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Abstract

Let (M, g) be a globally hyperbolic Lorentzian manifold and p+ ≫ p−

be points in M separated by a timelike curve. Let V be an open subset of
J(p−, p+) = J+(p−) ∩ J−(p+). We show that the topological, differentiable
and conformal structure of V can be uniquely reconstructed from the light
observation sets on the future null boundary K of J(p−, p+), i.e. the sets
PK(q) := L+

q ∩K for q ∈ V . Furthermore we show that we can reconstruct
the topological data of V also if it extends to include the boundary K, even
though the light observation sets are degenerate in this case.
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Chapter 1

Introduction

We aim to show that on a globally hyperbolic 1+n-dimensional Lorentzian manifold
(M, g) with two suitable points p− ≪ p+ ∈ M separated by a timelike path and a
suitable source set V ⊂ M which is contained within J(p−, p+) (the intersection of
the causal future of p+ and the causal past of p−), we can reconstruct the topological,
differential and conformal structure of V using the light cone observations on the
future boundary of J(p−, p+).

This thesis will be structured as follows: In this chapter we will introduce some
concepts in Lorentzian geometry needed to fully state our main results and give an
outline of their proofs. We will also give an overview of related results.

Chapter 2 contains a lot of the technical results related to light cones and their
observations on a null surface. This then enables us in chapter 3 to prove the main
reconstruction result where the source set is an open subset of the interior. In 4
we will then extend this result to settings where the source set extends up to the
boundary. And finally in chapter 5 we will go over some useful applications of the
results proven in the previous chapters.

1.1 Setting

In the following (M, g) will always a globally hyperbolic Lorentzian manifold. We
beging by introducing some definitions which will be very useful for describing the
causality relations on M :

Definition 1.1.1. We write

1. p ≪ q if p ̸= q and there exist a future-pointing timelike curve from p to q,

2. p < q if p ̸= q and there exist a future-pointing causal curve from p to q,

3. p ≤ q if p = q or p < q.
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We then define the chronological future and causal future of a point p ∈ M as

I+(p) := {q ∈ M | p ≪ q}
J+(p) := {q ∈ M | p ≤ q}.

Chronological and causal past are defined analogously. We can extend these
definitions to arbitrary sets by setting I±(A) :=

⋃
p∈A I±(p) and J±(A) analogously.

For two points p− ≪ p+ resp. p− ≤ p+ we denote I(p−, p+) := I+(p−) ∩ I−(p+)
resp. J(p−, p+) := J+(p−) ∩ J−(p+).

For a point p ∈ M we now look at the the null vectors in TpM and null geodesics
starting at p:

Definition 1.1.2 (Light Cones). Let

LpM := {v ∈ TpM \ {0} | g(v, v) = 0}

be the set of null vectors at p ∈ M . We can split LpM into L+
p M and L−

p M
the future- and past-pointing null vectors. Furthermore we can define the bundle
LV :=

⋃
p∈V LpV ⊂ TM .

We now define the future light cone of p ∈ M to be

L+
p := expp(L

+
p M) ∪ {p}.

L−
p is defined analogously.
Note that for p ∈ M we have L+

p ⊂ J+(p) and L+
p ⊃ J+(p) \ I+(p) if M is

globally hyperbolic.

For a point p ∈ M and a vector v ∈ TpM , we will often write γp,v for the unique
geodesic starting at p with velocity v; we have γp,v(t) = expp(tv). Let p ∈ M
and v ∈ TpM , we say that γp,v has a conjugate point at p′ = γp,v(t) if d expp|tv
does not have full rank. If v is a null geodesic, i.e. v ∈ L±

q M , we say that γp,v
has a cut point at p′ = γp,v if τ(p, p′) = 0 but τ(p, γp,v(t

′)) > 0 for all t′ > t;
here τ : M ×M → R is the time separation function mapping two point to the
length of the maximal geodesic joining them. We define the cut locus function
ρ(p, v) := sup{s ∈ [0,∞) | τ(p, γp,v(s)) = 0} which maps (p, v) to the location of
the first cut point along γp,v

For a more in-depth introduction to causal relations, light cones, cut and
conjucate points as well as an overview of all relevant results we refer the reader to
appendix B.

Equipped with this language we can state the regularity condition necessary
for our reconstruction results to apply:
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(a) Compact causal diamond J(p−, p+)

q

L+
qPK(q)
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(b) Light cone observation set of a single point

Figure 1.1: Illustrations of J(p−, p+), K, V and PK(q) in the Minkowski case.

Definition 1.1.3 (Suitable). We call p− ≪ p+ ∈ M suitable if p+ has no past cut
points in L−

p+ ∩ J+(p−). Furthermore we call p− ≪ p+ ∈ M and V ⊂ J(p−, p+)

suitable, if p− and p+ are suitable and no null geodesic starting in V has a conjugate
point in L−

p+ ∩ J+(p−).

We will refer to the future boundary of J(p−, p+), i.e. the closed and compact
backwards light cone from p+j cut off at the intersection with the forwards light
cone of p−j , as the observation set K := L−

p+ ∩ J+(p−). We can now now make
precise the notion of light observations on the observation set K:

Definition 1.1.4 (Light Observation Set). The light observation set of a point
q ∈ J(p−, p+) is defined as

PK(q) := L+
q ∩K.

The collection of these sets is PK(V ) := {PK(q) | q ∈ V } ⊂ P(K).

Note that PK(V ) is an unindexed set and we thus have a priori no information
which observation set PK(q) belongs to which point q ∈ V .

Example 1.1.5 (Minkowski Case). We will now discuss the above definitions in
the case of Minkowski space i.e. (M, g) = (R1+n,−dt2 +

∑
(dxi)2). The Minkowski

case is especially relevant because some proofs rely on reducing the situation to the
Minkowski case where the light observation sets are very straightforward. Because
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there are no cut point in Minkowski space any p− ≪ p+ and V ∈ J(p−, p+) will be
suitable. The light cones are literally cones given by equations of the form

Lq := {(t, x1, . . . , xn) | −(t− tq)
2 +

n∑
i=1

(xi − xi
q)

2 = 0}

where q = (tq, x
1
q, . . . , x

n
q ).

Thus the light observations sets PK(q) are exactly conic intersections, i.e.

PK(q) = L+
q ∩K = L+

q ∩ L−
p+ ∩ J+(p−) = Lp+ ∩ Lq

for q ∈ J(p−, p+)
o
. For q ∈ K we have the less general PK(q) = L+

q ∩ L−
p+ . This

also illuminates why the light observation sets get increasingly degenerate as q
approaches K and finally becomes a line. The Minkowski case is further illustrated
in figure 1.1.

Note that while the Minkowski case is a useful example it cannot capture the
more general behaviours, most importantly because it contains no cut points. In
the general case L+

q can contain cut points before it hits K, causing PK(q) to fail
being a submanifold.

Now we are ready to state the main theorem concerning the reconstruction in
the case where the source set V is contained within the interior of J(p−, p+):

Theorem 1.1.6 (Interior Reconstruction). Let (Mj, gj), j = 1, 2 be two open
globally hyperbolic, time-oriented Lorentzian manifolds. For p−j ≪ p+j , Vj ⊂ Mj

suitable in Mj we denote Kj := L−
p+j

∩ J+(p−j ). We assume that there exists a

conformal diffeomorphism Φ : K1 → K2.
Suppose that the source sets Vj ⊂ J(p−j , p

+
j )

o
are open subsets of the interior of

J(p−, p+). Then, if

Φ̃(PK1(V1)) = {Φ(PK(q)) | q ∈ V } = PK2(V2)

there exists a conformal diffeomorphism Φ : V1 → V2 that preserves causality.

Essentially, the theorem states that on two Lorentzian manifolds with con-
formally equivalent light cone observations the source sets must be conformally
equivalent. This implies that the observations uniquely determine the source set V
up to conformal diffeomorphism, which is exactly what we want when we say that
we can reconstruct V from the observations.

The statement for the boundary reconstruction is essentially the same. The one
notable difference (and also the reason why it is called boundary construction) is
that V is no longer required to be a subset of the interior of J(p−, p+), but can now
be a subset of J(p−, p+) \ {p+}. We will only prove the topological reconstruction
in this case as the differential and conformal reconstructions were beyond the scope
of this thesis:
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Theorem 1.1.7 (Boundary Reconstruction). Let (Mj, gj), p
±
j , Vj, Kj as in the

previous theorem. Suppose that the source sets Vj ⊂ J(p−, p+) \ {p+} are open
subset and

Φ̃(PK1(V1)) = {Φ(PK(q)) | q ∈ V } = PK2(V2)

there exists a homeomorphism Φ : V1 → V2.

We conjecture that Φ can also be made to be a conformal diffeomorphism that
preserves causality as in the previous theorem.

1.2 Proof Outline

Remark 1.2.1 (Data). In the following we will use an equivalent formulation of
theorems 1.1.6 and 1.1.7: Namely we will show that if (M, g), K, V, p+, p− are as in
Theorem 1.1.6 resp. 1.1.7, then given the data

(1) the smooth manifold K,

(2) the conformal class of g|K and

(3) the set of light cone observations PK(V )

we can construct a space V̂ which is conformally equivalent to V . In Theorems
1.1.6 and 1.1.7, the assumptions assure that for both (Mi, gi), Ki, Vi, p

+
i , p

−
i we have

the same data. Therefore the reconstruction will yield the same V̂ which will then
be conformally equivalent to both V1 and V2. This in turn implies that V1 and V2

are conformally equivalent.
In light of this we will from here on restrict ourselves to only one globally

hyperbolic Lorentzian manifold (M, g) with p+, p−, V suitable and show how given

the data we can construct V̂ .

Here it is helpful to clarify two things: First of all, we note that g|K denotes
the degenerate, lower-dimensional metric obtained by restricting g to only vectors
in the n−dimensional TpK; g|K is degenerate because K is a null hypersurface.
As we will see this information is sufficient for our reconstruction to be carried
out. And second, we note that while we may only directly use the data outlined
in the previous remark, we will often make use of the fact that these data come
from a Lorentzian manifold which satisfies all assumtions of theorem 1.1.6 or 1.1.7,
namely (M, g). This allows us to prove many results relevant to the reconstruction
while still only using the data outlined in the previous remark; see for example
proposition 2.2.9.
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1.2.1 Interior Case

A core idea is to cover K with a family of observers µa : [−Ta, 0] → K, a ∈ Sn−1

travelling along future-pointing null geodesics with µa(0) = p+. For a fixed observer
a ∈ Sn−1 we can then define the observation time function fa : J(p

−, p+) → R to
be the time at which the observer µa first “sees” light emitted by q, i.e.

fa(q) := inf({t ∈ [−Ta, 0] | µa(t) ∈ PK(q)} ∪ {0}).

For a fixed q ∈ J(p−, p+) we then denote Fq(a) := fa(q). These functions have
many desirable properties, i.e. q 7→ Fq is continuous, Fq = Fq′ implies q = q′ and
Fqn → Fq0 implies qn → q0 on V . And importantly the light observation set PK(q)
for some q ∈ J(p−, p+) fully determines Fq.

We can then define the map F : V → V̂ := F(V ) ⊂ K(Sn−1); q 7→ Fq. We

can fully determine V̂ from the light observation sets PK(V ). Because we have

a topology on K(Sn−1) we can determine the subspace topology on V̂ and the
nice properties of Fq ensure that the map F is a homeomorphism, allowing us to
determine the topology on V .

To determine the differential structure of V we let q ∈ V , and pick 1 + n
observers a0, . . . , an ∈ Sn−1. We denote wi ∈ L+

q M for the null vectors pointing
from q to pi := µai(fai(q)) the points of earliest observation. We then show that
if the set (w0, . . . , wn) is linearly independent, the map q′ 7→ (fa0(q

′), . . . , fan(q
′))

defines smooth coordinates around q. We furthermore show that such coordinates
always exists and we can determine them using the light observation sets, allowing
us to determine the differential structure of V .

Finally to reconstruct the conformal type of the metric on V we show that the
light observation sets allow us to determine all lightlike geodesics around a point
q ∈ V ; this allows us to determine the light cones for all points q ∈ V , which is
equivalent to knowing the conformal type of the metric, finishing the proof.

1.2.2 Boundary Case

Recall that in this case the source set V can also intersect the boundary of J(p−, p+)
and thus the observation set K. This poses some difficulties because as the points
q ∈ V get closer to K, the observations become increasingly degenerate and lose
many of their nice properties in the limit case q ∈ K. To solve this issue we will
reconstruct the topology in two parts: The interior reconstruction allows us to
reconstruct the topology on V2 := V ∩ J(p−, p+)

o
, i.e. the interior part of V . The

main challenge will now be to develop a reconstruction procedure on an open
neighborhood of the boundary K \ p+:

To that end we define the unique minimum domain D := {q ∈ J(p−, p+)
o ∪K |

Fq has a unique minimum}. We then show that D is indeed an open neighborhood
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of K, because as q approaches K in must have a unique minimum on Sn−1. An
illustrative example for this behavior is the case of Minkowski space as discussed
in 1.1.5. We then show that the unique minimum of Fq is well behaved on D.

Next we use these unique minima to “smooth out” the observation time functions
Fq as they approach the boundary: For q ∈ D with unique minimum at aq
we use a smooth bump function χaq with χaq(aq) = 0 and χaq(a

′) = 1 for a′

far enough away from aq. We then define smoothed observation time functions
Hq(a) := χaq(a)Fq(a) which have Hq(aq) = 0. These functions are well behaved
even if q ∈ K and we can, analogously to the interior reconstruction, define a
map H : D → D̂ = H(D) ⊂ K(Sn−1); q 7→ Hq, which can then be proven to be a
homeomorphism, with respect to the canonical subspace topology. This allows us
to recover the topology on V1 := V ∩D.

Because all these constructions again only require the light observations sets
PK(V ) and we have V1, V2 ⊂ V open with V = V1 ∪ V2 we can then combine the
topologies on V1 and V2 to reconstruct the topology of V .

1.3 Related work

Both the setting as well as many of the techniques used in this thesis are mainly
inspired by the work of Kurylev, Lassas, and Uhlmann [KLU17] and Hintz and
Uhlmann [HU17]: [KLU17] treats the conformal reconstruction of a source spacetime
V in the case where instead of a null hypersurface K we observe the light cones on
an open set U . The reconstruction is then carried out by endowing U with a set of
observers and measuring their observation times, similar similar to our approach.
[HU17] contains a similar result but in case where the observations take place on a
timelike boundary which reflects null geodesics. A lot of the techniques used in
[HU17] for dealing with the “slimness” of the observation sets are employed in our
approach as well.

For further results on reconstruction in the Lorentzian case we mention the
work of Lassas, Oksanen, and Yang [LOY16] showing that the knowledge of the
time separation function on a timelike hypersurface Σ allows one to the C∞-jet
of the metric on Σ, and Larsson [Lar15] proving that the isometric structure of a
compact Lorentzian manifold with boundary is completely determined by geodesic
data at the boundary.

We also mention work of Wang and Zhou [WZ19] and Lassas, Uhlmann, and
Wang [LUW18] which treats the isometric or conformal reconstruction of a spacetime
given the source-to-solution map of appropriate nonlinear wave equations on a
Lorentzan manifold.

There are also many related results in the Riemannian case: Lassas, Saksala,
and Zhou [LSZ17] treat the reconstruction of a compact Riemannian manifold
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using the scattering data on the boundary; Stefanov, Uhlmann, and Vasy [SUV17]
show on a Riemannian manifold with convex boundary that knowledge of the
distance function on the boundary allows the reconstruction of the metric on some
neighborhood of the boundary, and finally Pestov and Uhlmann [PU05] show a
similar result which allows the reconstruction of the metric on the whole manifold
in the two-dimensional case.

1.4 Notation

The notation used in thesis is very close to the one used commonly in differential
geometry and topology, but for the sake of completenes and clarity we note that
for some subset A ⊂ X of a topological space X, A denotes the closure of A, ∂A
the boundary and Ao the interior.

If M is a smooth manifold and p ∈ M a point then TpM denotes the tangent
space at p and T ∗

pM the cotangent space. If f : M → N is a map between smooth
manifolds df : TM → TN ; [γ] 7→ [f ◦ γ] denotes the differential. When it is clear
from the context π : TM → M ; (p, v) → v will be the canonical projection from
the tangent bundle to the manifold, and for a product A × B, πA : A × B → A
and πB : A×B → B will be the canonical product projections.

For the sake of distinguishing the one timelike dimension from the spacelike
dimensions on Lorentzian manifolds we usually let a Lorentzian manifold (M, g) be
of dimension 1+ n. And often, when it is clear from the context on what interval a
geodesic γ is defined we will simply write p ∈ γ to denote a point on the geodesic.
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Chapter 2

Geometric Preliminaries

As noted in the introduction, in this chapter we will set up most of the machinery
and prove most of the properties needed to prove theorems 3 and 4.

2.1 Geometry of the light cone observations

We will begin by proving some relevant properties of K and PK(q).

2.1.1 Observer Set

Lemma 2.1.1. Let p−, p+ ∈ M suitable and R := K \ I+(p−) the past boundary
of K then:

(1) K = J(p−, p+) \ I−(p+),

(2) L−
p+ ∩ J(p−, p+)

o
= ∅, and

(3) L−
p0
∩ J(p−, p+)

o
= J−(p0) ∩ J(p−, p+)

o
= ∅ ∀p0 ∈ R.

This lemma is important because characterization (1) shows that on K =
L−

p+ ∩ J+(p−) all points p have τ(p, p+) = 0. (2-3) are also very useful because they

show the light cones of points q in the interior of J(p−, p+) will only intersect K in
its relative interior, often allowing us to ignore the points where K fails to be a
submanifold.

Proof. (1) We first rewrite J(p−, p+) \ I−(p+) = (J−(p+) \ I−(p+)) ∩ J+(p−) and
immediately get (J−(p+) \ I−(p+)) ∩ J+(p−) ⊂ L−

p+ ∩ J+(p−) = K as J−(p+) \
I−(p+) ⊂ L−

p+ . For the other inclusion we note that because we assumed p− ≪ p+

to be suitable, we have we have τ(p, p+) = 0 for all p ∈ K. Together with p ∈ L−
p+ ,
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q

p

Figure 2.1: Illustration of a null geodesic γ from a point q = γ(0) ∈ J(p−, p+)
o
to

a point p = γ(1) ∈ K on the observations set, where γ must be transversal.

this implies p ∈ J−(p+) \ I−(p+). Furthermore p ∈ K also implies p ∈ J+(p−).
Putting this together we get p ∈ (J−(p+) \ I−(p+)) ∩ J+(p−) proving the equality.

For part (2) we assume there exists a p ∈ L−
p+ ∩ J(p−, p+)

o
. Note that

J(p−, p+)
o
= I+(p−) ∩ I−(p+). We thus have p ∈ I+(p−) ⊂ J+(p−), which

together with p ∈ L−
p+ implies p ∈ K. But now we have p ∈ I−(p+) and p ∈ K, a

contradiction to (1).
Finally for part (3) we assume that there exists a p0 ∈ R and p ∈ J−(p0) ∩

J(p−, p+)
o
. Because J(p−, p+)

o ⊂ I+(p−) there exists a timelike path from p− to
p. Because p ∈ J−(p0) we can use proposition C.3.13 to construct a timelike path
from p− to p0 implying p0 ∈ I+(p−). But because p ∈ R = K \ I+(p−) this is a
contradiction. L−

p0
⊂ J−(p0) then yields the first equality.

The following lemma will be essential in showing many of the desirable properties
of the observation time functions, because it ensures that for any q ∈ J(p−, p+)

o

the intersection of the forward light cone L+
q ∩K is not degenerate. The fact that

this fails if the source point q is in K is precisely why many of the nice properties
of the observation time functions do not carry over to points on K.

Lemma 2.1.2. For any q ∈ J(p−, p+)
o
the restriction of the exponential map to

null vectors expq : L
+
q M → M is transverse to K, i.e. for all w ∈ L+

q M such that
γq,w(1) = p ∈ K we have γ′

q,w(1) /∈ TpK.

Proof. In order to achieve a contradiction we assume that there exists a q ∈
J(p−, p+)

o
and a w ∈ L+

q M such that with p = γq,w(1) ∈ K and v := γ′
q,w(1) ∈ LpK.

Since K is generated by backwards null geodesics originating at p+ there exists a
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u ∈ L−
p+M and a t ∈ R+ with γp+,u(t) = p, γ′

p+,u(t) = −v. We can thus obtain an

unbroken past-pointing null geodesic from p+ to q by connecting γp+,u and γp,−v.
But this implies that q ∈ L−

p+ ∩ J+(p−) which is a contradiction to lemma 2.1.1(2).

We now prove that this implies that expq : L
+
q M → M is transverse to K. We

need to show that for every w ∈ L+
q M with expq(w) = p ∈ K we have

im(d expq|w)⊕ TpK = TpM.

As TpK is a null hypersurface we only need to prove that im(d expq|w) contains a null
vector which is not a multiple of the null vector v ∈ TpK generating TpK = v⊥. But
by the properties of the exponential map, im(d expq|w) contains v′ = γ′

q,w(1) ∈ TpM .
And since we just proved that v′ /∈ TpK, v′ cannot be a multiple of v, as desired.

The core idea of the next lemma is that K is a subset of J−(p+). J−(p+) has,
by definition, the useful property that once a lightlike curve leaves it it can never
return.

Lemma 2.1.3. For q ∈ J(p−, p+)
o
and w ∈ L+

q M there exists a unique tw ∈ (0,∞)
such that γq,w(tw) ∈ K.

Proof. Let q ∈ J(p−, p+)
o
and w ∈ L+

q M , by lemma B.2.2 any geodesic starting in
the compact set J(p−, p+) must eventually leave it, intersecting the boundary. As
K is the future boundary of J(p−, p+) there exists at least one tw ∈ (0,∞) with
p = γq,w(tw) ∈ K. We now show γq,w(t

′) /∈ K for any other t′ ̸= tw.
First let us consider the case t′ < tw. We can then append γq,w|[t′,tw] to the

null geodesic σ ⊂ K, which has σ(0) = p and σ(1) = p+, to get a broken lightlike
path from γq,w(t

′) to p+. The fact that this path must be broken follows from the
transversality proven in the previous lemma. But the existence of this broken path
implies τ(γq,w(t

′), p+) > 0 and thus γq,w(t
′) ∈ I−(p+). But asK = J(p−, p+)\I−(p+)

we have γq,w(t
′) /∈ K

Conversely we now assume t′ > tw. Again by the transversality of γq,w to K we
get that for t′−tw > ε > 0 small enough we have γq,w(tw+ε) /∈ J(p−, p+) = J+(p−)∩
J−(p+) because K is the future boundary of J(p−, p+). As any point on γq,w is in
J+(p−) we must have have γq,w(tw + ε) /∈ J−(p+), i.e. there exists no lightlike path
from γq,w(tw + ε) to p+. But if γq,w(t

′) ∈ J−(p+) there exists a path σ from γq,w(t
′)

to p+ and we could construct a lightlike path from γq,w(tw + ε) to p+ by appending
γq,w|[tw+ε,t′] to σ, a contradiction. We thus have γq,w(t

′) /∈ J−(p+) ⊃ J(p−, p+) ⊃ K,
completing the proof.

2.1.2 Parametrization of the observer set

We will now exploit the fact that no past null geodesic starting at p+ has a cut
point in K to construct a smooth parametrization of K, equivalent to a smoothly
parameterized family of geodesics, generating K.
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Remark 2.1.4. To construct these paths we will need to make two arbitrary choices:
First, we want to construct a family of null geodesics µa covering K, but only
know the conformal class of g|K ; by proposition B.6.2 we thus only know the null
pregeodesics on K. But because because we actually only need µa to be smooth
null curves moving along null pregeodesics this poses no problem; we can pick a
degenerate metric g̃ on K which belongs to the conformal class g|K and construct
all of our “geodesics” with respect to that metric. To that end we will later denote

g̃exp for the exponential with respect to g̃.

The second choice arises because we want to identify Sn−1 with CL+
p+ , the set of

future-pointing null directions at p+. To that end we pick an arbitrary Riemannian
metric g+ compatible with (M, g) and have

CL+
p+M := {v ∈ L+

p+M | ∥v∥g+ = 1} ≃ Sn−1. (2.1)

From here on we will thus often use Sn−1 and CL±
p M interchangably.

Note that for an arbitrary point p ∈ K, because we only know the conformal
class of g|K restricted to vectors in TpM , we cannot reconstruct the whole null cone
L+
p M from the data outlined in remark 1.2.1. But because every null pregeodesic

on K must end at p+, and we know all null pregeodesics on K from the data we
can determine the full past light cone L−

p+M and thus also L+
p+M by taking the

limit.

Definition 2.1.5 (Observer). For some a ∈ Sn−1 we will define observer µa to be
the smooth lightlike path

µa(t) : [−Ta, 0] → M

t 7→
g̃
expp+(tav)

where va is given by 2.1 and Ta will be defined in the next lemma.

Note, by construction, µa corresponds to a stictly monotone, smooth
reparameterization of the “true” geodesic γp+,va .

The following lemma closely resembles lemma 2.1.3:

Lemma 2.1.6. Let a ∈ Sn−1. Then there exists a unique Ta ∈ R+ such that
µa([−Ta, 0]) ∈ K and µa(t

′) /∈ K for all t′ < −Ta.

Proof. Because µa is a smooth monotone reparameterization of γp+,va is it sufficient
to show that there exists a T ′

a ∈ R+, such that γp+,va([−T ′
a, 0]) ∈ K and γp+,va /∈ K

for all t′ < −T ′
a.

Importantly we have p− /∈ L−
p+ because τ(p−, p+) > 0 and p+ does not have

any past cut points in K = L−
p+ ∩ J+(p−). The rest of the proof is now essentially

analogous to the proof of lemma 2.1.3.
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R

µa1(−Ta1)

µa1

a1

µa2(−Ta2)

µa2

a2

p+

K

Figure 2.2: Illustration of two observers on the observation set as constructed
in proposition 2.1.8; a1, a2 ∈ Sn−1 correspond to unit null directions at p+. The
observer µai is then taken to be the null geodesic which hits p+ with the repsective
null direction.

