EXERCISES FOR PART 1/2 OF SCATTERING THEORY (SNAP 2019)

PETER HINTZ

Exercise 1. (Free resolvent in one dimension, physical space approach.)

(a) Let $\lambda \in \mathbb{C}$, Im $\lambda > 0$. Find a distribution $u_{\lambda}(x) \in \mathscr{D}'(\mathbb{R}_x)$ such that

$$(-\partial_x^2 - \lambda^2)u_\lambda(x) = \delta(x), \tag{1}$$

and so that $|u_{\lambda}(x)| \to 0$ as $|x| \to \infty$.

(b) For $\varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R})$, set

$$R_0(\lambda)\varphi(x) := \int_{\mathbb{R}} u_\lambda(x-y)\varphi(y)\,dy.$$
(2)

Show that $(-\partial_x^2 - \lambda^2)R_0(\lambda)\varphi = \varphi$. We call $R_0(\lambda)$ the free resolvent of $-\partial_x^2$. (c) Show that $R_0(\lambda): L^2(\mathbb{R}) \to L^2(\mathbb{R})$ for $\operatorname{Im} \lambda > 0$.

(d) Prove that $R_0(\lambda)$ extends from Im $\lambda > 0$ to a meromorphic family of operators

$$R_0(\lambda)\colon \mathcal{C}^{\infty}_{\mathrm{c}}(\mathbb{R}) \to \mathscr{D}'(\mathbb{R}), \quad \lambda \in \mathbb{C}.$$
(3)

(This means: for all $\varphi, \psi \in \mathbb{R}$, the complex-valued function $\lambda \mapsto \int_{\mathbb{R}} R_0(\lambda)\varphi(x) \cdot \psi(x) dx$ is meromorphic in λ .) Find its poles.

(e) For $\lambda \neq 0$, show that $R_0(\lambda)$ extends by continuity to a continuous map

$$R_0(\lambda) \colon L^2_c(\mathbb{R}) \to L^2_{\text{loc}}(\mathbb{R}).$$
(4)

(This means: for any smooth cutoff function $\rho \in \mathcal{C}^{\infty}_{c}(\mathbb{R})$, the *cutoff resolvent* $\rho R_{0}(\lambda)\rho \colon \mathcal{C}^{\infty}_{c}(\mathbb{R}) \to \mathscr{D}'(\mathbb{R})$ extends to a bounded linear map $\rho R_{0}(\lambda)\rho \colon L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$.)

 (f^*) Show the following improvement of (4):

$$R_0(\lambda) \colon L^2_c(\mathbb{R}) \to H^2_{\text{loc}}(\mathbb{R}), \quad \lambda \neq 0.$$
(5)

Exercise 2. (Waves in one dimension.) By solving the one-dimensional free wave equation explicitly, we will justify the phenomenon seen in the lecture: the solution becomes constant in any fixed compact set for late enough times.

Consider a function $u \in \mathcal{C}^{\infty}(\mathbb{R}^2)$ in two variables (t, x) satisfying the free wave equation in (1+1) dimensions:

$$(\partial_t^2 - \partial_x^2)u(t, x) = 0.$$
(6)

(a) By changing coordinates in equation (6) to (w, z) = (t + x, t - x), show that there exist smooth functions $u_L, u_R \in \mathcal{C}^{\infty}(\mathbb{R})$ of one variable such that

$$u(t,x) = u_L(t+x) + u_R(t-x).$$
(7)

Conversely, show that every function of this form satisfies the wave equation (6).

Date: August 12, 2019.

PETER HINTZ

(b) Produce an explicit formula of the solution of the initial value problem

$$\begin{cases} (\partial_t^2 - \partial_x^2)u(t, x) = 0, & t \ge 0, \ x \in \mathbb{R}, \\ u(0, x) = 0, & x \in \mathbb{R}, \\ \partial_t u(0, x) = u_0(x), & x \in \mathbb{R}, \end{cases}$$
(8)

for $u_0 \in \mathcal{C}^{\infty}(\mathbb{R})$.

(c) Let R, R' > 0. Suppose $u_0 \in \mathcal{C}^{\infty}_{c}(B(0, R))$. Show that there exists T = T(R, R') > 0 such that u(t, x) is constant for $t \geq T$, $|x| \leq R'$.

