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Abstract

We develop a general framework for the global analysis of linear and nonlinear wave equa-

tions on geometric classes of Lorentzian manifolds, based on microlocal analysis on com-

pactified spaces. The main examples of manifolds that fit into this framework are cosmo-

logical spacetimes such as de Sitter and Kerr-de Sitter spaces, as well as Minkowski space,

and perturbations of these spacetimes. In particular, we establish the global solvability of

quasilinear wave equations on cosmological black hole spacetimes and obtain the asymp-

totic behavior of solutions using a novel approach to the global study of nonlinear hyperbolic

equations. The framework directly applies to nonscalar problems as well, and we present

linear and nonlinear results both for scalar equations and for equations on natural vector

bundles.

To a large extent, our work was motivated by the black hole stability problem for

cosmological spacetimes, and we expect the resolution of this problem to be within reach

with the methods presented here.
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Chapter 1

Introduction

In this thesis, we give a detailed analysis of the long-time behavior of linear and nonlinear

waves on cosmological black hole spacetimes, in particular establishing the global-in-time

existence and the asymptotic structure of nonlinear waves with small amplitudes.

From a physical perspective, cosmological spacetimes are solutions to Einstein’s (vac-

uum) field equations

Ric(g) + Λg = 0, (1.0.1)

where Λ > 0 is the cosmological constant and g is a Lorentzian metric with signature

(+,−, . . . ,−) on a manifold M◦. A special family of solutions (M◦, g) of (1.0.1) describing

spacetimes containing rotating black holes is the Kerr-de Sitter family, which is parameter-

ized by the cosmological constant, the mass of the black hole and its angular momentum. A

major open problem in the theory of general relativity is the black hole stability conjecture;

in the present context, this conjecture asserts that spacetimes solving (1.0.1) which closely

resemble a Kerr-de Sitter spacetime initially settle down to another Kerr-de Sitter space-

time for large times. Putting in an extra structure, namely choosing a gauge to eliminate

the diffeomorphism invariance, Einstein’s field equations can be recast as a quasilinear wave

equation for the metric tensor g. In recent years, there has been a substantial amount of

work on aspects of the black hole stability problem; the primary focus (mostly in the case

Λ = 0) has been on obtaining a robust understanding of the decay of linear scalar waves on

black hole spacetimes, modelled by the Cauchy problem for the equation

�gu = 0 (1.0.2)

1



2 CHAPTER 1. INTRODUCTION

for an unknown function u on M◦, as well as of electromagnetic waves, described by

Maxwell’s equations; on the Minkowski spacetime, with Λ = 0 and without black holes,

similar developments led to a proof of the stability of Minkowski space [20]. We refer to

§§5.1.1 and 6.1.1 for a review of the literature.

We follow this tradition, but present a new perspective for the global study of waves

that enables us to give the first proof of global existence, asymptotics and decay for scalar

and non-scalar quasilinear wave equations, of a very general form, on black hole spacetimes.

In fact, we believe that the global nonlinear stability of the Kerr-de Sitter family is within

reach with the methods described here. We expect the general scheme of our approach,

which originates from the work of Vasy [114], and many of the methods to be applicable

and useful in other contexts as well.

Concretely, we adopt Melrose’s philosophy [82, 83, 84] of studying natural differential

operators P , e.g. the Laplace (or wave) operator, on a non-compact space M◦ by (partially)

compactifying M◦ to a manifold M with boundary (or corners) by adding ‘ideal boundaries,’

the concrete choice of compactification being tied to the geometric structure of M◦ near

infinity. The operator P then degenerates in a controlled manner at the added boundaries,

and there are well-established tools with which one can analyze the resulting degeneracies.

For instance, we compactify cosmological spacetimes equipped with a stationary metric (i.e.

invariant under translations in a time coordinate t) by adding ‘future infinity,’ given by the

vanishing of τ := e−t, to the spacetime. The wave operator �g on the compactified space

then is a so-called b-differential operator, the ‘b’ standing for ‘boundary’ and indicating

the precise nature of the degeneracy. This approach has proven to be very powerful for

elliptic problems [82, 81], and we show here how to study hyperbolic equations like (1.0.2)

from this point of view. The key observation is that the main qualitative properties of

the cosmological spacetime can be read off from the structure of the null-geodesic flow, i.e.

the paths of light rays, at the ideal boundary at future infinity: Horizons, like the event

horizon which separates the black hole interior from the exterior region and the cosmological

horizon defining the boundary of the observable universe, appear in the form of saddle

points for the flow, see Figure 1.1, and trapped trajectories, i.e. light rays that neither

escape through the cosmological horizon nor fall through the event horizon, are correctly

encoded at future infinity as well – for any finite amount of time, there is no trapping from

the global, spacetime point of view.

Note that thus encoding the causal structure of the spacetime is very convenient also
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Figure 1.1: Null-geodesic flow near a horizonH+ in the compactified picture: Null-geodesics
that do not exactly follow the horizon drift away from it exponentially; this is related to
the red shift effect. The flow extends smoothly to future infinity ∂M = {τ = 0}, and at the
set R where the horizon intersects ∂M , the extended flow has a saddle point.

from the point of view of nonlinear problems, since even for spacetimes which are merely

asymptotically stationary, i.e. settle down to stationary spacetimes exponentially fast, only

the structure at future infinity matters for the study of regularity, asymptotics and decay.

On stationary spacetimes, one can of course simply study spatial slices {t = const} in-

stead, but without modifications, this approach immediately breaks down for non-stationary

spacetimes, whereas there are no additional complications whatsoever in the compactified

b-picture.

The b-picture furthermore allows to precisely capture the structures responsible for

asymptotic expansions, energy decay and global regularity of waves. (While we only con-

sider the wave equation here, we stress that we only do this for the sake of simplicity:

The concepts outlined here apply to much more general operators as well, including per-

turbations of wave operators by lower order terms, and in fact including suitable so-called

b-pseudodifferential operators of arbitrary order.) Namely, they are encoded in the so-called

normal operator family �̂g(σ), obtained by freezing the coefficients of the wave operator

�g at future infinity (which produces a t-independent operator that agrees with �g up to

exponentially decaying terms) and taking the Fourier transform in −t, with σ denoting the

frequency (dual) variable. Just like in time-independent scattering theory, solutions of the

equation (1.0.2) then have an asymptotic expansion

u(t, x) =
∑
j

e−itσjujaj(x) + u′(t, x), (1.0.3)

with x denoting points on t = const slices, where the σj are poles of the meromorphic con-

tinuation of the inverse normal operator family �̂g(σ)−1, called resonances or quasinormal
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modes, and the aj are resonant states and only depend on the operator �g; the coefficients

uj are complex numbers, and the function u′ is a remainder term whose regularity and

decay we can quantify precisely. (At poles of order larger than 1, additional powers of t

appear in the expansion (1.0.3).)

The global analysis of regularity and decay allows one to formulate the Cauchy or

forward problem for linear wave-type equations as a (non-elliptic) Fredholm problem (or

in fact an invertible one) on suitable global function spaces, which are weighted L2-based

Sobolev spaces on the compactified spacetime M and take into account the asymptotic

expansion (1.0.3). Moreover, such a Fredholm statement, which is rather qualitative in

nature, relies solely on qualitative properties of (M, g) and its causal structure, that is, on

the global dynamics of the null-geodesic flow (structure of the horizons, the trapped set, the

non-trapping or mildly trapping nature of the flow), and is very robust under perturbations

of the metric. The non-elliptic Fredholm framework for the stationary operators �̂g(σ)

developed by Vasy [114] is very closely related to the spacetime framework.

For applications to nonlinear wave equations, one needs more detailed quantitative in-

formation, most prominently boundedness and mode stability, which means excluding reso-

nances σ with Imσ > 0, which in the resonance expansion (1.0.3) would cause exponential

growth of u in time, and excluding resonances on the real line as well, apart from allowing

a simple resonance at σ = 0; then the expansion (1.0.3) shows that u(t, x) solving (1.0.2)

decays exponentially in t to a stationary state, which is a resonant state corresponding to

the resonance at 0, or to 0 in the absence of a zero resonance. Such results, which amount to

showing the triviality of the kernel of the (non-elliptic) partial differential operator �̂g(σ)

for certain σ, rely on the exact form of the operator. (Thus, the non-elliptic Fredholm

framework makes the global study of waves analogous to the study of elliptic equations, say

on closed manifolds: Qualitative results, like the index or the smoothness of eigenfunctions,

are robust and rely only on qualitative properties of the operator, whereas quantitative re-

sults, e.g. the triviality of the kernel, are rather sensitive to the precise form of the operator;

but one already has a considerable amount of information from the Fredholm analysis when

commencing the quantitative analysis.)

To demonstrate how one can then solve nonlinear wave equations, we consider as a

simple example the scalar semilinear equation

�gu = |∇u|2 + f (1.0.4)
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on a Kerr-de Sitter spacetime (with small angular momentum a, or a = 0, which is

Schwarzschild-de Sitter space), with vanishing initial data, and the small forcing f gen-

erating the nonlinear wave. In this case, one does have mode stability, and a crude form of

the resonance expansion (1.0.3) for solutions of the linear equation �gu = 0 reads u = c+u′,

with c a constant and u′ exponentially decaying in t. The global point of view suggests an

iteration scheme for solving (1.0.4) in which one solves a linear equation globally at each

step: Namely, with the initial guess u0 = 0, we let

uk+1 = �−1
g (|∇uk|2 + f), k = 0, 1, . . . . (1.0.5)

(The actual iteration scheme is a bit more involved due to the loss of derivatives in the

presence of trapping; on de Sitter space on the other hand, it works as written.) Then

uk converges to a solution u = c + u′ of the nonlinear equation (1.0.4), with c and u′ as

above. We point out that the stationary state c to which the nonlinear wave decays is

automatically found by the global iteration scheme, which is made possible due to the fact

that the linear analysis sees future infinity and thus the mechanism for asymptotics and

decay at every step of the iteration; it is unclear and conceptually much less apparent how

a solution scheme that proceeds via extending the solution for a finite time at each step

would achieve this. The advantage of our global perspective becomes even more striking

when we consider quasilinear equations, say

�g(u,∇u)u = q(u,∇u) + f, (1.0.6)

with g(0, 0) a Kerr-de Sitter metric, where now the metric, including its asymptotic form,

can depend on the solution itself. Again, a global iteration scheme, solving a linear equation

at each step, solves (1.0.6). We can consider this PDE not only in the scalar setting, but

also in the setting of waves which are sections of a natural tensor bundle, e.g. the bundle of

differential forms, for which the space of stationary states is no longer 1-dimensional. We

therefore see that the problem of orbital stability for such equations can be resolved in a

very natural way. (The black hole stability problem poses additional difficulties, specifically

regarding the gauge freedom, and we do not discuss it further in this thesis.)

To put the global iteration scheme (1.0.5) into context, we recall that the traditional way

of solving nonlinear evolution equations proceeds by first establishing short time existence

and then arguing that the solution persists as long as certain energies remain bounded,
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which, combined with a priori energy bounds or Strichartz estimates, gives global existence;

this crucially relies on the finite speed of propagation for hyperbolic differential operators,

which in particular guarantees that the forward solution to a (nonlinear) evolution equation

at a given time is unaffected by any data that lie in its future. (There are natural problems

even for wave equations which cannot be treated in this way, namely when considering the

Feynman propagator instead of the advanced or retarded propagator [51].) Our approach on

the other hand disregards the local evolution character of the wave equation to some extent

and instead sets up a global framework which is more akin to elliptic problems. (Changing

an elliptic equation in an arbitrary open set will in general affect its solutions everywhere,

which renders a localized solution scheme for nonlinear elliptic equations impossible.) The

type of problem one wants to study, for example the forward or the Feynman problem for the

wave equation �gu = f , merely dictates the function spaces on which one has invertibility

or Fredholm properties of �g. While we only study nonlinear small data problems here, it is

an interesting question whether this global setup can also facilitate the analysis or provide

a new perspective for large data evolution problems.

Our global approach to the study of linear and nonlinear wave equations at present only

works on cosmological black hole spacetimes, i.e. when Λ > 0. (We can however study

semilinear waves on spacetimes which are asymptotically Minkowskian.) There are two

main complications arising in the study of spaces with Λ = 0, such as Schwarzschild and

Kerr spacetimes: Firstly, due to the presence of an asymptotically flat end of a spatial slice

{t = const} (rather than an asymptotically hyperbolic end for cosmological spacetimes),

the question of meromorphy of the inverse normal operator family becomes much more

delicate, and in fact linear scalar waves only decay polynomially with a fixed rate [105].

Secondly, when studying quasilinear problems using a compactified perspective, the correct

choice of compactification of, say, a perturbation of the Kerr spacetime depends on the long

range part of the perturbation and thus would change at each step of our above iteration

scheme, which therefore would not have a chance of converging. Regarding the first issue,

it is reasonable to expect suitable bounds for the normal operator family to hold up to the

real line, even though this has not been worked out yet, but it is unclear how to address the

second issue. We point out that other, more traditional methods based on energy estimates

and vector fields have been very successful in the treatment of linear scalar waves on exact

Kerr spacetimes [27, 31]; some perturbative results are also available [105], as well as results

for semilinear forward problems. See §5.1.1 for further references, including works also in
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the case Λ < 0, i.e. for anti-de Sitter universes.

Going back to the global Fredholm framework for linear wave equations, we need to

understand global regularity and decay properties of waves, and as mentioned above, the

normal operator analysis provides asymptotics and decay. In order to perform the regularity,

i.e. high frequency, analysis on the other hand, we use microlocal analysis to convert infor-

mation on the null-geodesic flow of the metric g in phase space, i.e. in the cotangent bundle

of M◦ rather than on M◦ itself, into regularity properties of solutions to �gu = 0. The con-

nection between the two is the following: The null-geodesic flow is the flow of the Hamilton

vector field of the Hamiltonian G(x, ξ) := |ξ|2g(x) on T ∗M◦, while �g can be viewed as a

quantization of G, thus replacing classical observables such as position x and momentum ξ

by their quantum analogues, namely multiplication by x (for the position) and differentia-

tion with respect to x (for the momentum), up to normalizations. The fundamental example

illustrating this connection is the Duistermaat-Hörmander theorem on the propagation of

singularities [38], which states that singularities of solutions of �gu = 0 propagate along

the corresponding classical trajectories, which in this case are null-geodesics; this statement

indeed takes place in phase space and makes use of a refined notion of singularities. Since

we work on compactified spaces M , which include a boundary at which the wave operator

degenerates, we use Melrose’s b-calculus to do the microlocal analysis on M , in particular

analyzing the regularity of solutions near the boundary at future infinity by exploiting the

aforementioned special structures present there. Thus, the microlocal approach is very clean

conceptually and, as we show in this thesis, very powerful for global nonlinear problems,

because it is very robust; as an important example, we mention the trapped set for Kerr

(and Kerr-de Sitter) spacetimes: While the image of the set of trapped null-geodesics on

the base M changes from a sphere for Schwarzschild (and Schwarzschild-de Sitter) to a set

with non-empty interior (on a spatial slice/at future infinity) for rotating Kerr, the picture

in phase space is essentially unchanged: The trapped set, located at future infinity, in the

cotangent bundle is a smooth conic codimension 4 submanifold, with smooth stable and

unstable manifolds. (This normally hyperbolic nature of the trapping was first noted by

Wunsch and Zworski [124].)

In the remainder of the thesis, we will elaborate on the ideas outlined above. We refer to

the introductions of the respective chapters for further background and more details, as well

as for references to the literature. We begin in Chapter 2 by introducing the language of b-

analysis which describes the geometry of our compactified spacetimes in a natural way, and
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show how de Sitter and Kerr-de Sitter spacetimes fit into this picture. The understanding

of the qualitative properties of the global dynamics of the null-geodesic flow on these is of

paramount importance, both conceptually and practically, for the analysis of wave equations

in subsequent chapters. Next, in Chapter 3, we recall the ‘classical’ microlocal analysis on

Euclidean space and on closed manifolds, including the propagation of singularities, before

giving an account of b-microlocal analysis. The main new results proved there concern

the b-microlocal regularity at horizons and trapped sets of the types that appear at future

infinity for our cosmological spacetimes. The study of ‘standard’ local and global energy

estimates for wave operators on b-geometries in Chapter 4 provides a means of obtaining the

invertibility of the forward problems on weak function spaces; this is thus the first instance

where quantitative assumptions come into play, in that such energy estimates and global

invertibility statements only hold for hyperbolic differential operators, rather than more

general b-pseudodifferential operators.

Chapter 5, see specifically §5.2.1, combines the results gathered thus far and provides

the global Fredholm/invertibility framework for forward problems on (asymptotically) de

Sitter, Kerr-de Sitter and Minkowski spacetimes. This is then used as in (1.0.5) to show the

global solvability of semilinear wave equations on such spaces; since the resonances for scalar

equations are known from previous works [13, 111, 40], we mostly consider scalar equations

here, but the methods in principle apply to tensor-valued waves as well. We mention here

that the study of asymptotically Minkowski spacetimes in §5.5 illustrates the relationship

between qualitative and quantitative analysis in a different way: The function spaces on

which we invert the wave operator, or in fact any pseudodifferential operator with a similar

structure, are specified in terms of choices of (microlocal) regularity/decay conditions at the

light cones at past and future infinity, while the identification of the resulting inverse for the

wave operator (given the suitable choice of function spaces) with the forward propagator

again requires the use of standard energy estimates.

We then proceed to demonstrate how to analyze linear, and thus nonlinear, tensor-

valued waves on black hole spacetimes: In Chapter 6, we obtain the resonance expansion

(1.0.3) with exponentially decaying remainder term for general tensor-valued waves on per-

turbations of Schwarzschild-de Sitter space. However, the wave operator acting on tensors

of a certain rank may or may not satisfy mode stability, and there are in fact a number of

natural wave operators on tensors which differ by 0-th order curvature terms, some of which

do satisfy mode stability and some of which do not. For differential form-valued waves, we
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show in Chapter 7 that mode stability does hold for the Hodge wave operator dδ + δd

on a large class of spacetimes, which, given the ensuing chapters, immediately implies the

global solvability of quasilinear differential form-valued waves on cosmological black hole

spacetimes, as indicated above.

The analysis of quasilinear waves necessitates the study of operators with non-smooth

coefficients, since the nonlinearity can no longer be considered a lower order perturbation

of the wave operator but must be treated directly. Thus, Chapter 8 develops the technical

tools that enables us to do the global b-microlocal analysis for operators with non-smooth

coefficients exactly as in the case of smooth coefficients. In the final chapter of this thesis,

Chapter 9, we show how this leads to a general framework for the global study of quasilinear

forward problems for wave-type equations. While the ideas of the arguments given there are

essentially the same as in the semilinear or even linear setting of Chapter 5, the quasilinear

nature of the problems considered requires the technical preliminaries of Chapter 8 and a

slightly more sophisticated iteration scheme, namely Nash-Moser iteration, though we only

need a very simple version thereof [99].

A large part of the material in this thesis is based on the following papers and preprints:

• Chapters 4 and 5 as well as parts of Chapter 3 are based on: Peter Hintz and András

Vasy. Semilinear wave equations on asymptotically de Sitter, Kerr-de Sitter and

Minkowski spacetimes. Preprint, 2013. Accepted for publication in Analysis & PDE.

• Parts of Chapter 3 are based on: Peter Hintz and András Vasy. Non-trapping esti-

mates near normally hyperbolic trapping. Math. Res. Lett., 21(6):1277–1304, 2014.

• Chapter 6 is based on: Peter Hintz. Resonance expansions for tensor-valued waves on

Kerr-de Sitter space. Preprint, 2015.

• Chapter 7 is based on: Peter Hintz and András Vasy. Asymptotics for the wave

equation on differential forms on Kerr-de Sitter space. Preprint, 2015.

• Chapters 8, 9 as well as parts of Chapter 2 are based on: Peter Hintz. Global well-

posedness of quasilinear wave equations on asymptotically de Sitter spaces. Preprint,

2013, and: Peter Hintz and András Vasy. Global analysis of quasilinear wave equations

on asymptotically Kerr-de Sitter spaces. Preprint, 2014.



Chapter 2

Structure of de Sitter and Kerr-de

Sitter spacetimes

We discuss the two prime examples of spacetimes considered in this thesis in some detail,

namely de Sitter space in §2.2, which is the analogue of flat Minkowski space in the context

of a positive cosmological constant Λ, and Kerr-de Sitter space in §§2.3 and 2.4, which is

a rotating black hole in a de Sitter universe and thus the analogue of the Kerr spacetime,

which is a rotating black hole in an asymptotically flat (Minkowskian) universe. They will

serve as motivations for the geometric settings in which we will work later on, and conversely

as very explicit models to which our general theorems apply.

Both spacetimes are stationary in the sense that they are invariant under translations in

a time variable t∗. This suggests that one should study asymptotic properties of geometric

features like the (null-)geodesic flow and analytic ones like asymptotics of waves in terms

of the quantity τ := e−t∗ . Adding ‘future infinity,’ τ = 0, to the spacetime, thus (partially)

compactifying it, asymptotic features then appear in a concise way at τ = 0, as we will

detail in the subsequent sections, in particular §2.1.3. Note that the natural vector fields

on such compactified spaces are ∂t∗ = −τ∂τ and ‘spatial’ derivatives; these are precisely

the vector fields tangent to τ = 0. We give a brief overview of geometric aspects of such

b-spaces (‘b’ for ‘boundary’) in §2.1; analytic aspects will be discussed in §3.3.

We shall also have the occasion to study waves on Minkowski space and more general

asymptotically Minkowski spacetimes, but their study will be of a somewhat different flavor

than that of cosmological spacetimes (with Λ > 0); we refer to §5.5 for details.

10
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2.1 b-geometry

Throughout this section, M denotes a manifold with boundary X = ∂M . This will be the

main case in our applications, but we point out that the study of b-geometry on manifolds

with corners only requires minor, mostly notational modifications.

2.1.1 b-vector fields, operators and metrics; natural bundles

Denote by Vb(M) the Lie algebra of vector fields on M which are tangent to the boundary;

we call elements of Vb(M) b-vector fields. Then Vb(M) is the space of sections of a natural

vector bundle bTM over M , the b-tangent bundle [82, §2], which over the interior of M

is naturally identified with TM . In local coordinates (x, y) ∈ [0,∞) × Rn−1 near a point

in X, with X locally given by x = 0, the bundle bTM is spanned by x∂x, ∂y1 , . . . , ∂yn−1 ,

and Vb(M) is spanned over C∞(M) by these vector fields. Note that x∂x is non-trivial

as a b-vector field even at x = 0. The universal enveloping algebra Diffb(M) of linear

combinations of products of b-vector fields is called the algebra of b-differential operators;

elements of Diffb(M) act on C∞(M) as well as on Ċ∞(M), the space of smooth functions

on M which vanish to infinite order at the boundary.

The bundle dual to bTM , denoted bT ∗M and called b-cotangent bundle, is spanned

locally near the boundary by dx
x , dy1, . . . , dyn−1; in particular, dx/x is non-singular (and

non-trivial) as a b-covector at x = 0. We can then form the b-form bundle bΛM , which is

the exterior algebra generated by bT ∗M ; thus, b-differential forms are linear combinations

of wedge products of dx
x , dy1, . . . , dyn−1. The exterior derivative d on differential forms on

M induces an exterior b-differential bd : C∞(M, bΛM)→ C∞(M, bΛM), as follows from the

observation

df = (x∂xf)
dx

x
+

n−1∑
j=1

(∂yjf)dyj =: bdf.

In fact, this shows that bd is a first order b-differential operator, bd ∈ Diff1
b(M, bΛM). This

is thus a re-interpretation of the differential df of f in terms of the 1-forms dx
x and dyj dual

to the vector fields x∂x and ∂yj , hence it is invariantly defined.

Over the boundary, bTM and bT ∗M have natural subspaces: Indeed, the kernel of the

natural map bTXM → TXM gives the b-normal bundle of the boundary, denoted bNX,

and the image of the adjoint map T ∗XM → bT ∗XM gives the b-cotangent bundle of the

boundary, denoted bT ∗X, which is canonically isomorphic to the cotangent bundle T ∗X;
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we merely keep the notation bT ∗X to emphasize its nature as a subbundle of bT ∗XM . Thus,

bNX = span{x∂x} if x is a boundary defining function of M , while bT ∗X is the annihilator

of bNX in bT ∗XM . Note that the natural b-bundles bNX and bT ∗X are reversed compared

to the natural bundles TX and N∗X in the smooth setting. In local coordinates (x, y; ξ, η)

of bT ∗M , i.e. writing b-covectors as ξ dxx + η dy, we have bT ∗X = {(x = 0, y; ξ = 0, η)}.
Next, if Z ⊂ X is a submanifold inside the boundary, we can naturally define its b-

tangent bundle bTZ within M , which is the preimage of TZ under the map bTZM → TZM ,

equivalently, the bundle of all b-tangent vectors on M which are tangent to Z. The b-

conormal bundle bN∗Z of Z is the annihilator of bTZ in bT ∗ZM . Splitting the boundary

coordinates y = (y′, y′′), with Z = {y′ = 0}, and correspondingly splitting the dual variables

η = (η′, η′′), then bN∗Z = {(x = 0, y′ = 0, y′′; ξ = 0, η′, η′′ = 0)}; note here that dx
x does not

annihilate x∂x ∈ bTZ. Further, bN∗Z is canonically isomorphic to the conormal bundle

of Z within X. As a trivial example, if Z = X, then bTX = bTXM , and bN∗X is the

0-section of bT ∗XM .

A smooth b-metric g on M is a symmetric, non-degenerate section of the second sym-

metric tensor power S2bT ∗M , i.e. a linear combination

g = g00
dx2

x2
+
∑
k

(
g0k

dx

x
⊗ dyk + gk0 dyk ⊗

dx

x

)
+
∑
k`

gk` dyk ⊗ dy` (2.1.1)

with gij = gji ∈ C∞(M) and (gij) non-degenerate. If the signature of g is Riemannian

(resp. Lorentzian), we call g a Riemannian (resp. Lorentzian) b-metric. The volume density

|dg| of a b-metric is a non-vanishing b-density (more precisely, a b-1-density), and we can

more consider b-density bundles bΩα(M) (α ∈ R) in general, which are locally spanned by

|x−1dx dy|α. We thus have |dg| = a(x, y)|x−1dx dy| with a > 0 smooth.

We consider the geodesic flow of a b-metric g: In the interior of M , the flow, lifted to the

cotangent bundle T ∗M◦, is generated by the Hamilton vector field HG of the dual metric

function G (up to a factor of 2 in the fiber direction); in local coordinates z1, . . . , zn on M◦

and the corresponding dual variables ζ1, . . . , ζn (that is, writing covectors as
∑

i ζi dzi), the

latter is defined by G(z, ζ) = |ζ|2G(z) =
∑

k`G
k`ζkζ`, with Gk` the coefficients of the dual

metric on T ∗M , thus (Gk`) = (gij)
−1, and the Hamilton vector field is given by

HG =

n∑
j=1

(∂ζjG)∂zj − (∂zjG)∂ζj (2.1.2)
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Notice that G ∈ C∞(bT ∗M), and G is homogeneous of degree 2 with respect to dilations in

the fibers of bT ∗M . Now suppose the coordinate system z1, . . . , zn is the restriction to M◦

of a coordinate system x = z1, yi = zi (i = 2, . . . , n). The natural coordinates ξ, η on the

fibers of bT ∗M are defined by writing b-covectors as ξ dxx +
∑

k ηk dyk, thus ξ = z1ζ1 and

ηk = ζk. Correspondingly, ∂z1 = ∂x + ξx−1∂ξ, ∂ζ1 = x∂ξ, and therefore

HG = (∂ξG)x∂x − (x∂xG)∂ξ +

n∑
i=2

(∂ηiG)∂yi − (∂yiG)∂ηi . (2.1.3)

This directly shows that HG ∈ Vb(bT ∗M) is a b-vector field. In particular, its integral

curves are either disjoint from ∂bT ∗M = bT ∗XM or entirely contained in it, and in this

sense, the boundary X is ‘at infinity.’ Since we need to understand the causal structure of

M , we will be interested in the structure of the null-geodesic flow, i.e. the flow of HG within

the characteristic set Σ := {G = 0} ⊂ bT ∗M \ o, which is a conic subset.

We already remark here that the restriction

HG|bT ∗XM =
n∑
i=2

(∂ηiG)∂yi − (∂yiG)∂ηi ∈ V(bT ∗XM)

encodes some of the asymptotic behavior of the Hamilton flow in a natural way, as indicated

in the introduction to this chapter, since it loses the dependence on x and its dual variable ξ;

it will often be important to retain information on the behavior of the flow in the direction

transverse to the boundary, and this is naturally accomplished by restricting HG to bT ∗XM

as a b-vector field, thus keeping the first term in (2.1.3). We resume this discussion in §2.1.3.

2.1.2 Smoothness and conormality

We briefly digress to clarify the relevance of the notion of smoothness of b-objects, specif-

ically b-metrics. For simplicity, assume that M = [0,∞)x × Rn−1
y . Then the smoothness

of a b-metric g means that it be of the form (2.1.1) with coefficients gij(x, y) which are

smooth functions in the local coordinate chart; thus they are infinitely differentiable with

respect to the vector fields ∂x, ∂y1 , . . . , ∂yn−1 . If g arises from a metric, not assumed to be

stationary, on Rt ×Rn−1
y by letting x = e−t (motivated by the introductory remarks at the

beginning of this chapter), then the smoothness of g as a b-metric requires the coefficients

of g in the (t, y)-coordinates to be smooth functions of e−t and y, which is very restrictive
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and rather unnatural: For instance, rescaling the time variable and then compactifying,

thus using e.g. e−α(y)t = xα(y), α ∈ C∞(Rn−1
y ) positive, as a boundary defining function,

gives a different smooth structure on the compactified space. Notice however that if the

metric g was ‘stationary,’ i.e. t-independent, it is a smooth b-metric on the compactified

space independently of the choice of the boundary defining function e−α(y)t.

One obtains a more natural notion of ‘smoothness’ for general, non-stationary b-metrics

by observing that the vector fields ∂t and ∂y1 , . . . , ∂yn−1 lift to a basis of the space of

b-vector fields on the compactification, regardless of the choice e−α(y)t of the boundary

defining function. Therefore, we can naturally and invariantly define a class of b-metrics g

on M by requiring that g = g0 + g′, where g0 is stationary, while the coefficients g′ij of g′

satisfy

V1 · · ·Vkg′ij ∈ xγL∞(M), k ≥ 0, V1, . . . , Vk ∈ Vb(M), (2.1.4)

with γ > 0 uniformly over compact sets; in our applications, we will use L2 instead of L∞,

because L2-based spaces are more convenient for Fourier-based analysis. (Functions with

iterated regularity under the application of vector fields tangent to a hypersurface, X in

the case of (2.1.4), are called conormal to the hypersurface; see §3.3 for more on this.) In

applications, the smooth b-metric g0 will then be a ‘stationary’ metric, i.e. independent of

the boundary defining function after fixing a collar neighborhood of the boundary, and the

non-stationary, dynamical part of the metric is encoded in g′. We will refer to such metrics

g = g0 +g′ as asymptotically stationary ; we will give a more concise description in §3.3, and

discuss examples in Chapters 5, 6 and 9, see in particular §5.2.2.

2.1.3 Flow near infinity; radial compactifications

We continue to denote by g a b-metric on M , with dual metric function G. Since G is

homogeneous of degree 2, HG is homogeneous of degree 1 with respect to dilations in the

fibers of bT ∗M . It is often convenient to rescale homogeneous functions and vector fields so

as to obtain objects on the quotient bS∗M := (bT ∗M \ o)/R+. For vector fields however,

one loses information about their behavior in the radial direction, i.e. along orbits of the

R+-action. Following Vasy [114, §3], we therefore instead view bS∗M as the boundary of

the radial compactification bT
∗
M of bT ∗M , a concept that we briefly review; see also [84,

§1.8]. We start by defining the radial compactification of Rn, which proceeds by adding a
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sphere at infinity: Concretely,

Rn :=
(
Rn t ([0,∞)× Sn−1)

)
/ ∼, (0,∞)× Sn−1 3 (r, ω) ∼ r−1ω ∈ Rn,

and Rn, equipped with the natural smooth structure, thus becomes a manifold with bound-

ary. Then, we radially compactify each fiber of bT ∗M in this manner; the compactified

fibers can be arranged to depend smoothly on the base point by first fixing a smooth func-

tion ρ ∈ C∞(bT ∗M \ o), homogeneous of degree −1, which plays the role of the inverse

distance r−1 to the origin near infinity in bT ∗M , and ρ then extends smoothly to bT
∗
M

and provides a defining function for bS∗M . (One of course needs to smooth out ρ near

the zero section to obtain a globally smooth boundary defining function.) Thus, gluing the

fiber-wise compactifications together, we obtain the fiber-radial compactification bT
∗
M , a

fiber bundle over M with typical fiber a closed ball in Rn. This is a manifold with corners;

in the case that M is a manifold with boundary, its boundary hypersurfaces are bT
∗
XM and

bS∗M , and the corner is bS∗XM . See Figure 2.1.

Figure 2.1: The radially compactified b-cotangent bundle bT
∗
M near bT

∗
XM ; the cosphere

bundle bS∗M , viewed as the boundary at fiber infinity of bT
∗
M , is also shown, as well as

the zero section oM ⊂ bT
∗
M and the zero section over the boundary oX ⊂ bT

∗
XM .

Now, for a function f ∈ C∞(bT ∗M \ o) which is homogeneous of degree m ∈ R, we

can restrict ρmf ∈ C∞(bT
∗
M) to fiber infinity, thus ρmf ∈ C∞(bS∗M). This provides an

identification of homogeneous functions of fixed degree with elements of C∞(bS∗M). (This

identification depends on the choice of ρ, hence we are really identifying homogeneous

functions with sections of a line bundle over bS∗M ; this bundle is canonically trivial only

for m = 0.) The Hamilton vector field Hf is homogeneous of degree (m− 1); therefore, we

can view

Hf := ρm−1Hf ∈ V(bT
∗
M),
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which is tangent to bS∗M and bT
∗
XM , as an element of Vb(bS∗M) by restriction. However,

if Hf = 0 at a point (z, ζ) ∈ bS∗M , then Hf is radial, i.e. a multiple of the generator of

dilations in the fibers of bT ∗M . If it is a non-zero multiple, then Hf , while vanishing at

(z, ζ) as a vector field, is non-trivial as a b-vector field there, and as such encodes whether

Hf is radially pointing towards infinity in the fiber, or inwards towards 0. Thus, in these

degenerate situations, we shall view

Hf ∈ Vb(bT
∗
M),

with the relevant information encoded in Hf |bS∗M , the restriction to fiber infinity as a

b-vector field.

Returning to the case of smooth b-metrics g, we conclude the discussion of b-geometry

by showing how one can subdivide the task of studying the dynamics of the null-geodesic

flow of HG near the boundary into a study of the flow within the boundary and its behavior

transverse to it. A concrete example to keep in mind is that of de Sitter space, detailed in

the next section. Now, in local coordinates (x, y; ξ, η) of bT ∗M near the boundary as before,

the b-cotangent bundle of the boundary, bT ∗X, is equal to {(0, y; 0, η)} ⊂ bT ∗M . (From

the perspective of doing analysis on stationary spacetimes by viewing them as being foliated

by isometric spacelike hypersurfaces X, bT ∗X is ‘the same as’ T ∗X.) With x denoting a

boundary defining function of M , we can then consider the subspace

T± = ±dx
x

+ bT ∗X, (2.1.5)

so in local coordinates as before, T± = {(0, y;±1, η)} ⊂ bT ∗XM . In fact, T± is well-defined

independently of the choice of x, since T± = {$ ∈ bT ∗XM : $(x∂x) = ±1}, and the vector

field x∂x ∈ bTXM does not depend on the choice of x. The point is that the characteristic

set Σ = G−1(0), which is conic, can be identified with its intersection with T± away from the

places where it intersects bT ∗X \ o; and moreover, the Hamilton vector field HG is tangent

to T±. Thus, the study of the Hamilton flow over X can be reduced to the study over T±.

Since G, being a polynomial, is fully homogeneous, not merely positively homogeneous, the

restriction to T+ of course suffices: Passing from T+ to T− merely requires changing the sign

of all fiber coordinates and the direction of the Hamilton vector field. In order to encode the

intersection Σ∩ bT ∗X, which is a conic set, in this picture, we observe that we can radially

compactify the affine spaces T±, using the restriction to T± of the boundary defining function
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for fiber infinity used to compactify bT ∗M . In other words, we can consider the closure of T±

in bT
∗
M ; denote it by T±. Observe that the intersection of T± with fiber infinity bS∗M is

the set bS∗X = ∂(bT
∗
X). The characteristic set within bT ∗X then appears at fiber infinity

of T+ and T−. See Figure 2.2. The rescaled Hamilton vector field HG ∈ Vb(bT
∗
M) restricts

to an element of Vb(T±). Therefore, the flow generated by HG within the b-cotangent bundle

of M over X can be completely understood in terms of HG|T± ∈ Vb(T±).

Figure 2.2: The radial compactification bT
∗
pM of the fiber of bT ∗M over a point p ∈ X =

∂M , together with the (radial) compactifications bT
∗
pX,T± of the natural affine subspaces

bT ∗pX,T± ⊂ bT ∗pM . In red: A conic subset Σ of bT ∗pM and its identification with a subset

of T+ ∪ T−. (This is precisely the picture of the characteristic set for the static de Sitter
metric in 2 spacetime dimensions over a point on the cosmological horizon; see §2.2.1.)

Now, if p ∈ T± is a point with HG|p 6= 0, the x∂x-component HG(x) of HG ∈ Vb(bT
∗
M),

which disappears when considering HG|T± , has a single order of vanishing at X 3 p as a

vector field, hence does not affect the qualitative behavior of the HG-flow near p. However,

if HG|p = 0 (as an element of bTp(T±)), then in order to understand the nature of the

critical point p of the Hamiltonian flow, one does need information on x−1HG(x): In the

situations considered below, critical points p of HG|T± will be sources/sinks for the flow

within T±, and whether they are sources/sinks or saddle points with a single stable/unstable

direction transverse to the boundary for the ‘full’ flow in bT
∗
M depends precisely on whether

x−1HG(x) is positive or negative at p (provided we are in the non-degenerate situation that

the latter quantity is non-vanishing).

In §3.3.4, we will complete the above discussion by showing that the Hamilton flow of G

on T± is equal (under certain natural identifications) to the (semiclassical) Hamilton flow
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of the so-called normal operator family (which is a family of operators on X depending on

a parameter σ ∈ C, obtained by Mellin transforming in x) of the Laplace-Beltrami operator

∆g, and the transverse component x−1HG(x) of the flow can also be understood in terms of

this family. This then shows that properties of the normal operator family of ∆g directly

translate to properties of the Hamilton flow of the b-metric g, and vice versa.

2.2 de Sitter space

We consider (n + 1)-dimensional Minkowski space Rn+1
z with metric g0 := dz2

n+1 − dz2
1 −

· · · − dz2
n. Then n-dimensional de Sitter space is the one-sheeted hyperboloid

M◦0 = {z2
n+1 − z2

1 − · · · − z2
n = −1}

with metric g induced by g0; thus, g has signature (+,−, . . . ,−). Moreover, M◦0 inherits

the usual time orientation from the ambient Minkowski space, in which ∂zn+1 is future

timelike. We can introduce global coordinates using the map Rzn+1 × Sn−1
θ , (zn+1, θ) 7→

((1 + z2
n+1)1/2θ, zn+1) ∈ Rn+1, and the metric becomes

g =
dz2
n+1

1 + z2
n+1

− (1 + z2
n+1)dθ2

We compactify M◦0 , first at future infinity by introducing x = z−1
n+1 in zn+1 ≥ 1, say, so the

metric becomes

g = x−2

(
dx2

1 + x2
− (1 + x2)dθ2

)
=: x−2ḡ, (2.2.1)

where ḡ is a smooth Lorentzian metric down to x = 0, and likewise at past infinity; thus,

we have compactified M◦0 to a cylinder

M0
∼= [−1, 1]T × Sn−1,

say with T = 1 − x near x = 0, and T = 0 at zn+1 = 0. The metric g is a so-called

0-metric, see [81]. Null-geodesics of g are merely reparametrizations of null-geodesics of the

conformally related metric ḡ.
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2.2.1 Static model of de Sitter space

From the point of view of causality, one can localize the study of de Sitter space M0 by

picking a point q, say T = 1, θ = e1 ∈ Sn−1 ⊂ Rn, at future infinity and considering only

the interior M of the backward light cone from q, intersected with {T ≥ 0} for convenience;

we call M◦S the static model of de Sitter space.1 For an illustration, see Figure 2.3.

Figure 2.3: The ‘future half’ of the static model M◦S of de Sitter space, a submanifold of
(compactified) de Sitter space M0, is the backward light cone from the point q at future
infinity, intersected with T ≥ 0. The full static model is the intersection of the interiors of
the backward light cone from q and the corresponding point at past infinity.

We make this explicit in the coordinates z1, . . . , zn+1 of the ambient Minkowski space:

Namely, for each fixed ω ∈ Sn−2 ⊂ Rn−1
z2,...,zn , the affine curve

γω(zn+1) = (zn+1, ω; zn+1) ∈M◦0 ⊂ R1+(n−1)+1

is a geodesic on de Sitter space M◦0 , and written in the coordinates x = z−1
n+1, θ = (z2

1 +

· · ·+ z2
n)−1/2(z1, . . . , zn) ∈ Sn−1 introduced in the previous section, it is equal to

γω(zn+1) = (x, θ(x)), θ(x) = (1 + x2)−1/2(e1 + xω).

Thus, we see that the family {γω : ω ∈ Sn−2} exactly sweeps out the backward light cone

from the point x = 0, θ = e1, thus is the boundary of the static model M◦S . In other words,

1Strictly speaking, this is only the future half of the static model; the full static model is the intersection
of the interior of the backward light cone from (T = 1, θ = e1) with the forward light cone from (T = −1, θ =
e1), see [114, §4] for details.
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in the Minkowskian coordinates,

M◦S = {(z1, . . . , zn+1) ∈M◦0 : zn+1 ≥ 0, z2
2 + · · ·+ z2

n < 1}.

The backward light cone is a cosmological horizon for M◦S : Any causal (timelike or null)

future-oriented curve in M◦0 , starting at a point in M◦S , which crosses the cosmological

horizon, can never return to M◦S .

On M◦S , one can choose coordinates t ∈ R, Y ∈ Rn−1, |Y | < 1, with respect to which

the metric g is t-independent, and writing Y = rω, r ∈ (0, 1), ω ∈ Sn−2, away from Y = 0,

one has

g = (1− r2) dt2 − (1− r2)−1 dr2 − r2 dω2;

this is the special case of the Schwarzschild-de Sitter metric (2.3.1) with vanishing black

hole mass M• and cosmological constant Λ = 3, see §2.3. One can compactify this at

future infinity using x̃ = e−t as a boundary defining function; the coordinate singularity

of the metric at r = 1 can then be resolved by means of a suitable blow up of the corner

x̃ = 0, r = 1, with g extending smoothly and non-degenerately past the front face of the

blow-up near the side face x̃ = 0; see [114, §4] for details. In practice, this procedure

amounts to performing a singular change of coordinates at r = 1, and we will give details

for Schwarzschild-de Sitter and Kerr-de Sitter black holes in §§2.3 and 2.4.

We describe a different way of arriving at such a smooth extension of the static metric

past the cosmological horizon. First, we recall the relation of hyperbolic space Hn = {z2
n+1−

z2
1 − · · · − z2

n = 1, zn+1 > 0} as a subset of Minkowski space to the upper half plane model:

Define the global coordinate chart

Φ: Hn 3 (z1, z2, . . . , zn, zn+1) 7→ (x, y),

x =
2

z1 + zn+1
∈ (0,∞), y =

2(z2, . . . , zn)

z1 + zn+1
∈ Rn−2,

then the induced metric on Hn takes the simple form x−2(dx2 + dy2). The above map Φ

is in fact well-defined on {z1 + zn+1 > 0}, and restricting Φ to M◦0 ∩ {z1 + zn+1 > 0}, the

metric on M◦0 has the form

g = x−2(dx2 − dy2).

Moreover, the point q at future infinity singled out above has coordinates x = 0, y = 0,
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where we extended Φ by continuity to M0 ∩ {z1 + zn+1 > 0}, and the backward light cone

from q is simply the set {|y| = x}; the static model, compactified at future infinity, therefore

is

MS = {|y| < x, x ≥ 0}.

Blowing up (0, 0) spherically, we can introduce coordinates τ = x ∈ [0, 1), Y = y/x ∈ Rn−1,

|Y | < 1 near the interior of the front face, with respect to which

g = (1− |Y |2)
dτ2

τ2
− 2Y

dτ

τ
dY − dY 2 =

dτ2

τ2
−
(
Y
dτ

τ
+ dY

)2
(2.2.2)

which extends non-degenerately as a Lorentzian b-metric past the cosmological horizon

|Y | = 1. Moreover, τ and 1/zn+1 are comparable (i.e. bounded by constant multiples of

each other) near q, and in terms of the static time coordinate t, we have τ ∼ e−t over

compact subsets of MS , i.e. away from the cosmological horizon. In fact, we can define a

new time coordinate t∗ by

τ = e−t∗ ,

which is thus smooth on M◦S up to (and beyond) the cosmological horizons. We point this

out here since the extension of the metric across horizons in the Schwarzschild-de Sitter

setting in §2.3 will involve a rescaled time coordinate t∗ in exactly the same fashion.

The dual metric of g is

G = (Y ∂Y − τ∂τ )2 − ∂2
Y . (2.2.3)

Concretely, with r = |Y | and ω = r−1Y , we introduce µ = 1− r2 as a defining function of

r = 1, and compute

G = −4µr2∂2
µ + 4r2τ∂τ ∂µ + (τ∂τ )2 − r−2∂2

ω, (2.2.4)

valid away from r = 0, which extends non-degenerately to µ < 0. The same blow-up

procedure can be applied to more general, asymptotically de-Sitter like spaces, see §2.2.2.

Since at the horizon µ = 1, we expect the null-geodesic flow to be somewhat degenerate,

we study the flow in a slightly enlarged domain

Ω = {t1 ≥ 0, t2 ≥ 0}, t1 = τ0 − τ, t2 = µ+ δ (2.2.5)

with τ0 > 0 fixed, δ > 0 small. Thus, t1 defines a Cauchy hypersurface H1, while t2 defines
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a hypersurface H2; see Figure 2.4 below. The domain Ω will be the model for the types of

domains on which we shall later study linear and nonlinear wave equations. We view

Ω ⊂M := {µ > −2δ, 0 ≤ τ < 2τ0},

with M given the (dual) metric (2.2.4) in µ ≤ 0. We introduce M here merely to have an

ambient manifold to work in; the point is that Ω is a domain with boundary in M , with

the boundaries H1 and H2 being ‘artificial,’ namely contained in M◦ if disjoint from ∂M or

intersecting ∂M transversally (see below), while the only boundary of Ω that deserves this

name from the b-perspective is

Y := Ω ∩ ∂M = {µ ≥ −δ, τ = 0},

the boundary of Ω at future infinity.

We proceed to analyze the null-geodesic flow, lifted to the cotangent bundle, and the

global causal structure of Ω. Concretely, we first check:

Proposition 2.2.1. The domain Ω enjoys the following properties:

(1) Ω is compact,

(2) the differentials of t1 and t2 have the opposite timelike character near their respective

zero sets within Ω, more specifically, t1 is future timelike, t2 past timelike,

(3) the artificial boundary hypersurfaces Hj := t−1
j (0), j = 1, 2, intersect the boundary

∂M transversally, and H1 and H2 intersect only in the interior of M , and they do so

transversally,

(4) the defining function τ of future infinity of M has dτ/τ timelike on Ω ∩ ∂M , with

timelike character opposite to the one of t1, i.e. dτ/τ is past oriented.

Proof. (1) is clear. With tj , j = 1, 2, defined in (2.2.5), we compute

G(bdt1,
bdt1)|t1=0 = G

(
−τ dτ

τ
,−τ dτ

τ

)
|τ=τ0 = τ2

0 > 0,

G(bdt2,
bdt2)|t2=0 = G(dµ, dµ)|µ=−δ = 4δ(1 + δ) > 0,

G(bdt1,
bdt2)|t1=t2=0 = −4(1 + δ)τ0 < 0,
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hence t1 and t2 are timelike with opposite timelike character; indeed, t1 is future oriented

and t2 is past oriented, as is dτ/τ . Moreover, dt2 and dτ are clearly linearly independent

at Y ∩H2, as are dt1 and dt2 at H1 ∩H2. This establishes (2) and (3). Finally, (4) follows

from G
(
dτ
τ ,

dτ
τ

)
= 1 > 0.

Next, we establish properties of the null-geodesic flow. Denote by Σ = G−1(0) the

characteristic set, i.e. the (dual) light cones for the metric g, by

ΣΩ := Σ ∩ bS∗ΩM

the characteristic set over the domain Ω, and by R ⊂ ΣΩ the radial set: This is the set

of all points in ΣΩ, identified with half-lines in bT ∗M , at which the Hamilton vector field

HG is radial; equivalently, R is the set of critical points of the rescaled Hamilton vector

field HG ∈ V(bS∗ΩM) within ΣΩ. We will view ΣΩ and R as conic subsets of bT ∗ΩM \ o
whenever convenient. We will show in Proposition 2.2.3 below that the characteristic set Σ

has two components, Σ = Σ+ ∪ Σ−, corresponding to the backward (+) and forward (−)

light cones. In order to capture the behavior of the HG-flow near the radial set, we then

make the following general definition:

Definition 2.2.2. A smooth submanifold L ⊂ bS∗YM ⊂ bT
∗
YM is called a generalized

b-radial set if the following holds for one choice of signs:

(1) L ⊂ Σ is given by L ∩ bS∗YM , where L is a smooth submanifold of Σ transversal to

bS∗YM , with HG tangent to L,

(2) for a defining function ρ̂ of fiber infinity bS∗M within bT
∗
M , and a defining function

τ of ∂M within M , we have

ρ̂−1HGρ̂ = ∓β0, −τ−1HGτ = ∓β̃β0 (2.2.6)

at L, with β0, β̃ ∈ C∞(L) positive,

(3) there exists a quadratic defining function ρ0 of L within Σ, see below, such that

∓ HGρ0 − β1ρ0 ≥ 0 (2.2.7)

holds, with β1 > 0 near L, modulo terms that vanish cubically at L.
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The function ρ0 being a quadratic defining function means that it vanishes quadratically

at L (and vanishes only at L), with the vanishing non-degenerate, in the sense that the

Hessian is positive definite on the normal bundle of L within Σ, corresponding to ρ0 being

a sum of squares of linear defining functions whose differentials span the conormal bundle

of L within Σ.

Then L ⊂ Σ is a sink (top signs)/source (bottom signs) within bS∗YM in the sense that

nearby bicharacteristics within bS∗YM all tend to L as the parameter along them goes to

±∞; in fact, the behavior of the rescaled flow on bT
∗
YM is sink/source even in the fiber-

radial direction. At L however, there is also a unstable/stable manifold, namely L: Indeed,

bicharacteristics in L remain there by the tangency of HG to L; further τ → 0 along them

as the parameter goes to ∓∞ by (2.2.6), at least sufficiently close to τ = 0, since L is

defined in L by τ = 0. Notice that we do not assume that the Hamilton vector field be

radial at L: While there might be non-trivial dynamics within L, the above definition is

designed to only capture the saddle point dynamics in the directions normal to L. For the

static de Sitter spacetime, L indeed consists of radial points, and the manifold L is (one

half of) the conormal bundle of the cosmological horizon. For rotating black holes with

non-zero angular momentum, discussed in §2.4, there are non-trivial dynamics within L,

but the qualitative behavior in the normal directions is the same as in the present, static

de Sitter context.

Proposition 2.2.3. The null-geodesic flow on Ω has the following properties:

(5) The characteristic set Σ = G−1(0) is a smooth codimension 1 submanifold transversal

to bS∗YM and has the form Σ = Σ+ ∪ Σ− with Σ± a union of connected components

of Σ,

(6) the radial set is the union R = R+ ∪ R− with R± ⊂ Σ±; put L± = ∂R± ⊂ bS∗ΩM ,

then L± is a generalized b-radial set in the sense of Definition 2.2.2; concretely, L+

(resp. L−) is a sink (resp. source) for the rescaled Hamilton flow within bT
∗
YM \ o,

with an unstable (resp. stable) direction transversal to bT
∗
YM ,

(7) the metric g is non-trapping in the following sense: All bicharacteristics in ΣΩ from

any point in ΣΩ∩ (Σ+ \L+) flow (within ΣΩ) to bS∗H1
M ∪L+ in the forward direction

(i.e. either enter bS∗H1
M in finite time or tend to L+) and to bS∗H2

M ∪ L+ in the

backward direction, and from any point in ΣΩ ∩ (Σ− \ L−) to bS∗H2
M ∪ L− in the

forward direction and to bS∗H1
M ∪ L− in the backward direction.
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See Figure 1.1 for the flow near the radial set R, and also Figures 2.4 and 5.1.

Proof of Proposition 2.2.3. We introduce coordinates on the b-cotangent bundle by writing

b-covectors as

σ
dτ

τ
+ ζ dY, resp. σ

dτ

τ
+ ξ dµ+ η dω,

and the dual metric function is then given by

G = −4r2µξ2 + 4r2σξ + σ2 − r−2|η|2 = (Y · ζ − σ)2 − |ζ|2, (2.2.8)

see (2.2.4) and (2.2.3). Correspondingly, we compute the Hamilton vector field by formula

(2.1.3) to be

HG = 4r2(−2µξ + σ)∂µ − (4ξ2(1− 2r2)− 4σξ − r−4|η|2)∂ξ

+ (4r2ξ + 2σ)τ∂τ − r−2H|η|2

= 2(Y · ζ − σ)(Y ∂Y − ζ∂ζ − τ∂τ )− 2ζ · ∂Y .

(2.2.9)

We begin by proving (5), i.e. that G−1(0) is a smooth conic 1-codimensional submanifold

of bT ∗M \ o transversal to bT ∗YM . We have to show that dG 6= 0 whenever G = 0. We

compute

dG = (4ξ2(1− 2r2)− 4σξ − r−4|η|2)dµ+ 4r2(−2µξ + σ)dξ

+ (4(1− µ)ξ + 2σ)dσ − r−2d|η|2.

Thus if dG = 0, all coefficients have to vanish, thus σ = 2µξ and σ = 2(µ−1)ξ, giving ξ = 0

and thus σ = 0, hence also η = 0. Thus dG vanishes only at the zero section of bT ∗M in

this coordinate system. In the coordinates valid near r = 0, we compute

dG = 2(Y · ζ − σ)ζ · dY + 2
(
(Y · ζ − σ)Y − 2ζ

)
· dζ − 2(Y · ζ − σ) dσ,

thus dG = 0 implies Y · ζ = σ, hence ζ = 0 and then σ = 0. The transversality statement is

clear since dG and dτ are linearly independent at Σ by inspection. Moreover, from (2.2.8),

we have

G = (σ + 2r2ξ)2 − 4r2ξ2 − r−2|η|2, (2.2.10)
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and thus Σ = Σ+ ∪ Σ−, where

Σ± = {±(σ + 2r2ξ) > 0} ∩ Σ = {±(σ − Y · ζ) > 0},

because G = 0, σ + 2r2ξ = 0 implies ξ = η = 0, thus σ = 0, hence {σ + 2r2ξ = 0} does not

intersect the characteristic set G−1(0), and similarly in the (Y, τ, ζ, σ) coordinates.

Next, we locate the radial set: Since g is a Lorentzian b-metric, the Hamilton vector

field HG cannot be radial except at the boundary Y = ∂M at future infinity, where τ = 0.

In the coordinate system near r = 0, one easily checks using (2.2.9) that there are no radial

points over Y = 0. At radial points, we then moreover have HGµ = 4r2(−2µξ + σ) = 0,

thus σ = 2µξ. Further, the vanishing of H|η|2 at a radial point requires η = 0. Now, if

ξ = 0, then σ = 0, i.e. all fiber variables vanish and we are outside the characteristic set

Σ; thus ξ 6= 0. At points where σ = 2µξ, η = 0, τ = 0, the expression for G simplifies to

G = 4r2µξ2 + 4µ2ξ2 = 4µξ2, which does not vanish unless µ = 0. Hence, µ = 0, τ = 0, η =

0, σ = 0, and we easily check that these conditions are also sufficient for a point in this

coordinate patch to be a radial point. Therefore, the radial set is R = R+ ∪R− with

R± = {µ = 0, τ = 0, η = 0, σ = 0,±ξ > 0}

= {τ = 0, σ = 0, Y = ∓ζ/|ζ|} ⊂ Σ.

Clearly, we have R± ⊂ Σ±. To analyze the flow near L± := ∂R± ⊂ bS∗M , we introduce

normalized coordinates

ρ̂ =
1

ξ
, η̂ =

η

ξ
, σ̂ =

σ

ξ

and consider the homogeneous degree 0 vector field HG := |ρ̂|HG. We get a first qualitative

understanding of the dynamics near L± by looking at the linearization W of ±HG = ρ̂HG,

following the arguments of [8, §3]. Note that 〈ξ〉−1 is a defining function of the boundary of

bT
∗
M at fiber infinity near L±. The coordinate vector fields in the new coordinate system

are

∂η = ρ̂∂η̂, ξ∂ξ = −ρ̂∂ρ̂ − η̂∂η̂ − σ̂∂σ̂.

Hence

ρ̂HG = 4r2(−2µ+ σ̂)∂µ + (4(1− 2r2)− 4σ̂ − r−4|η̂|2)(ρ̂∂ρ̂ + η̂∂η̂ + σ̂∂σ̂)

+ (4r2 + 2σ̂)τ∂τ − r−2ρ̂H|η|2 .
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We have ρ̂HG ∈ Vb(bT
∗
M) (where it is defined). Since ρ̂HG vanishes (as a vector field) at

a radial point q ∈ bT
∗
M , it maps the ideal I of functions in C∞(bT

∗
M) vanishing at q into

itself. The linearization of ρ̂HG at q then is the vector field ρ̂HG acting on I/I2 ∼= T ∗q
bT
∗
M ,

where the isomorphism is given by f + I2 7→ df |q. Computing the linearization W of ρ̂HG

at q now amounts to ignoring terms of ρ̂HG that vanish to at least second order at q, which

gives

W = 4(−2µ+ σ̂)∂µ − 4(ρ̂∂ρ̂ + η̂∂η̂ + σ̂∂σ̂) + 4τ∂τ − 2Kij(ω)η̂j∂ωi ,

where we introduced a local coordinate system on the sphere. We read off the eigenvectors

and corresponding eigenvalues:

dρ̂, dη̂, dσ̂ with eigenvalue − 4,

dµ− dσ̂ with eigenvalue − 8,

dτ with eigenvalue + 4,

dωi − 1
2K

ijdη̂j with eigenvalue 0.