Note that because R is the past boundary of K we have t = Ta if and only if
µa(t) ∈ R.

Lemma 2.1.7. The map a ∈ Sn−1 7→ Ta ∈ R+ is continuous.

Proof. We will first show that it is bounded. This follows from the fact that

g̃
exp−1

p+ (R) is a bounded subset of L−
p+M , because every µa must eventually hit R

and once it does it can never enter K.
To show that the map is continuous we assume an → a0 ∈ Sn−1 but Tan does not

converge to Ta0 . Because Tan is bounded there must exist a convergent subsequence
Taj → T ′ ≠ Ta0 . We denote pj := µaj(Taj) and have pj → p′ := µa0(T

′) because
a 7→ µa is continuous. Furthermore because pj ∈ J+(p−) \ I+(p−) is closed we also
have p′ ∈ J+(p−) \ I+(p−) which means p′ ∈ R, but this is a contradiction to the
previous lemma.

Because a 7→ Ta is a continuous map on a compact set there exists a maximum
TSn−1 .

With this setup we can now parameterize K:
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Proposition 2.1.8. Let S := {(a, t) ∈ Sn−1 × (−∞, 0] | t ∈ [−Ta, 0]}. Then the
map

Θ : S → K

(a, t) 7→ µa(t)

, has the following properties:

(1) Θ : S → K is a surjective smooth map such that the curves

µa = t 7→ Θ(a, t) a ∈ Sn−1, t ∈ [−Ta, 0]

are smooth curves following null pregeodesics,

(2) Θ(Sn−1 × {0}) = {p+}, Θ({(a, Ta) | a ∈ Sn−1}) = R and

(3) Θ : S× := {(a, t) ∈ Sn−1 × (−∞, 0] | t ∈ (−Ta, 0)} → K \ (p+ ∪ R) is a
diffeomorphism.

Proof. To show (1) we first note that the fact that Θ is surjective follows from
lemma 2.1.6, while smoothness and the geodesic property follow by definition of
µa(t) := g̃

expp+(tva). The two equalities in (2) follow from definition together with

lemma 2.1.6. Finally for (3) we note that because a 7→ Ta is a continuous map, S×

is a open submanifold of Sn−1 × (−∞, 0]. Furthermore because by assumption p−

and p+ are suitable, past null geodesics originating at p+ have no cut points in K,
i.e. ρ(p+, va) > Ta for all a ∈ Sn−1. But this means that Θ is a diffeomorphism on
S× and by (2) we have Θ(S×) = K \ ({p+} ∪R), as desired.

Note that this implies that K is a smooth n-dimensional submanifold of M at
any point away from its boundary. We will treat K itself as a submanifold when it
is clear that we are working away from the boundary. This is often the case by
lemma 2.1.1(2-3) no null geodesic originating from the interior of J(p−, p+) can
reach p+ or R, i.e. the boundary of K.

Furthermore by the properties of Θ we have

µa([−Ta, 0]) ∩ µa′([−T ′
a, 0]) = {p+} for a ̸= a′ ∈ Sn−1 and (2.2)⋃

a∈Sn−1

µa([−Ta, 0]) = K (2.3)

which implies that for every point p ∈ K \ {p+} there exist unique (a, t) such that
µa(t) = p.

And finally, as outlined in remark 2.1.4, we can construct µa and thus also Θ
using only the data outlined in remark 1.2.1.
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TpK

S
N

R+V

Figure 2.3: Illustration of lemma 2.1.9; Everything takes place in TpM . TpK and
N are transversal null hypersurfaces and S is a spacelike hypersurface in TpK.
R+V := Φ(S) is the unique outward future-pointing null ray orthogonal to S. We
have N⊥ = RV and S = N ∩ TpK.

2.1.3 Differential Constructions

Having parameterized K we can now outline some differential properties of K and
PK(q):

The first lemma closely resembles lemma 2.5 in [HU17] with only minor adjust-
ments to adapt it to our case. It is reproduced here for the sake of completeness. It
will allow us to reconstruct the direction of incoming light rays at point in PK(q)
which will locally correspond to the spacelike hypersurface.

Lemma 2.1.9 (Direction Reconstruction). Let p ∈ K, then there exists a homeo-
morphism Φ between the space S of spacelike hyperplanes S ⊂ TpK and the space
V of rays R+V ⊂ TpM along future-directed outward facing null vectors, given
by mapping S ∈ S to the unique future-directed outward pointing null ray Φ(S)
contained in S⊥. The inverse map is given by V ∋ R+V 7→ TpK ∩ V ⊥ ∈ S.

Moreover there exists a homeomorphism between S and the space N of linear
null hypersurfaces N ⊂ TpM which contain a future-directed outward pointing null
vector given by S ∋ S 7→ S ⊕ spanΦ(S) ∈ N .

Proof. Let p ∈ K, and S ⊂ TpK be a spacelike hyperplane. The orthogonal
complement S⊥ ⊂ TpM then is a two-dimensional lorentzian subspace. Hence
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there exist four light rays which are multiples of the vectors V,−V,W,−W in S⊥,
where we assume without loss of generality that V and W are future-pointing.
Since TpK = v⊥ for some future-pointing null vector v ∈ TpK, we have v ∈ S⊥

and can WLOG assume R+W = R+v, i.e. R+W is the ray pointing along the null
hypersurface K. This leaves R+V as the unique future-pointing outward null ray
which is perpendicular to S, and we can thus set Φ(S) = R+V .

In order to prove that Φ is a bijection, we let 0 ̸= V ∈ TpM be an outward future-
pointing null vector. In particular this means that V /∈ TpK. Thus S = V ⊥ ∩ TpK
is a spacelike hyperplane in TpK which satisfies S = Φ−1(V ).

For the last claim we note that the map N ∋ N 7→ N⊥∩L+
p M ∈ V maps a null

hypersurface N to the unique ray along a future-pointing outward null generator
of N . The inverse of this map is given by V ∋ R+V 7→ V ⊥ ∈ N . Composition of
these maps with Φ yields the desired bijection N → S.

The previous lemma will be very useful because for q ∈ V it allows us to connect
the local shape of the observation set PK(q) (which corresponds to the spacelike
hypersurface S) to the direction of the incoming null geodesics from q to PK(q)
(which correspond to R+V ). Although the data outlined in remark 1.2.1 is not
sufficient to explicitly reconstruct these incoming directions (because we cannot
determine the full light cone LpM) the lemma will often allow us to treat the local
shape of PK(q) as a standin.

The next part can be seen as an extension of lemma 2.1.3; we will show that
for q ∈ V , the set LK

q M of null vectors hitting K is actually a smooth submanifold
of the future light cone and that on LK

q M , expq is a local diffeomorphism. The
fact that no geodesic starting in V can have a conjugate point in K and the
transversality of expq to K are crucial here.

Definition 2.1.10 (Observation Preimage). For any q ∈ V with light observation
set PK(q) ⊂ K we define the observation preimage LK

q M to be the preimage of K
under the exponential map restricted to L+

q M , i.e.

LK
q M := (expq|L+

q M)−1(K) ⊂ L+
q M

Lemma 2.1.11. For any q ∈ V , the observation preimage LK
q M is a (n − 1)-

dimensional submanifold of L+
q M .

Furthermore, for any w ∈ LK
q M there exist a relatively open neighborhood

Ow ⊂ LK
q M such that expq : Ow → Uw := expq(Ow) ⊂ PK(q) is a diffeomorphism.

Proof. By lemma 2.1.2, expq : L+
q M → M is transverse to K (here we treat

L+
q M and K as submanifolds, because by lemma 2.1.1(2-3) we can disregard the

boundary points). Thus by the preimage lemma A.0.3 LK
q M := (expq|L+

q M)−1(K)

is a (n− 1)-dimensional submanifold of L+
q M .
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PK(q)

LqM

LK
q M

K

p+

q

Figure 2.4: Illustration of the observation preimage LK
q M as defined in 2.1.10; The

observation preimage LK
q M ⊂ LqM is obtained by taking the preimage under expq

restricted to L+
q M of PK(q). Note that LK

q M is a submanifold even if PK(q) fails
to be one.

For the second part let w ∈ LK
q M ; since p := expq(w) ∈ K and we assumed

that such a p cannot be a null conjugate point, we know that expq : L
+
q M → M

has an invertible differential at w. Thus, by the implicit function theorem, there
exists an open neighborhood O′

w ⊂ L+
q M of w such that expq : O

′
w → expq(O

′
w) is

a diffeomorphism. If we then restrict expq to Ow := O′
w ∩ LK

q M the map is still a
diffeomorphism as desired.

Note that by the invariance of domain theorem Uw is an open submanifold of
PK(q).

Corollary 2.1.12. The map

Sn−1 ≃ CL+
q M → LK

q M

w 7→ tww

where tw is as in lemma 2.1.3, is a diffeomorphism.

Proof. This result follows immediately from lemma 2.1.3 together with the fact
that since K is (away from its boundary) a smooth submanifold, the map w 7→ tw
is smooth.
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We now aim to show that for q ∈ V , PK(q) is locally the finite union of
submanifolds. This will make use of a lot of the machinery developed so far.

Lemma 2.1.13. Let q ∈ V and p ∈ PK(q). Then there exist only finitely many
w1, . . . , wN ∈ LK

q M such that expq(wi) = p. Furthermore with Owi
as in the

previous lemma such that expq : Owi
→ Uwi

is diffeomorphism for all i = 1, . . . , N ,
there exists an open neighborhood U ⊂ PK(q) of p such that

exp−1
q (U) ∩ LK

q M ⊂
N⋃
i=1

Owi
.

Proof. Note that the previous corollary immediately yields that LK
q M is compact.

Let q ∈ V , p ∈ P. We first remark that, by the previous lemma, for any w ∈
exp−1

q (p) ∩ LK
q M there exist open neighborhoods w ∈ Ow ⊂ LK

q M and p ∈ Uw =
expq(Ow) ⊂ PK(q) making expq : Ow → Uw a diffeomorphism.

To show that there can only be finitely many w ∈ LK
q M with expq(w) = p we

let
C := exp−1

q (p) ∩ LK
q M.

As M is hausdorff, p is closed and expq is continuous, C must be closed. C ⊂ LK
q M

is thus a closed subset of a compact space, making C itself compact as well. Now
the family {Ow | w ∈ exp−1

q (p) ∩ LK
q M} is an open cover of C. But because C is

compact there must exist a finite subcover such that

C ⊂ O :=
N⋃
i=1

Owi
.

We can now make some observations: By definition, for any w ∈ LK
q M \C we have

expq(w) ̸= p. And as expq is a diffeomorphism on Owi
for all i = 1, . . . , N , it must

be injective and we get exp−1
q (p) ∩Owi

= {wi}. We thus have

exp−1
q (p) ∩O = {w1, . . . , wN}.

Furthermore, as C ⊂ O for any p ∈ LK
q M \O ⊂ LK

q M \C we still have expq(w) ̸= p.
In other words:

exp−1
q (p) ∩ (LK

q M \O) = ∅.

Putting these two observations together we get

exp−1
q (p) ∩ LK

q M = {w1, . . . , wN},

as desired.
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To show the second part we denote

L× := LK
q M \O and have L× ∩ exp−1

q (p) = ∅.

Note that L× is a closed and thus compact subset of LK
q . We now endow M with

the geodesic metric d induced by g+. This lets us define the continuous function

d : L× → R
w 7→ d(expq(w), p).

Because L× ∩ exp−1
q (p) = ∅ we have g(w) > 0 for all w ∈ L×. But now, as L× is

compact there exists a ε > 0 such that g(w) = d(expq(w), p) > ε for all w ∈ L×.
We can now choose

U := Bε(p) ∩ PK(q)

and get an open neighborhood of p in PK(q) with exp−1(U) ∩ L× = ∅. But this
means

exp−1
q (U) ∩ LK

q M ⊂ O =
N⋃
i=1

Owi

completing the proof.

Armed with the previous lemma we can now show:

Proposition 2.1.14. Let q ∈ V and p ∈ PK(q). There exists an open neighborhood
p ∈ U ⊂ M , a positive integer N and N pairwise transversal, spacelike, codimension
1 submanifolds Ui ⊂ K such that PK(q)∩U =

⋃N
i=1 Ui and p ∈ Ui for i = 1, . . . , N .

Proof. Let q ∈ V and p ∈ PK(q). By the previous lemma we know that there can
only be finitely many w1, . . . , wn ∈ LK

q M with expq(wi) = p.
By lemma 2.1.11, for each wi there exists a neighborhood Owi

⊂ LK
q M of wi

such that expq : Owi
→ Uwi

:= expq(Owi
) is a diffeomorphism. Thus Uwi

⊂ PK(q)

is a codimension 1 submanifold of K and we have
⋃N

i=1 Uwi
⊂ PK(q).

Now we use the second part of the previous lemma to obtain an open neigh-
borhood U ⊂ PK(q) of p, such that exp−1

q (U) ∩ LK
q M ⊂

⋃N
i=1Owi

. Thus any point

p ∈ PK(q) ∩ U is contained in some Vi and we have
⋃N

i=1 Uwi
⊃ PK(q) ∩ U . We

then define
Ui := U ∩ Uwi

and have
N⋃
i=1

Ui = PK(q) ∩ U

as desired. Furthermore, because U is an open neighborhood of p, Ui is still a
codimension 1 submanifold of K and p ∈ Ui.
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Figure 2.5: Illustration of proposition 2.1.14; even if PK(q) fails to be a submanifold,
locally it is the union of only finitely many submanifolds. The submanifolds are
Ui = U ∩ expq(Owi

) where Owi
is a neighborhood of wi in LK

q M .

We now want to show that Ui is spacelike. To that end let p ∈ Ui. Note that
we have Ui ⊂ K and Ui ⊂ U ′

wi
= expq(O

′
wi
), where wi ∈ O′

wi
⊂ L+

q M is an open
neighborhood of wi in L+

q M such that on O′
wi
, expq is a diffeomorphism onto its

image. Both K and U ′
wi

are null hypersurfaces around p but by proposition 2.1.2
they are transversal and thus cannot be generated by the same null rays. Thus
Tp Ui = TpK ∩ TpU

′
wi

can only contain spacelike vectors.
Finally to prove that they are transversal at p, we assume by contradiction that

there exist i ≠ j such that Tp Ui = Tp Uj. But by lemma 2.1.9 this would imply
that vi = cvj for a c ∈ R+, where vi = γ′

q,wi
(1) and vj = γ′

q,wj
(1). This would imply

wi = wj, a contradiction.

Definition 2.1.15 (Regular Point). We call a point p ∈ PK(q) regular if there
exists an open neighborhood U ⊂ M of p such that U∩PK(q) is a (n−1) dimensional
submanifold of M .

Note that p ∈ PK(q) is regular if and only if N = 1 for p in the previous
proposition.

Corollary 2.1.16. The subset of regular points Preg
K (q) ⊂ PK(q) is open and dense

in PK(q).
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Proof. The fact that it is open follows immediately from the definition: Let p ∈
PK(q) be regular. There thus exists an open neighborhood p ∈ U ⊂ M such that
U ∩PK(q) is a submanifold. But now for every point p′ ∈ U ∩PK(q), U also makes
p′ a regular point making U ∩ PK(q) an open neighborhood of regular points of p.
Thus every regular point has an open neighborhood of regular points making the
set of regular points itself open.

To prove the set of regular points is dense in PK(q) we to show that for every
point p ∈ PK(q), every relatively open neighborhood U ′ ⊂ PK(q) contains a regular
point. By the previous proposition, for U ′ small enough we have PK(q) ∩ U ′ =⋃N

i=1 Ui, where Ui are pairwise transversal. This means their intersection is of lower
dimension and

Ui \
⋃
j ̸=i

Uj is open and nonempty for every i = 1, . . . N.

We can find a p′ ∈ Ui for some i ∈ 1, . . . , N such that p′ /∈ Uj for j ̸= i. Then
because Ui \

⋃
j ̸=i Uj is open can find an open neighborhood O′ around p′ such that

O′ ∩ PK(q) ⊂ Ui which means p′ is a regular point, as desired.

2.2 Observation Time Functions

In this sections we will use the fact that we can cover K with null geodesics µa to
give structure to the light observation sets PK(q).

Definition 2.2.1 (Observation Time Function). For a ∈ Sn−1 the observation time
function is defined as

fa : J(p
−, p+) → [−Ta, 0]

q 7→ inf({s ∈ [−Ta, 0] | µa(s) ∈ J+(q)} ∪ {0}).

Moreover, we define the earliest observation point Ea(q) := µa(fa(q)) ∈ M .
Intuititively, fa(q) corresponds to the earliest time at which the observer µa

measures light from q and Ea(q) is the point at which this happens.

We will first give some useful properties of these observation time functions:
(1) corresponds to the fact that future light cones from points q ∈ J(p−, p+)

o
only

intersect the interior of K, as shown in lemma 2.1.1(2-3).

Lemma 2.2.2. Let a ∈ Sn−1 and q ∈ J(p−, p+)
o
. Then:

(1) It holds that fa(q) ∈ (−Ta, 0).
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(2) We have Ea(q) ∈ J+(q) and τ(q, Ea(q)) = 0. Moreover the function s 7→
τ(q, µa(s)) is continuous, non-decreasing on [−Ta, 0] and strictly increasing
on [fa(q), 0].

(3) Let p ∈ K. Then p = Ea(q) with some a ∈ A if and only if p ∈ PK(q)
and τ(p, q) = 0. Furthermore, these are equivalent to the fact that there are
v ∈ L+

q M and t ∈ [0, ρ(q, v)] such that p = γq,v(t).

Proof. Let a ∈ A and q ∈ V .
We begin by showing (1): Because q ∈ J(p−, p+)

o
= I+(p−) ∩ I−(p+) we have

q ∈ I−(p+) and conversely p+ ∈ I+(q). By lemma B.1.3 we know that I+(q) is
open and thus it forms an open neighborhood of p+. But as µa is a continuous
path with µa(1) = p+ there must exist a t < 0 such that µa(t) ∈ I+(q) ⊂ J+(q).
Hence we have fa(q) < 0.

To show fa(q) > −Ta we assume fa(q) = −Ta to achieve a contradiction. We
thus have −Ta = inf{s ∈ [−Ta, 0] | µa(s) ∈ J+(q)}. This means that there exists
a convergent sequence tn ↘ −Ta as n → ∞ such that µa(tn) ∈ J+(q) for all n.
Because µa is continuous and J+(q) closed we have p0 := µa(−Ta) ∈ J+(q). But
p0 = µa(−Ta) ∈ R by proposition 2.1.8(2). Hence we get p0 ∈ J+(q)∩R for q ∈ V ,
which is a contradiction to lemma 2.1.1(3).

To show (2) we proceed as follows: By the definition of the infimum we can
find a sequence tn ↘ fa(q) such that for all tn we have µa(tn) ∈ J+(q). Now since
t 7→ µa(t) is continuous we have that µa(tn) → µa(fa(q)) = Ea(q). Since J+(q) is
closed this yields Ea(q) ∈ J+(q).

For the second part we assume by contradiction that τ(q, Ea(q)) > 0. Since this
means that a timelike path from q to Ea(q) exists we have Ea(q) ∈ I+(q). Then,
since I+(q) is open we can find a t < fa(q) such that µa(t) ∈ I+(q) ⊂ J+(q). This
is a contradiction since fa(q) is the infimum over such t.

To show that s 7→ τ(q, µa(s)) is continuous and non-decreasing on [−Ta, 0] we
first note that it is the composition of two continuous functions. Monotony then
follows from the reverse triangle inequality for τ (see remark B.4.6(2)) together
with the fact that µa is a monotone reparametrization of a future pointing null
geodesic.

To show that s 7→ τ(q, µa(s)) is strictly increasing in [fa(q), 0] we let fa(q) ≤
t1 < t2 ≤ 0. Now by B.4.6(4) there exists a causal geodesic γ1 : [0, 1] → M with
γ1(0) = q and γ1(1) = µa(t1) such that L(γ1) = τ(p, µa(t1)). If we then connect γ1
to µa|[t1,t2] we get a path γ2 connecting q to µa(t2) which has length L(γ2) = L(γ1)
as µa is a lightlike curve. Next we argue that γ2 must have a break at the connecting
point, i.e. γ′

1(1) ̸= cµ′
a(t1) for any c ∈ R+. If γ1 is timelike this observation is trivial

as µa is lightlike. If however, γ1 is lightlike (which is only the case if t1 = fa(q)),
this fact follows from the transversality of light cone observations as noted in
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proposition 2.1.2. This means that γ2 is a broken causal curve, which implies that
there exists a strictly longer timelike geodesic γ3 connecting the endpoints and we
get

τ(q, µa(t2)) ≥ L(γ3) > L(γ2) = L(γ1) = τ(q, µa(t1)).

Finally we can take on (3), to prove the fist direction we assume that p = Ea(q)
for some a ∈ A. Now by (2) we have Ea(q) ∈ J+(q) and τ(q, Ea(q)) = τ(q, p) = 0.
But now, by B.4.6 there exists a null geodesic from q to p which means p ∈ PK(q).

For the other direction we let p ∈ PK(q) with τ(q, p) = 0. Now let a ∈ A such
that p = µa(t) for some t ∈ [0, 1]. We then assume by contradiction that Ea(q) ̸= p,
i.e. fa(q) < t. But by (2) we have that s 7→ τ(q, µa(s)) is strictly increasing after
fa(q) which is in contradiction with τ(q, p) = 0.

The other equivalence follows from the definition of PK(q) together with the
definition of cut points.

By (3) of the above lemma, for any q ∈ V and a ∈ A we have Ea(q) ∈ PK(q).
Since PK(q) ⊂ J+(q), we can see using definition 2.2.1 that the set of earliest
observations PK(q) and the path µa completely determine the functions

fa(q) = min{s ∈ [−Ta, 0] | µa(s) ∈ PU(q)}, Ea(q) = µa(fa(q)) (2.4)

Note that we can use fa(q) to define the related functions

f : J(p−, p+)× Sn−1 → [−TSn−1 , 0]

(q, a) 7→ fa(q)

and

Fq : S
n−1 → [−TSn−1 , 0]

a 7→ fa(q).

Proposition 2.2.3. The function f : J(p−, p+)
o × Sn−1 → [−TSn−1 , 0] is continu-

ous.

Proof. We want to show that for every convergent sequence (qn, an) → (q0, a0) ∈
J(p−, p+)

o × Sn−1 we have tn := fan(qn) → fa0(q0) =: t0 as n → ∞. Because the
sequence tn lives in [−TSn−1 , 0] and is thus bounded it suffices to show that for
every convergent subsequence tj = faj(qj) → t′ we have t′ = t0. Note that still
(qj, aj) → (q0, a0) because they are the subsequence of a convergent sequence. The
points of earliest observation converge:

Eaj(qj) = µaj(faj(qj)) = µaj(tj) = Θ(aj, tj) → Θ(a0, t
′) = µa0(t

′) = p′
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because (aj, tj) → (a0, t
′) and Θ is continuous. The first key observation is that

because qj → q0 and J+(qi) ∋ Eaj(qj) → p′ lemma B.4.5 implies p′ ∈ J+(q0).
Furthermore we have

0 = τ(qj, Eaj(qj)) = τ(qj,Θ(aj, tj)) → τ(q0,Θ(a0, t
′)) = τ(q0, p

′) = 0

because τ and Φ are continuous.
We can now combine these observations and get: p′ ∈ L+

q0
because p′ ∈ J+(q0)

and τ(q0, p
′) = 0 imply that there exist a null geodesic from q0 to p′. p′ ∈ PK(q0)

because p′ ∈ µa0([0, 1]) ⊂ K and p′ ∈ L+
q0
. But now lemma 2.2.2(3) yields that

p′ = Ea0(q0) and we get

µa0(t
′) = p′ = Ea0(q0) = µa0(fa0(q0)) = µa0(t0).

Because µa is injective we get t′ = t0, as desired. Hence every convergent subse-
quence of tn tends to t0 which, by compactness of [−TSn−1 , 0], implies that also
fan(qn) = tn → t0 = fa0(q0), proving that f is continuous.

Proposition 2.2.4. If qn → q0 ∈ J(p−, p+)
o
as n → ∞ and we denote Fq : S

n−1 →
R; a 7→ fa(q). Then Fqn → Fq0 uniformly over Sn−1 as n → ∞.

Proof. Let qn → q0 ∈ V be a convergent sequence. We can endow M with a metric
d, which is induced by g+. Then there exists an ε > 0 and a N ∈ N such that
qn ∈ Bε(q0) for all n ≥ N . After discarding the first N points of the sequence we
may assume that qn ∈ Bε(q0) ∀n.

By the previous proposition

f : (Bε(q0), d)× (Sn−1, dSn−1) → ([0, 1], d[0,1])

is a continuous function from and to compact spaces. Now we can apply lemma
A.0.1 to find that Fqn → Fq0 uniformly.

2.2.1 Set of earliest observations

After defining the observation time functions and the earliest observation point
for a q ∈ V and observer µa, we can now look at the set of all earliest observation
points together:

Definition 2.2.5 (Set of earliest observations). For q ∈ V we define

EK(q) = {p ∈ K | p = γq,w(t) where w ∈ L+
q M, 0 ≤ t ≤ ρ(q, w)},

Ereg
K (q) = {p ∈ K | p = γq,w(t) where w ∈ L+

q M, 0 < t < ρ(q, w)}.

We say that EK(q) is the set of earliest observations and Ereg
K (q) is the set of earliest

regular observations of q in K. We denote the collection of earliest observation sets
by EK(V ) = {EK(q) | q ∈ V }.
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PK(q)

EK(q)

K

q

p

Figure 2.6: Illustration of the set of earliest observations EK(q); we can see that at
points p ∈ K where pq fails to be a submanifold, EK(q) must have a “sharp edge”.

Note that by lemma 3.1.1 we have EK(q) = {Ea(q) | a ∈ Sn−1}, and thus is
really the set of all earliest observation points of q.

