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Abstract. We study quasinormal modes (QNMs) for the Klein–Gordon equation on Reissner–

Nordström–de Sitter black holes with near-extremal charge. We locate all QNMs of size O(κC)

where κC is the surface gravity of the Cauchy horizon (which vanishes at extremality): they are
well-approximated by κC times QNMs of the near-horizon geometry AdS2 × S2 of the extremal

limit.

1. Introduction

1.1. Setup and main result. The Reissner–Nordström–de Sitter (RNdS) solution of the Einstein–
Maxwell equations, with cosmological constant Λ > 0, describes a spherically symmetric black hole
with mass m > 0 and charge Q. The underlying geometry is described by the Lorentzian manifold
(M, g) where

M = Rt ×X , X = (re, rc)r × S2, g = −F (r) dt2 + F (r)−1 dr2 + r2/g; (1.1)

here /g is the standard metric on the unit 2-sphere, and 0 < re < rc are the largest two roots of the
function

F (r) = 1− 2m

r
+
Q2

r2
− Λr2

3
. (1.2)

We assume here that the parameters Λ,m, Q are subextremal. In the case Q ̸= 0 this means that F
has three distinct positive roots

0 < rC < re < rc (1.3)

which are, in this order, the area radius of the Cauchy, event, and cosmological horizon; see the
right panel of Figure 1.2. (For Q = 0, there is no Cauchy horizon.) See Figure 1.1 for the parameter
space of subextremal RNdS black holes, parameterized using the dimensionless quantities Λm2 and
Q/m. In this paper we are interested in black holes which have near-extremal charges (but not
near-extremal masses). This corresponds to the relationship rC ≈ re < rc; see the left panel of
Figure 1.2. From now on, we parameterize subextremal RNdS black holes using the radii (1.3).

The coordinate singularities of g at r = re, rc can be removed by passing to a new time coordinate

t∗ = t− T (r), T ′(r) =
T̃ (r)

F (r)
, T̃ (r) := 2

r − re
rc − re

. (1.4a)

The level sets of t∗ are transversal to the future event and cosmological horizon. (The key feature

is that T̃ (re) = −1, T̃ (rc) = +1.) In the coordinates t∗, r then, the metric

g = −F (r) dt2∗ − 2T̃ (r) dt∗ dr +
1− T̃ (r)2

F (r)
dr2 + r2/g (1.4b)

extends real analytically to

M = Rt∗ ×X, X := [r−, r+]× S2,
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Figure 1.1. Parameter space of subextremal RNdS black holes (computed using
[Hin18, Proposition 3.2]). At the thick dashed line at the top, the charge is extremal
but the mass is not; thus rC = re < rc. (We exclude the circle on the top right,
where rC = re = rc.) We study RNdS black holes with parameters in a small
neighborhood of this dashed line.
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Figure 1.2. On the left: the radii rC, re, rc as functions of the charge Q ∈ [0, Qext]
for Λ = 0.05, m = 1 where Qext ≈ 1.00893 is the extremal charge. On the right:
the graph of F for the near-extremal parameters Λ = 0.05, m = 1, Q = 0.9.

where we set r− = rC+re
2 and fix any r+ > rc. (The analytic continuation exists for r ∈ (rC,∞).)

In this paper, we study the set

QNM(rC, re, rc) ⊂ C
of quasinormal modes (QNMs) (or resonances) for the wave equation

□gψ = 0 (1.5)

on nearly extremally charged RNdS backgrounds. The set QNM(rC, re, rc) consists of all complex
numbers σ ∈ C for which there exists 0 ̸= u ∈ C∞(X) (a resonant state) such that

□g(e
−iσt∗u) = 0. (1.6)

(Equivalently, e−iσtũ solves (1.5) where ũ = eiσT (r)u. The smoothness of u amounts to ũ being
outgoing at the event and cosmological horizons.) Thus, − Imσ is the exponential rate of decay of
the mode solution e−iσt∗u. We always have

0 ∈ QNM(rC, re, rc)

since □g1 = 0. The set QNM(rC, re, rc) is discrete, as was shown by Besset [Bes20] (this also follows
from results in [Hin18] combined with Vasy’s method [Vas13]). Solutions ψ = ψ(t∗, x) of the wave
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equation (1.5) with smooth initial data admit resonance (or QNM ) expansions of the form

ψ(t∗, x) =
∑
j

e−iσjt∗uj(x) + ψ̃(t∗, x)

(ignoring the possibility of higher multiplicities) where the σj and uj are QNMs and resonant states,

and ψ̃ has faster exponential decay in t∗ than the last term one chooses to include in the sum (sorted
by the exponential rates of decay − Imσj).

Fixing re < rc, we show that in the extremal charge limit rC ↗ re, the set QNM(rC, re, rc)
contains complex numbers σ, depending continuously on rC, whose imaginary part tends to 0. Such
families of modes are called zero-damped [YZZ+13a, YZZ+13b]. More generally, we consider the set
QNM(rC, re, rc, µ) of quasinormal modes for the Klein–Gordon equation

(□g + µ)ψ = 0, µ ≥ 0. (1.7)

In our main result, we in fact determine all QNMs of size O(κC) where κC := 1
2 |F

′(rC)| is the

surface gravity of the Cauchy horizon. The latter is equal to1 κC = (re − rC)
κ
2r2e

+O((re − rC)
2) in

the extremal charge limit where κ is given in (1.8).

Theorem 1.1 (Main result, abridged version). Fix 0 < re < rc and define the quantity

κ :=
r2c + 2rerc − 3r2e
r2c + 2rerc + 3r2e

∈ (0, 1). (1.8)

For µ ≥ 0 and ℓ ∈ N0, define

λ+ℓ (µ) :=
1

2

(
1 +

√
1 + 4

ℓ(ℓ+ 1) + r2eµ

κ

)
,

and define the set of QNMs for the massive scalar wave equation on the near-horizon geometry by2

QNMNH(µ) := {−i(λ+ℓ (µ) + n) : ℓ, n ∈ N0}.
Let C0 > 0 with C0 ̸= λ+ℓ (µ) + n for all ℓ, n ∈ N0. Then, in the Hausdorff distance sense,{ ς

κC
: ς ∈ QNM(rC, re, rc, µ), |ς| ≤ C0κC

}
rC↗ re−−−−→

{
QNMNH(µ) ∩ {|σ| < C0}, µ > 0,

{0} ∪QNMNH(µ) ∩ {|σ| < C0}, µ = 0.

(1.9)

For small re − rC, the set on the left is contained in iR.

The proof of Theorem 1.1 is given in §5 (see in particular Proposition 5.3, Theorem 5.5, Propo-
sition 5.13, and Theorem 5.14). We establish the following more precise results.

(1) The convergence of QNMs in (1.9) holds with multiplicity.
(2) Let us restrict attention to functions (and resonant states) of the form u(r, ω) = u0(r)Yℓ(ω)

where Yℓ is a degree ℓ spherical harmonic.3 Then the element σ := −i(λ+ℓ (µ) + n) ∈
QNMNH(µ) has multiplicity 2ℓ+ 1 (Theorem 3.3). Moreover, for µ > 0, and also for µ = 0
and ℓ ≥ 1 (see Remark 5.10), the resonant state corresponding to the QNM ≈ κCσ is well-
approximated by the function (3.14) (with z = 2 r−rC

re−rC
− 1 and using the notation (3.13))

which is localized O(re − rC)-close to r = re (Theorem 5.5). In the case µ = 0, ℓ = 0,
a similar statement holds upon subtracting appropriate constants from the resonant state
(Theorem 5.14).

1See (2.5) for the calculation.
2We do not make the dependence of this set on re, rc explicit in the notation.
3Due to the spherical symmetry of the RNdS metric, one can project resonant states onto degree ℓ modes for any

ℓ ∈ N0.
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See Figures 1.3 and 1.4. In the case of massless scalar fields (µ = 0), Theorem 1.1 confirms
the numerical observations regarding near-extremal (NE) QNMs in [CCD+18a] for the spherical
harmonic degree ℓ = 0. For ℓ ≥ 1 however, our result implies that the prediction in [CCD+18a,
Equation (13)] that the QNMs are given by −i(ℓ + n + 1)κC in the extremal limit is inaccurate
even to leading order in the near-extremality parameter re− rC. Our results are consistent with the
more precise heuristics based on matched asymptotic expansions for near-extremal Kerr–Newman–
de Sitter (KNdS) black holes in [DDG24, §3.3.2]; our arguments can be regarded as providing a
rigorous justification (for the RNdS sub-family of KNdS) for various approximations made there.
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`=0, n=2−3i

`=1, n=0

`=1, n=1
`=2, n=0

QNMNH(0)

re = 1, rc = 2.82

`=0, n=0−i
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`=2, n=0
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−iκC

−2κC

−3κC

0

QNM(rC, re, rc)

Figure 1.3. On the left: the set QNMNH(0) of near-horizon QNMs for re = 1,
rc = 2.82; the corresponding extremal RNdS parameters satisfy Λm2 ≈ 0.14. The
values of ℓ, n identify the QNM −i(λ+ℓ (0)+n). In the middle: the set QNMNH(0) for
re = 1, rc = 11, and thus Λm2 ≈ 0.02. On the right: illustration of (1.9) for µ = 0.
The QNMs of near-extremal RNdS are equal to κC times small perturbations of
the near-horizon QNMs (indicated by the blue intervals), while the red QNM 0 is
independent of the RNdS parameters. (For scalar field masses µ > 0, there is no
QNM at 0.)
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Figure 1.4. We fix re = 1, rc = 2.82, µ = 0.1, and consider ℓ = 0, n = 1. On the
left: the resonant state u0,1(z) (see (3.14)) for the massive wave equation on the
near-horizon geometry corresponding to the near-horizon QNM −i(λ+0 (µ) + 1) ≈
−2.138. On the right: illustration of the resonant state uϵ for the Klein–Gordon
equation on RNdS with parameters rC = re − 2ϵ, ϵ = 0.05 ≪ re. We are showing
here the approximation u0,1(2

r−rC
re−rC

− 1) of uϵ.
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The existence of zero-damped modes for the Klein–Gordon equation with conformal mass µ =
scalg
6 = 2Λ

3 was proved by Joykutty [Joy22].4 Joykutty obtained similar results on nearly extremally
rotating Kerr–de Sitter spacetimes in his thesis [Joy23].

Since κC → 0 as rC → re, Theorem 1.1 describes QNMs in a shrinking neighborhood of 0:
they are approximately equal to κC times QNMs of the near-horizon geometry (see below). Our
interest in QNMs σ with small − Imσ stems from their importance in the context of Penrose’s
Strong Cosmic Censorship conjecture [CCD+18a]: the regularity of solutions of the wave or Klein–

Gordon equation at the future Cauchy horizon is H
1
2+β− [HV17, HK24] (which is expected to

be sharp) where β = 1
κC

min{− Imσ} where σ runs over all nonzero QNMs. If it holds that the

QNMs identified in Theorem 1.1 are those with smallest − Imσ (cf. Conjecture 1.5 below), we
conclude that β → 1 for µ = 0 in the extremal charge limit. A detailed analysis of β in the
full subextremal KNdS parameter space was performed in [DDG24] following the earlier [CM22].
Further results on the validity or failure of SCC based on QNM considerations are described in
[CCD+18b, MTW+18, DSR18, DERS18, DRS18, DRS19].

Other works in the physics literature on QNMs near extremality have mainly focused on near-
extremal black hole spacetimes with vanishing cosmological constant Λ = 0. Hod [Hod17] studied
the QNMs of massive scalar fields on near-extremal Reissner–Nordström (RN) black holes using
a number of ad hoc approximations. His formula in [Hod17, equations (13) and (39)] for q = 0
is consistent with Theorem 1.1 (with the identification m = re ≡ r+, κ = 1 in the extremal RN
limit rC ≡ r− = r+ − 2ϵ → r+). The results of Kim–Myung–Park [KMP13] on the near-horizon
geometry of extremal RN are consistent as well. See [ZM16] for results in near-extremal Kerr–
Newman geometries. Further references include [Hod08, Hod11, Hod12]. We also mention the work
by Ficek–Warnick [FW24] presenting a numerical study of QNMs on near-extremal RN black holes
with negative cosmological constant Λ < 0; the near-extremal modes analogous to those found in
Theorem 1.1 dominate in the extremal limit (cf. Conjecture 1.5 below, which however concerns
Λ > 0).

1.2. Near-extremality, extremality, near-horizon limit. In order to prove Theorem 1.1, we
recognize the extremal mass limit as being singular in the following sense. Write gϵ for the RNdS
metric with parameters re, rc (fixed) and 0 < rC = re − 2ϵ. On the one hand, on every compact
subset of {r > re} the metric gϵ converges to the extremal RNdS metric g0. Near the event horizon
on the other hand, let us pass to the rescaled radial coordinate

z := 2
r − rC
re − rC

− 1 =
r − rC
ϵ

− 1 (1.10)

(so z = −1, resp. z = +1 defines the Cauchy, resp. event horizon); similarly introducing a rescaled
time coordinate t∗ ∼ ϵt∗, the limit of gϵ as ϵ → 0 in the coordinates t∗, z is isometric to AdS2 × S2
(for appropriate radii in the two factors), with z = 1 being the past light cone based at a point i+ on
the conformal boundary. This space is (isometric to) the near-horizon geometry of extremal RNdS
[CMT23] (see the formula (2.10) and Remark 2.1 for more details). See Figure 1.5; the detailed
computations are given in §2.3.

The QNMs observed in Theorem 1.1 are then the rescalings of the QNMs of the near-horizon
geometry; the corresponding resonant states are characterized as being functions in z ≥ 0 that are
smooth (in particular across the ‘horizon’ z = +1) and decay as z → ∞, i.e. towards the conformal
boundary (§3). For the proof, we combine

• estimates at zero energy on extremal RNdS (§4) and

4The particular choice of µ plays a key role in several places of [Joy22]: a radial inversion exchanges the almost-
extremal event and the subextremal cosmological horizon [Joy22, §4.1]; and in the de Sitter limit of a rescaling of
the resulting spacetime, the dual resonant states (also called co-resonant states or co-modes) are supported on the

de Sitter horizon [Joy22, Proposition 2.3] (see also [HX21, §III.B]).
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• estimates for the spectral family of the Klein–Gordon equation on the near-horizon geometry
(§3.2)

in order to prove uniform estimates for the spectral family on near-extremal RNdS in the extremal
charge limit (§5). The function spaces used for this uniform analysis are the weighted q-Sobolev
spaces introduced in [Hin] which are equivalent to the function spaces (b-Sobolev spaces) appropriate
for the analysis in the two asymptotic regimes. Theorem 1.1 then follows from an application
of Rouché’s theorem in the context of Schur’s complement formula for suitably defined Grushin
problems for the spectral family of the Klein–Gordon equation for the metric gϵ.

t−1
∗ (0) ∼= X

r = r−

r = r+

CH+ [r = rC]

H+ [r = re] H+ [r = rc]

i+

t−1
∗ (0)

z = 0

z = 1

z = −1

i+

I

Figure 1.5. On the left: Penrose diagram of subextremal RNdS. On the right:
Penrose diagram of the near-horizon geometry AdS2 × S2. The level sets of the
function z meet at the point i+ on the conformal boundary, and t∗ → ∞ as one
approaches i+. In the shaded regions on both sides, the metrics are close to being
constant multiples of one another upon relating t∗, r and t∗, z as indicated af-
ter (1.10).

Remark 1.2 (Comparison: zero mass limit). The approach sketched above is, in spirit, related to

[HX22, Hin] where all shallow QNMs, now meaning Imσ ≳ −
√
Λ, of Schwarzschild– and Kerr–

de Sitter black holes are characterized in the zero-mass limit Λm2 ↘ 0: for fixed Λ, there are
two geometries characterizing the zero-mass limit m ↘ 0, namely the de Sitter spacetime and, upon
passing to r̂ := r/m, the unit mass Schwarzschild or Kerr spacetime. Unlike in those works, however,
in the present setting we face an added difficulty: for the scalar field mass µ = 0, the zero energy
operator on extremal RNdS fails to be invertible (since constants are mode solutions with frequency
0). We surmount this using an idea from the low energy spectral analysis on asymptotically flat
spaces as done in [Hin24a] by complementing the range of the non-surjective zero energy operator
by the output of the spectral family on a singularly rescaled zero energy state; see Proposition 5.12
and the discussion prior to it.

Remark 1.3 (QNMs of extremal RNdS). Since the frequencies ς = O(κC) of interest in Theorem 1.1
tend to 0 in the extremal limit, we only need to study the zero frequency behavior of extremal RNdS
here. In particular, we do not need to study nonzero QNMs on extremal RNdS. The analysis of
QNMs on extremal RNdS with negative imaginary part is complicated by the vanishing surface grav-
ity of the event horizon: on the level of analysis, the spectral family, near the event horizon, is akin
to the spectral family of an asymptotically flat space near infinity, and thus delicate tools are neces-
sary, such as the Gevrey analysis pioneered by Gajic–Warnick [GW21, GW24] (extremal Reissner–
Nordström, subextremal Kerr) or complex scaling methods as in Sá Barreto–Zworski [SBZ97] and
Hitrik–Zworski [HZ24] (Schwarzschild) and Stucker [Stu24] (Kerr). We conjecture that damped
QNMs on extremal RNdS give rise to nearby damped QNMs of subextremal RNdS.
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1.3. Related works on QNMs and resonance expansions. Besset [Bes20] adapted techniques
of Bony–Häfner [BH08] and Georgescu–Gérard–Häfner [GGH17] to obtain a complete resonance
expansion for massive and weakly charged scalar waves (including across the horizons using ideas
of [Dya11a, Daf05, DR09]) propagating on subextremal RNdS spacetimes. Besset also developed a
scattering theory and proved asymptotic completeness in [Bes21].

