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Abstract. We prove a general black box result which produces algebras of pseudodiffer-
ential operators (ps.d.o.s) on noncompact manifolds, together with a precise principal sym-
bol calculus. Our construction (which also applies in parameter-dependent settings, with
phase space weights and variable differential and decay orders) recovers most of the ps.d.o.
algebras which have been introduced in recent years as tools for the microlocal analysis of
non-elliptic partial differential equations. This includes those used for proving resolvent
bounds (b- and scattering algebras and resolved or semiclassical versions thereof), study-
ing waves on asymptotically flat spacetimes (3b-, edge-b-, and desc-algebras), inverting
geodesic X-ray transforms (semiclassical foliation and 1-cusp algebras), and many others.

Our main result rests on the novel notion of manifolds with scaled bounded geometry.
A scaling encodes, in each distinguished chart of a manifold with bounded geometry, the
amounts in (0, 1] by which the components of a uniformly bounded vector field are scaled.
This decouples the regularity of the coefficients of elements of the resulting Lie algebra V
of vector fields from the pointwise size of their coefficients. When the scaling tends to 0 at
infinity, the approximate constancy of coefficients of elements of V on increasingly large
cubes, as measured using V, gives rise to a principal symbol which captures V-operators
modulo operators of lower differential order and more decay.

1. Introduction

We prove a black box result which produces algebras of pseudodifferential operators
(ps.d.o.s) on noncompact manifolds, together with a precise (principal) symbol calculus, in
a large variety of settings including the semiclassical calculus, b- and scattering calculi, and
many others. This result obviates the need to construct, by hand, ps.d.o. algebras associated
with (structured) singularities or ends, as long as it is only the local and symbolic behavior
of ps.d.o.s that one cares about. Global effects, as often arise in the inversion of elliptic
partial differential operators, are not addressed here; neither are normal operators.

The noncompact manifolds of interest are equipped with two pieces of data:

(1) a bounded geometry (b.g.) structure—roughly speaking, a cover by unit cube co-
ordinate charts with uniformly bounded transition functions. (Metrics are not in-
volved, cf. Remark 1.2.)

(2) Scalings—roughly speaking, a subdivision of each unit cube into cuboids aligned
with the local coordinate axes, in a manner compatible across unit cubes.

The differential operators of interest are then built from vector fields which have bounded
size in each cuboid, but whose coefficients vary only on the scale of the unit cubes. In
particular, when the cuboids become very small, such operators have roughly constant
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coefficients on increasingly large collections of cuboids, which gives rise to a further principal
symbol which, in a certain sense, captures the limiting constant coefficient models. The
reader may jump directly to Definitions 1.1 and 1.3, Figure 1.1, and Theorem 1.4 for details.

We first present some broader context for the present paper. In the analysis of par-
tial differential equations (PDE), pseudodifferential operators typically serve one of two
purposes.

(1) Precise approximate inverses (parametrices), or true inverses, of elliptic (pseudo)dif-
ferential operators can often be constructed within a calculus of pseudodifferential
operators tailored to the partial differential operator at hand.

(2) One can use ps.d.o.s as tools to microlocalize the study of the PDE in phase space.
This is particularly convenient for applications to non-elliptic PDE (whose para-
metrices are more complicated objects, such as paired Lagrangian distributions
[MU79]).

For PDE on compact manifolds without boundary, the standard ps.d.o. calculus [Hör07]
serves both purposes. For PDE on noncompact (and also on singular) spaces M however,
ps.d.o. calculi appropriate for the first purpose are in general significantly more delicate than
those for the second: Schwartz kernels of inverses, or of parametrices precise enough to imply
Fredholm properties, often have nontrivial behavior far from the diagonal diagM ⊂M×M ,
cf. the Schwartz kernel R3×R3 3 (x, x′) 7→ (4π|x−x′|)−1 of ∆−1

R3 . A well-established method
to encode the (off-diagonal) behavior of Schwartz kernels, originating in Melrose’s work
[Mel81, MM83, Mel93], is to describe them as distributions on a appropriate resolutions
(iterated blow-ups) of the double space M̄ × M̄ where M̄ is a compactification of M to a
manifold with corners.

By contrast, when using ps.d.o.s as tools, only the behavior of their Schwartz kernels near
the diagonal diagM ⊂M ×M , including in a suitable uniform sense near infinity in diagM ,
matters, and one can attempt to use a bounded geometry approach to encode uniformity
near infinity without introducing compactifications and boundaries or corners.

Definition 1.1 (Bounded geometry structure). (Cf. [Shu92].) Let M be a smooth n-
dimensional manifold (without boundary). Then a bounded geometry structure (b.g. struc-
ture) on M is a set {(Uα, φα) : α ∈ A } where A is a countable index set and for each
α ∈ A , Uα is an open subset of M and φα : Uα → (−2, 2)n is a diffeomorphism; and

(1) there exists A ∈ N so that for all pairwise distinct α1, . . . , αA+1 ∈ A , we have⋂A+1
a=1 Uαa = ∅;

(2) M =
⋃
α∈A φ−1

α ((−1, 1)n);

(3) the transition functions τβα := φβ ◦φ−1
α : φα(Uα∩Uβ)→ φβ(Uα∩Uβ) are uniformly

bounded in C∞, i.e. for all k ∈ N0 there exists Ck <∞ so that ‖τ jβα‖Ck(φα(Uα∩Uβ)) ≤
Ck for all α, β, where τ jβα denotes the j-th component (j = 1, . . . , n) of τβα, and

‖ · ‖Ck is the maximum of the supremum norms of a function and its up to k-fold
coordinate derivatives.

We shall frequently refer to the sets Uα as unit cells or distinguished charts.

Remark 1.2 (Metrics). The more common definition of a manifold with bounded geometry is
that of a Riemannian manifold (M, g) with positive injectivity radius for which the Riemann
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curvature tensor and all of its covariant derivatives are uniformly bounded [CGT82], [Shu92,
Appendix 1]. That this gives rise to a b.g. structure is shown in [Shu92, pp. 63–66] (using
balls instead of cubes in Definition 1.1, which is easily seen to lead to an equivalent notion);
see also [Eld24]. Conversely, given a b.g. structure, a metric of bounded geometry can
be constructed as g :=

∑
α φ
∗
α(χdx2) where χ ∈ C∞c ((−2, 2)n) equals 1 on (−1, 1)n, and

dx2 denotes the Euclidean metric. For our purposes however, Riemannian structures are
irrelevant.

We define the spaces
C∞uni,B(M) resp. C∞uni,B(M ;TM)

of functions and vector fields which, resp. whose coefficients, have uniformly bounded C∞
seminorms in the charts Uα. Uniform (or bounded geometry) differential operators are
then finite sums of up to m-fold compositions of elements of C∞uni,B(M ;TM), with a 0-fold

composition defined to be multiplication with an element of C∞uni,B(M). Pseudodifferential

operators (ps.d.o.s) on M , which act boundedly on C∞uni,B(M), can be defined by patching

together standard quantizations on Rn (see (1.2) below) in the charts Uα.

However, the bounded geometry perspective is too imprecise and inflexible to capture
crucial properties of many standard algebras of (pseudo)differential operators. For exam-
ple, it cannot capture the typical regularity of coefficients of differential operators on Rn
(cf. (1.3)), nor can (a parameterized version of) it capture the principal symbol in the
semiclassical calculus (see §1.1.2). We explain these shortcomings in some detail in §1.1.

In this paper, we rectify these shortcomings via the introduction of (parameterized) scaled
bounded geometry structures; see §1.2. We recover all those pseudodifferential algebra1 on
manifolds with corners (possibly allowing for parameter dependencies) which are character-
ized via Schwartz kernels on resolved double spaces, including the associated sharp principal
symbol maps. More precisely, we recover the very small algebras consisting of operators
whose Schwartz kernels are supported in a collar neighborhood of the lifted diagonal, and
which have conormal coefficients down to the boundary. In particular, by using our gen-
eral construction, it becomes obsolete to define double and triple spaces [Mel90, Mel96] for
the purpose of constructing novel ps.d.o. algebras—provided one only needs this algebra
in the sense of (2) above. The examples from §1.1 are revisited from our new perspective
in §§1.2.1–1.2.2. Further examples are discussed in §§1.2.3–1.2.4.

1.1. Shortcomings of the bounded geometry perspective. We give two examples to
motivate our main result.

1.1.1. Operators on Euclidean space. A basic example is M = Rn, with bounded geometry
structure

A = Zn, Uα = α+ (−4, 4)n, φα : Uα 3 x 7→ (x− α)/2 ∈ (−2, 2)n. (1.1)

One can associate a scale of Sobolev spaces and algebras of (pseudo)differential operators
with a b.g. structure. In the case of Rn, these are the standard Sobolev spaces Hs(Rn) and
(uniform) ps.d.o.s Ψm(Rn), defined as quantizations

Op(a)(x, x′) := (2π)−n
∫
ei(x−x

′)ξa(x, ξ) dξ (1.2)

1At least all those known to the author!
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of symbols a ∈ Sm(Rn;Rn) satisfying the uniform bounds

|∂βx∂
γ
ξ a(x, ξ)| ≤ Cβγ〈ξ〉m−|γ| ∀β, γ ∈ Nn0 , x ∈ Rn, ξ ∈ Rn, 〈·〉 := (1 + | · |2)1/2.

(One may in addition enforce that |x−x′| is uniformly bounded on supp Op(a) by inserting
a cutoff χ(x− x′), χ ∈ C∞c (Rn), in (1.2).)

Consider now the shifted Laplacian L := ∆Rn + 1 =
∑n

j=1D
2
xj

+ 1 (where D = 1
i ∂),

which is a uniformly elliptic operator; or more generally a variable coefficient version L =∑n
i,j=1 g

ij(x)DxiDxj + 1 where (gij) is everywhere positive definite and, for some η > 0,

|∂βx (gij(x)− δij)| ≤ Cη〈x〉−η−|β| ∀β ∈ Nn0 . (1.3)

Using the spaces arising from the b.g. structure on Rn, one can show elliptic estimates

‖u‖Hs ≤ Cs,N
(
‖Lu‖Hs−2 + ‖u‖H−N

)
.

However, ellipticity considerations within the class of uniform ps.d.o.s are not precise
enough to establish the Fredholm property of L. What is missing is a record of the fact
that the coefficients of L, near any sequence of points pi → ∞, are essentially constant
on increasingly large cubes of side length 1

2 |pi| (which are thus unions of an increasingly

large number of unit cells);2 put differently, the regularity of the coefficients of L is stronger
than mere uniform boundedness, with all derivatives, in the charts (Uα, φα). This cannot
be encoded only using the b.g. structure (1.1); we shall, however, be able to capture this
using our notion of scaled bounded geometry structures.3 Only this more precise principal
symbol is precise enough to distinguish L = ∆ + 1 from the operators ∆ or ∆ − 1 whose
mapping properties are dramatically different. (The operator L considered here can of
course be easily analyzed using integration by parts; our aim here being the development
of a general-purpose microlocal tool, we pay no attention to this special feature.)

In the concrete setting of Rn, one can encode this higher regularity directly in the sym-
bol class; the resulting symbols are then called scattering symbols [Vas18], and their quan-
tizations are scattering pseudodifferential operators, first introduced under the strongest
possible notion of regularity near infinity (smoothness in |x|−1, x|x| for |x| > 1) by Mel-

rose [Mel94] and generalized in [MM99]. We give detailed comparison with the geometric
microlocal perspective in §1.3.

1.1.2. Semiclassical operators. We now consider semiclassical ps.d.o.s

Oph(a)(x, x′) := (2πh)−n
∫
ei(x−x

′)ξ/ha(h, x, ξ) dξ (1.4)

on Rn, where h ∈ (0, 1) is the semiclassical parameter; these are used to study semiclassical
operators, such as Lh = h2∆Rn +V −E where V = V (x) is a smooth potential and E ∈ R,
in a uniform fashion as h→ 0 [Zwo12].

We first attempt to recover this class of operators using a bounded geometry perspective
with parameter h: for h ∈ (0, 1), we define the set Uh,α = h(α + (−4, 4)n) of size ∼ h,

2This allows for an approximate inversion of L near infinity via the inversion of its constant coefficient
models—here the single model ∆Rn + 1—by means of the (inverse) Fourier transform.

3The constant coefficient models then appear in the guise of a more precise principal symbol which, in
the present setting, recovers the boundary principal symbol of the scattering calculus.
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together with the chart φh,α(x) = (h−1x − α)/2. The corresponding class of uniform
ps.d.o.s then contains operators defined as quantizations

(2πh)−n
∫
ei
x−x′
h

ξa
(
h, x, ξ

)
χ
(x− x′

h

)
dξ (1.5)

where χ ∈ C∞c ((−4, 4)n) equals 1 on (−2, 2)n. The cutoff χ localizes x, x′ to essentially the
same unit cell Uh,α. Consider the simplest case of multiplication operators, so a = a(h, x):
then the function a on (0, 1]h × Rnx is uniformly smooth with respect to this parameterized
bounded geometry structure if and only if is uniformly bounded upon applying any number
of vector fields (φh,α)∗∂x ∼ h∂x; thus, a is allowed to oscillate on spatial scales ∼ h.

Typical semiclassical operators (such as Lh above) however have coefficients which are
smooth in x uniformly as h → 0. Put differently, the coefficients are essentially constant
on increasingly large cubes, i.e. unions of an increasingly large number ∼ h−1× · · · ×h−1 =
h−n of unit cells Uh,α. This stronger regularity is responsible for the crucial fact that
semiclassical ps.d.o.s defined by (1.4) have a principal symbol which is well-defined modulo
symbols with extra decay as h→ 0 [Zwo12, §9.3.3].

1.2. Scaled bounded geometry structures; main result. The discussion of the reg-
ularity of coefficients in §§1.1.1–1.1.2 might suggest the introduction of a structure on top
of a b.g. structure which describes the increasingly large collections of unit cells on which
coefficients of vector fields and operators should be roughly constant. However, in order
to avoid having to describe how increasingly large numbers of unit cells fit together, it is
more convenient to set this up the other way around. That is, we elevate the b.g. structure
B which gives rise to the desired notion of smoothness of coefficients to the central object.
The class of vector fields and operators of interest, which thus shall have these more regu-
lar coefficients, then arises from vector fields whose coefficients, in the unit cells of B, are
rescaled by amounts in (0, 1] in the local coordinate directions.

Moreover, while in the examples of §1.1 the coefficients of naturally arising operators are
essentially constant on cubes whose size increases by the same amount in all directions (as
|x| → ∞ or h→ 0), it is important to allow for more general anisotropic scalings (see §1.2.3
for an example). We thus arrive at the following notion.

Definition 1.3 (Scaled bounded geometry structure). Let M be a smooth n-dimensional
manifold. Then a scaled bounded geometry structure (scaled b.g. structure for short) on M
is a set B× = {(Uα, φα, ρα) : α ∈ A } so that B = {(Uα, φα) : α ∈ A } is a b.g. structure on
M (called the underlying b.g. structure), and ρα = (ρα,i)i=1,...,n ∈ (0, 1]n for each α ∈ A ,
with the property that there exist constants Cγ <∞ for γ ∈ Nn0 so that for all α, β,

|∂γ(ρα,i∂iτ
j
βα(x))| ≤ Cγρβ,j ∀x ∈ (−2, 2)n, i, j = 1, . . . , n, γ ∈ Nn0 . (1.6)

(We call {ρα} a scaling.) Given B×, we further define:4

(1) ρ̄α := max1≤i≤n ρα,i;
(2) the coefficient Lie algebra W := C∞uni,B(M ;TM);

(3) the operator Lie algebra V ⊂ W consisting of all V ∈ W so that, upon writing

(φα)∗V =
n∑
i=1

V i
αρα,i∂i, V 1

α , . . . , V
n
α ∈ C∞((−2, 2)n), (1.7)

4That W,V,V ′ are indeed Lie algebras, as their name indicates, is shown in §3.1.
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the functions V 1
α , . . . , V

n
α are uniformly bounded with all derivatives;

(4) the large operator Lie algebra V ′ consisting of all smooth vector fields V on M so
that the components V i

α in each coordinate chart are uniformly (in α) bounded in
absolute value, and so are the derivatives (ρα,1∂1)γ1 · · · (ρα,n∂n)γn((φα)∗V )j for any
fixed γ ∈ Nn0 .

Bounded geometry structures arise as the special case when all ρα,i are equal to 1 (or any
other constant > 0): then V ′ = V =W. The crucial condition (1.6) means that the vector
fields ρα,i∂i push forward under τβα to linear combinations of ρβ,j∂j with uniformly bounded
(with all derivatives) coefficients. Put differently (for γ = 0), the coordinate change maps
τβα map ρα-cuboids (i.e. cuboids with side lengths ρα,i in the xi-direction) into sets which
contain a C−1ρβ-cuboid and are contained in a Cρβ-cuboid where C is independent of α, β.
See Figure 1.1.

Uα
ρα,1

ρα,2

Uβ

Figure 1.1. On the left: Four unit cells for W are drawn in red. The
smaller cuboids of side lengths ρα,i are drawn in blue. On the right: the top
left unit cell from the left, rescaled so that the little cuboids (i.e. the unit
cells for V ′) appear as unit squares.

We denote by

DiffmV (M)

the space of finite sums of up to m-fold compositions of elements of V; 0-fold compositions
are defined to be multiplication operators by elements of C∞uni,B(M). One may regard

DiffV(Rn) as making rigorous the notion of a space of V ′-differential operators with W-
regular coefficients; see for example the discussion following (1.12) below. More generally,
we define spaces ρlDiffmV (M) of weighted operators; here P ∈ ρlDiffmV (M) if and only if
(φα)∗P =

∑
|γ|≤m pαγ(x)(ρα,1∂x1)γ1 · · · (ρα,n∂xn)γn where the weighted coefficients ρ̄−lα pαγ

are uniformly bounded in C∞.

To describe principal symbols of V-operators, we define ρlSm(VT ∗M) for l,m ∈ R to
consist of all smooth functions p ∈ C∞(T ∗M) with the following property: defining the
local coordinate representations

pα : (−2, 2)n × Rn 3 (x, ξ) 7→ p

(
x,

n∑
i=1

ξi
dxi

ρα,i

)
,

the symbol seminorms ρ̄−lα sup〈ξ〉m−|γ||∂βx∂γξ pα| are, for each β, γ ∈ Nn0 , uniformly bounded

in α. We write ρlPm(VT ∗M) ⊂ ρlSm(VT ∗M) for the subspace of symbols which on each
fiber of T ∗M are polynomials of degree m.
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Theorem 1.4 (Main result, rough and abridged version). There exists a well-defined sur-
jective principal symbol map

σmV : DiffmV (M)→ Pm(VT ∗M)/ρPm−1(VT ∗M),

with kernel ρDiffm−1
V (M), similarly for weighted operators. This map is multiplicative in

the sense that

σm1+m2
V (A1 ◦A2) = σm1

V (A1) · σm2
V (A2), Aj ∈ Diff

mj
V (M), j = 1, 2.

Moreover, there exists a space

Ψm
V (M) ⊃ DiffmV (M)

of pseudodifferential operators ‘microlocalizing’ DiffmV (M), together with a surjective prin-
cipal symbol map

σmV : Ψm
V (M)→ Sm(VT ∗M)/ρSm−1(VT ∗M) (1.8)

with kernel ρΨm−1
V (M), and a quantization map

OpV : Sm(VT ∗M)→ Ψm
V (M)

which maps 1 to the identity operator and which is surjective modulo an appropriate space
ρ∞Ψ−∞V (M) of residual operators; similarly for weighted operators and symbols. The space
ΨV(M) =

⋃
m∈R Ψm

V (M) is a graded algebra under composition, and the principal symbol

map is multiplicative; this generalizes also to
⋃
m,l∈R ρ

lΨm
V (M). The principal symbol of the

commutator of two operators is given by the Poisson bracket of their principal symbols.

See Theorem 3.10 for the case of differential operators, and Definition 3.43 (based on
Definitions 3.31 and 3.34) for the definition of Ψm

V (M) (and weighted versions wΨm
V (M)

thereof) and the principal symbol map. The algebra and symbolic properties of (weighted
versions of) ΨV(M) is the content of Theorem 3.51. We define VT ∗M as a vector bundle
with distinguished trivializations in Definition 3.7; it is isomorphic to T ∗M as a smooth
vector bundle (but, for general scalings, not in the category of vector bundles of bounded
geometry). Furthermore,

(1) we define associated scales of weighted V-Sobolev spaces (Definition 3.14) and obtain
the boundedness of V-ps.d.o.s between them (Theorem 3.44);

(2) we prove the Fredholm property of elliptic operators when V is fully symbolic, which
means that ρ̄α tends to 0 as α leaves every finite subset of A , i.e. as Uα leaves every
compact subset of M (see Definition 3.27). This implies that the principal symbol
controls the mapping properties of an elliptic V-ps.d.o. modulo compact errors (see
also Theorem 3.21 for the relevant Rellich compactness theorem);

(3) we introduce the V-wave front set (Definition 3.54);
(4) operators acting on sections of uniform vector bundles are discussed in Remarks 3.13

and 3.46;
(5) we define a locally convex topology on Ψm

V (M) and its weighted versions so that
OpV is continuous, composition of V-ps.d.o.s is a continuous bilinear operation, and
operator norms on weighted Sobolev spaces are bounded by Ψm

V (M)-seminorms; see
Remark 3.47.

Remark 1.5 (Lie algebra properties of V). We have [V,V] ⊆ ρV (rather than just [V,V] ⊆ V),
as follows from a local coordinate computation using (1.7). Thus, Theorem 1.4 justifies,
in considerable generality, the heuristic that improved commutation properties of the Lie
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algebra V imply the existence of an improved principal symbol (1.8) for the associated
pseudodifferential calculus.

Roughly speaking, elements of Ψm
V (M) are defined as sums over α ∈ A of quantizations

in local charts which are of the form Opα(aα) = aα(x1, . . . , xn, ρα,1D1, . . . , ρα,nDn) for
symbols aα = aα(x, ξ) which are uniformly bounded in standard symbol classes on Rn; that
is,

(Opα(aα)u)(x) = (2π)−n
∫
Rn×Rn

exp

(
i

n∑
j=1

(xj − x′j) ξj
ρα,j

)
aα(x, ξ)u(x′) dξ

dx′1

ρα,1
· · · dx

′n

ρα,n

(omitting cutoffs in x − x′). Suitable residual operators must be added to capture the
off-diagonal behavior of V-ps.d.o.s; we consider only operators whose Schwartz kernels are
supported a finite distance (as measured by the number of unit cells Uα one must traverse
to get from p to q when (p, q) ∈ M ×M lies in the support of the Schwartz kernel) away
from the diagonal in M × M . The definition of a workable class of residual operators
turns out to be somewhat subtle: we characterize them through their mapping properties
(V-smoothing, weight-improving, but W-regularity-preserving) rather than their Schwartz
kernels.

Remark 1.6 (Bounded geometry ps.d.o.s). The simplest example of a scaled b.g. structure
is given by a b.g. structure together with the scalings ρα,i = 1 for all α, i. In this case, The-
orem 1.4 recovers the usual properties of bounded geometry (pseudo)differential operators
[Shu92].

Remark 1.7 (Mixed V-W-Sobolev spaces). It may happen that solutions of a PDE Pu = f ,
where P is a V-differential operator, have stronger regularity than what is immediately
accessible using V-tools, namely regularity with respect to applications of elements of
W ) V. Examples include the regularity at infinity of (∆− λ2)−1f on asymptotically Eu-
clidean spaces [Mel94, §12] or on asymptotically hyperbolic spaces [GZ03, Zwo16] (for com-
pactly supported f , say), and the regularity of waves on asymptotically de Sitter [Vas10],
anti-de Sitter [Vas12], and asymptotically flat and asymptotically stationary spacetimes
[Hin23b]. In such instances, it can be of interest to be able to work V-microlocally but on
function spaces which encode additional integer order W-regularity. Such mixed function

spaces H
(s;k)
V;W are discussed in the present general setting in Definition 3.17. Theorem 3.44

shows that V-ps.d.o.s define bounded maps between such mixed function spaces (with the
W-regularity order k being the same for the input and output spaces). In the literature,
proofs of this statement in special cases required the introduction of an algebra of W-
differential V-pseudodifferential operators. This is not necessary in our approach. Instead,
we check this directly for quantizations in local coordinates; see the proof of Proposi-
tion 3.32.

Remark 1.8 (Microlocalization locus). Defining a suitable notion of elliptic sets and (oper-
ator) wave front sets, and more generally the locus M of microlocalization which captures
where the V-algebra is commutative to leading order, is rather delicate; for example, if
in (1.8) the weight ρ has infimum equal to 0, then the V-algebra is commutative to leading
order at ‘ρ = 0’. While one can easily make sense of this if a compactification of M (or
more precisely VT ∗M) to a reasonable space, e.g. a manifold with corners, is specified (in
which case {ρ = 0} may be a boundary hypersurface), there typically exist many such com-
pactifications. See §3.8. In order to avoid requiring arbitrary choices, we take an abstract
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approach and work with a universal compactification of the uniform space M called the
uniform or Samuel compactification [Sam48], defined as the spectrum of the *-algebra of
uniformly continuous and bounded functions on M ; this maps onto every other compacti-
fication by Lemma 2.14. Then the compact set M consists of points in the boundary of the
uniform compactification of VT ∗M which lie at fiber infinity or where ρ = 0; see Defini-
tion 3.25. The compactness of M is conceptually crucial, as local control of a distribution
near each point in M automatically gives uniform control modulo distributions with higher
regularity and more decay; see e.g. Proposition 3.55(1). — The price to pay for working
with a universal compactification is that M does not have an explicit description and has
very large cardinality. (See also the discussion preceding Proposition 2.8.)

In order to capture parameter-dependent settings, we introduce:

Definition 1.9 (Parameterized scaled bounded geometry structure). Let M be a smooth
n-dimensional manifold, and let P be a set. Then a parameterized scaled bounded geometry
structure on (M,P ) is a collection {Bp,×} of scaled bounded geometry structures Bp,× =
{(Uαp , φαp , ραp) : αp ∈ Ap} on M for each p ∈ P so that the quantities A and the C∞
bounds on transition functions in Definition 1.1 as well as the constants Cγ in (1.6) are
uniform also in p ∈ P . We define parameterized bounded geometry structures analogously.

This includes scaled b.g. structures as the special case when P is a singleton set. Fur-
thermore, it includes semiclassical bounded geometry settings when P = (0, 1]h if all Bh,×
feature the same b.g. structure {(Uα, φα)}, and the scalings are ραh,i = h for h ∈ (0, 1].

The generalization of Theorem 1.4 for parameterized scaled b.g. structures, discussed
in §3.7, asserts the existence of an algebra ΨV(M) of V-pseudodifferential operators with
the usual properties (principal symbol calculus, boundedness on weighted Sobolev spaces).
The key point is that such operators are families

(Ap)p∈P ∈ ΨV(M)

of operators Ap ∈ ΨVp(M) which are quantizations of symbols on VpT ∗M obeying uniform
(in the parameter p ∈ P ) bounds; here Vp is the operator Lie algebra associated with Bp,×.
Similarly, the relevant Sobolev spaces are p-dependent function spaces (corresponding to
the scaled b.g. structure Bp,×), and the boundedness of ps.d.o.s is understood as uniform
(in p) boundedness. In the semiclassical bounded geometry setting, this recovers to a large
extent the definition of Bahuaud–Guenther–Isenberg–Mazzeo [BGIM22, §4] of semiclassical
operators on manifolds with bounded geometry; the main difference is that our operators
do not feature any regularity in the parameter h.

The following further topics are addressed in §4:

(1) §4.1: operators and spaces corresponding to certain phase space weights, which for
example allows us to recover Vasy’s second microlocal b-scattering algebra [Vas21a];

(2) §4.2: variable regularity (and decay, when infα ρ̄α = 0) orders, with important
applications in scattering theory on asymptotically conic spaces [Mel94, Vas18];

(3) §4.3: the interaction of certain translation-invariant scaled b.g. structures and the
Fourier transform, leading for instance to generalizations of the Mellin transform
on b-Sobolev spaces [Mel93], [Vas13, §3.1] or the Fourier transform on 3b-Sobolev
spaces [Hin23c, §4.4];
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(4) §4.4: when there exists a subspace of W which spans W over C∞uni,B(M) and which
contains V as an ideal, one can sharpen the class of V-ps.d.o.s slightly. This im-
provement is important in some applications (see e.g. [Hin24a, §2.5.4]).

1.2.1. Operators on Euclidean space revisited. Returning to the setting of §1.1.1, we cover
Rn by the set U0 := (−4, 4)n with φ0(x) = 1

2x and, for j = 1, . . . , n and k ∈ N0,

Uj,k,±1 :=
{
x ∈ Rn : ±xj ∈ (2k, 2k+2),

∣∣∣xl
xj

∣∣∣ ∈ (−2, 2) ∀ l 6= j
}
,

φj,k,±1(x) :=
(
±2−kxj ,

x1

xj
, . . . ,

x̂j

xj
, . . . ,

xn

xj

)
∈ (1, 4)X1 × (−2, 2)n−1

(X2,...,Xn)
;

(1.9a)

here the hat denotes the omission of a term. If we further map (1, 4) 7→ (−2, 2) via
z 7→ 4z−10

3 (which we shall not do for notational simplicity), we obtain a b.g. structure on
Rn, and with the weights

ρ0,i = 1, ρ(j,k,±1),i = 2−k (∀ i) (1.9b)

a scaled b.g. structure. (Note that when the scales ρα,i are independent of i, then condi-

tion (1.6) follows directly from Definition 1.1(3).) See Figure 1.2. Note that 〈x〉 ∼ 2k on
Uj,k,±1, and thus

φ∗j,k,±1(∂X1) = ±2k
(
∂xj +

n∑
l=2

X l∂xl
)
, φ∗j,k,±1(∂Xl) = xj∂xl (l ≥ 2) (1.10)

are equivalent to 〈x〉∂xi , 1 ≤ i ≤ n, in that either set of vector fields can be expressed as
a linear combination of the other with uniformly bounded smooth coefficients. Thus the
coefficient Lie algebra is

W =

{
n∑
i=1

ai(x)〈x〉∂xi : ∀β, i ∃Cβ,i s.t. |∂βxai| ≤ Cβ,i〈x〉−|β| ∀x ∈ Rn
}
. (1.11)

Rescaling the vector fields in (1.10) by 2−k gives the coordinate vector fields on Rn (up to
equivalence as above), and thus the operator Lie algebra is

V =

{
n∑
i=1

ai(x)∂xi : ∀β, i ∃Cβ,i s.t. |∂βxai| ≤ Cβ,i〈x〉−|β| ∀x ∈ Rn
}
.

According to Theorem 1.4, the principal symbol of an element of Ψm
V (Rn) is an element

of Sm(VT ∗Rn)/〈x〉−1Sm−1(VT ∗Rn). For the shifted Laplacian L = ∆ + 1, it is given by
|ξ|2 + 1 (where we write covectors as

∑n
j=1 ξj dxj), which is elliptic in this quotient space

(unlike that of ∆ or ∆− 1).

Finally, the large operator Lie algebra is

V ′ =

{
n∑
i=1

ai(x)∂xi : ∀β, i ∃Cβ,i s.t. |∂βxai| ≤ Cβ,i ∀x ∈ Rn
}
. (1.12)

This is thus the Lie algebra of uniformly bounded vector fields on Rn corresponding to the
b.g. structure (1.1). This explains the sense in which DiffV(Rn) comprises all V ′-differential
operators with W-regular coefficients.
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U0 U1,1,+1U1,1,−1

Figure 1.2. Illustration of some unit cells for the b.g. structure (1.9a)
are drawn in red. The cuboids of side lengths ρα,i contained in them are
drawn in blue. All blue cuboids are comparable in size to a standard unit
square, corresponding to the operator Lie algebra being spanned by standard
coordinate vector fields.

Remark 1.10. In the language of [Mel93, Mel94], W, resp. V in this example is the space
of b-, resp. scattering vector fields on the radial compactification Rn with conormal coeffi-
cients, i.e. Vb(Rn)⊗C∞(Rn)A(Rn), resp. Vsc(Rn)⊗C∞(Rn)A(Rn); and Ψm

V (Rn) is the space of

scattering ps.d.o.s of order m with conormal coefficients. (This coincides with the definition
of Ψm,0(Rn) in [Vas18].)

1.2.2. Semiclassical operators revisited. Consider again the setting in §1.1.2. For simplicity,
we consider M = Rn. We set P = (0, 1]. For h ∈ P , we define the scaled bounded geometry
structure Bh,× using the h-independent charts Uj = (−2, 2)n + j, j ∈ Zn, φj(x) = x − j,
and j-independent scalings ρh,1 = · · · = ρh,n = h. See Figure 1.3. Then

W =

{
n∑
i=1

ai(h, x)∂xi : ∀β, i ∃Cβ,i s.t. |∂βxai(h, x)| ≤ Cβ,i ∀h ∈ (0, 1], x ∈ Rn
}
,

V =

{
n∑
i=1

ai(h, x)h∂xi : ∀β, i ∃Cβ,i s.t. |∂βxai(h, x)| ≤ Cβ,i ∀h ∈ (0, 1], x ∈ Rn
}
.

Figure 1.3. Some unit cells for the b.g. structure for semiclassical operators
with smooth coefficients in red, and cubes of side lengths h in blue. On the
left: h = 1

2 . On the right: h = 1
8 .