We can now characterize these observation sets and see that regular points in
Ereg
K (q) correspond to regular observation points p ∈ Preg

K (q):

Proposition 2.2.6. For any q ∈ V it holds that

(1) Let T = {p ∈ L+
q | τ(q, p) = 0} then

EK(q) = PK(q) ∩ T and Ereg
K (q) = Preg

K (q) ∩ T,

(2) Ereg
K (q) is an open subset of Preg

K (q), and is thus also a (n− 1)-dimensional
spacelike submanifold of K,

(3) EK(q) fails to be a submanifold exactly at cut points,

(4) Ereg
K (q) is open and dense in EK(q).

Proof. Let q ∈ V . We first look at a useful relation of the exponential map to
cut points: Define V := {w ∈ L+

q M | ρ(q, w) > 1}. By B.5.5, ρ(q, w) is lower
semicontinuous and V is thus open. Furthermore, by the definition of cut points,
V is star-shaped around 0 ∈ L+

q M . Because by B.5.4 cut points are exactly the
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points where expq first fails to be a diffeomorphism, expq : V → W := expq(V) is
a diffeomorphism. Furthermore by the invarance of domain theorem we get that
W ⊂ L+

q is relatively open. Note that this implies that for any p ∈ W , there exists
a p ∈ U ⊂ M open such that p ∈ L+

q ∩ U is a n-dimensional submanifold of M .
We can now move on to proving (1): p ∈ EK(q) ⇐⇒ p ∈ PK(q) ∩ T follows

immediately from lemma 2.2.2(3).
Now let p ∈ Ereg

K (q). By definition this implies that p ∈ W and we get an
p ∈ U ⊂ M open such that p ∈ L+

q ∩ U is a dimension n submanifold. Now,
around p, K is also a dimension n submanifold, transversal to L+

q and thus
K ∩ L+

q ∩ U = PK(q) ∩ U is a dimension n− 1 submanifold around p. Thus p is a
regular point, i.e. p ∈ Preg

K (q). τ(q, p) = 0 follows immediately from the fact that
ρ(q, w) > 1, proving the first direction.

To show the reverse direction we assume p ∈ Preg
K (q) with τ(q, p) = 0. Because

p ∈ Preg
K (q), by definition 2.1.15 there exists exactly one w ∈ LK

q M such that
expq(w) = p. From τ(q, w) = 0 we get ρ(q, p) ≥ 1. Now if ρ(q, w) = 1, p would be
a cut point. By theorem B.5.4 this would mean that either p ∈ K is a conjugate
point to q or there exists a w ̸= w′ ∈ LK

q M with expq(w
′) = p. The first option

is impossible because we assumed V to be suitable which means that no q ∈ V
can have a conjugate point on K. The second option is also impossible because
we assumed p to be a regular point in PK(q). We thus must have ρ(q, w) > 1,
implying p ∈ Ereg

K (q).
We now move on to (2): To prove that Ereg

K (q) is open in Preg
K (q) we claim that

Ereg
K (q) = Preg

K (q) ∩W. To that end we first note that Ereg
K (q) ⊂ W ⊂ T . Recall

that by (1) we have Ereg
K (q) = Preg

K (q) ∩ T . Applying ∩W to both sides yields

Ereg
K (q) = Ereg

K (q) ∩W = Preg
K (q) ∩ T ∩W = Preg

K (q) ∩W

as desired.
Proposition 2.1.14 implies that Preg

K (q) is a n − 1 dimensional spacelike sub-
manifold of M . Because W ⊂ L+

q is open and Preg
K (q) ⊂ L+

q , E
reg
K (q) is a relatively

open subset of Preg
K (q), as desired. This also means that as an open subset of a

submanifold, Ereg
K (q) is a n− 1-dimensional spacelike submanifold of K as well.

We can now tackle (3): Let p ∈ EK(q) be a cut point, then by proposition 2.1.14,
there exists an open neighborhood p ∈ U ⊂ M and N codimension 1 pairwise
transversal manifolds Ui ⊂ K such that PK(q) ∩ U =

⋃N
i=1 Ui. Because τ(q, p) = 0

and the manifolds are pairwise transversal and intersect at p (see figure 2.6), EK(q)
must have a sharp edge at p and cannot be a submanifold. For the other direction
we assume that p ∈ EK(q) is not a cut point. Then, by definition we have p ∈ Ereg

K (q)
which is a submanifold.

Moving on to (4), the fact that Ereg
K (q) is dense in EK(q) follows by an argument

which is analogous to the one used in the proof of corollary 2.1.16. To show that
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it is relatively open in EK(q) we use that Ereg
K (q) = EK(q) ∩W with W open in

L+
q .

Note that since Ereg
K (q) is exactly EK(q) without the cut points, (3) implies that

it is also the collection of all points where EK(q) is locally a submanifold.
We can now give an alternative characterization of EK(q) which is intuitively

more in line with “the set of earliest observations”:

Proposition 2.2.7. Let q ∈ V , then

EK(q) = {p ∈ PK(q) | there are no p′ ∈ PK(q) such that p′ < p}.

Proof. For the left inclusion assume p ∈ EK(q), i.e. there exists an a ∈ Sn−1 such
that Ea(q) = p. Then lemma 2.2.2(3) immediately yields, p ∈ PK(q) and τ(q, p) = 0.
By contradiction we now assume that there exists a p′ ∈ PK(q) with p′ < p. There
must thus exist null geodesics γ1 from q to p with γ1(0) = q, γ1(1) = p and γ2 from
q to p′ with γ2(0) = q, γ2(1) = p′ . There must also exist causal path σ from p′

to p with σ(0) = p′ and σ(1) = p. If we have γ′
2(1) = cσ′(0) there would exist a

t > 1 such that γ2(t) = p ∈ K. But this is a contradiction to lemma 2.1.3. Thus
γ2 + σ is a broken causal curve from q to p and cannot be a null pregeodesic. By
proposition C.3.13 this implies q ≪ p and thus τ(q, p) > 0, a contradiction.

For the other direction we assume we have p = µa(t) ∈ PU(q) such that there
are no p′ ∈ PU(q) with p′ < p. Again by lemma 2.2.2(3) we only need to prove
that τ(p, q) = 0. Suppose that τ(p, q) > 0. Now since τ(p, q) > 0, we must have
t > fa(q). But then Ea(q) = µa(fa(q)) < µa(t), since µa is causal, which is a
contradiction.

2.2.2 Observation Reconstruction

Importantly all observation sets defined in the previous sections can be fully
determined by the data:

Proposition 2.2.8. Given the data outlined in remark 1.2.1 we can uniquely
determine EK(q) and Ereg

K (q).

Proof. What we want to show is that given K, the conformal class of g|K and
the set {PK(q) | q ∈ V } we can reconstruct the sets stated above. Note that as
described in proposition 2.1.8 this data allows us to construct Θ : S → K and µa.

We first show that for a given PK(q) we can determine EK(q): By equation
(2.4), for any a ∈ Sn−1 we can determine fa(q) and thus Ea(q) = µa(fa(q)) using
only PK(q). We can then construct EK(q) =

⋃
a∈Sn−1 Ea(q). Furthermore, by

proposition 2.2.6, Ereg
K (q) contains exactly the points p ∈ EK(q) where EK(q) is

locally a submanifold of M and thus K. But because we know K we can determine
all points where this is the case and reconstruct Ereg

K (q).
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The mapping q → EK is injective:

Proposition 2.2.9. Let q, q′ ∈ V such that EK(q) = EK(q′). Then q = q′.

Proof. We assume by contradiction that q, q′ ∈ V such that EK(q) = EK(q′) and
q ̸= q′ Let p1, p2 ∈ Ereg

K (q) = Ereg
K (q′) with p1 ̸= p2. Because p1 and p2 cannot be

cut points there must exist unique w1, w2 ∈ LK
q M and w′

1, w
′
2 ∈ LK

q′M such that
γq,wi

(1) = pi and γq′,w′
i
(1) = pi. Because Ereg

K (q) = Ereg
K (q′) we can use lemma 2.1.9

to show that
vi = γ′

q,wi
(1) = ciγq′,w′

i
(1) = civ

′
i

for some ci > 0.
Now γpi,−vi are two past-pointing null geodesics going from pi through q and

q′. Hence there either exists a null geodesic from q to q′ or from q′ to q. We
will WLOG assume q′ ∈ J+(q). Now there must exist t1, t2 ∈ (0, 1) such that
γq,wi

(ti) = q′. But this would make q′ a cut point of q which is impossible as we
assumed pi ∈ Ereg

K (q).

2.3 Smooth Constructions

Finally in this chapter we show some important differential properties of the
observation time functions:

2.3.1 Coordinate Construction

We will now show that for q ∈ V and well-chosen a0, . . . an, the map q′ 7→
(fa0(q

′), . . . , fan(q
′)) defines local coordinates, as discussed in the introduction.

To prepare we look at tuples (q, p) of the form q ∈ V, p ∈ Ereg
K (q) and show that

they form a manifold:

Definition 2.3.1 (Coordinates on V ). We first define

Z = {(q, p) ∈ V ×K | p ∈ Ereg
K (q)}.

Then for every (q, p) ∈ Z there is a unique w(q, p) ∈ LK
q M such that γq,w(q,p)(1) = p

and ρ(q, w(q, p)) > 1. Existence follows from lemma 2.2.2 while uniqueness follows
from the fact that p ∈ Ereg

K (q) and thus cannot be a cut point. We can then define
the map

Ω : Z 7→ LKV

(q, p) 7→ (q, w(q, p))

Note that this map is injective. Below we will let Wε(q0, w0) ⊂ TM be an ε-
neighborhood of (q0, w0) with respect to the Sasaki-metric induced on TM by
g+.
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This lemma will allow us to show that Ω is bounded:

Lemma 2.3.2. The function

T+ : L+J(p−, p+) → R
(q, w) 7→ sup{t ≥ 0 | γq,w(t) ∈ J−(p+)}

is finite and upper semicontinuous.

Proof. Finiteness follows from lemma B.2.2. We now want to show that T+ is
upper semicontinuous. To that end let (qn, wn) → (q0, w0) ∈ L+J(p−, p+), we
want to show that lim supn→∞ T+(qn, wn) ≤ T+(q0, w0): Let ε > 0 and set t0 =
T+(q0, w0) + ε. Then by definition we have γq0,w0(t0) ∈ M \ J−(p+). Because
γqn,wn(t0) → γq0,w0(t0) and M \ J−(p+) is open, there exists a N ∈ N such that
γqn,wn(t0) ∈ M \ J−(p+) for all n ≥ N . Note that if γqn,wn(t0) /∈ J−(p+) then
for any t′ ≥ t0 we also have γqn,wn(t

′) /∈ J−(p+) because otherwise we could
obtain a lightlike path from γqn,wn(t0) to p+, a contradiction. Thus, by definition
T+(qn, wn) ≤ t0 and lim supn→∞ T+(qn, wn) ≤ t0 = T+(q0, w0) + ε. Finally because
ε > 0 was arbitrary we get lim supn→∞ T+(qn, wn) ≤ T+(q0, w0) as desired.

This lemma will be very useful whenever we are dealing with Z:

Lemma 2.3.3. Let (q0, p0) ∈ Z and (q0, w0) = Ω(q0, p0). When ε > 0 is small
enough the map

X : Wε(q0, w0) → M ×M

(q, w) 7→ (q, expq(w))

is open and defines a diffeomorphism X : Wε(q0, w0) → Uε(q0, p0) := X(Wε(q0, w0)).
When ε is small enough, Ω coincides in Z ∩ Uε(q0, p0) with the inverse map of X.
Moreover Z is a 2n-dimensional manifold and the map Ω : Z → LKM is smooth.

Proof. Because p0 ∈ PK(q0) and q0 ∈ V we have, by assumption in theorem
1.1.6 that p0 cannot be a conjugate point of q0. Hence for ε > 0 small enough
X : Wε(q0, w0) → Uε(q0, p0) = X(Wε(q0, w0)) is a diffeomorphism with Uε(q0, p0)
open in M ×M by the invariance of of domain theorem.

Next we aim to show that Ω : Z → LKV is continuous at (q0, p0) ∈ Z. We
proceed by assuming there exists a sequence (qn, pn) ∈ Z converging to (q0, p0)
such that Θ(qn, pn) = (qn, wn) ∈ L+V does not converge to Θ(q0, p0) = (q0, w0).

First of all we aim to show that the sequence (qn, wn) is bounded and thus
has a convergent subsequence: Because qn → q0 we only need to show that wn is
bounded. To that end we introduce an arbitrary Riemannian metric consistent
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with the topology on M and can write wn = tnwn where ∥wn∥g+ = 1. To show
that tn is bounded we first define

C := {(q, w) ∈ L+M | q ∈ J(p−, p+) and ∥w∥g+ = 1}

and C is compact and because T+ is upper semicontinuous on C, there exists a
c0 > 0 such that T+(q, w) ≤ c0 for all (q, w) ∈ C. Recall that we have γqn,wn(tn) =
expqn(wn) = pn ∈ K ⊂ J(p−, p+). Together with (qn, wn) ∈ C this yields

∥wn∥g+ = tn∥wn∥g+ = tn ≤ T+(qn, wn) < c0,

proving (qn, wn) ∈ LKV is bounded.
We can thus obtain a convergent subsequence (qk, wk) = Θ(qk, pk) → (q0, w

′)
with w′ ̸= w0. Since the exponential map is continuous, we would have

expqn(w
′) = lim

n→∞
expqn(wn) = lim

n→∞
pn = p0 = expqn(w0).

with w′ ≠ w0. But since p0 ∈ Ereg
K (q) cannot be a cut point this is a contradiction

and Ω : Z → LKV must be continuous.
Next we use the fact that Ω is continuous and get Ω−1(Wε(q0, w0)) ⊂ Z is open.

We can thus find a ε1 ∈ (0, ε) such that for the open ball Uε1(q0, w0) ⊂ M we have

Yε1 := Uε1(q0, w0) ∩ Z ⊂ Ω−1(Wε(q0, w0))

implying Ω(Yε1) ⊂ Wε(q0, w0). Then for (q, p) ∈ Yε1 and (q, w) = Ω(q, p) ∈
Wε(p0, w0) we have expq(w) = p. Hence X(Ω(q, p)) = (q, p). But now since
(q, p) ∈ Uε(p0, q0) we can apply X−1 to both sides and get Ω(q, p) = X−1(q, p).
Thus on Yε1 the function Ω : Yε1 → TM coincides with the smooth function
X−1 : Yε1 → TM , which implies that Ω is smooth with full rank differential on Yε1

as well.
Now since (q0, p0) ∈ Z was arbitrary we get that Θ : Z → L+V is smooth

everywhere, injective and locally diffeomorphic with full rank. Thus Z is diffeo-
morphic to an open subset of LKV . This makes it a manifold with dimension
(n+ 1) + (n− 1) = 2n.

We can now construct local coordinates:

Proposition 2.3.4. Let q0 ∈ V and (q0, pj) ∈ Z, j = 0, . . . , n and wj ∈ LK
q0
M such

that γq0,wj
(1) = pj. Assume that wj, j = 0, . . . , n are linearly independent. Then, if

aj ∈ A and −→a = (aj)
n
j=0 are such that pj ∈ µaj , there is a neighborhood V1 ⊂ M of

q0 such that the corresponding observation time functions

f−→a (q) = (faj(q))
n
j=0

define smooth coordinates on V1. Moreover ∇faj |q0, i.e. gradient of faj with respect
to q at q0, satisfies ∇faj |q0 = cjwj for some cj ̸= 0.
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Proof. First we need some setup: Let (q0, p0) ∈ Z and w0 ∈ L+
q0
M such that

γq0,w0(1) = p0. Furthermore let ε > 0 be small enough such that the map X :
Wε(q0, w0) → Uε(q0, p0) is a diffeomorphism (see the previous lemma). We will
denote this inverse by X−1(q, p) = (q, w(q, p)) and write W = Wε(q0, w0),U =
Uε(q0, p0).

We associate with any (q, p) ∈ U the energy E(q, p) = E(γq,w(q,p)([0, 1])) of
the geodesic segment connecting q to p. The energy of a piecewise smooth curve
α : [0, l] → M is defined as

E(α) =
1

2

∫ l

0

g(α′(t), α′(t))dt.

Note that the sign of E(α) depends on the causal nature of γq,w(q,p). In particular
E(q, p) = 0 if and only if w(q, p) is light-like. Moreover, as X−1 is smooth on U , so
is E(p, q).

We now return to consider (q0, p0) ∈ Z and let a ∈ Sn−1 be such that p0 ∈ µa.
Then p0 = µa(s0) with s0 = fa(q0) as p0 ∈ Ereg

K (q0) and s0 ∈ (0, 1) by lemma
2.2.2(1).

Let V0 ⊂ V be an open neighborhood of q0 and t1, t2 ∈ (−Ta, 0), t1 < s0 < t2,
such that V0 × µa([t1, t2]) ⊂ U , which exist because U is open. Then for any
q ∈ V0, s ∈ (t1, t2) the function Ea(q, s) := E(q, µa(s)) is well defined and smooth.

We want to use first variation formula (equation C.3.11) for Ea(q, s) to calculate
∂Ea(q0,s)

∂s

∣∣∣
s=s0

and ∇qEa(q, s0)|q=q0
.

For the first part we define the variation x(t, s) = γq0,w(s)(t), t ∈ [0, 1] where
w(s) := w(q0, µa(s + s0)), s ∈ [t1 − s0, t2 − s0]. Note that x(t, 0) = γq0,w0(t). We
can then use the equation from proposition C.3.11 to get

∂Ea(q0, s)

∂s

∣∣∣∣
s=s0

= E ′
x(0) = g(V, γ′

q0,w0
)
∣∣1
0

since γq0,w0 is a geodesic and x has no breaks. If we now further notice that
V (0) = 0 as x(0, s) = q0 for all s ∈ [t1, t2] and V (1) = µ′

a(s0) = µ′
a(fa(q0)) as

x(1, s) = µa(s+ s0) we can conclude

∂Ea(q0, s)

∂s

∣∣∣∣
s=s0

= g(V (1), γ′
q0,w0

(1))− g(V (0), γ′
q0,w0

(0))

= g(µ′
a(fa(q0)), γ

′
q0,w0

(1))

For the second part we will introduce coordinates q = (q0, . . . , qn) around q0.
Then the gradient can be written as

∇qEa(q, s0)|q=q0
= gij

∂Ea(q, s0)

∂qi

∣∣∣∣
q=q0

∂j.
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To calculate ∂Ea(q,s0)
∂qi

∣∣∣
q=q0

we now introduce variations xi(t, s) = γq(s),w(s)(t) where

w(s) := w(q(s), µa(s0)) and q(s) := q−1(q0(q0), . . . , qi(q0) + s, . . . qn(q0)) is obtained
by increasing the i-th coordinate by s. Note that these variations all have xi(t, 0) =
γq0,w0(t), xi(1, s) = µa(s0) thus Vxi

(1) = 0 and Vxi
(0) = ∂

∂s
xi(0, s)|s=0 = ∂i. After

again applying proposition C.3.11

∂Ea(q, s0)

∂qi

∣∣∣∣
q=q0

= E ′
xi
(0) = −g(V (0), γ′

q0,w0
(0)) = −g(∂i, w0).

Combining this with coordinate representation of the gradient we get

∇qEa(q, s0)|q=q0
= gij

∂Ea(q, s0)

∂qi

∣∣∣∣
q=q0

∂j = −gij(gαβ∂
α
i w

β
0 )∂j

= −gijgiβw
β
0∂j = −δjβw

β
0∂j

= −wj
0∂j = −w0.

We thus managed to calculate what we wanted and can summarize as

∂Ea(q0, s)

∂s

∣∣∣∣
s=s0

= g(v, µ′
a(fa(q0))), ∇qEa(q, s0)|q=q0

= −w0 (2.5)

where w0 = w(q0, p0) and v = γ′
q0,w0

(1). Since µ′
a(fa(q0)) and v are both future-

pointing null vectors, which by lemma 2.1.2 must be transversal we have

∂Ea(q0, s)

∂s

∣∣∣∣
s=s0

= g(v, µ′
a(fa(q))) < 0.

We can now use the implicit function theorem on V0 × [t1, t2] with equation
Ea(q, s) = 0 and single solution Ea(q0, s0) = 0. This yields an open neighborhood
Va ⊂ V0 and a smooth function q 7→ sa(q) such that Ea(q, sa(q)) = 0 for all q ∈ Va.
Now Ea(q, sa(q)) = E(q, µa(sa(q))) = 0 implies µa(sa(q)) ∈ PK(q). This together
with (q, sa(q)) ∈ U implies that µa(sa(q)) ∈ Ereg

K (q) and thus sa(q) = fa(q) on Va.
Hence we have ∇fa(q)|q=q0

= ∇sa(q)|q=q0
and from equation (2.5) together with

the implicit function theorem it follows that

∇fa(q)|q=q0
=

1

c(q0, a)
w0, c(q0, a) =

∂Ea(q0, s)

∂s

∣∣∣∣
s=s0

< 0, (2.6)

where p0 = µa(s0) = Ea(q0), s0 = fa(q0) and w0 = w(q0, p0).
Next we choose p0, . . . , pn ∈ Ereg

K (q0) and let w0, . . . , wn ∈ LK
q0
M such that pi =

γq0,wi
(1), i.e. wi = w(q0, pi). We assume that w0, . . . , wn are linearly independent.

Moreover let aj ∈ Sn−1 such that pi ∈ µaj and −→a = (aj)
n
j=1. Finally we denote by
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q 7→ saj(q) = faj(q) the above constructed smooth functions which are defined on
some neighborhoods Vaj ⊂ V of q0.

Let V−→a =
⋂n

j=1 Vaj and consider the map

f−→a : V−→a → Rn

q 7→ (fa1(q), . . . , fan(q)).

Because all of its components are smooth, f−→a itself is smooth as well. By equation
(2.6) each component has gradient ∇faj(q)

∣∣
q=q0

= 1
c(q0,aj)

wi with c(q0, aj) ̸= 0.

Since we assumed that w0, . . . , wn be independent, f−→a is non-degenerate at q0 and
thus defines a smooth coordinate system in some neighborhood V1 of q0.

The results from this subsection will form the main prerequesites for the
reconstruction of the differential structure of V because they allow us to understand
Z in terms of LKV and to construct local coordinates from observation times.

2.3.2 Observation Time Smoothness

Now we show that the observation time function varies smoothly in the observer
a ∈ Sn−1 and the observerd point q ∈ V almost everywhere, and that its derivatives
are well behaved. This culminates in the proof that if Fqn converges suitably to Fq0

we have qn → q0 which will be crucial in the reconstruction of the topology of V .

Definition 2.3.5 (Regular Observer). Let q ∈ V we call a ∈ Sn−1 a regular
observer of q if Ea(q) ∈ Ereg

K (q) and write

Areg(q) := {a ∈ Sn−1 | Ea(q) ∈ Ereg
K (q)} ⊂ Sn−1

for the set of regular observers. Note that because Ereg
K (q) open and dense in EK(q),

Areg(q) is open and dense in Sn−1

For the next proposition we again endow M with the geodesic metric d induced
by g+. This allows us to define open balls. To show that the observation time
function f is smooth we will again construct it as a function supplied by the implicit
function theorem in a very similar fashion to proposition 2.3.4:

Proposition 2.3.6. Let q0 ∈ V and a0 ∈ Areg(q0) a regular observer of q0. Then
there exists an ε > 0 such that f : Bε(q0)×Bε(a0) → [−TSn−1 , 0]; (q, a) 7→ fa(q) is
smooth.

Proof. Let p0 ∈ Ereg
K (q0) with p0 = γq0,w0(1) and p0 = µa0(t0). Then we have

(q0, p0) ∈ Z and by lemma 2.3.3 there exists a δ > 0 such that X : Wδ(q0, w0) →
Uδ(q0, p0) is a diffeomorphism. Note that we can choose δ > 0 such that ρ(q, w(q, p)) >
1 for all (q, p) ∈ Uδ(q0, p0) ∩ L+M .
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Then

Y : Wδ(q0, w0) ∩ LKM → M × Sn−1 × [0, 1]

(q, w) 7→ (q,Θ−1(X(q, w)))

is a diffeomorphism onto its image Vδ := Y (Wδ(q0, w0)) which is an open neighbor-
hood of (q0, a0, t0) in M × Sn−1 × [0, 1]. There thus exists a δ > λ > 0 such that
Bλ(q0)×Bλ(a0)×Bλ(t0) ⊂ Vδ.

On this space we can then define the function E(q, a, s) := E(q,Θ(a, s)) with
E(q, p) as in the previous lemma. This function is well defined and smooth with

E(q0, a0, t0) = 0 and ∂E(q0,a0,t)
∂s

∣∣∣
t=t0

< 0 by the same argument as in the previous

proof. We can thus apply the implicit function theorem to get a ε > 0 and a
smooth function

s : Bε(q0)×Bε(a0) → Bλ(t0)

(q, a) 7→ (t)

with s(q0, a0) = t0 and E(q, a, s(q, a)) = 0.
Let (q, a) ∈ Bε(q0)×Bε(a0) then

E(q, a, s(q, a)) = E(q,Θ(a, s(q, a))) = E(q, µa(s(q, a))) = 0

implies that p = µa(s(q, a)) ∈ PK(q). Furthermore by definition we have p ∈
Uδ(q0, p0) which implies ρ(q, w(q, p)) > 1 and thus p = µa(s(q, a)) ∈ Ereg

K (q). Thus

we have that s(q, a) = fa(q), making fa(q) a smooth function on Bε(q0)×Bε(a0)
as desired.

Note that this result implies that Ea(q) ∈ Ereg
K (q) for all (q, a) ∈ Bε(q0)×Bε(a0)

and f : V × Sn−1 → [0, 1] smooth around all (q, a) such that q ∈ V, a ∈ Areg(q).
Because this implies that also the derivative is a smooth function we can apply

lemma A.0.1 to get

Proposition 2.3.7. Let qn → q0 ∈ V and A ⊂ Sn−1 open such that A ⊂ Areg(q0).
Then for all ε > 0 there exists an N ∈ N such that for all n ≥ N , Fqn |A is smooth
and ∥dFqn |a − dFq0|a∥gSn−1

< ε for all a ∈ A.