Thus, L+ (L−) is a sink (source) of the Hamilton flow within bS∗YM , with an unstable

(stable) direction normal to the boundary. More precisely, the τ -independence of the metric

suggests the definition

L± = ∂{µ = 0, σ = 0, η = 0,±ξ > 0} ⊂ bS∗M

of the unstable (stable) manifold, so that L± = bS∗YM ∩ L±; moreover L± ⊂ Σ, and HG is

tangent to L±; indeed,

HG = 4ξ2∂ξ + 4ξτ∂τ at L±. (2.2.11)

Now, going back to the full rescaled Hamilton vector field HG, we have at L± (in fact, at

L±):

|ρ̂|−1HG|ρ̂| = ∓β0, −τ−1HGτ = ∓β̃β0 (2.2.12)

with β0 = 4 and β̃ = 1, thus establishing condition (2.2.6) for generalized b-radial sets;

furthermore, near L±,

∓HGη̂ = 4η̂, ∓HGσ̂ = 4σ̂, ∓HG(µ− σ̂) = 8(µ− σ̂)
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modulo terms that vanish quadratically at L±, hence, putting β1 = 8, the quadratic defining

function ρ0 := η̂2 + σ̂2 + (µ− σ̂)2 of L± within Σ satisfies ∓HGρ0− β1ρ0 ≥ 0 modulo terms

that vanish cubically at L± (in fact at L±), thus (2.2.7) holds. This establishes (6).

It remains to check the non-trapping assumption (7). Let us first analyze the flow

in bT ∗ΩM \ bT ∗YM ; recall from §2.1.1 that bicharacteristics intersecting bT ∗YM are in fact

contained in bT ∗YM , and correspondingly bicharacteristics containing points in bT ∗ΩM \
bT ∗YM stay in bT ∗ΩM \ bT ∗YM . There,

±HGτ = ±2(σ + 2r2ξ)τ > 0 on Σ±. (2.2.13)

In particular, in Σ± \ bT ∗YM , bicharacteristics reach bT ∗H1
M (i.e. τ = τ0) in finite time in

the forward (+), resp. backward (−), direction. We show that they stay within bT ∗ΩM : For

this, observe that G = 0 and µ < 0, thus r > 1, imply

2|ξ| ≤ 2r|ξ| ≤ |σ + 2r2ξ|

by equation (2.2.10). In fact, if ξ 6= 0, the first inequality is strict, and if ξ = 0, the second

inequality is strict, and we conclude the strict inequality

2|ξ| < |σ + 2r2ξ| if G = 0, µ < 0.

Hence, on (Σ± \ bT ∗YM) ∩ ΣΩ, if µ < 0, then

±HGµ = ±4r2(σ + 2r2ξ − 2ξ) > 0, (2.2.14)

thus in the forward (on Σ+), resp. backward (on Σ−), direction, bicharacteristics cannot

cross bT ∗H2
M = {µ = −δ}.

Next, backward, resp. forward, bicharacteristics in L± \L± tend to L± by (2.2.13), since

HG is tangent to L±, and L± = L± ∩ {τ = 0}; in fact, by (2.2.6), more is true, namely

these bicharacteristics, as curves in bT
∗
M \o, tend to L± if the latter is considered a subset

of the boundary bS∗M of bT
∗
M at fiber infinity. Now, consider backward, resp. forward,

bicharacteristics γ in (Σ± \ L±) ∩ bT ∗ΩM , including those within bT ∗YM . By (2.2.13), τ is

non-increasing along γ, and by (2.2.14), µ is strictly decreasing along γ once γ enters µ < 0,

hence it then reaches bT ∗H2
M in finite time, staying within bT ∗ΩM . We have to show that γ
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necessarily enters µ < 0 in finite time. Assume this is not the case. Then observe that

∓HG(σ − Y · ζ) = ∓2|ζ|2 = ∓2(σ − Y · ζ)2 on Σ±, (2.2.15)

thus σ− Y · ζ converges to 0 along γ. Now on Σ, |ζ| = |σ− Y · ζ|, thus, also ζ converges to

0, and moreover, on Σ, we have

|σ| ≤ |Y · ζ|+ |Y · ζ − σ| ≤ (1 + |Y |)|ζ|

since we are assuming |Y | ≤ 1 on γ, hence σ converges to 0 along γ. But HGσ = 0, i.e. σ is

constant. Thus necessarily σ = 0, hence G = 0 gives |Y · ζ| = |ζ|, and thus we must in fact

have |Y | = 1 on γ, more precisely Y = ∓ζ/|ζ|; therefore γ lies in L±, which contradicts

our assumption γ 6⊂ L±. Hence, γ enters |Y | > 1 in finite time, and so, as we have already

seen, reaches bT ∗H2
M in finite time.

Finally, we show that forward, resp. backward, bicharacteristics γ in (Σ± ∩ bT ∗YM \
R±) ∩ ΣΩ tend to L±. By equation (2.2.15), ±(σ − Y · ζ) → ∞ (in finite time) along γ,

hence |ζ| = |σ − Y · ζ| on γ ⊂ Σ tends to ∞, and therefore

|Y | ≥ |Y · ζ|
|ζ|

≥ |σ − Y · ζ|
|ζ|

− |σ|
|ζ|
→ 1

because σ is constant along γ. On the other hand, at points on γ where |Y | > 1, i.e. µ < 0,

we have ±HGµ > 0 by (2.2.14). We conclude that γ tends to |Y | = 1, i.e. µ = 0. Moreover,

(
Y · ζ
|ζ|
− σ

|ζ|

)2

= 1 on Σ,

thus
∣∣Y · ζ/|ζ|∣∣ → 1 along γ; together with |Y | → 1, this implies Y → ∓ζ/|ζ|, and since σ

is constant and |ζ| → ∞, we conclude that γ tends to L±. This concludes the proof of the

non-trapping nature of the flow (7).

Remark 2.2.4. Conditions (6) and thus (7) are not stable under arbitrary perturbations

of g as a b-metric, and it will in fact be crucial later that they can be relaxed. Namely,

we do not need to require that null-bicharacteristics of a small perturbation of g tend to

L±, but only that they reach a fixed small neighborhood of L±; this condition is stable

under perturbations. See Remark 3.3.11. We moreover point out that changing g by an
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exponentially decaying (in the time coordinate − log τ) conormal metric perturbation, see

§2.1.2, does not affect any of the properties established in Propositions 2.2.1 and 2.2.3 if the

size of the perturbation is sufficiently small, as the Hamilton vector field at ∂M is unaffected

by such a perturbation.

As indicated in §2.1.3, Proposition 2.2.3 can also be proved by working only over the

sets T± ⊂ bT
∗
YM (see (2.1.5)), and the flow in T± is precisely the Hamilton flow of the

semiclassical principal symbol of the Mellin transformed normal operator family. Thus, the

description of the semiclassical flow near the horizon in [115, Lemma 3.2] and in the static

region in [114, §4.6] yields the same result, apart from the description of the unstable/stable

direction at the radial set, which is transversal to the boundary; the latter can be recovered

from the parameter-dependence of the normal operator family. See §3.3.4 for details.

2.2.2 Asymptotically de Sitter-like spaces

As a slight generalization of the construction of the static model of de Sitter space from the

global space, we now consider an asymptotically de Sitter-like space (M̃, g̃), which means

[111] that M̃ ∼= [−1, 1]T × X̃ is an n-dimensional manifold with two connected boundary

components X̃+ (at future infinity, T = 1) and X̃− (past infinity, at T = −1); furthermore,

for the boundary defining function x = 1∓ T near T = ±1, the metric g̃ has the form

g̃ =
dx2 − h
x2

,

where h is a symmetric 2-tensor on M̃ , and h|
X̃

is in fact a Riemannian metric on X̃.

Remark 2.2.5. The geometric condition is that g̃ = x−2g0 for a smooth metric g0 on M̃ ,

and g0(dx, dx) = 1 at X̃±, which makes the asymptotic curvature constant and the bound-

ary at infinity X̃± spacelike. Analogously to asymptotically hyperbolic spaces, where this

was shown by Graham and Lee [55], on such a space one can always introduce a product

decomposition [0, δ)x × (∂M̃)y near ∂M̃ , possibly changing x, such that the metric has a

warped product structure g0 = dx2 − h(x, y, dy), g̃ = x−2g0.

Thus, an asymptotically de Sitter-like space is the Lorentzian analogue of the Rieman-

nian conformally compact spaces of Mazzeo and Melrose [81]. If h is even [57], i.e. only even

powers of x appear in the Taylor expansion of h at X̃, we say that (M̃, g̃) is an even asymp-

totically de Sitter-like space. We now fix a point q ∈ X̃+ at future infinity and consider
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the homogeneous blow-up [M̃ ; q], and within it the lift of the interior of the backward light

cone from q; we denote by g the lift of the metric g̃ to [M̃ ; q]. Introducing local geodesic

coordinates y of X̃+ near q, which is then given by x = y = 0, this means that we use

Y = y/x ∈ Rn−1 and τ = x as coordinates near the front face of the blow-up, and then

g = (1− |Y |2)
dτ2

τ2
− 2Y

dτ

τ
dY − dY 2

plus a section of S2bT ∗M̃ that vanishes at τ = 0. Thus, g is a b-metric near the front face

(but away from the side face), and g agrees to first order at τ = 0 with the static de Sitter

metric, see (2.2.2). Furthermore, the intersection of the lift of the backward light cone from

q with the front face x = 0 is equal to the set {x = 0, |Y | = 1}. Thus, the interior of

the backward light cone from q, which we denote by M◦S , is a generalization of the static

model of de Sitter space; if M̃ is actual de Sitter space, then M◦S is the actual static model.

We bordify M◦S at future infinity by adding τ = 0, thus obtaining MS . We can consider a

neighborhood M = [0,∞)τ ×X of MS in [M̃ ; q], where X is given by

X = {x = 0, |Y | < 1 + 2δ} (2.2.16)

for δ > 0 small, and then a domain Ω ⊂ M , defined as in (2.2.5). Since g and the static

de Sitter metric agree at ∂Ω, Propositions 2.2.1 and 2.2.3 continue to hold in the present

context as long as the initial surface H1 is sufficiently close to τ = 0, e.g. when H1 = t−1
1 (0)

with t1 = τ0−τ , τ0 > 0 small, and we take H2 = t−1
2 (0) with t2 = 1+δ−|Y | near |Y | = 1+δ.

See Figure 2.4. We call (Ω, g) a generalized static model.

2.3 Schwarzschild-de Sitter space

The Schwarzschild-de Sitter black hole in n ≥ 4 spacetime dimensions is the space M◦S =

Rt×XS , XS = (r−, r+)r×Sn−2
ω , with r± defined below, equipped with the stationary metric

g0 = µdt2 − (µ−1 dr2 + r2 dω2), (2.3.1)

where dω2 is the round metric on the sphere Sn−2, and

µ = 1− 2M•
rn−3

− λr2, λ =
2Λ

(n− 2)(n− 1)
,
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Figure 2.4: Setup of the ‘static’ asymptotically de Sitter problem. Indicated are the blow-up
of M̃ at q, the front face, the lift of the backward light cone to [M̃ ; q] (solid), and lifts of
backward light cones from points nearby p (dotted); moreover, Ω ⊂M (dashed boundary)
is a submanifold with corners within M (which is not drawn here). H1 is a Cauchy hy-
persurface, and H2 (which for higher-dimensional generalized static models is connected) is
an artificial spacelike hypersurface – once null-geodesics cross H2 in the outward direction,
they can never return to Ω.

with M• > 0 the black hole mass and Λ > 0 the cosmological constant. The assumption

M2
•λ

n−3 <
(n− 3)n−3

(n− 1)n−1
(2.3.2)

guarantees that µ has two unique positive roots 0 < r− < r+. Indeed, let µ̃ = r−2µ =

r−2 − 2M•r
1−n − λ. Then µ̃′ = −2r−n(rn−3 − (n− 1)M•) has a unique positive root

rp = [(n− 1)M•]
1/(n−3), (2.3.3)

µ̃′(r) > 0 for r ∈ (0, rp) and µ̃′(r) < 0 for r > rp; moreover, µ̃(r) < 0 for r > 0 small and

µ̃(r) → −λ < 0 as r → ∞, thus the existence of the roots 0 < r− < r+ of µ̃ is equivalent

to the requirement µ̃(rp) = n−3
n−1r

−2
p − λ > 0, which is equivalent to (2.3.2). In view of the

form (2.3.1), we call the coordinates (t, r, ω) static coordinates.

Define α = µ1/2, thus dα = 1
2µ
′α−1 dr, and let

β±(r) := ∓ 2

µ′(r)
(2.3.4)

near r±, so β±(r±) > 0 there. Then the metric g can be written as

g = α2 dt2 − h, h = α−2 dr2 + r2 dω2 = β2
± dα

2 + r2 dω2,

The singularity of the metric as one approaches α = 0 is merely a coordinate singularity.
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We thus introduce a new time variable, at first only near r = r±, to wit

t∗ = t− F (α), ∂αF (α) = −β±
α
− 2αc(µ), (2.3.5)

with c a smooth function, to be determined momentarily. Then one computes (with β = β±)

g = µdt2∗ − (β + 2µc) dt∗ dµ+ (µc2 + βc) dµ2 − r2 dω2 (2.3.6)

In particular, the determinant of g restricted to the (t∗, µ)-plane equals −β2

4 , hence g is non-

degenerate down to µ = 0. Therefore, g extends as a non-degenerate stationary Lorentzian

metric to a neighborhood M◦ = Rt∗ ×X of M◦S , where X = (r− − 2δ, r+ + 2δ)× Sn−2. We

claim that we can choose c(µ) such that dt∗ is timelike on M◦: Indeed, with G denoting

the dual metric to g, this amounts to requiring

G(dt∗, dt∗) = −4β−2(µc2 + βc) > 0. (2.3.7)

This is trivially satisfied if c = −β/2µ, which corresponds to undoing the change of coordi-

nates in (2.3.5); however, we want c to be smooth at µ = 0. But for µ ≥ 0, (2.3.7) holds

provided −β/µ < c < 0; hence, we can choose a smooth c verifying (2.3.7) in µ ≥ 0 and

such that moreover c = −β/2µ in µ ≥ µ1 for any fixed small µ1 > 0. Thus, we can choose

F as in (2.3.5) with F = 0 in α2 ≥ µ1 (in particular, F is defined globally on X) such that

(2.3.7) holds, and

t∗ = t in µ ≥ µ1 > 0. (2.3.8)

As usual, we compactify M◦ at future infinity, with τ = e−t∗ as the boundary defining

function, to the space M = [0,∞)τ ×X. We remark that as in the de Sitter case, there is an

equivalent, more geometric way of phrasing the extension of M◦S beyond the horizons to the

manifold M thus defined, see [87], which involves compactifying M◦S at future infinity using

e−t and at the horizons using α2 as the boundary defining function, and then performing a

(non-homogeneous) blow-up of the corners.

We now again consider a domain

Ω = {t1 ≥ 0, t2 ≥ 0}, t1 = τ0 − τ, t2 = µ+ δ. (2.3.9)

Thus, Ω bounded by the (artificial) Cauchy surface H1 = {τ = τ0}, which is spacelike, and



34 CHAPTER 2. DE SITTER AND KERR-DE SITTER SPACETIMES

by the hypersurface H2 =
⋃
±{r = r±±δ}, which has two components, one lying beyond the

black hole horizon (r−) and the other beyond the cosmological horizon (r+); see Figure 2.5;

both components are spacelike in view of

G(dµ, dµ) = −4β−2µ > 0 at µ = −δ.

Future infinity of Ω is given by Y := Ω∩∂M = {µ ≥ −δ, τ = 0}, and it is the only boundary

of Ω from the point of view of b-analysis, since the metric near the Hj is simply a smooth

metric up to Hj , rather than a b-metric (cf. the discussion preceding Proposition 2.2.1).

The analogue of Proposition 2.2.1 holds in the present context as well, by the same proof.

Figure 2.5: Diagrammatic representation of Schwarzschild-de Sitter space. Shown are the
black hole horizon H+ and the cosmological horizon H+

, beyond which we put an artificial
spacelike hypersurface H2 with two connected components; the hypersurface H1 will play
the role of a Cauchy hypersurface. The domain Ω is bounded by the hypersurfaces H1

and H2. The ‘point at future infinity’ in the usual Penrose diagrammatic representation is
shown blown-up here, since the metric is well-behaved (namely, a Lorentzian b-metric) on
the blown-up space.

A crucial new feature of Schwarzschild-de Sitter space as compared to de Sitter space is

the presence of forward/backward trapped rays, which are null-geodesics that do not escape

to either horizon in the forward/backward direction, and trapped rays, which are both

forward and backward trapped. In the present spherically symmetric setting, we locate

the trapped set by determining when r is constant along the flow. For easier comparison

with [43, 114, 124], we consider the flow of the rescaled Hamilton vector field −r2HG on

T± ⊂ bT ∗YM defined in (2.1.5) (with τ playing the role of x there). Notice that on the

characteristic set, where G = 0, we have −r2HG = H−r2G. Introducing coordinates on

bT ∗M by writing b-covectors as σ dτ
τ + ξ dr + η dω and putting

∆r = r2µ = r2(1− λr2)− 2M•r
5−n,
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the rescaled dual metric function of g in static coordinates (working away from r = r±, see

(2.3.8)) is given by

p = −r2G = ∆rξ
2 − r4

∆r
σ2 + |η|2,

and correspondingly the Hamilton vector field is

Hp|T± = 2∆rξ∂r −
(
∂r∆rξ

2 − ∂r
( r4

∆r

))
∂ξ +H|η|2 ,

since σ = ±1 on T±. If Hpr = 2∆rξ = 0, then ξ = 0, in which case H2
pr = 2∆rHpξ =

2∆r∂r(r
4/∆r). Recall the definition of the function µ̃ = µ/r2 = ∆r/r

4, then we can rewrite

this as H2
pr = −2∆rµ̃

−2(∂rµ̃). We have already seen that ∂rµ̃ has a single root rp ∈ (r−, r+),

and (r− rp)∂rµ̃ < 0 for r 6= rp. Therefore, H2
pr = 0 implies (still assuming Hpr = 0) r = rp.

We rephrase this to show that the only trapping occurs in the cotangent bundle over r = rp:

Let F (r) = (r− rp)2, then HpF = 2(r− rp)Hpr and H2
pF = 2(Hpr)

2 + 2(r− rp)H2
pr. Thus,

if HpF = 0, then either r = rp, in which case H2
pF = 2(Hpr)

2 > 0 unless Hpr = 0, or

Hpr = 0, in which case H2
pF = 2(r − rp)H2

pr > 0 unless r = rp. So HpF = 0, p = 0 implies

either H2
pF > 0 or r = rp, Hpr = 0, i.e.

(r, ω; ξ, η) ∈ Γ~ :=
{

(rp, ω; 0, η) :
r4

∆r
= |η|2

}
, (2.3.10)

so Γ~ is the only trapping in T±, and F is an escape function. (The notation reflects the

relation to the semiclassical rescaling of the wave operator associated with the metric g.)

The trapped set is spherically symmetric, and its projection to the base {r = rp} is called

the photon sphere.

We claim that the trapping is hyperbolic in the normal directions to Γ~: We compute

the linearization of the Hp-flow at Γ~ in the normal coordinates r − rp and ξ to be

Hp

(
r − rp
ξ

)
=

(
0 2r4

pµ̃|r=rp
2(n− 3)r−4

p (µ̃|r=rp)−2 0

)(
r − rp
ξ

)
+O(|r − rp|2 + |ξ|2),

where we used ∂rrµ̃|r=rp = −2(n− 3)r−4
p , which gives ∂rµ̃ = −2(n− 3)r−4

p (r− rp) +O(|r−
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rp|2). The eigenvalues of the linearization are therefore

±2rp

(
n− 1

1− n−1
n−3r

2
pλ

)1/2

,

which reduces to the expression given in [114, p. 85] in the case n = 4, where rp = 3M• = 3
2rs

with rs = 2M•, and λ = Λ/3. In particular, the minimal expansion rate for the flow of Hp

at the trapping Γ~ in the directions normal to Γ~ is

νmin = 2r−1
p

(
n− 1

1− n−1
n−3r

2
pλ

)1/2

> 0. (2.3.11)

(The maximal expansion rate equals νmin as well.) The expansion rate of the flow within

the trapped set is 0 by spherical symmetry; note that integral curves of Hp on Γ~ are simply

unit speed geodesics of the round unit sphere Sn−2. This shows the normal hyperbolicity

(in fact, r-normal hyperbolicity for every r) of the trapping, which in this setting was first

studied in [124]. We refer to [124] and [44, §5] for definitions, and to [43, §2.2] for details on

how the spacetime description of trapping and its normally hyperbolic nature relates to the

above ‘semiclassical’ description. The consequences of normally hyperbolic trapping which

are relevant in our applications will be explained below in Definition 2.3.1.

By the discussion of §2.1.3, the spacetime trapped set, i.e. the set of points in bS∗ΩM

that never escape through either horizon along the Hamilton flow, is given by

Γ̃ = {(τ, r = rp, ω;σ, ξ = 0, η) : σ2 = Ψ2|η|2}, (2.3.12)

where Ψ = αr−1, Ψ′(rp) = 0, in view of (2.3.10). However, every null-geodesic in Γ̃ which

is not contained in {τ = 0} escapes to H1 in either the forward or backward direction, and

thus we will only consider Γ := Γ̃ ∩ bT ∗YM to be the trapped set, which thus is a subset

of the b-cotangent bundle at future infinity. The trapped set Γ is normally hyperbolically

trapped in the b-sense:

Definition 2.3.1. On a manifold M with boundary Y , equipped with a smooth b-metric

g, we say that (M, g) has normally hyperbolic trapping in the b-sense at Γ ⊂ Σ ∩ bS∗YM ,

with Σ := G−1(0) denoting the characteristic set (G being the dual metric), if the following

conditions are satisfied for a fixed choice of sign for the rescaled Hamilton vector field
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V = ±HG:

(1) Γ ⊂ Σ ∩ bS∗YM is a smooth submanifold disjoint from bT ∗∂M ,

(2) Γ+ is a smooth orientable submanifold of Σ ∩ bS∗YM in a neighborhood U1 of Γ,

(3) Γ− is a smooth orientable submanifold of Σ transversal to Σ ∩ bS∗YM in U1,

(4) Γ+ has codimension 2 in Σ, Γ− has codimension 1,

(5) Γ+ and Γ− intersect transversally in Σ with Γ+ ∩ Γ− = Γ,

(6) the vector field V is tangent to both Γ+ and Γ−, and thus to Γ,

(7) Γ+ is backward trapped for the Hamilton flow (i.e. bicharacteristics in Γ+ near Γ tend

to Γ as the parameter goes to −∞), i.e. is the unstable manifold of Γ, while Γ− is

forward trapped, i.e. is the stable manifold of Γ; in particular, Γ is a trapped set.

Quantitatively, let τ denote a fixed boundary defining function, φ+ ∈ C∞(bS∗M) a

defining function of Γ+ within bS∗YM (thus, Γ+ is defined within bS∗M by τ = 0,

φ+ = 0), and φ− ∈ C∞(bS∗M) a defining function of Γ− (within bS∗M). We then

assume that near Γ,

V τ = −c∂τ, c∂ > 0, (2.3.13)

and moreover, with G denoting a homogeneous degree 0 rescaling of G,

V φ+ = −c2
+φ+ + µ+τ + ν+G, V φ− = c2

−φ− + ν−G, (2.3.14)

with c± > 0 smooth near Γ and µ+, ν± smooth near Γ, and finally

{φ+, φ−} = Hφ+φ− > 0 (2.3.15)

near Γ.

Note that (2.3.13) is consistent with the stability of Γ−, and (2.3.14) is consistent with

the (in)stability of Γ− (Γ+). Furthermore, in condition (7), the tangency of V to Γ± implies

V φ+ = α+φ+ + µ+τ + ν+G and V φ− = α−φ− + ν−G, thus this condition merely amounts

to requiring that α+ and α− have a sign.

See Figure 2.6 for an illustration.
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Figure 2.6: An exemplary situation with normally hyperbolic trapping in the b-sense:
Shown are the (projection from bS∗M to the base M of the) trapped set Γ, the b-cosphere
bundle over X as well as a forward bicharacteristic starting at a point ρ ∈ Γ−.

The fact that the trapped set Γ in the Schwarzschild-de Sitter spacetime satisfies this

definition follows from the normally hyperbolic nature of the semiclassical trapped set Γ~;

the translation between b-trapped sets and semiclassically trapped sets is explained in detail

in §3.3.4. We denote the two components of the trapped set Γ by Γ± = Γ ∩ Σ± ⊂ Σ±, and

correspondingly the forward and backward trapped sets have two components Γ±− ∈ Σ± and

Γ±+ ∈ Σ±. We now have the following analogue of Proposition 2.2.3:

Proposition 2.3.2. The null-geodesic flow on Ω enjoys the properties (5) and (6) of Propo-

sition 2.2.3, whose notation we continue to use here. The non-trapping statement now is:

Ω has normally hyperbolic trapping in the b-sense at Γ ⊂ bS∗ΩM , and

(7’) the metric g is non-trapping in the following sense: All bicharacteristics in ΣΩ :=

Σ∩bS∗ΩM from any point in ΣΩ∩(Σ+\(L+∪Γ+)) flow (within ΣΩ) to bS∗H1
M∪L+∪Γ+

in the forward direction (i.e. either enter bS∗H1
M in finite time or tend to the radial

set L+ or the trapped set Γ+) and to bS∗H2
M ∪L+∪Γ+ in the backward direction, and

from any point in ΣΩ∩ (Σ− \ (L−∪Γ−)) to bS∗H2
M ∪L−∪Γ− in the forward direction

and to bS∗H1
M ∪ L− ∪ Γ− in the backward direction, with tending to Γ± allowed in

only one of the two directions.

Again, this follows from the corresponding semiclassical analysis, see [114, §6]. See

Figure 2.7.
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Figure 2.7: Illustration of the null-geodesic flow in the b-cosphere bundle bS∗M of
Schwarzschild-de Sitter space. For a description of the flow, see the statement of Propo-
sition 2.3.2. Indicated is the flow in the component Σ+ of the characteristic set. What
is labeled bS∗H2

M is only a part of the cosphere bundle over the event, resp. cosmological

horizon, and the component of bS∗H2
M not shown here lies at the cosmological, resp. event

horizon. (Thus, the edges and corners in this figure merely mark the ends of the part of
bS∗M shown here.) The picture of the flow in Σ− is analogous, with all arrows reversed
and L−, Γ−(±) replaced by L+, Γ+

(±); the sign of V in Definition 2.3.1 now is V = −HG.

2.4 Kerr-de Sitter family

In stationary coordinates, Kerr-de Sitter space with black hole mass M• > 0, cosmological

constant Λ > 0 and angular momentum a ∈ R is the 4-dimensional spacetime M◦S = Rt×XS ,

with XS = (r−, r+)r × S2, equipped with the metric

g = −ρ2
(dr2

µ
+
dθ2

κ

)
− κ sin2 θ

(1 + γ)2ρ2
(a dt− (r2 + a2) dφ)2

+
µ

(1 + γ)2ρ2
(dt− a sin2 θ dφ)2,

where we use standard coordinates φ ∈ [0, 2π), θ ∈ (0, π) on S2, and

ρ2 = r2 + a2 cos2 θ,
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µ = (r2 + a2)
(

1− Λr2

3

)
− 2M•r,

κ = 1 + γ cos2 θ,

γ =
Λa2

3
.

We assume that µ has positive roots r− < r+ satisfying

∓ µ′(r±) > 0, (2.4.1)

which implies that r− and r+ are the two largest of the three positive roots of µ (see

[114, §6]); we only consider values of the parameters M•,Λ and a for which this non-

degeneracy condition holds, see also [114, Equation (6.2)]. If a = 0, the Kerr-de Sitter metric

reduces to the Schwarzschild-de Sitter metric in n = 4 spacetime dimensions. Thus, if M•

and Λ satisfy the non-degeneracy condition (2.3.2) for Schwarzschild-de Sitter spaces with

spacetime dimension n = 4, the above non-degeneracy holds for Kerr-de Sitter spacetimes

with sufficiently small a as well.

Apart from the singularity of the spherical coordinate system at the poles, which can

be resolved by working with coordinates which are valid there [114, §6.2],2 the metric g is

again singular at the horizons r = r±. We thus introduce new coordinates

t∗ = t− h(r), φ∗ = φ− P (r) (2.4.2)

near r = r±, with

h(r) = ±1 + γ

µ
(r2 + a2)± c±(r), P (r) = ±1 + γ

µ
a, (2.4.3)

where c±(r) is smooth up to r = r±, chosen such that dt∗ is timelike, see [114, §6.4]; similarly

to the Schwarzschild-de Sitter setting, one can choose c±(r) = −1+γ
µ (r2 + a2) away from

r = r±, which undoes the coordinate change, i.e. t∗ = t there. Then, we can extend M◦S

to a larger spacetime M◦ = Rt∗ ×X, X = (r− − 2δ, r+ + 2δ) × S2, extend the metric g as

a stationary metric to M◦, and compactify M◦ at future infinity, using τ = e−t∗ , to the

spacetime M = [0,∞)τ × X, on which g is a Lorentzian b-metric. Kerr-de Sitter space

exhibits normally hyperbolic trapping in the b-sense as well, in fact the trapping is still

2Our signs of h and P are changed relative to [114, §6].
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r-normally hyperbolic for every r, and Proposition 2.3.2 holds; this is the point where the

full generality of b-radial sets in Definition 2.2.2 is needed. Furthermore, we can consider

domains Ω, extending the static region M◦S , as in the discussion of Schwarzschild-de Sitter

space, with an artificial spacelike boundary H2 placed beyond the event and cosmological

horizons, thus H2 has two connected components, and a Cauchy hypersurface H1.

Next, we observe that by the nature of the construction of c± in [114, §6.4], one can

make c± depend smoothly on the parameters M•,Λ, a. Therefore, if we fix M• = M0
•

and a = a0 and consider the Kerr-de Sitter metric gM0
• ,a0 on M as above, then nearby

metrics gM•,a, with M• and a close to M0
• and a0, respectively, are smooth Lorentzian b-

metrics on M as well, and the event and cosmological horizons stay within M . Moreover,

the (forward/backward) trapped sets, computed in [43, §3.2], depend smoothly on the

spacetime parameters as well. Varying the cosmological constant is also be harmless, but

may be disregarded as unphysical.

2.5 More general geometries

The geometry of the neighborhoods of the static patch of de Sitter space and of Schwarz-

schild-de Sitter and Kerr-de Sitter spaces discussed in the preceding sections are the model

cases whose natural generalizations we will study beginning in Chapter 5. We thus make

the following definition:

Definition 2.5.1. Let M be a manifold with boundary equipped with a Lorentzian b-

metric g, and let Ω ⊂M be a domain with corners, bounded by the spacelike hypersurfaces

H1 (considered a Cauchy hypersurface) and H2 (considered artificial hypersurfaces beyond

the horizons). Then:

(1) (Ω, g) is an exact non-trapping spacetime if it satisfies conditions (1)-(7) of Proposi-

tions 2.2.1 and 2.2.3. If g̃ is a smooth or conormal perturbation of g (within the class

of Lorentzian b-metrics) which is sufficiently small in the sense of Remark 2.2.4, we

call (Ω, g̃) a non-trapping spacetime.

(2) (Ω, g) is an exact non-trapping spacetime with normally hyperbolic trapping if it sat-

isfies conditions (1)-(6) of Propositions 2.2.1 and 2.2.3 as well as the non-trapping

condition (7’) of Proposition 2.3.2. If g̃ is a smooth or conormal perturbation of g

(within the class of Lorentzian b-metrics) which is sufficiently small in the sense of
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Remark 2.2.4 and so that g̃ still only has normally hyperbolic trapping in the b-sense,

we call (Ω, g̃) a non-trapping spacetime with normally hyperbolic trapping.

Thus, the static model of de Sitter space (or rather a neighborhood thereof, see §2.2.1)

and its generalization (§2.2.2) are examples of exact non-trapping spacetimes; Schwarz-

schild-de Sitter and Kerr-de Sitter spaces (§§2.3 and 2.4) are examples of exact non-trapping

spacetimes with normally hyperbolic trapping.

As stated, the metrics are assumed to be smooth or conormal, and the forward and

backward trapped sets are assumed to be smooth submanifolds. While this is adequate for

the study of linear or even semilinear wave-like equations on such spacetimes, as we will

see in Chapter 5, the study of quasilinear wave equations in Chapter 9 will require these

smoothness assumptions to be relaxed. We remark however that every result we give will

only depend on finitely many (b-)derivatives of the metric and the Ck-regularity (for some

finite k) of the trapping by ‘abstract nonsense,’ i.e. simply due to the fact that, for instance,

operator bounds on finite regularity spaces only require a finite number of derivatives on

the coefficients of the operator. In the specific case of Kerr-de Sitter spacetimes, or more

general non-trapping spacetimes with normally hyperbolic trapping whose trapping is r-

normally hyperbolic for every r, the regularity of the trapping will be Cr for fixed large

r for sufficiently small metric perturbations; see Dyatlov [44] and Hirsch, Shub and Pugh

[61]. Therefore, such perturbations satisfy Definition 2.5.1 in this high, but finite regularity

sense.

We finish this chapter by stressing a fundamental feature of our analysis that we already

indicated in the introduction: Due to the robustness of microlocal techniques, the qualitative

properties of (the null-geodesic flow on) spacetimes covered by the above definition are all

one needs to assume in order to draw rather strong conclusions about properties of the

wave equation (and lower order perturbations thereof), such as asymptotics and decay of

solutions.



Chapter 3

Pseudodifferential operators and

microlocal analysis

In this chapter, we introduce analytic tools that we will use in the sequel to study waves

on geometric classes of spacetimes including those introduced in §2.5: We recall the notions

of pseudodifferential operators on Euclidean space in §3.1, on compact manifolds without

boundary in §3.2 and on compact manifolds with boundary in §3.3. The study of ps.d.o.s

and their mapping properties is intimately tied to the notion of wave front set (§3.1.2), which

allows for a very precise understanding of the location, direction and strength of singularities

of distributions by analyzing their high frequency behavior in the Fourier domain. We

present several standard results relating the singularities of solutions of (pseudo)differential

equations Pu = 0 to properties of the operator P , such as elliptic regularity (§3.2.1) and

real principal type propagation of singularities (§3.2.2). We also briefly discuss complex

absorbing potentials (§3.2.3), following [114, §2.5], which is a simple modification of the

semiclassical results of Nonnenmacher and Zworski [94] and Datchev and Vasy [32]. We

refer to [86, 62, 64, 101, 129, 38] and references therein for detailed accounts of ‘classical’

microlocal analysis.

We stress that the calculus of ps.d.o.s is very simple by virtue of a principal symbol

map, which assigns to an operator P on a manifold X a function on the cotangent bundle

of X that captures the behavior of P to leading order; this transforms the qualitative study

of many aspects of differential equations into algebraic computations and manipulations. In

fact, one can use this calculus in an ‘abstract’ fashion, since the underlying analytic details

of its construction are irrelevant from the point of view of most applications, as we shall

43
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see in many instances.

In view of the description of spacetime geometries in Chapter 2, microlocal analysis on

manifolds with boundary via so-called b-pseudodifferential operators, introduced by Melrose

and Mendoza [88] and discussed in detail by Melrose [82], will play the starring role in our

global analysis of wave equations. The regularity analysis of waves near the structures

at infinity described in Definitions 2.2.2 and 2.3.1, b-radial sets and normally hyperbolic

trapping, requires further work. We will analyze the class of radial sets present in (Kerr-)de

Sitter-type spaces in §3.3.1; radial points were first discussed in the context of Euclidean

scattering theory in [83], and in the semiclassical setting directly related to the b-setting

(see §3.3.4) in [114], as well as on a different class of b-geometries in [8]; we will apply the

latter work in §5.5 to the study of nonlinear waves on asymptotically Minkowski spacetimes.

Estimates at normally hyperbolic trapping for semiclassical problems were pioneered in [124]

and further developed in [44, 42, 94]. This was in turn much preceded by the work of Gérard

and Sjöstrand [52] in the analytic category. We give a b-result that suits our purposes in

§3.3.2.

We give a number of technical details even in the parts that are well-known, specifically

in the development of the calculus on Rn, since, firstly, we shall later need to generalize

the ps.d.o.s to operators with non-smooth coefficients, see Chapter 8, and secondly, our

treatment of b-operators with conormal (rather than smooth) coefficients in §3.3.5 is based

directly on the Euclidean calculus.

To keep the notation simple, we restrict ourselves to operators acting on scalar functions,

with the exception of a brief discussion of bundles in §3.2, but all definitions and theorems

have analogues for operators mapping between sections of complex vector bundles (which

are trivial over Rn), unless stated otherwise. We will explicitly include bundles in the

notation when discussing applications in §5.2.2, when studying pseudodifferential operators

with rough coefficients in Chapter 8, and in the quasilinear applications in §9.2.
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3.1 Calculus on Euclidean space

3.1.1 Symbols, operators and compositions

Consider a differential operator A =
∑
|α|≤m aα(x)Dα on Rn with smooth coefficients aα.

We can write the action of A on Schwartz functions u ∈ S (Rn) as

Au(x) =
∑
|α|≤m

aα(x)F−1ξαFu = (2π)−n
∫∫

ei(x−y)ξa(x, ξ)u(y) dy dξ,

where we put a(x, ξ) =
∑
|α|≤m aα(x)ξα. The integral on the right hand side makes sense

for functions a(x, ξ) which are more general than polynomials in ξ. For instance, the inverse

of P = p(x,D) = I + ∆ with p(x, ξ) = 1 + |ξ|2 can be expressed in the above form, with

a(x, ξ) = (1+ |ξ|2)−1, and we can likewise hope to construct (approximate) inverses of more

general, x-dependent elliptic operators (see §3.1.2). To obtain a simple but sufficiently

powerful calculus, it is desirable to retain some of the key properties of polynomials a(x, ξ).

We only consider the simplest generalization here:

Definition 3.1.1. For m ∈ R, let Sm(Rnx;Rnξ ) denote the space of symbols on Rn of order

m, which is the set of all a ∈ C∞(Rn ×Rn) such that for all multiindices α, β, the estimate

sup
x
|Dα

ξD
β
xa(x, ξ)| ≤ Cαβ〈ξ〉m−|α| (3.1.1)

holds with a constant Cαβ <∞. The left quantization of a is the operator

qL(a)u ≡ a(x,D)u ≡ Op(a)u(x) = (2π)−n
∫
ei(x−y)ξa(x, ξ)u(y) dy dξ,

defined for u ∈ S (Rn), and we define Ψm(Rn), the space of pseudodifferential operators on

Rn of order m, to be the space of left quantizations of symbols a ∈ Sm(Rn;Rn).

In particular, polynomials in ξ of order m with uniformly bounded (with all derivatives)

coefficients in x are elements of Sm(Rn;Rn). We also note the multiplicative property

f ∈ Sm(Rn;Rn), g ∈ Sm′(Rn;Rn)⇒ fg ∈ Sm+m′(Rn;Rn).

It is easy to see [86, §2.2] that operators A = a(x,D) in the class Ψm(Rn) define bounded

maps S (Rn) → S (Rn) and thus by duality bounded maps S ′(Rn) → S ′(Rn). Their
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(Schwartz) kernels

KA(x, y) = (2π)−n
∫
ei(x−y)ξa(x, ξ) dξ

are smooth and rapidly decaying in |x − y| away from the diagonal x = y. We think of

S−∞(Rn;Rn) =
⋂
m∈R S

m(Rn;Rn) and Ψ−∞(Rn) =
⋂
m∈R Ψm(Rn) as ‘trivial’ symbols and

operators; operators in Ψ−∞(Rn) will be shown to be smoothing operators, i.e. they map

tempered distributions into smooth functions.

We can also consider differential operators A =
∑
|α|≤mD

αaα(x) written in right reduced

form: We then have

Au(x) = qR(a)u ≡ a(D,x)u = (2π)−n
∫
ei(x−y)ξa(y, ξ)u(y) dy dξ

with a(y, ξ) =
∑
|α|≤m aα(y)ξα, and we correspondingly call A the right quantization of

a; we can again take a to be a symbol in Sm. Intuitively speaking, left quantizations

act on functions u by first differentiating and then multiplying by the coefficients of A,

while the order is reversed for right quantizations. More generally, we can consider symbols

a ∈ Sm(Rnx,Rny ;Rnξ ), which is to say

sup
x,y
|Dα

ξD
β
xD

γ
ya(x, y, ξ)| ≤ Cαβγ〈ξ〉m−|α| (3.1.2)

for all multiindices α, β, γ, and define their quantization q(a) by

q(a)u = (2π)−n
∫
ei(x−y)ξa(x, y, ξ)u(y) dy dξ. (3.1.3)

Allowing such symbols increases flexibility, but their quantizations can equivalently ex-

pressed as left (or right) quantizations, as we will recall below. Note that if the symbolic

order of a is sufficiently negative, m < −n, the integral in (3.1.3) converges absolutely;

otherwise, it needs to be interpreted as an oscillatory integral [62, §1], [86, §2.2].

Proposition 3.1.2. [86, §2.4]. The range of the quantization map q on Sm(Rnx,Rny ;Rnξ )

is equal to the space Ψm(Rn). That is, for any a ∈ Sm(Rnx,Rny ;Rnξ ), there exists aL ∈
Sm(Rnx;Rnξ ) such that q(a) = aL(x,D).

Proof. The idea of the proof is to expand a(x, y, ξ) in a Taylor series around y = x and

use q((yj − xj)a) = q(Dξja) for j = 1, . . . , n. (For this to make sense, we need to allow
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polynomial weights in |x− y| for our symbols; see [86, §3].) Thus,

a(x, y, ξ) =
∑
|α|<N

1

α!
∂αy a(x, y, ξ)|y=x(y − x)α +

∑
|α|=N

N

α!
(y − x)αr̃N (x, y, ξ)

with r̃N ∈ Sm implies q(a) = aL,N (x,D) + q(rN ) with rN ∈ Sm−N , where

aL,N (x, ξ) =
∑
|α|<N

1

α!
Dα
ξ ∂

α
y a(x, y, ξ)|y=x.

Since rN can be made to have arbitrarily negative symbol order, the operator q(rN ) will be

irrelevant for practical purposes for large N . To finish the proof, we however need to remove

rN completely; we achieve this by asymptotically summing (see below) 1
α!D

α
ξ ∂

α
y a|y=x, which

has symbolic order m−|α|, over all multiindices α, which produces a′L with q(a)−qL(a′L) =

q(rj) for all j with rj ∈ Sm−j . Thus, the Schwartz kernel of R := q(r), r = a− a′L, is equal

to

KR(x, x+ z) = (2π)−n
∫
e−izζrj(x, x+ z, ζ) dζ, (3.1.4)

and thus R is the left quantization of b given by

b(x, ξ) =

∫
eizξKR(x, x+ z) dz. (3.1.5)

One then establishes that KR(x, x + z) decays superpolynomially in z (uniformly in x)

together with all derivatives, and (3.1.5) then gives b ∈ S−∞. Putting aL = a′L + b finishes

the proof.

Thus, in the notation of this proposition, we have q(a) = aL(x,D), where aL is an

asymptotic sum

aL(x, ξ) ∼
∑
α

1

α!
Dα
ξ ∂

α
y a(x, y, ξ)|y=x. (3.1.6)

This by definition means that

aL(x, ξ)−
∑
|α|<N

1

α!
Dα
ξ ∂

α
y a(x, y, ξ)|y=x ∈ Sm−N (Rnx;Rnξ )

for all N . We can similarly write q(a) = aR(D,x) as a right reduction of a symbol aR ∈ Sm
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which is an asymptotic sum

aR(x, ξ) ∼
∑
α

(−1)|α|

α!
Dα
ξ ∂

α
x a(x, y, ξ)|y=x. (3.1.7)

We can now prove that Ψ∗(Rn) =
⋃
m Ψm(Rn) is a filtered *-algebra:

Proposition 3.1.3. For m,m′ ∈ R, we have Ψm(Rn) ◦Ψm′(Rn) ⊂ Ψm+m′(Rn). In fact, if

a(x,D) ∈ Ψm(Rn) and b(x,D) ∈ Ψm′(Rn), then a(x,D)b(x,D) = c(x,D) with

c(x, ξ) ∼
∑
α

1

α!
∂αξ a(x, ξ)Dα

x b(x, ξ). (3.1.8)

Moreover, Ψm(Rn) is closed under adjoints, and a(x,D)∗ = c(x,D) with

c(x, ξ) ∼
∑
α

1

α!
Dα
ξ ∂

α
x ā(x, ξ). (3.1.9)

Proof. We can write b(x,D) as a right quantization b(x,D) = qR(bR) with symbol bR(y, ξ)

given by (3.1.7), thus a(x,D)b(x,D) = q(a(x, ξ)bR(y, ξ)), which we can write as the left

quantization of a symbol c by Proposition 3.1.2. The formula (3.1.8) follows from thus

combining (3.1.6) and (3.1.7). For the second part, we have a(x,D)∗ = qL(a)∗ = qR(ā),

whose left reduction can be computed using (3.1.6).

Note in particular that the formula for the leading term (in terms of the symbolic order)

is very simple, being simply the product of (the leading terms) of a and b. More precisely:

Definition 3.1.4. For A = a(x,D) ∈ Ψm(Rn), define its principal symbol to be the equiv-

alence class

σm(A) = [a] ∈ Sm(Rn;Rn)/Sm−1.

Somewhat imprecisely, we will often call any representative of σm(A) the principal symbol

of A.

Thus, (3.1.8) and (3.1.9) show that

σm+m′(A ◦B) = σm(A)σm′(B), σm(A∗) = σm(A).

In particular, the noncommutative operation of composing two operators amounts to the

multiplication of their principal symbols, which is a commutative operation.
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Clearly, one has σm(A) = 0 if and only if A ∈ Ψm−1(Rn). Now, [A,B] = A◦B−B ◦A ∈
Ψm+m′(Rn) has vanishing principal symbol, so we can ask what is symbol as an operator in

Ψm+m′−1(Rn) is. Using (3.1.8), but including the next to leading order terms, we calculate:

Proposition 3.1.5. For A ∈ Ψm(Rn) and B ∈ Ψm′(Rn) with principal symbols a and b,

respectively, we have

σm+m′−1(i[A,B]) = Hab, (3.1.10)

where Ha is the Hamilton vector field of a, defined in (2.1.2).

We briefly discuss the topology of Ψm(Rn): We endow Sm(Rn;Rn) with the locally

convex topology given by the seminorms supx〈ξ〉−m+|α||Dα
ξD

β
xa(x, ξ)| (which computes the

smallest constant for which (3.1.1) holds) for multiindices α, β. Now, the invertibility of

the Fourier transform on the space S ′(R2n) of tempered distributions, which contains

Sm(Rn;Rn), implies that the map qL is injective. We can thus endow Ψm(Rn) with the

topology induced by qL, which makes qL into a topological isomorphism. One can check

[86, §2.1] that S−∞ is dense in Sm in the topology of Sm
′

for every m′ > m, and hence the

analogous statement holds for the corresponding spaces of pseudodifferential operators.

Finally, we recall the notion of classical (or one step polyhomogeneous) symbols:

Definition 3.1.6. A symbol a ∈ Sm(Rn;Rn) is called classical if it is an asymptotic sum

a(x, ξ) ∼
∑
j≥0

am−j(x, ξ), (3.1.11)

where am−j is positively homogeneous of degree m−j, i.e. am−j(x, λξ) = λm−jam−j(x, ξ) for

|ξ| ≥ 1, λ ≥ 1. Left quantizations of classical symbols are called classical pseudodifferential

operators.

For classical operators A = a(x,D), with a as in (3.1.11), we can identify the principal

symbol σm(A) with the leading order homogeneous part am. The proof of Proposition 3.1.2

shows that the class of classical pseudodifferential operators is a filtered *-algebra as well.

3.1.2 Parametrices for elliptic operators; wave front set

As a first application of the calculus, we construct parametrices for elliptic operators.
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Definition 3.1.7. Let m ∈ R. The symbol a(x, ξ) ∈ Sm(Rn;Rn) is elliptic at a point

(x0, ξ0) ∈ Rn × (Rn \ o) if there exists constants c,R > 0 and a conic (in the ξ variables)

neighborhood U of (x0, ξ0) in Rn × (Rn \ o) such that

|a(x, ξ)| ≥ c〈ξ〉m

for all (x, ξ) ∈ U , |ξ| ≥ R. The set of all points (x0, ξ0) at which a is elliptic is called the

elliptic set Ell(a) of a, and its complement in Rn × (Rn \ o) the characteristic set Char(a).

We say that a is uniformly elliptic if it is elliptic at every point (x, ξ) ∈ Rn × (Rn \ o), with

the constants c and R uniform in x.

Thus, ellipticity at a point (x0, ξ0) measures the non-degeneracy of the symbol in a

neighborhood of the ray (x0,R>0ξ0). Changing an elliptic symbol of order m by a lower

order symbol does not affect ellipticity, hence we say that an operator A ∈ Ψm(Rn) is

(uniformly) elliptic if its principal symbol is; we likewise define the elliptic and characteristic

sets of A to be the respective sets for its principal symbol.

Proposition 3.1.8. If A ∈ Ψm(Rn) is uniformly elliptic, there exists Q ∈ Ψ−m(Rn) such

that PQ− I,QP − I ∈ Ψ−∞(Rn).

Proof. Take Q ∈ Ψ−m(Rn) to be a quantization of χ(ξ)/σm(A), where χ is a smooth cutoff,

equal to 0 in |ξ| ≤ R (with R as in definition 3.1.7) and 1 in |ξ| ≥ 2R. Then σ0(PQ) = 1,

hence PQ− I = R ∈ Ψ−1(Rn). By a simple iterative argument [86, §2.10], one can improve

Q so as to remove the error term R up to an error in Ψ−∞(Rn).

This implies that if u ∈ S ′(Rn) is a distributional solution to the equation Au = 0 and

A is uniformly elliptic, then u = QAu+ (I −QP )u = (I −QP )u is in fact smooth. This is

the statement of elliptic regularity.

A statement similar to the above proposition holds for operators which are elliptic only

at (thus, near) a point. To make this precise, we need the notion of the wave front set of

an operator:

Definition 3.1.9. Let m ∈ R and a ∈ Sm(Rn;Rn). Then the essential support ess supp a ⊂
Rn × (Rn \ o) of a is the complement of the set of all (x0, ξ0) ∈ Rn × (Rn \ o) for which

a ∈ S−∞ in a conic neighborhood of (x0, ξ0); the latter means that for all N ∈ N, there
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exists a constant CN > 0 such that

|a(x, ξ)| ≤ CN 〈ξ〉−N (3.1.12)

for all (x, ξ) such that x is close to x0 and ξ/|ξ| is close to ξ0/|ξ0|.
For an operator A = a(x,D) ∈ Ψm(Rn), we define its wave front set as WF′(A) :=

ess supp a.

By [86, §5.8], the estimate (3.1.12) and the symbolic nature of a imply the same estimate

for all derivatives of a.

The operator wave front set WF′(A) thus measures where the full symbol a of A =

a(x,D) is non-trivial. Note that by the asymptotic formulas (3.1.6) and (3.1.7), we could

equivalently have defined the wave front set of an operator using its right reduced symbol.

By (3.1.8), we have

WF′(A ◦B) ⊂WF′(A) ∩WF′(B);

moreover, if WF′(A) = ∅, then A ∈ Ψ−∞(Rn).

The microlocal version of Proposition 3.1.8 is:

Proposition 3.1.10. [86, §5.9]. If A ∈ Ψm(Rn) is elliptic at (x0, ξ0), there exists Q ∈
Ψ−m(Rn) such that (x0, ξ0) /∈WF′(PQ− I),WF′(QP − I).

Guided by the statement of elliptic regularity, we now define:

Definition 3.1.11. Let u ∈ D ′(Rn). We define the wave front set WF(u) as follows: Then

(x, ξ) ∈ Rn × (Rn \ o) is not contained in WF(u) if and only if there exists an operator

A ∈ Ψ0(Rn) which is elliptic at (x, ξ) and a smooth cutoff ψ ∈ C∞c (Rn), ψ(x) 6= 0, such that

A(ψu) ∈ C∞(Rn).

We mention in passing that the wave front set WF′(A) of the operator A is closely

related to the wave front set of the Schwartz kernel of A as a distribution on R2n, see [86,

§5.12], [62, §2].

The wave front set has a simple intuitive characterization:

Proposition 3.1.12. [86, §5.11]. Let u ∈ D ′(Rn). Then (x0, ξ0) /∈ WF(u) if and only if

there exist φ ∈ C∞c (Rn), φ(x0) 6= 0, and χ ∈ C∞(Rn) of the form χ(ξ) = χ̃(ξ/|ξ|) in |ξ| ≥ 1,

where χ̃ ∈ C∞(Sn−1) with χ̃(ξ0/|ξ0|) = 1, such that for all N , there exists a constant CN > 0

such that |χ(ξ)(φu)̂(ξ)| ≤ CN 〈ξ〉−N for all ξ ∈ Rn.
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Proof. Since u 7→ F−1χFφu is the right quantization of χ(ξ)φ(x) ∈ S0(Rn;Rn), the di-

rection (⇐) is clear. To prove the direction (⇒), one observes that if A ∈ Ψ0, elliptic

at (x0, ξ0), and ψ ∈ C∞c (Rn), ψ(x0) 6= 0, are such that A(ψu) ∈ C∞c , then we also have

B(ψu) ∈ C∞ for all B ∈ Ψ0 with WF′(B) contained in the elliptic set of A; this follows

from Proposition 3.1.10 and the discussion preceding it. In particular, we can take B to be

a right quantization of χφ with χ and φ as stated.

Recall that by definition, the point x0 ∈ Rn is not contained in the singular support

sing suppu of u ∈ D ′(Rn) if φu ∈ C∞ for some φ ∈ C∞c (Rn) with φ(x0) 6= 0. Thus, the wave

front set does not only measure the location of singularities, but also their ‘co-directions,’

i.e. the frequencies which contribute to u near x0 in a non-trivial manner. By [62, §2], we

indeed have π(WF(u)) = sing supp(u), where π : Rnx × (Rnξ \ o) → Rnx is the projection.

Therefore, WF(u) = ∅ is equivalent to u ∈ C∞(Rn).

Directly from the definitions, one can show [86, §5.10] that for A ∈ Ψm(Rn), u ∈ S ′(Rn),

we have

WF(Au) ⊂WF′(A) ∩WF(u), WF(u) ⊂WF(Au) ∪ Char(A).

In particular, if A is elliptic at (x, ξ), then (x, ξ) ∈ WF(u) if and only if (x, ξ) ∈ WF(Au),

thus Au is singular (in the sense of wave front sets) if and only if u is. This is the statement

of microlocal elliptic regularity.

3.1.3 Mapping properties on Sobolev spaces; Sobolev wave front set

We recall the definition of Sobolev spaces: For s ∈ N0, we define Hs(Rn) to consist of all

u ∈ L2(Rn) such that ∂αxu ∈ L2(Rn) for all |α| ≤ s, and then for all real s by duality and

interpolation. Equivalently,

Hs(Rn) =
{
u ∈ S ′(Rn) : 〈ξ〉sû(ξ) ∈ L2(Rnξ )

}
, (3.1.13)

and the norm on Hs is ‖u‖Hs = ‖〈ξ〉sû‖L2 . We say that u ∈ Hs
loc(Rn) if φu ∈ Hs(Rn)

for all φ ∈ C∞c (Rn). Notice that 〈D〉m ∈ Ψm(Rn), hence by definition, 〈D〉m : Hs(Rn) →
Hs−m(Rn) is an isometric isomorphism.

Proposition 3.1.13. Every A ∈ Ψm(Rn) defines a bounded map Hs(Rn) → Hs−m(Rn),

s ∈ R.
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Proof. Replacing A by 〈D〉s−m ◦A◦ 〈D〉−s, it suffices to treat the case m = s = 0. If in fact

A ∈ Ψ−∞(Rn), the asserted boundedness follows from Schur’s lemma and the rapid decay of

the Schwartz kernel of A away from the diagonal, see [86, §2.12]. For general A ∈ Ψ0(Rn),

one can use Hörmander’s square root trick [86, §2.13].

As we will see in Chapter 8, one can assume much less regularity than a ∈ S0 (but some

decay in x) to guarantee the boundedness of a(x,D) on L2: For instance, supξ ‖a(·, ξ)‖Hs <

∞ for some s > n/2 is sufficient. See also [62, Theorem 18.1.11′] for a related result.

By Proposition 3.1.13, we can equivalently define Hs(Rn) to consist of all u ∈ S ′(Rn)

such that Au ∈ L2(Rn) for all A ∈ Ψs(Rn); more economically, fixing a uniformly elliptic

operator A ∈ Ψs(Rn), we have u ∈ Hs(Rn) if and only if Au ∈ L2(Rn). (This is merely a

rephrasing of global elliptic regularity.)

Using these mapping properties, we can refine the notion of wave front set given in

Definition 3.1.11:

Definition 3.1.14. Fix s ∈ R, and let u ∈ D ′(Rn). Then (x, ξ) ∈ Rn × (Rn \ o) is not

contained in theHs-wave front set WFs(u) if and only if there exists an operator A ∈ Ψ0(Rn)

which is elliptic at (x, ξ) and ψ ∈ C∞c (Rn), ψ(x) 6= 0, such that A(ψu) ∈ Hs(Rn).

Using elliptic regularity and mapping properties on Sobolev spaces, one can show [86,

§5.14] that WFs(u) = ∅ if and only if u ∈ Hs
loc(Rn).

We have the following direct analogue of Proposition 3.1.12:

Proposition 3.1.15. Let s ∈ R and u ∈ D ′(Rn). Then (x0, ξ0) /∈ WFs(u) if and only if

there exist φ ∈ C∞c (Rn), φ(x0) 6= 0, and χ ∈ C∞(Rn) of the form χ(ξ) = χ̃(ξ/|ξ|) in |ξ| ≥ 1,

where χ̃ ∈ C∞(Sn−1) with χ̃(ξ0/|ξ0|) = 1, such that F−1χFφu ∈ Hs(Rn), i.e. such that∫
|χ(ξ)|2|(φu)̂(ξ)|2〈ξ〉2s dξ <∞.

Combining the mapping properties of pseudodifferential operators with the calculus for

their wave front sets, one deduces the following microlocal elliptic regularity result:

Proposition 3.1.16. Let A ∈ Ψm(Rn) and u ∈ D ′(Rn). Suppose A is elliptic at (x, ξ).

Then (x, ξ) ∈WFs(u) if and only if (x, ξ) ∈WFs−m(Au).