1.2.3. An anisotropic example. We consider asymptotically hyperbolic spaces and wish to
encode the conormality of the output of the resolvent on ‘nice’ inputs (cf. Remark 1.7). For
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simplicity, let us work on the upper half space M = (0,∞)x×Ry (with focus on the region
x < 1) with the b.g. structure

Uj,k := (2−j−2, 2−j+2)x × (k − 2, k + 2)y, U ′j,k := (j, j + 4)x × (k − 2, k + 2)y

for j ∈ N0, k ∈ Z; we define the scaling

ρ(j,k),1 = 1, ρ(j,k),2 = 2−j , ρ′(j,k),i = 1 (i = 1, 2).

The coefficient Lie algebra W (restricted to x < 1) thus consists of b-vector fields (linear
combinations of x∂x, ∂y) with conormal coefficients (regularity with respect to b-vector
fields), while V consists of 0-vector fields [MM87] (linear combinations of x∂x, x∂y) with
conormal coefficients.

1.2.4. Further examples. We demonstrate the versatility of (parameterized) scaled b.g.
structures by giving a list of examples complementing those discussed in §1.2. In these
examples, we shall be somewhat imprecise in that we shall only write down the distin-
guished charts and scalings in the regions of interest in the interiors M = M̄◦ of various
manifolds with boundaries or corners M̄ , rather than providing full b.g. structures on the
entirety of M . For notational clarity, we shall occasionally write ρα,x = ρα,i when x is the
symbol for the i-th local coordinate function.

(1) b-algebra on manifolds with boundary, introduced in [Mel81, MM83, Mel93]. Here
M̄ is a manifold with boundary; we only consider the local model near a boundary
point, so M̄ = [0, 1)x × Rn−1

y . The b-vector fields are x∂x, ∂y` , with coefficients
which we require to be conormal. Thus, we set

Uj,k := (2−j−2, 2−j+2)x × (k + (−4, 4)n−1)y, N 3 j ≥ 2, k ∈ Zn, (1.13)

and the scalings are all 1. (This bounded geometry perspective on the b-algebra
is of course not new; see e.g. [Maz91, ALN07].) This admits a straightforward
generalization to manifolds with corners, so locally M̄ = [0, 1)q × Rn−q with unit
cells

Uj1,...,jq ,k = (2−j1−2, 2−j1+2)x1 × · · · × (2−jq−2, 2−jq+2)xq × (k + (−4, 4)n−q)y, (1.14)

where j1, . . . , jq ∈ Z and k ∈ Zn−q.
(2) Scattering algebra on manifolds with boundary, introduced in [Mel94] for geometric

scattering theory on generalizations of asymptotically conic manifolds. Here M̄
is a manifold with boundary; we only consider the local model near a boundary
point, so M̄ = [0, 1)x × Rn−1

y . The vector fields are x2∂x, x∂y` , with coefficients
which we require to be conormal. Thus, we use the unit cells (1.13) with scalings
ρ(j,k),i = 2−j .

(3) Semiclassical scattering algebra on Rn, used for high energy resolvent estimates in
asymptotically Euclidean scattering [VZ00]. On Rn with the b.g. structure (1.9a),
we only modify the scaling (1.9b) to depend on the parameter h ∈ (0, 1] via ρh,0,i = h

and ρh,(j,k,±1),i = h2−k. Principal symbols of semiclassical scattering ps.d.o.s (with
coefficients which are uniformly bounded together with all derivatives along 〈x〉∂x)
in Ψm

V (Rn) are thus equivalence classes in Sm/h〈x〉−1Sm−1(VT ∗Rn), similarly for
weighted operators. The semiclassical version of the algebra in (2) can be defined
similarly.
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(4) Edge algebra [Maz91], already briefly discussed from the bounded geometry per-
spective in the proof of [Maz91, Corollary (3.23)]. The local model is M̄ = [0, 1)x×
RnYy × RnZz with the basic edge vector fields being x∂x, x∂y` , ∂zm . If one wishes to
work with edge-regular coefficients, one takes as unit cells

(2−j−2, 2−j+2)x × (2−j(k + (−4, 4)nY ))y × (k′ + (−4, 4)nZ )z

where k ∈ ZnY , k′ ∈ ZnZ . If one requires edge operators with b-regular coefficients,
one instead takes (2−j−2, 2−j+2)x × (k′′ + (−4, 4)nY +nZ ), k′′ ∈ ZnY +nZ , and the
scalings ρ(j,k′′),x = ρ(j,k′′),zm = 1, ρ(j,k′′),y` = 2−j .

(5) 1-cusp algebra, introduced for inverse problems for geodesic X-ray transforms on
asymptotically conic spaces [VZ22]. On M̄ = [0, 1)x × Rn−1

y , 1-cusp vector fields

are spanned by x3∂x, x∂y` , with conormal coefficients. This corresponds to using

the sets Uj,k from (1.13) and the scalings ρ(j,k),x = (2−j)2 and ρ(j,k),y` = 2−j .

Principal symbols of weighted 1-cusp ps.d.o.s in x−`Ψm
V are thus elements [a] ∈

x−lSm/x−l+1Sm−1 (cf. [VZ22, Proposition 1.5]), where a ∈ Sm means that a =

a(x, y, ξ1c, η1c), with covectors written as ξ1c
dx
x3

+ η1c
dy
x , is a symbol of order m in

(ξ1c, η1c) with conormal regularity in (x, y). — The semiclassical foliation 1-cusp
algebra is a parameterized version of this, with the scaling for the value h ∈ (0, 1]

given by ρh,(j,k),x = h(2−j)2, ρh,(j,k),y` = h
1
2 2−j ; the principal symbol now captures

leading order behavior also modulo O(h
1
2 ) as h↘ 0.

(6) Scattering-b-transition algebra, which first appeared under the name Ψk in [GH08]
with a full calculus, and which under the name Ψsc-b was used as a tool in [Hin21a],
in both cases for the purpose of uniform analysis of resolvents on asymptotically
Euclidean or conic spaces. Working near spatial infinity, the local model is [0, 1)ρ×
Rn−1
ω (where ρ is an inverse radius), and the (spectral) parameter is σ ∈ [0, 1]; the

b.g. structure is, independently of σ, the b-structure Uj,k = (2−j−2, 2−j+2)ρ × (k +
(−4, 4)n−1)ω where N 3 j ≥ 2, k ∈ Zn−1, and the scalings which give rise to the

desired scattering-b-transition vector fields ρ
σ+ρρ∂ρ,

ρ
σ+ρ∂ωm are ρσ,(j,k),i = 2−j

σ+2−j
∼

ρ
σ+ρ (or equivalently 2−j ∼ ρ when 2−j ∼ ρ ≤ σ, and 1 otherwise). The principal

symbol thus captures operators also to leading order as ρ
σ+ρ ↘ 0, cf. [Hin23c, §2.4]

and [GH08, Proposition 2.13].
(7) Semiclassical foliation algebra, utilized for the inversion of ray transforms [Vas20].

The local model is M = Rn = Rx×Rn−1
y with parameter space P = (0, 1]h, unit cells

(corresponding to uniform smoothness) Uh,j := j + (−4, 4)n, j ∈ Zn, and scalings

ρh,j,x = h, ρh,j,y` = h
1
2 . The operator Lie algebra is thus spanned over the space of

uniformly smooth functions by h∂x, h
1
2∂y` . The principal symbol now also captures

the leading order behavior modulo O(h
1
2 ) as h↘ 0, recovering the results in [Vas20,

§2]. — The semiclassical scattering foliation algebra [Vas20] is an amalgamation
of this with the scattering algebra, so the unit cells are (1.13) for each h, but the

scalings are ρh,(j,k),x = h2−j and ρh,(j,k),y` = h
1
2 2−j .

(8) 00-algebra, for sharply localized gluing [Hin24b, Maz] following [CD03, Del12], with
0-regular coefficients. On M̄ = [0, 1)x × Rn−1

y , we take Uj,k = (2−j−2, 2−j+2)x ×
{|y − 2−jk| < 2−j+2} for N 3 j ≥ 2 and k ∈ Zn−1 (which is the b.g. structure for
0-vector fields x∂x, x∂y`) and the scalings ρ(j,k),i = 2−j for all i. The operator Lie
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algebra is thus spanned by x2∂x, x2∂y` over the space of functions a(x, y) which
are uniformly bounded together with all derivatives along x∂x, x∂y` . (The refer-

ence only considers 00-operators with smooth coefficients on M̄ explicitly; however,
the proof of [Hin24b, Proposition 2.7] does use localizers to 0-unit cells.) In addi-
tion to the standard principal symbol, there is now also a commutative boundary
principal symbol capturing leading order behavior as x ↘ 0. Both are captured
simultaneously by (1.8).

(9) Double-edge scattering (desc) algebra, introduced for the detailed microlocal and as-
ymptotic analysis of massive waves on asymptotically Minkowski spacetimes [Sus23],
with [LM01] as a partial precursor. The local model near the intersection of spacelike
and null infinity is M̄ = [0, 1)ρ0×[0, 1)xI×Rn−2

ω where n is the spacetime dimension,
and desc-vector fields are spanned by ρ2

0xI∂ρ0 , ρ0x
2
I∂xI , ρ0x

2
I∂ω` . Choosing to work

with b-regular coefficients, the unit cells are

Uj,k,l = (2−j−2, 2−j+2)ρ0 × (2−k−2, 2−k+2)xI × (l + (−4, 4)n−2)

where N 3 j, k ≥ 2 and l ∈ Zn−2, with scalings ρ(j,k,l),ρ0 = ρ(j,k,l),xI = 2−j2−k

and ρ(j,k,l),ωm = 2−j2−2k. This gives a fully symbolic algebra, with the principal
symbol capturing leading order behavior also at ρ0 = 0 and xI = 0. (Edge-b-regular
coefficients would suffice for this purpose.) — The edge-b-algebra, utilized for the
analysis of massless waves in [HV23], can be recovered using the same unit cells but
with scalings ρ(j,k,l),ρ0 = ρ(j,k,l),xI = 1, ρ(j,k,l),ωm = 2−k. In that paper, regularity
with respect to b-vector fields (which in this setup comprise the coefficient Lie
algebra W) is captured relative to microlocal edge-b-regularity (cf. the discussion
of mixed function spaces in §1.2.3).

(10) 3b-algebra, defined in [Hin23c] and used in [Hin23b] in the study of waves on asymp-
totically stationary and asymptotically flat spacetimes. We only focus on a neigh-
borhood 1 ≤ r . t of the corner of T ∩D (in the notation of [Hin23c, Definition 3.1]);
the vector fields are r∂t, r∂r, ∂ωm (vector fields on Sn−2), and we require b-regularity
(on the 3b-single space) for the coefficients, which means regularity under t∂t, r∂r,
∂ωm . As unit cells, we thus take

Uj,k,l = (2j−2, 2j+2)t × (2k−2, 2k+2)r × (l + (−4, 4)n−2)ω, (1.15)

where j, k ∈ N with 1 ≤ k ≤ j, and l ∈ Zn−2; and the scalings are ρ(j,k,l),t = 2−j+k,
ρ(j,k,l),r = ρ(j,k,l),ωm = 1. Mixed spaces capturing b-regularity relative to microlocal
3b-regularity are used in [Hin23b, §§2.2.2 and 5].

(11) Semiclassical cone algebra, defined in [Hin22] (including a large calculus) and used
as a tool in [Hin21b] to study the semiclassical propagation of singularities through
conic singularities of geometric or analytic (e.g. inverse square singularities) charac-
ter. The local model is [0, 1)r × Rn−1

ω , with parameter h ∈ (0, 1], and semiclassical
cone vector fields h

h+rr∂r,
h
h+r∂ωm . We take the coefficients to be uniformly conor-

mal (i.e. regularity with respect to r∂r, ∂ωm), and correspondingly the unit cells are
Uj,k = (2−j−2, 2−j+2)r × (k + (−4, 4)n−1)ω for N 3 j ≥ 2, k ∈ Zn−1 as in (1.13),

independently of h; the scalings are ρh,(j,k),i = h
h+2−j

∼ h
h+r (or equivalently 1 when

2−j ∼ r ≤ h, and h
2−j
∼ h

r otherwise). The principal symbol in this algebra captures

operators to leading order also as h
h+r ↘ 0; this recovers the corresponding result

in [Hin21b, §3.2] (when generalized to variable order settings, cf. §4.2).
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This list is not exhaustive: other algebras which Theorem 1.4 covers are, for instance,
the q- and Q-algebras introduced in [HX22, Hin24b, Hin21a] for certain singular gluing
problems, and the closely related surgery algebra [McD90, MM95]; the 3-body scattering
(and, more generally, N -body scattering) algebras introduced by Vasy [Vas00, Vas01]; and
the leC-algebra defined by Sussman [Sus22] to study scattering by attractive Coulomb-type
potentials at small nonnegative energies.

Remark 1.11 (Relationships of norms). In settings which, in the above descriptions, arise
from Lie algebras on manifolds with corners, it often happens that the associated Sobolev
norms localize to neighborhoods of suitable boundary hypersurfaces to be equivalent to
‘simpler’ Sobolev norms. For example, the scattering-b-transition Sobolev norm (see (6))
of a function with support in ρ & σ is uniformly (as σ ↘ 0) equivalent to its b-Sobolev norm.
This is the content of [Hin23c, Proposition 2.21(2)]; and it also follows directly from the
bounded geometry perspective since in such regions, the scattering-b-transition unit cells are
the same as the b-unit cells. In the same fashion, we recover [Hin23c, Proposition 2.21(1)],
[Hin21b, Corollary 3.7] (in the setting (11)), and further similar results.

There are several important ps.d.o. algebras which cannot be defined using scaled b.g.
structures. These include certain second microlocal algebras whose symbols do not lie in the
Sρ,δ symbol classes of Hörmander [Hör71, Definition 1.1.1] with ρ = 1 − δ and δ ∈ [0, 1

2),
for example the semiclassical second microlocal calculus defined in [SZ99] for the study
of resonances for scattering by convex obstacles, and the refinement of the cusp calculus
defined by Jia [Jia22] to reduce regularity losses at normally hyperbolic trapping. We also
do not recover the parabolic calculus used in [GRGH22] for the Fredholm analysis of the
time-dependent Schrödinger equation (see also [Las77]), or calculi on certain Lie groups
[BFKG12]. Except in this final example, one may however entertain the idea of developing
modified notions of scaling which guarantee that coordinate transformations across unit
cells preserve the relevant local structures (e.g. the parabolic scaling in the fibers of the
cotangent bundle).

1.3. Relation with Lie algebras on manifolds with corners. Almost all examples
given in §1.2.4 were introduced from a geometric singular analysis point of view: the starting
point is a Lie algebra V of vector fields on a manifold with corners M̄ which one wishes
to microlocalize.5 Following Melrose, spaces of V-pseudodifferential operators were defined
via a description of their Schwartz kernels as distributions on a suitable resolution (iterated
blow-up [Mel96]) M̄2

V of M̄2 = M̄ × M̄ (the V-double space) which are conormal to the
lift diagV of the diagonal diagM̄ ⊂ M̄2. To show that the space of such operators defines
an algebra, one constructs a V-triple space M̄3

V with the property that the three different
projection maps down to M̄2

V are b-fibrations; the composition formula then follows from
pullback and pushforward theorems for conormal distributions [Mel92].

Thus far, there is no general purpose method which, given a Lie algebra V, produces the
correct double (let alone triple) spaces; see however [KR23, Mel23]. In those cases where
a double space has been written down, the ps.d.o. algebra ΨV(M) given by Theorem 1.4,
in the case that all scalings are equal to 1 (or uniformly bounded from below by a positive
constant), can be characterized to consist of those operators whose Schwartz kernels have

5Thus, while a central aim of the present paper is to provide general-purpose tools for analysis on singular
spaces in the context of Melrose’s program [Mel90] on geometric microlocal analysis, our implementation is
decidedly non-geometric, as it sidesteps manifolds with corners and geometric compactifications altogether.
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support in a collar neighborhood of diagV ; this is sometimes called the very small V-
calculus/algebra.

When V is a Lie structure at infinity [ALN04] on a compact manifold with corners M̄ ,
i.e. a Lie subalgebra V ⊂ Vb(M̄) whose elements span every tangent space over the interior
M = M̄◦, then by a result of Bui [Bui22], the injectivity radius of associated V-metrics is
positive, and thus V induces a bounded geometry structure on M . In turn, this structure
gives rise to associated algebras of ps.d.o.s [Shu92]. Furthermore, Ammann–Lauter–Nistor
[ALN07] construct a very small V-calculus in the absence of a V-double space by quantizing
symbols which are smooth down to ∂M̄ . (In some sense, the groupoid constructions in
[Deb01, CF03] used in [Bui22] do construct a neighborhood of the V-diagonal of a putative
V-double space.)

Returning again to settings where V-double spaces are available, consider now the case
that the scaling is nontrivial, i.e. infα mini=1,...,n ρα,i = 0. Then the operators in our
algebra ΨV(M) no longer have support close to diagV , and this is the crucial flexibility
which allows for the existence of the refined principal symbol (1.8). For example, in the
scattering setting (1.9a)–(1.9b), Schwartz kernels of elements of Ψm

V (Rn) are of the form

KA(x, x′) = (2π)−n
∫
ei(x−x

′)·ξχ
( |x− x′|
|x|+ |x′|

)
a(x, ξ) dξ |dx′| (1.16)

where χ ∈ C∞c (R) equals 1 near 0; thus, they are localized to an asymptotically conic
neighborhood of {x = x′} rather than to a neighborhood |x−x′| ≤ C. From the perspective
of the scattering double space [Mel94, §21] of Rn, the cutoff χ is equal to 1 not only near
the scattering diagonal but also in a full neighborhood of the scattering front face. The
Fourier transform of Schwartz kernels along the (vector space) fibers of the scattering front
face gives rise, geometrically, to the boundary principal symbol of the scattering calculus;
thus, it is necessary to localize only weakly, as in (1.16), in order to capture this boundary
principal symbol. — The semiclassical setting on Rn is similar: semiclassical ps.d.o.s with
uniformly smooth coefficients have Schwartz kernels

(2π)−n
∫
ei(x−x

′)·ξ/hχ(|x− x′|)a(h, x, ξ) dξ
|dx′|
hn

and the Fourier transform of their restriction to the semiclassical front face—which is a
bundle of vector spaces, with coordinate x−x′

h , over the diagonal diagRn (see [BGIM22,
§4])—gives the semiclassical principal symbol (i.e. a(0, x, ξ)). (By contrast, bounded geom-

etry ps.d.o.s would feature a localization by χ( |x−x
′|

h ) which destroys this principal symbol.)

We end this section by pointing out the main disadvantages of the (scaled) bounded
geometry perspective espoused in the present paper:

(1) generalized inverses of elliptic V-operators typically do not exist in ΨV (except in
fully symbolic settings);

(2) we do not have access to normal operators (i.e. restriction maps from ΨV to noncom-
mutative algebras of operators on boundary hypersurfaces) when microlocalizing Lie
algebras V on manifolds with corners M̄ , since we are at best able to keep track of
conormal (but not smooth) regularity of coefficients/symbols down to the boundary
hypersurfaces of M̄ .
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It appears that the full power of the geometric microlocal approach is required when
one needs either of these, as the definition of a large V-calculus (whose Schwartz ker-
nels may have nontrivial behavior also on those boundary hypersurfaces of the V-double
space which do not intersect the V-diagonal) is unavoidable. Recent examples include
[GH08, GH09, GHS13, GS14, AGR17, GTV20, FGS23, Nüt24]. On the other hand, in the
applications of the calculi in §1.2.4 to non-elliptic problems, not only the first but also the
second disadvantage is irrelevant: differential operators of interest (which one studies us-
ing microlocal tools) which have sufficiently regular coefficients on suitable manifolds with
corners do have well-defined normal operators—which in turn can be studied using scaled
b.g. ps.d.o.s on the respective boundary hypersurfaces.

Acknowledgments. I would like to thank Jeff Galkowski for helpful comments which in
particular motivated parts of §2.4. (For reasons of space, I unfortunately could not follow
his suggestion to treat Hörmander–Weyl calculi from a similar perspective in this paper.)
Thanks are also due to Pierre Albin, Daniel Grieser, Ethan Sussman, and András Vasy for
useful conversations, comments, and suggestions.

2. Aspects of bounded geometry structures

We consider a bounded geometry structure B = {(Uα, φα) : α ∈ A } on the manifold M .

(1) In §2.1, we explain in what sense spaces of uniformly smooth functions or vector
fields determine B (see Proposition 2.2);

(2) in §2.2, we discuss metrics on (M,B);
(3) in §2.3, we prove results regarding partitions and refinements of (M,B);
(4) in §2.4 finally, we discuss analytic notions related to the uniform compactification

uM of M , as motivated in Remark 1.8.

2.1. Compatibility and uniqueness. The space C∞uni,B(M ;TM) of uniformly bounded

vector fields is a module over C∞uni,B(M). It is also a Lie algebra since for two vector

fields on (−2, 2)n, the Ck-norms of the coefficients of their commutator are bounded by the
product of their Ck+1-norms. We shall explain in which sense C∞uni,B(M) and C∞uni,B(M ;TM)

(individually) determine B.

Definition 2.1 (Compatibility of b.g. structures). Consider two b.g. structures B =

{(Uα, φα) : α ∈ A } and B̃ = {(Ũα̃, φ̃α̃) : α̃ ∈ Ã }. Set U ′α := φ−1
α ((−3

2 ,
3
2)n) and Ũ ′α̃ :=

φ̃−1
α̃ ((−3

2 ,
3
2)n).

(1) B is coarser than B̃ (denoted B ≥ B̃) if the maps

φα ◦ φ̃−1
α̃ : φ̃α̃(U ′α ∩ Ũ ′α̃)→ φα(U ′α ∩ Ũ ′α̃) (2.1)

are uniformly (in α ∈ A , α̃ ∈ Ã ) bounded with all derivatives.

(2) B and B̃ are compatible if B ≥ B̃ and B̃ ≥ B.

(3) B is strongly coarser than B̃ if the maps (2.1) with Uα, Ũα̃ in place of U ′α, Ũ ′α̃ are

uniformly bounded with all derivatives. Similarly, B is strongly compatible with B̃
if B is strongly coarser than B̃ and vice versa.
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Thus, B ≥ B̃ implies C∞uni,B(M) ⊂ C∞
uni,B̃

(M). Roughly speaking, B ≥ B̃ means that

the unit cells of B are larger than those of B̃.

The shrinkage to (−3
2 ,

3
2)n is inconsequential in the following sense. Fix a diffeomorphism

Ψ: (−3
2 ,

3
2)n → (−2, 2)n which is the identity on [−1, 1]n. Then:

(1) Define φ′α := Ψ ◦ φα|U ′α ; then B′ := {(U ′α, φ′α)} and B are strongly compatible (and
thus give rise to the same notions of uniformly bounded smooth functions etc.).

(2) Suppose B, B̃ are compatible. Define φ̃′α̃ similarly to φ′α and set B̃′ := {(Ũ ′α̃, φ̃′α̃)}.
Then the b.g. structures B′ and B̃′ are strongly compatible.

Proposition 2.2 (Uniqueness of b.g. structures). Let B and B̃ be two b.g. structures on

M . Then B and B̃ are compatible if and only if either of the following conditions holds:

(1) C∞uni,B(M) = C∞
uni,B̃

(M);

(2) C∞uni,B(M ;TM) = C∞
uni,B̃

(M ;TM).

Proof. Fix χ ∈ C∞((−3
2 ,

3
2)n) to be equal to 1 on [−1, 1]n. Since a smooth function f , resp.

vector field W on M lies in C∞uni,B(M), resp. C∞uni,B(M ;TM) if and only if χ · (φα)∗f , resp.

χ · (φα)∗W is uniformly bounded, resp. has uniformly bounded coefficients in C∞((−2, 2)n),

the compatibility of B and B̃ implies both (1) and (2).

We first prove that condition (1) implies the compatibility of B and B̃. We need to

prove uniform C∞-bounds on (−3
2 ,

3
2)n 3 p 7→ (φα ◦ φ̃−1

α̃ )i(p) for all i, α, α̃. Now, if χ ∈
C∞((−2, 2)n) equals 1 on [−3

2 ,
3
2 ]n, then the family of functions fα,i := φ∗α(χxi), where

α ∈ A and i = 1, . . . , n, is a bounded subset of C∞uni,B(M). Since C∞uni,B(M) and C∞
uni,B̃

(M)

are Fréchet spaces, the identity map C∞uni,B(M) → C∞
uni,B̃

(M) is continuous by the closed

graph theorem; therefore, {fα,i} is uniformly bounded in C∞
uni,B̃

(M). This now implies

the uniform boundedness in C∞ of (φ̃−1
α̃ )∗fα,i = (φα ◦ φ̃−1

α̃ )∗(χxi) and thus of the function

(φα ◦ φ̃−1
α̃ )i restricted to φ̃α̃(φ−1

α ((−3
2 ,

3
2)n)∩ Ũα̃) since χ = 1 on the image of this set under

φα ◦ φ̃−1
α̃ . This implies the uniform boundedness of the maps (2.1), so B ≥ B̃. The other

direction B̃ ≥ B is proved by reversing the roles of B and B̃.

That condition (2) implies the compatibility of B and B̃ can be proved in a similar man-
ner, now considering the uniformly bounded family of vector fields φ∗α(χ∂i). Alternatively,
one can first show that (2) implies (1) and thus reduce to a case already treated. To this
end, we claim that

{u ∈ C∞(M) : uV ∈ C∞uni,B(M ;TM) ∀V ∈ C∞uni,B(M ;TM)} = C∞uni,B(M). (2.2)

(This allows one to recover C∞uni,B(M) from C∞uni,B(M ;TM) and the smooth manifold struc-

ture on M .) The inclusion ‘⊇’ in (2.2) is clear. For the converse, suppose we are given
a smooth function u /∈ C∞uni,B(M). Then there exists a sequence αi in A so that (φ−1

αi )∗u

is unbounded in C∞((−3
2 ,

3
2)n) and thus in Ck for some k. If one element of A appears

infinitely often, pass to the corresponding constant subsequence of {αi}; otherwise, by Defi-
nition 1.1(1), we may pass to a subsequence so that the sets Uαi are pairwise disjoint. Upon
passing to a further subsequence, there exist a multiindex β ∈ Nn0 , |β| ≤ k, and a sequence of
points xi ∈ (−3

2 ,
3
2)n converging to some limit x̄ ∈ [−3

2 ,
3
2 ]n so that |(∂β(φ−1

αi )∗u)(xi)| → ∞.
Fix now χ ∈ C∞c ((−2, 2)n) to be equal to 1 near x̄. If αi = α is constant, set V = φ∗α(χ∂1),
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and otherwise set V =
∑

i φ
∗
αi(χ∂1); in both cases, V ∈ C∞uni,B(M ;TM). Then in the charts

φαi , the first component of the vector field uV has ∂β-derivative at xi tending to infinity;
so uV /∈ C∞uni,B(M ;TM), finishing the proof. �

2.2. Compatible metrics. While one can define distance functions on M compatible
with the bounded geometry structure B by taking the Riemannian distance function for a
Riemannian metric as in Remark 1.2, we follow here a more pedestrian route (in line with
our insistence that Riemannian structures should not be regarded as central objects for our
present purely analytic purposes) to prove the following result:

Proposition 2.3 (Compatible metrics). There exists a metric d : M ×M → [0,∞) which
is compatible with B in the following sense: there exist constants δ0 ∈ (0, 1) and C ≥ 1 so
that

(1) for all α ∈ A and p, q ∈ U ′α := φ−1
α ((−3

2 ,
3
2)n), we have

C−1d(p, q) ≤ |φα(p)− φα(q)| ≤ Cd(p, q); (2.3)

(2) for p, q ∈ M , let D(p, q) denote the smallest number D ∈ N0 for which there exist
α0, α1, . . . , αD ∈ A with p ∈ Uα0, further Uαi ∩Uαi+1 6= ∅ for i = 0, . . . , D− 1, and
finally q ∈ UαD ; then

δ0D(p, q) ≤ d(p, q) ≤ δ−1
0 (D(p, q) + 1). (2.4)

The same remains true, for a different constant δ0 > 0, if we use the smaller sets
U ′α in the definition of D(p, q).

The same metric d is also compatible with any other b.g. structure B′ that is strongly
compatible with B.

Proof. For p, q ∈ M , define the set Cp,q of all triples (γ, T, I) of piecewise smooth curves
γ : [0, 1] → M with γ(0) = p, γ(1) = q, and tuples T = (t0, . . . , tk), I = (α0, . . . , αk−1)
where 0 = t0 < t1 < . . . < tk = 1, and γ|[ti,ti+1] is smooth for i = 0, . . . , k− 1 and contained
in Uαi . We then set

L(γ, T, I) :=
k−1∑
i=0

L(φαi ◦ γ|[ti,ti+1]), d(p, q) := inf
(γ,T,I)∈Cp,q

L(γ, T, I); (2.5)

here, for a curve β : [a, b]→ (−2, 2)n, we write L(β) =
∫ b
a |β

′(t)|dt for its Euclidean length.
The set Cp,q is non-empty since the sets Uα cover M .

In the subsequent arguments, c, c′ and C denote constants which may vary from line to
line but which are uniform for all points p, q and all charts. The lower bound in (2.3) follows
(for C = 1) by taking φα ◦γ to be the affine linear curve from φα(p) to φα(q). For the upper
bound, consider any (γ, T, I) ∈ Cp,q. Suppose that γ([0, 1]) ⊂ Uα. In view of the uniform
bounds on the C1-norms of the transition functions between Uα and Uβ with Uα ∩ Uβ 6= ∅,
we have L(γ, T, I) ≥ c|φα(p)−φα(q)|. On the other hand, if γ([0, 1]) is not contained in Uα,
there exists t0 ∈ (0, 1) with γ(t0) ∈ φ−1

α (∂([−7
4 ,

7
4 ]n)) and γ([0, t0)) ⊂ φ−1

α ((−7
4 ,

7
4)n). Since

φα(p) ∈ (−3
2 ,

3
2)n, the length of φα ◦ γ|[0,t0] exceeds some universal constant c > 0, which is

larger than a constant times |φα(p)−φα(q)| (since |φα(p)−φα(q)| ≤ |φα(p)|+|φα(q)| < 4
√
n).

This establishes (2.3).
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Turning to (2.4), we observe that the upper bound follows by concatenating D(p, q) + 1
many curves, the i-th of which is linear in Uαi−1 . To prove the lower bound, select (γ, T, I) ∈
Cp,q with L(γ, T, I) ≤ 2d(p, q). Since M is covered by the sets φ−1

α ((−1, 1)n), we may modify
T and I so that γ(ti) ∈ φ−1

αi ([−1, 1])n) and γ|[ti,ti+1] ∈ φ−1
αi ([−3

2 ,
3
2 ]n) for all i; in view of the

uniform C1 bounds on the τβα, we have

L(γ, T, I) =
k−1∑
i=0

Li ≤ Cd(p, q), Li := L(φαi ◦ γ|[ti,ti+1]). (2.6)

after this modification. For a small constant c > 0, to be determined below, we furthermore
subdivide each segment γ|[ti,ti+1] into a finite number of segments each of which has length
≤ c; this modification does not change the value of L(γ, T, I). We now group the terms in
the sum in (2.6): we set i0 = 0 and define il for l ≥ 1 inductively as follows, as long as

il−1 ≤ k: we let il ≥ il−1 + 1 to be the largest integer ≤ k so that
∑il−1

i=il−1
Li < c. (The

existence of such an index il uses that Li < c for all i.) Since γ(til−1
) ∈ φ−1

αil−1
([−1, 1]n), we

conclude, for sufficiently small c, that

γ|[til−1
,til ]
⊂ φ−1

αil−1
((−2, 2)n). (2.7)

Let ¯̀∈ N0 be the index with i¯̀+1 = k. In the case ¯̀= 0, the curve γ is entirely contained

in Uαi0 , so D(p, q) = 0 and (2.4) is trivially satisfied. Otherwise, note that for l ≤ ¯̀− 1 we

have
∑il+2−1

i=il
Li ≥ c by maximality of il, and therefore

¯̀c

2
≤ 1

2

¯̀−1∑
l=0

il+2−1∑
i=il

Li ≤
k−1∑
i=0

Li ≤ Cd(p, q).

This gives ¯̀ ≤ 2C
c d(p, q). But by (2.7), we have D(p, q) ≤ ¯̀, and we have therefore

proved (2.4) for δ0 = c
2C . The argument for the sets U ′α in place of Uα is analogous, except

one replaces [−3
2 ,

3
2 ]n above by the smaller set [−5

4 ,
5
4 ]n.

To prove the final claim, consider the union B̃ of the b.g. structures B and B′, which is
itself a b.g. structure; defining a metric d̃ for it as above, one then finds that C−1d̃ ≤ d ≤ Cd̃
for some constant C. The same holds for the metric d′, and thus C−2d′ ≤ d ≤ C2d′, from
which one obtains (2.3) and (2.4) for d′ in place of d, with different constants. �

Corollary 2.4 (Short distances). Let d be as in Proposition 2.3. There exists δ1 > 0 so
that for p ∈ φ−1

α ([−1, 1]n) and q ∈ M with d(p, q) < δ1, we have q ∈ Uα = φ−1
α ((−2, 2)n)

(and thus |φα(p)− φα(q)| < Cd(p, q)).

