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Abstract. A Kerr–de Sitter black hole is a solution (M, gΛ,m,a) of the Einstein vacuum
equations with cosmological constant Λ > 0. It describes a black hole with mass m > 0 and
specific angular momentum a ∈ R. We show that for any ε > 0 there exists δ > 0 so that
mode stability holds for the linear scalar wave equation �gΛ,m,aφ = 0 when |a/m| ∈ [0, 1−ε]
and Λm2 < δ. In fact, we show that all quasinormal modes σ in any fixed half space
Imσ > −C

√
Λ are equal to 0 or −i

√
Λ/3(n + o(1)), n ∈ N, as Λm2 ↘ 0. We give an

analogous description of quasinormal modes for the Klein–Gordon equation.
We regard a Kerr–de Sitter black hole with small Λm2 as a singular perturbation either

of a Kerr black hole with the same angular momentum-to-mass ratio, or of de Sitter
spacetime without any black hole present. We use the mode stability of subextremal
Kerr black holes, proved by Whiting and Shlapentokh-Rothman, as a black box; the
quasinormal modes described by our main result are perturbations of those of de Sitter
space. Our proof is based on careful uniform a priori estimates, in a variety of asymptotic
regimes, for the spectral family and its de Sitter and Kerr model problems in the singular
limit Λm2 ↘ 0.

1. Introduction

The metric of a subextremal Kerr–de Sitter (KdS) spacetime depends on the parameters
Λ > 0 (cosmological constant), m > 0 (mass of the black hole), and a ∈ R (specific angular
momentum). It involves the quartic polynomial

µΛ,m,a(r) = (r2 + a2)
(

1− Λr2

3

)
− 2mr. (1.1)

The spacetime, or the set of parameters (Λ,m, a), is called subextremal if µΛ,m,a has four
distinct real roots

r−Λ,m,a < rCΛ,m,a < reΛ,m,a < rcΛ,m,a.

For subextremal parameters, the KdS metric is given on the domain of outer communica-
tions

MDOC
Λ,m,a = Rt × (reΛ,m,a, r

c
Λ,m,a)r × (0, π)θ × (0, 2π)φ (1.2)

in Boyer–Lindquist coordinates (introduced in the special case Λ = 0 in [BL67]) by

gΛ,m,a := −
µΛ,m,a(r)

b2Λ,m,a%
2
Λ,m,a(r, θ)

(dt− a sin2 θ dφ)2 + %2
Λ,m,a(r, θ)

( dr2

µΛ,m,a(r)
+

dθ2

cΛ,m,a(θ)

)
+

cΛ,m,a(θ) sin2 θ

b2Λ,m,a%
2
Λ,m,a(r, θ)

(
(r2 + a2)dφ− adt

)2
,

(1.3)
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bΛ,m,a := 1 +
Λa2

3
, cΛ,m,a(θ) := 1 +

Λa2

3
cos2 θ, %2

Λ,m,a(r, θ) := r2 + a2 cos2 θ. (1.4)

Its physical relevance stems from the fact that it is a solution of the Einstein vacuum
equation Ric(gΛ,m,a) − ΛgΛ,m,a = 0. It was discovered by Carter [Car68], following the
earlier discovery [Ker63] of the Kerr metric, which is obtained by formally setting Λ = 0:

gm,a := g0,m,a; Ric(gm,a) = 0 on Rt × (rem,a,∞)r × (0, π)θ × (0, 2π)φ.

For Λ = 0, the condition for subextremality is that r2 + a2 − 2mr have two distinct real
roots rCm,a < rem,a; these roots are m∓

√
m2 − a2, and thus a Kerr spacetime is subextremal if

and only if |a/m| < 1. When Λm2 > 0 is sufficiently small, this is also a sufficient condition
for the subextremality of the KdS spacetime; see Figure 1.1 below, and Lemma 3.1 for a
weaker—but sufficient for our purposes—statement.

The above expression for the metric becomes singular at r = reΛ,m,a and r = rcΛ,m,a. This
is merely a coordinate singularity, as can be seen by passing to the coordinates

t∗ := t− TΛ,m,a(r), T ′Λ,m,a(r) = (r2 + a2)
bΛ,m,a

µΛ,m,a(r)
FΛ,m,a(r),

φ∗ := φ− ΦΛ,m,a(r), Φ′Λ,m,a(r) = a
bΛ,m,a

µΛ,m,a(r)
FΛ,m,a(r),

(1.5)

where FΛ,m,a(r) = 2
r−reΛ,m,a

rcΛ,m,a−r
e
Λ,m,a

− 1. Expressed in the coordinates (t∗, r, θ, φ∗), the metric

gΛ,m,a extends real analytically to

M̃Λ,m,a = Rt∗ × X̃Λ,m,a, X̃Λ,m,a := (rCΛ,m,a,∞)r × S2
θ,φ∗ . (1.6)

See [PV21b, Equation (5)] for the explicit expression.1 The two null hypersurfaces

H+
Λ,m,a = Rt∗ × {reΛ,m,a} × S2

θ,φ∗ , H+
Λ,m,a = Rt∗ × {rCΛ,m,a} × S2

θ,φ∗

are called the (future) event horizon and (future) cosmological horizon, respectively.

The object of main interest in this paper is the set

QNM(Λ,m, a) ⊂ C
of resonances, or quasinormal modes, of the scalar wave operator �gΛ,m,a . Here, σ ∈
QNM(Λ,m, a) if and only if there exists a resonant state u0(r, θ, φ∗) ∈ C∞(X̃Λ,m,a) so that
u(t∗, r, θ, φ∗) = e−iσt∗u0(r, θ, φ∗) ∈ C∞(MΛ,m,a) is a mode solution of the wave equation
�gΛ,m,au = 0. (For an equivalent definition in terms of Boyer–Lindquist coordinates, see
e.g. [Dya11b, Theorem 3] or [CTdC22, Definition 2.4].)

Theorem 1.1 (Quasinormal modes of Kerr–de Sitter black holes away from extremality:
massless scalar fields). Fix C > 0, and let ε > 0. Then there exists δ > 0 so that for2

|a/m| ≤ 1− ε and Λm2 ∈ (0, δ), every

σ ∈ QNM(Λ,m, a), Im(Λ−1/2σ) > −C

either satisfies σ = 0 or σ = −i
√

Λ/3(n + o(1)) for some n ∈ N as Λm2 ↘ 0. Moreover,
the only mode solutions with σ = 0 are constant functions. Conversely, for any n ∈ N and

1In the main part of the paper, we will make a different choice of FΛ,m,a(r) which has better properties
in the limit Λm2 ↘ 0; see §3.1.

2The quantities a/m, Λm2, and Λ−
1
2 σ are dimensionless; see §1.3.
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η > 0 there exists, for sufficiently small Λm2 > 0 and for any a/m ∈ [−1 + ε, 1 − ε], an

element σ ∈ QNM(Λ,m, a) with |σ
√

3/Λ + in| < η.

Thus, the set (Λ/3)−
1
2 QNM(Λ,m, a) converges in any half space Imσ > −C to the set

−iN0 as Λm2 ↘ 0 when |a/m| remains bounded away from 1. The significance of the set

−i
√

Λ/3N0 is that it is the quasinormal mode spectrum of the wave operator on the static
patch of de Sitter space, as computed in [BCLP99, CP04, HX21] and rigorously verified in
[Vas10] (via [HV18, Appendix C]) and [HX22, §2]). The quasinormal modes described by
Theorem 1.1 are ‘zero-damped’ in that they tend to a real number (in fact, to 0) as Λ↘ 0;
for further results on zero-damped quasinormal modes, see [Joy22].

The full result, Theorem 3.8 (together with Lemma 3.7), is more precise: we show the
convergence of resonances with multiplicity, and we also prove the convergence of (general-
ized) resonant states, appropriately rescaled, to (generalized) resonant states on the static
patch of de Sitter space. (Petersen–Vasy [PV21a], based on earlier work by Galkowski–
Zworski [GZ21a], showed that resonant states are analytic, but our analysis does not make
use of this fact.) We refer the reader to [HX22, §§1 and 4] for plots and numerics in the
Schwarzschild–de Sitter case a = 0, and to Figure 1.1 below for a schematic illustration of
Theorem 1.1.

Mode stability is an immediate consequence of Theorem 1.1:3

Corollary 1.2 (Mode stability of Kerr–de Sitter black holes away from extremality). For
any ε > 0, there exists δ > 0 so that mode stability holds for the scalar wave equation on
Kerr–de Sitter black holes with parameters Λ,m, a satisfying |a/m| ≤ 1−ε and Λm2 ∈ (0, δ).
That is, no σ ∈ C with Imσ ≥ 0 and σ 6= 0 is a quasinormal mode; equivalently, for
σ ∈ QNM(Λ,m, a), either Imσ < 0 or σ = 0. Moreover, for σ = 0, the only mode solutions
are constants.

In particular, when Λ > 0 and the ratio |a/m| < 1 are fixed, this implies the mode
stability of KdS when the black hole mass m is sufficiently small. Alternatively, when m
and |a/m| < 1 are fixed, we conclude mode stability when Λ > 0 is sufficiently small;
this regime is of particular astrophysical interest since, according to the currently favored
ΛCDM model, Λ is indeed positive but very small.

The KdS black holes considered in Theorem 1.1 fit into Vasy’s framework [Vas13, §6], re-
cently extended to the full subextremal range of KdS black holes by Petersen–Vasy [PV21b].
This implies resonance expansions for solutions of the wave equation up to exponentially
decaying remainders.4 We state this in the simplest form, and only record the terms corre-
sponding to the quasinormal modes captured by Theorem 1.1:

Corollary 1.3 (Resonance expansions for waves). Put x = (r, θ, φ∗). For C > 0 and
ε > 0, let δ > 0 be as in Theorem 1.1, and suppose |a/m| ≤ 1 − ε and Λm2 ∈ (0, δ). Let

3The KdS parameter range covered by Corollary 1.2 has been confirmed to constitute a “large” range in
the sense of [Zwo17, Conjecture 4].

4In the present context, the dynamical assumptions required by Vasy’s framework follow already by
combining the r-normal hyperbolicity for every r of the trapped set of subextremal Kerr black holes, proved
by Dyatlov [Dya15], with the structural stability of such trapped sets [HPS77]. In fact, however, in the
course of our proof of Theorem 1.1, we directly prove the meromorphicity of, and high energy estimates for,

the inverse of the spectral family of �gΛ,m,a in Im(Λ−
1
2 σ) > −C, which imply such resonance expansions.
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|a/m|0 1

Λm2

0

1/9

Cσ

0

−i
√

Λ/3

−2i
√

Λ/3

−3i
√

Λ/3

=σ = −C
√

Λ

Figure 1.1. On the left: illustration of Theorem 1.1. The wave operator
on Kerr–de Sitter spacetimes with small Λm2 has a resonance at 0, and
resonances near −in

√
Λ/3, n = 1, 2, 3, . . . On the right: the dashed region

is the parameter space of subextremal Kerr–de Sitter black holes. The red
region is a schematic depiction of the set of parameters to which Theorem 1.1
applies. Mode stability is known to hold in the union of the red region
(Corollary 1.2) and the green region (see §1.2).

X := [r−, r+] × S2
θ,φ∗

, where r− ∈ (rCΛ,m,a, r
e
Λ,m,a) and r+ ∈ (rcΛ,m,a,∞). Let u = u(t∗, x)

denote the solution of the initial value problem

�gΛ,m,au = 0, (u, ∂t∗u)|t∗=0 = (u0, u1) ∈ C∞(X)⊕ C∞(X).

Then u has an asymptotic expansion∣∣∣∣u(t∗, x)− u0 −
N∑
j=1

( kj∑
k=0

tk∗e
−iσjt∗ujk(x)

)∣∣∣∣ ≤ C1e
−C
√

Λ t∗ ,

where u0 ∈ C, and where σ1, . . . , σN ∈ C (possibly with repetitions) are the quasinormal

modes with 0 > Im(Λ−
1
2σj) ≥ −C, and the

∑kj
k=0 t

k
∗e
−iσjt∗ujk are (generalized) mode solu-

tions5 of the wave equation. In particular,

|u(t∗, x)− u0| ≤ C2 exp

(
−
(

(1 + η)

√
Λ

3

)
t∗

)
,

where η = η(Λm2, a/m) → 0 as Λm2 ↘ 0. Above, C1, C2 are constants depending only on
Λ,m, a, and on the initial data u0, u1.

See [PV21b, Theorem 1.5] (based on [Vas13, Theorem 1.4]) for a more precise statement
which has weaker regularity requirements and allows for the presence of forcing. See more-
over [HV18] and [PV21b, Theorem 1.6] (based on [HV16]) for applications of such resonance
expansions to quasilinear equations.

Remark 1.4 (Spacetime degeneration). A uniform description of the singular limit of (waves
on) KdS spacetimes as m↘ 0 is beyond the scope of this paper.

As an illustration of the flexibility of our method of proof, we also show:

5We do not rule out the possibility that some of the resonances controlled by Theorem 1.1 are not simple;
hence the need to allow for kj ≥ 1.
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Theorem 1.5 (Quasinormal modes of Kerr–de Sitter black holes away from extremality:
massive scalar fields). Let ν ∈ C. Denote by QNM(ν; Λ,m, a) the set of resonances for

the Klein–Gordon operator �gΛ,m,a − Λ
3 ν.6 Put λ± = 3

2 ±
√

9
4 − ν. Let C > 0. Then

for any ε > 0, there exists δ > 0 so that for |a/m| ≤ 1 − ε and Λm2 ∈ (0, δ), every

σ ∈ QNM(ν; Λ,m, a) with Im(Λ−
1
2σ) > −C satisfies

σ = −i
√

Λ/3(λ± + n+ o(1))

for some n ∈ N0 as Λm2 ↘ 0. Conversely, there does exist a quasinormal mode near each
−i
√

Λ/3(λ± + n).

Solutions of the Klein–Gordon equation admit resonance expansions in a manner analo-
gous to Corollary 1.3. For the remainder of this introduction, we restrict attention to the
massless case (Theorem 1.1) unless explicitly stated otherwise.

1.1. Prior work on quasinormal modes and resonance expansions on de Sitter
black hole spacetimes. In the special case a = 0 of Schwarzschild–de Sitter black holes
(in which case the subextremality condition becomes 0 < 9Λm2 < 1), the discreteness of
QNM(Λ,m, 0) was shown by Sá Barreto–Zworski [SBZ97], relying in particular on [MM87].
For fixed parameters (Λ,m), they also characterized resonances in the high frequency regime
|Reσ| � 1, and showed that in conic sectors Imσ > −θ|Reσ| (with θ > 0 sufficiently small)
they are given by(

±l ± 1

2
− i
(
n+

1

2

))(1− 9Λm2)
1
2

3Λ
1
2m

√
Λ/3 + o(1), l→∞. (n = 0, 1, 2, . . .) (1.7)

When Λm2 ↘ 0, these approximate resonances thus leave any fixed half space Im(Λ−
1
2σ) >

−C; in this sense, Theorem 1.1 concerns an altogether different regime of resonances than
[SBZ97]. One is moreover led to conjecture that (at least away from the negative imaginary
axis) Theorem 1.1 continues to hold in the larger m-dependent range Imσ ≥ −cm−1 for
any c < 1

12
√

3
.

Still for a = 0, the author and Xie [HX22] proved a version of Theorem 1.1 which only

provides uniform control of resonances in any fixed ball |Λ−
1
2σ| ≤ C provided they are

associated with mode solutions which moreover have a fixed angular momentum l ∈ N0

(i.e. their dependence on the angular variables is given by a degree l spherical harmonic).
The proof proceeded via uniform estimates for a degenerating family of ordinary differential
equations, whereas the proof of Theorem 1.1 requires more sophisticated tools (see §1.4).

On Schwarzschild–de Sitter spacetimes, high energy resolvent estimates and resonance
expansions similar to Corollary 1.3 were established in [MSBV14b, MSBV14a] (exponential

decay to constants on M̃Λ,m,0) and previously in [BH08]: in the latter paper, Bony–Häfner

showed that on MDOC
Λ,m,0, waves are convergent sums over possibly infinitely many resonances,

up to an error term which has any desired amount of exponential decay. In recent work,
Mavrogiannis [Mav21] gives a proof of exponential decay to constants (thus exponential
energy decay) using vector field (‘physical space’) techniques; this improves on earlier work
by Dafermos–Rodnianski [DR07] which gave superpolynomial energy decay. An alternative
definition of the quasinormal mode spectrum, as the set of eigenvalues of an appropriate

6The normalization of the zeroth order term is chosen so that ν is dimensionless; see §1.3.
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evolution semigroup, and a proof of some of its salient properties (such as discreteness), was
given by Warnick [War15], and extended to asymptotically flat settings by Gajic–Warnick
[GW20]; see also [GZ21b].

These results were generalized to the case of slowly rotating Kerr–de Sitter black holes
in a series of papers by Dyatlov. In [Dya11b], Dyatlov defined resonances by exploiting
the separability of the wave equation and proved the discreteness of the set of resonances;
he moreover showed exponential decay to constants of waves first in MDOC

Λ,m,a, and then

in M̃Λ,m,a in [Dya11a] using red-shift estimates of Dafermos–Rodnianski [DR09] near the
horizons. The paper [Dya12] gives a description of the high energy resonances generalizing
and significantly refining (1.7), and proves resonance expansions for solutions of the wave
equation, up to error terms with any desired amount of exponential decay. As in the case
a = 0, the semiclassical methods of [Dya12] are effective only in a high frequency regime,
and all resonances captured by it leave the subset of the complex frequency plane described
in Theorem 1.1 when Λm2 ↘ 0.

A key ingredient in Dyatlov’s works is a robust approach to the analysis of the spectral
family at high frequencies near the trapped set. Wunsch–Zworski [WZ11b, WZ11a] showed
that the trapped set of slowly rotating Kerr black holes is k-normally hyperbolic for every
k [HPS77]; this was later extended to the full subextremal range, and to KdS black holes
with either small angular momentum or small cosmological constant by Dyatlov [Dya15].
Moreover, [WZ11b] provided microlocal semiclassical (i.e. high energy) estimates at the
trapped set. Dyatlov subsequently devised a particularly elegant method [Dya16] to prove
semiclassical estimates at normally hyperbolic trapped sets; we will use [Dya16] (rephrased
as a propagation estimate as in [HV16, Theorem 4.7]) as a black box in the present paper.
Dyatlov’s method has since been extended to give estimates at the trapped set for waves
on asymptotically Kerr(–de Sitter) spacetimes [Hin21a].

Remark 1.6 (Further comments on trapping). An important conceptual feature of the anal-
ysis of the trapped set in [Dya11b] is that it is based solely on the dynamical structure of the
trapped set (which is stable under perturbations [HPS77]), rather than on the separability
of the wave equation. Using the separability, estimates at the trapped set of rotating Kerr
spacetimes can be proved using rather explicit pseudodifferential multipliers, as shown by
Tataru–Tohaneanu [TT11]; see also [DR11, DR10] and the definitive [DRSR16] for a very
explicit approach of this nature. Andersson–Blue [AB15a] can avoid this issue altogether
by exploiting a second order ‘hidden’ symmetry operator which is closely related to the
complete integrability of the geodesic flow on Kerr spacetimes.

Vasy’s influential non-elliptic Fredholm theory [Vas13] provides a general framework for
proving the discreteness of resonance spectra and for establishing resonance expansions
of waves. This framework is fully microlocal, and makes use in particular of radial point
estimates (originating in [Mel94]) and real principal type propagation estimates [DH72], to-
gether with high energy estimates in the presence of normally hyperbolic trapping. Without
having to separate variables, [Vas13] recovers the results on exponential decay to constants
proved in [BH08, MSBV14b, Dya11a]. A detailed account is given by Dyatlov–Zworski
[DZ19].

The absence of modes for the Klein–Gordon equation in Imσ ≥ 0 can be proved directly
for all ν > 0 (in the notation of Theorem 1.5) in the case a = 0. In the case of small
a/m 6= 0, it also follows for sufficiently small ν > 0 from a perturbative calculation off the
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massless KdS case (see [Dya11b] or [HV15, Lemma 3.5]). We also note that Besset–Häfner
[BH21] proved, by such perturbative means, the existence of exponentially growing modes
for weakly charged and weakly massive scalar fields on slowly rotating Kerr–Newman–
de Sitter spacetimes.

1.2. Prior work on mode stability. We now turn to a discussion of the problem of
mode stability for black hole spacetimes. Mode stability (for massless scalar waves) is
a much weaker statement than Theorem 1.1, and by itself far from sufficient to obtain
Corollary 1.3 (or even just boundedness of waves).7 It is, however, more amenable to
direct investigations. Indeed, for a = 0, mode stability can be proved via an integration by
parts argument (when Imσ > 0) and a Wronskian (or boundary pairing) argument (when
σ ∈ R \ {0}); and the zero mode can be analyzed using an integration by parts argument
as well. (Even for the linearized Einstein equation, an appropriate notion of mode stability
for Schwarzschild–de Sitter black holes can be proved with moderate effort, see e.g. [KI03]
and [HV18, §7].) Given Vasy’s general perturbation-stable framework [Vas13], or using the
arguments specific to the Kerr–de Sitter metric by Dyatlov [Dya11b, Theorem 4], mode
stability follows for the wave equation on KdS with parameters (Λ,m, a) provided |a/m| is
sufficiently small.

For subextremal KdS black holes with a 6= 0, one can consider fully separated mode
solutions

e−iσteimφS(θ)R(r), m ∈ Z,

where the angular function S and the radial function R solve decoupled ordinary differential
equations (ODEs). Mode stability can then be proved for certain values σ ∈ R by means
of Wronskian (or energy) arguments for the radial ODE. More precisely, this applies to σ
which are not superradiant (see [SR15, §1.6] for this notion on Kerr spacetimes); the set
of superradiant frequencies σ ∈ R is a nonempty (when a 6= 0 and m 6= 0) open interval
centered roughly around ma. This argument also excludes resonances outside an appropri-
ate subset of the upper half plane. (There are no superradiant modes when one restricts to
axially symmetric mode solutions, i.e. m = 0, so mode stability for axially symmetric scalar
perturbations holds true.) Casals–Teixeira da Costa [CTdC22] exploit subtle discrete sym-
metries of the radial ODE, conjectured in [AGH20, Hat21], to prove mode stability outside
a smaller, but still always nonempty, subset of the closed upper half plane. (We also men-
tion that [AGH20] proposed exact quantizations conditions for quasinormal modes, which
were subsequently verified in [BILT21].) Numerical evidence [YUF10, Hat20] supports the
conjecture that mode stability does hold in the full subextremal range.

By contrast with the Kerr–de Sitter case, the mode stability of subextremal Kerr space-
times is settled (and 0 is not a resonance in this case). It was proved for fully separated
mode solutions in Imσ > 0 by Whiting [Whi89] who used a carefully defined integral
transform which maps the radial function R to another function which satisfies an ODE
for which Wronskian arguments can be applied successfully; Shlapentokh-Rothman [SR15]
showed that Whiting’s transformation can be used to prove mode stability on the real

7When combined with the Fredholm theory of [PV21b], it does however imply the existence of a spectral

gap, i.e. a small number α > 0 so that 0 is the only resonance in Im(Λ−
1
2 σ) > −α; and this gives decay to

constants, at the rate e−αt∗ , of smooth linear waves.
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axis.8 Mode stability in Imσ ≥ 0 for the Teukolsky equation for other values of the spin
s ∈ 1

2Z (with s = 0 corresponding to the scalar wave equation) was subsequently proved
by Andersson–Ma–Paganini–Whiting [AMPW17]. A different proof of these mode stability
results, based on a discrete symmetry of the relevant confluent Heun equation, was given
in [CTdC22].

We remark that when a 6= 0, the ODE for S(θ) depends on the value of σ (see [SR15,
Equation (1.3)]), and the underlying operator is not self-adjoint when σ /∈ R and thus does
not possess a complete orthonormal basis of eigenfunctions; since it is therefore not clear
that one can expand a general mode solution into fully separated ones, one cannot directly
deduce mode stability in Imσ > 0, in the sense used in this paper, from Whiting’s result.
(See however [FS16].) Nonetheless:

Theorem 1.7 (Mode stability of subextremal Kerr black holes). Denote by gm,a = g0,m,a the
Kerr metric on Rt∗ × [rem,a,∞)r×S2

θ,φ∗
, expressed in terms of the coordinates t∗, φ∗ in (1.5)

where we take F0,m,a(r) to be equal to −1 near r = rem,a and equal to 0 for r > 2rem,a.9

Let 0 6= σ ∈ C, Imσ ≥ 0. Suppose u(t∗, r, θ, φ∗) = e−iσt∗u0(r, θ, φ∗) is a mode solution of
�gm,au = 0, where u0 is smooth on [rem,a,∞)r × S2

θ,φ∗
, and so that e−iσrr−2imσu0(r, θ, φ∗) =

r−1v0(r−1, θ, φ∗) where v0 = v0(ρ, θ, φ∗) is smooth on [0, 1/rem,a) × S2
θ,φ∗

. Then u0 ≡ 0 on

[rem,a,∞)× S2.

Proof of Theorem 1.7 when σ ∈ R \ {0} or a = 0. Consider first the case σ ∈ R \ {0}. Sup-
pose u is a mode solution of the fully separated form

u(t, r, θ, φ) = e−iσteimφS(θ)R(r);

here S(θ) = Sσml(θ), m ∈ {−l,−l + 1, . . . , l}, denotes an oblate spheroidal harmonic.
We recall the regularity requirements on R from [SR15, Definition 1.1]: near r = ∞, the
function re−iσr∗R(r) = re−iσrr−2imσR(r) is smooth in 1/r, where r∗ = r + 2m log r (which

agrees with r∗, defined in the reference by dr∗

dr = r2+a2

r2−2mr+a2 , up to terms which are smooth

in 1/r); and near r = rem,a, the function (r − rem,a)
−
i(am−2mrem,aσ)

2
√

m2−a2 R(r) is smooth down to

r = rem,a. Since t ≡ t∗ −
2mrem,a

2
√
m2−a2

log(r − rem,a) and φ ≡ φ∗ − a
2
√
m2−a2

log(r − rem,a) modulo

functions which are smooth at r = rem,a, these regularity requirements are the same as those

made in Theorem 1.7 if one recalls that the functions eimφ∗Sσml(θ) are smooth on S2
θ,φ∗

(which is enforced by the boundary conditions placed on Sσml(θ) at θ = 0, π, cf. [SR15,
Equation(1.4)]). Therefore, [SR15, Theorems 1.5 and 1.6] apply to yield u = 0.

Given a general mode solution e−iσtu0(r, θ, φ), we may separate u0(r, ·, ·) into a conver-
gent sum of smooth functions of the form eimφS(θ) (cf. the discussion following [SR15,

8The quantitative main result of [SR15] was a key input in the proof of decay of solutions of the wave
equation on subextremal Kerr spacetimes by Dafermos–Rodnianski–Shlapentokh-Rothman [DRSR16]. The
merely qualitative mode stability result is sufficient for this purpose as well if one uses it, in conjunction with
strong (Fredholm and high energy) estimates for the spectral family, to exclude the presence of a nontrivial
nullspace of the spectral family for Imσ ≥ 0; see [Hin22a] and also Propositions 3.17, 3.18, and 3.21, as well
as the proof of Theorem 1.7 below in §3.9.

9In these coordinates, gm,a extends analytically down to, and across, the future event horizon H+
m,a =

H+
0,m,a, with the level sets of t∗ being transversal to H+

m,a. See (3.6a) for the explicit form of this metric when
the black hole mass and (specific) angular momentum are 1 and â, respectively, and the function F0,m,a is
denoted −χ̃e.
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Equation (1.4)]), with smooth dependence on r. Each summand is itself a mode solution
which is fully separated, and therefore it vanishes.

When a = 0, i.e. gm,0 is the Schwarzschild metric, then mode stability for fully separated
mode solutions in Imσ > 0 implies mode stability for general mode solutions. Indeed,
we can expand a mode solution e−iσtv(r, θ, φ) into spherical harmonics in (θ, φ), and each
piece e−iσtYlm(θ, φ)Rlm(r), l ∈ N0, l ∈ {−m, . . . ,m} is then a fully separated mode solution
which therefore vanishes. �

The case σ = 0, in which the boundary condition at r = ∞ becomes the decay require-
ment |u0(r, θ, φ∗)| . r−1 (or merely |u0| = o(1)), is analyzed in Lemma 3.19. The proof of
Theorem 1.1 for Imσ > 0 is given in §3.9; it relies on a continuity argument in a and the
fact that putative resonances σ for �gm,a with Imσ ≥ 0, which we have already observed
must satisfy Imσ > 0, depend continuously on a and yet have to disappear as one takes
a↘ 0; but they have to remain in a compact subset of C in view of high energy estimates
(which give an upper bound on |σ|). This is impossible, and thus resonances in Imσ > 0
cannot exist.

Teixeira da Costa [TdC20] proved the mode stability of extremal Kerr black holes, i.e.
|a| = m, using an appropriate integral transform—which due to the different character
of the radial ODE, related to the presence of a degenerate event horizon, is substantially
different from that introduced by Whiting. (The exceptional values σ ∈ (2m)−1N0 are not
covered by this result.) See [TdC20, Theorem 1.2]; see also Remark 1.13 for the relation
between Teixeira da Costa’s result and the topic of the present paper.

We remark that mode stability fails for the Klein–Gordon equation on subextremal Kerr
spacetimes for a large range of parameters, as shown by Shlapentokh-Rothman [SR14].
Moschidis [Mos17] proved a number of related mode instability results for deformations of
the Kerr spacetime by means of potentials or metric deformations which either exhibit stable
trapping or feature a non-Euclidean conic infinity. These results do not have a bearing on
Theorem 1.5 however, since the scalar field mass term vanishes in the appropriate Kerr
limit. (In any case, depending on the value of ν, Theorem 1.5 implies mode stability or
mode instability.)

A proof of mode stability for the scalar wave equation on Kerr–de Sitter black holes
(without restriction to axially symmetric modes), beyond the Schwarzschild–de Sitter case
and its small perturbations, has remained elusive, with all attempts so far having been based
on integral transforms [STU98, Ume00] or discrete symmetries [CTdC22]. The starting
point for the present paper is the idea, substantiated in a simple special case in [HX22],
that subextremal KdS spacetimes with small Λm2 can be regarded as singular perturbations
of subextremal Kerr spacetimes and of de Sitter space, and that one can extrapolate mode
stability and the approximate values of quasinormal modes from these two singular limits.
We explain this in some detail in §1.4.

Remark 1.8 (KdS mode stability in the full subextremal range). In the event that a direct
proof (via an integral transform, discrete symmetries, or otherwise) of the conjectural mode
stability of all subextremal KdS black holes should be found, the recent work by Petersen–
Vasy [PV21b] would immediately imply exponential decay to constants of solutions of the
wave equation. But even then, Theorem 1.1 and Corollary 1.3 would give, in the regime in
which they apply, significantly more precise information on the quasinormal mode spectrum
which likely remains out of reach for any direct methods. We hope that the rather general
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singular perturbation perspective put forth in the present paper can be put to use in other
settings involving spectral or resonance analysis in singular limits.

1.3. Scaling. In order to reduce the number of parameters, we note:

Lemma 1.9 (Scaling). For s > 0, let Ms : (t∗, r, θ, φ∗) 7→ (st∗, sr, θ, φ∗). Then on the

extended spacetime M̃Λs2,m/s,a/s (see (1.6)), we have

M∗s gΛ,m,a = s2gΛs2,m/s,a/s (1.8)

In the notation of Theorems 1.1 and 1.5, we furthermore have

QNM(Λ,m, a) = s−1QNM(Λs2,m/s, a/s),

QNM(ν; Λ,m, a) = s−1QNM(ν; Λs2,m/s, a/s).
(1.9)

Proof. The expressions (1.1) and (1.4) imply that

(M∗s µΛ,m,a)(r) = s2µΛs2,m/s,a/s(r), (M∗s %
2
Λ,m,a)(r, θ) = s2%2

Λs2,m/s,a/s(r, θ),

M∗s bΛ,m,a = bΛ,m,a = bΛs2,m/s,a/s, (M∗s cΛ,m,a)(θ) = cΛ,m,a(θ) = cΛs2,m/s,a/s(θ).
(1.10)

Therefore, r•Λ,m,a = sr•Λs2,m/s,a/s for • = −, C, e, c. Plugged into (1.5) (with the choice of

FΛ,m,a made there), this gives

(M∗s (∂rTΛ,m,a))(r) = ∂rTΛs2,m/s,a/s(r);

since M∗s (s∂r) = ∂r, we can choose the constant of integration for TΛ,m,a so that

(M∗s TΛ,m,a)(r) = sTΛs2,m/s,a/s(r).

We can similarly arrange (M∗sΦΛ,m,a)(r) = sΦΛs2,m/s,a/s(r). We conclude that Ms takes the
form (t, r, θ, φ) 7→ (st, sr, θ, φ) in Boyer–Lindquist coordinates. The claim (1.8) then follows
on MDOC

Λ,m,a from (1.10) and the explicit form (1.3) of gΛ,m,a. On the extended manifold

M̃Λs2,m/s,a/s, the equality (1.8) follows by analytic continuation, or directly by inspection
of the explicit form (3.2) of the metric in (t∗, r, θ, φ∗) coordinates.

As a consequence of (1.8), pulling back along M∗s or M∗1/s proves the equivalence(
�gΛ,m,a −

Λ

3
ν
)(
e−iσt∗u(r, θ, φ∗)

)
= 0⇔

(
�gΛs2,m/s,a/s

− Λs2

3
ν
)(
e−i(sσ)t∗u(sr, θ, φ∗)

)
= 0.

Thus, σ ∈ QNM(ν; Λ,m, a) if and only if sσ ∈ QNM(ν; Λs2,m/s, a/s). This implies (1.9)
and finishes the proof. �

It thus suffices to consider the first asymptotic regime mentioned after Corollary 1.2.
Concretely, we take s =

√
3/Λ in Lemma 1.9, and henceforth work with

Λ = 3.

1.4. Singular limits and asymptotic regimes. We now describe a few elements of the
proof of Theorem 1.1. Let us fix Λ = 3, and fix also the ratio a/m = â ∈ (−1, 1); thus, in
this section we exclusively work with Kerr–de Sitter metrics

gΛ,m,a = g3,m,âm,
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and we are interested in the limit m ↘ 0. For notational simplicity, we work with Boyer–
Lindquist coordinates here, and we restrict our attention to frequencies σ which lie in a
strip rather than a half space; thus, Imσ is bounded, but Reσ is unbounded.

For fixed r > 0, the Kerr–de Sitter metric gΛ,m,a = g3,m,â,m in (1.3) converges, as the
black hole mass tends to 0 (i.e. the black hole ‘disappears’), to the de Sitter metric

gdS = −(1− r2)dt2 +
1

1− r2
dr2 + r2

/g, /g = dθ2 + sin2 θ dφ2.

This metric is singular at the cosmological horizon r = 1, but a coordinate change similar
to (1.5) shows that this is merely a coordinate singularity (see (3.4)). Moreover, gdS is the
expression in polar coordinates (r, θ, φ) of a metric on Rt ×B(0, 1), where B(0, 1) := {x ∈
R3 : r = |x| < 1}, which is smooth across x = 0. One can then define resonances and mode
solutions for �gdS

as in the Kerr–de Sitter setting explained before Theorem 1.1; the set of
quasinormal modes of �gdS

(which are known explicitly, see Lemma 3.7) is then precisely
the limit of QNM(3,m, âm) as m↘ 0 in Theorem 1.1.

Now, gΛ,m,a does not converge smoothly to gdS. Rather, in rescaled coordinates

t̂ =
t

m
, r̂ =

r

m
,

the rescaled metric m−2gΛ,m,a converges, for fixed r̂ > 0 and as m↘ 0, to the metric

ĝ = − µ̂(r̂)

%̂2(r, θ)

(
dt̂−â sin2 θ dφ

)2
+
%̂2(r, θ)

µ̂(r)
dr̂2 + %̂2(r̂, θ)dθ2 +

sin2 θ

%̂2(r̂, θ)

(
(r̂2+â2)dφ−âdt̂

)2
,

µ̂(r̂) := r̂2 − 2r̂ + â2, %̂2(r̂, θ) := r̂2 + â2 cos2 θ,

of a Kerr black hole with mass 1 and angular momentum â. Note the relationship

e−iσt = e−iσ̃t̂, σ̃ = mσ, (1.11)

between frequencies on the KdS spacetime and frequencies for the rescaled observer on the
Kerr spacetime. Thus, σ̃ is small compared to σ when m > 0 is small; but since |σ| itself
may be large, the rescaled frequency σ̃ may nonetheless be large too—or not, depending
on the relative size of |σ| and m−1.

Remark 1.10 (Simple model). An operator on (2m, 2)r × S1
θ that the reader may keep in

mind in the subsequent discussion is

Pm(σ) :=
(

1− 2m

r
− r2

)
D2
r + r−2D2

θ − σ2, D =
1

i
∂.

(This is a poor approximation of the spectral family of the Schwarzschild–de Sitter wave
operator.) The two singular limits as m↘ 0 are

Pm(σ)→ P0(σ) = (1− r2)D2
r + r−2D2

θ − σ2, r ' 1,

m2Pm(σ)→ P̂ (σ̃) =
(

1− 2

r̂

)
D2
r̂ + r̂−2D2

θ − σ̃2, r̂ ' 1, σ̃ = lim
m↘0

mσ.
(1.12)

(In the second line, σ may vary with m.) Here, P0(σ) plays the role of the de Sitter model,

and P̂ (σ̃) that of the Kerr model.

We now list the different frequency regimes for σ and σ̃ as m↘ 0, together with a brief
description of the two limiting problems that one needs to study in each regime.
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(1) Bounded frequencies. σ remains bounded as m↘ 0: the spectral theory for de Sitter
space for bounded frequencies enters—and thus the de Sitter quasinormal mode
spectrum—but the Kerr wave operator enters only at frequency σ̃ = 0 by (1.11).

(2) Large frequencies. 1 � |Reσ| � m−1, i.e. σ is large but remains small compared
to m−1: this involves high energy (semiclassical) analysis on de Sitter space—where
there are no quasinormal modes—and low (i.e. near zero) frequency analysis for the
Kerr wave operator. From this point onwards, we are in the high frequency regime
from the perspective of the de Sitter limit.

(3) Very large frequencies. |Reσ| is comparable to m−1: in this case, σ̃ = mσ is, in
the limit m ↘ 0, of unit size but real. Thus, we are in a bounded real frequency
regime for the Kerr wave operator. Excluding the possibility of KdS resonances in
this regime thus requires as an input the absence of modes on the real axis for the
Kerr wave operator (Theorem 1.7).

(4) Extremely large frequencies. Finally, when |Reσ| is large compared to m−1 as
m ↘ 0, then we are in a high (real) frequency regime (|σ̃| = |mσ| � 1) also from
the perspective of the Kerr model. In this case, the absence of Kerr modes follows
directly using semiclassical methods.