We remark that the proof of this result in fact gives the following quantitative bound:

There exist operators B1, B2 ∈ Ψ0(Rn), elliptic at (x, ξ), such that for any N ∈ R there is
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a constant CN > 0 such that

‖B1u‖Hs−m ≤ C(‖B2Au‖Hs + ‖u‖HN ) (3.1.14)

for all u ∈ HN , in the strong sense that if the right hand side is finite, then so is the left

hand side, and the inequality holds. Here, we think of N as being very negative, so the

HN -norm is very weak. We point out that the qualitative statement of Proposition 3.1.16

is in fact equivalent to the quantitative statement (3.1.14) by the closed graph theorem, see

[64, Proof of Theorem 26.1.7] and [115, §4.3], except that we lose control over the constant

C. For applications to nonlinear problems however, it is of course crucial to know at least

the rough dependence of C on seminorms of A (and on N).

3.1.4 Change of coordinates

Let κ : U → V be a diffeomorphism between two open sets U, V ⊂ Rn. For an operator

A = a(x,D) ∈ Ψm(Rn) whose Schwartz kernel is compactly supported in U × U , we can

define the pushforward of A, which is an operator Aκ with Schwartz kernel compactly

supported in V × V , by defining (Aκv) ◦ κ = A(v ◦ κ), v ∈ S ′(Rn). The main result [62,

§2.1] is that Aκ ∈ Ψm(Rn), and the full symbol aκ of Aκ has an asymptotic expansion

aκ(κ(x), η) ∼
∑
α

1

α!
∂αξ a(x, tκ′(x)η)Dα

y e
iρκ(y)η|y=x, (3.1.15)

where ρκ(y) = κ(y) − κ(x) − κ′(x)(y − x) vanishes to second order at x. In particular, if

we view κ as a change of coordinates on Rn, we see from (3.1.15) that the principal symbol

transforms as a function on the cotangent bundle T ∗Rn.

Correspondingly, one should really view σm(A) ∈ Sm(T ∗Rn)/Sm−1 (with symbolic be-

havior in the fiber variables), and moreover the elliptic set of A is an open conic subset

of T ∗Rn \ o, while characteristic sets and wave front sets of operators as well as wave

front sets (including Hs-wave front sets) are closed conic subsets of T ∗Rn \ o. Moreover,

the Hamilton vector field Hσm(A) (fixing a representative of the principal symbol, or us-

ing the homogeneous representative if A is classical) is invariantly defined as a vector field

on T ∗Rn \ o. This invariant point of view will allow for a very concise description of the

standard pseudodifferential calculus on closed manifolds in §3.2.
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3.1.5 Radial compactification

In a manner that is entirely analogous to the construction in §2.1.3, we can radially com-

pactify T ∗Rn to T
∗Rn, and we denote by S∗Rn = ∂T

∗Rn the cosphere bundle, which we thus

view as the boundary at fiber infinity of T
∗Rn. Then, we can view WF(u) for u ∈ D ′(Rn),

WF′(A) for A ∈ Ψm(Rn), as well as Ell(A) and Char(A), which are conic subsets of T ∗Rn\o,
as subsets of S∗Rn.

We briefly recall the homogeneity discussion in §2.1.3 in the present context: Let us fix

ρ ∈ C∞(T
∗Rn) a defining function of S∗Rn, i.e. ρ > 0 in T ∗Rn ⊂ T ∗Rn, ρ = 0 at S∗Rn, and

dρ|S∗Rn 6= 0. We can for instance take ρ = 〈ξ〉−1. Then, for a classical operator A ∈ Ψm(Rn)

with homogeneous principal symbol am(x, ξ), we can write am(x, ξ) = a(x, ξ)ρ−m, where

a ∈ C∞(S∗Rn). Furthermore, the Hamilton vector field Ham is homogeneous of degree

(m−1); therefore, Ham := ρm−1Ham ∈ V(S∗Rn) by restriction. However, at points in S∗Rn

where V = 0, it is useful to keep information on the behavior of Ham in the fiber-radial

direction, which we do by viewing Ham ∈ Vb(T
∗Rn), with the relevant information encoded

in V |S∗Rn , the restriction to fiber infinity as a b-vector field.

3.2 Calculus on compact manifolds without boundary

Using local coordinate charts and partitions of unity, one can construct a calculus for

pseudodifferential operators on manifolds starting from the calculus on Rn: Thus, if X is

an n-dimensional manifold, we say that an operator A : C∞c (X) → C∞(X) is an element

of Ψm(X) if for every local coordinate chart κ : U ⊂ X → Rn and φ, ψ ∈ C∞c (κ(U)), the

operator

u 7→ ψ(κ−1)∗Aκ∗(φu)

is an element of Ψm(Rn). See [64, §18.1] for details. Note that if X is compact, one

can freely compose any two such operators; in the non-compact case, one needs to make

additional assumptions on the behavior of the Schwartz kernels of elements of Ψm(X), for

instance proper support in X×X, or appropriate decay conditions away from the diagonal,

as for example in the Euclidean case. In this section, we only consider compact manifolds

X, and microlocal analysis is cleanest in this setting. The calculus for a class of operators

on compact manifolds with boundary discussed in §3.3 is only slightly more delicate and

will be very closely related to the non-compact setting on Euclidean space.
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Throughout the rest of this section, X denotes a compact n-dimensional manifold without

boundary.

The calculus on Euclidean space combined with the discussion of coordinate invariance

in §3.1.4 gives the following pseudodifferential calculus on the closed n-dimensional manifold

X; see also [122, §3.4] for a general overview and [64, §18.1] for details.

(1) Spaces of operators. For every m ∈ R, we have a vector space Ψm(X) consisting of

bounded operators C∞(X)→ C∞(X). For m ∈ N0, we have Diffm(X) ⊂ Ψm(X).

(2) Algebra property. The space
⋃
m∈R Ψm(X) is a filtered *-algebra: For A ∈ Ψm(X),

B ∈ Ψm′(X), we have A ◦ B ∈ Ψm+m′(X) and A∗ ∈ Ψm(X), where we compute the

adjoint of A with respect to a fixed volume density on X.

(3) Principal symbol, ellipticity. For each m ∈ R, there is a principal symbol map

σm : Ψm(X)→ Sm(T ∗X)/Sm−1,

with the spaces Sm(T ∗X) defined in local coordinates as in Definition 3.1.1. Restrict-

ing to classical operators (which in a coordinate chart are classical operators on Rn,

see the end of §3.1.1), the symbol map takes values in Smhom(T ∗X), which is the space

of homogeneous functions in the fibers of T ∗X. The short sequence

0→ Ψm−1(X)→ Ψm(X)
σm−−→ Sm(T ∗X)/Sm−1 → 0

is exact. Thus, σm measures if an operator in Ψm(X) is in fact of lower order,

and moreover every principal symbol a can be quantized, i.e. there is an operator

A ∈ Ψm(X) with σm(A) = a. We say that A is elliptic at a point (x, ξ) ∈ S∗X (see

§3.1.5) if its principal symbol a is, see Definition 3.1.7; the set of points at which

A is elliptic is denoted Ell(A), and its complement is the (closed) characteristic set

Char(A) ⊂ S∗X. If Ell(A) = S∗X, we call A elliptic.

(4) Properties of the principal symbol map. For A ∈ Ψm(X), B ∈ Ψm′(X), we have

σm+m′(A ◦B) = σm(A)σm′(B), σm(A∗) = σm(A).

Furthermore,

σm+m′−1(i[A,B]) = Hab,
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where a and b are representatives of σm(A) and σm′(B), respectively.

(5) Mapping properties. For m, s ∈ R, every A ∈ Ψm(X) extends by continuity to a

bounded map A : Hs(X) → Hs−m(X), where the Sobolev spaces Hs(X) are de-

fined using partitions of unity and the spaces Hs(Rn). In particular, operators in

Ψ−∞(X) =
⋂
m∈R Ψm(X) are smoothing, i.e. map C−∞(X) → C∞(X) continuously,

where C−∞(X) is the dual space of C∞(X) (fixing a volume density on X).

(6) Operator wave front sets. Let A ∈ Ψm(X). The set of points (x, ξ) in the cosphere

bundle S∗X for which the essential support (Definition 3.1.9) of the full symbol of

A in a coordinate chart contains (x, ξ) is well-defined, and is called the wave front

set WF′(A) ⊂ S∗X of A; it is a closed set. We have WF′(A) = ∅ if and only if

A ∈ Ψ−∞(X). For A ∈ Ψm(X) and B ∈ Ψm′(X), we have

WF′(A+B) ⊂WF′(A) ∪WF′(B), WF′(A ◦B) ⊂WF′(A) ∩WF′(B).

(7) Wave front sets of distributions. Let u ∈ C−∞(X), s ∈ R. Then the Hs-wave front

set (resp. wave front set) of u, denoted WFs(u) ⊂ S∗X (resp. WF(u) ⊂ S∗X), is

the complement of the set of all (x, ξ) ∈ S∗X for which there exists an operator

A ∈ Ψ0(X), elliptic at (x, ξ), such that Au ∈ Hs(X) (resp. Au ∈ C∞(X)). We say

that u ∈ C−∞(X) is in Hs microlocally in a subset Z ⊂ S∗X if WFs(u) ∩ Z = ∅.

Use a more invariant language for defining pseudodifferential operators [62, §2.4], we

can define ps.d.o.s to be exactly those operators whose Schwartz kernels are distributions

on X ×X conormal to the diagonal ∆X ↪→ X ×X.

The calculus extends to operators that map sections of a rank dE vector bundle E → X

to sections of the rank dF vector bundle F → X, and the space of such operators of order

m is denoted Ψm(X, E ,F), or in the case F = E simply Ψm(X, E). In local coordinates

and local trivializations of the bundles, elements of Ψm(X, E ,F) are simply quantizations

of symbols of order m which take values in dF × dE matrices, or equivalently, they are

dF ×dE matrices of scalar symbols. Such operators can be composed in the natural fashion,

schematically

Ψm′(X,F ,G) ◦Ψm(X, E ,F) ⊂ Ψm+m′(X, E ,G),

where G → X is another vector bundle. If E and F are equipped with fiber metrics

(not necessarily positive definite) and X comes with a volume density, the adjoint of A ∈
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Ψm(X, E ,F) is well-defined, A∗ ∈ Ψm(X,F , E); in general, the adjoint is always well-

defined in Ψm(X,F∗⊗Ω1, E∗⊗Ω1), where Ω1 → X is the rank 1 bundle of (1-)densities on

X. In particular, this applies to scalar operators, so the adjoint of A ∈ Ψm(X) naturally is

A∗ ∈ Ψm(X,Ω1), or more symmetrically, the adjoint of A ∈ Ψm(X,Ω
1
2 ) is A∗ ∈ Ψm(X,Ω

1
2 );

this symmetry is part of the reason why 1
2 -densities are useful on a technical level. See also

the discussion in §6.3. The natural Sobolev spaces of bundle-valued sections Hs(X, E) are

defined using partitions of unity on X and local trivializations of E (using a smooth positive

definite inner product on E), and an operator A ∈ Ψm(X, E ,F) defines a continuous map

Hs(X, E)→ Hs−m(X,F) for all s ∈ R.

The principal symbol map now is

σm : Ψm(X, E ,F)→ Sm(T ∗X,π∗Hom(E ,F))/Sm−1,

where π : T ∗X → X denotes the projection, and we have a short exact sequence

0→ Ψm−1(X, E ,F)→ Ψm(X, E ,F)
σm−−→ Sm(T ∗X,π∗Hom(E ,F))/Sm−1 → 0.

We have the natural subclass of operators in Ψm(X, E) which are principally scalar, i.e.

whose principal symbol has a scalar (multiple of the identity endomorphism on E) repre-

sentative, and conversely scalar symbols can be quantized to give principally scalar oper-

ators acting on sections of E . The principal symbol of the commutator of two operators

A ∈ Ψm(X, E) and B ∈ Ψm′(X, E) then equals σm+m′−1([A,B]) = 1
iHσm(A)σm′(B) if A and

B are principally scalar, and σm+m′([A,B]) = [σm(A), σm(B)] if their principal symbols do

not commute (which can only happen if they are principally non-scalar); note the symbolic

orders in which we compute the principal symbols here. If the principal symbols do com-

mute, say A is principally scalar but B is not, then the principal symbol σm+m′−1([A,B])

involves subprincipal terms of the full symbol of A; see §6.3.3.

The ellipticity of a symbol a ∈ Sm(T ∗X,π∗Hom(E ,F)) at (x, ξ) ∈ S∗X means that

in a conic neighborhood of (x, ξ) and sufficiently far from the zero section of T ∗X, the

symbol a can be inverted by a symbol b ∈ S−m(T ∗X,π∗Hom(F , E)). (This is equivalent

to the existence of b ∈ S−m such that ab − id ∈ S−1(T ∗X,π∗ End(F)) and ba − id ∈
S−1(T ∗X,π∗ End(E)).) If the symbol a ∈ Sm is classical, a ∼

∑
j≥0 am−j , this is simply

the requirement that am be invertible at (x, ξ).

We can then define the elliptic set, operator wave front set and distributional wave front
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set as in the scalar setting. We remark that there is a refined notion of wave front set

for bundle-valued distributions introduced by Dencker [34], called polarization set, which

however we will not use here.

3.2.1 Elliptic regularity; Fredholm estimates

We briefly discuss elliptic regularity, mainly to give a simple example of so-called Fredholm

estimates. There is a direct analogue of microlocal elliptic regularity, Proposition 3.1.16, on

manifolds, including the quantitative estimate (3.1.14), so we shall not restate this here.

Thus, consider an (everywhere) elliptic operator A ∈ Ψm(X). The parametrix construc-

tion of Proposition 3.1.8 works equally well on a manifold (and only relies on the features

of the calculus listed in the previous section); thus, we can find B ∈ Ψ−m(X) such that

BA − I = R ∈ Ψ−∞(X). Now, fix s ∈ R, and let N ∈ R be arbitrary, N < s. Then, for

u ∈ HN (X) with Au ∈ Hs−m(X), the mapping properties of B and R on Sobolev spaces

imply u = BAu−Ru ∈ Hs(X) + C∞(X) = Hs(X), and we in fact obtain an estimate

‖u‖Hs ≤ C(‖Au‖Hs−m + ‖u‖HN ). (3.2.1)

Considering the L2 adjoint A∗ of A, which is elliptic as well, we deduce

‖u‖Hs′ ≤ C(‖A∗u‖Hs′−m + ‖u‖HN ) (3.2.2)

for all s′, N ∈ R. Now, if we let s′ = −(s−m), thus s′−m = −s, the estimates (3.2.1) and

(3.2.2) precisely mean by a standard functional analytic argument, see [64, Proof of The-

orem 26.1.7], that A : Hs(X) → Hs−m(X) is Fredholm, with finite-dimensional nullspace

(since the inclusion HN (X) ↪→ Hs(X) is compact for N < s) and closed range, which is

equal to the orthogonal complement of the finite-dimensional space kerA∗ ⊂ H−s+m(X)

with respect to the L2-pairing of Hs−m(X) with H−s+m(X). (Of course, by elliptic regu-

larity, kerA and kerA∗ are contained in C∞(X) and thus independent of s.)

For more complicated operators A which are non-elliptic, one can no longer construct

an elliptic parametrix, but estimates of the form (3.2.1) and (3.2.2) may still hold (with

changes in the norms on Au and A∗u, and possibly only for a certain range of values of

s and s′), and one deduces that A is Fredholm between suitable spaces; see §3.2.3 for an

example. Thus, we call the estimates (3.2.1) and (3.2.2) Fredholm estimates.
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3.2.2 Real principal type propagation of singularities

As the simplest non-elliptic setting, we now consider the case of operators whose principal

symbol is real and vanishes non-degenerately at the characteristic set. We will sketch a

proof of the celebrated Duistermaat-Hörmander theorem on the propagation of singulari-

ties [38, §6], which roughly speaking states that microlocal regularity of solutions u to an

equation Pu = 0 propagates along null-bicharacteristics of P , i.e. along integral curves of

the Hamilton vector field of the principal symbol of P within the characteristic set of P .

The main example to keep in mind is the case of wave operators on Lorentzian manifolds,

as discussed in Chapter 2: In this case, null-bicharacteristics are null-geodesics, lifted to the

cotangent bundle, and the Duistermaat-Hörmander theorem asserts that singularities (in

the precise, microlocal sense of wave front sets!) to solutions of the wave equation propagate

along light rays.

Thus, let P ∈ Ψm(X) be a classical operator with real homogeneous principal symbol

pm = σm(P ) ∈ Smhom(T ∗X). Fix a boundary defining function ρ of fiber infinity in T
∗
X. As

explained in §3.1.5, we can rescale the Hamilton vector field

Hpm := ρm−1Hpm ∈ V(S∗X),

and we also rescale the principal symbol, defining

p = ρmpm ∈ C∞(S∗X).

Recall that within the characteristic set Char(P ) = p−1(0) ⊂ S∗X, the rescaled vector field

Hpm induces a flow, which is merely a rescaling of the Hamilton flow of pm if we identify the

subset Char(P ) ⊂ S∗X with the corresponding conic subset of T ∗X \ o. We remark that

Hpm vanishes (as a vector field) at a point ζ ∈ S∗X if and only if Hpm is radial at ζ (i.e. at

the ray in T ∗X \ o associated with ζ), and in this case the integral curve of Hpm through ζ

is trivial, i.e. constant.

Now suppose ζ0 ∈ S∗X is such that Hpm |ζ0 6= 0, hence the Hamilton flow in Char(P )

starting at ζ0 is non-trivial; denote by γ : [0, T ]→ S∗X a segment of a null-bicharacteristic,

i.e. an integral curve of Hpm , starting at γ(0) = ζ0. We prove the propagation of regularity

for u solving Pu = f along forward bicharacteristics, but the analogous statement holds for

backward bicharacteristics as well: One can simply replace P by −P and use the forward
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result, or reverse signs in the proof given below. We point out already here that this

symmetry is broken once we allow pm to have a non-vanishing imaginary part, see §3.2.3.

Theorem 3.2.1. [38, Theorem 6.1.1′]. Let s,N ∈ R. Suppose, in the above notation,

that u ∈ HN (X) is a solution of Pu = f ∈ HN (X). If ζ0 /∈ WFs(u) and γ([0, T ]) ∩
WFs−m+1(f) = ∅, then γ(T ) /∈ WFs(u). Thus, since T was arbitrary, Hs-regularity prop-

agates along null-bicharacteristics. Put differently, WFs(u) \WFs−m+1(f) is the union of

maximally extended null-bicharacteristics.

Quantitatively, suppose E,B,G ∈ Ψ0(X) are pseudodifferential operators; assume that

E is elliptic at ζ0, B is elliptic at γ(T ), and G is elliptic on γ([0, T ]), such that every

backward null-bicharacteristic starting at a point in WF′(B) reaches Ell(E) in finite time,

remaining in Ell(G). Then

‖Bu‖Hs ≤ C(‖GPu‖Hs−m+1 + ‖Eu‖Hs + ‖u‖HN ). (3.2.3)

Notice that the propagation estimate (3.2.3) requires control on the Hs−m+1-norm of

Pu, rather than the Hs−m-norm required for elliptic P . We thus say that the propaga-

tion estimate loses one derivative (relative to the elliptic setting). See Figure 3.1 for an

illustration of the setup for (3.2.3).

Figure 3.1: Setup for the propagation of singularities and the estimate (3.2.3): We propagate
a priori Hs-control of u on the elliptic set of E forward along the null-bicharacteristic flow
of P and deduce Hs-regularity of u on the elliptic set of B, assuming Hs−m+1-control of
Pu on the elliptic set of G.

Proof of Theorem 3.2.1. We only give a brief sketch of the proof along the lines of [122,

§4.2]; see [86, §5] (and, using more sophisticated tools, [38, §6]) for details. We give a full

proof for rough pseudodifferential operators in §8.5.

We begin by straightening out the flow: Thus, we introduce local coordinates q =

(q1, q
′) ∈ R × R2n−2 on S∗X near ζ0 such that ζ0 = (0, 0), and Hpm = ∂q1 , hence γ(T ) =
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(T, 0), and we have microlocal Hs regularity of u in a small neighborhood U = {|q1|, |q′| <
2δ} of ζ0. For a commutant C = c(x,D) ∈ Ψ2s−m+1(X), to be chosen later and satisfying

C = C∗, we compute

2 Im〈f, Cu〉 = i(〈Cu, Pu〉 − 〈Pu,Cu〉) = Re
(
〈(i[P,C] + i(P ∗ − P )C)u, u〉

)
. (3.2.4)

The principal symbol of i[P,C] is given by Hpmc. Using the rescaling c = ρ2s−m+1c ∈
C∞(S∗X), one can choose c in such a way that

Hpmc = −b2 −Mc + e (3.2.5)

where b ∈ C∞(S∗X) is non-negative, and positive in {q1 ∈ (δ, 1 + δ), |q′| < δ}, while

e ∈ C∞(S∗X) is supported in the neighborhood U where we have a priori control on u;

the term involving the fixed but arbitrary parameter M > 0 will be used to absorb error

terms later on. One can for instance take c to be a product c(q1, q
′) = c1(q1)c′(q′), and then

choose c1 to be exponentially decaying in q1 > δ/2, while cutting it off near q1 = 0, which

produces the error term e. See §8.5 for details in a more general setting. Now

Hpmc = ρ−m+1Hpm(ρ−2s+m−1c) = ρ−2s(Hpmc− (2s−m+ 1)cρ−1Hpmρ) (3.2.6)

Let b = ρ−sb, e = ρ−2se, and let B ∈ Ψs(X) and E ∈ Ψ2s(X) be quantizations of b and e,

respectively. In view of (3.2.5), the commutator calculation (3.2.4) then implies

〈B∗Bu, u〉+M〈Cu, u〉 = 〈Eu, u〉+ 〈Cu, i(P ∗ − P )u〉+ 〈RCu, u〉

− 2 Im〈f, Cu〉+ 〈R′u, u〉,

where R ∈ Ψ0(X) comes from the second term on the right hand side of (3.2.6), and

R′ ∈ Ψ2s−1(X) is a lower order error term, arising from the fact that (3.2.5) and (3.2.6)

are merely equalities of principal symbols. The pairing here is the L2 pairing between

Sobolev spaces and their duals. Now, improving the choice of C by arranging C = D∗D,

we can write the second term on the left as M‖Du‖2, while we can use Cauchy-Schwarz

and the Peter-Paul inequality on the terms on the right involving Cu and absorb them into

the term M‖Du‖2; notice that we crucially use the fact that P is principally real, thus
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P ∗ − P ∈ Ψm−1(X). In effect, we can then drop the terms involving Cu, and obtain

‖Bu‖2 ≤ 〈Eu, u〉+ ‖Gf‖2 + 〈R′u, u〉, (3.2.7)

with G ∈ Ψs−m+1(X) (which we introduce to keep the control required on f microlocal)

elliptic on WF′(C). By construction, the wave front sets of all operators in this expression

are localized near γ([0, T ]). Now, if we already have u ∈ Hs−1/2 microlocally near γ([0, T ]),

the estimate (3.2.7) implies that Bu ∈ L2(X), thus u ∈ Hs microlocally near γ([0, T ]).

Thus, starting with the a priori knowledge u ∈ HN (X), one can iteratively improve the

regularity of u by 1/2 in each step, until one obtains Hs-regularity as desired.

To make this into a rigorous argument, one needs to justify various integrations by parts;

to do this, one regularizes the argument by replacing the commutant C by a family Cε of

lower order operators, converging to C strongly as ε→ 0, and similarly replacing the other

symbols and operators in the proof. This can be conveniently done by fixing a regularization

of the identity by operators Jε ∈ Ψr(X), r � 0, with principal symbol (1 + ερ−1)r, and

putting Cε = JεC etc.; commuting Jε through P generates additional error terms, which

are handled as before.

This proof is the prime example of a positive commutator argument : A quantity q which

is monotone (possibly modulo error terms) along the Hamilton flow of the operator P gives

rise to a microlocal energy estimate like (3.2.3), by commuting a quantization of q through

P . We will encounter many more instances of this fundamental principle in the following

sections.

We point out that positive commutator arguments for operators acting on sections of a

vector bundle E , require the use a Hermitian, i.e. positive definite, fiber inner product on E .

In applications, the natural fiber inner product is often not positive definite, e.g. the inner

product on the form bundle on a manifold equipped with a Lorentzian metric. This causes

complications in settings where subprincipal terms (P ∗ − P in the above proof) can only

be controlled if they are sufficiently small (thus, the propagation of singularities as above is

unaffected by this problem): While this will be largely irrelevant for our applications in the

study of radial sets in §3.3.1, it will cause difficulties in the study of normally hyperbolic

trapping (see §3.3.2), which we deal with in §§6.3 and 6.4.
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3.2.3 Complex absorbing potentials

The propagation of singularities theorem 3.2.1 shows that Hs-regularity propagates once

it holds somewhere. Thus, one would ideally like to have a place where one gets Hs-

regularity ‘for free.’ Radial points (with a certain structure) are a natural such device and

will be discussed for b-pseudodifferential operators in §3.3.1. A very cheap (even if artificial

in most situations) alternative is the use of complex absorption: In the notation of the

previous section, we consider the operator P−iQ, where Q ∈ Ψm(X), the complex absorbing

potential, is classical and has a real principal symbol q. At places in S∗X where q 6= 0, the

operator P − iQ is elliptic, and we show that if q ≥ 0, one can propagate regularity forward

along the Hamilton flow of P , while for q ≤ 0, one can propagate regularity backward along

the flow. (Thus, singularities propagate backwards where q ≥ 0, and forward where q ≤ 0.)

We show this for forward propagation, i.e. with q ≥ 0: Replace P in the calcula-

tion (3.2.4) by P − iQ; let us assume Q = Q∗1Q1 for some Q1 ∈ Ψm/2(X) for simplicity; in

general, one would need to use the sharp G̊arding inequality [64, §18.1]; see [114, §2.5] for

details. The term

i((P − iQ)∗ − (P − iQ)) = i(P ∗ − P )− 2Q

now has an additional term 2Q ∈ Ψ2m(X), while i[P − iQ,C] = i[P,C] + [Q,C] includes

the term [Q,C]. Recall that we arranged i[P,C] to be the negative of a square (up to

error terms), thus −2Q = −2Q∗1Q1 has the same sign and can therefore be dropped in the

subsequent estimates. As for [Q,C], we need to take care of

Re〈[Q,C]u, u〉 = 〈([Q,C] + [Q,C]∗)u, u〉;

but [Q,C] has purely imaginary principal symbol, thus [Q,C] + [Q,C]∗ ∈ Ψ2s−1(X) is a

lower order operator than the main term i[P,C] and can hence be put into the error term

called R′ in (3.2.7).

The argument for backward propagation follows from the forward argument by consid-

ering the operator (−P )− i(−Q) = −(P − iQ) instead (or one can give an analogous direct

proof).

We now have all the necessary ingredients for the simplest non-elliptic Fredholm problem:

Suppose P − iQ ∈ Ψm(X), with P = P ∗ and Q = Q∗ classical operators with real principal

symbols p and q, is non-trapping in the following sense: For every point ζ ∈ Char(P )\Ell(Q),
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both the forward and the backward bicharacteristic from ζ remain in {q ≥ 0} until they

enter q > 0 in finite time. Then, if u ∈ HN (X) solves (P − iQ)u = f ∈ Hs−m+1(X),

microlocal elliptic regularity implies that u is in Hs+1 microlocally at the elliptic set of Q;

and by the propagation of singularities with complex absorption, we can propagate Hs-

regularity of u along forward bicharacteristics of P , starting in Char(P ) ∩ {q > 0} and

propagating forward along the Hamilton flow of p. By the non-trapping assumption, we

thus obtain WFs(u) = ∅, i.e. u ∈ Hs(X). Quantitatively,

‖u‖Hs ≤ C(‖(P − iQ)u‖Hs−m+1 + ‖u‖HN ).

The adjoint (P − iQ)∗ = P + iQ satisfies the analogous non-trapping property, but now

the sign of Q (and thus q) is switched; thus, for solutions of (P − iQ)∗u = f , we propagate

microlocal regularity along backward bicharacteristics of P . We obtain

‖u‖Hs′ ≤ C(‖(P − iQ)∗u‖Hs′−m+1 + ‖u‖HN ).

Thus, choosing s′ = −(s−m+1), so s′−m+1 = −s, we obtain Fredholm estimates analogous

to (3.2.1) and (3.2.2). They imply that for any s ∈ R, the operator P − iQ : X s → Ys−m+1

is Fredholm, where

X s = {u ∈ Hs(X) : (P − iQ)u ∈ Hs−m+1(X)}, Ys−m+1 = Hs−m+1(X),

and the kernels of P − iQ and (P − iQ)∗ are both subspaces of C∞(X).

3.3 b-calculus on compact manifolds with boundary

The discussion of the geometry of certain classes of stationary spacetimes in Chapter 2

already demonstrated the usefulness of the language of b-geometry; we now discuss the

analytical tools needed to work on such spaces. A full treatment with a slightly different

flavor is given in [82], and a nice discussion of the geometric point of view for understanding

the kernels of b-operators, compositions etc. is given in [56].

Thus, let M be a smooth compact n-dimensional manifold with boundary X = ∂M .

In order to motivate the choices of function and operator spaces below, consider first a

coordinate patch (x, y) ∈ Rn+ = [0,∞)x×Rn−1
y near a point in ∂M , with x a local boundary
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defining function. The perspective on b-analysis that we wish to emphasize here is that it

provides tools for uniform analysis on stationary spacetimes; hence, paralleling the discus-

sion in Chapter 2, we introduce t := − log x ∈ (0,∞), with t → ∞ as x → 0. One would

for instance like to consider the Laplace-type operator

A = D2
t + ∆y = (xDx)2 + ∆y ∈ Diff2

b(Rn+)

to be elliptic in the b-sense; notice however that it degenerates as an ordinary differential

operator on Rn+ as x → 0. (More generally, the Laplace-Beltrami operator associated

with any smooth Riemannian b-metric on X should be elliptic in the b-sense; notice here

that since Vb(X) is a Lie algebra, a b-metric g induces a covariant derivative of b-vector

fields along b-vector fields in view of the Koszul formula, and therefore ∆g ∈ Diff2
b(X)

indeed.) Now, T ∗Rnt,y is naturally isomorphic to bT ∗(Rn+)x,y: Indeed, with the natural

coordinates (t, y, σ, η) on T ∗Rn and (x, y, ξ, η) on bT ∗Rn+, this isomorphism is given by

(t, y, σ, η) 7→ (e−t, y,−σ, η). We therefore view the principal symbol σb,2(A) of A as a

function on bT ∗Rn+, formally obtained from A by replacing xDx by ξ and Dy by η. For a

general Riemannian b-metric g on M , we thus have σb,2(∆g) = G ∈ S2
hom(bT ∗M), where

G is the dual metric function; and G is invertible (non-zero) away from the zero section of

bT ∗M .

Continuing in local coordinates, we note that due to the t-translation invariance of the

operator A, it naturally acts on exponentially weighted Sobolev spaces e−rtHs(Rn), r ∈ R.

Changing coordinates, we are thus led to define the weighted b-Sobolev space

Hs,r
b (Rn+) = Φ∗(e−rtHs(Rn)), Φ(x, y) = (− log x, y), (3.3.1)

and via partitions of unity, one can define weighted b-Sobolev spaces Hs,r
b (M) = xrHs

b(M)

on compact manifolds with boundary; we have

Hs,r
b (M) ⊂ Hs′,r′

b (M) if and only if s′ ≤ s, r′ ≤ r.

Unweighted spaces are denoted Hs
b(M) ≡ Hs,0

b (M), and we have the b-L2-space L2
b(M) :=

H0
b(M). In local coordinates, one has u ∈ L2

b(Rn+) if and only if u ∈ L2(Rn+, dxx dy); note
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that dx
x dy is a b-density. Then, for s ∈ N0, we have u ∈ Hs

b(Rn+) if and only if

V1 · · ·V`u ∈ L2
b(Rn+), V1, . . . , V` ∈ {x∂x, ∂y}, 0 ≤ ` ≤ s.

Thus, on manifolds, we have L2
b(M) = L2(M,ν) for any fixed non-vanishing b-density

ν ∈ C∞(M, bΩ1), and

Hs,r
b (M) =

{
u ∈ xrL2

b(M) : V1 · · ·V`u ∈ xrL2
b(M), V1, . . . , V` ∈ Vb(M), 0 ≤ ` ≤ s

}
for integer s. For non-integer s, one can then equivalently define Hs,r

b (M) by duality and

interpolation. Picking a different density ν leads to the same space with an equivalent norm.

We have natural space of distributions, C−∞(M) := Ċ∞(M)∗ (fixing a b-1-density for

convenience) which contains Hs,r
b (M) for all s, r ∈ R; in fact,

Ċ∞(M) =
⋂
s,r

Hs,r
b (M), C−∞(M) =

⋃
s,r

Hs,r
b (M).

The space C−∞(M) is called the space of extendible distributions [64, Appendix B], since

the Hahn-Banach theorem shows that it can equivalently be characterized as the space of

restrictions of distributions on a closed ambient manifold M̃ , containing M as a submanifold

with boundary, to M◦. Considering instead Ċ−∞(M) := C∞(M)∗, we obtain the space of

supported distributions, which can be viewed as the space of distributions on M̃ that have

support in M .

We now present a calculus of b-pseudodifferential operators, a symbolic calculus for

quantizations of symbols defined on the b-cotangent bundle of M (and thus for instance

allowing for symbolic inversions of elliptic b-differential operators), which is almost entirely

analogous to the calculus presented in §3.2.

(1) Spaces of operators. For every m ∈ R, the vector space Ψm
b (M) consists of bounded

operators Ċ∞(M)→ Ċ∞(M). For m ∈ N0, we have Diffmb (M) ⊂ Ψm
b (M).

(2) Algebra property. The space
⋃
m∈R Ψm

b (M) is a filtered *-algebra (fixing a non-

vanishing b-density on M to compute adjoints).

(3) Principal symbol, ellipticity. For each m ∈ R, there is a principal symbol map

σb,m : Ψm
b (M)→ Sm(bT ∗M)/Sm−1,
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Restricting to classical operators, the symbol map takes values in Smhom(bT ∗M). The

short sequence

0→ Ψm−1
b (M)→ Ψm

b (M)
σb,m−−−→ Sm(bT ∗M)/Sm−1 → 0

is exact. We say that A is elliptic at a point (z, ζ) ∈ bS∗M if its principal symbol a

is; the set of points at which A is elliptic is denoted Ell(A), and its complement is the

characteristic set Char(A) ⊂ bS∗M .

(4) Properties of the principal symbol map. For A ∈ Ψm
b (M), B ∈ Ψm′

b (M), we have

σb,m+m′(A ◦B) = σb,m(A)σb,m′(B), σb,m(A∗) = σb,m(A).

Furthermore,

σb,m+m′−1(i[A,B]) = Hab,

where a and b are representatives of σb,m(A) and σb,m′(B), respectively.

(5) Mapping properties. For m, s, r ∈ R, every A ∈ Ψm
b (M) defines a bounded map

A : Hs,r(M) → Hs−m,r(M). In particular, operators in Ψ−∞b (M) =
⋂
m∈R Ψm

b (M)

are smoothing acting between Sobolev spaces with the same weight, i.e. they map

Hs,r(M)→ H∞,r(M) for every s, r ∈ R.

(6) Operator wave front sets. Let A ∈ Ψm
b (M). The set of points (z, ζ) in bS∗M for which

the essential support of the full symbol of A in a coordinate chart contains (z, ζ) is

well-defined and closed, and is called the wave front set WF′b(A) ⊂ bS∗M of A. We

have WF′b(A) = ∅ if and only if A ∈ Ψ−∞b (M). For A ∈ Ψm
b (M) and B ∈ Ψm′

b (M),

we have

WF′b(A+B) ⊂WF′b(A) ∪WF′b(B), WF′b(A ◦B) ⊂WF′b(A) ∩WF′b(B).

(7) Wave front sets of distributions. Let s, r ∈ R, and suppose u ∈ H−∞,rb (M). Then the

Hs,r
b -wave front set of u, denoted WFs,rb (u) ⊂ bS∗M , is the complement of the set of

all (z, ζ) ∈ bS∗M for which there exists an operator A ∈ Ψ0
b(M), elliptic at (z, ζ),

such that Au ∈ Hs,r
b (M). We say that u ∈ H−∞,rb (M) is in Hs,r

b microlocally in a

subset Z ⊂ bS∗M if WFs,rb (u) ∩ Z = ∅.
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Notice that b-pseudodifferential operators only act between b-Sobolev spaces with the

same weight; thus one can only define the Hs,r
b -wave front set for distributions u that are

already known to have weight r, which is of course a much more restrictive assumption

than merely u ∈ C−∞(M). We moreover point out that the calculus Ψb(M) only includes

operators which have smooth coefficients on M , while operators with conormal coefficients

are very natural from the point of view of applications, as discussed in §2.1.2. We indicate

how to extend Ψb(M) to a calculus Ψb,bc(M) allowing for coefficients which are smooth

plus conormal in §3.3.5.

The proofs of (microlocal) elliptic regularity, propagation of singularities and complex

absorption on closed manifolds given in §§3.2.1, 3.2.2 and 3.2.3 depend purely on the symbol

calculus and therefore go through mutatis mutandis for b-operators as well; again, in order

to prove Hs,r
b -regularity for a distribution u using these symbolic arguments, one needs to

assume a priori that u ∈ H−∞,rb (M): Symbolic arguments cannot lead to improvements in

the weight r. Thus, elliptic regularity for A ∈ Ψm
b (M), elliptic at α ∈ bS∗M , states that

if u ∈ H−∞,rb (M), then α /∈ WFs−m,rb (Au) implies α /∈ WFs,rb (u), while the propagation of

singularities states that for u ∈ H−∞,rb (M), the set WFs,rb (u)\WFs−m+1,r
b (Au) is the union

of maximally extended null-bicharacteristics of A.

For b-operators, a crucial new feature arises, corresponding to the non-compactness of

the translation-invariant picture Rnt,y introduced at the beginning of this section: Namely,

the inclusion HN,r
b (M) ↪→ Hs,r

b (M) for N < s is no longer compact, since there is no gain

in the weight. This for instance shows that symbolic properties alone are not sufficient

to guarantee Fredholm properties of elliptic b-(pseudo)differential operators on M , which

in fact do not hold in general; the missing piece is the analysis of a model operator at

∂M , discussed in §3.3.3. (Until §3.3.3, we shall however only study symbolic properties of

b-ps.d.o.s.) The map from Ψb(M) into the (non-commutative!) algebra of such model oper-

ators is a ‘non-commutative symbol map’; the non-commutativity of this map is intimately

related to the necessity in symbolic calculations to work on spaces with fixed weights.

We now indicate how to construct the above b-calculus by localizing to coordinate charts

and using the Euclidean theory to the largest possible extent (after a logarithmic change

of coordinates as above); parts of the presentation follow [116].3 We want to describe a

class of ps.d.o.s on Rn+ which has composition and mapping properties analogous to (2)

3We again refer to [82] for a more geometric treatment, describing the Schwartz kernels of b-
pseudodifferential operators as conormal distributions on the b-double space [M ×M ; ∂M × ∂M ] (for ∂M
connected) with infinite order of vanishing on the side faces.
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and (5) above; working on Rnt,y, t = − log x, we therefore want to define ps.d.o.s A on Rnt,y
which are continuous between exponentially weighted spaces e−rtHs(Rn). Equivalently, if

KA(t, y, t′, y′) denotes the Schwartz kernel of A, we want the operator with Schwartz kernel

e−rtKA(t, y, t′, y′)ert
′

to act between unweighted Sobolev spaces Hs(Rn). Thus, we are led

to require superexponential decay of KA(t, y, t′, y′) in |t− t′|. Now ψ(t′ − t)KA ∈ Ψm(Rn),

with ψ ∈ C∞c (R) identically 1 near 0, satisfies this automatically, and (1 − ψ(t′ − t))KA ∈
Ψ−∞(Rn) has smooth Schwartz kernel on R2n; simplify the presentation by switching freely

between (x, y) and (t, y) coordinates, and identifying operators with their Schwartz kernels,

we therefore define:

Definition 3.3.1. The local smooth b-algebra
⋃
m Ψm

lb(Rn+) consists of operators of the

form A = A′+R ∈ Ψm
lb(Rn+); here KA′(t, y, t

′, y′) = ψ(t′− t)KB(t, y, t′, y′), with ψ ∈ C∞c (R)

identically 1 near 0, where KB is the Schwartz kernel of the left quantization of a symbol

b(t, y;σ, η) ∈ Sm(Rn;Rn) satisfying

|(et∂t)k∂αy ∂
β
ζ b(t, y; ζ)| ≤ Cαβk`〈ζ〉m−|β| (3.3.2)

for all α, β, k, `, while KR(t, y, t′, y′) ∈ Ψ−∞(Rn) satisfies

|(et∂t)k∂`s∂αy ∂
β
y′(KR(t, y, t+ s, y′))| ≤ Cαβk`Me−M |s|〈y − y′〉−M (3.3.3)

for all α, β, k, `,M .

The weighted t-derivatives simply correspond to the requirement that our operators have

smooth coefficients in x; recall ∂x = −et∂t. A more symmetric definition would use e〈t〉∂t

rather than et∂t in order to have an exponential weight as t approaches ±∞, but since we

are only studying a local model for b-operators, thus only work in {x < ε} = {t > − log ε},
we decree that all operators and symbols in the local model are compactly supported in x,

or equivalently supported in a half-line t > t0, without making this explicit in the notation.

Then, under the identification of (the interior of) Rn+ with Rn via the logarithmic change

of coordinates, we have Ψm
lb(Rn+) ⊂ Ψm(Rn).

We will prove below that
⋃
m Ψm

lb(Rn+) is indeed an algebra. First, we observe that one

can represent elements of Ψm
lb(Rn+) in a more convenient way by exploiting the relation of

superexponential decay and entire functions via the Fourier transform. Concretely:
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Definition 3.3.2. For m ∈ R, denote by Smb (Rn+) (‘b-symbols’) the space of all smooth

functions a(x, y; ξ, η) which are holomorphic in ξ and satisfy

|∂kx∂αy ∂`ξ∂βη a(x, y; ξ, η)| ≤ Cαβk`N (1 + |Re ξ|+ |η|)m−`−|β|, | Im ξ| ≤ N, (3.3.4)

for all α, β, k, `,N .

Here and in what follows, we omit the fiber variables in the notation of spaces of symbols;

for local considerations, the fiber is always Rn if n is the dimension of the base.

In (t, y)-coordinates, condition (3.3.4) reads

|(et∂t)k∂αy ∂`σ∂βη a(t, y;σ, η)| ≤ Cαβk`N (1 + |Re ξ|+ |η|)m−`−|β|, | Im ξ| ≤ N,

which is a stronger requirement than (3.3.2). We show below in Lemma 3.3.6 that any

symbol in Sm(Rn+) can be modified by a symbol in S−∞(Rn+) to yield a symbol in Smb (Rn+).

Proposition 3.3.3. For m ∈ R, we have A ∈ Ψm
lb(Rn+) if and only if A = qL(a) for a

(uniquely determined) symbol a ∈ Smb (Rn+), i.e. if

KA(z, z + w) =

∫
e−iwζa(z, ζ) dζ.

Proof. We will ignore the tangential variables on Rn+, since they come along for the ride.

Thus, we simply assume that we are working on R+, i.e. with n = 1. Then, if A ∈ Ψm
lb(R+),

thus a forteriori A ∈ Ψm(R) after a change of variables, we obtain the left reduced symbol

a from the Schwartz kernel KA(t, t′) using (3.1.5), that is,

a(t, σ) =

∫
eisσKA(t, t+ s) ds.

Writing A = A′ + R as in Definition 3.3.1, the estimates (3.3.3) for the Schwartz kernel

KR(t, t+ s) of R imply that
∫
eisσKR(t, t+ s) ds ∈ S−∞b (R+) indeed, while for A′, we have∫

eisσKA′(t, t+ s) ds = (2π)−1

∫∫
eisσe−isλψ(s)b(t, λ) dλ ds =

∫
ψ̌(σ − λ)b(t, λ) dλ,

where ψ̌ denotes the inverse Fourier transform of ψ. Since ψ is smooth with compact

support, we have

|∂σψ̌(σ)| ≤ CN (1 + |Reσ|)−N , | Imσ| ≤ N
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for all N ; thus, using the assumption b ∈ Sm, we can estimate for σ ∈ R∣∣∣∣∫ ψ̌(σ − λ)b(t, λ) dλ

∣∣∣∣ . 〈σ〉m ∫ 〈λ〉m

〈σ − λ〉N 〈σ〉m
dλ . 〈σ〉m,

which follows from 〈λ〉m . 〈σ − λ〉m + 〈σ〉m for m ≥ 0 and 〈σ〉−m . 〈σ − λ〉−m + 〈λ〉−m

for m < 0, together with the finiteness of
∫
R〈λ〉

−s dλ for s > 1. We similarly obtain an

estimate for general σ ∈ C, and for e−t∂t and ∂σ-derivatives. Hence,∫
eisσKA′(t, t+ s) ds ∈ Smb (R+)

indeed, proving the direction (⇒). For the converse direction (⇐), given a ∈ Smb (R+), we

note that

KA(t, t+ s) = (2π)−1

∫
e−isσa(t, σ) dσ

is indeed superexponentially decaying in s away from s = 0 together with all its et∂t and ∂s-

derivatives, since we can shift the contour of integration from R to Imσ = −M sgn s, which

does not affect the symbol estimates for a by definition of the space Smb (R+) but introduces

an exponential weight |e−isσ| = e−M |s| in the integrand. Thus, the part (1−ψ(s))KA(t, t+s)

satisfies the estimates (3.3.3) of the remainder term, while ψ(s)KA(t, t + s) is the left

quantization of a′(t, σ) :=
∫
ψ̌(σ − λ)a(t, λ) dλ ∈ Sm(R+).

Now, we can follow the discussion in §3.1.1, introducing a more general class of ‘two-

sided’ symbols satisfying

|∂kx∂αy ∂k
′
x′∂

α′
y′ ∂

`
ξ∂
β
η a(x, y, x′, y′; ξ, η)| ≤ Cαβk`k′`′N (1 + |Re ξ|+ |η|)m−`−|β|, | Im ξ| ≤ N,

in analogy to (3.1.2) in the Euclidean setting, and establishing that quantizations of such

symbols can uniquely be written as left/right quantizations of symbols in Smb (Rn+). Indeed,

for the proof of Proposition 3.1.2, we first observe that one can asymptotically sum sequences

aj(t, y, σ, η) with aj ∈ Sm−jb (Rn+), j = 0, 1, . . ., by asymptotically summing in the class of

standard symbols, obtaining ã(t, y, σ, η) ∈ Sm(Rn+) with ã ∼
∑
aj ; then we define a ∈

Smb (Rn+) in terms of its Fourier transform in σ by∫
e−iσt

′
a(t, y, σ, η) dσ := ψ(t′)

∫
e−iσt

′
ã(t, y, σ, η) dσ,
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i.e. cutting off the Fourier transform of ã in σ near t′ = 0 (which is where the Fourier

transform is conormal!), which only changes ã by an element of S−∞(Rn+); thus a ∼
∑
aj .

Furthermore, in the last step of the proof of Proposition 3.1.2, in which the arbitrarily good

remainder R (in terms of symbolic order) is expressed as the left quantization of a symbol

b, we need to show that b ∈ S−∞b (Rn+), rather than merely b ∈ S−∞(Rn); that is, we need

to argue that iterated et∂t-derivatives of b enjoy symbolic estimates; this however follows

easily from a contour shifting argument applied to (3.1.4).

We can now conclude that the space
⋃
m Ψm

lb(Rn+) of Definition 3.3.1 is indeed an alge-

bra, and its elements act on the exponentially weighted spaces Hs,r
b (Rn+) defined in (3.3.1).

Notice that away from the boundary ∂Rn+, elements of Ψm
lb(Rn+) are simply standard pseu-

dodifferential operators on open subsets of Rn+. Using Ψm
lb(Rn+) as a local model for b-ps.d.o.s

on M , we then define:

Definition 3.3.4. The b-calculus4
⋃
m Ψm

b (M) on the compact manifold M with boundary

consists of operators A ∈ Ψm
b (M) characterized as follows:

(1) A : Ċ∞(M)→ Ċ∞(M) continuously,

(2) if U is any coordinate chart with Φ: U → Ũ ⊂ Rn a diffeomorphism, with Ũ open

in Rn or in Rn+, then for all ψ ∈ C∞c (U), we have Aψ := (Φ−1)∗ψAψΦ∗ ∈ Ψm(Rn) or

Aψ ∈ Ψm
lb(Rn+).

(3) If ψU , ψV ∈ C∞(M) have disjoint supports in local coordinate charts U , resp. V , then

the Schwartz kernel of ψUAψV is conormal (i.e. has iterated regularity relative to

b-vector fields) on M ×M relative to bounded functions which decay rapidly as x/x′

tends to 0 or∞, i.e. have bounds CN (x/x′)N in x/x′ < 1 and CN (x′/x)N in x/x′ > 1,

where x, resp. x′ denote the pullbacks of the boundary defining function of M from

the first, resp. second factor of M ×M .

In more detail, (3) means the following:

(3.1) If U and V are disjoint from ∂M , then ψUAψV has C∞(M ×M) Schwartz kernel,

(3.2) if U is disjoint from ∂M and V is not (resp. V is disjoint from ∂M and U is not), then

ψUAψV has a C∞(M ×M) Schwartz kernel vanishing to infinite order at M × ∂M
(resp. ∂M ×M),

4In the language of [82], this is the ‘small’ b-calculus, since the Schwartz kernels of its operators vanish
to infinite order at the left and right boundary of the b-double space.
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(3.3) if U and V both intersect ∂M , with a product decomposition U ∼= [0, ε)x × U0,

V ∼= [0, ε)x × V0, and with coordinate charts ΦU : U → [0, ε)x × Rn−1
y and ΦV : V →

[0, ε)x′ × Rn−1
y′ , then the Schwartz kernel KUV of (Φ−1

U )∗ψUAψV Φ∗V satisfies

|(et∂t)k∂`s∂αy ∂
β
y′(KUV (t, y, t+ s, y′))| ≤ Cαβk`Me−M |s|, (3.3.5)

where t = − log x and t + s = − log x′; notice that these are exactly the estimates

(3.3.3) apart from the y − y′ factor, which is irrelevant here in view of the compact

support both in y and y′.

The main task in proving that the space
⋃
m Ψm

b (M) thus defined indeed gives the

aforementioned symbolic calculus is checking the composition property; this amounts to

showing that compositions of various localized pieces of Schwartz kernels of b-ps.d.o.s behave

in the above manner. This is somewhat tedious but straightforward; we refer to [82, §5]

for a rather direct treatment and [85] for a geometric proof that generalizes easily to more

degenerate calculi.

We end by proving the following simple characterization of WFsb(u), analogous to

Proposition 3.1.15 in the Euclidean setting. We work on Rn+, writing points z ∈ Rn+ as

z = (x, y) ∈ [0,∞)× Rn−1. For brevity, we write

bD = (xDx, Dy), (3.3.6)

with D = i−1∂ as usual.

Lemma 3.3.5. Let u ∈ H−∞b (Rn+). Then Rn+ × (Rn \ o) 3 (z0, ζ0) /∈WFsb(u) if and only if

there exists φ ∈ C∞c (Rn+), φ(z0) 6= 0, and a conic neighborhood K of ζ0 in Rn such that

χK(ζ)〈ζ〉sφ̂u ∈ L2(Rn), (3.3.7)

where χK is the characteristic function of K; here, φ̂u is the Mellin transform of φu in x

and the Fourier transform in y.

Proof. It suffices to prove the lemma when χK is replaced by χ̃K ∈ C∞(Rn), positively

homogeneous away from the origin, where χ̃K ≡ 1 on the ray R≥1ζ0. Given such a χ̃K and

φ ∈ C∞c (Rn+) so that (3.3.7) holds (with χK replaced by χ̃K), the map

A : v 7→ (χ̃K(bD)〈bD〉s + r(bD))(φv)
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is an element of Ψs
lb(Rn+) for an appropriate choice of r(ζ) ∈ S−∞ by Lemma 3.3.6 below.

Since r(bD) : H−∞b (Rn+)→ H∞b (Rn+), we conclude that Âu ∈ L2(Rn), which by Plancherel’s

theorem gives (z0, ζ0) /∈WFsb(u), as desired.

For the converse direction, given A ∈ Ψs
lb(Rn+), σb,s(A)(z0, ζ0) 6= 0, with Au ∈ L2

b(Rn+),

take φ ∈ C∞c (Rn+) and χ̃K ∈ C∞(Rn) with φ(z0) 6= 0, χ̃K(ζ0) 6= 0 such that A is elliptic

on WF′b(B), where B = (χ̃K(bD)〈bD〉s + r(bD))φ ∈ Ψs
lb(Rn+), again with an appropriately

chosen r ∈ S−∞. A straightforward application of the symbol calculus gives the existence of

C ∈ Ψ0
lb(Rn+), R′ ∈ Ψ−∞lb (Rn+) such that B = CA− R′; thus Bu = C(Au)− R′u ∈ L2

b(Rn+).

Since r(bD) : H−∞b → H∞b , we conclude that χK(ζ)〈ζ〉sφ̂u ∈ L2(Rn).

To complete the proof, we show that Sm + S−∞ = Smb on Rn+:

Lemma 3.3.6. For any symbol a ∈ Sm((R+)x ×Rn−1
y ;Rξ ×Rη), there is a symbol ã ∈ Smb

with a− ã ∈ S−∞.

Proof. Fix φ ∈ C∞c (R) identically 1 near 0 and put

ã(x, y; ξ, η) = Fξ→t
(
φ(t)(F−1

ξ→ta)(x, y; t, η)
)
.

Then ã ∈ Smb by the proof of Proposition 3.3.3. Moreover, F−1
ξ→t(a − ã) is smooth and

rapidly decaying, thus the lemma follows.

Lastly, we note that the operator with full symbol 〈ζ〉s is not a b-ps.d.o. unless s ∈ 2N.

By the preceding Lemma, this can be fixed by changing 〈ζ〉s by a symbol of order −∞;

more precisely:

Corollary 3.3.7. For each s ∈ R, there is Λs ∈ Ψs
lb(Rn+) with full symbol λs(ζ) ∈ Ssb(Rn+×

Rn), λs(ζ) 6= 0 for all ζ ∈ Rn, such that λs − 〈ζ〉s ∈ S−∞(Rn+ × Rn).

Proof. The only statement left to be proved is that λs can be arranged to be non-vanishing.

Let λ̃s ∈ Ssb be the symbol constructed in Lemma 3.3.6. Since λ̃s differs from the positive

function 〈ζ〉s ∈ Ss \ Ss−1 by a symbol of order S−∞, it is automatically positive for large

|ζ|; thus we can choose C = C(s) large such that λs(ζ) = λ̃s(ζ) + C(s)e−ζ
2

is positive for

all ζ ∈ Rn. Since e−ζ
2 ∈ S−∞b , the proof is complete.
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3.3.1 Radial points

The theorem on the propagation of singularities for an equation Pu = f , P ∈ Ψm
b (M), only

gives information about the wave front set of u over the interior, and, separately from this,

over the boundary, since bicharacteristics of P either lie completely within the boundary

or do not intersect it at all. Hence, for the global analysis of non-elliptic b-operators, one

needs additional structure in order to connect these two pieces. Generalized b-radial sets,

see Definition 2.2.2, are such a structure, and we now discuss the propagation of singularities

near them.

We recall the setup, compressing both choices of signs (corresponding to source/sink

behavior within bT
∗
XM): Let P ∈ Ψm

b (M) be an operator with real principal symbol p, and

assume that dp does not vanish where p does, i.e. at Σ = p−1(0), and is linearly independent

of dτ , τ a boundary defining function of M , at {τ = 0, p = 0} = Σ ∩ bS∗XM . Thus, Σ is a

smooth submanifold of bS∗M transversal to bS∗XM . For the generalized radial set L, assume

that L = L+ ∪ L− with L± smooth disjoint submanifolds of bS∗XM , given by L± ∩ bS∗XM

where L± are smooth disjoint submanifolds of Σ transversal to bS∗XM , defined locally near

bS∗XM . Fix a defining function ρ̂ of fiber infinity bS∗M ⊂ bT
∗
M , then we assume that

Hp = ρ̂m−1Hp

is tangent to L±; we require

ρ̂−1Hpρ̂|L± = ∓β0, −τ−1Hpτ |L± = ∓β̃β0,

β0, β̃ ∈ C∞(L±), β0, β̃ > 0,
(3.3.8)

and, for a homogeneous degree zero quadratic defining function ρ0 of L within Σ, that

∓ Hpρ0 − β1ρ0 ≥ 0 (3.3.9)

within bS∗XM , modulo cubic vanishing terms at L±, with β1 > 0. Then L− is a source

and L+ is a sink within bS∗XM , but at L− there is also a stable, and at L+ an unstable,

manifold, namely L−, resp. L+. In order to simplify the statements, we assume that

β̃ is constant on L±; β̃ = β > 0; (3.3.10)
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we refer to [114, Equation (2.5)-(2.6)], and the discussion throughout that paper, as well

as the numerology in §8.5.4, where a general β̃ is allowed, at the cost of either sup β̃ or

inf β̃ playing a role in various statements depending on signs. Finally, we assume that

P − P∗ ∈ Ψm−2
b (M) for convenience; see Remark 3.3.10 for the general case.

Proposition 3.3.8. Suppose P is as above.

If s ≥ s′, s′− (m− 1)/2 > βr, and if u ∈ H−∞,rb (M) then L± (and thus a neighborhood

of L±) is disjoint from WFs,rb (u) provided L± ∩WFs−m+1,r
b (Pu) = ∅, L± ∩WFs

′,r
b (u) = ∅,

and in a neighborhood of L±, L± ∩ {τ > 0} are disjoint from WFs,rb (u).

On the other hand, if s − (m − 1)/2 < βr, and if u ∈ H−∞,rb (M) then L± (and thus a

neighborhood of L±) is disjoint from WFs,rb (u) provided L± ∩WFs−m+1,r
b (Pu) = ∅ and a

punctured neighborhood of L±, with L± removed, in Σ ∩ bS∗XM is disjoint from WFs,rb (u).

Thus, if the a priori regularity s′ of u at L± exceeds a certain threshold value, we can

propagate Hs-regularity from the interior into the boundary. In the low regularity regime,

the threshold value gives an upper bound for the amount of regularity u can have. Roughly

speaking then, the threshold regularity is precisely the regularity of certain conormal solu-

tions of Pu ∈ H∞,rb , and having higher a priori regularity excludes these, while they are

generally present below the threshold regularity.

Remark 3.3.9. The decay order r plays the role of − Imσ in [114] in view of the Mellin trans-

form in the dilation invariant setting identifying weighted b-Sobolev spaces with weight r

with semiclassical Sobolev spaces on the boundary on the line Imσ = −r, see [114, Equa-

tion (3.8)-(3.9)] and §3.3.4. Thus, the numerology in this proposition is a direct translation

of that in [114, Propositions 2.3-2.4]. See [114, Remark 4.5] for further information on the

conceptual reason behind the threshold numerology in the semiclassical setting.

