EXERCISES FOR PART 1/2 OF SCATTERING THEORY (SNAP 2019)

PETER HINTZ

Exercise 1. (Free resolvent in one dimension, physical space approach.)
(a) Let $\lambda \in \mathbb{C}, \operatorname{Im} \lambda>0$. Find a distribution $u_{\lambda}(x) \in \mathscr{D}^{\prime}\left(\mathbb{R}_{x}\right)$ such that

$$
\begin{equation*}
\left(-\partial_{x}^{2}-\lambda^{2}\right) u_{\lambda}(x)=\delta(x), \tag{1}
\end{equation*}
$$

and so that $\left|u_{\lambda}(x)\right| \rightarrow 0$ as $|x| \rightarrow \infty$.
(b) For $\varphi \in \mathcal{C}_{\mathrm{c}}^{\infty}(\mathbb{R})$, set

$$
\begin{equation*}
R_{0}(\lambda) \varphi(x):=\int_{\mathbb{R}} u_{\lambda}(x-y) \varphi(y) d y . \tag{2}
\end{equation*}
$$

Show that $\left(-\partial_{x}^{2}-\lambda^{2}\right) R_{0}(\lambda) \varphi=\varphi$. We call $R_{0}(\lambda)$ the free resolvent of $-\partial_{x}^{2}$.
(c) Show that $R_{0}(\lambda): L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ for $\operatorname{Im} \lambda>0$.
(d) Prove that $R_{0}(\lambda)$ extends from $\operatorname{Im} \lambda>0$ to a meromorphic family of operators

$$
\begin{equation*}
R_{0}(\lambda): \mathcal{C}_{\mathrm{c}}^{\infty}(\mathbb{R}) \rightarrow \mathscr{D}^{\prime}(\mathbb{R}), \quad \lambda \in \mathbb{C} . \tag{3}
\end{equation*}
$$

(This means: for all $\varphi, \psi \in \mathbb{R}$, the complex-valued function $\lambda \mapsto \int_{\mathbb{R}} R_{0}(\lambda) \varphi(x)$. $\psi(x) d x$ is meromorphic in λ.) Find its poles.
(e) For $\lambda \neq 0$, show that $R_{0}(\lambda)$ extends by continuity to a continuous map

$$
\begin{equation*}
R_{0}(\lambda): L_{\mathrm{c}}^{2}(\mathbb{R}) \rightarrow L_{\mathrm{loc}}^{2}(\mathbb{R}) \tag{4}
\end{equation*}
$$

(This means: for any smooth cutoff function $\rho \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$, the cutoff resolvent $\rho R_{0}(\lambda) \rho: \mathcal{C}_{\mathrm{c}}^{\infty}(\mathbb{R}) \rightarrow \mathscr{D}^{\prime}(\mathbb{R})$ extends to a bounded linear map $\rho R_{0}(\lambda) \rho: L^{2}(\mathbb{R}) \rightarrow$ $\left.L^{2}(\mathbb{R}).\right)$
(f*) Show the following improvement of (4):

$$
\begin{equation*}
R_{0}(\lambda): L_{\mathrm{c}}^{2}(\mathbb{R}) \rightarrow H_{\mathrm{loc}}^{2}(\mathbb{R}), \quad \lambda \neq 0 . \tag{5}
\end{equation*}
$$

Exercise 2. (Waves in one dimension.) By solving the one-dimensional free wave equation explicitly, we will justify the phenomenon seen in the lecture: the solution becomes constant in any fixed compact set for late enough times.