Proof. If we take δ1 < δ0, then by Proposition 2.3(2), there exists Uβ containing both p and

q, and |φβ(p) − φβ(q)| < Cδ1. Consider the curve γ(s) = φ−1
β (φβ(p) + s[φβ(q) − φβ(p)]),

s ∈ [0, 1], in Uβ; once we show that γ remains also in Uα, then |φα(p)−φα(q)| < CC ′δ1 < 1
(for small δ1 > 0) where C ′ bounds the C1-norm of the transition function ταβ. Now
γ(0) = p ∈ Uα, and thus φα(γ(s)) = ταβ(φβ(p) + s[φβ(q)− φβ(p)]) is well-defined for small
s and attains a value in [−1, 1]n for s = 0. Let I ⊂ [0, 1] denote the set of all s0 ∈ [0, 1]
so that γ(s) ∈ φ−1

α ([−3
2 ,

3
2 ]n) for s ∈ [0, s0]. Then I is closed; but for s0 ∈ I, we have

d(φα(γ(s0)), [−1, 1]n) ≤ CC ′δ1 using the C1-bounds on ταβ, and thus γ(s0) ∈ φ−1
α ([−5

4 ,
5
4 ]n)

if we fix δ1 > 0 sufficiently small. Therefore, a small neighborhood of s0 lies in I. This
implies that I is open. Since I 3 0 is non-empty, we are done. �
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2.3. Partitions and refinements. We record two technical results related to covering
properties of the unit cells. We begin with a partition of M into finitely many unions of
pairwise disjoint unit cells.

Lemma 2.5 (Partition of distinguished charts). Let ` < 2 and set Uα(`) = φ−1
α ((−`, `)n).

There exist J < ∞ and a partition A =
⊔J
j=1 Aj of A so that for each j = 1, . . . , J , any

two sets Uα(`), Uβ(`) with α, β ∈ Aj are disjoint.

Proof. Say that a subset B ⊂ A satisfies the disjointness property if for all α, β ∈ B one
has Uα(`) ∩ Uβ(`) = ∅. Pick any α1 ∈ A , and take A1 ⊂ A to be a maximal subset
satisfying the disjointness property. If A1 6= A , pick α2 ∈ A and take A2 ⊂ A \ A1 to
be a maximal subset satisfying the disjointness property. Define subsets Aj for j = 1, 2, . . .
inductively as long as A1 ∪ · · · ∪Aj 6= A . Let J ∈ N∪{∞} be the supremum of j; we need
to show that J is finite.

Fix ε > 0 with the following property: for all α, β, γ ∈ A , p ∈ Uα(`) ∩ Uβ(`), and
q ∈ Uα(`) ∩ Uγ(`) with |φα(p) − φα(q)| < ε, one has q ∈ Uβ (and symmetrically p ∈ Uγ);
such an ε can be chosen to depend only on ` and on the C1-norms of the transition functions
τβα. Fix then J0, only depending on ε, n, and the constant A ∈ N from Definition 1.1(1),
so that for all J0-tuples of points in (−`, `)n there exists a subset of A + 1 many points
with pairwise distances less than ε. We claim that J ≤ J0. Suppose this were false, and let
α ∈ A \

⋃J0
j=1 Aj . By the maximality of the sets Aj , there exists, for each j = 1, . . . , J0,

a point pj ∈ Uα(`) ∩ Uα′j (`) for some α′j ∈ Aj . By relabeling the points, we may assume

that |φα(p1)−φα(pk)| < ε for all k = 1, . . . , A+ 1. But this implies that p1 ∈
⋂A+1
k=1 Uα′k , in

contradiction to Definition 1.1(1). �

The following result provides a convenient modification of a given b.g. structure which
will be useful for studying compositions of ps.d.o.s which are given via sums of quantizations
in local charts. (See the proof of Theorem 3.51.)

Lemma 2.6 (Refinement). Let 1 < `1 < `2 < 2. Then there exists a b.g. structure B′

on M which is strongly compatible with B so that if φ−1
α ((−`1, `1)n) ∩ φ−1

β ((−`1, `1)n) 6= ∅,
then φ−1

β ((−`1, `1)n) ⊂ φ−1
α ((−`2, `2)n).

Proof. Fix an integer S ≥ 3. We subdivide

φ−1
α

((
−3

2
,
3

2

)n)
=

⋃
γ∈{ 1

8
2S ,..., 7

8
2S−4}n

Vα,γ ,

Vα,γ := φ−1
α (Qγ), Qγ =

n∏
j=1

(
−2 + 4 · 2−Sγj ,−2 + 4 · (2−S(γj + 4))

)
.

Suppose p ∈ Vα,γ ∩ Vβ,δ 6= ∅, and suppose that q ∈ Vβ,δ is such that |φβ(q) − φβ(p)|∞ <

16 · 2−S (the side length of Qδ). In view of the uniform C1-bounds on ταβ, we then also
have q ∈ Uα provided we choose S sufficiently large, and indeed

|φα(p)− φα(q)|∞ < 16C · 2−S < 1

2

for some uniform constant C > 1.
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The idea is to make `1-cubes very small compared to `2-cubes. To this end, fix a monotone
diffeomorphism η : R → R with η(−x) = −η(x) so that η(0) = 0, η(12 · 2−S/2) = 1,
η(16 · 2−S/2) = `1, η(16C · 2−S/2) = `2, and η(1

4) = 2. Take Uα,γ to be the preimage

under φα of the cube with the same center as Qγ but with side length 2 · 1
4 , and let

φα,γ : Uα,γ
∼=−→ (−2, 2)n to be the composition of φα with the translation x 7→ (xj + 2 − 4 ·

2−S(γj + 2))j=1,...,n (which maps Qγ to (−1
4 ,

1
4)n) followed by η × · · · × η. It then follows

that {(Uα,γ , φα,γ) : α ∈ A , γ ∈ {1
82−S , . . . , 7

82S − 4}n} is a b.g. structure with the desired
properties. �

2.4. Compactification and supports. With B fixed throughout, we drop it from the
notation and thus write C∞uni(M) = C∞uni,B(M) etc. We moreover fix a bounded metric

d : M ×M → [0, 1]

on M which is compatible with the bounded geometry structure in the sense that there
exist constants δ0 < 1 and C > 1 so that p ∈ φ−1

α ([−1, 1]n) and d(p, q) < δ ≤ δ0 implies
q ∈ φ−1

α ((−2, 2)n) and |φα(p) − φα(q)| < Cδ, and conversely for p, q ∈ φ−1
α ((−2, 2)n) with

|φα(p) − φα(q)| < δ one has d(p, q) < Cδ. (In particular, points p, q lying in disjoint sets
φ−1
α ((−1, 1)n), φ−1

β ((−1, 1)n) have distance d(p, q) ≥ δ0.) Such a function d can be defined

by d(p, q) = min(d̃(p, q), 1) where d̃ is a metric as in Proposition 2.3.

We denote by C0
uni(M) the subspace of the Banach algebra C0(M) of continuous functions

u which are uniformly continuous. This means that for all ε > 0 there exists δ > 0 so that
for all α ∈ A and x, y ∈ (−2, 2)n with |x− y| < δ we have |u(φ−1

α (x))− u(φ−1
α (y))| < ε; or

equivalently (for a possibly different δ), d(p, q) < δ implies |u(p)−u(q)| < ε; or equivalently
(for yet another value of δ), the family {(φα)∗u : α ∈ A } ⊂ C0((−2, 2)n) is equicontinuous.
Equipped with the supremum norm, the space C0

uni(M) is again a Banach algebra.

The following compactification was introduced (albeit in a different fashion) in [Sam48].
We follow, to some extent, the paper [GW95], but operate entirely in the concrete setting
of interest in the present paper.

Definition 2.7 (Uniform compactification of M). The uniform compactification uM of
(M,B) is the Gelfand spectrum σ(C0

uni(M)) of C0
uni(M) as a unital *-algebra, i.e. the set

of all continuous6 *-algebra homomorphisms φ : C0
uni(M) → C equipped with the Gelfand

topology, which is the coarsest topology with respect to which the maps φ 7→ φ(u) are
continuous for all u ∈ C0

uni(M). If we wish to specify the b.g. structure, we write u(M,B)
for uM .

Some authors use the terminology Samuel compactification.

Since uM is a closed subset of the unit ball of (C0
uni(M))∗ in the weak-* topology, uM is

a compact Hausdorff space.7 Of course, in practice one does not work with uM , but rather
with smaller compactifications; this is discussed in and after Lemma 2.14 below.

6We recall that continuity is automatic: kerφ is a maximal ideal and thus necessarily closed since
otherwise its closure would contain the identity element; but the set of invertible elements in a Banach
algebra is open.

7The more well-known Stone–Čech compactification βM is the spectrum of the algebra of bounded
continuous functions. Much like βM , the space uM is very large, see [GW95, Theorem 4.9(b)]; for example,
for M = R, restricting an element of C0uni(R) to the integer points gives a surjective *-homomorphism to
`∞(Z) (bounded continuous functions on Z), and thus an embedding βZ ↪→ uR.
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Proposition 2.8 (Towards an alternative construction of uM). Let C = C0
uni(M ; [0, 1])

and consider [0, 1]C equipped with the product topology.8 Write ι : M → [0, 1]C for the map
ι(p)u := u(p). Then the map

j0 : C0
uni(M ; [0, 1])→ C0

(
ι(M); [0, 1]

)
j0(u) :

(
[0, 1]C 3 (cv)v∈C 7→ cu ∈ [0, 1]

)
extends by linearity to an (isometric) *-algebra isomorphism j : C0

uni(M)→ C0(ι(M)).

Since all u ∈ C are continuous, the map ι is a continuous injection. Via j, we can identify
uM with σ(C0(ι(M))), which in turn is isomorphic to ι(M); the latter isomorphism is given

by evaluations evp at points p ∈ ι(M). Thus,

ι(M) ∼= uM, p 7→
(
C0

uni(M) 3 u 7→ j(u)(p)
)
. (2.8)

Proof of Proposition 2.8. Note that j0(u)(ι(p)) = j0(u)((v(p))v∈C) = u(p). Therefore, the
map j, defined by linear extension of j0, satisfies ‖j(u)‖C0 = ‖u‖C0 by the density of

ι(M) ⊂ ι(M); in particular, it is injective.

We must show that j0 is surjective; that is, given ũ ∈ C0(ι(M); [0, 1]), we define u(p) :=

ũ(ι(p)), and we need to show that u ∈ C0
uni(M). Let ε > 0. For all p̃ ∈ ι(M), the continuity

of ũ at p̃ (in the product topology on [0, 1]C) implies the existence of ε̃p̃ > 0, Np̃ ∈ N, and
up̃,1, . . . , up̃,Np̃ ∈ C ⊂ C0

uni(M) with the property that

max
1≤j≤Np̃

|up̃,j(q̃)− up̃,j(p̃)| < ε̃p̃ =⇒ |ũ(q̃)− ũ(p̃)| < ε

2
. (2.9)

(Here we write up̃,j(q̃) = q̃up̃,j for q̃ ∈ [0, 1]C .) Let now

Up̃ :=
{
q̃ ∈ ι(M) : max

1≤j≤Np̃
|up̃,j(q̃)− up̃,j(p̃)| <

ε̃p̃
2

}
.

Then ι(M) =
⋃
p̃ Up̃, so by the compactness of ι(M) there exist finitely many points

p̃1, . . . , p̃N ∈ ι(M) so that ι(M) =
⋃N
i=1 Up̃i . Let ε̃ := min1≤i≤N ε̃i. Fix δ > 0 so that

whenever p, q ∈M are such that d(q, p) < δ, then |up̃i,j(p)− up̃i,j(q)| < ε̃
2 for all 1 ≤ i ≤ N

and 1 ≤ j ≤ Np̃i ; this is possible since the up̃i,j are uniformly continuous.

Let now p, q ∈M , d(p, q) < δ. Take i ∈ {1, . . . , N} so that ι(p) ∈ Up̃i , then |up̃i,j(ι(p))−
up̃i,j(p̃i)| < ε̃

2 for all j = 1, . . . , Np̃i and thus |ũ(ι(p))− ũ(p̃i)| < ε
2 by (2.9); but also (using

up̃i,j(p) = up̃i,j(ι(p)) for p ∈M)

|up̃i,j(ι(q))− up̃i,j(p̃i)| ≤ |up̃i,j(q)− up̃i,j(p)|+ |up̃i,j(ι(p))− up̃i,j(p̃i)| <
ε̃

2
+
ε̃

2
= ε̃,

and therefore also |ũ(ι(q))− ũ(p̃i)| < ε
2 by (2.9); this implies that

|u(p)− u(q)| = |ũ(ι(p))− ũ(ι(q))| < ε

2
+
ε

2
= ε,

finishing the proof. �

We shall henceforth typically drop the identification j from the notation, and we also
identify uM = ι(M).

8This is thus a compact Hausdorff space by Tychonoff’s theorem.
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Lemma 2.9 (M and uM). The map ι : M → uM is open, and thus9 a homeomorphism
onto its image. In particular, ι(M) is an open subset of uM , and ∂(uM) = uM \ ι(M) is
compact.

Proof. Let V ⊂ M be open and nonempty. Let p ∈ V . Pick u ∈ C0
uni(M) so that u(p) = 0

and u|M\V ≥ 1. Then ι(V ) contains the open subset {q̃ ∈ [0, 1]C : |q̃u| < 1
2} ∩ ι(M) of

ι(M). �

We may thus also drop ι from the notation and regard M ⊂ uM as the dense interior of
the compact space uM .

Remark 2.10 (Vanishing at the boundary). Let u ∈ C0
uni(M). Then u|∂(uM) = 0 if and only

if u vanishes at infinity, i.e. for all ε > 0 there exists a compact set K ⊂M so that |u| < ε
on M \ K. The direction ‘=⇒’ follows from the continuity of u ∈ C0(uM), which yields
an open neighborhood U ⊂ uM so that |u| < ε on U , and thus K := uM \ U ⊂ M is a
compact set with the desired property; the direction ‘⇐=’ follows from K ∩ ∂(uM) = ∅ for
K ⊂M , so |u|∂(uM)| < ε for all ε > 0.

The following result is stated in [GW95, Theorem 1.1]; we give a self-contained proof for
completeness. We write cluM (A) for the closure of A in uM .

Lemma 2.11 (Intersections in uM). Let A,B ⊂ M . Then cluM (A) ∩ cluM (B) 6= ∅ if and
only if d(A,B) = 0.

Proof. By Urysohn’s lemma, cluM (A) ∩ cluM (B) = ∅ is equivalent to the existence of u ∈
C0(uM) with u|A = 1, u|B = 0. Given such a u, the uniform continuity of u implies that
there exists δ > 0 so that for all p, q ∈M with d(p, q) < δ one has |u(p)−u(q)| < 1

2 , and thus
d(A,B) ≥ δ. Conversely, suppose that d(A,B) ≥ δ > 0, then we can construct a separating
function u as follows: in view of |d(A, p) − d(A, q)| ≤ d(p, q), we have d(A, ·) ∈ C0

uni(M).

Pick a continuous function f : R → [0, 1] which equals 1 on [0, δ3 ] and 0 on [2δ
3 ,∞), then

u := f ◦ d(A, ·) ∈ C0
uni(M) equals 1 on A and 0 on B, as required. �

To illustrate how one can work with uM , we now study the support of uniformly con-
tinuous functions. Another example illustrating the utility of the compactification uM is
given in (2.13) below.

Definition 2.12 (uM -support). Let u ∈ C0
uni(M). Then its uM -support is suppuM u :=

supp j(u) ⊂ uM .

We have the usual properties

suppuM (uv) ⊂ suppuM u ∩ suppuM v, suppuM (u+ v) ⊂ suppuM u ∪ suppuM v

for u, v ∈ C0
uni(M). Furthermore, one easily shows

suppuM u ⊂M (i.e. suppuM u ∩ ∂(uM) = ∅) ⇐⇒ u ∈ C0
c (M).

Moreover, suppuM u is equal to the closure of its interior {u 6= 0}; and in particular it does
not have isolated points. Finally, note that suppu = M ∩ suppuM u ⊂ M recovers the
standard notion of the support of u on M . Conversely, we have

suppuM u = cluM (suppu) (2.10)

9We argued above that ι is continuous.
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where cluM denotes the closure in uM . Indeed, the inclusion ‘⊇’ is clear, and to prove ‘⊆’,
we note that if p ∈ suppuM u, then (by the density of M ⊂ uM) all open neighborhoods
V ⊂ uM of p contain a point pV ∈ V ∩M with u(pV ) 6= 0 and thus pV ∈ suppu; so p is an
accumulation point of {pV } ⊂ suppu, and therefore p ∈ cluM (suppu).

We also note the following testing definition of suppuM u: a point p ∈ uM does not lie
in suppuM u if and only if there exists χ ∈ C0

uni(M) with χ(p) 6= 0 so that χu = 0. For later
purposes, we point out that one can use uniformly smooth witnesses χ for the absence of
support:

Lemma 2.13 (Smooth witnesses). Let u ∈ C0
uni(M). Then p ∈ uM does not lie in suppuM u

if and only if there exists χ ∈ C∞uni(M) with χ(p) 6= 0 and χu = 0.

Proof. We use a smoothing procedure; the case p ∈ M is clear, and thus we only consider
the case p ∈ ∂(uM), p /∈ suppuM u. Let χ ∈ C0

uni(M) with χ(p) 6= 0 and χu = 0. Let
η ∈ C0

uni(M) = C0(uM) be a function which equals 1 at p and whose uM -support is disjoint
from χ−1(0); thus d(supp η, χ−1(0)) > 0 by Lemma 2.11. We can write η =

∑
α(φα)∗ηα

where ηα ∈ C0
c ((−2, 2)n), with supp ηα ⊂ [−1, 1]n for all α, is an equicontinuous family;

and then taking ψε(x) = ε−nψ1(x/ε) to be a standard mollifier, with ψ1 ∈ C∞c ((−1, 1)n)
and

∫
ψ1(x) dx = 1, we let ηε :=

∑
α(φα)∗(ψε ∗ ηα). Then ηε ∈ C∞uni(M) converges to η in

C0
uni(M) as ε ↘ 0, and thus ηε(p) 6= 0 for sufficiently small ε > 0 (since j(ηε) → j(η) in
C0(uM)). Since d(supp ηε, χ

−1(0)) ≥ d(supp η, χ−1(0)) − Cε is positive for all sufficiently
small ε > 0, this implies that ηεu = ηε

χ · χu = 0 since ηε
χ ∈ C

0
uni(M). �

We next describe how uM relates to more practical (for analytic purposes) compactifi-
cations of M . We first record the following universal property of uM :

Lemma 2.14 (Smaller compactifications). Suppose M̄ is a compact Hausdorff space so that
M is homeomorphically embedded into M̄ as the interior M̄◦; and suppose that restriction
to M induces a continuous map r : C0(M̄)→ C0

uni(M). Then there exists a unique surjective
continuous map β : uM → M̄ which is the identity over M and has the property

r(C0(M̄)) = {u ∈ C0
uni(M) : u is constant on the fibers of β}.

Proof. The map r induces a continuous map of Gelfand spectra β : uM = σ(C0
uni(M)) →

σ(C0(M̄)) ∼= M̄ by mapping φ : C0
uni(M)→ C to the map r∗φ : C0(M̄) 3 u 7→ φ(r(u)); that

is, β = r∗. Since β(uM) ⊂ M̄ is compact, being the continuous image of a compact set,
and since β(M) = M is dense, we must have β(uM) = M̄ , i.e. β is surjective. We claim
that this map β satisfies the desired conclusions. The uniqueness of β follows from the
required continuity of β and the density of M in uM .

We claim that M̄ carries the quotient topology of uM/ ∼ where p ∼ q if and only if
β(p) = β(q). Since {(p, q) ∈ uM × uM : β(p) = β(q)} (the graph of ∼) is closed, uM/ ∼ is
a compact Hausdorff space [Bou98, §10, no. 4, Proposition 8(a), (d)]. But the continuous
map uM → M̄ factors through a continuous map uM/ ∼→ M̄ , which is a continuous
bijection of compact Hausdorff spaces and thus a homeomorphism, as desired.

Regarding C0(M̄) ⊂ C0(uM) via the isometry r, a continuous map u : uM → C is constant
on the fibers of β : uM → M̄ if and only if it factors through a continuous map u′ : M̄ → C,
i.e. u = u′ ◦ β; but for p ∈ M , this means u(p) = u′(p), so this is in turn equivalent to
u ∈ C0(M̄). �
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For u ∈ C0
uni(M), we can then consider its support as a subset of M̄ ,

suppM̄ u := β(suppuM u). (2.11)

Equivalently, if p ∈ M̄ , then

p /∈ suppM̄ (u) ⇐⇒ ∃χ ∈ C0(M̄), χ(p) 6= 0, such that χu = 0. (2.12)

Indeed, such a function χ restricts to M as an element of C0
uni(M) which does not vanish

anywhere on β−1(p), so suppuM u∩β−1(p) = ∅ or equivalently p /∈ β(suppuM u). Conversely,
if p does not lie in the compact set β(suppuM u), then there exists an open neighborhood
U ⊂ M̄ of p disjoint from β(suppuM u), and thus for any χ ∈ C0(M̄) with support in
U we have χu = 0; choosing χ to be nonzero at p finishes the proof of (2.12). As a
consequence, the definition (2.11) of suppM̄ u coincides for u ∈ C0(M̄) with the standard
notion of support.

In the case that M̄ is a smooth manifold with corners—that is, each point p ∈ M̄
has a neighborhood diffeomorphic to [0,∞)k × Rn−k where k depends on p—one can use
χ ∈ C∞(M̄) in (2.12). (For manifolds with corners, one often requires the boundary hyper-
surfaces of M to be embedded [Mel96], but this is not needed here.)

Example 2.15 (Supports on compactifications of Rn). We consider the bounded geometry
structure (1.1) on R2. We write points in R2 as (x, y). Consider a function u(x, y) =
φ(x)χ(y − y0) where φ ∈ C∞(R) equals 1 on [0,∞) and 0 on (−∞,−1], and χ ∈ C∞c (R)
has non-empty support K := suppχ 6= ∅; we are interested in its support properties ‘at
infinity’. We consider three compactifications of R2 to smooth manifolds (with or without
boundary or corners).

(1) In the one-point compactification M̄1 = R2 t {∞} = S2 of R2, we have suppM̄1
u =

suppR2 u ∪ {∞}.
(2) In the radial compactification M̄2 = (R2t([0,∞)ρ×S1

ω))/ ∼, 0 6= x = rω ∼ (r−1, ω)
(which is a manifold with boundary ∂M̄2 = S1), suppM̄2

u = suppR2 u ∪ {E} where

E ∈ ∂M̄2 is the point with ρ = 0, ω = (1, 0) ∈ S1.
(3) In the product compactification M̄3 = R×R where R = R∪{−∞,+∞}, suppM̄3

u =
suppR2 u ∪ ({+∞}×K).

The conceptual benefit of working with uR2 is that it includes these cases (and infinitely
many others) as special cases in the sense of (2.11).

We end this section by pointing out that an advantage of compact spaces is that the
validity of a local property near every point implies its global uniform validity. For example,
let us define for u ∈ C0

uni,B(M) its Ckuni,B(M)-singular support by its complement

uM \ sing suppCkuni,B(M) u =
{
p ∈ uM : ∃χ ∈ C∞uni(M), χ(p) 6= 0 s.t. χu ∈ Ckuni,B(M)

}
.

(2.13)
Then sing suppCkuni,B(M) u = ∅ if and only if u ∈ Ckuni,B(M). (By contrast, merely having

sing suppCk u = ∅, i.e. for all p ∈M there exists χ ∈ C∞(M), χ(p) 6= 0, with χu ∈ Ck, does
not imply u ∈ Ckuni,B(M) when k ≥ 1, due to a lack of uniform control on derivatives of u.)
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3. Scaled bounded geometry structures

We now develop the theory of (parameterized) scaled b.g. structures (Definitions 1.3 and
1.9) and of the associated classes of (pseudo)differential operators and weighted function
spaces in detail. The main results in this section are as follows.

• §3.1: we show that the operator Lie algebra V of a scaled b.g. structure B× essen-
tially determines B×; see Proposition 3.2.
• §3.2: we describe a secondary bounded geometry structure (corresponding to the

notion of regularity induced by the operator Lie algebra) in Proposition 3.3.
• §3.3: we study V-differential operators and their principal symbols; see in particular

Theorem 3.10.
• §3.4: we introduce weighted V-Sobolev spaces, and versions thereof with additional
W-regularity. Differential operators act boundedly between these spaces.
• §3.5: the heart of the paper; we define V-pseudodifferential operators in Defini-

tion 3.43, prove their mapping properties (Theorem 3.44), and develop their prin-
cipal symbol calculus (Theorem 3.51).
• §3.6: we define Sobolev wave front sets adapted to the scaled b.g. structure using

the V-calculus.
• §3.7: we discuss the generalization of these notions to parameterized scaled b.g.

structures.

3.1. Compatibility and uniqueness. We use the notation B×, B, W, V, V’ from Def-
inition 1.3, and recall ταβ = φα ◦ φ−1

β . The Lie algebra property of the space V ′ is proved

similarly to that of W = C∞uni,B(M ;TM) (see §2.1). The properties of V are slightly more

subtle. We remark that for χ ∈ C∞c ((−2, 2)n), we have φ∗α(χρα,i∂i) ∈ V for all α ∈ A ,
i = 1, . . . , n; indeed,

(φβ)∗φ
∗
α(χρα,i∂i) = (τ∗αβχ)

n∑
j=1

ρα,i(∂iτ
j
βα)∂j =

n∑
j=1

V j
β ρβ,j∂j , V j

β = (τ∗αβχ)
ρα,i∂iτ

j
βα

ρβ,j
,

and the smoothness of τ∗αβχ together with the condition (1.6) gives the required uniform C∞

bounds of V j
β . For the proof that V is a Lie algebra, let X,Y ∈ V and let χ ∈ C∞c ((−2, 2)n);

then, writing (φα)∗X =
∑n

i=1X
iρα,i∂i and (φα)∗Y =

∑n
j=1 Y

jρα,j∂j , we have

χ · (φα)∗[X,Y ] = χ · [(φα)∗X, (φα)∗Y ] = χ
n∑

i,j=1

(
Xiρα,i(∂iY

j)− Y iρα,i(∂iX
j)
)
ρα,j∂j ;

note then that the expression in parentheses is uniformly bounded in C∞.

We shall now explain in what sense V determines the underlying scaled b.g. structure.

Definition 3.1 (Compatibility of scaled b.g. structures). Two scaled b.g. structures B× =

{(Uα, φα, ρα)} and B̃× = {(Ũα̃, φ̃α̃, ρ̃α̃)} are compatible if the b.g. structures {(Uα, φα)}
and {(Ũα̃, φ̃α̃)} are compatible and if, moreover, there exist constants Cγ <∞ so that the

transition functions ταα̃ := φα ◦ φ̃−1
α̃ and τα̃α := φ̃α̃ ◦ φ−1

α satisfy

|∂γ ρ̃α̃,i∂iτ jαα̃| ≤ Cγρα,j , |∂γρα,i∂iτ jα̃α| ≤ Cγ ρ̃α̃,j ∀ i, j = 1, . . . , n, γ ∈ Nn0 , (3.1)

on φ̃α̃(U ′α ∩ Ũ ′α̃) and φα(U ′α ∩ Ũ ′α̃) in the notation of Definition 2.1 for all α, α̃.
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Proposition 3.2 (Uniqueness of scaled b.g. structures). Let B× and B̃× be two scaled b.g.

structures on M . Then the operator Lie algebras V and Ṽ of B× and B̃× are equal if and
only if B× and B̃× are compatible. In particular, V = Ṽ implies the equality also of the
coefficient Lie algebras and large operator Lie algebras of B× and B̃×.

Proof. We only prove one direction, namely that V = Ṽ implies the compatibility of B×
and B̃×. Write B and B̃ for the b.g. structures underlying B× and B̃×. Following the
arguments after (2.2), one shows, now using V = φ∗α(χ · ρα,1∂1) or V =

∑
i φ
∗
αi(χ · ραi,1∂1)

in the final step of the argument by contradiction, that

C∞uni,B(M) = {u ∈ C∞(M) : uV ∈ V ∀V ∈ V}.

Since the space on the right is unchanged when replacing V by Ṽ, in which case it equals
C∞

uni,B̃
(M), we deduce C∞uni,B(M) = C∞

uni,B̃
(M) and thus the compatibility of B and B̃ by

Proposition 2.2(1).

In order to establish (3.1), let χ ∈ C∞c ((−2, 2)n) be equal to 1 on [−3
2 ,

3
2 ]n, and consider

Vα,i := φ∗α(χ · ρα,i∂i); this is a bounded family of elements of V, where we equip V with

the Fréchet space structure given by the Ck-seminorms of the coefficients V i in the local
coordinate description χ · (φα)∗V =

∑n
i=1 V

iρα,i∂i. As in the proof of Proposition 2.2, the

closed graph theorem implies the boundedness of Vα,i in Ṽ, which means in the notation of
Definition 3.1 that

(φ̃α̃)∗Vα,i = (τα̃α)∗(χ · ρα,i∂i) =
n∑
j=1

V j
α̃,α,iρ̃α̃,j∂j

where the V j
α̃,α,i are uniformly bounded in C∞. In particular, this implies that there exists

C <∞ so that on [−3
2 ,

3
2 ]n we have

|ρα,i∂iτ jα̃α| = |V
j
α̃,α,iρ̃α̃,j | ≤ Cρ̃α̃,j

for all α, α̃, i, j, proving the second inequality in (3.1) for γ = 0; and the uniform bounded-

ness in C∞ of V j
α̃,α,i in fact gives (3.1) for all γ. The first inequality follows by exchanging

the roles of B× and B̃×. �

3.2. Secondary bounded geometry structures. We briefly address the change of per-
spective explained prior to Definition 1.3. Let B× = {(Uα, φα, ρα) : α ∈ A } be a scaled b.g.
structure. For D ∈ N to be determined, and for each α ∈ A , define the following objects:

• Dα,i ∈ N, the largest integer with ρα,iDα,i ≤ 1, or Dα,i = 4, whichever is larger;
• for each n-tuple k = (k1, . . . , kn) of integers 0 ≤ ki ≤ 3D · Dα,i − 4, set Iα,k,i =

(−3
2 + ki

D·Dα,i ,−
3
2 + ki+4

D·Dα,i ), denote by Ψα,k,i : Iα,k,i → (−2, 2) the monotone affine

linear diffeomorphism, and set

Uα,k := φ−1
α

(
n∏
i=1

Iα,k,i

)
, φα,k :=

(
n∏
i=1

Ψα,k,i

)
◦ φα : Uα,k → (−2, 2)n;

• ρB := {(Uα,k, φα,k) : α ∈ A , k ∈
∏n
i=1{0, 1, 2, . . . , Dα,i − 4}}.

We refer back to the right hand side of Figure 1.1 for an illustration of ρB.
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Proposition 3.3 (Secondary b.g. structure). In the above notation, ρB is a b.g. structure
provided we choose D large enough. If V, resp. V ′ denote the operator, resp. large operator
Lie algebra of B×, then

V ′ = C∞uni,ρB(M ;TM) = V ⊗C∞uni,B(M) C∞uni,ρB(M). (3.2)

Proof. Consider two overlapping charts Uα, Uβ, and let x0 be the center of φα(Uα,k) ⊂
(−3

2 ,
3
2)n; thus φα(Uα,k) is a cuboid centered around x0 with side lengths 4

D·Dα,i . Let k′

be such that x′0 := τβα(x0) = φβ(φ−1
α (x0)) lies in φβ(Uβ,k′). Then for x ∈ φα(Uα,k), the

condition (1.6) (with |γ| = 1) implies

|τ jβα(x)− (x′0)j | =
∣∣∣∣ n∑
i=1

(∫ 1

0
∂iτ

j
βα(x0 + t(x− x0)) dt

)
(xi − xi0)

∣∣∣∣ ≤ Cρα,j
for a uniform constant C, provided φ−1

α (x0 + t(x− x0)) lies in Uβ for all t ∈ [0, 1]; but this

condition holds due to x0 ∈ (−3
2 ,

3
2)n, |x − x0|∞ < D−1, and the uniform C1-bounds on

τβα if we choose D sufficiently large. This implies that there is a uniform constant S <∞
so that at most S of the sets Uβ,k′ intersect Uα,k nontrivially. Denoting by A the covering
constant from Definition 1.1(1), we conclude that A · S is a covering constant for {(Uα,k)}.

The uniform boundedness in C∞ of the transition functions for ρB follows a fortiori from

the bounds (1.6) for general γ, as in the rescaled coordinates x̃i = xi

ρα,i
and x̃′j = x′j

ρβ,j
the

bounds (1.6) are equivalent to uniform bounds on the x̃′j-components of

∂x̃i(φβ ◦ φ−1
α ) (3.3)

together with all derivatives along ρ−1
α,i∂x̃i .

Finally, using the same rescaling, one sees that a smooth function u, resp. vector field V
lies in C∞uni,ρB(M), resp. C∞uni,ρB(M ;TM) if and only if its pushforward along φα is of the

form uα, resp.
∑n

i=1 V
i
αρα,i∂i, where uα, resp. V i

α obeys uniform bounds |(ρα∂x)γuα| ≤ Cγ
for all α ∈ A and γ ∈ Nn0 , resp. |(ρα∂x)γV i

α| ≤ Cγ for all α, i, γ; here we write

(ρα∂x)γ =

n∏
i=1

(ρα,i∂xi)
γi . (3.4)

This implies both equalities in (3.2) and finishes the proof. �

3.3. Weights, symbols, differential operators. From now on, we fix a scaled b.g. struc-
ture B× = {(Uα, φα, ρα) : α ∈ A } on M , with underlying b.g. structure B, coefficient Lie
algebra W = C∞uni,B(M ;TM), and operator Lie algebra V. We begin by capturing the class
of weights that we can allow in our operators and function spaces.

Definition 3.4 (Weights on (M,B)). Let U ′α = φ−1
α ((−3

2 ,
3
2)n). A weight on (M,B) is a

smooth function 0 < w ∈ C∞(M) so that Ww
w ∈ C∞uni,B(M) for all W ∈ W. A weight family

is a collection {wα : α ∈ A } of positive real numbers for which there exists C <∞ so that
for all α, β ∈ A with U ′α ∩ U ′β 6= ∅, we have C−1wβ ≤ wα ≤ Cwβ. Two weights w,w′,

resp. weight families {wα}, {w′α} are equivalent if w
w′ ,

w′

w ∈ C
∞
uni,B(M), resp. wα

w′α
, w
′
α

wα
≤ C

(for some uniform constant C).