Remark 3.3.10. The natural assumption is that the principal symbol of 1
2i(P − P

∗) ∈
Ψm−1

b (M) at L± is

± β̂β0ρ̂
−m+1, β̂ ∈ C∞(L±). (3.3.11)

If β̂ vanishes, Proposition 3.3.8 is valid without a change; otherwise it shifts the threshold

quantity s− (m− 1)/2− βr in Proposition 3.3.8 to s− (m− 1)/2− βr+ β̂ if β̂ is constant,

with modifications as in [114, Proof of Propositions 2.3-2.4] otherwise.

Remark 3.3.11. While the assumptions listed above for Proposition 3.3.8 are not stable

under perturbations of the operator P ∈ Ψm
b (M), the estimates derived from it are, as the
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positive commutator proof below relies on the positivity of certain Hamilton derivatives,

and positivity is an open condition.

Proof of Proposition 3.3.8. We remark first that Hpρ0 vanishes quadratically on L± since

Hp is tangent to L± and ρ0 itself vanishes there quadratically. Further, this quadratic

expression is positive definite near τ = 0 because it is such at τ = 0. Correspondingly, we

can strengthen (3.3.9) to

∓ Hpρ0 −
β1

2
ρ0 (3.3.12)

being non-negative modulo cubic terms vanishing at L± in a neighborhood of τ = 0.

Notice next that, using (3.3.12) in the first case and (3.3.8) in the second, and that L±

is defined in Σ by τ = 0, ρ0 = 0, there exist δ0 > 0 and δ1 > 0 such that

α ∈ Σ, ρ0(α) < δ0, τ(α) < δ1, ρ0(α) 6= 0⇒ (∓Hpρ0)(α) > 0

and

α ∈ Σ, ρ0(α) < δ0, τ(α) < δ1 ⇒ (±τ−1Hpτ)(α) > 0.

Similarly to [114, Proof of Propositions 2.3-2.4], which is not in the b-setting, and [8, Proof

of Proposition 4.4], which is but concerns only sources/sinks (corresponding to Minkowski

type spaces), we consider commutants

C ∈ τ−rΨs−(m−1)/2
b (M) = Ψ

s−(m−1)/2,−r
b (M)

with principal symbol

c = φ(ρ0)φ0(p0)φ1(τ)ρ̂−s+(m−1)/2τ−r, p0 = ρ̂mp,

where φ0 ∈ C∞c (R) is identically 1 near 0, φ ∈ C∞c (R) is identically 1 near 0 with φ′ ≤ 0 in

[0,∞) and φ supported in (−δ0, δ0), while φ1 ∈ C∞c (R) is identically 1 near 0 with φ′1 ≤ 0

in [0,∞) and φ1 supported in (−δ1, δ1), so that

α ∈ supp d(φ ◦ ρ0) ∩ supp(φ1 ◦ τ) ∩ Σ⇒ ∓(Hpρ0)(α) > 0,

and ±τ−1Hpτ remains positive on supp(φ1 ◦ τ) ∩ supp(φ ◦ ρ0).



3.3. B-CALCULUS ON COMPACT MANIFOLDS WITH BOUNDARY 79

The main contribution then comes from the weights, which give

Hp(ρ̂
−s+(m−1)/2τ−r) = ∓(−s+ (m− 1)/2 + βr)β0ρ̂

−s+(m−1)/2τ−r,

where the sign of the factor in parentheses on the right hand side being negative, resp.

positive, gives the first, resp. the second, case of the statement of the proposition. Further,

the sign of the term in which φ1(τ), resp. φ(ρ0), gets differentiated, yielding ±τ β̃β0φ
′
1(τ),

resp. φ′(ρ0)Hpρ0, is, when s − (m − 1)/2 − βr > 0, the opposite, resp. the same, of these

terms, while when s− (m− 1)/2−βr < 0, it is the same, resp. the opposite, of these terms.

Correspondingly,

σ2s(i[P, C∗C]) = ∓2
(
− β0

(
s− m− 1

2
− βr

)
φφ0φ1 − β0β̃τφφ0φ

′
1

∓ (Hpρ0)φ′φ0φ1 +mβ0p0φφ
′
0φ1

)
φφ0φ1ρ̂

−2sτ−2r.

We can regularize using using Sε ∈ Ψ−δb (M) for ε > 0, uniformly bounded in Ψ0
b(M),

converging to Id in Ψδ′
b (M) for δ′ > 0, with principal symbol (1 + ερ̂−1)−δ, as in [114,

Proof of Propositions 2.3-2.4], where the only difference was that the calculation was on

X = ∂M , and thus the pseudodifferential operators were standard ones, rather than b-

pseudodifferential operators. The a priori regularity assumption on WFs
′,r

b (u) arises as the

regularizer has the opposite sign as compared to the contribution of the weights, thus the

amount of regularization one can do is limited. The positive commutator argument then

proceeds completely analogously to [114, Proof of Propositions 2.3-2.4], except that, as in

[114], one has to assume a priori bounds on the term with the sign opposite to that of

s − (m − 1)/2 − βr, of which there is exactly one for either sign (unlike in [114], in which

only s−(m−1)/2+β Imσ < 0 has such a term), thus on Σ∩supp(φ′1◦τ)∩supp(φ◦ρ0) when

s− (m−1)/2−βr > 0 and on Σ∩ supp(φ1 ◦ τ)∩ supp(φ′ ◦ρ0) when s− (m−1)/2−βr < 0.

Using the openness of the complement of the wave front set we can finally choose φ and

φ1 (satisfying the support conditions, among others) so that the a priori assumptions are

satisfied, choosing φ1 first and then shrinking the support of φ in the first case, with the

choice being made in the opposite order in the second case. This completes the proof of the

proposition.

We will give full details for the proof in the case that the operator P has non-smooth

coefficients, see Theorem 8.5.10.
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Another type of generalized b-radial set shows up on (asymptotically) Minkowski spaces,

the difference being that there is no relative sign difference between ρ̂−1Hpρ̂ and τ−1Hpτ

in (3.3.8): Thus, the (generalized) radial set in this case is a source/sink not only within

bT
∗
XM , but also in the direction transverse to the boundary. In this case, one can in par-

ticular obtain microlocal regularity for free at the radial set provided the a priori regularity

is sufficiently high, since all terms in the positive commutator computation are positive, so

no regularity needs to be required elsewhere. (For saddle points as in Proposition 3.3.8,

the intuitive statement is: If no singularities flow into the saddle, none flow out of it.

For the propagation out of sources/sinks on the other hand, there is no place from which

singularities could propagate.) See [8, §4] and Proposition 5.5.3 for details.

We end this section by presenting a very simple toy example in which a threshold

behavior as in Proposition 3.3.8 can be observed; our applications of course provide much

better examples, but they will be less explicit. To wit, on R, consider the operator P defined

by Pu(x) = xu(x); within the characteristic set T ∗R \ o, P has radial points at the two

boundary points of T
∗
0R, and the value of the threshold regularity is (0 − 1)/2 = −1/2 in

this case, 0 being the order of P. Concretely, suppose u ∈ Hs′
loc(R) is such that Pu ∈ C∞(R).

Then one can write

u = u−(x− i0)−1 + u+(x+ i0)−1 + us

with u± ∈ C and us ∈ C∞(R). Now (x ± i0)−1 ∈ H−1/2−0
loc (R); therefore, if we assume a

priori that the regularity of u is s′ > −1/2, then we can conclude that u ∈ C∞(R); on the

other hand, if we only have s′ < −1/2 a priori, then we can only obtain u ∈ H−1/2−0
loc (R),

but u can have non-trivial conormal behavior at x = 0.

3.3.2 Normally hyperbolic trapping

One needs separate microlocal regularity results at (normally hyperbolically) trapped sets,

see Definition 2.3.1. Generalizing the geometric setting considered there slightly, suppose

P ∈ Ψm
b (M), P − P∗ ∈ Ψm−2

b (M). Let p be the principal symbol of P, which is thus a

homogeneous degree m function on bT ∗M \ o, which we assume to be real-valued. Let ρ̂

denote a defining function of bS∗M , and let

p̂0 = ρ̂mp,
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so Σ = p̂−1
0 (0) ⊂ bS∗M is the characteristic set. We define the rescaled Hamilton vector

field as Hp = ρ̂m−1Hp ∈ Vb(bT
∗
M). We assume that P has normally hyperbolic trapping in

the b-sense according to Definition 2.3.1, replacing G by p, at the set Γ ⊂ Σ, with forward

(resp. backward) trapped set Γ− (resp. Γ+), and we adopt the notation used there: In

particular, we have the defining function φ− ∈ C∞(bS∗M) of Γ− within bS∗M and the

defining function φ+ ∈ C∞(bS∗M) of Γ+ within bS∗XM , in a neighborhood U1 of Γ, which

satisfy

Hpφ+ = −c2
+φ+ + µ+τ + ν+p̂0, Hpφ− = c2

−φ− + ν−p̂0, (3.3.13)

with c± > 0 smooth near Γ and µ+, ν± smooth near Γ, and

{φ+, φ−} = Hφ+φ− > 0 (3.3.14)

near Γ, while the boundary defining function τ of M satisfies

Hpτ = −c∂τ, c∂ > 0. (3.3.15)

Here we recall from [44, Lemma 5.1], see also [42, Lemma 2.4], that in the closely related

semiclassical setting, one can arrange for any (small) ε > 0 that

0 < νmin − ε < c2
± < νmax + ε, (3.3.16)

where νmin and νmax are the minimal and maximal normal expansion rates; see [44, Equa-

tions (5.1) and (5.2)] for the definition of the latter, with νmin also given in (9.2.4) in

Chapter 9, and see also the discussion prior to Theorem 9.2.9. Note that in these works of

Dyatlov our c2
± is denoted by c±. In particular, if M is replaced by [0,∞) × X, and if P

is dilation invariant, then the semiclassical and the b-settings are equivalent; since in our

general case c±|bS∗XM is what matters, we can replace P by N(P), and in particular (3.3.16)

applies, with the expansion rate calculated using p|bT ∗XM .

Let U0 ⊂ U0 ⊂ U1 be a neighborhood of Γ such that the Poisson bracket in (3.3.14) as

well as c± have positive lower bounds. There is an asymmetry between the roles of φ± and

τ , and thus we consider the parabolic defining function of Γ+

ρ+ = φ2
+ + Mτ (3.3.17)
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with M > 0 to be chosen. Then near Γ,

ρ̂+ = Hpρ+ = −2c2
+φ

2
+ + 2µ+φ+τ + 2ν+φ+p̂0 −Mc∂τ

= −2c2
+φ

2
+ − (Mc∂ − 2µ+φ+)τ + 2ν+φ+p̂0

≤ −c̃2
+ρ+ + 2ν+φ+p̂0, c̃+ > 0,

(3.3.18)

if M > 0 is chosen sufficiently large, consistently with the forward trapped nature of Γ−.

(Here the term with p̂0 is considered harmless as one essentially restricts to the characteristic

set, p̂0 = 0.) Also, note that one can use the reciprocal ρ̂ = |σ|−1 of the principal symbol

σ of τDτ as the local defining function of bS∗M as fiber-infinity in bT ∗M near Γ. (Indeed,

in the semiclassical setting, see §3.3.4, after Mellin transforming this problem, |σ|−1 plays

the role of the semiclassical parameter h, which in that case commutes with the operator.)

Then

Hpρ̂ = −cf ρ̂τ (3.3.19)

with cf smooth.

We briefly pause to address the differences and similarities between generalized b-radial

sets and normally hyperbolic trapping in the b-sense: Recall from the previous section that

the b-radial set, locally defined within Σ by τ = ρ = 0, ρ0 = 0, has a stable (τ = 0) and

unstable (ρ = 0, ρ0 = 0) manifold, with ρ = ρ0 = 0 defining the b-radial set within the

stable manifold, and ρ0 is its defining function within τ = 0 which gives an advantageous

sign when differentiated along Hp, see (3.3.9). Now, the functions ρ and τ correspond to

the two fundamental properties of b-spaces, namely regularity and decay, and this is a

fundamental reason why one can prove microlocal regularity estimates near radial sets in

ordinary weighted b-Sobolev spaces: These spaces consist precisely of those functions which

land in L2
b when one applies appropriate quantizations of ρ and τ to them. The analogue

for trapped sets, which have a stable (φ− = 0) and unstable (τ = φ+ = 0) manifold within

Σ, is to engineer spaces whose elements are mapped into L2
b when one applies quantizations

of φ+, φ− and τ (or rather τ1/2, in accordance with (3.3.17)) to them; thus, elements of

such spaces ‘degenerate’ in a controlled manner at φ+ = φ− = 0 and τ = 0.

We therefore introduce spaces which we call normally isotropic at Γ.5 Concretely, let

5Note that bT ∗M is not a symplectic manifold (in a natural way) since the symplectic form on bT ∗M◦M
does not extend smoothly to bT ∗M . Thus, the word ‘normally isotropic’ is not completely justified; we use
it since it reflects that in the analogous semiclassical setting, see [124], the set Γ is symplectic, and the origin
in the symplectic orthocomplement (TαΓ)⊥ of TαΓ, which is also symplectic, is isotropic within (TαΓ)⊥.
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Q± ∈ Ψ0
b(M) have principal symbol φ±, P̂0 ∈ Ψ0

b(M) have principal symbol p̂0, and let

Q0 ∈ Ψ0
b(M) be elliptic, with real principal symbol for convenience, on U c0 (and thus nearby).

Definition 3.3.12. The (global) b-normally isotropic space at Γ of order s, Hsb,Γ, is defined

by the norm

‖u‖2Hsb,Γ = ‖Q0u‖2Hs
b

+ ‖Q+u‖2Hs
b

+ ‖Q−u‖2Hs
b

+ ‖τ1/2u‖2Hs
b

+ ‖P̂0u‖2Hs
b

+ ‖u‖2
H
s−1/2
b

, (3.3.20)

Its dual space relative to L2
b is denoted by H∗,−sb,Γ , is6

H∗,−sb,Γ = Q0H
−s
b +Q+H

−s
b +Q−H

−s
b + τ1/2H−sb + P̂0H

−s
b +H

−s+1/2
b .

Note that microlocally away from Γ, Hsb,Γ is just the standard Hs
b space, while H∗,−sb,Γ is

H−sb , since at least one of Q0, Q± and τ is elliptic. Moreover, Ψk
b(M) 3 A : Hsb,Γ → H

s−k
b,Γ is

continuous since [Q+, A] ∈ Ψk−1
b (M) etc.; the analogous statement also holds for the dual

spaces. We also note the inclusions

Hs
b(M) ⊂ Hsb,Γ(M) ⊂ Hs−1/2

b (M) ∩Hs,−1/2
b (M),

H
s+1/2
b (M) +H

s,1/2
b (M) ⊂ H∗,sb,Γ(M) ⊂ Hs

b(M).
(3.3.21)

Further, the last term in (3.3.20) can be replaced by ‖u‖2
Hs−1

b

as i[Q+, Q−] = B∗B + R,

B ∈ Ψ
−1/2
b (M) elliptic at Γ, R ∈ Ψ−2

b (M): Indeed, this gives

‖Bu‖2Hs
b
. ‖Q−u‖2Hs

b
+ ‖Q+u‖2Hs

b
+ ‖u‖2

Hs−1
b

after integration by parts, which thus controls the H
s−1/2
b -norm of u microlocally near Γ.

Remark 3.3.13. The notation Hsb,Γ(M) is justified for the space is independent of the par-

ticular defining functions φ± chosen; near Γ any other choice would replace φ± by smooth

non-degenerate linear combinations plus a multiple of τ and of p̂0, denote these by φ̃±, and

6We refer to [91, Appendix A] for a general discussion of the underlying functional analysis. In particular,
Lemma A.3 there essentially gives the density of Ċ∞(M) in Hsb,Γ(M): One can simply drop the subscript ‘e’
in the statement of that lemma to conclude that H∞b (M) (so in particular Hs

b(M)) is dense in Hsb,Γ(M), and

then the density of Ċ∞(M) in Hs′
b (M) for any s′ completes the argument. The completeness of Hsb,Γ(M)

follows from the continuity of Ψ0
b(M) on H

s−1/2
b (M).
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thus the corresponding Q̃± can be expressed as

B+Q+ +B−Q− +B∂τ + B̂P̂0 +B0Q0 +R, B±, B0, B∂ , B̂ ∈ Ψ0
b(M), R ∈ Ψ−1

b (M),

so the new norm can be controlled by the old norm and vice versa in view of the non-

degeneracy.

The propagation of singularities result at Γ then is:

Theorem 3.3.14. With P,Hsb,Γ,H
∗,s
b,Γ as above, for any neighborhood U of Γ and for any N

there exist B0 ∈ Ψ0
b(M) elliptic at Γ and B1, B2 ∈ Ψ0

b(M) with WF′b(Bj) ⊂ U , j = 0, 1, 2,

WF′b(B2) ∩ Γ+ = ∅ and C > 0 such that

‖B0u‖Hsb,Γ ≤ ‖B1Pu‖H∗,s−m+1
b,Γ

+ ‖B2u‖Hs
b

+ C‖u‖H−Nb
, (3.3.22)

i.e. if all the functions on the right hand side are in the indicated spaces, then B0u ∈ Hsb,Γ,

and the inequality holds. The same conclusion also holds if we require WF′b(B2) ∩ Γ− = ∅
instead of WF′b(B2) ∩ Γ+ = ∅.

Finally, if r < 0, then, with WF′b(B2) ∩ Γ+ = ∅, the analogue of estimate (3.3.22) on

weighted b-Sobolev spaces is

‖B0u‖Hs,r
b
≤ ‖B1Pu‖Hs−m+1,r

b
+ ‖B2u‖Hs,r

b
+ C‖u‖

H−N,rb
, (3.3.23)

while if r > 0, then, with WF′b(B2) ∩ Γ− = ∅,

‖B0u‖Hs,r
b
≤ ‖B1Pu‖Hs−m+1,r

b
+ ‖B2u‖Hs,r

b
+ C‖u‖

H−N,rb
. (3.3.24)

Remark 3.3.15. Note that the weighted versions (3.3.23)-(3.3.24) use standard weighted b-

Sobolev spaces. This corresponds to non-trapping semiclassical estimates if the subprincipal

symbol has the correct, definite, sign at Γ.

Proof. We may assume that U ⊂ U0 is disjoint from a neighborhood of WF′b(Q0), and thus

ignore the Q0 term in the definition of Hsb,Γ. We first prove that there exist B0, B1, B2 as

above and B3 ∈ Ψ0
b(M) with WF′b(B3) ⊂ U such that

‖B0u‖Hsb,Γ ≤ ‖B1Pu‖H∗,s−m+1
b,Γ

+ ‖B2u‖Hs
b

+ ‖B3u‖Hs−1
b

+ C‖u‖H−Nb
. (3.3.25)
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An iterative argument will then prove the theorem.

We start by pointing out that for any B̃0 ∈ Ψ0
b(M) and any B̃3 ∈ Ψ0

b(M) elliptic on

WF′b(B̃0), we have

‖P̂0B̃0u‖Hs
b
≤ C‖B̃0Pu‖Hs−m

b
+ C ′‖B̃3u‖Hs−1

b
, (3.3.26)

by simply using that P̂0 is an elliptic multiple of P modulo Ψ−1
b (M). Since ‖B̃0Pu‖Hs−m

b
≤

C‖B̃0Pu‖H∗,s−mb,Γ
, the P̂0 contribution to ‖B̃0u‖Hsb,Γ in (3.3.25) is thus automatically con-

trolled.

So let χ0(t) = e−z/t for t > 0, χ0(t) = 0 for t ≤ 0, with z > 0 (large) to be specified,

χ ∈ C∞c ([0,∞)) be identically 1 near 0 with χ′ ≤ 0, and indeed with χ′χ = −χ2
1, χ1 ≥

0, χ1 ∈ C∞c ([0,∞)), and let ψ ∈ C∞c (R) be identically 1 near 0. As we use the Weyl

quantization,7 we write P as the Weyl quantization of p = p0 + ρ̂p1, with ρ̂p1 of order m−1.

Let

a = ρ̂−s+(m−1)/2χ0(ρ+ − φ2
− + κ)χ(ρ+)ψ(p̂0), (3.3.27)

κ > 0 small. Notice that if χ is supported in [0, R], then on supp a, we have

ρ+ ≤ R, φ2
− ≤ ρ+ + κ = R+ κ,

so a is localized near Γ if R and κ are taken sufficiently small. In particular, the argument

of χ0 is bounded above by R+ κ, so given any M0 > 0 one can take z > 0 large so that

χ′0χ0 −M0χ
2
0 = b2χ′0χ0,

with b smooth and b ≥ 1/2 on the range of the argument of χ0.

In fact, we also need to regularize, namely introduce

aε = (1 + ερ̂−1)−2a, ε ∈ [0, 1], (3.3.28)

which is a symbol of order s−(m−1)/2−2 for ε > 0, and is uniformly bounded in symbols of

order s− (m−1)/2 as ε varies in [0, 1]. In order to avoid more cumbersome notation below,

we ignore the regularizer and work directly with a; since the regularizer gives the same kind

7The Weyl quantization is in fact irrelevant: If A ∈ Ψm
b (X) and the principal symbol of A is real, then

the real part of the subprincipal symbol is defined independently of choices, which suffices below.
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of contributions to the commutator as the weight ρ̂−s+(m−1)/2, these contributions can be

dominated in exactly the same way.

Put W = ρ̂m−2Hρ̂p1
, which is a smooth vector field near bS∗M as ρ̂p1 is order m − 1,

then Wρ̂ = −cf,1τ ρ̂ similarly to (3.3.19), and Wτ = c∂,1τ by the tangency of W to τ = 0;

so with p = p0 + ρ̂p1 as above, we have

1

4
Hp(a

2) =− (−ρ̂+/2 + c2
−φ

2
− + ν−φ−p̂0 − ρ̂φ+(Wφ+)− ρ̂Mc∂,1τ + ρ̂φ−(Wφ−))

× ρ̂−2s(χ0χ
′
0)(ρ+ − φ2

− + κ)χ(ρ+)2ψ(p̂0)2

+
1

4
(−2s+m− 1)ρ̂−2s(−cf − cf,1)τχ0(ρ+ − φ2

− + κ)2χ(ρ+)2ψ(p̂0)2

+
1

2
ρ̂−2s(ρ̂+ + ρ̂Wρ+)(χ′χ)(ρ+)χ0(ρ+ − φ2

− + κ)2ψ(p̂0)2

+
m

2
(−cf − cf,1)ρ̂−2s(p̂0)τχ0(ρ+ − φ2

− + κ)2χ(ρ+)2(ψψ′)(p̂0).

(3.3.29)

A key point is that the second term on the right hand side, given by the weight ρ̂−2s+m−1

being differentiated, can be absorbed into the first by making z > 0 large so that ρ̂+χ
′
0(ρ+−

φ2
− + κ) dominates

| − 2s+m− 1||cf |τχ0(ρ+ − φ2
− + κ)

on supp a, which can be arranged as | − 2s+m− 1||cf |τ is bounded by a sufficiently large

multiple of ρ̂+ there. Thus,

1

4
Hp(a

2) = −c2
+a

2
+ − c2

−a
2
− − a2

∂ + 2g+a+ + 2g−a− + e+ ẽ+ 2a+j+p+ 2a−j−p (3.3.30)

with

a± = ρ̂−sφ±

√
(χ0χ′0)(ρ+ − φ2

− + κ)χ(ρ+)ψ(p̂0),

a∂ = ρ̂−sτ1/2
(

(M(c∂/2)− µ+φ+ − ρ̂Mc∂,1)(χ0χ
′
0)(ρ+ − φ2

− + κ)

− 1

4
(−2s+m− 1)(−cf − cf,1)χ0(ρ+ − φ2

− + κ)2
)1/2

χ(ρ+)ψ(p̂0),

g± = ±1

2
ρ̂−s+1((Wφ±)− ν±ρ̂m−1p1)

√
(χ0χ′0)(ρ+ − φ2

− + κ)χ(ρ+)ψ(p̂0),

e = −1

2
ρ̂−2s(ρ̂+ + ρ̂Wρ+)χ1(ρ+)2χ0(ρ+ − φ2

− + κ)2ψ(p̂0)2,

ẽ =
m

2
ρ̂−2s(p̂0)(−cf − cf,1)τχ0(ρ+ − φ2

− + κ)2χ(ρ+)2(ψψ′)(p̂0),
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j± = ±1

2
ν±ρ̂

−s+m
√

(χ0χ′0)(ρ+ − φ2
− + κ)χ(ρ+)ψ(p̂0);

the square root in a∂ is that of a non-negative quantity and is C∞ for M large (so that µ+φ+

can be absorbed into M(c∂/2)) and z large (so that a small multiple of χ′0 can be used to

dominate χ0), as discussed earlier. Moreover,

supp e ⊂ supp a, supp e ∩ Γ+ = ∅,

supp ẽ ⊂ supp a, supp ẽ ∩ Σ = ∅.

This gives, with the various operators being Weyl quantizations of the corresponding lower

case symbols,

i

4
[P, A∗A] = −(C+A+)∗(C+A+)− (C−A−)∗(C−A−)−A∗∂A∂

+G∗+A+ +A∗+G+ +G∗−A− +A∗−G−

+ E + Ẽ +A∗+J+P + P∗J∗+A+ +A∗−J−P + P∗J∗−A− + F

(3.3.31)

where A ∈ Ψ
s−(m−1)/2
b (M), A±, A∂ ∈ Ψs

b(M), G± ∈ Ψs−1
b (M), E ∈ Ψ2s

b (M), Ẽ ∈ Ψ2s
b (M),

J± ∈ Ψs−m
b (M), F ∈ Ψ2s−2

b (M) with WF′b(F ) ⊂ supp a.

Thus, first using P − P∗ ∈ Ψm−2
b (M),

‖C+A+u‖2 + ‖C−A−u‖2 + ‖A∂u‖2

≤ |〈Eu, u〉|+ |〈Ẽu, u〉|+ |〈APu,Au〉|+ 2‖A+u‖‖G+u‖+ 2‖A−u‖‖G−u‖

+ 2|〈J+Pu,A+u〉|+ 2|〈J−Pu,A−u〉|+ C1‖F̃1u‖2Hs−1
b

+ C1‖u‖2H−Nb

,

(3.3.32)

where we took F̃1 ∈ Ψ0
b(M) elliptic on WF′b(F ) and with WF′b(F̃1) near Γ. Noting that

WF′b(Ẽ) ∩ Σ = ∅, elliptic regularity yields

|〈Ẽu, u〉| ≤ C‖B1Pu‖2Hs−m
b

+ C‖u‖2
H−Nb

if B1 ∈ Ψ0
b(M) is elliptic on supp ẽ. Let Λ ∈ Ψ

(m−1)/2
b (M) be elliptic with real principal

symbol λ, and let Λ− ∈ Ψ
−(m−1)/2
b (M) be a parametrix for it so that ΛΛ− − Id = R0 ∈
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Ψ−∞b (M). Then

|〈APu,Au〉| ≤ |〈Λ−APu,Λ∗Au〉‖+ |〈R0APu,Au〉|

≤ 1

2ε
‖Λ−APu‖2H∗,0b,Γ

+
ε

2
‖Λ∗Au‖2H0

b,Γ
+ C ′‖u‖2

H−Nb

As Λ∗A ∈ Ψs
b(M), for sufficiently small ε > 0, the term ε

2‖Λ
∗Au‖2H0

b,Γ
can be absorbed

into ‖C+A+u‖2 + ‖C−A−u‖2 + ‖A∂u‖2 plus ‖B̃0P̂0u‖2Hs
b
, and as discussed above, the lat-

ter already has the control required for (3.3.25). (The point here is that A∗+C
∗
+C+A+ −

εA∗ΛQ∗+Q+Λ∗A has principal symbol c2
+a

2
+ − εa2φ2

+λ
2 which can be written as the square

of a real symbol for ε > 0 small in view of the main difference in vanishing factors in the

two terms being that χ′0 in a2
+ is replaced by χ0 in a, and thus the corresponding operator

can be expressed as C̃∗C̃ for suitable C̃, modulo an element of Ψ2s−2
b (M), with the latter

contributing to the Hs−1
b error term on the right hand side of (3.3.25).) On the other hand,

taking B1 ∈ Ψ0
b(M) elliptic on WF′b(A), as Λ−A ∈ Ψs−m+1

b (M),

‖Λ−APu‖2H∗,0b,Γ

≤ C ′′‖B1Pu‖2H∗,s−m+1
b,Γ

+ C ′′‖u‖2
H−Nb

.

Similarly, to deal with the J± terms on the right hand side of (3.3.32), one writes

|〈J±Pu,A±u〉| ≤
1

2ε

(
‖B1Pu‖2Hs−m

b

+ C ′′‖u‖2
H−Nb

)
+
ε

2
‖A±u‖2L2

≤ 1

2ε

(
‖B1Pu‖2H∗,s−mb,Γ

+ C ′′‖u‖2
H−Nb

)
+
ε

2
‖A±u‖2L2 ,

while the G± terms can be estimated by

ε‖A+u‖2 + ε−1‖G+u‖2 + ε‖A−u‖2 + ε−1‖G−u‖2,

and for ε > 0 sufficiently small, the ‖A±u‖2 terms in both cases can be absorbed into the

left hand side of (3.3.32) while the G± into the error term. This gives, with F̃2 having

properties as F̃1,

‖C+A+u‖2 + ‖C−A−u‖2 + ‖A∂u‖2

≤ |〈Eu, u〉|+ C‖B1Pu‖2H∗,s−m+1
b,Γ

+ C2‖F̃2u‖2Hs−1
b

+ C2‖u‖2H−Nb

.

By the remark before the statement of the theorem, if B0 ∈ Ψ0
b(M) is such that χ0(ρ+ −
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φ2
− + κ)χ(ρ+)ψ(p) > 0 on WF′b(B0), ‖B0u‖2

H
s−1/2
b

can be added to the left hand side at

the cost of changing the constant in front of ‖F̃2u‖2Hs−1
b

+ ‖u‖2
H−Nb

on the right hand side.

Taking such B0 ∈ Ψ0
b(M), and B1 elliptic on WF′b(A) as before, B2 ∈ Ψ0

b(M) elliptic on

WF′b(E) but with WF′b(B2) disjoint from Γ+, we conclude that

‖B0u‖2Hsb,Γ ≤ C‖B1Pu‖2H∗,s−m+1
b,Γ

+ C‖B2u‖2Hs
b

+ C‖F̃2u‖2Hs−1
b

+ C‖u‖2
H−Nb

,

proving (3.3.25), up to redefining Bj by multiplication by a positive constant. Recall that

unless one makes sufficient a priori assumptions on the regularity of u, one actually needs

to regularize, but as mentioned after (3.3.28), the regularizer is handled in exactly the same

manner as the weight.

Now in general, with χ as before, but supported in [0, 1] instead of [0, R], let χR = χ(·/R)

and write a = aR,κ to emphasize its dependence on these quantities. When R and κ are

decreased, supp aR,κ also decreases in Σ in the strong sense that 0 < R < R′ and 0 < κ < κ′

imply that aR′,κ′ is elliptic on supp aR,κ within Σ, and indeed globally if the cutoff ψ is

suitably adjusted as well. Thus, if u ∈ H−Nb , say, one uses first (3.3.25) with s = −N + 1,

and with Bj given by the proof above, so the B3u term is a priori bounded, to conclude

that B0u ∈ Hsb,Γ and the estimate holds, so in particular, u is in H
−N+1/2
b microlocally near

Γ (concretely, on the elliptic set of B0). Now one decreases κ and R by an arbitrarily small

amount and applies (3.3.25) with s = −N + 3/2; the B3u term is now a priori bounded

by the microlocal membership of u in H
−N+1/2
b , and one concludes that B0u ∈ H−N+3/2

b,Γ ,

so in particular u is microlocally in H−N+1
b . Proceeding inductively, one deduces the first

statement of the theorem, (3.3.22).

If one reverses the role of Γ+ and Γ− in the statement of the theorem, one simply reverses

the roles of ρ+ = φ2
+ +Mτ and φ2

− in the definition of a in (3.3.27). This reverses the signs

of all terms on the right hand side of (3.3.29) whose sign mattered below, and thus the

signs of the first three terms on the right hand side of (3.3.31), which then does not affect

the rest of the argument.

In order to prove (3.3.23), one simply adds a factor τ−2r to the definition of a in (3.3.27).

This adds a factor τ−2r to every term on the right hand side of (3.3.31), as well as an

additional term
r

2
τ−2rρ̂−2sc∂χ0(ρ+ − φ2

− + κ)2χ(ρ+)2ψ(p)2,

which for r < 0 has the same sign as the terms whose sign was used above, and indeed can
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be written as the negative of a square. Thus (3.3.30) becomes

1

4
Hp(a

2) = −c2
+a

2
+ − c2

−a
2
− − a2

∂ − a2
r

+ 2g+a+ + 2g−a− + e+ ẽ+ 2j+a+p+ 2j−a−p

(3.3.33)

with

ar =

√
−r
2
τ−rρ̂−sc

1/2
∂ χ0(ρ+ − φ2

− + κ)χ(ρ+)ψ(p),

and all other terms as above apart from the additional factor of τ−r in the definition of

a±, etc. Since ar is actually elliptic at Γ when r 6= 0, this proves the desired estimate (and

one does not need to use the improved properties given by the Weyl calculus!). When the

role of Γ+ and Γ− is reversed, there is an overall sign change, and thus r > 0 gives the

advantageous sign; the rest of the argument is unchanged.

Remark 3.3.16. The estimate (3.3.22) can be strengthened by adding the term ‖B0P̂0u‖Hs+1
b

to the left hand side, which is controlled by elliptic regularity, likewise for (3.3.23)–(3.3.24).

A more natural way of phrasing such an improvement is to use ‘coisotropic, normally

isotropic’ spaces H̃sb,Γ and H̃∗,sb,Γ in the estimate (3.3.22), where the squared norm on H̃sb,Γ
is defined by

‖u‖2H̃sb,Γ
= ‖Q0u‖2Hs

b
+ ‖Q+u‖2Hs

b
+ ‖Q−u‖2Hs

b
+ ‖τ1/2u‖2Hs

b
+ ‖P̂0u‖2

H
s+1/2
b

+ ‖u‖2
H
s−1/2
b

,

i.e. strengthening the norm of P̂0u by a half, which strengthens the space and weakens its

dual. To obtain the necessary elliptic estimate (3.3.26) with the strengthened norms on

the terms involving B̃0, but keeping the norm on B̃3u (which is required for the iterative

argument at the end of the proof), one can choose B̃0 with WF′b(I − B̃0) ∩ Γ = ∅ so that

B̃3 can be chosen to be microsupported away from Γ. Then ‖B̃3u‖Hs−1/2
b

≤ C‖B̃3u‖Hs−1/2
b,Γ

is controlled using the estimate (3.3.22) (with s− 1/2 in place of s), noting that the norm

on B1Pu in this case is ‖B1Pu‖H∗,s−m+1/2
b,Γ

≤ C‖B1Pu‖H̃∗,s−m+1
b,Γ

, and the error term being

measured in H
s−3/2
b ⊃ Hs−1

b , as required.

3.3.3 Normal operator family; Fredholm analysis for b-operators

We only discuss normal operators of b-differential operators here; for the case of general

b-ps.d.o.s, see [82, §4].
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The normal operator of a b-differential operator A is a model operator at the boundary

X = ∂M of M , obtained by freezing coefficients of A at X. In order to do this in a

natural way globally on M , we follow [114, §3.1] and trivialize the inward pointing normal

bundle +NX ⊂ TXM by a choice of an inward pointing vector field V , which fixes the

differential of a global boundary defining function x. This gives an identification +NX ∼=
[0,∞)x×X =: MI . Thus, b-differential operators on MI which are invariant under dilations

in x (equivalently: translations in t = − log x) have the form

∑
j+|α|≤m

bα(y)(xDx)jDα
y ,

where y are local coordinates in X, and the space of such operators is denoted Diffmb,I(MI).

Now, writing A ∈ Diffmb (M) as

A =
∑

j+|α|≤m

ajα(x, y)(xDx)jDα
y ,

we define the normal operator of A, denoted N(A), as the operator

N(A) :=
∑

j+|α|≤m

ajα(0, y)(xDx)jDα
y ∈ Diffmb,I(MI). (3.3.34)

We can (non-canonically) identify a collar neighborhood of X in M with a neighborhood

of {0}x × X in MI ; transferring A ∈ Diffmb (M) to this neighborhood and extending it

arbitrarily to an operator on MI , we then have A−N(A) ∈ xDiffmb (MI).

Since N(A) is dilation-invariant in x, i.e. translation-invariant in t = − log x, it is

naturally studied by conjugating it by the Mellin transform in x and considering the normal

operator family

N̂(A)(σ) ≡ Â(σ) :=
∑

j+|α|≤m

ajα(0, y)σjDα
y , (3.3.35)

which is a family of operators in Diffm(X) depending holomorphically on σ. Thus, Â(σ)

is the operator on X acting on u ∈ C∞(X) by choosing any extension f ∈ C∞(M) of u

and defining Â(σ)u = (x−iσAxiσf)|∂M ; see also [110, §2]. We remark that the normal

operator (family) enjoys many naturality properties: For instance, if A,B ∈ Diffb(M), then

N(A◦B) = N(A)◦N(B), similarly for the normal operator families; moreover, if ν =
∣∣dx
x

∣∣ ν ′
is the product decomposition of a smooth non-vanishing b-1-density on M near X, with ν ′
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a 1-density on X (depending on x), then

N(A∗)(σ) = N(A)∗(σ), (3.3.36)

where the adjoint of A∗ is computed relative to ν, and the adjoint of N(A) relative to ν ′|X .

One can study Â(σ) as a large parameter family of differential operators, or perform a

semiclassical rescaling and thus recast the normal operator family as a semiclassical opera-

tor; we give details and examples in §3.3.4. For now, we content ourselves with showing how

invertibility properties of N(A) on weighted b-Sobolev spaces imply Fredholm properties of

A for elliptic operators A ∈ Diffmb (M); completely analogous arguments will apply in the

non-elliptic settings discussed in Chapter 5. Thus, let us assume that s′ < s ∈ R and the

weight r ∈ R are such that N(A) : Hs′,r
b (MI) → Hs′−m,r

b (MI) is invertible. (Since we con-

sider only elliptic A here, this is only a restriction on the weight; the regularity orders s and

s′ < s can be chosen arbitrarily. Moreover, as we shall see in §3.3.4, the mapping properties

of N(A) on such weighted spaces are determined by N̂(A)(σ) for Imσ = −r; combined with

(3.3.36), this will imply that N(A∗) is invertible as a map Hs′′,−r
b (MI) → Hs′′−m,−r

b (MI)

for s′′ ∈ R.) We can then combine the elliptic regularity estimate

‖u‖Hs,r
b (M) . ‖Au‖Hs−m,r

b (M) + ‖u‖
Hs′,r

b (M)
(3.3.37)

with the invertibility of the normal operator, to wit

‖v‖
Hs′,r

b (MI)
. ‖N(A)v‖

Hs′−m,r
b (MI)

, (3.3.38)

in the following way: Choose a cutoff χ ∈ C∞(M), identically 1 near ∂M and vanishing

outside a collar neighborhood of ∂M , then

‖u‖
Hs′,r

b (M)
. ‖χu‖

Hs′,r
b (MI)

+ ‖(1− χ)u‖
Hs′,r

b (M)

under an identification of the collar neighborhood of ∂M with a neighborhood of {0} ×X
in MI as above. Since (1 − χ)u is supported away from the boundary, we have ‖(1 −
χ)u‖

Hs′,r
b (M)

. ‖(1 − χ)u‖
Hs′,r′

b (M)
for any r′ ∈ R. To deal with χu, we use (3.3.38) and

obtain

‖χu‖
Hs′,r

b (MI)
. ‖N(A)χu‖

Hs′−m,r
b (MI)
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≤ ‖χAu‖
Hs′−m,r

b (MI)
+ ‖χ(N(A)−A)u‖

Hs′−m,r
b (MI)

+ ‖[N(A), χ]u‖
Hs′−m,r

b (MI)

. ‖Au‖
Hs′−m,r

b (M)
+ ‖χu‖

Hs′,r−1
b (M)

+ ‖u‖
Hs′−1,r′

b (M)
, (3.3.39)

where we used in the last step that N(A) − A ∈ xDiffmb (MI), and that [N(A), χ] ∈
Diffm−1

b (MI) is supported away from ∂MI . Plugging this into (3.3.37) gives

‖u‖Hs,r
b (M) . ‖Au‖Hs−m,r

b (M) + ‖u‖
Hs′,r−1

b (M)
, (3.3.40)

and now the inclusion Hs′,r−1
b (M) ↪→ Hs,r

b (M) is compact. Together with an analogous

estimate for the adjoint of A, we hence obtain Fredholm estimates for A analogous to those

in the boundaryless setting in §3.2.1, implying that kerA ⊂ Hs,r
b (M) is finite-dimensional,

and ranA ⊂ Hs−m,r
b (M) has finite codimension and is equal to the annihilator of kerA∗ ⊂

H−s+m,−rb (M).

3.3.4 Mellin transform and semiclassical analysis

We proceed to describe mapping properties of normal operators, i.e. general dilation-

invariant operators on the model space MI = [0,∞)x ×X. We first study function spaces:

Recall from [114, §3] that the Mellin transform

(Mu)(σ, y) =

∫ ∞
0

x−iσu(x, y)
dx

x
(3.3.41)

gives an isometric isomorphism of L2(MI ,
dx
x dµ) with L2(Rσ, L2(X, dµ)) by Plancherel’s

theorem, where dµ is a 1-density on X, and its inverse is

(M−1v)(x, y) =
1

2π

∫
R
xiσv(σ, y) dσ;

more generally, for u ∈ xrL2
b(MI),Mu(·−ir) is well-defined as an element of L2(Rσ, L2(X)),

and the inverse Mellin transform becomes

(M−1
r v)(x, y) =

1

2π

∫
Imσ=−r

xiσv(σ, y) dσ. (3.3.42)

If u ∈ xrL2
b(MI) has compact support in x, the Mellin transform Mu extends to a holo-

morphic function in Imσ > −r with values in L2(X), satisfying sup−r<α<C ‖Mu(· +
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iα)‖L2(Rσ ,L2(X)) < ∞ for all C < ∞, and Mu(· + iα) extends continuously to α = −r
in the topology of L2(Rσ, L2(X)). SinceM intertwines differentiation xDx and multiplica-

tion by σ, we obtain similar statements for weighted b-Sobolev spaces, namely

Hk,r
b (MI) 3 u 7→ Mu(· − ir) ∈

k⋂
j=0

〈σ〉−jL2(Rσ, Hk−j(X)) = 〈σ〉−kL2(Rσ, Hk
〈σ〉−1(X))

(3.3.43)

is an isometric isomorphism, where Hk
h(X) is the semiclassical Sobolev space on X, i.e.

u ∈ Hk
h(X) if up to k semiclassical derivatives of u are in L2(X), where semiclassical

derivatives are ordinary derivatives weighted by h, i.e. h∂y with y coordinates on X. Thus

Hk
h(X) = Hk(X) as a space, and the norms are equivalent for h bounded away from 0, but

not as h→ 0. By interpolation and duality, the isomorphism (3.3.43) extends to all k ∈ R.

For u ∈ Hs,r
b (MI) compactly supported in x, the Mellin transform Mu is holomorphic in

Imσ > −r as before, with spaces changed according to (3.3.43).

Now, a dilation-invariant operator A ∈ Diffmb,I(MI) acts on u ∈ Hs,r
b (MI) by

M(Au)(σ) = Â(σ)(Mu)(σ), Imσ = −r.

Hence, in view of (3.3.43), mapping properties of Â(σ) on semiclassical Sobolev spaces imply

mapping properties of A on weighted b-Sobolev spaces. It is therefore convenient to rescale

Â(σ) (which is a differential operator on X of order m large parameter σ) to a semiclassical

operator: We introduce h = |σ|−1 and z = hσ, so z ∈ C has |z| = 1, and consider

Ah,z := hmÂ(h−1z) ∈ Diffm~ (X), (3.3.44)

where Diffm~ (X) is the algebra of semiclassical differential operators, generated by semiclas-

sical vector fields hV , V ∈ V(X). Concretely then, suppose Ah,z satisfies the estimate

‖v‖Hs
h(X) . h

−`‖Ah,zv‖Hs−(m−`)
h

, Im z = −hr, (3.3.45)

where ` is the ‘loss of derivatives’ of Ah,z relative to elliptic operators, for which ` = 0,8

8Indeed, if A is elliptic as a b-operator, then Ah,z is elliptic as a semiclassical operator for Im z = O(h),
and elliptic regularity gives ‖v‖Hs

h
(X) . ‖Ah,zv‖Hs−m

h
(X)

+hN‖v‖
H−N

h
(X)

for any N . The error term can be

absorbed in the left hand side for h > 0 sufficiently small, giving (3.3.45) for small h, corresponding to the

invertibility of Â(σ) for | Imσ| < C (for arbitrary, fixed C > 0) and |Reσ| � 1. The full statement (3.3.45)

then requires the invertibility of Â(σ) for σ in the remaining, compact part of the line Imσ = −r.
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then ‖u‖Hs,r
b (MI) . ‖Au‖Hs−(m−`)

b (MI)
.

One can consider semiclassical pseudodifferential operators on closed manifolds, analo-

gously to ordinary ps.d.o.s on closed manifolds, except that due to the additional semiclas-

sical parameter h, symbolic expansions include additional powers of h; see [129] for details.

In particular, the principal symbol of a semiclassical operator in Ψm
~ (X) is a well-defined

function in Sm(T ∗X), with no homogeneity properties in compact subsets of T ∗X; notice

that we are not taking a quotient here. Then, ellipticity, wave front sets etc. can be defined

for semiclassical operators and distributions, see [115, §4.4].

The central feature of the relation between dilation-invariant b-operators A ∈ Ψm
b (MI)

on MI = [0,∞)x ×X and their semiclassical rescalings Ah,z then is the following, recalling

that T ∗X ⊂ bT ∗XMI in a natural fashion here, since we are given a boundary defining

function x, see §2.1.3: The set bS∗XMI \ bS∗X can be identified with T+ ∪ T− ≡ (dxx +

T ∗X) ∪ (−dx
x + T ∗X) (which in turn can be identified with two copies of T ∗X) since

bT ∗XMI = span
{
dx
x

}
⊕T ∗X, and each R+-orbit outside bT ∗X intersects T+∪T− in a unique

point; see also (2.1.5). This provides the connection between the b- and the semiclassical

perspectives, i.e. between b-analysis on bT ∗XMI and semiclassical analysis on T ∗X: In fact,

if a = σb,m(A), which is a homogeneous degree m function, then ρ̂ma, where ρ̂ can be taken

as the reciprocal of the absolute value of the symbol of xDx in this region (which is well-

defined, independent of choices), i.e. ρ̂ = |σ|−1 = h in the above notation, gives a function

on {±1} × T ∗X. We thus see that ρ̂ma (which can be identified with a|T± , thus with a

function on T ∗X) is the semiclassical principal symbol ah,z (depending in addition on the

parameter z = hσ) of the rescaled operator family Ah,z; that is, hma(h−1z, η) = ah,z(η).

In particular, if a conic set is disjoint from T ∗X in bT ∗MI , then its image under the

semiclassical identification lies in a compact subset of T ∗X. Thus, for A ∈ Ψm
b (MI) dilation

invariant, the large parameter principal symbol and wave front set of the Mellin conjugate

Â(σ) of A are exactly those of A under the above identification of σ dxx + $ ∈ bT ∗MI ,

$ ∈ bT ∗X, with (σ,$) ∈ R × T ∗X, and then the analogous statement also holds for Â

considered as an element of Ψ~(X) under the semiclassical identification.

Radially compactifying T± ∼= T ∗X as in §2.1.3, we moreover see that the rescaled

Hamilton vector field of a, restricted to T± as a b-vector field on T±, is equal to the

Hamilton vector field of ρ̂ma on T
∗
X. Notice however that this loses information about Ha

as a b-vector field in the direction transverse to bT
∗
XMI . This is easily recovered: Formula
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(2.1.3) yields (dropping the dependence on variables in T ∗X)

x−1Hax = ∂σa(σ) = ∂σ
(
|σ|ma(|σ|−1σ)

)
= mzah,z + ∂zah,z

at σ = ±1, so x−1Hax = ∂zah,z at the semiclassical characteristic set a−1
h,z(0) (which for

z = ±1 equals the intersection of the b-characteristic set a−1(0) with T±). The knowledge

of x−1Hax is therefore equivalent to that of ∂zah,z. Let us rephrase this from a different

perspective for A ∈ Ψm
b (MI) dilation-invariant with real principal symbol a, and let us in

fact assume A − A∗ ∈ Ψm−2
b (MI): Introducing Ar := x−rAxr, r ∈ R, we have Âr(σ) =

Â(σ − ir). In view of

Ar −A∗r = A−A∗ + x−r[A, xr] + [A∗, xr]x−r,

we have

σb,m−1

( 1

2i
(Ar −A∗r)

)
= −rx−1Hax.

Hence, for σ = σ0 − ir ∈ C, σ0, r ∈ R, we compute the large parameter principal symbol

(with r fixed and σ0 the large parameter)

σm−1

( 1

2i
(Â(σ)− Â(σ)∗)

)
= σm−1

( 1

2i
(Âr(σ0)− Âr(σ0)∗)

)
= (Imσ)x−1Hax, (3.3.46)

or in the semiclassical rescaling, allowing z = hσ (with h = |σ|−1) to be complex,

σ~,m−1

( 1

2ih
(Ah,z −A∗h,z)

)
= (Im z)x−1Hax.

In particular, at generalized b-radial sets as discussed in §§2.2.1 and 3.3.1, the numerology

(3.3.8) in the normal-to-boundary direction translates directly to the numerology in the

semiclassical setting, see [114, Propositions 2.3 and 2.4] for the general statement and

[114, §4.4], specifically the displayed equation after [114, Equation (4.12)], for the concrete

computation on static de Sitter space.9

At normally hyperbolic trapping in the b-sense, the sign of the Hamilton derivative

of x (analogous to (3.3.15)), i.e. the normal-to-boundary dynamics at the trapped set,

corresponds to a sign condition on the derivative of the semiclassical principal symbol in

9Note that computing the semiclassical principal symbol at fiber infinity, which is the location of the
radial set, is equivalent to computing the principal symbol in (3.3.46) in the standard sense, i.e. without
large parameter.
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the parameter z, see [124, Theorem 1] and [114, §6.4]. In the notation of §3.3.2, notice

that if we merely assume the normal hyperbolicity within bS∗XM , in the sense of the above

identification with semiclassical analysis on T ∗X, as in [124, §1.2], then [124, Lemma 4.1],

as corrected in [123], gives defining functions φ0
± of Γ± within bS∗XM ; taking an arbitrary

extension in case of φ+, and an extension which is a defining function of Γ− in case of φ−,

we thus infer that the b-setting considered in §3.3.2 is indeed in one-to-one correspondence

with the semiclassical setting of [44, 124], including the precise numerology.

Anticipating Chapter 4, where we prove global energy estimates for wave equations

on b-spacetimes, we mention a further conceptual analogy between b- and semiclassical

analysis: These estimates rely on the timelike nature of the boundary defining function, in

which case they imply the global forward solvability of linear wave equations in H0,r
b for

sufficiently negative r, i.e. in growing spaces. In the semiclassical setting, having a timelike

boundary defining function implies the absence of resonances (poles of the inverse normal

operator family acting on suitable function spaces) in Imσ > −r for sufficiently negative r,

which in the dilation-invariant setting also guarantees forward solvability in H0,r
b for r � 0

by the Paley-Wiener theorem, see [114, Lemma 3.1].

Lastly, we point out the role of high energy estimates for the normal operator family

of an operator A ∈ Diffmb (M): By this, we mean estimates of the form (3.3.45) which are

however only valid for h < h0 sufficiently small; thus, undoing the semiclassical rescaling,

these are operator norm estimates for the inverse normal operator family Â(σ)−1 which are

polynomial in |σ| as |Reσ| → ∞, with Imσ bounded. The exponent of the bound (as well

as the precise function spaces on which one inverts Â(σ)) determines how many derivatives

one loses (relative to the order of the operator) when inverting N(A) (on matching function

spaces). The polynomial nature of the bound allows to deduce asymptotic expansions to

solutions of Au = f of the form (1.0.3) via a contour shifting argument, see [114, Lemma 3.1],

which we will use frequently in this thesis, see for example Theorem 5.2.3.

Let us summarize our general discussion of b-analysis: The analysis of a b-(pseudo)dif-

ferential operator P has two ingredients, corresponding to the two orders, smoothness and

decay, of the Sobolev spaces:

(1) b-regularity analysis. This provides the framework for understanding PDEs at high

b-frequencies, which in non-degenerate situations involves the b-principal symbol and

perhaps a subprincipal term (as in elliptic regularity and the propagation of singular-

ities in various context, see §§3.3.1 and 3.3.2). This is sufficient in order to control
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solutions u in Hs,r
b modulo Hs′,r

b , s′ < s, i.e. modulo a space with higher regularity,

but no additional decay. Since for the inclusion Hs,r
b → Hs′,r′

b to be compact one

needs both s > s′ and r > r′, this does not control the problem modulo relatively

compact errors.

(2) Normal operator analysis. This provides a framework for understanding the decay

properties of solutions of the PDE. The b-regularity analysis, in non-degenerate situ-

ations, gives control of this family P̂ (σ) in a Fredholm sense, uniformly as |σ| → ∞
with Imσ bounded [114]. However, in any such strip, P̂ (σ)−1 will still typically have

finitely many poles σj ; these poles, called resonances, dictate the asymptotic behavior

of solutions of the PDE.

In order for P to be a Fredholm operator, one needs to work in spaces such as Hs,r
b ,

where r is such that there are no resonances σj with Imσj = −r, see [82, §6]. We will see

this general perspective in action at many places in the sequel, in particular in Chapters 5

and 9.

3.3.5 Conormal coefficients

Motivated by the discussion of smoothness and conormality in §2.1.2, we show how to extend

the b-pseudodifferential calculus with smooth coefficients to allow for weighted conormal

coefficients. In the local model Rn+ with coordinates x, y as usual, we thus want to allow

coefficients a(x, y) ∈ C∞(Rn+) satisfying

|(x∂x)j∂αy a(x, y)| ≤ Cjαxγ

for all α, j, where γ ∈ R is a fixed weight; such functions a are called conormal of order

γ. If γ > 0, then a extends by continuity to x = 0 and equals 0 there; in fact, a is in the

Hölder class Ck,α(Rn+) for k + α < γ. Of course, away from x = 0, conormal functions are

smooth. In terms of t = − log x, the conormality condition becomes

|∂jt ∂αy a(t, y)| ≤ Cjαe−γt

for all α, j, which again shows the direct connection of conormal coefficient operators on

Rn+ with the uniform calculus on Euclidean space.
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Definition 3.3.17. For m, γ ∈ R, denote by Sm,γbc (Rn+) (‘b-conormal symbols’) the space

of all functions a(x, y; ξ, η) ∈ Rn+ × Rn which are holomorphic in ξ and satisfy

|(x∂x)k∂αy ∂
`
ξ∂
β
η a(x, y; ξ, η)| ≤ Cαβk`Nxγ(1 + |Re ξ|+ |η|)m−`−|β|, | Im ξ| ≤ N, (3.3.47)

for all α, β, k, `,N . Define Ψm,γ
lbc (Rn+), the space of local conormal b-operators, as the space

of (left) quantizations of such symbols.

As in the considerations following Definition 3.3.1, we only consider symbols and op-

erators with compact support in x, and we shall restrict attention to weights γ ≥ 0 for

convenience. Then Ψm,γ
lbc (Rn+) can be viewed as a subspace of Ψm(Rn) after the change

of coordinates from (x, y) to (t, y). In order to understand compositions of operators in

Ψm,γ
lbc (Rn+), one also needs to consider two-sided symbols a subject to the condition

|(x∂x)k∂αy (x′∂x′)
k′∂α

′
y′ ∂

`
ξ∂
β
η a(x, y, x′, y′; ξ, η)|

≤ Cαβk`k′`′Nxγ1(x′)γ2(1 + |Re ξ|+ |η|)m−`−|β|, | Im ξ| ≤ N,

where γ1, γ2 ∈ R are weights. As before, one can extend the proof of Proposition 3.1.2

to show that a quantization of such a two-sided symbols can be written in a unique way

as the left quantization of a b-conormal symbol of order m with weight γ = γ1 + γ2; this

then shows that for A ∈ Ψm,γ
lbc (Rn+) and B ∈ Ψm′,γ′

lbc (Rn+), one has A ◦B ∈ Ψm+m′,γ+γ′

lbc (Rn+).

Since Ψm
lb(Rn+) ⊂ Ψm,0

lbc (Rn+), we automatically understand compositions of conormal b-

operators with standard b-operators as well: Namely, such compositions simply produce

local conormal b-operators.

The analytic continuation of b-conormal symbols in ξ ensures, as before, that elements

of Ψm,γ
lbc (Rn+) act on weighted b-Sobolev spaces; concretely, since elements of Ψm(Rn) act

on standard Sobolev spaces on Rn, which are the push-forwards of unweighted b-Sobolev

spaces on Rn+, see (3.3.1), we have

Ψm,γ
lbc (Rn+) 3 A : Hs,r

b (Rn+)→ Hs−m,r+γ
b (Rn+).

We can transport the local conormal b-algebra
⋃
m∈R,γ≥0 Ψm,γ

lbc (Rn+) to manifolds in a

way that is analogous to Definition 3.3.4; we thus obtain spaces Ψm,γ
bc (M) of b-ps.d.o.s on M

of order m with weight γ. (Since we have ensured that operators in the space Ψm,γ
bc (M) act

on weighted b-Sobolev spaces, we can in fact allow γ to be arbitrary, but the case of γ ≤ 0
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is of no interest for us here.) The only non-trivial adjustment concerns point (3.3) there:

Namely, condition (3.3.5) for the Schwartz kernel localized off-diagonally near ∂M × ∂M
now becomes

|∂kt ∂`t′∂αy ∂
β
y′KUV (t, y, t′, y′)| ≤ Cαβk`Me−M |s|,

i.e. the exponential weight in the t-derivative is removed. We can now define:

Definition 3.3.18. We define the algebra Ψb,bc(M) =
⋃
m∈R,γ>0 Ψm,γ

b,bc(M) of b-conormal

operators by requiring that elements A ∈ Ψm,γ
b,bc(M) have the form A = B + C with B ∈

Ψm
b (M) and C ∈ Ψm,γ

bc (M).

