal to 0, i.e. (f4)io =0 forall 1 <i < 3.
Since every element in the range of I(Dy Ric — A, A) has vanishing mixed coefficients as well (cf. the
vanishing of the second row of (4.16)), we conclude that the same must be true for the p*-coefficient

fi= (p~(DgRic(p’h3) — Ap’hs))|
of the second parenthesis in (4.34). Note first, however, that the sum of the first two parentheses
on the right in (4.34), which is almost-O(p*), gets mapped to almost-O(p°) by (84 Gy, pd,) due
to the second Bianchi identity for g + p*hs (applied to (4.33)). The hypotheses of Lemma 4.13(3)
are thus satisfied for f := fy + f4. Arguing as after (4.26), we can thus use Corollary 4.12 to find
a4, b4 (quasi-homogeneous of degree 4 in p) so that, for ay = ag + a4, by = bs + by, we have

94 =0, 5,9 =90+ p*hy + p*hs + p*ha, hy € (C™ + RO‘HI‘)’O)(IEO; B*(r 25T X)),

modulo almost-O(p%).

p=0

We extract further information from vanishing of the mixed (i.e. (i, 0)-)coefficients of f;. These are
equal to the mixed coefficients of the p* term of Ric(gj + p3h3) — Ric(gj). We compute, using (3.18)
for gy + p*hs and gg, that T, = 0 except for

LY = 30°(93)i — 90, Tio = 30 (93)i" — 6,
I, = 30%(93))5" I = m0(g(0))5; + O(p™),
where we raise indices using g(g), and ‘=" means equality modulo O(p®). Therefore, we can use (4.31)
for g, + p3hs and g} to compute, modulo O(p°),
Ric(gy + p*hs)io — Ric(gh)io

26The right hand side of [Hin24a, (A.6)] should feature —% instead of n.
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= 190(20°(9(3))i") + 7T (900)) i 20 (9(3))i" — TT(9(0)) s 20 (903))"
= =370, (P 9(3)):-
1 2

Recalling that d, are (spatial) coordinate derivatives in the coordinates 7,z', 2%, #® valid on the

interior of M, and recalling moreover that p = 7|z| =1, the p*-coefficient of this tensor vanishes if
and only if 0y, (|z|"%g(3)) = 0, which is (4.24).

o Step 5. Simplification of the remaining terms; completion of the construction. From this point
onwards, we do not need any further careful considerations since we can use the simplest parts
(namely, those which apply for A > 4) of Corollary 4.12 and Lemma 4.13. To wit, the almost-O(p®)-
term h? := g4 — (gb + p*ha + pPhs + p*hy) satisfies an equation

I(DgRic — A, ,oa,,)iﬁ =p°f

modulo almost-O(p%), where f € (C*° + R*Hy®) Nker I(5, Gy ,5). We can therefore find as, bs so
that, upon setting a5 = a4 + a5 and bs = by + 65,

5
Gans9 =90+ 0'hi
i=2
modulo almost-O(p®). Proceeding in this fashion produces ai,i)i, 1 =06,7,8,.... Taking a and b
to be asymptotic sums of ai,as,... and by, bs, ..., respectively, the conclusions of the Proposition
follow. U

With this result, the proof of Theorem 4.2 is now complete, with a small caveat: fixing any
p1 € (0,p0) and Ry € (0, Rp), the arguments thus far produce a metric g which is defined only on
the union of Q,, g, N {p > p1} and {p < p1, R < R} where p; € (0,p0) and Ry € (0, Ry) are fixed
but arbitrary. For R; close to Ry and p; > 0 small, this domain is thus slightly smaller than €2, r,
itself. This can easily be fixed. One way is to pull back g along a diffeomorphism which is the
identity near KUY, r, and a map (7,z) — (7, A(z)z) near Z" for a suitable map \ with A\(z) =1
for small |z] and A(x) < 1 for |z| near Ry. Another way is to solve the original gauge-fixed Einstein
equations from the outset on a slightly larger domain (replacing % in (2.17) by %, say); then the
pullback arguments in this section produce a metric which is well-defined on 2,, g,

Remark 4.16 (Comparison with the Riemannian setting, II). The construction of a coordinate
system in which the conformally rescaled metric, initially only known to be polyhomogeneous, has
optimal regularity is done in the Riemannian setting in [CDLS05, §6] in one go via Fermi (or
boundary normal) coordinates and an appeal to the formal computations of [FG85, FG12]. Our
approach avoids an analysis of special coordinate systems (which would be delicate near Z+ N K)
in favor of a more direct argument which in particular directly handles the relevant parts of the
Fefferman—Graham argument.
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