Proof. By the previous proposition for all a ∈ A there exists a εa > 0 such that
f : Bεa(q0)×Bεa(a) → [0, 1] is smooth. Then

⋃
a∈A Bεa(a) is an open cover of the

compact A ⊂ Sn−1. Hence there exist (a1, ε1), . . . (aN , εN ) such that
⋃N

j=1Bεj (aj) ⊃
A. We then let ε0 := minj=1,...,N εj and define the set Bε0(q0) =

⋂N
j=1Bεj (q0) which

is open.
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Let now (q, a) ∈ Bε0(q0)×A then there exists a j ∈ 1, . . . N such that a ∈ Bεj (aj)
and we have q ∈ Bε0(q0) ⊂ Bεj(q0). Thus by construction, f is smooth at (q, a).

As the choice (q, a) was arbitrary f is smooth on Bε0(q0) × A. Because qn → q0
there exists a N1 ∈ N such that n ≥ N implies qn ∈ Bε0(q0) and we have Fqn|A is
smooth.

We now want to show that also the derivatives of Fqn wrt. a ∈ Sn−1 converge
uniformly on A: By the above argument

f ′ : B ε0
2
(q0)× A → T ∗Sn−1

(q, a) 7→ dFq|a

is a continuous function on a compact metric spaces to a metric space (here we
endow T ∗Sn−1 with some metric compatible with its topology). But now we can
apply lemma A.0.1 to find that there exists a N2 > N1 such that n ≥ N2 implies
∥dFqn|a − dFqn|a∥gSn−1

for all a ∈ A.

Corollary 2.3.8. Let qn → q0 ∈ V and a0 ∈ Areg(q0). Then dFqn|a0 → dFq0|a0.

In the following we will for any (q, p) ∈ Z denote v(q, p) := γ′
q,w(q,p)(1), i.e. the

velocity vector of the unique geodesic from q to p at p. Sometimes we can only
recover the direction of v(q, p) and will denote v(q, p) = v(q,p)

∥v(q,p)∥g+
.

This corollary follows from lemma 2.1.9:

Corollary 2.3.9. Let (qn)
∞
n=1, q0 ∈ V and a0 ∈ Areg(q0) such that dFqn|a0 →

dFq0|a0. Then vn := v(qn, Ea0(qn)) → v0 := v(q0, Ea0(q0)).

We can now prove that convergence in Fq implies convergence in q as desired:

Proposition 2.3.10. Let (qn)
∞
n=1, q0 ∈ V and a1, a2 ∈ Areg(q0) ∩

⋂∞
n=1Areg(qn)

with a1 ̸= a2 such that dFqn|ai → dFq0 |ai. Then qn → q0.

Proof. We denote pin = Eai(qn) and pi0 = Eai(q0) and have pin → pi0. By the
previous corollary we have vin := v(qn, p

i
n) → vi0 := v(q0, p

i
0) for i = 1, 2 in

CTM = {(p, v) ∈ TM | g+(v, v) = 1}. Note that by definition there exist
tin, t

i
0 ∈ R+ such that

q0 = γpi0,vi0(−ti0) and qn = γpin,vin(−tin) for i = 1, 2.

We now want to show that tin → ti0. By contradiction we assume that tin does
not converge to ti0. By a similar argument to the one employed in the proof of
lemma 2.3.3 we find that tin must be bounded. tin has thus a convergent subsequence
tij → ti× ̸= ti0 for i = 1, 2. Now we let d be a metric on M compatible with the
topology and note that because (q, w, t) 7→ γq,w(t) is continuous we have

0 = lim
j→∞

d(γp1j ,v1j (−t1j), γp2j ,v2j (−t2j)) = d(γp10,v10(−t1×), γp20,v20(−t2×)),
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i.e. q× := γpi0,vi0(−ti×) ̸= q0 for i = 1, 2. Furthermore we have

0 = τ(q×, p
i
0) = lim

j→∞
τ(qn, p

i
n)

which means pi0 ∈ EK(q×). But by construction either q0 is a cut point of q× before
K or the other way around, either way a contradiction.

And lastly we show that F also has bounded derivatives.

Proposition 2.3.11. Let q0 ∈ V , ε > 0 such that Bε(q0) ⊂ V and define

Dε := {(q, a) ∈ V × Sn−1 | q ∈ Bε(q0), a ∈ Areg(q)}.

Then

f ′ : Dε → T ∗Sn−1

(q, a) 7→ dFq|a

is bounded.

Proof. We begin by defining the map

Y : LKBε(q0) → Bε(q0)× Sn−1

(q, w) 7→ (q, πa(Θ
−1(X(q, w))))

mapping a null direction to the observer which sees the resulting geodesic. This
map is smooth, surjective and locally diffeomorphic by lemma 2.3.3.

We also define the map

h : LKBε(q0) → [−TSn−1 , 0]

(q, w) 7→ πt(Θ
−1(X(q, w)))

mapping a null direction to its observation time. This map is also smooth.
We then define

P :={(q, w) ∈ LKBε(q0) | ρ(q, w) ≥ 1}
={(q, w) ∈ LKBε(q0) | expq(w) ∈ EK(q)}

which is closed by the lower semicontinuity of ρ and thus compact. Now the
following diagramm commutes:

P ⊂ LKBε(q0) [−TSn−1 , 0]

Bε(q0)× Sn−1

Y

h

f
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Let now g+ be the Riemannian metric induced on M by the splitting and ĝ+

the corresponding Sasaki metric induced on TM . Let also g× := g+ ⊕ gSn−1 be
the product metric on M × Sn−1 with gSn−1 the standard Riemannian metric on
Sn−1. Because h : P → [−TSn−1 , 0] is smooth, dh : TP → R is smooth as well.
Furthermore because P is compact and dh(q,w) is linear for all (q, w) ∈ P we get
that dh is bounded on TP , i.e. there exists a c1 > 0 such that for all (q, w) ∈ P
and (q′, w′) ∈ T(q,w)P we have

|dh(q,w)(q
′, w′)| ≤ c1∥(q′, w′)∥ĝ+ .

Similarly because Y is smooth as well as a local diffeomorphism, its derivative
is bounded from below, i.e. there exists a c2 > 0 such that for all (q, w) ∈ P and
(q′, w′) ∈ T(q,w)P we have

∥dY(q,w)(q
′, w′)∥g× ≥ c2∥(q′, w′)∥ĝ+ .

We now define

P reg :={(q, w) ∈ LKBε(q0) | ρ(q, w) > 1}
={(q, w) ∈ LKBε(q0) | expq(w) ∈ Ereg

K (q)} and

and the following again diagramm commutes:

P reg ⊂ P [−TSn−1 , 0]

Dε ⊂ Bε(q0)× Sn−1

Y

h

f

Additionally in this case Y is a diffeomorphism and f is smooth. Let (q, a) ∈ Dε

and (q′, a′) ∈ T(q,a)Dε, then there exists a unique (q, w) = Y −1(q, a) ∈ P reg and
(q′, w′) = dY −1(q′, a′) ∈ T(q,w)P

reg and we have

|df(q,a)(q′, a′)| = |dh(q,w) ◦ dY −1
(q,a)(q

′, a′)| ≤ c1∥dY −1
(q,a)(q

′, a′)∥ĝ+
= c1∥(q′, w′)∥ĝ+ ≤ c1c2∥dYq,w(q

′, w′)∥g× = c1c2∥(q′, a′)∥g× .

This implies that df and thus also dF is bounded on Dε as desired.
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Chapter 3

Interior Reconstruction

In this chapter we will use the observation time functions to reconstruct the
topological, differential and conformal data of V .

3.1 Construction of the topology

The central idea in this section is to find a subspace of the space of all functions
from Sn−1 to R, RSn−1

such that for all q ∈ V , Fq is contained in this subspace
and convergence in this subspace is equivalent to convergence in V . A suitable
space for this task turns out to be K(Sn−1), the space of continuous function
F : Sn−1 → [−TSn−1 , 0] which are smooth on a dense open set in Sn−1 and bounded
derivative, endowed with the metric

d(F,G) := d∞(F,G) +

∫
Sn−1

∥dFa − dGa∥gSn−1da,

where d∞(F,G) := maxa∈Sn−1 |F (a) − G(a)|. Note that by definition of K(Sn−1)
the subset of Sn−1 where F or G are not smooth is a null set, making the integral
well-defined.

We can then define the function

F : V → (K(Sn−1), d)

q 7→ Fq

mapping a q ∈ V to the function Fq : S
n−1 → R.

The following argument establishes that the canonical topological structure on
F(V ), i.e. the topology obtained by taking the subspace topology with respect to
the topology induced by d on K(Sn−1), is the same as the pushforward under F of
the topology on V , making F a homeomorphism.
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Lemma 3.1.1. The map F : V → V̂ := F(V ) is well-defined, continuous, and
bijective.

Proof. First of all we show that F : V → (K(Sn−1), d) is well-defined. Let q ∈ V ,
then Fq is continuous by proposition 2.2.3, smooth on a dense open set (namely
Areg(q)) by proposition 2.3.6, with bounded derivative by proposition 2.3.11.

To prove that F is continuous we let qn → q0 ∈ V . By proposition 2.2.4
Fqn → Fq0 uniformly and thus d∞(Fqn , Fq0) → 0. Now we need to show that∫

Sn−1

∥dFqn|a − dFq0|a∥gSn−1da → 0.

To that end let ε > 0 and δ1 such that Bδ1(q0) ⊂ V . Because qn → q0, after possibly
discarding finitely many qn we may assume qn ∈ Bδ1(q0). Because dFq|a is bounded
onDδ1 by proposition 2.3.11 there exists a c > 0 such that ∥dFqn|a−dFq0|a∥gSn−1 < c
for all n ∈ N and a ∈ Areg(qn) ∩ Areg(q0).

On the other hand because Areg(q0) is dense and open in Sn−1 we have∫
Areg(q0)

da =
∫
Sn−1 da. Hence we can find an open set A ∈ Sn−1 such that

A ⊂ Areg(q0) and ∫
Sn−1\A

da <
ε

2c
.

Applying proposition 2.3.7 to A yields a N ∈ N such that for all n ≥ N we have
Fqn|A smooth and ∥dFqn|a − dFq0|a∥gSn−1

< ε
2
for all a ∈ A.

We can now write∫
Sn−1

∥dFqn|a − dFq0 |a∥gSn−1da =

∫
Sn−1\A

∥dFqn |a − dFq0|a∥gSn−1da

+

∫
A

∥dFqn|a − dFq0|a∥gSn−1da

< ε

because ∫
Sn−1\A

∥dFqn|a − dFq0 |a∥gSn−1da ≤
∫
Sn−1\A

cda <
ε

2
and∫

A

∥dFqn|a − dFq0|a∥gSn−1da <

∫
A

ε

2
da ≤ ε

2
.

Because ε > 0 was arbitrary we get
∫
Sn−1∥dFqn|a − dFq0|a∥gSn−1da → 0 and thus

d(Fqn , Fq0) → 0 proving that F is continuous.
Finally, injectivity follows from the fact that for any q, q′ ∈ V we have F(q) =

F(q′) =⇒ Fq = Fq′ =⇒ EK(q) = EK(q′) which implies q = q′ by proposition
2.2.9.
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However there is still some work required to show that F−1 is continuous on V̂ :

Lemma 3.1.2. Let Fn → F0 in V̂ then qn := F−1(Fn) → q0 := F−1(F0).

Proof. Note that by the previous result F : V → V̂ is a bijection and thus qn
and q0 are well defined and we have Fn = Fqn resp. F0 = Fq0 . We now aim to
find a1, a2 ∈ Areg(q0) such that dFqn|ai → dFq0|ai , allowing us to apply proposition
2.3.10: Let for some set S ⊂ Sn−1 we let µ(S) :=

∫
S
da be the standard set measure

and Sc = Sn−1 \ S the complement.
Let

A := Areg(q0) ∩
∞⋂
n=1

Areg(qn)

and
C = Ac, Cn = Areg(qn)

c, C0 = Areg(qn)
c.

Because µ(Areg(qn)) = µ(Areg(q0)) = µ(Sn−1) < ∞, we have µ(Cn) = µ(C0) = 0.
This yields

µ(C) = µ

(
C0 ∪

∞⋃
n=1

Cn

)
≤ µ(C0) +

∞∑
n=1

µ(Cn) = 0

and thus µ(A) = µ(Sn−1)− µ(C) = µ(Sn−1) > 0.
We then define the set of stragglers as

S(A) := {a ∈ A | lim
n→∞

dFqn|a ̸= dFq0|a}.

Because Fqn → Fq0 with respect to d we must have
∫
Sn−1∥dFqn|a−dFq0|a∥gSn−1da →

0 which implies µ(S(A)) = 0. But now we have µ(A \S(A)) > 0 which implies that
there exist two a1, a2 ∈ A \ S(A). By definition Fqn is smooth at ai for all n ∈ N
and dFqn|ai → dFq0|ai . Now we can apply proposition 2.3.10 and get qn → q0 as
desired.

And we get:

Corollary 3.1.3. F : V → V̂ is a homeomorphism.

Note that because PK(V ) determines all Fq and thus the set V̂ , it is uniquely
determined by the data 1.2.1. We can thus reconstruct the topology of V because
we can determine the topology of (K(Sn−1), d) and the subspace topology on V̂
which must be equivalent to the topology on V .

3.2 Smooth Reconstruction

Having established the topological structure of V we next aim to establish coordi-
nates on F(V ) near any F(q) that make F(V ) diffeomorphic to V .
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3.2.1 Construction of smooth coordinates

In line with the last section we will consider V̂ := F(V ) a topological space. We

denote the points of this manifold by q̂ := F(q) = Fq. This means that points in V̂

are functions from Sn−1 to R. Next we construct a differentiable structure on V̂
that is compatible with that of V and makes F a diffeomorphism.

This definition is related to the coordinates constructed in proposition 2.3.4, i.e.
obervation coordinates consist of a tuple of observation times from n+ 1 observers.

Definition 3.2.1 (Observation Coordinates). Let q̂ = F(q) ∈ V̂ and −→a =
(aj)

n
j=0 ⊂ (Sn−1)n+1 with pj = Eaj(q) such that pj ∈ Ereg

K (q) for all j = 0, . . . , n.

Let saj = faj ◦ F−1 and s−→a = f−→a ◦ F−1. Let W ⊂ V̂ be an open neighborhood
of q̂. We say that (W, s−→a ) are C0-observation coordinates around q̂ if the map
s−→a : W → Rn is open and injective. Also we say that (W, s−→a ) are C∞-observation
coordinates around q̂ if s−→a ◦ F : F−1(W ) → Rn are smooth local coordinates on
V ⊂ M .

Note that by the invariance of domain theorem, s−→a : W → Rn is open if it is
injective. Although for a given −→a ∈ (Sn−1)n+1 there might be several sets W for
which (W, s−→a ) form C0-observation coordinates to clarify the notation we will often
denote the coordinates (W, s−→a ) as (W−→a , s−→a ).

Crucially for a tuple −→a ∈ (Sn−1)1+n we can determine s−→a : V̂ → Rn+1 using

only the data from 1.2.1. This is because for a given q̂ = Fq ∈ V̂ we have
s−→a (q̂) = (Fq(a0), . . . , Fq(an)) requiring no external information.

We can now determine the differential structure of V :

Proposition 3.2.2. Let q̂ ∈ V̂ then the following holds:

(1) Given the data from 1.2.1 we can determine all C0-observation coordinates
around q̂,

(2) there exist C∞-observation coordinates (W−→a , s−→a ) around q̂ and

(3) given any C0-observation coordinates (W−→a , s−→a ) around q̂, the data 1.2.1
allows us to determine whether they are C∞-observation coordinates around
q̂.

Proof. We begin with some setup: Let q ∈ V . We say that p ∈ Ereg
K (q) and a ∈ Sn−1

are associated with respect to q if p ∈ µa, i.e. p = Ea(q).
To prove part (1), we let q̂ ∈ V̂ with q̂ = F(q). We want to show that for

any choice of observers −→a = (aj)
n
j=0 ∈ (Sn−1)n+1 we can determine if they form

C0-observation coordinates. First of all we need to check whether the associated
pj = Eaj(q) are regular points, i.e. pj ∈ Ereg

K (q). But as q̂ = F(q) = Fq we can
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recover EK(q) =
⋃

a∈Sn−1 µa(Fq(a)) and also the associated points pj = µaj (Fq(aj)).
By proposition 2.2.8 this allows us to determine Ereg

K (q) and for all pj we can then
simply check whether they lie in Ereg

K (q).
We now need to check whether there exists an open neighborhood W of q̂ such

that the map s−→a : W → Rn is injective. By definition we have

s−→a (q̂) = (q̂(a1), . . . , q̂(an)) = (Fq(a0), . . . , Fq(an))

which means that the data allows us to fully determine s−→a on V̂ . But since by
corollary 3.1.3, the data allows us to construct the topology on V̂ we can determine
whether there exists an open neighborhood W of q̂ such that s−→a : W → Rn is
injective and thus open by the invariance of domain theorem.

To show (2) we let again q̂ ∈ V̂ with q̂ = F(q). Let (aj)
n
j=0 ∈ (Sn−1)n+1 such

that the associated pj ∈ Ereg
K (q) and the vectors {wj = w(q, pj) | j = 0, . . . n} are

linearly independent. We can find such a set of linearly independent vectors because
by proposition 2.2.6 Ereg

K (q) is an open subset of EK(q). Now by proposition 2.3.4
the observation time functions f−→a define smooth coordinates on a neighborhood
V1 of q. Thus s−→a ◦ F are smooth local coordinates as well making (s−→a ,F(V1))
C∞-observation coordinates.

Moving on to part (3): We begin by proving that the set of points in (Ereg
K (q))n+1

which yield C∞-observation coordinates is open and dense in (Ereg
K (q))n+1. We

consider p ∈ Ereg
K (q) and a ∈ Sn−1 which are associated. Let

K(q) = {(wj)
n
j=0 | wj ∈ LK

q M,ρ(q, wj) > 1, γq,wj
(1) ∈ K}

and define on K(q) the map

H : K(q) → Kn+1

(wj)
n
j=0 7→ (γq,wj

(1))nj=0.

We will denote pj = γq,wj
(1) = expq(wj). Then by definition pj ∈ Ereg

K (q) and
wj = Ω(q, pj). As ρ is lower semi-continuous, we see that K(q) ⊂ (LK

q M)n is open
by an analogous argument to the one in the proof of 2.2.6. As the exponential map
is continuous, H is also continuous. Furthermore as Ω : Z → L+V is continuous
and injective, we can construct a continuous inverse to H, making H : K(q) →
H(K(q)) = (Ereg

K (q))n+1 a homeomorphism. We will denote Y (q) := (Ereg
K (q))n+1.

Note that for all q̂ ∈ V̂ , the data 1.2.1 determine Ereg
K (q) and thus also the set

Y (q) ⊂ Kn, where q = F−1(q̂).
Let us now consider the set

K0(q) = {(wj)
n
j=1 ∈ K(q) | w1, . . . , wn are linearly independent}.
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As linear independence is an open and non-degenerate property K0(q) is open and
dense in K(q). Since H is a homeomorphism, Y0(q) = H(K0(q)) is open and dense
in Y (q) as well.

We can now prove the final part of the proposition: Recall that given C0-
observation coordinates around q̂, we want to determine if they are also C∞-
observation coordinates around q̂. To that end, let (W−→a , s−→a ) be C0-observation
coordinates around q̂ ∈ W−→a with q = F−1(q̂). By definition we have pj ∈ Ereg

K (q)
where pj = Eaj(q) are associated with aj and hence (pj)

n
j=0 ⊂ Y (q). In the case

where (pj)
n
j=0 ∈ Y0(q), by proposition 2.3.4, q has a neighborhood V1 ⊂ M on which

the function f−→a : V1 → Rn gives smooth local coordinates. Thus, after possibly
restricting W−→a , (W−→a , s−→a ) are C∞-observation coordinates around q̂. We then let

(W−→
b
, s−→

b
),
−→
b ∈ (Sn−1)n+1 be different C0-observation coordinates around q̂ and let

(p̃j)
n
j=0 ∈ Y (q) be such that p̃j is associated to bj. Since all smooth coordinates

must be compatible, then (p̃j)
n
j=0 ∈ Y0(q) if and only if

The function s−→
b
◦ s−1

−→a is smooth at s−→a (q̂) and the Jacobian determinant

det(D(s−→
b
◦ s−1

−→a )) at s−→a (q̂) is non-zero. (3.1)

Here the “only if”-direction follows from the fact that the nondegeneracy of the
Jacobian ensures that the linear independence of the spanning vectors is preserved.

For some −→p = (pj)
n
j=0 ∈ Y (q) with −→a associated we define X−→p ⊂ Y (q) to be

the set of (p̃j)
n
j=0 ∈ Y (q), such that for the associated

−→
b there exists W−→

b
such that

(W−→
b
, s−→

b
) are C0-coordinates around q̂ and condition (3.1) is satisfied.

If −→p ∈ Y0(q) we see that Y0(q) ⊂ X−→p . On the other hand −→p /∈ Y0(q) we
have Y0(q) ∩ X−→p = ∅. Since the set Y0(q) is open and dense in Y (q), we see that
−→p ∈ Y0(q) if and only if the interior of X−→p is dense subset of Y (q). Since the data
1.2.1 is sufficient to determine Y (q) and X−→p , we can determine whether −→p ∈ Y0(q)
or not. And since, by proposition 2.3.4, the C0-observation coordinates (W−→a , s−→a )
around q̂ = F(q) are C∞-observation coordinates if and only if −→p ∈ Y0(q), where−→p are associated to −→a wrt. q, we can determine all C0-observation coordinates
around q̂ which are also C∞-observation coordinates.

3.3 Construction of the conformal type of the

metric

We will denote by ĝ = F∗g the metric on V̂ = F that makes F : V → V̂ an
isometry. The next lemma will allow us to determine a time-orientation on V̂
making F : V → V̂ a causal map, and a metric G which is conformally equivalent
to ĝ. The key ideas are that we can use some equations from proposition 2.3.4 to
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determine a timelike, future-pointing vector field on V̂ , and that for a given q̂ ∈ V̂
we can determine all null geodesics through q̂ allowing us to determine all null
cones Lq̂V̂ in V̂ .

Lemma 3.3.1. The data given in 1.2.1 allows us to determine a metric G on V̂ =
F(V ) that is conformal to ĝ and a time orientation on V̂ that makes F : V → V̂ a
causality preserving map.

Proof. Let (W−→a , s−→a ) be C∞-observation coordinates on V̂ and q̂ ∈ W−→a . We

begin by constructing a time orientation on V̂ : Let a1, a2 ∈ −→a and p1, p2 ∈ U be
associated wrt. the point q = F−1(q̂), i.e. pi = Eai(q). Because f−→a = s−→a ◦ F are
smooth coordinates we have that the vectors w(q, p1) and w(q, p2) pointing from q
to pi must be non-parallel. Therefore, by equation (2.6) we see that the gradient
vectors ∇fai(q) are non-parallel, lightlike and past-pointing. Thus the co-vectors
−dsa1 |q̂ and −dsa2|q̂ are non-parallel lightlike and future-pointing. This follows
from the fact that F is an isometry and the co-vector dfa is the image of ∇fa under
the canonical isomophism. Moreover because the data allows us to fully determine
sa1 and sa2 on V̂ (see previous proof) we can also determine dsa1 resp. dsa2 .

The co-vector field X = (−dsa1) + (−dsa2) is timelike and future-pointing and
forms a local time-orientation on W−→a . Using bump functions and a partition of
unity we can then obtain a time-orientation on the whole of V̂ since all orientations
agree where they overlap.

Now we turn our attention to the construction of a metric G which is conformal
to ĝ: Let again (W−→a , s−→a ) be C∞-observation coordinates on V̂ with q̂0 ∈ W−→a and
q0 ∈ V such that q̂0 = F(q0). As in the previous proof, using the data given in
1.2.1 and the function q̂0 = Fq0 we can determine EK(q0) and Ereg

K (q0 by 2.2.8.
We then fix the point q̂0 = F(q0) and a point p0 = µa0(t0) ∈ Ereg

K (q0). Let now
q′ ∈ V such that p0 ∈ Ereg

K (q′), recall that by lemma 2.1.9 we have v(q0, p0) =
v(q′, p0) if and only if dFq0|a0 = dFq′ |a0 , i.e. the unique geodesics from q0 resp. q′

to p0 have the same directions at p0 if and only if Fq has the same differential
as F ′

q at a ∈ Sn−1. Note that this is equivalent to the fact that q′ lies on the
unique null geodesic from q0 to p0, although possibly in the past of q0. We denote
v0 := v(q0, p0).

Let t̂ > 0 be the largest number such that the geodesic γp0,v0((−t̂, 0]) ⊂ M
is well-defined and has no cut point. As discussed for q ∈ V , we have that
q ∈ γp,v((−t̂, 0)) if and only if p0 ∈ Ereg

K (q) and dFq|a0 = dFq0|a0 . Hence for a fixed
(q0, p0) the data allows us to whether some q̂ ∈ W−→a has q = F−1(q̂) ∈ γp0,v0((−t̂, 0))
by checking if p0 ∈ Ereg

K (q) and dFq|a0 = dFq0|a0 . This allows us to determine

β = {q̂ ∈ W−→a | q̂ = F(q), p0 ∈ Ereg
K (q), dFq|a0 = dFq0|a0} = F(γp,v((−t̂, 0))) ∩W−→a .

Therefore, on W−→a ⊂ V̂ we can find the image, under the map F , of the light-
like geodesic segment γp,v((−t̂, 0)) ∩ F−1(W−→a ) that contains q0 = γp,v(−t1). Let
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α(s), s ∈ (−s0, s0) be a smooth path on W−→a such that ∂sα(s) is never zero,
α((−s0, s0)) ⊂ β and α(0) = q̂0. Such a smooth path can, for example be obtained

by endowing V̂ with some arbitrary Riemannian metric and parameterizing by
arc-length. Then ŵ = ∂sα(s)|s=0 ∈ Tq̂0V̂ has the form ŵ = cF(γ′

p,v(−t1)) where
c ̸= 0.