Since we are assuming that the weight γ is positive, the principal symbol of A ∈
Ψm,γ

b,bc(M) is well-defined, and is a sum of a smooth and a conormal (of order γ) sym-

bol, in particular it is smooth in bT ∗M◦M , continuous up to bT ∗∂MM , and its restriction to

bT ∗∂MM is smooth. Hence, the notions of operator wave front set, ellipticity etc. are de-

fined for b-conormal operators as well, and one has a symbolic calculus, elliptic regularity,

propagation of singularities etc.

Furthermore, if we write A = B+C as in the above definition, we can define the normal

operator of A to be the normal operator of the smooth part, so N(A) := N(B), and we

then have A−N(A) ∈ Ψ
m,min(1,γ)
b,bc (M) near ∂M : If γ < 1, the normal operator N(A) only

equals A up to an error of size xγ . Therefore, for an elliptic b-conormal operator A whose

normal operator is invertible on some weighted Sobolev space, the argument presented in

§3.3.3 establishing the Fredholm property of A goes through once we replace the weight

r − 1 by r − γ in (3.3.39) and (3.3.40).

While many of our later results about wave equations on spacetimes equipped with

smooth Lorentzian b-metrics will also apply to b-metrics which are merely smooth plus

conormal (of positive order), we will usually not make this explicit, except in §5.2.2. Note

that we are not hiding any serious technicalities here, since it will be apparent from the

arguments involving Ψb(M) that they go through with operators in Ψb,bc(M) as well after

almost entirely notational modifications.



Chapter 4

Energy estimates for b-operators

On manifolds M with boundary, we prove local and global energy estimates for b-operators

which equal the wave operator to leading order. Thus, we consider P ∈ Diff2
b(M) and

assume that there is a Lorentzian b-metric g on M such that

P −�g ∈ Diff1
b(M).

The reason for the interest in energy estimates is the fact that initial value problems for

wave equations do not mesh well with microlocal analysis on the spacetime level, i.e. working

directly on M rather than foliating M by spacelike hypersurfaces; for instance, Cauchy

hypersurfaces force a lower bound on the level of Sobolev regularity one can work with.

More to the point, the failure of microlocal analysis to reproduce physical space energy

estimates (that is on M rather than on bS∗M), which are closely related to the finite

speed of propagation for the wave equation, is due to the fact that the wave operator is

indistinguishable microlocally, i.e. at high frequencies, from any other real principal type

(possibly pseudodifferential) operator, whereas finite speed of propagation holds only for

hyperbolic differential operators. (Thus, this ‘failure’ really is a feature, as it allows for a

very general, unified treatment of many central aspects of large classes of operators, e.g.

even in the context of wave equations transcending physical space methods when studying

Feynman propagators [51].) We remark that complex absorption may be used to obtain

‘forward’ solutions in the sense of their singularity structure, but in general, this does not

produce forward solutions in the sense of supports; see §5.2.1 for more on this.

Thus, we use energy estimates near spacelike hypersurfaces in order to obtain regularity

101
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for solutions of the Cauchy problem for P nearby, from which point on microlocal analysis,

propagation of singularities etc. is directly applicable. Furthermore, very crude global energy

estimates imply the existence of solutions in low regularity, exponentially growing spaces,

which are then improved in regularity using microlocal high frequency analysis and in decay

using normal operator analysis, as outlined at the end of §3.3.3.

Concretely, we work on domains with corners Ω ⊂ M bounded by a artificial spacelike

surfaces as well as by ‘future infinity’ ∂M , motivated by (2.2.5) and Proposition 2.2.1;

we recall the setup below. In §4.1, we prove energy estimates near the artificial surfaces,

uniform up to ∂M , in fact providing a rather general setting for b-energy estimates on

domains with corners, while §4.2 provides global estimates on Ω on sufficiently weighted

spaces.

4.1 Local energy estimates

Assume that U ⊂ M is open, and we have two functions t1, t2 ∈ C∞(M), both of which,

restricted to U , are timelike (in particular have non-zero differential) near their respective

0-level sets H1 and H2, and

Ω = t−1
1 ([0,∞)) ∩ t−1

2 ([0,∞)) ⊂ U.

Notice that the timelike assumption forces dtj to not lie in N∗X = N∗∂M (for its image in

the b-cosphere bundle would be zero), and thus if the Hj intersect X, they do so transver-

sally. We assume that the Hj intersect only away from X, and that they do so transversally,

i.e. the differentials of tj are independent at the intersection. Then Ω is a manifold with

corners with boundary hypersurfaces H1, H2 and X (all intersected with Ω). We however

keep thinking of Ω as a domain in M .

On a manifold with corners, such as Ω, one can consider supported and extendible

distributions; see [64, Appendix B.2] for the smooth boundary setting, with only simple

changes needed for the corners setting, which is discussed e.g. in [110, §3] and indicated in

§3.3. Here we consider Ω as a domain in M , and thus its boundary face X∩Ω is regarded as

having a different character from the Hj ∩ Ω, i.e. the support/extendibility considerations

do not arise at X – all distributions are regarded as acting on a subspace of C∞ functions on

Ω vanishing at X to infinite order, i.e. they are automatically extendible distributions at X.

On the other hand, at Hj we consider both extendible distributions, acting on C∞ functions
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vanishing to infinite order at Hj , and supported distributions, which act on all C∞ functions

(as far as conditions at Hj are concerned). For example, the space of supported distributions

at H1 extendible at H2 (and at X, as we always tacitly assume) is the dual space of the

subspace of C∞(Ω) consisting of functions vanishing to infinite order at H2 and X (but not

necessarily at H1). An equivalent way of characterizing this space of distributions is that

they are restrictions of elements of the dual of Ċ∞(M) (consisting of C∞ functions on M

vanishing to infinite order at X) with support in t1 ≥ 0 to C∞ functions on Ω which vanish

to infinite order at X and H2, i.e. in the terminology of [64], restriction to Ω \ (H2 ∪ X).

The main interest is in spaces induced by the Sobolev spaces Hs,r
b (M). For instance,

Hs,r
b (M)•,−,

with the first superscript on the right denoting whether supported (•) or extendible (−)

distributions are discussed at H1, and the second the analogous property at H2, consists of

restrictions of elements of Hs,r
b (M) with support in t1 ≥ 0 to Ω\ (H2∪X). (Notice that the

Sobolev norm is of completely different nature at X than at the Hj , namely the derivatives

are based on complete, rather than incomplete, vector fields: Vb(M) is being restricted to

Ω, so one obtains vector fields tangent to X but not to the Hj .) Then elements of C∞(Ω)

with the analogous vanishing conditions, so in the example vanishing to infinite order at

H1 and X, are dense in Hs,r
b (M)•,−; further the dual of Hs,r

b (M)•,− is H−s,−rb (M)−,• with

respect to the L2 (sesquilinear) pairing.

First we work locally. For this purpose it is convenient to introduce another function t̃j ,

not necessarily timelike, and consider

Ω[t0,t1] = t−1
j ([t0,∞)) ∩ t̃−1

j ((−∞, t1]), Ω(t0,t1) = t−1
j ((t0,∞)) ∩ t̃−1

j ((−∞, t1)),

and similarly on half-open, half-closed intervals. Thus, Ω[t0,t1] becomes smaller as t0 becomes

larger or t1 becomes smaller.

We then consider energy estimates on Ω[T0,T1]. In order to set up the following argu-

ments, choose

T− < T ′− < T0, T1 < T ′+ < T+,

and assume that Ω[T−,T+] is compact, Ω[T0,T1] is non-empty, and tj is timelike on Ω[T−,T+].

The energy estimates propagate estimates in the direction of either increasing or decreasing
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tj . With the extendible/supported character of distributions at t̃j = T+ being irrelevant for

this matter in the case being considered and thus dropped from the notation, so (−) refers

to extendibility at tj = T0, consider

P : Hs,r
b (Ω[T0,T+])

− → Hs−2,r
b (Ω[T0,T+])

−, s, r ∈ R.

The energy estimate, with backward propagation in tj , from t̃−1
j ([T ′+, T+]), in this setting

takes the form:

Lemma 4.1.1. Let r ∈ R. There is C > 0 such that for u ∈ H2,r
b (Ω[T0,T+])

−,

‖u‖
H1,r

b (Ω[T0,T1])
− ≤ C

(
‖Pu‖

H0,r
b (Ω[T0,T+])

− + ‖u‖
H1,r

b (Ω[T0,T+]∩̃t−1
j ([T ′+,T+]))−

)
. (4.1.1)

This also holds with P replaced by P∗, acting on the same spaces.

Remark 4.1.2. The lemma is also valid if one has several boundary hypersurfaces, i.e. if

one replaces t−1
j ([t0,∞)) by t−1

j ([tj,0,∞))∩ t−1
k ([tk,0,∞)) in the definition of Ω[t0,t1], and/or

t̃−1
j ((−∞, t1]) by t̃−1

j ((−∞, tj,1])∩t̃−1
k ((−∞, tk,1]), i.e. regarding tj and/or t̃j as vector valued,

and propagating backwards in tj0 for some fixed j0, under the additional hypothesis that

tj0 is timelike in Ω[t0,t1], and all tj , j 6= j0, are timelike near their respective zero sets, with

the same timelike character at tj0 . (One can also have more than two such functions.) To

see this, replace χ(tj) by χj0(tj0)χk(tk), and analogously with χ̃ in the definition of V in

(4.1.2), where χk is the characteristic function of [tk,0,∞), while letting W = G(bdtj0 , ·).
Then χ′χ̃ταA] is replaced by χ′jχkχ̃jχ̃kτ

αA] + χjχ
′
kχ̃jχ̃kτ

αA], etc., and our additional

hypothesis guarantees that the matrix A] is indeed positive definite: The contribution from

differentiating χj0 is positive definite by the timelike nature of dtj0 , while the contribution

from differentiating χj , j 6= j0, giving δ-distributions at the hypersurfaces t−1
j (tj,0), is

positive definite by the second part of the above additional hypothesis and can therefore be

dropped as in the proof of Lemma 4.1.1 below. Thus χ′j0 can still be used to dominate χj0 ;

and the terms in which χ̃j is differentiated have support where t̃j is in (T ′+,j , T+,j), so the

control region on the right hand side of (4.1.1) is the union of these sets.

In our application this situation arises as we need domains of the form Ωj , j = 1, 2, 3,

described in Figure 4.1.
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Figure 4.1: Domains on which we will use the energy estimate (4.1.1), with a priori control on
the dark shaded regions. Left: Ω1 = t−1

1 ([0,∞))∩t−1
2 ([T0, T1]), written as Ω1 = t−1

2 ([0,∞))∩(
(−t1)−1((−∞, 0])∩ t−1

2 ((−∞, T1])
)
, propagating estimates backwards in t2. Middle: Ω2 =

t−1
1 ([0, T1])∩ t−1

2 ([0,∞)), written as Ω2 = t−1
1 ([0,∞))∩

(
t−1
1 ([−∞, T1))∩ (−t2)−1((−∞, 0])

)
,

propagating estimates backwards in t2. Right: The same domain, now written as Ω3 =(
(−t1)−1([−T1,∞)) ∩ t2([0,∞))

)
∩ (−t1)−1((−∞, 0]), propagating estimates backwards in

−t1. Equivalently, Ω3 = t−1
1 ([0,∞))∩

(
t−1
1 ((−∞, T1])∩(−t2)−1((−∞, 0])

)
, and we propagate

in the forward direction in t1 using the estimate (4.1.4).

Proof of Lemma 4.1.1. To see (4.1.1), one proceeds as in [114, §3.3] and considers

V = −iχ(tj)χ̃(̃tj)τ
αW (4.1.2)

with W = G(dtj , ·) a timelike vector field and with χ, χ̃ ∈ C∞(R), both non-negative, to

be specified. Then choosing a Riemannian b-metric g̃ with respect to which we compute

adjoints,

−i(V ∗�g −�∗gV ) = bd∗g̃C
[ bd,

with the subscript on the right making the dependence of the adjoint on the metric g̃

explicit, and with

C[ = χ′χ̃ταA] + χχ̃′ταÃ] + χχ̃ταR[

where A], Ã] and R[ are bundle endomorphisms of CbT ∗M , and A] is positive definite be-

cause W and (the b-vector field dual to) dtj have the same timelike orientation. Proceeding

further, replacing �g by P, one has

−i(V ∗P − P∗V ) = bd∗g̃C
] bd+ (Ẽ1)∗g̃τ

αχχ̃bd+ bd∗g̃τ
αχχ̃Ẽ2,

C] = χ′χ̃ταA] + χχ̃′ταÃ] + χχ̃ταR̃],
(4.1.3)
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with Ẽj bundle maps from the trivial bundle over M to CbT ∗M , A], Ã] as before, and R̃]

a bundle endomorphism of CbT ∗M , as follows by expanding

−i(V ∗(P −�g)− (P −�g)∗V )

using that P−�g ∈ Diff1
b(M). We regard the second term on the right hand side of the def-

inition of C] in (4.1.3) as the one requiring a priori control by ‖u‖
H1,r

b (Ω[T0,T+]∩̃t−1
j ([T ′+,T+]))− ;

we achieve this by making χ̃ supported in (−∞, T+), identically 1 near (−∞, T ′+], so dχ̃ is

supported in (T ′+, T+). Now making χ′ ≥ 0 large relative to χ on supp(χχ̃), as in10 [114,

Equation (3.27)], allows one to dominate all terms without derivatives of χ. In order to

obtain a non-degenerate estimate up to tj = T0, one cuts off χ at tj = T0 using the Heaviside

function, so χ′ gives a (positive!) δ-distribution there. Applying (4.1.3) to v, pairing with

v and integrating by parts, the δ-distributions have the same sign as χ′A] and can thus be

dropped. Put differently, without the sharp cutoff, one again computes the same pairing,

but this time on the domain Ω[T0,T+], thus picking up boundary terms with the correct sign

in the integration by parts, so these terms can be dropped. This proves the energy estimate

(4.1.1) when one takes α = −2r.

We refer to the proof of the analogous Proposition 8.6.1, in which we discuss the case

of non-smooth metrics, for further details.

Propagating in the forward direction in tj , with a priori bounds in t−1
j ([T−, T

′
−]), where

now (−) denotes the character of the space at T1, so (−) refers to extendibility at tj = T1,

we have

‖u‖
H1,r

b (Ω[T0,T1])
− ≤ C

(
‖Pu‖

H0,r
b (Ω[T−,T1])

− + ‖u‖
H1,r

b (Ω[T−,T1]∩t−1
j ([T−,T ′−]))−

)
(4.1.4)

In particular, for u supported in tj ≥ T0, the last estimate becomes, with the first superscript

on the right denoting whether supported (•) or extendible (−) distributions are discussed

at t = T0, the second superscript the same at t = T1,

‖u‖
H1,r

b (Ω[T0,T1])
•,− ≤ C‖Pu‖H0,r

b (Ω[T0,T1])
•,− ,

10In [114, Equation (3.27)] the sign of χ′ is opposite, as the estimate is propagated in the opposite
direction.
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when

P : Hs,r
b (Ω[T0,T1])

•,− → Hs−2,r
b (Ω[T0,T1])

•,−

and u ∈ H2,r
b (Ω[T0,T1])

•,−. To summarize, we state both this and (4.1.1) in terms of these

supported spaces:

Corollary 4.1.3. Let r, r̃ ∈ R. For u ∈ H2,r
b (Ω[T0,T1])

•,−, one has

‖u‖
H1,r

b (Ω[T0,T1])
•,− ≤ C‖Pu‖H0,r

b (Ω[T0,T1])
•,− , (4.1.5)

while for v ∈ H2,r̃
b (Ω[T0,T1])

−,•, the estimate

‖v‖
H1,r̃

b (Ω[T0,T1])
−,• ≤ C‖P∗v‖H0,r̃

b (Ω[T0,T1])
−,• (4.1.6)

holds.

A duality argument, combined with propagation of singularities, thus gives:

Lemma 4.1.4. Let s ≥ 0, r ∈ R. Then there is C > 0 with the following property: If

f ∈ Hs−1,r
b (Ω[T0,T1])

•,−, then there exists u ∈ Hs,r
b (Ω[T0,T1])

•,− such that Pu = f and

‖u‖Hs,r
b (Ω[T0,T1])

•,− ≤ C‖f‖Hs−1,r
b (Ω[T0,T1])

•,− .

Remark 4.1.5. As in Remark 4.1.2, the lemma remains valid in more generality, provided

that the tj have linearly independent differentials on their joint zero set, and similarly for

the t̃j . The place where this linear independence is used (the energy estimate above does

not need this) is for the continuous Sobolev extension map, valid on manifolds with corners,

see [110, §3].

Proof. We work on the slightly bigger region Ω[T ′−,T
′
+], applying the energy estimates with

T0 replaced by T ′−, T1 replaced by T ′+. First, by the supported property at tj = T0, one can

regard f as an element of Hs−1,r
b (Ω[T ′−,T1])

•,− with support in Ω[T0,T1]. Let

f̃ ∈ Hs−1,r
b (Ω[T ′−,T

′
+])
•,− ⊂ H−1,r

b (Ω[T ′−,T
′
+])
•,−

be an extension of f , so f̃ is supported in Ω[T0,T ′+], and restricts to f ; by the definition of

spaces of extendible distributions as quotients of spaces of distributions on a larger space,
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see [64, Appendix B.2], we can assume

‖f̃‖
Hs−1,r

b (Ω[T ′−,T
′
+])
•,− ≤ 2‖f‖

Hs−1,r
b (Ω[T ′−,T1])

•,− . (4.1.7)

By (4.1.1) applied with P replaced by P∗, r̃ = −r,

‖φ‖
H1,r̃

b (Ω[T ′−,T
′
+])
−,• ≤ C‖P∗φ‖H0,r̃

b (Ω[T ′−,T
′
+])
−,• ,

for φ ∈ H2,r̃
b (Ω[T ′−,T

′
+])
−,•. Correspondingly, by the Hahn-Banach theorem, there exists

ũ ∈ (H0,r̃
b (Ω[T ′−,T

′
+])
−,•)∗ = H0,r

b (Ω[T ′−,T
′
+])
•,−

such that

〈Pũ, φ〉 = 〈ũ,P∗φ〉 = 〈f̃ , φ〉, φ ∈ H2,r̃
b (Ω[T ′−,T

′
+])
−,•,

and

‖ũ‖
H0,r

b (Ω[T ′−,T
′
+])
•,− ≤ C‖f̃‖H−1,r

b (Ω[T ′−,T
′
+])
•,− . (4.1.8)

One can regard ũ as an element of H0,r
b (Ω[T−,T ′+])

•,− with support in Ω[T ′−,T
′
+], with f̃

similarly extended; then 〈Pũ, φ〉 = 〈f̃ , φ〉 for φ ∈ Ċ∞c (Ω(T−,T ′+)) (here the dot over C∞ refers

to infinite order vanishing at X = ∂M !), so Pũ = f̃ in distributions. Since ũ vanishes on

Ω(T−,T ′−), and

f̃ ∈ Hs−1,r
b (Ω[T−,T ′+])

•,−,

propagation of singularities applied on Ω(T−,T ′+) (which has only the boundary ∂M = X)

gives that ũ ∈ Hs,r
b,loc(Ω(T−,T ′+)) (i.e. here we are ignoring the two boundaries, tj = T−, T

′
+,

not making a uniform statement there, but we are not ignoring ∂M = X). In addition, for

χ, χ̃ ∈ C∞c (Ω(T−,T ′+)), χ̃ ≡ 1 on suppχ, we have the estimate

‖χũ‖Hs,r
b (Ω[T−,T ′+])

≤ C
(
‖χ̃Pũ‖

Hs−1,r
b (Ω[T−,T ′+])

+ ‖χ̃ũ‖
H0,r

b (Ω[T−,T ′+])

)
. (4.1.9)

In view of the support property of ũ, this gives that restricting to Ω(T−,T1], we obtain an

element of Hs,r
b (Ω(T−,T1])

−, with support in Ω[T0,T1], i.e. an element of Hs,r
b (Ω[T0,T1])

•,−. The

desired estimate follows from (4.1.8), controlling the second term of the right hand side of

(4.1.9), and (4.1.7) as well as using Pũ = f̃ .
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At this point, u given by Lemma 4.1.4 is not necessarily unique. However:

Lemma 4.1.6. Let s, r ∈ R. If u ∈ Hs,r
b (Ω[T0,T1])

•,− is such that Pu = 0, then u = 0.

Proof. Propagation of singularities, as in the proof of Lemma 4.1.4, regarding u as a dis-

tribution on (T−, T1) with support in [T0, T1) gives that u ∈ H∞,rb,loc(Ω(T−,T1)). Taking

T0 < T ′1 < T1, letting u′ = u|[T0,T ′1], (4.1.5) shows that u′ = 0. Since T ′1 is arbitrary,

this shows u = 0.

Corollary 4.1.7. Let s ≥ 0, r ∈ R. Then there is C > 0 with the following property: If

f ∈ Hs−1,r
b (Ω[T0,T1])

•,−, then there exists a unique u ∈ Hs,r
b (Ω[T0,T1])

•,− such that Pu = f .

Further, this unique u satisfies

‖u‖Hs,r
b (Ω[T0,T1])

•,− ≤ C‖f‖Hs−1,r
b (Ω[T0,T1])

•,− .

Proof. Existence is Lemma 4.1.4, uniqueness is linearity plus Lemma 4.1.6, which together

with the estimate in Lemma 4.1.4 prove the corollary.

Corollary 4.1.8. Let s ≥ 0, r, r̃ ∈ R.

For u ∈ Hs,r
b (Ω[T0,T1])

•,− with Pu ∈ Hs−1,r
b (Ω[T0,T1])

•,−,

‖u‖Hs,r
b (Ω[T0,T1])

•,− ≤ C‖Pu‖Hs−1,r
b (Ω[T0,T1])

•,− , (4.1.10)

while for v ∈ Hs,r̃
b (Ω[T0,T1])

−,• with P∗v ∈ Hs−1,r̃
b (Ω[T0,T1])

−,•,

‖v‖
Hs,r̃

b (Ω[T0,T1])
−,• ≤ C‖P∗v‖Hs−1,r̃

b (Ω[T0,T1])
−,• . (4.1.11)

Remark 4.1.9. Again, this estimate remains valid for vector valued tj and t̃j , see Re-

marks 4.1.2 and 4.1.5, under the linear independence condition of the latter.

Proof of Corollary 4.1.8. It suffices to consider (4.1.10). Let f = Pu ∈ H−1,r
b (Ω[T0,T1])

•,−,

and let u′ ∈ H0,r
b (Ω[T0,T1])

•,− be given by Corollary 4.1.7. In view of the uniqueness state-

ment of Corollary 4.1.7, u = u′. Then the estimate of Corollary 4.1.7 proves the claim.

This yields the following propagation of singularities type result:

Proposition 4.1.10. Let s ≥ 0, r ∈ R.

If u ∈ H−∞,−∞b (Ω[T0,T1])
•,− with Pu ∈ Hs−1,r

b (Ω[T0,T1])
•,−, then u ∈ Hs,r

b (Ω[T0,T1])
•,−.
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If instead u ∈ H−∞,−∞b (Ω[T0,T1])
−,− with Pu ∈ Hs−1,r

b (Ω[T0,T1])
−,− and for some T̃0 >

T0, u ∈ Hs,r
b (Ω[T0,T1] \ Ω

(T̃0,T1]
)−,−, then u ∈ Hs,r

b (Ω[T0,T1])
−,−.

Remark 4.1.11. One can ‘mix and match’ the two parts of the proposition in the setting of

Remark 4.1.2, with say a supportedness condition at t̃j , and only an extendibility assump-

tion at t̃k, but with Hs,r
b membership assumption on u in Ω[T0,T1] \ t̃−1

k ((−∞, T̃1)), T̃1 < T1,

with a completely analogous argument. For instance, in the setting of Figure 4.1, one gets

the regularity under supportedness assumptions at H1, just extendibility at t2 = T1, but a

priori regularity for t2 ∈ (T̃1, T1).

Proof of Proposition 4.1.10. Applying the existence part of Corollary 4.1.7, we let u′ ∈
Hs,r

b (Ω[T0,T1])
•,− be the unique solution in Hs,r

b (Ω[T0,T1])
•,− of Pu′ = f where f = Pu ∈

Hs−1,r
b (Ω[T0,T1])

•,−. Then u, u′ ∈ H−∞,−∞b (Ω[T0,T1])
•,− and P(u − u′) = 0. Applying

Lemma 4.1.6, we conclude that u = u′, which completes the proof of the first part.

For the second part, let χ ∈ C∞(R) be supported in (T0,∞), identically 1 near [T̃0,∞),

and consider u′ = (χ ◦ tj)u ∈ H1,r
b (Ω[T0,T1])

•,−, with the support property arising from the

vanishing of χ near T0. Then Pu′ = [P, (χ ◦ tj)]u + (χ ◦ tj)Pu. Now the first term on the

right hand side is in Hs−1,r
b (Ω[T0,T1])

•,− as on the support of dχ, which is in Ω[T0,T1]\Ω(T̃0,T1]
,

u is in Hs,r
b , and the commutator is first order, while the second term is in the desired space

since Pu ∈ Hs−1,r
b (Ω[T0,T1])

−,−, and as for u itself, the cutoff improves the support property.

Thus, the first part of the lemma is applicable, giving that χu ∈ Hs,r
b (Ω[T0,T1])

•,−. Since

(1− χ)u ∈ Hs,r
b (Ω[T0,T1])

−,− by the a priori assumption, the conclusion follows.

4.2 Global energy estimates

We keep the notation from the previous section. We now consider, for s ≥ 0,

P : Hs,r
b (Ω)•,− → Hs−2,r

b (Ω)•,−

and

P∗ : Hs,r
b (Ω)−,• → Hs−2,r

b (Ω)−,•.

We now prove global energy estimates; we assume that Ω is such that there is a boundary

defining function τ of M with dτ
τ timelike on Ω, of the same timelike character as t2, opposite

to t1. (As explained in [114, §7], in this case there is C > 0 such that for Imσ > C,
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P̂ (σ) is necessarily invertible.) This in particular holds for the spacetimes described in

Definition 2.5.1.

The energy estimate is:

Lemma 4.2.1. There exists r0 < 0 such that for r ≤ r0, −r̃ ≤ r0, there is C > 0 such that

for u ∈ H2,r
b (Ω)•,−, v ∈ H2,r̃

b (Ω)−,•, one has

‖u‖
H1,r

b (Ω)•,− ≤ C‖Pu‖H0,r
b (Ω)•,− ,

‖v‖
H1,r̃

b (Ω)−,•
≤ C‖P∗v‖

H0,r̃
b (Ω)−,•

.
(4.2.1)

Proof. We run the argument of Lemma 4.1.1 globally on Ω using a timelike vector field

(e.g. starting with W = G(dττ , .)) that has, as a multiplier, a sufficiently large positive

power α = −2r of τ , i.e. replacing (4.1.2) by

V = −iταW.

Then the term with τα differentiated (which in (4.1.3) is included in the R̃] term), and thus

possessing a factor of α, is used to dominate the other, ‘error,’ terms in (4.1.3), completing

the proof of the lemma as in Lemma 4.1.1.

This can be used as in Lemma 4.1.4 to show the solvability of Pu = f ∈ H−1,r
b (Ω)•,−

by u ∈ H0,r
b (Ω)•,−.

In order to improve regularity, one needs further assumptions on the null-bicharacteristic

flow in Ω. We thus assume from now on that Ω is a non-trapping spacetime, possibly with

normally hyperbolic trapping, according to Definition 2.5.1: One then uses the propagation

of singularities, which includes the use of the radial point estimate in Proposition 3.3.8,

noting that we are automatically above the weight-regularity-threshold for large negative

weights, and in the trapping case in addition Theorem 3.3.14, specifically the estimate

(3.3.23). We then obtain the following analogues of Corollaries 4.1.7 and 4.1.8.

Corollary 4.2.2. There is r0 < 0 such that for r ≤ r0 and for s ≥ 0 there is C > 0 with

the following property: If f ∈ Hs−1,r
b (Ω)•,−, then there exists a unique u ∈ Hs,r

b (Ω)•,− such

that Pu = f . Further, this unique u satisfies

‖u‖Hs,r
b (Ω)•,− ≤ C‖f‖Hs−1,r

b (Ω)•,− .
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Corollary 4.2.3. There is r0 < 0 such that if r < r0, −r̃ < r0 and s ≥ 0 then there is

C > 0 such that the following holds: For u ∈ Hs,r
b (Ω)•,− with Pu ∈ Hs−1,r

b (Ω)•,−, one has

‖u‖Hs,r
b (Ω)•,− ≤ C‖Pu‖Hs−1,r

b (Ω)•,− , (4.2.2)

while for v ∈ Hs,r̃
b (Ω)−,• with P∗v ∈ Hs−1,r̃

b (Ω)−,•, one has

‖v‖
Hs,r̃

b (Ω)−,•
≤ C‖P∗v‖

Hs−1,r̃
b (Ω)−,•

. (4.2.3)

We restate Corollary 4.2.2 as an invertibility statement.

Theorem 4.2.4. There is r0 < 0 with the following property: Suppose s ≥ 0, r ≤ r0, and

let

X s,r = {u ∈ Hs,r
b (Ω)•,− : Pu ∈ Hs−1,r

b (Ω)•,−}, Ys,r = Hs,r
b (Ω)•,−,

where P is a priori a map P : Hs,r
b (Ω)•,− → Hs−2,r

b (Ω)•,−. Then

P : X s,r → Ys−1,r

is a continuous, invertible map, with continuous inverse.

Remark 4.2.5. Note that Ys,r, X s,r are complete, in the case of X s,r with the natural norm

being ‖u‖2X s,r = ‖u‖2
Hs,r

b (Ω)•,−
+‖Pu‖2

Hs−1,r
b (Ω)•,−

, as follows by the continuity of P as a map

Hs,r
b (Ω)•,− → Hs−2,r

b (Ω)•,− and the completeness of the b-Sobolev spaces Hs,r
b (Ω)•,−.

This will be the starting point for the global analysis of linear and nonlinear waves,

starting with the discussion of generalized static models in §5.2.1.



Chapter 5

Semilinear wave equations

5.1 Introduction

The purpose of this chapter is to show how the microlocal analysis of Chapter 3 and the

energy estimates of Chapter 4 can be combined to give the global solvability of linear and

semilinear wave equations on many classes of spacetimes, in particular those covered by

Definition 2.5.1. The study of much more general quasilinear equations requires technically

more sophisticated tools and is deferred to Chapters 8 and 9.

Concretely, we consider semilinear wave equations in contexts such as asymptotically

de Sitter and Kerr-de Sitter spaces, as well as asymptotically Minkowski spaces. The

word ‘asymptotically’ here does not mean that the asymptotic behavior has to be that of

exact de Sitter, etc., spaces, or even a perturbation of these at infinity; much more general

infinities, that nonetheless possess a similar structure as far as the underlying analysis is

concerned, are allowed, such as spacetimes covered by Definition 2.5.1. Recent progress

[114] and [8] allows one to set up the analysis of the associated linear problem globally

as a Fredholm problem, concretely using the framework of Melrose’s b-pseudodifferential

operators, discussed in §3.3, on appropriate compactifications M of these spaces. This

allows one to use the contraction mapping theorem to solve semilinear equations with small

data in many cases since typically the semilinear terms can be considered perturbations of

the linear problem. That is, as opposed to solving an evolution equation on time intervals

of some length, possibly controlling this length in some manner, and iterating the solution

using (almost) conservation laws, we solve the equation globally in one step.

As Fredholm analysis means that one has to control the linear operator L modulo

113
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compact errors, which in these settings means modulo terms which are both smoother and

more decaying, see §3.3.3, the underlying linear analysis involves both arguments based on

the principal symbol of the wave operator and on its (b-)normal operator family N̂(L)(σ)

on ∂M . At the principal symbol level one encounters real principal type phenomena as

well as radial points of the Hamilton flow at the boundary of the compactified underlying

space M ; these allow for the usual (for wave equations) loss of one (b-)derivative relative

to elliptic problems. Physically, in the de Sitter and Kerr-de Sitter type settings, radial

points correspond to a red shift effect. (In Kerr-de Sitter spaces there is an additional loss

of derivatives dues to trapping.) On the other hand, the b-normal operator family enters

via the poles σj , also called resonances, of the meromorphic inverse N̂(L)(σ)−1; these

poles determine the decay/growth rates of solutions of the linear problem at ∂M , namely

Imσj > 0 means growing while Imσj < 0 means decaying solutions. Translated into the

nonlinear setting, taking powers of solutions of the linear equation means that growing linear

solutions become even more growing, thus the nonlinear problem is uncontrollable, while

decaying linear solutions become even more decaying, thus the nonlinear effects become

negligible at infinity. Correspondingly, the location of these resonances becomes crucial

for nonlinear problems. We note that in addition to providing solvability of semilinear

problems, our results can also be used to obtain the asymptotic expansion of the solution.

In short, we present a systematic approach to the analysis of semilinear wave and Klein-

Gordon equations: Given an appropriate structure of the space at infinity and given that

the location of the resonances fits well with the nonlinear terms, see the discussion below,

one can solve (suitable) semilinear equations. Thus, the main purpose of this chapter is to

present the first step towards a general theory for the global study of linear and nonlinear

wave-type equations; the semilinear applications we give are meant to show how far we

can get in the nonlinear regime using relatively simple means, and lend themselves to

meaningful comparisons with existing literature, see the discussion below. The approach

readily generalizes to the analysis of quasilinear equations, provided one understands the

necessary (b-)analysis in the setting of non-smooth metrics; see Chapters 8 and 9 for such

a generalization in both the de-Sitter and Kerr-de Sitter type settings.

We now describe our setting in more detail. We consider semilinear wave equations of

the form

(�g − λ)u = f + q(u, du)
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on a manifold M where q is (typically; more general functions are also considered) a poly-

nomial vanishing at least quadratically at (0, 0), so contains no constant or linear terms,

which should be included either in f or in the operator on the left hand side. The derivative

du is measured relative to the metric structure (e.g. when constructing polynomials in it).

Here g and λ fit in one of the following scenarios, which we state slightly informally, with

references to the precise theorems.

(1) A neighborhood of the backward light cone from future infinity in an asymptotically

de Sitter space, i.e. of a ‘static’ asymptotically de Sitter space, or more general non-

trapping spacetimes in the sense of Definition 2.5.1. In order to solve the semilinear

equation, if λ > 0, one can allow q to be an arbitrary polynomial with quadratic

vanishing at the origin, or indeed a more general function. If λ = 0 and q depends on

du only, the same conclusion holds. Further, in either case, one obtains an expansion

of the solution at infinity. See Theorems 5.2.6 and 5.2.17, and Corollary 5.2.9.

(2) Kerr-de Sitter space, including a neighborhood of the event horizon, or more general

non-trapping spacetimes with normally hyperbolic trapping in the sense of Defini-

tion 2.5.1. In the main part of the section we assume λ > 0, and allow q = q(u)

with quadratic vanishing at the origin. We also obtain an expansion at infinity. See

Theorems 5.3.6 and 5.3.10, and Corollary 5.3.9. However, in §5.3.3 we briefly discuss

non-linearities involving derivatives which are appropriately behaved at the trapped

set.

(3) Global even asymptotically de Sitter spaces. These are in some sense the easiest

examples as they correspond, via extension across the conformal boundary, to working

on a manifold without boundary. Here λ = (n− 1)2/4 + σ2. If Imσ < 0 is sufficiently

small and the dimension satisfies n ≥ 6, quadratic vanishing of q suffices; if n ≥ 4

then cubic vanishing is sufficient. If q does not involve derivatives, Imσ ≥ 0 small

also works, and if Imσ > 0, n ≥ 5, or Imσ = 0, n ≥ 6, then quadratic vanishing of

q is sufficient. (The equation is unchanged if one replaces σ by −σ. The process of

extending across the boundary, however, breaks this symmetry, and in §5.4 we mostly

consider Imσ ≤ 0.) See Theorems 5.4.10, 5.4.12 and 5.4.15. Using the results from

‘static’ asymptotically de Sitter spaces, quadratic vanishing of q in fact suffices for all

λ > 0, and indeed λ ≥ 0 if q = q(du), but the decay estimates for solutions are lossy

relative to the decay of the forcing. See Theorem 5.4.17.
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(4) Non-trapping Lorentzian scattering (generalized asymptotically Minkowski) spaces,

λ = 0. If q = q(du), we allow q with quadratic vanishing at 0 if n ≥ 5; cubic if

n ≥ 4. If q = q(u), we allow q with quadratic vanishing if n ≥ 6; cubic if n ≥ 4.

Further, for q = q(du) quadratic satisfying a null condition, n = 4 also works. See

Theorems 5.5.13, 5.5.15 and 5.5.21.

See [111, 114, 117] for relating analysis on ‘global’ and ‘static’ problems, and see Chap-

ter 2 for a discussion of the settings (1)–(3). We refer to [8, §3] and to §5.5.1 here for a

definition of asymptotically Minkowski spaces, but roughly they are manifolds with bound-

ary M with Lorentzian metrics g on the interior M◦ conformal to a b-metric ĝ as g = τ−2ĝ,

with τ a boundary defining function11 (so these are Lorentzian scattering metrics in the

sense of Melrose [83], i.e. symmetric cotensors in the second power of the scattering cotan-

gent bundle, and of signature (1, n− 1)), with a real C∞ function v defined on M with dv,

dτ linearly independent at S = {v = 0, τ = 0}, and with a specific behavior of the metric at

S which reflects that of Minkowski space on its radial compactification near the boundary

of the light cone at infinity so that S is the light cone at infinity in this greater generality.

Concretely, the specific form is

τ2g = ĝ = v
dτ2

τ2
−
(dτ
τ
⊗ α+ α⊗ dτ

τ

)
− h̃,

where α is a smooth one form on M , equal to 1
2 dv at S, h̃ is a smooth 2-cotensor on M ,

which is positive definite on the annihilator of dτ and dv (which is a codimension 2 space).

The difference between the de Sitter-type and Minkowski settings is in part this conformal

factor τ−2, which however does not affect the behavior of the null-bicharacteristics so one can

consider those of ĝ on bS∗M instead; more importantly, at the spherical conormal bundle

bSN∗S of S, the nature of the radial points is source/sink rather than a saddle point (as

in the static de Sitter context) of the flow. One also makes a non-trapping assumption in

the asymptotically Minkowski setting.

We now indicate the specific ways in which these settings fit into the b-framework, and

how the various restrictions described above arise:

(1) Asymptotically ‘static’ de Sitter. Due to a zero resonance for the linear problem when

λ = 0, which moves to the lower half plane for λ > 0, in this setting λ > 0 works in

11In §5.5 we switch to ρ as the boundary defining function for consistency with [8].
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general; λ = 0 works if q depends on du but not on u. The relevant function spaces are

L2-based b-Sobolev spaces on the bordification (partial compactification) of the space,

or analogous spaces plus a finite expansion. Further, the semilinear terms involving

du have coefficients corresponding to the b-structure, i.e. b-objects are used to create

functions from the differential forms, or equivalently b-derivatives of u are used.

(2) Kerr-de Sitter space. This is an extension of (1), i.e. the framework is essentially

the same, with the difference being that there is now trapping corresponding to the

photon sphere. This makes first order terms in the non-linearity non-perturbative,

unless they are well-adapted to the trapping. Thus, we assume λ > 0. The relevant

function spaces are as in the asymptotically de Sitter setting.

(3) Global even asymptotically de Sitter spaces. In order to get reasonable results, one

needs to measure regularity relatively finely, using the module of vector fields tangent

to what used to be the conformal boundary in the extension. The relevant function

spaces are thus Sobolev spaces with additional (finite) conormal regularity. Further,

du has coefficients corresponding to the 0-structure of Mazzeo and Melrose, in the

same sense the b-structure was used in (1). The range of λ here is limited by the

process of extension across the boundary; for non-linearities involving u only, the

restriction amounts to (at least very slowly) decaying solutions for the linear problem

(without extension across the conformal boundary).

Another possibility is to view global de Sitter space as a union of static patches. Here,

the b-Sobolev spaces on the static parts translate into 0-Sobolev spaces on the global

space, which have weights that are shifted by a dimension-dependent amount relative

to the weights of the b-spaces. This approach allows for most of the non-linearities

that we can deal with on static parts; however, the resulting decay estimates on u are

quite lossy relative to the decay of the forcing term f .

(4) Non-trapping Lorentzian scattering (generalized asymptotically Minkowski) spaces,

λ = 0. Note that if λ > 0, the type of the equation changes drastically; it naturally

fits into Melrose’s scattering algebra rather than the b-algebra which can be used

for λ = 0. While the results here are quite robust and there are no issues with

trapping, they are more involved as one needs to keep track of regularity relative to

the module of vector fields tangent to the light cone at infinity. The relevant function

spaces are b-Sobolev spaces with additional b-conormal regularity corresponding to
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the aforementioned module. Further, du has coefficients corresponding to Melrose’s

scattering structure. These spaces, in the special case of Minkowski space, are related

to the spaces used in [69], using the infinitesimal generators of the Lorentz group,

but while the analysis in [69] takes place in an L∞L2 setting, we remain purely in a

(weighted) L2 based setting, as the latter is more amenable to the tools of microlocal

analysis.

We reiterate that while the way de Sitter, Minkowski, etc., type spaces fit into it differs

somewhat, the underlying linear framework is that of L2-based b-analysis, on manifolds

with boundary, except that in the global view of asymptotically de Sitter spaces one can

eliminate the boundary altogether.

In order to underline the generality of the method, we emphasize that, corresponding

to cases (1) and (2), in b-settings in which one can work on standard b-Sobolev spaces,

the restrictions on the solvability of the semilinear equations are simply given firstly by

the presence of resonances for the Mellin transformed normal operator family in Imσ ≥
0, which would allow growing solutions to the equation, making the non-linearity non-

perturbative, with an exception if Imσ = 0, in which case the nonlinear iterative arguments

produce growth unless the non-linearity has a special structure; and secondly by the losses

at high energy estimates for this Mellin transformed operator and the closely related b-

principal symbol estimates when one has trapping: These losses cause the difference in the

trapping setting for non-linearities with or without derivatives. In particular, the results

are necessarily optimal in the non-trapping setting of (1), as shown even by an ODE, see

Remark 5.2.11. In the trapping setting, the treatment of non-linearities with derivatives

requires a more powerful approach, see Chapter 9, though when there are no derivatives in

the non-linearity, we already have no restrictions on the non-linearity, and to this extent

our result is optimal.

On Lorentzian scattering spaces more general function spaces are used, and it is not

in principle clear whether the results are optimal, but at least comparison with the work

of Klainerman and Christodoulou for perturbations of Minkowski space [19, 69, 70] gives

consistent results; see the comments below. On global asymptotically de Sitter spaces, the

framework of [114] and [115] is very convenient for the linear analysis, but it is not clear to

what extent it gives optimal results in the nonlinear setting. The reason why more precise

function spaces become necessary is the following: There are two basic properties of spaces

of functions on manifolds with boundaries, namely differentiability and decay. Whether
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one can have both at the same time for the linear analysis depends on the (Hamiltonian)

dynamical nature of radial points: when defining functions of the corresponding boundaries

of the compactified cotangent bundle have opposite character (stable vs. unstable), which

in particular means that the radial point is a saddle, one can have both at the same time,

otherwise not; see Propositions 3.3.8 and 5.5.3 for details. For nonlinear purposes, the most

convenient setting, in which we are in (1), is if one can work with spaces of arbitrarily

high regularity and fast decay, and corresponds to saddle points of the flow in the above

sense. In (4) however, working in higher regularity spaces, which is necessary in order to

be able to make sense of the non-linearity, requires using faster growing (or at least less

decaying) weights, which is problematic when dealing with non-linearities (e.g. polynomials)

since multiplication gives even worse growth properties then. Thus, to make the nonlinear

analysis work, the function spaces we use need to have more structure; it is a module

regularity that is used to capture some weaker regularity in order to enable work in spaces

with acceptable weights.

While all results are stated for the scalar equation, analogous results hold in many cases

for operators on vector bundles, such as the d’Alembertian (or Klein-Gordon operator) on

differential forms, since the linear arguments work in general for operators with scalar prin-

cipal symbol whose subprincipal symbol satisfies appropriate estimates at radial sets (which

are automatic, for sufficiently high regularity, on de Sitter and Kerr-de Sitter spacetimes),

though of course for semilinear applications the presence of resonances in the closed upper

half plane has to be checked, see §5.2.2 and Remark 5.3.5. This already suffices to obtain

the well-posedness of the semilinear equations on asymptotically de Sitter that we consider

in this chapter; for semilinear equations on asymptotically Kerr-de Sitter spaces, one more-

over needs suitable high energy estimates in the presence of trapping for operators acting

on vector bundles, and while these are not automatic, we prove them for natural vector

bundles on Kerr-de Sitter space in Chapter 6. On asymptotically Minkowski spaces, the

absence of poles of an asymptotically hyperbolic resolvent has to be checked in addition, see

Theorem 5.5.4, and the numerology depends crucially on the delicate balance of weights and

regularity, as alluded to above. (On perturbations of Minkowski space, this follows from the

appropriate behavior of poles of the resolvent of the Laplacian on forms on exact hyperbolic

space.) We will study resonances for waves on bundles in Chapters 6 and 7, and will point

out the ramifications of the results proved there for applications to nonlinear equations, see

in particular Remark 7.5.3.
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While the basic ingredients of the necessary linear b-analysis were analyzed in [114], the

solvability framework was only discussed in the dilation invariant setting, and in general the

asymptotic expansion results were slightly lossy in terms of derivatives in the non-dilation-

invariant case. We remedy these issues here, providing a full Fredholm framework. The

key technical tools are the propagation of b-singularities at b-radial points which are saddle

points of the flow in bS∗M , see Proposition 3.3.8, as well as the b-normally hyperbolic

versions, proved in §3.3.2, of the semiclassical normally hyperbolic trapping estimates [42,

44, 94, 124]; the rest of the Fredholm setup is discussed in §5.2.1 in the non-trapping and

§5.3.1 in the normally hyperbolic trapping setting. The analogue of Proposition 3.3.8 for

sources/sinks was already proved in [8, §4]; our Lorentzian scattering metric Fredholm

discussion, which relies on this, is in §5.5.1.

We emphasize that our analysis would be significantly less cumbersome in terms of tech-

nicalities if we were not including Cauchy hypersurfaces and solved a globally well-behaved

problem by imposing sufficiently rapid decay at past infinity instead (it is standard to con-

vert a Cauchy problem into a forward solution problem). Cauchy hypersurfaces are only

necessary for us if we deal with a problem ill-behaved in the past because complex ab-

sorption does not force appropriate forward supports even though it does so at the level

of singularities; otherwise we can work with appropriate (weighted) Sobolev spaces. The

latter is the case with Lorentzian scattering spaces, which thus provide an ideal example

for our setting. It can also be done in the global setting of asymptotically de Sitter spaces,

as in setting (3) above, essentially by realizing these as the boundary of the appropriate

compactification of a Lorentzian scattering space, see [117]. In the case of Kerr-de Sit-

ter black holes, in the presence of dilation invariance, one has access to a similar luxury:

Complex absorption does the job as in [114]; the key aspect is that it needs to be imposed

outside the static region we consider. For a general Lorentzian b-metric with a normally

hyperbolic trapped set, this may not be easy to arrange, and we do work by adding Cauchy

hypersurfaces, even at the cost of the resulting (rather artificial in terms of PDE theory)

technical complications. We remark that Cauchy hypersurfaces are somewhat ill-behaved

for L2 based estimates, which we use, but match L∞L2 estimates quite well, which explains

the large role they play in existing hyperbolic theory, such as [69] or [64, Chapter 23.2].

We also explain the role that the energy estimates (as opposed to microlocal energy

estimates) play: These mostly enter to deal with the artificially introduced boundaries; if

other methods (like complex absorption) were used to truncate the flow, their role reduces
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to checking that in certain cases, when the microlocal machinery only guarantees Fredholm

properties of the underlying linear operators, the potential finite dimensional kernel and

cokernel are indeed trivial. Asymptotically Minkowski spaces illustrate this best, as the

Hamilton flow is globally well-behaved there; see §5.5.1.

The other key technical tool is the algebra property of b-Sobolev spaces and other

spaces with additional conormal regularity. These are stated in the respective sections;

the case of the standard b-Sobolev spaces reduces to the algebra property of the standard

Sobolev spaces on Rn. Given the algebra properties, the results are proved by applying the

contraction mapping theorem to the linear operator.

In summary, the plan of this chapter is the following: In each of the sections below

we consider one of these settings, and first describe the Sobolev spaces on which one has

invertibility for the linear problems of interest, then analyze the algebra properties of these

Sobolev spaces and finally prove the solvability of the semilinear equations by checking that

the hypotheses of the contraction mapping theorem are satisfied.

5.1.1 Previous and related work

The degree to which these nonlinear problems have been studied differ, with the Minkowski

problem (on perturbations of Minkowski space, as opposed to our more general setting)

being the most studied. There semilinear and indeed even quasilinear equations are well

understood due to the work of Christodoulou [19] and Klainerman [69, 70], with their

book on the global stability of Einstein’s equation [20] being one of the main achievements.

(We also refer to the work of Lindblad and Rodnianski [74, 75] simplifying some of the

arguments, of Bieri and Zipser [10] relaxing some of the decay conditions, of Wang [119]

obtaining asymptotic expansions, and of Lindblad [73] for results on a class of quasilinear

equations. Hörmander’s book [63] provides further references in the general area. There

are numerous works on the linear problem, and estimates this yields for the nonlinear

problems, such as Strichartz estimates; here we refer to the recent work of Metcalfe and

Tataru [92] for a parametrix construction in low regularity, and references therein.) Here we

obtain results comparable to these (when restricted to the semilinear setting), on a larger

class of manifolds, see Remark 5.5.18. For non-linearities which do not involve derivatives,

slightly stronger results have been obtained, in a slightly different setting, in [21]; see

Remark 5.5.19. On the other hand, there is little work on the asymptotically de Sitter

and Kerr-de Sitter settings. The paper by Baskin [7] has roughly comparable generality in
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terms of the setting, though on exact de Sitter space Yagdjian [126, 125] has studied a large

class of semilinear equations with no derivatives. Baskin’s result is for a semilinear equation

with no derivatives and a single exponent, using his parametrix construction [6], namely

up with12 p = 1 + 4
n−2 , and for λ > (n − 1)2/4. In the same setting, p > 1 + 4

n−1 works

for us, and thus Baskin’s setting is in particular included. Yagdjian works with the explicit

solution operator (derived using special functions) in exact de Sitter space, again with no

derivatives in the non-linearity. While there are some exponents that his results cover (for

λ > (n − 1)2/4, all p > 1 work for him) that ours do not directly (but indirectly, via the

static model, we in fact obtain such results), the range ( (n−1)2

4 − 1
4 ,

(n−1)2

4 ) is excluded by

him while covered by our work for sufficiently large p. However, we point out that the

microlocal, high regularity approach that we take in this chapter (as well as in Chapters 8

and 9) does not apply to low regularity non-linearities covered by the results of Baskin and

Yagdjian. In the (asymptotically) Kerr-de Sitter setting, to our knowledge, there has been

no similar semilinear work. Fully general stability results for Einstein’s equations on de

Sitter space specifically are available by the works of Friedrich [50, 49, 48], Anderson [2],

Rodnianski and Speck [98], Ringström [97] and Speck [102].

There is more work on the linear problem in de Sitter, de Sitter-Schwarzschild and

Kerr-de Sitter spaces: We refer to [114] for more details; some references are Polarski [96],

Yagdjian and Galstian [127], Sá Barreto and Zworski [5], Bony and Häfner [13], Vasy [111],

Baskin [6], Dafermos and Rodnianski [26], Melrose, Sá Barreto and Vasy [87] and Dyatlov

[40, 39, 41]. Also, while it received more attention, the linear problem on Kerr space

does not fit directly into our setting; see the introduction of [114] for an explanation and

for further references, [27] for more background and additional references, and the recent

work of Dafermos, Rodnianski and Shlapentokh-Rothman [31] on scalar wave decay on all

subextremal Kerr spacetimes, building on their earlier works [30, 29, 100] and following

pioneering work by Kay and Wald [67, 118] in the Schwarzschild setting. Tataru and

Tohaneanu [105, 106] proved decay and Price’s law for slowly rotating Kerr using local

energy decay estimates, and Strichartz estimates were proved by Marzuola, Metcalfe, Tataru

and Tohaneanu [78]. There is further work by Donninger, Schlag and Soffer [36] on L∞

estimates on Schwarzschild black holes, following L∞ estimates of Dafermos and Rodnianski

[28, 25] and of Blue and Soffer [12] on non-rotating charged black holes giving L6 estimates.

There are also nonlinear results on Kerr spacetimes: Tohaneanu [109] and Luk [76] studied

12The dimension of the spacetime in Baskin’s paper is n+ 1; we continue using our notation above.
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semilinear forward problems on Kerr, and Dafermos, Holzegel and Rodnianski [24] gave a

scattering construction of dynamical black holes.

There is also physics literature on the subject, starting with Carter’s discovery of Kerr-

de Sitter spacetime [17, 16], either using explicit solutions in special cases, or numerical

calculations, see in particular [128], and references therein. We also refer to the paper

of Dyatlov and Zworski [46] connecting recent mathematical advances with the physics

literature.

5.2 Generalized static models

In this section we discuss solving semilinear wave equations on asymptotically de Sitter

spaces from the ‘static perspective,’ i.e. in neighborhoods (in a blown-up space) of the

backward light cone from a fixed point at future conformal infinity; see Figure 2.4. The

first ingredient is extending the linear theory from that of [114] in various ways, which is

the subject of §5.2.1. Following this, we use this extension to solve semilinear equations

and to obtain their asymptotic behavior.

5.2.1 The linear Fredholm framework

The goal of this section is to fully extend the results of [114] on linear estimates for wave

equations for b-metrics to non-dilation-invariant settings. Namely, while the results of [114]

on linear estimates for wave equations for b-metrics are optimally stated when the metrics

and thus the corresponding operators are dilation-invariant, i.e. when near τ = 0 the normal

operator can be identified with the operator itself, see [114, Lemma 3.1], the estimates for

Sobolev derivatives are lossy for general b-metrics in [114, Proposition 3.5], essentially

because one should not treat the difference between the normal operator and the actual

operator purely as a perturbation. We first strengthen the linear results in [114] in the

non-dilation-invariant setting using the analysis of b-radial points which are saddle points

of the Hamilton flow, see §3.3.1. This is then used to set up a Fredholm framework for the

linear problem. If one is mainly interested in the dilation invariant case, one can use [114,

Lemma 3.1] in place of Theorem 5.2.3 below, either adding the boundary corresponding to

H2 below, or still using complex absorption as was done in [114].
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Complex absorption

In order to have good Fredholm properties we either need a complete Hamilton flow, or

need to ‘stop it’ in a manner that gives suitable estimates; one may want to do the latter to

avoid global assumptions on the flow on the ambient space. The microlocally best behaved

version is given by complex absorption, discussed in §3.2.3; it is microlocal, works easily

with Sobolev spaces of arbitrary order, and makes the operator elliptic in the absorbing

region, giving rise to very convenient analysis. The main downside of complex absorption is

that it does not automatically give forward mapping properties for the support of solutions

in wave equation-like settings, even though at the level of singularities, it does have the

desired forward property. It was used extensively in [114] – in the dilation invariant setting,

the bicharacteristics on MI = X × [0,∞)τ are controlled (by the invariance) as τ → ∞ as

well as when τ → 0, and thus one need not use complex absorption there, instead decay

as τ → ∞ (corresponding to growth as τ → 0 on these dilation invariant spaces) gives

the desired forward property; complex absorption was only used to cut off the flow within

the boundary X. Here we want to localize in τ as well, and while complex absorption

can achieve this, it loses the forward support character of the problem. However, as it is

conceptually much cleaner, we discuss Fredholm properties using it first before turning to

adding artificial (spacelike) boundary hypersurfaces instead.

So suppose P ∈ Ψm
b (M), M a manifold with boundary X = ∂M , and let p be the

principal symbol of P. Assume that the characteristic set Σ of P has the form

Σ = Σ+ ∪ Σ−,

with each of Σ± being a union of connected components, and that P has a (generalized)

radial set L = L+ ∪ L− with L± ⊂ Σ±; we adopt the notation used there, see in particular

(3.3.8), (3.3.9) and (3.3.10). Adding complex absorption, we now consider P−iQ ∈ Ψm
b (M),

Q ∈ Ψm
b (M), with real principal symbol q, being the complex absorption similarly to [114,

§§2.2 and 2.8]; we assume that WF′b(Q)∩L = ∅. Here the semiclassical version, discussed in

[114] with further references there, is a close parallel to our b-setting; it is equivalent to the

b-setting in the special case that P, Q are dilation-invariant, for then the Mellin transform

gives rise exactly to the semiclassical problem, see §3.3.4.

∓q ≥ 0 near Σ±.
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Under these sign conditions on q, we showed in §3.2.3 (which translates directly to the

b-setting) that estimates can be propagated in the backward direction along the Hamilton

flow on Σ+ and in the forward direction for Σ−, or, phrased as a wave front set statement

(the property of being singular propagates in the opposite direction as the property of being

regular!), WFs,rb (u) is invariant in Σ+ \WFs−m+1,r(P − iQ)u under the forward Hamilton

flow, and in Σ− \WFs−m+1,r((P − iQ)u) under the backward flow.

In analogy with Definition 2.5.1, we say that P−iQ is non-trapping if all bicharacteristics

in Σ from any point in Σ \ (L+ ∪ L−) flow to Ell(q) ∪ L+ ∪ L− in both the forward and

backward directions (i.e. either enter Ell(q) in finite time or tend to L+ ∪L−). Notice that

as Σ± are closed under the Hamilton flow, bicharacteristics in L± \ (L+ ∪ L−) necessarily

enter the elliptic set of Q in the forward (in Σ+), resp. backward (in Σ−) direction. Indeed,

by the non-trapping hypothesis, these bicharacteristics have to reach the elliptic set of Q
as they cannot tend to L+, resp. L−: for L+ and L− are unstable, resp. stable manifolds,

and these bicharacteristics cannot enter the boundary (which is preserved by the flow), so

cannot lie in the stable, resp. unstable, manifolds of L+ ∪ L−, which are within bS∗XM .

Similarly, bicharacteristics in (Σ ∩ bS∗XM) \ (L+ ∪ L−) necessarily reach the elliptic set of

Q in the backward (in Σ+), resp. forward (in Σ−) direction. Then for s, r satisfying

s− (m− 1)/2 > βr

one has an estimate

‖u‖Hs,r
b
≤ C‖(P − iQ)u‖

Hs−m+1,r
b

+ C‖u‖
Hs′,r

b

, (5.2.1)

provided one assumes s′ < s,

s′ − (m− 1)/2 > βr, u ∈ Hs′,r
b .