Allowing for the black hole to have nonzero angular momentum, Besset–Häfner [BH21] proved the
existence of an unstable mode for weakly charged and weakly massive Klein–Gordon fields on slowly
rotating KNdS spacetimes via a computation of the first order perturbation of the zero resonance in
the massless and uncharged case. (See [SR14] for a related result for the Klein–Gordon equation on
Kerr.) By contrast, for massless and uncharged scalar fields and in the slowly rotating setting, all
QNMs except for 0 (with resonant states being constants) have negative imaginary part (bounded
away from 0). The full nonlinear stability of slowly rotating KNdS black holes as solutions of the
Einstein–Maxwell system was proved by the author in [Hin18] via an adaptation of the techniques
introduced in joint work with Vasy [HV18]. (Building on the earlier [Vas13, HV15, Hin16, HV16],
this work exploits information about QNMs, such as the absence of growing mode solutions, for the
purpose of solving linear and nonlinear wave equations.) We also mention the work of Petersen–
Vasy [PV21b] on partial expansions in the full subextremal range of Kerr–de Sitter black holes, and
[GZ21, PV21a] regarding the analyticity properties of resonant states.

Iantchenko [Ian17] studied QNMs for the massless charged Dirac equation on subextremal RNdS
spacetimes, generalizing the influential earlier work by Sá Barreto–Zworski [SBZ97] on QNMs for the
massless wave equation on Schwarzschild and Schwarzschild–de Sitter spacetimes. The generaliza-
tion to slowly rotating Kerr–Newman–de Sitter (KNdS) backgrounds was done in [Ian18] following
methods introduced by Dyatlov [Dya11b, Dya11a, Dya12] in the Kerr–de Sitter setting.

1.4. Outlook. The aim of the present paper is to exhibit the mechanism through which near-
horizon QNMs lift to QNMs of a near-extremal spacetime. We leave it to future work to study the
following problems:

Conjecture 1.4 (More precise asymptotics of QNMs). If σ0 is a simple QNM of the Klein–Gordon
equation on the near-horizon geometry with parameters re, rc, then the unique nearby QNM on RNdS
with rC = re−2ϵ (for small ϵ > 0) depends on ϵ ∈ [0, re/2) in a smooth or polyhomogeneous fashion.

Conjecture 1.5 (Shallow QNMs). Fix 0 < re < rc. In the notation of Theorem 1.1, show that
the set { ς

κC
: ς ∈ QNM(rC, re, rc, µ), Im ς > −C0κC} converges to QNMNH(µ) ∩ {Imσ > −C0} as

rC ↗ re.

A proof of the latter conjecture would identify all QNMs in a half space including the real axis.
It relates to Theorem 1.1 in the same way that [Hin] relates to [HX22]. Finally, we mention:

Problem 1.6 (Charged scalar waves). Prove an analogue of Theorem 1.1 for charged scalar waves
and justify the numerical results of [CCD+18b] concerning near-extremal QNMs.

Problem 1.7 (Rotating black holes). Prove analogues of Theorem 1.1 for near-extremally charged
(or near-extremally rotating) KNdS black holes.

1.5. Outline. The plan of the paper is as follows.

• §2. We describe the geometry and the structure of the spectral family for the Klein–Gordon
equation on RNdS spacetimes in the extremal charge limit: §2.1 for the exterior limit
(extremal RNdS), §2.2 for the near-horizon limit, and §2.3 for the combination and its
relation to q-analysis [Hin].

• §3. We study the Klein–Gordon equation on the near-horizon geometry AdS2 × S2 and the
notion of QNMs for it. In §3.1, we develop the solvability and regularity theory for the
Klein–Gordon equation, and in §3.2 we prove Fredholm estimates for the spectral family.
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• §4. We prove Fredholm estimates for the spectral family on extremal RNdS at zero frequency
and identify resonant and co-resonant states.

• §5. By combining the estimates from §§3–4, we prove uniform estimates for the spectral
family on RNdS in the extremal charge limit: §§5.1 and 5.2 treat the cases of massive and
massless scalar waves, respectively.

2. Geometric singular analysis of the extremal charge limit

As a preparation for our analysis, we shall describe the uniform behavior of the RNdS metric and
of the spectral family of the Klein–Gordon operator in the extremal charge limit.

Since the black hole charge Q only enters the RNdS metric through the Q2 term in (1.2), we may
restrict to the case Q ≥ 0. Parameterizing subextremal RNdS parameters Λ,m, Q via the locations
0 < rC < re < rc of the horizons, the function F in (1.2) takes the form

F (r) = − Λ

3r2
(r − rC)(r − re)(r − rc)(r + rC + re + rc), (2.1)

and comparison with (1.2) furthermore yields the following formulas for the RNdS parameters:

3

Λ
= (rC + re + rc)

2 − (rCre + rCrc + rerc),

6m

Λ
= (rCre + rCrc + rerc)(rC + re + rc)− rCrerc,

3Q2

Λ
= rCrerc(rC + re + rc).

(2.2)

Fixing the locations

0 < re < rc (2.3a)

of the event and cosmological horizons, we quantify the near-extremality using the parameter

ϵ :=
re − rC

2
∈ [0, ϵ0), ϵ0 :=

re
2
; (2.3b)

thus rC = re − 2ϵ, and ϵ = 0 is the extremal case. We denote the function F for these radii by Fϵ,
so the RNdS metric is given by

gϵ = −Fϵ(r) dt
2 + Fϵ(r)

−1 dr2 + r2/g. (2.4)

Since
3

Λ
≡ (rc + 2re)

2 − (r2e + 2rerc) ≡ r2c + 2rerc + 3r2e mod ϵC∞([0, ϵ0)),

the surface gravity of the Cauchy horizon is

κC,ϵ :=
1

2
|F ′

ϵ(rC)| =
1

2

Λ

3r2C
(re − rC)(rc − rC)(2rC + re + rc)

≡ ϵΛ

3r2e
(rc − re)(rc + 3re)

≡ ϵ

r2e
κ ≡ ϵκe mod ϵ2C∞([0, ϵ0)),

(2.5)

where we introduce

κ :=
r2c + 2rerc − 3r2e
r2c + 2rerc + 3r2e

, κe :=
κ
r2e
. (2.6)

It is equal to the surface gravity 1
2 |F

′
ϵ(re)| of the event horizon up to ϵ2C∞ corrections; and it

vanishes in the extremal limit ϵ↘ 0.

We proceed to describe the two limits of the RNdS metric gϵ, given by (2.4) and (2.1), (2.3a)–
(2.3b), as ϵ ↘ 0: the extremal RNdS limit (when r > re is bounded away from re) in §2.1 and the
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near-horizon limit (when r is ϵ-close to rC, re) in §2.2. A single perspective capturing both limits is
described in §2.3.

2.1. Extremal RNdS. In compact subsets of {r > re}, the metric gϵ converges, as ϵ ↘ 0 and in
the smooth topology, to the extremal RNdS metric

g0 = −F0(r) dt
2 + F0(r)

−1 dr2 + r2/g, F0(r) = − Λ

3r2
(r − re)

2(r − rc)(r + 2re + rc), (2.7)

where Λ is given by (2.2) with rC = re. (This metric is sometimes called the cold RNdS solution
[Rom92].)

2.2. Near-horizon geometry. Between the Cauchy and event horizons, i.e. for rC < r < re, we
can use the form (1.1) of the RNdS metric. Recall the definition z = 2 r−rC

re−rC
−1 = r−rC

ϵ −1 = r−re
ϵ +1

from (1.10). We thus have

Fϵ(r) ≡
Λ

3r2
ϵ2(z2 − 1)(rc − re)(rc + 3re)

≡ ϵ2κe(z
2 − 1) mod ϵ3C∞([0, ϵ0)× Rz).

(2.8)

Since dr = ϵdz, we have

Fϵ(r)
−1 dr2 ≡ 1

κe
(z2 − 1)−1 dz2

modulo ϵC∞([0, ϵ0)× Rz) (times dz2). This suggests rescaling the time coordinate via

t := κC,ϵt (2.9)

since then, by (2.5), dt ≡ 1
ϵκe

dt mod C∞ and thus

Fϵ(r) dt
2 ≡ 1

κe
(z2 − 1) dt2.

In combination, we thus have, modulo tensors with coefficients (with respect to dt, dz, /g) of class
ϵC∞([0, ϵ0)× Rz),

gϵ ≡ gNH :=
1

κe

(
−(z2 − 1) dt2 + (z2 − 1)−1 dz2 + κ/g

)
. (2.10)

Note that the conformal class of gNH depends on the ratio re/rc via κ in (2.6), and hence is sensitive
to the value of Λ.

Remark 2.1 (gNH and the near-horizon geometry of extremal RNdS). By definition, a near-horizon
geometry is attached to an extremal horizon; in the case of the extremal RNdS metric g0, with

rC = re < rc, it is obtained by introducing r = re + ϵz̃ and t = t̃
ϵκe

and taking the limit ϵ ↘ 0.

Since F0 ≡ Λ
3r2e
ϵ2z̃2(rc − re)(3re + rc) ≡ ϵ2κez̃

2 mod ϵ3C∞, this produces the metric

g̃NH :=
1

κe

(
−z̃2 dt̃2 + z̃−2 dz̃2 + κ/g

)
.

This differs from (2.10) in that z̃2 (arising due to the extremality of the event horizon) replaces
z2 − 1 (arising from taking a limit along subextremal RNdS parameters such that the Cauchy and
event horizon remain separated). Nonetheless, g̃NH and gNH are isometric: for w̃ := z̃−1, we have

g̃NH = 1
κe

(−dt̃2+dw̃2

w̃2 + κ/g), which matches the expression (3.2) for gNH below upon identifying

(t̃, w̃) = (T, ρ).

Remark 2.2 (gNH and the Einstein–Maxwell equations). The RNdS metric gϵ solves the Einstein–
Maxwell system

Ric(gϵ)− Λgϵ = 2T (gϵ,Fϵ), T (g,F)µν := FµλFν
λ − 1

4
FκλFκλgµν ,
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with electromagnetic 2-form Fϵ = dAϵ, Aϵ :=
Q
r dt, so Fϵ =

Q
r2 dt ∧ dr ≡ Q

κ dt ∧ dz mod ϵC∞. The

ϵ ↘ 0 limits gNH and Q
κ dt ∧ dz (with Q2 =

r2erc(2re+rc)
r2c+2rerc+3r2e

being the square of the extremal charge)

solve the Einstein–Maxwell system—as one can, of course, also verify by direct computation.

2.3. Combination via geometric singular analysis. In order to capture the uniform behavior
of gϵ near the event horizon, we pass to regular coordinates there. We shall do this as in (1.4a)–

(1.4b) but now, for notational simplicity, using a function T̃ (independent of ϵ) which equals −1 for
r < re + δ and 1 for r > rc − δ where we fix δ := rc−re

4 ; in particular,

gϵ = −Fϵ(r) dt
2
∗ + 2dt∗ dr + r2/g, r < re + δ. (2.11)

We shall consider the metric gϵ in the region re − ϵ ≤ r ≤ r+ for any fixed r+ > rc; the lower bound
on r corresponds to z = r−rC

ϵ − 1 ≥ 0.

We have

g−1 = −1− T̃ (r)2

F̃ϵ(r)
∂t∗ ⊗ ∂t∗ − T̃ (r)(∂t∗ ⊗ ∂r + ∂r ⊗ ∂t∗) + Fϵ(r)∂r ⊗ ∂r + r−2

/g
−1.

Therefore, writing /∆ = ∆/g for the (non-negative) spherical Laplacian,

Pϵ := □gϵ + µ

= −1− T̃ 2

Fϵ
D2

t∗ −Dt∗(r
−2Drr

2T̃ + T̃Dr) + r−2DrFϵr
2Dr + r−2 /∆+ µ

= 2r−1DrrDt∗ + r−2DrFϵr
2Dr + r−2 /∆+ µ for r < re + δ.

Being interested in resonances of size O(κC,ϵ) as ϵ ↘ 0, we consider the spectral family P̂ϵ(ς) of

Pϵ at frequencies ς = κC,ϵσ where σ = O(1); the operator P̂ϵ(ς) is given by eiςt∗Pϵe
−iςt∗ acting on

t∗-independent functions, so

P̂ϵ(ς) = P̂ϵ(κC,ϵσ)

= −1− T̃ 2

Fϵ
(κC,ϵ)

2σ2 + κC,ϵσ(r
−2Drr

2T̃ + T̃Dr) + r−2DrFϵr
2Dr + r−2 /∆+ µ

= −2κC,ϵσr
−1Drr + r−2DrFϵr

2Dr + r−2 /∆+ µ for r < re + δ.

(2.12)

Taking the limit ϵ↘ 0 (thus κC,ϵ ↘ 0) for r > re gives the spectral family

P̂ext(0) = r−2DrF0r
2Dr + r−2 /∆+ µ (2.13)

of the Klein–Gordon equation on extremal RNdS at frequency 0. On the other hand, writing
r = re + ϵ(z − 1) and recalling (2.5) and (2.8), the limit ϵ ↘ 0 for bounded z yields the spectral
family

P̂NH(σ) = κe

(
−2σDz +Dz(z

2 − 1)Dz + κ−1 /∆
)
+ µ, (2.14)

of the Klein–Gordon operator PNH = □gNH
+ µ on the near-horizon geometry

gNH =
1

κe

(
−(z2 − 1) dt2∗ + 2dt∗ dz

)
+ r2e/g (2.15)

at frequency σ (relative to t∗); this metric is the ϵ ↘ 0 limit of (2.11) for bounded z upon setting
t∗ := κC,ϵt∗ (and thus equal to (2.10) via dt∗ = dt+ dz

z2−1 ). The right panel of Figure 1.5 illustrates

gNH (up to the minor inaccuracy that the level sets of t∗ as defined presently are null).

In order to combine the two scales, we now introduce:

Definition 2.3 (Total space). Fix r+ > rc. We then define X := [re, r+]× S2 and the total space

X̃ =
[
{(ϵ, r, ω) : ϵ ∈ [0, ϵ0), re − ϵ ≤ r ≤ r+, ω ∈ S2}; {0} × {re} × S2

]
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where [M ;N ] denotes the real blow-up of the smooth submanifold N ⊂M [Mel96]. We write XNH

for the front face and Xext for the lift of {0} ×X. The manifold interior of X̃ is denoted X̃◦.

Concretely, X̃ is a manifold with corners which can be covered with the following three sets of
coordinates (omitting the S2 factor and not making the ranges of the coordinate functions explicit):

ϵ ≥ 0, r ∈ (re, r+]; (2.16)

ϵ ≥ 0, z ≥ 0, related to (2.16) via z =
r − re
ϵ

+ 1; (2.17)

x ≥ 0, ρ ≥ 0, related to (2.16) via x = r − re, ρ =
ϵ

r − re
, (2.18)

and to (2.17) via x = ϵ(z − 1), ρ = (z − 1)−1.

Thus, Xext = [re, r+]×S2 in the coordinates (2.16), while XNH is the compactification [0,∞]z×S2
in the coordinates (2.17) where [0,∞] := ([0,∞)z ⊔ [0,∞)w)/ ∼, z ∼ w−1. See Figure 2.1.

X̃

re rc r+

r = rcr = rez = 0

r

ε

z

ε

x

ρ

Xext

z
=
1

XNH

Figure 2.1. The total space X̃ for the spectral analysis of P̂ϵ(ς) and its two bound-

ary hypersurfaces XNH (which carries P̂NH(σ) from (2.14)) and Xext (which carries

P̂ext(0) from (2.13)). The local coordinates are defined in (2.16)–(2.18).

We recall from [Hin, Definition 2.3] (with slightly different notation):

Definition 2.4 (q-vector fields on the total space). The space Vq(X̃) of q-vector fields on X̃ consists

of all smooth vector fields Ṽ on X̃ with Ṽ ϵ = 0, i.e. Ṽ is tangent to the level sets of ϵ (and thus in

particular to the boundary hypersurfaces XNH and Xext of X̃).

In the coordinates (2.16), q-vector fields are thus linear combinations of ∂r and spherical vector

fields with C∞(X̃)-coefficients; in the coordinates (2.17) one uses ∂z = ϵ∂r, and in the coordi-

nates (2.18) x∂x − ρ∂ρ = (r− re)∂r = (z− 1)∂z. Globally on X̃, we thus see that Vq(X̃) is spanned,

as a left C∞(X̃)-module, by
(r − rC)∂r = (z + 1)∂z (2.19)

and spherical vector fields.

Due to the tangency of q-vector fields to XNH and Xext, one can restrict them to XNH and
Xext. Denote by Vb(XNH), resp. Vb(Xext) the space of smooth vector fields on XNH, resp. Xext

which are tangent to the boundary z−1 = 0, resp. r = re. (This space is spanned by (z + 1)∂z,

resp. (r − re)∂r and spherical vector fields.) We thus obtain (surjective) restriction maps Vq(X̃) →
Vb(XNH),Vb(Xext). We write Diffm

b (XNH) for the space of up to m-fold compositions of elements
of Vb(XNH) (for m = 0: multiplication by an element of C∞(XNH)), analogously for Diffm

b (Xext).

Definition 2.5 (q-differential operators). For m ∈ N0, we denote by Diffm
q (X̃) the space of up

to m-fold compositions of elements of Vq(X̃) (for m = 0: multiplication operators by elements of
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C∞(X̃)). For P̃ ∈ Diffm
q (X̃), we write NNH(P̃ ) ∈ Diffm

b (XNH) and Next(P̃ ) ∈ Diffm
b (Xext) for its

normal operators, defined as the restrictions of P̃ to XNH and Xext, respectively.