More concretely then, in the bounded frequency regime, the uniform analysis of the
spectral family �gΛ,m,a(σ) = eitσ�gΛ,m,ae

−itσ (acting on functions of the spatial variables
only) takes place on function spaces which incorporate the two different spatial limiting
regimes: for r̂ ' 1, we measure regularity with respect to ∂r̂, ∂ω (spherical derivatives), and
for r ' 1 with respect to ∂r, ∂ω; put differently, writing x ∈ R3 for spatial coordinates on
de Sitter space, we use ∂x̂ = m∂x (where x̂ = x

m) for bounded |x̂|, and ∂x when |x| ' 1. (In
the region r̂ & 1, the vector fields r∂r, ∂ω work in both regimes simultaneously.) This is
conveniently phrased on a geometric resolution (blow-up) of the total space [0, 1]m×B(0, 1)x
in which one introduces polar coordinates around (m, x) = (0, 0), see Figure 1.2.

x

x̂

m

Ẋ

X̂

Figure 1.2. The total space for analysis at bounded frequencies.

We call this total space the q-single space Xq of X = B(0, 1), and refer to the corre-

sponding scale of function spaces as (weighted) q-Sobolev spaces Hs,l,γ
q,m : these are spaces of

functions of the spatial variables, and indeed equal to Hs as a set, but with norms that de-
generate in a specific manner as m↘ 0. For functions supported in r̂ & 1, the m-dependent

norm on Hs,l,γ
q,m for integer s is given by

‖u‖2
Hs,l,γ

q,m
=

∑
j+|α|≤s

∥∥∥r−l(m
r

)−γ
(rDr)

jDα
ωu
∥∥∥2

L2
,
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where L2 is the standard L2-norm on X. The algebra of q-(pseudo)differential operators is
described in detail in §2.1; it is a close relative of the surgery calculus of McDonald [McD90]
and Mazzeo–Melrose [MM95], see Remark 2.2.

The proof of Theorem 1.1 for bounded σ uses a priori estimates on q-Sobolev spaces for
u in terms of �gΛ,m,a(σ)u, with constants that are uniform as m ↘ 0. These estimates are
based on three ingredients.

(1) Symbolic analysis: elliptic regularity, radial point estimates, microlocal propagation
of regularity. This is a direct translation to the q-calculus of the corresponding
estimates introduced in the black hole setting by Vasy [Vas13]; by design, these
q-estimates are uniform in m. They take the form

‖u‖
Hs,l,γ

q,m
≤ C

(
‖�gΛ,m,a(σ)u‖

Hs−1,l−2,γ
q,m

+ ‖u‖
H
s0,l,γ
q,m

)
, s0 < s; (1.13)

that is, symbolic (or principal symbol) arguments control u to leading order in the
q-differentiability sense. The differential order s−1 on �gΛ,m,a(σ)u reflects the usual
loss of one derivative in radial point or hyperbolic propagation estimates. The shift
of −2 in the weight l − 2 reflects the scaling near the Kerr regime r̂ ' 1, cf. (1.12).

(2) Estimates for the Kerr model problem. This is a quantitative estimate for a function

v on X̂ (i.e. expressed in the rescaled coordinates x̂) in terms of the zero energy
operator �ĝ(0) applied to v. Apart from involving symbolic estimates as before,
such an estimate involves analysis at spatial infinity, where the operator �ĝ(0) is
an elliptic element of Melrose’s b-algebra [Mel81, Mel93]. Applying this estimate to

the error term ‖u‖
H
s0,l,γ
q,m

in (1.13) (cut off to a neighborhood of X̂ in Figure 1.2) and

noting that �ĝ(0) and m2�gΛ,m,a(σ) differ by an operator whose coefficients vanish
to leading order at m = 0 for bounded r̂, this gives the improved estimate

‖u‖
Hs,l,γ

q,m
≤ C

(
‖�gΛ,m,a(σ)u‖

Hs−1,l−2,γ
q,m

+ ‖u‖
H
s0,l0,γ
q,m

)
, s0 < s, l0 < l. (1.14)

(3) Estimates for the de Sitter model problem. This is a quantitative estimate for a

function v on Ẋ (see Figure 1.2) in terms of �gdS
(σ)v where �gdS

(σ) is the spectral
family of de Sitter space. The caveat here is that the singular limit m↘ 0 leaves a
mark not just geometrically (as in Figure 1.2) but also analytically, in that the point
x = 0 is blown up, and q-Sobolev spaces involve a choice of weight at r = 0. Indeed,
in the near-de Sitter region m . r, q-Sobolev spaces are cone Sobolev spaces (i.e.
weighted b-Sobolev spaces) with cone point at r = 0, and for appropriate weights
one has elliptic estimates at the cone point. (This issue was already addressed in
a simple setting in [HX22, §2.1].) Thus, if σ is not a de Sitter quasinormal mode,
one can apply this quantitative estimate to the error term in (1.14) and thereby
weaken the error term to10 C‖u‖

H
s0,l0,γ0
q,m

where γ0 < γ. But this is bounded by

Cmδ‖u‖
H
s,l0+δ,γ0+δ
q,m

where 0 < δ ≤ min(l− l0, γ − γ0), and hence small compared to

‖u‖
Hs,l,γ

q,m
when m is small. Therefore, we obtain a uniform estimate

‖u‖
Hs,l,γ

q,m
≤ C‖�gΛ,m,a(σ)u‖

Hs−1,l−2,γ
q,m

10While not apparent from this sketch, careful accounting of the orders required to apply the two model
operator estimates, and of the q-regularity of the error term, shows that the symbolic analysis is indeed
necessary in order to get an error term with differential order ≤ s here.
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for all sufficiently small m, and for bounded σ which are at most at a fixed small
distance away from de Sitter quasinormal modes. See Proposition 3.26. A Grushin
problem setup together with Rouché’s theorem takes care of KdS quasinormal modes
near de Sitter quasinormal modes.

Remark 1.11 (Comparison with [HX22]). The work [HX22] demonstrated how on the spher-
ically symmetric Schwarzschild–de Sitter spacetime, and after separation into spherical har-
monics, uniform estimates for a degenerating family of ordinary differential equations in the
radial variable imply Theorem 1.1 for bounded spectral parameters and for fixed spherical
harmonic degrees. In the present paper, we adopt a point of view based fully on the analysis
of partial differential operators; the part of the proof concerned with bounded frequencies is
conceptually very similar to [HX22, §3], except now the uniform estimates are proved using
microlocal means, as described above. The remaining three frequency regimes (2)–(4) are
not covered by [HX22].

The large frequency regime (2) is the most delicate one. From the perspective of de Sitter
space, uniform analysis away from the cone point utilizes semiclassical Sobolev spaces (i.e.
measuring regularity with respect to h∂x for |x| ' 1 where h = |σ|−1), but there is now an
artificial conic point at r = 0 through which we need to propagate semiclassical estimates
(along null-bicharacteristics which hit the cone point or emanate from it). We do this
by adapting the semiclassical propagation estimates which were proved in [Hin21b] by
means of the semiclassical cone calculus introduced in [Hin22b]: this involves radial point
estimates at incoming and outgoing radial sets over the cone point, and estimates for
a model operator on an exact Euclidean cone which here is the spectral family of the
Laplacian at frequency 1 (i.e. on the spectrum). In terms of the model of Remark 1.10, we
are considering h2P0(h−1) = (1−r2)(hDr)

2 +r−2(hDθ)
2−1, and the model operator arises

by passing to r̃ := r/h and taking the limit h↘ 0 for bounded r̃, giving D2
r̃ + r̃−2D2

θ − 1.
(We refer the reader to [MW04, MVW08, MVW13, Che22, Yan20] for further results on
propagation through, and diffraction by, conic singularities.)

From the perspective of the rescaled Kerr model on the other hand, the large frequency
regime (2) puts us into a regime of low frequencies σ̃, and we need to prove uniform
estimates for the spectral family �ĝ(σ̃) for real σ̃ near 0. Uniform estimates for low energy
resolvents on asymptotically flat spaces or spacetimes have a long history going back to
work by Jensen–Kato [JK79], with recent contributions including [GH08, GH09, GHS13,
BH10, DSS11, DSS12, Tat13, Vas21b, Vas21c, Hin22a, SW20, Mor20, MW21]. Here, we use
an approach that matches up exactly with the semiclassical cone analysis on the de Sitter
side: we work with function spaces (and a corresponding ps.d.o. algebra which we call
the scattering-b-transition algebra—see §A.3—which is taken directly from [GH08] except
for different terminology) which resolve the transition from the (elliptic) b-analysis at zero
frequency to (non-elliptic) scattering theory (in the spirit of [Mel94]) at nonzero frequencies.
The same model operator as above (conic Laplacian at frequency 1) now captures the
transition from zero to nonzero energies for the low energy spectral family of the Kerr
wave operator. This is less precise than, but technically simpler than the very precise
second microlocal approach introduced recently by Vasy [Vas21c]. In terms of the model

of Remark 1.10, we pass to ρ̂ = r̂−1 in order to work at spatial infinity, so σ̃−2P̂ (σ̃) =
(1 − 2ρ̂)σ̃−2(ρ̂2Dρ̂)

2 + ρ̂2σ̃−2D2
θ − 1, then introduce ρ̃ = ρ̂/σ̃, and pass to the limit σ̃ ↘ 0

for bounded ρ̃; this produces (ρ̃2Dρ̃)
2 + ρ̃2D2

θ − 1. Upon identifying ρ̃ = r̃−1, this is the
same operator as the one arising from the high frequency cone point perspective above.
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On the level of estimates, we combine symbolic estimates and estimates for the two model
spectral families by means of an appropriate family of (m, σ)-dependent Q-Sobolev norms
which reduce to semiclassical cone Sobolev norms in the high energy de Sitter regime, and
to scattering-b-transition Sobolev norms in the low energy Kerr regime. Concretely, an
integer order norm with these properties is

‖u‖2
H
s,(l,γ,l′,r)
Q,m,σ

=
∑

j+|α|≤s

∥∥∥r−l(m
r

)−γ
(h+ r)−l

′+l
( h

h+ r

)−r+γ( h

h+ r
rDr

)j( h

h+ r
Dω

)α
u
∥∥∥2

L2
,

h := |σ|−1 ∈ (m, 1],

for u with support in r & m. For fixed m > 0 and σ, this is equivalent to the Hs-norm,
but it degenerates in the correct manner as m ↘ 0. (In the main part of the paper, such
weighted Q-Sobolev norms have an extra order, denoted b, which however does not matter
outside the extremely high frequency regime. Moreover, the order r will be variable to
accommodate incoming and outgoing radial point estimates.)

Next, in the very large frequency regime (3), we are now, from the de Sitter perspective,
fully in a semiclassical regime. The symbolic propagation through the conic singularity
again follows [Hin21b], but the model problem at the cone point is now the spectral family
of the Kerr wave operator at bounded nonzero real frequencies. Estimates for the latter
are limiting absorption principle type estimates; they are proved as in [Mel94] up to com-
pact error terms, and removing these error terms precisely requires the mode stability for
the Kerr spacetime [SR15]. (This is reminiscent of propagation results for 3- or N -body
scattering [Vas00, Vas01], where microlocal propagation of decay through collision planes
requires the invertibility of a spectral problem for a subsystem.)

In the extremely large frequency regime (4) finally, we can use semiclassical methods also
for the spectral family on the Kerr spacetime (and therefore the absence of extremely large
frequency quasinormal modes can be proved entirely using symbolic means). Here, the full
null-geodesic dynamics of the Kerr spacetime enter; this is described in detail in [Dya15],
and we can use this and the relevant microlocal propagation results, in particular at the
trapped set [Dya16], as black boxes.

While the analysis of bounded frequencies is done separately (see §3.8), the analysis of
all three high frequency regimes is phrased in terms of the single aforementioned family of
weighted Q-Sobolev spaces. These capture regularity with respect to a Lie algebra of vector
fields adapted to each of the regimes discussed. We adopt a fully geometric microlocal point
of view and describe this underlying Lie algebra of Q-vector fields on a suitable total space
(a resolution of Rσ × [0, 1]m ×B(0, 1) where R = R ∪ {−∞,+∞}); the full spectral family
(σ,m) 7→ �g3,m,âm

(σ) is then (for fixed Imσ) a single element of a corresponding space of
Q-differential operators. Its microlocal analysis is accomplished by means of an algebra of
Q-pseudodifferential operators. Q-geometry and Q-analysis are developed in detail in §2.

Remark 1.12 (Separation of variables). It is conceivable that one can prove Theorem 1.1 by
starting with Carter’s separation of variables [Car68] and extending the ODE techniques
introduced in [HX22] to keep track of uniformity in half spaces Imσ > −C and also in the
parameters (`,m) of the spheroidal harmonics (generalizing the usual parameters ` ∈ N0

and m ∈ Z ∩ [−`, `] of spherical harmonics); we shall not pursue this possibility here. We
merely note that this approach would introduce yet another large parameter (|`|+|m| → ∞).
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Elements of the low frequency analysis for the Kerr model in the case â = 0 are developed
from a separation of variables point of view in [DSS11, DSS12].

Remark 1.13 (Mode stability in the full subextremal range). For simplicity of notation,
fix the black hole mass to be 1, and consider a sequence (Λj , 1, aj) of subextremal KdS
parameters with Λj ↘ 0, |aj | < 1. Then the limiting Kerr parameters (1, a), a = lim aj , may
be extremal. While the mode stability of extremal Kerr black holes is known [TdC20] (with
the exceptional frequencies requiring separate treatment), there do not exist any estimates
yet on the spectral family on an extremal Kerr spacetime (in any frequency regime) which
could take the place of the estimates on the subextremal Kerr spectral family used above.
If such estimates were available, one could likely generalize Theorem 1.1 to all subextremal
KdS black holes (possibly even including the extremal case) when Λm2 is sufficiently small;
at present, this is out of reach however.

The analytic framework introduced in this paper is very flexible. In particular, it can
be generalized in a straightforward manner to degenerating families of operators acting
on sections of vector bundles. In particular, for the Teukolsky equation on Kerr–de Sitter
spacetimes, we expect an analogue of Theorem 1.1 to hold; this would be an important
step towards an unconditional proof of the nonlinear stability of Kerr–de Sitter black holes
without restriction to small angular momenta. (The case of small angular momenta was
treated in [HV18].) Furthermore, other singular limits with similar scaling behavior can be
analyzed using the same approach. As a simple (albeit contrived) example, the operator

�gdS
+ m−2V (x/m),

where V ∈ C∞c (R3) (or more generally with inverse cubic decay), fits into our framework:
the analogue of the de Sitter model is now simply the spectral family of �gdS

, while the
analogue of the Kerr model is ∆x̂ − σ2 + V (x̂), i.e. the spectral family of the Schrödinger
operator ∆ + V on R3

x̂. Thus, if ∆ + V has no resonances in the closed upper half plane,
then the resonances of �gdS

+ m−2V (x/m) have the same description as in Theorem 1.1.
(Note that separation of variables is not available at all for this operator when V has no
symmetries.)

On the other hand, if the Kerr model of the equation under study has zero energy
resonances or bound states—as is the case for the Maxwell equations [ST15, AB15b] or
the equations of linearized gravity [ABBM19, HHV21]—the bounded frequency analysis
sketched above fails. It is an interesting open problem to analyze the limiting behavior of
KdS quasinormal modes in this case.

1.5. Outline of the paper. The technical heart of the paper is §2. We first discuss in
detail the geometric and analytic tools (q-analysis) which we will use for the uniform anal-
ysis at bounded frequencies—see §2.1—before describing the appropriate large frequency
generalization (Q-analysis) in §§2.2–2.5. The main result of the paper, Theorem 3.8, is set
up in §§3.1–3.2. After placing the full spectral family of a degenerating family of Kerr–
de Sitter spacetimes into the framework of Q-analysis in §3.3, the proof of Theorem 3.8
occupies §§3.4–3.9, with §3.9 describing the modifications necessary to treat resonances in
a full half space (rather than merely in strips, as described in §1.4). The proof of Theo-
rem 1.5 does not require any further work, and is given in §3.10.

Appendix A reviews elements of geometric singular analysis and recalls the various pseu-
dodifferential algebras (the b-, scattering, semiclassical scattering, semiclassical cone, and
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scattering-b-transition algebras) that are used in the analysis of the model problems dis-
cussed in §1.4. Appendix B contains supplementary material for §2.4; this is included for
conceptual completeness, but it is not used in the proofs of the main results.

Acknowledgments. I am very grateful to Simone Ferraro for an inspiring conversation
during our time as Miller Research Fellows at UC Berkeley which spawned the idea for the
present work (and for the earlier [HX22]). I am grateful to András Vasy for discussions
about his work [PV21b] with Oliver Lindblad Petersen, which prompted the writing of
this paper. Thanks are also due to Dietrich Häfner and András Vasy who shared with me
their unpublished manuscript [HV17a], as well as to Maciej Zworski for encouragement and
support. Many thanks are also due to two anonymous referees whose careful reading led to
a number of improvements, including the fixing of an incomplete argument in the proof of
Theorem 1.7. This research is supported by the U.S. National Science Foundation under
Grant No. DMS-1955614, and by a Sloan Research Fellowship.

2. Geometric and analytic setup of the singular limit

Let us fix an n-dimensional manifold X without boundary, and fix a point 0 ∈ X and
local coordinates x ∈ B(0, 2) = {x ∈ Rn : |x| < 2} so that x = 0 at the point 0. (All
constructions presented below go through whether X is compact or not. The main case of
interest in this paper is when X ⊂ R3 is the spatial part of the de Sitter manifold. For
compact X the discussion of function spaces is slightly simplified.)

We first describe somewhat briefly the geometric and analytic setup for the degenerate
limit for fixed frequencies in §2.1; we call this q-analysis. The geometric setup for uniform
analysis across all frequency regimes is then discussed in detail in §§2.2–2.4; we call this
Q-analysis. (The letters ‘q’ and ‘Q’ stand for ‘quasinormal modes’.) We freely make use of
the material in Appendix A.

2.1. q-geometry and -analysis. When, in the context of Theorems 1.1 and 1.5, the fre-
quency σ is fixed, the following space captures the geometric degeneration of the spacetime
as m→ 0.

Definition 2.1 (q-single space). The q-single space of X is the resolution Xq of [0, 1]m×X
defined as the blow-up

Xq :=
[
[0, 1]×X; {0} × {0}

]
.

We denote by zfq the front face, and by mfq the lift of {0}×X. We write ρzfq , ρmfq ∈ C∞(Xq)
for defining functions of these two boundary hypersurfaces.

See Figure 2.1. Our interest will be in uniform analysis as m↘ 0; thus, one may as well
replace [0, 1] by any other interval [0,m0] with m0 > 0. We work with a closed interval of
values of m since it will be convenient to keep all parameter spaces compact.

Remark 2.2 (q-analysis and analytic surgery). In the case that X is 1-dimensional, the set
{0} ⊂ X is a hypersurface, and Xq is equal to the single surgery space defined in [MM95];
this was first introduced by McDonald [McD90]. For higher-dimensional X, the single
surgery space is defined via blow-up of a hypersurface of X, rather than a point as in the
q-single space above. However, much of the discussion of the geometry, Lie algebra of vector
fields, and pseudodifferential calculus carries over from [MM95, §§3–4] to the q-setting with
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r

x̂

m

mfq
∼= Ẋ

zfq
∼= X̂

Figure 2.1. The q-single space Xq when dimX = 1.

minor changes. We shall nonetheless give a self-contained account here to fix the notation
and to facilitate the subsequent generalization to the Q-calculus.

We denote by m the lift of the first coordinate on [0, 1]×X to Xq; we furthermore write

x = rω, r ≥ 0, ω ∈ Sn−1, (2.1)

x̂ :=
x

m
, r̂ :=

r

m
, ρ̂ := r̂−1 =

m

r
. (2.2)

We finally put

Ẋ := [X; {0}] = [0, 2)r × Sn−1, X̂ := R3
x̂. (2.3)

Thus, ∂Ẋ = r−1(0) ⊂ Ẋ is the front face of Ẋ. Moreover, X̂ is the radial compactification
T0X of the tangent space T0X. We have natural diffeomorphisms

zfq
∼= X̂, mfq

∼= Ẋ,

and we shall use both notations for these boundary hypersurfaces.

Definition 2.3 (q-vector fields). The space of q-vector fields on X is defined as

Vq(X) := {V ∈ Vb(Xq) : Vm = 0}.

For m ∈ N0, we denote by Diffmq (X) the space of m-th order q-differential operators,
consisting of locally finite sums of up to m-fold compositions of elements of Vq(X) (a 0-fold
composition being multiplication by an element of C∞(Xq)). For α = (αzf , αmf) ∈ R2, put

Diffm,αq (X) = ρ−αzf
zfq

ρ−αmf
mfq

Diffmq (X) =
{
ρ−αzf

zfq
ρ−αmf

mfq
A : A ∈ Diffmq (X)

}
.

Since Xq ∩ {m > 0} = (0, 1] × X, an element V ∈ Vq(X) is thus a smooth family
(0, 1] 3 m 7→ Vm ∈ V(X) of smooth vector fields on X which degenerate in a particular
fashion in the limit r → 0, m → 0. Since Vb(Xq) is a Lie algebra, and since [V,W ]m =
V (Wm) −W (Vm) = 0 whenever Vm = 0 and Wm = 0, we conclude that also Vq(X) is a
Lie algebra.

Remark 2.4 (Comparison with [HX22]). The uniform ODE analysis of [HX22] was phrased
in terms of horizontal b-vector fields on the subset of [[0, 1)m × [0, 1)r; {0} × {0}] where
m . r . 1; thus, the b-behavior at the lift of r = 0 was excised. The q-single space and
class of q-vector fields defined here, even in the ODE setting where X is an open interval
containing 0, is more natural, as it does not introduce an artificial b-boundary at the lift
of r = 0.
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In local coordinates m ≥ 0, x̂ ∈ R3 near the interior zf◦q of zfq, the space Vq(X) is
spanned by ∂x̂j (j = 1, . . . , n) over C∞(Xq). Near the interior mf◦q, Vq(X) is spanned by
∂xj (j = 1, . . . , n) or equivalently by ∂r, ∂ω (schematic notation for spherical vector fields).
Near the corner zfq ∩ mfq, where we have local coordinates ρ̂, r, ω, we can use r∂r − ρ̂∂ρ̂,
∂ω as a spanning set. A global frame near zfq is given by

√
m2 + |x|2∂xj (j = 1, . . . , n). In

particular, if we regard V(X) as the subset of m-independent vector fields on Xq, then

V(X) ⊂ ρ−1
zfq
Vq(X), Diffm(X) ⊂ ρ−mzfq

Diffmq (X) = Diffm,(m,0)
q (X). (2.4)

We denote by
qTX → Xq

the q-vector bundle which has local frames given by the above collections of vector fields;
thus there is a bundle map qTX → TXq so that Vq(X) = C∞(X, qTX). From the above
local coordinate descriptions, we can then also conclude that the restriction maps

Nzfq : Vq(X)→ Vb(X̂), Nmfq : Vq(X)→ Vb(Ẋ) (2.5)

are surjective, and their kernels are ρzfqVq(X) and ρmfqVq(X), respectively. These maps
thus induce bundle isomorphisms

qTzfqX
∼= bTX̂, qTmfqX

∼= bTẊ, (2.6)

and corresponding isomorphisms of cotangent bundles. We can define the q-principal sym-
bol for V ∈ Vq(X) as qσ1(V ) : qT ∗X 3 ξ 7→ iξ(V ), and by linearity and multiplicativity we
can define qσm(A) ∈ Pm(qT ∗X) for A ∈ Diffmq (X); the principal symbol qσm(A) vanishes

if and only if A ∈ Diffm−1
q (X). We also have surjective restriction maps

Nzfq : Diffmq (X)→ Diffmb (X̂), Nmfq : Diffmq (X)→ Diffmb (Ẋ), (2.7)

and bσm(NH(A)) = qσm(A)|qT ∗HX for H = zfq,mfq under the above bundle isomorphisms.
These maps can be defined completely analogously to restrictions of b-vector fields: that is,
Nzfq(A)u = (Aũ)|zfq for u ∈ Ċ∞(X̂) = C∞(zfq) where ũ ∈ C∞(Xq) is any smooth extension
of u; similarly for Nmfq .

Definition 2.5 (Weighted q-Sobolev spaces). Suppose X is compact, and fix a finite col-
lection V1, . . . , VN ∈ Vq(X) of q-vector fields which at any point of Xq span the q-tangent
space. Fix any weighted positive density ν = ραzf

zfq
ραmf

mfq
ν0 where 0 < ν0 ∈ C∞(Xq,

qΩX). We

then define, for s ∈ N0 and l, γ ∈ R, the function space Hs,l,γ
q,m (X, ν) to be equal to Hs(X)

as a set, but equipped with the squared norm

‖u‖2
Hs,l,γ

q,m (X,ν)
:=

∑
α∈NN0 , |α|≤m

‖ρ−lzfq
ρ−γmfq

V αu‖2L2(X,νm), V α =
N∏
j=1

V
αj
j ,

where we write 0 < νm0 ∈ C∞(X,ΩX) for the restriction of ν to m−1(m0).

In particular, if ν = |dx|, then for u supported in |x̂| . 1, resp. r & 1, the norm ‖u‖Hs
q,m(X)

is uniformly equivalent to mn/2‖u‖Hs
b(X̂) (since |dx| = mn|dx̂|), resp. ‖u‖Hs

b(Ẋ).

To analyze q-differential operators using microlocal techniques, we need to define a cor-
responding pseudodifferential algebra.
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Definition 2.6 (q-double space). The q-double space of X is defined as the resolution of
[0, 1]m ×X2 given by

X2
q :=

[
[0, 1]×X2; {0} × {0} × {0}; {0} × {0} ×X, {0} ×X × {0}

]
.

We denote the front face of X2
q by zfq,2, the lift of {0} × X2 by mfq,2, and the lift of

[0, 1]× diagX (with diagX ⊂ X2 denoting the diagonal) by diagq. Furthermore, lbq,2, resp.
rbq,2 denotes the lift of {0} × {0} ×X, resp. {0} ×X × {0}. See Figure 2.2.

diagq

zfq,2
∼= X̂2

b

mfq,2
∼= Ẋ2

b

lbq,2lbq,2

rbq,2

rbq,2

r′

r

m

x̂

x̂′

Figure 2.2. The q-double space X2
q .

Lemma 2.7 (b-fibrations from the q-double space). The left projection [0, 1] ×X ×X 3
(m, x, x′) 7→ (m, x) and right projection (m, x, x′) 7→ (m, x′) lift to b-fibrations πL, πR : X2

q →
Xq.

Proof. We only consider the left projection. It lifts to a projection [[0, 1] ×X ×X; {0} ×
{0} ×X] = Xq ×X → Xq which is b-transversal to {0} × {0} × {0}, and hence lifts to a
b-fibration [

[0, 1]×X ×X; {0} × {0} ×X; {0} × {0} × {0}
]
→ Xq. (2.8)

On the left, we can reverse the order of the two blow-ups since the second center is contained
in the first. Since the map (2.8) is b-transversal to the lift of {0} ×X × {0}, this lift can
be blown up, and the map (2.8) lifts to the desired b-fibration. �

It is easy to check in local coordinates on X2
q that the lift of Vq(X) to X2

q along πL is
transversal to diagq (see also (2.9) below). (This can also be deduced from the analogous
statement for b-double spaces by using Lemma 2.9, together with the analogous statement
in m > 0.) The resulting isomorphism qTX ∼= N diagq induces a bundle isomorphism
N∗ diagq

∼= qT ∗X.

Definition 2.8 (q-pseudodifferential operators). Let s, l, γ ∈ R. Then Ψs,l,γ
q (X) is the

space of all smooth families of bounded linear operators on C∞c (X), parameterized by

m ∈ (0, 1], with Schwartz kernels κ ∈ ρ−lzfq,2
ρ−γmfq,2

Im−
1
4 (X2

q ,diagq;π∗R
qΩX) which vanish

to infinite order at lbq,2 and rbq,2, and which are conormal at zfq,2 and mfq,2. When X
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is non-compact, we furthermore demand that κ is properly supported, i.e. the projection
maps πL, πR : suppκ→ Xq are proper.

A typical element of Ψs,l,γ
q (X) is given in coordinates m > 0 and x, x′ ∈ Rn (the lift of

coordinates on X centered around 0 to the left and right factor of X2) as a quantization11

(Opq,m(a)u)(x) = (2π)−n
∫∫

exp
(
i
x− x′

ρzfq,2

ξ
)
χ
( |x− x′|
ρzfq,2

)
a(m, x, ξ)u(x′)

dx

ρnzfq,2

dξ, (2.9)

where χ ∈ C∞c ((−1
2 ,

1
2)) is identically 1 near 0, and a is the local coordinate expression of an

element of the symbol space Ss,l,γ(qT ∗X) consisting of conormal functions on qT ∗X with
weights −s, −l, and −γ at fiber infinity, over zfq,2, and over mfq,2, respectively.

Lemma 2.9 (Boundary hypersurfaces of X2
q). In the notation of §A.1, We have natural

diffeomorphisms
zfq,2

∼= X̂2
b, mfq,2

∼= Ẋ2
b. (2.10)

Proof. The front face of [[0, 1]×X2; {0}×{0}×{0}] is the radial compactification T(0,0)(X
2).

The lift of {0} × {0} × X, resp. {0} × X × {0} intersects this at {0} × ∂(T0X), resp.
∂(T0X)× {0}. The first isomorphism in (2.10) is thus the same as the fact—which can be

checked by direct computation—that the resolution of R2n at {0} × ∂Rn and ∂Rn × {0} is
naturally diffeomorphic to (Rn)2

b.

For the second isomorphism in (2.10), note that the lift of {0}×X2 to [[0, 1]×X2; {0}×
{0}×{0}] is [X2; {0}×{0}]. In this manifold, we then further blow up the lift of X×{0}—
resulting in [X × Ẋ; {0}× ∂Ẋ]—and then we blow up the lift of {0}× Ẋ, which can in fact

be done prior to blowing up {0} × ∂Ẋ and thus results in [X × Ẋ; {0} × Ẋ; {0} × ∂Ẋ] =

[Ẋ2; (∂Ẋ)2] = Ẋ2
b, as claimed. �

The principal symbol map qσs,l,γ fits into the short exact sequence

0→ Ψs−1,(l,γ)
q (X) ↪→ Ψs,l,γ(X)

qσs,l,γ−−−−→ Ss,l,γ(qT ∗X)/Ss−1,l,γ(qT ∗X)→ 0.

Restricting to operators whose Schwartz kernels are classical (denoted by an added subscript
‘cl’) at zfq,2 and mfq,2 (thus smooth when the corresponding order vanishes), we obtain from
Lemma 2.9 surjective normal operator maps

Nzfq : Ψs,0,γ
q,cl (X)→ Ψs,γ

b (X̂), Nmfq : Ψs,l,0
q,cl (X)→ Ψs,l

b (Ẋ). (2.11)

As in the case of q-differential operators, the principal symbols of NH(A) are related to
that of A by restriction using (2.6). Also, the normal operators can be defined via testing,
and therefore are multiplicative once we know that Ψq(X) is closed under composition; we
turn to this now.

Pushforward along πL maps the Schwartz kernel of elements of Ψs,l,γ
q,cl (X), resp. Ψs,l,γ

q (X)

into ρ−lzfq
ρ−γmfq
C∞(Xq), resp. A(−l,−γ)(Xq). Therefore, compositions of q-ps.d.o.s are well-

defined as maps on conormal functions on Xq. One can prove that the composition is
again a q-ps.d.o. using the explicit quantization map in local coordinates above and direct

estimates for the residual remainders (in Ψ−∞,l,γq (X)). A geometric proof proceeds via the
construction of an appropriate triple space:

11In these local coordinates, we can take ρzfq,2 =
√

m2 + |x|2 + |x′|2.
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Definition 2.10 (q-triple space). Define the following submanifolds of [0, 1]m ×X3:

C = {(0, 0, 0, 0)},
LF = {0} × {0} × {0} ×X, LS = {0} ×X × {0} × {0}, LC = {0} × {0} ×X × {0},
PF = {0} ×X ×X × {0}, PS = {0} × {0} ×X ×X, PC = {0} ×X × {0} ×X.

The q-triple space of X is then defined as

X3
q :=

[
[0, 1]×X3;C;LF , LS , LC ;PF , PS , PC

]
.

We denote by zfq,3 and mfq,3 the lifts of C and {0}×X3, respectively. For ∗ = F, S,C, we
denote by bfq,∗ and mfq,∗ the lifts of L∗ and P∗, respectively; and diagq,∗ denotes the lift

of [0, 1]× (πX∗ )−1(diagq) where πX∗ : X3 → X2 are the projections πXF : (x, x′, x′′) 7→ (x, x′),

πXS : (x, x′, x′′) 7→ (x′, x′′), πXC : (x, x′, x′′) 7→ (x, x′′). Finally, diagq,3 is the lift of [0, 1]×diag3

where diag3 = {(x, x, x) : x ∈ X} is the triple diagonal.

Lemma 2.11 (b-fibrations from the q-triple space). The projection map [0, 1]m × X3 3
(m, x, x′, x′′) 7→ (m, x, x′) ∈ [0, 1] × X2 to the first and second factor of X3 lifts to a b-
fibration πF : X3

q → X2
q , similarly for the lifts πS, πC : X3

q → X2
q of the projections to the

second and third, resp. first and third factor of X3.

Proof. We only prove the result for πF . Since the lifted projection [[0, 1] × X3;LF ] →
[[0, 1]×X2; {0} × {0} × {0}] is b-transversal to the lift of C ⊃ LF , it lifts to a b-fibration[

[0, 1]×X3;C;LF ]→
[
[0, 1]×X2; {0} × {0} × {0}

]
.

The preimage of the lift of {0} × {0} ×X, resp. {0} ×X × {0}, is the lift of PS , resp. PC ,
and thus the lifted projection[

[0, 1]×X3;C;LF ;PS , PC
]
→ X2

q

is a b-fibration still. It is b-transversal to the lift of LS , and thus lifts to a b-fibration if we
blow up LS in the domain; since LS and PS are transversal, and since LS ⊂ PC , [Mel96,
Proposition 5.11.2] implies that we can commute the blow-up of LS through that of PS , PC .
Arguing similarly for LC , we thus have a b-fibration[

[0, 1]×X3;C;LF , LS , LC ;PS , PC
]
→ X2

q .

This is b-transversal to the lift of PF ; blowing up PF in the domain thus gives the desired
b-fibration πF . �

For later use, we record

π−1
F (zfq,2) = zfq,3 ∪ bfq,F , π−1

F (mfq,2) = mfq,3 ∪mfq,F ,

π−1
F (lbq,2) = bfq,C ∪mfq,S , π−1

F (rbq,2) = bfq,S ∪mfq,C ,

π−1
F (diagq) = diagq,F .

(2.12)

similarly for the preimages under πS and πC .

Proposition 2.12 (Composition of q-ps.d.o.s). Let Aj ∈ Ψ
sj ,lj ,γj
q (X), j = 1, 2. Then

A1 ◦A2 ∈ Ψs1+s2,l1+l2,γ1+γ2
q (X).
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Proof. Since the space Ψs
q(X) is invariant under conjugation by powers of ρzfq and ρmfq , it

suffices to prove the result for l1 = l2 = 0 and γ1 = γ2 = 0. Write the Schwartz kernel κ of
A1 ◦A2 in terms of the Schwartz kernels κ1, κ2 of A1, A2 as

κ = (ν1ν2)−1(πC)∗
(
π∗Fκ1 · π∗Sκ2 · π∗Cν1 · π∗ν2

)
where 0 < ν1 ∈ C∞(Xq; qΩX) is an arbitrary q-density, and ν2 = |dmm | is a b-density on

[0, 2)m with π : X3
q → [0, 1] denoting the lifted projection. The term in parentheses is then

a bounded conormal section of π∗F
qΩX ⊗ π∗SqΩX ⊗ π∗CqΩX ⊗ π∗bΩ[0,1][0, 2) ∼= bΩX3

q which

vanishes to infinite order at the boundary hypersurfaces of X3
q which map to lbq,2 or rbq,2

under πC . The conclusion then follows using pullback and pushforward results for conormal
distributions, see [Mel96, §4] and [Mel92]. �

A proof of the uniform (for m ∈ (0, 1], the point being uniformity as m ↘ 0) bound-
edness of elements of Ψ0

q(X) on L2(X, ν) for 0 < ν ∈ C∞(Xq,
qΩX) can be reduced,

using Hörmander’s square root trick (see the proof of [Hör71, Theorem 2.1.1]), to the
uniform L2-boundedness of elements of Ψ−∞q (X). Such elements have Schwartz kernels

κ ∈ C∞(X2
q , π

∗
R

qΩX) which vanish to infinite order at lbq,2 and rbq,2. Pushforward of

κ along πL thus gives an element of C∞(Xq). The Schur test implies the desired L2-
boundedness; since Ψq(X) is invariant under conjugation by weights, we deduce bounded-
ness on L2(X, ν) for any weighted q-density ν. One can then define weighted Sobolev spaces

Hs,l,γ
q (X) also for real orders s ∈ R in the usual manner (cf. §A.4), and any A ∈ Ψs,l,γ

q (X)

defines a (uniformly as m↘ 0) bounded mapH s̃,l̃,γ̃
q (X)→ H s̃−s,l̃−l,γ̃−γ

q (X) for all s̃, l̃, γ̃ ∈ R.

The normal operator maps (2.5)–(2.7) for q-differential operators imply relationships
between integer order q-Sobolev spaces on X and families of b-Sobolev spaces on collar
neighborhoods of X̂ and Ẋ. We immediately state the version for general orders, which
rests on (2.11); for brevity, we restrict to the class of densities which we will use in §3.

Proposition 2.13 (Relationships between Sobolev spaces). Fix a density ν = ρ
n/2
zfq
ν0 where

0 < ν0 ∈ C∞(X, qΩX).12

(1) Consider the (change of coordinates) map φzfq : (0, 1]m × X̂◦ 3 (m, x̂) 7→ (m,mx̂) ∈
Xq, and let χ ∈ C∞(Xq) be identically 1 near zfq and supported in a collar neigh-
borhood of zfq ⊂ Xq. Then we have a uniform equivalence of norms

‖χu‖
Hs,l,γ

q,m (X)
∼ m

n
2
−l‖φ∗zfq(χu)|m‖Hs,γ−l

b (X̂,|dx̂|), (2.13)

in the sense that there exists a constant C > 1 independent of m ∈ (0, 1] so that the
left hand side is bounded by C times the right hand side, and vice versa.

(2) Consider the inclusion map φmfq : (0, 1]m × Ẋ◦ ↪→ Xq, and let χ ∈ C∞(Xq) be

identically 1 near mfq and supported in a collar neighborhood of Ẋ ⊂ Xq. Then we
have a uniform equivalence of norms

‖χu‖
Hs,l,γ

q,m (X)
∼ m−γ‖φ∗mfq

(χu)|m‖Hs,l−γ
b (Ẋ,νc)

, (2.14)

where νc is the lift of a fixed smooth positive density on X to Ẋ. (Thus, one can
take νc = |dx| = rn−1|dr dgSn−1 | near r = 0.)

12This includes as a special case m-independent smooth positive densities on X.
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Proof. Via division by ml, we can reduce to the case l = 0. Moreover, ρmfq := m/
√
|x|2 + m2

is a defining function of mfq, and its pullback along φzfq is 〈r̂〉−1 which is a defining function

of ∂X̂; therefore, we may also reduce to the case γ = 0.

For part (1), the L2-case s = 0 now follows from the observation that φ∗zfq
(|dx|) = mn|dx̂|.