30 PETER HINTZ

Given a weight w, one can then define the space

wC∞uni,B(M) := {wu : u ∈ C∞uni,B(M)} (3.5)

of weighted uniformly smooth functions; this space is unchanged when passing from w to
an equivalent weight, and the seminorms are unchanged up to equivalence.

Lemma 3.5 (Weights and weight families). Fix a nonnegative function χ ∈ C∞c ((−2, 2)n)
so that χ is strictly positive on [−1, 1]n.

(1) If w is a weight, then w̄ := {supU ′α w : α ∈ A } and
¯
w = {infU ′α w : α ∈ A } are

weight families.
(2) If w = {wα : α ∈ A } is a weight family, then W (w) :=

∑
α∈A (φ∗αχ)wα is a weight.

(3) The weights w and W (w̄), W (
¯
w) are equivalent; and if w = W (w), then the weight

families w and w̄,
¯
w are equivalent.

Proof. For the proof of part (1), let C <∞ denote the supremum over α ∈ A , i = 1, . . . , n

of the sup norms of ∂i(φα)∗w
(φα)∗w

= ∂i((φα)∗ logw) on (−3
2 ,

3
2)n. If U ′α ∩ U ′β 6= ∅, let xα, xβ ∈

(−3
2 ,

3
2)n be such that w(φ−1

α (xα)) < 2 infU ′α w = 2
¯
wα and w(φ−1

β (xβ)) > 1
2 supU ′β

w = 1
2w̄β;

and let pαβ ∈ U ′α ∩ U ′β. Then∣∣∣∣log
w(φ−1

β (xβ))

w(φ−1
α (xα))

∣∣∣∣ ≤ ∣∣logw(φ−1
β (xβ))− logw(pαβ)

∣∣+
∣∣logw(pαβ)− logw(φ−1

α (xα))
∣∣

≤ C
(
|xβ − φβ(pαβ)|+ |φα(pαβ)− xα|

)
≤ C · 2 · 4

√
n

This implies
w̄β

¯
wα
≤ C ′ := 4e8C

√
n and thus also

w̄β
w̄α
≤ w̄β

¯
wα
≤ C ′ and ¯

wβ

¯
wα
≤ w̄β

¯
wα
≤ C ′.

For part (2), note that any p ∈ M lies in at most A <∞ pairwise distinct sets Uα, and
the maximum among the corresponding wα is bounded from above by a uniform constant

times the minimum. This implies that
∑
α wαW (φ∗αχ)∑
α wαφ

∗
αχ

∈ C∞uni,B(M) for all W ∈ W. The proof

of part (3) follows along similar lines and is left to the reader. �

The scaled b.g. structure gives rise to a particularly important weight:

Definition 3.6 (Weight family from scaling). In terms of the scaling {ρα} of B×, we define

ρ̄ := {ρ̄α : α ∈ A }, ρ̄α := max
1≤i≤n

ρi,α.

We furthermore write ρ ∈ C∞(M) for a weight equivalent to ρ̄ (such as ρ = W (ρ̄) in the
notation of Lemma 3.5), and call ρ a scaling weight.

Since the transition functions τβα of B are uniformly bounded in C∞, there exists a
uniform constant C so that ρβ,j ≤ Cρα,i for all j, i when Uα ∩ Uβ 6= ∅; by taking the
maximum over j, i = 1, . . . , n, this shows that ρ̄ is a weight family.

Symbols of V-(pseudo)differential operators will be functions on the cotangent bundle
T ∗M ; it is convenient, however, to encode the scaling directly in the transition functions
of a bundle VT ∗M → M . Note that the transition maps τβα induce maps between the
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cotangent bundles of open subsets of (−2, 2)n in the usual fashion; taking the scaling into
account, we write

(τβα)∗ :

n∑
i=1

ξα,i
dxiα
ρα,i
7→

n∑
j=1

ξβ,j
dxjβ
ρβ,j

(3.6)

where xiα = φiα, xjβ = φjβ are the coordinate functions, and xβ = τβα(xα). Explicitly, since

∂xiα =
∑

j(∂xiαx
j
β)∂

xjβ
, we have

ξα,i =
ρα,i(∂xiαx

j
β)

ρβ,j
ξβ,j . (3.7)

Definition 3.7 (V-cotangent bundle). The V-cotangent bundle VT ∗M →M is the bundle
with local trivializations Uα×Rn and transition functions (Uα∩Uβ)×Rn 3 (p, ξα) 7→ (p, ξβ)
where ξα, ξβ are related by (3.7). It is identified with T ∗M via Uα × Rn 3 (p, ξα) 7→∑
ξα,i

dpxiα
ρα,i
∈ T ∗UαM .

The transition functions of VT ∗M are uniformly bounded in C∞ by (3.7) and (2.9). Note
that smooth bundle isomorphism VT ∗M → T ∗M is not uniformly bounded (in the given
trivializations for VT ∗M and the standard trivializations (p, ξ) 7→

∑n
i=1 ξi dxi for T ∗M)

when infα,i ρα,i = 0. Thus, in this case, VT ∗M and T ∗M are not (canonically) isomorphic
as vector bundles of bounded geometry [Shu92, §A.1.1] (see also Remark 3.13 below).

For a function pα = pα(xα, ξα) where xα ∈ (−2, 2)n and ξα ∈ Rn, we shall write

((τβα)∗pα)(xβ, ξβ) = pα(xα, ξα)

for the same function on VT ∗M expressed in the chart Uβ. Furthermore, for p : VT ∗M → C,

we write (φα)∗p : (xα, ξα) 7→ p(
∑n

i=1 ξα,i
dxiα
ρα,i

) for p expressed in the local trivialization.

Definition 3.8 (V-symbols). Let m ∈ R. Then Sm(VT ∗M) consists of all functions
a : VT ∗M → C for which there exist constants Cβγ for all β, γ ∈ Nn0 so that in all lo-

cal trivializations of VT ∗M one has

|∂βx∂
γ
ξ ((φα)∗a)(x, ξ)| ≤ Cβγ〈ξ〉m−|γ| ∀α ∈ A , x ∈ (−2, 2)n, ξ ∈ Rn.

For a weight w on (M,B), we moreover define the space of weighted symbols

wSm(VT ∗M) := {wa : a ∈ Sm(VT ∗M)}.
By Pm(VT ∗M) and wPm(VT ∗M), we denote the subspace of fiberwise polynomials.

Equipped with the seminorms

|a|Sm;k := sup
α∈A

max
|β|+|γ|≤k

sup
(x,ξ)∈(−2,2)n×Rn

〈ξ〉−m+|γ||∂βx∂
γ
ξ ((φα)∗a)(x, ξ)|,

the space Sm(VT ∗M) is a Fréchet space.

Definition 3.9 (V-differential operators). We write

DiffmV (M) :=

a+
K∑
k=1

Jk∑
j=1

Vk,1 · · ·Vk,Jk : a ∈ C∞uni,B(M), K, Jk ∈ N0, Vk,j ∈ V
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for the space V-differential operators. Furthermore, for a weight w we set

wDiffmV (M) = {wP0 : P0 ∈ DiffmV (M)}.

It follows from the definition that the space DiffmV (M) is unchanged when passing to a
compatible scaled b.g. structure; in view of Proposition 3.2, the notation ‘DiffV ’ is therefore
justified. We also remark that an m-th order differential operator P ∈ Diffm(M) is an
element of DiffmV (M) if and only if for all α ∈ A ,

(φα)∗P =
∑
|γ|≤m

pαγ(x)(ραD)γ , (ραD)γ =
n∏
j=1

(ρα,ji
−1∂xj )

γj , (3.8)

where the pαγ are uniformly bounded in C∞((−2, 2)n). For P ∈ wDiffmV (M), one requires
that w−1

α pαγ be uniformly bounded in C∞((−2, 2)n) where wα is a weight family equivalent
to w; or equivalently ((φα)∗w

−1)pαγ is uniformly bounded.

Theorem 3.10 (Principal symbols of V-differential operators). Let P ∈ DiffmV (M). Define
a function p ∈ C∞(VT ∗M) as follows. For α ∈ A , write (φα)∗P =

∑
|γ|≤m pαγ(x)(ραD)γ.

Set

pα(x, ξ) =
∑
|γ|≤m

pαγ(x)ξγ , x ∈ Uα, ξ ∈ Rn,

and put p =
∑

α χαφ
∗
αpα where, for fixed χ ∈ C∞c ((−2, 2)n) equal to 1 on [−1, 1]n, we set

χα := φ∗αχ∑
β φ
∗
βχ

. Then, using the scaling weight ρ from Definition 3.6, the equivalence class

σmV (P ) := [p] ∈ Pm(VT ∗M)/ρPm−1(VT ∗M) (3.9)

(called the V-principal symbol of P ) is well-defined, in the sense that (1) it does not depend
on the choice of χ, and (2) it does not change when computing it with respect to a compatible
scaled b.g. structure. It fits into the short exact sequence

0→ ρDiffm−1
V (M) ↪→ DiffmV (M)

σmV−−→ Pm(VT ∗M)/ρPm−1(VT ∗M)→ 0. (3.10)

Furthermore, for weighted operators P ∈ wDiffmV (M), the principal symbol

σ
m,w
V (P ) := wσmV (w−1P ) ∈ wPm(VT ∗M)/wρPm−1(VT ∗M)

is well-defined (in that it does not change when using an equivalent weight instead of w),
and fits into an analogous short exact sequence. Finally, for Pj ∈ wjDiff

mj
V (M), we have

i[P1, P2] ∈ w1w2ρDiffm1+m2−1
V (M), with principal symbol given by the Poisson bracket

σ
m1+m2−1,w1w2ρ
V (i[P1, P2]) = {σm1

V (P1),σm2
V (P2)}. (3.11)

In the formula (3.11), the Poisson bracket of two symbols p1, p2 is given, in a local chart
Uα with coordinates x ∈ (−2, 2)n and ξ ∈ Rn on the fibers of VT ∗M , given by

{p1, p2} =

n∑
i=1

∂ξip1 · ρα,i∂xip2 − ρα,i∂xip1 · ∂ξip2. (3.12)

(This is equal to ∂ξp1∂x̃p2 − ∂x̃p1∂ξp2 in the rescaled coordinates x̃i = xi

ρα,i
.)

The family {χα} is a partition of unity subordinate to {Uα} which is uniformly bounded
in C∞. We will use such partitions frequently in the remainder of the paper.
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Only in the case that ρ is equivalent to 1 (which happens if and only if infα ρα > 0)
can one identify [p] with its fiberwise homogeneous degree m part; otherwise, the principal
symbol (3.9) is more precise. For the proof of Theorem 3.10 and its later pseudodifferential
generalization, we now note:

Lemma 3.11 (Equivalence class of symbols). Let S̃m be the space of families {pα : α ∈ A }
where pα : (−2, 2)n×Rn → C is a symbol of order m, and (τβα)∗pα = pβ+rβα where ρ̄−1

β rβα
is uniformly bounded in the space of symbols of order m− 1. Define an equivalence relation
on S̃m as follows: {pα} ∼ {p′α} if and only if ρ̄−1

α (pα − p′α) is uniformly bounded in the

space of symbols of order m−1; write S̃m/ρS̃m−1 for the space of equivalence classes. Then
the map

Sm(VT ∗M)/ρSm−1(VT ∗M) 3 [p] 7→ {(φα)∗p : α ∈ A } ∈ S̃m/ρS̃m−1

is a linear isomorphism. Its inverse is [{pα}] 7→
∑

α χαφ
∗
αpα.

Proof. We only check the formula for the inverse: we have

(φβ)∗

(∑
α

χαφ
∗
αpα

)
=
∑
α

((φβ)∗χα)(τβα)∗pα

=
∑
α

((φβ)∗χα)(pβ + rβα) = pβ +
∑
α

((φβ)∗χα)rβα,

with ρ̄−1
β times the second summand uniformly bounded in symbols of order m− 1. �

Proof of Theorem 3.10. If we write xβ = τβα(xα), then

ρα,i∂xiα =

n∑
j=1

ψji ρβ,j∂xjβ
, ψji :=

ρα,i∂xiαx
j
β

ρβ,j
;

therefore,

(ρα∂xα)γ =
n∏
i=1

( n∑
j=1

ψji ρβ,j∂xjβ

)γi
=

n∏
i=1

( ∑
|δ|=γi

n∏
j=1

(ψji )
δj (ρβ,j∂xjβ

)δj +Ri

)
,

where the (|γ| − 1)-th order operator Ri is a product of coordinate derivatives of ρβ,j∂xjβ
ψli

and compositions of ρβ,l∂xlβ
(for varying l = 1, . . . , n); in view of the uniform bounds (1.6),

the coefficients of ρ̄−1
β Ri expressed in terms of ρβ∂xβ are thus uniformly bounded when

α, β vary. Since the symbol of (ρα∂xα)γ pushes forward under τβα to the symbol of∏
i

∑
δ

∏
j(ψ

j
i )
δj (ρβ,j∂xjβ

)δj (cf. (3.6)), we conclude that pα pushes forward under τβα to

pβ plus a term which, when multiplied by ρ̄−1
β , is uniformly bounded in the space of sym-

bols of order m − 1. This completes the proof of the well-definedness of the principal
symbol.

Regarding the short exact sequence (3.10), only the surjectivity requires an argument.
But given a family {pα} of symbols as in Lemma 3.11, we may simply set

P :=
∑
α

χαφ
∗
αPα, Pα = pα(x, ραD),
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where for a function pα(x, ξ) which is a polynomial in ξ, we write pα(x, ραD) for the
differential operator obtained by replacing ξj by ρα,jDj .

The proof of (3.11) follows from a short calculation in distinguished charts, with the
weight ρ coming from the weights ρα,i in (3.12). �

Example 3.12 (Laplacian for certain metrics on Rn). We fix the scaled b.g. structure on
Rn from §1.2.1; thus V is the space of linear combinations of the coordinate vector fields
∂xi with coefficients which are uniformly bounded together with all derivatives along 〈x〉∂x.
Moreover, ρ = 〈x〉−1 is a scaling weight. Let g =

∑n
i,j=1 gijdx

i ⊗ dxj where (gij)1≤i,j≤n

is uniformly positive definite and satisfies uniform bounds |∂βxgij(x)| ≤ Cβ〈x〉−|β| for all
β ∈ Nn0 . Set Lz = ∆g−z. Then σ2

V(Lz) = |ξ|2g−1−z (more precisely, its equivalence class in

P 2
V(T ∗Rn)/〈x〉−1P 1

V(T ∗Rn)). This is elliptic (has an inverse modulo S−1 in S−2(VT ∗Rn)) if
and only if z /∈ [0,∞).

Remark 3.13 (Operators on vector bundles). The vector bundles of interest are vector
bundles of bounded geometry E →M [Shu92, §A.1.1], which means that for each α ∈ A a
trivialization E|Uα ∼= Uα×Ck is chosen so that the transition functions (which are GL(C, k)-
valued smooth functions on Uα∩Uβ) are uniformly bounded in C∞. If E,F →M are vector
bundles of bounded geometry, then

DiffmV (M ;E,F ) ⊂ Diffm(M ;E,F )

is characterized as the subspace of operators which, in the charts Uα and in such trivializa-
tions of E|Uα and F |Uα , are matrices of operators of the form (3.8) (with coefficients which
are uniformly bounded in C∞). We then have a principal symbol map

σmV : DiffmV (M ;E,F )→ Pm(VT ∗M ;π∗Hom(E,F ))/ρPm−1(VT ∗M ;π∗Hom(E,F ))

where π : VT ∗M →M is the base projection. (The space on the right consists of equivalence
classes of π∗Hom(E,F )-valued symbols.) There is an analogue for weighted operators; and
we have a principal symbol short exact sequence analogous to (3.10).

3.4. Weighted V-Sobolev spaces. For s ∈ R, the Sobolev space Hs(Rn) consists of all
tempered distributions u ∈ S ′(Rn) whose Fourier transform û(ξ) =

∫
e−ix·ξu(x) dx defines

an element of 〈ξ〉−sL2(Rn); and we fix the norm

‖u‖Hs(Rn) := ‖〈ξ〉sû‖L2(Rnξ ).

Definition 3.14 (Weighted V-Sobolev spaces). Let s ∈ R, and let w ∈ C∞(M) be a weight
on (M,B) equivalent to a weight family {wα : α ∈ A }. Fix χ ∈ C∞c ((−2, 2)n) with χ = 1
on [−1, 1]n; let χα = φ∗αχ and define the map10

Sα : (−2, 2)n 3 xα 7→ x̃α :=
( x1

α

ρα,1
, . . . ,

xnα
ρα,n

)
. (3.13)

Then the space wHs
V(M) consists of all distributions u ∈ D ′(M) so that (φα)∗(χαu) ∈

Hs(Rn) for all α ∈ A and

‖u‖2wHs
V (M) :=

∑
α

‖w−1
α (Sα)∗(φα)∗(χαu)‖2Hs(Rn). (3.14)

10Thus (Sα)∗(ρα,i∂xiα) = ∂x̃iα .
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Remark 3.15 (Uniform Sobolev spaces). In the case that ρα,i = 1 for all α, i, the maps Sα
are the identity maps, and if further wα = 1 for all α, then the space Hs

V(M) thus defined
in the usual uniform Sobolev space for the b.g. structure B (denoted W s

2 (M) in [Shu92,
Appendix 1]).

As an illustration for general scalings ρα, consider the special case s ∈ N and set uα :=
(φα)∗(χαu); then, using the notation (3.4), ‖(Sα)∗uα‖2Hs(Rn) is equivalent to (i.e. bounded

above and below by an α-independent constant by)∑
|β|≤s

∫
|(ρα∂x)βuα(x)|2 dx1

ρα,1
· · · dxn

ρα,n
=
∑
|β|≤s

∫
|∂βx̃ ũα(x̃)|2 dx̃, (3.15)

where we write ũα(x̃) = uα(x) (i.e. ũα = (Sα)∗uα).

Returning to the case of general s ∈ R, we note the following classical norm equivalence,
whose proof we include for completeness.

Lemma 3.16. We have ‖u‖2Hs(Rn) ∼
∑

j∈Zn ‖χ(·)u(· − j)‖2Hs.

The right hand side here is essentially the same as (and in any case equivalent to) the
norm (3.14) for w = 1 for the bounded geometry structure (1.1) on Rn.

Proof of Lemma 3.16. We claim that the operators

Φs : Hs(Rn) 3 u 7→
(
χ(·)u(·+ j)

)
j∈Zn ∈ `2

(
Zn;Hs(Rn)

)
,

Ψs : `2
(
Zn;Hs(Rn)

)
3 (uj)j∈Zn 7→

∑
j∈Zn

χ(· − j)uj(· − j) ∈ Hs(Rn)

are well-defined and bounded. Note that Ψ−s = Φ∗s. By complex interpolation, it thus
suffices to prove the boundedness of Φs and Ψs for s ∈ N0. We omit the subscripts ‘s’
henceforth. For s = 0, we have∑

j∈Zn
‖χ(·)u(·+ j)‖L2 =

∑
j∈Zn

∫
χ(x− j)2|u(x)|2 dx ≤ C

∫
|u(x)|2 dx = C‖u‖2L2 ;

this proves the boundedness of Φ and thus of Ψ = Φ∗ for s = 0. For s ∈ N, we argue
inductively: the boundedness of Φ follows from∑

j∈Zn
‖∂≤1

x χ(·)u(·+ j)‖2Hs−1 .
∑
j∈Zn
‖χ(·)∂≤1

x u(·+ j)‖2Hs−1 + ‖[∂x, χ]u(·+ j)‖2Hs−1

. ‖∂≤1
x u‖2Hs−1 + ‖u‖2Hs−1

. ‖u‖2Hs ,

where in the second inequality we used that [∂x, χ] = χ̃[∂x, χ] where χ̃ ∈ C∞c ((−2, 2)n)
equals 1 on suppχ together with the inductive hypothesis (applied with χ̃ in place of χ).
For Ψ, we estimate

‖Ψ((uj)j∈Zn)‖2Hs

∼ ‖∂≤1
x Ψ((uj)j∈Zn)‖2Hs−1 =

∥∥∥∥∥∑
j∈Zn

∂≤1
x (χ(· − j)uj(· − j))

∥∥∥∥∥
2

Hs−1
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.

∥∥∥∥∥∑
j∈Zn

χ(· − j)∂≤1
x uj(· − j)

∥∥∥∥∥
2

Hs−1

+

∥∥∥∥∥∑
j∈Zn

χ̃(· − j)[∂x, χ(· − j)]uj(· − j)

∥∥∥∥∥
2

Hs−1

. ‖(∂≤1
x uj)j∈Zn‖2`2Hs−1 + ‖([∂x, χ]uj)j∈Zn‖2`2Hs−1

. ‖(uj)j∈Zn‖2`2Hs .

We can now complete the proof. Let X =
∑

j∈Zn χ(· − j)2; then 1 ≤ X ≤ C :=
supX <∞, and all derivatives of X are uniformly bounded. The boundedness of Φs gives
‖Φsu‖`2Hs . ‖u‖Hs . On the other hand, 1

XΨsΦsu = u for all u ∈ Hs; since multiplication

by 1
X is bounded on every Sobolev space, this implies ‖u‖Hs . ‖ΨsΦsu‖Hs . ‖Φsu‖`2Hs .

�

Lemma 3.16 implies, in view of the second expression in (3.15), thatHs
V(M) is the uniform

Sobolev space for the secondary b.g. structure ρB; thus, recalling the large operator Lie
algebra V ′ from Definition 1.3, we have

Hs
V ′(M) = Hs

V(M).

We stick to the notation Hs
V(M) however, as it is cleaner notationally; and, more subtly,

only through working with V and the scaled b.g. structure B× is it possible to define spaces
with variable decay order when infα ρ̄α = 0, cf. §4.2.

It is easy to see (using the invariance of Sobolev spaces under compactly supported
coordinate changes) that Hs

V(M), and thus also wHs
V(M), as a Hilbert space, is unchanged

(up to equivalence of norms) when defined with respect to a b.g. structure compatible with
ρB; correspondingly, these spaces are unchanged when defined with respect to a scaled b.g.
structure compatible with B×. Similarly, these spaces are unchanged when different cutoffs
χ are used, or indeed when a family χα ∈ C∞c (Uα), α ∈ A , of cutoffs is used subject only to
the conditions that (φα)∗χα ∈ C∞c ((−2, 2)n) is uniformly bounded, all χα are nonnegative,
and infM

∑
α χα > 0. One can then easily show that every V ∈ V defines a bounded linear

map

V : wHs
V(M)→ wHs−1

V (M).

Indeed, using the norm (3.14), this follows from the fact that Ṽα := (Sα)∗(φα)∗V =∑n
i=1 Ṽ

i
α∂x̃i , where the Ṽ i

α have uniformly bounded C∞-seminorms on Sα((−2, 2)n) ⊂ Rn;
and moreover the commutators [V, χα] = V (χα) are supported in Uα and have uniformly
bounded (in C∞) pushforwards along Sα ◦ φα (in fact, already their pushforwards along φα
are uniformly bounded).

Mixed V-W-function spaces, which capture additional integer degrees of W-regularity,
feature frequently in applications where solutions of a V-equation turn out to have W-
regularity; see Remark 1.7. They are also the right spaces for characterizing the mapping
properties of residual operators (Definition 3.34).

Definition 3.17 (Weighted V-Sobolev spaces with additional W-regularity). Let s ∈ R,

k ∈ N0, and let w ∈ C∞(M) be a weight on (M,B). Then wH
(s;k)
V;W (M) is defined as the

space of all u ∈ wHs
V(M) so that W1 · · ·Wju ∈ wHs

V(M) for all j ≤ k and W1, . . . ,Wj ∈ W.

Lemma 3.18 (Towards a norm). There exists a finite subset W ⊂ W which spans W over
C∞uni,B(M).
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Proof. Fix χ ∈ C∞c ((−2, 2)n) with χ = 1 on [−1, 1]n and consider the vector fields Wα,i :=
φ∗α(χ∂xi). These are uniformly bounded in W. In the notation of Lemma 2.5, we now set,
for j = 1, . . . , J and i = 1, . . . , n,

Wj,i :=
∑
α∈Aj

Wα,i ∈ W.

We claim that W = {Wj,i} spansW over C∞uni,B(M). Indeed, given Z ∈ W, write (φα)∗Z =∑n
i=1 Z

i
α∂xi . Set

Z(1) := Z −
∑
α∈A1

n∑
i=1

φ∗α(χZiα)Wα,i = Z −
n∑
i=1

f i(1)W1,i,

f i(1) :=
∑
α∈A1

φ∗α(χZiα) ∈ C∞uni,B(M).

Then for α ∈ A1, the vector field Z(1) pushes forward along φα to (φα)∗Z−
∑n

i=1 χZ
i
αχ∂xi =∑n

i=1(1 − χ2)Ziα∂xi ; therefore, Z(1) vanishes on
⋃
α∈A1

φ−1
α ([−1, 1]n). The construction of

Z(1) moreover ensures that suppM Z(1) ⊂ suppM Z. We now apply the same procedure to

Z(1) and A2, thus producing f i(2) ∈ C
∞
uni,B(M) so that Z(2) := Z(1) −

∑n
i=1 f

i
(2)W2,i has M -

support contained in that of Z(1) (thus vanishing on
⋃
α∈A1

φ−1
α ([−1, 1]n) still) and vanishes

in
⋃
α∈A2

φ−1
α ([−1, 1]n). After J steps, we obtain

Z(J+1) = Z −
J∑
j=1

n∑
i=1

f i(j)Wj,i

for suitable f i(j) ∈ C
∞
uni,B(M), with Z(J+1) vanishing on

⋃
α∈Aj

φ−1
α ([−1, 1]n) for all j =

1, . . . , J ; thus, Z(J+1) = 0, and the proof is complete. �

We can now define a norm on wH
(s;k)
V;W (M) by setting

‖u‖2
wH

(s;k)
V;W

:=
k∑
j=0

∑
W1,...,Wj∈W

‖W1 · · ·Wju‖2wHs
V
.

Since multiplication by a function in C∞uni,B(M) defines a bounded linear map on every

weighted V-Sobolev space, this norm is independent (up to equivalence) of the chosen
spanning set W . Furthermore, in the notation of (3.14), we have the norm equivalence

‖u‖2
wH

(s;k)
V;W
∼
∑
α

∑
|β|≤k

∥∥w−1
α (Sα)∗

(
∂βx (φα)∗(χαu)

)∥∥2

Hs(Rn)

Proposition 3.19 (Boundedness of V-differential operators). Let w, w′ ∈ C∞(M) be
weights on (M,B); let s ∈ R, m ∈ N0. Then every P ∈ wDiffmV (M) defines a bounded
linear map

P : w′Hs
V(M)→ ww′Hs−m

V (M).

More generally, for k ∈ N0, we have P : w′H
(s;k)
V;W (M)→ ww′H

(s−m;k)
V;W (M).
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The straightforward proof (which uses [W,V] ⊂ W) is left to the reader. We moreover
have a useful density result; we first introduce for ρ = (ρ1, . . . , ρn) ∈ (0, 1]n the space

H
(s;k)
ρ (Rn) := Hs+k(Rn) with norm

‖u‖2
H

(s;k)
ρ (Rn)

:=
∑
|β|≤k

‖(ρ−1∂x̃)βu‖2Hs(Rn), (ρ−1∂x̃)β :=

n∏
j=1

(ρ−1
j ∂x̃j )

βj . (3.16)

Lemma 3.20 (Density). The space C∞c (M) is dense in wHs
V(M) for all weights w ∈

C∞(M) on (M,B) and s ∈ R, and also in wH
(s;k)
V;W (M) for all k ∈ N0.

Proof. Fixing a nonnegative function χ ∈ C∞c ((−2, 2)n) with χ = 1 on [−1, 1]n, set χα =
φ∗αχ∑
β φ
∗
βχ

. Let u ∈ wH(s;k)
V;W (M). Then the series

∑
α∈A χαu converges in wH

(s;k)
V;W (M) to u, and

thus the subspace consisting of function supported in finitely many distinguished open sets

is dense. It remains to smooth out the localizations uα := (Sα)∗(φα)∗(χαu) ∈ H(s;k)
ρα (Rn).

Let φε(x̃) = ε−nφ(x̃/ε), φ ∈ C∞c (Rn),
∫
φ(x̃) dx̃ = 1. We claim that φε ∗ uα → uα in

H
(s;k)
ρα (Rn) as ε ↘ 0. For k = 0, this follows by taking Fourier transforms in x̃, i.e.

φ̂(εξ)ûα(ξ)→ ûα(ξ) in 〈ξ〉sL2(Rnξ ). The case of general k reduces to the case k = 0 in view

of (ρ−1
α ∂x̃)β(φε ∗ uα) = φε ∗ (ρ−1

α ∂x̃)βuα. �

We end this section by recording two elementary but crucial compactness and duality
results.

Theorem 3.21 (Rellich compactness). Let w,w′ ∈ C∞(M) be weights on (M,B) with
w/w′ → 0 at infinity. Let s, s′ ∈ R. Suppose that s > s′. Then the inclusion map

wHs
V(M) ↪→ w′Hs′

V (M) (3.17)

is compact. More generally, if k, k′ ∈ N0, and s ≥ s′ and k ≥ k′, with at least one inequality
strict, then the inclusion map

wH
(s;k)
V;W (M) ↪→ w′H

(s′;k′)
V;W (M) (3.18)

is compact.

This includes the compact inclusion of standard weighted Sobolev spaces 〈x〉lHs(Rn)→
〈x〉l′Hs′(Rn) (when s > s′, l > l′) as a special case, and also the inclusion of b-Sobolev

spaces Hs,l
b (M̄)→ Hs′,l′

b (M̄) on compact manifolds M̄ with boundary. Theorem 3.21 has a
converse: if w ≤ Cw′ and s ≥ s′ are such that (3.17) is compact, then w/w′ → 0 at infinity
and s > s′. We leave the proof to the interested reader.

Proof of Theorem 3.21. For completeness, we give a proof (which is essentially standard).
It suffices to consider the case w′ = 1, so w → 0 at infinity. If {wα} is an equivalent weight
family, this implies that wα → 0 when α → ∞ in A (with the discrete topology, i.e. for
all ε > 0 there exists a finite subset A (ε) ⊂ A so that wα < ε for α ∈ A \ A (ε)). Let

χ ∈ C∞c ((−2, 2)n) be nonnegative with χ = 1 on [−1, 1]n, and set χα = φ∗αχ∑
β φ
∗
βχ

.

We first consider (3.17). Let {uj}j∈N ⊂ wHs
V(M) be a bounded sequence. For each

α ∈ A , also {uj,α}j∈N with uj,α = (Sα)∗(φα)∗(χαu) ∈ Hs(Rn) is a bounded sequence, with
norm bounded by Cwα where C can be taken to be a constant times ‖u‖wHs

V (M), and with

compact support suppuj,α ⊂ Sα((−2, 2)n). We may thus pass to a subsequence of uj,α
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which converges in Hs′(Rn) to some vα with support in Sα((−2, 2)n). Passing to a diagonal

subsequence, we may assume that we have convergence uj,α → vα ∈ Hs′(Rn) for all α ∈ A .
Set

v :=
∑
α

φ∗αS
∗
αvα.

Then v ∈ Hs′
V since (by Fatou’s lemma)∑

α

‖vα‖2Hs′ ≤
∑
α

lim inf
j→∞

‖uj,α‖2Hs′ ≤ lim inf
j→∞

∑
α

‖uj,α‖2Hs′ ≤ C lim inf
j→∞

‖uj‖2Hs′ <∞.

Furthermore, for any fixed ε > 0, we have εw−1
α ≥ 1 for α /∈ A (ε) and thus

‖v − uj‖2Hs′ ≤ C

( ∑
α∈A (ε)

‖vα − uj,α‖2Hs′ + ε
∑

α/∈A (ε)

w−1
α ‖vα‖2Hs′ + ε

∑
α/∈A (ε)

w−1
α ‖uj,α‖2Hs′

)
.

The first (finite) sum converges to 0 as j → ∞. We can estimate the third sum by
Cε‖uj‖wHs′

V (M)
≤ C ′ε. The second sum is estimated similarly using Fatou’s lemma. We

conclude that uj → v in Hs′
V (M), as claimed.

Next, consider (3.18) for s > s′ and k = k′. Then all derivatives (ρ−1
α ∂x̃)γuj,α for

γ ∈ Nn0 , |γ| ≤ k, are uniformly bounded in Hs by Cwα; passing to a subsequence, we have

(ρ−1
α ∂x̃)γuj,α → v

(γ)
α ∈ Hs′(Rn), and in fact (ρ−1

α ∂x̃)γvα = v
(γ)
α (where vα = v

(0)
α ) since

differentiation commutes with distributional limits; thus uj,α → vα in H
(s;k)
ρα (Rn). The

remainder of the proof is then the same, mutatis mutandis.

Finally, when s = s′ but k > k′ (so k − 1 ≥ k′), we write the inclusion (3.18) as a
composition

wH
(s;k)
V;W (M) ↪→ wH

(s+1;k−1)
V;W (M) ↪→ w′H

(s;k−1)
V;W (M) ↪→ w′H

(s′,k′)
V;W (M).