Lemma 2.6 (Total spectral family). Let σ ∈ C and define P̃ ∈ Diff2(X̃◦) by P̂ϵ(κC,ϵσ) on the

ϵ-level sets of X̃, ϵ ∈ (0, ϵ0). Then P̃ extends to X̃ as an element

P̃ ∈ Diff2
q(X̃).

The normal operators of P̃ are

NNH(P̃ ) = P̂NH(σ), Next(P̃ ) = P̂ext(0).

Proof. We use the discussion around (2.19). The first term in (2.12) equals

−2σ
κC,ϵ

ϵ

ϵ

r − rC

(
(r − rC)Dr − i

r − rC
r

)
.

Since
κC,ϵ

ϵ and ϵ
r−rC

= 1
z+1 = ρ

1+2ρ define elements of C∞(X̃), this lies in Diff1
q(X̃). Similarly, using

that (z + 1)−2ϵ−2Fϵ ∈ C∞(X̃) by (2.8), one sees that the second term in (2.12) lies in Diff2
q(X̃).

Lastly, r−2 /∆ ∈ Diff2
q(X̃) and µ ∈ Diff0

q(X̃). This shows P̃ ∈ Diff2
q(X̃). The normal operators of P̃

were already determined in (2.13)–(2.14). □

The detailed analysis of P̂NH(σ) and P̂ext(0) is the subject of §3 and §4, respectively.

3. Massive waves on the near-horizon geometry

We study the operator P̂NH(σ), defined in (2.14), on the manifold XNH = [0,∞]z × S2. Note

that P̂NH(σ) is elliptic for z > 1, hyperbolic for z ∈ [0, 1), and the transition between the two
regimes at z = 1 is qualitatively the same as for the spectral family of the Klein–Gordon operator
on de Sitter space near the cosmological horizon [Vas13, Zwo16, Hin25]. A novel feature compared

to the references is that we must analyze P̂NH(σ) also in the asymptotic regime z → ∞. In terms
of w := z−1, we have

P̂NH(σ) = κe

(
2σw · wDw + w2Dw(1− w2)Dw + κ−1 /∆

)
+ µ;

this shows explicitly that P̂NH(σ) ∈ Diff2
b(XNH), i.e. P̂NH(σ) is a b-differential operator on XNH (cf.

Lemma 2.6), and indeed it is elliptic as such for w < 1. Its b-normal operator at w = 0, obtained
by freezing coefficients at w = 0, is independent of σ and given by

Nb(PNH) := κe(w
2D2

w + κ−1 /∆) + µ ∈ Diff2
b([0,∞)w × S2). (3.1)

The asymptotic behavior of elements in the nullspace of P̂NH(σ) at w = 0 is governed by the indicial
roots, i.e. those numbers λ ∈ R for which Nb(PNH, λ) := w−λNb(PNH)w

λ ∈ Diff2(S2) fails to be
invertible.

Lemma 3.1 (Indicial roots). The indicial roots of Nb(PNH) are given by

λ±ℓ (µ) :=
1

2

(
1±

√
1 + 4

ℓ(ℓ+ 1) + r2eµ

κ

)
, ℓ ∈ N0.

The poles of Nb(PNH, λ)
−1 at these values of λ have order 1. A function wλ±

ℓ (µ)Y (ω) is an indicial

solution, i.e. Nb(PNH)(w
λ±
ℓ (µ)Y (ω)) = 0, if and only if Y is a spherical harmonic of degree ℓ.

Proof. This follows from 1
κe
Nb(PNH, λ) = −λ(λ − 1) + κ−1 /∆ + κ−1r2eµ (see (2.6)): acting on the

eigenspace of /∆ with eigenvalue ℓ(ℓ+1), ℓ ∈ N0, this is multiplication by a constant which vanishes
precisely for the stated values of λ. □
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Since we only consider µ ≥ 0, we have λ−ℓ (µ) ≤ λ−0 (µ) ≤ 0 < 1 ≤ λ+0 (µ) ≤ λ+ℓ (µ) for all

ℓ ∈ N0, so PNH has an indicial gap (λ−0 (µ), λ
+
0 (µ)) ⊇ (0, 1). We define quasinormal modes for PNH

by demanding Dirichlet boundary conditions at the conformal boundary, meaning that we demand

resonant states to decay as z → ∞. (This disallows for the presence of wλ−
ℓ (µ) asymptotics.)

Definition 3.2 (QNMs of the near-horizon geometry). We define QNMNH(µ) ⊂ C to consist of

all σ ∈ C such that there exists a function (resonant state) u ∈ A1(XNH) such that P̂NH(σ)u = 0.
Here, for β ∈ R, we write

Aβ(XNH) ⊂ C∞([0,∞)z × S2)

for the space of all smooth functions on [0,∞)z×S2 which are bounded by a constant times (z+1)−β

together with derivatives (of any order) along (z + 1)∂z and spherical vector fields.

The practical justification for this definition is that, as we shall see in §5, estimates for P̂ϵ(κC,ϵσ)
(on function spaces adapted to its structure as a q-differential operator) will require estimates

(proved in §3.2) for P̂NH(σ) on function spaces which encode decay as z → ∞. The presence of a
kernel on these spaces will be shown to be equivalent to σ being a QNM for PNH.

The first main result of this section is the following.

Theorem 3.3 (QNMs of PNH). We have QNMNH(µ) = {−i(λ+ℓ (µ)+n) : ℓ, n ∈ N0}. Moreover, the

space of resonant states, with spherical harmonic degree ℓ, associated with the resonance −i(λ+ℓ (µ)+
n) has dimension 2ℓ+1. (An explicit basis is given by (3.14), with Yℓ there running over a basis of
the space of degree ℓ spherical harmonics.)

The proof of Theorem 3.3 is given in §3.1. Instead of relying on computations involving special
functions, we use a conceptually cleaner argument in the spirit of [HX22, §II]. We pass from the co-
ordinates t∗, z used in (2.15) to a coordinate system which highlights the AdS2 conformal boundary.
To wit,5

T := −e−t∗
z

1 + z
, ρ := e−t∗

1

1 + z
=⇒ gNH =

1

κe

(−dT 2 + dρ2

ρ2
+ κ/g

)
, (3.2)

with ρ = 0 defining the conformal boundary. For later use, we record the inverse transformation

t∗ = − log(ρ− T ), z = −T
ρ
. (3.3)

We will realize mode solutions U := e−iσt∗u(z, ω) of PNH as solutions of an initial boundary
value problem on MNH := RT × [0,∞)ρ × S2. After proving sharp regularity and polyhomoge-
neous asymptotics for solutions U (lying in an appropriate space, in particular: satisfying Dirichlet
boundary conditions at the conformal boundary) of (□gNH

+ µ)U = 0 on a subset of MNH contain-
ing {T = ρ = 0} = {0} × {0} × S2, we deduce the possible values of σ by comparison with the
polyhomogeneous expansion of U at {T = ρ = 0}.

The second main result of this section gives Fredholm estimates for the operator P̂NH(σ) on ap-
propriate b-Sobolev spaces on XNH, and its invertibility when σ /∈ QNMNH(µ); see Proposition 3.7.

5This coordinate change arises as follows. Let h := −(z2−1) dt2∗+2dt∗ dz. First, setting t = t∗+
∫

dz
1−z2

, we have

h = −(z2 − 1) dt2 + (z2 − 1)−1 dz2. Letting t0 = t+ 1
2
log(1− z2) = t∗ + log(1 + z) and then T = −e−t0z, ρ = e−t0

gives h = −dT2+dρ2

ρ2
and thus (3.2). Changing from T, ρ to t0, z amounts to passing to coordinates on the blow-up

of AdS2 at the point (T, ρ) = (0, 0) which are regular in the interior of the front face; changing from t0 to t amounts
to passing to static coordinates; and changing from t to t∗ amounts to passing to ingoing Eddington–Finkelstein type

coordinates. See [Vas13, §4.3] for related computations on de Sitter space.
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3.1. Asymptotics of waves at the conformal boundary. In light of (3.2), we have

PNH = κe(−ρ2D2
T + ρ2D2

ρ + κ−1 /∆) + µ.

We rewrite the equation (κeρ
2)−1PNHU = 0 on RT × (0,∞)ρ × S2 as

(−D2
T + L)U = 0, L = D2

ρ + κ−1ρ−2 /∆+
µ

κe
ρ−2. (3.4)

The operator L is qualitatively similar to the Laplacian on a manifold with a conic singularity
at ρ = 0. We shall analyze (3.4) using the spectral theory of L. To this end, it is convenient to first
remove the noncompact end ρ → ∞. Concretely, let Y := S3 and p ∈ Y , and let ρ > 0, ω ∈ S2 be
polar coordinates on the stereographic projection of Y \ {−p} (so ρ = 0 at p and ρ → ∞ as one
approaches −p). Fix a cutoff function

χ ∈ C∞
c ([0,∞)ρ), χ(ρ) = 1 for ρ ∈ [0, 4]. (3.5)

Fix a Riemannian metric gY on Y and set

g := χ(dρ2 + κρ2/g) + (1− χ)gY .

Let ϱ ∈ C∞(Y \ {p}) be equal to ρ for ρ ≤ 4 and positive for ρ ≥ 4. Then the operator

L := ϱ∆gϱ
−1 +

µ

κe
ϱ−2 ∈ Diff2(Y \ {p})

is elliptic on Y \ {p} and equal to L for ρ = ϱ ≤ 4. Moreover, on L2(Y \ {p}) with volume density
dµ := cϱ−2|dg|, c > 0, it is symmetric with domain C∞

c (Y \ {p}). We fix c = κ−1, so

dµ = cϱ−2|dg| = |dρ d/g| for ρ ≤ 4.

For u ∈ C∞
c (Y \ {p}), we compute

⟨Lu, u⟩L2(Y,dµ) = ∥ϱ∇g(ϱ−1u)∥2L2(Y,dµ) +
µ

κe
∥ϱ−1u∥2L2(Y,dµ). (3.6)

We wish to find a self-adjoint extension of L. Let Y ′ := [Y ; {p}], so Y ′ is the smooth manifold with
boundary that is covered by the two charts [0,∞)ρ × S2 and Y \ {p}. For s ∈ N0, α ∈ R, we define
the function space

Hs,α
b (Y ′)

to consist of all u with (1− χ)u ∈ Hs(Y ) and ∥χu∥Hs,α
b ([0,∞)×S2) <∞ where

∥v∥2Hs,α
b ([0,∞)×S2) =

∑
i+|β|≤s

∫
S2

∫ ∞

0

|ρ−α(ρ∂ρ)
iΩβv|2 dρ

ρ
d/g <∞;

here Ω = {Ω1,Ω2,Ω3} ⊂ V(S2) is the set of rotation vector fields around coordinate axes.

Lemma 3.4 (Completion). The completion of C∞
c (Y \ {p}) with respect to the squared norm given

by the right hand side of (3.6) is equal to the space H
1, 12
b (Y ′).

Proof. Working with u supported in ρ < 4, we note that the right hand side of (3.6) is equivalent
(i.e. bounded from above and below by a constant times)∫

S2

∫ ∞

0

ρ
(
|ρ∂ρ(ρ−1u)|2 + | /∇(ρ−1u)|2 + µ

κe
|ρ−1u|2

) dρ

ρ
d/g. (3.7)

The Hardy inequality gives, for v := ρ−1u,∫ ∞

0

|ρ 1
2 v|2 dρ

ρ
≤ 4

∫ ∞

0

|ρ 1
2 (ρ∂ρv)|2

dρ

ρ
.

Therefore, (3.7) is equivalent to ∥ρ 1
2 ρ−1u∥2

H1
b([0,∞)×S2), and hence to ∥u∥2

H
1, 1

2
b (Y ′)

. Conversely, every

element of H
1, 12
b (Y ′) can be approximated in this norm by an element of C∞

c (Y \{p}) by first cutting
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it off to the complement of a sufficiently small neighborhood of ∂Y ′ and then using a standard
mollifier. □

We now take as the self-adjoint extension of L the Friedrichs extension; we denote this by L still,
and the domain by D(L). Note that L ≥ 0.

Proposition 3.5 (Domains of powers of L). Let k ∈ N and recall (3.5).

(1) If u ∈ D(Lk), then (1 − χ)u ∈ H2k(Y ) and there exist spherical harmonics Y n
ℓ ∈ C∞(S2),

n ∈ N0, of degree ℓ ∈ N0, such that

χ(ρ)u(ρ, ω) = χ
∑
ℓ,n

ρλ
+
ℓ (µ)+2nY n

ℓ (ω) + ũ(ρ, ω) (3.8)

where the sum is over all ℓ, n with λ+ℓ (µ) + 2n < 2k − 1
2 , and ũ ∈

⋂
η>0H

2k,2k− 1
2−η

b (Y ′).

(One can take η = 0 if λ+ℓ (µ) + 2n ̸= 2k − 1
2 for all ℓ, n.)

(2) Conversely, if (1− χ)u ∈ H2k(Y ) and χu is of the form (3.8) with ũ ∈ H
2k,2k− 1

2

b (Y ′), then

u ∈ D(Lk).

Proof. Consider first the case k = 1. If u ∈ D(L), then u ∈ H
1, 12
b (Y ′) and Lu ∈ L2(Y, dµ) =

H
0,− 1

2

b (Y ′). Elliptic regularity gives u ∈ H2
loc(Y

′ \ ∂Y ′). Near ρ = 0, we use [ρ2L, χ] ∈ ρDiff1
b(Y

′)
to compute

ρ2L(χu) = χρ2Lu+ [ρ2L, χ]u ∈ H
0, 32
b .

Now, in ρ < 4, the operator ρ2L = ρ2D2
ρ +κ−1 /∆+ µ

κe
is dilation-invariant and, upon identifying w

and ρ, equal to (κe)
−1Nb(PNH) in (3.1). Passing to the Mellin transform in ρ and using Lemma 3.1

and the meromorphicity of Nb(PNH, λ)
−1, one can thus extract a partial asymptotic expansion of

χu, namely

χu(ρ, ω) ≡ Y0ρ mod H
2, 32
b

where Y0 is a constant. (Note that λ+ℓ (µ) ≥ 2 for ℓ ≥ 1 since µ ≥ 0 and 0 < κ < 1.)

Consider now k ≥ 2. Fix χ♭ ∈ C∞
c ([0, 4)) with χ♭ = 1 on [0, 3]. If u ∈ D(Lk), then u ∈ H

1, 12
b (Y ′)

and Lu ∈ D(Lk−1), so

ρ2L(χ♭u) ≡ χ
∑
ℓ,n

ρλ
+
ℓ (µ)+2+2nY n

ℓ (ω) mod
⋂
η>0

H
2(k−1),2(k−1)+2− 1

2−η

b (Y ′)

Solving this using the Mellin transform and noting that λ+ℓ (µ) + 2 + 2n is not an indicial root
admitting degree ℓ spherical harmonics as indicial solutions, one obtains the expansion (3.8) for
χ♭u. Since u ∈ H2k

loc(Y
′ \ ∂Y ′), this implies (3.8) as stated.

For the converse, consider u for which (1 − χ)u ∈ H2k(Y ) and which admit an expansion (3.8).

Then (1− χ)Lu ∈ H2k−2(Y ). Moreover, in view of L(ρλ
+
ℓ (µ)Y n

ℓ (ω)) = 0, we have

χ♭Lu = χ♭
∑
ℓ

∑
n≥1

ρ(λ
+
ℓ (µ)+2n)−2Ỹ n

ℓ (ω) + ũ♭

where Ỹ n
ℓ is a degree ℓ spherical harmonic and ũ♭ ∈ H

2k−2,2k−2− 1
2

b (Y ′). Thus, Lu satisfies the same

conditions as u but with k reduced by 1. Proceeding in this fashion shows that Lku ∈ H
0,− 1

2

b (Y ′) =

L2(Y,dµ), which completes the proof of u ∈ D(Lk). □

Let I ⊂ R be an interval. Consider

U ∈ C∞(I;H1, 12
b (Y ′)

)
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which is a (distributional) solution of (−D2
T + L)U = 0 on I × (Y ′ \ ∂Y ′). Since LU = D2

TU ∈
C∞(I;L2(Y,dµ)), we have U ∈ C∞(I;D(L)). Iterating this argument gives

U ∈
⋂
k∈N

C∞(I;D(Lk)). (3.9)

By Proposition 3.5, this implies that U has a full asymptotic expansion at ρ = 0.

Proof of Theorem 3.3. • Upper bound on QNMNH(µ). Suppose that σ ∈ QNMNH(µ), and let 0 ̸=
u ∈ A1(XNH) ∩ ker P̂NH(σ) be a resonant state. Using a normal operator argument at z−1 = 0 and
Lemma 3.1, we find that

u(z, ω) ≡ (z + 1)−1Y0 mod A2(XNH). (3.10)

Express U ♭ := e−iσt∗u(z, ω) ∈ kerPNH in the coordinates (3.3); then

U ♭(T, ρ) := (ρ− T )iσu
(
−T
ρ
, ω
)
, T < 0, ρ ∈ (0,∞), ω ∈ S2,

is a solution of PNH(U
♭) = 0.

In order to relate U ♭ to the operator −D2
T + L, we shall first extend U ♭|{ρ<4} to [−1, 0)T × Y ′.

To this end, define U0, U1 ∈ C∞(Y \ {p}) such that U0(ρ) = U ♭(−1, ρ) and U1(ρ) = ∂TU
♭(−1, ρ).