For s > 0, fix an elliptic operator A0 ∈ Ψs
b(X̂) (independent of m) with Schwartz kernel κ0,

and fix also χ̃ ∈ C∞c (Xq) to be identically 1 near suppχ but still with support in a collar

neighborhood of zfq; define then A ∈ Ψs
q(X̂) via its Schwartz kernel κ as

κ = (π∗Lχ̃)(π∗Rχ̃) · (φ−1
zfq

)∗κ0 (2.15)

where πL, πR : X2
q → Xq denote the lifted left and right projections. (Thus, κ is obtained

from κ0 via dilation-invariant extension off zfq,2, followed by cutting it off to a neighborhood
of zfq,2.) In particular, A is elliptic as a q-ps.d.o. near the q-cotangent bundle over suppχ.
We then have a uniform equivalence of norms

‖χu‖Hs
q,m(X) ∼ ‖(χu)|m‖L2(X) + ‖A(χu)|m‖L2(X)

∼ m
n
2
(
‖φ∗zfq(χu)|m‖L2(X̂,|dx̂|) + ‖A0(φ∗zfq(χu)|m)‖L2(X̂,|dx̂|)

)
∼ m

n
2 ‖φ∗zfq(χu)|m‖Hs

b(X̂,|dx̂|),

as claimed. For s < 0, the claim follows by duality.

The proof of part (2) is completely analogous; one now takes an elliptic operator A0 ∈
Ψs

b(Ẋ) to measure Hs
b(Ẋ)-norms, and relates this to Hs

q(X)-norms by measuring the latter
using a q-ps.d.o. A defined analogously to (2.15). �

2.2. Q-single space. We shall control (solutions of) the degenerating spectral family for
an infinite range of spectral parameters on the following space, which is a resolution of a
parameter-dependent version of the q-single space Xq from Definition 2.1:

Definition 2.14 (Q-single space). The Q-single space of X is the resolution of Rσ×[0, 1]m×
X defined as the iterated blow-up

XQ :=
[
R×Xq; ∂R× zfq; ∂R×mfq

]
(2.16)

=
[
R× [0, 1]×X;R× {0} × {0}; ∂R× {0} × {0}; ∂R× {0} ×X

]
. (2.17)

We denote its boundary hypersurfaces as follows:

(1) mf (the ‘main face’) is the lift of R× {0} ×X;
(2) zf (the ‘zero energy face’) is the lift of R× {0} × {0};
(3) nf (the ‘nonzero energy face’) is the lift of ∂R× {0} × {0};
(4) if (the ‘intermediate semiclassical face’) is the lift of ∂R× {0} ×X;
(5) sf (the ‘semiclassical face’) is the lift of ∂R× [0, 1]×X.

The hypersurfaces nf, if, sf have two connected components each, denoted nf±, if±, sf±,
corresponding to whether σ = +∞ or −∞. For H ⊂ XQ equal to any one of these boundary

hypersurfaces, we denote by ρH ∈ C∞(XQ) a defining function of H, i.e. H = ρ−1
H (0) and

dρH 6= 0 on H. For H = nf, we denote by ρH a total boundary defining function for
nf+ ∪ nf−, likewise for H = if, sf.
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We introduce a variety of functions defined on (subsets of) XQ. We denote by σ,m the
lifts of the first two coordinates on R× [0, 1]×X. We furthermore write x = rω and x̂ = x

m ,

r̂ = r
m , ρ̂ = r̂−1 as in (2.1)–(2.2). We also set

h = |σ|−1, r̃ :=
r

h
, ρ̃ := r̃−1 =

h

r
, σ̃ := mσ, h̃ := |σ̃|−1 =

h

m
. (2.18)

See Figure 2.3.

zf

nf+

if+if+

mfmf

sf

σ

m

x̂

σ̃

x̂h
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r̃

ρ̂
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ρ̃

rh̃

ρ̂

m

x̂

h̃

Figure 2.3. The Q-single space XQ in the case X = (−1, 1), restricted to
σ > −C, and the coordinates (2.1), (2.2), and (2.18).

Proposition 2.15 (Structure of boundary hypersurfaces).

(1) The restriction of (σ, x̂) to the interior of zf induces a diffeomorphism

zf ∼= Rσ × X̂
Thus, zf is the total space of the (trivial) fibration X̂ − zf → Rσ.

(2) The restriction of (σ, (r, ω)) to the interior of mf induces a diffeomorphism

mf ∼=
[
R× Ẋ; ∂R× ∂Ẋ

]
.

(3) The restriction of (σ̃, x̂) to the interior of nf± induces a diffeomorphism

nf± ∼=
[
(±[0,∞])× X̂; {0} × X̂

]
.

(4) The restriction of (σ̃, x) to the interior of if± induces a diffeomorphism

if± ∼= (±[0,∞])× Ẋ.

Proof. The front face of [R × [0, 1] × X;R × {0} × {0}] = R × [[0, 1] × X; {0} × {0}] is

diffeomorphic to R× T0X = R× X̂ (with coordinates σ, x̂ in the interior). The boundary
hypersurface zf is obtained from this front face by blowing up σ = ±∞ which does not
change the smooth structure. (Note that the lift of the final submanifold ∂R × {0} × X
in (2.17) is disjoint from this front face.) This proves part (1).

For part (2), we note that the lift of R×{0}×X to XQ is given by first resolving R×X
at R × {0} (which produces R × Ẋ) followed by the resolution of ∂R × ∂Ẋ. Within this
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zf

nf+

if+if+

mfmf

sf

|σ| . 1

1� σ � m−1

σ ' m−1 (σ̃ ' 1)

Figure 2.4. The Q-single space XQ for X = (−1, 1). We show here the
intersections of three level sets of the (rescaled) frequency variable σ (σ̃)
with m−1(0): one level set σ = σ0 where |σ0| . 1 is bounded and thus the
rescaled Kerr frequency σ̃0 = mσ0 = 0 vanishes; one level set σ = σ1 where
σ1 is large but σ̃1 := mσ1 still vanishes; and one level set σ̃ = mσ = σ̃0 where
the rescaled frequency σ̃0 is of order 1.

space then, the final resolution in (2.17) only blows up the lift of ∂R× Ẋ, which does not
change the smooth structure.

For part (3), we first note that the front face nf ′± of the blow-up of the lift of {±∞} ×
{0} × {0} to X ′Q := [R × [0, 1] ×X;R × {0} × {0}] is diffeomorphic to [0,∞]µ × X̂ where

µ = ν
h with ν = (r2 + m2)1/2 a defining function of the front face of X ′Q. The final blow-up

in (2.17) restricts to nf ′± as the blow-up of {∞} × ∂X̂, that is,

nf± =
[
[0,∞]µ × X̂; {∞} × ∂X̂

]
.

Upon restriction to a compact subset K of the interior X̂◦ in the second factor (thus
r . m), we can replace ν by m, and thus µ by m

h = ±σ̃. (That is, µ/(±σ̃) is a positive

smooth function on [0,∞]µ ×K.) Near the boundary of X̂ on the other hand, let us work

in the collar neighborhood [0, 1)ρ̂ × Sn−1
ω of ∂X̂ ⊂ X̂. Since there we can replace ν by r

and thus µ by r̃, the lift of [0,∞]µ × [0, 1)ρ̂ × Sn−1
ω to nf± is[

[0,∞]r̃ × [0, 1)ρ̂ × Sn−1
ω ; {∞} × {0} × Sn−1

ω

]
=
[
[0,∞]× [0, 1); {∞} × {0}

]
× Sn−1.

Observe then that the map (r̃, ρ̂)→ (r̃ρ̂, ρ̂) induces a diffeomorphism[
[0,∞]× [0, 1); {∞} × {0}

] ∼= [[0,∞]× [0, 1); {0} × {0}
]
. (2.19)

Since r̃ρ̂ = ±σ̃, this proves part (3).

Finally, for the proof of part (4), we note that coordinates near the lift of {∞}×{0}×X
to [R × [0, 1] ×X; ∂R × {0} × {0}] are r ≥ 0, ω ∈ Sn−1, ρ̂ = m

r ≥ 0, and ρ̃ = h
r ≥ 0, with

the lift of {∞} × {0} ×X given by ρ̃ = ρ̂ = 0. Therefore,

if ∼= [0,∞]ρ̂/ρ̃ ×X,
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and it remains to note that ρ̂/ρ̃ = m/h = ±σ̃. �

Definition 2.16 (Pieces of zf, mf and nf±). We define

mf±,~ := mf ∩ σ−1(±[1,∞]),

nf±,~̃ := nf± ∩ σ̃−1(±[1,∞]), nf±,low := nf± ∩ σ̃−1(±[0, 1]).

We furthermore set, for σ0 ∈ R and σ̃0 ∈ R \ {0},

zfσ0 := zf ∩ σ−1(σ0), mfσ0 := mf ∩ σ−1(σ0), nf σ̃0 := nf ∩ σ̃−1(σ̃0).

Thus, using the notation for the single spaces for semiclassical cone, sc-b-transition, and
semiclassical scattering analysis from §§A.2, A.1, and A.3, respectively, Proposition 2.15
provides diffeomorphisms

mf±,~ ∼= Ẋc~ (with semiclassical parameter h = |σ|−1 ∈ [0, 1]),

nf±,~̃
∼= X̂sc,~̃ (with semiclassical parameter h̃ = |σ̃|−1 ∈ [0, 1]),

nf±,low
∼= X̂sc-b (with spectral parameter σ̃ ∈ ±[0, 1]),

(2.20)

as well as

zfσ0
∼= X̂, mfσ0

∼= Ẋ, nf σ̃0
∼= X̂.

2.3. Q-vector fields and differential operators. We next turn to the class of σ- and
m-dependent vector fields on X on which our uniform analysis will be based.

Definition 2.17 (Q-vector fields). The space of Q-vector fields on X is defined as

VQ(X) := {V ∈ ρifρsfVb(XQ) : V σ = 0, Vm = 0}.

Since XQ ∩{σ ∈ R, m > 0} = Rσ × (0, 1]m×X, an element V ∈ VQ(X) is thus a smooth
family R× (0, 1] 3 (σ,m) 7→ Vσ,m of smooth vector fields on X which degenerate or become
singular in a particular fashion in the limits r → 0, m → 0, |σ| → ∞, or any combination
thereof.

Lemma 2.18 (Properties of VQ(X)). The space VQ(X) is Lie algebra, and in fact

V,W ∈ VQ(X) =⇒ [V,W ] ∈ ρsfρifVQ(X). (2.21)

Moreover, for any weight w =
∏
H ρ

αH
H where H ⊂ XQ ranges over all boundary hypersur-

faces and αH ∈ R, we have w−1[V,w] ∈ ρsfρifC∞(XQ) for any V ∈ VQ(X).

Proof. The final claim follows from the fact that w−1[V0, w] ∈ C∞(XQ) for any V0 ∈ Vb(XQ).
In order to prove (2.21), we observe that [V,W ]σ = VWσ−WV σ = 0, likewise [V,W ]m = 0;
moreover, we have, for w := ρsfρif and V = wV0, W = wW0 ∈ VQ(X),

[V,W ] = w
(
(w−1[V0, w])W0 − (w−1[W0, w])wV0

)
∈ wVb(XQ),

which implies the claim. �

We make this explicit in various local coordinate systems; we use the notation from (2.1),
(2.2), and (2.18).
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(1) The intersection of XQ with |x̂| < C is [[0, 1]m × Rσ × B; {0} × ∂R × B] where

B = {x̂ ∈ X̂ : |x̂| < C} is a ball. Thus, in the coordinates m, σ, x̂, a basis of Q-
vector fields is given by ∂x̂j (j = 1, . . . , n) in the set where σ is bounded or even

where |σ| ≥ 1 but σ̃ is bounded, and by h̃∂x̂j when |σ̃| & 1 (where h̃ is a defining
function of sf).

(2) The intersection of XQ with r > c > 0 is [[0, 1]m × Rσ × A; {0} × ∂R × A] where
A = {x ∈ X : |x| > c}. A basis of Q-vector fields, in the coordinates m, σ, x (or r, ω
instead of x) is then for bounded σ given by ∂xj (j = 1, . . . , n) (or equivalently ∂r
and spherical vector fields, which we schematically write as ∂ω), and for large |σ|
by h∂xj (or h∂r, h∂ω).

It remains to consider the subset of XQ where |x̂| > C and r < c.

(3) Near the interior of zf∩mf, we have local coordinates σ ∈ R, ρ̂ ≥ 0, r ≥ 0, ω ∈ Sn−1.
Q-vector fields are spanned by r∂r − ρ̂∂ρ̂, ∂ω.

(4) Near the corner zf ∩mf ∩ nf+, local coordinates are h ≥ 0, r̃ ≥ 0, ρ̂ ≥ 0, ω ∈ Sn−1,
and Q-vector fields are spanned by r̃∂r̃ − ρ̂∂ρ̂, ∂ω.

(5) Near the corner mf ∩ nf+ ∩ if+, local coordinates are r ≥ 0, ρ̃ ≥ 0, σ̃ ≥ 0, ω, with ρ̃
a defining function of if+. Q-vector fields are thus spanned by ρ̃(r∂r − ρ̃∂ρ̃), ρ̃∂ω.

(6) Near the corner nf+ ∩ if+ ∩ sf finally, local coordinates are r ≥ 0, ρ̂ ≥ 0, h̃ ≥ 0,

ω, with ρ̂ and h̃ being local defining functions of if+ and sf, respectively. Thus,
Q-vector fields are spanned by ρ̂h̃(r∂r − ρ̂∂ρ̂), ρ̂h̃∂ω.

One can also give a more global description: in |x̂| . 1, resp. |x̂| & 1, Q-vector fields are
spanned by

h

h+ m
∂x̂j (j = 1, . . . , n), resp.

h

h+ r
r∂r,

h

h+ r
∂ω. (2.22)

Definition 2.19 (Q-bundles). We denote by QTX → XQ the Q-vector bundle, which is

the vector bundle equipped with a smooth bundle map QTX → TXQ with the property

that VQ(X) = C∞(XQ,
QTX). The dual bundle QT ∗X is the Q-cotangent bundle.

We next study restrictions of Q-vector fields to various boundary hypersurfaces of XQ.
We use the notation from Appendix A. The following result, based on (2.20) is the reason for
the appearance of the various model problems in uniform singular analysis in the Q-setting:

Lemma 2.20 (Restriction to boundary hypersurfaces).

(1) Restriction to zf induces a surjective map Nzf : VQ(X)→ C∞(R;Vb(X̂)) with kernel
ρzfVQ(X).

(2) Restriction to mfσ0 induces a surjective map Nmfσ0
: VQ(X)→ Vb(Ẋ). Restriction

to mf±,~ induces a surjective map Nmf±,~ : VQ(X)→ Vc~(Ẋ) (see §A.2). The kernel
of ⊕σ0∈RNmfσ0

is ρmfVQ(X).

(3) Restriction to nf±,low, resp. nf±,~̃ induces a surjective map Nnf±,low
: VQ(X) →

Vsc-b(X̂) (see §A.3), resp. Nnf±,~̃
: VQ(X) → Vsc,~(X̂) (see §A.1). The kernel of

(Nnf±,low
, Nnf±,~̃

) is ρnf±VQ(X).

We could leave mf in one piece; then restriction to mf induces a map from VQ(X) onto

the space of b-vector fields on [Rσ × Ẋ; ∂R× ∂Ẋ] which annihilate σ and vanish at the lift
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of ∂R×Ẋ. This target space consists of smooth families of b-vector fields which degenerate
like semiclassical cone vector fields as |σ| → ∞. (An analogous remark applies to nf±.) The
reason for splitting mf (or nf±) is that the analysis at high energies |σ| → ∞ (or |σ̃| → ∞)
will be conceptually different from the analysis at bounded frequencies σ (or σ̃).

Proof of Lemma 2.20. We prove this using the coordinate systems and local spanning sets
of VQ(X) listed before the statement of Lemma 2.20. Thus, part (1) follows from the
observation that the map Nzf , in the coordinates m, σ, x̂, resp. σ, ρ̂, r, ω, maps ∂x̂j to itself

(j = 1, . . . , n), resp. r∂r− ρ̂∂ρ̂, ∂ω to −ρ̂∂ρ̂, ∂ω, with coefficients that are smooth on Rσ×X̂.

For part (2), consider first the case of bounded σ. The conclusion is then clear in
r > c > 0, whereas near mf ∩ zf and in the coordinates σ, ρ̂, r, ω, the map Nmf maps
r∂r− ρ̂∂ρ̂ 7→ r∂r and ∂ω 7→ ∂ω, thus has range equal to smooth families (in σ) of elements of

Vb(Ẋ). In the coordinates h, r̃, ρ̂, ω near mf ∩nf±∩ zf, with ρ̂ a defining function of mf, the
map Nmf takes r̃∂r̃− ρ̂∂ρ̂ 7→ r̃∂r̃, ∂ω 7→ ∂ω, thus its range consists of c~-vector fields indeed.
This is true also in the coordinates r, ρ̃,±σ̃, ω near mf ∩ nf± ∩ if± (with ±σ̃ defining mf),
in which Nmf maps ρ̃(r∂r − ρ̃∂ρ̃) and ρ̃∂ω to the same expressions; since the semiclassical

face of Ẋc~ is defined by ρ̃ = 0, this proves part (2).

For part (3), the maps Nnf±,low and Nnf±,~̃ are given by the restriction of coefficients of

Q-vector fields, with respect to the bases listed in the various coordinate systems prior to
the statement of Lemma 2.18, to nf±. These vector fields are indeed sc-b-vector fields on
nf±,low (with scattering behavior at ρ̃ = 0, cf. the coordinate system near nf± ∩mf ∩ if±),

and semiclassical scattering vector fields on nf±,~̃ (with h̃ the semiclassical parameter, and

with scattering behavior at ρ̂ = 0, cf. the coordinate system near nf+ ∩ if+ ∩ sf). �

Corollary 2.21 (Bundle identifications). The restriction maps of Lemma 2.20 induce bun-
dle isomorphisms

QTzfX ∼= R× bTX̂ (as bundles over zf = R× X̂),

QTmfσ0
X ∼= bTẊ, QTmf±,~X

∼= c~TẊ,

QTnf±,low
X ∼= sc-bTX̂, QTnf±,~̃

X ∼= sc~̃TX̂,

and QTnfσ̃0
X ∼= scTX̂, where σ0 ∈ R and σ̃0 ∈ R \ {0}.

Definition 2.22 (Q-differential operators). For m ∈ N0, we denote by DiffmQ (X) the space
of locally finite sums of up to m-fold compositions of elements of VQ(X) (a 0-fold compo-
sition is, by definition an element of C∞(XQ)). Given a collection α = (αH) of weights
αH ∈ R for H = zf,mf, nf, if, sf, we denote more generally

Diffm,αQ (X) =

(∏
H

ρ−αHH

)
DiffmQ (X) =

{(∏
H

ρ−αHH

)
A : A ∈ DiffmQ (X)

}
.

Analogously to Q-vector fields, Q-differential operators A ∈ DiffmQ (X) are smooth families
(m, σ) 7→ Am,σ ∈ Diffm(X) of differential operators on X which degenerate in a particular
fashion as m→ 0, |σ| → ∞, and/or r → 0. Note that elements of DiffQ(X) commute with
multiplication by m and σ, with

m ∈ Diff
0,(−1,−1,−1,−1,0)
Q (X), σ ∈ Diff

0,(0,0,1,1,1)
Q (X). (2.23)
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Thus, for instance, it suffices to restrict in Definition 2.22 to the case αmf = αnf = 0. We
also remark that a σ-independent q-differential operator A ∈ Diffmq (X) defines an element

A ∈ Diff
m,(0,0,0,m,m)
Q (X); this is a consequence of the fact that V ∈ Vq(X), regarded as

a σ-independent vector field on XQ, satisfies V ∈ ρ−1
if ρ

−1
sf VQ(X), as follows directly from

the definition. Recalling (2.4), this implies that, regarding an operator on X as an m- and
σ-independent operator on Xq and XQ,

Diffm(X) ⊂ ρ−mzfq
Diffmq (X) ⊂ Diff

m,(m,0,m,m,m)
Q (X). (2.24)

The principal symbol Qσ1(V ) of V ∈ VQ(X), defined as mapping ξ ∈ QT ∗X to iξ(V ), is
a fiber-linear function. The property (2.21) implies that the principal symbol extends to a
multiplicative family of maps Qσm with the property that

0→ ρsfρifDiffm−1
Q (X) ↪→ DiffmQ (X)

Qσm−−−→ Pm(QT ∗X)/ρsfρifP
m−1(QT ∗X)→ 0 (2.25)

is a short exact sequence. By Lemma 2.20, we get multiplicative normal operator maps

Nzf : DiffmQ (X)→ C∞(R; Diffmb (X̂)),

Nmfσ0
: DiffmQ (X)→ Diffmb (Ẋ), Nmf±,~ : DiffmQ (X)→ Diffmc~(Ẋ),

Nnf±,low
: DiffmQ (X)→ Diffmsc-b(X̂), Nnf±,~̃

: DiffmQ (X)→ Diffm
sc~̃(X̂),

(2.26)

as well as similar maps on spaces of weighted operators (with the weight at H required
to be 0 in the definition of NH). Moreover, the principal symbol of Nzf(P ) is given by

the restriction of Qσm(P ) to QT ∗zfX
∼= R × bT ∗X̂ via Corollary 2.21, similarly for the

principal symbols of the other normal operators. Note also that the vanishing of Nzf(P ),
resp. Nmfσ0

(P ) for all σ0, resp. Nnf±,low
(P ) and Nnf±,~̃

(P ) implies that P vanishes to leading

order the appropriate boundary hypersurface, i.e. P ∈ ρzfDiffmQ (X), resp. P ∈ ρmfDiffmQ (X),

resp. P ∈ ρnf±DiffmQ (X). Together with Qσm(P ), these normal operators thus capture P
to leading order in all 6 senses (corresponding to the 6 orders in Definition 2.22).

Furthermore, we can restrict to level sets σ−1(σ0) or σ̃(σ̃0) for σ0 ∈ R or σ̃0 ∈ R \ {0}.
This gives normal operator homomorphisms

Nσ0 : DiffmQ (X)→ Diffmq (X), Nnfσ̃0
: DiffmQ (X)→ Diffmsc(X̂).

See §3.3 for the way in which the spectral family of interest in Theorem 1.1 fits into this
framework of Q-analysis.

2.4. Q-pseudodifferential operators. The microlocal analysis of Q-differential opera-
tors relies on a corresponding Q-pseudodifferential algebra, which we proceed to define;
analogously to Q-differential operators, a Q-ps.d.o. A will be a smooth family R× (0, 1] 3
(σ,m) 7→ Aσ,m of ordinary ps.d.o.s on a manifold X without boundary.

Definition 2.23 (Q-double space). Recall the q-double space X2
q of X and its submanifolds

zfq,2
∼= X̂2

b, mfq,2
∼= Ẋ2

b, lbq,2, rbq,2, and diagq from Definition 2.6. The Q-double space of

X is then defined as the resolution of Rσ ×X2
q given by

X2
Q :=

[
R×X2

q ; ∂R× zfq,2; ∂R× diagq;

∂R× (diagq ∩mfq,2), ∂R× lbq,2, ∂R× rbq,2; ∂R×mfq,2

]
.

(2.27)
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We label its boundary hypersurfaces as follows:

(1) zf2 is the lift of R× zfq,2;

(2) mf2 is the lift of R×mfq,2;

(3) nf2 is the lift of ∂R× zfq,2;

(4) if2 is the lift of ∂R× (diagq ∩mfq,2), and if ′2 is the lift of ∂R×mfq,2;

(5) sf2 is the lift of ∂R× diagq, and sf ′2 is the lift of ∂R×X2
q ;

(6) lb2, resp. rb2 is the lift of R× lbq,2, resp. R× rbq,2;

(7) tlb2, resp. trb2 is the lift of ∂R× lbq,2, resp. ∂R× rbq,2.

We denote by nf2,± the connected components of nf2 corresponding to the value of σ = ±∞;
similarly for if2,±, if ′2,±, sf2,±, sf ′2,±, tlb2,±, trb2,±. Furthermore, we write for σ0 ∈ R and
σ̃0 ∈ R \ {0}

mf2,σ0 := mf2 ∩ σ−1(σ0), mf2,±,~ := mf2,± ∩ σ−1(±[1,∞]),

nf2,±,low := nf2,± ∩ σ̃−1(±[0, 1]), nf2,±,~̃ := nf2,± ∩ σ̃−1(±[1,∞]),

and nf2,σ̃0 := nf2 ∩ σ̃−1(σ̃0). Finally, diagQ denotes the lift of R× diagq.

In (2.27), note that ∂R × lbq,2, ∂R × rbq,2, and ∂R × (diagq ∩mfq,2) are disjoint, and
hence they can be blown up in any order.

Lemma 2.24 (b-fibrations from the Q-double space). The left projection, resp. right pro-
jection R × (0, 1] ×X ×X 3 (σ,m, x, x′) 7→ (σ,m, x) ∈ R × (0, 1] ×X, resp. (σ,m, x′) lifts
to a b-fibration πL, resp. πR : X2

Q → XQ.

Proof. We only discuss the case of the left projection. Using Lemma 2.7, we start with the
fact that the left projection lifts to a b-fibration π̃L : R ×X2

q → R ×Xq; the preimages of
the centers in (2.16) under it are

π̃−1
L (∂R× zfq) = (∂R× zfq,2) ∪ (∂R× lbq,2),

π̃−1
L (∂R×mfq) = (∂R×mfq,2) ∪ (∂R× rbq,2).

(2.28)

From the first line and [Mel96, Proposition 5.12.1], we deduce that the lift of π̃L to[
R×X2

q ; ∂R× zfq,2; ∂R× lbq,2

]
→
[
R×Xq; ∂R× zfq

]
is a b-fibration. Since this is b-transversal to the lift of ∂R × diagq (which is mapped
diffeomorphically to a copy of Xq), this lifts to a b-fibration[

R×X2
q ; ∂R× zfq,2; ∂R× diagq, ∂R× lbq,2

]
→
[
R×Xq; ∂R× zfq

]
.

By (2.28), the preimage of the lift of ∂R ×mfq under this map is the union of the lifts of

∂R×mfq,2, ∂R× (diagq ∩mfq,2), and ∂R× rbq,2. By [Mel96, Proposition 5.11.2], the lift[
R×X2

q ; ∂R×zfq,2; ∂R×diagq, ∂R×lbq,2; ∂R×rbq,2; ∂R×(diagq ∩mfq,2); ∂R×mfq,2

]
→ XQ

is therefore a b-fibration. This finishes the proof. �

Definition 2.25 (Q-pseudodifferential operators). Let s ∈ R and α = (αH) where αH ∈ R
for H = mf, zf, nf, if, sf. Then Ψs,α

Q (X) consists of all smooth families A = (Am,σ)m∈(0,1],σ∈R
of bounded linear operators on C∞c (X) whose Schwartz kernels are elements of

ρ−αzf
zf2

ρ−αmf
mf2

ρ−αnf
nf2

ρ−αif
if2

ρ−αsf
sf2

Im−
1
2 (X2

Q,diagQ;π∗R
QΩX) (2.29)
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which are conormal down to all boundary hypersurfaces of X2
Q and vanish to infinite order

at all boundary hypersurfaces other than mf2, zf2, nf2, if2, sf2 (and the lift of m−1(1)).
The subspace of operators whose Schwartz kernels are classical conormal at zf2,mf2,nf2 is
denoted Ψs,α

Q,cl(X).

Remark 2.26 (Defining functions). Note that π−1
L (zf) = zf2 ∪ lb2, and indeed the defining

function zf lifts to X2
Q under πL to a product of defining functions of zf2 and lb2. In view

of the infinite order of vanishing of Schwartz kernels of Q-ps.d.o.s at lb2, we can therefore
replace the weight ρzf2 in (2.29) by (the left lift of) ρzf . Similarly,

π−1
L (mf) = mf2 ∪ rb2, π−1

L (nf) = nf2 ∪ tlb2,

π−1
L (if) = if2 ∪ if ′2 ∪ trb2, π−1

L (sf) = sf2 ∪ sf ′2.

Similar statements hold for πR in place of πL. Together, they imply that Ψs,α
Q (X) is invariant

under conjugation by weights
∏
ρ−αHH on XQ.

For local coordinate descriptions, we shall use the smooth functions on X2
Q obtained by

lifting coordinates on XQ to the left, resp. right factor; the left lift will be denoted by the
same symbol, and the right lift with the primed symbol. For example, x̂ and x̂′ denote the
left and right lift of the function on XQ denoted x̂ in (2.2).

For bounded σ, Q-ps.d.o.s are smooth families (in σ) of q-ps.d.o.s, for which a local
coordinate description was given in (2.9). Consider next the region |x̂|, |x̂′| . 1 for σ & 1.
Near {∞} × (diagq ∩ zf◦q,2) ⊂ R×X2

q , we can then use local coordinates h ≥ 0, m ≥ 0, x̂′,
and y := x̂ − x̂′, with the diagonal defined by y = 0. Upon blowing up h = m = 0, the
lift of h = 0 is defined by h

h+m = 0; upon passing to the subsequent blow-up of the lift of

∂R× diagq, coordinates near the Q-diagonal are thus

yQ :=
y

h/(h+ m)
,

and therefore a typical element of Ψs,α
Q (X) is given by

(OpQ,m,h−1(a)u)(x̂) = (2π)−n
∫

exp
(
i

x̂− x̂′

h/(h+ m)
· ξ
)
χ
(
|x̂− x̂′|

)
a(h,m, x̂, ξ) dξ (2.30)

where a is a symbol, or more precisely a is conormal on XQ×Rn with order αH at H ×Rn
for H = zf,nf, sf, and order s at Xq × ∂Rn; and χ ∈ C∞c ((−1

2 ,
1
2)) is identically 1 near 0.

Thus, (2.30) is essentially a semiclassical ps.d.o. with semiclassical parameter h
h+m . We also

note that the left lift of the basis h
h+m∂x̂j of VQ(X) in this coordinate system (see (2.22))

is given by ∂
yjQ

, which is transversal to diagQ = y−1
Q (0).

Working in the region |x̂|, |x̂′| & 1 for σ & 1, we can use as smooth coordinates near

{∞} × diagq ⊂ R × X2
q the functions h ≥ 0, m

r′ ≥ 0, r′ ≥ 0, ω′ ∈ Rn−1, z = r−r′
r′ ,

w = ω − ω′ ∈ Rn−1 where we fix local coordinates on Sn−1. Upon blowing up ∂R × zfq,2

(given by h = r′ = 0), the lift of h = 0 is given by h
h+r′ = 0; passing to the subsequent

blow-up of the lift of ∂R× diagq, coordinates transversal to the lifted diagonal are thus

(zQ, wQ) :=
(z, w)

h/(h+ r′)
.
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These coordinates remain transversal to the lift of the diagonal to the subsequent blow-ups
in (2.27). Thus, an element of Ψs,α

Q (X) is given by

(OpQ,m,h−1(a)u)(r, ω) = (2π)−n
∫∫

exp
[
i
( r − r′
r′ h
h+r′

ξ +
ω − ω′

h/(h+ r′)
· η
)]

× χ
(∣∣∣r − r′

r′

∣∣∣)χ(|ω − ω′|)a(h,m, r, ξ, η) dξ dη,

(2.31)

where a is conormal on XQ×Rn(ξ,η) with order αH at H×Rn for all boundary hypersurfaces

H ⊂ XQ, and order s at XQ × ∂Rn(ξ,η). Since the second spanning set of Q-vector fields

in (2.22) lifts to the left factor of X2
Q as ∂zQ , ∂wQ , we conclude that also in this region the

left lift of VQ(X) is transversal to diagQ.

As a consequence of the two transversality statements, we obtain a bundle isomorphism
QTX ∼= TdiagQ

X2
Q/T diagQ = N diagQ given by the left lift; and therefore

N∗ diagQ
∼= QT ∗X. (2.32)

Moreover, for m ∈ N0, we conclude that Diffm,αQ (X) ⊂ Ψm,α
Q (X) consists of those operators

whose Schwartz kernels are Dirac distributions at diagQ. Generalizing (2.25), the principal

symbol map Qσs,α on Ψs,α
Q (X) fits into the short exact sequence

0→ ρifρsfΨ
s,α
Q (X) ↪→ Ψs,α

Q (X)
Qσs,α−−−→ (Ss,α/ρifρsfS

s−1,α)(QT ∗X)→ 0.

Finally, we conclude that pushforward along πL is a continuous map from Ψs
Q(X), resp.

Ψs
Q,cl(X) into A0(XQ), resp. C∞(XQ); thus, Q-ps.d.o.s define bounded linear maps on

A0(XQ), or on C∞(XQ) for classical ps.d.o.s.

We may allow for the orders s, αif , αsf to be variable; in this paper we only need to
consider the case that the if-order is variable,

αif ∈ C∞(QT ∗ifX),

while s, αsf are constant; for α = (αzf , αmf , αnf ,αif , αsf), the principal symbol map then

takes values in (Ss,α/ρ1−2δ
if ρsfS

s−1,α)(QT ∗X) for any δ > 0.

In order to study the normal operators of Q-ps.d.o.s, we need the following result, which
is the double space analogue of Lemma 2.20:

Proposition 2.27 (Boundary hypersurfaces of X2
Q). We have the following natural diffeo-

morphisms:

(1) zf2
∼= R× X̂2

b;

(2) mf2,σ0
∼= Ẋ2

b (for σ0 ∈ R);

(3) mf2,±,~ ∼= Ẋ2
c~ (see §A.2) with semiclassical parameter h = |σ|−1;

(4) nf2,±,low
∼= X̂2

sc-b (see §A.3) with spectral parameter σ̃ = mσ.

(5) nf2,±,~̃
∼= X̂2

sc,~ (see §A.1) with semiclassical parameter h̃ = |σ̃|−1.

That is, the local coordinates σ, x̂, x̂′ restrict to a map zf◦2 → R × Rnx̂ × Rnx̂′ which extends
by continuity to the diffeomorphism in part (1); similarly for the other diffeomorphisms.
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Proof. We obtain zf2 by first blowing up ∂R × zfq,2 ⊂ R × zfq,2, which thus does not

change the smooth structure of R× zfq,2; the lifts of the remaining submanifolds in (2.27)

to [R×X2
q ; ∂R× zfq,2] are disjoint from the lift of R× zfq,2. This proves part (1).

Next, mf2 arises from R × mfq = R × Ẋ2
b (see Lemma 2.9) by first blowing up its

intersection ∂R×ffb with ∂R×zfq,2, where ffb denotes the front face of Ẋ2
b; then one blows

up the intersection with the lift of ∂R × diagq, which is equal to the intersection with the

lift of ∂R × (diagq ∩mfq,2) and thus given by the lift of ∂R × diagb to [R × Ẋ2
b; ∂R × ffb].

This blow-up thus produces [
R× Ẋ2

b; ∂R× ffb; ∂R× diagb

]
.

The intersection of this space with the lift of ∂R× lbq,2 is ∂R× lbb, similarly for the right
boundary, and hence blowing up both of these lifts produces[

R× Ẋ2
b; ∂R× ffb, ∂R× lbb, ∂R× rbb, ∂R× diagb

]
. (2.33)

The intersections of this space with the lift of ∂R × (diagq ∩mfq,2) or with the lift of

∂R×mfq,2 are both boundary hypersurfaces, hence their blow-up does not affect the smooth
structure. Upon intersecting the space (2.33) with σ−1(σ0) or σ−1(±[1,∞]), we thus obtain
the isomorphisms stated in parts (2) and (3).

Finally, we consider nf2,+. Let [0, ε)ρzfq,2
× zfq,2 be a collar neighborhood of zfq,2 ⊂ X2

q .

We take ρzfq,2 =
√

m2 + |x|2 + |x′|2 for concreteness. Then the front face of [R×X2
q ; {∞}×

zfq,2] is that of [[0, 1]h × [0, ε)ρzfq,2
× zfq,2; {0} × {0} × zfq,2], and thus equal to

nf ′2,+ := [0,∞]h̃′ × zfq,2 = [0,∞]h̃′ × X̂
2
b, h̃′ :=

h

ρzfq,2

.

Its intersections with the lifts of

{∞} × diagq, {∞} × (diagq ∩mfq,2), {∞} × lbq,2, {∞} × rbq,2, {∞} ×mfq,2

with nf ′2,+ are given by

{0} × diagb, {0} × ∂ diagb, {0} × lbb, {0} × rbb, {0} × ffb,

respectively; we need to blow these up in the listed order. In fact, the first two blow-
ups can be performed after the third and fourth (since the first/second and third/fourth
submanifolds are disjoint); then, since ∂ diagb = diagb ∩ffb, one can blow up {0} × diagb,
{0} × ∂ diagb, and {0} × ffb in the order {0} × ffb, {0} × ∂ diagb, {0} × diagb. Thus,

nf2,+ =
[
[0,∞]h̃′ × X̂

2
b; {0} × lbb, {0} × rbb; {0} × ffb; {0} × ∂ diagb; {0} × diagb

]
. (2.34)

To analyze this space, we introduce ρ̂tot := (1 + |x̂|2 + |x̂′|2)−
1
2 = ρ̂lbb

ρ̂ffb
ρ̂rbb

, which is a

total boundary defining function of X̂2
b. We then claim that the change of coordinates map

(h̃′, x̂, x̂′) 7→ (σ̃, x̂, x̂′) with σ̃ = (1 + |x̂|2 + |x̂′|2)−
1
2 /h̃′ = ρ̂tot

h̃′
induces a diffeomorphism13[

[0,∞]h̃′ × X̂
2
b; {0} × lbb, {0} × rbb; {0} × ffb

]
∼=
[
[0,∞]σ̃ × X̂2

b; {0} × ffb; {0} × lbb, {0} × rbb

]
.

(2.35)

13This is the analogue, in the double space setting, of the isomorphism (2.19).
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(See Figure 2.5.) This is clear over the interior (X̂◦)2 of X̂2
b. We have ffb

∼= [0,∞]s× (∂X̂)2

where s = ρ̂
ρ̂′ with ρ̂ = |x̂|−1 = ρ̂lbb

ρ̂ffb
and ρ̂′ = |x̂′|−1 = ρ̂rbb

ρ̂ffb
for suitable defining

functions ρ̂lbb
, ρ̂ffb

, ρ̂rbb
of lbb, ffb, rbb ⊂ X̂2

b, so

s =
ρ̂lbb

ρ̂rbb

.

