18.950/9501 (S20): HOMEWORK 1

The book references are to do Carmo, Differential Geometry of Curves and Surfaces.
Due: Thursday, Feb 13, in class. ${ }^{1}$

Exercise 1. Chapter 1-3, Problem 10 (page 11).
Exercise 2. Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a smooth parameterized curve, and let $[a, b] \subset I$ be a closed interval. For every $n \in \mathbb{N}$ and every partition $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$, $a=t_{0}<t_{1}<\ldots<t_{n}=$ b, of $[a, b]$, define

$$
\ell(\alpha, P):=\sum_{i=1}^{n}\left\|\alpha\left(t_{i}\right)-\alpha\left(t_{i-1}\right)\right\| .
$$

Define the norm $|P|$ of the partition P as

$$
|P|=\max _{i=1, \ldots, n}\left(t_{i}-t_{i-1}\right) .
$$

(1) Show that $\ell(\alpha, P) \leq \ell:=\int_{a}^{b}\left\|\alpha^{\prime}(t)\right\| d t$.
(2) Prove that given $\epsilon>0$ there exists $\delta>0$ such that if $|P|<\delta$, then $\ell-\epsilon \leq \ell(\alpha, P)$.
(3) Conclude that the arc length $\ell=\int_{a}^{b}\left\|\alpha^{\prime}(t)\right\| d t$ is given by

$$
\ell=\lim _{\substack{P \text { partition } \\|P| \rightarrow 0}} \ell(\alpha, P) .
$$

Exercise 3. Let $\alpha: I=(a, b) \rightarrow \mathbb{R}^{3}$ denote a regular parameterized curve which is not necessarily by arc length. Let $t_{0} \in I$, and let $s(t)=\int_{t_{0}}^{t}\left\|\alpha^{\prime}\left(t^{\prime}\right)\right\| d t^{\prime}$ denote the arc length.
(1) Show that $s(t)$ has a smooth inverse $t(s)$, defined for $s \in(s(a), s(b))$. Prove that the curve $\beta(s):=\alpha(t(s))$ is a regular curve parameterized by arc length.
(2) Show that $d t / d s=1 /\left|\alpha^{\prime}\right|, d^{2} t / d s^{2}=-\alpha^{\prime} \cdot \alpha^{\prime \prime} /\left|\alpha^{\prime}\right|^{4}$.
(3) Show that the curvature of α is given by

$$
k(t)=\left|\alpha^{\prime}(t) \times \alpha^{\prime \prime}(t)\right| /\left|\alpha^{\prime}(t)\right|^{3} .
$$

(4) If $k(t) \neq 0$, show that the torsion at t is equal to

$$
\tau(t)=-\frac{\left(\alpha^{\prime}(t) \times \alpha^{\prime \prime}(t)\right) \cdot \alpha^{\prime \prime \prime}(t)}{\left|\alpha^{\prime}(t) \times \alpha^{\prime \prime}(t)\right|^{2}} .
$$

Exercise 4. Chapter 1-5, Problem 10 (page 24).
Exercise 5. Chapter 1-6, Problem 3 (page 30).
Exercise 6. Compute the Frenet frame, curvature, and torsion of the following curves:
(1) $\alpha(t)=\left(e^{t} \cos t, e^{t} \sin t, e^{t}\right), t \in(-\infty, \infty)$.
(2) $\alpha(t)=\left(\frac{1}{3}(1+t)^{3 / 2}, \frac{1}{3}(1-t)^{3 / 2}, \frac{1}{\sqrt{2}} t\right), t \in(-1,1)$.

[^0]
[^0]: Date: January 30, 2020.
 ${ }^{1}$ See the course website, https://math.mit.edu/~phintz/18.950-S20/, for homework policies.