Indeed, this is a simple consequence of the fact that u ∈ Hs′,r
b and (P − iQ)u ∈ Hs−m+1,r

b

imply u ∈ Hs,r
b . This implication in turn holds as on the elliptic set of Q one has the

stronger statement u ∈ Hs+1,r
b under these conditions, and then using real-principal type

propagation of regularity in the backward direction on Σ+ and the forward direction on Σ−,

one can propagate the microlocal membership of Hs,r
b (i.e. the absence of the corresponding
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wave front set) in the backward, resp. forward, direction on Σ+, resp. Σ−. Since bichar-

acteristics in L± \ (L+ ∪ L−) necessarily enter the elliptic set of Q in the forward, resp.

backward direction, and thus one has Hs,r
b membership along them by what we have shown,

Proposition 3.3.8 extends this membership to L±, and hence to a neighborhood of these,

and by our non-trapping assumption every bicharacteristic enters either this neighborhood

of L± or the elliptic set of Q in finite time in the backward, resp. forward, direction, so by

the real principal type propagation of singularities we have the claimed microlocal mem-

bership everywhere. This implies (5.2.1) either via the closed graph theorem, or directly if

one uses the quantitative versions of elliptic regularity, propagation of singularities etc., see

also the discussion at the end of §3.1.3.

Reversing the direction in which one propagates estimates, one also has a similar esti-

mate for the adjoint P∗ + iQ∗, except now one needs to have

s− (m− 1)/2 < βr

in order to propagate through the saddle points in the opposite direction, i.e. from within

bS∗XM to L±. Then for s′ < s,

‖u‖Hs,r
b
≤ C‖(P∗ + iQ∗)u‖

Hs−m+1,r
b

+ C‖u‖
Hs′,r

b

. (5.2.2)

As already pointed out in §3.3, the issue with these estimates is that Hs,r
b does not

include compactly into the error term Hs′,r
b on the right hand side due to the lack of

additional decay. We thus further assume that there are no poles of the inverse of the

Mellin transformed normal operator family (P− iQ)̂(σ) (see §3.3.3) on the line Imσ = −r.
Then using the Mellin transform, which is an isomorphism between weighted b-Sobolev

spaces and semiclassical Sobolev spaces (see §3.3.4), and the estimates for (P − iQ)̂(σ)

(including the high energy, i.e. semiclassical, estimates, all of which is discussed in detail in

[114, §2] — the high energy assumptions of [114, §2] hold by our assumptions on the b-flow

at bS∗XM , and which imply that for all but a discrete set of r the aforementioned lines do

not contain such poles), we obtain that on R+ × ∂M

‖v‖Hs,r
b
≤ C‖N(P − iQ)v‖

Hs−m+1,r
b
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when

s− (m− 1)/2 > βr.

Again, we have an analogous estimate for N(P∗ + iQ∗):

‖v‖Hs,r
b
≤ C‖N(P∗ + iQ∗)v‖

Hs−m+1,r
b

,

provided −r is not the imaginary part of a pole of the inverse of (P∗+ iQ∗)̂, and provided

s− (m− 1)/2 < βr.

As (P∗ + iQ∗)̂(σ) = ((P − iQ)̂)∗(σ), see (3.3.36), the requirement on −r is the same as

r not being the imaginary part of a pole of the inverse of (P − iQ)̂.

We apply these results using the same argument that led up to (3.3.40); in the present

context, the estimate (5.2.1) requires control of (P − iQ)u in a b-Sobolev space whose reg-

ularity is 1 stronger than what would be needed for elliptic operators, and correspondingly

the norm of the second term in (3.3.39) needs to be increased by 1. Thus,

‖u‖Hs,r
b
≤ C‖(P − iQ)u‖

Hs−m+1,r
b

+ C‖u‖
Hs′+1,r−1

b

, (5.2.3)

where now the inclusion Hs,r
b → Hs′+1,r−1

b is compact when we choose, as we may, s′ < s−1,

requiring, however, s′ − (m − 1)/2 > βr, so that the radial point estimate can be applied

to N(P − iQ). Recall that this argument required that s, r, s′ satisfied the requirements

preceding (5.2.1), and that −r is not the imaginary part of any pole of (P − iQ)̂.

Analogous estimates hold for (P − iQ)∗ where now we write s̃, r̃ and s̃′ for the Sobolev

orders for the eventual application:

‖u‖
H s̃,r̃

b
≤ C‖(P − iQ)∗u‖

H s̃−m+1,r̃
b

+ C‖u‖
H s̃′+1,r̃−1

b

, (5.2.4)

provided s̃, r̃ in place of s and r satisfy the requirements stated before (5.2.2), and provided

−r̃ is not the imaginary part of a pole of (P∗+ iQ∗)̂ (i.e. r̃ of (P − iQ)̂). Note that we do

not have a stronger requirement for s̃′, unlike for s′ above, since upper bounds for s imply

those for s′ ≤ s.
The estimates (5.2.3) and (5.2.4) are ‘Fredholm estimates’ as in §3.2.1; we thus obtain

Fredholm properties of P − iQ (see also [114, §2.6] for the functional analytic argument
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in the present context), in particular solvability, modulo a (possible) finite dimensional

obstruction, in Hs,r
b if

s− (m− 1)/2− 1 > βr. (5.2.5)

Concretely, we take s̃ = m − 1 − s, r̃ = −r, s′ < s − 1 sufficiently close to s − 1 so that

s′ − (m − 1)/2 > βr (which is possible by (5.2.5)). Thus, s − (m − 1)/2 > βr means

s̃ − (m − 1)/2 = (m − 1)/2 − s < −βr = βr̃, so the space on the left hand side of (5.2.3)

is dual to that in the first term on the right hand side of (5.2.4), and the same for the

equations interchanged, and notice that the condition on the poles of the inverse of the

Mellin transformed normal operators is the same for both P − iQ and P∗ + iQ∗: −r is not

the imaginary part of a pole of (P − iQ)̂. This yields:

Proposition 5.2.1. Suppose that P is non-trapping. Suppose s, r ∈ R, s− (m−1)/2−1 >

βr, −r is not the imaginary part of a pole of (P − iQ)̂ and let

X s,r = {u ∈ Hs,r
b (M) : (P − iQ)u ∈ Hs−1,r

b (M)}, Ys,r = Hs,r
b (M),

where P − iQ is a priori a map

P − iQ : Hs,r
b (M)→ Hs−2,r

b (M).

Then

P − iQ : X s,r → Ys−1,r

is Fredholm.

We remark that Ys,r, X s,r are complete, in the case of X s,r with the natural norm being

‖u‖2X s,r = ‖u‖2
Hs,r

b (M)
+ ‖(P − iQ)u‖2

Hs−1,r
b (M)

. See Remark 4.2.5.

Initial value problems

As already mentioned, the main issue with this argument using complex absorption that it

does not guarantee the forward nature (in terms of supports) of the solution for a wave-like

equation, although it does guarantee the correct microlocal structure. So now we assume

that P ∈ Diff2
b(M) with

P −�g ∈ Diff1
b(M) (5.2.6)
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for a Lorentzian b-metric g, as in Chapter 4. Then one can run an argument completely

analogous to the above, obtaining Fredholm properties of P using energy estimates by

restricting the domain we consider to be a manifold Ω with corners, where the new boundary

hypersurfaces are spacelike with respect to g, i.e. given by level sets of timelike functions.

Such a possibility was mentioned in [114, Remark 2.6], though it was not described in

detail as it was not needed there, essentially because the existence/uniqueness argument

for forward solutions was given only for dilation invariant operators. The main difference

between using complex absorption and adding boundary hypersurfaces is that the latter

limit the Sobolev regularity one can use, with the most natural choice coming from energy

estimates. However, a posteriori one can improve the result to better Sobolev spaces using

propagation of singularities type results.

We assume that Ω ⊂ M , equipped with the b-metric g, is a non-trapping spacetime

in the sense of Definition 2.5.1, and that P ∈ Diff2
b(M) satisfies P − �g ∈ Diff1

b(M). We

proved global energy estimates and b-regularity on weighted spaces for P in §4.2, see in

particular Theorem 4.2.4, giving the invertibility of P : X s,r → Ys−1,r for s ≥ 0, r � 0,

with

X s,r = {u ∈ Hs,r
b (Ω)•,− : Pu ∈ Hs−1,r

b (Ω)•,−}, Ys,r = Hs,r
b (Ω)•,−.

Correspondingly, the normal operator family P̂(σ) is a family of operators on

Y := Ω ∩X, X = ∂M,

and the semiclassical analysis of P̂(σ) therefore takes place on supported/extendible Sobolev

spaces. Concretely, P̂(σ) : X s∂ → Y
s−1
∂ is Fredholm, with

X s∂ = {u ∈ Hs(Y )− : P̂(σ)u ∈ Hs−1(Y )−}, Ys∂ = Hs(Y )−,

for s > 1/2− β Imσ, s ≥ 0, the latter requirement coming from the use of energy estimates

near the Cauchy hypersurface ∂Y , and one has non-trapping high energy estimates on

semiclassical Sobolev spaces. (Note here that the space X s∂ only depends on the principal

symbol of P̂(σ), which is independent of σ, cf. the discussion around [114, Equation (2.22)]

and in §A.2.)

Remark 5.2.2. Using normal operators as in the discussion leading to Proposition 5.2.1,

one would get the following statement: Suppose s > 1, s − 3/2 > βr. Then with X s,r,
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Ys,r as above, P : X s,r → Ys,r is Fredholm. Here the main loss, which is an artifact of

combining local energy estimates with the b-theory, is that one needs to assume s > 1; this

is done since in the argument one needs to take s′ with s′ + 1 < s in order to transition

the normal operator estimates from N(P)u to Pu and still have a compact inclusion, but

the normal operator estimates need s′ ≥ 0 as they are again based on energy estimates

due to the boundary H2; in the semiclassical setting of the normal operator analysis, the

latter are proved in [114, Proposition 3.8] when combined with semiclassical propagation of

singularities, see [115, §4.4]. Using the direct global energy estimate eliminates this loss. In

particular, in the complex absorption setting, this problem does not arise, but on the other

hand, one need not have the forward support property of the solution.

The methods of [114] are immediately applicable to obtain an expansion of the solutions;

the main point of the following theorem is the elimination of the losses in differentiability

in [114, Proposition 3.5] due to Proposition 3.3.8.

Theorem 5.2.3. (Strengthened version of [114, Proposition 3.5].) Let Ω ⊂ M , equipped

with the b-metric g, be a non-trapping spacetime as above, with τ a boundary defining

function with dτ/τ timelike, t1 = τ0 − τ as in (2.2.5), and P as in (5.2.6).

Let σj be the poles of P̂−1, and let ` be such that Imσj+` /∈ N for all j. Let φ ∈ C∞(R) be

such that suppφ ⊂ (0,∞), and φ◦ t1 ≡ 1 near Y = X ∩Ω. Then for s > 3/2 +β`, there are

mjl ∈ N such that solutions of Pu = f with f ∈ Hs−1,`
b (Ω)•,−, and with u ∈ Hs0,r0

b (Ω)•,−,

s ≥ s0 ≥ 1, s0 − 1/2 > βr0 satisfy that for some ajlκ ∈ C∞(Y ),

u′ = u−
∑
j

∑
l∈N

∑
κ≤mjl

τ iσj+l(log τ)κ(φ ◦ t1)ajlκ ∈ Hs,`
b (Ω)•,−, (5.2.7)

where the sum is understood to be over a finite set with − Imσj+l < `. Here the (semi)norms

of both ajlκ in C∞(Y ) and u′ in Hs,`
b (Ω)•,− are bounded by a constant times that of f in

Hs−1,`
b (Ω)•,−.

The analogous result also holds if f possesses an expansion modulo Hs−1,`
b (Ω)•,− of the

form

f = f ′ +
∑
j

∑
κ≤m′j

ταj (log τ)κ(φ ◦ t1)ajκ,

with f ′ ∈ Hs−1,`
b (Ω)•,− and ajκ ∈ C∞(Y ), where terms corresponding to the expansion of the

f are added to (5.2.7) in the sense of the extended union of index sets [82, §5.18], recalled
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below in Definition 5.2.12.

Thus, on static de Sitter space, in terms of the time coordinate t∗ = − log τ as in §2.2.1

(which extends across the cosmological horizon), the expansion (5.2.7) yields (in the case

` < 0) exponential decay in t∗ up to a finite-dimensional space of resonances. See also

Theorem 6.1.1 for a formulation of the above theorem (albeit in the Kerr-de Sitter setting)

in these terms.

Remark 5.2.4. Here the factor φ ◦ t1 is added to cut off the expansion away from H1, thus

assuring that u′ is in the indicated space (a supported distribution).

Also, the sum over l is generated by the lack of dilation invariance of P. If we take `

such that − Imσj > ` − 1 for all j, then all the terms in the expansion arise directly from

the resonances, thus l = 0 and mj0 + 1 is the order of the pole of P̂−1 at σj , with the aj0κ

being resonant states.

Proof of Theorem 5.2.3. First assume that − Imσj > ` for every j; thus there are no terms

subtracted from u in (5.2.7). We proceed as in [114, Proposition 3.5], but use the propaga-

tion of singularities, in particular Propositions 3.3.8 and 4.1.10, to eliminate the losses. See

Figure 5.1.

Figure 5.1: Setup for the discussion of the forward problem on non-trapping spacetimes.
Near the spacelike hypersurfaces H1 and H2, which are the replacement for the complex
absorbing operator Q, we use standard (non-microlocal) energy estimates, and away from
them, we use b-microlocal propagation results, including at the radial sets L±. The bichar-
acteristic flow, in fact its projection to the base, is only indicated near L+; near L−, the
directions of the flowlines are reversed.

First, by the propagation of singularities, using s0 − 1/2 > βr0 and s ≥ s0, s ≥ 0,

u ∈ Hs,r0
b (Ω)•,−.
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Thus, as P −N(P) ∈ τDiff2
b(M),

N(P)u = f − f̃ , f̃ = (P −N(P))u ∈ Hs−2,r0+1
b (Ω)•,− (5.2.8)

Applying13 [114, Lemma 3.1] (using s ≥ s0 ≥ 1), which is the lossless version of [114,

Proposition 3.5] in the dilation invariant case, one obtains (5.2.7) with ` replaced by `′ =

min(`, r0 + 1) except that u = u′ ∈ Hs−1,`′

b (Ω)•,− corresponding to the f̃ term in N(P)u

rather than u = u′ ∈ Hs,`′

b (Ω)•,− as desired. However, using Pu = f ∈ Hs−1,`′

b (Ω)•,−, we

deduce by the propagation of singularities, using s − 1 > β`′ + 1/2, s ≥ 0, that u = u′ ∈
Hs,`′

b (Ω)•,−. If ` ≤ r0 + 1, we have proved (5.2.7). Otherwise we iterate, replacing r0 by

r0 + 1. We thus reach the conclusion, (5.2.7), in finitely many steps.

If there are j such that − Imσj < `, then in the first step, when using [114, Lemma 3.1],

we obtain the partial expansion u1 corresponding to `′ = min(`, r0 + 1) in place of `; here

we may need to decrease `′ by an arbitrarily small amount to make sure that `′ is not

− Imσj for any j. Further, the terms of the partial expansion are annihilated by N(P), so

u′ satisfies

Pu′ = Pu−N(P)u1 − (P −N(P))u1 ∈ Hs−1,`′

b (Ω)•,−

as (P − N(P))u1 ∈ H∞,r0+1
b (Ω)•,− in fact due to the conormality of u1 and P − N(P) ∈

τDiff2
b(M). Correspondingly, the propagation of singularities result is applicable as above

to conclude that u′ ∈ Hs,`′

b (Ω)•,−. If ` ≤ r0 + 1 we are done. Otherwise we have better

information on f̃ in the next step, namely

f̃ = (P −N(P))u = (P −N(P))u′ + (P −N(P))u1

with the first term in Hs−2,r0+1
b (Ω)•,− (same as in the case first considered above, without

relevant resonances), while the expansion of u1 shows that (P − N(P))u1 has a similar

expansion, but with an extra power of τ (i.e. τ iσj is shifted to τ iσj+1). We can now apply

[114, Lemma 3.1] again; in the case of the terms arising from the partial expansion, u1,

there are now new terms corresponding to shifting the powers τ iσj to τ iσj+1, as stated

in the referred Lemma, and possibly causing logarithmic terms if σj − i is also a pole of

13In [114], Lemma 3.1 is stated on the normal operator space MI , which does not have a boundary face
corresponding to H2, i.e. S2 × [0,∞), with complex absorption instead. However, given the analysis on Y
discussed above, all the arguments go through essentially unchanged: This is a Mellin transform and contour
deformation argument.
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P̂−1. Iterating in the same manner proves the theorem when f ∈ Hs−1,`
b (Ω)•,−. When f

has an expansion modulo Hs−1,`
b (Ω)•,−, the same argument works; [114, Lemma 3.1] gives

the terms with the extended union, which then further generate additional terms due to

P −N(P), just as the resonance terms did.

There is one problem with this theorem for the purposes of semilinear equations: The

resonant terms with Imσj ≥ 0 which give rise to unbounded, or at most just bounded,

terms in the expansion which become larger when one takes powers of these, or when one

iteratively applies P−1 (with the latter being the only issue if Imσj = 0 and the pole is

simple). See Remark 5.2.11.

Concretely, we now consider an asymptotically de Sitter-like space (M̃, g̃) and blow

up a point q at the future boundary X̃+, as discussed in §2.2.2, to obtain the analogue

M = [M̃ ; q] of the static model of de Sitter space with the pullback-metric g, which is a

b-metric near the front face; let P = �g − λ. The metric of the asymptotically de Sitter

space, frozen at q, induces a de Sitter metric, g0, which is well defined at the front face of

the blow up M (but away from its side faces) as a b-metric. In particular, the resonances in

the ‘static region’ of any asymptotically de Sitter space are the same as in the static model

of actual de Sitter space.

On actual de Sitter space, the poles of P̂−1 are those on the hyperbolic space in the

interior of the light cone equipped by a potential, as described in [111, Lemma 7.11], or

indeed in [114, Proposition 4.2] where essentially the present notation is used.14 As shown

in Corollary 7.18 of [111], converted to our notation, the only possible poles are at

iŝ±(λ)− iN, ŝ±(λ) = −n− 1

2
±
√

(n− 1)2

4
− λ, (5.2.9)

and for λ = 0, the highest resonance s+(0) = 0 is simple. (We will give a direct, robust proof

of the latter fact in Chapter 7, see Theorem 7.5.1, which does not recover the entire set of

possible poles though; however, for nonlinear applications, control of the highest resonance

in this way is already sufficient to obtain existence and exponential decay to a zero resonant

state.) In particular, when λ = m2, m > 0, we conclude:

Lemma 5.2.5. For m > 0, P = �g −m2, g induced by an asymptotically de Sitter metric

as above, all poles of P̂−1 have strictly negative imaginary part.

14In [111, Lemma 7.11], −σ2 plays the same role as σ2 here or in [114, Proposition 4.2].
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In other words, for small mass m > 0, there are no resonances σ of the Klein-Gordon

operator with Imσ ≥ −ε0 for some ε0 > 0. Therefore, the expansion of u as in (5.2.7)

no longer has a constant term. Let us fix such m > 0 and ε0 > 0, which ensures that

for 0 < ε < ε0, the only term in the asymptotic expansion (5.2.7), when s > 1/2 + ε and

f ∈ Hs−1,ε
b (Ω)•,−, is the ‘remainder’ term u′ ∈ Hs,ε

b (Ω)•,−. Here we use that β = 1 in de

Sitter space, hence on an asymptotically de Sitter space, see (2.2.12), and in the semiclassical

setting [114, §4.4], in particular the second displayed equation after Equation (4.16) there

which computes β in accordance with Remark 3.3.9.

Being interested in finding forward solutions to (nonlinear) wave equations on generalized

static de Sitter spaces, we now define the forward solution operator

SKG : Hs−1,ε
b (Ω)•,− → Hs,ε

b (Ω)•,− (5.2.10)

using Theorems 4.2.4 and 5.2.3.

5.2.2 Operators on bundles; conormal metrics

As already alluded to in §5.1, we point out that the above arguments, leading up to Theo-

rem 5.2.3, go through without changes on general non-trapping spacetimes (M, g) for second

order b-differential operators P acting on sections of a finite rank complex vector bundle E
over M if σb,2(P) = G · id (in particular, P is principally scalar), which generalizes (5.2.6),

yielding resonance expansions for forward solutions of Pu = f as in Theorem 5.2.3; note

here that the energy estimates developed in Chapter 4 work with bundles as well by the

same proofs, and the microlocal energy estimates, both in the b- and in the semiclassical

(normal operator) setting, are symbolic arguments that only rely on the principal sym-

bol, except at radial points, where the subprincipal symbol enters through the threshold

regularity; see also [114, Remark 2.1].

More precisely, in order to make sense of adjoints and integration by parts in positive

commutator estimates, which we use both for standard and for microlocal energy estimates,

equip E with an arbitrary Hermitian inner product and any smooth b-connection, which

gives a notion of differentiating sections of E along b-vector fields; over Ω (which is compact),

all choices of inner products are equivalent. We can then define the b-Sobolev spaceHs
b(Ω, E)

for s ∈ N0 to consist of all sections of E over Ω which are square integrable (with respect

to the volume density |dg| induced by the metric g) together with all of its b-derivatives up
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to order s, using the b-connection on E to define the latter, and extend this to all s ∈ R
by duality and interpolation, or via the use of b-pseudodifferential operators. Weighted

b-Sobolev spaces Hs,r
b (Ω, E)•,− of extendible/supported distributions are defined as in the

scalar setting. Likewise, we can define Sobolev spaces (including semiclassical versions of

these) of sections of E over Ω ∩ ∂M with extendible/supported character at the boundary.

We can also generalize the class of metrics we work in, namely we can use asymptoti-

cally stationary metrics as discussed in §§2.1.2 and 3.3.5: Namely, we can allow g to be a

Lorentzian b-metric such that for some smooth Lorentzian b-metric g′, we have

g − g′ ∈ H∞,rb (Ω, S2bT ∗M) for some r > 0. (5.2.11)

We can of course similarly relax the requirements on the lower order terms of P; thus, we

require

P ∈ Diff2
b(M, E) +H∞,rb (Ω)Diff2

b(M, E), σb,2(P) = G.

We again stress that this is an invariant condition, since different choices of the boundary

defining function merely rescale the weight r. Now, as long as g satisfies the geometric and

dynamical requirements of a non-trapping spacetime in Definition 2.5.1, our proofs again

go through: The microlocal arguments now require the use of the b-conormal calculus

developed in §3.3.5. We point out the only serious change in the proof of Theorem 5.2.3: In

the contour shifting argument, we can only shift the line over which we integrate in order

to compute the inverse Mellin transform by at most the amount min(r, 1), rather than 1,

the reason being that P −N(P) ∈ τmin(r,1)Diff2
b(M, E) now.

In the nonlinear theorems developed below, we can likewise allow the coefficients of non-

linearities to be smooth plus conormal (in the sense of H∞b , no decay relative to smooth

coefficients is needed for the conormal coefficients) rather than merely smooth, and the

proofs go through unchanged; see Theorems 9.1.15 and 9.2.2 for details in the quasilinear

setting.

As already mentioned above, one needs to control the resonances in the closed upper half

plane in order to obtain global nonlinear well-posedness results: If there are no resonances

in Imσ ≥ 0, any (polynomial) non-linearity works, furthermore a simple resonance at σ = 0

is allowed as well, provided the non-linearity annihilates the corresponding resonant states.
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5.2.3 A class of semilinear equations

Continuing to work on generalized static de Sitter models, let us fix m > 0 and ε0 > 0 as

above for statements about semilinear equations involving the Klein-Gordon operator; for

equations involving the wave operator only, let −ε0 be equal to the largest imaginary part

of all non-zero resonances of �g.

Theorem 5.2.6. Let 0 ≤ ε < ε0 and s > 3/2 + ε. Moreover, let q : Hs,ε
b (Ω)•,− ×

Hs−1,ε
b (Ω; bT ∗ΩM)•,− → Hs−1,ε

b (Ω)•,− be a continuous function with q(0, 0) = 0 such that

there exists a continuous non-decreasing function L : R≥0 → R satisfying

‖q(u, bdu)− q(v, bdv)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R,

where we use the norms corresponding to the map q. Then there is a constant CL > 0 so

that the following holds: If L(0) < CL, then for small R > 0, there exists C > 0 such that

for all f ∈ Hs−1,ε
b (Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u, bdu) (5.2.12)

has a unique solution u ∈ Hs,ε
b (Ω)•,−, with norm ≤ R, that depends continuously on f .

More generally, suppose

q : Hs,ε
b (Ω)•,− ×Hs−1,ε

b (Ω; bT ∗ΩM)•,− ×Hs−1,ε
b (Ω)•,− → Hs−1,ε

b (Ω)•,−

satisfies q(0, 0, 0) = 0 and

‖q(u, bdu,w)− q(u′, bdu′, w′)‖ ≤ L(R)(‖u− u′‖+ ‖w − w′‖)

provided ‖u‖+ ‖w‖, ‖u′‖+ ‖w′‖ ≤ R, where we use the norms corresponding to the map q,

for a continuous non-decreasing function L : R≥0 → R. Then there is a constant CL > 0 so

that the following holds: If L(0) < CL, then for small R > 0, there exists C > 0 such that

for all f ∈ Hs−1,ε
b (Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u, bdu,�gu) (5.2.13)
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has a unique solution u ∈ Hs,ε
b (Ω)•,−, with ‖u‖Hs,ε

b
+ ‖�gu‖Hs−1,ε

b
≤ R, that depends con-

tinuously on f .

Further, if ε > 0 and the non-linearity is of the form q(bdu), with

q : Hs−1,ε
b (Ω; bT ∗ΩM)•,− → Hs−1,ε

b (Ω)•,−

having a small Lipschitz constant near 0, then for small R > 0, there exists C > 0 such

that for all f ∈ Hs−1,ε
b (Ω)•,− with ‖f‖ ≤ C, the equation

�gu = f + q(bdu)

has a unique solution u with u − (φ ◦ t1)c = u′ ∈ Hs,ε
b (Ω)•,−, where c ∈ C, that depends

continuously on f , in the sense that c ∈ C and u′ ∈ Hs,ε
b (Ω)•,− depend continuously on

f . Here, φ ∈ C∞(R) with support in (0,∞) and t1 are as in Theorem 5.2.3. In fact, the

statement even holds for non-linearities q(u, bdu) provided

q : (C(φ ◦ t1)⊕Hs,ε
b (Ω))×Hs−1,ε

b (Ω; bT ∗ΩM)•,− → Hs−1,ε
b (Ω)•,−

has a small Lipschitz constant near 0.

Note that when one writes e.g. q(u, bdu), one could instead, at least locally, write

a(u, x∂xu, ∂y1u, . . . , ∂yn−1u),

where x is a local boundary defining function and the yj are local coordinates on the

boundary; however, the bdu notation is more concise and invariant.

Proof of Theorem 5.2.6. To prove the first part, let SKG be the forward solution operator

for �g−m2 as in (5.2.10). We want to apply the Banach fixed point theorem to the operator

TKG : Hs,ε
b (Ω)•,− → Hs,ε

b (Ω)•,−, TKGu = SKG(f + q(u, bdu)).

Let CL = ‖SKG‖−1, then we have the estimate

‖TKGu− TKGv‖ ≤ ‖SKG‖L(R′)‖u− v‖ ≤ C0‖u− v‖ (5.2.14)

for ‖u‖, ‖v‖ ≤ R and a constant C0 < 1, granted that L(R) ≤ C0‖SKG‖−1, which holds for

small R > 0 by assumption on L. Then, TKG maps the R-ball in Hs,ε
b (Ω)•,− into itself if
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‖SKG‖(‖f‖+ L(R)R) ≤ R, i.e. if ‖f‖ ≤ R(‖SKG‖−1 − L(R)). Put

C = R(‖SKG‖−1 − L(R)).

Then the existence of a unique solution u ∈ Hs,ε
b (Ω)•,− with norm ≤ R to the PDE (5.2.12)

with ‖f‖
Hs−1,ε

b
≤ C follows from the Banach fixed theorem.

To prove the continuous dependence of u on f , suppose we are given uj ∈ Hs,ε
b (Ω)•,−,

j = 1, 2, with norms ≤ R, fj ∈ Hs−1,ε
b (Ω)•,− with norms ≤ C, such that

(�g −m2)uj = fj + q(uj ,
bduj), j = 1, 2.

Then

(�g −m2)(u1 − u2) = f1 − f2 + q(u1,
bdu1)− q(u2,

bdu2),

hence

‖u1 − u2‖ ≤ ‖SKG‖(‖f1 − f2‖+ L(R)‖u1 − u2‖),

which in turn gives

‖u1 − u2‖ ≤
‖f1 − f2‖

1− C0
.

This completes the proof of the first part.

For the more general statement, we use that one can think of �g in the non-linearity as

a first order operator. Concretely, we work on the coisotropic space

X = {u ∈ Hs,ε
b (Ω)•,− : �gu ∈ Hs−1,ε

b (Ω)•,−}

with norm

‖u‖X = ‖u‖Hs,ε
b (Ω)•,− + ‖�gu‖Hs−1,ε

b (Ω)•,− .

This is a Banach space: Indeed, if (uk) is a Cauchy sequence in X , then uk → u inHs,ε
b (Ω)•,−,

and �guk → v in Hs−1,ε
b (Ω)•,−; in particular, �guk → �gu and �guk → v in τ εHs−2

b (Ω)•,−,

thus �gu = v ∈ Hs−1,ε
b (Ω)•,−, which was to be shown. We then define TKG : X → X by

TKGu = SKG(f + q(u, bdu,�gu)) and obtain the estimate

‖TKGu− TKGv‖X = ‖TKGu− TKGv‖Hs,ε
b

+ ‖q(u, bdu,�gu)− q(v, bdv,�gv)‖
Hs−1,ε

b

≤ (‖SKG‖+ 1)L(R)(‖u− v‖Hs,ε
b

+ ‖�gu−�gv‖Hs−1,ε
b

)
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= (‖SKG‖+ 1)L(R)‖u− v‖X ≤ C0‖u− v‖X

for u, v ∈ X with norms ≤ R, with C0 < 1 if R > 0 is small enough, provided we require

L(0) < CL := (‖SKG‖+ 1)−1. Then, for u ∈ X with norm ≤ R,

‖TKGu‖X ≤ (‖SKG‖+ 1)(‖f‖
Hs−1,ε

b
+ L(R)R) ≤ R

if ‖f‖ ≤ C, C > 0 small. Thus, TKG is a contraction on X , and we obtain the solvability

of equation (5.2.13). The continuous dependence of the solution on the forcing term f is

proved as above.

For the third part, we use the forward solution operator S : Hs−1,ε
b (Ω)•,− → Y := C ⊕

Hs,ε
b (Ω)•,− for �g. Clearly, Y is a Banach space with norm ‖(c, u′)‖Y = |c|+ ‖u′‖Hs,ε

b (Ω)•,− ;

see §5.2.4 for related and more general statements. We will apply the Banach fixed point

theorem to the operator T : Y → Y, Tu = S(f + q(u, bdu)): We again have an estimate

like (5.2.14), since bdu ∈ Hs−1,ε
b (Ω; bT ∗ΩM)•,− for u ∈ Y, and for small R > 0, T maps the

R-ball around 0 in Y into itself if the norm of f in Hs−1,ε
b (Ω)•,− is small, as above. The

continuous dependence of the solution on the forcing term is proved as above.

The following basic statement ensures that there are interesting non-linearities q that

satisfy the requirements of the theorem; see also §5.2.4.

Lemma 5.2.7. Let s > n/2, then Hs
b(Rn+) is an algebra. In particular, Hs

b(N) is an algebra

on any compact n-dimensional manifold N with boundary which is equipped with a b-metric.

Proof. The first statement is the special case k = 0 of Lemma 5.4.4 after a logarithmic

change of coordinates, which gives an isomorphism Hs
b(Rn+) ∼= Hs(Rn); the lemma is well-

known in this case, see e.g. [108, Chapter 13.3]. The second statement follows by localization

and from the coordinate invariance of Hs
b.

More and related statements will be given in §5.4.2.

Remark 5.2.8. The algebra property of Hs
b(N) for s > dim(N)/2 is a special case of the

fact that for any F ∈ C∞(R), for real valued u, or F ∈ C∞(C), for complex valued u, with

F (0) = 0, the composition map Hs
b(N) 3 u 7→ F ◦u ∈ Hs

b(N) is well-defined and continuous,

see for example [108, Chapter 13.10]. In the real valued u case, if F (0) 6= 0, then writing

F (t) = F (0) + tF1(t) shows that F ◦ u ∈ C + Hs
b(N). If r > 0, then Hs,r

b (N) ⊂ Hs
b(N)

shows that F1(u) ∈ Hs
b(N), thus F ◦u = F (0)+uF1(u) ∈ C+Hs,r

b (N); and if F vanishes to
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order k at 0, then F (t) = tkFk(t), so F ◦ u = uk(Fk ◦ u), and the multiplicative properties

of Hs,r
b (N) show that F ◦ u ∈ Hs,kr

b (N). The argument is analogous for complex valued u,

indeed for RL-valued u, using Taylor’s theorem on F at the origin.

As a corollary of Theorem 5.2.6, we have:

Corollary 5.2.9. If s > n/2, the hypotheses of Theorem 5.2.6 hold for non-linearities

q(u) = cup, p ≥ 2 integer, c ∈ C, as well as q(u) = q0u
p, q0 ∈ Hs

b(M).

If s− 1 > n/2, the hypotheses of Theorem 5.2.6 hold for non-linearities q

q(u, bdu) =
∑

2≤j+|α|≤d

qjαu
j
∏
k≤|α|

Xα,ku, (5.2.15)

whereqj,α ∈ C +Hs
b(M), Xα,k ∈ Vb(M).

Thus, in either case, for m > 0, 0 ≤ ε < ε0, s > 3/2 + ε, and for small R > 0, there

exists C > 0 such that for all f ∈ Hs−1,ε
b (Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u, bdu) (5.2.16)

has a unique solution u ∈ Hs,ε
b (Ω)•,−, with norm ≤ R, that depends continuously on f .

The analogous conclusion also holds for �gu = f + q(u, bdu) provided ε > 0 and

q(u, bdu) =
∑

2≤j+|α|≤d,|α|≥1

qjαu
j
∏
k≤|α|

Xα,ku, (5.2.17)

with the solution being in C(φ ◦ t1)⊕Hs,ε
b (Ω)•,−, φ ◦ t1 identically 1 near X ∩Ω, vanishing

near H1.

For such polynomial non-linearities, the Lipschitz constant L(R) in the statement of

Theorem 5.2.6 actually satisfies L(0) = 0.

Remark 5.2.10. In this chapter, we do not yet prove that one obtains smooth (i.e. conormal)

solutions if the forcing term is smooth (conormal); see Theorem 9.1.15 for such a result

in the more general quasilinear setting on generalized static models, and, more robustly,

Theorem 9.2.2, using Nash-Moser iteration.

Since in Theorem 5.2.6, we allow q to depend on �gu, we can also solve certain quasi-

linear equations (rather unnatural ones though) if s > max(1/2 + ε, n/2 + 1): Suppose for

example that q′ : Hs,ε
b (Ω)•,− → Hs−1

b (Ω)•,− is continuous with ‖q′(u)−q′(v)‖ ≤ L′(R)‖u−v‖
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for u, v ∈ Hs,ε
b (Ω)•,− with norms ≤ R, where L′ : R≥0 → R is locally bounded, then we can

solve the equation

(1 + q′(u))(�g −m2)u = f ∈ Hs−1,ε
b (Ω)•,−

provided the norm of f is small. Indeed, put q(u,w) = −q′(u)(w−m2u), then q(u,�gu) =

−q′(u)(�g −m2)u, and the PDE becomes

(�g −m2)u = f + q(u,�gu),

which is solvable by Theorem 5.2.6, since, with ‖ · ‖ = ‖ · ‖
Hs−1,ε

b
, for u, u′ ∈ Hs,ε

b (Ω)•,−,

w,w′ ∈ Hs−1,ε
b (Ω)•,− with ‖u‖+ ‖w‖, ‖u′‖+ ‖w′‖ ≤ R, we have

‖q(u,w)− q(u′, w′)‖

≤ ‖q′(u)− q′(u′)‖‖w −m2u‖+ ‖q′(u′)‖‖w − w′ −m2(u− u′)‖

≤ L′(R)((1 +m2)R+m2R)‖u− u′‖+ L′(R)R‖w − w′‖

≤ L(R)(‖u− u′‖+ ‖w − w′‖)

with L(R) → 0 as R → 0. By a similar argument, one can also allow q′ to depend on bdu

and �gu.

Remark 5.2.11. Recalling the discussion following Theorem 5.2.3, let us emphasize the

importance of P̂ (σ)−1 having no poles in the closed upper half plane by looking at the

explicit example of the operator P = ∂x in 1 dimension. In terms of τ = e−x, we have

P = −τ∂τ , thus P̂ (σ) = −iσ, considered as an operator on the boundary (which is a single

point) at +∞ of the radial compactification of R; hence P̂ (σ)−1 has a simple pole at σ = 0,

corresponding to constants being annihilated by P. Now suppose we want to find a forward

solution of u′ = u2 + f , where f ∈ C∞c (R). In the first step of the iterative procedure

described above, we will obtain a constant term; the next step gives a term that is linear

in x (x being the antiderivative of 1), i.e. in log τ , then we get quadratic terms and so on,

therefore the iteration does not converge (for general f), which is of course to be expected,

since solutions to u′ = u2 + f in general blow up in finite time. On the other hand, if

P = ∂x + 1, then P̂ (σ)−1 = (1 − iσ)−1, which has a simple pole at σ = −i, which means

that forward solutions u of u′ + u = u2 + f with f as above can be constructed iteratively,

and the first term of the expansion of u at +∞ is cτ i(−i) = ce−x, c ∈ C.
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5.2.4 Semilinear equations with polynomial non-linearities

We stay in the setting of generalized static models. With polynomial non-linearities as in

(5.2.15), we can use the second part of Theorem 5.2.3 to obtain an asymptotic expansion

for the solution; see Remark 5.2.18 and, in a slightly different setting, §5.3.2 for details on

this. Here, we instead define a space that encodes asymptotic expansions directly in such a

way that we can run a fixed point argument directly. To describe the exponents appearing

in the expansion, we use index sets as introduced by Melrose, see [82].

Definition 5.2.12. An index set is a discrete subset E of C×N0 satisfying the conditions

(1) (z, k) ∈ E ⇒ (z, j) ∈ E for 0 ≤ j ≤ k,

(2) If (zj , kj) ∈ E , |zj |+ kj →∞ ⇒ Re zj →∞.

For any index set E , define

wE (z) =

max{k ∈ N0 : (z, k) ∈ E }, (z, 0) ∈ E

−∞ otherwise.

For two index sets E ,E ′, define their extended union by

E∪E ′ = E ∪ E ′ ∪ {(z, l + l′ + 1): (z, l) ∈ E , (z, l′) ∈ E ′}

and their product by E E ′ = {(z + z′, l + l′) : (z, l) ∈ E , (z′, l′) ∈ E ′}. We shall write E k for

the k-fold product of E with itself. Lastly, a positive index set is an index set E with the

property that Re z > 0 for all z ∈ C with (z, 0) ∈ E .

Remark 5.2.13. To ensure that the class of polyhomogeneous conormal distributions with

a given index set E is invariantly defined, Melrose [82] in addition requires that (z, k) ∈ E

implies (z + j, k) ∈ E for all j ∈ N0. In particular, this is a natural condition in non-

dilation-invariant settings as in Theorem 5.2.3. A convenient way to enforce this condition

in all relevant situations is to enlarge the index set corresponding to the poles of the inverse

of the normal operator accordingly; see the statement of Theorem 5.2.17. Observe though

that this condition is not needed in the dilation-invariant cases of the solvability statements

below.
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Since we want to capture the asymptotic behavior of solutions near X ∩ Ω, we fix a

cutoff φ ∈ C∞(R) with support in (0,∞) such that φ ◦ t1 ≡ 1 near X ∩ Ω (we already used

such a cutoff in Theorem 5.2.3), and make the following definition.

Definition 5.2.14. Let E be an index set, and let s, r ∈ R. For ε > 0 with the property

that there is no (z, 0) ∈ E with Re z = ε, define the space X s,r,εE to consist of all tempered

distributions v on M with support in Ω̄ such that

v′ = v −
∑

(z,k)∈E
Re z<ε

τ z(log τ)k(φ ◦ t1)vz,k ∈ Hs,ε
b (Ω)•,− (5.2.18)

with vz,k ∈ Hr(X ∩ Ω).

Observe that the terms vz,k in the expansion (5.2.18) are uniquely determined by v,

since ε > Re z for all z ∈ C for which (z, 0) appears in the sum (5.2.18); then also v′ are

uniquely determined by v. Therefore, we can use the isomorphism

X s,r,εE
∼=
( ⊕

(z,k)∈E
Re z<ε

Hr(X ∩ Ω)
)
⊕Hs,ε

b (Ω)•,−

to give X s,r,εE the structure of a Banach space.

Lemma 5.2.15. Let P,F be positive index sets, and let ε > 0. Define E ′0 = P∪F and

recursively E ′N+1 = P∪
(
F ∪

⋃
k≥2(E ′N )k

)
; put EN = {(z, k) ∈ E ′N : 0 < Re z ≤ ε}. Then

there exists N0 ∈ N such that EN = EN0 for all N ≥ N0; moreover, the limiting index set

E∞(P,F , ε) := EN0 is finite.

Proof. Writing π1 : C× N0 → C for the projection, one has

π1E1 =
{
z : 0 < Re z ≤ ε, z =

k∑
j=1

zj : k ≥ 1, zj ∈ π1E0

}
,

and it is then clear that π1EN = π1E1 for all N ≥ 1. Since E0 is a positive index set, there

exists δ > 0 such that Re z ≥ δ for all z ∈ E0; hence π1E∞ = π1E1 is finite.

To finish the proof, we need to show that for all z ∈ C, the number wEN (z) stabilizes.
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Defining p(z) = wP(z)+1 for z ∈ π1P and p(z) = 0 otherwise, we have a recursion relation

wEN (z) = p(z) + max

{
wF (z), max

z=z1+···+zk
k≥2,zj∈π1E∞

{ k∑
j=1

wEN−1
(zj)

}}
, N ≥ 1. (5.2.19)

For each zj appearing in the sum, we have Im zj ≤ Im z − δ. Thus, we can use (5.2.19)

with z replaced by such zj and N replaced by N − 1 to express wEN (z) in terms of a finite

number of p(zα) and wF (zα), Im zα ≤ Im z, and a finite number of wEN−2
(zβ), zβ ≤ Im z−2δ.

Continuing in this way, after N0 = b(Im z)/δc+1 steps we have expressed wEN (z) in terms of

a finite number of p(zγ) and wF (zγ), Im zγ ≤ Im z, only, and this expression is independent

of N as long as N ≥ N0.

Definition 5.2.16. Let P,F be positive index sets, and let ε > 0 be such that there is

no (z, 0) ∈ E∞(P,F , ε) with Re z = ε, with E∞(P,F , ε) as defined in the statement of

Lemma 5.2.15. Then for s, r ∈ R, define the Banach spaces

X s,r,εP,F := X s,r,εE∞(P,F ,ε),

0X s,r,εP,F := X s,r,εE∞(P,F ,ε)∪{(0,0)}.

Note that the spaces (0)X s,s,εP,F are Banach algebras for s > n/2, up to rescaling their

norms, or equivalently in the sense that there is a constant C > 0 such that ‖uv‖ ≤ C‖u‖‖v‖
for all u, v ∈ (0)X s,s,εP,F . Moreover, X s,s,εP,F interacts well with the forward solution operator

SKG of �g −m2 in the sense that u ∈ X s,s,εP,F , k ≥ 2, with P being related to the poles of

P̂(σ)−1, where P = �g −m2, as will be made precise in the statement of Theorem 5.2.17

below, implies SKG(uk) ∈ X s,s,εP,F .

We can now state the result giving an asymptotic expansion of the solution of (�g −
m2)u = f + q(u, bdu) for polynomial non-linearities q.

Theorem 5.2.17. Let ε > 0, s > max(3/2 + ε, n/2 + 1), and q as in (5.2.15). Moreover, if

σj ∈ C are the poles of the inverse family P̂(σ)−1, where P = �g −m2, and mj + 1 is the

order of the pole of P̂(σ)−1 at σj, let P = {(iσj + k, `) : 0 ≤ ` ≤ mj , k ∈ N0}. Assume that

ε 6= Re(iσj) for all j, and that moreover m > 0, which implies that P is a positive index

set by Lemma 5.2.5. Finally, let F be a positive index set.

Then for small enough R > 0, there exists C > 0 such that for all f ∈ X s−1,s−1,ε
F with
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norm ≤ C, the equation

(�g −m2)u = f + q(u, bdu)

has a unique solution u ∈ X s,s,εP,F , with norm ≤ R, that depends continuously on f ; in

particular, u has an asymptotic expansion with remainder term in Hs,ε
b (Ω)•,−.

Further, if the polynomial non-linearity is of the form q(bdu), then for small R > 0,

there exists C > 0 such that for all f ∈ X s−1,s−1,ε
F with norm ≤ C, the equation

�gu = f + q(bdu)

has a unique solution u ∈ 0X s,s,εP,F , with norm ≤ R, that depends continuously on f .

Proof. By Theorem 5.2.3 and the definition of the space X = X s,s,εP,F , we have a forward

solution operator SKG : X → X of �g −m2. Thus, we can apply the Banach fixed point

theorem to the operator T : X → X , Tu = SKG(f + q(u, bdu)), where we note that q : X →
X , which follows from the definition of X and the fact that q is a polynomial only involving

terms of the form uj
∏
k≤|α|Xα,ku for j + |α| ≥ 2. This condition on q also ensures that T

is a contraction on a sufficiently small ball in X+.

For the second part, writing 0X = 0X s,s,εP,F , we have a forward solution operator S : X →
0X . But q(bdu) : 0X → X , since bd annihilates constants, and we can thus finish the proof

as above.

The continuous dependence of the solution on the right hand side is proved as in the

proof of Theorem 5.2.6.

Note that ε > 0 is (almost) unrestricted here, and thus we can get arbitrarily many

terms in the asymptotic expansion if we work with arbitrarily high Sobolev spaces.

The condition that the polynomial q(u, bdu) does not involve a linear term is very

important as it prevents logarithmic terms from stacking up in the iterative process used to

solve the equation. Also, adding a term νu to q(u, bdu) effectively changes the Klein-Gordon

parameter from −m2 to ν −m2, which will change the location of the poles of P̂ (σ)−1; in

the worst case, if ν > m2, this would even cause a pole to move to Imσ > 0, corresponding

to a resonant state that blows up exponentially in time. Lastly, let us remark that the form

(5.2.17) of the non-linearity is not sufficient to obtain an expansion beyond leading order,

since in the iterative procedure, logarithmic terms would stack up in the next-to-leading

order term of the expansion.
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Remark 5.2.18. Instead of working with the spaces (0)X s,s,εP,F , which have the expansion built

in, one could alternatively first prove the existence of a solution u in a (slightly) decaying

b-Sobolev space, which then allows one to regard the polynomial non-linearity as a pertur-

bation of the linear operator �g−m2; then an iterative application of the dilation-invariant

result [114, Lemma 3.1] gives an expansion of the solution to the nonlinear equation. We will

follow this idea in the discussion of polynomial non-linearities on asymptotically Kerr-de

Sitter spaces in the next section.

5.3 Kerr-de Sitter space

In this section we analyze semilinear waves on Kerr-de Sitter space, and more generally on

non-trapping spacetimes with normally hyperbolic trapping, see Definition 2.5.1. The effect

of the trapping is a loss of derivatives for the linear estimates in general, but we show that

at least derivatives with principal symbol vanishing on the trapped set are well-behaved.

We then use these results to solve semilinear equations in the rest of the section.

For concreteness, we focus on Kerr-de Sitter spaces, see however Remark 5.3.5.

5.3.1 Linear Fredholm theory

The linear theorem in the case of normally hyperbolic trapping for P = �g − λ is the

following:

Theorem 5.3.1. (Strengthened version of [114, Theorem 1.4].) Let M be a manifold with a

dilation-invariant b-metric g as above, with boundary X, and let τ be the boundary defining

function, P as in (5.2.6); suppose that Ω ⊂ M is a domain as above (see also (2.2.5)),

and Ω is a non-trapping spacetime with normally hyperbolic trapping. Let φ ∈ C∞(R) be as

in Theorem 5.2.3. Then there exist C ′ > 0, κ > 0, β ∈ R such that for 0 ≤ ` < C ′ and

s > 1/2+β`, s ≥ 0, solutions u ∈ H−∞,−∞b (Ω)•,− of (�g−λ)u = f with f ∈ Hs−1+κ,`
b (Ω)•,−

satisfy that for some ajκ ∈ C∞(Ω ∩X) (which are the resonant states) and σj ∈ C (which

are the resonances),

u′ = u−
∑
j

∑
κ≤mj

τ iσj (log τ)κ(φ ◦ t1)ajκ ∈ Hs,`
b (Ω)•,−. (5.3.1)

Here the (semi)norms of both ajκ in C∞(Ω ∩ X) and u′ in Hs,`
b (Ω)•,− are bounded by a
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constant times that of f in Hs−1+κ,`
b (Ω)•,−.

The same conclusion holds for sufficiently small (not necessary dilation-invariant!) per-

turbations of the metric as a symmetric bilinear form on bTM provided the trapping is

normally hyperbolic.

In the non-dilation-invariant setting, one could similarly proceed precisely as the proof

of Theorem 5.2.3; now, in order to regain the regularity lost by treating P − N(P) as a

perturbation as in (5.2.8) in the course of the contour shifting argument, while we are still

in Imσ > 0 (i.e. working on growing spaces), we need to appeal to Theorem 3.3.14, more

specifically (3.3.23), in addition to the radial point and propagation estimates. However, an

inspection of the argument, see in particular (5.2.8), reveals that a forcing term f ∈ Hs−1+κ,`
b

only yields a solution with remainder term u′ ∈ Hs−1,`
b , which is insufficient for our simple

contraction mapping arguments for nonlinear equations.

Again, as mentioned after the statement of Theorem 5.2.3, the above theorem states

exponential decay in t∗ := − log τ , see (2.3.5) and (2.4.2), up to a finite-dimensional space

of resonances.

In order to state the analogue of Theorem 5.2.3 when one has normally hyperbolic

trapping in the b-sense at Γ ⊂ bS∗XM , see Definition 2.3.1 and Proposition 2.3.2, we will

employ the non-trapping estimates on normally isotropic function spaces Hsb,Γ(M) and

H∗,sb,Γ(M), see Definition 3.3.12, established in Theorem 3.3.14. In particular, we now do not

require g to be dilation-invariant. Now, if Ω ⊂ M , as in §5.2, is such that bS∗HjΩ ∩ Γ = ∅,
j = 1, 2, then spaces such as

H∗,sb,Γ(Ω)•,−

are not only well-defined, but are standard Hs
b-spaces near the Hj . The relations between

normally isotropic and b-Sobolev spaces analogous to (3.3.21) also hold for the correspond-

ing spaces over Ω.

Notice that elements of Ψp
b(M) only map Hsb,Γ(M) to H∗,s−p−1

b,Γ (M), with the issues

being at Γ corresponding to (3.3.21) (thus there is no distinction between the behavior on

the Ω vs. the M -based spaces). However, if A ∈ Ψp
b(M) has principal symbol vanishing on

Γ then

A : Hsb,Γ(M)→ Hs−p
b (M), A : Hs

b(M)→ H∗,s−pb,Γ (M), (5.3.2)

as A can be expressed as A+Q+ +A−Q−+A∂τ + ÂP̂ +A0Q0 +R, A±, A0, A∂ , Â ∈ Ψ0
b(M),

R ∈ Ψ−1
b (M), with the second mapping property following by duality as Ψp

b(M) is closed
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under adjoints, and the principal symbol of the adjoint vanishes wherever that of the original

operator does. Correspondingly, if Aj ∈ Ψ
mj
b (M), j = 1, 2, have principal symbol vanishing

at Γ then A1A2u : Hsb,Γ(M)→ H∗,s−m1−m2

b,Γ (M).

We consider P as a map

P : Hsb,Γ(Ω)•,− → Hs−2
b,Γ (Ω)•,−,

and let

X sΓ = {u ∈ Hsb,Γ(Ω)•,− : Pu ∈ Ys−1
Γ }, YsΓ = H∗,sb,Γ(Ω)•,−.

While X sΓ is complete,15 it is a slightly exotic space, unlike X s in Theorem 4.2.4 which is a

coisotropic space depending on Σ (and thus the principal symbol of P) only, since elements

of Ψp
b(M) only map Hsb,Γ(M) to H∗,s−p−1

b,Γ (M) as remarked earlier. Correspondingly, X sΓ
actually depends on P modulo Ψ0

b(M) plus first order pseudodifferential operators of the

form A1A2, A1 ∈ Ψ0
b(M), A2 ∈ Ψ1

b(M), both with principal symbol vanishing at Γ – here

the operators should have Schwartz kernels supported away from the Hj ; near Hj (but away

from Γ), one should say P matters modulo Diff1
b(M), i.e. only the principal symbol of P

matters.

We then have:

Theorem 5.3.2. Suppose s ≥ 3/2, and that the inverse of the Mellin transformed normal

operator P̂(σ)−1 has no poles with Imσ ≥ 0. Then

P : X sΓ → Ys−1
Γ

is invertible, giving the forward solution operator.

Proof. First, with r < −1/2, thus with dual spaces having weight r̃ > 1/2, Theorem 4.2.4

holds without changes as Theorem 3.3.14 gives non-trapping estimates in this case on the

standard b-Sobolev spaces. In particular, if r � 0, KerP is trivial even on H
s−1/2,r
b (Ω)•,−,

hence certainly on its subspace Hsb,Γ(Ω)•,−. Similarly, KerP∗ is trivial on Hs,r̃
b (Ω)−,•,

15Also, elements of C∞(Ω) vanishing to infinite order at H1 and X ∩ Ω are dense in X sΓ . Indeed, in view
of [91, Lemma A.3] the only possible issue is at Γ, thus the distinction between Ω and M may be dropped.
To complete the argument, one proceeds as in the quoted lemma, using the ellipticity of σ at Γ, letting
Λn ∈ Ψ−∞b (M), n ∈ N, be a quantization of φ(σ/n)a, a ∈ C∞(bS∗M) supported in a neighborhood of Γ,
identically 1 near Γ, φ ∈ C∞c (R), noting that [Λn,P] ∈ Ψ−∞b (M) is uniformly bounded in Ψ0

b(M) + τΨ1
b(M)

in view of (2.1.3), and thus for u ∈ X sΓ , PΛnu = ΛnPu+ [P,Λn]u→ Pu in H∗,s−1
b,Γ since [P,Λn] is uniformly

bounded H
s−1/2
b ∩Hs,−1/2

b → H
s−1/2
b ∩Hs−1,1/2

b , and thus Hsb,Γ → H∗,s−1
b,Γ by (3.3.21).
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r̃ � 0. Therefore, if r < −1/2 and f ∈ H−1,r
b (Ω)•,−, there exists u ∈ H0,r

b (Ω)•,− with

Pu = f . Further, making use of the non-trapping estimates in Theorem 3.3.14, if r < 0

and f ∈ Hs−1,r
b (Ω)•,−, then the argument of Theorem 5.2.3 improves this statement to

u ∈ Hs,r
b (Ω)•,−.

In particular, if f ∈ H∗,s−1
b,Γ (Ω)•,− ⊂ Hs−1,0

b (Ω)•,−, then u ∈ Hs,r
b (Ω)•,− for r < 0. This

can be improved using the argument of Theorem 5.2.3. Indeed, with −1 ≤ r < 0 arbitrary,

P −N(P) ∈ τDiff2
b(M) implies as in (5.2.8) that

N(P)u = f − f̃ , f̃ = (P −N(P))u ∈ Hs−2,r+1
b (Ω)•,−.

But f ∈ H∗,s−1
b,Γ (Ω)•,− ⊂ Hs−1,0

b (Ω)•,−, hence the right hand side is in Hs−2,0
b (Ω)•,−; thus

the dilation-invariant result, [114, Lemma 3.1], gives u ∈ Hs−1,0
b (Ω)•,−. This can then be

improved further since in view of Pu = f ∈ H∗,s−1
b,Γ (Ω)•,−, propagation of singularities,

most crucially Theorem 3.3.14, yields u ∈ Hsb,Γ(Ω)•,−. This completes the proof of the

theorem.

This result shows the importance of controlling the resonances in Imσ ≥ 0. For the wave

operator on exact 4-dimensional Kerr-de Sitter space, Dyatlov’s analysis [39, 40] shows that

the zero resonance of �g is the only one in Imσ ≥ 0, the residue at 0 having constant

functions as its range; in §7.5, we will prove a generalization of this result to perturbations

of higher-dimensional Schwarzschild-de Sitter spacetimes that also covers the case of differ-

ential form-valued waves. (The very precise analysis of [41], relying on the exact form of the

Kerr-de Sitter metric, could presumably be used in nonlinear applications as well, giving

a much more precise resonance expansion of solutions, but we will not consider this here.)

For the Klein-Gordon operator �g −m2, the statement is even better from our perspective

as there are no resonances in Imσ ≥ 0 for m > 0 small. This is pointed out in [40]; we give

a direct proof based on perturbation theory.

Lemma 5.3.3. Let P = �g on exact Kerr-de Sitter space. Then for small m > 0, all poles

of (P̂(σ)−m2)−1 have strictly negative imaginary part.

Proof. By the perturbation theory results in Appendix A, the inverse family of P̂(σ)−λ has

a simple pole at σ(λ) coming with a single resonant state φ(λ) and a dual state ψ(λ), with

analytic dependence on λ, where σ(0) = 0, φ(0) ≡ 1, ψ(0) = 1{µ>0} (see also Theorem 7.5.1),

where we use the notation of §2.4. Differentiating P̂(σ(λ))φ(λ) = λφ(λ) with respect to λ



150 CHAPTER 5. SEMILINEAR WAVE EQUATIONS

and evaluating at λ = 0 gives

σ′(0)∂σP̂(0)φ(0) + P̂(0)φ′(0) = φ(0).