Exercise 3. (Free resolvent in three dimensions.) Let $\varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3})$. As in lecture, set

$$R_0(\lambda)\varphi(x) := \int_{\mathbb{R}^3} \frac{e^{i\lambda|x-y|}}{4\pi|x-y|}\varphi(y)\,dy, \quad \lambda \in \mathbb{C}.$$
(9)

Prove by direct calculation that

$$(-\Delta - \lambda^2) R_0(\lambda) \varphi = \varphi.$$
⁽¹⁰⁾

Exercise 4. (Estimates in the upper half plane.)

(a) Show that there exists a constant C > 0 such that for all $\lambda \in \mathbb{C}$, $\text{Im } \lambda > 0$, the following estimate holds (d denoting Euclidean distance):

$$d(\lambda^2, [0, \infty)) \ge C|\lambda| \operatorname{Im} \lambda.$$
(11)

(b) Let $V \in L^{\infty}(\mathbb{R};\mathbb{C})$. Show that there exists C' > 0 such that the following holds: if $\lambda \in \mathbb{C}$, Im $\lambda > C'$, and if $w \in H^2(\mathbb{R}^3)$ solves $(-\Delta + V - \lambda^2)w = 0$, then w = 0.

Exercise 5. (Analytic Fredholm theory for matrices.) Let $N \in \mathbb{N}$, and let $\Omega \subset \mathbb{C}$ denote a connected open set. Suppose $A(\lambda) \in \mathbb{C}^{N \times N}$ is an analytic matrix-valued function of $\lambda \in \Omega$. Prove that either $A(\lambda)$ is not invertible for any $\lambda \in \mathbb{C}$, or the inverse $A(\lambda)^{-1}$ is a meromorphic matrix-valued function on Ω (that is, its entries are meromorphic complex-valued functions).

Exercise 6. (An application of analytic Fredholm theory.) Let $K: X \to Y$ be a compact operator between two Banach spaces X, Y. By considering the analytic family $\mathbb{C} \ni z \mapsto I + zK$ of Fredholm operators, prove that the spectrum of K is discrete and can only accumulate at 0.

Exercise 7. (Meromorphic continuation in one dimension.) Let $V \in L_c^{\infty}(\mathbb{R}; \mathbb{C})$. Following the arguments presented in lecture, show that the resolvent

$$R_V(\lambda) = (-\partial_x^2 + V - \lambda^2)^{-1} \colon L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad \text{Im}\,\lambda \gg 1, \tag{12}$$

admits a meromorphic continuation to a family of operators

$$R_V(\lambda) \colon L^2_{\rm c}(\mathbb{R}) \to L^2_{\rm loc}(\mathbb{R}), \quad \lambda \in \mathbb{C}.$$
 (13)

(This means: $\rho R_V(\lambda)\rho$ is a meromorphic family of operators on $L^2(\mathbb{R})$ for any cutoff function $\rho \in \mathcal{C}^{\infty}_{c}(\mathbb{R})$.) Make sure you carefully treat the pole of $R_0(\lambda)$ at $\lambda = 0$.)

Exercise 8. (Symmetry of resonances for real-valued potentials.) Let $V \in L_c^{\infty}(\mathbb{R}^3; \mathbb{R})$ be *real-valued*. Show that if $\lambda \in \mathbb{C}$ is a resonance, then so is $-\overline{\lambda}$, the reflection of λ across the imaginary axis. (Use complex conjugation.)

EXERCISES

Exercise 9. (Meromorphic continuation for decaying potentials.) Let T > 0, and let $V \in L^{\infty}(\mathbb{R}^3)$ be a bounded potential satisfying $|V(x)| \leq Ce^{-T|x|}$ for some constant C. Show (by carefully following the proof in lecture for $V \in L^{\infty}_{c}(\mathbb{R}^3)$) that the resolvent $R_V(\lambda) = (-\Delta + V - \lambda^2)^{-1}$ extends from $\operatorname{Im} \lambda \gg 1$ to a meromorphic family

$$R_V(\lambda) \colon L^2_{\rm c}(\mathbb{R}) \to L^2_{\rm loc}(\mathbb{R}), \quad \lambda \in \mathbb{C}, \ \operatorname{Im} \lambda > -T.$$
 (14)