Proposition 3.5(2) and (3.10) imply U0, U1 ∈ D(L), and therefore

U(T ) := cos
(
(T + 1)

√
L
)
U0 +

sin
(
(T + 1)

√
L
)

√
L

U1 (3.11)

defines a solution of (−D2
T +L)U = 0 of class C0(R;D(L))∩C2(R;L2(Y,dµ)). By the finite speed of

propagation for (distributional) solutions of wave equations, we must have U = U ♭ for T ∈ (−1, 0)
and ρ ≤ 3 − T . See Figure 3.1. In particular, the restriction of U to {−1 ≤ T < 0} is of class

C∞([−1, 0);H
1, 12
b (Y ′)), which in view of (3.9) shows that U0, U1 ∈ D(Lk) for all k ∈ N. The

formula (3.11) then shows that, in fact, U ∈ C∞(R;D(Lk)) for all k.

ρ
T = 0

T = −1

ρ = 4

U = U [

ρ = 3− T T

Figure 3.1. Illustration of the passage from the mode solution U ♭ (defined in the
light gray region) to a global solution U of a wave-type equation on RT ×Y ′ which
agrees with U ♭ where ρ ≤ 3 − T and −1 < T < 0 (dark gray). The operators
(κeρ

2)−1PNH and −D2
T + L agree ρ ≤ 4.

We now take advantage of the expansion (3.8) which shows that U is an asymptotic sum (as
ρ→ 0) of terms of the form

ρλ
+
ℓ (µ)+2nYℓ(T, ω) (3.12)
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where Yℓ is smooth in T , with Yℓ(T, ·) valued in the space of degree ℓ spherical harmonics. Expanding
Yℓ in Taylor series around T = 0, so Yℓ(T, ω) ∼

∑
j≥0 T

jYℓ,j(ω), we find that the expression for (3.12)

in terms of the coordinates t∗ and z ≥ 0 (see (3.2)) is an asymptotic sum (as t∗ → ∞) of terms(
− z

1 + z

)j
(1 + z)−(λ+

ℓ (µ)+2n)Yℓ,j(ω)e
−(λ+

ℓ (µ)+2n+j)t∗

On the other hand, we have U = e−iσt∗u(z, ω) for z ≥ 0, and therefore we must have

σ = −i(λ+ℓ (µ) + 2n+ j)

for some ℓ, n, j ∈ N0.

• Lower bound on QNMNH(µ). Fix n ∈ N0. For a suitable polynomial a = a(T ), we will produce

a solution of PNHU = 0 with leading order behavior ρλ
+
ℓ (µ)a(T )Yℓ(ω) at ρ = 0, where Yℓ ̸= 0 is any

fixed degree ℓ spherical harmonic; expressing this in terms of (3.2) will furnish a resonant state of
PNH with frequency −i(λ+ℓ (µ) + n). In more detail, recall that ρ2L = (κe)

−1Nb(PNH) acts on ρ
λYℓ

via multiplication with −pℓ(λ) where

pℓ(λ) := λ(λ− 1)− ℓ(ℓ+ 1) + r2eµ

κ
. (3.13)

(This polynomial has roots λ±ℓ (µ).) Therefore,

ρ2(−D2
T + L)

(
ρλ

+
ℓ (µ)a(T )Yℓ

)
= ρλ

+
ℓ (µ)+2a′′(T )Yℓ.

The right hand side equals

−ρ2L
( 1

pℓ(λ
+
ℓ (µ) + 2)

ρλ
+
ℓ (µ)+2a′′(T )Yℓ

)
,

and we thus find

ρ2(−D2
T + L)

(
ρλ

+
ℓ (µ)a(T )Yℓ +

1

pℓ(λ
+
ℓ (µ) + 2)

ρλ
+
ℓ (µ)+2a′′(T )Yℓ

)
=

1

pℓ(λ
+
ℓ (µ) + 2)

ρλ
+
ℓ (µ)+4a(4)(T )Yℓ.

We continue in this fashion; if deg(a) =: n, we find for k ∈ N with 2k ≥ n that

U(T, ρ, ω) :=

k∑
j=0

1∏j
m=1 pℓ(λ

+
ℓ (µ) + 2m)

ρλ
+
ℓ (µ)+2ja(2j)(T )Yℓ(ω)

solves PNHU = 0. Consider the special case a(T ) = (−T )n and insert (3.2); we then conclude that
upon setting

uℓ,n(z, ω) :=

⌊n/2⌋∑
j=0

n!

(n− 2j)!
∏j

m=1 pℓ(λ
+
ℓ (µ) + 2m)

(1 + z)−(λ+
ℓ (µ)+2j)

( z

1 + z

)n−2j

Yℓ(ω), (3.14)

the function e−(λ+
ℓ (µ)+n)t∗uℓ,n(z) is a mode solution. Therefore, −i(λ+ℓ (µ) + n) ∈ QNMNH(µ), and

u is a corresponding resonant state. Our computations imply that, in fact, u spans the space of
mode solutions with spherical harmonic degree ℓ. □

As a simple example for the formula (3.14), the resonant state corresponding to −iλ+ℓ (µ) is thus
given by (1 + z)−λ+

ℓ (µ)Yℓ(ω).

We remark that the analysis of the equation −D2
T + L could also be done by applying more

general black box results such as [Hin24b, Theorem 3.22]. Alternatively, one could also analyze
the asymptotic boundary value problem by adapting the methods introduced in the AdS setting by
Holzegel [Hol12].
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3.2. Fredholm theory for the spectral family. Recall that P̂NH(σ) acts on functions on [0,∞)z×
S2. We shall state quantitative estimates for P̂NH(σ) using the following function spaces capturing
b-behavior at z = ∞:

Definition 3.6 (b-Sobolev spaces). Let Ω = {Ω1,Ω2,Ω3} ⊂ V(S2) be the set of rotation vector
fields around coordinate axes. Let s ∈ N0, α ∈ R. Let I ⊆ [0,∞]. We then define the space
H̄s,α

b (I × S2) to consist of all u ∈ L2
loc(I

◦ × S2) such that

∥u∥2H̄s,α
b (I×S2) :=

∑
i+|β|≤s

∫
S2

∫
I

|(z + 1)α((z + 1)∂z)
iΩβu(z, ω)|2 dz d/g. (3.15)

For I = [0,∞], we denote this space by H̄s,α
b (XNH).

An equivalent norm on H̄s,α
b is given by ∥(z + 1)−αu∥H̄s,0

b
. The spaces Hs,α

b ([0,∞] × S2) can

be defined more generally for real s ∈ R via duality and interpolation. A hands-on definition,
using a partition of unity, is as follows: the squared norm of u supported in z ≥ 4 is defined as
the sum of squares of Hs-norms of [0, 3] × S2 ∋ (Z, ω) 7→ 2αjχ(Z)u(2j2Z , ω) for j ∈ N0, where
χ ∈ C∞

c ((0, 3)) equals 1 on [1, 2] (note here that writing z = 2j2Z , we have z∂z = 1
log 2∂Z), whereas

the squared norm of u supported in z ≤ 8 is defined as the minimal Hs(R × S2)-norm of all
extensions of u to distributions supported in [−1, 9]× S2. The L2-dual space of H̄s,α

b (XNH) is equal

to Ḣ−s,−α
b (XNH), the space of all elements of H̄−s,−α

b ([− 1
2 ,∞] × S2) with support in z ≥ 0. (See

also [Hör07, Appendix B] and [Hin25, Chapter 10.3].) We finally recall that the inclusion map
H̄s,α

b (XNH) → H̄s0,α0

b (XNH) is compact for s > s0, α > α0; this is a simple consequence of the usual
Rellich compactness theorem.

Proposition 3.7 (Fredholm estimates and index 0). Let α ∈ (− 1
2 ,

1
2 ), C0 ∈ R, and s > 1

2 + C0.

(1) For all σ ∈ C with Imσ > −C0, the operator6

P̂NH(σ) : {u ∈ H̄s,α
b (XNH) : P̂NH(0)u ∈ H̄s−1,α

b (XNH)} → H̄s−1,α
b (XNH) (3.16)

is Fredholm of index 0.
(2) The operator (3.16) is invertible if and only if σ /∈ QNMNH(µ). In this case, there exists a

constant C such that

∥u∥H̄s,α
b (XNH) ≤ C∥P̂NH(σ)u∥H̄s−1,α

b (XNH). (3.17)

Proof. • Fredholm estimate. As hinted at at the beginning of the section, we can, for z ∈ [0, 5],

analyze the operator P̂NH(σ), given by (2.14), using standard microlocal and energy arguments (see
[Vas13, §4], [Zwo16, §2], [Hin25, Chapter 12]). The radial point estimate at N∗{z = 1} \ o uses the
threshold regularity assumption s > 1

2 + C0. Thus,

∥u∥Hs([0,4]×S2) ≤ C
(
∥P̂NH(σ)u∥Hs−1([0,5]×S2) + ∥u∥Hs0 ([0,5]×S2)

)
, (3.18)

where we fix s0 with s > s0 >
1
2 + C0. (For a self-contained proof of this estimate for separated

u, we refer the reader to [HX22, §II.A].) For z ∈ [3,∞) on the other hand, the operator P̂NH(σ) is
elliptic, including at z = ∞ as a b-operator (equivalently, it is uniformly elliptic when expressed in
terms of log z). Therefore, for any fixed α,

∥u∥H̄s,α
b ([3,∞]×S2) ≤ C

(
∥P̂NH(σ)u∥H̄s−2,α

b ([2,∞]×S2) + ∥u∥H̄s0,α

b ([2,∞]×S2)
)
.

Combining the two estimates gives

∥u∥H̄s,α
b (XNH) ≤ C

(
∥P̂NH(σ)u∥H̄s−1,α

b (XNH) + ∥u∥H̄s0,α

b (XNH)

)
.

6Since P̂NH(σ)− P̂NH(0) ∈ Diff1
b, one can equally well use P̂NH(σ) in the definition of the space X s,α.
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We proceed to improve the weight of the weak norm on the right using standard elliptic b-theory.
Fix χ ∈ C∞

c ([0, 2)) with χ = 1 on [0, 1]. Set w = z−1. We have ∥u∥H̄s0,α

b (XNH) ≤ ∥χ(w)u∥H̄s0,α

b (XNH)+

∥(1− χ(w))u∥
H̄

s0,α−1

b (XNH)
, the weight in the second summand being irrelevant since z is bounded

on supp(1 − χ). We estimate the first summand by passing to the Mellin transform in w and
inverting Nb(PNH, λ) for Reλ = α + 1

2 , which can be done for weights α satisfying α + 1
2 ∈ (0, 1)

(which is contained in the indicial gap). (The shift by 1
2 arises from the fact that the Plancherel

theorem gives an isomorphism of wαL2([0,∞)w × S2, |d(w−1) d/g|) = wα+ 1
2L2([0,∞) × S2, |dww d/g|)

with L2({Reλ = α+ 1
2};L

2(S2)) via (Mu)(λ) =
∫∞
0
w−λu(w,ω) dw

w .) This gives

∥χu∥H̄s0,α

b (XNH) ≤ C∥Nb(PNH)(χu)∥H̄s0−2,α

b (XNH)
. (3.19)

Replacing Nb(PNH) by the operator P̂NH(σ) differing from it by an element of wDiff2
b produces

an error term ∥u∥
H̄

s0,α−1

b (XNH)
; similarly for the error term produced subsequently by commuting

P̂NH(σ) through χ. Altogether, we get

∥u∥H̄s,α
b (XNH) ≤ C

(
∥P̂NH(σ)u∥H̄s−1,α

b (XNH) + ∥u∥
H̄

s0,α−1

b (XNH)

)
. (3.20)

Since H̄s,α
b ↪→ H̄s0,α−1

b is compact, this implies that P̂NH(σ) has finite-dimensional nullspace and
closed range.

Similar arguments prove the estimate

∥u∗∥Ḣ−s+1,−α
b (XNH) ≤ C

(
∥P̂NH(σ)

∗u∗∥Ḣ−s,−α
b (XNH) + ∥u∗∥

Ḣ
s∗0 ,−α−1

b (XNH)

)
(3.21)

for the adjoint of P̂NH(σ); here we fix any s∗0 < −s+1. This implies the finite-dimensionality of the

cokernel of P̂NH(σ) and thus implies the Fredholm statement of part (1). (See [Hin25, Chapter 12.3]
for details in a closely related setting.)

• Nullspace of P̂NH(σ) and resonances. Since A1(XNH) ⊂ H̄s,α
b (XNH) for all s ∈ R and α < 1

2 ,

the nullspace of P̂NH(σ) is nontrivial when σ ∈ QNMNH(µ). For the converse, we need to show

that u ∈ H̄s,α
b (XNH), P̂NH(σ)u = 0 implies u ∈ A1. The weaker statement u ∈

⋂
N H̄N,α

b (XNH)
follows from the fact that the estimate (3.20) (per its proof) holds in the strong sense for all
s > 1

2 − Imσ: if the right hand side is finite, then so is the left hand side. Sobolev embedding

now gives u ∈ Aα+ 1
2 (XNH). Since the smallest indicial root ≥ α + 1

2 is λ+0 (µ) ≥ 1, we in fact have

u ∈ A1(XNH) by a Mellin transform/normal operator argument.

• Index 0. It suffices to show that P̂NH(σ) is invertible for sufficiently large Imσ; we shall show

this here for Imσ > 3
2 . Injectivity holds for such σ by Theorem 3.3. Consider u∗ ∈ Ḣ−s+1,−α

b (XNH)

with P̂NH(σ)
∗u∗ = P̂NH(σ̄)u

∗ = 0. Since (3.21) holds in the strong sense for s > 1
2 − Imσ, we have

u∗ ∈
⋂
η>0

Ḣ
1
2+Imσ−η,−α

b (XNH), (3.22)

so a fortiori u∗ ∈ Ḣ1,−α
b ; and a normal operator argument shows that in fact

u∗ ∈
⋂
β< 1

2

Ḣ1,β
b (XNH).

Finally, u∗ = 0 for z < 1 since u∗ = 0 for z < 0 and P̂NH(σ̄)u
∗ = 0 is a wave equation in z < 1, with

z a time function. The function u∗ = u∗(z, ω) gives rise to a mode solution e−iσ̄t∗u∗ which in the
coordinates (3.2) is given by

U∗(ρ, T, ω) = (ρ− T )iσ̄u∗
(
−T
ρ
, ω
)
, T < 0; (3.23)
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it vanishes for ρ > −T . We extend U∗ by 0 to T ∈ (−1, 1), ρ+ T > 0. Recalling the notation Y ′,L
from §3.1, we can regard U∗ as a function on (−1, 1)× Y ′ (defined by 0 on Y ′ \ {ρ ≤ 1}) that is a
distributional solution of P ∗

NHU
∗ = PNHU

∗ = 0 on (−1, 1)× (Y ′ \ ∂Y ′). We claim that

U∗ ∈ C0
(
(−1, 1);H

1, 12
b (Y ′)

)
. (3.24)

To verify this, consider v = z−βv0, v0 ∈ L2(XNH, |dz d/g|), vanishing for z = −T
ρ < 1; for T < 0, we

then have ∫
S2

∫ −T

0

ρ−1
∣∣∣(ρ− T )iσ̄v

(
−T
ρ
, ω
)∣∣∣2 dρ

ρ
d/g

= |T |−1+2 Imσ

∫
S2

∫ ∞

1

z−2β
(z + 1

z

)2 Imσ

|v0(z, ω)|2 dz d/g

≤ C|T |−1+2 Imσ

provided β ≥ 0. If Imσ > 1
2 , this tends to 0 as T ↗ 0. Applying this with v = u∗, we conclude that

U∗ ∈ C0((−1, 1);H
0, 12
b (Y ′)). Note moreover that

ρ∂ρU
∗(ρ, T, ω) = −(ρ− T )iσ̄(z∂zu

∗)
(
−T
ρ
, ω
)
+ iσ̄(ρ− T )i·(σ−i)u∗

(
−T
ρ
, ω
)
,

so applying the above estimate with v = z∂zu
∗ as well as with v = u∗ and σ − i in place of σ, and

to v = Ωau
∗ implies (3.24) for Im(σ − i) = Imσ − 1 > 1

2 .

ρ
T = 0

T = − 1
2

ρ = 1

U∗ = 0

T

Figure 3.2. Illustration of the argument for the absence of cokernel for Imσ > 3
2 .

The extension by 0 of a putative mode solution U∗ for P ∗
NH (which has support

contained in the shaded region) solves the wave equation (−D2
T + L)U∗ = 0 (after

mollification in T , cf. (3.25)) for T ∈ (− 1
2 ,

1
2 ), and hence vanishes identically.

We claim that (3.24) and PNHU
∗ = 0 imply U∗ = 0. (See Figure 3.2.) To this end, fix ϕ ∈

C∞
c ((−1, 1)) with

∫ 1

−1
ϕ(T ) dT = 1. For η > 0, set ϕη(T ) := η−1ϕ(Tη ). Using convolution in T ,

define then

U∗
η := ϕη ∗ U∗. (3.25)

Note that U∗
η ∈ C∞((− 1

2 ,
1
2 ), H

1, 12
b (Y ′)) solves PNHU

∗ = 0 still since PNH commutes with T -
translations. Therefore,

(−D2
T + L)U∗

η = 0.