Thus, a collar neighborhood of ffb ⊂ X̂2
b is given by [0, ε)ρ̂ffb

× [0,∞]s × (∂X)2. Upon

dropping the factor (∂X)2, the claim (2.35) thus reads[
[0,∞]h̃′ × [0, ε)ρ̂ffb

× [0,∞]s; {0} × [0, ε)× {0}, {0} × [0, ε)× {∞}; {0} × {0} × [0,∞]
]

∼=
[
[0,∞]σ̃ × [0, ε)× [0,∞]; {0} × {0} × [0,∞]; {0} × [0, ε)× {0}, {0} × [0, ε)× {∞}

]
(2.36)

via the change of coordinates map κ : (h̃′, ρ̂ffb
, s) 7→ (

ρ̂lbb
ρ̂ffb

ρ̂rbb

h̃′
, ρ̂ffb

, s), where we put ρ̂lbb
=

s
s+1 and ρ̂rbb

= 1
s+1 . The proof of (2.36) proceeds by explicit calculations in local coordinate

systems, and is pictorially given in Figure 2.5. Using the diffeomorphism (2.35) in (2.34),

h̃′
ρ̂tot

ρ̂tot
h̃′

ρ̂ffb

ρ̂ffb

h̃′
ρ̂tot

ρ̂tot
h̃′

h̃′
ρ̂lbb

ρ̂lbb
h̃′

h̃′

1
h̃′

ρ̂ffb

h̃′

ρ̂lbb

ρ̂lbb

ρ̂lbb

ρ̂lbb

ρ̂tot
σ̃

σ̃

1
σ̃

σ̃
ρ̂tot

ρ̂tot
σ̃

ρ̂ffb

ρ̂ffb

ρ̂lbb

σ̃
ρ̂ffb

ρ̂ffb
σ̃

ρ̂lbb
σ̃

1
σ̃

ρ̂ffb

ρ̂lbb

ρ̂lbb

∼=

Figure 2.5. Illustration of (the proof of) the diffeomorphism (2.36). On
the left: the space on the left in (2.36). On the right: the space on the right
in (2.36). Also shown are matching local coordinate systems near the various
boundary faces; in the listed coordinates systems, we have ρ̂tot ∼ ρ̂lbb

ρ̂ffb
,

and we also recall that σ̃ = ρ̂tot/h̃
′.

we then find that

nf2,+ =
[
[0,∞]σ̃ × X̂2

b; {0} × ffb; {0} × lbb, {0} × rbb; [0,∞]× ∂ diagb; {∞} × diagb

]
.

This implies parts (4) and (5). The proof is complete. �

The relationship between the semiclassical, resp. doubly semiclassical cone algebras of
[Hin22b] and the Q-algebra in the intermediate semiclassical regime |σ| ∼ m−1 (mentioned
in the discussion of the very large frequency regime in §1.4), resp. fully semiclassical regime
|σ| � m−1 is described in Appendix B.

We now switch to a less cumbersome notation for the weights, writing l = αzf , γ = αmf ,
l′ = αnf , r = αif , b = αsf .
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Corollary 2.28 (Normal operators). Restricting Schwartz kernels of classical Q-ps.d.o.s
to the boundary hypersurfaces zf2, mf2,±,~, nf2,±,low, and nf2,±,~̃ defines surjective normal
operator maps

Nzf : Ψ
s,(0,γ,l′,r,b)
Q,cl (X)→ C∞

(
R; Ψs,γ

b (X̂)
)
,

Nmf±,~ : Ψ
s,(l,0,l′,r,b)
Q,cl (X) → Ψs,l,l′,r

c~ (Ẋ),

Nnf±,low
: Ψ

s,(l,γ,0,r,b)
Q,cl (X) → Ψs,r,γ,l

sc-b (X̂),

Nnf±,~̃
: Ψ

s,(l,γ,0,r,b)
Q,cl (X) → Ψs,r,b

sc~̃
(X̂).

Moreover, for σ0 ∈ R and σ̃0 ∈ R \ {0}, restriction to σ−1(σ0), σ−1(σ0) ∩mf2, and nf2,σ̃0

defines surjective maps

Nσ0 : Ψ
s,(l,γ,l′,r,b)
Q (X)→ Ψs,(l,γ)

q (X),

Nmfσ0
: Ψ

s,(l,0,l′,r,b)
Q (X) → Ψs,l

b (Ẋ),

Nnfσ̃0
: Ψ

s,(l,γ,0,r,b)
Q (X) → Ψs,r

sc (X̂),

respectively. All statements hold also for variable if-orders r ∈ C∞(QT ∗ifX).

Since Ψs
Q,cl(X) acts boundedly on C∞(XQ) and is invariant under conjugation by weights,

these normal operators can be defined via testing. That is, for A ∈ Ψ
s,(0,γ,l′,r,b)
Q,cl (X), the oper-

ator Nzf(A) can be defined via Nzf(A)u := (Aũ)|zf where ũ ∈ C∞(XQ) is any smooth exten-

sion of u ∈ Ċ∞(zf); likewise for the other normal operators. In particular, the above normal
operator maps are homomorphisms under composition, where we compose Q-ps.d.o.s as op-
erators between spaces of weighted smooth functions (i.e. classical conormal distributions)
on XQ.

We finally show that the spaces ΨQ(X) and ΨQ,cl(X) are closed under composition. This
can be done in a straightforward but tedious manner using the local coordinate descrip-
tions (2.30)–(2.31) (while residual operators, i.e. those with orders s, αif , αsf = −∞ are
handled directly on the level of Schwartz kernels). Keeping in line with the presentation
thus far, we instead sketch the proof based on an appropriate triple space.

We use the notation for the q-triple space X3
q from Definition 2.10, and furthermore write

∂R×mfq,S/C = {∂R×mfq,S , ∂R×mfq,C},

similarly ∂R× bfq,F/S/C , etc.

Definition 2.29 (Q-triple space). The Q-triple space of X is the resolution

X3
Q :=

[
R×X3

q ; ∂R× zfq,3; ∂R× bfq,F/S/C ; ∂R× diagq,3; ∂R× diagq,F/S/C ;

∂R× (diagq,F/S/C ∩mfq,F/S/C); ∂R×mfq,F/S/C ;

∂R× (diagq,F/S/C ∩mfq,3); ∂R×mfq,3

]
.

Lemma 2.30 (b-fibrations from the Q-triple space). The projection map Rσ×[0, 1]m×X3 →
R× [0, 1]×X2 to the first and second factor of X, i.e. (σ,m, x, x′, x′′) 7→ (σ,m, x, x′), lifts
to a b-fibration πF : X3

Q → X2
Q, similarly for the lifts πS, πC : X3

Q → X2
Q of the projections

to the second and third, resp. first and third factor of X3.



MODE STABILITY OF KERR–DE SITTER 37

Proof. Denote the lifted projection from Lemma 2.7 by πq,F . We make use of the descrip-
tion (2.12) of the preimages of boundary hypersurfaces of X2

q under πq,F . We start with

the b-fibration Id×πq,F : R×X3
q → R×X2

q . By [Mel96, Proposition 5.12.1], this map lifts
to a b-fibration [

R×X3
q ; ∂R× zfq,3; ∂R× bfq,F

]
→
[
R×X2

q ; ∂R× zfq,2

]
.

We next blow up ∂R× lbq,2 and ∂R× rbq,2 in the image; blowing up the preimages in the
domain—see (2.12)— thus gives a b-fibration[

R×X3
q ; ∂R× zfq,3; ∂R× bfq,F/S/C ; ∂R×mfq,S/C

]
→
[
R×X2

q ; ∂R× zfq,2; ∂R× (lbq,2 ∪ rbq,2)
]
.

We used here that ∂R × mfq,S and ∂R × bfq,S are disjoint to commute their blow-ups.

Next, we blow up ∂R×diagq in the range and correspondingly ∂R×diagq,F in the domain;

we may subsequently also blow up ∂R × diagq,3 in the domain, as the lifted projection is
b-transversal to this. This produces a b-fibration[

R×X3
q ; ∂R× zfq,3; ∂R× bfq,F/S/C ; ∂R× diagq,3; ∂R× diagq,F ; ∂R×mfq,S/C

]
→ X2

Q,[ :=
[
R×X2

q ; ∂R× zfq,2; ∂R× diagq, ∂R× (lbq,2 ∪ rbq,2)
]
.

(2.37)

Here we use that ∂R×diagq,3 ⊂ ∂R×diagq,F , which implies that we can switch the order of
their blow-ups; and moreover mfq,S and mfq,C are disjoint from diagq,3 and diagq,F , hence
their blow-ups can be commuted through to the end.

In the domain, we next blow up ∂R×(diagq,∗ ∩mfq,∗) for ∗ = S,C (whose lifts get mapped

diffeomorphically onto the lifts of ∂R×lbq,2 and ∂R×rbq,2); they can be commuted through

the blow-ups of their supersets ∂R×mfq,S/C . We thus obtain a b-fibration[
R×X3

q ; ∂R× zfq,3; ∂R× bfq,F/S/C ; ∂R× diagq,3; ∂R× diagq,F ;

∂R× (diagq,S/C ∩mfq,S/C); ∂R×mfq,S/C

]
→ X2

Q,[.
(2.38)

We can then blow up ∂R× diagq,S in the domain; this blow-up can be commuted through

that of ∂R × mfq,∗ for ∗ = S (since the intersection ∂R × (diagq,S ∩mfq,S) is blown up
before) and also for ∗ = C (by disjointness), and then it can be commuted further through
its subset ∂R × (diagq,S ∩mfq,S). Arguing similarly for the blow-up of ∂R × diagq,C , the
map (2.38) thus lifts to a b-fibration[

R×X3
q ; ∂R× zfq,3; ∂R× bfq,F/S/C ; ∂R× diagq,3; ∂R× diagq,F/S/C ;

∂R× (diagq,S/C ∩mfq,S/C); ∂R×mfq,S/C

]
→ X2

Q,[.
(2.39)

Next, blowing up ∂R× (diagq ∩mfq,2) in the range, and using (2.12) to deduce that we

need to blow up ∂R× (diagq,F ∩mfq,F ) and ∂R× (diagq,F ∩mfq,3) in the domain, we infer
that the map (2.39) lifts further to a b-fibration[

R×X3
q ; ∂R× zfq,3; ∂R× bfq,F/S/C ; ∂R× diagq,3; ∂R× diagq,F/S/C ;

∂R× (diagq,F/S/C ∩mfq,F/S/C); ∂R×mfq,S/C ; ∂R× (diagq,F ∩mfq,3)
]

→ X2
Q,] :=

[
R×X2

q ; ∂R× zfq,2; ∂R× diagq, ∂R× (diagq ∩mfq,2), ∂R× (lbq,2 ∪ rbq,2)
]
.
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For the commutation of blow-ups, we use here that diagq,F is disjoint from mfq,S/C . To

restore some symmetry, we then blow up ∂R× (diagq,∗ ∩mfq,3) in the domain for ∗ = S,C;

these get mapped diffeomorphically onto the lift of ∂R×mfq,2. Thus, we get a b-fibration[
R×X3

q ; ∂R× zfq,3; ∂R× bfq,F/S/C ; ∂R× diagq,3; ∂R× diagq,F/S/C ;

∂R× (diagq,F/S/C ∩mfq,F/S/C); ∂R×mfq,S/C ; ∂R× (diagq,F/S/C ∩mfq,3)
]
→ X2

Q,].

Finally, we again use [Mel96, Proposition 5.12.1] to lift this map to a b-fibration under
the blow-up of ∂R × mfq,2 in the range (producing X2

Q) and of the lifts of its preimages

∂R×mfq,F and ∂R×mfq,3 (in this order) in the domain; the resulting domain is naturally

diffeomorphic to X3
Q, since the blow-up of ∂R × mfq,F can be commuted through that

of ∂R × (diagq,∗ ∩mfq,3) for ∗ = F (since the set ∂R × (diagq,F ∩mfq,F ) containing their
intersection is blown up earlier) and for ∗ = S,C (by disjointness). This finishes the
proof. �

Proposition 2.31 (Composition of Q-ps.d.o.s). Let Aj ∈ Ψ
sj ,αj
Q (X), j = 1, 2. Then

A1 ◦A2 ∈ Ψs1+s2,α1+α2

Q (X). The same holds true when working with ΨQ,cl instead.

Proof. The proof is similar to that of Proposition 2.12. By Remark 2.26, it suffices to
consider the case α1 = α2 = (0, 0, 0, 0, 0). Write the Schwartz kernel κ of A1 ◦ A2 in terms
of the Schwartz kernels κ1, κ2 of A1, A2 as

κ = (ν1ν2)−1(πC)∗
(
π∗Fκ1 · π∗Sκ2 · π∗Cν1 · π∗ν2

)
where 0 < ν1 ∈ C∞(XQ; QΩX) is an arbitrary q-density, and ν2 = dm

m
dσ
〈σ〉 is a b-density on

Rσ× [0, 2)m with π : X3
Q → R× [0, 1] denoting the lifted projection. One can then check that

the term in parentheses is then a bounded conormal section of π∗F
QΩX⊗π∗SQΩX⊗π∗CQΩX⊗

π∗bΩR×[0,1](R× [0, 2)) which vanishes to infinite order at the boundary hypersurfaces of X3
Q

which map to if ′2, sf ′2, lb2, rb2, tlb2, or trb2 under πC ; thus, it is a bounded conormal section
of bΩX3

Q which vanishes at the aforementioned boundary hypersurfaces. The conclusion
then follows using pullback and pushforward results for conormal distributions. �

2.5. Q-Sobolev spaces. We now assume that X is compact. We can define weighted
Sobolev spaces (corresponding to the Lie algebra VQ(X)) of integer differential order in
the usual manner, analogously to Definition 2.5; we leave it to the reader to spell this out.
Here, we instead immediately record the definition for general orders, allowing in particular
also for variable orders at if:

Definition 2.32 (Weighted Q-Sobolev spaces). Fix any positive weighted Q-density ν on
XQ, i.e. an element ν = (

∏
ρνHH )ν0 where 0 < ν0 ∈ C∞(XQ,

QΩX) and νH ∈ R, and
H ranges over the boundary hypersurfaces zf,mf,nf, if, sf. Thus, the restriction νm,σ is a
smooth positive density on X for any m ∈ (0, 1], σ ∈ R. Let s ∈ R and l, γ, l′, r, b ∈ R; put

w := ρlzfρ
γ
mfρ

l′
nfρ

r
ifρ

b
sf . Then for s ≥ 0, and for m ∈ (0, 1] and σ ∈ R, we put

H
s,(l,γ,l′,r,b)
Q,m,σ (X, ν) = Hs(X) (2.40a)

with (m, σ)-dependent norm

‖u‖2
H
s,(l,γ,l′,r,b)
Q,m,σ (X,ν)

:= ‖w−1u‖2L2(X,νm,σ) + ‖w−1Am,σu‖L2(X,νm,σ), (2.40b)
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where A = (Am,σ) ∈ Ψs
Q(X) is any fixed Q-ps.d.o. with elliptic principal symbol. For s < 0,

we define the space (2.40a) as a Hilbert space by letting it be the dual space (with respect

to the inner product on L2(X, νm,σ)) of H
−s,(−l,−γ,−l′,−r,−b)
Q,m,σ (X, ν).14 Finally, for variable

orders r ∈ C∞(QT ∗ifX), we define the norm on H
s,(l,γ,l′,r,b)
Q,m,σ (X, ν) = Hs(X) to be

‖u‖2
H
s,(l,γ,l′,r,b)
Q,m,σ (X,ν)

:= ‖u‖2
H
s,(l,γ,l′,r0,b)
Q,m,σ (X,ν)

+ ‖Au‖2L2(X,νm,σ)

where r0 = min r, and where A ∈ Ψ
s,(l,γ,l′,r,b)
Q (X) is a fixed elliptic operator.

We claim that any A ∈ Ψ0
Q(X) is uniformly (for m ∈ (0, 1] and σ ∈ R) bounded on

L2(X, ν) when 0 < ν ∈ C∞(XQ,
QΩX) is a positive Q-density. As in §2.1, the proof can be

reduced, using Hörmander’s square root trick, to the case that A ∈ Ψ
−∞,(0,0,0,−∞,−∞)
Q (X);

thus, the Schwartz kernel κ of A is a bounded conormal right Q-density on X2
Q which van-

ishes to infinite order at all boundary hypersurfaces except zf2, mf2, and nf2. The push-
forward along the projection X2

Q → XQ (see Lemma 2.24) is thus bounded (on m−1([0, 1]))

and conormal on XQ (and vanishes to infinite order at if and sf). The Schur test implies
the claim. Directly from Definition 2.32, one can then show that for any orders s, s̃ ∈ R,

l, l̃, γ, γ̃, l′, l̃′, r, r̃, b, b̃ ∈ R, any element A = (Am,σ) ∈ Ψ
s,(l,γ,l′,r,b)
Q (X) defines a uniformly

bounded (as m, σ ranges over (0, 1]× R) family of maps

Am,σ : H
s̃,(l̃,γ̃,l̃′,r̃,b̃)
Q,m,σ (X, ν)→ H

s̃−s,(l̃−l,γ̃−γ,l̃′−l′,r̃−r,b̃−b)
Q,m,σ (X, ν),

similarly when the if-order is variable.

We next show how to relate Q-Sobolev spaces (and their norms) to b-, sc-b-, c~-, and
semiclassical scattering Sobolev spaces near the various boundary hypersurfaces of XQ, see
Proposition 2.15, Definition 2.16, and equation (2.20). We restrict attention to a certain
class of σ-independent densities ν, which are lifts of weighted q-densities on Xq along the
projection off the σ-coordinate.

Proposition 2.33 (Relationships between Sobolev spaces). Fix a σ-independent density ν

on XQ which is of the form ν = ρ
n/2
zfq
ν0, 0 < ν0 ∈ C∞(X, qΩX), as in Proposition 2.13. Let

r ∈ C∞(QT ∗ifX) be an order function which in |x| < r0 (for some r0 > 0) is invariant under

the lift to QT ∗X of the dilation action (σ̃,m, x) 7→ (σ̃, λm, λx).

(1) Put φzf : R × (0, 1] × X̂◦ 3 (σ,m, x̂) 7→ (σ,m,mx̂) ∈ XQ, and let χ ∈ C∞(XQ)
be identically 1 near zf and supported in a collar neighborhood thereof. Then for
m ∈ (0, 1] and σ ∈ R, we have a uniform equivalence (in the same sense as in
Proposition 2.13)

‖χu‖
H
s,(l,γ,l′,r,b)
Q,m,σ (X)

∼ 〈σ〉l′−lm
n
2
−l‖φ∗zf(χu)|σ,m‖Hs,γ−l

b (X̂,|dx̂|). (2.41)

(2) Put φmf,±,~ : (0, 1] × (0, 1] × Ẋ◦ 3 (h,m, x) 7→ (±h−1,m, x) ∈ XQ, and let χ ∈
C∞(XQ) be identically 1 near mf and supported in a collar neighborhood thereof.

14Equivalently, fixing an elliptic operator A ∈ Ψ−sQ (X), it is the space of all distributions of the

form u = u0 + Au1 where u0, u1 ∈ wL2(X), equipped with the norm infu=u0+Au1 ‖w−1u0‖L2(X,νm,σ) +

‖w−1u1‖L2(X,νm,σ); cf. [MVW08, Appendix A] for a general discussion of the underlying functional analysis.
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Then, uniformly for m ∈ (0, 1] and h ∈ (0, 1], we have

‖χu‖
H
s,(l,γ,l′,r,b)
Q,m,±h−1 (X)

∼ m−γ‖φ∗mf,±,~(χu)|h,m‖Hs,l−γ,l′−γ,r−γ
c,h (Ẋ,νc)

, (2.42)

where νc is the lift of a smooth positive density on X to Ẋ as in Proposition 2.13(2).

(3) Put φnf±,low
: ±(0, 1]×(0, 1]×X̂ 3 (σ̃,m, x̂) 7→ ( σ̃m ,m,mx̂) ∈ XQ, and let χ ∈ C∞(XQ)

be identically 1 near nf± and supported in a collar neighborhood thereof. Then,
uniformly for σ̃ ∈ (0, 1] and m ∈ (0, 1],

‖χu‖
H
s,(l,γ,l′,r,b)
Q,m,±h−1 (X)

∼ m
n
2
−l′‖φ∗nf±,low

(χu)|σ̃,m‖Hs,r−l′,γ−l′,l−l′
sc-b,σ̃ (X̂,|dx̂|). (2.43)

(4) Put φnf±,~̃
: (0, 1] × (0, 1] × X̂ 3 (h̃,m, x̂) 7→ (±(h̃m)−1,m,mx̂) ∈ XQ, and let χ ∈

C∞(XQ) be as in part (3). Then, uniformly for h̃ ∈ (0, 1] and m ∈ (0, 1],

‖χu‖
H
s,(l,γ,l′,r,b)
Q,m,±(h̃m)−1 (X)

∼ m
n
2
−l′‖φ∗nf±,~̃

(χu)|h̃,m‖Hs,r−l′,b
sc,h̃

(X̂,|dx̂|). (2.44)

We remark that the invariance assumption on r is only used in parts (3)–(4) and made
there for simplicity; note that the assumption depends on the choice of local coordinates
x ∈ Rn around 0 ∈ X. (Without this assumption, one gets slightly lossy two-sided esti-
mates mirroring those in [Hin21b, Corollary 3.7(2)]; these would still be sufficient for our
application.)

Proof of Proposition 2.33. It suffices to consider the case that all constant weights l, γ, l′, b
are equal to 0; furthermore, one can restrict to the case s ≥ 0 since the case of s < 0 then
follows by duality. The L2-case s = 0 follows, for all four parts, as in Proposition 2.13.

Part (1) for s > 0 is then a parameter-dependent version of the estimate (2.13), and the
proof proceeds in the same manner: one extends the Schwartz kernel of an elliptic b-ps.d.o.
A0 ∈ Ψs

b(X̂) via dilation-invariance (in (m, x, x′)) and translation-invariance (in σ), and
cuts off the resulting kernel to a collar neighborhood of zf2 to obtain a Q-ps.d.o. A which
is elliptic near zf and can thus be used to compute Hs

Q(X)-norms in (2.40b).

For part (2), we fix an operator A0 ∈ Ψs,0,0,r
c~ (Ẋ) with elliptic principal symbol. By

Corollary 2.28, this is the mf±,~-normal operator of some A ∈ Ψ
s,(0,0,0,r,0)
Q (X), and in fact

we can take the Schwartz kernel of A to be given by the pushforward of the Schwartz kernel
of A0 (considered as a m-independent distribution) along φmf,±,~, cut off in both factors to
a collar neighborhood of mf2. The uniform equivalence (2.42) then follows by arguments
completely analogous to those in the proof of Proposition 2.13.

The proof of parts (3)–(4) is similar. The assumption on the order function r ensures
that the cutoff (to a collar neighborhood of nf in both factors on the level of the Schwartz

kernel) of the dilation-invariant extension off nf2 of an elliptic operator in Ψs,r,0,0
sc-b (X̂) lies

in Ψ
s,(0,0,0,r,0)
Q (X). �

Finally, when Ω ⊂ XQ is an open set, and writing α = (l, γ, l′, r, b), we denote by

Ḣs,α
Q,m,σ(Ω) =

{
u ∈ Hs,α

Q,m,σ(X) : suppu ⊂ Ω
}
, H̄s,α

Q,m,σ(Ω) =
{
u|Ω : u ∈ Hs,α

Q,m,σ(X)
}

(2.45)
the spaces of supported, resp. extendible distribution (using Hörmander’s notation [Hör07,
Appendix B]). The former space carries the subspace topology, and the latter space the



MODE STABILITY OF KERR–DE SITTER 41

quotient topology of Hs,α
Q,m,σ(X)/Ḣs,α

Q,m,σ(XQ \Ω). In our application, we will take, in some
fixed local coordinates x ∈ Rn around 0 ∈ X,

Ω = XQ ∩ {m < r < 2} = XQ ∩ {r̂ > 1, r < 2},
and the relationships recorded in Proposition 2.33 remain valid upon using extendible Q-
Sobolev spaces on Ω as well as extendible (b-, sc-b-, and semiclassical scattering) Sobolev

spaces on Ω̂ = X̂ ∩ {r̂ > 1} in (2.41), (2.43), (2.44).

3. Quasinormal modes of massless and massive scalar waves

In this section, we will prove Theorems 1.1 and 1.5. As discussed in §1.3, we may fix
Λ = 3. Moreover, we fix the ratio

â :=
a

m
∈ (−1, 1).

All estimates in this section will be uniform in the parameter â ∈ [−1 + ε, 1 − ε] for any
fixed ε > 0.

In §3.1, we fix some notation for the degenerating family of Kerr–de Sitter spacetimes
with parameters (Λ,m, a) = (3,m, âm), with m ↘ 0. In §3.2, we recall the notions of
generalized resonant states and the multiplicity of resonances; these feature in the detailed
version of Theorem 1.1, see Theorem 3.8. As a preparation for the proof of Theorem 3.8, we
show in §3.3 how the spectral family of the wave operator on the degenerating Kerr–de Sitter
spacetimes fits into the framework of Q-analysis. The remaining sections, §§3.4–3.9, contain
the proof of Theorem 3.8; an outline is provided at the end of §3.3. In §3.10, we explain the
minor modifications needed for the analysis of the Klein–Gordon equation, and thus prove
Theorem 1.5.

3.1. Limits of Kerr–de Sitter metrics. Since the quantities involved in the defini-
tion (1.3) of the KdS metric depend only on m via (Λ,m, a) = (3,m, âm), we denote them
by

µm(r) := (r2 + â2m2)(1− r2)− 2mr, bm := 1 + â2m2,

cm(θ) := 1 + â2m2 cos2 θ, %m(r, θ) := r2 + â2m2 cos2 θ.

As we shall prove momentarily, for m > 0 sufficiently small, the parameters (3,m, âm) are
subextremal. We denote the roots of µm by

r−m < rCm < rem < rcm.

Lemma 3.1 (Roots of µm). Define r̂C := 1−
√

1− â2, r̂e := 1 +
√

1− â2. For sufficiently
small m0 > 0 (depending on â), and writing C∞ = C∞([0,m0]), we have

r−m ≡ −1 mod mC∞, rCm ≡ mr̂C mod m2C∞,
rem ≡ mr̂e mod m2C∞, rcm ≡ 1 mod mC∞.

Proof. The simple roots of µ0(r) = r2(1 − r2) at r = ±1 extend to real analytic functions
r−m = −1 +O(m) and rcm = 1 +O(m) for small real m. Note next that

m−2µm(mr̂) = r̂2 − 2r̂ + â2 −m2(r̂2 + â2)r̂2,

for m = 0, has two simple roots at r̂ = r̂C , r̂e, which extend to real analytic functions r̂Cm , r̂
e
m

for small m, giving rise to the roots rCm = mr̂Cm , rem = mr̂em, of µm. �
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We use the coordinates (t∗, r, θ, φ∗), see (1.5), which we define using

F3,m,âm(r) = Fm(r) := −χe
(r − rem

m

)
+ χc(r − rcm), (3.1)

where χe ∈ C∞c (R) and χc ∈ C∞c ((−1,∞)) are both equal to 1 at 0. (Thus, the functions
t∗, φ∗ defined with respect to the choice of Fm here differ from those defined using the choice
of F3,m,âm in §1 by the addition of smooth functions of r.) We fix χe, χc in Lemma 3.2 below.
The KdS metric gm := g3,m,âm takes the form

gm = − µm(r)

b2m%
2
m(r, θ)

(
dt∗ − âm sin2 θ dφ∗

)2 − 2Fm(r)

bm
(dt∗ − âm sin2 θ dφ∗) dr

+ %2
m(r, θ)

1−Fm(r)2

µm(r)
dr2 + %2

m(r, θ)
dθ2

cm(θ)
+
cm(θ) sin2 θ

b2m%
2
m(r, θ)

(
(r2 + (âm)2) dφ∗ − âmdt∗

)2
.

(3.2)

The dual metric is

g−1
m = %m(r, θ)−2

(
−b

2
m(1− Fm(r)2)

µm(r)

(
(r2 + (âm)2)∂t∗ + âm∂φ∗

)2
+ µm(r)∂2

r + cm(θ)∂2
θ

− 2bmFm(r)
(
(r2 + (âm)2)∂t∗ + âm∂φ∗

)
⊗s ∂r +

b2m
cm(θ) sin2 θ

(
∂φ∗ + âm sin2 θ ∂t∗

)2)
.

(3.3)

Lemma 3.2 (Choice of time function). There exist smooth functions χe ∈ C∞c (R) and
χc ∈ C∞c ((−1,∞)) with χe(0) = 1 and χc(0) = 1 so that dt∗ is (past) timelike with respect
to gm on Rt∗ × [m, 2]r × S2

θ,φ∗
when m ∈ (0,m0] with m0 > 0 sufficiently small.

This can be proved directly by adapting the arguments of [Vas13, §6.1] to the present
parameter-dependent setting; we postpone an alternative perturbative proof off the two
limiting (de Sitter and Kerr) metrics until after the proof of Lemma 3.11 below.

In r > r0 for any r0 > 0, the metric gm converges, as m↘ 0, to the metric

gdS := −(1− r2)dt2∗ − 2χ̃c(r)dt∗ dr +
1− χ̃c(r)2

1− r2
dr2 + r2

/g,

g−1
dS = −1− χ̃c(r)2

1− r2
∂2
t∗ − 2χ̃c(r)∂t∗ ⊗s ∂r + (1− r2)∂2

r + r−2
/g
−1,

(3.4)

where χ̃c(r) := χc(r− 1), and /g := dθ2 + sin2 θ dφ2
∗ is the standard metric on S2. Thus, gdS

is the de Sitter metric15—a nondegenerate Lorentzian metric on

Rt∗ ×X, X := B(0, 3) = {x ∈ R3 : |x| < 3}, (3.5)

with (r, θ, φ∗) denoting polar coordinates on X. (We stress that gdS is in fact smooth
across x = 0, though the geometry, resp. analysis of the limit m ↘ 0 do see a remnant of
the disappeared KdS black hole in the form of a conical singularity, resp. b-Sobolev spaces
with weights at r = 0.)

15If we change coordinates via t = t∗ + TdS(r) where T ′dS(r) = χ̃c(r)

1−r2 , then gdS = −(1 − r2)dt2∗ + (1 −
r2)−1dr2 + r2

/g is the de Sitter metric in static coordinates.
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On the other hand, if we set t̂∗ := mt∗ and r̂ := mr and express gm in the coordinates
(t̂∗, r̂, θ, φ∗), then for r̂ in any closed subinterval of (r̂C ,∞), the rescaled metric m−2gm
converges, as m↘ 0, to the metric

ĝ = − µ̂(r̂)

%̂2(r, θ)

(
dt̂∗ − â sin2 θ dφ∗

)2
+ 2χ̃e(r̂)(dt̂∗ − â sin2 θ dφ∗) dr̂

+ %̂2 1− χ̃e(r̂)2

µ̂(r)
dr̂2 + %̂2(r̂, θ)dθ2 +

sin2 θ

%̂2(r̂, θ)

(
(r̂2 + â2)dφ∗ − âdt̂∗

)2
,

µ̂(r̂) := r̂2 − 2r̂ + â2, %̂2(r̂, θ) := r̂2 + â2 cos2 θ, χ̃e(r̂) = χe(r̂ − r̂e),

(3.6a)

of a Kerr black hole with mass 1 and angular momentum â.16 The dual metric is

ĝ−1 = %̂(r̂, θ)−2
(
−1− χ̃e(r̂)2

µ̂(r̂)

(
(r̂2 + â2)∂t̂∗ + â∂φ∗

)2
+ µ̂(r̂)∂2

r̂ + ∂2
θ

+ 2χ̃e(r̂)
(
(r̂2 + â2)∂t̂∗ + â∂φ∗

)
⊗s ∂r̂ +

1

sin2 θ

(
∂φ∗ + â sin2 θ ∂t̂∗

)2)
.

(3.6b)

This is a smooth nondegenerate Lorentzian metric on

Rt̂∗ × (r̂C ,∞)r̂ × S2
θ,φ∗ . (3.6c)

The wave operators associated with the metrics gm, gdS, and ĝ have as principal symbols
the respective dual metric functions:

Definition 3.3 (Dual metric functions). Let X̃m = X̃3,m,âm (see (1.6)). The dual metric

function Gm ∈ C∞(T ∗(Rt∗ × X̃m)) of gm is defined as

Gm(ζ) = |ζ|2gm(z)−1 , z = (t∗, x) ∈ Rt∗ × X̃m, ζ ∈ T ∗z (Rt∗ × M̃m).

The analogously defined dual metric functions of gdS and ĝ are denoted

GdS ∈ C∞(T ∗(Rt∗ ×X)), resp. Ĝ ∈ C∞
(
T ∗
(
Rt̂∗ × (r̂C ,∞)× S2

))
.

When m0 > 0 is sufficiently small, then Lemma 3.1 implies that rCm < m < rem < rcm < 2
for all m ∈ (0,m0] when m0 > 0 is sufficiently small. Put

Ωm := (m, 2)r × S2. (3.7)

Then, in the notation of (1.2) and (1.6), the manifold Rt∗ ×Ωm ⊂ M̃m := M̃3,m,âm contains

a neighborhood of the closure of MDOC
3,m,âm.

3.2. Resonances, multiplicity, and the main theorem. We now prepare the precise
statement of Theorem 1.1.

Definition 3.4 (Spectral family). For σ ∈ C, we define17

�gm(σ) ∈ Diff2(Ωm)

to be the unique operator with �gm(e−iσt∗u) = e−iσt∗�gm(σ)u for u ∈ C∞c (Ωm). With
ΩdS := B(0, 2) ⊂ X = B(0, 3), we similarly define the spectral family of �gdS

, denoted

�gdS
(σ) ∈ Diff2(ΩdS), σ ∈ C.

16A coordinate change in t̂∗ and φ∗ brings (3.6a) into Boyer–Lindquist form.
17The more usual notation would be �̂gm(σ). We do not use a hat here, however, to avoid overloading

the notation.
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We finally denote by

�ĝ(σ̃) ∈ Diff2
(
[1,∞)r̂ × S2

)
, σ̃ ∈ C,

the spectral family of �ĝ, so �ĝ(e−iσ̃t̂∗u) = e−iσ̃t̂∗�ĝ(σ̃)u for u ∈ C∞c ((1,∞)× S2).

Informally, �gm(σ), �dS(σ), resp. �ĝ(σ̃) is obtained from �gm , �gdS
, resp. �ĝ by replac-

ing ∂t∗ , resp. ∂t̂∗ by −iσ, resp. −iσ̃. Thus, the spectral families are polynomials (hence
holomorphic) in σ, resp. σ̃.

Definition 3.5 (Space of resonant states). For σ ∈ R, we define Resm(σ) ⊂ C∞(Rt∗ ×Ωm)
as the space of all generalized resonant states u = u(t∗, x) of �gm at frequency σ, i.e.

solutions u of �gmu = 0 which for some n ∈ N0 can be written as u =
∑n

k=0 t
k
∗e
−iσt∗uk(x)

where uk ∈ C∞(Ωm). The multiplicity of σ is

mm(σ) := dim Resm(σ).

We similarly define ResdS(σ) ⊂ C∞(Rt∗ × ΩdS) and mdS(σ) with respect to �gdS
.

Thus, σ ∈ QNM(m) := QNM(3,m, âm) if and only if Resm(σ) 6= {0}, i.e. mm(σ) 6= 0.18

For sufficiently small m, the Fredholm theory of [Vas13, §6] can be shown to apply to
�gm(σ) (see also (3.52) below), and thus �gm(σ)−1 is a meromorphic family of operators on

C∞(Ωm). As shown in [HV18, §5.1.1], an equivalent definition of Resm(σ) is then

Resm(σ) =

{
resζ=σ

(
e−iζt∗�gm(ζ)−1p(ζ)

)
: p(ζ) is a polynomial with values in C∞(Ωm)

}
,

(3.8)
and the multiplicity can be computed via

mm(σ) =
1

2πi
tr

∮
σ
�gm(ζ)−1∂ζ�gm(ζ) dζ, (3.9)

where
∮
σ is the contour integral over a circle enclosing σ counterclockwise which contains

no resonances other than σ. (The integral is a finite rank operator on C∞(Ωm), and hence
its trace is well-defined.) There are analogous expressions for ResdS(σ) and mdS(σ).

Definition 3.6 (Quasinormal modes with multiplicity). For m ∈ (0,m0], we put

QNM∗(m) :=
{

(σ,mm(σ)) ∈ C× N : mm(σ) ≥ 1
}
⊂ C× N,

QNM∗dS :=
{

(σ,mdS(σ)) ∈ C× N : mdS(σ) ≥ 1
}
⊂ C× N.

Furthermore, QNM(m) = QNM(3,m, âm) is the projection of QNM∗(m) to the first factor,
and QNMdS is the projection of QNM∗dS to the first factor.

Lemma 3.7 (QNMs of de Sitter space). We have QNMdS = −iN0, and

QNM∗dS = {(−i`,m) : ` ∈ N0, m = mdS(−i`)}
where

mdS(−i`) =

{
1, ` = 0,

`2 + 2, ` ≥ 1.
(3.10)

18Note that the existence of a smooth resonant state is independent of the choice of the function Fm

in (3.1) or FΛ,m,a in (1.5), as long as these functions equal −1, resp. +1 at the event, resp. cosmological
horizon.
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Proof. This follows from [HX22, Proposition 2.1] upon setting ν = 0, thus λ−(ν) = 0 and
λ+(ν) = 3 in the notation of the reference. Indeed, for l ∈ N0, the space of generalized
resonant states with angular dependence given by a degree l spherical harmonic is non-
trivial exactly at all spectral parameters −i` for ` ∈ (l + 2N0) ∪ (3 + l + 2N0), and at each
such resonance has dimension 2l + 1. This gives

mdS(−i`) =
∑
l∈N0

`−l∈(2N0)∪(3+2N0)

(2l + 1) = (2`+ 1) +
`−2∑
k=0

(2k + 1).

For ` = 0, resp. 1, this evaluates to 1, resp. 3 = 12 + 2. For ` ≥ 2 the second sum is
(`− 1)2 = `2 − 2`+ 1. This gives (3.10). �

Theorem 3.8 (Quasinormal modes of KdS black holes away from extremality: detailed
version). Let C1 > 0 be such that Imσ 6= −C1 for all σ ∈ QNMdS. Let ε > 0 be such that
for each σ∗ ∈ QNMdS with Imσ∗ ≥ −C1, the only σ ∈ QNMdS with |σ − σ∗| ≤ 2ε is σ∗
itself.19 Then there exists m1 > 0 so that the following statements hold.

(1) If m ∈ (0,m1] and σ ∈ QNM(m), Imσ ≥ −C1, then there exists σ∗ ∈ QNMdS so
that |σ − σ∗| ≤ ε.

(2) The total multiplicity of QNMs near σ∗ ∈ QNMdS with Imσ∗ ≥ −C1 is independent
of m, that is,

mdS(σ∗) =
∑

σ∈QNM(m)
|σ−σ∗|≤ε

mm(σ), m ∈ (0,m1].

(3) The only resonance σ ∈ QNM(m) with |σ| ≤ ε is σ = 0, with mm(0) = 1, and
Resm(0) consists of all constant functions on Rt∗ × Ωm.

(4) Let K = [r0, 2]×S2, and let σ∗ ∈ QNMdS with Imσ∗ ≥ −C1. Then for all sufficiently
small r0 > 0, the space{

u|[0,1]t∗×K : u ∈
∑

σ∈QNM(m)
|σ−σ∗|≤ε

Resm(σ)

}
(3.11)

has dimension mdS(σ∗) and converges to {u|[0,1]×K : u ∈ ResdS(σ∗)} in the topology
of C∞([0, 1]×K). (That is, there exists an m-dependent basis um,1, . . . , um,mdS(σ∗) of
the space (3.11) which converges in C∞([0, 1]×K) to a basis of ResdS(σ∗)|[0,1]×K .)

Parts (1) and (2) together give precise meaning to the statement that the quasinor-
mal modes of Kerr–de Sitter space with parameters (Λ,m, a) = (3,m, âm) converge with
multiplicity to those of de Sitter space in any half space Imσ ≥ −C1 as m↘ 0.