Consider a function $u \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2}\right)$ in two variables (t, x) satisfying the free wave equation in $(1+1)$ dimensions:

$$
\begin{equation*}
\left(\partial_{t}^{2}-\partial_{x}^{2}\right) u(t, x)=0 . \tag{6}
\end{equation*}
$$

(a) By changing coordinates in equation (6) to $(w, z)=(t+x, t-x)$, show that there exist smooth functions $u_{L}, u_{R} \in \mathcal{C}^{\infty}(\mathbb{R})$ of one variable such that

$$
\begin{equation*}
u(t, x)=u_{L}(t+x)+u_{R}(t-x) . \tag{7}
\end{equation*}
$$

Conversely, show that every function of this form satisfies the wave equation (6).
(b) Produce an explicit formula of the solution of the initial value problem

$$
\begin{cases}\left(\partial_{t}^{2}-\partial_{x}^{2}\right) u(t, x)=0, & t \geq 0, x \in \mathbb{R} \tag{8}\\ u(0, x)=0, & x \in \mathbb{R} \\ \partial_{t} u(0, x)=u_{0}(x), & x \in \mathbb{R}\end{cases}
$$

for $u_{0} \in \mathcal{C}^{\infty}(\mathbb{R})$.
(c) Let $R, R^{\prime}>0$. Suppose $u_{0} \in \mathcal{C}_{\mathrm{c}}^{\infty}(B(0, R))$. Show that there exists $T=T\left(R, R^{\prime}\right)>0$ such that $u(t, x)$ is constant for $t \geq T,|x| \leq R^{\prime}$.

Exercise 3. (Free resolvent in three dimensions.) Let $\varphi \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right)$. As in lecture, set

$$
\begin{equation*}
R_{0}(\lambda) \varphi(x):=\int_{\mathbb{R}^{3}} \frac{e^{i \lambda|x-y|}}{4 \pi|x-y|} \varphi(y) d y, \quad \lambda \in \mathbb{C} . \tag{9}
\end{equation*}
$$

Prove by direct calculation that

$$
\begin{equation*}
\left(-\Delta-\lambda^{2}\right) R_{0}(\lambda) \varphi=\varphi \tag{10}
\end{equation*}
$$

Exercise 4. (Estimates in the upper half plane.)
(a) Show that there exists a constant $C>0$ such that for all $\lambda \in \mathbb{C}, \operatorname{Im} \lambda>0$, the following estimate holds (d denoting Euclidean distance):

$$
\begin{equation*}
d\left(\lambda^{2},[0, \infty)\right) \geq C|\lambda| \operatorname{Im} \lambda \tag{11}
\end{equation*}
$$

(b) Let $V \in L^{\infty}(\mathbb{R} ; \mathbb{C})$. Show that there exists $C^{\prime}>0$ such that the following holds: if $\lambda \in \mathbb{C}, \operatorname{Im} \lambda>C^{\prime}$, and if $w \in H^{2}\left(\mathbb{R}^{3}\right)$ solves $\left(-\Delta+V-\lambda^{2}\right) w=0$, then $w=0$.

Exercise 5. (Analytic Fredholm theory for matrices.) Let $N \in \mathbb{N}$, and let $\Omega \subset \mathbb{C}$ denote a connected open set. Suppose $A(\lambda) \in \mathbb{C}^{N \times N}$ is an analytic matrix-valued function of $\lambda \in \Omega$. Prove that either $A(\lambda)$ is not invertible for any $\lambda \in \mathbb{C}$, or the inverse $A(\lambda)^{-1}$ is a meromorphic matrix-valued function on Ω (that is, its entries are meromorphic complexvalued functions).

Exercise 6. (An application of analytic Fredholm theory.) Let $K: X \rightarrow Y$ be a compact operator between two Banach spaces X, Y. By considering the analytic family $\mathbb{C} \ni z \mapsto$ $I+z K$ of Fredholm operators, prove that the spectrum of K is discrete and can only accumulate at 0 .