Pairing this with ψ(0), which is orthogonal to Ran P̂(0), yields

σ′(0) =
〈ψ(0), φ(0)〉

〈ψ(0), ∂σP̂(0)φ(0)〉
,

Since φ(0) = 1 and ψ(0) = 1{µ>0}, this implies

sgn Imσ′(0) = − sgn Im〈ψ(0), ∂σP̂(0)φ(0)〉. (5.3.3)

To find the latter quantity, we note that the only terms in the expression of the d’Alem-

bertian that could possibly yield a non-zero contribution here are terms involving τDτ and

either Dr, Dφ or Dθ. Concretely, using the explicit form of the dual metric, see [114,

Equation (6.1)],16 G in the new coordinates t∗ = t − h(r), φ∗ = φ − P (r), τ = e−t∗ , with

h(r), P (r) as in (2.4.3),

G = −ρ−2

(
µ(∂r + h′(r)τ∂τ − P ′(r)∂φ∗)2 +

(1 + γ)2

κ sin2 θ
(−a sin2 θτ∂τ + ∂φ∗)

2 + κ∂2
θ

− (1 + γ)2

µ
(−(r2 + a2)τ∂τ + a∂φ∗)

2

)
,

and its determinant |detG|1/2 = (1 + γ)2ρ−2(sin θ)−1, we see that the only non-zero con-

tribution to the right hand side of (5.3.3) comes from the term

−(1 + γ)2ρ−2(sin θ)−1Dr

(
(1 + γ)−2ρ2 sin θρ−2µh′(r)

)
τDτ

= iρ−2∂r(µh
′(r))τDτ

of the d’Alembertian. Mellin transforming this amounts to replacing τDτ by σ; then dif-

ferentiating the result with respect to σ gives

〈ψ(0), ∂σP̂(0)φ∗(0)〉 = i

∫
µ>0

ρ−2∂r(µh
′(r)) dvol

16What we call t, t∗, φ, φ∗, µ, h(r), P (r) here is denoted t̃, t, φ̃, φ, µ̃,−h(r),−P (r) in [114].
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= i

∫ π

0

∫ 2π

0

∫ r+

r−

(1 + γ)−2 sin θ ∂r(µh
′(r)) dr dφ∗ dθ

=
4πi

(1 + γ)2
[(µh′(r))|r+ − (µh′(r))|r− ]. (5.3.4)

Since the singular part of h′(r) at r± (which are the roots of µ) is h′(r) = ±1+γ
µ (r2 +a2), the

right hand side of (5.3.4) is positive up to a factor of i; thus Imσ′(0) < 0 as claimed.

In other words, for small mass m > 0, there are no resonances σ of the Klein-Gordon

operator with Imσ ≥ −ε0 for some ε0 > 0. Therefore, the expansion of u as in (5.3.1) no

longer has a constant term. Correspondingly, for ε ∈ R, ε ≤ ε0, Theorem 5.3.1 gives the

forward solution operator

SKG,I : Hs−1+κ,ε
b (Ω)•,− → Hs,ε

b (Ω)•,− (5.3.5)

in the dilation-invariant setting. Further, Theorem 5.3.2 is applicable and gives the forward

solution operator

SKG : H∗,s−1
b,Γ (Ω)•,− → Hsb,Γ(Ω)•,− (5.3.6)

on normally isotropic spaces, without the assumption of dilation-invariance.

For semilinear applications, for non-linearities without derivatives, it is important that

the loss of derivatives κ in the space Hs−1+κ,ε
b is ≤ 1. This is not explicitly specified in the

paper of Wunsch and Zworski [124], though their proof directly gives that, for small ε > 0,

κ can be taken proportional to ε, and there is ε′0 > 0 such that κ ∈ (0, 1] for ε < ε′0; see

especially the part before [124, §4.4]. We reduce ε0 > 0 above if needed so that ε0 ≤ ε′0;

then (5.3.5) holds with κ = cε ∈ (0, 1] if ε < ε0, where c > 0. In fact however, one does

not need to go through the proof of [124], for the Phragmén-Lindelöf theorem allows one to

obtain the same conclusion from their final result:

Lemma 5.3.4. Suppose h : U → E is a holomorphic function on the half strip U = {z ∈
C : 0 ≤ Im z ≤ c,Re z ≥ 1} which is continuous on U , with values in a Banach space E,

and suppose moreover that there are constants A,C > 0 such that

‖h(z)‖ ≤ C|z|k1 , Im z = 0,

‖h(z)‖ ≤ C|z|k2 , Im z = c,

‖h(z)‖ ≤ C exp(A|z|), z ∈ U.
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Then there is a constant C ′ > 0 such that

‖h(z)‖ ≤ C ′|z|k1(1− Im z
c )+k2

Im z
c

for all z ∈ U .

Proof. Consider the function f(z) = zk1−i k2−k1
c

z, which is holomorphic on a neighborhood

of U . Writing z ∈ U as z = x+ iy with x, y ∈ R, one has

|f(z)| = |z|k1 exp

(
Im

(
k2 − k1

c
z log z

))
= |z|k1 |z|

k2−k1
c

Im z exp

(
k2 − k1

c
x arctan(y/x)

)
.

Noting that |x arctan(y/x)| = y|(x/y) arctan(y/x)| is bounded by c for all x + iy ∈ U , we

conclude that

e−|k2−k1||z|k1(1− Im z
c )+k2

Im z
c ≤ |f(z)| ≤ e|k2−k1||z|k1(1− Im z

c )+k2
Im z
c .

Therefore, f(z)−1h(z) is bounded by a constant C ′ on ∂U , and satisfies an exponential

bound for z ∈ U . By the Phragmén-Lindelöf theorem, ‖f(z)−1h(z)‖E ≤ C ′, and the claim

follows.

Since for any δ > 0, we can bound | log z| ≤ Cδ|z|δ for |Re z| ≥ 1, we obtain that the

inverse family R(σ) = P̂(σ)−1 of the normal operator of �g on (asymptotically) Kerr-de

Sitter spaces as in [114], here in the setting of artificial boundaries as opposed to complex

absorption, satisfies a bound

‖R(σ)‖|σ|−(s−1)Hs−1

|σ|−1 (X∩Ω)→|σ|−sHs
|σ|−1 (X∩Ω) ≤ Cδ|σ|

−1+κ′+δ

for any δ > 0, Imσ ≥ −cκ′ and |Reσ| large. Therefore, as mentioned above, by the proof

of Theorem 5.3.1, i.e. [114, Theorem 1.4], in particular using [114, Lemma 3.1], we can

assume κ ∈ (0, 1] in the dilation-invariant result, Theorem 5.3.1, if we take C ′ > 0 small

enough, i.e. if we do not go too far into the lower half plane Imσ < 0, which amounts to

only taking terms in the expansion (5.3.1) which decay to at most some fixed order, which

we may assume to be less than − Imσj for all resonances σj .
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Remark 5.3.5. As in §5.2.2, we can again consider general non-trapping spacetimes with

normally hyperbolic trapping, equipped with metrics which have a conormal part as well,

and moreover treat operators acting on vector bundles. The b-regularity analysis again only

relies on principal symbol considerations (plus contributions from the subprincipal symbol

at radial points, which only shifts the regularity requirement for forward solutions); but

in order to obtain the resonance expansion with exponentially decaying remainder as in

Theorem 5.3.1, one needs in addition high energy estimates for the normal operator family

in a strip below the real axis. In the scalar setting, these are well understood [44, 42, 94, 124],

but for operators on bundles, they require additional work; see Chapter 6 for their proof for

wave operators on subbundles of the tensor bundle on Kerr-de Sitter spaces. Furthermore,

one needs to know the location of resonances: If there are none in Imσ ≥ 0, our methods

for semilinear equations in this section go through; if there is a simple resonance at σ = 0,

as is the case for the scalar wave equation on Kerr-de Sitter space, we cannot prove any

semilinear results with the methods employed in the present chapter. However, with more

machinery, we can even handle very general quasilinear wave equations in this case, see

Chapters 8 and 9.

5.3.2 A class of semilinear equations; polynomial non-linearities

In the following semilinear applications, let us fix κ ∈ (0, 1] and ε0 as explained before

Lemma 5.3.4, so that we have the forward solution operator SKG,I as in (5.3.5). We then

have statements paralleling Theorems 5.2.6, 5.2.17 and Corollary 5.2.9, see Theorems 5.3.6,

5.3.10 and Corollary 5.3.9, respectively.

Theorem 5.3.6. Suppose (M, g) is dilation-invariant. Let −∞ < ε < ε0, s > 1/2 + βε,

s ≥ 1, and let q : Hs,ε
b (Ω)•,− → Hs−1+κ,ε

b (Ω)•,− be a continuous function with q(0) = 0 such

that there exists a continuous non-decreasing function L : R≥0 → R satisfying

‖q(u)− q(v)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R.

Then there is a constant CL > 0 so that the following holds: If L(0) < CL, then for small

R > 0, there exists C > 0 such that for all f ∈ Hs−1+κ,ε
b (Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u)
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has a unique solution u ∈ Hs,ε
b (Ω)•,−, with norm ≤ R, that depends continuously on f .

More generally, suppose

q : Hs,ε
b (Ω)•,− ×Hs−1+κ,ε

b (Ω)•,− → Hs−1+κ,ε
b (Ω)•,−

satisfies q(0, 0) = 0 and

‖q(u,w)− q(u′, w′)‖ ≤ L(R)(‖u− u′‖+ ‖w − w′‖)

provided ‖u‖+ ‖w‖, ‖u′‖+ ‖w′‖ ≤ R, where we use the norms corresponding to the map q,

for a continuous non-decreasing function L : R≥0 → R. Then there is a constant CL > 0 so

that the following holds: If L(0) < CL, then for small R > 0, there exists C > 0 such that

for all f ∈ Hs−1+κ,ε
b (Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u,�gu)

has a unique solution u ∈ Hs,ε
b (Ω)•,−, with ‖u‖Hs,ε

b
+ ‖�gu‖Hs−1+κ,ε

b
≤ R, that depends

continuously on f .

Proof. We use the proof of the first part of Theorem 5.2.6, where in the current setting

the solution operator SKG,I maps Hs−1+κ,ε
b (Ω)•,− → Hs,ε

b (Ω)•,−, and the contraction map

is T : Hs,ε
b (Ω)•,− → Hs,ε

b (Ω)•,−, Tu = SKG,I(f + q(u)).

For the general statement, we follow the proof of the second part of Theorem 5.2.6,

where we now instead use the space

X = {u ∈ Hs,ε
b (Ω)•,− : �gu ∈ Hs−1+κ,ε

b (Ω)•,−}

with norm

‖u‖X = ‖u‖Hs,ε
b

+ ‖�gu‖τεHs−1+κ
b

.

which is a Banach space by the same argument as in the proof of Theorem 5.2.6.

We have a weaker statement in the general, non-dilation-invariant case, where we work

in unweighted spaces.

Theorem 5.3.7. Let s ≥ 1, and suppose q : Hs
b(Ω)•,− → Hs

b(Ω)•,− is a continuous function

with q(0) = 0 such that there exists a continuous non-decreasing function L : R≥0 → R
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satisfying

‖q(u)− q(v)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R.

Then there is a constant CL > 0 so that the following holds: If L(0) < CL, then for small

R > 0, there exists C > 0 such that for all f ∈ Hs
b(Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u)

has a unique solution u ∈ Hs
b(Ω)•,−, with norm ≤ R, that depends continuously on f .

An analogous statement holds for non-linearities q = q(u,�gu) which are continuous

maps q : Hs
b(Ω)•,− × Hs

b(Ω)•,− → Hs
b(Ω)•,−, vanish at (0, 0) and have a small Lipschitz

constant near 0.

Proof. Since

SKG : Hs
b(Ω)•,− ⊂ H∗,s−1/2

b,Γ (Ω)•,− → Hs+1/2
b,Γ (Ω)•,− ⊂ Hs

b(Ω)•,−,

by (3.3.21) and (5.3.6), this follows again from the Banach fixed point theorem.

Remark 5.3.8. The proof of Theorem 5.3.2 shows that equations on function spaces with

negative weights (i.e. growing near infinity) behave as nicely as equations on the static part

of asymptotically de Sitter spaces, discussed in §5.2. However, naturally occurring non-

linearities (e.g., polynomials) will not be continuous nonlinear operators on such growing

spaces.

Corollary 5.3.9. If s > n/2, the hypotheses of Theorem 5.3.7 hold for non-linearities

q(u) = cup, p ≥ 2 integer, c ∈ C, as well as q(u) = q0u
p, q0 ∈ Hs

b(M).

Thus for small m > 0 and R > 0, there exists C > 0 such that for all f ∈ Hs
b(Ω)•,−

with norm ≤ C, the equation

(�g −m2)u = f + q(u)

has a unique solution u ∈ Hs
b(Ω)•,−, with norm ≤ R, that depends continuously on f .

If f satisfies stronger decay assumptions, then u does as well. More precisely, writing

P = �g −m2,

the inverse normal operator family P̂(σ)−1 has poles only in Imσ < 0 for small m > 0 (cf.
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Lemma 5.3.3 and [40, 114]). Then, defining the spaces X s,r,εF and X s,r,εP,F analogously to the

corresponding spaces in §5.2.4, we have the following result:

Theorem 5.3.10. Fix 0 < ε < min{C ′, 1/2} and let s � s′ ≥ max(1/2 + βε, n/2, 1 + κ).

(A concrete bound for s will be given in the course of the proof, see equation 5.3.8.) Let

q(u) =

d∑
p=2

qpu
p, qp ∈ Hs

b(M).

Moreover, if σj ∈ C are the poles of P(σ)−1, and mj + 1 is the order of the pole of P(σ)−1

at σj, let P = {(iσj + k, `) : 0 ≤ ` ≤ mj , k ∈ N0}. Assume that ε 6= Re(iσj) for all j, and

that m > 0 is so small that P is a positive index set. Finally, let F be a positive index set.

Then for small enough R > 0, there exists C > 0 such that for all f ∈ X s,s,εF with norm

≤ C, the equation

(�g −m2)u = f + q(u) (5.3.7)

has a unique solution u ∈ X s
′,s′,ε

P,F , with norm ≤ R, that depends continuously on f ; in

particular, u has an asymptotic expansion with remainder in Hs′,ε
b (Ω)•,−.

Proof. Let us write P = �g−m2. Let δ < 1/2 be such that 0 < 2δ < Re z for all (z, 0) ∈ F ,

then f ∈ Hs,2δ
b (Ω)•,−. Now, for u ∈ Hs,δ

b (Ω)•,−, consider Tu := SKG(f + q(u)). First of all,

f + q(u) ∈ Hs,2δ
b (Ω)•,− ⊂ Hs

b(Ω)•,−, thus the proof of Theorem 5.3.2 shows that we have

Tu ∈ Hs+1,r
b (Ω)•,−, r < 0 arbitrary. Therefore,

N(P)u = f + q(u) + (N(P)− P)u ∈ Hs,2δ
b (Ω)•,− +Hs−1,r+1

b (Ω)•,− ⊂ Hs−1,2δ
b (Ω)•,−,

and thus if δ > 0 is sufficiently small, namely, δ < inf{− Imσj}/2, Theorem 5.3.1 implies

u ∈ Hs−κ,2δ
b (Ω)•,−. Since we can choose κ = cδ for some constant c > 0, we obtain

Tu ∈
⋂
r>0

Hs+1,r
b (Ω)•,− ∩Hs−cδ,2δ

b (Ω)•,− ⊂
⋂
r′>0

H
s,2δ−2cδ2/(1+cδ)−r′
b (Ω)•,−

by interpolation. In particular, choosing δ > 0 even smaller if necessary, we obtain Tu ∈
Hs,δ

b (Ω)•,−. Applying the Banach fixed point theorem to the map T thus gives a solution

u ∈ Hs,δ
b (Ω)•,− to the equation (5.3.7).
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For this solution u, we obtain

N(P)u = Pu+ (N(P)− P)u ∈ Hs,2δ
b +Hs−2,δ+1

b ⊂ Hs−2,2δ
b

since q only has quadratic and higher terms. Hence Theorem 5.3.1 implies that u = u1 +u′,

where u1 is an expansion with terms coming from poles of P̂−1 whose decay order lies

between δ and 2δ, and u′ ∈ Hs−1−κ,2δ
b (Ω)•,−. This in turn implies that f + q(u) has an

expansion with remainder term in H
s−1−κ,min{4δ,ε}
b (Ω)•,−, thus

N(P)u ∈ Hs−3−κ,min{4δ,ε}
b (Ω)•,− plus an expansion,

and we proceed iteratively, until, after k more steps, we have 4 · 2kδ ≥ ε, and then u has an

expansion with remainder term Hs−3−2k−κ,ε
b (Ω)•,− provided we can apply Theorem 5.3.1

in the iterative procedure, i.e. provided s − 3 − 2k − κ =: s′ > max(1/2 + βε, n/2, 1 + κ).

This is satisfied if

s > max(1/2 + βε, n/2, 1 + κ) + 2dlog2(ε/δ)e+ κ − 1. (5.3.8)

5.3.3 Semilinear equations with derivatives in the non-linearities

Theorem 5.3.2 allows one to solve even semilinear equations with derivatives in some cases.

For instance, in the case of 4-dimensional Schwarzschild-de Sitter space, within Σ∩ bS∗XM ,

Γ is given by r = rp, σ1(Dr) = 0, where rp = 3
2rs = 2M• is the radius of the photon sphere,

see e.g. [114, §6.4], and similarly in higher dimensions, see §2.3 and equation (2.3.3) for the

radius rp of the photon sphere in general. Thus, nonlinear terms such as (r − rp)(∂ru)2

are allowed for s > n
2 + 1 since ∂r : Hsb,Γ(M) → Hs−1

b (M), with the latter space being

an algebra, while multiplication by r − rp maps this space to H∗,s−1
b,Γ by (5.3.2). Thus, a

straightforward modification of Theorem 5.3.7, applying the fixed point theorem on the

normally isotropic spaces directly, gives well-posedness.

5.4 Asymptotically de Sitter spaces: global approach

We can approach the problem of solving nonlinear wave equations on global asymptotically

de Sitter spaces in two ways: Either, we proceed as in the previous two sections, first showing
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invertibility of the linear operator on suitable spaces and then applying the contraction

mapping principle to solve the nonlinear problem; or we use the solvability results from §5.2

for backward light cones from points at future conformal infinity and glue the solutions on

all these ‘static’ parts together to obtain a global solution. The first approach, which we will

follow in §§5.4.1-5.4.4, has the disadvantage that the conditions on the non-linearity that

guarantee the existence of solutions are quite restrictive, however in case the conditions are

met, one has good decay estimates for solutions. The second approach on the other hand,

detailed in §5.4.5, allows many of the non-linearities, suitably reinterpreted, that work on

‘static’ asymptotically de Sitter spaces (i.e. backward light cones), but the decay estimates

for solutions are quite weak relative to the decay of the forcing term because of the gluing

process.

5.4.1 The linear framework

Let g be the metric on an n-dimensional asymptotically de Sitter space X, see §2.2.2,17

and let µ denote a defining function of the boundaries at future and past infinity. Then,

following [114, §4], the operator18

Pσ = µ−1/2µiσ/2−(n+1)/4

(
�g −

(n− 1

2

)2
− σ2

)
µ−iσ/2+(n+1)/4µ−1/2 (5.4.1)

extends non-degenerately to an operator on a closed manifold X̃ which contains the com-

pactification X of the asymptotically de Sitter space as a submanifold with boundary Y ,

where Y = Y− ∪ Y+ has two connected components, which we call the boundary of X

at past, resp. future, infinity; non-degenerately here means that near Y±, Pσ fits into the

framework of [114]. Here, µ = 0 is the defining function of Y , and µ > 0 is the interior

of the asymptotically de Sitter space. Moreover, null-bicharacteristics of Pσ tend to Y± as

t→ ±∞.

Following [117], let us in fact assume that X̃ = C− ∪ X ∪ C+ is the union of the

compactifications of asymptotically de Sitter space X and two asymptotically hyperbolic

caps C±; one might need to take two copies of X to construct X̃, see [117]. See Figure 5.2.

17We use a slightly different notation here to make the notation less cumbersome: The focus here is on
the global space rather than on its static patches.

18Pσ in our notation corresponds to P ∗σ in [114], the latter operator being the one for which one solves
the forward problem.
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Figure 5.2: Embedding of the asymptotically de Sitter space X as an open subset of the
closed manifold X̃, here drawn as a sphere. The boundary at future (past) infinity of the
compactification X is Y+ (Y−). One obtains X̃ from X by adding asymptotically hyperbolic
caps C±. Also shown is a null-geodesic on X.

Then Pσ is the restriction to X of an operator P̃σ ∈ Diff2(X̃), which is Fredholm as a map

P̃σ : X̃ s → Ỹs−1, X̃ s = {u ∈ Hs : P̃σu ∈ Hs−1}, Ỹs−1 = Hs−1,

where s ∈ C∞(S∗X̃), monotone along the bicharacteristic flow, is such that s|N∗Y− >

1/2− Imσ, s|N∗Y+ < 1/2− Imσ, and s is constant near S∗Y±.19 The spaces Hs are variable

order Sobolev spaces as in [8, §1 and Appendix].

Restricting our attention to X, we define the space Hs(X)•,− to be the completion in

Hs(X) of the space of C∞ functions that vanish to infinite order at Y−; thus the superscripts

indicate that distributions in Hs(X)•,− are supported distributions near Y− and extendible

distributions near Y+. Then, define the spaces

X s = {u ∈ Hs(X)•,− : Pσu ∈ Hs−1(X)•,−}, Ys−1 = Hs−1(X)•,−.

Denote by t a global time function on X, e.g. t = ±µ−1 near Y±, so that t → ±∞ along

bicharacteristics tending to Y±.

Theorem 5.4.1. Fix σ ∈ C and s ∈ C∞(S∗X) as above. Then Pσ : X s → Ys−1 is invertible,

and P−1
σ : Hs−1(X)•,− → Hs(X)•,− is the forward solution operator of Pσ.

19The choice of signs here is opposite to the one in [117], since here we are going to construct the forward
solution operator on X.
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Proof. First, let us assume Reσ � 0 so semiclassical/large parameter estimates are appli-

cable to P̃σ, and let T0 ∈ R be such that s is constant in {t ≤ T0}. Then for any T1 ≤ T0,

we can paste together microlocal energy estimates for P̃σ near C− and standard energy

estimates for the wave equation in {t ≤ T1} away from Y− as in the derivation of [114,

Equation (3.29)], and thereby obtain

‖u‖H1({t≤T1}) . ‖P̃σu‖H0({t≤T1}); (5.4.2)

thus, for f ∈ C∞(X̃), supp f ⊂ {t ≥ T1} implies supp P̃−1
σ f ⊂ {t ≥ T1}. Choosing

φ ∈ C∞c (X) with support in {t ≥ T1} and ψ ∈ C∞(X̃) with support in {t ≤ T1}, we

therefore obtain ψP̃−1
σ φ = 0. Since P̃−1

σ is meromorphic, this continues to hold for all

σ ∈ C such that Imσ > 1/2 − s. Since T1 ≤ T0 is arbitrary, this, together with standard

energy estimates on the asymptotically de Sitter space X, proves that P−1
σ propagates

supports forward, provided Pσ is invertible. Moreover, elements of ker P̃σ are supported in

C+.

This (and the corresponding statement for the adjoint P ∗σ ) implies the invertibility of

Pσ on the spaces in the statement in the theorem; this follows from [8, Lemma 8.3], see also

Footnote 15 there. Concretely, let E : Hs−1(X)•,− → Hs−1(X̃) be a continuous extension

operator that extends by 0 in C− and R : Hs(X̃) → Hs(X)−,− the restriction, then R ◦
P̃−1
σ ◦ E does not have poles. Since

⋃
T1≤T0

Hs({t > T1})•,− ⊂ Hs(X)•,−,

where (•) denotes supported distributions at {t = T1}, resp. Y−, is dense, R ◦ P̃−1
σ ◦ E

in fact maps into Hs(X)•,−, thus P−1
σ = R ◦ P̃−1

σ ◦ E indeed exists and has the claimed

properties.

In our quest for finding forward solutions of semilinear equations, we restrict ourselves

to a submanifold with boundary Ω ⊂ X containing and localized near future infinity, so

that we can work in fixed order Sobolev spaces; moreover, it will be useful to measure

the conormal regularity of solutions to the linear equation at the conormal bundle of the

boundary of X at future infinity more precisely. So let Hs,k(X̃, Y+) be the subspace of
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Hs(X̃) with k-fold regularity with respect to the Ψ0(X̃)-module

M =
{
X ∈ Ψ1(X̃) : σ1(X)|N∗Y+ = 0

}
(5.4.3)

of first order ps.d.o.s with principal symbol vanishing on N∗Y+. By [59, Theorem 6.3], with

s0 = 1/2−Imσ in our case, shows that f ∈ Hs−1,k(X̃, Y+), P̃σu = f , u a distribution, in fact

imply that u ∈ Hs,k(X̃, Y+). So if we let Hs,k(Ω)•,− denote the space of all u ∈ Hs(X)•,−

which are restrictions to Ω of functions in Hs,k(X̃, Y+), supported in Ω∪C+, the argument

of Theorem 5.4.1 shows that we have a forward solution operator

Sσ : Hs−1,k(Ω)•,− → Hs,k(Ω)•,−,

provided

s < 1/2− Imσ. (5.4.4)

The analysis of semilinear equations thus requires the study of algebra properties of the

spaces Hs,k(Ω)•,−, which will be the subject of §5.4.2.

The backward problem

Another problem that we will briefly consider below is the backward problem, i.e. where

one solves the equation on X backward from Y+, which is the same, up to relabelling,

as solving the equation forward from Y−. Thus, we have a backward solution operator

S−σ : Hs−1,k(Ω)−,• → Hs,k(Ω)−,• (where Ω is chosen as above so that we can use constant

order Sobolev spaces), provided s > 1/2 − Imσ. Similarly to the above, (−) denotes

extendible distributions at ∂Ω ∩ X◦ and (•) supported distributions at Y+; the module

regularity is measured at Y+.

5.4.2 Algebra properties of Sobolev spaces with module regularity

We now study spaces like Hs,k(Ω)−, • in a slightly more general setting.

Let us call a polynomially bounded measurable function w : Rn → (0,∞) a weight

function. For such a weight function w, we define

H(w)(Rn) =
{
u ∈ S ′(Rn) : wû ∈ L2(Rn)

}
.
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The following lemma is similar in spirit to, but different from, Strichartz’ result on Sobolev

algebras [104]; it is the basis for the multiplicative properties of the more delicate spaces

considered below.

Lemma 5.4.2. Let w1, w2, w be weight functions such that one of the quantities

M+ := sup
ξ∈Rn

∫ (
w(ξ)

w1(η)w2(ξ − η)

)2

dη

M− := sup
η∈Rn

∫ (
w(ξ)

w1(η)w2(ξ − η)

)2

dξ

(5.4.5)

is finite. Then H(w1)(Rn) ·H(w2)(Rn) ⊂ H(w)(Rn).

Proof. For u, v ∈ S (Rn), we use Cauchy-Schwarz to estimate

‖uv‖2
H(w) =

∫
w(ξ)2|ûv(ξ)|2 dξ

=

∫
w(ξ)2

(∫
w1(η)|û(η)|w2(ξ − η)|v̂(ξ − η)|w1(η)−1w2(ξ − η)−1 dη

)2

dξ

≤
∫ (∫ (

w(ξ)

w1(η)w2(ξ − η)

)2

dη

)

×
(∫

w1(η)2|û(η)|2w2(ξ − η)2|v̂(ξ − η)|2 dη
)
dξ

≤M+‖u‖2H(w1)‖v‖2H(w2)

as well as

‖uv‖2
H(w) ≤

∫ (∫
w2(ξ − η)2|v̂(ξ − η)|2 dη

)
×

(∫ (
w(ξ)

w1(η)w2(ξ − η)

)2

w1(η)2|û(η)|2 dη

)
dξ

= ‖v‖2
H(w2)

∫
w1(η)2|û(η)|2

(∫ (
w(ξ)

w1(η)w2(ξ − η)

)2

dξ

)
dη

≤M−‖u‖2H(w1)‖v‖2H(w2) .

Since S (Rn) is dense in H(w1)(Rn) and H(w2)(Rn), the lemma follows.



5.4. ASYMPTOTICALLY DE SITTER SPACES: GLOBAL APPROACH 163

In particular, if ∥∥∥∥ w(ξ)

w(η)w(ξ − η)

∥∥∥∥
L∞ξ L

2
η

<∞, (5.4.6)

then H(w) is an algebra.

For example, the weight function w(ξ) = 〈ξ〉s for s > n/2 satisfies (5.4.6) as we will check

below, which implies that Hs(Rn) is an algebra for s > n/2; this is the special case k = 0

of Lemma 5.4.4 below, and is well-known, see e.g. [108, Chapter 13.3]. Also, product-type

weight functions wd(ξ) = 〈ξ′〉s〈ξ′′〉k (where ξ = (ξ′, ξ′′) ∈ Rd+(n−d) for s > d/2, k > (n−d)/2

satisfy (5.4.6).

The following lemma, together with the triangle inequality 〈ξ〉α . 〈η〉α + 〈ξ − η〉α for

α ≥ 0, will often be used to check conditions like (5.4.5).

Lemma 5.4.3. Suppose α, β ≥ 0 are such that α+ β > n. Then∫
Rn

dη

〈η〉α〈ξ − η〉β
∈ L∞(Rnξ ).

Proof. Splitting the domain of integration into the two regions {〈η〉 < 〈ξ − η〉} and {〈η〉 ≥
〈ξ − η〉}, we obtain the bound∫

Rn

dη

〈η〉α〈ξ − η〉β
≤ 2

∫
Rn

dη

〈η〉α+β
,

which is finite in view of α+ β > n.

Another important consequence of Lemma 5.4.2 is that Hs′(Rn) is an Hs(Rn)-module

provided |s′| ≤ s, s > n/2, which follows for s′ ≥ 0 from M+ < ∞, and for s′ < 0

either by duality or from M− < ∞ (with M± as in the statement of the lemma, with the

corresponding weight functions).

Lemma 5.4.4. Write x ∈ Rn as x = (x′, x′′) ∈ Rd+(n−d). For s ∈ R, k ∈ N0, let

Ys,kd (Rn) = {u ∈ Hs(Rn) : Dk
x′′u ∈ Hs(Rn)}.

Then for s > d/2, s+ k > n/2, Ys,kd (Rn) is an algebra.

Proof. Using the Leibniz rule, we see that it suffices to show that if u, v ∈ Ys,kd , then

Dα
x′′uD

β
x′′v ∈ H

s, provided |α| + |β| ≤ k. Since Dα
x′′u ∈ Y

s,k−|α|
d and Dβ

x′′v ∈ Y
s,k−|β|
d , this
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amounts to showing that

Ys,ad · Y
s,b
d ⊂ H

s if a+ b ≥ k. (5.4.7)

Using the characterization Ys,ad = H(w) for w(ξ) = 〈ξ〉s〈ξ′′〉k, Lemma 5.4.2 in turn reduces

this to the estimate∫
〈ξ〉2s

〈η〉2s〈η′′〉2a〈ξ − η〉2s〈ξ′′ − η′′〉2b
dη

.
∫

dη

〈η′′〉2a〈ξ − η〉2s〈ξ′′ − η′′〉2b
+

∫
dη

〈η〉2s〈η′′〉2a〈ξ′′ − η′′〉2b

≤
∫

dη′

〈ξ′ − η′〉2s′
∫

dη′′

〈η′′〉2a〈ξ′′ − η′′〉2b+2(s−s′)

+

∫
dη′

〈η′〉2s′
∫

dη′′

〈η′′〉2a+2(s−s′)〈ξ′′ − η′′〉2b
,

where we choose d/2 < s′ < s such that a + b + s − s′ > (n − d)/2, which holds if

k + s > (n− d)/2 + s′, which is possible by our assumptions on s and k. The integrals are

uniformly bounded in ξ: For the η′-integrals, this follows from s′ > d/2; for the η′′-integrals,

we use Lemma 5.4.3.

We shall now use this (non-invariant) result to prove algebra properties for spaces with

iterated module regularity: Consider a compact manifold without boundary X and a sub-

manifold Y . Let M ⊃ Ψ0(X) be the Ψ0(X)-module of first order ps.d.o.s whose principal

symbol vanishes on N∗Y . For s ∈ R, k ∈ N0, define

Hs,k(X,Y ) = {u ∈ Hs(X) : Mku ∈ Hs(X)}.

Proposition 5.4.5. Suppose dim(X) = n and codim(Y ) = d. Assume that s > d/2 and

s+ k > n/2. Then Hs,k(X,Y ) is an algebra.

Proof. Away from Y , Hs,k(X,Y ) is just Hs+k(X), which is an algebra since s + k >

dim(X)/2. Thus, since the statement is local, we may assume that we have a product

decomposition near Y , namely X = Rdx′ × Rn−dx′′ , Y = {x′ = 0}, and that we are given

arbitrary u, v ∈ Hs,k(X,Y ) with compact support close to (0, 0) for which we have to show

uv ∈ Hs,k(X,Y ). Notice that for f ∈ Hs(X) with such small support, f ∈ Hs,k(X,Y )

is equivalent to M′kf ∈ Hs(X), where M′ is the C∞(M)-module of differential operators

generated by Id, ∂x′′i , x
′
j∂x′k , where 1 ≤ i ≤ n− d, 1 ≤ j, k ≤ d.
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Thus the proposition follows from the following statement: For s, k as in the statement

of the proposition,

Hs,k(Rn,Rn−d) := {u ∈ Hs(Rn) : (x′)α̃Dα
x′D

β
x′′u ∈ H

s(Rn), |α̃| = |α|, |α|+ |β| ≤ k}

is an algebra. Using the Leibniz rule, we thus have to show that

((x′)α̃Dα
x′D

β
x′′u)((x′)γ̃Dγ

x′D
δ
x′′v) ∈ Hs, (5.4.8)

provided |α̃| = |α|, |γ̃| = |γ|, |α| + |β| + |γ| + |δ| ≤ k. Since the two factors in (5.4.8) lie in

Hs,k−|α|−|β| and Hs,k−|γ|−|δ|, respectively, this amounts to showing that Hs,a ·Hs,b ⊂ Hs for

a+ b ≥ k. This however is easy to see, since Hs,c ⊂ Ys,cd for all c ∈ N0, and Ys,ad · Y
s,b
d ⊂ H

s

was proved in (5.4.7).

In order to be able to obtain sharper results for particular nonlinear equations in §5.4.3,

we will now prove further results in the case codim(Y ) = 1, which we will assume to hold

from now on; also, we fix n = dim(X).

Proposition 5.4.6. Assume that s > 1/2 and k > (n− 1)/2. Then

Hs,k(X,Y ) ·Hs−1,k(X,Y ) ⊂ Hs−1,k(X,Y ).

Proof. Using the Leibniz rule, this follows from Ys,a1 · Y
s−1,b
1 ⊂ Hs−1 for a+ b ≥ k. This, as

before, can be reduced to the local statement on Rn = Rx1 ×Rn−1
x′ with Y = {x1 = 0}. We

write ξ = (ξ1, ξ
′) ∈ R1+(n−1) and η = (η1, η

′) ∈ R1+(n−1). By Lemma 5.4.2, the case s ≥ 1

follows from the estimate∫
〈ξ〉2(s−1)

〈η〉2s〈η′〉2a〈ξ − η〉2(s−1)〈ξ′ − η′〉2b
dη

.
∫

dη

〈η〉2〈η′〉2a〈ξ − η〉2(s−1)〈ξ′ − η′〉2b
+

∫
dη

〈η〉2s〈η′〉2a〈ξ′ − η′〉2b

≤ 2

∫
dη1

〈η1〉2s

∫
dη′

〈η′〉2a〈ξ′ − η′〉2b
∈ L∞ξ

by Lemma 5.4.3.

If 1/2 < s ≤ 1, then ξ1 and ξ′ play different roles in the following sense: The background

regularity to be proved is Hs−1, s − 1 ≤ 0, thus the continuity of multiplication in the
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conormal direction to Y is proved by ‘duality’ (i.e. using Lemma 5.4.2 with M− < ∞),

whereas the continuity in the tangential (to Y ) directions, where both factors have k >

(n−1)/2 derivatives, is proved directly (i.e. using Lemma 5.4.2 with M+ <∞). Concretely

then, let u ∈ Ys,a1 , v ∈ Ys−1,b
1 , and put

u0(ξ) = 〈ξ〉s〈ξ′〉au(ξ) ∈ L2(Rn), v0(ξ) = 〈ξ〉s−1〈ξ′〉bv(ξ) ∈ L2(Rn).

Then

〈ξ〉s−1ûv(ξ) =

∫
〈η〉1−s

〈ξ〉1−s〈η′〉b〈ξ − η〉s〈ξ′ − η′〉a
u0(ξ − η)v0(η) dη,

hence by Cauchy-Schwarz and Lemma 5.4.3∫
〈ξ〉2(s−1)|ûv(ξ)|2 dξ

≤
∫ (∫

dη′

〈η′〉2b〈ξ′ − η′〉2a

)(∫ ∣∣∣∣∫ 〈η〉1−s

〈ξ〉1−s〈ξ − η〉s
u0(ξ − η)v0(η) dη1

∣∣∣∣2 dη′
)
dξ

.
∫∫ (∫

|u0(ξ − η)|2 dη1

)(∫
〈η〉2(1−s)

〈ξ〉2(1−s)〈ξ − η〉2s
|v0(η)|2 dη1

)
dη′ dξ

.
∫∫
‖u0(·, ξ′ − η′)‖2L2 |v0(η)|2

×
(∫

1

〈ξ − η〉2s
+

1

〈ξ〉2(1−s)〈ξ − η〉2(2s−1)
dξ1

)
dξ′ dη

. ‖u‖2Ys,a1
‖v‖2Ys−1,b

1

,

since 1/2 < s ≤ 1, thus 1− s ≥ 0 and 2s− 1 > 0, and the ξ1-integral is thus bounded from

above by ∫
1

〈ξ1 − η1〉2s
+

1

〈ξ1〉2(1−s)〈ξ1 − η1〉2(2s−1)
dξ1 ∈ L∞η1

.

The proof is complete.

For semilinear equations whose non-linearity does not involve any derivatives, one can

afford to lose derivatives in multiplication statements. We give two useful results in this

context, the first being a consequence of Proposition 5.4.6.

Corollary 5.4.7. Let µ ∈ C∞(X) be a defining function for Y , i.e. µ|Y ≡ 0, dµ 6= 0 on Y ,

and µ vanishes on Y only. Suppose s > 1/2 and ` ∈ C are such that Re `+ 3/2 > s. Then

multiplication by µ`+ defines a continuous map Hs,k(X,Y )→ Hs−1,k(X,Y ) for all k ∈ N0.



5.4. ASYMPTOTICALLY DE SITTER SPACES: GLOBAL APPROACH 167

Proof. By the Leibniz rule, it suffices to prove the statement for k = 0. We have µ`+ ∈
HRe `+1/2−ε;∞(X,Y ) for all ε > 0: Indeed, the Fourier transform of χ(x)x`+ on R, with

χ ∈ C∞c (R), is bounded by a constant multiple of 〈ξ〉−Re `−1, which is an element of 〈ξ〉−rL2
ξ

if and only if r − Re ` − 1 < −1/2, i.e. if Re ` + 1/2 > r. Hence the corollary follows

from Proposition 5.4.6, since one has Re ` + 1/2 − ε ≥ s − 1 for some ε > 0 provided

Re `+ 3/2 > s.

Proposition 5.4.8. Let 0 ≤ s′, s1, s2 < 1/2 be such that s′ < s1 + s2 − 1/2, and let

k > (n− 1)/2. Then Hs1,k(X,Y ) ·Hs2,k(X,Y ) ⊂ Hs′,k(X,Y ).

Proof. Using the Leibniz rule, this reduces to the statement that Ys1,a1 · Ys2,b1 ⊂ Hs′ if

a+ b ≥ k. Splitting variables ξ = (ξ1, ξ
′), η = (η1, η

′), Lemma 5.4.2 in turn reduces this to

the observation that∫
〈ξ〉2s′

〈η〉2s1〈η′〉2a〈ξ − η〉2s2〈ξ′ − η′〉2b
dη

.

(∫
dη1

〈η1〉2(s1−s′)〈ξ1 − η1〉2s2
+

∫
dη1

〈η1〉2s1〈ξ1 − η1〉2(s2−s′)

)
×
∫

dη′

〈η′〉2a〈ξ′ − η′〉2b

is uniformly bounded in ξ by Lemma 5.4.3 in view of s′ < s1 + s2− 1/2 < min{s1, s2}, thus

s1 − s′ > 0 and s2 − s′ > 0, and s1 + s2 − s′ > 1/2, as well as a+ b > (n− 1)/2.

Corollary 5.4.9. Let p ∈ N and s = 1/2 − ε with 0 ≤ ε < 1/2p, and let k > (n − 1)/2.

Then u ∈ Hs,k(X,Y ) ⇒ up ∈ H0,k(X,Y ).

Proof. Proposition 5.4.8 gives u2 ∈ H1/2−2ε−ε′2,k for all ε′2 > 0, thus u3 ∈ H1/2−3ε−ε′3,k for

all ε′3 > 0, since ε′2 > 0 is arbitrary; continuing in this way gives up ∈ H1/2−pε−ε′p,k for all

ε′p > 0, and the claim follows.

5.4.3 A class of semilinear equations

Recall that we have a forward solution operator Sσ : Hs−1,k(Ω)•,− → Hs,k(Ω)•,− of Pσ,

defined in (5.4.1), provided s < 1/2− Imσ. Let us fix such s ∈ R and σ ∈ C. Undoing the

conjugation, we obtain a forward solution operator

S = µ−1/2µ−iσ/2+(n+1)/4Sσµ
iσ/2−(n+1)/4µ−1/2,
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with the mapping property

S : µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,− → µ(n−1)/4+Imσ/2Hs,k(Ω)•,−,

of �g − (n − 1)2/4 − σ2. Since g is a 0-metric, the natural vector fields to appear in a

nonlinear equation are 0-vector fields; see §5.4.5 for a brief discussion of these concepts.

However, since the analysis is based on ordinary Sobolev spaces relative to which one has

b-regularity (regularity with respect to the module M), we consider b-vector fields in the

non-linearities. In case one does use 0-vector fields, the solvability conditions can be relaxed;

see §5.4.4.

Theorem 5.4.10. Suppose s < 1/2− Imσ. Let

q : µ(n−1)/4+Imσ/2Hs,k(Ω)•,− × µ(n−1)/4+Imσ/2Hs,k−1(Ω; bT ∗ΩM)•,−

→ µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,−

be a continuous function with q(0, 0) = 0 such that there exists a continuous non-decreasing

function L : R≥0 → R satisfying

‖q(u, bdu)− q(v, bdv)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R.

Then there is a constant CL > 0 so that the following holds: If L(0) < CL, then for small

R > 0, there exists C > 0 such that for all f ∈ µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,− with norm ≤ C,

the equation (
�g −

(n− 1

2

)2
− σ2

)
u = f + q(u, bdu)

has a unique solution u ∈ µ(n−1)/4+Imσ/2Hs,k(Ω)•,−, with norm ≤ R, that depends contin-

uously on f .

Proof. Use the Banach fixed point theorem as in the proof of Theorem 5.2.6.

Remark 5.4.11. As in Theorem 5.2.6, we can also allow non-linearities q(u, bdu,�gu), pro-

vided

q : µ(n−1)/4+Imσ/2Hs,k(Ω)•,− × µ(n−1)/4+Imσ/2Hs−1,k(Ω; bT ∗ΩM)•,−

× µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,−
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→ µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,−

is continuous, q(0, 0, 0) = 0 and q has a small Lipschitz constant near 0.

5.4.4 Semilinear equations with polynomial non-linearities

Next, we want to find a forward solution of the semilinear PDE(
�g −

(n− 1

2

)2
− σ2

)
u = f + cµAupX(u) (5.4.9)

where c ∈ C∞(X̃), and X(u) =
∏q
j=1Xju is a q-fold product of derivatives of u along vector

fields Xj ∈M; recall the definition (5.4.3) of the moduleM. What follows is a computation

in the course of which we will obtain conditions on A, p, q which guarantee that the map

u 7→ cµAupX(u) satisfies the conditions of the map q in Theorem 5.4.10. Note that the

derivatives in the non-linearity lie in the module M (in coordinates: µ∂µ, ∂y), whereas, as

mentioned above, the natural vector fields are 0-derivatives (in coordinates: x∂x = 2µ∂µ

and x∂y = µ1/2∂y), but since it does not make the computation more difficult, we consider

module instead of 0-derivatives and compensate this by allowing any weight µA in front of

the non-linearity.

Rephrasing the equation (5.4.9) in terms of Pσ using ũ = µiσ/2−(n+1)/4+1/2u and f̃ =

µ−1/2+iσ/2−(n+1)/4f , we obtain

Pσũ = f̃ + cµAµ−1/2+iσ/2−(n+1)/4µ(p+q)(−iσ/2+(n−1)/4)ũp
q∏
j=1

(fj +Xj ũ)

= f̃ + cµ`ũp
q∏
j=1

(fj +Xj ũ),

(5.4.10)

where fj ∈ C∞(X̃) and

` = A+ (p+ q − 1)(−iσ/2 + (n− 1)/4)− 1. (5.4.11)

Therefore, if ũ ∈ Hs,k(Ω)•,−, we obtain that the right hand side of the equation lies in

Hs,k−1(Ω)•,− if f̃ ∈ Hs,k−1(Ω)•,−, s > 1/2, k > (n + 1)/2, which by Proposition 5.4.5
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implies that Hs,k−1(Ω)•,− is an algebra, and if

Re `+ 1/2 = A+ (p+ q − 1)(Imσ/2 + (n− 1)/4)− 1/2 > s, (5.4.12)

since this condition ensures that µ` ∈ Hs,∞(X), which implies that multiplication by µ` is a

bounded map Hs,k−1(Ω)•,− → Hs,k−1(Ω)•,−.20 Given the restriction (5.4.4) on s and Imσ,

we see that by choosing s > 1/2 close to 1/2, Imσ < 0 close to 0, we obtain the condition

p+ q > 1 +
4(1−A)

n− 1
. (5.4.13)

If these conditions are satisfied, the right hand side of equation (5.4.10) is an element of

Hs,k−1(Ω)•,− ⊂ Hs−1,k(Ω)•,−, so Theorem 5.4.10 is applicable, and thus (5.4.9) is well-posed

in these spaces. For instance, from (5.4.13) with A = 0, we see that quadratic non-linearities

are fine for n ≥ 6, cubic ones for n ≥ 4.

To sum this up, we revert back to u = µ(n−1)/4−iσ/2ũ and f = µ(n+3)/4−iσ/2f̃ :

Theorem 5.4.12. Let s > 1/2, k > (n + 1)/2, and assume A ∈ R and p, q ∈ N0, p +

q ≥ 2 satisfy condition (5.4.12). Moreover, suppose σ ∈ C satisfies (5.4.4), i.e. Imσ <

1/2 − s. Finally, let c ∈ C∞(M̃) and X(u) =
∏q
j=1Xju, where Xj are vector fields in

M. Then for small enough R > 0, there exists a constant C > 0 such that for all f ∈
µ(n+3)/4+Imσ/2Hs,k(Ω)•,− with norm ≤ C, the PDE(

�g −
(n− 1

2

)2
− σ2

)
u = f + cµAupX(u)

has a unique solution u ∈ µ(n−1)/4+Imσ/2Hs,k(Ω)•,−, with norm ≤ R, that depends contin-

uously on f .

The same conclusion holds if the non-linearity is a finite sum of terms of the form

cµAupX(u), provided each such term separately satisfies (5.4.4).

Proof. Reformulating the PDE in terms of ũ and f̃ as above, this follows from an application

20If one works in higher regularity spaces, s ≥ 3/2, we in fact only need Re ` + 3/2 > s, since then
multiplication by µ` is a bounded map Hs,k−1(Ω)•,− ⊂ Hs−1,k(Ω)•,− → Hs−1,k(Ω)•,−. However, the
solvability criterion (5.4.13) would be weaker, namely the role of the dimension n shifts by 2, since in order
to use s ≥ 3/2, we need Imσ < −1.
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of the Banach fixed point theorem to the map

Hs,k(Ω)•,− 3 ũ 7→ Sσ

(
f̃ + µ`ũp

q∏
j=1

(fj +Xj ũ)

)
∈ Hs,k(Ω)•,−

with ` given by (5.4.11) and fj ∈ C∞(X̃). Here, p + q ≥ 2 and the smallness of R ensure

that this map is a contraction on the metric ball of radius R in Hs,k(Ω)•,−.

Remark 5.4.13. Even though the above conditions force Imσ < 0, let us remark that the

conditions of the theorem, most importantly (5.4.12), can be satisfied if m2 = (n− 1)2/4 +

σ2 > 0 is real, which thus means that we are in fact considering a nonlinear equation

involving the Klein-Gordon operator �g − m2. Indeed, let σ = iσ̃ with σ̃ < 0, then

condition (5.4.12) with A = 0, p+ q = 2, becomes σ̃ > 2− (n− 1)/2 (where we accordingly

have to choose s > 1/2 close, depending on σ̃, to 1/2), and the requirement σ̃ < 0 forces

n ≥ 6. On the other hand, we want (n−1)2/4− σ̃2 = m2 > 0; we thus obtain the condition

0 < m2 <

(
n− 1

2

)2

−
(

2− n− 1

2

)2

for masses m that Theorem 5.4.12 can handle, which does give a non-trivial range of allowed

m for n ≥ 6.

Remark 5.4.14. Let us compare the numerology in Theorem 5.4.12 with the numerology

for the static model of an asymptotically de Sitter space in §5.2: First, we can solve fewer

equations globally on asymptotically de Sitter spaces, and second, we need stronger regu-

larity assumptions in order to make an iterative argument work: In the static model, we

needed to be in a b-Sobolev space of order > (n+ 2)/2, which in the non-blown-up picture

corresponds to 0-regularity of order > (n + 2)/2, see §5.4.5, whereas in the global version,

we need a background Sobolev regularity > 1/2, relative to which we have ‘b-regularity’

(i.e. regularity with respect to the module M) of order > (n+ 1)/2. This comparison is of

course only a qualitative one, though, since the underlying geometries in the two cases are

different.

Using Proposition 5.4.6 and Corollary 5.4.7, one can often improve this result. Thus,

let us consider the most natural case of equation (5.4.9) in which we use 0-derivatives

Xj , corresponding to the 0-structure on the not even-ified manifold X, and no additional

weight. The only difference this makes is if there are tangential 0-derivatives (in coordinates:
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µ1/2∂y). For simplicity of notation, let us therefore assume that Xj = µ1/2X̃j , 1 ≤ j ≤ α,

and Xj = X̃j , α < j ≤ q, where the X̃j are merely vector fields inM. Then the PDE (5.4.9),

rewritten in terms of Pσ, ũ and f̃ , becomes

Pσũ = f̃ + cµ`ũp
q∏
j=1

(f̃j + X̃j ũ) (5.4.14)

with f̃j ∈ C∞(X̃), where

` = α/2 + (p+ q − 1)(−iσ/2 + (n− 1)/4)− 1.

First, suppose that there are no derivatives in the non-linearity so that p ≥ 2, q = α = 0.

Then µ`ũp ∈ Hs−1,k(Ω)•,− provided Re ` + 3/2 > s > 1/2 by Corollary 5.4.7; choosing s

arbitrarily close to 1/2, this is equivalent to

Imσ/2 + (n− 1)/4 > 0. (5.4.15)

This is a very natural condition: The solution operator for the linear wave equation produces

solutions with asymptotics µ(n−1)/4±iσ/2, given the numerology (5.2.9) and recalling that

we are working with the even-ified manifold with boundary defining function µ = x2; the

nonlinear equation (5.4.9) should therefore only be well-behaved if solutions to the linear

equation decay at infinity, i.e. if ± Imσ + (n − 1)/4 ≥ 0. Since we need Imσ < 0 to be

allowed to take s > 1/2, condition (5.4.15) is equivalent to the (small) decay of solutions to

the linear equation at infinity (where µ = 0).

Next, let us assume that q > 0. Then the nonlinear term in equation (5.4.14) is an

element of

µ`Hs,k(Ω)•,− ·Hs,k−1(Ω)•,− ⊂ Hs,k−1(Ω)•,−

by Proposition 5.4.6, provided Re `+ 1/2 > s > 1/2, which gives the condition

Imσ/2 + (n− 1)/4 > 1− α/2

where we again choose s > 1/2 arbitrarily close to 1/2, i.e. for α = 2, we again get condition

(5.4.15), and for α > 2, we get an even weaker one.

Finally, let us discuss a nonlinear term of the form cµAup, p ≥ 2, in the setting of even
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lower regularity 0 ≤ s < 1/2, the technical tool here being Corollary 5.4.9: Rewriting the

PDE (5.4.9) with this non-linearity in terms of Pσ, ũ and f̃ , we get

Pσũ = f̃ + cµ`ũp, ` = A+ (p− 1)(−iσ/2 + (n− 1)/4)− 1.

Let s = 1/2 − ε with 0 ≤ ε < 1/2p. Then if ũ ∈ H1/2−ε,k(Ω)•,− with k > (n − 1)/2,

Corollary 5.4.9 yields ũp ∈ H0,k(Ω)•,−, thus

µ`ũp ∈ H0,k(Ω)•,− ⊂ Hs−1,k(Ω)•,−

provided Re ` ≥ 0, i.e.

n > 1 +
4(1−A)

p− 1
− 2 Imσ, (5.4.16)

where we still require Imσ < 1/2− s = ε, which in particular allows σ to be real if ε > 0.

In summary:

Theorem 5.4.15. Let p ≥ 2 be an integer, 1/2 − 1/2p < s ≤ 1/2, k > (n − 1)/2, and

suppose σ ∈ C is such that Imσ < 1/2 − s. Moreover, assume A ∈ R and the dimension

n satisfy condition (5.4.16). Then for small enough R > 0, there exists a constant C > 0

such that for all f ∈ µ(n+3)/4+Imσ/2Hs,k(Ω)•,− with norm ≤ C, the PDE(
�g −

(n− 1

2

)2
− σ2

)
u = f + cµAup

has a unique solution u ∈ µ(n−1)/4+Imσ/2Hs,k(Ω)•,−, with norm ≤ R, that depends contin-

uously on f .

In particular, if 1/4 < s < 1/2, 0 < Imσ < 1/2 − s and A = 0, then quadratic

non-linearities are fine for n ≥ 5; if Imσ = 0 and A = 0, then they work for n ≥ 6.

Backward solutions to semilinear equations with polynomial non-linearities

Let us briefly turn to the backward problem for (5.4.9), which we rephrase in terms of Pσ

as above. For simplicity, let us only consider the ‘least sophisticated’ conditions, namely

s > 1/2, k > (n+ 1)/2,

A+ (p+ q − 1)(Imσ/2 + (n− 1)/4)− 1/2 > s, (5.4.17)
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and the important change compared to the forward problem is that now s > 1/2 − Imσ,

which guarantees the existence of the backward solution operator S−σ . Thus, if Imσ > 0 is

large enough and s > 1/2 satisfies (5.4.17), then (5.4.9) is solvable in any dimension.

In the special case that we only consider 0-derivatives and no extra weight, which cor-

responds to putting A = q + α/2, we obtain the condition

Imσ >
4(1− q − α/2)− (p+ q − 1)(n− 1)

2(p+ q + 1)

if we choose s > 1/2− Imσ close to 1/2, which in particular allows Imσ ≥ 0, and thus σ2

arbitrary, if p > 1 + 4
n−1 (so p ≥ 2 is acceptable if n ≥ 6) or q + α/2 ≥ 1.

5.4.5 From static parts to global asymptotically de Sitter spaces

Let us consider the equation

(�g −m2)u = f + q(u, 0du), (5.4.18)

where the reason for using the 0-differential 0d, see below, will be given momentarily. The

idea is that every point in X lies in the interior of the backward light cone from some point

p at future infinity Y+, denoted Sp; that is, the blow-up of X at p contains the static part Sp

of an asymptotically de Sitter space where the solvability statements have been explained

in §5.2. Consider a suitable neighborhood Ωp ⊂ [X; p] of the static patch as in §5.2, so

the boundary of Ωp is the union of ∂Sp and an ‘artificial’ spacelike boundary, which on

the non-blown-up space X all meet at the point p. In fact, we may choose the Ωp in a

fashion that is uniform in p, using the construction in §2.2.2, see in particular (2.2.16). We

then solve equation (5.4.18) on Ωp, thereby obtaining a forward solution up, and by local

uniqueness for �g − m2 in X, all such solutions agree on their overlap, i.e. up ≡ uq on

Ωp∩Ωq. Therefore, we can define a function u by setting u = up on Ωp, p ∈ Y+, which then

is a solution of (5.4.18) on X. To make this precise, we need to analyze the relationships

between the function spaces on the Ωp, p ∈ Y+, and X. As we will see in Lemma 5.4.16

below, b-Sobolev spaces on the blow-ups Ωp of X at boundary points are closely related to

0-Sobolev spaces on X.

Recall the definition of 0-Sobolev spaces on a manifold with boundary M (for us, M =

X) with a 0-metric, i.e. a metric of the form x−2ĝ with x a boundary defining function,



5.4. ASYMPTOTICALLY DE SITTER SPACES: GLOBAL APPROACH 175

where ĝ extends non-degenerately to the boundary; 0-geometry was introduced in [81] to

analyze the resolvent on asymptotically hyperbolic spaces: If V0(M) = xV(M) denotes the

Lie algebra of 0-vector fields, where V(M) are smooth vector fields on M , and Diff∗0(M) the

enveloping algebra of 0-differential operators, then

Hk
0 (M) =

{
u ∈ L2(M,dvol) : Pu ∈ L2(M,dvol), P ∈ Diffk0(M)

}
,

and Hk,`
0 (M) = x`Hk

0 (M) when x is a boundary defining function. For clarity, we shall

write L2
0(M) = L2(M,dvol). We also recall the definition of the 0-(co)tangent spaces: If

Ip denotes the ideal of C∞(M) functions vanishing at p ∈ M , then the 0-tangent space at

p is defined as 0TpM = V0(M)/Ip · V0(M), and the 0-cotangent space at p, 0T ∗pM , as the

dual of 0TpM . In local coordinates (x, y) ∈ Rx × Rn−1
y near the boundary of M , we have

dvol = f(x, y)dxx
dy
xn−1 with f smooth and non-vanishing, and V0(M) is spanned by x∂x and

x∂y; also x∂x and x∂yj , j = 2, . . . , n, form a basis of 0TpM (for p ∈ ∂M , which is the only

place where 0-spaces differ from the standard spaces), and dx
x ,

dyj
x , j = 2, . . . , n, form a

basis of 0T ∗pM . The exterior derivative d induces the first order 0-differential operator 0d

on sections of Λ0TM ; this follows from

df = (∂xf) dx+ (∂yf) dy = (x∂xf)
dx

x
+ (x∂yf)

dy

x
.

Now, let Ω ⊂ X be a domain as in §5.4.1. Moreover, let βp : Ωp → X be the blow-down

map. We then have:

Lemma 5.4.16. Let k ∈ N0, ` ∈ R. Then there are constants C > 0 and Cδ > 0 such that

for all δ > 0,

‖f‖
H
k,`−(n−1)/2−δ
0 (Ω)•

≤ Cδ sup
p∈Y+

‖β∗pf‖Hk,`
b (Ωp)•,−

≤ CCδ‖f‖Hk,`
0 (Ω)•

. (5.4.19)

Here, (•) indicates supported distributions at the ‘artificial’ boundary and (−) extendible

distributions at all other boundary hypersurfaces.