The first and third arrow are continuous and the middle arrow is compact by what we have
shown. This completes the proof. �

Proposition 3.22 (Duality). Fix a uniformly positive V-density µ on M , by which we

mean that (φα)∗µ = µα(x)| dx
1
α

ρα,1
· · · dxnα

ρα,n
| where µα ∈ C∞((−2, 2)n) is uniformly bounded and

infα inf(−2,2)n µα > 0. Let w ∈ C∞(M) be a weight on (M,B), and let s ∈ R. Then the

L2(M ;µ)-pairing (u, v) 7→ 〈u, v〉 :=
∫
M uv̄ dµ extends from C∞c (M) × C∞c (M) → C to a

nondegenerate pairing wHs
V(M)× w−1H−sV (M)→ C, and thus

(wHs
V(M))∗ = w−1H−sV (M). (3.19)

Proof. Let χ ∈ C∞c ((−2, 2)n) be nonnegative and equal to 1 on [−1, 1]n, and set χα =
φ∗αχ∑
β φ
∗
βχ

. Note now that for u, v ∈ C∞c (M), we can write 〈u, v〉 =
∑

α,β〈χαu, χβv〉, where

for each α there is a uniform finite upper bound on the number of β for which χαχβ 6= 0.
Using the well-definedness of the L2-pairing Hs(Rn) ×H−s(Rn) → C and the coordinate-
invariance of Hs-spaces, this implies the well-definedness of the pairing (3.19).

Next, let λ ∈ (wHs
V(M))∗. Since u 7→ ((Sα)∗(φα)∗χαu)α∈A defines a continuous map

Φ: wHs
V(M)→ `2(A ;wαH

s(Rn))
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(where {wα} is equivalent to w) with ‖Φ(u)‖`2wαHs = ‖u‖wHs
V (M), we can extend the

functional λ′ : Φ(wHs
V(M)) → C, λ′(Φ(u)) := λ(u), to a continuous linear functional on

`2wαH
s which is thus realized by (vα)α∈A ∈ `2w−1

α H−s. That is,

λ(u) =
∑
α

〈(Sα)∗(φα)∗χαu, vα〉L2(Rn;|dx̃|).

Let fα ∈ C∞((−2, 2)n) be the (uniformly bounded) family of functions for which we have
(Sα)∗(fα(φα)∗µ) = |dx̃|. We then conclude that λ(u) = 〈u, v〉 where

v =
∑
α

χα(φα)∗fαS
∗
αvα ∈ w−1H−sV (M),

finishing the proof. �

3.5. Pseudodifferential operators. Let B× = {(Uα, φα, ρα) : α ∈ A } denote a scaled
b.g. structure on M , and let V be its operator Lie algebra. Since our aim is to define V-
pseudodifferential operators as tools for microlocal analysis, we begin by defining the locus
where microlocal analysis will take place in §3.5.1 before defining V-quantization maps and
residual operators in §3.5.2. In §3.5.3, we define V-pseudodifferential operators and study
their composition and symbolic properties.

3.5.1. Phase space b.g. structure; microlocalization locus. We shall define a scaled b.g. struc-
ture on VT ∗M , obtained by combining B× with the b.g. structure on Rn from §1.2.1. Sym-
bols will then be certain types of weighted uniformly smooth functions.

Definition 3.23 (Phase space b.g. structure). We use the notation (1.9a). For α ∈ A , we
set

U(α,0) := Uα × (−4, 4)n, U(α,j,k,±1) := Uα × Uj,k,±1,

φ(α,0) := φα × φ0, φ(α,j,k,±1) := φα × φj,k,±1.
(3.20)

Set A ∗ = {(α, 0), (α, j, k,±1) : α ∈ A , j = 1, . . . , n, k ∈ N0}. Then the phase space b.g.
structure on VT ∗M , with respect to the trivializations of VT ∗M over each Uα given by
Definition 3.7, is

B∗ = {(Uα∗ , φα∗) : α∗ ∈ A ∗}.

Lemma 3.24 (Symbols and B∗). We use the notation (3.5).

(1) (Symbols of order 0.) S0(VT ∗M) = C∞uni,B∗(
VT ∗M).

(2) (Elliptic weights.) Let λ ∈ S−1(VT ∗M) with λ > 0 and λ−1 ∈ S1(VT ∗M). Then λ
is a weight on (VT ∗M,B∗). Moreover, such functions λ exist.

(3) (General symbols.) Sm(VT ∗M) = λ−mC∞uni,B∗(
VT ∗M).

Proof. Part (1) is a variant of the well-known characterization of symbols of order 0 on Rnξ
as those smooth functions a = a(ξ) whose pushforwards along ξ 7→ 2−kξ define a uniformly
bounded (in k ∈ N0) family of smooth functions on the annulus 1 < |ξ| < 4. For part (2),
we note that in the trivializations of VT ∗M over Uα, the functions aα(x, ξ) := 〈ξ〉λ(x, ξ) are

uniformly bounded in S0, and |aα| has a uniform positive lower bound. Since W 〈ξ〉
〈ξ〉 ∈ S

0

for all vector fields W ∈ {〈ξ〉∂ξi} (which span the space W in (1.11), with ξ in place of x),
we conclude that λ is a weight indeed. The existence of such a weight follows by patching
together 〈ξ〉−1 in each chart using a uniform non-negative partition of unity subordinate to
the cover {Uα} of M . Part (3) is an immediate consequence of the first two parts. �
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Spaces of weighted symbols wSm(VT ∗M) as in Definition 3.8 are well-defined also for
weights w on phase space, i.e. for w ∈ C∞(VT ∗M) which are weights on (VT ∗M,B∗). A
typical example of a weight w on phase space is w = λ−m, in which case wS0 = Sm by
Lemma 3.24(3). More generally, if w0 ∈ C∞(M) is a weight on the base, then w = w0λ

−m

is a phase space weight, and wS0 = w0S
m.

Definition 3.25 (Microlocalization locus). Denote by uVT ∗M the uniform compactifi-
cation of (VT ∗M,B∗) (see Definition 2.7), and recall from Proposition 2.8 the continuous
extension map j : C0

uni,B∗(
VT ∗M)→ C0(uVT ∗M). Recall the weights ρ, λ from Definition 3.6

and Lemma 3.24(2). The microlocalization locus of (M,B×) is then the set

M := uVT ∗M ∩ {j(λρ) = 0}
Let w ∈ C∞(VT ∗M) be a weight on (VT ∗M,B∗). For a symbol a ∈ wS0(VT ∗M), we define
its elliptic set by11

EllwM(a) := {$ ∈M : ∃ b ∈ w−1S0(VT ∗M), $ /∈ suppuVT ∗M (ab− 1)} ⊂M.

The characteristic set is CharwM(a) = M \EllwM(a). The essential support ess suppwM a ⊂M

of a ∈
⋃
l,mwρ

−lSm(VT ∗M) is defined by

M 3 $ /∈ ess suppwM a ⇐⇒ ∃χ ∈ S0(VT ∗M), χ($) 6= 0 s.t. χa ∈ wρ∞S−∞(VT ∗M),

where we write wρ∞S−∞ =
⋂
m,l wρ

lSm.

Thus, EllwM(a), resp. CharwM(a) and ess suppwM(a) are open, resp. closed subsets of M ⊂
uVT ∗M . These are the most general notions of elliptic and characteristic set and essential
support which more standard versions are images of, analogously to (2.11); this is discussed
below.

In the special case w = λ−m, one typically writes EllmM(a), ess suppM a instead of EllwM(a),
ess suppwM(a). (Note that for weights w which are products of powers of ρ and λ, one has

wρ∞S−∞ = ρ∞S−∞.) We also remark that if inf ρ > 0, then M = uVT ∗M ∩ {j(λ) = 0}
simply, and all weights in ρ may be omitted in Definition 3.25.

Remark 3.26 (Restricting to {λ = 0} ∪ {ρ = 0}). The stated condition for membership in
EllwM(a) makes sense for any $ ∈ uVT ∗M . The reason for restricting attention to $ ∈ M
is that symbols of V-(pseudo)differential operators are only well-defined modulo symbols
with an additional order λρ of vanishing; cf. Theorem 3.10. Similarly, the essential support
of ps.d.o.s is a reasonable notion only as a subset of M; see Definition 3.43.

Definition 3.27 (Fully symbolic operator Lie algebras). We say that V is fully symbolic if
one of the following equivalent conditions holds:

(1) M = ∂(uVT ∗M).
(2) For all ε > 0 there exists a compact subset K ′ ⊂ VT ∗M so that ρλ < ε on VT ∗M \K.
(3) For all ε > 0 there exists a compact subset K ⊂M so that ρ < ε on M \K.

The equivalence of the first two definitions is due to Remark 2.10. That condition (2)
implies (3) follows by projecting K ′ to K and noting that on M \K, which we identify with
the zero section o in VT ∗M over M \K, we have ρ = λ−1ρλ < λ−1ε, and λ−1|o is uniformly
bounded. Conversely, if ρ < ε on M \K, set K ′ := π−1(K) ∩ {λ ≥ ε(supK ρ)−1}; then on

11We use that ab, 1 ∈ S0(VT ∗M) = C∞uni,B∗(VT ∗M).
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VT ∗M \K ′, we are either over M \K and thus ρ < ε, so ρλ ≤ ‖λ‖L∞ε; or we are over K,
and then ρλ < ε.

For fully symbolic V, elliptic V-(pseudo)differential operators are Fredholm; see §3.5.4.
The key point is that

V is fully symbolic ⇐⇒ wρlHs
V(M)→ wρl

′
Hs′
V (M) is compact for s > s′, l > l′, (3.21)

likewise for HV;W spaces. Indeed, since ρl/ρl
′

= ρl−l
′ → 0 at infinity in M , this follows at

once from Theorem 3.21.

In analogy to (2.13), we point out:

Lemma 3.28 (Trivial essential support). Let a ∈
⋃
l,mwρ

−lSm(VT ∗M). Then

ess suppwM a = ∅ ⇐⇒ a ∈ wρ∞S−∞(VT ∗M). (3.22)

Proof. Only the direction ‘=⇒’ requires an argument. There exists a finite collection
χ1, . . . , χN ∈ S0(VT ∗M), with

⋃N
j=1{χj 6= 0} covering M, so that χja ∈ wρ∞S−∞ for

all j. Set χ :=
∑N

j=1 χ
2
j ; this has a positive lower bound on M, and χa ∈ wρ∞S−∞.

Pick (using a construction as in the proof of Lemma 2.13) a function η ∈ S0(VT ∗M) with
supp η ∩M = ∅ and {η 6= 0} ∪ {χ > 0} = uVT ∗M . Then η ∈ ρ∞S−∞(VT ∗M) (since η
remains in S0 upon multiplication by any power of λ, ρ), and thus (χ + η2)a ∈ wρ∞S−∞.
Since inf(χ+ η2) > 0, this finally gives a = (χ+ η2)−1 · (χ+ η2)a ∈ wρ∞S−∞. �

Similarly, we have

EllwM(a) = M ⇐⇒ ∃ b ∈ w−1S0(VT ∗M) s.t. ab− 1 ∈ ρS−1(VT ∗M). (3.23)

The direction ‘⇐=’ is a consequence of (the proof of) the following lemma.

Lemma 3.29 (Elliptic set). The set EllwM(a) only depends on the equivalence class [a] ∈
wS0(VT ∗M)/wρS−1(VT ∗M).

Proof. Let b ∈ w−1S0 be such that $ ∈ M \ suppuVT ∗M r where ab = 1 + r. If ã ∈
wρS−1(VT ∗M), then (a + ã)b = 1 + ãb + r. But ãb ∈ ρS−1(VT ∗M) = λρC∞uni,B∗(

VT ∗M)

vanishes at $; therefore, there exists χ ∈ S0(VT ∗M) with χ = 1 near $ so that |χãb| < 1
2 .

We can then further write 1 + ãb+ r = 1 +χãb+ r′ where the support of r′ = (1−χ)ãb+ r
does not contain $; and (1+χãb)−1 ∈ S0. Thus, $ /∈ suppuVT ∗M [(a+ ã) ·b(1+χãb)−1−1],
as desired. �

For the direction ‘=⇒’ of (3.23), we get finite collections b1, . . . , bN ∈ w−1S0 and

χ1, . . . , χN ∈ S0 with (abj − 1)χj = 0 and M ⊂
⋃N
j=1{χj 6= 0}. For b0 :=

∑N
j=1 bjχ

2
j ,

this gives ab0 = χ :=
∑N

j=1 χ
2
j . Arguing as in the proof of Lemma 3.28, there exists

η ∈ ρ∞S−∞ with supp η∩M = ∅ so that ab0 + η2 = χ+ η2 has a positive lower bound. For
b := b0(χ+ η2)−1 we conclude that M ∩ suppuVT ∗M (ab− 1) = ∅, which implies (3.23).

To end this general discussion, we record a technical result on the asymptotic summation
of symbols:

Lemma 3.30 (Asymptotic summation). Let w ∈ C∞(VT ∗M) be a weight on (VT ∗M,B∗),
and let m ∈ R. Suppose we are given aj ∈ wρ−ljSmj (VT ∗M) for j ∈ N0, where l :=
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l0 ≥ l1 ≥ · · · → −∞ and m := m0 ≥ m1 ≥ · · · → −∞. Then there exists a symbol
a ∈ wρ−lSm(VT ∗M) so that, for all J ∈ N,

a−
J−1∑
j=0

aj ∈ wρ−lJSmJ (VT ∗M). (3.24)

This symbol is unique modulo the space wρ∞S−∞(VT ∗M) =
⋂
m∈Rwρ

mS−m(VT ∗M) of
residual symbols. Furthermore, if U ⊂M is an open set with U ∩ ess suppwM(aj) = ∅ for all
j, then also U ∩ ess suppwM(a) = ∅.

Proof. This is a variant of the standard asymptotic summation argument (similar to the
proof of Borel’s lemma). By summing finitely many successive aj and relabeling, we may
assume that lj = l− j and mj = m− j. Let λ ∈ S−1(VT ∗M) be as in Lemma 3.24(2). Let
ψ ∈ C∞c ([0, 2)) be equal to 1 on [0, 1]. For a sequence εj → 0, we define the locally finite
sum

a :=

∞∑
j=0

ψ
(ρλ
εj

)
aj . (3.25)

For k ∈ N0, l,m ∈ R and b ∈ wρ−lSm(VT ∗M), denote by

|b|wρ−lSm;k := sup
α∈A

max
|β|,|γ|≤k

w−1
α ρ̄lα〈ξ〉−m+|γ||∂βx∂

γ
ξ ((φα)∗a)(x, ξ)|

the k-th uniform symbol seminorm of b. For k ∈ N and j ≥ k + 1, we then demand that∣∣∣ψ(ρλ
εj

)
aj

∣∣∣
wρ−l+kSm−k;k

≤ 2−j ;

for each index j ∈ N0, this gives a finite number of conditions on εj which are satisfied when

εj is sufficiently small since, a fortiori, aj ∈ wρ−l+k+1Sm−k−1(VT ∗M), and on the support
of ψ(ρλ/εj) we have ρλ < 2εj . Sufficiently late tails of the sum (3.25) then converge in any

fixed uniform symbol seminorm, and thus a ∈ wρ−lSm.

The property (3.24) is a consequence of the fact that (1 − ψ(ρλεj ))aj ∈ wρ∞S−∞. The

uniqueness statement follows from the fact that the difference of two asymptotic sums a, a′

satisfies a− a′ ∈ wρ−ljSmj for all j and thus is a residual symbol.

For the final statement, consider any χ ∈ S0(VT ∗M) with M∩ suppχ ⊂ U . Then χaj is
a residual symbol for all j, and thus so is every finite truncation of the sum (3.25). But the
sum over j ≥ J converges in wρ−l+JSm−J ; hence χa ∈

⋂
J∈Nwρ

−l+JSm−J is residual. �

3.5.2. V-pseudodifferential operators I: quantizations and their mapping properties. Fix a
cutoff function ψ ∈ C∞c ((−1

4 ,
1
4)n) with ψ = 1 near 0. For a ∈ Sm(T ∗Rn) with supp a ⊂

(−5
4 ,

5
4)n × Rn, we define a local quantization map in φα(Uα) in the coordinates xα, where

xjα = φjα, by

Opα(a)(xα, x
′
α) := (2π)−n

(∫
Rn

exp

(
i

n∑
j=1

(xjα − x′jα)
ξj
ρα,j

)
ψ(xα − x′α)

× a(x1
α, . . . , x

n
α, ξ1, . . . , ξn) dξ1 · · · dξn

)
|dx′1α · · · dx′nα |
ρα,1 · · · ρα,n

.

(3.26)
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We remark that x ∈ (−5
4 ,

5
4)n, x′ ∈ Rn and x − x′ ∈ suppψ implies x′ ∈ (−3

2 ,
3
2)n. (The

quantization (3.26) acts on a function or distribution u on Rn via

(Opα(a)u)(xα) =

∫
Opα(a)(xα, x

′
α)u(x′α);

the integration density is subsumed into Opα(a)(xα, x
′
α).)

Equivalently, we can pass to the perspective of quantizing symbols defined on ∼ ρ−1
α,1 ×

· · · × ρ−1
α,n grids of unit cells of the secondary bounded geometry structure ρB from §3.2;

this amounts to introducing

x̃jα :=
xjα
ρα,j

(
thus, ξα,j

dxjα
ρα,j

= ξα,j dx̃jα

)
,

and similarly x̃′α = x′jα
ρα,j

, and noting that

Opα(a)(x̃α, x̃
′
α) = (2π)−n

(∫
Rn
ei(x̃α−x̃

′
α)·ξψ(xα − x′α)a(ρα,1x̃

1
α, . . . , ρα,nx̃

n
α, ξ) dξ

)
|dx̃′α|

(3.27)
Crucially, the cutoff ψ(x′α − xα) localizes not to unit cells of ρB, but to those of B.

Definition 3.31 (V-quantization). Fix a nonnegative function χ ∈ C∞c ((−5
4 ,

5
4)n) with

χ|[−1,1]n = 1, and let χα = φ∗αχ∑
β φ
∗
βχ

. Let a ∈ Sm(VT ∗M), or more generally a ∈ wSm(VT ∗M)

where w ∈ C∞(M) is a weight on (M,B) (see Definition 3.4). Then we define OpV(a) =∑
α φ
∗
α Opα((φα)∗(χαa)), that is, for u ∈ C∞(M) and p ∈M ,

(OpV(a)u)(p) :=
∑
α∈A

φ∗α

([
Opα

(
(φα)∗(χαa)

)
((φα)∗u)

]
(φα(p))

)
. (3.28)

By property (1) from Definition 1.1, and using the standard mapping properties of quan-
tizations of symbols on Rn, such quantizations OpV(a) define bounded maps on C∞c (M),
C∞(M), and indeed w′C∞uni,B(M) → ww′C∞uni,B(M) for any weight w′. (Thus, they can be

composed.) More generally:

Proposition 3.32 (Boundedness of quantizations on mixed Sobolev spaces). Let w,w′ ∈
C∞(M) be weights on (M,B). Let s,m ∈ R, k ∈ N0, and let a ∈ wSm(VT ∗M). Then

OpV(a) defines a bounded linear map w′H
(s;k)
V;W (M)→ ww′H

(s−m;k)
V;W (M).

Proof. Consider first the case k = 0. Let {wα} and {w′α} be weight families equivalent to
w and w′, respectively. The symbols aα := w−1

α (φα)∗(χαa) ∈ Sm(T ∗Rn) are then uniformly
bounded, and correspondingly their quantizations via Opα (using the formula (3.27)) are
uniformly bounded as maps (Sα)∗Opα(aα)S∗α : Hs(Rnx̃) → Hs−m(Rnx̃) (see [Hin23a, Corol-
lary 4.34]). But then, for ` := 3

2 and for α, β ∈ A with Uα(`) ∩ Uβ(`) 6= ∅ (recalling

Uα = φ−1
α ((−`, `)n)), we can estimate, for v ∈ Hs(Rn),

‖w′−1
α (Sα)∗(φα)∗(χαφ

∗
β Opβ(aβ)(S∗βv))‖Hs−m

≤ C‖w′−1
β (Sβ)∗(φβ)∗(χαφ

∗
β Opβ(aβ)(S∗βv))‖Hs−m

≤ C
∥∥w′−1

β ((Sβ)∗((φβ)∗χα))(Sβ)∗Opβ(aβ)(S∗βv)
∥∥
Hs−m

≤ C‖w′−1
β v‖Hs
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for a uniform (in α, β) constant C (which may vary from line to line); in the first estimate,
we use the uniform boundedness in C∞ of the transition maps (Sβ ◦ φβ) ◦ (Sα ◦ φα)−1, cf.
the discussion of (3.3). Since for fixed α ∈ A , the number of β ∈ A with Uβ(`)∩Uα(`) 6= ∅
is bounded by a constant independent of α (see the proof of Lemma 2.5), we can add the
squares of these inequalities for v = (Sβ)∗(φβ)∗u and thus arrive at the desired bound

‖OpV(a)u‖2
ww′Hs−m

V (M)
≤ C‖u‖2w′Hs

V (M).

Consider now k = 1. It again suffices to consider individual quantizations Opα(aα).

Writing κα(xα, x
′
α) = (2π)−n

∫
Rn e

i
∑n
j=1(xjα−x′jα )ξj/ρα,jψ(x′α−xα)aα(xα, ξ) dξ, note then that

∂xiα(Opα(aα)f)(xα)

=

∫
Rn
∂xiακα(xα, x

′
α)f(x′α)

dx′1α
ρα,1
· · · dx

′n
α

ρα,n

=

∫ ((
(∂xiα + ∂x′iα)κα(xα, x

′
α)
)
f(x′α) + κα(xα, x

′
α)(∂x′iαf)(x′α)

) dx′1α
ρα,1
· · · dx

′n
α

ρα,n
. (3.29)

But

(∂xiα + ∂x′iα)κα(xα, x
′
α)

= (2π)−n
∫
Rn
ei

∑n
j=1(xjα−x′jα )ξj/ρα,jψ(x′α − xα)∂xiαaα(xα, ξ) dξ.

The key point is that the xα- and x′α-derivatives here only fall on the symbol a which
remains bounded (uniformly) upon such differentiations. Using the uniform boundedness in
C∞ of the transition functions φβ ◦φ−1

α , we now obtain from (3.29) for f = S∗βv the uniform
bounds∥∥w′−1

α (Sα)∗
(
∂xiα(φα)∗(χαφ

∗
β Opβ(aβ)(S∗βv))

)∥∥2

Hs−m ≤ C
∑
|γ|≤1

∥∥w′−1
β (Sβ)∗

(
∂γxβ (Sβ)∗v

)∥∥2

Hs ,

and thus upon summing over α, β with v = (φβ)∗u the bound

‖OpV(a)u‖2
ww′H

(s−m;1)
V;W (M)

≤ C‖u‖2
w′H

(s;k)
V;W (M)

.

The case of general k ∈ N0 is completely analogous. �

Remark 3.33 (Regularity of the symbol). For the case k = 0, the proof shows that one only
needs to require uniform bounds on the symbols (x̃α, ξ) 7→ aα(ρα,1x̃

1
α, . . . , ρα,nx̃

n
α, ξ) in Sm.

Put differently, one only needs uniform bounds by 〈ξ〉m−|γ| on |(ρα∂xα)β∂γξ aα(xα, ξ)|, corre-

sponding to ‘V-regular’ symbols a. (This statement does not use the scaled b.g. structure,
but only the secondary b.g. structure ρB. In other words, this is the well-known statement
that uniform ps.d.o.s are bounded between uniform Sobolev spaces; cf. Remark 3.15.) More
generally, for the boundedness of OpV(a) between spaces with k orders of W-regularity, it
suffices for the local symbols aα to be V-regular in this sense, together with their derivatives
in xα of orders up to k.

Since V-quantizations enlarge supports (unless a is polynomial in the fibers of VT ∗M),
one expects, in general, only to be able to write OpV(a) ◦ OpV(b) = OpV(c) + R for some
‘residual’ operator R. Let us write dB for a metric compatible with B, as constructed in
Proposition 2.3. Residual operators should then have Schwartz kernels supported a finite
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distance (with respect to dB) from the diagonal diagM ⊂ M ×M since this is true for
operators OpV(a) and thus for compositions of finitely many such operators. Furthermore,
residual operators should be smoothing (on the level of V-regularity) and improve ρ-weights
by arbitrary powers ρN ; on the other hand, they typically do not improve, but instead only
preserve, W-regularity.

Definition 3.34 (Residual operators). Let w ∈ C∞(M) be a weight on (M,B); recall the
scaling weight ρ ∈ C∞(M) from Definition 3.6. Then the space

wρ∞Ψ−∞V (M)

of residual operators consists of all linear operators R : C∞c (M)→ C∞c (M) with the following
properties.

(1) For all weights w′ ∈ C∞(M) on (M,B) and for all N ∈ R, k ∈ N0, the operator

R : w′ρ−NH
(−N ;k)
V;W (M)→ ww′ρNH

(N ;k)
V;W (M). (3.30)

is bounded.
(2) Let µ ∈ C∞uni,B(M ; VΩM) be a uniformly positive V-density. Then also the formal

L2(M ;µ)-adjoint R∗ of R is bounded as a map (3.30) for all w′, N, k.

We say that R is localized near the diagonal if its Schwartz kernel KR is supported uniformly
closely to the diagonal, i.e. there exists a constant C = C(R) so that dB(p, q) ≤ C for
(p, q) ∈ suppKR ⊂M ×M .

Remark 3.35 (Localization near the diagonal). The composition of operators (residual or
not) which are localized near the diagonal is again localized near the diagonal. Even though
we shall not require this localization in our further development of V-ps.d.o.s, it can thus
always be recovered after the fact if needed (provided of course that all operators involved
in one’s computation are localized near the diagonal).

We note that in the case of standard b.g. structures (i.e. ρ = 1) where W = V, we have

H
(s;k)
V;W (M) = Hs+k

V (M), i.e. residual operators are simply required to be smoothing in the

sense of V-regularity. We further note that condition (2) only needs to be verified for a
single choice of the density µ since adjoints with respect to another density are conjugations
of the original adjoint by the quotient of the densities—but such quotients lie in C∞uni,B(M),

and multiplication by elements of C∞uni,B(M) defines bounded operators on every weighted

(mixed) V-Sobolev space.

While typically only the mapping properties encoded in Definition 3.34 matter, it is
occasionally convenient to have a Schwartz kernel description of residual operators which
are localized near the diagonal. Recall the spaces (3.16).

Lemma 3.36 (Schwartz kernels of residual operators). Let χ ∈ C∞c ((−2, 2)n) with χ = 1

on [−1, 1]n. Recall the notation Sα : xα 7→ x̃α = ( xjα
ρα,j

)j=1,...,n from Definition 3.13. Suppose

that a linear operator R on C∞c (M) is a residual operator with weight w and equivalent
weight family {wα}. Then for all N , the operators

Rα,α′ := w−1
α ρ̄−Nα ρ̄−Nα′ (Sα)∗χ(φα)∗Rφ

∗
α′χS

∗
α′ : C∞c (Sα′((−2, 2)n))→ C∞c (Sα((−2, 2)n))
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as well as their adjoints (defined with respect to the Lebesgue measure on Rn) are, for all
k ∈ N0, uniformly bounded as operators

Rα,α′ , R
∗
α,α′ : H

(−N ;k)
ρα′

(Rn)→ H(N ;k)
ρα (Rn). (3.31)

Conversely, if the operators (3.31) are uniformly bounded and R is localized near the diag-
onal, then R ∈ wρ∞Ψ−∞V (M).

As a consequence of (3.31), the Schwartz kernels of Rα,α′ , R
∗
α,α′ (and thus of R, R∗) are

C∞.

Proof of Lemma 3.36. For u ∈ H(−N ;k)
ρα′ (Rn) with norm ≤ 1, the distribution ρ̄−Nα′ φ

∗
α′χS

∗
α′u

has uniformly (i.e. independently of α′) bounded ρ−NH
(−N ;k)
V;W (M)-norm, and therefore

R(ρ̄−Nα′ φ
∗
α′χS

∗
α′u) has uniformly bounded wρNH

(N ;k)
V;W (M)-norm. This implies that Rα,α′u

is uniformly bounded in H
(N ;k)
ρα (Rn); similarly for R∗α,α′ .

For the converse, fix a nonnegative function η ∈ C∞c ((−2, 2)n) so that η = 1 on [−1, 1]

and supp η ⊂ χ−1(1); set ηα = φ∗αη∑
β φ
∗
βη

. Then

w−1
α ρ̄−Nα ρ̄−Nα′ (Sα)∗(φα)∗ηαRηα′φ

∗
α′S
∗
α′ = ((Sα)∗η̃α)Rα,α′((Sα′)∗η̃α′); (3.32)

here η̃α = (φα)∗ηα
χ is uniformly bounded in C∞((−2, 2)n), and thus (Sα)∗η̃α is uniformly

bounded as a multiplication operator on H
(s;k)
ρα (Rn) for all s, k; therefore, the opera-

tors (3.32) are uniformly bounded from H
(−N ;k)
ρα′ (Rn) → H

(N ;k)
ρα (Rn). Write now R =∑

β,α′∈A ηβRηα′ . For u ∈ w′ρ−NH(−N ;k)
V;W (M), and writing χα = φ∗αχ, we then have

(φα)∗(χαRu) =
∑
β,α′

(φα)∗(χαηβRηα′u).

The support condition on the Schwartz kernel of R implies that there exists a constant
J <∞ so that for all α ∈ A there are at most J pairwise distinct pairs (β, α′) ∈ A ×A for
which χαηβRηα′ is not the zero operator. Let A (α) denote the set of all α′ in such pairs;
thus |A (α)| ≤ J , and also dB(p, q) has a uniform upper bound for all p ∈ Uα and q ∈ Uα′ .
We then conclude that

‖Ru‖2
ww′ρNH

(N ;k)
V;W (M)

=
∑
α

‖(wαw′α)−1(Sα)∗(φα)∗(χαRu)‖2HN
ρα

(Rn)

≤ C
∑
α

∑
α′∈A (α)

‖w′−1
α (Sα′)∗(φα′)∗(χα′u)‖2

H−Nρα′
(Rn)

≤ C‖u‖2
w′H

(−N ;k)
V;W (M)

,

where the constant C may change from line to line; in the second inequality, we use that
for every α′ ∈ A there are at most J ′ many α ∈ A with α′ ∈ A (α), where J ′ does not
depend on α′. This completes the proof. �

Remark 3.37 (Topology on wρ∞Ψ−∞V (M)). On the space wρ∞Ψ−∞V (M), we take the oper-

ator norms of the maps (3.30) and of their L2-adjoints as seminorms. Thus, wρ∞Ψ−∞V (M)
is a Fréchet space.
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Corollary 3.38 (Localizing residual Schwartz kernels). Write B×B = {(Uα × Uα′ , φα ×
φα′) : α, α′ ∈ A } for the product b.g. structure on M ×M , and let

C∞uni,B×B,diag(M ×M) ⊂ C∞uni,B×B(M)

denote the subring of functions f ∈ C∞uni,B×B(M ×M) for which there exists C <∞ so that

f is constant in {(p, q) ∈M×M : dB(p, q) > C}. Then the space wρ∞Ψ−∞V (M) is a module
over C∞uni,B×B,diag(M ×M) via pointwise multiplication of Schwartz kernels. In fact, it is

a module over
⋃
N,N ′∈R(π∗1ρ)−N (π∗2ρ)−N

′C∞uni,B×B,diag(M ×M) where π1, π2 : M ×M →M
are the two projection maps.

Proof. The final statement is a straightforward consequence of the first. Let thus f ∈
C∞uni,B×B,diag(M×M); it suffices to consider the situation that f is localized near the diago-

nal. Set fα,α′ = (φα×φα′)∗f , which is thus uniformly bounded in C∞((−2, 2)n× (−2, 2)n).

By Lemma 3.40 with χ ∈ C∞((−3
2 ,

3
2)n), it suffices to show that if Rα,α′ : H

(−N ;k)
ρα′ (Rn) →

H
(N ;k)
ρα (Rn), with uniformly bounded operator norm, has (smooth) Schwartz kernel KRα,α′

supported in Sα((−3
2 ,

3
2)n) × Sα′((−3

2 ,
3
2)n), then the operator norm of the operator with

Schwartz kernel ((Sα×Sα′)∗fα,α′)KRα,α′ as a map H
(−N ;k)
ρα′ (Rn)→ H

(N ;k)
ρα (Rn) is uniformly

bounded as well. (The bounds for R∗α,α′ are then proved in exactly the same fashion.) Using
the uniform boundedness of the C∞ seminorms of fα,α′ , it suffices to verify this in the case
k = 0.

We restate the remaining task as follows: if f ∈ C∞c ((0, 1)n×(0, 1)n) and R : H−N (Rn)→
HN (Rn), (Ru)(x̃) =

∫
KR(x̃, x̃′)u(x̃′) dx̃′, has operator norm ≤ 1 and satisfies suppKR ⊂

Sα((0, 1)n)× Sα′((0, 1)n), then the operator with Schwartz kernel ((Sα × Sα′)∗f)KR maps
H−N (Rn) → HN (Rn) with operator norm bounded by some C∞-seminorm of f . Let
χ ∈ C∞c ((0, 1)n) be such that supp f ⊂ χ−1(1)× χ−1(1), and expand f in Fourier series via

f(x, x′) = χ(x)χ(x′)f(x, x′) =
∑

k,k′∈Zn
fk,k′χ(x)e2πik·xχ(x′)e2πik′·x′ ,

where, for all N ′ ∈ N, we have the bound

|fk,k′ | ≤ CN ′(1 + |k|+ |k′|)−2N ′ ≤ C ′N ′(1 + |k|)−N ′(1 + |k′|)−N ′

where C ′N ′ is bounded by a seminorm of f . Consider now a term

(Sα × Sα′)∗
(
χ(x)e2πik·xχ(x′)e2πik′·x′)KR(x̃, x̃′)

= χ(S−1
α x̃)e2πik·S−1

α (x̃)KR(x̃, x̃′)χ(S−1
α′ x̃

′)e2πik′·S−1
α′ (x̃′).