Exercise 7. (Meromorphic continuation in one dimension.) Let $V \in L_{\mathrm{c}}^{\infty}(\mathbb{R} ; \mathbb{C})$. Following the arguments presented in lecture, show that the resolvent

$$
\begin{equation*}
R_{V}(\lambda)=\left(-\partial_{x}^{2}+V-\lambda^{2}\right)^{-1}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R}), \quad \operatorname{Im} \lambda \gg 1, \tag{12}
\end{equation*}
$$

admits a meromorphic continuation to a family of operators

$$
\begin{equation*}
R_{V}(\lambda): L_{\mathrm{c}}^{2}(\mathbb{R}) \rightarrow L_{\mathrm{loc}}^{2}(\mathbb{R}), \quad \lambda \in \mathbb{C} \tag{13}
\end{equation*}
$$

(This means: $\rho R_{V}(\lambda) \rho$ is a meromorphic family of operators on $L^{2}(\mathbb{R})$ for any cutoff function $\rho \in \mathcal{C}_{\mathrm{c}}^{\infty}(\mathbb{R})$.) Make sure you carefully treat the pole of $R_{0}(\lambda)$ at $\lambda=0$.)

Exercise 8. (Symmetry of resonances for real-valued potentials.) Let $V \in L_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ be real-valued. Show that if $\lambda \in \mathbb{C}$ is a resonance, then so is $-\bar{\lambda}$, the reflection of λ across the imaginary axis. (Use complex conjugation.)

Exercise 9. (Meromorphic continuation for decaying potentials.) Let $T>0$, and let $V \in L^{\infty}\left(\mathbb{R}^{3}\right)$ be a bounded potential satisfying $|V(x)| \leq C e^{-T|x|}$ for some constant C. Show (by carefully following the proof in lecture for $V \in L_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3}\right)$) that the resolvent $R_{V}(\lambda)=\left(-\Delta+V-\lambda^{2}\right)^{-1}$ extends from $\operatorname{Im} \lambda \gg 1$ to a meromorphic family

$$
\begin{equation*}
R_{V}(\lambda): L_{\mathrm{c}}^{2}(\mathbb{R}) \rightarrow L_{\mathrm{loc}}^{2}(\mathbb{R}), \quad \lambda \in \mathbb{C}, \operatorname{Im} \lambda>-T \tag{14}
\end{equation*}
$$

Exercise 10. (Calculation of resonances in one dimension.) Fix $V_{0} \in \mathbb{R}$ and $L>0$, and define the potential $V \in L^{\infty}(\mathbb{R})$ by

$$
V(x):= \begin{cases}V_{0}, & -L<x<L \tag{15}\\ 0, & |x| \geq L\end{cases}
$$

(a) Derive a necessary and sufficient criterion for $\lambda \in \mathbb{C}$ to be a resonance of $-\partial_{x}^{2}+V$. (Use the characterization of resonant states $\left(-\partial_{x}^{2}+V-\lambda^{2}\right) u=0, u(x)=u_{ \pm} e^{i \lambda|x|}$, $\pm x \geq L$.) This will take the form of a transcendental equation.
(b^{*}) By approximately solving this equation, find an approximate formula for resonances λ with large real part.
Exercise 11. (Potentials with a prescribed resonance.) The goal of this exercise is to show that resonances can appear anywhere in the complex plane.
(a) Construct a potential $V \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ such that 0 is a resonance of $-\Delta+V$.
(b) Let $\lambda \in \mathbb{C}$. Construct a potential $V \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{C}\right)$ such that λ is a resonance of $-\Delta+V$.
$\left(c^{*}\right)$ Let $\lambda \in \mathbb{C}, \operatorname{Im} \lambda<0$. Construct a real-valued potential $V \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ such that λ is a resonance of $-\Delta+V$.
Exercise 12. (Waves and resolvents in three dimensions.) Let $U(t):=\sin (t \sqrt{-\Delta}) / \sqrt{-\Delta}$. (This is defined using the Fourier transform \mathcal{F} by $\mathcal{F}(U(t) f)(\xi)=\frac{\sin (t|\xi|)}{|\xi|} \mathcal{F} f(\xi), f \in \mathscr{S}\left(\mathbb{R}^{3}\right)$.)
(a*) Show that

$$
\begin{equation*}
U(t) f(x)=\frac{1}{4 \pi t} \int_{\partial B(x, t)} f(y) d S(y), \quad t>0 \tag{16}
\end{equation*}
$$