3.3. The spectral family as a Q-differential operator. As the starting point for the
proof of Theorem 3.8, we now place �gm(σ) into the context of q- and Q-analysis. We
use the terminology of §2, with two small modifications: (1) the mass m will be restricted
to a short interval [0,m0] (rather than [0, 1]) where m0 > 0 is chosen according to the
requirement stated before (3.7); and (2) we shall write σ0 for the real parameter that was

19Thus, one can take any ε < 1
2
. The present formulation generalizes without change to the case of the

Klein–Gordon equation.
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previously denoted σ in §§2.4–2.5. We reserve the symbol σ for the spectral parameter
(which might be complex).

Let X denote a 3-dimensional torus; we work in a local coordinate chart B(0, 3) near
a point 0 ∈ X as in (3.5). (We make X compact merely so that Sobolev spaces are well-
defined.) At fixed (or more generally for bounded) frequencies σ ∈ C, our analysis will take
place in the domain

Ωq := {r̂ > 1, r < 2} ∩Xq. (3.12a)

Thus, Ωq resolves
⊔

m∈(0,m0]{m} × Ωm in the singular limit m↘ 0, and we have

Ω̂ := Ωq ∩ zfq = {r̂ > 1} ∩ zfq, Ω̇ := Ωq ∩ mfq = [0, 2)r × S2. (3.12b)

(Here, Ω̂ is a subset of the spatial manifold in (3.6c); the radius 1 is chosen for notational

convenience.) We denote by Ωq = {r̂ ≥ 1, r ≤ 2} ∩Xq and Ω̂ = {r̂ ≥ 1} ∩ zfq the closures

of Ωq and Ω̂ inside Xq. See Figure 3.1.

Ωq

1
Ω̂

Ω̇ r2

r̂

m

Figure 3.1. The domains Ωq, Ω̂, and Ω̇ ⊂ Xq defined in (3.12a)
and (3.12b), without the factor S2.

On the Q-single space XQ, we shall work on the lift of Rσ0 × Ωq,

ΩQ := {r̂ > 1, r < 2} ∩XQ. (3.12c)

We need to analyze also non-real frequencies σ. For now, we work in strips {| Imσ| ≤ C1}
for arbitrary fixed C1 > 0, and the total space of our analysis is therefore

[−C1, C1]× ΩQ ⊂ [−C1, C1]×XQ.

(The modifications needed to treat all of {Imσ ≥ −C1} will be discussed in §3.9.) The
total spectral family (m, σ) 7→ �gm(σ), where m ∈ (0,m0] and σ = σ0 + iσ1 with σ0 ∈ R,
σ1 ∈ [−C1, C1], defines an element20

�(·+ iσ1) ∈ Diff2(ΩQ ∩ {m > 0}),
with smooth dependence on σ1. The following key result puts the total spectral family into
the Q-analytic framework developed in §2, and is indeed the motivation for the development
of this framework.

Proposition 3.9 (Properties of the total spectral family). The total spectral family �(·+
iσ1) satisfies

�(·+ iσ1) ∈ Diff
2,(2,0,2,2,2)
Q (ΩQ) = ρ−2

zf ρ
0
mfρ
−2
nf ρ

−2
sf ρ

−2
if Diff2

Q(ΩQ), (3.13)

20That is, the restriction of �(· + iσ1) to the subset where the spectral parameter is σ0 + iσ1 and the
black hole mass is m is precisely the operator �gm(σ0 + iσ1). In the notation for the total spectral family
�(·+ iσ1), we thus do not include σ0 or m as an argument or subscript.
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and depends smoothly on σ1 ∈ [−C1, C1]. Moreover, in the notation of Corollary 2.28:

(1) The Q-principal symbol of �(·+ iσ1) is G(·+ iσ1,−;−,−), given by

G : (σ,m;x, ξ) 7→ Gm|x(−σ dt∗ + ξ), (3.14)

where x ∈ Ωm, ξ ∈ T ∗xΩm, and σ = σ0+iσ1, in the sense that Qσ2,(2,0,2,2,2)(�(·+iσ1))

is given by the equivalence class of G(·+ iσ1) in (S2,(2,0,2,2,2)/S1,(2,0,2,1,1))(QT ∗
ΩQ
X).

(2) We have Nzf(m
2�(· + iσ1)) = �ĝ(0) (regarded as a σ0-independent operator on

Rσ0 × Ω̂ ⊂ zf, cf. Proposition 2.15(1)).
(3) For σ̃0 ∈ R \ {0}, we have Nnfσ̃0

(m2�(·+ iσ1)) = �ĝ(σ̃0).

(4) For σ0 ∈ R, we have Nmfσ0
(�(·+ iσ1)) = �gdS

(σ), where σ = σ0 + iσ1.

One can prove this by direct calculation using the form (3.2) of the KdS metric. We
instead give a conceptual proof, which highlights the relevant structural properties of the
family of metrics gm.21 To begin with, we define

M := Rt∗ ×X, Ṁ := Rt∗ × Ẋ, M̂ := Rt̂∗ × X̂,

and identify X with {0} × X ⊂ M , likewise Ẋ ⊂ Ṁ and X̂ ⊂ M̂ . Smooth stationary

metrics on M can be identified with smooth sections of S2T ∗XM → X, likewise for Ṁ , M̂ .

Denote now by
πq : Xq → X, πQ : XQ → X

the lifts of the projection maps [0,m0] ×X 3 (m, x) 7→ x ∈ X and R × [0,m0] ×X → X,
respectively. The pullback bundle π∗qTXM → Ωq will play two roles. Firstly, it is a bundle
in (the tensor powers of) which geometric objects are valued (see Lemma 3.11 below).
Secondly, in m > 0 its sections are smooth families of horizontal vector fields; in this latter
regard, we note:

Lemma 3.10 (Bundle isomorphisms). Let β̇ : mfq = Ẋ = [X; {0}] → X denote the blow-

down map. Then the identity map (π∗qTXM)|(0,x) = TxM = TxṀ for x ∈ X \ {0} extends
to a bundle isomorphism

(π∗qTXM)|mfq = β̇∗TẊṀ. (3.15)

Moreover, the map (π∗qTX)|(m,x) = TxX 3 V 7→ mV ∈ qT(m,x)X (for m ∈ (0,m0]) extends by

continuity to a smooth bundle map on Xq and then restricts to zfq = X̂ as an isomorphism

ι : (π∗qTX)|zfq
∼= scTX̂ (via ‘multiplication by m’). (3.16)

Proof. For (3.15), simply note that both bundles have, as smooth frames, the vector fields
∂t∗ and ∂xj (j = 1, 2, 3). For (3.16), note that m∂xj = ∂x̂j (j = 1, 2, 3) is a frame of
scTX̂. �

We shall also write ι for tensor powers of the isomorphism (3.16) or its adjoint. Writing

R = X̂ × R for the trivial bundle, we furthermore define the map

ι̃ : (π∗qTXM)|zfq

∼=−→ T0Rt̂∗ ⊕
scTX̂, ∂t∗ 7→ ∂t̂∗ , V 7→ ι(V ). (3.17)

21This route is longer, but it has the advantage of allowing for straightforward generalizations of Propo-
sition 3.9 to spectral families of other geometric operators—even if in the present paper we do not discuss
such generalizations.



48 PETER HINTZ

(This is ‘multiplication by m’ for tangent vectors on the spacetime M .) Tensor powers of ι̃
or its adjoint are denoted by the same symbol.

Lemma 3.11 (The family gm on the q-single space). For m ∈ (0,m0] and x ∈ Ωm, define
the symmetric 2-tensor g(m, x) ∈ (π∗qS

2T ∗XM)|(m,x) = S2T ∗xM to be equal to gm|x. Then

g ∈ C∞
(
Ωq; (π∗qS

2T ∗XM)|Ωq

)
, g−1 ∈ C∞

(
Ωq; (π∗qS

2TXM)|Ωq

)
.

Moreover, g|mfq = gdS (under the identification (3.15)), and ι̃−1(g|zfq) = ĝ. Further-

more, |dg| = |dt∗||dgX | where |dgX | ∈ C∞(Ωq; (π∗qΩXM)|Ωq
). (Explicitly, we have |dgX | =

b2%2 sin θ |dr dθ dφ∗| where b(m) = bm and %(m, r, θ) = %m(r, θ).)

Proof. On Ωq, the 1-forms dt∗, dr, r dθ, and r dφ∗ are smooth and nonzero sections of
π∗qT

∗
XM . It thus suffices to show that the coefficients of gm in (3.2) (expressed in terms

of symmetric tensor products of these 1-forms) are elements of C∞(Ωq). On Ωq, smooth
coordinates are given by ρ̂ = m

r ∈ [0, 1], r ≥ 0, and θ, φ∗, and we then note that

µm(r)

b2m%
2
m(r, θ)

=
(1 + â2ρ̂2)(1− r2)− 2ρ̂

(1 + â2ρ̂2r2)(1 + â2ρ̂2 cos2 θ)

is indeed smooth in these coordinates, similarly for the other coefficients of gm; note in
particular that Fm = −χe(ρ̂−1) +χc(r) is smooth. The membership of g−1 follows similarly
by inspection of the coefficients of g−1

m in (3.3) in the basis ∂t∗ , ∂r, r
−1∂θ, r

−1∂φ∗ .

The computation of g|mfq was already performed in (3.4). The computation of ι−1(g|zfq)

amounts to taking the limit of m−2gm as m ↘ 0 for bounded r̂ = |x̂|, which was done
in (3.6a). �

We can now give a simple proof of Lemma 3.2:

Proof of Lemma 3.2. Using (3.4) and writing χ̃c(r) = 1 + (1− r2)f(r), we compute

|dt∗|2g−1
dS

= −1− (1 + (1− r2)f(r))2

1− r2
= 2f(r) + (1− r2)f(r)2.

Note that in any region r ≤ r1 < 1, this is negative for f(r) = − 1
1−r2 (in which case χ̃c = 0).

More generally, in r < 1, resp. at r = 1, we have |dt∗|2g−1
dS

< 0 provided − 2
1−r2 < f(r) < 0,

resp. f(1) < 0. For 1 < r ≤ 3, it is enough to ensure f(r) < 0. We can thus use a partition
of unity to construct a smooth f so that dt∗ is past timelike for gdS, and so that χ̃c(r) = 0
for r ≤ 1

2 .

Next, using (3.6b) and writing χ̃e(r̂) = 1 + µ̂(r̂)f̂(r̂), we compute

%̂(r̂, θ)2|dt̂∗|2ĝ−1 = −1− (1 + µ̂(r̂)f̂(r̂))2

µ̂(r̂)
(r̂2 + â2)2 + â2 sin2 θ

≤ µ̂(r̂)(r̂2 + â2)2f̂(r̂)2 + 2(r̂2 + â2)2f̂(r̂) + â2.

When f̂(r̂) = −µ̂(r̂)−1 (so χ̃e = 0), the right hand side evaluates to − (r̂2+â2)2

µ̂(r̂) + â2 which

is negative when µ̂(r̂) > 0 (since upon multiplication by µ̂(r̂), this is −(r̂2 + â2)2 + â2(r̂2 +

â2 − 2r̂) = −r̂4 − â2r̂2 − 2â2r̂). At r̂ = r̂e, we require f̂(r̂) < â2

2(r̂2+â2)2 . Where µ̂(r̂) 6= 0,
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the set of allowed values of f̂(r̂) is a nonempty open interval (depending continuously on

r̂). We can thus find an appropriate f̂(r̂) so that, moreover, χ̃e(r̂) = 0 for r̂ ≥ 3, say.

Having fixed χ̃c, χ̃e and thus χc, χe in (3.1) in this manner, the past timelike nature of
dt∗ with respect to gm now follows by continuity for all sufficiently small m > 0 in view of
Lemma 3.11. �

Proposition 3.12 (Spectral family of the connection of g). For m ∈ (0,m0] and σ ∈ C,
denote by ∇gm(σ) ∈ Diff1

(
Ωm;TΩm

M,T ∗
Ωm
M ⊗ TΩm

M
)
, σ ∈ C, the spectral family of the

Levi-Civita connection of gm, defined analogously to Definition 3.4. Denote by ∇g(· +
iσ1) : (0,m0]× R 3 (m, σ0) 7→ ∇gm(σ0 + iσ1) the total spectral family. Then

∇g(·+ iσ1) ∈ Diff
1,(1,0,1,1,1)
Q

(
ΩQ; (π∗QTXM)|ΩQ

, (π∗Q(T ∗XM ⊗ TXM))|ΩQ

)
. (3.18)

Its principal symbol is Qσ1,(1,0,1,1,1)(∇g(·+ iσ1))(σ0,m, x, ξ) = (−σ dt∗ + ξ)⊗ (−),22 where
σ = σ0 + iσ1.23 Moreover,

Nzf

(
m∇g(·+ iσ1)

)
= ∇ĝ(0), (3.19a)

Nnfσ̃

(
m∇g(·+ iσ1)

)
= ∇ĝ(σ̃), (3.19b)

Nmfσ0

(
∇g(·+ iσ1)

)
= ∇gdS(σ), σ = σ0 + iσ1, (3.19c)

where we use the isomorphism ι̃ from (3.17) in the first two lines (to identify the bun-

dles (π∗QTXM)|zfσ0
= (π∗QTXM)|nfσ̃0

= (π∗qTXM)|zfq with T0Rt̂∗ ⊕
scTX̂, likewise for their

duals), and the identification (3.15) in the third line.

Analogous statements hold for the spectral family of the exterior derivative d, resp. the
gradient ∇g (with d(·+ iσ1) a map from complex-valued functions to sections of π∗QT

∗
XM ,

resp. π∗QTXM , over ΩQ); see (3.20a)–(3.20c) below for the case of d.

Proof. Consider first the exterior derivative du = (∂t∗u)dt∗ + dXu, where, with R = X ×
R denoting the trivial bundle, dX ∈ Diff1(X;R, T ∗X) is the spatial exterior derivative.
From (2.23)–(2.24) we then deduce that

d(σ) = −iσ dt∗ + dX ∈ Diff
0,(0,0,1,1,1)
Q (X;R, π∗QT ∗XM) + Diff

1,(1,0,1,1,1)
Q (X;R, π∗QT ∗XM)

= Diff
1,(1,0,1,1,1)
Q (X;R, π∗QT ∗XM),

now with R = XQ × R. This explicit expression implies

Nmfσ0
(d(·+ iσ1)) = ḋ(σ) (3.20a)

where ḋ is the exterior derivative operator on Ṁ = Rt∗ × Ẋ. The principal symbol at
(σ0,m, x, ξ) is ξ. Considering the rescaling md(σ) = −imσ dt∗ + mdX , note that ι(dXu) =∑3

j=1(∂xju)dx̂j and m∂xj = ∂x̂j , and therefore

Nzf(md(·+ iσ1)) = d̂(0), (3.20b)

22It is irrelevant here which (rescaled) cotangent bundle ξ lies in. For example, if we take ξ ∈ QT ∗X
of unit size (with respect to any fixed positive definite fiber metric), then ξ has size (ρzfρnfρifρsf)

−1 as an
element of π∗Q(T ∗XM).

23The term −σ dt∗ only contributes to the principal symbol in the high frequency regime |Reσ| = |σ0| �
1, where in view of the boundedness of σ1 the contribution of −iσ1 dt∗ is subprincipal and therefore does,
in fact, not contribute to the principal symbol. When relaxing the assumption that Imσ be bounded, the
imaginary part of σ does matter, however; see §3.9.



50 PETER HINTZ

with d̂ the exterior derivative on M̂ = Rt̂∗ × X̂. When σ = σ̃/m, then md(σ) = −iσ̃ dt∗ +
mdX ; thus,

Nnfσ̃0
(md(·+ iσ1)) = d̂(σ̃). (3.20c)

The analogous statements about the gradient∇g on functions follow from (3.20a)–(3.20c)
and the description of g−1 in Lemma 3.11.

The analysis of the Levi-Civita connection ∇gm is similar. In terms of local coordinates
x = (x1, x2, x3) on X and the corresponding coordinates (t∗, x

1, x2, x3) on M , the Christoffel
symbols Γλµν(gm) satisfy

Γλµν(gm) = 1
2(g−1

m )λκ
(
∂µ(gm)νκ + ∂ν(gm)µκ − ∂κ(gm)µν

)
∈ ρ−1

zfq
C∞(Ωq) ⊂ ρ−1

zf ρ
−1
nf C

∞(ΩQ)

in view of (2.4) and Lemma 3.11. Now, ∇gm(uµ∂µ) = (∂νu
µ)dxν ⊗ ∂µ + uµΓλµνdxν ⊗

∂λ. Passing to the spectral family amounts to replacing ∂0 by −iσ, and we therefore
obtain (3.18) as in the discussion of d above; also (3.19c) follows directly by taking the
limit as m↘ 0 in r > r0 > 0.

When analyzing the normal operators of m∇gm(σ) at zf and nf, one works with the
coordinates (t̂∗, x̂) = (t∗, x)/m and identifies the vector uµ∂µ with uµ∂µ̂ (where ∂0̂ = ∂t̂∗
and ∂ĵ = ∂x̂j , j = 1, 2, 3); note also that the differential operator m∂ν for ν = 1, 2, 3 is equal

to ∂ν̂ , while the spectral family of m∂0 = m∂t∗ = ∂t̂∗ is −imσ = −iσ̃. To obtain (3.19a)–
(3.19c), it then remains to note that for bounded x̂, Lemma 3.11 implies

lim
m↘0

(
mΓλµν(gm)

)
= Γλ̂µ̂ν̂(ĝ). �

Proof of Proposition 3.9. Since �(· + iσ1) = trg(∇g(· + iσ1) ◦ ∇g(· + iσ1)) in the notation
of Lemma 3.11, we only need to appeal to Proposition 3.12 and use the multiplicativity of
the principal symbol and normal operator maps. �

The plan of the remainder of this section is as follows:

• In §3.4, we work exclusively with the principal (and subprincipal) symbol of �(·+
iσ1); this is enough to deduce the absence of extremely high energy resonances
(|σ| � m−1), see Remark 3.14. The same methods also prove the invertibility of
the nf±,~̃-normal operator of �(·+ iσ1) at high energies, see Proposition 3.17.

• In §3.5, we study the inverse of the spectral family of the wave operator on a Kerr
spacetime at small and bounded (real) energies, cf. Proposition 3.9(3). We first
prove uniform bounds on its inverse away from zero energy (Proposition 3.18)—
which suffices to obtain the absence of very high energy resonances (|σ| ∼ m−1)—
before proving uniform bounds down to zero energy (Lemma 3.19 and Proposi-
tion 3.21).
• Having inverted all normal operators that are related to the singular Kerr limit, we

then turn in §3.6 to the inversion of the spectral family on de Sitter space at high
energies. This then implies the absence of high energy resonances (|σ| ≥ h−1

0 � 1)
for all sufficiently small m, see Corollary 3.24.
• In §3.8, we finally control the resonances in the compact subset of Cσ to which they

have been constrained at this point.
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• In §3.9, we explain the modifications necessary to treat the singular limit m↘ 0 not
just in a strip of frequencies σ, but in a half space Imσ ≥ −C1. This will complete
the proof of Theorem 3.8 (and thus of Theorem 1.1).
• The minimal modifications necessary to treat the Klein–Gordon equation are dis-

cussed in §3.10.

Throughout, we will use the (m-dependent) spatial volume density |dgX | on Xq, its
restriction |d(gdS)|X | to mfq (which is the spatial volume density for the de Sitter metric,
i.e. |dgdS| = |dt∗||d(gdS)|X |), and the spatial volume density

0 < |dĝX̂ | = %̂2 sin θ |dr̂ dθ dφ∗| ∈ C∞
(
Ω̂; scΩ

Ω̂
X̂
)

(3.21)

of the Kerr metric on M̂ = Rt̂∗ × X̂, defined via |dĝ| = |dt̂∗||dĝX̂ |.

3.4. Symbolic analysis. In this section, we exploit the information given by Proposi-
tion 3.9(1). The symbolic estimates for �(·+ iσ1) on the Q-characteristic set are microlocal
propagation estimates which are well-established in the literature.24 Concretely, we shall
use radial point estimates over the event and cosmological horizons following [Vas13, §2.4]
as well as at spatial infinity for the Kerr model operators following [Mel94, VZ00], and
estimates at normally hyperbolic trapping [Dya16]. The Q-algebra is furthermore related
to the semiclassical cone algebra developed in [Hin22b, Hin21b], and we use the radial point

estimates established in [Hin21b, §4.4] at the cone point ∂Ẋ in the high frequency regime
(in the terminology of §1.4). There are further radial sets lying over if∩nf (thus in the very
high frequency regime) where we will prove Q-microlocal estimates by means of standard
positive commutator arguments.

We denote by

Σ ⊂ QT ∗
ΩQ
X

the characteristic set of �(·+ iσ1) (which is independent of σ1), i.e. the closure of the zero
set of (ρzfρnfρsfρif)

2G in the notation of Proposition 3.9; more precisely, Σ is the union of
the characteristic sets of �(·+ iσ1) lying in

QT ∗sfX,
QT ∗ifX,

QS∗X, (3.22)

where QS∗X ⊂ QT ∗X denotes the boundary at fiber infinity. In this section, we show:

Proposition 3.13 (Symbolic estimates). Let s, γ, l′, b ∈ R, and let r ∈ C∞(QT ∗ifX). Suppose

that s > 1
2 + C1, and that r − l′ > −1

2 , resp. r − l′ < −1
2 at the incoming, resp. outgoing

radial set over if ∩ nf (see (3.29), (3.32a), (3.32c) below). Suppose moreover that r is non-
increasing along the flow of the Hamiltonian vector field HG of the principal symbol G of

�(· + iσ1). Then for any s0 ∈ R, r0 ∈ C∞(QT ∗ifX), and b0 ∈ R, there exists C > 0 so that
for all σ0 ∈ R, m ∈ (0,m0], and σ1 ∈ [−C1, C1], we have

‖u‖
H̄
s,(l,γ,l′,r,b)
Q,σ0,m

(ΩQ)
≤ C

(
‖�gm(σ0 + iσ1)u‖

H̄
s−1,(l−2,γ,l′−2,r−1,b)
Q,σ0,m

(ΩQ)
+ ‖u‖

H̄
s0,(l,γ,l

′,r0,b0)
Q,σ0,m

(ΩQ)

)
.

(3.23)

24The positive commutator arguments used for their proofs only make use of the principal symbol, and
hence work in the Q-calculus as well.
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The loss of one order in the Q-differential and if-decay sense (s and r) arises from real
principal type or radial point propagation results, while the loss of two sf-orders (b) arises
at the trapped set.25

Remark 3.14 (Absence of very high energy resonances). For sufficiently small h̃ = |σ̃|−1 > 0,
the second, error, term on the right in (3.23) is smaller than 1

2 times the left hand side. We

conclude that any u ∈ H̄s(Ωm) with �gm(σ0 + iσ1)u = 0 must vanish, provided σ̃ := mσ0 is
sufficiently large in absolute value, and m > 0 is sufficiently small.

In the proof of Proposition 3.13, we work our way systematically through the boundary
faces (3.22) (over which the principal symbol is a well-defined function): first we work in
QT ∗sfX and QT ∗ifX, and then at fiber infinity QS∗X ⊂ QT ∗X. Since we work over the domain

ΩQ where r ≥ m (which we will henceforth not state explicitly anymore), the function r is
a defining function of zf ∪ nf. Since in σ > 1, the function h = |σ|−1 is a defining function
of nf ∪ sf ∪ if, we conclude that

h

h+ r
is a defining function of sf ∪ if.

Furthermore, by the second part of (2.22), smooth fiber-linear coordinates on QT ∗
ΩQ
X are

given in polar coordinates (r, ω) on X by writing the canonical 1-form as

ξQ
h+ r

h

dr

r
+
h+ r

h
ηQ, ξQ ∈ R, ηQ ∈ T ∗S2. (3.24)

At radial and trapped sets, the subprincipal symbol of �(·+ iσ1) enters.

Lemma 3.15 (Imaginary part). The operator

Im�(·+ iσ1) :=
1

2i

(
�(·+ iσ1)−�(·+ iσ1)∗

)
∈ Diff

1,(2,0,1,1,1)
Q (X) (3.25)

has principal symbol (σ0,m;x, ξ) 7→ 2(Imσ)g−1
m |x(−dt∗,−(Reσ) dt∗+ξ) where σ = σ0 +iσ1.

Proof. Since �gm is a symmetric operator on Rt∗ × Ωm with respect to the volume form
|dgm|, we have �gm(σ)∗ = �gm(σ̄).

For fixed σ1, we have Im�(· + iσ1) ∈ Diff
1,(2,0,2,1,1)
Q (X) since the principal symbol of

�(·+iσ1) is real-valued; but since the nf σ̃0-normal operators are symmetric (as they involve
only real frequencies), we obtain an order of improvement at nf, leading to (3.25).

Write Im�gm(σ0 + iσ1) = Re
∫ σ1

0 ∂σ�gm(σ0 + iτ) dτ . Now,

∂σ�gm(σ) = ∂σ(eiσt∗�gme
−iσt∗) = eiσt∗(it∗�gm −�gmit∗)e−iσt∗

is the spectral family −(i[�gm , t∗])(σ) of −i[�gm , t∗], the principal symbol of which at z =
(0, x) ∈ Ωm ⊂ M and ζ = −σ dt∗ + ξ ∈ T ∗zM (where ξ ∈ T ∗xX) is −HGmt∗ = ∂σGm. Note
then that ∂σGm(z, ζ) = 2g−1

m |z(−dt∗, ζ) (where z = (t∗, x) and ζ ∈ T ∗XM), and therefore the
principal symbol of −(i[�gm , t∗])(σ) is 2g−1

m (−dt∗,−σ dt∗+ ·). This implies the Lemma. �

25Any loss in the sf-order bigger than 1 would be sufficient for the validity of this estimate, but we do
not need a sharp estimate in the sequel.
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Notation 3.16 (Arbitrary orders). In the arguments below, some orders of symbols on
QT ∗X will be arbitrary by virtue of the symbols being supported away from some boundary
hypersurfaces; in this case, we write ‘∗’ instead of specifying (arbitrary) orders at those
boundary hypersurfaces. As an example, the lift of a compactly supported smooth function
in r̂ to XQ is an element of S0,(0,∗,0,∗,0)(QT ∗X) (i.e. with the orders at mf and if arbitrary).
We use the same notation for Q-ps.d.o.s and Sobolev spaces.

3.4.1. Estimates near if. We work at (large) positive frequencies σ0 > 1 and indeed near
sf+ ∪ if+; the analysis in σ0 < −1 is completely analogous. Consider the semiclassical
rescaling h = |σ|−1, z = hσ,

G~,z(h,m, x, ξ) := |σ|−2G(σ,m, x, ξ) = Gm|x(−z dt∗ + hξ), ξ ∈ T ∗xΩm.

By Proposition 3.9(1) and the membership (2.23), the symbol G ∈ S2,(2,0,0,0,0) is a quadratic
form on the fibers of QT ∗X which is smooth down to sf+ ∪ if+. Since | Imσ| ≤ C1, we have
|z − 1| ≤ Ch, and therefore we can replace G~,z(h,m, x, ξ) by

G~(h,m, x, ξ) := G~,1(h,m, x, ξ) = Gm|x(−dt∗ + hξ) (3.26)

without changing its principal part, i.e. its equivalence class modulo S1,(2,0,0,−1,−1)(QT ∗X).

Let us consider a neighborhood of if+. There, we have h . r, and thus h/r is a joint
defining function of if+ ∪ sf+; replacing h

h+r by h
r in (3.24), we write Q-covectors as

h−1(ξ dr + rη), ξ ∈ R, η ∈ T ∗S2, (3.27)

with ξ, η giving smooth fiber-linear coordinates. In terms of these, we have

G~ = Gm(−dt∗ + ξ dr + rη).

At m = 0, this is the dual metric function GdS of the de Sitter metric, so from (3.4) we find

G~|if+ = GdS = (1− r2)ξ2 + |η|2
/g−1 + 2χ̃c(r)ξ − 1− χ̃c(r)2

1− r2
. (3.28)

The structure of the characteristic set of (3.28) (in slightly different coordinates), as well
as the dynamics of the null-bicharacteristic flow, was studied in detail in [Vas13, §4], with

the caveat that now r = 0 is resolved, i.e. blown up. (Recall here that if+ = [0,∞]σ̃ × Ẋ
from Proposition 2.15(4).) We begin by noting that the Hamiltonian vector field in the
coordinates (3.27) takes the form

rh−1Hp = (∂ξp)(r∂r − η∂η)−
(
(r∂r − η∂η)p

)
∂ξ + (∂ηp)∂ω − (∂ωp)∂η,

as can be seen by changing variables from the standard variables (ξ0, η0) (with covectors
written as ξ0 dr + η0, thus Hp = (∂ξ0p)∂r − (∂rp)∂ξ0 + (∂η0p)∂ω − (∂ωp)∂η0) to (ξ, η) =

(hξ0, hr
−1η0). Thus, if 1

2h
−1HGdS

r = (1 − r2)ξ + χ̃c(r) = 0 on Σ, then 0 = GdS =

|η|2
/g−1− 1

1−r2 forces r < 1 when (ξ, η) is finite, and then 1
2(h−1HGdS

)2r = (1−r2)h−1HGdS
ξ =

2r−1(1 − r2)(r2ξ2 + |η|2
/g−1 + r2

(1−r2)2 ) > 0. Therefore, the level sets of r in (0, 1) are null-

bicharacteristically convex.

At r = 0 on the other hand, where χ̃c(r) = 0, we have GdS = ξ2 + |η|2
/g−1 − 1. The

restriction of 1
2rh

−1HGdS
, as a b-vector field on QT ∗X, to the characteristic set over r = 0
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is given by ξ(r∂r − η∂η) + |η|2
/g−1∂ξ + η · ∂ω (at the center of /g-normal coordinates ω), which

on the characteristic set is radial (i.e. vanishes as a vector field) only at

Rif+,± = {r = 0, ξ = ±1, η = 0} ∩ QT ∗if+
X. (3.29)

The linearizations of 1
2rh

−1HGdS
at these radial sets are

±(r∂r − η∂η), (3.30)

and inside the characteristic set over r = 0, the rh−1HGdS
-flow flows from the source at

ξ = −1 to the sink at ξ = +1. This can be translated into an estimate by means of
a standard symbolic positive commutator argument at radial sets; we sketch this near
ξ = −1. Thus, using the local defining functions

ρmf =
m

h+ m
, ρnf = r, ρif =

h+ m

r
, ρsf =

h

h+ m
,

we consider a commutant (with constant orders, and recalling Notation 3.16)

a = ρ−2γ
mf ρ

−2l′+2
nf ρ−2r+1

if ρ−2b+1
sf χ(ξ + 1)χ(|η|2

/g−1)χ(r)χ(h/r)χ(m/r)

∈ S∗,(∗,2γ,2l′−2,2r−1,2b−1)(QT ∗X)

where χ ∈ C∞c ([0, 2δ)) is identically 1 on [0, δ] for some fixed small δ > 0, and satisfies
χ′ ≤ 0. The cutoffs localize to a neighborhood (in QT ∗X) of r = 0, ξ = −1, η = 0 over

if+. Denote by A = A∗ ∈ Ψ
∗,(∗,2γ,2l′−2,2r−1,2b−1)
Q (X) a Q-quantization of a (with Schwartz

kernel supported in both factors in r̂ > 1, r < 2), and consider the L2-pairing

2 Im〈�(·+ iσ1)u,Au〉 = 〈Cu, u〉, C := i[�(·+ iσ1), A] + 2(Im�(·+ iσ1))A. (3.31)

Thus, c = Qσ(C) ∈ S∗,(∗,2γ,2l′,2r,2b), with the second summand of C contributing an element

of S∗,(∗,2γ,2l
′−1,2r,2b) by Lemma 3.15, which is thus of lower order at nf. By (3.30), the

rescaled symbol ρ−2γ
mf ρ

−2l′

nf ρ−2r
if ρ−2b

sf c is a positive multiple of −2r + 2l′ − 1 at the radial set
Rif+,−; if r, l′ are such that this is negative, then differentiation of χ(|η|2) along η∂η gives
a contribution of the same sign (i.e. non-positive, and strictly negative where χ′ < 0),
and so does differentiation of χ(m/r) along −r∂r when δ > 0 is sufficiently small, whereas
differentiation of χ(r) produces a nonnegative contribution which necessitates an a priori
control assumption on u on supp a ∩ supp χ′(r). Therefore, in order to propagate Q-
regularity from r > 0 into the radial set, we need26

r > −1
2 + l′ at Rif+,−. (3.32a)

Under this assumption, we thus obtain a uniform (for σ0 ∈ R, m ∈ (0,m0], and σ1 ∈
[−C1, C1]) estimate

‖Bu‖
H
∗,(∗,γ,l′,r,b)
Q,σ0,m

≤ C
(
‖�gm(σ0+iσ1)u‖

H
∗,(∗,γ,l′−2,r−1,b−1)
Q,σ0,m

+‖Eu‖
H
∗,(∗,γ,l′,r,b)
Q,σ0,m

+‖u‖
H
∗,(∗,γ,l′,r0,b0)
Q,σ0,m

)
(3.32b)

for arbitrary r0 < r, b0 < b, for appropriate operators B,E ∈ Ψ0
Q microlocalized in a

neighborhood of if+, where B (quantizing a symbol arising from the elliptic leading order
term of c at Rif+,−) is elliptic at Rif+,− and E (quantizing a symbol arising from the term

26This threshold condition is completely analogous to [Hin21b, Theorem 4.10], where the notation b, α
is used instead of r, l′.
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from differentiation of χ(r) above) can be taken to have operator wave front set contained
in r > 0.

Similarly, one can propagate regularity near Rif+,+ from the a priori control regions
m/r > 0 and a punctured neighborhood of Rif+,+ inside of r = 0 into Rif+,+ itself, together
with a uniform estimate that takes the same form, except now E controls u on these changed
a priori control regions; the requirement on the orders is

r < −1
2 + l′ at Rif+,+. (3.32c)

(Thus, an if-order r satisfying both (3.32a) and (3.32c) must be variable. For real principal
type propagation in between the two radial sets, one moreover needs r to be non-increasing
along the direction of propagation; see e.g. [Vas18, §4.1].) We remark that if we restrict to
bounded subsets of σ̃ ∈ [0,∞), then the sf-order b becomes irrelevant, and thus the a priori
control term in m/r > 0 (where also the if-order is irrelevant) is bounded by the overall
error term (the last term in (3.32b)). This corresponds to the fact that the Q-calculus is
not symbolic for finite Q-momenta away from if ∪ sf; instead, control at nf σ̃ requires the
inversion of a model operator, see §3.5 below.

The (microlocal) propagation estimates near if+ but over r > 0 are the same as those
proved in [Vas13, §4], except now the if-order r is variable—which, under the aforemen-
tioned monotonicity assumption on r, does not necessitate any changes in the proofs of the
propagation results. We sketch the computation of the null-bicharacteristic dynamics and of
the positive commutator estimates in order to determine the relevant threshold conditions.
To wit, we shall work near fiber infinity of the conormal bundle of the cosmological horizon
r = 1 of de Sitter space; we work in ξ < 0 and with the coordinates ρ∞ = |ξ|−1, η̂ = ξ/η
near fiber infinity. We may replace GdS by the simpler expression G0 = (1− r2)ξ2 + |η|2

/g−1 ,

for which one finds

ρ∞rh
−1HG0 = −2(1− r2)(r∂r − η̂∂η̂) + 2(r + r−1|η̂|2)(ρ∞∂ρ∞ + η̂∂η̂).

At the radial set w := r − 1 = 0, ρ∞ = 0, η̂ = 0, the linearization of this vector field is

4w∂w + 2ρ∞∂ρ∞ + 2η̂∂η̂,

and therefore this radial set is a source for the rescaled Hamiltonian flow. Thus, HG0 is to
leading order at the radial set given by ρ−1

∞ h(4w∂w+2ρ∞∂ρ∞+2η̂∂η̂). Since we are working
near r = 1, we can take as local defining functions

ρmf =
m

h
, ρif = h+ m, ρsf =

h

h+ m
.

Consider the commutant

a = ρ−2s+1
∞ ρ−2γ

mf ρ
−2r+1
if ρ−2b+1

sf χ(ρ∞)χ(w2)χ(|η̂|2
/g−1)χ(m)χ(h),

with χ as before, and let A = A∗ denote a Q-quantization of a. The rescaled symbol
ρ2s
∞ρ

2γ
mfρ

2r
if ρ

2b
sf

Qσ(C) of the operator C in (3.31) is now a sum of three types of terms: the
first type arises from differentiating the weights of a, giving −2(2s − 1) at the radial set;
the second arises from differentiating the cutoffs in ρ∞, w2, |η̂|2

/g−1 , which give non-positive

terms; and the third arises from the skew-adjoint part and at the radial set contributes
(using Lemma 3.15) twice 2σ1g

−1
dS (−dt∗,−dr), so −4σ1. In order to propagate out of the

radial set, we thus need −2(2s− 1)− 4σ1 < 0, or equivalently

s > 1
2 − σ1,
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which in view of σ1 ≥ −C1 holds provided s > 1
2 + C1. Propagation out of the opposite

radial set (at r = 1 and ξ > 0, ξ−1 = 0, η̂ = 0) requires the same threshold condition.

Finally, near r = 2, say in r ∈ [3
2 , 2] for definiteness, we need to use energy estimates in

order to deal with the presence of a Cauchy hypersurface at r = 2; note that dr is past
timelike in this region. We can thus apply the semiclassical energy estimates of [Vas13,
§3.3], extended to general orders s, r using microlocal propagation results in a manner

completely analogous to [HV15, §2.1.3], in order to estimate u in H̄
s,(∗,γ,∗,r,b)
Q,σ0,m

near r = 2 in

terms of its norm near r = 3
2 .

To summarize, we can propagate Q-Sobolev regularity from the radial sets over the
cosmological horizon towards the conic point r = 0 and into Rif+,−. For finite σ̃, this
can be propagated further into Rif+,+ and then outwards into r > 0, at which point we
have microlocal control on the whole Q-phase space over if+ ∩ {r < 2}; energy estimates
near r = 2 then give uniform control down to r = 2. In order to complete the proof of
the estimate (3.23) for finite σ̃, it thus remains to control Q-regularity for bounded r̂ and
r ' 1, which is done in §3.4.3.

In the semiclassical regime σ̃ →∞, we cannot yet propagate into the outgoing radial set
Rif+,+ since this requires control on its unstable manifold also over nf◦∩ sf—which requires
the analysis of the nf-normal operator, i.e. the spectral family of the Kerr wave operator, at
high energies. This is the subject of §3.4.2 below. We remark that the radial point estimates
atRif+,± are, from the perspective of nf, semiclassical scattering estimates in asymptotically
Euclidean scattering; such estimates were first proved by Vasy–Zworski [VZ00] for high
energy potential scattering on asymptotically Euclidean Riemannian manifolds.

3.4.2. Estimates near sf ∩nf. Since the analysis in §3.4.1 covers (an open neighborhood of)
the corner sf ∩ nf ∩ if, we may work in a region r̂ < r̂0 for an arbitrary large r̂0; moreover,
we work at large |σ̃| = h̃−1, so local boundary defining functions are

ρnf = m, ρsf = h̃ =
h

m
.

