18.950/9501 (S20): HOMEWORK 5

The book references are to do Carmo, Differential Geometry of Curves and Surfaces. (The numbers for the assigned problems are the same in both editions of the book.)
Due: Thursday, Apr 2, on Gradescope. ${ }^{1}$
Exercise 1. Show that at a hyperbolic point of a regular surface, the principal directions bisect the asymptotic directions.
Exercise 2. Let S be a regular surface, $p \in S$.
(1) Show that the sum of the normal curvatures for any pair of orthogonal directions at p is constant.
(2) Show that if the mean curvature at p is zero, and p is not a planar point (that is, $d N_{p} \neq 0$), then p has two orthogonal asymptotic directions.
Exercise 3. A curve C is called a line of curvature of a regular surface S if each tangent vector of C is a principal direction of S. Suppose two regular surfaces S_{1}, S_{2} intersect in a regular curve C, and the angle between the normal vectors of S_{1} and S_{2} is $\theta(p), p \in C$. Assume that C is a line of curvature of S_{1}. Show that C is a line of curvature of S_{2} if and only if $\theta(p)$ is constant.
Exercise 4. (1) Let $R>0$. Suppose $\alpha: I \rightarrow \mathbb{R}^{3}$ is a regular parameterized curve in \mathbb{R}^{3} with the property that $\|\alpha(s)\| \leq R$ and $\left\|\alpha\left(s_{0}\right)\right\|=R$. Show that the curvature of α at s_{0} satisfies the inequality $k\left(s_{0}\right) \geq 1 / R$.
(2) Let S be a compact (that is, closed and bounded) regular surface. Show that there exists a point $p \in S$ with positive Gauss curvature.
Exercise 5. Let $I \subset \mathbb{R}$ be an open interval, $\alpha: I \rightarrow \mathbb{R}^{3}$ a regular parameterized curve, and $\beta: I \rightarrow \mathbb{R}^{3}$ a smooth function with $\beta \neq 0$. We define a parameterized surface by

$$
x(u, v)=\alpha(u)+v \beta(u), \quad(u, v) \in I \times \mathbb{R}
$$

This is called a ruled surface, with rulings β and directrix α. (An example is a cylinder, with α a circle and β a constant vector.) Show that a regular ruled surface has Gauss curvature $K \leq 0$.
Exercise 6. Chapter 3-3, Problem 13.

[^0]
[^0]: Date: March 5, 2020. Updated: March 16, 2020.
 ${ }^{1}$ See the course website, https://math.mit.edu/~phintz/18.950-S20/, for homework policies.