(b) (Strong Huygens principle.) Suppose $f \in \mathcal{C}_{\mathrm{c}}^{\infty}(B(0, R))$. Prove that $B(0, R) \cap$ $\operatorname{supp} U(t) f=\emptyset$ for $t>2 R$.
(c) Let $\operatorname{Im} \lambda>0$. Show that $R_{0}(\lambda): L^{2}\left(\mathbb{R}^{3}\right) \rightarrow L^{2}\left(\mathbb{R}^{3}\right)$ can be expressed as

$$
\begin{equation*}
R_{0}(\lambda)=\int_{0}^{\infty} e^{i \lambda t} U(t) d t \tag{17}
\end{equation*}
$$

with convergence in operator norm.
(d) Let $\rho \in \mathcal{C}_{c}^{\infty}(B(0, R))$. Show (using the strong Huygens principle and analytic continuation) that for all $\lambda \in \mathbb{C}$,

$$
\begin{equation*}
\rho R_{0}(\lambda) \rho=\int_{0}^{2 R} e^{i \lambda t} \rho U(t) \rho d t \tag{18}
\end{equation*}
$$

(e) Show that $\|U(t)\|_{L^{2} \rightarrow H^{1}}=\left(1+t^{2}\right)^{1 / 2}$. Deduce that

$$
\begin{equation*}
\left\|\rho R_{0}(\lambda) \rho\right\|_{L^{2} \rightarrow H^{1}} \leq C e^{2 R(\operatorname{Im} \lambda)-} \tag{19}
\end{equation*}
$$

(f) Make sure you understand the arguments given in lecture proving that for $j=0,1,2$,

$$
\begin{equation*}
\left\|\rho R_{0}(\lambda) \rho\right\|_{L^{2} \rightarrow H^{j}} \leq C e^{2 R(\operatorname{Im} \lambda)-\langle\lambda\rangle^{j-1}} \tag{20}
\end{equation*}
$$

Exercise 13. (Solving the wave equation using the resolvent.) Let $V \in L_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{C}\right)$. Let $u_{0} \in H_{\mathrm{c}}^{1}\left(\mathbb{R}^{3}\right), u_{1} \in L_{\mathrm{c}}^{2}\left(\mathbb{R}^{3}\right)$, and consider the wave equation

$$
\left\{\begin{array}{l}
(\square+V) u=\left(\partial_{t}^{2}-\Delta_{\mathbb{R}^{3}}+V\right) u=0 \tag{21}\\
u(0, x)=u_{0}(x) \\
\partial_{t} u(0, x)=u_{1}(x)
\end{array}\right.
$$

This has a unique solution $u \in \mathcal{C}^{0}\left(\mathbb{R} ; H_{\mathrm{c}}^{1}\left(\mathbb{R}^{3}\right)\right) \cap \mathcal{C}^{1}\left(\mathbb{R} ; L_{\mathrm{c}}^{2}\left(\mathbb{R}^{3}\right)\right)$. Let $H(t)$ denote the Heaviside function $(H(t)=1$ for $t \geq 0$ and $H(t)=0$ for $t<0)$, and put $\tilde{u}(t, x):=H(t) u(t, x)$.
(a) Show that $(\square+V) \tilde{u}(t, x)=f(t, x):=\delta^{\prime}(t) u_{0}(x)+\delta(t) u_{1}(x)$.
(b) For $C>0$ sufficiently large, show that

$$
\begin{equation*}
v(t, x)=\frac{1}{2 \pi} \int_{\operatorname{Im} \lambda=C} e^{-i \lambda t} R_{V}(\lambda)\left(u_{1}-i \lambda u_{0}\right) d \lambda \tag{22}
\end{equation*}
$$