The arguments leading to (3.9) give U∗
η ∈ C∞((− 1

2 ,
1
2 ),D(Lk)) for all k. In particular, since U∗

η = 0

for T ≥ 1
4 when η < 1

4 , the formula U∗
η (T ) = cos((T − 1

4 )
√
L)U∗

η (
1
4 )+

sin((T− 1
4 )

√
L)√

L (∂TU
∗
η )(

1
4 ) implies

that U∗
η = 0 for − 1

2 < T < 1
2 . Taking the limit η ↘ 0 yields the same conclusion for U∗. From the

vanishing of (3.23) for T = − 1
4 , say, we conclude that u∗ = 0. □
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4. Zero energy estimate on extremal RNdS

We shall prove an estimate for the zero operator P̂ext(0) = r−2DrF0r
2Dr+r

−2 /∆+µ on extremal
RNdS from (2.13) on b-Sobolev spaces onXext = [re, r+]×S2 (see Definition 2.3) defined analogously
to Definition 3.6. Concretely, for s ∈ N0 and γ ∈ R, we set

∥u∥2H̄s,γ
b (Xext)

:=
∑

i+|β|≤s

∫
S2

∫ r+

re

∣∣(r − re)
−γ
(
(r − re)∂r

)i
Ωβu(r, ω)

∣∣2 r2dr d/g. (4.1)

The L2-dual space Ḣ−s,−γ
b (Xext) is equal to the space of elements of H̄−s,−γ

b ([re, rc + 1]× S2) with
support in r ≤ rc.

Proposition 4.1 (Zero energy estimate). Let γ ∈ (− 1
2 ,

1
2 ), s >

1
2 . Then the operator

P̂ext(0) : X s,γ := {u ∈ H̄s,γ
b (Xext) : P̂ext(0)u ∈ H̄s−1,γ

b (Xext)} → H̄s−1,γ
b (Xext) (4.2)

is Fredholm of index 0. Moreover:

(1) if the scalar field mass µ is strictly positive, then the map (4.2) is invertible;
(2) in the case µ = 0, define u(0) := 1 and u∗(0)(r, ω) = 1[re,rc](r). Then

kerH̄s,γ
b (Xext) P̂ext(0) = span{u(0)}, kerḢ−s+1,−γ

b (Xext)
P̂ext(0)

∗ = span{u∗(0)}. (4.3)

Proof. • Fredholm property. The proof is very similar to that of Proposition 3.7. Indeed, since

F0 = (r− re)
2(r− rc) · (− Λ

3r2 (r+ 2re + rc)), we first observe that the operator P̂ext(0) is an elliptic

b-operator near r − re = 0. Its b-normal operator Nb(P̂ext(0)) = κeDr(r − re)
2Dr + r−2

e /∆ + µ,
and thus its indicial roots are equal to −λ±ℓ (µ), ℓ ∈ N0 in the notation of Lemma 3.1. Since

(r − re)
γL2([re, r+]× S2; |dr d/g|) = (r − re)

γ− 1
2L2([re, r+]× S2; | dr

r−re
d/g|), this means that we need

γ − 1
2 ̸= −λ±ℓ (µ) for all ℓ ∈ N0—which is in particular satisfied for γ ∈ (− 1

2 ,
1
2 )—in order to obtain

∥χu∥H̄s0,γ

b (Xext)
≤ C∥Nb(P̂ext(0))(χu)∥H̄s0−2,γ

b (Xext)

where χ ∈ C∞
c ([re, r+)) equals 1 near re, and s0 is arbitrary but fixed. (This is the analogue

of (3.19).)

Moreover, the analysis of P̂ext(0) near the non-degenerate horizon r = rc is again standard; for
s > s0 >

1
2 , and recalling δ = rc−re

4 , we can thus estimate

∥u∥H̄s([rc−δ,r+]×S2) ≤ C
(
∥P̂ext(0)u∥H̄s−1([rc−2δ,r+]×S2) + ∥u∥H̄s0 ([rc−2δ,r+]×S2)

)
. (4.4)

The combined estimate, analogous to (3.20), reads

∥u∥H̄s,γ
b (Xext) ≤ C

(
∥P̂ext(0)u∥H̄s−1,γ

b (Xext)
+ ∥u∥

H̄
s0,γ−1

b (Xext)

)
. (4.5)

From an analogous estimate on the dual spaces, we then deduce the Fredholm property of the
map (4.2).

• Kernel. Suppose now u ∈ H̄s,γ
b (Xext) lies in the kernel of P̂ext(0). Then u ∈

⋂
N∈R H̄

N,γ
b (Xext)

since (4.5) holds in the strong sense: the finiteness of the right implies that of the left hand side.
A normal operator argument implies that, in fact, u ∈ A0([re, r+]× S2), i.e. u is bounded together
with all of its b-derivatives (i.e. derivatives along (r− re)∂r and spherical derivatives). We can thus
integrate by parts to find

0 =

∫
S2

∫ rc

re

P̂ext(0)u ū r
2 dr d/g =

∫
S2

∫ rc

re

F0r
2|Dru|2 + | /∇u|2 + µr2|u|2 dr d/g. (4.6)

The boundary term at r = rc vanishes since F0(rc) = 0. In the case µ > 0, the vanishing of (4.6)
implies u = 0 for re ≤ r ≤ rc. Since u thus vanishes to infinite order at r = rc, a simple energy

estimate in r > rc, where P̂ext(0) is hyperbolic (with r a time function) implies the vanishing of u
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also for r > rc (cf. [Zwo16, Lemma 1]); therefore, u = 0. In the case µ = 0, we deduce from (4.6)

that u equals a constant c for re ≤ r ≤ rc. Since constants lie in the kernel of P̂ext(0), also u− c lies

in ker P̂ext(0), and since u − c is smooth and vanishes to infinite order at r = rc, energy estimates
in r > rc imply u− c = 0 on Xext.

• Cokernel. We next show that the cokernel of P̂ext(0) is trivial when µ > 0. We adapt the

arguments from [HX22, Lemma 3.4]. Consider thus u∗ ∈ ker P̂ext(0)
∗; by b-ellipticity and a normal

operator argument near r = re, we have u∗ ∈ A0([re, re + δ)× S2), further u∗ is smooth for r ̸= rc,

vanishes for r > rc, and lies in H
1
2− near r = rc. Projecting u

∗ in the angular variables to the space
of spherical harmonics of degree ℓ, we furthermore have

0 = (r−2DrF0r
2Dr + r−2ℓ(ℓ+ 1) + µ)u∗ = 0. (4.7)

Upon multiplication by r − rc, this is a regular-singular ODE at r = rc with double indicial root 0,
and hence u∗ = c1 log(rc − r) + c0 + ũ∗ in r < rc for some c1, c2 ∈ C where ũ∗ ∈ A1−((rc − δ, rc])
is conormal at r = rc and bounded by (rc − r)1−η for all η > 0 (together with all derivatives along
(rc − r)∂r and spherical derivatives). Letting H denote the Heaviside function, one now computes
that (r−2DrF0r

2Dr+r
−2ℓ(ℓ+1)+µ)(c1 log(rc−r)++c0H(rc−r)+ũ∗) is equal to a nonzero multiple

of c1δ(rc − r) plus a distribution in L1
loc; thus we must have c1 = 0, so u∗ = (c0 + ũ∗)H(rc − r) near

r = rc. We may now multiply (4.7) by r2u∗, integrate over [re, rc], and integrate by parts to obtain∫ rc
re
µr2|u∗|2 dr = 0, so u∗ = 0 in (re, rc). Since also u∗ = 0 on (rc,∞), we have suppu∗ ⊂ {rc}; but

u∗ ∈ H
1
2− then implies that u∗ = 0 on (re,∞).

We have also shown now that the Fredholm index of (4.2) is zero for µ > 0. Since P̂ext(0) is
Fredholm between the µ-independent spaces in (4.2), its index is µ-independent as well, and hence

it is 0 also for µ = 0. A direct computation shows that P̂ext(0)
∗u∗(0) = 0, which gives (4.3). □

5. QNMs on near-extremal RNdS: proof of Theorem 1.1

We now return to the study of the spectral family

P̂ϵ(ς) = P̂ϵ(κC,ϵσ)

of □gϵ + µ; see (2.12). First, we note that for every fixed ϵ ∈ (0, ϵ0), we have P̃ϵ = P̂ϵ(κC,ϵσ) ∈
Diff2(Xϵ) where

Xϵ := [re − ϵ, r+]× S2.
Since Xϵ contains the subextremal event horizon r = re and the subextremal cosmological horizon
r = rc, while its hypersurfaces at r = re − ϵ and r = r+ > rc are spacelike, standard arguments
[Vas13] imply that for s > max( 12 − Imσ, 12 ), there exists ϵ1 ∈ (0, ϵ0) such that the map

P̂ϵ(κC,ϵσ) : X s(Xϵ) := {u ∈ Hs(Xϵ) : P̂ϵ(0)u ∈ Hs−1(Xϵ)} → Hs−1(Xϵ) (5.1)

is Fredholm when ϵ ∈ (0, ϵ1].
7 Elements in its nullspace are automatically smooth on Xϵ, and hence

nonzero such elements are resonant states as defined in (1.6). Furthermore, the map (5.1) has index
0, as follows for sufficiently large Imσ from an energy estimate (cf. [Hin25, Proposition 12.18]).
Thus, its inverse is finite-meromorphic for Imσ > 1

2 − s.

The technical heart of our argument is the proof of appropriate uniform estimates for P̂ϵ(κC,ϵσ)
as ϵ↘ 0 on function spaces adapted to the nature of the family

P̃ = (P̃ϵ)ϵ∈(0,ϵ0), P̃ϵ := P̂ϵ(κC,ϵσ), (5.2)

7The threshold regularity is the maximum of the threshold 1
2
at the cosmological horizon for frequency 0 and the

threshold 1
2
− Im

κC,ϵσ

κe,ϵ
= 1

2
− Imσ +O(ϵ) at the event horizon; here κe,ϵ is the surface gravity of the event horizon

of gϵ. One can also directly quote the semi-Fredholm estimate (5.8) below.
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as a q-differential operator on X̃ (Lemma 2.6). Fix the smooth defining functions

ρNH = r − rC, ρext =
ϵ

r − rC
∈ C∞(X̃)

of XNH, Xext. We will localize to neighborhoods of XNH and Xext using cutoff functions

χNH, χext ∈ C∞(X̃); (5.3a)

concretely, fixing χ0 ∈ C∞
c ([0,min( 12 , rc − re − 2δ))) with χ0 = 1 near 0, we may take

χNH = χ0(ρNH), χext = χ0(ρext). (5.3b)

Let Ω ⊂ V(S2) be as in Definition 3.6, and recall (2.19).

Definition 5.1 (Weighted q-Sobolev spaces). Let s ∈ N0, αNH, αext ∈ R. Then H̄s,αNH,αext
q,ϵ (Xϵ) is

the vector space Hs(Xϵ) equipped with the ϵ-dependent squared norm

∥u∥2
H̄

s,αNH,αext
q,ϵ (Xϵ)

:=
∑

i+|β|≤s

∫
S2

∫ r+

re−ϵ

∣∣ρ−αNH

NH ρ−αext
ext

(
(r − rC)∂r

)i
Ωβu(r, ω)

∣∣2 r2dr d/g. (5.4)

This is analogous to [Hin, Definition 2.5]. Given L̃ ∈ ρ−βNH

NH ρ−βext

ext Diffm
q (X̃) (i.e. ρβNH

NH ρβext

ext L̃ ∈
Diffm

q (X̃)), given on the ϵ-level set Xϵ of X̃ by L̃ϵ ∈ Diffm(Xϵ), and given ϵ1 ∈ (0, ϵ0), there exists
a constant C such that for all ϵ ∈ (0, ϵ1],

∥L̃ϵu∥H̄s−m,αNH−βNH,αext−βext
q,ϵ (Xϵ)

≤ C∥u∥H̄s,αNH,αext
q,ϵ (Xϵ)

. (5.5)

That is, L̃ϵ is uniformly bounded as a map between q-Sobolev spaces.

Near XNH and Xext, we can relate (5.4) to simpler, uniformly (in ϵ) equivalent, norms. To wit,

∥χNHu∥H̄s,αNH,αext
q,ϵ (Xϵ)

∼ ϵ−αNH+ 1
2 ∥χNHu∥H̄s,αext−αNH

b (XNH)
, (5.6a)

∥χextu∥H̄s,αNH,αext
q,ϵ (Xϵ)

∼ ϵ−αext∥χextu∥H̄s,αNH−αext
b (Xext)

. (5.6b)

Here ‘∼’ means that, for all u, the left hand side is bounded by a uniform constant times the right
hand side and vice versa. Regarding the first norm equivalence, we can reduce to the case αNH = 0
by multiplying both sides by ϵαNH and relabeling αext − αNH as αext. We change variables via
z = r−rC

ϵ − 1, so (r− rC)∂r = (z + 1)∂z and ρext = (z + 1)−1. Comparison with (3.15) gives (5.6a),

the extra power of ϵ
1
2 being due to dr = ϵdz. To prove (5.6b), we may reduce to αext = 0;

comparison with (4.1) and recalling rC = re − 2ϵ then gives (5.6b).

As a consequence of (5.6a)–(5.6b), we have

∥u∥H̄s,αNH,αext
q,ϵ (Xϵ)

∼ ϵ−αNH+ 1
2 ∥χNHu∥H̄s,αext−αNH

b (XNH)
+ ϵ−αext∥χextu∥H̄s,αNH−αext

b (Xext)
. (5.7)

We can use the right hand side to define weighted q-Sobolev norms also for s ∈ R.
The starting point of our analysis of P̃ is the following uniform high frequency estimate.

Proposition 5.2 (q-regularity estimate). Let αNH, αext ∈ R and s > s0 > max( 12 − Imσ, 12 ). Then
there exist ϵ1 ∈ (0, ϵ0) and a constant C such that for all ϵ ∈ (0, ϵ1],

∥u∥H̄s,αNH,αext
q,ϵ (Xϵ)

≤ C
(
∥P̃ϵu∥H̄s−1,αNH,αext

q,ϵ (Xϵ)
+ ∥u∥H̄s0,αNH,αext

q,ϵ (Xϵ)

)
. (5.8)

Proof. Starting with (5.7), we can estimate χNHu for z ≤ 4 (where χNHu = u for small ϵ) as

in (3.18), except with P̃ϵ = P̂ϵ(κC,ϵσ) on the right. This estimate holds uniformly for all sufficiently
small ϵ > 0 by the stability of the radial point and propagation estimates underlying (3.18); see
[Vas13, Remark 2.5 and §2.7]. Similarly, we can estimate χextu for r ≥ rc − δ (where χextu = u for

small ϵ) as in (4.4), except with P̃ϵ on the right.
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Define now ψ(ϵ, r) = ψ0(z)ψ1(r), z = r−rC
ϵ − 1, where ψ0 ∈ C∞(R) equals 0 for z ≤ 2 and 1

for z ≥ 3, and ψ1 ∈ C∞(R) equals 0 for r ≥ rc − δ
3 and 1 for r ≤ rc − 2δ

3 . With (1 − ψ)u already
controlled, it remains to prove for ψu the uniform elliptic estimate

∥ψu∥H̄s,αNH,αext
q,ϵ (Xϵ)

≤ C
(
∥P̃ϵu∥H̄s−2,αNH,αext

q,ϵ (Xϵ)
+ ∥u∥H̄s0,αNH,αext

q,ϵ (Xϵ)

)
. (5.9)

Now, for z ≥ 3
2 , the operator P̂NH(σ) is elliptic as a b-operator, i.e. its leading order part is a positive

definite quadratic form in (z+1)∂z and /∇; similarly, for r ≤ rc− δ
6 , the operator P̂ext(0) is b-elliptic,

i.e. its leading order part is a positive definite quadratic form in (r − re)∂r = (1− 2ρext)(r − rC)∂r
and /∇. By Lemma 2.6 and the discussion around (2.19), the leading order part of P̃ϵ is therefore
a positive definite quadratic form in (r − rC)∂r and /∇ in the region z ≥ 2, r ≤ rc − δ

3 and for
all sufficiently small ϵ. This implies (5.9). (In more detail, one can reduce the proof of (5.9) to

αext = 0, and then to αNH = 0 by conjugating P̃ϵ by (r − rC)
−αNH , which does not affect its

ellipticity properties. Passing from r to r̃ := − log(r−rC) turns P̃ϵ into a uniformly bounded family
of uniformly elliptic operators on appropriate subsets of Rr̃ × S2, and (5.9) is the corresponding
elliptic estimate.) □

Below, we shall use the fact that the estimate (5.8) holds uniformly for all σ (entering via (5.2))
in a fixed compact subset of C.

Now, ς = κC,ϵσ is not a QNM of □gϵ + µ if and only if P̃ϵ = P̂ϵ(κC,ϵσ) is injective on Hs(Xϵ)
or, equivalently, surjective onto Hs−1(Xϵ) with domain X s(Xϵ). Our strategy for proving the

injectivity/surjectivity of P̃ϵ for appropriate values of σ is to estimate the second term in (5.8) using
the estimates for the two normal operators. The details differ depending on the mapping properties

of P̂ext(0), which is determined by the value of the scalar field mass µ (see Proposition 4.1(2)):

(1) The simpler setting is when P̂ext(0) is injective (i.e. µ > 0). QNMs of □gϵ + µ near κC,ϵ

times those of PNH can be detected using a Grushin problem and Rouché’s theorem.

(2) When P̂ext(0) is not injective (i.e. µ = 0) but P̂NH(σ) is, then P̃ϵ can, using a carefully
chosen Grushin problem, be shown to be surjective unless σ = 0 (§5.2.1). We detect QNMs
of □gϵ using a Grushin problem featuring two augmentations (§5.2.2).

Henceforth, we shall write ‘A ≲ B’ for ϵ-dependent quantities A,B when there exists a constant
C such that A ≤ CB for all ϵ ∈ (0, ϵ1] for some ϵ1 ∈ (0, ϵ0).