Since we can do the above construction for all points p0 ∈ Ereg
K (q0), we can

determine in the tangent space Tq̂0V̂ the set

Γ = F∗({cw ∈ Lq0M | expq0(w) ∈ Ereg
K (q0), c ∈ R \ {0}})

which is an open, non-empty subset of the light cone at q̂0 wrt. the metric ĝ. But
now, since the light cone is determined by a quadratic equation in the tangent
space, having an open set Γ determines the whole light cone. By repeating this
construction for all points q̂ ∈ V̂ , we can uniquely determine LV̂ . Using proposition
B.6.3 we can then determine the conformal class of the tensor ĝ = F∗g in the
manifold V̂ .

The above shows that the data 1.2.1 determine the conformal class of the metric
tensor ĝ. And in particular we can construct a metric G on V̂ that is conformal to
ĝ and satisfies G(X,X) = −1.

3.4 Reconstruction overview

We have gone through all the steps necessary to reconstruct the conformal, differ-
ential and topological data of V and will now tie this all together to give a detailed
account of the actual reconstruction.

As mentioned in remark 1.2.1 we want to prove the following theorem which
implies theorem 1.1.6:

Theorem 3.4.1. Let (M, g) be a globally hyperbolic Lorentzian manifold and
p+, p− ∈ M,V ⊂ J(p−, p+) suitable such that V is an open subset of J(p−, p+)

o
.

Then given

(1) The smooth manifold K,

(2) the conformal class of the degenerate metric g|K restricted to TpK for p ∈ K
and

(3) the set of light cone observations PK(V ),

we can construct a globally hyperbolic Lorentzian manifold V̂ such that there exists
a conformal diffeomorphism F : V → V̂ , which preserves causality.
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Proof. To construct the space V̂ which is conformally diffeomorphic to V we follow
these steps:

• As g|K restricted to TpK where p ∈ K determines all nullpregeodesics on K
we can construct the observers µa moving along these pregeodesics.

• As fa(q) = min{s ∈ [−Ta, 0] | µa(s) ∈ PK(q)} we can determine EK(V ) =
{EK(q) | q ∈ V } from PK(V ).

• Proposition 2.2.8 then allows us to determine Ereg
K (q) for a given EK(q) ∈

EK(V ). We can thus construct Ereg
K (V ).

• We define the function

F : V → F(V ) = V̂ ⊂ (K(Sn−1), d)

q 7→ q̂ = Fq = (a 7→ fa(q)).

For a given EK(q) we can construct q̂ by q̂(a) = fa(q) = s such that µa(s) ∈
EK(q). This allows us to construct the map

F̃ : EK(V ) → V̂

EK(q) 7→ q̂.

And we can thus determine the set V̂ = F̃(EK(V )).

• By taking the subspace topology with respect to the topology on K(Sn−1)

induced by d we can determine a topology on V̂ . By corollary 3.1.3 this
topology is homeomorphic to the topology on V , making F a homeomorphism.

• For a given point q̂ ∈ V̂ we can use proposition 3.2.2 and the data to determine
all C0-observation coordinates around q̂. We can then determine for each
of these coordinates if they are also C∞-observation coordinates, and find
at least one such coordinate system since existence is guaranteed. We can
repeat that step for each q̂ ∈ V̂ to find smooth coordinates on V̂ , making F
a diffeomorphism.

• Finally we can use lemma 3.3.1 to construct a metric G and time-orientation
X on V̂ which is conformal to ĝ = F∗g and makes F causal. F : (V, g|U) →
(V̂ , G) is thus a causal conformal diffeomorphism as desired.

Remark 3.4.2. In the statement of theorem 1.1.6 we required that V be a subset of
the interior J(p−, p+)

o
. This is because as we approach the observation set K, the

light cone observation sets get increasingly degenerate and loose many of their nice
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properties for points on the boundary, i.e. if we had a q ∈ V ∩K. This issue will
be adressed in the next chapter by smoothing the observation time functions at
the boundary.

However if q ∈ V approaches the past boundary K− := L+
p− ∩ I−(p+) the

situation is simpler: Because we are always away from the set of observers K, the
light cone observation sets remain transverse to K and thus well behaved even
for q ∈ L+

p− ∩ I−(p+). It is thus possible to relax the condition V ⊂ J(p−, p+)
o
to

V ⊂ J(p−, p+) \K in theorem 1.1.6 with only minor modifications to the proofs.
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Chapter 4

Boundary Reconstruction

4.1 Setting

In this section we will examine how we can extend our reconstruction result to the
case where the source set V is no longer contained within the interior of J(p−, p+)
but is now allowed to extend up to the boundary K \ {p+}.

This is complicated by the fact that as q ∈ J(p−, p+) approaches the observation
set K, the light observation sets PK(q) get increasingly warped and are degenerate
if q ∈ K.

Analogous to the interior reconstruction case we will again prove the modified
version outlined in remark 1.2.1, and let (M, g) be a globally hyperbolic Lorentzian
manifold, with p+, p− ∈ M,V ⊂ J(p−, p+) suitable such that V ∈ J(p−, p+) is
relatively open.

4.2 Preliminaries

To extend the reconstruction up to the edge of J(p−, p+) we will essentially split
up the reconstruction into two steps: We will split up V into V ∩ (J(p−, p+) \K)
and V ∩D where D is the set of all points such that Fq has a unique minimum.
On V ∩ (J(p−, p+) \ K) we can use the reconstruction result from the previous
chapter and on V ∩D we will use the fact that the observation time functions have
unique minima to smooth them on the boundary K and allow a reconstruction.

4.2.1 Definitions

We first need to introduce some new concepts:
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Definition 4.2.1 (Unique minimum domain). We define the unique minimum
domain D ⊂ J(p−, p+) to be

D := {q ∈ J(p−, p+)
o ∪K | Fq has a unique nondegenerate minimum}. (4.1)

By nondegenerate we mean that the hessian HFq at the unique minimum must be
positive definite.

We will often describe this minimum with

(aq, tq) = (argmin
a∈Sn−1

Fq, min
a∈Sn−1

Fq).

We will see that D contains an open neighborhood of K \ {p+} allowing us to
reconstruct boundary points. As mentioned in remark 3.4.2 the reconstruction
from the past chapter can be applied to the whole J(p−, p+) \K; moreover because
D is an open neighborhood of K in J(p−, p+), this will allow us to reconstruct the
set V in all of J(p−, p+) \ {p+}.

Definition 4.2.2 (Constant observation time domain). For some t0 ∈ (TSn−1 , 0)
we define the constant observation time domain as

Tt0 = {p ∈ K | p = µa(t0), a ∈ Sn−1} (4.2)

By definition Tt0 is an (n− 1)-dimensional spacelike submanifold of K (away from
its boundary). Thus for every a ∈ Sn−1 such that −Ta < t0 we can use lemma
2.1.9 to find the unique future-pointing outward null ray R+νa,t0 ∈ L+

µa(t0)
M such

that Tµa(t0)Tt0 = ν⊥
a,t0

∩ Tµa(t0)K.
Note that for every q ∈ J(p−, p+)

o
and p = µa(t) ∈ PK(q) we have t > −Ta

which implies that p is in the relative interior of Tt, i.e. there exists an open
neighborhood p ∈ U ⊂ M such that Tt ∩ U is a submanifold.

The next lemma is often useful because is shows that for Fq with q ∈ J(p−, p+)
o

local minima must be regular points and the unique null geodesic from q to the
minimum must have a specific direction at the minimum related to the constant
observation time domain:

Lemma 4.2.3. Let q ∈ J(p−, p+)
o
with (aq, tq) a local minimum of Fq and pq :=

µaq(tq). Then we have pq ∈ Ereg
K (q) and v(q, pq) ∈ R+νaq ,tq , i.e. if wq ∈ LK

q M is
the unique null vector such that γq,wq(1) = p we have γ′

q,wq
(1) ∈ R+νaq ,tq .

Proof. Note that we have tq = faq(q) and thus

pq = µaq(tq) = µaq(faq(q)) = Eaq(q) ∈ PK(q),

proving that there exists a wq ∈ LK
q M such that pq = γq,wq(1).

53



Now we need to show that indeed pq ∈ Ereg
K (q). We recall that by proposition

2.1.14 there exists an open neighborhood pq ∈ U ⊂ PK(q) such that PK(q) ∩ U is
the union of N pairwise transversal, spacelike, dimension n− 1 submanifolds Vi.
Because tq is the minimum of Fq we must have TpqUi = TpqTtq for all i = 1, . . . N .
But because the manifolds must be pairwise transversal, we must have N = 1,
implying that pq is a regular point of PK(q). Together with pq ∈ EK(q) this yields
pq ∈ Ereg

K (q).
Finally γ′

q,wq
(1) = R+νaq ,tq follows from the fact that TpqV1 = TpqTtq .

4.2.2 Observation time Functions at the boundary

In this subsection we will study how the observation time functions behave for source
points q ∈ K inside the observation set as well as for sequences qn ∈ V → q0 ∈ K:

We can explicitly characterize observation time functions at the boundary.

Lemma 4.2.4. For q0 = µa0(t0) ∈ K we have

Fq0(a) =

{
t0 if a = a0

0 otherwise

Proof. We begin with the case a = a0; then Fq0(a0) = t0 follows immediately
from the definition of fa0(q0). Note that this also covers the case where q0 = p+.
For the case where a ̸= a0 and q0 ≠ p+ we suppose that Fq0(a) = fa(q0) < 0 by
contradiction. Then we have τ(q0, Ea(q0)) = 0 which implies that there exists a null
geodesic γ with γ(0) = q0 and p := Ea(q0) = γ(1). If γ′(1) = µ′

a(fa(qn)) we would
have q0 ∈ µa([0, 1)) ∩ µa0([0, 1)) which is a contradiction to lemma 2.1.1. We must
thus have γ′(1) ̸= µ′

a(fa(qn)) but this means there exists a broken null geodesic
from q0 to p+ which is also a contradiction because q0 ∈ K by assumption and
K ∩ I−(p+) = ∅ by lemma 2.1.1.

Remark 4.2.5. The previous lemma shows that the observation time functions Fq

for q ∈ K lose many nice properties they had when q /∈ K. In particular, if q ∈ K,
then Fq is not continuous at a0. Furthermore, let qn = Θ(an, t0) → q0 = Θ(a0, t0)
with an /∈ a0, then Fq0(a0) = t0 but Fqn(a0) = 0 for all n ∈ N, implying that Fqn

fails to even converge pointwise to Fq0 . Later on we will fix some of these issues by
multiplying Fq with a smoothing bump function.

This lemma shows that even though obervation time functions do not retain
many of their nice properties at the boundary they at least behave somewhat
regularly away from the minimum.

Lemma 4.2.6. Let qn ∈ V → q0 = µa0(t0) ∈ K \ p+ and A ⊂ Sn−1 an open
neighborhood of a0 then we have Fqn|Sn−1\A → 0 uniformly.
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Proof. Because any qn can either lie in the boundary K or in the interior J(p−, p+)
o

we can instead look at the subsequences (qn)
∞
n=1 ∩K, (qn)

∞
n=1 ∩ J(p−, p+)

o
. If we

can prove that both subsequences converge to q0 then we have also proven that qn
itself converges to q0.

Hence let now qn → q0 ∈ K \ p+ with qn = µan(tn) ∈ K \ p+. We then have
an → a0 and thus an ∈ A for all n ≥ N for some N ∈ N. But by the previous
lemma this implies that Fqn|Sn−1\A = Fq0|Sn−1\A = 0 and we are done.

For the other part qn → q0 ∈ K \ p+ with qn ∈ J(p−, p+)
o
. We suppose by

contradiction that there exists a ε > 0 such that for all N ∈ N there exists a n ≥ N
and an a ∈ Sn−1\A such that fa(qn) < −ε. We can thus construct a sequence (ak, qk)
such that fak(qk) < −ε for all k ∈ N. Because f is bounded and Sn−1 compact
there exists a convergent subsequence (aj, qj) such that tj := faj(qj) → t′ ≤ −ε,
aj → a′ ∈ Sn−1 \ A and qj → q0. Now we have µaj(tj) = Θ(aj, tj) → Θ(a′, t′) =
µa′(t

′) and

0 = lim
j→∞

τ(qj, Eaj(qj)) = lim
j→∞

τ(qj, µaj(tj)) = τ(q0, µa′(t
′)).

Furthermore because µaj(tj) = Eaj(qj) we have µaj(tj) ∈ J+(qj). By lemma B.4.5
this implies µa′(t

′) ∈ J+(q0). But this together with τ(q0, µa′(t
′)) = 0 implies that

µa′(t
′) = Ea′(q0) and fa′(q0) = t′ < −ε. Finally because a0 ∈ A and a′ ∈ Sn−1 \ A

we have a′ ̸= a0 and fa′(q0) < 0, a contradiction to the previous lemma.

Lemma 4.2.7. Let qn ∈ V → q0 = µa0(t0) ∈ K \ p+. Then

lim inf
n→∞

min
a∈Sn−1

Fqn(a) ≥ t0.

Proof. Suppose by contradiction that there exists a convergent subsequence qk
of qn such that mina∈Sn−1 Fqk(a) → t′ < t0. There thus exists a sequence of ak
such that Fqk(ak) → t′ < t0. Taking subsequences again we get aj → a′ and
tj := Fqj(aj) → t′ < t0. Then we have

J+(qj) ∋ µaj(Fqj(aj)) → µa′(t
′) ∈ J+(q0)

by continuity of µ and lemma B.4.5. We also have

0 = lim
n→∞

τ(qj, µaj(Fqj(aj))) = τ(q0, µa′(t
′))

which implies µa′(t
′) = Ea′(q0) and Fq0(a

′) = t′ < t0. This is a contradiction because
Fq0 ≥ t0 by lemma 4.2.4.

The following proposition is important because it shows that D is an open
neighborhood of the boundary, which means a reconstruction on D is also a
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reconstruction of the boundary. The key idea here is that as qn → q0 = µa0(t0) ∈
K\{p+} we can use lemma 4.2.6 to control the convergence away from the minimum
a0 and to introduce local coordinates around a0 ∈ Sn−1 to study the behavior close
to a0.

Proposition 4.2.8. Let qn ∈ V → q0 = µa0(t0) ∈ K \p+ then there exists a N ∈ N
such that for all n ≥ N , Fqn has a unique nondegenerate minimum (an, tn) and
(an, tn) → (a0, t0).

Proof. As in a previous proof we can again separately prove the statement for the
cases qn ∈ K for all n ∈ N and qn /∈ K for all n ∈ N. If qn ∈ K the statement
follows immediately. We can thus from now on assume qn /∈ K.

First of all we let O ⊂ M be a open convex neighborhood of q0. Because
qn → q0 there exists a N1 such that n ≥ N implies qn ∈ O.

We now again take a Riemannian metric g+ compatible with (M, g). For
a ∈ Sn−1, t ∈ [−Ta, 0] let νa,t ∈ CL+

µa(t)
M be the unique outward future pointing

null vector orthogonal to Tt at a with ∥νa,t∥g+ = 1, as in definition 4.2.2. We define
the map

X : R+ × S → M

(c, a, t) 7→ expΘ(a,t)(−cνa,t)

which is smooth because νa,t varies smoothly in (a, t). We have X(0, a0, t0) = q0
and X has invertible differential at (0, a0, t0). Therefore there exists an ε > 0
such that Bε(a0)×Bε(t0) ⊂ S and X : (Bε(0) ∩ R+)×Bε(a0)×Bε(t0) → Oε is a
diffeomorphism. Because −νa,t is inward pointing we have Oε ⊂ J(p−, p+) for ε > 0
small enough. In this case, by the invariance of domain theorem, Oε ⊂ J(p−, p+)
is a relatively open neighborhood of q0. After further reducing ε, we can achieve
that no two rays intersect in Oε, i.e.

γνa1,t1 ∩ γνa2,t2 ∩Oε = ∅

for all a1, a2 ∈ Bε(a0), t1, t2 ∈ Bε(t0) with (a1, t1) ̸= (a2, t2). This possible because
around Θ(a0, t0), K is a smooth submanifold. Finally we can reduce ε > 0 to get
Oε ⊂ O.

Because Oε is open there exists an N2 ∈ N such that n ≥ N2 implies qn ∈ Oε ⊂
O. In this case we can write qn = X(cn, an, tn). We want to show that there exists
an N3 ≥ N2 such that for all n ≥ N3, Fqn must have a global minimum in Bε(a0).
First of all, because qn ∈ J(p−, p+)

o
, Fqn is a continuous function on a compact set.

There must thus exist at least one a′n ∈ Sn−1 such that t′n := Fqn(a
′
n) ≤ Fqn(a) for

all a ∈ Sn−1. Note that because t′n is a minimum, the same argument as in lemma
4.2.3 yields that µa′n(t

′
n) ∈ Ereg

K (qn) and v(qn, µa′n(t
′
n)) ∈ R+νa′n,t′n .
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Next we want to show that if n is big enough, any such a′n must lie in Bε(a0).
To that end we first note that µan(tn) ∈ Ereg

K (qn) ⊂ PK(qn) because qn and µan(tn)
both lie in the convex neighborhood O. This implies Fqn(an) = tn. Because
tn ∈ Bε(t0) we know that mina∈Sn−1 Fqn(a) = t′n ≤ tn < t0 + ε < 0. By lemma
4.2.6 we can then find an N3 ∈ N such that n ≥ N3 implies Fqn(a) > t0 + ε for all
a ∈ Sn−1 \ Bε(a0). But this means that Fqn cannot have a minimum outside of
Bε(a0).

Next we want to show that a′n = an and t′n = tn, implying Fqn has a unique
minimum. We have a′n ∈ Bε(a0) for n ≥ N3. By the previous lemma there exists a
N4 such that mina∈Sn−1 Fqn(a) = t′n > t0 − ε for all n ≥ N4. Combining this with
t′n ≤ tn < t0 + ε we have t′n ∈ Bε(t0). Now γνan,tn

and γνa′n,t′n
both contain qn ∈ Oε,

and have an, a
′
n ∈ Bε(a0) and tn, t

′
n ∈ Bε(t0); this is a contradiction if an ̸= a′n or

t′n ̸= tn.
Now we sketch the proof that the minimum are nondegenerate 1 i.e. there

exists an N5 ∈ N such that for all n ≥ N5 the hessian HFqn
|aqn is positive definite.

We define the energy functional E(q, a, s) as in proposition 2.3.6 and choose a
small enough neighborhood of q0, a0 and t0 such that Fq(a) coincides with the
map (q, a) 7→ s(q, a) such that E(q, a, s(q, a)) = 0 supplied by the implicit function.
Then for any ξ ∈ Tµan (tn) we have

HFqn
(ξ, ξ) >

c

g(v(qn, µan(tn)), µ
′
an(fan(qn)))

where c > 0 is a positive constant by the implicit function theorem together with
the second variation formula for E (see [One83] proposition 10.39). Because qn
approaches K we have v(qn, µan(tn)) → 0 and we can see that the expression must
go to positive infinity thus ensuring that the hessian is positive definite.

Finally (an, tn) → (a0, t0) follows from the fact that X is a diffeomorphism and
thus has a continuous inverse.

By lemma A.0.2 we immediately get:

Corollary 4.2.9. There exists an open neighborhood K \ p+ ⊂ O ⊂ J(p−, p+) such
that O ⊂ D, i.e. for every q ∈ O, Fq has a unique minimum.

We can now show that D is an open subset of J(p−, p+):

Proposition 4.2.10. Let q0 ∈ D and qn → q0 in V . Then there exists an
N ∈ N such that n ≥ N implies that Fqn has a unique minimum (an, tn) and
(an, tn) → (a0, t0) where (a0, t0) is the unique minimum of Fq0.

1This is a rough sketch merely meant to outline a possible proof. In time we hope that we can
make this argument more rigorous.
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Proof. We may assume q0, qn ∈ J(p−, p+)
o
because the case q0 ∈ K\{p+} is covered

by the previous proposition and q0 ∈ J(p−, p+)
o
implies qn ∈ J(p−, p+)

o
eventually

because the interior is open.
First we write t0 = Fq0(a0) < Fq0(a

′), a0 ̸= a′ ∈ Sn−1 for the unique minimum
of Fq0 . Let p0 = Ea0(q0), then by lemma 4.2.3, p0 ∈ Ereg

K (q0) and a0 ∈ Areg(q0).

By prop 2.3.6 there exists a ε > 0 such that f : Bε(q0)× Bε(a0) → [−TSn−1 , 0] is
smooth. In particular Fq0 = f(q0, · ) is smooth on Bε(a0) ⊂ Areg(q0). Furthermore
because a0 is a local minimum of the smooth Fqn we must have dFq0|a0 = 0 and
its hessian HFq0

(a0) must be positive definite by definition of D. Because positive
definiteness of the hessian is equivalent to it having only positive eigenvalues, there
exists δ > 0 such that every eigenvalue of HFq0

(a) is bigger than c0 > 0 for all

a ∈ Bδ(a0) ⊂ Bε(a0). Hence HFq0
is positive definite and Fq0 is convex on all of

Bδ(a0).
By an analogous argument to the one employed in the proof of 2.3.7 we can prove

that Fqn|Bδ(a0)
is smooth for n big enough and HFqn

→ HFq0
uniformly on Bδ(a0).

Because every eigenvalue of HFq0
(a) is bigger than c0 > 0 for all a ∈ Bδ(a0), there

must exist a N1 ≥∈ N such that Fqn|Bδ(a0)
is smooth and HFqn

has only positive

eigenvalues on Bδ(a0) for all n ≥ N1. Therefore Fqn is convex on Bδ(a0) as well.
Next we prove that Fqn must have all its minima in B δ

2
(a0). We first note

that because a0 is the unique minimum of Fq0 we have Fq0(a)− Fq0(a0) > 0 for all
a ∈ Sn−1 \ B δ

2
(a0). Because Fq0 is continuous and Sn−1 \ B δ

2
(a0) compact there

exists a c1 > 0 such that Fq0(a) > Fq0(a0) + c1 for all a ∈ Sn−1 \ B δ
2
(a0). By

proposition 2.2.4, Fqn → Fq0 uniformly. Hence there exists a N2 ≥ N1 such that
Fqn(a0) ≤ Fq0(a0) +

c1
2
. Thus we have mina∈Sn−1 Fqn(a) ≤ Fqn(a0) ≤ Fq0(a0) +

c1
2

for all n ≥ N3. But again by uniform convergence there exists a N3 ≥ N2 such that
Fqn(a) > Fq0(a0) +

c1
2
for all a ∈ Sn−1 \B δ

2
(a0). Hence Fqn has no global minima

in Sn−1 \B δ
2
(a0) for all n ≥ N3.

But because Fqn is a continuous function on a compact space there must exist
a minimum an ∈ Sn−1 such that tn := Fqn(an) ≤ Fqn(a

′) for all a′ ∈ Sn−1. As
we just saw we must have an ∈ Sn−1 \ B δ

2
(a0). But we also proved that Fqn is

convex on Bδ(a0) which means that a0 must be the unique minimum of Fqn on
Bδ(a0). Because Fqn cannot have another minimum outside of B δ

2
(a0), a0 must be

the unique minimum of Fqn and thus qn ∈ D.
Finally we prove that an → a0. We suppose by contradiction that an does

not converge to a0. Because Sn−1 is compact there exists a convergent sub-
sequence qj such that aj → a′ ̸= a0 and qj ∈ D for all j ∈ N. Because
q0, qj ∈ J(p−, p+)

o
, we have Fqj(aj) → Fq0(a

′). Furthermore we have Fqj(aj) =
mina∈Sn−1 Fqj → mina∈Sn−1 Fq0 because Fqj → Fq0 uniformly. But this implies
Fq0(a

′) = mina∈Sn−1 Fq0 = Fq0(a0), a contradiction because Fq0 was assumed to
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Sn−1

Fq(a)

0

tq
aq

∗χaq

Sn−1

Hq(a)

0

aq

Figure 4.1: Plots of Fq and Hq in the Minkowski case; aq and tq are location
and value of the unique minimum of Fq. We can see that multiplying Fq by χaq

diminishes its spike at aq.

have a unique minimum. Note that because f is continuous on J(p−, p+)
o × Sn−1

this implies tn = f(qn, an) → t0 = f(q0, a0) as well.

Note that by lemma A.0.2 this shows that D is open.

4.3 Smoothed Observation Time Functions

In this section we will define “smoothed” observation time functions which will be
regular enough at the boundary K to carry out a similar reconstruction as in the
previous chapter.

To that end we define:

Definition 4.3.1 (Observation Bump Function). For a0 ∈ Sn−1 want to define the
observation bump function χa0 : S

n−1 → [0, 1] to be a smooth function which varies
smoothly in a0, has χa0(a

′) = 0 if and only if a′ = a0, is symmetric around a0 and
there exist ε1 > 0 such that χa0(a

′) = 1 for all a′ ∈ Sn−1 \Bε1(a0) and ε1 > ε2 > 0
such that maxa′∈Bε(a0) χa0(a

′) < ε
TSn−1

for all ε < ε2.

To that end, for a fixed a0 ∈ Sn−1 we introduce local radial coordinates
a ∈ B1(a0) 7→ (r(a), ω(a)) ∈ [0, 1] × Sn−2 such that r(a0) = 0. For a ∈ Sn−1 we
then define

χa0(a) :=

{
1− exp(− r(a)2

1−r(a)2
) if a ∈ B1(a0)

1 otherwise

Because χa0(a) only depends on r(a) it is symmetric, by construction is smooth
and also varies smoothly in a0. We can see that ε1 = 1, and because we have
χa0 (r)

r
|r=0 = 0, there exists a suitable ε1 > ε2 > 0.

Equipped with these functions we can now define:
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Definition 4.3.2 (Smoothed Observation Time Function). We define the smoothed
observation time function as

h : D × Sn−1 → [−TSn−1 , 0]

(q, a) 7→ χaq(a)f(q, a)

where aq is the location of the unique minimum of Fq. Note that h is well defined
because χaq(a) ∈ [0, 1] for all a ∈ Sn−1. Analogous to the previous observation
time functions we define ha(q) := h(q, a) and Hq(a) := h(q, a).