Exercise 10. (Calculation of resonances in one dimension.) Fix $V_0 \in \mathbb{R}$ and L > 0, and define the potential $V \in L^{\infty}(\mathbb{R})$ by

$$V(x) := \begin{cases} V_0, & -L < x < L, \\ 0, & |x| \ge L. \end{cases}$$
(15)

- (a) Derive a necessary and sufficient criterion for $\lambda \in \mathbb{C}$ to be a resonance of $-\partial_x^2 + V$. (Use the characterization of resonant states $(-\partial_x^2 + V - \lambda^2)u = 0$, $u(x) = u_{\pm}e^{i\lambda|x|}$, $\pm x \geq L$.) This will take the form of a transcendental equation.
- (b*) By approximately solving this equation, find an approximate formula for resonances λ with large real part.

Exercise 11. (Potentials with a prescribed resonance.) The goal of this exercise is to show that resonances can appear anywhere in the complex plane.

- (a) Construct a potential $V \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3};\mathbb{R})$ such that 0 is a resonance of $-\Delta + V$.
- (b) Let $\lambda \in \mathbb{C}$. Construct a potential $V \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3};\mathbb{C})$ such that λ is a resonance of $-\Delta + V$.
- (c*) Let $\lambda \in \mathbb{C}$, Im $\lambda < 0$. Construct a real-valued potential $V \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3};\mathbb{R})$ such that λ is a resonance of $-\Delta + V$.

Exercise 12. (Waves and resolvents in three dimensions.) Let $U(t) := \frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}$. (This is defined using the Fourier transform \mathcal{F} by $\mathcal{F}(U(t)f)(\xi) = \frac{\sin(t|\xi|)}{|\xi|}\mathcal{F}f(\xi), f \in \mathscr{S}(\mathbb{R}^3)$.)

 (a^*) Show that

$$U(t)f(x) = \frac{1}{4\pi t} \int_{\partial B(x,t)} f(y) \, dS(y), \quad t > 0.$$
(16)

- (b) (Strong Huygens principle.) Suppose $f \in C_c^{\infty}(B(0,R))$. Prove that $B(0,R) \cap \operatorname{supp} U(t)f = \emptyset$ for t > 2R.
- (c) Let Im $\lambda > 0$. Show that $R_0(\lambda) \colon L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3)$ can be expressed as

$$R_0(\lambda) = \int_0^\infty e^{i\lambda t} U(t) \, dt,\tag{17}$$

with convergence in operator norm.

(d) Let $\rho \in \mathcal{C}^{\infty}_{c}(B(0, R))$. Show (using the strong Huygens principle and analytic continuation) that for all $\lambda \in \mathbb{C}$,

$$\rho R_0(\lambda)\rho = \int_0^{2R} e^{i\lambda t} \rho U(t)\rho \,dt.$$
(18)

(e) Show that $||U(t)||_{L^2 \to H^1} = (1+t^2)^{1/2}$. Deduce that

$$\|\rho R_0(\lambda)\rho\|_{L^2 \to H^1} \le C e^{2R(\operatorname{Im}\lambda)_-}.$$
 (19)

(f) Make sure you understand the arguments given in lecture proving that for j = 0, 1, 2,

$$\|\rho R_0(\lambda)\rho\|_{L^2 \to H^j} \le C e^{2R(\operatorname{Im}\lambda)_-} \langle \lambda \rangle^{j-1}.$$
(20)

PETER HINTZ

Exercise 13. (Solving the wave equation using the resolvent.) Let $V \in L_c^{\infty}(\mathbb{R}^3; \mathbb{C})$. Let $u_0 \in H_c^1(\mathbb{R}^3)$, $u_1 \in L_c^2(\mathbb{R}^3)$, and consider the wave equation

$$\begin{cases} (\Box + V)u = (\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \\ u(0, x) = u_0(x), \\ \partial_t u(0, x) = u_1(x). \end{cases}$$
(21)

This has a unique solution $u \in \mathcal{C}^0(\mathbb{R}; H^1_c(\mathbb{R}^3)) \cap \mathcal{C}^1(\mathbb{R}; L^2_c(\mathbb{R}^3))$. Let H(t) denote the Heaviside function $(H(t) = 1 \text{ for } t \ge 0 \text{ and } H(t) = 0 \text{ for } t < 0)$, and put $\tilde{u}(t, x) := H(t)u(t, x)$.