5.1. Massive scalar waves. We consider scalar field masses

µ > 0.

5.1.1. Absence of QNMs. By Proposition 4.1, we have an estimate

∥u∥H̄s,γ
b (Xext) ≤ C∥P̂ext(0)u∥H̄s−1,γ

b (Xext)
(5.10)

for any fixed s > 1
2 and γ ∈ (− 1

2 ,
1
2 ).

Proposition 5.3 (Absence of QNMs). Let σ ∈ C, σ /∈ QNMNH(µ). Then there exists ϵ1 ∈ (0, ϵ0)
such that for all ϵ ∈ (0, ϵ1], we have κC,ϵσ /∈ QNM(rC, re, rc, µ) where rC = re − 2ϵ.

Proof. Consider the estimate (5.8) for s ≥ s0 + 2 where we fix s0 with s0 > max( 12 − Imσ, 12 ), and

for αNH, αext ∈ R with γ := αNH − αext ∈ (− 1
2 ,

1
2 ).

• Estimate near Xext via inversion of P̂ext(0). We use the zero energy estimate (5.10) to bound

the second term on the right in (5.8) using (5.6b) by a uniform constant times

ϵ−αext∥χextu∥H̄s0,γ

b (Xext)
+ ∥(1− χext)u∥H̄s0,αNH,αext

q,ϵ (Xϵ)
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≲ ϵ−αext∥P̂ext(0)(χextu)∥H̄s0−1,γ

b (Xext)
+ ∥u∥

H̄
s0,αNH,αext−1
q,ϵ (Xϵ)

.

We proceed to estimate the first term on the right by

ϵ−αext∥P̃ϵ(χextu)∥H̄s0−1,γ

b (Xext)
+ ϵ−αext∥(P̃ϵ − P̂ext(0))(χextu)∥H̄s0−1,γ

b (Xext)

≲ ∥P̃ϵu∥H̄s0−1,αNH,αext
q,ϵ (Xϵ)

+ ∥[P̃ϵ, χext]u∥H̄s0−1,αNH,αext
q,ϵ (Xϵ)

+ ∥(P̃ϵ − P̂ext(0))(χextu)∥H̄s0−1,αNH,αext
q,ϵ (Xϵ)

≲ ∥P̃ϵu∥H̄s0−1,αNH,αext
q,ϵ (Xϵ)

+ ∥u∥
H̄

s0+1,αNH,αext−1
q,ϵ (Xϵ)

; (5.11)

in the passage to the final line we used [P̃ϵ, χext] ∈ ρNextDiff1
q(X̃) (for all N) and (P̃ϵ−P̂ext(0))◦χext ∈

ρextDiff2
q(X̃) (see Lemma 2.6) together with (5.5). Strengthening the Xext-weight from αext − 1 to

αext − η for η ∈ (0, 1] increases the norm; hence, we have now proved

∥u∥H̄s,αNH,αext
q,ϵ (Xϵ)

≲ ∥P̃ϵu∥H̄s−1,αNH,αext
q,ϵ (Xϵ)

+ ∥u∥
H̄

s0+1,αNH,αext−η
q,ϵ (Xϵ)

. (5.12)

This improves on (5.8) in the Xext-weight, at an acceptable loss in the q-regularity order. We shall
use this estimate for a value η > 0 for which γ + η = αNH − (αext − η) ∈ (− 1

2 ,
1
2 ) still.

• Estimate near XNH via inversion of P̂NH(σ). We next exploit σ /∈ QNMNH(µ) by using the

estimate (3.17), with s0 + 1 in place of s and for α := (αext − η) − αNH = −γ − η ∈ (− 1
2 ,

1
2 ), in a

similar fashion. Thus,

∥u∥
H̄

s0+1,αNH,αext−η
q,ϵ (Xϵ)

≲ ϵ−αNH+ 1
2 ∥χNHu∥H̄s0+1,α

b (XNH)
+ ∥u∥

H̄
s0+1,αNH−1,αext−η
q,ϵ (Xϵ)

, (5.13)

with the first summand further bounded by

ϵ−αNH+ 1
2 ∥P̂NH(σ)(χNHu)∥H̄s0,α

b (XNH)

≲ ϵ−αNH+ 1
2 ∥P̃ϵ(χNHu)∥H̄s0,α

b (XNH) + ϵ−αNH+ 1
2 ∥(P̃ϵ − P̂NH(σ))(χNHu)∥H̄s0,α

b (XNH)

≲ ∥P̃ϵu∥H̄s0,αNH,αext−η
q,ϵ (Xϵ)

+ ∥[P̃ϵ, χNH]u∥H̄s0,αNH,αext−η
q,ϵ (Xϵ)

+ ∥(P̃ϵ − P̂NH(σ))(χNHu)∥H̄s0,αNH,αext−η
q,ϵ (Xϵ)

≲ ∥P̃ϵu∥H̄s0,αNH,αext−η
q,ϵ (Xϵ)

+ ∥u∥
H̄

s0+2,αNH−1,αext−η
q,ϵ (Xϵ)

; (5.14)

here we used [P̃ϵ, χNH], (P̃ϵ − P̂NH(σ)) ◦ χNH ∈ ρNHDiff2
q(X̃). Plugging this into (5.12) yields

∥u∥H̄s,αNH,αext
q,ϵ (Xϵ)

≲ ∥P̃ϵu∥H̄s−1,αNH,αext
q,ϵ (Xϵ)

+ ∥u∥
H̄

s0+2,αNH−1,αext−η
q,ϵ (Xϵ)

. (5.15)

Since s0 +2 ≤ s, the second term on the right is ≲ ϵη∥u∥H̄s,αNH,αext
q,ϵ (Xϵ)

; for sufficiently small ϵ > 0,

this can be absorbed into the left hand side. This, finally, yields the existence of ϵ1 ∈ (0, ϵ0) such
that

∥u∥H̄s,αNH,αext
q,ϵ (Xϵ)

≲ ∥P̃ϵu∥H̄s−1,αNH,αext
q,ϵ (Xϵ)

, ϵ ≤ ϵ1.

In particular, P̃ϵ = P̂ϵ(κC,ϵσ) is injective on Hs(Xϵ) for such ϵ. □

By the local uniformity of the estimate (5.8), the above proof in fact yields the following stronger
statement:

Proposition 5.4 (Absence of QNMs: uniform statement). Let K ⊂ C be a compact set disjoint
from QNMNH(µ). Then there exists ϵ1 ∈ (0, ϵ0) such that for all ϵ ∈ (0, ϵ1], the set {κC,ϵσ : σ ∈ K}
is disjoint from QNM(rC, re, rc, µ) (with rC = re − 2ϵ).
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5.1.2. Existence of QNMs. We now turn to the existence of QNMs for □gϵ + µ near points κC,ϵσ
where σ is a near-horizon QNM.

Theorem 5.5 (Existence of QNMs). Let σ0 ∈ QNMNH(µ), and write m(µ;σ0) for the multiplicity
of σ0. Let r0 > 0 be so small that for all σ ∈ QNMNH(µ) \ {σ0} we have |σ− σ0| ≥ 2r0. Then there
exists ϵ1 ∈ (0, ϵ0) such that for all ϵ ∈ (0, ϵ0], there are m(µ;σ0) many QNMs ς ∈ QNM(rC, re, rc, µ),
rC = re − 2ϵ, of □gϵ + µ (counted with multiplicity) with∣∣∣ ς

κC,ϵ
− σ0

∣∣∣ < r0.

Denote by Σϵ the set of these QNMs ς. Then:

(1) Σϵ ⊂ iR, and { ς
κC,ϵ

: ς ∈ Σϵ} → {σ0} in the Hausdorff distance sense as ϵ→ 0;

(2) P̂ϵ(ζ)
−1 has a pole of order 1 at ζ = ς for every such ς.

Finally:

(3) Let ℓ ∈ N0 be such that Σϵ contains a (necessarily unique) element ςϵ = κC,ϵ(σ0 + o(1))
for which a resonant state with angular dependence Yℓ (a fixed degree ℓ spherical harmonic)

exists.8 Then we can normalize such a resonant state uϵ ∈ C∞(Xϵ) of P̂ϵ(ςϵ) in such a way
that ∥∥∥uϵ(r, ω)− u0

(r − re
ϵ

+ 1, ω
)∥∥∥

Ck,θ
b,ϵ (Xϵ)

ϵ→0−−−→ 0 (5.16)

for all θ < 1, where u0 is a resonant state of P̂NH(σ0) (i.e. of the form (3.14) for a suitable
value of n). Here,

∥v∥Ck,θ
b,ϵ (Xϵ)

=
∑

i+|β|≤k

sup
rC≤r≤r+

(r − rC
ϵ

)θ ∣∣((r − rC)∂r
)i
Ωβv(r, ω)

∣∣, rC := re − 2ϵ. (5.17)

Due to the weight r−rC
ϵ in (5.17), the convergence (5.16) implies in particular the localization of

uϵ to r − rC ≲ ϵ.

Remark 5.6 (Spherical harmonics). Separation into spherical harmonics plays no role in the proof.
We only use it in part (3) for the clarity of the statement. In the (non-generic) case that k ≥ 2 of
the numbers λ+ℓ (µ) + n for ℓ, n ∈ N0 coincide, this QNM may split into up to k different QNMs for
0 < ϵ≪ 1.

Remark 5.7 (Co-resonant states). Repeating the arguments below regarding uϵ for the adjoint

P̂ϵ(κC,ϵσ)
∗, one can show that also the co-resonant state for the QNM ςϵ ∈ QNM(rC, re, rc, µ) is

well-approximated by the co-resonant state for the limiting near-horizon QNM in a space capturing
1
2 + Imσ − η degrees of Sobolev regularity near z = 1 and 1

2 − η degrees of Sobolev regularity near

r = rc (and arbitrary regularity in between), and almost (z + 1)−1 decay as z → ∞. The latter
localization property means that the contributions of the QNMs described by Theorem 5.5 in the
late-time asymptotics of solutions of the Klein–Gordon equation are very small if the initial data
are localized away from the event horizon.

Given the order 1 property of the poles of P̂ϵ(ζ)
−1 asserted in Theorem 5.5(2), the multiplicity

of a QNM ς is equal to the dimension of the nullspace of P̂ϵ(ς) on C∞(Xϵ), and thus equal to the
sum of ℓ(ℓ + 1) where ℓ ranges over all spherical harmonic degrees represented by resonant states
associated with ς. (For generic scalar field masses µ, there is only ever one such ℓ.)

8Due to the spherical symmetry of the RNdS metric, there exists such ℓ for every QNM; and unless there are

coincidences among the QNMs in Theorem 3.3, ℓ is uniquely determined by the QNM.
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We also note that if ζ is a QNM with resonant state u, then so is −ζ̄ with resonant state ū. Since
upon restriction to fixed spherical harmonic dependence Yℓ(ω) the space of resonant states is 1-
dimensional, the near-horizon QNMs located on the negative imaginary axis cannot split; this proves
the first half of part (1). We begin the proof of the rest of Theorem 5.5. In view of Proposition 5.3,
we may shrink the value of r0 throughout the proof, as long as it remains independent of ϵ.

• Step 1. Grushin problem for the near-horizon operator. For notational simplicity, we consider

only the case m(µ;σ0) = 1. Let 0 ̸= v0 ∈ A1(XNH) be a resonant state, i.e. P̂NH(σ0)v0 = 0, and let

0 ̸= v∗0 ∈
⋂

η>0 Ḣ
1
2+Imσ0−η,−α

b (XNH), α ∈ (− 1
2 ,

1
2 ), be a co-resonant state, i.e. P̂NH(σ0)

∗v∗0 = 0 (cf.

the arguments leading to (3.22)). Pick9 w♯
0, w

♭
0 ∈ C∞

c (X◦
NH) such that

⟨v0, w♯
0⟩L2(XNH) ̸= 0, ⟨w♭

0, v
∗
0⟩L2(XNH) ̸= 0.

(Here we write ⟨f, g⟩L2(XNH) =
∫
S2
∫∞
0
f(z)g(z) dz d/g.) Thus w♭

0 spans the complement of the range

of P̂NH(σ0) as a map on the spaces in (3.16). The augmented operator

P aug
NH (σ) :=

(
P̂NH(σ) w♭

0

⟨·, w♯
0⟩L2(XNH) 0

)
(5.18)

is then Fredholm of index 0 between the direct sum of the spaces in (3.16) with C. Since it is
invertible for σ = σ0, it moreover satisfies uniform bounds

∥(u, c)∥H̄s,α
b (XNH)⊕C ≤ C∥P aug

NH (σ)(u, c)∥H̄s−1,α
b (XNH)⊕C (5.19)

for |σ − σ0| < 2r0 for sufficiently small r0 > 0. Writing the inverse as

P aug
NH (σ)−1 =

(
A(σ) B(σ)
C(σ) D(σ)

)
, (5.20)

we have D(σ0) = 0. Here D(σ) is a 1× 1 matrix, where 1 = m(µ;σ0); i.e. it is a complex number.

The Schur complement formula expresses P̂NH(σ)
−1 in terms of D(σ)−1 and implies that m(µ;σ0)

is equal to the order of vanishing of D(σ) at σ = σ0. (In the case m(µ;σ0) > 1, one instead works

with m̃ := dimker P̂NH(σ0) ≤ m(µ;σ0) many w♯
0, w

♭
0 such that the span of the w♭

0 complements the

range of P̂NH(σ0), while the linear functionals given by the ⟨·, w♯
0⟩L2(XNH) are linearly independent

on the kernel of P̂NH(σ0). Then D(σ) is an m̃×m̃ matrix, and detD(σ) has a zero of order m(µ;σ0)
at σ = σ0.)

• Step 2. Grushin problem for the spectral family. Consider now the augmentation

P̃ aug
ϵ (σ) :=

(
P̂ϵ(κC,ϵσ) w♭

0

⟨·, w♯
0⟩L2(XNH) 0

)
(5.21)

of P̃ϵ = P̂ϵ(κC,ϵσ). Taking into account the ϵ-scaling in (5.6a), we introduce

|c|ϵqC := ϵ−q|c|, c ∈ C, (5.22)

and claim:

Lemma 5.8 (Uniform estimates for the augmented operator). Let s ≥ s0 + 2 where s0 > max( 12 −
Imσ0,

1
2 ) and αNH, αext ∈ R with αNH − αext ∈ (− 1

2 ,
1
2 ). Then there exist r0 > 0 and ϵ1 ∈ (0, ϵ0)

such that for all σ with |σ − σ0| < 2r0, we have a uniform estimate

∥(u, c)∥
H̄

s,αNH,αext
q,ϵ (Xϵ)⊕ϵαNH− 1

2 C
≤ C∥P̃ aug

ϵ (σ)(u, c)∥
H̄

s−1,αNH,αext
q,ϵ (Xϵ)⊕ϵαNH− 1

2 C
(5.23)

for all ϵ ∈ (0, ϵ1].

9Here X◦
NH = (0,∞)z × S2ω .
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We remark that the weights in (5.23) are consistent with the mapping properties of P̃ aug
ϵ (σ): we

can use (5.6a) to see that the off-diagonal terms in (5.21) obey uniform bounds

∥cw♭
0∥H̄s−1,αNH,αext

q,ϵ (Xϵ)
≲ ϵ−αNH+ 1

2 |c| = |c|
ϵαNH− 1

2 C
,

|⟨u,w♯
0⟩L2(XNH)|ϵαNH− 1

2 C
≲ ϵ−αNH+ 1

2 ∥χNHu∥H̄s,αext−αNH
b (XNH)

≲ ∥u∥H̄s,αext,αNH
q,ϵ (Xϵ)

.
(5.24)

(In the second estimate, we use that χNHw
♯
0 = w♯

0 for small ϵ. This estimate in fact holds for every

αext ∈ R due to the compact support property of w♯
0.)

Proof of Lemma 5.8. We first combine (5.12) with (5.24) to obtain the uniform (for σ near σ0 and
ϵ near 0) estimate

∥(u, c)∥
H̄

s,αNH,αext
q,ϵ ⊕ϵαNH− 1

2 C

≲ ∥P̃ aug
ϵ (σ)(u, c)∥

H̄
s−1,αNH,αext
q,ϵ ⊕ϵαNH− 1

2 C
+ ∥(u, c)∥

H̄
s0+1,αNH,αext−η
q,ϵ ⊕ϵαNH− 1

2 C
.

(5.25)

We estimate the second term on the right similarly to the arguments starting with (5.13), now
using (5.19); thus, it is bounded by ∥u∥

H̄
s0+1,αNH−1,αext−η
q,ϵ

plus

ϵ−αNH+ 1
2 ∥P aug

NH (σ)(χNHu, c)∥H̄s0,α

b (XNH)⊕C

≲ ∥P̃ aug
ϵ (σ)(u, c)∥

H̄
s0,αNH,αext−η
q,ϵ ⊕ϵαNH− 1

2 C
+ ∥[P̃ aug

ϵ (σ), χNH ⊕ I](u, c)∥
H̄

s0,αNH,αext−η
q,ϵ ⊕ϵαNH− 1

2 C

+ ∥(P̃ aug
ϵ (σ)− P aug

NH (σ))(χNHu, c)∥
H̄

s0,αNH,αext−η
q,ϵ ⊕ϵαNH− 1

2 C

≲ ∥P̃ aug
ϵ (σ)(u, c)∥

H̄
s0,αNH,αext−η
q,ϵ ⊕ϵαNH− 1

2 C
+ ∥u∥

H̄
s0+2,αNH−1,αext−η
q,ϵ

. (5.26)

Here we use that

[P̃ aug
ϵ (σ), χNH ⊕ I] =

(
[P̃ϵ, χNH] (1− χNH)w

♭
0

⟨(χNH − 1)·, w♯
0⟩L2(XNH) 0

)
has vanishing off-diagonal entries for sufficiently small ϵ > 0, similarly for P̃ aug

ϵ (σ) − P aug
NH (σ) (by

definition of P̃ aug
ϵ (σ)), and thus the commutator and difference terms can be estimated as in (5.14).