Now, multiplication with χ(S−1
α x̃) = χ(ρα,1x̃

1, . . . , ρα,nx̃
n) is uniformly (i.e. independently

of ρα ∈ (0, 1]n) bounded on Hs(Rn), as follows for s ∈ N0 by direct differentiation, thus
for s ≥ 0 by interpolation, and finally for s ≤ 0 by duality. On the other hand, the

operator norm on Hs(Rn) of multiplication by e2πik′·S−1
α (x̃) = exp(2πiρα,jk

′
j x̃
j) is bounded

by C̆s(1 + |k′|)s for s ∈ N0, thus also for s ≥ 0 by interpolation, and thus by C̆|s|(1 + |k′|)|s|
for s ∈ R by duality. For any N ≥ 0, we thus have an operator norm bound

‖(Sα × Sα′)∗
(
fk,k′χ(x)e2πik·xχ(x′)e2πik′·x′)KR(x̃, x̃′)‖L(H−N (Rn),HN (Rn))

≤ C ′N ′C̆N (1 + |k|)−N ′+N (1 + |k′|)−N ′+N .
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For fixed N , we then take N ′ > N +n and obtain, by summing over k, k′ ∈ Zn, the desired
operator norm bound on ((Sα × Sα′)∗f)KR. �

That Definition 3.34 is consistent with the properties of quantizations of residual symbols
is the content of the following result.

Proposition 3.39 (Quantizations of residual symbols). Consider a residual symbol a ∈
wρ∞S−∞(VT ∗M). Then OpV(a) ∈ wρ∞Ψ−∞V (M). More generally, if A is an operator

which can be written as A = OpV(am) with am ∈ wρmS−m(VT ∗M) for a sequence of orders
m tending to −∞, then A ∈ wρ∞Ψ−∞V (M).

Proof. Only the mapping properties of the adjoint OpV(a)∗ with respect to a uniformly
positive V-density in Definition 3.34(2) do not follow directly from Proposition 3.32. But
the adjoints of the local quantizations Opα in (3.28) are again quantizations of symbols
with uniformly controlled seminorms by Lemma 3.41 below; and these are in turn left
quantizations of uniformly controlled symbols by the same Lemma. Thus (the proof of)
Proposition 3.32 again applies and finishes the proof. �

To complete the proof, we need two lemmas (which are essentially standard, cf. [Hin23a,
Proposition 4.10, Theorem 4.8]).

Lemma 3.40 (Schwartz kernels as oscillatory integrals). Let α ∈ A and set xiα = φiα and

x̃iα = xiα
ρα,i

, likewise x̃′iα = x′iα
ρα,i

. Let κ = κ(xα, x
′
α). Suppose that for all β, β′, γ,N ,

|(ρα∂xα)β(ρα∂x′α)β
′
(∂xα + ∂x′α)γκ(xα, x

′
α)| ≤ Cββ′γN (1 + |x̃α − x̃′α|)−N (3.33)

in the notation (3.4). Then there exists a unique symbol a ∈ S−∞(T ∗Rn) so that

κ(xα, x
′
α) = (2π)−n

∫
Rn
ei

∑n
j=1(xjα−x′jα )ξα,j/ρα,ja(xα, ξα) dξα.

We have supp a ⊂ π1(suppκ) × Rn where π1 : Rn × Rn → Rn is the projection to the
first factor. Moreover, the symbol seminorms of a are bounded by uniform constants (i.e.
independent of α) times the optimal constants Cββ′γN in (3.33).

Since ρα,j∂x′jα = −ρα,j∂xjα+ρα,j(∂xjα+∂
x′jα

), requiring (3.33) only for β′ = 0 implies (3.33)

for all β′ (and likewise with β in place of β′).

Proof of Lemma 3.40. Since κ is the inverse Fourier transform ǎ(xα, z̃)|z̃j=(xjα−x′jα )/ρj,α
of a

in ξα, we must have (writing x′jα = xjα − ρα,j z̃j)

a(xα, ξα) =

∫
Rn
e−iz̃·ξακ(x1

α, . . . , x
n
α, x

1
α − ρα,1z̃1, . . . , xnα − ρα,nz̃n) dz̃1 · · · dz̃n.

The rapid z̃-decay of the integrand implies the convergence of the integral and all of its ξα-
derivatives. Furthermore, |ξα|2Ne−iz̃·ξα = (−∂2

z̃ )Ne−iz̃·ξα ; integrating by parts in z̃ produces
2N -fold derivatives of κ along the vector fields ρα,j∂x′jα . Finally, the ∂xα-regularity of a

follows from the (∂xα + ∂x′α)-regularity of κ. �

Lemma 3.41 (Left and right reduction). Let a = a(xα, x
′
α, ξα) ∈ Sm(Rn × Rn;Rn); that

is, for all k ∈ N0,

|a|Sm;k := max
|β|+|β′|+|γ|≤k

sup
(xα,x′α,ξα)∈Rn×Rn×Rn

〈ξ〉−m+|γ||∂βxα∂
β′

x′α
∂γξαa(xα, x

′
α, ξα)| <∞.
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Then there exists a unique symbol aL ∈ Sm(T ∗Rn) so that

Op′α(a) := (2π)−n
∫
Rn
ei

∑n
j=1(xjα−x′jα )ξα,j/ρα,ja(xα, x

′
α, ξα) dξα (3.34)

= Op′α(aL) = (2π)−n
∫
Rn
ei

∑n
j=1(xjα−x′jα )ξα,j/ρα,jaL(xα, ξα) dξα.

The symbol aL has the following additional properties:

(1) for k ∈ N0, define (using the notation (3.4))

qk(xα, ξα) := aL(xα, ξα)−
∑
|β|≤k−1

1

β!

(
∂βξα(ραDx′α)βa(xα, x

′
α, ξα)

)∣∣
x′α=xα

.

Then the Sm−k(T ∗Rn)-seminorms of ρ̄−kα qk are bounded uniformly (i.e. with con-
stant independent of α) by the Sm-seminorms of a;

(2) if χ, χ̃ ∈ S0(T ∗Rn) are such that suppχ ⊂ χ̃−1(1) and

aχ̃(xα, x
′
α, ξα) := χ̃(xα, ξα)a(xα, x

′
α, ξα)

is an element of Sm
′
, then χaL ∈ Sm

′
, with seminorms bounded uniformly by

those of aχ̃. The same conclusion holds under the assumption that (xα, x
′
α, ξα) 7→

χ̃(x′α, ξα)a(xα, x
′
α, ξα) lies in Sm

′
.

Similarly, Op′α(a) = Op′α(aR) for a unique aR = aR(x′α, ξα) ∈ Sm which is an asymptotic

sum aR ∼
∑

β
1
β!(∂

β
ξα

(−ραDxα)βa)|xα=x′α.

Proof. We write the Taylor expansion of a around the diagonal x′α = xα as

a(xα, x
′
α, ξα) =

∑
|β|≤k−1

1

β!
((ρα∂x′α)βa)(xα, xα, ξα)

(x′α − xα
ρα

)β
+ rk(xα, x

′
α, ξα),

rk(xα, x
′
α, ξα) =

∑
|β|=k

k

β!

∫ 1

0
(1− t)k−1((ρα∂x′α)βa)(xα, xα + t(x′α − xα), ξα)

(x′α − xα
ρα

)β
dt.

Here, for z = (z1, . . . , zn) ∈ Rn, we write (z/ρα)β :=
∏n
j=1(zj/ρα,j)

βj . In the oscillatory in-

tegral (3.34), write then (x
′
α−xα
ρα

)βei(xα−x
′
α)·ξα/ρα = (−Dξα)βei(xα−x

′
α)·ξα/ρα and integrate by

parts in ξα. Let ãL denote an asymptotic sum of 1
β!(∂

β
ξα

(ραDx′α)βa)|x′α=xα (see Lemma 3.30).

Then the difference
κR := Op′α(a)−Op′α(ãL),

a function of (xα, x
′
α), can be written as

κR = Op′α(qk) + Op′α(rk).

For any fixed β, β′, γ,N , the estimate (3.33) holds for both Op′α(qk) and Op′α(rk) (by the
usual integration by parts arguments) when k is sufficiently large (thus qk is a symbol
of sufficiently negative order). Lemma 3.40 thus implies that κR = Op′α(r) for a symbol
r = r(xα, ξα) so that the Sm−k-seminorms of ρ̄−kα r are bounded uniformly by the Sm-
seminorms of a for all k. Setting aL := ãL + r completes the construction; part (1) is
immediate.

For part (2), we only need to note that for any differential operator D in (xα, x
′
α, ξα),

one has χDaχ̃ = χχ̃Da+ χ[D, χ̃]a = χDa. �
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Finally, we record that localizations of quantizations of general symbols away from the
diagonal (as measured using dB) are residual; this allows one to localize Schwartz kernels
arbitrarily closely to the diagonal.

Lemma 3.42 (Off-diagonal behavior of quantizations). Let ε > 0, and let η ∈ C∞uni,B×B(M×
M) be 1 in the ε-neighborhood {(p, q) ∈ M ×M : dB(p, q) < ε} of the diagonal in M ×M .
Let w be a weight, and let a ∈ wSm(VT ∗M). With OpV(a) denoting the Schwartz kernel,
we then have (1− η) OpV(a) ∈ wρ∞Ψ−∞V (M).

Proof. In view of Corollary 3.38, it suffices to note that if η0 ∈ C∞c (Rn) is equal to 1 near
0 (and is chosen to satisfy supp((φα × φα)∗η0) ⊂ {dB(p, q) < ε} for all α ∈ A ), then in the
integral kernel∫

Rn
ei

∑n
j=1(xjα−x′jα )ξj/ρα,jψ(x′α − xα)

(
1− η0(xα − x′α)

)
aα(xα, ξ) dξ

we can act on the exponential factor with |xα−x′α|−2
∑n

j=1 ρα,j(x
j
α−x′jα)i−1∂ξj , and integrate

by parts in ξ. If aα is uniformly bounded in Sm, say, then ρα,j∂ξjaα(xα, ξ) is uniformly

bounded in ρ̄αS
m−1 for all j = 1, . . . , n. By iterating this argument, one can replace aα

by a symbol with uniform bounds in ρ̄Nα S
m−N for any desired N . Thus, Proposition 3.39

applies and finishes the proof. �

3.5.3. V-pseudodifferential operators II: definition, symbolic properties, composition. We
now merge Definitions 3.31 and 3.34 into the central definition of the present paper.

Definition 3.43 (V-ps.d.o.s). Let m ∈ R, and let w ∈ C∞(M) be a weight on (M,B).
Then the space of weighted V-pseudodifferential operators (of order m with weight w) is
defined by

wΨm
V (M) := {OpV(a) +R : a ∈ wSm(VT ∗M), R ∈ wρ∞Ψ−∞V (M)}.

In the notation of Definition 3.25, the principal symbol of A = OpV(a) +R is

σ
m,w
V (A) := [a] ∈ wSm(VT ∗M)/wρSm−1(VT ∗M),

and its operator wave front set is WF′wV (A) := ess suppwM a.

When the weight w is clear from the context, we shall write WF′V(A) instead of WF′wV (A).
Directly from the definition, we have a short exact sequence

0→ wρΨm−1
V (M) ↪→ wΨm

V (M)
σmV−−→ wSm(VT ∗M)/wρSm−1(VT ∗M)→ 0.

Using Lemma 3.29, we define the elliptic set of A as Ellm,wV (A) := Ellwλ
−m

M (σm,wV (A));
and the characteristic set as Charm,wV (A) = M \ Ellm,wV (A).

Theorem 3.44 (Boundedness of V-ps.d.o.s). Let w,w′ ∈ C∞(M) be weights on (M,B);
let s,m ∈ R. Then every A ∈ wΨm

V (M) defines a bounded linear map w′Hs
V(M) →

ww′Hs−m
V (M), and more generally w′H

(s;k)
V;W (M)→ ww′H

(s−m;k)
V;W (M) for all k ∈ N0.

Proof. This is an immediate consequence of Proposition 3.32 and Definition 3.34. �
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Remark 3.45 (Other function spaces). Since uniform ps.d.o.s on Rn are bounded also be-
tween Lp-based Sobolev spaces for p ∈ (1,∞) as well as Hölder spaces of non-integer order,
Theorem 3.44 generalizes to the boundedness of V-ps.d.o.s also between analogues of such
spaces for b.g. structures (and also to refinements of such spaces which measure additional
k ∈ N0 degrees of W-regularity). This only requires the function spaces to contain, resp.
be contained in,

⋂
m,l wρ

lHm
V (M), resp.

⋂
m,l wρ

lHm
V (M) (and the versions with additional

W-regularity).

Remark 3.46 (Ps.d.o.s on vector bundles). When E,F →M are vector bundles of bounded
geometry (see Definition 3.13), one defines wΨm

V (M ;E,F ) as sums of matrices of quantiza-
tions of symbols of class wSm in local charts and residual operators which are smoothing
(in the sense of V-regularity and ρ-decay) between Sobolev spaces of sections of E,F . We
leave the details to the interested reader.

Remark 3.47 (Topology on wΨm
V (M)). Let χ, χ̃ ∈ C∞c ((−2, 2)n) be equal to 1 on [−1, 1]n,

with χ̃ = 1 on suppχ; set χα := φ∗αχ∑
β φ
∗
βχ

and χ̃α := φ∗αχ̃. Given A ∈ wΨm
V (M), consider then

the decomposition A =
∑

α χ̃αAχα + R where R =
∑

α(1 − χ̃α)Aχα ∈ wρ∞Ψ−∞V (M). As

seminorms on wΨm
V (M), we then take the wρ∞Ψ−∞V (M)-seminorms of R (see Remark 3.37)

as well as the supremum over α ∈ A of the Sm-seminorms of the unique symbols aα ∈
Sm((−2, 2)n;Rn) so that χ̃αAχα, in the chart φα, is given by Op′α(aα) where we define Op′α
as in (3.26) but (to enforce uniqueness) without the cutoff ψ.

Remark 3.48 (Relationship with V ′-ps.d.o.s). Recall Proposition 3.3, and define Ψm
V ′(M)

using Definition 3.43 with respect to the b.g. structure ρB and the trivial scaling (i.e. all
scalings are 1). (Thus, the operator and coefficient Lie algebras coincide and are equal to
V ′.) Then

Ψm
V (M) ⊂ Ψm

V ′(M);

similarly for spaces of weighted ps.d.o.s. We stress that the validity of this inclusion rests
in particular on the fact that we do not require residual V ′-ps.d.o.s to be localized near
the diagonal (as measured using a metric dρB as given in Proposition 2.3): after all, when
infα,i ρα,i = 0, Schwartz kernels of V-quantizations are only dB-, but not dρB-localized near
the diagonal.

We proceed to develop further basic properties of wΨm
V (M):

• wΨm
V (M) only depends on V and m,w;

•
⋃
m,w wΨm

V (M) is an algebra, and the principal symbol map is multiplicative.

Definition 3.34 ensures that the space wρ∞Ψ−∞V (M) is unchanged when passing from

B× to a compatible scaled b.g. structure B̃×. We proceed to justify the notation wΨm
V (M)

(and also of σm,wV (A) and WF′V(A)) by showing that wΨm
V (M) is unchanged when using B̃×

instead of B× in its definition. In view of Proposition 3.2, it suffices to study the (uniform)
effect of coordinate changes on quantizations Opα(aα) in local charts where aα ∈ Sm(T ∗Rn)
has support in (−5

4 ,
5
4)n ×Rn. Moreover, by Lemma 3.42, we may furthermore localize the

Schwartz kernels of such local quantizations to a neighborhood |xα − x′α| < ε for any
fixed α-independent ε > 0. Using a uniform partition of unity subordinate to the b.g.
structure {(Ũα̃, φ̃α̃)} underlying B̃×, with the supports of the cutoff functions contained

in φ̃−1
α̃ ((−3

2 ,
3
2)n), we may furthermore localize aα = aα(x, ξ) in x to have x-support in
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(−3
2 ,

3
2)n∩(φα◦φ̃−1

α̃ ((−3
2 ,

3
2)n)), and thus (using the near-diagonal localization) the Schwartz

kernel of Opα(aα) to have support in [(−7
4 ,

7
4)n ∩ (φα ◦ φ̃−1

α̃ ((−7
4 ,

7
4)n))]2. We now describe

the symbol ãα̃ for which Opα(aα) = Opα̃(ãα̃); for simplicity of notation, the roles of aα, α, α̃
will be played by a, α, β, and we consider the coordinate change ταβ between φα and φβ.

Lemma 3.49 (Coordinate change). Fix C = supα,β∈A

∑n
j=1 ‖τ

j
βα‖C1. Fix 0 < ε < (4C)−1

and 0 < l < 2− 2ε. Let α, β ∈ A , and suppose a ∈ Sm(T ∗Rn) has support in ((−l+ 2ε, l−
2ε)n ∩ ταβ((−l + 2Cε, l− 2Cε)n))×Rn For δ > 0, let ηδ ∈ C∞c ((−2δ, 2δ)n) be equal to 1 on
[−δ, δ]n. Define the operator Aα to have Schwartz kernel

KAα(xα, x
′
α) := κAα(xα, x

′
α)
|dx′1α · · · dx′nα |
ρα,1 · · · ρα,n

,

κAα(xα, x
′
α) := (2π)−n

∫
Rn
ei

∑n
j=1(xjα−x′jα )ξα,j/ρα,jηε(x

′
α − xα)a(xα, ξα) dξα.

Define the operator Aβ by Aβu := τ∗αβ(Aα(τ∗βαu)) (whose Schwartz kernel KAβ is supported

in (−l+2Cε, l−2Cε)n× (−l, l)n). Then we can write its Schwartz kernel as KAβ (xβ, x
′
β) =

κAβ (xβ, x
′
β)
|dx′1β ···dx

′n
α |

ρβ,1···ρβ,n where

κAβ (xβ, x
′
β) = (2π)

∫
Rn
ei

∑n
j=1(xjβ−x

′j
β )ξβ,j/ρβ,jη2Cε(x

′
β − xβ)b(xβ, ξβ) dξβ

for a symbol b ∈ Sm(T ∗Rn) with support in (−l+2Cε, l−2Cε)n×Rn which has the following
properties:

(1) the Sm−1(T ∗Rn)-seminorms of ρ̄−1
α (b− (τβα)∗a) are uniformly bounded by those of

a;
(2) if χ ∈ S0(T ∗Rn) is such that χa ∈ Sm

′
, then ((τβα)∗χ)b ∈ Sm

′
, with seminorms

bounded uniformly by those of χa.

Part (1) explains why the principal symbol of an element of Ψm
V (M) is well-defined in

Sm/ρSm−1(VT ∗M); part (2), applied to χ which are the pushforward to Uα of an element
of S0(VT ∗M), is the reason for the well-definedness of the essential support of V-ps.d.o.s.

Proof of Lemma 3.49. The Schwartz kernel of Aβ is equal to

KAβ (xβ, x
′
β) = κAα

(
ταβ(xβ), ταβ(x′β)

) |d(τ1
αβ(x′β)) · · · d(τnαβ(x′β))|

ρα,1 · · · ρα,n
.

The density factor is equal to

ρβ,1 · · · ρβ,n
ρα,1 · · · ρα,n

∣∣det
(
∂iτ

j
αβ(x′β))i,j=1,...,n

)∣∣ |dx′1β · · · dx′nβ |
ρβ,1 · · · ρβ,n

=

∣∣∣∣det

(
ρβ,i∂iτ

j
αβ(x′β)

ρα,j

)∣∣∣∣ |dx′1β · · · dx′nβ |ρβ,1 · · · ρβ,n
,

with the determinant factor being uniformly bounded in C∞ in view of (1.6). In the
oscillatory integral κAα on the other hand, we write (using the ‘Kuranishi trick’ [Hör71,
§2.1])

n∑
j=1

(
τ jαβ(xβ)− τ jαβ(x′β)

) ξα,j
ρα,j

=
n∑

i,j=1

(xiβ − x′iβ)
Φj
i (xβ, x

′
β)ξα,j

ρβ,i
,



54 PETER HINTZ

Φj
i (xβ, x

′
β) =

∫ 1

0

ρβ,i∂iτ
j
αβ(x′β + s(xβ − x′β))

ρα,j
ds.

In view of (1.6), there exists δ0 > 0 (independent of α, β) so that the matrix Φ(xβ, x
′
β) :=

(Φj
i (xβ, x

′
β))i,j=1,...,n is invertible (and with | det Φ(xβ, x

′
β)| bounded above and below by

a uniform constant times | det Φ(xβ, xβ)|) whenever |xβ − x′β| < 4δ0. For the localization

κAβ ,2δ0(xβ, x
′
β) := η2δ0(x′β − xβ) · κAβ (xβ, x

′
β), we can then perform the change coordinates

ξα = Φ(xβ, x
′
β)−1θβ. The left reduction (see Lemma 3.41 below) applied to the symbol

ηε(ταβ(x′β)− ταβ(xβ))η2δ0(x′β − xβ)a
(
ταβ(xβ),Φ(xβ, x

′
β)−1θβ

)
J(xβ, x

′
β),

where J(xβ, x
′
β) = |det(

ρβ,i∂iτ
j
αβ(x′β)

ρα,j
)| · |det Φ(xβ, x

′
β)|−1 equals 1 at x′β = xβ, produces

the desired expression for κAβ ,2δ0(xβ, x
′
β) and the statements (1)–(2). Note also that∑n

j=1 Φj
i (xβ, xβ)ξα,j = ξβ,i according to (3.7) (with α, β exchanged). The operator (1 −

η2δ0)κAβ is residual, and thus also of the stated form by Lemma 3.40 (and it does not affect
the validity of (1)–(2)). �

Passing back to the notation from the discussion preceding Lemma 3.49, we have now
expressed Opα(aα) = Opα̃(ãα̃) with full control on ãα̃. The following result completes

the proof that
∑

α̃∈Ã Opα̃(ãα̃) is of the form ÕpV(ã) + R̃ where we write ÕpV(ã) for the

quantization map relative to B̃×, and where R̃ ∈ wρ∞Ψ−∞V (M). Again, we work with B×
and drop tildes for simplicity of notation.

Proposition 3.50 (Sums of local quantizations). Let w ∈ C∞(M) be a weight and {wα}
an equivalent weight family. For each α ∈ A , suppose we are given aα ∈ Sm(T ∗Rn) with
support in (−3

2 ,
3
2)n × Rn, and suppose that all seminorms of w−1

α aα in Sm(T ∗Rn) are

uniformly bounded. Then there exist a ∈ wSm(VT ∗M) and R ∈ wρ∞Ψ−∞V (M) so that∑
α∈A

φ∗α Opα(aα) = OpV(a) +R. (3.35)

Setting a0 :=
∑

α∈A φ∗αaα ∈ Sm(VT ∗M), where φα : VT ∗UαM → (−2, 2)n × Rn (analogously
to the notation used in Definition 3.8), we moreover have

a− a0 ∈ wρSm−1(VT ∗M), EllwM(a) = EllwM(a0). (3.36)

Finally, if χ ∈ S0(VT ∗M) is such that ((φα)∗χ)aα is uniformly bounded in S−∞(T ∗Rn),
then ess suppwM(a) ∩ {χ 6= 0} = ∅.

Proof. Fix a uniform partition of unity {χα} as in Definition 3.31. Then(∑
α

φ∗α Opα(aα)

)
−OpV(a0)

=
∑
α,β

(
φ∗α Opα

((
(φα)∗χβ

)
aα

)
− φ∗β Opβ

((
(φβ)∗χβ

)
(τβα)∗aα

))
.

Using Lemma 3.49, we can write

φ∗α Opα

((
(φα)∗χβ

)
aα

)
= φ∗β Opβ

(
(τβα)∗

(
(φα)∗χβ

)
aα + rβα

)
+Qβα
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where rβα is uniformly bounded in wβρβS
m−1, moreover rβα and Qβα (the latter capturing

residual error terms from localizing to a neighborhood of the diagonal) are nonzero only
when Uβ ∩ Uα 6= ∅, and Q1 :=

∑
α,β Qβα ∈ wρ∞Ψ−∞V (M). Since (τβα)∗((φα)∗χβ)aα =

((φβ)∗χβ)(τβα)∗aα, we conclude that(∑
α

φ∗α Opα(aα)

)
−OpV(a0) =

∑
β

φ∗β Opβ(a1,β) +Q1

where a1,β =
∑

α rβα is uniformly bounded in wβρβS
m−1. Therefore, the collection {a1,β}

satisfies the same hypotheses as {aα} except with m shifted by −1 and wα replaced by
wαρ̄α.

Proceeding iteratively, we thus obtain symbols aj =
∑

β φ
∗
βaj,β ∈ wρjSm−j(VT ∗M) and

residual operators Qj ∈ wρ∞Ψ−∞V (M) so that for k ≥ 1,∑
α

φ∗α Opα(aα)−OpV(a0 + · · ·+ ak−1) =
∑
β

φ∗β Opβ(ak,β) +Qk,

with ak,β uniformly bounded in wβ ρ̄
k
βS

m−k. Moreover, the Schwartz kernels of each Q(j)

are supported in a fixed neighborhood (with respect to dB) of the diagonal in M ×M . In
view of part (2) of Lemma 3.49, the essential support of each

∑
β φ
∗
βak,β satisfies the same

condition as that of a in the statement of the proposition.

Let now a ∈ wSm(VT ∗M) be an asymptotic sum of the ai, i ∈ N0. Then

R :=
∑
α

φ∗α Opα(aα)−OpV(a)

= OpV(rk) +
∑
β

φ∗β Opβ(ak,β) +Q(k),
(3.37)

with rk := (a0 + · · ·+ak−1)−a ∈ wρkSm−k(VT ∗M). By (the proof of) Proposition 3.32, the

operator R thus defines a bounded map from w′H
(−N ;j)
V;W (M) to ww′ρkH

(−N−m+k;j)
V;W (M) for

all w′, N, j, k, and likewise for R∗. Therefore, R is residual, and the proof is complete. �

We next turn to algebra properties of ΨV(M).

Theorem 3.51 (Adjoints, compositions, and commutators of V-ps.d.o.s). Let w,w1, w2 ∈
C∞(M) be weights on (M,B). Let m,m1,m2, l, l1, l2 ∈ R. Fix a uniformly positive V-
density on M . Then

A ∈ wρ−lΨm
V (M) =⇒ A∗ ∈ wρ−lΨm

V (M),

Aj ∈ wjρ−ljΨ
mj
V (M) =⇒ A1 ◦A2 ∈ (w1w2)ρ−(l1+l2)Ψm1+m2

V (M).

Furthermore, σm,lV (A∗) = σ
m,l
V (A) and σ

m1+m2,l1+l2
V (A1 ◦A2) = σ

m1,l1
V (A1) ·σm2,l2

V (A2). The

principal symbol of i[A1, A2] ∈ wρ−(l1+l2−1)Ψm1+m2−1
V (M) is the Poisson bracket of the

principal symbols of A1, A2. Finally,

WF′w1w2
V (A1 ◦A2) ⊂WF′w1

V (A1) ∩WF′w2
V (A1). (3.38)

The map A 7→ A∗ is continuous, and the map (A1, A2) 7→ A1 ◦A2 is jointly continuous.
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Proof. The membership A∗ ∈ wρ−lΨm
V (M) is a simple application of the left reduction

result (Lemma 3.41). To study A1 ◦A2, write

Aj = OpV(aj) +Rj , aj ∈ wjρ−ljSmj (VT ∗M), Rj ∈ wjρ∞Ψ−∞V (M).

The membership R1 ◦ R2 ∈ (w1w2)ρ∞Ψ−∞V (M) is an immediate consequence of Defini-
tion 3.34.

Consider the composition OpV(a1) ◦ OpV(a2). We define OpV using the b.g. struc-
ture from Lemma 2.6 with `1 = 3

2 , `2 = 7
4 , and with the scaling on all cells arising

from the subdivision of Uα given by ρα. For a term φ∗α Opα(a1,α) ◦ φ∗β Opβ(a2,β) with

φ−1
α ((−3

2 ,
3
2)n) ∩ φ−1

β ((−3
2 ,

3
2)n) 6= ∅, we then write φ∗β Opβ(a2,β) = φ∗α(τ∗βα Opβ(a2,β)) as

φ∗α Opα(a2,β,α) using Lemma 3.49. Thus, it suffices to study compositions in a single
chart. But using Lemma 3.41, we can write Opα(a) ◦ Opα(b) = Op′α(aL) ◦ Op′α(bR) =
Op′α(aLbR) where aL = aL(xα, ξα) and bR = bR(x′α, ξα); and then further Op′α(aLbR)
equals Opα(c) plus a residual operator. The uniformity statements in Lemmas 3.41 and
3.49 imply, together with Proposition 3.50, that OpV(a1) ◦OpV(a2) = OpV(a) + R′ where

a ∈ (w1w2)ρ−(l1+l2)Sm1+m2(VT ∗M) (with the usual full symbol expansion in each chart)
and R ∈ (w1w2)ρ∞Ψ−∞V (M).

Finally, Proposition 3.32 implies that the compositions OpV(a1)◦R2 and R1 ◦Opc V (a2)
are residual. We leave the proof of the continuity statements to the reader.

The principal symbol of the commutator arises as usual from the |β| = 1 terms of the
local expressions for the left reduced full symbols of A1 ◦A2 and A2 ◦A1. �

3.5.4. Application: Fredholm theory for elliptic operators in fully symbolic settings. As a
simple applications of the ‘V-calculus’ ΨV(M) :=

⋃
m,w wΨm

V (M) (with w ∈ C∞(M) denot-

ing weights on (M,B)), we discuss the Fredholm theory for elliptic operators in the case
that V is fully symbolic (see Definition 3.27). (One often says instead that the V-calculus is
fully symbolic, as e.g. in [Sus23].) The scattering calculus discussed in §1.2.1 is an example;
further examples are the 00- and desc-algebras from §1.2.4(8), (9).

Theorem 3.52 (Elliptic V-ps.d.o.s are Fredholm). Suppose V is fully symbolic. Let P ∈
wΨm
V (M) be elliptic, i.e. σm,wV (P ) ∈ wSm/wρSm−1(VT ∗M) is elliptic. Then, for all weights

w′ ∈ C∞(M) on (M,B) and for all s ∈ R, the operator

P : w′Hs
V(M)→ ww′Hs−m

V (M)

is Fredholm. The analogous conclusion holds also on H
(s;k)
V;W spaces.

Proof. Let Q = OpV(q) ∈ w−1Ψ−mV (M) where q ∈ w−1S−m(VT ∗M) satisfies qp − 1 ∈
ρS−1(VT ∗M). Then QP = I+R where R ∈ ρΨ−1

V (M) is compact on w′Hs
V(M) by (3.21).12

Therefore, P has finite-dimensional kernel and closed range. Similarly, the fact that PQ−I
is compact on ww′Hs−m

V (M) implies that P has finite-dimensional cokernel. �

Example 3.53 (Geometric operators for metrics on Rn). Returning to Example 3.12, we
conclude that Lz = ∆g − z is Fredholm as a map

Lz : wHs
V(M)→ wHs−2

V (M), z ∈ C \ [0,∞), (3.39)

12As usual, using the principal symbol calculus, one can refine Q to yield a residual remainder R ∈
ρ∞Ψ−∞V (M).
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for all weights w ∈ C∞(Rn) on (Rn,B) for the scaled b.g. structure from §1.2.1; in fact, Lz is
invertible. Indeed, all such weights w can easily be seen to polynomially bounded, and thus
(using an elliptic parametrix) kerwHs

V (M) Lz ⊂ 〈x〉−∞H∞(Rn) = S (Rn); but then Lzu = 0

implies 0 = 〈Lzu, u〉L2(Rn) and thus u = 0. The same argument applies to L∗z. — Note that
if instead we use the standard b.g. structure (1.1) on Rn, i.e. with scaling ρα,i = 1, then

e.g. w = ecx
1

is a weight on Rn, but the Fredholm property of (3.39) typically fails (e.g. for
c ≥ 1); and this (trivially scaled) b.g. structure is not fully symbolic.

3.6. V-microlocalization: wave front sets. In order to facilitate the analysis of non-
elliptic problems, we define here notions of wave front sets associated with V.

Definition 3.54 (V-Sobolev wave front set). Let w ∈ C∞(M) be a weight on (M,B), recall
the scaling weight ρ ∈ C∞(M) from Definition 3.6, and recall the microlocalization locus
M from Definition 3.25. Let u ∈ wρ−∞H−∞V (M) =

⋃
m,l wρ

lHm
V (M). Then

WFm,w,lV (u) ⊂M

is the complement of the set of all $ ∈M for which there exists an operator A ∈ Ψ0
V(M)

which is elliptic at $ and for which Au ∈ wρlHm
V (M). For k ∈ N0, the set WF

(m;k),w,l
V;W (u) ⊂

M is defined analogously for u ∈ wρ−∞H(−∞;k)
V;W (M).

Proposition 3.55 (Properties of the V-Sobolev wave front set). Let u ∈ wρ−∞H−∞V (M)

and A ∈ w′Ψm′
V (M), B ∈ Ψ0

V(M).

(1) u ∈ wρlHm
V (M) if and only if WFm,w,lV (u) = ∅.

(2) (Microlocality.) WFm−m
′,ww′,l

V (Au) ⊂WFm,w,lV (u) ∩WF′w
′

V (A).
(3) (Microlocal elliptic regularity.) If WF′V(B) ⊂ Ellm,wV (A), then for any N there exists

CN so that

‖Bu‖wρlHm
V (M) ≤ CN

(
‖Au‖

ww′ρlHm−m′
V (M)

+ ‖u‖wρ−NH−NV

)
.