- (a) Show that $(\Box + V)\tilde{u}(t, x) = f(t, x) := \delta'(t)u_0(x) + \delta(t)u_1(x)$.
- (b) For C > 0 sufficiently large, show that

$$v(t,x) = \frac{1}{2\pi} \int_{\mathrm{Im}\,\lambda=C} e^{-i\lambda t} R_V(\lambda) (u_1 - i\lambda u_0) \,d\lambda \tag{22}$$

is well-defined (as a distribution) and satisfies $(\Box + V)v = f$. (Pick C so that $R_V(\lambda)$ satisfies good estimates for Im $\lambda \geq C$ and has no resonances there.)

- (c) Using the Paley–Wiener theorem, or arguing directly, show that v(t, x) = 0 for t < 0.
- (d) Show that the difference $w(t,x) := \tilde{u}(t,x) v(t,x)$ vanishes. (By construction, w(t,x) = 0 for t < 0; moreover $(\Box + V)w(t,x) = 0$. Use energy estimates to conclude.) Therefore, $\tilde{u}(t,x)$ is given by (22).

Exercise 14. (Regularity of solutions of wave equations.) Let $V \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3};\mathbb{C})^{1}$ and suppose u(t,x) is the unique solution of the wave equation

$$\begin{cases} (\partial_t^2 - \Delta + V)u = 0, & t \in \mathbb{R}, \ x \in \mathbb{R}^3, \\ u(0, x) = u_0(x) \in H_c^1(\mathbb{R}^3), \\ \partial_t u(0, x) = u_1(x) \in L_c^2(\mathbb{R}^3); \end{cases}$$
(23)

we have $u \in \mathcal{C}^0(\mathbb{R}; H^1(\mathbb{R}^3)) \cap \mathcal{C}^1(\mathbb{R}; L^2(\mathbb{R}^3))$. If R > 0 is such that $\sup u_0 \cup \sup u_1 \subset B(0, R)$, show that $u \in \mathcal{C}^\infty(\Omega)$ in the domain

$$\Omega = \{(t,x) \colon |x| < |t| - R\}.$$
(24)

In particular, u(t, x) is smooth in any fixed compact subset of \mathbb{R}^3_x when t is large enough. (It suffices to prove this for t > 0. Using the previous exercise, reduce to a statement about solutions of $(\partial_t^2 - \Delta + V)u = f \in \mathscr{D}'(\mathbb{R}^4)$ where $t \ge 0$ on $\operatorname{supp} f$ and on $\operatorname{supp} u$. Then use the microlocal propagation of singularities.)

Exercise 15. (Resonances for real-valued potentials.) Let $V \in L^{\infty}_{c}(\mathbb{R};\mathbb{R}), P_{V} = -\partial_{x}^{2} + V$.

- (a) (Absence of embedded eigenvalues.) Show that P_V has no non-zero real resonances. (Given a resonant state u(x) corresponding to a resonance $0 \neq \lambda \in \mathbb{R}$, evaluate $\int_{-R}^{R} (P_V - \lambda^2) u \cdot \bar{u} - u \cdot (P_V - \lambda^2) \bar{u} \, dx$ for $R \gg 1$ in two different ways using that $u(x) = a_+ e^{\pm i\lambda x}$ for $\pm x \gg 1$.)
- (b) Suppose $V \ge 0$. Show that the resonances λ of P_V satisfy $\lambda = 0$ or $\text{Im } \lambda < 0$. (You only need to study $\text{Im } \lambda > 0$. Given a resonant state u, integrate by parts in $0 = \langle (P_V - \lambda^2)u, u \rangle_{L^2(\mathbb{R})}$ and consider real and imaginary parts.)
- (c) If V > 0 on a set of positive measure, show that 0 is not a resonance of P_V .
- (d) Prove the last two results in three spatial dimensions.

¹The compact support assumption can be dropped easily here.