Absorbing the second term in (5.26) into the left hand side of (5.25) yields (5.23). □

• Step 3. Inverse of the augmented spectral family. In view of (5.23) and the index 0 property of

P̂ϵ(κC,ϵσ) and thus of P̃ aug
ϵ (σ), we have

P̃ aug
ϵ (σ)−1 =

(
Aϵ(σ) Bϵ(σ)
Cϵ(σ) Dϵ(σ)

)
where Dϵ is holomorphic for |σ − σ0| < 2r0 and uniformly bounded as ϵ ↘ 0 (as a linear map

ϵαNH− 1
2C → ϵαNH− 1

2C, i.e. as a complex number). We claim:

Lemma 5.9 (Continuity of Dϵ(σ)). Dϵ(σ) converges uniformly to D(σ) in the disk {|σ−σ0| ≤ r0}.

Proof. In view of the uniform boundedness and holomorphicity of Dϵ(σ) for |σ−σ0| < 2r0, it suffices
to prove pointwise convergence. For fixed σ, consider thus

(uϵ, cϵ) := P̃ aug
ϵ (σ)−1(0, 1) =⇒ P̃ϵuϵ + cϵw

♭
0 = 0, ⟨uϵ, w♯

0⟩L2(XNH) = 1. (5.27)

We apply (5.21) with αNH = 1
2 (and, correspondingly, αext ∈ (0, 1)) and deduce uniform bounds

∥uϵ∥
H̄

s, 1
2
,αext

q,ϵ (Xϵ)
+ |cϵ| ≲ 1. (5.28)
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By (5.6a), this implies ∥χNHuϵ∥H̄s,α
b (XNH) ≲ 1 where α := αext− 1

2 ∈ (− 1
2 ,

1
2 ). Consider a subsequence

χNHuϵj converging weakly to some uNH,0 in H̄
s,α
b (XNH), and thus strongly in H̄s′,α′

b (XNH) for s
′ < s,

α′ < α; here ϵj ↘ 0 is such that, moreover, cϵj → c0 ∈ C. We claim that

P̂NH(σ)uNH,0 + c0w
♭
0 = 0, ⟨uNH,0, w

♯
0⟩L2(XNH) = 1. (5.29)

Only the first equation requires an argument. Let ψ, ψ̃ ∈ C∞
c ((0,∞)z), with ψ̃ = 1 near suppψ. For

small ϵ = ϵj , we analyze

ψP̃ϵuϵ = ψP̂NH(σ)(χNHuϵ) + ψ(P̃ϵ − P̂NH(σ))(ψ̃χNHuϵ)− ψ[P̃ϵ, χNH]ψ̃uϵ (5.30)

in the coordinates z ∈ (0,∞), ω ∈ S2. The first term converges in distributions to ψP̂NH(σ)uNH,0.
By Lemma 2.6 and using (5.5), the second term is bounded by

∥ψ̃χNHuϵ∥
H̄

s−2,− 1
2
,αext

q,ϵ (Xϵ)
∼ ϵ∥χNHuϵ∥H̄s−2,α

b (XNH) ≲ ϵ.

(Here we use that z is bounded on ψ̃, and hence weights at z = ∞ are arbitrary.) The third term

likewise converges to 0 as ϵ→ 0. Therefore, ψP̃ϵuϵ converges in distributions to ψP̂NH(σ)uNH,0.

The system (5.29) is equivalent to (uNH,0, c0) = P aug
NH (σ)−1(0, 1); therefore, c0 = D(σ) in the

notation of (5.20). This proves that cϵ = Dϵ(σ) → c0 as ϵ↘ 0. □

• Step 4. QNMs and resonant states. If r0 > 0 is so small that σ0 is the unique zero of D(σ) in
the disk {|σ− σ0| ≤ r0}, then also Dϵ(σ) has a unique zero, σϵ, in this disk for all sufficiently small
ϵ > 0 by Rouché’s theorem; and σϵ depends continuously on σ0. By the Schur complement formula,

P̂ϵ(κC,ϵσ)
−1 has a unique pole in this disk at σ = σϵ.

Finally, if u♭ϵ ∈ Hs(Xϵ) is a resonant state of P̂ϵ(κC,ϵσ), then P̃ aug
ϵ (σϵ)(u

♭
ϵ, 0) = (0, c) for some

c ̸= 0. Inverting P̃ aug
ϵ (σϵ) shows that we can obtain a resonant state via the formula

uresϵ = π1
(
P̃ aug
ϵ (σϵ)

−1(0, 1)
)

where π1 : H
s(Xϵ)⊕C → Hs(Xϵ) is the projection on the first summand. Since we have the uniform

bounds (5.28) for all s ∈ R and αext ∈ (0, 1), we conclude that

1 ≳ ∥(1− χNH)u
res
ϵ ∥

H̄
s, 1

2
,αext

q,ϵ (Xϵ)
∼ ϵ−αext∥(1− χNH)u

res
ϵ ∥

H̄
s, 1

2
−αext

b (Xext)
.

Since infsupp(1−χNH)(r − re) > 0, Sobolev embedding implies (1− χNH)u
res
ϵ = O(ϵ1−) in C∞(Xext).

On the other hand, the arguments following (5.29) show that χNHu
res
ϵ converges to the resonant

state uresNH := π1P
aug
NH (σ0)

−1(0, 1) of the near-horizon geometry in H̄s,α
b (XNH) for all s ∈ R and

α < 1
2 . Since uresNH ∈ A1(XNH), regarded as a function on X̃, vanishes simply at Xext (which is

consistent with the order of vanishing of (1−χNH)u
res
ϵ recorded above), we obtain (5.16) by Sobolev

embedding. This completes the proof of Theorem 5.5. □

Proposition 5.3 and Theorem 5.5 prove (a strengthening of) Theorem 1.1 in the case µ > 0.

Remark 5.10 (The case µ = 0, ℓ ≥ 1). In the case µ = 0, the operator P̂ext(0) is not invertible.
However, if we work on spaces of functions with vanishing spherical averages (i.e. their projections

to degree 0 spherical harmonics vanish), then P̂ext(0) is invertible by Proposition 4.1, and thus (the
proofs of) Proposition 5.3 and Theorem 5.5 apply mutatis mutandis.

5.2. Massless scalar waves. We now turn to the case

µ = 0, therefore Pϵ = □gϵ , P̃ϵ = P̂ϵ(κC,ϵσ),

which is more delicate since P̂ext(0) in Proposition 4.1 fails to be invertible then. We recall the
notation u(0) = 1, u∗(0) = H(rc − r) from Proposition 4.1(2).
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5.2.1. Absence of QNMs. We first consider σ /∈ QNMNH(0) and aim to prove an analogue of Propo-
sition 5.3. We first sketch the setup of a Grushin problem for the zero energy operator on extremal
RNdS. Using (2.12), we compute the derivative of the spectral family of Pϵ = □gϵ at 0 to be
independent of ϵ:

∂σP̂ϵ(0) = r−2Drr
2T̃ + T̃Dr =: ∂σP̂ext(0).

This is formally self-adjoint with respect to the L2(Xext, r
2 dr d/g)-inner product. Fix

10

u♭0 := ∂σP̂ext(0)u(0); u♯0 ∈ C∞
c (X◦

ext), ⟨u(0), u♯0⟩L2(Xext) = 1. (5.31)

Note that u♭0 = −ir−2∂r(r
2T̃ ) ∈ C∞(Xext). In particular,

u♭0 ∈ H̄s,γ
b (Xext), s > 1

2 , γ <
1
2 . (5.32)

Recalling the space X s,γ from (4.2), we can thus consider

P aug
ext :=

(
P̂ext(0) u♭0

⟨·, u♯0⟩L2(Xext) 0

)
(5.33)

as an index 0 operator X s,γ ⊕C → H̄s−1,γ
b (Xext)⊕C. This operator is, in fact, invertible, as follows

from the following computation:

Lemma 5.11 (Nondegenerate pairing). ⟨u♭0, u∗(0)⟩L2(Xext) = −4πi(r2e + r2c ) ̸= 0.

Proof. The pairing equals −4π · i times∫ rc

re

r−2∂r(r
2T̃ ) r2 dr = r2c T̃ (rc)− r2e T̃ (re).

Since T̃ (re) = −1 and T̃ (rc) = 1, the claim follows. □

In order to set up a Grushin problem for P̃ϵ, it is then particular natural to use ϵ−1P̂ϵ(κC,ϵσ)u(0) ≈
κC,ϵ

ϵ σP̂ext(0)u(0), which is a multiple of u♭0 and thus, by Lemma 5.11, spans a complement to the

range of the Xext-model P̂ext(0).
11 We divide this further by σ to avoid the degeneracy as σ → 0,

and we normalize it for consistency with (5.33).

Proposition 5.12 (Grushin problem for P̃ϵ). Suppose that σ /∈ QNMNH(0). Set12

u♭ϵ :=
(κC,ϵ

ϵ

)−1

P̂ϵ(κC,ϵσ)
(
(ϵσ)−1u(0)

)
= u♭0 −

1− T̃ 2

Fϵ
κC,ϵσ. (5.34)

(This is defined through the final expression on the right for σ = 0.) Define the operator

P̃ aug
ϵ (σ) :=

(
P̂ϵ(κC,ϵσ) u♭ϵ

⟨·, u♯0⟩L2(Xext) 0

)
. (5.35)

Let s ≥ s0+2 where s0 > max( 12 − Imσ, 12 ), and let αNH, αext ∈ R with αNH−αext ∈ (− 1
2 ,

1
2 ). Then

for sufficiently small ϵ we have a uniform estimate

∥(u, c)∥H̄s,αNH,αext
q,ϵ (Xϵ)⊕ϵαextC ≤ C∥P̃ aug

ϵ (σ)(u, c)∥
H̄

s−1,αNH,αext
q,ϵ (Xϵ)⊕ϵαextC , (5.36)

where we use the notation (5.22).

10Here X◦
ext = (re, r+)r × S2ω .

11The resolvent analysis near 0 energy on asymptotically flat spaces for spectral families P̂ (σ) admitting a zero

energy state u(0) as done in a concrete setting [Hin24a, §3.3] follows a similar route. To be more concrete, if

∂σP̂ (0)u(0) /∈ ran P̂ (0) (and the space of zero energy states is spanned by u(0)), one can set up a Grushin problem

for P̂ (σ) by using σ−1P̂ (σ)u(0) (or refinements thereof) as the (1, 2) entry of an augmented operator P̂ aug(σ), and

the uniform invertibility of P̂ aug(σ) near σ = 0 then gives the invertibility of P̂ (σ) for σ ̸= 0 with a first order pole

at σ = 0. Cf. [Hin24a, (3.30)].
12Recall from (2.5) that

κC,ϵ

ϵ
≡ κe mod ϵC∞([0, ϵ0)).
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Before giving the proof of Proposition 5.12, note that since u♭ϵ ∈ C∞(X̃), we have

∥cu♭ϵ∥H̄s−1,αNH,αext
q,ϵ (Xϵ)

≤ |c|ϵαextC∥u♭ϵ∥H̄s−1,γ,0
q,ϵ (Xϵ)

≲ |c|ϵαextC (5.37)

where

γ := αNH − αext ∈ (− 1
2 ,

1
2 );

the second bound is due to γ < 1
2 and

∫ r+−re
0

x−2γ dx < ∞. Since u♯0 ∈ C∞
c (X◦

ext), we moreover

have, for all sufficiently small ϵ > 0, u♯0 = χextu
♯
0 and thus

|⟨u, u♯0⟩L2(Xext)|ϵαextC ≲ ϵ−αext∥χextu∥H̄s,γ
b (Xext) ≲ ∥u∥H̄s,αNH,αext

q,ϵ (Xϵ)
.

(This is analogous to (5.24).)

Proof of Proposition 5.12. We argue as in the proof of Proposition 5.3, except we now use the
invertibility of P aug

ext in the first step. Thus, we start with (5.8), write u = χextu+ (1− χext)u and
obtain

∥(u, c)∥H̄s,αNH,αext
q,ϵ (Xϵ)⊕ϵαextC

≲ ∥P̃ aug
ϵ (u, c)∥

H̄
s−1,αNH,αext
q,ϵ (Xϵ)⊕ϵαextC + ∥(χextu, c)∥H̄s0,αNH,αext

q,ϵ (Xϵ)⊕ϵαextC

+ ∥u∥
H̄

s0,αNH,αext−η
q,ϵ (Xϵ)

where we fix η > 0 such that γ + η ∈ (− 1
2 ,

1
2 ). We next use (5.6b) and estimate the second term on

the right using the invertibility of (5.33) by

ϵ−αext∥(χextu, c)∥H̄s0,γ

b (Xext)⊕C ≲ ϵ−αext∥P aug
ext (χextu, c)∥H̄s0−1,γ

b (Xext)⊕C

≲ ∥P aug
ext (χextu, c)∥H̄s0−1,αNH,αext

q,ϵ (Xϵ)⊕ϵαextC .

We replace P aug
ext by P̃ aug

ϵ (σ). We can bound the action of the difference

P̃ aug
ϵ (σ) ◦ (χext ⊕ 1)− P aug

ext ◦ (χext ⊕ I) =

((
P̂ϵ(κC,ϵσ)− P̂ext(0)

)
χext u♭ϵ − u♭0

0 0

)
on (u, c) in H̄s0−1,αNH,αext

q,ϵ (Xϵ) ⊕ ϵαextC by ∥u∥
H̄

s0+1,αNH,αext−1
q,ϵ (Xϵ)

+ |c|ϵαext−1C since the fact that

u♭ϵ − u♭0 =: ϵũ with ũ ∈ C∞(X̃) implies

∥c · (u♭ϵ − u♭0)∥H̄s0−1,αNH,αext
q,ϵ (Xϵ)

≤ ϵ−αext |c|∥ϵũ∥
H̄

s0−1,γ,0
q,ϵ (Xϵ)

≲ ϵ|c|ϵαextC

(cf. the justification of (5.37)).

Next, we commute P̃ aug
ϵ (σ) through χext ⊕ I. We can bound the norm of the output of the

commutator

[P̃ aug
ϵ (σ), χext ⊕ 1] =

(
[P̃ϵ, χext] (1− χext)u

♭
ϵ

⟨(χext − 1)·, u♯0⟩L2(Xext) 0

)
acting on (u, c) as follows. Since χext−1 = 0 on suppu♯0 for sufficiently small ϵ > 0, only the first row

is nonzero. We can estimate the contribution of [P̃ϵ, χext] ∈ ρNextDiff1
q(X̃) as in (5.11). Furthermore,

since (1− χext)u
♭
ϵ is smooth on X̃ and vanishes near Xext, we have

∥c · (1− χext)u
♭
ϵ∥H̄s0−1,αNH,αext

q,ϵ (Xϵ)
= ϵη|c|ϵαextC∥(1− χext)u

♭
ϵ∥H̄s0−1,γ+η,η

q,ϵ (Xϵ)
≲ ϵη|c|ϵαextC

since γ + η < 1
2 .

In summary, we have now established

∥(u, c)∥H̄s,αNH,αext
q,ϵ (Xϵ)⊕ϵαextC

≲ ∥P̃ aug
ϵ (u, c)∥

H̄
s−1,αNH,αext
q,ϵ (Xϵ)⊕ϵαextC + ∥(u, c)∥

H̄
s0+1,αNH,αext−η
q,ϵ (Xϵ)⊕ϵαext−ηC .

(5.38)
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We then write u = χNHu + (1 − χNH)u and estimate ∥χNHu∥H̄s0+1,αNH,αext−η
q,ϵ (Xϵ)

as around (5.13).

This leads to the following analogue of (5.15):

∥(u, c)∥H̄s,αNH,αext
q,ϵ (Xϵ)⊕ϵαextC

≲ ∥P̃ aug
ϵ (u, c)∥

H̄
s−1,αNH,αext
q,ϵ (Xϵ)⊕ϵαextC + ∥(u, c)∥

H̄
s0+2,αNH−1,αext−η
q,ϵ (Xϵ)⊕ϵαext−ηC .

For sufficiently small ϵ > 0, the second term on the right can be absorbed into the left hand side. □

The estimate (5.36) is, in fact, locally uniform in σ, as follows from its proof. This allows us to
conclude:

Proposition 5.13 (Absence of QNMs except 0). Recall the relationship rC = re − 2ϵ.

(1) For all ϵ > 0, we have 0 ∈ QNM(rC, re, rc).
(2) Let K ⊂ C be a compact set disjoint from QNMNH(0). Then there exists ϵ1 ∈ (0, ϵ0) such

that for all ϵ ∈ (0, ϵ1], we have

{κC,ϵσ : σ ∈ K} ∩
(
QNM(rC, re, rc) \ {0}

)
= ∅.

Thus, unlike in the setting of Proposition 5.4 where P̂ext(0) was invertible, the presence of the
zero mode u(0) for massless scalar waves on extremal RNdS leads to the existence of the QNM 0 for
nearly extremal RNdS.