Remark 4.3.3. Note that for q ∈ K we haveHq(a) = 0 for all a ∈ Sn−1. Furthermore,
because χaq is smooth and by proposition 2.3.6, we get that for any q ∈ D, Hq

is continuous on Sn−1 and smooth on Areg(q) (where for any q ∈ K we define
Areg(q) = Sn−1).

We will now show that Hq is regular even at the boundary: First of all it
converges uniformly for any limit point q0 ∈ D.

Proposition 4.3.4. Let qn ∈ D → q0 ∈ D. Then Hqn → Hq0 uniformly.

Proof. Let an resp. a0 be the location of the minimum of Fqn resp. Fq0 . We will
again treat the cases q0 ∈ K and q0 ∈ J(p−, p+)

o
seperately: If q0 ∈ J(p−, p+)

o

there exists a N1 ∈ N such that qn ∈ J(p−, p+)
o
for all n ≥ N1. We claim that

h : D ∩ J(p−, p+)
o × Sn−1 is a continuous function . This is because f(q, a) is

continuous and qn → q0 implies an → a0 by the previous lemma, which implies
χan → χa0 because χa varies smoothly in a ∈ Sn−1. But now we can apply lemma
A.0.1 to get Hqn → Hq0 uniformly.

Now we treat the case q0 ∈ K. We can again split up qn into two subsequences
qin ∈ J(p−, p+)

o
and qjn ∈ K. Since we have Hqjn

(a) = 0 for all a ∈ Sn−1,
Hqjn

→ Hq0 follows immediately since we have Hq0(a) = 0 for all a ∈ Sn−1.
It remains to prove that Hqin

→ Hq0 uniformly. To simplify notation we will
denote qk := qin , and ak for the location of the unique minimum of Fqk . We want
to show that for every ε > 0 there exists a N ∈ N such that Hak(a) > −ε for all
a ∈ Sn−1.

To that end let ε > 0. Because qk → q0 implies ak → a0 by proposition 4.2.8,
there exists a N1 ∈ N such that ak ∈ B ε

2
(a0) for all k ≥ N1. Hence we have

B ε
2
(a0) ⊂ Bε(ak) and we have χak(a) < ε for all a ∈ B ε

2
(a0) ⊂ Bε(an). For any a ∈

B ε
2
(a0) we thus have Hqk(a) = χak(a)f(qk, a) > −ε because f(qk, a) ∈ [−TSn−1 , 0].
It remains to show that there exists a N2 ∈ N such that Hqk(a) > −ε for all

a ∈ Sn−1 \ B ε
2
(a0) and n ≥ N2. Because B ε

2
(a0) is an open neighborhood of we

can apply 4.2.6 to find a N2 ∈ N with Fqk(a) > −ε for all q ∈ Sn−1 \ B ε
2
(a0) and

n ≥ N2. Because χa < 1 this implies Hqk(a) > −ε and we are done after setting
N := max{N1, N2}.
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Corollary 4.3.5. h : D × Sn−1 → [0, 1] is continuous.

Proof. Let (qn, an) → (q0, a0) ∈ D × Sn−1. The case where q0 ∈ J(p−, p+)
o
was

treated in the proof of the previous proposition. We can thus assume q0 ∈ K.
Furthermore we assume qn ∈ J(p−, p+)

o
because if qn has a subsequence in K it

is trivial to show that h converges on this subsequence. Because h(q0, a0) = 1 for
any a0 ∈ Sn−1 it remains to show that h(qn, an) = Hqn(an) → 1, which follows
immediately from the previous proposition.

We now want to show that h is even smooth on a suitable subset of D × Sn−1,
i.e. the analogue of proposition 2.3.6. To that end we must first show that the
unique minimum of Fq varies smoothly with q:

Lemma 4.3.6. For every q ∈ D ∩ J(p−, p+)
o
there exists a λ > 0 such that the

map

a : Bλ(q0) → Sn−1

q 7→ argmin
a∈Sn−1

Fq

is smooth.

Proof. Let q0 ∈ D ∩ J(p−, p+)
o
with minimum at a0 ∈ Sn−1. Recall that this

implies a0 ∈ Areg(q0). By proposition 2.3.6 there exists a ε > 0 such that f :
Bε(q0) × Bε(a0) → [−TSn−1 , 0] is smooth. Because by definition of D, Fq0 must
have a positive definite hessian at its unique minimu, which is an open property,
there exists a ε > δ > 0 such that the map f : Bδ(q0) × Bδ(a0) → [−TSn−1 , 0]
always has positive definite hessian with respect to a and for every q ∈ Bδ(q0) we
have argmina∈Sn−1 Fq(a) ∈ Bδ(a0).

We then define the function

f ′ : Bδ(q0)×Bδ(a0) → T ∗Sn−1

(q, a) 7→ dFq|a

which is smooth because f is smooth on its domain and has f ′(q0, a0) = 0. Further-
more because f has a positive definite hessian with respect to a, the non-degeneracy
condition of the implicit function theorem is satisfied, and we can find a λ > 0 and
a smooth map q ∈ Bλ(q0) 7→ a(q) ∈ Bδ(a0) such that f ′(q, a(q)) = 0. Because f is
positive definite with respect to a on Bδ(a0) and by choice of δ, Fq must have its
minimum in Bδ(a0) and a(q) must be the location of this minimum as desired.

Corollary 4.3.7. Let C := {(q, a) ∈ V × Sn−1 | q ∈ D ∩ J(p−, p+)
o
, a ∈ Areg(q)}

then h : C → [−TSn−1 , 0] is a smooth and dHq(a) is bounded for all (q, a) ∈ C.
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Proof. As shown in proposition 2.3.6, f is smooth on C. By the previous lemma
q ∈ D∩J(p−, p+)o 7→ a(q) is smooth as well. Hence the map h(q, a) = χa(q)(a)f(q, a)
is the product of smooth functions making it smooth itself.

The boundedness of dHq(a), follows because dFq|(a) is bounded by proposition
2.3.11 together with the fact that χa has bounded derivative because it is smooth
on a compact set.

And finally we conjecture:

Conjecture 4.3.8. We can choose χ such that for all qn → q0 ∈ K we have

max
a∈Areg(qn)

∥dHqn|an∥gSn−1
→ 0.

Proof. Although a full proof of this result was beyond the scope of this thesis we
aim to give an idea of the central difficulty and a possible angle of attack:

Let qn → q0 = µa0(t0) such that Fqn has a unique nondegenerate minimum at
an ∈ Sn−1 with observation time tn. The main challenge is that we need to be
able to very closely describe how dFqn behaves as qn → q0 not only close to a0 but
globally: We require it go to zero fast enough away from the minimum a0 and to
get spiked slow enough around a0 such that multiplying by χan forces the derivative
to go to zero everywhere.

In the Minkowski case we see that this is the case as dFqn grows only polynomially
and the spike concentrates around an polynomially as well. But to transfer this
insight to the general case we need to show that Fqn suitably approaches the
Minkowski case as qn approaches K.

We were so far unable to develop the machinery needed to show this, but
a fruitful approach might be to utilize the fact that as qn → q0 ∈ K, PK(qn)
increasingly concentrates around the geodesic µa0([t0, 0]) which has no cut points
as it lies in K. If we then can show that the neighborhood of µa0([t0, 0]) is suitably
close to the Minkowski case we might be able to prove our result.

4.4 Reconstruction

We can now reconstruct the topological structure of V
Analogous to the reconstruction in the previous chapter we let C∞(Sn−1) be

the space of continuous functions H : Sn−1 → [−TSn−1 , 0] which are smooth on a
dense open set in Sn−1. We again endow this space with the metric

d(H1, H2) := d∞(H1, H2) +

∫
Sn−1

∥dH1|a − dH2|a∥gSn−1da,
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where d∞(H1, H2) := maxa∈Sn−1|H1(a)−H2(a)|. Note that by definition of K(Sn−1)
the subset of Sn−1 where H1 or H2 are not smooth is a null set, making the integral
well-defined.

For q ∈ D with minimum tq ∈ [−Taq , 0] at aq ∈ Sn−1 we define

H : D → S × (K, d)

q 7→ (aq, tq, Hq)

where Hq(a) = h(q, a) is the smoothed observation time function.
The follow lemma assures that no information is lost when passing from Fq to

Hq:

Lemma 4.4.1. For any q ∈ D we can recover Fq given only H(q).

Proof. First of all, given H(q) = (aq, tq, Hq) we can determine whether q ∈ K or
q ∈ J(p−, p+)

o
, because q ∈ K if and only if mina∈Sn−1 Hq(a) = 0. We can thus

treat the cases seperately: If q ∈ K we have q = Θ(aq, tq) and lemma 4.2.4 allows
us to fully reconstruct Fq.

Now for the case where q ∈ J(p−, p+)
o
: We have Hq(a) = χaq(a)Fq(a) and thus

Fq(a) =
1

χaq (a)
Hq(a). This allows us to reconstruct Fq(a) for all a ̸= aq because

χaq(a) ̸= 0 for all a ̸= aq. But by definition we have Fq(aq) = tq and we have fully
reconstructed Fq.

We denote V1 := V ∩D.

Lemma 4.4.2. H : V1 → V̂1 := H(V1) ⊂ S × (K, d) is well-defined, continuous and
bijective.

Proof. We begin by proving that H is well-defined. Because H is defined on D,
any q ∈ D must have a unique minimum making q 7→ (aq, tq, Hq) well-defined.
Furthermore we have Hq ∈ K(Sn−1) by corollary 4.3.7, together with the fact that
Hq = 1 is also smooth for q ∈ K.

Now we want to prove that for any qn → q0 ∈ V1 with unique minima at (an, tn)
resp. (a0, t0) we have (an, tn) → (a0, t0) and d(qn, q0) → 0. By proposition 4.2.10
we have (an, tn) → (a0, t0).

By proposition 4.3.4 we haveHqn → Hq0 uniformly, which implies d∞(Hqn , Hq0) →
0. It remains to show

∫
Sn−1∥dHqn|a − dHq0|a∥gSn−1da → 0. We again treat the

cases q0 ∈ K and q0 ∈ J(p−, p+)
o
seperately: If q0 ∈ J(p−, p+)

o
we can assume

without loss of generality that qn ∈ J(p−, p+)
o
as well. Then we can use corollary

4.3.7 and an analogous argument to the one used in lemma 3.1.1 to show that∫
Sn−1∥dHqn|a − dHq0|a∥gSn−1da → 0.
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It remains to show that∫
Sn−1

∥dHqn|a − dHq0|a∥gSn−1da =

∫
Sn−1

∥dHqn|a − 0∥gSn−1da → 0

for q0 ∈ K. But this follows immediately from lemma 4.3.8.
Finally we show that H is injective. Note that we proved in the previous lemma

that H(q) = (aq, tq, Hq) allows us to determine whether q ∈ K of q ∈ J(p−, p+)
o
. If

q ∈ K we have q = Θ(aq, tq) making H injective on the boundary. If q ∈ J(p−, p+)
o
,

the previous lemma allows us to reconstruct Fq and thus EK(q). Because q ∈ V we
can apply proposition 2.2.9 proving that H is injective.

Lemma 4.4.3. Let qn ∈ V1 such that H(qn) → H(q0) in V̂1 for some q0 ∈ V1.
Then also qn → q0.

Proof. By definition we have H(qn) = (an, tn, Hqn) → (a0, t0, Hq0) = H(q0). Be-
cause we can determine from H(q0) whether q0 ∈ K or q0 ∈ J(p−, p+)

o
we can

treat the two cases seperately. If q0 ∈ J(p−, p+)
o
we have mina∈Sn−1 Hq0(a) < 1,

then by uniform convergence there exists a N1 ∈ N such that mina∈Sn−1 Hqn(a) < 0,
implying qn ∈ J(p−, p+)

o
for all n ≥ N0. We can then apply an analogous argument

to the one used in lemma 3.1.2 to get qn → q0.
For the case q0 ∈ K we can again split up H(qn) into two subsequences, H(qin)

where qin ∈ K and H(qjn) where qjn ∈ J(p−, p+)
o
for all n ∈ N. We thus have

qin = Θ(ain , tin) which implies qin → q0 because (ain , tin) → (a0, t0). For the
other case we denote qk := qjn ∈ J(p−, p+)

o
and (ak, tk) := (ajn , tjn) to simplify

notation. Because Hqk → Hq0 = 0 uniformly and there exists a ε > 0 such that
Hqk |Sn−1\Bε(ak) = Fqk |Sn−1\Bε(ak) we also have maxa∈Sn−1 Fqk → 0. This implies that
d(qk, K) → 0. Now we suppose by contradiction that qk does not converge to q0.
We thus have a convergent subsequence qj → q′ ̸= q0 ∈ K and aj → a0, tj → t0.
We can the apply proposition 4.2.10 to qj and q′ to find that (a0, t0) is also the
unique minimum of Fq′ . But because q′ ∈ K we have q′ = Θ(a0, t0) = q0, a
contradiction.

Corollary 4.4.4. H : V1 → V̂1 is a homeomorphism.

4.4.1 Combining boundary and interior reconstruction

Now that we have shown how we can reconstruct the topology close to and at
the observation set K, i.e. on V1 := V ∩ D, we now aim to show how we can
reconstruct it away from the observation set, i.e. on V2 := V \K. Finally we then
will recombine the two procedures to reconstruct the topology on all of V .

Remark 4.4.5. To reconstruct V2 = V \K we simply reuse the procedure developed
in the previous chapter. As noted in remark 3.4.2, we can use corollary 3.1.3 on
V2 = V ∩ (J(p−, p+) \K) to get a homeomorphism F : V2 → V̂2 := F(V2).
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We now highlight the following important properties of V1, V2:

Remark 4.4.6. By proposition 4.2.10 we know that D is an open neighborhood
of K \ {p+}. Therefore V1 = D ∩ V and V2 = (J(p−, p+) \K) ∩ V are both open
subsets of J(p−, p+) and we have V1 ∪ V2 = V because V ⊂ J(p−, p+) \ {p+}.

Thanks to these properties can now reconstruct the topology on V :

Lemma 4.4.7. A set O ⊂ V is open if and only if H(O∩V1) ⊂ V̂1 and F(O∩V2) ⊂
V̂2 is open.

Proof. For the first direction we suppose that O ⊂ V is open. Because V1 and V2

are open so are O∩V1 and O∩V2. But because both H and F are homeomorphisms
and thus open maps, H(O ∩ V1) and F(O ∩ V2) must be open as well.

For the other direction we assume that H(O ∩ V1) and F(O ∩ V2) are open.
Because H and F are bijective and continuous, O ∩ V1 and O ∩ V2 must be open
as well. Furthermore we have V1 ∪ V2 = V and thus

O = O ∩ V = O ∩ (V1 ∪ V2) = (O ∩ V1) ∪ (O ∩ V2)

must be open, as desired.

Proposition 4.4.8. Given data 1.2.1 we can determine the topology on V , i.e. for
a subset O ⊂ V we can determine whether it is open, given the set PK(O).

Proof. Suppose we are given the data from 1.2.1 and the light observation set
PK(O) = {PK(q) | q ∈ O} of a subset O ⊂ V . For any PK(q) ∈ PK(O) we can
first evaluate if q ∈ V \K and q ∈ D by checking if Fq is continuous in a and if
it has a unique minimum. If q ∈ D we can construct Hq; note that Fq and Hq

are completely determined by PK(q) and the data. This allows us to construct
H(O ∩ V1) = {Hq | q ∈ V ∩D} and F(O ∩ V2) = {Fq | q ∈ V ∩ (J(p−, p+) \K)}.
Because we know the topology on V̂1 and V̂2 we can determine if H(O ∩ V1) ⊂ V̂1

and F(O ∩ V2) ⊂ V̂2 are open. By the previous lemma this allows us to determine
whether O was open. Therefore we know all open subsets of V and with it the
topology of V .

4.5 Smooth and Conformal Reconstruction

As mentioned in the introduction the smooth and conformal reconstruction in the
boundary case was beyond the scope of this paper. We do however conjecture
that the reconstruction remains possible in this case as well, and want to sketch a
possible proof:
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Conjecture 4.5.1 (Full Boundary Reconstruction). Let (Mj, gj), p
±
j as in theorem

1.1.7. Let now Vj ⊂ J(p−j , p
+
j ) \ p+j be open sets. We assume that no null geodesic

starting in Vj has a null conjugate point on Kj.
Then, if

Φ̃(PK1(V1)) = PK2(V2)

there exists a conformal diffeomorphism Φ : V1 → V2 that preserves causality.

The main challenge here is the differential reconstruction: We can again proceed
by looking at V1 = D ∩ V and V2 = (J(p−, p+) \K)∩ V seperately. For the second
case concerning V2 we should be able to again use the interior reconstruction to
determine the differential structure around point away from K.

As in the topology reconstruction the recovery of the differential structure on
D should be more challenging: We need to find locally smooth coordinates on D
which extend smoothly to the boundary and can be determined by the data. But
here we actually already laid some groundwork: In the proof of proposition 4.2.8
we defined a map

X : R+ × S → M

(c, a, t) 7→ expΘ(a,t)(−cνa,t)

which for any q0 ∈ K, after suitably restricting the domain, was a diffeomorphism
onto an open neighborhood q0 ∈ O ⊂ J(p−, p+). This implies that in a suitable
neighborhood of the boundary K, the distance c to K as well as the location a
and value t of the unique minimum define smooth coordinates. However, while for
any q ∈ V we can determine whether Fq has a unqiue minimum and if it does the
location and value of it as well from the light observation sets, there is no a priori
way do determine the distance of some q ∈ V to K from the light observations.

To solve this issue we introduce a proxy for the distance which should work
if q ∈ V is close enough to the boundary: For q ∈ D with unique minimum at
(aq, tq) ∈ S we define the map

d(q) :=

(
1

detHFq(aq)

) 1
c

if q ∈ J(p−, p+)
o
and d(q) := 0 if q ∈ K

where HFq again is the hessian of Fq and c ∈ N a suitable constant. This map is
well-defined because aq must be a regular point ensuring Fq is smooth at aq and
in the proof of proposition 4.2.10 we saw that HFq(aq) must be positive definite
making 1

detHFq (aq)
positive and finite. Furthermore we note that this definition is

coordinate independent. Importantly, because we know Fq we can determine d(q)
from the light observation sets as desired. We now conjecture that
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Conjecture 4.5.2. For a suitable open neighborhood O of K, the map

x : O → R× Sn−1 × R
q 7→ (d(q), aq, tq)

is a diffeomorphism onto its image.

This is supported by lemma 4.3.6 which shows that the map q 7→ aq is smooth on
the interior, as required. Because the light observations allow us to determine x on
all of V ∩D we can presumably identify all points where x fails to be injective and
so determine a suitable O from the data, allowing us to determine the differential
structure of V in a neighborhood of K as desired.

Finally for the conformal reconstruction we note that for q ∈ J(p−, p+) \K we
can determine the light cone just as in the interior reconstruction case. And for
point q ∈ K we can calculate the light cone as the limit of neighboring cones.

Remark 4.5.3. For the sake of completeness we also note that another approach
might be the coordinates

Z : D → R× Sn−1 × R

q 7→
(

max
a∈Sn−1

Fq(a), argmin
a∈Sn−1

Fq(a), min
a∈Sn−1

Fq(a)

)
.

This is because, similar to the inverse determinant of the hessian at the minimum,
the global maximum of Fq might be a good proxy for the distance of q ∈ V to K
as well.

It remains to be seen which approach will prove more fruitful.
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Chapter 5

Applications

In this chapter we will examine some useful applications of the results proven in
the previous chapters. We first show that the suitability conditions required in
theorems 1.1.6 and 1.1.7 are somewhat generic as they are preserved by small
perturbations. Then we will use a conformal embedding of Minkowski space into
the Einstein universe to show that theorem 1.1.6 also allows us to reconstruct the
complete spacetime from observations at future null infinity.

5.1 Stability Results

The following lemma guarantees that theorem 1.1.6 still applies even if we perturb
the metric slightly:

Lemma 5.1.1. Let (M, g) be a globally hyperbolic manifold with p−, p+ ∈ M
suitable. Furthermore let V ∈ J(p−, p+)

o
such for any q ∈ V , no null geodesic

starting at q has a conjugate point in K.
If we vary the metric g slightly to g̃ := g + h such that

|hij|q| < ε, |hij,α|q| < ε, |hij,α,β|q| < ε for i, j, α, β ∈ {1, . . . , 1 + n}

and g̃ is smooth and has hq = 0 for all q ∈ M \ V ; then if ε > 0 is small enough,
(M, g̃) is globally hyperbolic and p−, p+, V are still suitable

Proof. To distinguish between objects defined in terms of g or g̃ we will add a
prescript of the respective metric, for example gexpq is the exponential map defined
with respect to g and g̃expq with respect to g̃. We begin by mentioning that for
ε1 > 0, small enough, (M, g̃) still globally hyperbolic. This follows from theorem
12 in [Ger70].

Next we want to show that we also have p− g̃≪p+, i.e. there exists a timelike
(wrt. g̃) path from p− to p+. Because p− g≪p+, there exists a path σ with σ(0) = p−
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and σ(1) = p+ which is timelike wrt. g. Because [0, 1] is compact we can find a
ε2 > 0 such that σ is still timelike wrt. g̃, and thus p− g̃≪g+.

Because p− g̃≪p+ and (M, g̃) globally hyperbolic, the map a ∈ Sn−1 7→ g̃T a ∈
(−∞, 0) as in lemma 2.1.6 is well-defined and continuous making g̃S := {(a, t) ∈
Sn−1 × [0,∞) | t ∈ [0, g̃T a]} a compact set.

Now because the geodesic equation on (M, g̃) is a second order ODE with
coefficients g̃ij and g̃ij,α and h = g̃ − g has compact support, g̃exp : TM → M
depends smoothly on g̃ij and g̃ij,α while d g̃exp : T (TM) → TM depends smoothly
on g̃ij, g̃ij,α and g̃ij,α,β for some ε3 > 0 small enough. This implies that g̃ρ(q, w) as
well as g̃T a depend smoothly on g̃ and its first and second derivatives. Because we
have gρ(p

+, a) > gT a for all a ∈ Sn−1 there exists a ε4 > 0 such that g̃ρ(p
+, a) > g̃T a

for all a ∈ Sn−1 and we have proved that p−, p+ are suitable.
Note that because g̃ = g outside of V , we still have V ⊂ g̃J(p

−, p+)
o
. We

can then see that p−, p+, V are still suitable with respect to g̃ and some ε5 > 0
after noting that g̃L

KV is compact and gexp has no conjugate points in gL
KV by

assumption. Taking ε := min{ε1, . . . ε5} yields the desired result.

We can extend the previous result slightly to show that if also the past boundary
of J(p−, p+) has no cut points, then J(p−, p+) and K are conserved.

Corollary 5.1.2. Let (M, g) be a globally hyperbolic manifold with p−, p+ ∈ M
suitable and such that no geodesic starting at p− has a cut point in L+

p− ∩ J−(p+).

Furthermore let V ∈ J(p−, p+)
o
such for any q ∈ V , no null geodesic starting at q

has a conjugate point in K.
If we vary the metric g slightly to g̃ := g + h such that

|hij|q| < ε, |hij,α|q| < ε, |hij,α,β|q| < ε for i, j, α, β ∈ {1, . . . , 1 + n}

q ∈ J(p−, p+)
o
and g̃ is smooth and has h = 0 for all q ∈ M \ J(p−, p+)o. Then if

ε > 0 is small enough, (M, g̃) is globally hyperbolic and p−, p+, V are still suitable.
Furthermore we have gJ(p

−, p+) = g̃J(p
−, p+) and gK = g̃K.

Proof. The proof follows from the observation that the fact that p+ and p− have
no cut points in L∓

p± ∩J±(p∓) implies
g
expp± =

g̃
expp± , together with an analogous

argument as in the previous lemma.

Example 5.1.3. Because Minkowski space (R1+n, gM := −dt2 +
∑

dx2) has no
cut points, all p−, p+, V such that V ∈ J(p−, p+)

o
are suitable. Using the previous

lemma we can see that for small perturbations of gM with support on V , theorem
1.1.6 still applies and we can reconstruct V from the light cone observations on K.

However this example is somewhat limited in scope because such a perturbation
cannot be physical, i.e. cannot have Ricci-tensor zero. To get a physical example
we will use the reconstruction result on the Einstein universe.
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5.2 Einstein Universe

Definition 5.2.1 (Einstein Universe). Let (R,−dt2) be the real line with negative
definite metric −dt2 and (Sn, h) the n-sphere with the canonical Riemannian
metric. The 1 + n dimensional Einstein universe is then defined as the product
(R× Sn,−dt2 ⊕ h). Note that this is a Lorentzian globally hyperbolic manifold.

To better describe the Einstein universe the following is very useful:

Remark 5.2.2. We can parameterize Sn by an angle α ∈ [0, π] and a point ω ∈ Sn−1

via the map

S : [0, π]× Sn−1 → Sn

(α, ω) 7→ (cosα, sinαω)

If for a X ∈ Sn we write X = (X0,
−→
X ), X0 ∈ R,

−→
X ∈ Rn. We can invert S by

α = arccosX0, ω =

−→
X

∥
−→
X∥

.

S is surjective and smooth but we have

(1, 0, . . . , 0) = S(0, ω) and (−1, 0, . . . , 0) = S(π, ω) for all ω ∈ Sn−1,

which means S fails to be injective if α = {0, π}. Nonetheless, for every X ∈ Sn,
X 7→ α is well defined and smooth.

5.2.1 Conformal Embedding

We will now describe how Minkowsky space can be conformally embedded into
the Einstein universe and how we can find null the corresponding future and past
infinities.