Our local coordinate system h̃,m, r̂, ω is disjoint from the other boundary hypersurfaces
of XQ. We introduce smooth fiber-linear coordinates on QT ∗X by writing the canonical
1-form as

h̃−1(ξ dr̂ + r̂η), ξ ∈ R, η ∈ T ∗S2. (3.33)

In these coordinates, the semiclassically rescaled principal symbol G~ (see (3.26)) is, using
the notation of Definition 3.3, at m = 0 given by

G~ = Ĝ|x̂(−dt̂∗ + ξ dr̂ + r̂η). (3.34)

Indeed, this is the limit as m ↘ 0 (for bounded x̂) of Gm|mx̂(−d(mt̂∗) + hh̃−1(ξ dr̂ + r̂η)).

But (3.34) is the semiclassical principal symbol of the spectral family h̃2�ĝ(h̃−1); a full
description of its characteristic set and null-bicharacteristic flow in the black hole exterior
r̂ > r̂e can be found in [Dya15, §§3.1–3.2]. We in particular note that the trapped set of Gm

lies over a fixed compact subset of radii r̂ as m↘ 0; this follows from [Dya15]. For us, it is
convenient to use the fact that the trapped set depends smoothly on m down to m = 0.27

27Using this fact runs counter to our insistence that only the Kerr model needs to be analyzed explicitly,
whereas the Kerr–de Sitter wave operators are exclusively treated perturbatively. One may instead use
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This is a consequence of the explicit description in [PV21b, Theorem 3.2], and by using
this fact, one can apply the proof of [Dya16, Theorem 1] at once for the smooth family of
trapped sets of gm. (For a direct positive commutator proof of these trapping estimates,
albeit not in a semiclassical setting, see [Hin21a, §3].) Near the event horizon r̂ = r̂e on the
other hand, we can follow [Vas13, §§4.6 and 6.4], which applies in the present subextremal
Kerr context (see also [Hin22a, Lemma 4.3] and [HHV21, Theorem 4.3]).

Since the spectral parameter σ̃ is real—thus �ĝ(σ̃) is formally symmetric—the threshold
regularity at the radial set at fiber infinity of the conormal bundle of the event horizon
r̂ = r̂e is equal to 1

2 . For the same reason, the skew-adjoint part of �ĝ(σ̃) at the trapped
set has vanishing principal symbol, and hence the estimates of [Dya16] apply. (See [HV16,
Theorem 4.7] for an explicit statement.)

Combining the trapping, radial point, microlocal propagation, elliptic regularity, and
wave propagation (in r̂ < r̂e) results proves Proposition 3.13 at extremely high frequencies.
We also record the following consequence of these estimates together with the radial point
estimates proved in the previous section (cf. Proposition 2.33(4)):

Proposition 3.17 (Estimates for the Kerr spectral family at high energies). There exists

h̃0 > 0 so that the following holds. Let r ∈ C∞(scT ∗
∂X̂
X̂) is a variable order function so

that r > −1
2 , resp. r < −1

2 at the semiclassical incoming, resp. outgoing radial set over ∂X̂,

and so that r is monotone along the Hamilton flow inside the characteristic set.28 Suppose
s > 1

2 . Then there exists C > 0 so that

‖u‖H̄s,r

sc,h̃
(Ω̂) ≤ Ch̃

−2‖h̃2�ĝ(±h̃−1)u‖
H̄s−1,r+1

sc,h̃
(Ω̂)
, 0 < h̃ ≤ h̃0.

In our application to the uniform analysis of �(·+ iσ1), we shall apply Proposition 3.17
with r− l′ in place of r (in particular, the threshold conditions here match those of Propo-
sition 3.13).

3.4.3. Non-semiclassical estimates near the horizons. Note that the only parts of the char-
acteristic set Σ not covered by the previous arguments are the conormal bundles over the
cosmological horizon near mf and the event horizon near zf, as well as their flowouts. The
radial point estimates at the conormal bundles were however already discussed in the (more
delicate) semiclassical setting in the previous two sections, as were the propagation esti-
mates (including energy estimates to deal with the Cauchy hypersurfaces at r̂ = 1 and
r = 2). This completes the proof of Proposition 3.13.

that the trapping on subextremal Kerr spacetimes is k-normally hyperbolic (for any fixed k), as proved in
[WZ11b] and [Dya15, §3.2], together with the structural stability of such trapping [HPS77], and note that
the microlocal estimates [Dya16] at the trapped set only require some large but finite amount of regularity
of the defining functions for the stable and unstable manifolds; see [Dya16, Remark after Theorem 2].
Using the structural stability, the symbols of the semiclassical ps.d.o.s involved in the proofs of these
estimates typically only depend continuously on the parameter m, which is inconsequential for the standard
semiclassical calculus (with continuous dependence on m ∈ [0,m0]). The resulting uniform semiclassical
estimates are then equivalent to estimates on Q-Sobolev spaces in the extremely high frequency regime
under consideration here.

28At positive frequencies, these radial sets are given by Rif+,− and Rif+,+ under the isomorphism of
Corollary 2.21. In general, in the coordinates (3.33), the incoming, resp. outgoing radial set is located at

(ξ, η) = (−1, 0), resp. (ξ, η) = (1, 0), over ∂X̂, see e.g. [Vas18, §4.8] or [Mel94] for the non-semiclassical
setting, further [VZ00] for a global semiclassical commutator estimate, and [Vas21a, §5] for a refined semi-
classical estimate.
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3.5. Estimates for the nf±-normal operator. We now turn to estimates for the various
normal operators of�(·+iσ1) which were computed in Proposition 3.9(2)–(4). The symbolic
estimates proved in §3.4 restrict to symbolic estimates for all model operators, in the sense
that e.g. for positive commutator arguments the same commutants can be used (with fewer
localizers, corresponding to working on a boundary hypersurface of XQ); on the level of
function spaces, this relies on Proposition 2.33.

Proposition 3.18 (Uniform bounds on Kerr at bounded nonzero energies). Let c ∈ (0, 1),
s > 1

2 , and let r be as in Proposition 3.17.29 Then there exists C > 0 so that for all σ̃ ∈ R
with |σ̃| ∈ [c, c−1],

‖u‖H̄s,r
sc (Ω̂) ≤ C‖�ĝ(σ̃)u‖

H̄s−1,r
sc (Ω̂)

. (3.35)

Proof. The same symbolic arguments as in the previous section give the estimate

‖u‖H̄s,r
sc (Ω̂) ≤ C

(
‖�ĝ(σ̃)u‖

H̄s−1,r
sc (Ω̂)

+ ‖u‖
H̄−N,−Nsc (Ω̂)

)
. (3.36)

for any N , which we take to satisfy −N < min(s, r); thus, the embedding H̄s,r
sc (Ω̂) ↪→

H̄−N,−Nsc (Ω̂) is compact. The estimate (3.35) (for a different constant C) then follows

provided we show that any u ∈ H̄s,r
sc (Ω̂) with �ĝ(σ̃)u = 0 necessarily vanishes. We reduce

this to the mode stability result of Whiting and Shlapentokh-Rothman [Whi89, SR15] which
we recalled in Theorem 1.7.

Radial point estimates at the conormal bundle of the event horizon, followed by prop-
agation of regularity from there, imply that u is smooth; at spatial infinity, u has infinite
scattering regularity since �ĝ(σ̃) is elliptic at high scattering frequencies. At the incoming
radial set, u has arbitrary scattering decay, and by propagating this to a punctured neigh-

borhood of the outgoing radial set, we conclude that u 3 H̄∞,r
′

sc (Ω̂) where r′ is arbitrary
except r′ < −1

2 at the outgoing radial set. This can be further improved by means of module
regularity at the outgoing radial set, i.e. stable regularity under application of r̂(∂r̂ − iσ̃)
and spherical vector fields; this goes back to [Mel94, §12] and [HMV08], and is discussed
in detail in the present setting in [GRHSZ20, §2.4] (see also [BVW15, Proposition 4.4] and

[HV13]). We thus conclude that e−iσ̃r̂u ∈ H̄∞,l0b (Ω̂) is conormal at r̂ = ∞ where l0 < −1
2 .

Taking into account the modified asymptotics of outgoing spherical waves caused by the
black hole mass (here 1), we consider

u0(r̂, θ, φ∗) := e−iσ̃r̂r̂−2iσ̃u(r̂, θ, φ∗).

Thus, u0 is conormal at ρ̂ = r̂−1 = 0, but we need more precise information. To this end,
we observe that the equation satisfied by u0 in the coordinates (ρ̂, ω) ∈ [0, 1)×S2 takes the
form (

2iσ̃ρ̂(ρ̂∂ρ̂ − 1) + ρ̂2L
)
u0 = 0,

where L ∈ Diff2
b([0, 1)ρ̂ × S2), see [Hin22a, Definition 2.1, Lemma 2.7, and §4]. Rewriting

this as (ρ̂∂ρ̂ − 1)u0 = ρ̂L′u0 for a new operator L′ ∈ Diff2
b, the conormality of u0 at ρ̂ = 0

can be upgraded by an iterative procedure, based on the inversion of ρ̂∂ρ̂ − 1, to the fact
that u0 ∈ ρ̂C∞([0, 1)ρ̂ × S2). We can now apply Theorem 1.7 (for real nonzero spectral

29For bounded nonzero σ̃, one can drop the rescaling of ξ and η in (3.33), thus writing covectors simply
as ξ dr̂+ r̂η; the outgoing radial set is then given by (ξ, η) = (σ̃, 0) over r̂ =∞, and the incoming radial set
by (ξ, η) = (−σ̃, 0).
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parameters, for which we already proved it in §1.2) to conclude that u0 = 0 (and thus
u = 0) in r̂ ≥ r̂e.

This then implies the vanishing of u in r̂ < r̂e as well: this can be shown by considering
the projections of u to its separated parts eimφ∗S(θ)R(r̂) and noting (by inspection of the
dual metric (3.6b)) that R then satisfies an ODE which upon multiplication by µ̂(r̂) has a
regular-singular point at r̂ = r̂e; hence the infinite order vanishing of R at r̂e implies R ≡ 0
also in r̂ < r̂e. The proof is complete. �

Uniform estimates near zero energy require, first of all, an estimate for the zero energy
operator:

Lemma 3.19 (Zero energy operator on Kerr). Let s > 1
2 and γ ∈ (−3

2 ,−
1
2). Then

‖u‖H̄s,γ
b (Ω̂) ≤ C‖�ĝ(0)u‖

H̄s−1,γ+2
b (Ω̂)

. (3.37)

Recall from Proposition 3.9(2) that the zf-normal operator of �(·+ iσ1) is independent
of σ1 ∈ [−C1, C1] and σ0 ∈ R, and equal to the Kerr zero energy operator �ĝ(0); thus,
Lemma 3.19 proves the invertibility of Nzf(�(·+ iσ1)).

Proof of Lemma 3.19. Combining the symbolic estimates proved in §3.4—or rather their
restrictions to zf ∩ nf, cf. Proposition 2.33—with elliptic b-theory near ρ̂ = r̂−1 = 0, we
obtain the estimate

‖u‖H̄s,γ
b (Ω̂) ≤ C

(
‖�ĝ(0)u‖

H̄s−1,γ+2
b (Ω̂)

+ ‖u‖
H̄−N,−Nb (Ω̂)

)
.

(The b-analysis at ρ̂ = 0 uses that �ĝ(0) is, to leading order as a b-operator, the Euclidean
Laplacian ρ̂2((ρ̂Dρ̂)

2 + iρ̂Dρ̂ + ∆/g). Upon separation into spherical harmonics, this is a

rescaling of the regular-singular ODE (ρ̂∂ρ̂)
2 − ρ̂∂ρ̂ − `(` + 1), with ` ∈ N0 labeling the

degree of the spherical harmonic; the indicial solutions are ρ̂`+1 and ρ̂−`, and the choice of
weight γ ensures that the weighted L2-space H̄0,γ

b (Ω̂) contains, for all `, the solution ρ̂`+1

but not ρ̂−`. See also [GH08, Theorem 2.1].) Since the inclusion H̄s,γ
b (Ω̂) ↪→ H̄−N,−Nb (Ω̂) is

compact, it remains to prove the triviality of ker�ĝ(0). This can be checked using explicit
computations with special functions (as remarked in [PT73, Teu72]), but we give a softer
proof here, following [HV17a].

In view of (3.6b) and (3.21), the operator �ĝ(0) is explicitly given by

%̂2�ĝ(0) = Dr̂µ̂(r)Dr̂ + ∆/g −
1− χe(r̂)2

µ̂(r)
(aDφ∗)

2 +
(
χe(r̂)Dr̂ +Dr̂χ

e(r̂)
)
aDφ∗

= Dr̂µ̂(r̂)Dr̂ + ∆/g −
a2

µ̂(r̂)
D2
φ,

where in the second line we passed to φ = φ∗ + Φ(r̂) with Φ′(r̂) = −aχe(r̂)
µ̂(r̂) ; note that

Φ(r̂) = − a

β
log(r̂ − r̂e) + Φ̃(r̂), β := µ̂′(r̂e) = r̂e − r̂c = 2

√
1− â2, (3.38)

with Φ̃ smooth down to r̂ = r̂e. We may also arrange that Φ(r̂) = 0 for large r̂.

Let now u ∈ ker�ĝ(0). First of all, we have u ∈ H̄∞,γb (Ω̂): conormality at, and smooth-
ness near spatial infinity follows from the ellipticity (for large r̂) of �ĝ(0) as a weighted
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b-differential operator, whereas smoothness near the ergoregion and in the black hole in-
terior follows by combining radial point estimates at the event horizon and propagation
estimates in the ergoregion and in the black hole interior r̂ < r̂e. Sobolev embedding for

u ∈ H̄
∞,γ+ 3

2
b (Ω̂, |dr̂r̂ d/g|) implies that |Dj

r̂u| = O(r̂−γ−
3
2
−j) = o(r̂−j) for any j ∈ N0 as

r̂ →∞.

Projecting u(r, θ, φ∗) in the angular variables to a fixed spherical harmonic Y`m(θ, φ∗) =
eimφ∗S`m(θ), where ` ∈ N0 and m ∈ Z ∩ [−`, `], produces a separated solution

v∗(r̂)Y`m(θ, φ∗) = v(r̂)Y`m(θ, φ), v(r̂) = e−imΦ(r̂)v∗(r̂), (3.39)

where v∗ ∈ C∞([1,∞)r̂) satisfies |v∗| = o(1) as r̂ →∞, and v (which equals v∗ for large r̂)
satisfies (

Dr̂µ̂Dr̂ −
a2m2

µ̂
+ `(`+ 1)

)
v = 0. (3.40)

This is a regular-singular ODE at r̂ =∞, with indicial solutions r̂` (which does not decay

as r̂ →∞) and r̂−`−1, and therefore we have |v| = O(r̂−`−1) and thus |Dj
r̂v| = O(r̂−`−1−j)

for all j ∈ N0.

We first study the case ma = 0, i.e. a = 0 or m = 0. Then v is smooth on [r̂e,∞); upon
multiplying (3.40) by v̄ and integrating over r̂ ∈ (r̂e,∞), we may integrate by parts in view
of |v| = O(r̂−1) and |v′| = O(r̂−2) as r̂ → ∞. For ` = 0, we obtain v′ = 0, hence v is
constant and therefore must vanish since v is required to decay at infinity; for ` ≥ 1, we
obtain v = 0 directly.

When m, a 6= 0, the rescaling of (3.40) by µ̂ is of regular-singular type at µ̂ = 0, and

by (3.38) and (3.39), we have v(r̂) = (r̂ − r̂e)ima/βw(r̂) where w(r̂) is smooth down to
r̂ = r̂e. The Wronskian

W := Im
(
v(r̂)µDr̂v̄(r̂)

)
is constant, but decays to zero as r̂ → ∞, and hence W = 0. On the other hand, by
evaluating its limit as r̂ ↘ r̂e, one finds W = mâ|w(r̂e)|2; thus, w(r̂e) = 0, and since
the other indicial root of (3.40) is −ima/β /∈ ima/β − N0, we conclude that w vanishes
identically, and therefore so does v∗ in r̂ ≥ r̂e.

Having shown that v∗ = 0 on [r̂e,∞), we obtain v∗ = 0 also on [1, r̂e] since v∗(r̂) vanishes
to infinite order at r̂ = r̂e and satisfies 0 = µ̂%̂2�ĝ(0)(v∗Y`m), which is a regular-singular
ODE at r̂ = r̂e. �

Next, the transition between zero and nonzero frequencies is governed by a model op-
erator on an exact cone; for purely imaginary spectral parameters, this was introduced in
[GH08], while in the present context of real spectral parameters, this model operator was
introduced in [GHS13, §5]; see also [Vas21c, Definition 2.4, §5]. In the following result, we

work on the transition face tf ⊂ X̂sc-b, which (recalling the coordinates (2.2) and (2.18)) is

tf = [0,∞]r̃ × S2, r̃ = |σ̃|r̂

by Proposition 2.15(3). Concretely, the tf-normal operator of σ̃−2�ĝ(σ̃) is

�tf(1) := Ntf(�ĝ(·)) = ∆̃ + 1, ∆̃ = D2
r̃ −

2i

r̃
Dr̃ + r̃−2∆/g, (3.41)
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see [Vas21b, §§4.1 and 6].30 On tf, we work with the volume density r̃2|dr̃ d/g|, and with
Sobolev spaces

Hs,r,l
sc,b (tf)

which are scattering Sobolev spaces near ρ̃ = 0 (with variable decay order r) and b-Sobolev
spaces near r̃ = 0 (with decay order l there). Note that

�tf(1) ∈ Diff2,0,2
sc,b (tf) =

( r̃

r̃ + 1

)−2
Diff2

sc,b(tf)

is an unweighted scattering operator near ρ̃ = 0, and a weighted b-operator near r̃ = 0.
The b-normal operator of r̃2�tf(1) at r̃ = 0 is (r̃Dr̃)

2 − ir̃Dr̃ + ∆/g, with indicial solutions

r̂−`−1Y`m and r̂`Y`m; the range (1
2 ,

3
2) of weights in Lemma 3.20 disallows the former,

more singular, solution. The outgoing and incoming radial sets are as usual the graphs at
ρ̃ = r̃−1 = 0 of dr̃ and −dr̃, respectively.

Lemma 3.20 (Estimates for the tf-normal operator). Let s ∈ R, l ∈ (1
2 ,

3
2), and suppose

r ∈ C∞(sc,bT ∗
ρ̂−1(0)

tf) is a variable order function which is monotone along the flow of the

Hamiltonian vector field of the principal symbol of �tf(1), and which satisfies r > −1
2 , resp.

r < −1
2 at the incoming, resp. outgoing radial set. Then there exists a constant C > 0 so

that
‖u‖

Hs,r,l
sc,b (tf)

≤ C‖�tf(1)u‖
Hs−2,r+1,l−2

sc,b (tf)
. (3.42)

Proof. Radial point estimates at the scattering end ρ̃ = 0, and elliptic b-estimates at the
small end r̃ = 0 of the cone tf give the estimate (3.42) except for the presence of an addi-
tional, relatively compact, error term C‖u‖

H−N,−N,−Nsc,b (tf)
on the right. The estimate (3.42)

thus follows from the nonexistence of outgoing elements in the kernel of �tf(1), which
is standard; it can be proved upon separation into spherical harmonics using Wronskian
arguments, or by inspection of the asymptotic behavior of the explicit (Bessel function)
solutions as done in [GH08, §§3.4–3.5] or [Hin21b, Lemma 5.10]. �

Lemmas 3.19 and 3.20 provide the normal operator estimates for the uniform low en-

ergy analysis of �ĝ(·) ∈ Diff2,0,2,0
sc-b (Ω̂) ⊂ Ψ2,0,2,0

sc-b (Ω̂) on the sc-b-transition-Sobolev spaces

H̄s,r,γ,l′

sc-b,σ̃ (Ω̂) introduced in §A.4, with γ and l′ the weights at tf and zf, respectively, and

r ∈ C∞(sc-bT ∗scfX̂) denoting a variable scattering decay order function. Near scf ⊂ X̂sc-b, a
defining function of scf is ρ̃ = r̃−1, and thus we can write sc-b-covectors (cf. (A.4)) as

−ξdρ̃

ρ̃2
+
η

ρ̃
= ξ dr̃ + r̃η = |σ̃|

(
ξ dr̂ + r̂η

)
where η ∈ T ∗S2. For σ̃ > 0, the outgoing (incoming) radial set is then given by ξ = 1
(ξ = −1), η = 0, ρ̂ = 0, and the signs are reversed when σ̃ < 0.

Proposition 3.21 (Uniform bounds on Kerr near zero energy). Let s > 1
2 , l, γ ∈ R, and

suppose γ− l ∈ (−3
2 ,−

1
2). Suppose r is a variable order function that is monotone along the

Hamiltonian flow of the principal symbol of �tf(1), and which satisfies r > 1
2 , resp. r < −1

2

30This is the conjugation of the model operator in [Hin22a, Definition 2.20] by eir̃. We remark that
in [Hin22a], which is based on [Vas21c], the analytic setup focuses on precise second microlocal/module
regularity at the outgoing radial set, whereas in the present paper variable order estimates are sufficient.
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at the incoming, resp. outgoing radial set. Then there exists C > 0 so that, for σ̃ ∈ ±[0, 1],
we have

‖u‖
H̄s,r,γ,l

sc-b,σ̃ (Ω̂)
≤ C‖�ĝ(σ̃)u‖

H̄s−1,r+1,γ+2,l
sc-b,σ̃ (Ω̂)

. (3.43)

These estimates are closely related to those proved by Vasy in [Vas21c]; but whereas
Vasy uses a second microlocal algebra which allows for precise module regularity control
at the outgoing radial set (roughly speaking allowing the order r to be constant—and thus
high—except for a jump right at the outgoing radial set), we prove a less precise estimate on
variable order spaces here. Thus, using the simpler sc-b-ps.d.o. algebra already introduced
by Guillarmou–Hassell [GH08], we are still able to prove uniform low energy resolvent
estimates.

Proof of Proposition 3.21. Via multiplication by |σ̃|l, one may reduce to the case that l = 0.
When |σ̃| is bounded away from 0, the estimate (3.43) is the content of Proposition 3.18.
Symbolic estimates (which at the incoming radial set only require r > −1

2) give

‖u‖
H̄s,r,γ,0

sc-b,σ̃ (Ω̂)
≤ C

(
‖�ĝ(σ̃)u‖

H̄s−1,r+1,γ+2,0
sc-b,σ̃ (Ω̂)

+ ‖u‖
H̄
s0,r0,γ,0
sc-b,σ̃ (Ω̂)

)
for any s0 < s and r0 < r; we shall take s0 ∈ (1

2 , s), and choose r0 < r − 1 with r0 > −1
2

at the incoming radial set and monotone along the Hamiltonian flow. Let χ = χ(σ̃/ρ̂) =
χ(r̃) ∈ C∞c ([0, 1)) denote a cutoff, identically 1 near 0, to a neighborhood of zf. Then by
writing u = χ(ρ̃)u + (1 − χ(ρ̃))u, with the second summand supported away from zf, we
have

‖u‖
H̄
s0,r0,γ,0
sc-b,σ̃ (Ω̂)

≤ ‖χ(ρ̃)u‖
H̄
s0,r0,γ,0
sc-b,σ̃ (Ω̂)

+ C‖u‖
H̄
s0,r0,γ,−N
sc-b,σ̃ (Ω̂)

for any fixed N ; we take N = 1. Moreover, uniformly for σ̃ ∈ [0, 1],

‖χ(ρ̃)u‖
H̄
s0,r0,γ,0
sc-b,σ̃ (Ω̂)

≤ C‖χ(ρ̃)u‖H̄s0,γ
b (Ω̂).

(In fact, the norms on both sides, in the presence of the cutoff χ(ρ̃), are uniformly equivalent,
see (A.6a).) Using Lemma 3.19,

‖χ(ρ̃)u‖H̄s0,γ
b (Ω̂) ≤ C

(
‖χ(ρ̃)�ĝ(0)u‖

H̄
s0−1,γ+2
b (Ω̂)

+ ‖[�ĝ(0), χ(ρ̃)]u‖
H̄
s0−1,γ+2
b (Ω̂)

)
≤ C

(
‖χ(ρ̃)�ĝ(0)u‖

H̄
s0−1,∗,γ+2,0
sc-b,σ̃ (Ω̂)

+ ‖[�ĝ(0), χ(ρ̃)]u‖
H̄
s0−1,∗,γ+2,0
sc-b,σ̃ (Ω̂)

)
≤ C

(
‖�ĝ(σ̃)u‖

H̄
s0−1,∗,γ+2,0
sc-b,σ̃ (Ω̂)

+ ‖u‖
H̄
s0,∗,γ,−1
sc-b,σ̃ (Ω̂)

)
,

where the ‘∗’ indicates that the order is arbitrary; we use here that χ(ρ̃)(�ĝ(σ̃)−�ĝ(0)) ∈
Diff1,0,2,−1

sc-b (Ω̂) and [�ĝ(0), χ(ρ̃)] ∈ Diff1,−∞,2,−∞
sc-b (Ω̂).

We have now obtained the improved estimate

‖u‖
H̄s,r,γ,0

sc-b,σ̃ (Ω̂)
≤ C

(
‖�ĝ(σ̃)u‖

H̄s−1,r+1,γ+2,0
sc-b,σ̃ (Ω̂)

+ ‖u‖
H̄
s0,r0,γ,−1
sc-b,σ̃ (Ω̂)

)
.

The next step is to strengthen this further by weakening the weight of the error term at tf.
To this end, we fix a cutoff ψ ∈ C∞(X̂sc-b) which is supported in a small collar neighborhood

of tf ⊂ X̂sc-b and identically 1 near tf; then for any δ ∈ (0, 1] and N ∈ R, we have

‖u‖
H̄
s0,r0,γ,δ
sc-b,σ̃ (Ω̂)

≤ ‖ψu‖
H̄
s0,r0,γ,δ
sc-b,σ̃ (Ω̂)

+ C‖u‖
H̄
s0,r0,−N,δ
sc-b,σ̃ (Ω̂)

.
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We can estimate the first term, using (A.6b) and Lemma 3.20, via pullback along the
coordinate change φ : (σ̃, ρ̃, ω) 7→ (σ̃, σ̃ρ̃, ω) ∈ [0, 1]× [0, 1)ρ̂ × S2

ω, similarly to above by

|σ̃|δ+
3
2 ‖φ∗(ψu)‖

H
s0,r0,−γ+δ
sc,b (tf)

≤ C|σ̃|δ+
3
2

(
‖φ∗(ψ)�tf(1)(φ∗u)‖

H
s0−2,r0+1,−γ+δ−2
sc,b (tf)

+ ‖[�tf(1), φ∗(ψ)]φ∗u‖
H
s0,r0,−γ+δ
sc,b (tf)

)
≤ C

(
‖ψ�ĝ(σ̃)u‖

H̄
s0−2,r0+1,γ+2,δ
sc-b,σ̃ (Ω̂)

+ ‖u‖
H̄
s0,r0+1,γ−1,δ
sc-b,σ̃ (Ω̂)

)
, (3.44)

where we fix δ > 0 so small that −γ + δ ∈ (1
2 ,

3
2). Here, we used that ψ(�ĝ(σ̃) −

φ∗(σ̃
2�tf(1))) ∈ Diff2,0,−3,0

sc-b (Ω̂) (which is the statement that σ̃2�tf(1) is the tf-normal op-
erator of �ĝ(σ̃)).

Altogether, increasing the tf-order of the final term in (3.44) to γ − δ (thus making this
term larger) for convenience, we have shown

‖u‖
H̄s,r,γ,0

sc-b,σ̃ (Ω̂)
≤ C

(
‖�ĝ(σ̃)u‖

H̄s−1,r+1,γ+2,0
sc-b,σ̃ (Ω̂)

+ ‖u‖
H̄
s0,r0+1,γ−δ,δ
sc-b,σ̃ (Ω̂)

)
≤ C‖�ĝ(σ̃)u‖

H̄s−1,r+1,γ+2,0
sc-b,σ̃ (Ω̂)

+ C|σ̃|δ‖u‖
H̄
s0,r0+1,γ,0
sc-b,σ̃ (Ω̂)

.

Since s0 < s and r0 + 1 < r, the second term, for sufficiently small |σ̃|, can be absorbed into
the left hand side. The proof is complete. �

3.6. Estimates for the mf±,~-normal operator. Having proved estimates for all normal
operators related to the Kerr model, we now turn to the de Sitter model at mf and prove
high energy estimates. Since the de Sitter model involves, analytically and geometrically,
a cone point due to the blow-up of the spatial manifold X at 0 ∈ X, these estimates do
not follow from [Vas13, §4]. Rather, they involve propagation estimates on semiclassical
cone spaces; indeed one can quote [Hin21b, Theorem 4.10]. The details are as follows.
By Proposition 3.9(4), the mf-normal operator of �(· + iσ1) is the operator family σ0 7→
�gdS

(σ0 + iσ1). In the high energy regime h = |σ0|−1 ≤ 1, ±σ0 > 0, we rescale this to

h 7→ h2�gdS
(±h−1 + iσ1). (3.45)

Near the lift sf of h = 0 to Ẋc~ ⊂ mf, we have coordinates h̃ = h/r, r, and ω ∈ S2, and
Q-covectors can be written as h−1(ξ dr+rη), ξ ∈ R, η ∈ T ∗S2, as in (3.27). In view of (3.4),
the semiclassical cone principal symbol of (3.45) is then

(1− r2)ξ2 + |η|2
/g−1 −

1

1− r2
.

The outgoing and incoming radial sets were computed already in §3.4.1, see (3.29). (Indeed,

in view of Corollary 2.21, we have QTmf+,~∩ if+X
∼= c~T ∗sfẊ.) Furthermore, the tf-model

operator of (3.45) only depends on the metric gdS at the point 0 where it is the Minkowski
metric on Rt∗ ×X, and therefore the model operator is

�tf(1) = D2
r̃ −

2i

r̃
Dr̃ + r̃2∆/g + 1, r̃ =

r

h
.

This is of course the same operator as in (3.41), since it is the restriction of h2�(·+ iσ1) to
the boundary face mf ∩ nf (see also Figure 2.3). Notice how what here is a model problem
at high energy right at the conic singularity of the spatial de Sitter manifold blown up at 0
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is the same as a model problem at low energy at spatial infinity of the asymptotically flat
spatial Kerr manifold.

Proposition 3.22 (High energy estimates on de Sitter space). There exists h0 > 0 so that

the following holds. Let s > 1
2 + C1, l ∈ (1

2 ,
3
2), l′ ∈ R and r ∈ C∞(c~T ∗sfẊ), and assume

that r is monotone along the Hamiltonian flow of the semiclassical cone principal symbol
of �gdS

(σ0 + iσ1) (with h = ±σ−1
0 ≥ 0 the semiclassical parameter), and so that r− l′ > 1

2 ,

resp. r− l′ < −1
2 at the incoming, resp. outgoing radial set. Then there exists C > 0 so that

‖u‖
H̄s,l,l′,r

c,h (Ω̇)
≤ C‖h2�gdS

(±h−1 + iσ1)u‖
H̄s−1,l−2,l′,r+1

c,h (Ω̇)
, 0 < h ≤ h0.

(Recall here the notation Ω̇ from (3.12b).)

Proof. Via multiplication by hl
′
, we can reduce to the case l′ = 0. Using the assumptions

on s and r, symbolic estimates (which control elements of semiclassical cone Sobolev spaces
in the sense of regularity s and semiclassical order r) give

‖u‖
H̄s,l,0,r

c,h (Ω̇)
≤ C

(
‖h2�gdS

(±h−1 + iσ1)u‖
H̄s−1,l−2,0,r+1

c,h (Ω̇)
+ ‖u‖

H̄
−N,l,0,r0
c,h (Ω̇)

)
(3.46)

for any fixed N and r0 < r, which we fix subject to r0 < r− 1, and r0 > −1
2 at the incoming

radial set. The error term can then be estimated in terms of the tf-normal operator �tf(1)
by using Lemma 3.20 in a manner completely analogous to the proof of Proposition 3.21;
this is where the assumption l ∈ (1

2 ,
3
2) is used. Thus, the last, error, term in (3.46) can be

replaced by ‖u‖
H̄
−N,l,−1,r0+1
c,h (Ω̇)

≤ Chδ‖u‖
H̄−N,l,0,rc,h (Ω̇)

if we choose δ > 0 small enough so that

r0 + 1 + δ < r still.31 For small h > 0, this error term can then be absorbed into the left
hand side of (3.46), finishing the proof. �

3.7. Absence of high energy resonances. By combining the estimates proved in §§3.4–
3.6, we can now show:

Proposition 3.23 (Uniform estimates at high energies). Let s, γ, l′, b ∈ R, and let r ∈
C∞(QT ∗ifX) be a variable order. Suppose that s > 3

2 + C1, γ − l ∈ (−3
2 ,−

1
2), and that

r− l′ > 1
2 , resp. r− l′ < −1

2 at the incoming, resp. outgoing radial set over if ∩ nf. Suppose
moreover that r is non-increasing along the Hamiltonian flow of the principal symbol of
�(·+ iσ1). Let h0 > 0 be as in Proposition 3.22 (i.e. sufficiently small). Then for any fixed
s0 < s, l0 < l, γ0 < γ, l′0 < l′, r0 < r, b0 < b, there exists a constant C > 0 so that for

|σ0| ≥ h−1
0 , we have the uniform (for |σ0| ≥ h−1

0 , σ1 ∈ [−C1, C1], m ∈ (0,m0]) estimate

‖u‖
H̄
s,(l,γ,l′,r,b)
Q,σ0,m

(ΩQ)
≤ C

(
‖�gm(σ0 + iσ1)u‖

H̄
s−1,(l−2,γ,l′−2,r−1,b)
Q,σ0,m

(ΩQ)
+ ‖u‖

H̄
s0,(l0,γ0,l

′
0,r0,b0)

Q,σ0,m
(ΩQ)

)
(3.47)

In the remaining bounded frequency range |σ0| ≤ h−1
0 , we have a uniform (for σ0 ∈

[−h−1
0 , h−1

0 ], σ1 ∈ [−C1, C1], m ∈ (0,m0]) estimate

‖u‖
H̄
s,(l,γ)
q,m (Ωq)

≤ C
(
‖�gm(σ0 + iσ1)u‖

H̄
s−1,(l−2,γ)
q,m (Ωq)

+ ‖u‖
H̄
s0,(l0,γ)
q,m (Ωq)

)
. (3.48)

31The assumption r − l′ > 1
2

can be weakened to r − l′ > − 1
2
, see the end of the proof of [Hin21b,

Theorem 4.10], but we do not need this precision here.
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Proof. This follows analogously to the proof of Proposition 3.21 from successive improve-
ments of the error term of the symbolic estimate of Proposition 3.13 by means of the normal
operator estimates proved in §§3.5–3.6; the function spaces are related via Proposition 2.33.

Thus, we fix s0 < s − 1, r0 < r − 1, and b0 < b − 2 subject to the conditions that
s0 >

1
2 +C1, and r0− l′ > −1

2 at the incoming radial set, and start with the estimate (3.23).
We weaken the error term in (3.23) at zf: let χ be a cutoff to a neighborhood of zf as in
Proposition 2.33(1), then Lemma 3.19 implies (omitting the coordinate change φzf from the
notation)

‖χu‖
H̄
s0,(l,γ,l

′,∗,∗)
Q,σ0,m

(ΩQ)

≤ C〈σ〉l′−lm
3
2
−l‖χu‖

H̄
s0,γ−l
b (Ω̂)

≤ C〈σ〉(l′−2)−(l−2)m
3
2
−(l−2)

×
(
‖χm−2�ĝ(0)u‖

H̄
s0−1,γ−l+2
b (Ω̂)

+ ‖m−2[�ĝ(0), χ]u‖
H̄
s0−1,γ−l+2
b (Ω̂)

)
≤ C

(
‖χ�gm(σ0 + iσ1)u‖

H̄
s0−1,(l−2,γ,l′−2,∗,∗)
Q,σ0,m

(ΩQ)
+ ‖u‖

H̄
s0+1,(l−1,γ,l′,∗,∗)
Q,σ0,m

)
,

where we used γ − l ∈ (−3
2 ,−

1
2) in the application of Lemma 3.19, and the fact that

χ(�gm(σ0+iσ1)−m−2�ĝ(0)) ∈ Diff
2,(1,0,2,∗,∗)
Q (from Proposition 3.9(2)); also m−2[�ĝ(0), χ] ∈

Diff
1,(−∞,0,2,∗,∗)
Q is a fortiori of this class. Since on the other hand for Q-Sobolev norms of

(1−χ)u (which is supported away from zf) the weight at zf is arbitrary, we can now improve
the symbolic estimate (3.23) (as far as the zf-weight is concerned) to

‖u‖
H̄
s,(l,γ,l′,r,b)
Q,σ0,m

(ΩQ)
≤ C

(
‖�gm(σ0 + iσ1)u‖

H̄
s−1,(l−2,γ,l′−2,r−1,b)
Q,σ0,m

(ΩQ)
+ ‖u‖

H̄
s0+1,(l−δ,γ,l′,r0,b0)
Q,σ0,m

(ΩQ)

)
for any δ ∈ (0, 1]. For any fixed compact interval of σ0, this implies the uniform esti-
mate (3.48). (The weight l− δ can be reduced to any l0 using an interpolation argument.)
Note also that we can apply Proposition 3.13 to the error term here and thereby reduce its
differential order back to s0.

We work on the resulting error term ‖u‖
H̄
s0,(l−δ,γ,l′,r0,b0)
Q,σ0,m

(ΩQ)
further by inverting the nf-

normal operator, which is m−2�ĝ(m·) by Proposition 3.9(3). Thus, reusing the symbol χ
to now denote a cutoff to a collar neighborhood of nf which is identically 1 near nf, we use
Proposition 2.33(3) and Proposition 3.21 to estimate, for σ̃0 = mσ0 with σ̃0 ∈ ±[0, 1],

‖χu‖
H̄
s0,(l−δ,γ,l′,r0,∗)
Q,σ0,m

(ΩQ)

≤ m
3
2
−l′‖χu‖

H̄
s0,r0−l′,γ−l′,l−δ−l′
sc-b,σ̃0

(Ω̂)

≤ Cm
3
2
−(l′−2)

(
‖χm−2�ĝ(σ̃0)u‖

H̄
s0−1,r0−l′+1,γ−l′+2,l−δ−l′
sc-b,σ̃0

(Ω̂)

+ ‖m−2[�ĝ(σ̃0), χ]u‖
H̄
s0−1,r0−l′+1,γ−l′+2,l−δ−l′
sc-b,σ̃0

(Ω̂)

)
≤ C

(∥∥χ�(·+ iσ1)u‖
H̄
s0−1,(l−2−δ,γ,l′−2,r0−1,∗)
Q,σ0,m

(ΩQ)
+ ‖u‖

H̄
s0+1,(l−δ,γ,l′−δ′,r0,∗)
Q,σ0,m

(ΩQ)

)
.

Here, we fix δ > 0 sufficiently small so that γ − (l − δ) ∈ (−3
2 ,−

1
2); and δ′ ∈ (0, 1] can be

chosen arbitrarily. A completely analogous argument, now using Proposition 2.33(4) and
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Propositions 3.17 and 3.18, gives the high energy estimate (for σ̃0 ∈ ±[1,∞])

‖χu‖
H̄
s0,(l−δ,γ,l′,r0,b0)
Q,σ0,m

(ΩQ)

≤ C
(∥∥χ�gm(σ0 + iσ1)u‖

H̄
s0−1,(l−2−δ,γ,l′−2,r0−1,b0)
Q,σ0,m

(ΩQ)
+ ‖u‖

H̄
s0+1,(l−δ,γ,l′−δ′,r0+1,b0+2)
Q,σ0,m

(ΩQ)

)
.