is well-defined (as a distribution) and satisfies $(\square+V) v=f$. (Pick C so that $R_{V}(\lambda)$ satisfies good estimates for $\operatorname{Im} \lambda \geq C$ and has no resonances there.)
(c) Using the Paley-Wiener theorem, or arguing directly, show that $v(t, x)=0$ for $t<0$.
(d) Show that the difference $w(t, x):=\tilde{u}(t, x)-v(t, x)$ vanishes. (By construction, $w(t, x)=0$ for $t<0$; moreover $(\square+V) w(t, x)=0$. Use energy estimates to conclude.) Therefore, $\tilde{u}(t, x)$ is given by (22).

Exercise 14. (Regularity of solutions of wave equations.) Let $V \in \mathcal{C}_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{C}\right),{ }^{1}$ and suppose $u(t, x)$ is the unique solution of the wave equation

$$
\begin{cases}\left(\partial_{t}^{2}-\Delta+V\right) u=0, & t \in \mathbb{R}, x \in \mathbb{R}^{3} \tag{23}\\ u(0, x)=u_{0}(x) \in H_{\mathrm{c}}^{1}\left(\mathbb{R}^{3}\right) \\ \partial_{t} u(0, x)=u_{1}(x) \in L_{\mathrm{c}}^{2}\left(\mathbb{R}^{3}\right)\end{cases}
$$

we have $u \in \mathcal{C}^{0}\left(\mathbb{R} ; H^{1}\left(\mathbb{R}^{3}\right)\right) \cap \mathcal{C}^{1}\left(\mathbb{R} ; L^{2}\left(\mathbb{R}^{3}\right)\right)$. If $R>0$ is such that $\operatorname{supp} u_{0} \cup \operatorname{supp} u_{1} \subset$ $B(0, R)$, show that $u \in \mathcal{C}^{\infty}(\Omega)$ in the domain

$$
\begin{equation*}
\Omega=\{(t, x):|x|<|t|-R\} \tag{24}
\end{equation*}
$$

In particular, $u(t, x)$ is smooth in any fixed compact subset of \mathbb{R}_{x}^{3} when t is large enough. (It suffices to prove this for $t>0$. Using the previous exercise, reduce to a statement about solutions of $\left(\partial_{t}^{2}-\Delta+V\right) u=f \in \mathscr{D}^{\prime}\left(\mathbb{R}^{4}\right)$ where $t \geq 0$ on $\operatorname{supp} f$ and on supp u. Then use the microlocal propagation of singularities.)
Exercise 15. (Resonances for real-valued potentials.) Let $V \in L_{\mathrm{c}}^{\infty}(\mathbb{R} ; \mathbb{R}), P_{V}=-\partial_{x}^{2}+V$.
(a) (Absence of embedded eigenvalues.) Show that P_{V} has no non-zero real resonances. (Given a resonant state $u(x)$ corresponding to a resonance $0 \neq \lambda \in \mathbb{R}$, evaluate $\int_{-R}^{R}\left(P_{V}-\lambda^{2}\right) u \cdot \bar{u}-u \cdot\left(P_{V}-\lambda^{2}\right) \bar{u} d x$ for $R \gg 1$ in two different ways using that $u(x)=a_{ \pm} e^{ \pm i \lambda x}$ for $\pm x \gg 1$.)
(b) Suppose $V \geq 0$. Show that the resonances λ of P_{V} satisfy $\lambda=0$ or $\operatorname{Im} \lambda<0$. (You only need to study $\operatorname{Im} \lambda>0$. Given a resonant state u, integrate by parts in $0=\left\langle\left(P_{V}-\lambda^{2}\right) u, u\right\rangle_{L^{2}(\mathbb{R})}$ and consider real and imaginary parts.)
(c) If $V>0$ on a set of positive measure, show that 0 is not a resonance of P_{V}.
(d) Prove the last two results in three spatial dimensions.

[^0]
[^0]: ${ }^{1}$ The compact support assumption can be dropped easily here.