Proof. The first part is analogous to the discussion of (2.13). The non-trivial direction
‘⇐=’ follows, by compactness of M, from the existence of a finite collection a1, . . . , aN ∈
S0(VT ∗M) of symbols with OpV(aj)u ∈ wρlHm

V (M) and
⋃N
j=1 EllwM(aj) = M: we then

have Au ∈ wρlHm
V (M) for the elliptic operator A =

∑N
j=1 OpV(aj)

2 ∈ Ψ0
V(M). With

B ∈ Ψ0
V(M) denoting a parametrix, i.e. BA = I + R for R ∈ ρ∞Ψ−∞V (M), we then have

u = B(Au)−Ru ∈ wρlHm
V (M), as desired.

The proofs of the remaining two parts are standard applications of the principal symbol
calculus, see e.g. [Hin23a, Proposition 6.3]. �

We shall not attempt to study the propagation of singularities in M here. We only
remark that in applications where a concrete compactification of VT ∗M is given, one can
use the V-calculus to prove results on the real principal type or radial point propagation
for solutions of hyperbolic equations in the usual symbolic manner, as described e.g. in
[Vas18, DZ19, Hin23a].



58 PETER HINTZ

3.7. Parameterized scaled bounded geometry structures. We now describe the gen-
eralization of scaled b.g. structures to parameterized scaled b.g. structures with parameter
set P ,

{Bp,× : p ∈ P}, Bp,× = {(Up,α, φp,α, ρp,α) : α ∈ Ap};
see Definition 1.9. Denote the b.g. structure underlying Bp,× by Bp = {(Up,α, φp,α)}, and
write B× := (Bp,×)p∈P for the collection of all scaled b.g. structures.

On the space P ×M =
⊔
p∈P {p} ×M , with P given the discrete topology, we can again

consider the space of uniformly continuous functions u = u(p, x), i.e. u(p, ·) ∈ C0
uni,Bp

(M)

which have a p-independent modulus of continuity. Correspondingly, the constructions
in §2.4 apply and give the uniform compactification

u(P ×M)

of P ×M . When P is finite, we have u(P ×M) =
⊔
p∈P {p} × u(M,Bp) (which is P × uM

when all Bp are compatible). In general, however, the compactification u(P × M) also
contains, among other things, accumulation points of sequences (pj , x) where {pj} is a
sequence in P .

We denote by Vp and Wp the operator, resp. coefficient Lie algebras of Bp,×, and by

VpT ∗M →M

the Vp-cotangent bundle (Definition 3.7), which is equipped with its scaled b.g. structure
B∗p,× from Definition 3.23. We may then apply the constructions in §2.4 to the space

VT ∗M :=
⊔
p∈P
{p} × VpT ∗M.

Denote by ρp ∈ C∞(M) a scaling weight for (M,Bp,×) from Definition 3.6 (with constants
which are independent of p, cf. the discussion following Definition 3.58 below), and by
λp ∈ S−1(VpT ∗M) a uniformly bounded family of weights as in Lemma 3.24 for which
λ−1 ∈ S1(VpT ∗M) is uniformly bounded as well. Write ρ, λ for the functions which on
{p} × M , resp. {p} × VpT ∗M are given by ρp, λp. Analogously to Definition 3.25, the
microlocalization locus is then the compact subset

M := uVT ∗M) ∩ {j(ρλ) = 0}. (3.40)

We also have Sobolev spaces Hs
Vp(M) and weighted versions wpHVp(M) thereof, where

wp ∈ C∞(M) is a weight on (M,Pp).

Remark 3.56 (Subsets of P ). In applications, one often only works with operators defined
for (typically countable) subsets of parameters p ∈ P (e.g. in the semiclassical setting:
sequences of semiclassical parameters hj ↘ 0). Since one can implement this simply by
replacing P by such a subset (and then defining the microlocalization locus as in (3.40) for
the new set P ), we do not explicitly allow for symbols to be defined only on subsets of P
here.

Remark 3.57 (Compatibility of different scaled b.g. structures). In applications, two scaled
b.g. structures Bp,× and Bp′,× for different values of p, p′ ∈ P are often strongly compatible,
though not uniformly so in p and p′ ∈ P . (This implies, for example, the equality of all
Sobolev spaces Hs

Vp(M) as sets, but still allows for the norms to not be uniformly equivalent
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as p varies.) Since imposing this condition would not lead to any simplifications, we do not
do this here.

We now generalize Definitions 3.8, 3.25, and 3.31.

Definition 3.58 (Symbols). Let w = (wp)p∈P be a weight on (P ×M,B×). Let m ∈ R.

Then we say that a family a = (ap)p∈P lies in wSm(VT ∗M) if ap ∈ wpSm(VpT ∗M) for all
p ∈ P , with uniformly bounded symbol seminorms. The elliptic set and essential support
of a, as subsets of M, are defined in complete analogy with Definition 3.25.

Carefully note that for w = (wp)p∈P to be a weight on (P ×M,B×), it is necessary but
not sufficient that each wp be a weight on (M,Bp,×); a sufficient additional condition is
that the ratios wp,α/wp,β for α, β ∈ Ap with Up,α ∩ Up,β 6= ∅ are uniformly bounded.

Definition 3.59 (V-ps.d.o.s: parameterized setting). In the notation of Definition 3.58,
a V-pseudodifferential operator A ∈ wΨm

V (M) is a family A = (Ap)p∈P of operators Ap =
OpVp(ap) +Rp where the quantization map OpVp is defined as in Definition 3.31, (ap)p∈P ∈
wSm(VT ∗M), and (Rp)p∈P is a family of residual operators Rp on (M,Bp,×) for which
the conditions in Definition 3.34 hold with uniform constants and operator norm bounds
for all weights w′ in (3.30). The principal symbol of A is the equivalence class of a in
wSm(VT ∗M)/wρSm−1(VT ∗M). Finally, the space wDiffmV (M) of V-differential operators
is the subspace of wΨm

V (M) consisting of differential operators.

An operator A = (Ap)p∈P ∈ wΨm
V (M) defines a uniformly bounded family of operators

Ap : w′pH
s
Vp(M)→ wpw

′
pH

s−m
Vp (M),

and more generally Ap : w′pH
(s;k)
Vp;Wp

(M) → wpw
′
pH

(s−m;k)
Vp;Wp

(M). (This is in fact a special

case of Theorem 3.44, applied to the scaled b.g. structure (P × M,B×) and the input
u = (up)p∈P where up = 0 for all p 6= p0 ∈ P and up0 ∈ w′p0H

s
Vp0

(M) with norm ≤ 1,

since then Au = (Apup)p∈P has norm ≤ C for some constant C only depending on A; but

the norm of Au is bounded from below by the wpw
′
pH

s−m
Vp (M)-norm of Ap0up0 .13) The

properties of adjoints, compositions, commutators, and principal symbols in Theorem 3.51
carry over verbatim.

The membership A = (Ap)p∈P ∈ wDiffmV (M) is characterized by requiring that each

Ap is a differential operator, and (φp,α)∗Ap =
∑
|β|≤mwp,αap,α,β(x)(ρp,α∂x)β where the

C∞((−2, 2)n)-seminorms of the coefficients ap,α,β are uniformly (in p ∈ P , α ∈ Ap, β ∈ Nn0 )
bounded.

Remark 3.60 (Fully symbolic V). Analogously to Definition 3.27, one may call V fully
symbolic if, for every ε > 0, there exists a compact subset K ⊂ P ×M (with P given
the discrete topology) so that ρ|P×M\K < ε. In parameterized settings, this is occasionally
stronger than necessary. For example, the Lie algebra V = (Vhj )j∈N, hj ↘ 0, of semiclassical
vector fields on Rn with uniformly smooth coefficients (see §1.2.1) does not satisfy this
condition due to the lack of decay of the scalings at spatial infinity; nonetheless, if P =

13Strictly speaking, one needs to apply this argument for all countable subsets P ′ ⊂ P of parameters (so
that P ′×M is second countable and the total index set

⊔
p′∈P ′ Ap′ is countable, as required in Definition 1.1);

but the uniform bound on the operators Ap′ is independent of P ′.
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(Phj )j∈N ∈ Ψm
V (Rn) is elliptic, then it is invertible between Hs

Vhj
(Rn) = Hs

hj
(Rn) and

Hs−m
Vhj

(Rn) = Hs−m
hj

(Rn) when hj is sufficiently small. Indeed, P has a parametrix Q ∈
Ψ−mV (Rn) with QP = I +R, R ∈ hΨ−1

V (Rn) (i.e. R = (Rhj )j∈N and h−1
j R ∈ Ψ−1

V (Rn)), and
therefore QP − I has small operator norm on any fixed weighted V-Sobolev space when hj
is sufficiently small, which implies the claim.

Similarly, the notion of wave front set (Definition 3.54) generalizes to the parameterized

setting, with WFm,w,lV (u) ⊂ M defined for u = (up)p∈P ∈ wρ−∞H−∞V (M), by which we

mean that up ∈ wpρ−Np H−NVp (M) for some fixed N , with norm bounded uniformly in p.

3.8. Admissible compactifications of phase space. In practice, one works not with
uVT ∗M but with more structured compactifications of VT ∗M (or equivalently of T ∗M ,
which is isomorphic to VT ∗M as a vector bundle and thus, a fortiori, diffeomorphic as
a manifold). The following definition is more demanding than strictly necessary, but is
permissive enough to capture all phase space compactifications appearing in the literature.

Definition 3.61 (Admissible compactifications). A compact manifold with corners T ∗M
(with embedded boundary hypersurfaces), together with a smooth embedding VT ∗M ↪→
T ∗M with open dense range equal to the interior of T ∗M , is an admissible compactification
of VT ∗M if the following conditions are satisfied.

(1) Denote by BT ∗M the b.g. structure on VT ∗M for the b-algebra on T ∗M , see (1.14).
Then BT ∗M ≥ B∗ (see Definitions 2.1(1) and 3.23).

(2) There exists a weight ρ on M which is equivalent to the weight family {ρ̄α} and
whose preimage under the projection VT ∗M → M is the product of powers of
boundary defining functions of T ∗M , i.e.

ρ = ρ0

∏
H∈Hρ

ραHH (3.41)

where ρ0 ∈ C∞(T ∗M) is a positive function (thus also ρ−1
0 ∈ C∞(T ∗M)), and

H ranges over a subset Hρ of the collection of boundary hypersurfaces of T ∗M ,

ρH ∈ C∞(T ∗M) is a defining function of H (that is, ρ−1
H (0) = H, dρH 6= 0 on H,

and ρH > 0 on T ∗M \H), and finally αH > 0 for all H.
(3) There exists a positive elliptic symbol λ ∈ S−1(VT ∗M) with λ−1 ∈ S1(VT ∗M)

which is the product of powers of boundary defining functions of T ∗M , i.e.

λ = λ0

∏
H∈Hλ

ρβHH , C∞(T ∗M) 3 λ0 > 0, βH > 0. (3.42)

Let H := Hρ ∪Hλ. The microlocalization locus of T ∗M is then defined as

MT ∗M :=
⋃

H∈H

H ⊂ ∂T ∗M.

Write A(T ∗M) for the space of bounded conormal functions a on T ∗M , i.e. Pa ∈
L∞(T ∗M) for all P ∈ Diffb(T ∗M). Condition (1) implies

C∞(T ∗M) ⊂ A(T ∗M) = C∞uni,B
T∗M

(VT ∗M) ⊂ C∞uni,B∗(
VT ∗M) = S0(VT ∗M). (3.43)
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It also implies the analogous statement for uniformly continuous functions, and thus gives
a continuous map u(VT ∗M,B∗)→ T ∗M of compact Hausdorff spaces whose image is thus
compact and dense (since it contains VT ∗M); this map is therefore surjective. (We already
used this argument in the proof of Lemma 2.14.) This in turn gives rise to a surjective map

M→MT ∗M (3.44)

between the zero sets of λρ in uVT ∗M and T ∗M , respectively.

In view of (3.43), quantizations of functions which are products of powers ρ−mH , H ∈H ,

and a smooth or conormal function on T ∗M are then well-defined V-pseudodifferential
operators. One can then define elliptic sets, essential supports, and operator wave front
sets in two equivalent ways: as the images in MT ∗M of the corresponding subsets of M

under the map (3.44); or via testing with elements of C∞(T ∗M) which localize near the
point in question in T ∗M .

Since our V-calculus is not designed to keep track of notions of smoothness which are
stronger than uniform smoothness in unit cells (i.e. W-regularity), it is cleaner to work
directly with the less regular symbol classes

S(mH)H∈H (T ∗M) :=

( ∏
H∈H

ρ−mHH

)
S0(VT ∗M), mH ∈ R.

Sums of quantizations of such symbols and residual operators define the space

Ψ
(mH)H∈H
V (M).

The weight
∏
H∈H ρ−mHH is an instance of a phase space weight on (VT ∗M,B∗); thus, using

the material developed in §4.1 below, the principal symbol of an operator

A = OpV(a) +R ∈ Ψ
(mH)H∈H
V (M)

is a well-defined element

[a] ∈ S(mH)H∈H /S(mH−γH)H∈H (T ∗M), γH := αH + βH ,

where αH , βH are taken from (3.41)–(3.42), and we set αH = 0, resp. βH = 0 when H /∈Hρ,
resp. H /∈ Hλ. (This is merely a reformulation of (4.1).) One says that the calculus is
symbolic at all H where γH > 0.

Remark 3.62 (Partial compactifications). It is often useful to relax the condition that
T ∗M be compact in Definition 3.61. One then needs to replace C∞(T ∗M) by C∞(T ∗M) ∩
C∞uni,B

T∗M
(T ∗M).

Example 3.63 (Fiber-radial compactification). If M is compact (thus ΨV(M) = Ψ(M) is the
standard algebra of pseudodifferential operators), an admissible compactification of T ∗M
is the fiber-radial compactification T ∗M [DZ19, §E.1.3]. In this case, one can take ρ = 1,
and for λ a boundary defining function of fiber infinity S∗M ⊂ T ∗M . When M is noncom-
pact and equipped with a scaled b.g. structure, an admissible partial compactification (see

Remark 3.62) is the fiber-radial compactification VT ∗M of VT ∗M .

Example 3.64 (Scattering symbols on compact manifolds with boundary). We revisit ex-
ample (2) from §1.2.4, and consider instead of a compact manifold with boundary M̄ only
a chart M̄ = [0, 1)x×Rn−1

y . The radially compactified scattering cotangent bundle over M̄

is then scT ∗M̄ = M̄ ×Rn, with a point (x, y; ξ, η) with x > 0 corresponding to the covector
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ξ dx
x2

+ η dy
x . We can take ρ = x and λ = 〈(ξ, η)〉−1. The corresponding microlocalization

locus, i.e. the zero set of ρλ, is the union of the boundary hypersurfaces ∂M̄ × Rn and
M̄ × ∂Rn of scT ∗M̄ . See also [Mel94, §§1 and 5].

In the parameterized setting with parameter space P , compactifications of practical
interest are typically compactifications of the total space VT ∗M to a smooth manifold with
corners. Definition 3.61 carries over to this setting mutatis mutandis. For example, for the
semiclassical b.g. algebra on the compact manifold M , an admissible compactification is
given by

~T ∗M := [0, 1]h × T ∗M,

where an interior point (h, ζ) with h > 0 and ζ ∈ T ∗zM is identified with the covector
h−1ζ in VhT ∗M . Valid choices are then ρ = h and λ = 〈ζ〉−1 (with respect to any fixed
Riemannian metric on M), so the microlocalization locus is the union of [0, 1]× S∗M and
{0} × T ∗M .

4. Further topics

Throughout this section, we fix a scaled b.g. structure B× on the smooth manifold M ,
with operator, resp. coefficient Lie algebra V, resp. W.

4.1. Operators with phase space weights. As pointed out after Definition 3.25, the
symbols whose quantizations we have discussed thus far are of class wS0(VT ∗M) where
w = w0w1, with w0 ∈ C∞(M) a weight on (M,B) and w1 = λ−m in the notation of
Lemma 3.24.

Lemma 4.1 (Phase space weights). Let w ∈ C∞(VT ∗M) be a weight on (VT ∗M,B×) in
the notation of Definition 3.23. Then we can write w = w0w1 where w0 ∈ C∞(M) is a
weight on (M,B) and w1 ∈ C∞(VT ∗M) is a weight on (VT ∗M,B×) for which there exist
m− < m+ and C > 1 with C−1λm+ ≤ w1 ≤ Cλm−.

Proof. Set w0 := w|o where o ⊂ VT ∗M denotes the zero section. The unit cell U(α,j,k,±1) ⊂
Uα × Rn of the phase space b.g. structure B∗ defined in (3.20), where λ−1 ∼ |ξ| ∼ 2k, can
be reached from the zero section by traversing k many B∗-unit cells, and thus |w| on this
unit cell is bounded above, resp. below by kC , resp. k−C times its value at the zero section
over Uα, where C is a constant depending on w (cf. Definition 3.4). Therefore, w1 := w−1

0 w
is bounded above, resp. below by λ−C , resp. λC . �

For phase space weights w ∈ C∞(VT ∗M), we may then define

Ψw
V (M) := {OpV(a) +R : a ∈ wS0(VT ∗M), R ∈ w0ρ

∞Ψ−∞V (M)}
where w0 ∈ C∞(M) is as in Lemma 4.1; the principal symbol of A = OpV(a) +R ∈ Ψw

V (M)
is the equivalence class

[a] ∈ wS0/wρS−1(VT ∗M). (4.1)

Theorem 3.51 generalizes without any modifications to its proof; the reason is that we have
a full symbol calculus in local charts Uα modulo symbols which are uniformly bounded
in ρ̄Nα S

−N for all N . (See in particular Lemmas 3.41(2) and 3.49(2).) In the notation of
Lemma 4.1, we have

w0Ψ
−m+

V (M) = Ψw0λ
m+

V (M) ⊂ Ψw
V (M) ⊂ Ψw0λ

m−
V (M) = w0Ψ

−m−
V (M). (4.2)
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We can then define the associated precise classes of V-Sobolev spaces by

Hw
V (M) := {u ∈ w0H

m−
V (M) : Au ∈ L2(M)} (4.3)

for any fixed elliptic operator A ∈ Ψw−1

V (M), with norm

‖u‖2Hw
V (M) := ‖u‖2

w0H
m−
V (M)

+ ‖Au‖2L2(M).

(Different choices of m− and A lead to equivalent norms.) In the special case w = w0λ
s,

this recovers Definition 3.14, with the condition Au ∈ L2(M) being automatically satisfied
by Theorem 3.44.

Proposition 4.2 (Properties of Hw
V (M) spaces). Let w,w′ be phase space weights.

(1) Every P ∈ Ψw
V (M) defines a bounded map Hw′

V (M)→ Hww′
V (M).

(2) In the same sense as in Proposition 3.22, we have

(Hw
V (M))∗ = Hw−1

V (M) (4.4)

Proof. Let u ∈ Hw′
V , so (with primes added to the notation of Lemma 4.1) u ∈ w′0H

m′−
V

and A′u ∈ L2 where A′ ∈ Ψw′−1

V is elliptic. By (4.2), Pu ∈ w0w
′
0H

m′−+m−
V . Moreover, if

A′′ ∈ Ψ
(ww′)−1

V , then A′′P ∈ Ψw′−1

V ; for B′ ∈ Ψw′
V with B′A′ = I +R, R ∈ ρ∞Ψ−∞V , we then

have

A′′Pu = A′′P (B′A′ −R)u = (A′′PB′)A′u− (A′′PR)u.

In the first summand, A′′PB′ ∈ Ψ0
V is bounded on L2, and in the second summand, A′′PR ∈

w′−1
0 ρ∞Ψ−∞V (M) maps u ∈ w′0H

m′−
V into L2 as well; thus A′′Pu ∈ L2. This proves part (1).

For part (2), let λ ∈ (Hw
V )∗. In the notation used in (4.3), define the isometry Φ: Hw

V →
w0H

m−
V ⊕ L2, u 7→ (u,Au). Denote by λ̃ ∈ (w0H

m−
V ⊕ L2)∗ the extension of Φ(Hw

V )
Φ−1

−−→
Hw
V

λ−→ C with the same norm; then Proposition 3.22 produces v ∈ w−1
0 H

−m−
V and v′ ∈ L2 so

that λ̃(u,Au) = 〈u, v〉L2 + 〈Au, v′〉L2 , and thus λ(u) = 〈u, u∗〉 where u∗ = v+A∗v′ ∈ Hw−1

V
by part (1); this proves ‘⊆’ in (4.4). Conversely, by this formula, every u∗ of this form
induces an element of (Hw

V )∗. To prove ‘⊇’ in (4.4), it thus remains to note that

Hw−1

V = w−1
0 H

m−
V +A∗L2;

the nontrivial inclusion ‘⊆’ follows by taking B ∈ Ψw−1

V to be a parametrix of A∗ with

A∗B = I +R, R ∈ ρ∞Ψ−∞V , so u ∈ Hw−1

V can be written as u = A∗(Bu) +Ru, which is of
the desired form. �

Example 4.3 (Second microlocal b/scattering algebra). Using phase space weights, we can

recover the spaces Ψs,r,l
sc,b(X) of second microlocal b/scattering pseudodifferential operators

defined in [Vas21b, §5]. For notational simplicity, we consider only the case X = [0,∞)x
and work near x = 0. The unit cells for the b.g. structure corresponding to b-analysis are
(2−j−2, 2−j+2) for j ∈ N. The phase space unit cells are thus Uj,k = (2−j−2, 2−j+2)x ×
(2k−2, 2k+2)ξ for k ∈ N, and Uj,0 = (2−j−2, 2−j+2)x× (−4, 4)ξ. Then Ψs,r,l

sc,b(X) is essentially

equal to (i.e. differs only on the level of residual operators from) Ψw
V (X) for the phase space
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weight w = ( 〈ξ〉
−1

x+〈ξ〉−1 )−s(x + 〈ξ〉−1)−r( x
x+〈ξ〉−1 )−l, or, on the level of an equivalent weight

family, wj,0 = 2jl and

wj,k =
( 2−k

2−j + 2−k

)−s
(2−j + 2−k)−r

( 2−j

2−j + 2−k

)l
.

(The verification that w is indeed a weight is conceptually most straightforwardly done in
this case by checking its conormality on the radially compactified b-cotangent bundle, or
even better on its blow-up studied in [Vas21b, Lemma 5.1].)

Operators with phase space weights can also be defined in the parameterized scaled b.g.

setting. As an application, this allows one to recover the resolved algebra
⋃
m,l,ν,δ Ψm,l,ν,δ

b,res

(and its symbol calculus) which was introduced by Vasy [Vas21c] for low energy resolvent
analysis. We leave the details to the interested reader.

4.2. Variable orders and mildly exotic calculi. The need for spaces with variable
regularity (and decay, when inf ρ = 0) orders has frequently arisen in recent applications
when lower or upper bounds imposed on the regularity at different points in phase space
(typically due to thresholds conditions in radial point estimates) do not permit constant
orders. See for instance [Vas18, Proposition 5.28] and Example 4.7 below, [BVW15, §5], and

[Hin23b, §5.2]. (Variable order spaces were originally introduced in [VÈ68, Unt71, Dui72].)

A typical example of a variable order symbol is 〈ξ〉a(x,ξ) where a ∈ S0(Rnx;Rnξ ) (typically,

a ∈ S0
cl(Rn;Rn)); this is not of class Ssup a(Rn;Rn) since derivatives along ∂x and 〈ξ〉∂ξ lose

a factor of log(1 + 〈ξ〉). More generally, one can consider mildly exotic symbols which lose
a factor of 〈ξ〉δ for δ ∈ [0, 1

2), corresponding to the Hörmander class Ssup a
ρ,δ (Rn;Rn) where

ρ = 1− δ. Restricting to uniform symbols, we say that a = a(x, ξ) ∈ Smρ,δ(Rn;Rn) if

|(〈ξ〉−δ∂x)β(〈ξ〉ρ∂ξ)γa(x, ξ)| ≤ Cβγ〈ξ〉m. (4.5)

A typical example is 〈ξ〉a(x,ξ) where a ∈ S0
1−δ′,δ′(R

n;Rn) for δ′ < δ (so in particular a ∈ S0

is allowed). (This includes symbols on suitable inhomogeneous blow-ups of submanifolds
of fiber infinity in the radially compactified cotangent bundle.)

Lemma 4.4 (B.g. structure for (1− δ, δ) symbols on Rn). Let 0 < δ < 1
2 and fix an integer

Cδ ≥ 2(5
3)

1
δ . For ` ∈ Zn and i = 1, . . . , n, N 3 k ≥ 3, and j ∈ {−Cδk, . . . , Cδk}n−1, set

U0,` :=
(1

2
`+ (−2, 2)n

)
x
× (−4, 4)nξ ,

Ui,k,j,`,± :=
(
k−1(`+ (−4, 4)n)

)
x
×
{
ξ ∈ Rn : ±ξi ∈

(
(k − 2)

1
δ , (k + 2)

1
δ
)
,

ξ̂i ∈ k
1
δ
−1(j + (−4, 4)n−1)

}
,

(4.6)

where we write ξ̂i = (ξ1, . . . , ξi−1, ξi+1, . . . , ξn). Define the maps φ0,`(x, ξ) = (x − 1
2`,

1
2ξ)

and φi,k,j,`,±(x, ξ) = (1
2(kx− `), (±ξi)δ − k, 1

2(k−
1
δ

+1ξ̂i− j)). Then B∗δ,Rn := {(Uα, φα) : α =

(0, `), (i, k, j, `,±)} is a b.g. structure on Rnx × Rnξ , and

C∞uni,B∗δ,Rn
(Rnx × Rnξ ) = S0

1−δ,δ(Rn;Rn). (4.7)
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Unlike the b.g. structure in Definition 3.23, B∗δ,Rn is no longer the product of a b.g.
structure on Rn and another one on Rn. If one wishes to have a b.g. structure which in
the limit δ ↘ 0 recovers the structure from Definition 3.23, one can use ±ξi ∈ ((1 + δ(k −
2) log 2)

1
δ , (1 + δ(k + 2) log 2)

1
δ ), with similar modifications for ξ̂i.

Proof of Lemma 4.4. The purpose of the constant Cδ is that on Ui,k,j,`,±, the largest possible

values of each component of ξ̂i exceeds k
1
δ
−1(Cδk) = k

1
δCδ ≥ 2(k + 2)

1
δ , thus twice the

maximum of |ξi|. This ensures that the sets φ−1
α ((−1, 1)n) indeed cover Rn × Rn. We

only argue for the equality (4.7): on Ui,k,j,`,±, we have 〈ξ〉 ∼ k
1
δ . Thus, the pullbacks

under φi,k,j,`,± of coordinate derivatives are essentially k−1∂x ∼ 〈ξ〉−δ∂x and (given that

(k + 2)
1
δ − (k − 2)

1
δ = 4(k − 2)

1
δ
−1δ−1 +O(k

1
δ
−2)) k

1
δ
−1∂ξ ∼ 〈ξ〉1−δ∂ξ. �

Definition 4.5 ((1 − δ, δ)-phase space b.g. structure). Let B = {(Uα, φα) : α ∈ A } be a
b.g. structure on M . With respect to the trivializations of VT ∗M over each Uα given by
Definition 3.7, and using the notation (4.6), we define

U(α,0) := Uα × (−4, 4)n, U(α,i,k,j,`,±) := (φ−1
α × Id)Ui,k,j,`,± ⊂ VT ∗UαM,

φ(α,0) := φα ×
1

2
Id, φ(α,i,k,j,`,±) := φi,k,j,`,± ◦ (φα × Id),

where i = 1, . . . , n, N 3 k ≥ 3, j ∈ {−Cδk, . . . , Cδk}, and ` ∈ {−2k + 4, . . . , 2k − 4}n. We
then define the (1− δ, δ)-phase space b.g. structure to be

B∗δ :=
{

(U(α,β), φ(α,β)) : α ∈ A , β ∈ {0, (i, k, j, `,±)}
}
.

The equality (4.7) then generalizes to

C∞uni,B∗δ
(VT ∗M) = S0

1−δ,δ(
VT ∗M),

where the space on the right is defined analogously to Definition 3.8 but now using the
bounds (4.5) in distinguished charts and trivializations. If we set B∗0 := B∗, then for
0 ≤ δ′ ≤ δ we have

C0
uni,B∗

δ′
(VT ∗M) ⊂ C0

uni,B∗δ
(VT ∗M). (4.8)

The appropriate microlocalization locus is

Mδ := u(VT ∗M,B∗δ) ∩ {j(λρ) = 0},
where ρ, λ are as in Definition 3.6 and Lemma 3.24(2). The inclusion (4.8) induces a
continuous map u(VT ∗M,B∗δ) → u(VT ∗M,B∗0), which by the same arguments as in the
proof of Lemma 2.14 is surjective, and thus a surjective continuous map

Mδ →M

of compact Hausdorff spaces.14

We can now set

wΨm
V,1−δ,δ(M) := {OpV(a) +R : a ∈ wSm1−δ,δ(VT ∗M), R ∈ wρ∞Ψ−∞V (M)}, (4.9a)

14This map is not injective when δ > 0, as otherwise it would be a homeomorphism; but that it is not
(reflecting the fact that using (1 − δ, δ)-symbols, one can microlocalize more finely). Indeed, in a chart
Uα, consider the points p(k) = (0, ξ(k)), ξ(k) = (k, 0, 0, . . . , 0), and q(k) = (0, η(k)), η(k) = (k, k1−δ, 0, . . . , 0).
Fix compatible metrics dδ and d0 for B∗δ and B∗0, respectively; then infk,k′ dδ(p(k), q(k′)) > 0, whereas
infk d0(p(k), q(k)) = 0, so the closures of the sets {p(k)} and {q(k′)} are disjoint in the first case, but not so

in the second case (cf. Lemma 2.11).
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the properties of which (algebra properties, boundedness on Sobolev spaces) are the same
as those of wΨV(M), except the principal symbol of A = OpV(a) +R is now

σ
m,w
V,1−δ,δ(A) = [a] ∈ wSm1−δ,δ/wρSm−1+2δ

1−δ,δ (VT ∗M). (4.9b)

Theorem 3.51 thus remains valid, mutatis mutandis. (We leave the minor modifications of
the proofs to the interested reader.)

We proceed to discuss operators with variable orders and weights; for notational sim-
plicity, we only consider order functions which are standard symbols rather than (1− δ′, δ′)
symbols.

Definition 4.6 (Variable order symbols, ps.d.o.s, Sobolev spaces). Let m, l ∈ S0(VT ∗M),
and let w ∈ C∞(M) be a weight on (M,B). In the notation of Definition 3.6 and
Lemma 3.24(2), we then write

ρ−lSm(VT ∗M) := ρ−lλ−m
⋂

δ∈(0, 1
2

)

S0
1−δ,δ(

VT ∗M),

wΨm,l
V (M) := {OpV(a) +R : a ∈ wρ−lSm(VT ∗M), R ∈ wρ∞Ψ−∞V (M)},

with the principal symbol of A = OpV(a) +R being

σ
m,l
V (A) = [a] ∈ wρ−lSm

/ ⋂
δ∈(0, 1

2
)

wρ−l+1−2δSm−1+2δ(VT ∗M). (4.10)

Fixing an elliptic operator A ∈ wρ−lΨm
V (M), we furthermore define

wHm,l
V (M) := {u ∈ wρinf lH inf m

V (M) : Au ∈ L2(M)}.

A topology on the space wΨm,l
V (M) can be defined similarly to Remark 3.47.

If only l is variable but m = m is not, then the principal symbol is well-defined in the
sharper space wρ−lSm/

⋂
δ∈(0, 1

2
)wρ

−l+1−2δSm−1(VT ∗M); analogously when m is variable

but l is not. The space ρ−lSm(VT ∗M) only depends on m, l modulo
⋃
ε>0 ρ

εS−ε(VT ∗M).
Furthermore,

ρ−lSm(VT ∗M) ⊂
⋂

δ∈(0, 1
2

)

ρ− sup lSsupm
1−δ,δ (VT ∗M).

Note that if in a chart Uα we replace ρ by the constant ρ̄α, then derivatives of ρ̄−lα along ρ∂x
or 〈ξ〉∂ξ gain a power of ρ̄α log ρ̄α, which leads to the (arbitrarily small) loss in the ρ-weight
in (4.10).

The weights, resp. orders of variable order operators are multiplicative, resp. additive
under composition, and indeed Theorem 3.44 remains valid, mutatis mutandis, in the vari-
able order case. As the microlocalization locus, one may work with M. Furthermore, by
mimicking the proof of Proposition 4.2, one shows

wΨm,l
V (M) 3 A : w′Hm′,l′

V (M)→ ww′Hm′−s,l′−l
V (M), (wHm,l

V (M))∗ = w−1H−m,−lV (M).

Example 4.7 (Variable scattering decay). We use the scaled b.g. structure (1.9a)–(1.9b),
with operator Lie algebra V given by scattering vector fields on Rn with conormal coef-
ficients. Consider l0(x, ξ) := −1

2 − ε
x·ξ
|x||ξ| where ε > 0 is fixed. Then l can be extended

from |x| > 1, |ξ| > c
2 > 0, to an element of S0(VT ∗M), and for λ > c then, the limiting
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absorption principle states that (∆− λ+ i0)−1 : Hs−2,l+1
V (Rn)→ Hs,l

V (Rn) (for any s ∈ R);
see [Vas18, Proposition 5.28].