(The semiclassical order b0 + 2 of the error term arises from the fact that �(·+ iσ1) differs,

near sf, from its nf-normal operator by an operator of class Diff
2,(∗,∗,1,2,2)
Q .) On the other

hand, (1− χ)u is supported away from nf, and hence for its Q-Sobolev norms the order at
nf is arbitrary. We have thus established the uniform estimate

‖u‖
H̄
s,(l,γ,l′,r,b)
Q,σ0,m

(ΩQ)
≤ C

(
‖�gm(σ0+iσ1)u‖

H̄
s−1,(l−2,γ,l′−2,r−1,b)
Q,σ0,m

(ΩQ)
+‖u‖

H̄
s0,(l−δ,γ,l′−δ′,r0,b0)
Q,σ0,m

(ΩQ)

)
,

(3.49)
where we used the symbolic estimate (3.23) again to reduce the differential and semiclassical
order to s0 and b0 (using b0 + 2 < b).

Finally, for |σ0|−1 ≤ h0, we can apply Proposition 3.22 to the localization of the error
term in (3.49) to a collar neighborhood of mf and to these high frequencies; using Propo-
sition 2.33(2) to pass between Q- and semiclassical cone Sobolev spaces, and using that
l − δ − γ ∈ (1

2 ,
3
2) and (r0 − γ) − (l′ − δ′) > −1

2 , resp. < −1
2 at the incoming, resp. out-

going radial set when δ, δ′ > 0 are sufficiently small, an application of Proposition 3.22
improves (3.49) to the desired estimate (3.47). �

Corollary 3.24 (Absence of high energy resonances). There exists m1 > 0 so that for all
m ∈ (0,m1], σ0 ∈ R with |σ0| ≥ h−1

0 , and σ1 ∈ [−C1, C1], we have σ0 + iσ1 /∈ QNM(m).

Proof. For |σ0| ≥ h−1
0 , the final, error, term in the estimate (3.47) is small compared to the

left hand side, since

‖u‖
H̄
s0,(l0,γ0,l

′
0,r0,b0)

Q,σ0,m
(ΩQ)

= mδ‖u‖
H̄
s0,(l0+δ,γ0+δ,l′0+δ,r0+δ,b0)

Q,σ0,m
(ΩQ)

,

and l0 + δ < l, γ0 + δ < γ, l′0 + δ < l′, r0 + δ < r, and b0 < b for sufficiently small δ > 0.
Thus, when m1 > 0 is sufficiently small, then for m ∈ (0,m1], the estimate (3.47) implies

‖u‖
H̄
s,(l,γ,l′,r,b)
Q,σ0,m

(ΩQ)
≤ C‖�gm(σ0 + iσ1)u‖

H̄
s−1,(l−2,γ,l′−2,r−1,b)
Q,σ0,m

(ΩQ)
.

This implies the claim. �

3.8. Uniform control of bounded frequencies. Having proved that all resonances σ ∈
QNM(m) with σ1 = Imσ ∈ [−C1, C1] satisfy |Reσ0| < C0 for C0 = h−1

0 , we may now work
with the holomorphic family

B := [−C0, C0] + i[−C1, C1] 3 σ 7→
(
(0,m0] 3 m 7→ �gm(σ)

)
∈ Diff2,2,0

q (Ωq)

of q-differential operators. For this family, we have the uniform estimate (3.48); for its
mfσ-normal operator �gdS

(σ), we moreover have uniform estimates

‖u‖
H̄s,l

b (Ω̇)
≤ C

(
‖�gdS

(σ)u‖
H̄s−1,l−2

b (Ω̇)
+ ‖u‖

H̄
s0,l0
b (Ω̇)

)
(3.50)

for any fixed s0 < s, l0 < l when s > 1
2 + C1, l ∈ (1

2 ,
3
2). (This follows under the stronger

requirement s > 3
2 + C1 from the relationship between q- and b-Sobolev spaces, see Pro-

position 2.13(2); or it follows directly by combining elliptic b-theory in r < 1, and radial
point and propagation estimates in r ≥ 1.)
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For the following result, we recall that β̇ : Ẋ → X is the blow-down map (used before in
Lemma 3.10), and we recall ΩdS := B(0, 2) ⊂ X from Definition 3.4.

Lemma 3.25 (Properties of the spectral family on de Sitter space). Let s > 1
2 + C1 and

l ∈ (1
2 ,

3
2). Then for all σ ∈ B, the operator32

�gdS
(σ) :

{
u ∈ H̄s,l

b (Ω̇) : �gdS
(0)u ∈ H̄s−1,l−2

b (Ω̇)
}
→ H̄s−1,l−2

b (Ω̇) (3.51)

is Fredholm and has index 0. Moreover, if u lies in its kernel, then u = β̇∗v where v ∈
C∞(ΩdS).

Proof. We complement (3.50) by an analogous estimate for the adjoint operator on the dual
function spaces,

‖v‖
Ḣ−s+1,−l+2

b

(
Ω̇
) ≤ C(‖�gdS

(σ)∗v‖
Ḣ−s,−lb

(
Ω̇
) + ‖v‖

Ḣ
s1,l1
b

(
Ω̇
))

for any s1 < −s+ 1, l1 < −l + 2. This is proved as in [Vas13, §4] (see also [Zwo16]) using
radial point and propagation estimates which propagate in the opposite direction compared
to the proof of (3.50), with the caveat that at the conic singularity r = 0, one uses elliptic
b-theory and −l + 2 ∈ (1

2 ,
3
2). Together with (3.50), this implies that (3.51) is Fredholm.

The high energy estimates of Proposition 3.22 imply that (3.51) is injective when |Reσ|
is sufficiently large. One can similarly prove adjoint versions of the high energy estimates
of Proposition 3.22, which imply the triviality of the kernel of the adjoint �gdS

(σ)∗ on

Ḣ−s+1,−l+2
b (Ω̇). Thus, the operator (3.51) is invertible for large |Reσ|, and therefore Fred-

holm of index 0 for all σ ∈ B since the Fredholm index is constant.

If u ∈ ker�gdS
(σ), then u ∈ H̄∞,lb (Ω̇) by elliptic regularity and radial point and propa-

gation estimates. But interpolating between the maps H̄0
b(Ω̇) ↪→ L2(ΩdS) and H̄1,1

b (Ω̇) ↪→
H̄1(ΩdS) implies that u = β∗v where v ∈ H̄ l(ΩdS)∩ C∞(ΩdS \ {0}). Therefore �gdS

(σ)v, as
an extendible distribution on ΩdS, has support in {0} but Sobolev regularity ≥ l− 2 (since
�gdS

(σ) ∈ Diff2(ΩdS)). Since l − 2 > −3
2 , we must have �gdS

(σ)v = 0, and therefore v is
smooth near 0 by elliptic regularity. (One can also prove this directly by expanding u near
r = 0 into spherical harmonics and solving the resulting family of regular-singular ODEs
at r = 0.) �

Similarly, we can complement (3.48) by a uniform adjoint estimate

‖u‖
Ḣ
−s+1,(−l+2,−γ)
q,m (Ωq)

≤ C
(
‖�gm(σ0 + iσ1)∗u‖

Ḣ
−s,(−l,−γ)
q,m (Ωq)

+ ‖u‖
Ḣ
s0,(l0,−γ)
q,m (Ωq)

for s0 < −s+ 1, l0 < −l + 2. For any m > 0, the two estimates together imply that

�gm(σ) : Hsm :=
{
u ∈ H̄s(Ωm) : �gm(0)u ∈ H̄s−1(Ωm)

}
→ H̄s−1(Ωm) (3.52)

is Fredholm; and it is invertible for σ = σ0 + iσ1, σ1 ∈ [−C1, C1], provided |Reσ0| is suf-
ficiently large, as follows from the absence of a kernel in this semiclassical regime (proved
in Corollary 3.24) and of a cokernel (proved by means of an adjoint version of the esti-
mate (3.47)). Thus, the map (3.52) has Fredholm index 0 and a meromorphic inverse.

The following two complementary results describe KdS QNMs for small masses as per-
turbations of dS QNMs.

32Note that �gdS(σ)−�gdS(0) ∈ r−2Diff1
b(Ω̇), and therefore the domain in (3.51) can be defined equiv-

alently using �gdS(σ) in place of �gdS(0).
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Proposition 3.26 (Absence of QNMs away from de Sitter QNMs). Suppose σ∗ ∈ B is
such that C∞(ΩdS)∩ker�gdS

(σ∗) is trivial. Then there exists ε > 0 so that for all m ∈ (0, ε]
and σ ∈ R with |σ − σ∗| ≤ ε, we have σ /∈ QNM(m).

By Lemma 3.7, the assumption on σ∗ is equivalent to σ∗ /∈ −iN0.

Proof of Proposition 3.26. In view of the uniform Fredholm estimates for the spectral family
of �gdS

, the assumption is satisfied for an open set of σ∗ (see [Vas13, §2.7] for the relevant
functional analysis). Thus, when ε > 0 is sufficiently small, then for σ ∈ B with |σ−σ∗| ≤ ε,
we have

‖u‖
H̄s,l

b (Ω̇)
≤ C‖�gdS

(σ)u‖
H̄s−1,l−2

b (Ω̇)

for any fixed s > 1
2 + C1 and l ∈ (1

2 ,
3
2). Using this estimate, with 1

2 + C1 < s0 < s − 1
and l0 − γ in place of s, l, we can improve the error term in (3.48) (applied with s >
3
2 + C1) to ‖u‖

H̄
s0+1,(l0,γ−1)
q,m (Ωq)

(provided l0 < l is sufficiently close to l so that l0 − γ ∈
(1

2 ,
3
2) still) by exploiting the relationship between q- and b-Sobolev spaces near mfq, see

Proposition 2.13(2). But this new error term is now small when m > 0 is sufficiently small,
and can thus be absorbed into the left hand side of (3.48). The resulting estimate, for
m ≤ ε, is

‖u‖
H̄
s,(l,γ)
q,m (Ωq)

≤ C‖�gm(σ)u‖
H̄
s−1,(l−2,γ)
q,m (Ωq)

, |σ − σ∗| ≤ ε.

This implies the triviality of ker�gm(σ) and finishes the proof. �

Proposition 3.27 (Kerr–de Sitter QNMs near de Sitter QNMs). Let σ∗ ∈ B◦ ∩ QNMdS,
and let ε0 > 0 be so small that QNMdS ∩ {|σ − σ∗| ≤ 2ε0} = {σ∗}. Then for sufficiently
small ε ∈ (0, ε0], there exists m1 > 0 so that

mdS(σ∗) =
∑

|σ−σ∗|≤ε

mm(σ), m ∈ (0,m1]. (3.53)

Moreover, for all sufficiently small r0 > 0 and K := [r0, 2]r × S2, the restriction of∑
|σ−σ∗|≤ε Resm(σ) to [0, 1]t∗ ×K converges to ResdS(σ∗) in the topology of C∞([0, 1]×K).

Proof. The proof is an elaboration on [HX22, Theorem 1.1]. Thus, for s > 3
2 + C1 and

l ∈ (1
2 ,

3
2), let

K0 = ker
H̄s,l

b (Ω̇)
�gdS

(σ∗), K∗0 = ker
Ḣ−s+1,−l−2

b

(
Ω̇
)�gdS

(σ∗)
∗.

(Note that e−iσ∗t∗K0 ⊆ ResdS(σ∗), but equality need not hold.) By Lemma 3.25, the

spaces K0 and K∗0 have equal dimension d ≥ 1. Choose r[ > 0 and functions u[j , u
]
j ∈

C∞c (Ω̇ ∩ {r > r[}), j = 1, . . . , d, so that the maps K0 3 u 7→ (〈u, u[j〉)j=1,...,d ∈ Cd and

K∗0 3 u∗ 7→ (〈u∗, u]j〉)j=1,...,d ∈ Cd are isomorphisms. Define the operators

R+ : H̄s,l
b (Ω̇) 3 u 7→ (〈u, u[j〉)j=1,...,d ∈ Cd,

R− : Cd 3 (wj)j=1,...,d 7→
d∑
j=1

wju
]
j ∈ C

∞
c (Ω̇ \ ∂Ẋ).
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Recalling the definition of Hsm from (3.52), the operator

Pm(σ) :=

(
�gm(σ) R−
R+ 0

)
: Hsm ⊕ Cd → H̄s−1,l−2

b (Ωm)⊕ Cd

is Fredholm of index 0.

The uniform estimate (3.48) (with γ = 0) for �gm(σ) for σ ∈ B implies

‖(u,w)‖
H̄
s,(l,0)
q,m (Ωq)⊕Cd ≤ C

(
‖Pm(σ)(u,w)‖

H̄
s−1,(l−2,0)
q,m (Ωq)⊕Cd + ‖(u,w)‖

H̄
s0,(l0,0)
q,m (Ωq)⊕Cd

)
.

(3.54)
But now the mfq-normal operator

PdS(σ) :=

(
�gdS

(σ) R−
R+ 0

)
has trivial nullspace for σ = σ∗ by construction, and thus for |σ − σ∗| ≤ 2ε if we shrink
ε > 0; we may assume that 2ε is smaller than the distance from σ∗ to ∂B. Therefore, PdS

obeys an estimate

‖(u,w)‖
H̄s,l

b (Ω̇)⊕Cd ≤ C‖PdS(σ)u‖
H̄s−1,l−2

b (Ω̇)⊕Cd , |σ − σ∗| ≤ 2ε.

As in the proof of Proposition 3.26, this can then be used to weaken the norm on the error
term in (3.54) to ‖(u, 0)‖

H̄
s0+2,(l0,−1)
q,m (Ωq)⊕Cd ; this weakened error term can be absorbed into

the left hand side of (3.54) when m ∈ (0,m1] for a sufficiently small m1 > 0, and for all
σ ∈ C with |σ − σ∗| ≤ 2ε. (Here, as in the proof of Proposition 3.26, we need to use
s > 3

2 + C1 and take 1
2 + C1 < s0 < s− 1.) Therefore, the operator Pm(σ) is injective and

thus invertible for such m, σ; we write its inverse as

Pm(σ)−1 =

(
Am(σ) Bm(σ)
Cm(σ) Dm(σ)

)
, m ∈ (0,m1], |σ − σ∗| ≤ 2ε.

By the Schur complement formula, �gm(σ) is invertible on C∞(Ωm) (or, equivalently, as
a map (3.52)) if and only if the d× d matrix Dm(σ) is invertible; concretely, we have

�gm(σ)−1 = Am(σ)−Bm(σ)Dm(σ)−1Cm(σ), (3.55)

Dm(σ)−1 = −R+�gm(σ)−1R−.

Upon setting

m′m(σ′) :=
1

2πi
tr

∮
σ′
Dm(σ)−1∂σDm(σ) dσ

these formulas imply mm(σ′) ≤ m′m(σ′) and m′m(σ′) ≤ mm(σ), and therefore mm(σ) =
m′m(σ′). (Since Dm(σ) is an analytic family in σ of d × d matrices, mm(σ′) is the order of
vanishing of detDm(σ) at σ = σ′.) We similarly have

PdS(σ)−1 =

(
AdS(σ) BdS(σ)
CdS(σ) DdS(σ)

)
, mdS(σ′) =

1

2πi

∮
σ′
DdS(σ)−1∂σDdS(σ) dσ.

Set D0(σ) := DdS(σ). We then claim that Dm(σ) is continuous in m ∈ [0,m1] with
values in holomorphic families (in |σ − σ∗| ≤ 3

2ε) of d × d matrices; to this end, since
D0(σ) is holomorphic, it suffices to prove the continuity of Dm(σ) in m for any fixed σ with
|σ − σ∗| ≤ 3

2ε. Thus, let w ∈ Cd and consider

(um, wm) = Pm(σ)−1(0, w);
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we need to show that wm = Dm(σ)w → DdS(σ)w as m ↘ 0. But um ∈ H̄s,(l,0)
q,m (Ωq) and

wm ∈ Cd are uniformly bounded. Fixing χ ∈ C∞c ([0, 1)) with χ = 1 on [0, 1
2 ], this implies in

view of Proposition 2.13(2) that u′m := χ(m/r)um ∈ H̄s,l
b (Ω̇) is uniformly bounded. Upon

passing to a subsequence of black hole masses mj with mj ↘ 0 as j →∞, we may assume

that u′mj ⇀ u0 ∈ H̄s,l
b (Ω̇) and wmj → w0. When mj is so small that χ(mj/r) = 1 for r > r[,

then u′mj |r>r[ = umj |r>r[ and therefore R+u
′
mj = R+umj = w; thus, by taking the weak

limit of
Pmj (σ)(u′mj , wmj ) =

(
[�gmj , χ(mj/r)]umj , w

)
,

as j →∞, we obtain
�gdS

(σ)u0 +R−w0 = 0, R+u0 = w.

But since PdS(σ) is invertible, we must have (u0, w0) = PdS(σ)−1(0, w), so w0 = DdS(σ)w.
The weak subsequential limit (u0, w0) = (BdS(σ)w,DdS(σ)w) is therefore unique, and in
particular wm → DdS(σ)w, as claimed. For later use, we note that for any fixed r0 > 0,
this also shows that (Bm(σ)w)|r>r0 = um|r>r0 = u′m|r>r0 ⇀ u0|r>r0 = (BdS(σ)w)|r>r0
in H̄s([r0, 2] × S2) as m ↘ 0 (where the second equality holds when m is so small that
χ(m/r) = 1 for r > r0), and since s here is arbitrary, we indeed have strong convergence

(Bm(σ)w)|r>r0 → (BdS(σ)w)|r>r0 in C∞([r0, 2]× S2), (3.56)

uniformly in σ when |σ − σ∗| ≤ 3
2ε.

As a consequence, if γ = {|σ−σ∗| = ε} ⊂ B, oriented counterclockwise, then, for m1 > 0
so small that γ ∩QNM(m) = ∅ for all m ∈ (0,m1] (such m1 exists by Proposition 3.26), we
have

mdS(σ∗) =
∑

|σ−σ∗|≤ε

mdS(σ) =
1

2πi

∮
γ
DdS(σ)−1∂σDdS(σ) dσ

=
1

2πi

∮
γ
Dm(σ)−1∂σDm(σ) dσ =

∑
|σ−σ∗|≤ε

mm(σ),

as asserted in (3.53).

Finally, we can choose a number r[ > 0 and polynomials pj = pj(ζ) with values in

C∞c (Ω̇ ∩ {r > r[}) for j = 1, . . . ,mdS(σ∗) so that ResdS(σ∗) has as a basis

udS,j(t∗, x) = resζ=σ∗
(
e−it∗ζ�gdS

(ζ)−1pj(ζ)
)
, j = 1, . . . ,mdS(σ∗).

The restrictions of udS,j to [0, 1]t∗ ×K remain linearly independent for any K = [r0, 2]×S2

when r0 ∈ (0, 2) is sufficiently small.33 With γ as above, we can then set

um,j(t∗, x) =
1

2πi

∮
γ
e−it∗ζ�m(ζ)−1pj(ζ) dζ = − 1

2πi

∮
γ
e−it∗ζBm(ζ)Dm(ζ)−1Cm(ζ)pj(ζ) dζ

∈
∑

|σ−σ∗|≤ε

Resm(σ),

where we used (3.55) and the holomorphicity of Am(ζ) in ζ. Since the span of pj(ζ),
where j and ζ range over 1, . . . ,mdS(σ∗) and C respectively, is a fixed finite-dimensional

subspace of C∞c (Ω̇ ∩ {r > r[}), one can prove the uniform convergence Cm(ζ)pj(ζ) →

33Since the udS,j are analytic in an appropriate coordinate system—see [HX21] for explicit formulas and
[GZ21a] for a general argument—the smallness requirement on r0 is in fact unnecessary.
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CdS(ζ)pj(ζ) in Cd for |ζ − σ∗| ≤ 3
2ε using arguments analogous to those leading to (3.56).

Using the already established convergence of Dm(ζ) and Bm(ζ), we thus conclude that
um,j |[0,1]×K → udS,j |[0,1]×K in C∞([0, 1] × K). In particular, for all sufficiently small
m > 0, the span of um,1, . . . , um,mdS(σ∗) is mdS(σ∗)-dimensional. But since we already
proved dim

∑
|σ−σ∗|≤ε Resm(σ) = mdS(σ∗), the um,j , j = 1, . . . ,mdS(σ∗), span the full space∑

|σ−σ∗|≤ε Resm(σ). The proof is complete. �

In particular, for σ∗ = 0, the equation (3.53) gives 1 = mdS(0) =
∑
|σ−σ∗|≤εmm(σ),

and therefore there exists a single resonance σ(m) ∈ QNM(m) with |σ(m)| ≤ ε. But since
constant functions on Rt∗×Ωm lie in the nullspace of �gm , we have 0 ∈ QNM(m); therefore,
necessarily, σ(m) = 0, with Resm(0) equal to the space of constant functions. This proves
part (3) of Theorem 3.8.

In order to finish the proof of Theorem 3.8, it now remains to show that there exists
h1 > 0 so that for σ ∈ QNM(m) we have Imσ ≤ h−1

1 for all sufficiently small m; that is,
we need to prove uniform estimates not just in strips (as done so far) but also in the full
upper half plane. We turn to this next.

3.9. Uniform analysis in a half space. We now work in the complement {σ ∈ C : Imσ ≥
0, |σ| ≥ 1} of the unit ball in the closed upper half plane; we parameterize this set via

[0, π]ϑ × [1,∞)σ0 7→ σ = eiϑσ0.

We can then regard the spectral family �m(σ) as a smooth family

[0, π] 3 ϑ 7→
(
[1,∞)× (0,m0] 3 (σ0,m) 7→ �gm(eiϑσ0)

)
.

In the Q-single space XQ, we work only in σ0 ≥ 1. The analogues of Proposition 3.9 and
Lemma 3.15 in this setting are then:

Proposition 3.28 (Properties of the spectral family). We have

�(eiϑ·) ∈ Diff
2,(2,0,2,2,2)
Q (ΩQ),

with smooth dependence on ϑ ∈ [0, π]. Moreover:

(1) the Q-principal symbol of �(eiϑ·) is given by (3.14) with σ = eiϑσ0;
(2) we have Nzf(m

2�(eiϑ·)) = �ĝ(0);

(3) for σ̃0 > 0, we have Nnfσ̃0
(�(eiϑ·)) = �ĝ(eiϑσ̃0);

(4) for σ0 ≥ 1, we have Nmfσ0
(�(eiϑ·)) = �gdS

(eiϑσ0);

(5) the principal symbol of Im�(eiϑ·) is

(σ0,m;x, ξ) 7→ 2(Imσ)g−1
m |x(−dt∗,−(Reσ)dt∗ + ξ), σ = eiϑσ0.

Since we arranged for dt∗ to be past timelike (see Lemma 3.2), the symbolic estimates
of §3.4 apply uniformly for ϑ ∈ [0, π] (thus Im eiϑ = sinϑ ≥ 0), cf. [Vas13, §7]; for ϑ ∈ (0, π),
these are propagation estimates with complex absorption which permit propagation in the
causal future direction along the Hamiltonian flow. In particular, at the radial points at
spatial infinity from the perspective of the Kerr model problems at nf, the need to obtain
uniform estimates in Imσ ≥ 0 down to Imσ = 0 is what forces the choice of Rif+,− as the
incoming and Rif+,+ as the outgoing radial set (rather than the other way around). (This
is the essence of the scattering microlocal proof of the limiting absorption principle, see
[Mel94, §§9 and 14], or [Vas18, Proposition 4.13].)
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Next, the zf-model problem is unchanged, with estimates for it provided by Lemma 3.19.
For the nf-model problem at frequencies eiϑσ̃0 with σ̃0 bounded away from 0 and ∞, one
similarly has uniform (in ϑ ∈ [0, π]) symbolic estimates on the same function spaces as in
Proposition 3.18; we argue for the triviality of ker�ĝ(eiϑσ̃0) below. For the uniform low

energy estimate (3.43) for σ̃ = eiϑσ̃0, σ̃0 ∈ [0, 1], the only additional ingredient is a uniform
estimate

‖u‖
Hs,r,l

sc,b (tf)
≤ C‖�tf(e

iϑ)u‖
Hs−2,r+1,l−2

sc,b (tf)
, ϑ ∈ [0, π],

for the tf-model operator �tf(e
iϑ) = ∆̃ + eiϑ (see (3.41)); this is again a consequence of

uniform symbolic estimates together with the triviality of ker�tf(e
iϑ), which for ϑ = 0, π

was proved in Lemma 3.20 and which for ϑ ∈ (0, π) follows via a direct integration by parts
(since tempered elements of ker�tf(e

iϑ) are then automatically rapidly decaying as r̃ →∞).
The uniform high energy estimates of Proposition 3.22 continue to hold for h2�gdS

(h−1eiϑ)
when h > 0 is sufficiently small.

We can now complete the proof of Theorem 1.7.

Proof of Theorem 1.7 for a 6= 0 and Imσ ≥ 0. We once more make the Kerr parameters
m > 0, a ∈ (−m,m) explicit in the notation; moreover, for consistency with the notation
used in Theorem 1.7, we write σ for the spectral parameter instead of σ̃. With m > 0 fixed,
the aforementioned high energy estimates imply the injectivity of �gm,a(σ) on H̄s,r

sc (Ω̂) (cf.
the function spaces in Proposition 3.18) for all σ ∈ C with Imσ ≥ 0, |σ| ≥ C(|a|), where
C : [0,m) → (0,∞) can be taken to be continuous. By the aforementioned uniform low
energy estimates, we have the injectivity of �gm,a(σ) also for 0 < |σ| < c(|a|) for some
continuous function c : [0,m)→ (0,∞). The injectivity of �gm,a(σ) for σ ∈ R \ {0}, proved
already in §1.2, together with the estimate (3.36), which in view of the arguments above
applies for spectral parameters σ 6= 0, Imσ ≥ 0, locally uniformly, implies (via a standard

functional analytic argument using the compactness of H̄s,r ↪→ H̄−N,−Nsc ) the injectivity of
�gm,a(σ) also for σ = σ0 + iσ1 when σ1 ≥ 0 is sufficiently small (depending on σ0 ∈ R\{0}).

Our arguments thus far imply the existence of a continuous function C : [0,m)→ (1,∞)
so that all σ ∈ C, Imσ > 0 for which �gm,a(σ) is not injective on H̄s,r

sc must satisfy σ ∈ U(|a|)
where

U(|a|) = {σ ∈ C : C(|a|)−1 < Imσ < C(|a|), |Reσ| < C(|a|)};

and for a = 0 no such σ exist. Let now I ⊂ (−m,m) be the set of all a ∈ (−m,m) for which
there do not exist any frequencies σ ∈ U(|a|) for which �gm,a(σ) is not injective; in other
words, I is the set of angular momenta for which mode stability holds. We have 0 ∈ I; it
suffices to prove that I is open and closed in (−m,m).

The openness of I follows from the local uniformity of the estimate (3.36) (for spectral
parameters in the punctured upper half plane, and for subextremal Kerr parameters): if
aj → a∞ ∈ I, a standard functional analytic argument (using (3.36)) implies that for σ
lying in a fixed compact subset of {Imσ > 0}, the operator �gm,aj (σ) must be injective

when j is sufficiently large. Taking this subset to be a compact set containing the closure
of U(|a∞|) in its interior (and thus containing U(aj) for large j), we deduce that aj ∈ I for
large enough j.
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The closedness of I follows from a resonance perturbation argument. For Imσ > 0, the
family �gm,a(σ) is a holomorphic family of Fredholm operators

Xa = {u ∈ H̄s,r
sc (Ω̂) : �gm,a(0)u ∈ H̄s−1,r

sc (Ω̂)} → H̄s−1,r
sc (Ω̂)

whose inverse is meromorphic. (Due to the ellipticity at r =∞ of �gm,a(σ) in the scattering
algebra, the weight r here is arbitrary; the absence of a shift r + 1 of the weight in the
codomain is likewise due to this ellipticity.) Suppose now a0 ∈ (−m,m) \ I lies in the
closure of I, and σ(a0) ∈ U(|a0|) is a resonance of �gm,a0

. The arguments in [Hin15,
Appendix A.2] (with the additional scattering behavior at r = ∞ in the present setting
necessitating only notational changes in the reference) imply the continuous dependence
of resonances in Imσ > 0 on the parameter a; thus, for some small 0 < ε < m − |a0|, we
obtain a continuous function σ : (a0 − ε, a0 + ε)→ U(|a0|), attaining the value σ(a0) at the
argument a0, so that σ(a) is a resonance of �gm,a for all a ∈ (a0 − ε, a0 + ε). But since
(a0 − ε, a0 + ε) ∩ I 6= ∅, this is a contradiction. The proof is complete. �

As a consequence, ker�ĝ(σ̃) is trivial for σ̃ = eiϑσ̃0 where ϑ ∈ [0, π] and σ̃0 > 0; therefore,
the estimate (3.35) holds also for such σ̃.

We can now combine these symbolic and normal operator estimates as in the proof of
Proposition 3.23; this yields, as in Corollary 3.24, the existence of m1 > 0 and h1 > 0 so
that for all m ∈ (0,m1] and σ0 ≥ h−1

1 we have eiϑσ0 /∈ QNM(m) for all ϑ ∈ [0, π]. Thus, all

quasinormal modes σ of �gm , m ∈ (0,m1], satisfy Imσ ≤ h−1
1 . As noted at the end of §3.8,

this completes the proof of Theorem 3.8.

3.10. Quasinormal modes of massive scalar fields. From [HX22, Proposition 2.1], we
recall the following analogue of Lemma 3.7:

Lemma 3.29 (QNMs for massive scalar fields on de Sitter space). Let ν ∈ C and λ± =
3
2 ±

√
9
4 − ν as in Theorem 1.5. Then the set QNMdS(ν) of quasinormal modes of �gdS

− ν
is equal to

⋃
±(−iλ± − iN0), and the multiplicity of σ ∈ QNMdS(ν) is

mdS(ν;σ) =
∑
l∈N0

iσ−l∈(λ−+2N0)∪(λ++2N0)

(2l + 1). (3.57)

The formula (3.57) reduces to (3.10) for ν = 0; see the proof of Lemma 3.7. Define

QNM(ν;m), mm(ν;σ), Resm(ν;σ),

and ResdS(ν;σ) as in §3.2 but now using the operators �gm − ν and �gdS
− ν. Then

Theorem 3.8, except for part (3), remains valid upon adding the parameter ν to the notation
throughout. (This also proves Theorem 1.5.)

The proof is the same as that of Theorem 3.8; indeed, the presence of the scalar field
mass term ν affects neither the principal symbol of �(· + iσ1) − ν nor any of its normal
operators, with the exception of

Nmfσ0
(�(·+ iσ1)− ν) = �gdS

(σ)− ν.

Thus, the invertibility properties of �gdS
(σ)−ν are what determine the limiting quasinormal

mode spectrum of �gm(σ)− ν.
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Appendix A. Geometric and analytic background

We begin by recalling some basic notions of b-analysis; see [Mel96, Gri01] for detailed
accounts. Let M be a smooth n-dimensional manifold with corners whose boundary hy-
persurfaces H ⊂ M are embedded submanifolds; we write M1(M) for the collection of all

boundary hypersurfaces of M . We write C∞(M), resp. Ċ∞(M) for the space of smooth
functions, resp. smooth functions vanishing to infinite order at all boundary hypersurfaces.
A defining function of H is a smooth function ρH ∈ C∞(M) so that H = ρ−1

H (0), and
dρH 6= 0 on H; when M is a manifold with boundary, then a defining function of ∂M is
called a boundary defining function. For a subset H ⊂ M1(M), a function ρ ∈ C∞(M) is
called a (joint) defining function for

⋃
H∈HH if it is the product of defining functions of

ρH , H ∈ H. Moreover, we denote by M◦ the interior of M .

A boundary face of M is a nonempty intersection of boundary hypersurfaces. A p-
submanifold S ⊂M is a closed submanifold so that around each point in S there exist local
coordinates x1, . . . , xk ≥ 0, y1, . . . , yn−k ∈ R on M (with k the codimension of the smallest
boundary face containing the point under consideration) so that S is given by the vanishing
of the subset of these coordinates. The blow-up of M along S, denoted [M ;S], is given as
a set by

[M ;S] = (M \ S) t S+NS,

where S+NS = +NS/R+ is the inward pointing spherical normal bundle; here +NS =
+TSM/TS is the inward pointing normal bundle, with +TqM ⊂ TM denoting the closed

orthant of inward pointing tangent vectors (i.e.
∑k

j=1 vj∂xj +
∑n−k

j=1 wj∂yj with all vj non-

negative). The manifold S is called the center of the blow-up. The front face of [M ;S]
is S+NS; the blow-down map is the map β : [M ;S] → M which is the identity on M \ S
and the base projection on the front face. The set [M ;S] can be given the structure of
a smooth manifold with corners by putting on it the minimal smooth structure in which
lifts of elements of C∞(M) as well as polar coordinates around S are smooth down to
the front face; the blow-down map is then smooth. If T ⊂ M is another p-submanifold
so that near points of S ∩ T , both S and T are given by the vanishing of a subset of
a single local coordinate system on M , then we define the lift β∗T of T to [M ;S] as
follows: if T ⊂ S, then β∗T = β−1(T ), and otherwise β∗T is the closure of β−1(T \ S).
In either case, β∗T is a p-submanifold of [M ;S] and can thus be blown up again; we
denote by [M ;S;T ] = [[M ;S];β∗T ] the iterated blow-up, similarly for deeper blow-ups.
The lift of a smooth map f : M → N between manifolds with corners to [M ;S] is the
composition f ◦ β : [M ;S]→ N . It may happen that [M ;S;T ] and [M ;T ;S] are naturally
diffeomorphic in the sense that the identity map on M \(S∪T ) extends to a diffeomorphism
[M ;S;T ] ∼= [M ;T ;S]. In this case, we shall occasionally write [M ;S, T ] = [M ;T, S]. This
happens in particular when S ⊂ T or T ⊂ S, or when S and T are transversal.

By Vb(M) we denote the Lie algebra of b-vector fields on M , i.e. those smooth vector
fields which are tangent to all boundary hypersurfaces; in local coordinates x1, . . . , xk ≥ 0,
y1, . . . , yn−k ∈ R near a point on ∂M , such vector fields are linear combinations of xj∂xj
(j = 1, . . . , k) and ∂yj (j = 1, . . . , n−k) with smooth coefficients. Thus, Vb(M) is the space

of smooth sections of the b-tangent bundle bTM → M , a rank n vector bundle equipped
with a bundle map bTM → TM which is an isomorphism over the interior M◦; a local
frame of bTM in local coordinates is given by the aforementioned vector fields xj∂xj , ∂yj .
Given V ∈ Vb(M) and a boundary hypersurface H ⊂ M , we denote by NH(V ) ∈ Vb(H)



MODE STABILITY OF KERR–DE SITTER 75

the restriction of V to H, defined as NH(V )u = (V ũ)|H for u ∈ Ċ∞(H), where ũ ∈ C∞(M)
is any smooth function with ũ|H = u. By Diffmb (M) ⊂ Diffm(M) we denote the space of b-
differential operators of order m: these are locally finite sums of up to m-fold compositions
of b-vector fields; here a 0-fold composition is, by definition, multiplication by an element
of C∞(M). We write Diffb(M) =

⊕
m∈N0

Diffmb (M).

If M,N are two manifolds with corners, a smooth map F : M →M ′ is called an interior

b-map if for all H ′ ∈M1(M ′) we have F ∗ρ′H′ = aH′
∏
H∈M1(M) ρ

e(H,H′)
H for some 0 < aH′ ∈

C∞(M) and e(H,H ′) ∈ N0, where ρ′H′ ∈ C∞(M ′) is the defining function of H ′. In this

case, one can define the b-differential bF∗ : bTpM → bTF (p)M
′ by continuous extension of

the standard differential of F restricted to a map M◦ → (M ′)◦. The map F is called a
b-submersion if bF∗ is everywhere surjective; if moreover for each H ∈M1(M) there exists
at most one H ′ ∈ M1(M ′) with e(H,H ′) (i.e. F does not map any boundary hypersurface
into a codimension ≥ 2 corner), then F is called a b-fibration. Finally, an interior b-map
F : M →M ′ is b-transversal to a p-submanifold S ⊂M if for each p ∈ S, the nullspace of
bF∗|p ⊂ bTpM is transversal to {V (p) : V ∈ Vb(M) is tangent to S}.

If M is a manifold with boundary, with boundary defining function ρ ∈ C∞(M), then
Vsc(M) := ρVb(M) = {ρV : V ∈ Vb(M)} is the Lie algebra of scattering vector fields; we
have

[Vsc(M),Vsc(M)] ⊂ ρVsc(M). (A.1)

The corresponding scattering tangent bundle scTM → M has a local frame x2∂x, x∂yj

(j = 1, . . . , n−1) in local coordinates x ≥ 0, y1, . . . , yn−1 ∈ R near a point on the boundary.
By Diffmsc(M) we denote the corresponding space of scattering differential operators.

Let α = (αH : H ∈M1(M)) be a collection of real numbers, and denote by ρH ∈ C∞(M)
a defining function of H. Then Aα(M) is the space of all smooth functions u ∈ C∞(M◦)
so that for all A ∈ Diffb(M)

Au ∈
( ∏
H∈M1(M)

ραHH

)
L∞loc(M). (A.2)

We say that u is conormal (with weights αH). Given δ = (δH : H ∈ M1(M)) where
δH ∈ [0, 1

2), we define more generally Aαδ (M) to consist of all u ∈ C∞(M◦) so that for all

m ∈ N0 and A ∈ Diffmb (M) we have Au ∈ (
∏
H∈M1(M) ρ

αH−mδH
H )L∞loc(M). More generally

still, if C ⊂ M1(M) is a collection of boundary hypersurfaces, and weights αH ∈ R and
numbers δH ∈ [0, 1

2) are given only for H ∈ C, then AαC (M) and AαC,δ(M) are defined as

before, but only taking products over H ∈ C, and allowing A ∈ Diffm(M) to be any locally
finite sum of up to m-fold compositions of smooth vector fields on M which are tangent to
all H ∈ C (but not necessarily the other boundary hypersurfaces). We shall refer to such
conormal distributions as smooth down to the boundary hypersurfaces M1(M) \ C.

Spaces of conormal functions with δ > 0 arise in particular as follows; for notational
simplicity we only discuss the case that M is a manifold with boundary ∂M . Suppose
a ∈ C∞(∂M) is bounded, and let a− = inf a. Let ρ ∈ C∞(M) denote a boundary defining
function. Then Aa(M) ⊂

⋂
δ>0A

a−
δ (M) is the space of all functions of the form ρãu0 where

u0 ∈
⋂
δ>0A0

δ(M), with ã ∈ C∞(M) any smooth extension of a. The relevance of δ > 0 is

that it ensures that ρã itself lies in Aa(M).
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Suppose next that E → M is a smooth vector bundle over a manifold with corners. By
Ē →M we denote the radial compactification of E; this is a closed ball bundle. The fiber
bundle Ē is defined fiber-wise by means of the radial compactification of Rk (with k the
rank of E as a real vector bundle), which is defined as

Rk :=
(
Rk t

(
[0,∞)ρ × Sk−1

))
/ ∼,

where we identify 0 6= x = rω (in polar coordinates on Rk) with (ρ, ω) = (r−1, ω). A special
case is R = [−∞,∞] = R ∪ {−∞,∞}, with the function ±(1,∞) 3 x 7→ ±x−1 extending
to a diffeomorphism ±(1,∞]→ [0, 1); thus, the function |x|−1 is smooth on R \ {0}, and it
is a defining function of ∂R = {−∞,∞}. For a ∈ R ∪ {−∞}, we shall write [a,∞] for the
closure of [a,∞) inside R; and we put (a,∞] = [a,∞] \ {a}. The sets [−∞, a], and [−∞, a)
are defined analogously. The boundary at fiber infinity of Ē is a sphere bundle SĒ →M .