Proof of Proposition 5.13. The first part follows from the fact that □gϵu(0) = 0 (constants solve the
wave equation) for all ϵ > 0. For the second part, the estimate (5.36) holds uniformly for all σ ∈ K
and ϵ ∈ (0, ϵ1] when ϵ1 ∈ (0, ϵ0) is sufficiently small. For σ ∈ K and ϵ ∈ (0, ϵ1], and given any
f ∈ Hs−1(Xϵ), define then

(u, c) := P̃ aug
ϵ (σ)−1(f, 0).

By definition of u♭ϵ in (5.34), we then have

P̂ϵ(κC,ϵσ)u
′ = f, u′ := u+

(κC,ϵ

ϵ

)−1

(ϵσ)−1u(0)

provided σ ̸= 0 (so that u′ is well-defined), with u′ ∈ Hs(Xϵ). Therefore, P̂ϵ(κC,ϵσ) is surjective as
a map (5.1), thus injective since it has index 0, and hence κC,ϵσ /∈ QNM(rC, re, rc). □

5.2.2. Existence of QNMs. Note that 0 /∈ QNMNH(0). Besides the QNM 0 observed in Proposi-
tion 5.13(1), we next find the QNMs arising from the near-horizon QNMs.

Theorem 5.14 (Existence of QNMs). Let σ0 ∈ QNMNH(0), and write m(σ0) for the multiplicity of
σ0. Let r0 > 0 be so small that for all σ ∈ {0}∪QNMNH(0)\{σ0} we have |σ−σ0| ≥ 2r0. Then there
exists ϵ1 ∈ (0, ϵ0) such that for all ϵ ∈ (0, ϵ0], there are m(σ0) many QNMs ς ∈ QNM(rC, re, rc),
rC = re − 2ϵ, of □gϵ (counted with multiplicity) with∣∣∣ ς

κC,ϵ
− σ0

∣∣∣ < r0.

Denote by Σϵ the set of these QNMs ς. Then:

(1) Σϵ ⊂ iR, and { ς
κC,ϵ

: ς ∈ Σϵ} → {σ0} in the Hausdorff distance sense as ϵ→ 0;

(2) P̂ϵ(ζ)
−1 has a pole of order 1 at ζ = ς for every such ς.

Finally:

(3) suppose Σϵ contains a (necessarily unique) element ςϵ = κC,ϵ(σ0 + o(1)) for which a spher-
ically symmetric resonant state exists.13 Then we can normalize such a resonant state

13Resonant states with angular dependence given by a degree ℓ ≥ 1 spherical harmonic were already described

before; see Remark 5.10. See also Remark 5.6 regarding separation into spherical harmonics.
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uϵ ∈ C∞(Xϵ) of P̂ϵ(ςϵ) in such a way that, for some constant cϵ ∈ C which is uniformly
bounded as ϵ→ 0,∥∥∥uϵ(r, ω)− [cϵ + u0

(r − re
ϵ

+ 1
)]∥∥∥

Ck,θ
b,ϵ (Xϵ)

ϵ→0−−−→ 0

for all θ < 1, where u0 is a resonant state of P̂NH(σ0) (i.e. of the form (3.14) for ℓ = 0,
thus without ω-dependence, and a suitable value of n); the norm here is defined in (5.17).

We shall prove this theorem by means of a Grushin problem similar to (5.21), except that now,

due to the failure of invertibility of the Xext-model problem P̂ext(0), we use the augmented opera-

tor (5.35) in place of P̂ϵ(κC,ϵσ) in (5.21). We use different notation for the latter operator now and
write for σ ̸= 0

P̃ aug,1
ϵ (σ) :=

(
P̂ϵ(κC,ϵσ) cϵ,σP̂ϵ(κC,ϵσ)u(0)

⟨·, u♯0⟩L2(Xext) 0

)
, cϵ,σ :=

(κC,ϵ

ϵ

)−1

(ϵσ)−1.

This operator detects QNMs in the following sense:

Lemma 5.15 (First augmentation). Let σ ̸= 0 and s > 1
2 − Imσ. Then P̂ϵ(κC,ϵσ) : X s(Xϵ) →

Hs−1(Xϵ) is invertible if and only if P̃ aug,1
ϵ (σ) : X s(Xϵ)⊕ C → Hs−1(Xϵ)⊕ C is.

Proof. Given f ∈ Hs−1(Xϵ), consider P̃
aug,1
ϵ (σ)−1(f, 0) =: (u, c); then P̂ϵ(κC,ϵσ)(u+ ccϵ,σu(0)) = f .

Conversely, given (f, c) ∈ Hs−1(Xϵ)⊕ C, let u′ := P̂ϵ(κC,ϵσ)
−1f . Since also

P̂ϵ(κC,ϵσ)
(
u′ − acϵ,σu(0)

)
+ acϵ,σP̂ϵ(κC,ϵσ)u(0) = f

for all a ∈ C, we note that ⟨u′ − acϵ,σu(0), u
♯
0⟩L2(Xext) = c for a = (⟨u′, u♯0⟩ − c)/(cϵ,σ⟨u(0), u♯0⟩). The

denominator is nonzero by (5.31). □

We assume (for notational simplicity as in §5.1.2) thatm(σ0) = 1, and we write v0 ∈ A1(XNH) for

a resonant state and v∗0 ∈
⋂

η>0 Ḣ
1
2+Imσ0−η,−α

b (XNH) (where α ∈ (− 1
2 ,

1
2 )) for a co-resonant state.

We pick w♯
0, w

♭
0 ∈ C∞

c (X◦
NH) with ⟨v0, w♯

0⟩L2(XNH), ⟨w♭
0, v

∗
0⟩L2(XNH) ̸= 0. The augmented operator for

the near-horizon analysis is then denoted

P aug
NH (σ) :=

(
P̂NH(σ) w♭

0

⟨·, w♯
0⟩L2(XNH) 0

)
;

it was already analyzed in Step 1 of the proof of Theorem 5.5 following (5.18); in particular, we
have

P aug
NH (σ)−1 =

(
A(σ) B(σ)
C(σ) D(σ)

)
; D(σ) has a simple zero at σ = σ0. (5.39)

Recalling u♭ϵ := cϵ,σP̂ϵ(κC,ϵσ)u(0), the full augmented operator is

P̃ aug
ϵ (σ) :=

 P̂ϵ(κC,ϵσ) u♭ϵ w♭
0

⟨·, u♯0⟩L2(Xext) 0 0

⟨·, w♯
0⟩L2(XNH) 0 0

 .

Proposition 5.16 (Grushin problem for P̃ϵ). Let σ0 ∈ QNMNH(0). Let s ≥ s0 + 2 where s0 >
max( 12 − Imσ0,

1
2 ), and let αNH, αext ∈ R with γ := αNH − αext ∈ (− 1

2 ,
1
2 ). Then there exist r0 > 0

and ϵ1 ∈ (0, ϵ0) such that for all σ ∈ C with |σ − σ0| < 2r0 and for all ϵ ∈ (0, ϵ1],

∥(u, c1, c2)∥
H̄

s,αNH,αext
q,ϵ ⊕ϵαextC⊕ϵαNH− 1

2 C
≲ ∥P̃ aug

ϵ (σ)(u, c1, c2)∥
H̄

s−1,αNH,αext
q,ϵ ⊕ϵαextC⊕ϵαNH− 1

2 C
. (5.40)
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Proof. The invertibility of P̃ aug,1
ϵ (σ) allows us to estimate u, c1 as in (5.38), so using also the triangle

inequality to split up the second term on the right,

∥(u, c1, c2)∥
H̄

s,αNH,αext
q,ϵ ⊕ϵαextC⊕ϵαNH− 1

2 C

≲ ∥P̃ aug
ϵ (σ)(u, c1, c2)∥

H̄
s−1,αNH,αext
q,ϵ ⊕ϵαextC⊕ϵαNH− 1

2 C

+ ∥(χNHu, 0, c2)∥
H̄

s0+1,αNH,αext−η
q,ϵ ⊕ϵαext−ηC⊕ϵαNH− 1

2 C

+ ∥(1− χNH)u∥H̄s0+1,αNH,αext−η
q,ϵ

+ |c1|ϵαext−ηC .

Here we take χNH ∈ C∞(X̃) to be equal to 1 nearXNH and such that χNHu
♯
0 = 0 and (1−χNH)w

♯
0 = 0

for all small ϵ (used below), and η > 0 is such that γ + η ∈ (− 1
2 ,

1
2 ) still. The last two lines can be

absorbed into the left hand side. Indeed, the norm of the penultimate term is≲ ∥u∥
H̄

s0+1,αNH−1,αext−η
q,ϵ

(indeed, with arbitrary XNH-decay order); and the final term is ϵη|c1|ϵαextC.

Next, using the estimate (5.19) for P aug
NH (σ), we obtain the first bound in

∥(χNHu, 0, c2)∥
H̄

s0+1,αNH,αext−η
q,ϵ ⊕ϵαext−ηC⊕ϵαNH− 1

2 C

≲

∥∥∥∥∥∥
 P̂NH(σ) 0 w♭

0

0 0 0

⟨·, w♯
0⟩L2(XNH) 0 0

χNHu
c1
c2

∥∥∥∥∥∥
H̄

s0,αNH,αext−η
q,ϵ ⊕ϵαext−ηC⊕ϵαNH− 1

2 C

≲ ∥P̃ aug
ϵ (σ)(u, c1, c2)∥

H̄
s0,αNH,αext−η
q,ϵ ⊕ϵαext−ηC⊕ϵαNH− 1

2 C

+

∥∥∥∥∥∥∥
P̂ϵ(κC,ϵσ)− P̂NH(σ)χNH u♭ϵ 0

⟨·, u♯0⟩L2(Xext) 0 0

⟨(1− χNH)·, w♯
0⟩L2(XNH) 0 0


u
c1
c2


∥∥∥∥∥∥∥
H̄

s0,αNH,αext−η
q,ϵ ⊕ϵαext−ηC⊕ϵαNH− 1

2 C

.

We claim that the second term on the right can be absorbed. Indeed, the (3, 1) component of the
matrix on the right vanishes for small ϵ. The norm of the output of the (1, 1) component is bounded
by ∥u∥

H̄
s0+2,αNH−1,αext−η
q,ϵ

(cf. (5.14)). To bound the (1, 2) component, we use

∥c1u♭ϵ∥H̄s0+1,αNH,αext−η
q,ϵ

= ϵηϵ−αext |c1|∥u♭ϵ∥H̄s0+1,γ+η,0
q,ϵ

≲ ϵη|c1|ϵαextC .

For the (2, 1) component, finally, we use that suppu♯0 ∩XNH = ∅ to bound

ϵ−αext+η|⟨u, u♯0⟩L2(Xext)| ≲ ϵη/2∥u∥
H̄

s0,αNH−1,αext−η/2
q,ϵ

.

This completes the proof of (5.40). □

For |σ − σ0| < 2r0 and ϵ ∈ (0, ϵ1], we now write

P̃ aug
ϵ (σ)−1 =

A11,ϵ(σ) A12,ϵ(σ) B1,ϵ(σ)
A21,ϵ(σ) A22,ϵ(σ) B2,ϵ(σ)
C1,ϵ(σ) C2,ϵ(σ) Dϵ(σ)

 .

The analogue of Lemma 5.9 holds also in the present setting:

Lemma 5.17 (Continuity of Dϵ(σ)). Dϵ(σ) converges uniformly to D(σ) (see (5.39)) in the disk
{|σ − σ0| ≤ r0}.

Proof. We only need to prove pointwise convergence for a fixed value of σ with |σ − σ0| < 2r0. Let
thus

(uϵ, c1,ϵ, c2,ϵ) := P̃ aug
ϵ (σ)−1(0, 0, 1).
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(Thus c2,ϵ = Dϵ(σ).) Using the estimate (5.40) for αNH = 1
2 and αext ∈ (0, 1), we conclude uniform

(in ϵ) bounds
∥uϵ∥

H̄
s, 1

2
,αext

q,ϵ (Xϵ)
, ϵ−αext |c1,ϵ|, |c2,ϵ| ≲ 1.

Passing to a subsequence, we may assume that χNHuϵ, which is uniformly bounded in H̄s,α
b (XNH)

where α := αext − 1
2 ∈ (− 1

2 ,
1
2 ), converges weakly to some uNH,0 ∈ H̄s,α

b (XNH), and that

ϵ−αextc1,ϵ → c1, c2,ϵ → c2. (5.41)

In the equation

0 = P̂ϵ(κC,ϵσ)uϵ + c1,ϵu
♭
ϵ + c2,ϵw

♭
0,

consider now the first term; arguing as after (5.30), it converges in distributions on (0,∞)z × S2 to

P̂NH(σ)uNH,0. The convergence of the two remaining terms is clear, so we obtain

P̂NH(σ)uNH,0 + c2w
♭
0 = 0.

Moreover, 1 = ⟨uϵ, w♯
0⟩L2(XNH) = ⟨χNHuϵ, w

♯
0⟩L2(XNH) for sufficiently small ϵ > 0, and this converges

to ⟨uNH,0, w
♯
0⟩L2(XNH). Altogether, we deduce

P aug
NH (σ)(uNH,0, c2) = (0, 1),

and therefore c2 = D(σ) is indeed the limit of c2,ϵ = Dϵ(σ). □

As in §5.1.2, Rouché’s theorem and the Schur complement formula prove parts (1)–(2) of Theo-

rem 5.14. Denote the unique pole of P̂ϵ(κC,ϵσ)
−1 in a small disk around σ0 by σϵ, so σϵ = σ0 + o(1)

as ϵ → 0. Analogously to Step 4 of the proof of Theorem 5.5, the corresponding resonant state is
now given by

uresϵ = uϵ + c1,ϵcϵ,σu(0), (uϵ, c1,ϵ, c2,ϵ) := P̃ aug
ϵ (σϵ)

−1(0, 0, 1). (5.42)

The proof of Lemma 5.17 and the compactness of the inclusion H̄s,α
b (XNH) ↪→ H̄s′,α′

b (XNH) for
s′ < s, α′ < α show that

χNHuϵ → uresNH in H̄s,α
b (XNH) ∀ s ∈ R, α < 1

2 , c2,ϵ → c2, (5.43)

where (uresNH, c2) = P aug
NH (σ0)

−1(0, 1), so in particular uresNH is a near-horizon resonant state associated
with σ0. However, the uniform bound c1,ϵ = O(ϵαext), αext ∈ (0, 1), recorded in (5.41) is not sufficient
to cancel the factor cϵ,σ ∼ ϵ−1 in the expression (5.42) of uresϵ . We thus need to improve (5.41):

Lemma 5.18 (Improved bounds). In the notation (5.42), we have |c1,ϵ| ≲ ϵ.

Proof. We first construct, by hand, an approximation to P̃ aug
ϵ (σϵ)

−1(0, 0, 1) and then use P̃ aug
ϵ (σϵ)

−1

to solve away the remaining error. To wit, define

(uNH,ϵ, cNH,ϵ) := P aug
NH (σϵ)

−1(0, 1).

Thus, uNH,ϵ ∈ H̄s,α
b (XNH) and cNH,ϵ ∈ C are uniformly bounded; here s ∈ R and α < 1

2 . But since

P̂NH(σϵ)uNH,ϵ = −cNH,ϵw
♭
0 ∈ C∞

c (X◦
NH),

we can use a normal operator argument to conclude (using the fact that all indicial roots of P̂NH(σϵ)
are ≥ 1) that, in fact, uNH,ϵ ∈ A1(XNH) (cf. the proof of Proposition 3.7), with uniform bounds.

We now compute

P̃ aug
ϵ (σϵ)

χNHuNH,ϵ

0
cNH,ϵ

=

[P̂ϵ(κC,ϵσϵ), χNH]uNH,ϵ + χNH

(
P̂ϵ(κC,ϵσϵ)− P̂NH(σϵ)

)
uNH,ϵ

⟨χNHuNH,ϵ, u
♯
0⟩L2(Xext)

⟨χNHuNH,ϵ, w
♯
0⟩L2(XNH)

=:

 fϵ
s1,ϵ
s2,ϵ

 .

Choosing the cutoff χNH to be supported sufficiently close to XNH, we have s1,ϵ = 0 for small

ϵ > 0 since χNHu
♯
0 = 0, and s2,ϵ = 1 for small ϵ > 0 since χNHw

♯
0 = w♯

0. Let χ̃NH ∈ C∞(X̃)
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be equal to 1 near suppχNH and 0 outside a small neighborhood thereof. The uniform bounds
for uNH,ϵ ∈ A1(XNH) imply that χ̃NHuNH,ϵ is pointwise uniformly bounded by ρext, as are all of

its q-derivatives. Since the coefficients of χNH(P̂ϵ(κC,ϵσϵ) − P̂NH(σϵ)) and [P̂ϵ(κC,ϵσϵ), χNH] as q-
differential operators are uniformly bounded by ρNH, we conclude that fϵ and all of its q-derivatives
are pointwise bounded by ρextρNH = ϵ; therefore,

fϵ ∈ ϵH̄s,αNH,0
q,ϵ (Xϵ) = H̄s,αNH+1,1

q,ϵ (Xϵ)

is uniformly bounded for all s ∈ R and αNH ∈ (− 1
2 ,

1
2 ). Therefore, the second term on the right in uϵ

c1,ϵ
c2,ϵ

 =

χNHuNH,ϵ

0
cNH,ϵ

− P̃ aug
ϵ (σϵ)

−1

fϵ0
0


is uniformly bounded in H̄s,αNH+1,1

q,ϵ (Xϵ)⊕ ϵC⊕ ϵαNH+ 1
2C; the fact that the second summand is ϵC

is the crucial gain here. □

Combining Lemma 5.18 with the formula (5.42), the convergence (5.43), and the uniform bounds
(1− χNH)uϵ = O(ϵ1−) in C∞(Xext), we have proved part (3) of Theorem 5.14.
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