Definition 5.2.3. We can first define MM , the image of the conformal embedding
and thus a conformal copy of Minkowski space within the Einstein universe:

MM :={(T,X) ∈ R× Sn | T ∈ (−π, π), α < π − |T |}

Next we can define the future and past null infinities of MM to be (almost) its
future and past boundaries:

J + :={(T,X) ∈ R× Sn | T ∈ (0, π), α = π − T}
J − :={(T,X) ∈ R× Sn | T ∈ (π, 0), α = π + T}
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As mentioned J ± are only almost the full boundary ofMM ; in fact {T = ±π, α = 0}
and {T = 0, α = π} are missing. But as remarked in 5.2.2, at these points the
mapping X 7→ α is degenerate and

i± :={T = ±π, α = 0}
iS :={T = 0, α = π}

are single points which correspond exactly to timelike future, timelike past and
spacelike infinities.

If we set p± = i± we can see that J + = K \ ({p+} ∪ R), and that they are
almost suitable. A slight issue is that past null geodesics starting at i+ = (π, 0)
have a conjugate point at is = (0, π) ∈ R. We even have R = {iS}. Meaning the
past light cone starting at i+ fully collapses into is. To fix this we can again argue
that by lemma 2.1.1(3) we can disregard this boundary behaviour and because no
geodesic starting at i+ has a conjugate point in J + we can continue as if i− and i+

were suitable.
We can now construct our conformal embedding:

Proposition 5.2.4. Let (ME, gE) = (R× Sn,−dt2 ⊕ h) be the 1 + n dimensional
Einstein universe and (R1+n, h = dt2 − dxndx

n) the 1 + n dimensional Minkowski
space. Then the map

Ψ : MM → R1+n (5.1)

(T,X) 7→ 1

cosT +X0

(sinT,
−→
X ) (5.2)

is a conformal diffeomorphism from MM to the whole Minkowski space R1+n with
conformal factor cos(T ) +X0. Here X0 denotes the first coordinate of X under the
canonical embedding of Sn into Rn+1.

Proof. This can be verified by calculation. An extensive treatment can be found in
[Hör97](A.4).

Note that this allows us to identify J± with the future resp. past null infinities
of Minkowski space, whereas i± are the future resp. past timelike infinities. We can
thus understand a reconstruction of a set V ⊂ J(i−, i+)

o
from light observations

on J + as a reconstruction of a subset of Minkowsky space from observations at
future null infinity. Notably this remains possible even if we vary g slightly:

Example 5.2.5. Let now V := {(T,X) ∈ MM | T > 0} and p± = i± Then
we we have V ∈ J(p−, p+)

o
and no null geodesic starting in V has cut point

on K = L−
p+ ∩ J+(p−) ≈ J +. This is because for any ω ∈ Sn and η ∈ TωS

n,
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R

Figure 5.1: Illustration of the Einstein universe together with the conformal copy
of Minkowski space MM and the corresponding infinities J ± and i±. We can see
that J ± are codimension 1 null submanifolds of the Einstein universe and i± are
single points.

−ω is a conjugate point of full dimension along γω,η and in fact the first cut
point. Furthermore by the same argument we can see that for all v ∈ CL−

i+M ,
γi+,v has a conjucate point of maximal dimension exactly where it intersects with
J+(p−) \ I+(p−), i.e. on the boundary R. Because of this R is now a single point
and not a dimension n− 1 submanifold anymore. By lemma 2.1.1(3) assures that
this is no problem as all reconstruction only requires K to be regular on K∩I+(p−).

We can thus assume that p−, p+ and V are suitable and can apply corollary
5.1.2 to show that even if we vary g slightly to g̃ on J(p−, p+)

o
we can still carry

out the reconstruction.
If we then use Ψ to push the whole situation into R1+n we can see that Ψ∗g

is a slight variation of the Minkowski metric which does not necessarily have
compact support. If we view + as future null infinity we can see that we are able
to reconstruct Ψ(V ) = {(t, x) ∈ R1+n | t > 0} from the light observations at null
infinity.

Using theorem 3.5 in [Fri86] we can see that there even are families of physical
spacetimes, i.e. satisfying the Einstein field equations, which can be reconstructed
in this way.
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Further directions

Finally we outline some interesting further directions for inverstigation: First of
all, analogously corollary 1.3 in [KLU17] it would be interesting to study whether
in the boundary reconstruction case where V and K might overlap, it is possbible
to even construct the metric g on V itself (and not only up to a conformal factor).

In line with the active reconstruction results by [WZ19] and [LUW18], it would
be interesting to investigate whether such a result could also be obtained in our
case, i.e. if for some nonlinear wave equations on (M, g) we could reconstruct
J(p−, p+)

o
from knwoledge of the source-to-solution map, mapping sources on

K− := (J+(p−) \ I+(p−)) ∩ J−(p+) to observations on K.
Furthermore during our investiation of reconstruction on the Einstein universe

the question arose whether a Lorentzian manifold (R1+n, g) with no null conjugate
point must necessarily be conformally flat. As shown by Guillarmou, Mazzucchelli,
and Tzou [GMT19], this is the case for asymptotically flat Riemannian manifolds.
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Appendix A

Technical Lemmas

In this chapter we will state and prove some useful technical lemmas from topology
and differential geometry.

This first lemma states that under sufficiently nice conditions, two-parameter
maps converge uniformly if one input converges pointwise. This is exactly what we
need to prove that Fqn converges uniformly to Fq0 if qn → q0 ∈ J(p−, p+)

o
.

Lemma A.0.1. Let (X, dX), (Y, dY ), (Z, dZ) be metric spaces with X, Y compact.
Let f : X×Y → Z be a continuous functions and denote fx : Y → Z; y 7→ fx(y) :=
f(x, y) for x ∈ X. Let xn → x0 ∈ X as n → ∞ be a convergent sequence.

Then fxn → fx0 uniformly as n → ∞.

Proof. Let xn → x0 ∈ X be a convergent sequence. We want to show that for any
ε > 0 there exists a N ∈ N such that for all n ≥ N we have

maxy∈Y dZ(fxn(y), fx0(y)) < ε.

To that end let ε > 0. Then because X and Y are compact, we can use the
Heine-Cantor theorem to get a δ > 0 such that

dX(x1, x2) < δ ∧ dY (y1, y2) < δ =⇒ dZ(fx1(y1), fx2(x2)) < ε.

Now if N ∈ N such that dX(xn, x0) < δ ∀n ≥ N and y ∈ Y arbitrary we
have dX(xn, x0) < δ ∧ dY (y, y) < δ which implies dZ(fxn(y), fx0(y)) < ε. Because
y ∈ Y was arbitrary we also get maxy∈Y dZ(fxn(y), fx0(y)) < ε and the proof is
complete.

This lemma is useful because it allows us to translate the question of whether a
set defined by a certain property is open into a question of sequences which in our
contex are often more natural to answer.
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Lemma A.0.2. Let A be a first-countable topological space and P : A → {false, true}
a property defined for all points a ∈ A. Suppose now that for any converging se-
quence an → a0 ∈ A there exists a N ∈ N such that P (an) is true for all n ≥ N .

Then there exists an open neighborhood O ⊂ A of a0 such that P (a) is true for
all a ∈ O.

Proof. We suppose by contradiction that for all open neighborhoods a0 ∈ U ⊂ A
there exists a aU ∈ U such that P (aU) is false. We then use the fact that A
is first-countable to obtain a countable neighborhood base, i.e. a sequence of
neighborhoods U1 ⊃ U2 ⊃ . . . such that for every open neighborhood a0 ∈ U ′ ⊂ A
there exists a N ∈ N such that UN ⊂ U ′. Now as noted above, for every Un there
must exist a an ∈ Un with P (an) false. But because the sets Un form a countable
neighborhood base of a0, an must converge to a0. This is a contradiction because
P (an) is false for all n ∈ N.

Finally this lemma is used to prove that LK
q M is indeed a submanifold.

Lemma A.0.3 (Transverse Map). Let f : M → N be a smooth map transverse to
the submanifold L ⊂ N of codimension k and f−1(L) is nonempty. Then f−1(L)
is a codimension k submanifold of M .

Proof. This standard result from differential geometry follows from the preimage
theorem after using the fact that L is a submanifold of N .
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Appendix B

Causality and Global
Hyperbolicity

In this chapter we cover some of the relevant theory of causality on globally
hyperbolic manifolds. This will include the time separation functions, cut points and
conformal invariants. For a more extensive discussion we refer to [One83](Chapter
14) and [Bee81](Chapter 9) as this chapter is heavily based on them.

B.1 Causal Relations

In this first section we will establish which points in a Lorentzian manifold can be
connected by timelike or lightlike paths under which circumstances.

Let (M, g) be a time-oriented Lorentzian manifold. We will first look at some
properties of the causal and chronological future and past, as defined in 1.1.1.

Note that in the Minkowski case Rn
1 the set I+(p) is open and J+(p) = I+(p)

is closed. Furthermore I+(p) resp. J+(p) is the set of all q ∈ Rn
1 such that −→pq is

timelike resp. causal. We will see that under sufficient conditions the first of the
above facts also hold in the general case.

Corollary B.1.1. If x ≪ y and y ≤ z or x ≤ y and y ≪ z, then x ≪ z.

Proof. This follows immediately from proposition C.3.13

Let U ⊂ M be an open set. Then the intrinsic causality relations in U imply
the ones in M . In particular, if we denote by I+(A,U) the chronological future in
U of the set A ⊂ U , we have that I+(A,U) ⊂ I+(A) ∩ U .

With this in mind we will now consider the case of a convex set C:

Lemma B.1.2. Let C be a convex open set in M , then
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(1) For p ̸= q in C, q ∈ J+(p, C) ⇐⇒ −→pq is future-pointing causal.

(2) I+(p, C) is open in C (hence also in M).

(3) J+(p, C) is the closure in C of I+(p, C).

(4) The relation ≤ is closed on C, i.e. if pn → p and qn → q with all points in C
then qn ∈ J+(pn, C) for all n implies q ∈ J+(p, C).

(5) A causal curve α contained in a compact K ⊂ C is continuously extendable.

Proof. Properties (1-3) follow from the fact that the convex open set C is via the
exponential map everywhere diffeomorphic to the tangent space TpM ≃ Rn

1 and
thus the properties of the Minkowski space also apply here.

To prove (4) we first note that by (1) we have that qn ∈ J+(pn, C) implies −−→pnqn
is future-pointing causal. Now by C.1.18 (pn, qn) 7→ −−→pnqn is continuous and thus −→pq
is also future-pointing causal. Fact (4) then follows from again applying property
(1).

To prove (5) we suppose that the domain of α is [0, B) where B < ∞. As K is
compact there exist a sequence si → B such that α(si) converges to a point p ∈ K.
We must now prove that for any sequence ti → B such that α(ti) → q we have p = q.
Assume by contradiction that p ̸= q. By possibly taking subsequences we can
achieve that si ≤ ti ≤ si+1. Then since α is causal we get α(si) ≤ α(ti) ≤ α(si+1)
and thus α(ti) ∈ J+(α(si), C) and α(si+1) ∈ J+(α(ti), C). By (4) we now have
q ∈ J+(p, C) and p ∈ J+(q, C) which by (1) implies that −→pq is at the same time,
future and past pointing, a contradiction.

(2) can be generalized:

Lemma B.1.3. The relation ≪ is open; that is if p ≪ q there exist neighborhoods
U ,V of p and q respectively such that for any p′ ∈ U and q′ ∈ V we still have p ≪ q.

Proof. Let σ be a timelike curve from p to q. Let C be a convex open neighborhood
of q and q− a point on σ which comes before q and still lies in C. Then I+(q−, C)
is also an open neighborhood of q. If we proceed analogously for p with p+ and C ′.
Then we get that I−(p+, C ′) and I+(q−, C) are the neighborhoods we were looking
for.

Note that this lemma implies that I+(A) is open for any set A.
We can now further develop the topology of causality:

Lemma B.1.4. For A ⊂ M we have that:

(1) int J+(A) = I+(A)
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(2) J+(A) ⊂ I+(A) with equality iff J+(A) is closed.

Proof. To prove (1) we first note that I+(A) is open as remarked above. Also
I+(A) ⊂ J+(A) by definition. Now if q ∈ int J+(A), then for a convex neighborhood
C of q, I−(q, C) contains a point of J+(A). Hence q ∈ I+J+(A) = I+(A).

Now to prove part (2): The equality assertion is clear, as I+(A) ⊂ J+(A). Note
that is suffices to consider only the case where A = {p}, since the general case then
follows from ⋃

p∈A

J+(p) ⊂
⋃
p∈A

I+(p) ⊂
⋃
p∈A

I+(p).

Let us thus consider the case of I+(p). Clearly p ∈ I+(p). Thus we only need to
consider p < q. Let σ be a causal path from p to q. Let C be a convex neighborhood
of q and q− a point lying on γ in C. Now by lemma B.1.2, q− ∈ J+(p) and
I+(J+(p)) = I+(p) we have

q ∈ J+(q−, C) = I+(q−, C) ⊂ I+(J+(p)) = I+(p).

B.2 Causality Conditions

Definition B.2.1 (Strong Causality Condition). We say that the strong causality
condition holds at p ∈ M if for any given neighborhood U of p there exists a
neighborhood V ⊂ U of p such that any causal curve with endpoints in V lies
entirely within U .

Intuitively this condition states that any causal curve which starts arbitrarily
close to p and leaves some fixed neighborhood cannot return arbitrarily close to p.
In particular this rules out closed causal loops.

The following lemma is in line with this intuition:

Lemma B.2.2. Suppose the strong causality condition holds on a compact subset K
of M . If α is a future-inextendable causal curve that starts in K, then α eventually
permanently leaves K. That is, there exists a s > 0 such that α(t) /∈ K for all
t ≥ s.

Proof. Assume that the conclusion is false. Thus if the domain of α is [0, B) for
B ≤ ∞, by the compactness of K, there exists a sequence si → B such that
α(si) → p ∈ K. Since α has no future endpoint there must be some other sequence
tj → B such that α(tj) does not converge to p. After taking further subsequences
we can assume that some neighborhood U of p contains no α(tj) and the sequences
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are alternating, i.e. s1 < t1 < s2 < t2 < s3 < . . . . But now the curves α|[sk,sk+1

always leave the neighborhood U but return arbitrarily close and thus violated the
strong causality condition.

Under these conditions there exists a very useful lemma for constructing
geodesics joining some p < q.

Lemma B.2.3. Suppose the strong causality condition holds on a compact subset
K ⊂ M . Let (αn) be a sequence of future-pointing causal curve segments in K
such that αn(0) → p and αn(1) → q ̸= p. Then there exists a future-pointing
causal broken geodesic γ from p to q and a subsequence (αm) of (αn) such that
limm→∞ L(αm) ≤ L(γ).

This lemma is proven by leveraging the existence of quasi-limits together with
the fact that given the strong causality condition, future inextendable curves must
eventually leave a compact set K permanently. This proof can be found in detail
in [One83, Lemma 14.14].

B.3 Time Separation Function

There is a natural way to generalize the notion of the separation of points p ≤ q in
Rn

1 to an arbitrary Lorentzian manifold M .

Definition B.3.1 (Time Separation). Let p, q ∈ M , we define the time separation
τ(p, q) from p to q as

τ(p, q) := sup{L(α) | α is a future-pointing causal curve segment from p to q}.

We have τ(p, q) = ∞ if the length is unbounded and τ(p, q) = 0 if the separation
is spacelike, i.e. q /∈ J+(p). Note that for any causal path α the function s 7→
τ(α(0), α(s)) is monotonously increasing.

Lemma B.3.2. (1) τ(p, q) > 0 iff p ≪ q.

(2) Reverse triangle inequality: If p ≤ q ≤ r, then τ(p, q) + τ(q, r) ≤ τ(p, r).

Proof. (1) If τ(p, q) > 0 there exists a future-pointing causal curve α from p to q
with L(α) > 0. Thus α cannot be a null pregeodesic. By proposition C.3.13 there
now exists a timelike curve from p to q. The converse follows immediately from
the definition.

(2) If there are future-pointing causal curves from p to q and q to r we can pick
causal curves α from p to q and β from q to r such that, for an arbitrarily small
δ > 0

L(α) ≥ τ(p, q)− δ/2, L(β) ≥ τ(q, r)− δ/2.
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We then have

τ(p, r) ≥ L(α + β) = L(α) + L(β) ≥ τ(p, q) + τ(q, r)− δ

for any δ > 0, as required. If there is no future-pointing causal path from WLOG
p to q then τ(p, q) = 0 and the result follows immediately.

Lemma B.3.3. The time separation function τ : M × M → [0,∞] is lower
semicontinuous.

Proof. If τ(p, q) = 0 there is nothing to prove. Suppose q ∈ I+(p) and 0 < τ(p, q) <
∞.

Given δ > 0 we must find neighborhoods U ,V such that for all p′ ∈ U , q′ ∈ V
we have τ(p′, q′) > τ(p, q)− δ.

Let α be a timelike curve from p to q with L(α) > τ(p, q) − δ/3. Let C be a
convex neighborhood of q and q− on α and in C. Since in convex neighborhoods
the map q′ 7→ L(σq−q′), where σq−q′ is the radial geodesic, is continuous there exists
a neighborhood V of q such that for all q′ ∈ V we have L(σq−q′) > L(σq−q)− δ/3.

By analogous argument we get that there exists a p+ and neighborhood U of p
such that for all p′ ∈ U we have L(σp′p+) > L(σpp+)− δ/3.

Putting this together and using the fact that L(σq−q) ≥ L(α|[q−,q]), resp
L(σpp+) ≥ L(α|[p,p+]) we have

τ(p′, q′) ≥ L(σp′p+) + L(α|[p+,q−]) + L(σq−q′)

> L(σpp+)− δ/3 + L(α|[p+,q−]) + L(σq−q)− δ/3

≥ L(α|[p,p+])− δ/3 + L(α|[p+,q−]) + L(α|[q−,q])− δ/3

= L(α)− 2δ/3 > τ(p, q)− δ

as required.

B.4 Globally Hyperbolic Manifolds

It is convenient to define

J(p, q) := J+(p) ∩ J−(q)

Note that any future-pointing causal path from p to q must be contained in J(p, q).
We can now give a powerful condition as to when the supremal path of τ(p, q)

is actually achieved:

Proposition B.4.1. For p < q, if the set J(p, q) is compact and the strong causality
condition holds on it, then there is a causal geodesic from p to q of length τ(p, q).
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Proof. Let (αn) be a sequence of future-pointing curve segments from p to q whose
lengths converge to τ(p, q) (the existence of such a sequence is guaranteed as τ(p, q)
is the supremum of such curves). These curves are all in J(p, q) which is compact.
Hence, by lemma B.2.3, there exists a broken causal geodesic γ with

τ(p, q) = lim
n→∞

L(αn) ≤ L(γ) ≤ τ(p, q).

But now, if γ were to have any actual breaks, by corollary C.3.7 there would exist
a longer curve, which is a contradiction.

Note that this implies in particular that τ(p, q) is always finite if J(p, q) is
compact.

This motivates the following definitions:

Definition B.4.2 (Globally Hyperbolic). A subset H ⊂ M is called globally
hyperbolic if (1) the strong causality conditions holds and (2) for all p, q ∈ H with
p < q, J(p, q) is compact.

Definition B.4.3. Let γ : [0, T ] be a causal geodesic from p = γ(0) to q = γ(T ).
We call γ maximal if we have L(γ) = τ(p, q) and hence L(γ|[0,t]) = τ(p, γ(t)) for all
0 ≤ t ≤ T .

Lemma B.4.4. If U is globally hyperbolic open set, then the time separation
function τ : U × U → [0,∞) is continuous.

Proof. We know from a previous lemma that τ is always lower semicontinuous.
Suppose, for contradiction, that is is not upper semicontinuous at (p, q), i.e. there
exists a number δ > 0 and sequences pn → p and qn → q such that τ(pn, qn) ≥
τ(p, q) + δ for all n.

Since τ(pn, qn) > 0, there exists a causal curve αn from pn to qn such that
L(αn) > τ(pn, qn)− 1/n. Because U is open it contains also the slightly earlier resp.
later points p− ≪ p, q+ ≫ q. As I+(p−) resp. I−(q+) are open neighborhoods of p
resp. q, pn and qn are eventually contained in them and we can WLOG assume
that they always are. It follows that the curves αn are all contained in the compact
set J(p−, q+). Now we can apply lemma B.2.3 to obtain a broken geodesic γ from
p = lim pn to q = lim qn with

L(γ) ≥ lim
n→∞

L(αn) ≥ lim
n→∞

τ(pn, qn) ≥ τ(p, q) + δ.

But since δ itself is a curve from p to q this is a contradiction.

Lemma B.4.5. If U ⊂ M is a globally hyperbolic open set, then the causality
relation ≤ is closed on U .
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Proof. We again have to show that if pn → p and qn → q with all points in U and
pn ≤ qn for all n, then also p ≤ q.

If p = q the result follows immediately. We can thus assume p ̸= q and pn < qq
for all n. Let αn then be a causal curve from pn to qn. As in the preceding proof,
all α are in J(p−, q+) and by lemma B.2.3, there exists a causal curve γ from p to
q. This implies p < q.

Remark B.4.6. We can now summarize the results from this section for the case
where (M, g) is a globally hyperbolic Lorentzian manifold:

For any p ∈ M , I±(p) is open and J±(p) is closed with int J±(p) = I±(p) and
I±(p) = J±(p).

For the time separation function we can say the following:

(1) τ(p, q) > 0 iff p ≪ q.

(2) τ(x, y) satisfies the reverse triangle inequality :

τ(x, y) + τ(y, z) ≤ τ(x, z) for x ≤ y ≤ z.

(3) (x, y) 7→ τ(x, y) is continuous in M ×M .

(4) For x < y there exists a causal geodesic γ from x to y such that L(γ) = τ(x, y).

B.5 Light Cones

In this section we will examine some relevant properties of the light cone as defined
in 1.1.2

B.5.1 Null Cut Points

To better understand the behavior of null geodesics we will introduce so called cut
points which intuitively are the points where a null geodesic stops being maximal.
Such cut points are the product of curvature as in the Minkowski case there are
none.

For (p, v) ∈ TM with v ̸= 0 let T (x, v) ∈ (0,∞] be the maximal value for which
γv : [0, T (x, v)) is defined.

Definition B.5.1 (Cut Locus Function and Cut Points). For (p, v) ∈ L+M we
define the cut locus function

ρ(p, v) := sup{s ∈ [0, T (p, v)) | τ(p, γv(s)) = 0}.

The points x1 = γv(t1), x2 = γv(t2), t1 < t2 ∈ [0, t0] are called cut points on γv([0, t0])
if t2 − t1 = ρ(x1, v1) for v1 = γ′

v(t1). In particular, the point p(x, v) = γv(s)|s=ρ(x,v),
if it exists, is called the first cut point on the geodesic γv.
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Lemma B.5.2. Let p < q ∈ M . Suppose there are two distinct future-pointed
null geodesics α : [0, a) → M,β : [0, b) → M from p = α(0) = β(0) through
q = α(1) = β(1). Then both geodesics have a cut point in [0, 1], i.e. q comes on or
after the first cut point.

Proof. We will show that for any s ∈ (1, a) we have τ(p, α(s)) > 0 since this implies
that α must have a cut point at or before 1. Let γ = β|[0,1] + α|(1,a) be the broken
null geodesic obtained by traveling from p to q on β and then continuing on α.
Thus for any s ∈ (1, a), γ|[0,s] is a broken null geodesic and by proposition C.3.13
there exists a timelike curve from p to γ(s) = α(s) which implies τ(p, α(t)) > 0 as
required.

The proof for β follows analogously.

Lemma B.5.3. Let now (M, g) be globally hyperbolic, and let p < q ∈ M with
τ(p, q) = 0. Assume that pn → p and qn → q with pn ≤ qn. Let γn be maximal
geodesics joining pn to qn with initial direction vn. Then the set (vn) has a limit w
and γw is a maximal null geodesic from p to q.

Proof. As in the proof of lemma B.4.4 there exist p− ≪ p q+ ≫ q such that
pn, qn, γn all lie in J(p−, q+) which is compact. By lemma B.2.3 there exists a
future-pointing broken geodesic λ which is the quasi-limit of γn (see [One83, Def.
14.7]). Thus there exists a convex neighborhood C of p and a sequence sn such
that limn→∞ xn := γn(sn) → x = λ(s) ∈ C and γn|[0,sn] ∈ C. Note that since γn is a
maximal geodesic we have that γn|[0,sn] is the unique radial geodesic from pn to xn

and we have vn = γ′
n(0) =

−−→pnxn. Now by lemma B.1.2 (p′, q′) →
−→
p′q′ is continuous

and we thus have that

lim
n→∞

vn = lim
n→∞

−−→pnxn = −→px =: w.

By construction, see [One83, Lemma 14.14], λ|[0,s] is the radial geodesic in C from
p to x and thus also λ′(0) = −→px = w.

It remains to show that λ is an actual unbroken geodesic. But since L(λ) ≤
τ(p, q) = 0 it follows from proposition C.3.13 that λ must be smooth null geodesic.

Thus also λ = γw since λ is a geodesic with initial velocity w.

Theorem B.5.4 (Cut Point Characterization). Let (M, g) be globally hyperbolic.
Then for (x, p) ∈ L+M , p(x, v) is either the first conjugate point on γv or the first
point on γv where there exists another null geodesic γw from x to p(x, v) where
v ̸= cw.

Proof. Let q = p(x, v) = γv(t) be the first cut point on the null geodesic γv. Let
furthermore tn → t be a monotonously decreasing sequence such that γv(tn) is well
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defined for all n. Now since M is globally hyperbolic there exist maximal geodesics
γn from p to qn := γv(tn). Note that since q = γv(t) is the first cut point of γv we
have τ(p, γv(tn)) > 0 for all n. But since γv is a null geodesic, it has zero length
and cannot be maximal up until any of the tn. Thus γn cannot equal γv and in
particular vn := γ′

n(0) ̸= v for all n. We can apply the previous lemma to obtain a
geodesic γw and a null vector w such that vn → w and γw is a maximal geodesic
from p to q.

Now we can distinguish to cases: If v ≠ w there exist two distinct maximal
geodesics, namely γv and γw joining p and q.