We denote by Pm(E) ⊂ C∞(E) the space of smooth functions which are polynomials of
degree m ∈ N0 on each fiber of E. Similarly, Ss(E) ⊂ C∞(E) denotes the space of symbols
(of class 1, 0) of order s ∈ R on the fibers of E; an equivalent definition is Ss(E) = A−s(Ē)
(with smoothness down to Ē|∂M ).

Finally, suppose S ⊂ M is an interior p-submanifold of an n-dimensional manifold M
with corners, meaning that S ∩M◦ 6= ∅. Thus, in suitable local coordinates x1, . . . , xk ≥ 0,
y = (y′, y′′) ∈ Rp × Rn−k−p, the submanifold S is given by y′ = 0 where p ≥ 1 is the

codimension of S. For s ∈ R, we then denote by Is(M,S) ⊂ C−∞(M) = (Ċ∞(M ; ΩM))∗

the space of conormal distributions at S of order s; in local coordinates, such a distribution
is given as

u(x, y) = (2π)−p
∫
Rp
eiη
′·y′a(x, y′′, η′) dη′,

where a ∈ Ss+
n
4
− p

2 ([0,∞)k × Rn−k−p;Rp). (We follow the order convention of [Hör71].)
One can also consider symbols which are merely conormal (with some weight) at x = 0,
and allow for the presence of parameters δj ∈ [0, 1

2) for j in some subset of {1, . . . , k} (which

in particular allows for variable decay orders along (xj)−1(0) for these j). Moreover, by
Is(M,S;E) we denote the space of conormal distributions with values in the vector bundle
E →M . See [Hör07, §18] for further details.

A.1. b- and scattering pseudodifferential operators. Let X denote an n-dimensional
manifold with boundary. The b-double space of X is

X2
b := [X2; (∂X)2].

We denote by diagb ⊂ X2
b the lift of the diagonal diagX ⊂ X2, by ffb ⊂ X2

b the front face,
and by lbb and rbb the lift of ∂X ×X and X × ∂X, respectively. See Figure A.1.

Furthermore, πR : X2
b → X denotes the right projection, and bΩX → X is the b-

density bundle (i.e. the density bundle associated with bTX). The space Ψs
b(X) of b-

pseudodifferential operators (or b-ps.d.o.s) then consists of all continuous linear operators

on Ċ∞(X) whose Schwartz kernels κ ∈ Is(X2
b,diagb;π∗R

bΩX) vanish to infinite order at
all boundary hypersurfaces of X2

b except ffb, and which are properly supported when X is

non-compact. (See [Mel93] for an extensive discussion.) The principal symbol bσs fits into
a short exact sequence

0→ Ψs−1
b (X) ↪→ Ψs

b(X)
bσs−−→ Ss(bT ∗X)/Ss−1(bT ∗X)→ 0.
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x′

x

lbb

rbb

ffb

diagb

Figure A.1. The b-double space X2
b of X = [0, 1).

Composition of operators is a continuous bilinear map Ψs1
b (X) ◦ Ψs2

b (X) ⊂ Ψs1+s2
b (X),

and the principal symbol is multiplicative. In local coordinates x ≥ 0, y ∈ Rn−1 on X,
lifted along the left, resp. right projection to smooth functions x, y, resp. x′, y′ on X2

b, local

coordinates on X2
b near diagb are x, y, x−x

′

x′ , y− y
′. For χ ∈ C∞c (R) identically 1 near 0 and

supported in a small neighborhood of 0, the operator

(Opb(a)u)(x, y) := (2π)−n
∫∫

R×Rn−1×[0,∞)×Rn−1

exp
(
i
(x− x′

x
ξb + (y − y′) · ηb

))
× χ

(∣∣∣log
x

x′

∣∣∣)χ(|y − y′|)a(x, y, ξb, ηb)u(x′, y′) dξb dηb
dx′

x′
dy′,

for a a symbol of order s in (ξb, ηb) with support in the local coordinate system, defines
a typical element of Ψs

b(X); it is a quantization of a. (The two factors of χ localize to
a neighborhood of diagb.) Every element of Ψs

b(X) is a locally finite sum (on the level

of Schwartz kernels) of such operators, plus an element of Ψ−∞b (X). Spaces of weighted

operators are defined by Ψs,l
b (X) = ρ−lΨs

b(X) where ρ ∈ C∞(X) is a boundary defining
function (lifted to the left factor of X2

b); one can more generally quantize symbols of order

s in the fibers of bT ∗X which are conormal with weight ρ−l down to bT ∗∂XX.

Turning to scattering ps.d.o.s, we recall the scattering double space

X2
sc = [X2

b; diagb ∩ffb],

with front face denoted ffsc; we write diagsc ⊂ X2
sc for the lift of diagb. See Figure A.2.

x′

x

diagsc

ffsc

Figure A.2. The scattering double space X2
sc.

Schwartz kernels of elements of the space Ψs,r
sc (X) of scattering ps.d.o.s of order s, r are

then elements of ρ−rIs(X2
sc,diagsc;π

∗
R

scΩX), with scΩX → X denoting the density bundle
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associated with scTX → X. Such operators are discussed in [Mel94]. (In the special case
X = Rn, a thorough discussion, including the case of variable orders, is given in [Vas18]. We
note that Vsc(Rn) is spanned over C∞(Rn)—which is equal to the space of classical symbols
of order 0 on Rn—by translation-invariant vector fields on Rn, and the space Ψs,r

sc (Rn) is
equal to the space of quantizations (2π)−n

∫
eiz·ζa(z, ζ) dζ of smooth functions a which are

symbols of order r, resp. s in z, resp. ζ.) In local coordinates on X as above, a typical
element of Ψs,r

sc (X) is given by

(Opsc(a)u)(x, y) = (2π)−n
∫∫∫∫

R×Rn−1×[0,∞)×Rn−1

exp
(
i
(x− x′

x2
ξsc +

y − y′

x
· ηsc

))
× χ

(∣∣∣log
x

x′

∣∣∣)χ(|y − y′|)a(x, y, ξsc, ηsc)u(x′, y′) dξsc dηsc
dx′

x′2
dy′

x′n−1
.

The principal symbol scσs,r fits into the short exact sequence

0→ Ψs−1,r−1
sc (X) ↪→ Ψs,r

sc (X)
scσs,r−−−→ (Ss,r/Ss−1,r−1)(scT ∗X)→ 0

where Ss,r(scT ∗X) denotes functions which are conormal on scT ∗X of order −s at scS∗X
(fiber infinity of scT ∗X) and of order −r at scT ∗∂XX.

We can more generally consider quantizations of symbols a ∈ Ss,r(scT ∗X) with variable
scattering decay order r ∈ C∞(scT ∗X) (i.e. conormal functions on scT ∗X with variable order
at scT ∗∂XX). The resulting space of operators is denoted Ψs,r

sc (X), and the principal symbol

now takes values in (Ss,r/Ss−1,r−1+2δ)(scT ∗X) for any δ ∈ (0, 1
2). See also [Hin21b, §2].

We also use the semiclassical scattering algebra; this was introduced by Vasy–Zworski
[VZ00] in the context of high energy estimates for resolvents on asymptotically Euclidean
manifolds. We discuss this in a slightly nonstandard way, mirroring the discussion in
[Hin21b, §3.4] for the semiclassical b-algebra. The underlying Lie algebra of vector fields is

Vsc,~(X) := hC∞([0, 1]h;Vsc(X)),

i.e. in terms of Xsc,~ := [0, 1]h×X this is the space of elements of ρVb(Xsc,~) which annihilate
h and which vanish at h = 0. Thus, [Vsc,~(X),Vsc,~(X)] ⊂ hρVsc,~(X). In local coordinates,
Vsc,~(X) is spanned by hρ2∂ρ and hρ∂yj (j = 1, . . . , n− 1); these vector fields form a frame

for the semiclassical scattering tangent bundle sc,~TX → Xsc,~. By Diffmsc,~(X) we denote
the corresponding space of m-th order semiclassical scattering differential operators (which
are thus families of scattering operators on X which degenerate in a particular manner as
h↘ 0); the principal symbol map gives rise to a short exact sequence

0→ hρDiffm−1
sc,~ (X) ↪→ Diffmsc,~(X)

sc,~σm−−−−→ Pm(sc,~T ∗X)/hρPm−1(sc,~T ∗X)→ 0.

Define the semiclassical scattering double space by

X2
sc,~ :=

[
[0, 1]h ×X2

sc; {0} × diagsc

]
,

with diagsc,~ ⊂ X2
sc,~ denoting the lift of [0, 1]× diagsc. See Figure A.3.

Then Schwartz kernels of elements of the corresponding space

Ψs
sc,~(X)

of semiclassical scattering ps.d.o.s are those elements of Is−
1
4 (X2

sc,~,diagsc,~;π∗R
sc,~ΩX)

which vanish to infinite order at all boundary hypersurfaces of X2
sc,~ except those which
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x

x′

h
diagsc,~

Figure A.3. The semiclassical scattering double space X2
sc,~.

intersect diagsc,~ nontrivially, and which are smooth down to the lift of h−1(1). Here πR is

the lift of [0, 1]×X×X 3 (h, z, z′) 7→ (h, z′) ∈ [0, 1]×X, and sc,~ΩX → Xsc,~ is the density

bundle associated with sc,~TX → Xsc,~. In local coordinates, a typical example of such an
operator is the family Opsc,h(a), h ∈ (0, 1], of bounded linear operators defined by

(Opsc,h(a)u)(h, x, y)

= (2πh)−n
∫∫∫∫

R×Rn−1×[0,∞)×Rn−1

exp
(
i
(x− x′

x2
ξsc,~ +

y − y′

x
· ηsc,~

)
/h
)

× χ
(∣∣∣log

x

x′

∣∣∣/h)χ(|y − y′|/h)a(h, x, y, ξsc,~, ηsc,~)u(x′, y′) dξsc,~ dηsc,~
dx′

x′2
dy′

x′n−1
,

where a is smooth in h, x, y and a symbol of order s in (ξsc,~, ηsc,~). More generally, we

can consider symbols a ∈ Ss,r,b(sc,~T ∗X) which are conormal functions on sc,~T ∗X with
weight −r at x = 0 and weight −b at h = 0; these two orders may be variable, but we shall

only consider the case of variable scattering decay orders r ∈ C∞(sc,~T ∗[0,1]×∂XXsc,~). The

resulting space of operators is denoted

Ψs,r,b
sc,~ (X),

and the principal symbol map sc,~σs,r,b on it takes values in (Ss,r,b/Ss−1,r−1+2δ,b−1)(sc,~T ∗X)
for any δ > 0.

Remark A.1 (Compact parameter space). Semiclassical operators are usually defined for
parameters h lying in an interval (0, 1) that is open at 1 (with 1 simply being a convenient
positive number). In this paper, we include the value 1 as well and require smoothness of
Schwartz kernels all the way up to h = 1. The reason is that the main pseudodifferential
algebra in this paper, the Q-algebra, contains at the same time semiclassical and non-
semiclassical algebras (say with parameters h ∈ (0, 1] and σ ∈ (0, 1]) which fit together
smoothly (at σ−1 = h = 1).

Remark A.2 (Variable orders). Pseudodifferential operators with variable orders were used
already by Unterberger [Unt71]. For a discussion of variable order b-ps.d.o.s, see [BVW15,
Appendix A]. Semiclassical spaces with variable semiclassical orders (powers of h) are dis-
cussed in [HW20]; see also [HV17b, Appendix A].
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A.2. Semiclassical cone operators. Consider a compact n-dimensional manifold X with
connected and embedded boundary ∂X 6= 0. (We can allow for X to be non-compact if we
require all Schwartz kernels to be properly supported.) We recall elements of semiclassical
cone analysis on X from [Hin22b, Hin21b]. (This is a semiclassical version of a large
parameter calculus developed by Loya [Loy02]; see also [Gil03, CSS03, GKM06] for variants
based on Schulze’s cone calculus [Sch91, Sch94, Sch98].) The semiclassical cone single space
(or c~-single space), introduced in [Hin22b, §3.1.1], is the blow-up34

Xc~ :=
[
[0, 1]×X; {0} × ∂X

]
,

with boundary hypersurfaces denoted cf (the lift of [0, 1]× ∂X), tf (the front face), and sf
(the lift of {0} ×X). Denote by h ∈ [0, 1] the first coordinate on [0, 1]×X (identified with
its lift as a smooth function to Xc~). The Lie algebra of c~-vector fields is

Vc~(X) := {V ∈ ρsfVb(Xc~) : V h = 0},
where ρsf ∈ C∞(Xc~) is a defining function of sf. In particular, restriction to any positive
level set h = h0 > 0 of h gives a surjective map Vc~(X) → Vb(X). In local coordinates
r ≥ 0, ω ∈ Rn−1 near a point in ∂X, we can take ρsf = h

h+r , and the space Vc~(X) is locally
spanned by

h
h+rr∂r,

h
h+r∂ωj (j = 1, . . . , n− 1),

over the space of smooth functions of h + r ≥ 0, r−h
r+h ∈ [−1, 1], and ω. These vector fields

give a local frame for the c~-tangent bundle35 c~TX → Xc~. Denote by Diffmc~(X) the space
of locally finite sums of up to m-fold compositions of c~-vector fields and multiplication
operators by elements of C∞(Xc~). Since [Vc~(X),Vc~(X)] ⊂ ρsfVc~(X), we then have a
well-defined principal symbol map c~σm which fits into a short exact sequence

0→ ρsfDiffm−1
c~ (X) ↪→ Diffmc~(X)

c~σm−−−→ Pm(c~T ∗X)/ρsfP
m−1(c~T ∗X)→ 0.

The front face of Xc~ is the closure tf = +N∂X of the inward pointing normal bundle of
∂X; its two boundary hypersurfaces are the zero section (with defining function ρcf = r

h+r )

and the boundary at fiber infinity (with defining function ρsf = h
h+r ). We can thus consider

the space Vb,sc(tf) = ρsfVb(tf) of b-scattering vector fields on tf. By [Hin21b, Lemma 3.5],
the restriction Ntf of b-vector fields on Xc~ to tf gives rise to a short exact sequence

0→ ρtfVc~(X) ↪→ Vc~(X)
Ntf−−→ Vb,sc(tf)→ 0,

and correspondingly to an isomorphism c~TtfX ∼= b,scT tf of tangent bundles and
c~T ∗tfX

∼= b,scT ∗tf (A.3)

of cotangent bundles. The map Ntf extends to a multiplicative map Ntf : Diffmc~(X) →
Diffmb,sc(tf).

The c~-double space is defined as36

X2
c~ :=

[
[0, 1]×X2

b; {0} × ffb; {0} × diagb, {0} × lbb, {0} × rbb

]
.

34See Remark A.1 for the reason for including h = 1.
35We write c~TX here, as it is slightly less cumbersome than the notation c~TXc~ used in [Hin21b].
36In [Hin22b, Definition 3.1], the c~-double space is defined without the blow-up of {0}×lbb and {0}×rbb.

What we call the c~-double space here is the ‘extended c~-double space’ of [Hin22b, Definition 3.7], which is
geometrically slightly more complex, but more natural (e.g. the left and right projections X2

c~ → Xc~ from
the extended c~-double space to the c~-single space are b-fibrations).
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We denote by ff2, tf2, and df2 the lifts of [0, 1]×ffb, {0}×ffb, and {0}×diagb, respectively,
and by tlb2, trb2 and sf2 the lifts of {0}× lbb, {0}×rbb, and {0}×X2

b, respectively. Finally,
diagc~ denotes the lift of [0, 1]× diagb. See Figure A.4.

ff2

tf2

tlb2

trb2

df2

sf2

x

x′

h
diagc~

Figure A.4. The semiclassical cone double space X2
c~ (called the extended

semiclassical cone double space ′X2
c~ in [Hin22b]).

The space
Ψs

c~(X)

then consists of smooth (in h ∈ (0, 1]) families of continuous linear operators on Ċ∞(X)

whose Schwartz kernels are elements of Is−
1
4 (X2

c~, diagc~;π∗R
c~ΩX) that vanish to infinite

order at all boundary hypersurfaces of X2
c~ except for ff2, tf2,df2 and the lift of h−1(1).

Here c~ΩX → Xc~ is the density bundle associated with c~TX → Xc~, and πR is the lift of
the right projection [0, 1] ×X ×X 3 (h, x, x′) 7→ (h, x′) ∈ [0, 1] ×X. In local coordinates
as above, a typical element of Ψs

c~(X) is the family of operators Opc,h(a) defined by

(Opc,h(a)u)(r, ω)

:= (2π)−n
∫∫∫∫

exp

(
i

[
r − r′

r h
h+r

ξc~ +
ω − ω′

h
h+r

· ηc~

])
χ
(∣∣∣log

r

r′

∣∣∣)χ(|ω − ω′|)

× a(h, r, ω, ξc~, ηc~)u(r′, ω′) dξc~ dηc~
dr′

r′ h
h+r′

dω′(
h

h+r′

)n−1 .

Here a is a symbol of order s in (ξc~, ηc~), with smooth dependence on h + r, r−h
r+h , ω (i.e.

on h, r/h, ω in r . h and on r, h/r, ω in h . r).

More generally then, we can consider quantizations of symbols a ∈ Ss,l,l
′,r(c~T ∗X),37

which are conormal functions on c~T ∗X of differential order s (i.e. have weight −s) at

fiber infinity c~S∗X, of b-decay order l at c~T ∗cfX, of tf-decay order l′ at c~T ∗tfX, and of

semiclassical order r at c~T ∗sfX. The resulting space of operators is denoted

Ψs,l,l′,r
c~ (X).

37In [Hin21b], the slightly more cumbersome notation Ss,l,l
′,r(c~T ∗Xc~) is used for the same symbol

space.
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(Restriction of elements of this space to a level set h = h0 > 0 gives a surjective map

to Ψs,l
b (X), whereas restriction in both factors of X in X2

c~ to the interior X◦ gives a
semiclassical ps.d.o. h−rΨs

~(X◦) on X◦.) The differential and semiclassical orders can
moreover be taken to be variable; we only need the case of variable semiclassical orders.

Thus, for r ∈ C∞(c~T ∗sfX), we denote by

Ψs,l,l′,r
c~ (X)

the corresponding space of operators, defined as the sum of Ψ−∞,l,l
′,−∞

c~ (X) and finite sums

of quantizations of symbols on c~T ∗X which are conormal on c~T ∗X with weights −s,
−l, −l′, and −r (thus with an arbitrarily small parameter δsf > 0 at sf in the notation
introduced after (A.2)). The principal symbol map in this case is

c~σs,l,l′,r : Ψs,l,l′,r
c~ (X)→ (Ss,l,l

′,r/Ss−1,l,l′,r−1+2δ)(c~T ∗X)

for any δ ∈ (0, 1
2). (See [Hin21b, §3.2] for further details.)

For those elements of Ψs,l,0,r
c~ (X) which have Schwartz kernels which are smooth down

to tf2 (as distributions conormal to diagc~), indicated by a subscript ‘cl’, restriction to tf
gives rise to a surjective map

Ntf : Ψs,l,0,r
c~,cl (X)→ Ψs,l,r

b,sc(tf)

with kernel ρtfΨ
s,l,0,r
c~,cl (X); the restriction of the principal symbol of A ∈ Ψs,l,0,r

c~,cl (X) to c~T ∗tfX

equals the principal symbol of Ntf(A) under the identification (A.3). Note here that this

identification also relates r|c~T ∗tfX to a variable scattering decay order r|tf ∈ C∞(b,scT ∗tf).

A.3. Scattering-b-transition algebra. With X denoting a compact n-dimensional man-
ifold with connected and embedded boundary ∂X 6= ∅, the final algebra of families of de-
generating ps.d.o.s on X that we recall here was introduced by Guillarmou–Hassell [GH08]
for the purpose of giving a precise uniform description of the Schwartz kernel of the low
energy resolvent on asymptotically conic spaces as one approaches the spectral parameter
0 from the resolvent set. We only need the small calculus (i.e. without boundary terms).

We define the sc-b-transition single space to be

Xsc-b :=
[
[0, 1]×X; {0} × ∂X

]
,

with the lift of the first coordinate function denoted σ. (One can completely analogously
study negative σ, in which case Xsc-b = [[−1, 0] ×X; {0} × ∂X]. In the main part of this
paper, it will be clear from the context which of the two versions is used.) We denote by
scf, tf, and zf the lift of [0, 1] × ∂X, the front face, and the lift of {0} × X, respectively.
This is the resolved space for low energy spectral theory from [Hin22a, Definition 2.12]
(and denoted X+

res there); a refinement of the corresponding phase space (in the notation
introduced below: the blow-up of sc-bT ∗X at the zero section over scf) was previously
introduced by Vasy [Vas21c]. With ρH ∈ C∞(Xres) denoting a defining function of H, we
set

Vsc-b(X) := {V ∈ ρscfVb(Xsc-b) : V σ = 0}.
In local coordinates ρ ≥ 0, ω ∈ Rn−1 near a point on X, this space is spanned over
C∞(Xsc-b) by

ρ

ρ+ σ
ρ∂ρ,

ρ

ρ+ σ
∂ωj (j = 1, . . . , n− 1).
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The vector bundle which has these vectors as a local frame is the sc-b-transition tangent
bundle sc-bTX → Xsc-b; the dual bundle is denoted sc-bT ∗X → Xsc-b as usual, with local
frame

ρ+ σ

ρ

dρ

ρ
,

ρ+ σ

ρ
dωj (j = 1, . . . , n− 1). (A.4)

The space Vsc-b(X) is a Lie algebra, and indeed [Vsc-b(X),Vsc-b(X)] ⊂ ρscfVsc-b(X).
(Thus, while Xsc-b is the same as the c~-single space except for renaming σ to h, the Lie
algebras Vsc-b(X) and Vc~(X) are different.) The restriction Ntf to tf gives rise to a short
exact sequence

0→ ρtfVsc-b(X) ↪→ Vsc-b(X)
Ntf−−→ Vsc,b(tf)→ 0

and thus to an identification
sc-bT ∗tfX

∼= sc,bT ∗tf. (A.5)

We also remark that for each σ0 > 0, the restriction of V ∈ Vsc-b(X) to {σ = σ0} ∼= X
defines an element of Vsc(X), whereas the restriction to the lift zf ∼= X of σ = 0 lies in
Vb(X).

We denote the space of m-th order differential operators generated by Vsc-b(X) by
Diffmsc-b(X); the principal symbol map sc-bσm fits into the short exact sequence

0→ ρscfDiffm−1
sc-b (X) ↪→ Diffmsc-b(X)

sc-bσm−−−−→ Pm(sc-bT ∗X)/ρscfP
m−1(sc-bT ∗X)→ 0.

In order to define the microlocalization of Diffsc-b(X), we define the sc-b-transition double
space as

X2
sc-b :=

[
[0, 1]×X2

b; {0} × ffb, {0} × lbb, {0} × rbb; [0, 1]× ∂ diagb

]
.

(This space is denoted M2
k,sc in [GH08].) We let scf2, tf2, and zf2 denote the lifts of

[0, 1]× ∂ diagb, {0} × ffb, and {0} ×X2
b, respectively; and we write diagsc-b ⊂ X2

sc-b for the
lift of [0, 1]× diagb. See Figure A.5.

x

x′

σ
diagsc-b

tf2

zf2

scf2

Figure A.5. The scattering-b-transition double space X2
sc-b.

Then

Ψs
sc-b(X)
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is the space of smooth families (in σ ∈ (0, 1]) of linear operators on Ċ∞(X) whose Schwartz

kernels are elements of Is−
1
4 (X2

sc-b, diagsc-b;π∗R
sc-bΩX) which vanish to infinite order at

all boundary hypersurfaces of X2
sc-b except those which have nonempty intersection with

diagsc-b (these are scf2, tf2, and zf2, as well as the lift of σ−1(1)). Here πR is the lift of
[0, 1] ×X ×X 3 (σ, x, x′) 7→ (σ, x′), and sc-bΩX → Xsc-b is the density bundle associated
with sc-bTX → Xsc-b. (In [GH08], the authors call this space of operators Ψs

k(M), and they

consider operators acting on b-1
2 -densities instead of scalar functions.)

In local coordinates σ, ρ, ω as above, a typical element of Ψs
sc-b(X) is the family of oper-

ators Opsc-b,σ(a) defined by

(Opsc-b,σ(a)u)(ρ, ω)

:= (2π)−n
∫∫∫∫

exp

(
i

[
ρ− ρ′

ρ ρ
σ+ρ

ξsc-b +
ω − ω′

ρ
σ+ρ

· ηsc-b

])
χ
(∣∣∣log

ρ

ρ′

∣∣∣)χ(|ω − ω′|)

× a(σ, ρ, ω, ξsc-b, ηsc-b)u(ρ′, ω′) dξsc-b dηsc-b
dρ′

ρ′ ρ
σ+ρ′

dω′( ρ
σ+ρ′

)n−1 .

Here a is a symbol of order s in (ξsc-b, ηsc-b), with smooth dependence on σ+ρ, ρ−σρ+σ , ω (i.e.

on σ, ρ/σ in ρ . σ and on ρ, σ/ρ in σ . ρ). One can more generally consider quantizations

of symbols a ∈ Ss,r,γ,l(sc-bT ∗X) which are conormal on sc-bT ∗X with differential order s

(i.e. weight −s at fiber infinity), scattering decay order r (i.e. weight −r at sc-bT ∗scfX), tf-

decay order γ (i.e. weight −γ at sc-bT ∗tfX), and zf-order l (i.e. weight −l at sc-bT ∗zfX); the

resulting space of operators is denoted Ψs,r,γ,l
sc-b (X). (Restrictions of elements of Ψs,r,γ,l

sc-b (X)
to a level set σ = σ0 > 0 lie in Ψs,r

sc (X).) Moreover, just as in the scattering calculus, we
can generalize this further by allowing s, r to be variable; in this paper we only need to

consider variable scattering decay orders r ∈ C∞(sc-bT ∗scfX) and the resulting space

Ψs,r,γ,l
sc-b (X).

For those elements of Ψs,r,0,l
sc-b (X) whose Schwartz kernels are smooth down to tf2 (as

distributions conormal to diagsc-b), indicated by the subscript ‘cl’, restriction to tf gives
rise to a surjective map

Ntf : Ψs,r,0,l
sc-b,cl(X)→ Ψs,r,l

sc,b(X)

with kernel ρtfΨ
s,r,0,l
sc-b,cl(X). The same remains true for variable orders r upon identifying the

restriction of r to sc-bT ∗tfX with an element of C∞(sc,bT ∗tf) via (A.5).

A.4. Sobolev spaces. For all calculi introduced, we can define corresponding L2-based
Sobolev spaces and their (possibly parameter-dependent) norms. We assume throughout
that the underlying manifold X is compact. Fixing αν ∈ R, denote by

ν = ρανν0, 0 < ν0 ∈ C∞(X, bΩX),

a weighted b-density. All function spaces will be defined relative to the space L2(X, ν).
When the density is clear from the context (as is the case from here on), we shall omit it
from the notation.

Consider first the b-setting; we let H0
b(X, ν) = L2(X). The weighted space

Hs,l
b (X) = ρlHs

b(X)
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is then defined for s ≥ 0 as the space of all u ∈ H0,l
b (X) so that Au ∈ H0,l

b (X) for any

fixed elliptic A ∈ Ψs
b(X); for negative s we can define Hs,l

b (X) = (H−s,−lb (X))∗ by duality
(with respect to the H0

b(X)-inner product), or equivalently as the space of all elements

of C−∞(X) = Ċ∞(X)∗ which are of the form u0 + Au1 where u0, u1 ∈ H0,l
b (X), with

A ∈ Ψ−sb (X) a fixed elliptic operator.

Weighted scattering Sobolev spaces Hs,r
sc (X) = ρrHs

sc(X) are defined in a completely
analogous manner relative to L2(X). (For X = Rn, the space Hs,r

sc (X; |dx|) is equal to the
standard weighted Sobolev space 〈x〉−rHs(Rn).) If r ∈ C∞(scT ∗X) is a variable decay order
and r0 = inf r, we define

Hs,r
sc (X) = {u ∈ Hs,r0

sc (X) : Au ∈ H0
sc(X)},

where A ∈ Ψs,r
sc (X) is any fixed elliptic operator.

We next consider c~-Sobolev spaces. The base case is again the L2-space H0
c,h(X) :=

L2(X), with the h-independent norm given by the L2(X)-norm. Next, the most general
space we shall need is

Hs,l,l′,r
c,h (X),

where r ∈ C∞(c~T ∗sfX) is a variable semiclassical order. For each value of h ∈ (0, 1], this

space is equal to Hs,l
b (X) as a set, but with a norm that is not uniformly equivalent as

h↘ 0. Namely, for s ≥ 0, we fix an elliptic operator A ∈ Ψs,l,l′,r
c~ (X) and define

‖u‖2
Hs,l,l′,r

c,h (X)
= ‖ρ−lcf ρ

−l′
tf ρ

− inf r
sf u‖2L2(X) + ‖Au‖2L2(X),

where ρH ∈ C∞(Xc~) is a defining function of H. For s < 0, we can define Hs,l,l′,r
c,h (X) in

any one of the two ways explained above for weighted b-Sobolev spaces.

Finally, we define the weighted sc-b-transition Sobolev space

Hs,r,γ,l
sc-b,σ(X).

This is for any fixed σ > 0 equal to Hs,r
sc (X) as a set; but for s ≥ 0 it is equipped with the

σ-dependent norm

‖u‖2
Hs,r,γ,l

sc-b,σ (X)
= ‖ρ− inf r

scf ρ−γtf ρ
−l
zf u‖

2
L2(X) + ‖Au‖2L2(X),

where A ∈ Ψs,r,γ,l
sc-b (X) is any fixed elliptic operator. The definition for s < 0 is analogous

to the b-setting explained previously. The norm ‖u‖
Hs,r,γ,l

sc-b,σ (X)
can be related to scattering-

b-Sobolev norms near tf and b-Sobolev norms near zf. Concretely, if we fix as a density
on X the scattering density |dx

x2
dω
xn−1 | (or any smooth positive multiple thereof), then for

χ = χ(σ/x) ∈ C∞c ([0,∞)), identically 1 near 0, we have a uniform (for σ ∈ [0, 1]) equivalence
of norms

‖χu‖
Hs,r,γ,l

sc-b,σ (X)
∼ |σ|l‖χu‖

Hs,γ−l
b (X)

. (A.6a)

(That is, there exists constant C > 0 so that for all σ ∈ [0, 1], the left hand side is bounded
by C times the right hand side, and vice versa.) Similarly, for a cutoff ψ = ψ(|σ| + x) ∈
C∞c ([0, ε)) (for small ε > 0, in a collar neighborhood [0, ε)× ∂X of ∂X), identically 1 near
0, we have a uniform equivalence of norms

‖ψu‖
Hs,r,γ,l

sc-b,σ (X)
∼ |σ|

n
2
−γ‖ψu‖

Hs,r,l−γ
sc,b (tf)

(A.6b)
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where upon setting x̂ := x/σ, we use the density |dx̂
x̂2

dω
x̂n−1 | = |σ|−n|dx

x2
dω
xn−1 | on tf. The

equivalences (A.6a)–(A.6b) are easily checked for L2-spaces (s = 0) with constant scattering
decay order r. For general s, r, they follow by using the definition of the respective norms
using elliptic ps.d.o.s. For (A.6a), one notes that the Schwartz kernel of an elliptic b-ps.d.o.
on X is a distribution on zf2 ⊂ X2

sc-b and as such can be extended, by σ-invariance, to the
Schwartz kernel of a sc-b-ps.d.o. which is elliptic near zf. For (A.6b), one uses that the
Schwartz kernel of an elliptic scattering-b-ps.d.o. on tf is a distribution on tf2 ⊂ X2

sc-b which
can be extended, by dilation-invariance in (σ, x, x′), to the Schwartz kernel of a sc-b-ps.d.o.
which is elliptic near tf. See the proof of Proposition 2.33 for further details in a similar
context.

Appendix B. Very large and extremely large frequency regimes in the
Q-setting

Here, we relate Q-analysis in the very large, resp. extremely large frequency regimes
described in §1.4 to semiclassical cone, resp. doubly semiclassical cone analysis in the sense
of [Hin22b].

Proposition B.1 (Intermediate and fully semiclassical regimes). For any fixed σ̃0 ∈ R\{0},
the level set X2

Q,σ̃0
:= X2

Q∩ σ̃−1(σ̃0) is diffeomorphic, via the coordinates (m, x, x′) ∈ (0, 1]×
X ×X, to

X2
q~ :=

[
X2

q ; diagq ∩mfq,2

]
.

Moreover, X2
Q,±,~̃ := X2

Q ∩ σ̃−1(±[1,∞]) is diffeomorphic to

X2
q~~̃ :=

[
[0, 1]~̃ ×X

2
q~; {0} × diagq~

]
,

where diagq~ ⊂ X2
q~ is the lift of diagq.

Remark B.2 (Relationship to (doubly) semiclassical cone algebras). The space X2
q~ carries

the Schwartz kernels of an algebra Ψq~(X) of pseudodifferential operators which microlo-
calizes the algebra of differential operators based on the Lie algebra Vq~(X) := {V ∈
ρmfqVb(Xq) : Vm = 0}. Thus, elements of Vq~(X) are semiclassical vector fields on X \{0},
with semiclassical parameter m; there is moreover a normal operator at zfq which is of scat-
tering type at ∂zfq = zfq ∩mfq. Note that the space Vq~(X) is closely related to the space
Vc~(X) of semiclassical cone vector fields with semiclassical parameter m, in that the spaces

of restrictions of elements of Vq~(X) and Vc~(Ẋ) to the set |x| & m are equal. One can use
such an algebra Ψq~(X) for uniform analysis as m ↘ 0 in the frequency regime |σ| ∼ m−1

(i.e. |σ̃| ∼ 1). The algebra Ψq~(X) is contained in ΨQ(X) (in the sense that the space of
restrictions of elements of ΨQ(X) to σ̃−1(σ̃0) is equal to Ψq′(X) for any σ̃0 ∈ R \ {0}), and
therefore we do not describe it in detail by itself. When restricting to σ̃ ∈ I in the case
I = ±[σ̃0,∞] where σ̃0 ∈ (0,∞), Q-ps.d.o.s are semiclassical versions of q~-ps.d.o.s., with

h̃ = |σ̃|−1 being the semiclassical parameter; this regime is thus closely related to (and in
|x| & m equal to) the doubly semiclassical cone calculus introduced in [Hin22b, §4], with

m, resp. h̃ being the first, resp. second semiclassical parameter. The difference between the
double space X2

q~~̃ defined here and the doubly semiclassical cone double space of [Hin22b,

Definition 4.6] stems from the fact that only in the latter setting there is a cone point at

the spatial origin which necessitates a semiclassical cone resolution at h̃ = 0.
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Proof of Proposition B.1. Consider first a neighborhood of {∞} × (zfq,2)◦ ⊂ R ×X2
q ; this

has a collar neighborhood [0, 1)h × [0, 1]m × (X̂◦)2. Passing to the blow-up of h = m = 0,

we have local coordinates h̃ = h
m , m, x̂, x̂′ near the lift of h = 0. The space resulting

from blowing up the lift {0}× [0, 1]m× diagX̂◦ of ∂R× diagq contains [0, 1]m× (X̂◦)2
~̃ where

(X̂◦)2
~̃ =

[
[0, 1]h̃ × (X̂◦)2; {0} × diagX̂◦

]
is the semiclassical double space of X̂◦.

We shall next analyze a neighborhood of the preimage of [0, 1]h × mfq,2 = [0, 1]h × Ẋ2
b

in X2
Q, and we in fact restrict attention in the second factor to a collar neighborhood

[0, 1)ρmfq,2
× [0, 1)ρ̇ × [0,∞]s × (∂Ẋ)2 of mfq,2, where s = r

r′ and

ρmfq,2 =
m

ρ̇ρ̇Lρ̇R
, ρ̇ = r + r′, ρ̇L =

s

s+ 1
, ρ̇R =

1

s+ 1
. (B.1)

We drop the factor (∂Ẋ)2 from the notation; thus we have a coordinate chart

[0, 1]h × [0, 1)ρmfq,2
× [0, 1)ρ̇ × [0,∞]s

near [0, 1]h ×mfq,2 ⊂ R×X2
q . In these coordinates, the 6 submanifolds blown up in (2.27)

take the form38

{0} × zfq,2 = {0} × [0, 1)× {0} × [0,∞];

{0} × diagq = {0} × [0, 1)× [0, 1)× {1},
{0} × (diagq ∩mfq,2) = {0} × {0} × [0, 1)× {1},
{0} × (lbq,2 ∪ rbq,2) = {0} × [0, 1)× [0, 1)× {0,∞},

{0} ×mfq,2 = {0} × {0} × [0, 1)× [0,∞].

Upon blowing up {0} × zfq,2, a collar neighborhood of the lift of h = 0 is given by

[0,∞)ḣ × [0, 1)ρmfq,2
× [0, 1)ρ̇ × [0,∞]s, ḣ :=

h

ρ̇
.

The lifts of the remaining 4 submanifolds all involve the factor [0, 1)ρ̂, and therefore, upon
blowing them up, we obtain the open submanifold with corners of X2

Q

[0, 1)ρ̇×
[
[0,∞)ḣ × [0, 1)ρmfq,2

× [0,∞]s; {0} × [0, 1)× {1}, {0} × [0, 1)× {0,∞};

{0} × {0} × {1}; {0} × {0} × [0,∞]
]
.

(B.2)

See Figure B.1. In particular, if one does not blow up {0} × [0, 1) × {1}, then a collar

neighborhood of the lift of ḣ = 0 is given by

[0, 1)ρ̇ × [0,∞)h̃ ×
[
[0, 1)ρmfq,2

× [0,∞]s; {0} × {1}
]

since h̃ = h
m ∼

ḣ
ρmfq,2

ρ̇Lρ̇R
by (B.1). Blowing up the lift of [0, 1) × {0} × [0, 1) × {1} and

reinserting the factor (∂Ẋ)2, the open submanifold (B.2) of X2
Q is thus[

[0,∞)h̃ ×N ; {0} × diagq~
]

where N ⊂ X2
q~ is a neighborhood of the preimage of mfq,2 under the blow-down map

X2
q~ → X2

q . The proof of the Proposition is complete once one performs an analogous

38We combine the ones involving lbq,2 and rbq,2.
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s

ρmfq,2

ḣ

Figure B.1. The space (B.2) (with the ρ̇-coordinate suppressed), as a sub-
space of the Q-double space X2

Q. Also shown is the intersection of a level

set σ̃ = σ̃0 6= 0 with ∂X2
Q.

analysis of the geometry of X2
Q,σ̃0

and X2
Q,+,~ near the preimages of [0, 1]h × lbq,2 and

[0, 1]h × rbq,2; we leave this to the reader. �
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