Remark 4.8 (Phase space weights and variable orders). Suppose w is a phase weight on
(VT ∗M,B∗), so w = w0w1 where w0 ∈ C∞(M) is a weight on (M,B) and C−1λm+ ≤ w1 ≤
Cλm− . Scaling λ by a constant factor so that λ < 1

2 , we then have w1 = λm where m =

(logw1)/(log λ) takes values in a bounded interval. Furthermore, for V ∈ C∞uni,B∗(
VT ∗M)

(in local coordinates ∂x and 〈ξ〉∂ξ), one computes Vm = V w1
w1

1
log λ−mV λ

λ , which is bounded;

higher derivatives are treated similarly. Thus, m ∈ S0(VT ∗M). Therefore,

wS0(VT ∗M) ⊂ w0S
−m(VT ∗M),

similarly for ps.d.o.s. The small benefit of phase space weights (when they are usable) is that
the principal symbol is slightly more precise; compare (4.1) with (4.10). Note however that,
conversely, variable order operators are typically not operators with phase space weights.

Remark 4.9 (Parameterized version). The discussion in the present section generalizes to
variable order symbols, ps.d.o.s, and Sobolev spaces depending on a parameter; indeed, the
discussion in §3.7 applies with only straightforward notational modifications. For example,
in a semiclassical bounded geometry setting, one can work with variable semiclassical orders.
Applications in the literature include [Gal19, §2.3] and [HV17]; see also Example 4.19.

Remark 4.10 (Admissible compactifications). The discussion in §3.1 generalizes to mildly
exotic and variable order symbols. The main change is that in Definition 3.61(1) (and
subsequently) one needs to replace B∗ by B∗δ , and correspondingly S0 by S0

1−δ,δ.

Consider finally a finite collection

ρ1, . . . , ρN ∈ C∞uni,B(M)

of bounded weights on (M,B), and assume that ρj dominates ρ in that

ρ

ρj
∈ C∞uni,B(M), j = 1, . . . , N.

Spaces of ps.d.o.s with weights w = ρ−l11 · · · ρ−lNN where the orders lj are constants can
be defined as wΨm

V (M) simply. However, if one needs variable orders lj , the setup of
Definition 4.6 does not suffice when N ≥ 2. Instead, one works with symbols

Sm,(l1,...,lN )(VT ∗M) :=

(
N∏
j=1

ρ
−lj
j

)
λ−m

⋂
δ∈(0, 1

2
)

S0
1−δ,δ(

VT ∗M) (4.11a)

and their quantizations

wΨ
m,(l1,...,lN )
V (M) := OpV

(
wSm,(l1,...,lN )(VT ∗M)

)
+ wρ∞Ψ−∞V (M); (4.11b)

the principal symbol is now valued in

wSm,(l1,...,lN )/
⋂

δ∈(0, 1
2

)

wρSm−1+2δ,(l1−2δ,...,lN−2δ)(VT ∗M). (4.11c)
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4.3. Translation symmetries and Fourier transforms. In applications where on a
manifold M = Rt × X one takes a Fourier (or Mellin) transform in t to reduce the PDE
under study on M to a family of PDEs on X, it is important to have Plancherel type
theorems available in order to identify L2-based Sobolev norms on M with suitable L2-type
norms on Rσ ×X where σ is the Fourier-dual variable to t; see e.g. [Vas13, §3.1], [Hin23c,
Proposition 4.24 and §7.3], [Hin23b, Step (iii) in the proof of Proposition 5.19]. The goal
of this section is to prove a general result of this type (including for spaces with variable
orders), which we will accomplish via the study of t-translation invariant V-ps.d.o.s for
suitable scaled b.g. structures on such product manifolds M .

Definition 4.11 (Scaled b.g. structure on R × X). Let BX,× = {(Uα, φα, ρα) : α ∈ A }
be a scaled b.g. structure on the (n − 1)-dimensional manifold X, with underlying b.g.

structure denoted BX . Write V̂0 ⊂ C∞(X;TX) for the operator Lie algebra of (X,BX,×).
Let moreover {ρα,0 : α ∈ A } and {τα : α ∈ A } be weight families (Definition 3.4), with
0 < ρα,0 ≤ 1. Then the associated scaled b.g. structure on M = R×X is

B× = {(U(j,α), φ(j,α), ρ(j,α)) : α ∈ A , j ∈ Z},

U(j,α) =
(

(j − 2)
τα
ρα,0

, (j + 2)
τα
ρα,0

)
t
× Uα,

φ(j,α) = φT,(j,α) × φα, φT,(j,α) :=
ρα,0
τα

(·)− j,

ρ(j,α),0 = ρα,0, ρ(j,α),i = ρα,i (i = 1, . . . , n− 1).

We write B for the underlying b.g. structure. We moreover write ρX , ρ0, and τ ∈ C∞(X) for
weights on (X,BX) which are equivalent to {ρ̄α : α ∈ A }, {ρα,0 : α ∈ A }, and {τα : α ∈ A },
respectively. (So ρX is a scaling weight on (X,BX,×).)

On U(j,α), with local coordinates t ∈ R and xiα = φiα, define T(j,α) and x̃α via

T(j,α) =
ρα,0
τα

t− j, x̃iα =
xiα
ρα,i

(i = 1, . . . , n− 1).

Then elements of the coefficient Lie algebra W = C∞uni,B(M ;TM) on (M,B×) are, in local

coordinates, uniformly bounded linear combinations of ∂T(j,α) = τα
ρα,0

∂t and ∂xiα = ρ−1
α,i∂xiα ,

while elements of the operator Lie algebra V are uniformly bounded linear combinations of

ρα,0∂T(j,α) = τα∂t, ρα,i∂xiα = ∂x̃iα . (4.12)

Thus, τα specifies the scaling of t-derivatives, while 1
ρα,0
≥ 1 is the factor by which unit

cells are longer in the t-direction than τα.

Example 4.12 (Operators on Euclidean space). (1) If one defines BX,× onX = Rn−1 to
be Uα = α+ (−4, 4)n−1, α ∈ Zn−1, with trivial scalings ρα,i = 1, and τα = ρα,0 = 1,
then B is equal to the b.g. structure (1.1); the operator Lie algebra consists of
linear combinations of ∂t, ∂xi (i = 1, . . . , n − 1) with uniformly bounded smooth
coefficients on Rn.

(2) In order to gain access to the boundary principal symbol (which will descend to
the spectral, i.e. Fourier transform, side), one instead takes BX,× the scaled b.g.
structure (1.9a)–(1.9b) (on Rn−1), and then on BX -unit cells Uα = Uj,k,±1, where

|x| ∼ 2k, one takes τα = 1 and ρα,0 = 2−k. The resulting scaled b.g. structure B×
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is not equivalent to (1.9a)–(1.9b), but rather to that corresponding to 3-body scat-

tering operators on M̄ := [R× Rn−1; ∂(R×{0})] with 3b-regular coefficients. (The
setting (1) gives rise to 3sc-operators with 3sc-regular coefficients—which are indis-
tinguishable from scattering operators on Rn with scattering-regular coefficients.)

(3) With BX as in (2), take now τα = 2k and ρα,0 = 1. Then B× is the scaled b.g.
structure (with trivial scalings) with coefficient Lie algebra given by 3b-vector fields
on M̄ with 3b-regular coefficients, cf. §1.2.4(10).

Example 4.13 (b-operators on manifolds with boundary). Let M̄ be a compact manifold
with boundary. The inward pointing normal bundle +N∂̄M of the boundary is where the
normal operator [Mel93, §4.15] lives and where the Mellin transform is ultimately used
[Mel93, §5.1]. The same construction as in Example 4.12(1) produces the b-algebra on
+N∂̄M based on the vector fields ρ∂ρ, ∂xi where ρ is a fiber-linear defining function of the
zero section in +N∂̄M , under the identification t = − log ρ (and thus the Mellin transform
in ρ is the same as the Fourier transform in t).

Fix a uniformly positive V̂0-density µX on X to define L2(X), and let µ := |dt|µX . (Thus,
τ−1µ = |dtτ |µX is a uniformly positive V-density on M .) Define the Fourier transform on
C∞c (M), resp. its inverse, by

(Fu)(σ, p) =

∫
R
e−iσtu(t, p) dt, resp. (F−1v)(t, p) = (2π)−1

∫
R
eiσtv(σ, p) dσ,

where σ ∈ R, p ∈ X. Plancherel’s theorem gives an isomorphism F : L2(R × X;µ)
∼=−→

L2(R;L2(X;µX)).

Let now u ∈ L2(R × X); for simplicity, let us assume that suppu ⊂ R × U ′α where
U ′α = φ−1

α ([−3
2 ,

3
2 ]n). Then, in the coordinates t, xα, the membership u ∈ H1

V(R × X) is

equivalent to û, τασû, ρα,i∂xiα û ∈ L
2(Rσ;L2(X)), or equivalently

û ∈ L2
(
Rσ; 〈τασ〉H1

V̂σ
(Uα)

)
, ‖v‖2H1

V̂σ
(Uα) := ‖v‖2L2 +

n−1∑
i=1

‖〈τασ〉−1ρα,i∂xiαv‖
2
L2 , (4.13)

where ‖û(σ)‖〈τασ〉H1
V̂σ

(Uα) = ‖〈τασ〉−1û(σ)‖H1
V̂σ

(Uα). (For σ = 0, the H1
V̂0

(Uα)-norm appear-

ing here, for functions supported in U ′α, is equivalent to the Sobolev norm on X with respect

to the operator Lie algebra V̂0 from Definition 4.11.) (See Proposition 4.18 below for the
full result.)

The derivatives appearing in (4.13) motivate the following definition.

Definition 4.14 (Spectral scaled b.g. structure on X). In the notation of Definition 4.11,
we define for σ ∈ R

B̂σ,× := {(Uα, φα, ρσ,α) : α ∈ A }, ρσ,α,i :=
ρα,i
〈τασ〉

.

We write B̂× := (B̂σ,×)σ∈R for the parameterized scaled b.g. structure on X with parameter

space Rσ, and B̂ for the underlying parameterized b.g. structure (so B̂ = (B̂σ)σ∈R where

B̂σ = BX for all σ ∈ R). The associated operator Lie algebra is denoted V̂ = (V̂σ)σ∈R.
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An element of V̂ is thus a family (Vσ)σ∈R of elements of V̂σ (the operator Lie algebra of

(X, B̂σ,×)) whose coefficients, when expressed in local coordinates as linear combinations

of ρσ,α,i∂xiα , obey uniform C∞ bounds. Thus, we have V̂σ = 〈τσ〉−1V̂0.

Observe that if w ∈ C∞(X) is a weight on (X,BX), then its pullback along Rσ×X → X,

which we still denote by w, is a weight on (R×X, B̂); this in particular applies to the scaling

weight ρX ∈ C∞(X). As the scaling weight of (X, B̂×) we may take

ρ̂ := ρX〈τσ〉−1. (4.14)

Furthermore, 〈τσ〉−1 is a weight on (R×X, B̂) which dominates ρ̂ in that ρ̂
〈τσ〉−1 ∈ C∞uni,B̂

(R×
X).

Proposition 4.15 (Spectral family: differential operators). Let w ∈ C∞(X) be a weight
on (X,BX), and let m ∈ N0. Denote by

wDiffmV,I(M) ⊂ wDiffmV (M)

the subspace of t-translation invariant operators A, i.e. [∂t, A] = 0 (or equivalently: A
commutes with translations (t, p) 7→ (t + c, p) for all c ∈ R). Define the spectral family of
A as

Â = (Âσ)σ∈R, (Âσu)(p) =
(
e−iσtA(eiσtu)

)
(0, p). (4.15)

Then we have

Â ∈ w〈τσ〉mDiffmV̂ (X). (4.16a)

Let a ∈ wPm(VT ∗M) be a representative of σ
m,w
V (A) ∈ wPm/wρPm−1 where ρ ∈ C∞(M)

is a t-translation invariant scaling weight on (M,B×) (thus ρ ∼ max(ρ0, ρX)), and define
âσ($) := a(σ dt+$), $ ∈ T ∗X, and â := (âσ)σ∈R. Then

σ
m,w〈τσ〉m

V̂
(Â) = [â] ∈ w〈τσ〉mPm/w〈τσ〉m−1ρXP

m−1(V̂T ∗X). (4.16b)

Proof. When m = 0, we have Âσ = A (multiplication operator by the function a ∈
wC∞uni,BX

(X)) for all σ, and the statement is trivial. By the multiplicativity of the principal

symbol map, it then suffices to consider, for χ ∈ C∞c ((−2, 2)n−1), the case that A is one of
the vector fields φ∗α(χτDt) (with Dt = i−1∂t), φ

∗
α(χρα,i∂xiα), cf. (4.12). The corresponding

spectral families are (φ∗αχ)τσ and φ∗α(χρα,i∂xiα), which we can rewrite as 〈τσ〉 τσ〈τσ〉φ
∗
αχ and

〈τσ〉φ∗α(χρσ,α,i∂xiα). This gives (4.16a)–(4.16b). �

The space in (4.16a) is rather large in that a general element of w〈τσ〉mDiffmV̂ (X) is not

equal to the spectral family of any element of wDiffmV,I(M); what the space (4.16a) does

not capture is the polynomial dependence of Âσ on σ. Note however that ellipticity of A
does get inherited by Â.

We now lay the groundwork for the pseudodifferential generalization of Proposition 4.15.

Lemma 4.16 (Construction of translation-invariant ps.d.o.s). We use the notation of Def-
inition 4.11. Let m ∈ R, and let w ∈ C∞(X) be a weight on (X,BX). Denote by

wSmI (VT ∗M) ⊂ wSm(VT ∗M)
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the subspace of symbols which are invariant under the lift to VT ∗M of translations in t. Fix

a nonnegative function χ ∈ C∞c ((−5
4 ,

5
4)n−1) with χ|[−1,1]n−1 = 1, and let χα = φ∗αχ∑

β φ
∗
βχ

. Let

ψ ∈ C∞c ((−1
4 ,

1
4)n−1) be equal to 1 near 0. For a ∈ SmI (VT ∗M), define

OpV,I(a)(t, xα, t
′, x′α) :=

∑
α

(Id×φα)∗Opα,I((φ
τ
α)∗(χαa)),

Opα,I(aα)(t, xα, t
′, x′α) := (2π)−n

(∫
Rn

exp

(
i

[ n−1∑
j=1

(xjα − x′jα)
ξj
ρα,j

+ (t− t′)ζ
τ

])

× ψ(x′α − xα)ψ
(ρ0

τ
(t− t′)

)
aα(0, xα; ζ, ξ) dζ dξ1 · · · dξn−1

)
|dt′ dx′1α · · · dx′n−1

α |
τρα,1 · · · ρα,n

,

(4.17)

where φτα : T ∗(0,p)M 3 σ dt + ξ 7→ (φα(p); τ(p)σ, ρα,1ξ1, . . . , ρα,n−1ξn−1) ∈ (−2, 2)n−1 ×
Rnζ,ξ. Then for appropriate choices in the definition of OpV in Definition 3.31, we have

OpV,I−OpV : wSmI (VT ∗M)→ wρ∞Ψ−∞V (M), and

OpV,I
(
wSmI (VT ∗M)

)
⊂ wΨm

V,I(M) =
{
A ∈ wΨm

V (M) : A is t-translation invariant
}
.

(4.18)

The map φτα expresses a covector on M in the trivialization of VT ∗U0,α
M given by the local

frame dt
τ , dxiα

ρα,i
. If instead of dt

τ we used
dT(j,α)
ρα,0

= dt
τα

(the two choices differing by a factor of
τα
τ which is uniformly bounded in C∞ together with its reciprocal), this would match the

trivializations in Definition 3.7; our present minor modification produces cleaner formulae
for spectral families below.

Proof of Lemma 4.16. For notational simplicity, we only consider the unweighted case w =

1. Let χT ∈ C∞c ((−5
4 ,

5
4)) be equal to 1 on [−1, 1], and let χT,α,j =

φ∗
T,(j,α)

χT∑
k φ
∗
T,(k,α)

χT
in the

notation of Definition 4.11; these are functions of t only. Then χ(j,α) := χαχT,α,j is a uniform
partition of unity on (M,B) which we may use for defining the quantization of symbols on
VT ∗M in Definition 3.31 (with α and A there replaced by (j, α) and Z×A ). Quantizing a ∈
SmI (VT ∗M) and using that T(j,α)−T ′(j,α) =

ρα,0
τα

(t−t′) almost produces the expression (4.17),

except φτα is replaced by φ(j,α) (for an arbitrary j by translation-invariance, say j = 0 for
concreteness), τ by τα, and (solely for notational clarity) ζ by ζα. Changing variables

via ζα
τα

= ζ
τ , i.e. ζα = τα

τ ζ, yields (4.17) except with ψ(x′α − xα)ψ(
ρα,0
τα

(t − t′)) in place of

ψ(x′α−xα)ψ(ρ0τ (t− t′)). Since the difference of these two cutoffs vanishes near the diagonal,
replacing the former cutoff by the latter produces a t-translation invariant error of class
ρ∞Ψ−∞V (M) by Lemma 3.42. �

Proposition 4.17 (Spectral family: pseudodifferential operators). Let a ∈ wSmI (VT ∗M),

A = OpV,I(a) ∈ wΨm
V,I(M). Define the spectral family Â = (Âσ)σ∈R of A as in (4.15).

Then there exists a residual symbol rσ ∈ wρ∞X 〈τσ〉−∞S−∞(V̂T ∗X) (cf. (4.14)) so that

Âσ = OpV̂σ(âσ), âσ = a|σ dt+T ∗X + rσ. (4.19)

In particular,
Â ∈ w〈τσ〉mΨm

V̂ (X). (4.20)
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Proof of Proposition 4.17. To compute the spectral family of Opα,I(aα) in (4.17) at fre-

quency σ ∈ R, multiply by ei(t
′−t)σ, change variables via ζ = τσ′ and ξ = 〈τσ′〉ξ̂, and

perform the integrations in t′ and σ′ to arrive at

(2π)−(n−1)

(∫
Rn−1

exp

(
i
n−1∑
j=1

(xjα − x′jα)
ξ̂j

ρα,j〈τσ〉−1

)
ψ(x′α − xα)bα(xα, ξ) dξ

)

× |dx′1α · · · dx′n−1
α |

ρα,1〈τσ〉−1 · · · ρα,n−1〈τσ〉−1
,

bα(xα, ξ̂) =
1

2π

∫
R

1

ρ0
ψ̂
(τσ − ζ

ρ0

)
aα(0, xα; ζ, 〈τσ〉ξ̂) dζ.

If we had ψ ≡ 1, then bα(xα, ξ̂) = aα(0, xα; τσ, 〈τσ〉ξ̂); this is uniformly bounded in
wα〈τσ〉mSm((−2, 2)n−1;Rn−1

ξ̂
). It thus suffices to show (in view of ρ0 . ρ where ρ is a

scaling weight on (M,B×)) that every wαρ
N
0 〈τσ〉−NS−N ((−2, 2)nxα ;Rn

ξ̂
)-seminorm of bα−âσ

is uniformly (in α ∈ A ) bounded by a seminorm of aα ∈ wαSm((−2, 2)nt,xα ;Rnζ,ξ). We prove
the L∞ bounds; derivatives are estimated similarly. We shorten the notation by considering
a = a(ζ, ξ) ∈ Sm, b(ξ̂) = (2π)−1

∫
R

1
ρ0
ψ̂( τσ−ζρ0

)a(ζ, 〈τσ〉ξ̂) dζ, and using
∫
ψ̂(ζ) dζ = 1 to

write

b(ξ̂)− a(τσ, 〈τσ〉ξ̂) =
1

2π

∫
R

1

ρ0
ψ̂
(τσ − ζ

ρ0

)(
a(ζ, 〈τσ〉ξ̂)− a(τσ, 〈τσ〉ξ̂)

)
dζ.

Taylor expanding the second factor in the integrand around ζ = τσ to some order N ∈ N,

the integrals of the terms involving 1
j!(∂

j
ζa)(τσ, 〈τσ〉ξ̂)(ζ − τσ)j , 1 ≤ j < N , vanish since

(∂jψ)(0) = 0. The absolute value of the remainder term is 1
2π(N−1)! times∣∣∣∣∫ 1

0

∫
(1− λ)N−1(∂Nζ a)(τσ + λ(ζ − τσ), 〈τσ〉ξ̂)(ζ − τσ)N

1

ρ0
ψ̂
(τσ − ζ

ρ0

)
dζ dλ

∣∣∣∣
≤ CN ′

∫ 1

0

∫
|(∂Nζ a)(τσ + λρ0ν, 〈τσ〉ξ̂)|ρN0 νN 〈ν〉−N

′
dν dλ

≤ CCN ′ρN0
∫ 1

0

∫
(1 + |τσ + λρ0ν|+ 〈τσ〉|ξ̂|)m−NνN 〈ν〉−N

′
dν dλ,

where we performed the change of variables ν = ζ−τσ
ρ0

and used that |ψ̂(−ν)| ≤ CN ′〈ν〉−N
′

for all N ′; and C is a seminorm of a. For N > m, and taking N ′ = N + 2, this is bounded

by a constant times ρN0 (1 + |ξ̂|)
m−N

2 (1 + |τσ|)
m−N

2 since
∫
R ν

N 〈ν〉−N ′ dν < ∞. Since N is
arbitrary, the proof is complete. �

Consider the map

F : R× T ∗X 3 (σ,$) 7→ σ dt+$ ∈ σ dt+ T ∗X ⊂ T ∗{0}×X(R×X). (4.21)

In the local trivializations of V̂σT ∗X, resp. VT ∗M over Uα, resp. R× Uα

(−2, 2)n−1 × Rn−1 3 (xα, ξ̂) 7→
n−1∑
i=1

ξ̂i
dxiα

ρα,i〈τσ〉−1
,
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resp. (R× (−2, 2)n−1)× Rn 3 (t, xα; ζ, ξ) 7→ ζ
dt

τ
+

n−1∑
i=1

ξi
dxiα
ρα,i

,

this is given by F : (σ, xα, ξ̂) 7→ (0, xα; τσ, 〈τσ〉ξ̂). Therefore, F defines a uniformly bounded

smooth map F : V̂T ∗X → VT ∗M . Thus, pullback along F defines a map C0
uni,B∗(

VT ∗M)→
C0

uni,B̂∗
(V̂T ∗X) for the associated phase space b.g. structures, and thus a map F : M̂ →M

of the microlocalization loci of corresponding to B̂× and B×. Now, given a t-translation
invariant symbol a = a(0, xα; ζ, ξ), formula (4.19) expresses âσ modulo a residual symbol
as

âσ(xα, ξ̂) ≡ (F ∗a)(0, xα, ξ̂) = a(0, xα; τσ, 〈τσ〉ξ̂). (4.22)

This implies that Ell(Â) = F−1(Ell(A)) and WF′(Â) = F−1(WF′(A)).

Proposition 4.18 (Fourier transform: constant orders). Let s ∈ R, and let w ∈ C∞(X) be
a weight on (X,BX). Then the Fourier transform in t defines an isomorphism

F : wHs
V(R×X)→ L2

(
Rσ;w〈τσ〉−sHs

V̂σ
(X)

)
. (4.23)

Proof. It suffices to consider the case w = 1. For s = 1, (4.23) follows from (4.13) upon
summing in α using the finite intersection property of b.g. structures (Definition 1.1(1)),
and the case of general s ∈ N is a simple generalization. We can treat all real s ≥ 0 via
testing with an elliptic V-ps.d.o. Λ = OpV,I(λ) ∈ Ψs

V,I(M) since u ∈ Hs
V(R×X) if and only

if u,Λu ∈ L2(R×X), which is equivalent to σ 7→ û(σ), Λ̂σû(σ) lying in L2(Rσ;L2(X)). But

since by Proposition 4.17 the spectral family Λ̂ = (Λ̂σ)σ∈R ∈ 〈τσ〉sΨs
V̂(X) is elliptic, this is

in turn equivalent to û(·) ∈ L2(Rσ; 〈τσ〉−sHs
V̂σ

(X)).

The case of s ≤ 0 follows by duality using Proposition 3.22. �

Example 4.19 (Applications). (1) In the setting of Example 4.12(1), this recovers the
elementary isomorphism F : Hs(R × Rn−1) → L2(R; 〈σ〉−sHs

〈σ〉−1(Rn−1)) where

‖u‖Hs
h

= ‖〈hD〉sû‖L2 ; passing to logarithmic coordinates via t = − log ρ, this is

a result about the Mellin transform which is stated in [Vas13, (3.9)].

(2) In the 3b-setting of Example 4.12(3), we may take τ = 〈r〉, and thus V̂σ =

〈τσ〉−1V̂0 = (1+ |σ|〈r〉)−1Vb(Rn−1); for σ ∈ ±[0, 1), this gives rise to the scattering-
b-transition algebra from §1.2.4(6), and for σ ∈ ±[1,∞) to the semiclassical scat-
tering algebra from §1.2.4(3). Thus, Proposition 4.18 recovers [Hin23c, Proposi-
tion 4.24]. (Also [Hin23c, Proposition 4.26] can be recovered via the introduction of
a different scaled b.g. structure via Definition 4.11; we leave this to the interested
reader.)

The case of t-translation invariant variable orders s, l ∈ S0
I (VT ∗M) can be treated in a

completely analogous fashion, namely via testing by t-translation invariant V-ps.d.o.s of
variable order. To wit, let a ∈ wρlXS

s
I (
VT ∗M); then formula (4.19) remains valid, and

â = (âσ)σ∈R defines a symbol of variable order

â ∈ wρl̂X〈τσ〉ŝS ŝ(V̂T ∗X), l̂σ = l|σ dt+T ∗X , ŝσ = s|σ dt+T ∗X . (4.24a)

(See (4.22) for the local coordinate expressions of l̂σ and ŝσ.) Therefore, the spectral family

of OpV,I(a) defines an element Â ∈ wρl̂X〈τσ〉ŝΨŝ
V̂(X). Proposition 4.18 then generalizes to
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the isomorphism

F : wρlXH
s
V(R×X)→ L2

(
Rσ;wρl̂σX〈τσ〉

−ŝσH ŝσ
V̂σ

(X)
)
, (4.24b)

where the space on the right is the space of all elements of L2(Rσ;wρl0X〈τσ〉−s0H
s0
V̂0

(X)) (with

l0 ≤ inf l and s0 ≤ inf s) whose image under a fixed elliptic element of wρl̂X〈τσ〉ŝΨŝ
V̂(X) lies

in L2(Rσ;L2(X)). As an application, this can be used to recover [Hin23c, Proposition 4.29].

4.4. Commutator W-vector fields. We record a sharpening of ΨV of interest in some
applications, e.g. [Hin24a, §2.5.4]. We only discuss the scaled b.g. setting, and leave the
purely notational modifications for parameterized settings to the reader.

Definition 4.20 (Commutator W-vector fields). We write W[V] ⊂ W for the space of all
W ∈ W so that [W,V ] ∈ V for all V ∈ V.

The key assumption in this section is that

W[V] spans W over C∞uni,B(M), (4.25)

i.e. every W ∈ W can be written as a finite linear combination
∑
fiWi where fi ∈ C∞uni,B(M)

and Wi ∈ W[V]. Let us consider the conditions on W ∈ W to lie in W[V] in distinguished

charts: writing (φα)∗W =
∑n

k=1W
k(x)∂k, we compute

[V jρα,j∂j , (φα)∗W ] =
(ρα,kV k(∂kW

j)

ρα,j
−W k(∂kV

j)
)
ρα,j∂j . (4.26)

This has uniformly (in α) bounded coefficients in C∞([−3
2 ,

3
2 ]n) for all V ∈ V (expressed in

local coordinates as V jρα,j∂j) if and only if
ρα,k∂kW

j

ρα,j
is uniformly bounded in C∞([−3

2 ,
3
2 ]n).

If, say, ρα,j → 0 but ρα,k = 1 for some sequence of α, j, k, this requires W j to vary only by

an increasingly small amount . ρα,k in the xk-direction on Uα. This shows that elements
of W[V] cannot be constructed using a partition of unity from purely local constructions in
each Uα. (In particular, one typically hasW[V] (W; equivalently, W[V] is not a C∞uni,B(M)-

module.) Rather, they have a global character.

Example 4.21 (Commutator vector fields in the edge-setting). Let M̄ be compact with

fibered boundary Z − ∂M̄
π−→ Y , and consider on the interior M = M̄◦ the scaled b.g.

structure with coefficient Lie algebra W = Vb(M̄) and operator Lie algebra V = Ve(M̄)
(with conormal coefficients), cf. §1.2.4(4). Then

W[V] ⊃
{
W ∈ C∞(M̄ ; bTM̄) : W |∂M̄ is a lift of a vector field on Y

}
.

In local coordinates x ≥ 0, y ∈ RnY , z ∈ RnZ , elements of the space on the right are of the
form a(x, y, z)x∂x + (b(y) + xc(x, y, z))∂y + d(x, y, z)∂z. Thus, condition (4.25) is satisfied
in this case. This example is related to [HV23, §5.1]. (Another example is discussed in
[Hin23b, §2.1.1].)

Under the assumption (4.25), we shall write wρ∞Ψ−∞V,[ ](M) for the space of all residual

operators R ∈ wρ∞Ψ−∞V (M) in Definition 3.34 which satisfy the additional condition

adW1 · · · adWk
R, adW1 · · · adWk

R∗ ∈ wρ∞Ψ−∞V (M) ∀ k ∈ N, W1, . . . ,Wk ∈ W[V].
(4.27)
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Here adW1 = [W1, ·] is the commutator. (In the case of operators acting on vector bundles,
we require the same for all elements W1, . . . ,Wk of Diff1

W whose principal symbols are scalar
and agree with those of some elements of W[V].) We remark that under condition (4.27), it
suffices to assume the validity of (3.30) for R,R∗ for k = 0.

Proposition 4.22 (Sharper ps.d.o. algebra). Assume that (4.25) holds. Define

ρ−lΨm
V,[ ](M) ⊂ ρ−lΨm

V (M) (4.28)

as the space of operators of the form A = OpV(a) + R where a ∈ ρ−lSm(VT ∗M) and
R ∈ ρ∞Ψ−∞V,[ ](M). Then adW1 · · · adWk

A ∈ ρ−lΨm
V,[ ](M) for all A ∈ ρ−lΨm

V,[ ](M), k ∈ N,

W1, . . . ,Wk ∈ W[V]. Furthermore,
⋃
m,l∈R ρ

−lΨm
V,[ ](M) is closed under compositions and

adjoints. Analogous statements hold for operators with weights, phase space weights, and
variable orders.

We reiterate that it is in general not true that [Ψm
V,[ ],W ] ⊂ Ψm

V,[ ] for all W ∈ W; this

already fails in the case m = 1 for the subspace V ⊂ Ψ1
V,[ ].

Proof of Proposition 4.22. We first check the analogue of Corollary 3.38. Thus, let R ∈
ρ∞Ψ−∞V,[ ](M) with Schwartz kernel KR, and let f ∈ C∞uni,B×B(M×M). Then fKR defines an

element R′ of wρ∞Ψ−∞V (M) by Corollary 3.38; we need to show that fKR ∈ ρ∞Ψ−∞V,[ ](M).

If now W ∈ W[V], then the Schwartz kernel of [W,R′] is equal to W1(fKR) −W ∗2 (fKR)
where the vector field Wj on M ×M is equal to W acting on the first (for j = 1), resp.
second (for j = 2) factor, and W ∗2 acts on right densities. Upon trivializing the right density
bundle using a uniform W-density, we have W ∗2 ≡ −W2 mod C∞uni,B(M). It then suffices to
observe that

W1(fKR)−W ∗2 (fKR) = f(W1KR −W ∗2KR) + ((W1 +W2)f)KR,

with the first summand being f times the Schwartz kernel of [W,R], and the second one
being (W1 − W2)f ∈ C∞uni,B×B(M × M) times the Schwartz kernel of R. Higher order
commutators are treated similarly.

Next, we prove that the conclusion in Proposition 3.39 can be strengthened to member-
ship in wρ∞Ψ−∞V,[ ](M) (which then implies an analogous strengthening of Lemma 3.42). To

this end, we shall prove the following statement for a ∈ Sm((−2, 2)n;Rn) and W ∈ W[V]:

write (φα)∗W =
∑n

k=1W
k∂k; then the operator whose Schwartz kernel is given by the

action of W̃ :=
∑n

j=1W
j(xα)∂

xjα
+W j(x′α)∂

x′jα
on the quantization

Ka(xα, x
′
α) := (2π)−n

∫
Rn
ei

∑n
j=1(xjα−x′jα )ξj/ρα,jψ(x′α − xα)a(xα, ξ) dξ (4.29)

is itself such a quantization (upon replacing ψ ∈ C∞c ((−3
2 ,

3
2)n) by a cutoff of the same class

which is equal to 1 on suppψ) for a new symbol of class Sm which is uniformly (in α)

bounded by a. The only term in W̃Ka which is not of the same form as Ka itself (upon
enlarging the cutoff) arises from differentiating the exponential. The latter produces( n∑

j=1

W j(xα)−W j(x′α)

ρα,j
ξj

)
iei

∑n
j=1(xjα−x′jα )ξj/ρα,j
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=
n∑

j,k=1

∫ 1

0

ρα,k(∂kW
j)(x′α + t(xα − x′α))

ρα,j
dt× (ξj∂ξk)ei

∑n
j=1(xjα−x′jα )ξj/ρα,j .

Plugging this into (4.29), we can shift ξj onto aα and integrate by parts in ξk. The uniform

C∞ bounds on
ρα,k∂kW

j

ρα,j
(cf. the discussion following (4.26)) then yield the desired claim

upon left reduction. Higher order commutators are analyzed by iterating this argument.

The same arguments show that for A = OpV(a) with a ∈ Sm(VT ∗M), we have [W,A] ∈
Ψm
V,[ ](M) for all W ∈ W[V]; similarly for higher order commutators. The algebra property

of
⋃
m,l∈R ρ

−lΨm
V,[ ](M) now follows from that of ρ∞Ψ−∞V,[ ](M). The proof is complete. �
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