If however, v = w we can view γn as a variation of γv through geodesics starting
at p which additionally satisfy that the limiting variation at q is zero (since the qn
converge to q). q is thus a conjugate point of γv.

Proposition B.5.5. For (M, g) globally hyperbolic, ρ(p, v) is lower semicontinuous.

Proof. It suffices to prove that if (pn, vn) → (p, v) in TM and ρ(pn, vn) → A in
R∪{∞}, then ρ(p, v) ≤ A. If A = ∞ there is nothing to prove we will thus assume
that A < ∞. We further assume ρ(p, v) > A to derive a contradiction.

We can choose a δ > 0 such that A+ δ < ρ(p, v) and q := γv(A+ δ) exists. We
define bn = ρ(pn, vn)+ δ and can force for n large enough bn < ρ(p, v) and γn := γvn
defined past bn. We then denote qn = γn(bn).

Since bn > ρ(pn, vn), γn cannot be maximal from pn to qn. Now, since M is
globally hyperbolic, by B.4.1 we can find maximal null geodesics σn from pn to qn
with initial velocity wn. By B.5.3 wn → w with γw a maximal null geodesic from p
to q.

Since q cannot be conjugate point (because this would make it a cut point)
we cannot have wn → w = v. Thus we must have w ̸= v, but this implies that
there are two distinct maximal geodesics from p to q, namely γv and γw, thus
q = γ : v(A+ δ) must be a cut point of γv. This implies that ρ(p, v) ≤ A+ δ, which
is a contradiction since we assumed A+ δ < ρ(p, v).

B.6 Conformal Structure

Definition B.6.1 (Conformal Diffeomorphism). A map Ψ : (M1, g1) → (M2, g2) is
called a conformal diffeomorphism or homothety if Ψ : M1 → M2 is a diffeomorphism
and Ψ∗g2 = e2Ωg1 where Ω ∈ C(M1) and nowhere zero.

We further say that Ψ : V1 → V2 preserves causality if x < y implies Ψ(x) <
Ψ(y).

It can be calculated that the connections D on M1 and D̃ on M2 are related by
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the following equation:

D̃Ψ∗XΨ∗Y = f∗DXY +X(Ω)Ψ∗Y + Y (Ω)Ψ (B.1)

Proposition B.6.2. γ : I → M1 is a null pregeodesic if, and only if σ := Ψ ◦ γ is
also a null prefgeodesic.

Proof. By the symmetry of the situation (i.e. Ψ−1 is also a conformal diffeomor-
phism) is suffices to show only one direction. Suppose now γ : I → M1 is a null
geodesic on M1 and σ = Ψ ◦ γ. By the previous equation we have

D̃σ′σ′(t) = 2γ′(t)(Ω)σ′(t).

We can now reparameterize σ such that 2γ′(t)(Ω) is always zero and σ is a null
geodesic as desired.

The following proposition asserts that the conformal data of a metric can be
reconstructed from knowledge of the null cones:

Proposition B.6.3. Let M be a smooth manifold of dimension n ≥ 3 with
Lorentzian metrics g and h. Suppose that for any v ∈ TM we have g(v, v) = 0 iff
h(v, v) = 0. Then there exists a smooth nowhere zero function Ω ∈ C(M) such
that g = e2Ωh.

Proof. The proof follows from the fact that the nullcones are given by systems of
quadratic equations and some linear algebra. It can be found in more detailed form
at [Bee81, Theorem 2.3]

We can see that even the cut locus is conserved under conformal transformation:

Proposition B.6.4. Let γ : [0, a) → (M1, g1) be a null geodesic with first cut point
q = γ(t0). Then q′ = Ψ(q) is the first null cut point of p′ = Ψ(p) along the null
pregeodesic Ψ ◦ γ.

Proof. We can WLOG (since Ψ either causal or anti-causal and the proof of the
anti-causal case is analogous) assume that Ψ is causal and γ is future-pointing.
Ψ ◦ γ is thus also a future-pointed pre-geodesic which can be reparameterized to
a null geodesic σ with p′ = σ(0) and q′ = σ(t1). We will denote by τj the time
separation function on Mj.

We first show that τ2(p
′, σ(t)) = 0 for t ∈ [0, t1], i.e. that q′, if it is a cut

point, is indeed the first cut point. To obtain a contradiction we assume that there
exists a t ∈ [0, t1] with τ2(p

′, σ(t)) > 0. We my thus find a future-pointing causal
curve β from p′ to σ(t) with Lg2(β) > 0. Now Ψ−1 ◦ β is a future-directed causal
curve in M1 from p to Ψ−1(σ(t)) with Lg1(Ψ

−1 ◦ β) > 0. But since t ≤ t1 we have
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Ψ−1(σ(t) = γ(t2) with t2 ∈ [0, t0] and thus τ1(p, γ(t2)) > 0. This would mean that
γ has a cut point at t2, before t0 which is a contradiction.

We will now show that τ2(q
′, σ(t)) > 0 for any t > t1, as this would make

q′ = σ(t1) a future cut point of p along σ as required. Let thus t > t1. There exists
a t2 > t0 such that Ψ−1(σ(t)) = γ(t2). Now since γ(t2) lies past the first cut point
of γ, we have τ1(p, γ(t2)) > 0 and there exists a future-pointing causal curve α in
M1 with Lg1(α) > 0. Now Ψ ◦ α is also a future-pointing causal curve from p′ to
σ(t) with Lg2(Ψ ◦ α) > 0 and thus τ2(p

′, σ(t)) ≥ Lg2(Ψ ◦ α) > 0 as required.

B.7 Short Cut Argument

Theorem B.7.1. Let (M, g) be globally hyperbolic and p < q in M , then there
exists a future-pointed null geodesic γ : [0, a) → M from p = γ(0) to q = γ(t0) and
we have τ(p, q) = 0 if and only if γ has no cut points in [0, t0).

Proof. The existence of γ is assured by proposition B.4.1. Now suppose we have
τ(p, q) > 0 by the continuity of τ there must be a cut point γ(t) before q, i.e. t < t0.
Suppose on the other hand that γ has a cut point γ(t) with t < t0. Then by the
definition of cut points we must have τ(p, q) > 0 as t < t0.

We can apply this theorem to the case of a path from p to q which is the union
of the future pointing light-like pregeodesics γp,v([0, t0]) and γx1,w([0, t1]) where
x1 = γp,v(t0), q = γx1,w(t1). Let ζ = γ′

p,v(t0). If there are no c > 0 such that ζ = cw
or equivalently, the union of these two paths is not also a light-like pregeodesic, then
we have τ(p, q) > 0. By B.4.6, this implies that there exists a time-like geodesic
from p to q and thus τ(p, q) > 0. This is called a short-cut argument.
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Appendix C

Lorentzian Geometry

This chapter is essentially a reference of relevant fundamental definitions and results
from Lorentzian geometry included here for the sake of completeness, often without
proof. It closely follows chapters 3,8 and 10 of [One83].

C.1 Lorentzian Manifolds

C.1.1 Covariant Derivative and Levi-Civita Connection

Definition C.1.1 (Connection). A connection is a map D : Γ(M)×Γ(M) → Γ(M)
such that

(C1) DVW is C(M)-linear in V

(C2) DVW is R-linear in W

(C3) DV (fW ) = V (f)W + fDVW for f ∈ C(M)

Theorem C.1.2 (Levi-Civita Connection). On a semi-Riemannian manifold (M, g)
there exists a unique connection D such that

(C4) [V,W ] = DVW −DWV

(C5) Xg(V,W ) = g(DXV,W ) + g(V,DXW )

Proposition C.1.3 (Covariant Derivative in Coordinates). In coordinates the
covariant derivative for a vector field X is given by

(D∂iX)k = Xk
,i + Γk

ijX
j

Definition C.1.4 (Covariant Differential). The covariant differential of a tensor
field A ∈ T r

s (M) is the (r, s+ 1)-tensor field DA given by

(DA)(θ1, . . . , θr, X1, . . . , Xs, V ) := (DVA)(θ1, . . . , θr, X1, . . . , Xs)

89



C.1.2 Parallel Transport and Geodesics

Definition C.1.5 (Vector Field on a Curve). Let γ : I → M be a smooth curve.
The space of vector fields along γ, denoted by Γ(γ), corresponds to smooth maps
Z : I → TM such that Z(t) = (γ(t), v ∈ Tγ(t)M), i.e. vector fields along γ
parameterized by I.

Note that any vector field on M is also a vector field along γ.
There is a natural way to define the vector rate of change Z ′ for any Z ∈ Γ(γ)

Definition C.1.6 (Induced Covariant Derivative). Suppose that γ is regular, i.e.
γ′ ̸= 0 everywhere. Then the induced covariant derivative on Γ(γ) can be defined
as

Z ′ = DZ/dt := Dγ′Z where Z ∈ Γ(γ)

we then have that

(Z ′)k =
Zk

dt
+ Γk

ij

dγi

dt
Zj

If Z ′ = 0, it is said to be parallel.

Proposition C.1.7 (Parallel Translation). For a curve γ : I → M , let a ∈ I and
z ∈ Tγ(a)M .

Then there exist a unique parallel vector field Z on γ such that Z(a) = z

Note that this induces a function

P = P b
a(γ) : Tγ(a)M → Tγ(b)M where a, b ∈ I

called the parallel translation along γ.

Lemma C.1.8. Parallel translation is a linear isometry.

C.1.3 Geodesics

Definition C.1.9 (Geodesic). A curve γ is called a geodesic if its acceleration
γ′′ = Dγ′γ′ is zero.

Note that for a geodesic we thus have

d2(γi)

dt2
+ Γk

ij

dγi

dt

dγj

dt
= 0 for all k ∈ {1, . . . , n} (C.1)

These equations are known as the geodesic equations

Proposition C.1.10. Given a tangent vector v ∈ TpM there is a unique maximal
geodesic γv such that its initial velocity is v; that is γ′

v(0) = v.
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C.1.4 Exponential Map

For any point p ∈ M , the exponential map is (where it is defined) given by

expp : TpM → M

v → γv(1)

Note that we have

expp(tv) = γtv(1) = γv(t) for v ∈ TpM, t ∈ R

.
After restriction it is a well defined diffeomorphism:

Proposition C.1.11. For every p ∈ M there exists a neighborhood of zero Ũ ⊂
TpM on which the the exponential map expp is a diffeomorphism onto a neighborhood
U ⊂ M of p.

If additionally, Ũ is starshaped we call U normal and for every point p′ ∈ U
there exists a unique geodesic σ : [0, 1] → U from p to p′ in U . Furthermore we

have σ′(0) = exp−1(p) ∈ Ũ .

Note that if U is normal, the inverse exponent map exp−1 : U → Ũ induces
a so called normal chart on U . If we then pick a orthonormal basis e1, . . . , en of
TpM we a normal coordinate system with (x1, . . . , xn), which assigns to each point

p′ ∈ U the coordinates of exp−1
p (p′) ∈ Ũ relative to the basis (e1, . . . , en). I.e.

exp−1
p (p′) =

∑
xi(p)ei

Proposition C.1.12 (Normal Coordinates). If (x1, . . . , xn) are a normal coordinate
system at p ∈ M we have that

gij(p) = δijεj and Γk
ij(p) = 0 ∀i, j, k

C.1.5 Gauss Lemma and Convex Sets

The Gauss lemma asserts that the exponential map is a radial isometry

Lemma C.1.13 (Gauss Lemma). Let p ∈ M and 0 ̸= x ∈ TpM , if vx, wx ∈
Tx(TpM) with vx radial, then

⟨d expp(vx), d expp(wx)⟩ = ⟨vx, wx⟩

We denote by D ⊂ TM the largest domain of exp, namely the set of all
vectors in v ∈ TM such that the geodesic γv is defined on [0, 1]. It follows that
Dp = D ∩ TpM is the largest domain of expp.
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Corollary C.1.14. The domain D of exp is open in TM . The domain Dp of expp

is an open subset of TpM and starshaped about 0.

Definition C.1.15 (Convex Set). An open set C is convex if it is a normal
neighborhood of each of its points.

Proposition C.1.16. Every p ∈ M has a convex neighborhood.

Lemma C.1.17. A geodesic γ : [0, b) → M is geodesically extendable if and only
if it is continuously extendable.

For C a convex open set with p, q ∈ C. Suppose that σpq is the radial geodesic
from p to q. We then call σ′

pq(0) ∈ TpM the displacement vector from p to q and
denote it by −→pq.

Lemma C.1.18. Let C be a convex open set. The map ∆ : C × C → TM given by
(p, q) 7→ −→pq is smooth and open.

Lemma C.1.19. Given any open covering O of M there exists a convex covering
C such that each element of C is contained within some element of O.

C.1.6 Arc Length

Definition C.1.20 (Arc Length). Let γ : [a, b] → M be a piecewise smooth curve.
The arc length of γ is

L(γ) :=

∫ b

a

|γ′(s)|ds

Note that this length is invariant under monotone reparameterization and if
|γ′(s)| > 0 everywhere we can achieve |γ′(s)| = 1 by reparameterization.

Lemma C.1.21. L(σpq) =|−→pq| where −→pq ∈ TpM is the vector such that expp(
−→pq) =

q.

Proposition C.1.22. Let U be a normal neighborhood of p ∈ M . If there exists a
timelike curve in U from p to p′ then the radial geodesic segment σ form p to p′ is
the unique longest timelike curve in U from p to p′.

This works because if the timelike curve strays from σ it incurs a spacelike
velocity component which only serves to reduce its length.
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C.1.7 Lorentz Vector Space

Lorentz Vector Spaces are Scalar Product Spaces of index 1 and dimension ≥ 2.
They are abstractions of the tangent spaces to a Lorentz manifold. Let W be a
subspace of a Lorentz vector space V , there are three possibilities:

1. g|W is positive definite; W is a inner product space and is said to be spacelike.

2. g|W is nondegenerate of index 1; Then W is timelike,

3. g|W is degenerate; Then W is lightlike.

Proposition C.1.23 (Backwards inequalities for causal vectors). Let v and w be
causal vectors. Then

1. |⟨v, w⟩| ≥ |v||w|

2. |v|+ |w| ≤ |v + w|

To identify the future timecone at every point of a Lorentzian manifold we need
a time orientation (a smooth assignment of a timecone to each point p ∈ M)

Lemma C.1.24. A Lorentz manifold is time-orientable iff there exists a timelike
vector field.

C.1.8 Curvature

The Riemannian curvature tensor is the (1, 3) tensor field defined by

R : Γ(M)3 → Γ(M)

RXYZ = D[X,Y ] − [DX , DY ]Z

which measures the degree to which the covariant derivative fails to be ”lie-like”.
Note that R is a tensor as it is C(M)-linear in all arguments.

The curvature tensor is highly symmetric:

Proposition C.1.25. Let x, y, z, v, w ∈ TpM , then

1. Rxy = −Ryx

2. ⟨Rxyv, w⟩ = −⟨Rxyw, v⟩

3. Rxyz +Ryzx+Rzxy = 0

4. ⟨Rxyv, w⟩ = ⟨Rvwx, y⟩
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C.2 Two-Parameter Maps

Due to their usefulness we will give a brief introduction to two-parameter maps

x : D → M where D ⊂ R2 and satisfies the interval condition.

x defines families of u- and v-parameter curves αv0 := u 7→ x(u, v0), resp. βu0
:=

v 7→ x(u0, v).
The partial velocities are defined as

xu := dx(∂u) =
d

du
αv0 , xv := dx(∂v) =

d

dv
βu0 .

They are vector fields.
Let now Z be a vector field on x, we can then define the partial covariant

derivatives
Zu = DZ/∂u := Dαv0

Z, Zv = DZ/∂v := Dβu0
Z.

In coordinates:

(Zu)
k =

∂Zk

∂u
+
∑
i,j

Γk
ijZ

i∂x
j

∂u

A very useful proposition:

Proposition C.2.1. For a two-parameter map x and a vector field Z, we have
that

1. xuv = xvu

2. Zuv − Zvu = Rxu,xvZ

C.3 Calculus of Variation

We want to study the change in arc length of a curve segment under small displace-
ments. To that end we will introduce the variation of a curve.

Definition C.3.1. A variation of a curve segment γ : [a, b] → M is a mapping

x : [a, b]× (−δ, δ) → M

such that x(u, 0) = γ(u) for all u ∈ [a, b].
The u-parameter curves (i.e. x(·, v) for fixed v ∈ (−δ, δ)) are called longitudinal,

the v-parameter curves are called transverse
The vector field V on γ given by V (u) = d

dv
x(u, 0) is called the variation vector

field. It is the initial velocity of the transverse curve at that point.
If the longitudinal curves of x are geodesic, x is called a geodesic variation.
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C.3.1 Jacobi Fields

Definition C.3.2 (Jacobi differential). If γ is geodesic, a vector field Y on γ that
satisfies the Jacobi differential equation

Y ′′ = RY γ′(γ′)

is called a Jacobi vector field

Proposition C.3.3. The variation vector field of a geodesic variation is a Jacobi
field.

Lemma C.3.4 (Unique Jacobi Field). Let γ be a geodesic with γ(0) = p and v, w ∈
TpM . Then there exist a unique Jacobi field Y on γ such that Y (0) = v, Y ′(0) = w.

Since the jacobi equation is linear, the space of jacobi fields is thus a 2n-
dimensional vector space.

Proposition C.3.5 (Jacobi Fields and Exponential Maps). Let p ∈ M and
x ∈ TpM . For vx ∈ Tx(TpM),

d expp(vx) = V (1)

where V is the unique Jacobi field on the geodesic γx such that

V (0) = 0, V ′(0) = v ∈ TpM

C.3.2 First and Second Deviation of Arc Length

We denote by Lx(v) the arc length of x(·, v). Under mild conditions the function
L = Lx is smooth and we are interested in finding formulas for the first and second
variation of arc length (i.e. L′(0) and L′′(0)).

We consider piecewise smooth geodesics γ. To measure discontinuities at break
points (ui) we define

∆γ′(ui) := γ′(u+
i )− γ′(u−

i ) ∈ Tγ(ui)M

Furthermore, to treat spacelike and timelike curves in a uniform fashion we will
define the sign ε of a curve as ε = sgn⟨γ′, γ′⟩.

We can now state the first variation formula

Proposition C.3.6 (First Variation Formula). Let γ : [a, b] → M be a piecewise
smooth curve with constant speed c > 0 and sign ε. If x is a variation of γ, then

L′(0) =
ε

c

[
−
∫ b

a

⟨γ′′, V ⟩ du−
k∑

i=1

⟨∆γ′(ui), V (ui)⟩+ ⟨γ′, V ⟩|ba

]
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Note that for a smooth and fixed endpoint variation we have that

L′(0) = −ε

c

∫ b

a

⟨γ′′, V ⟩ du

Corollary C.3.7. Let γ be a constant speed curve. We have that γ is an unbroken
geodesic if and only if the first variation is zero for every fixed endpoint variation
x.

By this corollary it is sufficient to study geodesics in the treatment of the second
variation.

We define the transverse acceleration vector field A(u) := xvv(u, 0).

Proposition C.3.8 (Synge’s Formula for Second Variation). Let γ : [a, b] → M be
a geodesic with constant speed c > 0 and sign ε. If x is a variation of γ, then

L′′(0) =
ε

c

[∫ b

a

{〈
(V ′)⊥, (V ′)⊥

〉
− ⟨RV γ′V, γ′⟩

}
du+ ⟨γ′, A⟩|ba

]

C.3.3 Conjugate Point

Definition C.3.9 (Conjugate Point). Points σ(a) and σ(b) on a geodesic σ are
conjugate along σ if there is a nonzero Jacobi field J on σ such that J(a) = J(b) = 0.

We define Jab to be the set of all Jacobi fields on σ that vanish at a and b.
They are perpendicular to σ since they vanish twice.

Proposition C.3.10 (Conjugate Characterization). Let σ : [0, b] → M be a
geodesic starting at p. The following are equivalent:

1. σ(b) is a conjugate point of p = σ(0) along σ,

2. There is a nontrivial variation x of σ through geodesics starting at p such
that xv(b, 0) = 0,

3. expp is singular at bσ′(0), i.e. there exist 0 ̸= x ∈ Tbσ′(0)(TpM) with
d expp(x) = 0.

C.3.4 Energy Variation

For a curve segment α : [0, b] → M we define the energy as

E(α) =
1

2

∫ b

0

⟨α′, α′⟩ du
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And for a piecewise smooth variation x of α we define

Ex(v) =
1

2

∫ b

0

⟨xu,xu⟩ du

where v is fixed.
Note that E is always smooth and can thus be used to study null geodesics.

Proposition C.3.11 (First Variation Formula). Let x be a variation of α : [0, b] →
M with V and A the variation and transverse acceleration vector fields. Then

E ′
x(0) =

∫ b

0

g(V ′, α′)du = −
∫ b

0

g(V, γ′′)−
k∑

i=1

g(V,∆α′)(ui) + g(V, α′)|b0

where u1 < · · · < uk are the breaks of x and α.

C.3.5 Smoothing

We will now show how given a path which fails to be a null geodesic, we can find a
small variation such that it becomes timelike. This will be essential for establishing
causal structure of Lorentzian manifolds.

Lemma C.3.12. Let α : [0, 1] → M be a causal curve in a Lorentz manifold (M, g)
and x(u, v) a variation of α with variation field V . If g(V ′(u), α′(u)) < 0 for all
u ∈ [0, 1] then for all sufficiently small v > 0 the longitudinal curve αv of x is
timelike.

Proof. Because α is causal we have

g(xu,xu)(u, 0) = g(α′(u), α′(u)) ≤ 0 for all u ∈ [0, 1].

Furthermore we have V ′(u) = Vu(u) = xvu(u, 0) = xuv(u, 0) and for all u ∈ [0, 1]:

∂

∂v
g(xu,xu)(u, 0) = 2g(D ∂

∂v
xu(u, 0),xu(u, 0))

= 2g(xuv(u, 0), α
′(u)) = 2g(V ′(u), α′(u)) < 0.

But now, since α is defined on the closed interval [0, 1] for v > 0 sufficiently
small we have g(xu,xu)(u, v) < 0 for all u ∈ [0, 1]. Hence αv is timelike.

Proposition C.3.13 (Smoothing of causal curves). Let M be a Lorentz manifold
and α a causal curve from p that is not a null pregeodesic, then there exist a timelike
curve from p to q arbitrarily close to α.
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Proof. We can WLOG assume that the domain of α is [0, 1]. We will first consider
two special cases.

Case 1. α′(0) or α′(1) is timelike. Assuming the latter let W be obtained by
parallel translation of α′(1) along α. Then, as parallel translation is an isometry,
W and α′ are always in the same causal cone and since W is timelike, g(W,α′) < 0.
As α′ is continuous there exists a δ > 0 such that g(α′, α′) < −δ on [1− δ, 1]. Let f
be any smooth function on [0, 1] vanishing at the endpoints with f ′ > 0 on [0, 1− δ].
We then set V = fW and get g(V ′, α′) = g(f ′W + fW ′, α′) = fg(W,α) < 0 on
[0, 1 − δ] as W ′ = 0, f ′ > 0 and g(W,α′) < 0 on [0, 1 − δ]. Let x be a fixed
endpoint variation of α with variation field V . By the above lemma there exists a
v > 0 sufficiently small such that the longitudinal curve αv has become timelike on
[0, 1− δ] and is still timelike on [1− δ, 1].

Case 2. α is a smooth null curve. Differentiation of g(α′, α′) = 0 shows that
α′′ ⊥ α′. Now α′′ cannot always be parallel to α′, or α could be reparameterized
to a null geodesic. Thus the function g(α′′, α′′) ≥ 0 is not equal to zero as
g(α′, α′) = g(α′′, α′′) = g(α′, α′′) = 0 would imply g(α′′ + α′, α′′ + α′) = 0 which
can only be true if α′′ = cα′. g(α′′, α′′) ≥ 0 follows from the fact that g(α′′, α′′) < 0
would imply that α′′ is timelike and thus g(α′, α′′) > 0.

Let W be a parallel timelike vector field on α in the same causal cone as α′

at each point so g(W,α′) < 0. Let V = fW + f̃α′′ where f and f̃ vanish at the
endpoints and are to be determined such that g(V ′, α′) < 0.

Since g(α′′, α′) = 0 implies g(α′′′, α′) + g(α′′, α′′) = 0 and W ′ = 0 we compute

g(V ′, α′) = g(f ′W + fW ′ + f̃ ′α′′ + gα′′′, α′) = f ′g(W,α′)− f̃ g(α′′, α′′).

Because h = g(α′′, α′′)/g(W,α) is not identical to zero there exists a smooth f̃
vanishing at endpoints such that ∫ 1

0

f̃hdu = −1

Let f(u) =
∫ u

0
(f̃h+ 1)du. Then f vanishes at endpoints and f ′ = f̃h+ 1 > f̃h =

f̃ g(α′′, α′′)/g(W,α). Consequently, as g(W,α′) < 0

g(V ′, α′) = f ′g(W,α′)− f̃ g(α′′, α′′)

< f̃g(α′′, α′′)/g(W,α′)g(W,α′)− f̃ g(α′′, α′′) = 0.

And we can again apply the lemma above.
To complete the proof, note that if γ′ is timelike at a non-endpoint s then Case

1 applies on [0, s] and [s, 1] to give the required result. Thus we are left with the
case of a piecewise smooth null curve α. Unless every smooth segment of α can
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be reparameterized as a null geodesic, then by Case 2 some one can be varied to
become timelike on that segment. Then we can apply Case 1 again to get a timelike
curve.

Thus there only remains the case of a broken null geodesic α. It suffices to
assume there is a single break 0 < s < 1. Let W on α be obtained by parallel
translation of ∆α′(s) = α′(s+) − α′(s−). Recall that these two velocities are by
definition in the same causal cone, so using the reverse cauchy-schwarz inequality
we get g(W,α′) is negative on [0, s−] and positive on [s+, 1]. Now we choose a
piecewise smooth function f on [0, 1] that vanishes at the endpoints and positive
derivative on [0, s−] and negative derivative on [s+, 1]. Then for V = fW we have
g(V ′, α′) < 0 and the lemma applies.
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