Proof. Let us work locally near a point p ∈ Y+; since Y+
∼= Sn−1 is compact, all constructions

are uniform in p. The only possible issues are near the boundary Y+ = {x = 0}, with x

a boundary defining function; hence, let us work in a product neighborhood Y+ × [0, 2ε)x,

ε > 0, of Y+, and let us assume u is supported is Y+ × [0, ε].
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We use coordinates x, y2, . . . , yn such that yj = 0 at p. Coordinates on Ωp are then

x, Y2, . . . , Yn with Yj = yj/x, i.e. βp(x, Y ) = (x, xY ), with the restriction
∑n

j=2 |Yj |2 ≤ 1.

Therefore,

‖β∗pf‖2L2
b
≈
∫

Ωp

|β∗pf(x, Y )|2 dx
x
dY =

∫
βp(Ωp)

|f(x, xY )|2 dx
x
dY

≤
∫
|f(x, y)|2 dx

x

dy

xn−1
≈ ‖f‖2L2

0
.

Adding weights to this estimate is straightforward. Next, we observe

x∂x(β∗pf)(x, Y ) = x∂xf(x, xY ) + Y x∂yf(x, xY )

∂Y (β∗pf)(x, Y ) = x∂yf(x, xY ),
(5.4.20)

and since |Y | is bounded on Ωp, we conclude that β∗pf ∈ H1
b(Ωp) is equivalent to f , x∂xf ,

x∂yf ∈ L2
0(βp(Ωp)), which proves the second inequality in (5.4.19) in the case k = 1; the

general case is similar.

For the first inequality in (5.4.19), we first note that the additional weight comes from

the number of static parts, i.e. interiors of backward light cones from points in Y+, that one

needs to cover any fixed half space {x ≥ x0}: Namely, for 0 < x0 ≤ ε, let B(x0) ⊂ Y+ be

a set of points such that every point in {x ≥ x0} lies in Ωp for some p ∈ B(x0); then we

can choose B(x0) such that |B(x0)| ≤ Cx−(n−1)
0 , where | · | denotes the number of elements

in a set. This follows from the observation that the area of the slice x = x0 of Ωp within

Y+
∼= Sn−1 is bounded from below by cxn−1

0 for some p-independent constant c > 0, where

we fix a volume element on Sn−1. Indeed, note that null-geodesics of the 0-metric g are,

up to reparametrization, the same as null-geodesics of the conformally related metric x2g,

which is a non-degenerate Lorentzian metric up to Y+. See also Figure 5.3 below.

Thus, putting α = (n− 1)/2 + δ, δ > 0, we estimate

∫
x≤ε
|xαf(x, y)| dx

x

dy

xn−1
=

∞∑
j=0

∫
2−j−1ε<x≤2−jε

|xαf(x, y)|2 dx
x

dy

xn−1

.
∞∑
j=0

2−2αj
∑

p∈B(2−j−1ε)

‖β∗pf‖2L2
b
.
∞∑
j=0

2−2αj(2−j−1ε)−(n−1) sup
p∈Y+

‖β∗pf‖2L2
b

.
∞∑
j=0

2−j(2α−n+1) sup
p∈Y+

‖β∗pf‖2L2
b
,
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with the sum converging since 2α − n + 1 = 2δ > 0. Weights and higher order Sobolev

spaces are handled similarly, using (5.4.20).

In particular, this explains why in equation (5.4.18) we take d = 0d : Hk,`
0 (X) →

Hk−1,`
0 (X; 0T ∗X), namely this is necessary in order to make the global equation interact

well with the static patches.

Since we want to consider local problems to solve the global one, the non-linearity q

must be local in the sense that q(u, 0du)(p) for p ∈ X only depends on p and its arguments

evaluated at p; let us for simplicity assume that q is in fact a polynomial as in (5.2.15).

Using Corollary 5.2.9, we then obtain:

Theorem 5.4.17. Let 0 ≤ ε < ε0 with ε0 as in §5.2.3, and s > max(3/2 + ε, n/2 + 1),

s ∈ N. Let

q(u, 0du) =
∑

2≤j+|α|≤d

qjαu
j
∏
k≤|α|

Xα,ku,

qj,α ∈ C+Hs
0(X), Xα,k ∈ V0(M). Then there exists C > 0 such that for all f ∈ Hs−1,ε

0 (Ω)•

with norm ≤ C, the equation

(�g −m2)u = f + q(u, 0du)

has a unique solution u ∈
⋂
δ>0H

s,ε−(n−1)/2−δ
0 (Ω)• that depends continuously on f . Here,

we allow m = 0 if every summand of q contains at least one 0-derivative, and require m > 0

if this is not the case, e.g. if q = q(u) is simply the sum of (multiples of) power of u.

The analogous conclusion also holds for �gu = f + q(0du) provided ε > 0, with the

solution u being in
⋂
δ>0H

s,−(n−1)/2−δ
0 (Ω)•. Moreover, for all p ∈ Y+, the limit u∂(p) :=

limp′→p,p′∈X u(p′) exists, u∂ ∈ C0,ε(Y+), and u − u∂(φ ◦ µ) ∈ xεC0(X), where φ ◦ µ is

identically 1 near Y+ and vanishes near the ‘artificial’ boundary of Ω.

Proof. We start by proving the first part: If f ∈ Hs−1,ε
0 (Ω)•, then fp = β∗pf ∈ H

s−1,ε
b (Ωp)

is a uniformly bounded family in the respective norms by Lemma 5.4.16. We can then use

Corollary 5.2.9 to solve

(�g −m2)up = fp + q(up,
bdup)

in the static part Ωp, where we use that q is a polynomial and the fact that bT ∗p′Ωp naturally

injects into 0T ∗βp(p′)Ω for p′ ∈ Ωp to make sense of the non-linearity; we thus obtain a

uniformly bounded family up = ũp|Ωp ∈ Hs,ε
b (Ωp)

•,−. By local uniqueness and since f
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vanishes near Y−, we see that the function u, defined by u(βp(p
′)) = up(p

′) for p ∈ Y+,

p′ ∈ Ωp, is well-defined, and by Lemma 5.4.16, we indeed have u ∈ Hs,ε−(n−1)/2−δ
0 (Ω)• for

all δ > 0.

For the second part, we follow the same strategy, obtaining solutions up = cp(φ◦µ)+u′p

of

�gup = fp + q(bdup),

where cp ∈ C and u′p ∈ H
s,ε
b (Ωp)

•,− are uniformly bounded, thus up is uniformly bounded in

Hs,−δ
b (Ω)• for every fixed δ > 0, and therefore the existence of a unique solution u follows

as before. Put u∂(p) := cp, then u∂(p) = limp′→p,p′∈Ωp u(p′), since u′p ∈ xεC0(Ωp) by the

Sobolev embedding theorem. We first prove that u∂ so defined is ε-Hölder continuous. Let

us work in local coordinates (x, y) near a point (0, y0) in Y+. Now, u′p is uniformly bounded

in xεC0(Ωp), and since for x0 > 0 arbitrary, we have cp1 + u′p1
(x0, y∗) = cp2 + u′p2

(x0, y∗)

for all p1, p2 ∈ Y+, provided |p1 − p2| ≤ cx0 for some constant c > 0, which ensures that

Ωp1 ∩ Ωp2 ∩ {x = x0} is non-empty and thus contains a point (x0, y∗) (see Figure 5.3), we

obtain

|cp1 − cp2 | = |u′p1
(x0, y∗)− u′p2

(x0, y∗)| ≤ Cxε0, |p1 − p2| ≤ cx0

for all x0, thus
|u∂(p1)− u∂(p2)|
|p1 − p2|ε

≤ C, p1, p2 ∈ Y+.

Figure 5.3: Setup for the proof of u∂ ∈ C0,ε(Y+): Shown are the backward light cones from
two nearby points p1, p2 ∈ Y+ that intersect within the slice {x = x0} at a point (x0, y∗).

This in particular implies that

|u(x, y)− u∂(0, y0)| ≤ |u(x, y)− u∂(0, y)|+ |u∂(0, y)− u∂(0, y0)|

≤ C(|y − y0|ε + xε)
x→0,y→y0−−−−−−−→ 0,

(5.4.21)
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hence we in fact have u∂(p) = limp′→p,p′∈X u(p′). Finally, putting y = y0 in (5.4.21) proves

that u− u∂(φ ◦ µ) ∈ xεC0(X).

The major lossy part of the argument is the conversion from f to the family β∗pf : Even

though the second inequality in Lemma 5.4.16 is optimal (e.g., for functions which are

supported in a single static patch), one loses (n−1)/2 orders of decay relative to the gluing

estimate, i.e. the first inequality in Lemma 5.4.16, which is used to pass from the family up

to u. Observe on the other hand that the decay properties of u, without regard to those of f ,

in the first part of the theorem are very natural, since the constant function 1 is an element

of
⋂
δ>0H

∞,−(n−1)/2−δ
0 (X), thus u has an additional decay of ε relative to constants.

Remark 5.4.18. For the proof of Theorem 5.4.17, it is irrelevant whether certain 0-Sobolev

spaces are algebras, since the main analysis, Corollary 5.2.9, is carried out on b-Sobolev

spaces.

5.5 Lorentzian scattering spaces

5.5.1 The linear Fredholm framework

We now consider n-dimensional non-trapping asymptotically Minkowski spacetimes (M, g),

a notion which includes the radial compactification of Minkowski spacetime. This notion

was briefly recalled in §5.1; here we restate this in the notation of [8, §3] where this notion

was introduced.

Thus, M is compact with smooth boundary, with a boundary defining function ρ (we

switch the notation from τ mainly to emphasize that ρ is not everywhere timelike), and

scattering vector fields V ∈ Vsc(M), introduced in [83], are smooth vector fields of the form

ρV ′, V ′ ∈ Vb(M). Hence, if the zj are local coordinates on ∂M extended to a neighborhood

in M , then a local basis of these vector fields over C∞(M) is ρ2∂ρ, ρ∂zj . Correspondingly,

Vsc(M) is the set of smooth sections of a vector bundle scTM , which is therefore, roughly

speaking, ρbTM . The dual bundle, called the scattering cotangent bundle, is denoted by

scT ∗M . If M is the radial compactification of Rn, then Vsc(M) is spanned by (the lifts

of) the translation invariant vector fields over C∞(M). (Recall from §2.1.3 that the radial

compactification means gluing a sphere at infinity to Rn via the reciprocal polar coordinate

map (r, ω) 7→ (r−1, ω) ∈ (0, 1)ρ×Sn−1
ω , i.e. adding ρ = 0 to the right hand side, corresponding

to ‘r = ∞’.) The vector field ρ2∂ρ is well-defined up to a positive factor at ρ = 0, and is
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called the scattering normal vector field.

Definition 5.5.1. A Lorentzian scattering metric g is a Lorentzian signature, taken to be

(1, n − 1), metric on scTM , i.e. a smooth symmetric section of scT ∗M ⊗ scT ∗M with this

signature with the following additional properties:

(1) There is a real C∞ function v defined on M with dv, dρ linearly independent at ‘the

light cone at infinity,’ S = {v = 0, ρ = 0},

(2) g(ρ2∂ρ, ρ
2∂ρ) has the same sign as v at ρ = 0, thus ρ2∂ρ is timelike in v > 0, spacelike

in v < 0;

(3) near S,

g = v
dρ2

ρ4
−
(dρ
ρ2
⊗ α

ρ
+
α

ρ
⊗ dρ

ρ2

)
− h̃

ρ2
,

where α is a smooth one-form on M ,

α =
1

2
dv +O(v) +O(ρ),

h̃ is a smooth 2-cotensor on M , which is positive definite on the (codimension two)

annihilator of dρ and dv.

A Lorentzian scattering metric is non-trapping if

(1) S = S+ ∪ S− (each a disjoint union of connected components), in X = ∂M the open

set {v > 0}∩X decomposes as C+∪C− (disjoint union), with ∂C+ = S+, ∂C− = S−;

we write C0 = {v < 0} ∩X,

(2) the projections of all null-bicharacteristics in scT ∗M \ o to M tend to S± as their

parameter tends to ±∞ or vice versa.

Since a conformal factor only reparameterizes bicharacteristics, this means that with

ĝ = ρ2g, which is a b-metric on M , the projections of all null-bicharacteristics of ĝ in

bT ∗M \ o tend to S±. As already pointed out in §5.1, the difference between the de Sitter-

type and Minkowski settings is that at the spherical conormal bundle bSN∗S of S, the

nature of the radial points is source/sink rather than a saddle point of the flow at L±

discussed in §§3.3.1 and 5.2.
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We first state solvability properties, namely we show that under the assumptions of

[8, §3], the problem of finding a tempered solution to �gw = f is a Fredholm problem in

suitable weighted Sobolev spaces. In particular, there is only a finite dimensional obstruction

to existence. Then we strengthen the assumptions somewhat and show actual solvability in

the strong sense that in these spaces the solution w satisfies that if f is vanishing to infinite

order near C−, then so does w.

Let

L = ρ−(n−2)/2ρ−2�gρ
(n−2)/2 ∈ Diff2

b(M) (5.5.1)

be the ‘conjugated’ b-wave operator (as in [8, §4]), which is formally self-adjoint with respect

to the density of the Lorentzian b-metric

ĝ = ρ2g, (5.5.2)

further

L = �ĝ − γ,

where γ ∈ C∞(M) is real-valued. Let

m ∈ C∞(bS∗M) a variable (Sobolev) order function, decreasing along

the direction of the Hamilton flow oriented to the future, i.e. towards S+.
(5.5.3)

Remark 5.5.2. In the actual application of asymptotically Minkowski spaces, one can take

m to be a function on M rather than bS∗M by making it take constant values near C+,

resp. C−, corresponding to the requirements at R+, resp. R− below, and transitioning in

between using a time function t̃ as introduce in the discussion preceding Theorem 5.5.4, i.e.

making m of the form F ◦ t̃ for appropriate F . Since this simplifies some arguments below,

we assume this whenever it is convenient.

With

R+ = bSN∗S+, resp. R− = bSN∗S−,

the future, resp. past, radial sets in bS∗M , see [8, §3.6], and with

m+ l < 1/2 at R+, m+ l > 1/2 at R−,



182 CHAPTER 5. SEMILINEAR WAVE EQUATIONS

m constant near R+ ∪R−, one has an estimate

‖u‖
Hm,l

b
≤ C‖Lu‖

Hm−1,l
b

+ C‖u‖
Hm′,l

b

, (5.5.4)

provided one assumes m′ < m,

m′ + l > 1/2 at R−, u ∈ Hm′,l
b .

To see this, we recall and record a slight improvement of [8, Proposition 4.4]:

Proposition 5.5.3. Suppose L is as above.

If m + l < 1/2, and if u ∈ H−∞,lb (M) then R± (and thus a neighborhood of R±) is

disjoint from WFm,lb (u) provided R± ∩WFm−1,l
b (Lu) = ∅ and a punctured neighborhood of

R±, with R± removed, in Σ ∩ bS∗M is disjoint from WFm,lb (u).

On the other hand, if m′ + l > 1/2, m ≥ m′, u ∈ H−∞,lb (M) and if WFm
′,l

b (u) ∩
R± = ∅ then R± (and thus a neighborhood of R±) is disjoint from WFm,lb (u) provided

R± ∩WFm−1,l
b (Lu) = ∅.

Proof. The first statement is proved in [8, Proposition 4.4]. The second statement follows

the same way, but in that case the product of the required powers of the boundary defining

functions, ρ−2lρ̂−2m+1, with ρ̂ the defining function of fiber infinity21 as in §3.3.1, in the

commutant of [8, Proposition 4.4] provides a favorable sign, thus [8, Equation (4.1)] holds

without the E term. However, when regularizing, the regularizer contributes a term with the

opposite sign, exactly as in [114, Proof of Propositions 2.3-2.4]; this forces the requirement

on the a priori regularity, namely WFm
′,l

b (u) ∩R± = ∅, exactly as in the referred results of

[114]; see also Proposition 3.3.8 above.

Indeed, due to the closed graph theorem, (5.5.4) follows immediately from the b-radial

point regularity statements of Proposition 5.5.3 for sources/sinks, and the propagation of

b-singularities for variable order Sobolev spaces, which is not proved in [8], but whose ana-

logue in standard Sobolev spaces is proved there in [8, Proposition A.1] (with additional

references given to related results in the literature), and as it is a purely symbolic argu-

ment, the extension to the b-setting is straightforward, cf. Proposition 3.3.8 here and [8,

Proposition 4.4] extending the radial point results, Propositions 2.3-2.4, of [114], from the

boundaryless setting to the b-setting.

21This defining function is denoted by ν in [8].
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One also has a similar estimate for L when one replaces m by a weight m̃ which is

increasing along the direction of the Hamilton flow oriented towards the past,

m̃+ l̃ > 1/2 at R+, m̃+ l̃ < 1/2 at R−,

provided one assumes m̃′ < m̃,

m̃′ + l̃ > 1/2 at R+, u ∈ Hm̃′,l̃
b .

Further L can be replaced by L∗. Thus,

‖u‖
Hm̃,l̃

b

≤ C‖L∗u‖
Hm̃−1,l̃

b

+ C‖u‖
Hm̃′,l̃

b

. (5.5.5)

Just as in the asymptotically de Sitter/Kerr-de Sitter settings, one wants to improve

these estimates so that the space Hm,l
b , resp. Hm̃,l̃

b , on the left hand side includes compactly

into the error term on the right hand side. This argument is completely analogous to §5.2.1

using the Mellin transformed normal operator estimates obtained in [8, §5]. We thus further

assume that there are no poles of the Mellin conjugate L̂(σ) on the line Imσ = −l. Then

using the Mellin transform and the estimates for L̂(σ) (including the high energy estimates,

which imply that for all but a discrete set of l the aforementioned lines do not contain such

poles), as in §5.2.1, we obtain that on R+ × ∂M

‖v‖
Hm̂,l

b
≤ C‖N(L)v‖

Hm̂−1,l
b

(5.5.6)

when m̂ ∈ C∞(S∗∂M) is a variable order function decreasing along the direction of the

Hamilton flow oriented to the future, Λ+, resp. Λ−, the future, resp. past, radial sets in

S∗∂M , and with

m̂+ l < 1/2 at Λ+, m̂+ l > 1/2 at Λ−.

One can take

m̂ = m|T ∗∂M ,

for instance, under the identification of T ∗∂M as a subspace of bT ∗∂MM by means of the

boundary defining function ρ (see §2.1.1), taking into account that homogeneous degree

zero functions on T ∗∂M \ o are exactly functions on S∗∂M , and analogously on bT ∗∂MM .
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However, in the limit σ → ∞, one should use norms depending on σ reflecting the depen-

dence of the semiclassical norm on h. We recall from Remark 5.5.2 that in the main case of

interest one can take m to be a pullback from M , and thus the Mellin transformed operator

norms are independent of σ. In either case, we simply write m in place of m̂.

Again, we have an analogous estimate for N(L∗):

‖v‖
Hm̃,l̃

b

≤ C‖N(L∗)v‖
Hm̃−1,l̃

b

, (5.5.7)

provided −l̃ is not the imaginary part of a pole of L̂∗, and provided m̃ satisfies the require-

ments above. As L̂∗(σ) = (L̂)∗(σ), the requirement on −l̃ is the same as l̃ not being the

imaginary part of a pole of L̂.

At this point the argument in §5.2.1, which in turn followed §3.2.1, can be repeated

verbatim to yield that for m with m+ l > 3/2 at R− (with the stronger restriction coming

from the requirements on m′ at R−, m̃′ at R+, and m′ < m−1, m̃′ < m̃−1; recall that one

needs to estimate the normal operator on these primed spaces), and m+ l < 1/2 at R+,

‖u‖
Hm,l

b
≤ C‖Lu‖

Hm−1,l
b

+ C‖u‖
Hm′+1,l−1

b

, (5.5.8)

where now the inclusion Hm,l
b → Hm′+1,l−1

b is compact (as we choose m′ < m − 1); this

argument required m, l,m′ satisfied the requirements preceding (5.5.4), and that −l is not

the imaginary part of any pole of L̂.

Analogous estimates hold for L∗:

‖u‖
Hm̃,l̃

b

≤ C‖L∗u‖
Hm̃−1,l̃

b

+ C‖u‖
Hm′+1,l̃−1

b

, (5.5.9)

provided m̃, l̃, m̃′ satisfy the requirements stated before (5.5.5), m̃′ < m̃− 1, and provided

−l̃ is not the imaginary part of a pole of L̂∗ (i.e. l̃ of L̂).

Via the same functional analytic argument as in §5.2.1 we thus obtain Fredholm prop-

erties of L, in particular solvability, modulo a (possible) finite dimensional obstruction, in

Hm,l
b if

m+ l > 3/2 at R−, m+ l < −1/2 at R+. (5.5.10)

More precisely, we take m̃ = 1 − m, l̃ = −l, so m + l < −1/2 at R+ means m̃ + l̃ =

1 − (m + l) > 3/2, so the space on the left hand side of (5.5.8) is dual to that in the first
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term on the right hand side of (5.5.9), and the same for the equations interchanged. Then

the Fredholm statement holds for

L : Xm,l → Ym−1,l,

where

X s,r =
{
u ∈ Hs,r

b : Lu ∈ Hs−1,r
b

}
, Ys,r = Hs,r

b .

Note that, by propagation of singularities, i.e. most importantly using Proposition 5.5.3,

with KerL ⊂ Hm,l
b , KerL∗ ⊂ H1−m,−l

b a priori,

KerL ⊂ Hm[,l
b , KerL∗ ⊂ H1−m[,−l

b (5.5.11)

if m[ + l > 1/2 at R−, m[ + l < 1/2 at R+.

Using the same argument, we can thus improve (5.5.10) using the propagation of singu-

larities. Namely, suppose one merely has

m+ l > 3/2 at R−, m+ l < 1/2 at R+, (5.5.12)

so the requirement at R+ is weakened. Then let m] = m−1 near R+, m] ≤ m everywhere,

but still satisfying the requirements for the order function along the Hamilton flow, so

the Fredholm result is applicable with m] in place of m. Now, if u ∈ Xm],l, Lu = f ,

f ∈ Ym−1,l ⊂ Ym]−1,l, then Proposition 5.5.3 gives u ∈ Xm,l. Further, if KerL and KerL∗

are trivial, this gives that for m, l as in (5.5.12), satisfying also the conditions along the

Hamilton flow, L : Xm,l → Ym−1,l is invertible.

Now, as invertibility (the absence of kernel and cokernel) is preserved under sufficiently

small perturbations, it holds in particular for perturbations of the Minkowski metric which

are Lorentzian scattering metrics in our sense, with closeness measured in smooth sections

of the second symmetric power of bT ∗M . (Note that non-trapping is also preserved under

such perturbations.)

For more general asymptotically Minkowski metrics we note that, due to Theorem 5.2.3

(which does not have any requirements for the timelike nature of the boundary defining

function, and which works locally near C− either by working on (extendible) function spaces

or by using the localization given by wave propagation as in §3.3 of [114] or §5.4.1 here)

elements of KerL on Hm,l
b , with m, l as above, lie in Ċ∞(M) locally near C− provided all
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resonances, i.e. poles of L̂(σ), in Imσ < −l have polar parts (coefficients of the Laurent

series) that map into distributions supported on C+. As shown in [117, Remark 4.17]

when L̂(σ) arises from a Lorentzian conic metric as in22 [117, Equation (3.5)], but with

the arguments applicable without significant changes in our more general case, see also

[8, §7] for our general setting, and [114, Remark 4.6] for a related discussion with complex

absorption, the resonances of L̂(σ) consist of the resonances of the asymptotically hyperbolic

resolvents on the caps, namely RC+(σ), RC−(−σ), as well as possibly imaginary integers,

σ ∈ iZ \ {0}, with resonant states when Imσ < 0 being differentiated delta distributions

at S+ = ∂C+ while the dual states are differentiated delta distributions at S− = ∂C−

when Imσ > 0; the latter arise, e.g. as poles on even dimensional Minkowski space. More

generally, when composed with extension of C∞c (C− ∪C0) by zero to C∞(X) from the right

and with restriction to C− ∪C0 from the left, the only poles of L̂(σ) are those of RC−(−σ)

as well as the possible σ ∈ iN+. Thus, fixing l > −1, one can conclude that elements of

KerL are in Ċ∞(M) locally near C− provided RC−(σ̃) has no poles in Im σ̃ > l. (The only

change for l ≤ −1 is that one needs to exclude the potential pure imaginary integer poles

as well.) The analogous statement for KerL∗ on Hm̃,l̃
b is that fixing l̃ > −1, elements are

in Ċ∞(M) near C+ provided RC+(σ̃) has no poles in Im σ̃ > l̃. As l̃ = −l for our duality

arguments, the weakest symmetric assumption (in terms of strength at C+ and C−) is that

RC± do not have any poles in the closed upper half plane; here the closure is added to

make sure L is actually Fredholm on Hm,l
b with l = 0. In general, if one wants to use other

values of l, one needs to assume the absence of poles in Imσ ≥ −|l| (if one wants to keep

the hypotheses symmetric).

Note that assuming dρ
ρ is timelike (with respect to ĝ, defined in (5.5.2)) near C−, one

automatically has the absence of poles of RC− in an upper half plane, and the finiteness

(with multiplicity) of the number of poles in any upper half plane, by the semiclassical

estimates of [114, §§3.2, 7.2] (one can ignore the complex absorption discussion there), so in

this case the issue is that of a possible finite number of resonances. There is an analogous

statement if dρ
ρ is timelike near C+ for RC+ .

Now, assuming still that dρ
ρ is timelike at, hence near C−, it is easy to construct a

22In [117], the boundary defining function used to define the Mellin transform is replaced by its reciprocal,
which effectively switches the sign of σ in the operator, but also the backward propagator is considered
(propagating toward the past light cone), which reverses the role of σ and −σ again, so in fact, the signs
in [117] and [8] agree for the formulae connecting the asymptotically hyperbolic resolvents and the global

operator, L̂(σ).
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function t which has a timelike differential near C−, and appropriate sublevel sets are small

neighborhoods of C−. Once one has such a function t, energy estimates can be used to

conclude that rapidly vanishing, in such a neighborhood, solutions of Lu = 0 actually

vanish in this neighborhood, so elements of KerL have support disjoint from C−; similarly

elements of KerL∗ have support disjoint from C+.

Concretely, with Ĝ the dual b-metric of ĝ, let U− be a neighborhood of C−, and let

0 < ε0 < ε1, ε̃ > 0, δ > 0 be such that {ρ ≤ ε̃, v ≥ −ε1} ∩ U− is a compact subset of U−,

and on U−

ρ < ε̃, v > −ε1 ⇒ Ĝ
(dρ
ρ
,
dρ

ρ

)
> δ,

ρ < ε̃, −ε1 < v < −ε0 ⇒ Ĝ
(dρ
ρ
, dv
)
< 0, Ĝ(dv, dv) > 0.

Such U− and constants indeed exist. First, there is U− and ε̃′ > 0, ε′1 > 0 such that

{ρ ≤ ε̃′, v ≥ −ε′1} ∩U− is a compact subset of U− since C− is defined by {ρ = 0, v ≥ 0} in

a neighborhood of C− with dρ 6= 0 there and dv 6= 0 near v = 0; we then consider ε̃ < ε̃′,

ε1 < ε′1 below. Next, since Ĝ(dρρ ,
dρ
ρ ) is positive on a neighborhood of C− by assumption

(thus for any sufficiently small ε1, ε̃ there is a desired δ so that the first inequality is satisfied)

and Ĝ(dρρ , dv)|S− = −2, any sufficiently small ε1 and ε̃ give Ĝ(dρρ , dv) < 0 in the desired

region, and finally Ĝ(dv, dv) > 0 on C0 near S− (as Ĝ(dv, dv) = −4v + O(v2) there), so

choosing ε1 sufficiently small, ε0 < ε1, and then ε̃ sufficiently small satisfies all criteria.

Now let ε−, ε+ be such that 0 < ε− < ε+ < ε̃, and let φ ∈ C∞(R) have φ′ ≤ 0, φ = 0 near

[−ε0,∞), φ > ε̃ near (−∞,−ε1], φ′ < 0 when φ takes values in [ε−, ε+]. Then t = ρ+ φ(v)

has the property that on U−

t ≤ ε+ ⇒ ρ, φ(v) ≤ ε+ ⇒ ρ < ε̃, v > −ε1,

and

v ≥ −ε0 ⇒ t = ρ.

Thus, on U− if v ≥ −ε0 and t ≤ ε+ then dt is timelike as dρ is such, while if v < −ε0, t ≤ ε+
then

Ĝ(dt, dt) = ρ2Ĝ
(dρ
ρ
,
dρ

ρ

)
+ 2φ′(v)ρĜ

(dρ
ρ
, dv
)

+ (φ′(v))2Ĝ(dv, dv)

and all terms are ≥ 0 in view of −ε1 < v < −ε0, ρ ≤ ε̃, with the inequality being strict when
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t ∈ [ε−, ε+] (as well as in M◦ ∩ t−1((−∞, ε+])). Thus, near t−1([ε−, ε+])∩U−, t is a timelike

function; the same is true on M◦ ∩ t−1((−∞, ε+]) ∩U−. Let χ ∈ C∞(R) with χ′ ≤ 0, χ = 1

near (−∞, ε−], χ = 0 near [ε+,∞), and let χ◦ t, defined by this formula in U−, be extended

to M as 0 outside U−; since t−1((−∞, ε+])∩U− is a compact subset of U−, this gives a C∞

function. Further, ρ is also timelike, with dρ
ρ and dt in the same component of the timelike

cone; see Figure 5.4. Correspondingly, one can apply energy estimates using the timelike

vector field V = (χ ◦ t)ρ−`Ĝ(dρρ , .), cf. [114, §3.3] leading up to Equation (3.24) and the

subsequent discussion, which in turn is based on [113, §§3-4]. Here one needs to make both

−χ′ large relative to χ and ` > 0 large (making the b-derivative of ρ−` large relative to

ρ−`), as discussed in the Mellin transformed setting in [114, §3.3], in [113, §§3-4], as well as

§4.1 here (with τ in place of ρ, but with the sign of ` reversed due to the difference between

b-saddle points and b-sinks/sources). Notice that taking ` large is exactly where the rapid

decay near C− is used.

Figure 5.4: Setup for energy estimates near C−: The shaded region is the support of χ′ ◦ t,
where −χ′ is used to dominate χ to give positivity in the energy estimate; near ρ = 0 and
on supp(χ ◦ t), i.e. in the region between ρ = 0 and the shaded region, a sufficiently large
weight ρ−` gives positivity.

We have seen that the existence of appropriate timelike functions, such as t, in a neigh-

borhood of C+ and C− is automatic (in a slightly degenerate sense at C± themselves) when
dρ
ρ is timelike in these regions; indeed these functions could be extended to a neighborhood

of C0 if v is appropriately chosen. In order to conclude that elements of KerL and KerL∗

vanish globally, however, we need to control all of the interior of M . This can be accom-

plished by showing global hyperbolicity23 of M◦, which in turn can be seen by applying a

result due to Geroch [53]. Namely, by [53, Theorem 11] it suffices to show that a suitable S
is a Cauchy surface, which by [53, Property 6] follows if we show that S is achronal, closed,

23In Geroch’s notation, our M◦ is M .
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and every null-geodesic intersects and then re-emerges from S. In order to define S, it is

useful to define t̂ = ψ ◦ t in U−, where ψ ∈ C∞(R), ψ′ ≥ 0, ψ(t) = t near t ≤ ε−, ψ′(t) > 0

for t < ε+, ψ′(t) = 0 for t ≥ ε+; let T = ψ(ε+) > ε−. Further, extend t̂ to M as = T outside

U−; since U−∩ t−1((−∞, ε+]) is compact, this gives a C∞ function on M . Thus, t̂ ∈ C∞(M)

is a globally weakly time-like function in that Ĝ(d̂t, d̂t) ≥ 0, and it is strictly time-like in

M◦ ∩ t−1((−∞, ε+)). In particular, it is monotone along all null-geodesics. Further, t̂ = 0

at S− and t̂ = T > 0 at S+, indeed near S+. Then we claim that S = t̂−1(ε−) ∩M◦ is a

Cauchy surface.

Now, S is closed in M◦ since S is closed in M ; indeed it is a closed embedded sub-

manifold. By our non-trapping assumption, every null-geodesic in M◦ tends to S+ in one

direction and S− in the other direction, so on future oriented null-geodesics (ones tending

to S+), t̂ is monotone increasing, attaining all values in (0, T ]. Since at the ε− level set

of t, hence of t̂, d̂t is strictly time-like, the value ε− is attained exactly once for t̂ along

null-geodesics. Thus, every null-geodesic intersects S and then re-emerges from it. Finally,

S is achronal, i.e. there exist no time-like curves connecting two points on S: any future

oriented time-like curve (meaning with tangent vector in the time-like cone whose boundary

is the future light cone) in M◦∩ t−1((−∞, ε+)) has t̂ monotone increasing, with the increase

being strict near S, so again the value ε− can be attained at most once on such a curve.

In summary, this proves that M◦ is globally hyperbolic, so every solution of Lu = 0 with

vanishing Cauchy data on S vanishes identically, in particular by what we have observed,

KerL and KerL∗ are trivial on the indicated spaces.

In summary:

Theorem 5.5.4. If (M, g) is a non-trapping Lorentzian scattering metric in the sense of

[8], |l| < 1, and

(1) The induced asymptotically hyperbolic resolvents RC± have no poles in Imσ ≥ −|l|,

(2) dρ
ρ is timelike near C+ ∪ C−,

then for order functions m ∈ C∞(bS∗M) satisfying (5.5.3) and (5.5.12), the forward problem

for the conjugated wave operator L, see (5.5.1), i.e. with L considered as a map

L : Xm,l → Ym−1,l,

is invertible.
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Extending the notation of [8], especially [8, §4], we denote by Hm,l,k
b (M), where m, l ∈

R, k ∈ N0, the space of all u ∈ Hm,l
b (M) (i.e. u ∈ ρlHm

b (M), where ρ is the boundary

defining function of M) such that Mju ∈ Hm,l
b (M) for all 0 ≤ j ≤ k. Here, M ⊂ Ψ1

b(M)

is the Ψ0
b(M)-module of pseudodifferential operators with principal symbol vanishing on

the radial set R+ of the operator L = ρ−(n−2)/2ρ−2�gρ(n−2)/2; in the coordinates ρ, v, y as

in [8] (ρ being as above, v a defining function of the light cone at infinity within ∂M , y

coordinates within in the light cone at infinity), M has local generators ρ∂ρ, ρ∂v, v∂v, ∂y.

Then the results of [8], concretely Proposition 4.4, extend our theorem to the spaces with

module regularity. Namely the reference guarantees the module regularity u ∈ Hm,l,k
b (M)

of a solution u of Lu = f if f has matching module regularity24 f ∈ Hm−1,l,k
b (M) and if u

is in Hm+k,l
b (M) near C−. If f ∈ Hm−1,l,k

b (M), then in particular f is locally in Hm+k−1,l
b

near C−, thus, taking into account that m + l > 1/2 already there, u is in Hm+k,l
b in that

region by Proposition 5.5.3 (by the first case there, i.e. in the high regularity regime). Thus,

an application of the closed graph theorem gives the following boundedness result:

Theorem 5.5.5. Under the assumptions of Theorem 5.5.4, L−1 has the property that it

restricts to

L−1 : Hm−1,l,k
b → Hm,l,k

b , k ≥ 0,

as a bounded map.

In particular, letting Ω = {̃t ≥ 0}, where t̃ = t̂− ε− so that it attains the value 0 within

M \ (C+ ∪C−), we have a forward solution operator S of L which maps Hm−1,l,k
b (Ω)• into

Hm,l,k
b (Ω)•, given that m+ l < 1/2; let us assume that m is constant in Ω. Here, Hm,l,k

b (Ω)•

consists of supported distributions at ∂Ω ∩ C◦0 = {̃t = 0}.

Remark 5.5.6. Using the arguments leading to Theorem 5.5.4 in the current, forward prob-

lem, setting, but now also using standard energy estimates near the artificial boundary

t̃ = 0 of Ω, we see that if suffices to control the resonances of the asymptotically hyperbolic

resolvent in the upper cap C+ in order to ensure the invertibility of the forward problem.

24This Proposition in [8] is stated making the stronger assumption, f ∈ Hm−1+k,l
b (M). However, the

proof goes through for just f ∈ Hm−1,l,k
b (M) in a completely analogous manner to the result of Haber and

Vasy [59, Theorem 6.3], where (in the boundaryless setting, for a Lagrangian radial set) the result is stated
in this generality.
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5.5.2 Algebra properties of b-Sobolev spaces with module regularity

In order to discuss nonlinear wave equations on an asymptotically Minkowski space, we need

to discuss the algebra properties of the spaces Hm,l,k
b . Even though we are only interested

in Hm,l,k
b (Ω)•, we consider Hm,l,k

b (M), where m is constant on M for notational simplicity,

and the results we prove below are valid for Hm,l,k
b (Ω)• by the same proofs.

We start with the following lemma:

Lemma 5.5.7. Let l1, l2 ∈ R, k > n/2. Then H0,l1,k
b ·H0,l2,k

b ⊂ H0,l1+l2−1/2,k
b .

Proof. The generators ρ∂ρ, ρ∂v, v∂v, ∂y ofM take on a simpler form if we blow up the point

(ρ, v) = (0, 0). It is most convenient to use projective coordinates on the blown-up space,

namely:

(1) Near the interior of the front face, we use the coordinates ρ̃ = ρ ≥ 0 and s = v/ρ ∈ R.

We compute ρ∂ρ = ρ̃∂ρ̃− s∂s, v∂v = s∂s, ρ∂v = ∂s; and since dρ
ρ dv dy = dρ̃ ds dy (this

is the b-density from H0,l,k
b ), the space H0,l,k

b becomes

Al,k := {u ∈ ρ̃lL2(dρ̃ ds dy) : Aju ∈ ρ̃lL2(dρ̃ ds dy), 0 ≤ j ≤ k},

where A is the C∞-module of differential operators generated by ∂s, ρ̃∂ρ̃, ∂y.

Now, observe that ρ̃lL2(dρ̃ ds dy) = ρ̃l−1/2L2(dρ̃ρ ds dy); therefore, we can rewrite

Al,k = {u ∈ ρ̃l−1/2L2(dρ̃ρ ds dy) : Aju ∈ ρ̃l−1/2L2(dρ̃ρ ds dy), 0 ≤ j ≤ k}

= ρ̃l−1/2Hk
b (dρ̃ρ ds dy).

In particular, by the Sobolev algebra property, Lemma 5.2.7, and the locality of the

multiplication, choosing k > n/2 ensures that ρ̃l1−1/2Hk
b · ρ̃l2−1/2Hk

b ⊂ ρ̃l1+l2−1Hk
b ,

which is to say Al1,k ·Al2,k ⊂ Al1+l2−1/2,k.

(2) Near either corner of the blown-up space, we use ṽ = v and t = ρ/v (say, ṽ ≥
0, t ≥ 0). We compute ρ∂ρ = t∂t, v∂v = ṽ∂ṽ − t∂t, ρ∂v = tṽ∂ṽ − t2∂t; and since
dρ
ρ dv dy = dt

t dṽ dy, the space H0,l,k
b becomes

Bl,k := {u ∈ (tṽ)lL2(dtt dṽ dy) : Bju ∈ (tṽ)lL2(dtt dṽ dy), 0 ≤ j ≤ k},
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where B is the C∞-module of differential operators generated by t∂t, ṽ∂ṽ, ∂y. Again,

we can rewrite this as

Bl,k = tlṽl−1/2Hk
b (dtt

dṽ
ṽ dy),

which implies that for k > n/2,

Bl1,k ·Bl2,k ⊂ tl1+l2vl1+l2−1Hk
b (dtt

dṽ
ṽ dy) ⊂ Bl1+l2−1/2,k.

To relate these two statements to the statement of the lemma, we use cutoff functions χA, χB

to localize within the two coordinate systems. More precisely, choose a cutoff function

χ ∈ C∞c (Rs) such that χ(s) ≡ 1 near s = 0, χ(s) = 0 for |s| ≥ 2, and χ1/2 ∈ C∞c (Rs).
Then multiplication with χA(ρ, v) := χ(v/ρ) is a continuous map H0,l,k

b → Al,k. Indeed,

to check this, one simply observes that MjχA ∈ L∞ for all j ∈ N0. Similarly, letting

χB(ρ, v) := 1−χA(ρ, v), multiplication with χB is a continuous map H0,l,k
b → Bl,k. Finally,

note that we have Al,k, Bl,k ⊂ H0,l,k
b .

To put everything together, take uj ∈ H
0,lj ,k
b (j = 1, 2), then

u1u2 = (χAu1)(χAu2) + (χBu1)(χBu2) + (χAu1)(χBu2) + (χBu1)(χAu2).

The first two terms then lie in H
0,l1+l2−1/2,k
b . To deal with the third term, write

(χAu1)(χBu2) = (χ
1/2
A u1)(χ

1/2
A χBu2) ∈ Al1,k ·Al2,k ⊂ H0,l1+l2−1/2,k

b ;

likewise for the fourth term. Thus, u1u2 ∈ H0,l1+l2−1/2,k
b , as claimed.

Remark 5.5.8. The proof actually shows more, namely that

H0,l,k
b H0,l′,k

b ⊂ ρ−1/2
ff H0,l+l′,k

b , (5.5.13)

where ρff is the defining function of the front face ρ = v = 0, e.g. ρff = (ρ2 + v2)1/2. The

reason for (5.5.13) to be a natural statement is that module- and b-derivatives are the same

away from ρ = v = 0, hence regularity with respect to the module M is, up to a weight,

which is a power of ρff, the same as b-regularity.

More abstractly speaking, the above proof shows the following: If ρb denotes a boundary
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defining function of the other boundary hypersurface of [M ;S+], i.e. ∂[M ;S+] \ ff, then

H0,l,k
b
∼= ρ

−1/2
ff (ρffρb)

lHk
b ([M ;S+]).

Note that one can also show this in one step, introducing the coordinates ρff ≥ 0 and

s = v/(ρ+ρff) ∈ [−1, 1] on [M ;S+] in a neighborhood of ff, and mimicking the above proof,

which however is computationally less convenient.

Remark 5.5.9. We can extend the lemma to Hm,l,k
b Hm,l′,k

b ⊂ Hm,l+l′−1/2,k
b for m ∈ N0 using

the Leibniz rule to distribute the m b-derivatives among the two factors, and then using

the lemma for the case m = 0.

The following corollary improves Lemma 5.5.7 if we have higher b-regularity; it will play

an important role in §5.5.5.

Corollary 5.5.10. Let k > n/2, 0 ≤ δ < 1/n and l, l′ ∈ R. Then

(1) H1,l,k
b H0,l′,k

b ⊂ H0,l+l′−1/2+δ,k
b .

(2) H1,l,k
b H1,l′,k

b ⊂ H1,l+l′−1/2+δ,k
b .

Proof. Take s = 1/(2δ) > n/2, then

Hs,l,k
b H0,l′,k

b ⊂ H0,l+l′,k
b ; (5.5.14)

indeed, using the Leibniz rule to distribute the k module derivatives among the two factors

and cancelling the weights, this amounts to showing thatHs,0,k1

b H0,0,k2

b ⊂ H0,0,0
b for k1+k2 ≥

k; but this is true even for k1 = k2 = 0, since Hs
b is a multiplier on H0

b provided s > n/2.

The lemma on the other hand gives

H0,l,k
b H0,l′,k

b ⊂ ρ−1/2H0,l+l′,k
b . (5.5.15)

Interpolating in the first factor between (5.5.14) and (5.5.15) thus gives the first statement.

For the second statement, use the Leibniz rule to distribute the one b-derivative to either

factor; then, one has to show H1,l,k
b H0,l′,k

b ⊂ H
0,l+l′−1/2+δ,k
b , and the same inclusion with l

and l′ switched, which is what we just proved.

Lemma 5.5.7 and Remark 5.5.8 imply that for u ∈ Hm,l,k
b , p ≥ 1, with m ≥ 0, k > n/2,

we have up ∈ Hm,pl−(p−1)/2,k
b ; in fact, up ∈ ρ−(p−1)/2

ff Hm,pl,k
b . Using Corollary 5.5.10, we can
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improve this to the statement u ∈ Hm,l,k
b ⇒ up ∈ Hm,pl−(p−1)/2+(p−1)δ,k

b for m ≥ 1.

For non-linearities that only involve powers up, we can afford to lose differentiability, as

at the end of §5.4.2, and gain decay in return, as the following lemma shows.

Lemma 5.5.11. Let α > 1/2, l ∈ R, k ∈ N0. Then ρ−αff H0,l,k
b ⊂ ρ1/2−αH−1,l,k

b , where

ρff = (ρ2 + v2)1/2.

Proof. We may assume l = 0, and that u is supported in |v| < 1, ρ < 1. First, consider the

case k = 0. Let u ∈ ρ−αff H0
b , and put

ũ(ρ, v, y) =

∫ v

−∞
u(ρ, w, y) dw,

so ∂vũ = u. We have to prove χũ ∈ ρ1/2−αH0
b if χ ≡ 1 near suppu, which implies u ∈ H−1

b ,

as ∂v : H0
b → H−1

b , and the b-Sobolev space are local spaces. But

|ũ(ρ, v, y)|2 ≤
(∫ 1

−1
ρff(ρ, w)2α|u(ρ, w, y)|2 dw

)∫ 1

−1
ρff(ρ, w)−2α dw; (5.5.16)

now, ∫ 1

−1
ρ−2α

ff dw = ρ1−2α

∫ 1/ρ

−1/ρ

dz

(1 + |z|2)α
. ρ1−2α

for α > 1/2, therefore, with the v integral considered on a fixed interval, say |v| < 2 (notice

that the right hand side in (5.5.16) is independent of v!),∫∫∫
ρ2α−1|ũ(ρ, v, y)|2 dρ

ρ
dv dy .

∫∫∫
ρ2α

ff |u(ρ, w, y)|2 dρ
ρ
dw dy,

proving the claim for k = 0. Now, ρ∂ρ and ∂y just commute with this calculation, so the

corresponding derivatives are certainly well-behaved. On the other hand, ∂vũ = u, so the

estimates involving at least one v-derivative are just those for u itself.

Corollary 5.5.12. Let k, p ∈ N be such that k > n/2, p ≥ 2. Let l ∈ R, u ∈ H0,l,k
b . Then

up ∈ H−1,lp−(p−1)/2+1/2−δ,k
b with δ = 0 if p ≥ 3 and δ > 0 if p = 2.

Proof. This follows from up ∈ ρ−(p−1)/2−δ
ff H0,lp,k

b and the previous lemma, using that (p −
1)/2 + δ > 1/2 with δ as stated.

In other words, we gain the decay ρ1/2−δ if we give up one derivative.
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5.5.3 A class of semilinear equations

We are now set to discuss solutions to nonlinear wave equations on an asymptotically

Minkowski space. Under the assumptions of Theorem 5.5.4, we obtain a forward solution

operator S : Hm−1,l,k
b (Ω)• → Hm,l,k

b (Ω)• of P = ρ−(n−2)/2ρ−2�gρ(n−2)/2 provided |l| < 1,

m+ l < 1/2 and k ≥ 0.

Undoing the conjugation, we obtain a forward solution operator of �g,

S̃ = ρ(n−2)/2Sρ−2ρ−(n−2)/2,

which is a bounded operator

S̃ : H
m−1,l+(n−2)/2+2,k
b (Ω)• → H

m,l+(n−2)/2,k
b (Ω)•.

Since g is a Lorentzian scattering metric, the natural vector fields to appear in a nonlinear

equation are scattering vector fields. Since the wave equation (as opposed to the Klein-

Gordon equation with non-zero mass) can be recast as a non-degenerate b-equation, we in

fact allow b-vector fields:

Theorem 5.5.13. Let

q : H
m,l+(n−2)/2,k
b (Ω)• ×Hm−1,l+(n−2)/2,k

b (Ω; bT ∗ΩM)• → H
m−1,l+(n−2)/2+2,k
b (Ω)•

be a continuous function with q(0, 0) = 0 such that there exists a continuous non-decreasing

function L : R≥0 → R satisfying

‖q(u, bdu)− q(v, bdv)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R.

Then there is a constant CL > 0 so that the following holds: If L(0) < CL, then for small

R > 0, there exists C > 0 such that for all f ∈ Hm−1,l+(n−2)/2+2,k
b (Ω)• with norm ≤ C, the

equation

�gu = f + q(u, bdu)

has a unique solution u ∈ Hm,l+(n−2)/2,k
b (Ω)•, with norm ≤ R, that depends continuously

on f .

Proof. Use the Banach fixed point theorem as in the proof of Theorem 5.2.6.
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Remark 5.5.14. Here, just as in Theorem 5.4.10, we can also allow q to depend on �gu as

well.

5.5.4 Semilinear equations with polynomial non-linearities

Next, we want to find a forward solution of the semilinear PDE

�gu = f + cupX(u),

where c ∈ C∞(M), p ∈ N0, and X(u) =
∏q
j=1 ρVj(u) is a q-fold product of derivatives of u

along scattering vector fields; here, Vj are b-vector fields. Let us assume p+ q ≥ 2 in order

for the equation to be genuinely nonlinear. We rewrite the PDE as

L(ρ−(n−2)/2u) = ρ−(n−2)/2−2f + cρ−2ρ(p−1)(n−2)/2(ρ−(n−2)/2u)p

×
q∏
j=1

ρVj(ρ
(n−2)/2ρ−(n−2)/2u).

Introducing ũ = ρ−(n−2)/2u and f̃ = ρ−(n−2)/2−2f yields the equation

Lũ = f̃ + cρ(p−1)(n−2)/2−2ũp
q∏
j=1

ρn/2(fj ũ+ Vj ũ)

= f̃ + cρ(p−1)(n−2)/2+qn/2−2ũp
q∏
j=1

(fj ũ+ Vj ũ), (5.5.17)

where the fj are smooth functions. Now suppose that ũ ∈ Hm,l,k
b (Ω)• with m + l < 1/2,

m ≥ 1 and k > n/2, so Hm−1,−∞,k
b (Ω)• is an algebra. Then the second summand of the

right hand side of (5.5.17) lies in Hm−1,`,k
b (Ω)•, where

` = (p− 1)(n− 2)/2 + qn/2− 2 + pl − (p− 1)/2 + ql − (q − 1)/2− 1/2.

For this space to lie in Hm−1,l,k
b (Ω)• (which we want in order to be able to apply the solution

operator S and land in Hm,l,k
b (Ω)• so that a fixed point argument as in §5.2 can be applied),

we thus need ` ≥ l, which can be rewritten as

(p− 1)(l + (n− 3)/2) + q(l + (n− 1)/2) ≥ 2. (5.5.18)
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With the amount m = 1 of b-regularity and correspondingly weight l < 1/2−m less than,

but close to −1/2, we thus get the condition

(p− 1)(n− 4) + q(n− 2) > 4.

If there are only non-linearities involving derivatives of u, i.e. p = 0, we get the condition

q > 1 + 2/(n− 2), i.e. quadratic non-linearities are fine for n ≥ 5, cubic ones for n ≥ 4.

Note that if q = 0, we can actually choose m = 0 and l < 1/2 close to 1/2, and we have

Corollary 5.5.12 at hand. Thus we can improve (5.5.18) to (p−1)(1/2+(n−3)/2) > 2−1/2,

i.e. p > 1 + 3/(n − 2), hence quadratic non-linearities can be dealt with if n ≥ 6, whereas

cubic non-linearities are fine as long as n ≥ 4. Observe that this condition on p always

implies p > 1, which is a natural condition, since p = 1 would amount to changing �g

into �g −m2 (if one chooses the sign appropriately). However, the Klein-Gordon operator

naturally fits into a scattering framework rather than the b-framework discussed here, i.e.

requires a different analysis; we will not pursue this further here.

To summarize the general case, we undo the conjugation used to define L in terms of �g:

Note that ũ ∈ Hm,l,k
b (Ω)• is equivalent to u ∈ Hm,l+(n−2)/2,k

b (Ω)•, and f̃ ∈ Hm−1,l,k
b (Ω)• to

f ∈ Hm−1,l+(n−2)/2+2,k
b (Ω)•. Thus:

Theorem 5.5.15. Let |l| < 1,m+ l < 1/2, k > n/2, and assume that p, q ∈ N0, p+ q ≥ 2,

satisfy condition (5.5.18) or the weaker conditions given above in the cases where p = 0

or q = 0; let m ≥ 0 if q = 0, otherwise let m ≥ 1. Moreover, let c ∈ C∞(M) and

X(u) =
∏q
j=1Xju, where Xj is a scattering vector field on M . Then for small enough

R > 0, there exists a constant C > 0 such that for all f ∈ H
m−1,l+(n−2)/2+2,k
b (Ω)• with

norm ≤ C, the equation

�gu = f + cupX(u)

has a unique solution u ∈ Hm,l+(n−2)/2,k
b (Ω)•, with norm ≤ R, that depends continuously

on f .

The same conclusion holds if the non-linearity is a finite sum of terms of the form

cupX(u), provided each such term separately satisfies (5.5.18).

Proof. Reformulating the PDE in terms of ũ and f̃ as above, this follows from an application
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of the Banach fixed point theorem to the map

Hm,l,k
b (Ω)• 3 ũ 7→ S

(
f̃ + cρ(p−1)(n−2)/2+qn/2−2ũp

q∏
j=1

(fj ũ+ Vj ũ)

)
∈ Hm,l,k

b (Ω)•

with m, l, k as in the statement of the theorem. Here, p + q ≥ 2 and the smallness of R

ensure that this map is a contraction on the ball of radius R in Hm,l,k
b (Ω)•.

Remark 5.5.16. If the derivatives in the non-linearity only involve module derivatives, we get

a slightly better result since we can work with ũ ∈ H0,l,k
b (Ω)•: Indeed, a module derivative

falling on ũ gives an element of H0,l,k−1
b (Ω)•, applied to which the forward solution operator

produces an element of H1,l,k−1
b (Ω)• ⊂ H0,l,k

b (Ω)•.

The numerology works out as follows: In condition (5.5.18), we now take l < 1/2 close

to 1/2, thus obtaining

(p− 1)(n− 2) + qn > 4.

Thus, in the case that there are only derivatives in the non-linearity, i.e. p = 0, we get

q > 1 + 2/n, which allows for quadratic non-linearities provided n ≥ 3.

Remark 5.5.17. We can further improve (5.5.18) in the case p ≥ 1, q ≥ 1, m ≥ 1 by using

the δ-improvement from Corollary 5.5.10, namely, the right hand side of (5.5.17) actually

lies in Hm−1,`,k
b (Ω)•, where now

` = (p− 1)(n− 2)/2 + qn/2− 2 + pl − (p− 1)/2 + (p− 1)δ + ql − (q − 1)/2− 1/2 + δ,

which satisfies ` ≥ l if

(p− 1)(l + (n− 3)/2 + δ) + q(l + (n− 1)/2) + δ ≥ 2,

which for l < −1/2 close to −1/2 means: (p − 1)(n − 4 + 2δ) + q(n − 2) + 2δ > 4, where

0 < δ < 1/n.

Remark 5.5.18. Let us compare the above result with Christodoulou’s [19]. A special case

of his theorem states that the Cauchy problem for the wave equation on Minkowski space

with small initial data in25 Hk,k−1(Rn−1) admits a global solution u ∈ Hk
loc(Rn) with decay

|u(x)| . (1 + (v/ρ)2)−(n−2)/2; here, k = n/2 + 2, and n is assumed to ≥ 4 and even; in

25Note that n is the dimension of Minkowski space here, whereas Christodoulou uses n+ 1.
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case n = 4, the non-linearity is moreover assumed to satisfy the null condition. The only

polynomial non-linearity that we cannot deal with using the above argument is thus the

null-form non-linearity in 4 dimensions.

To make a further comparison possible, we express Hk,δ(Rn−1) as a b-Sobolev space on

the radial compactification of Rn−1: Note that u ∈ Hk,δ(Rn−1) is equivalent to (〈x〉Dx)αu ∈
〈x〉−δL2(Rn−1), |α| ≤ k. In terms of the boundary defining function ρ of ∂Rn−1 and the

standard measure dω on the unit sphere Sn−2 ⊂ Rn−1, we have L2(Rn−1) = L2(dρ
ρ2

dy
ρn−2 ) =

ρ(n−1)/2L2(dρρ dy), and thus Hk,δ(Rn−1) = ρ(n−1)/2+δHk
b (̃t = 0). Therefore, converting

the Cauchy problem into a forward problem, the forcing lies in H
k,(n−1)/2+k−1,0
b (Ω)• =

H
n/2+2,n+1/2,0
b (Ω)•. Comparing this with the space H

0,l+(n−2)/2+2,n/2+1
b (with l < 1/2)

needed for our argument, we see that Christodoulou’s result applies to a regime of fast

decay which is disjoint from our slow decay (or even mild growth) regime.

Remark 5.5.19. In the case of non-linearities up, the result of Christodoulou [19] implies

the existence of global solutions to �gu = f + up if the spacetime dimension n is even and

n ≥ 4 if p ≥ 3; in even dimensions n ≥ 6, p ≥ 2 suffices; the above result extends this

to all dimensions satisfying the respective inequalities. In a somewhat similar context, see

the work of Chruściel and  Lȩski [21], it has been proved that p ≥ 2 in fact works in all

dimensions n ≥ 5.

5.5.5 Semilinear equations with null condition

With g the Lorentzian scattering metric on an asymptotically Minkowski space satisfying

the assumptions of Theorem 5.5.4 as before, define the null form Q(scdu, scdv) := gjk∂ju∂kv,

where scd : C∞(M) → C∞(M ; scT ∗M) is the scattering differential, defined analogously to

bd and 0d. For brevity, let us write Q(scdu) for Q(scdu, scdu). We are interested in solving

the PDE

�gu = Q(scdu) + f.

The previous discussion solves this for n ≥ 5; thus, let us from now on assume n = 4.

To make the computations more transparent, we will keep the n in the notation and

only substitute n = 4 when needed. Rewriting the PDE in terms of the operator L =

ρ−2ρ−(n−2)/2�gρ(n−2)/2 as above, we get

Lũ = f̃ + ρ−(n−2)/2−2Q(scd(ρ(n−2)/2ũ)),
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where ũ = ρ−(n−2)/2u and f̃ = ρ−(n−2)/2−2f . We can write Q(scdu) = 1
2�g(u

2) − u�gu,

thus the PDE becomes

Lũ = f̃ + ρ−(n−2)/2−2
(

1
2�g(ρ

n−2ũ2)− ρ(n−2)/2ũ�g(ρ
(n−2)/2ũ)

)
= f̃ + 1

2L(ρ(n−2)/2ũ2)− ρ(n−2)/2ũLũ.

Since the results of §5.5.2 give small improvements on the decay of products of H1,∗,∗
b

functions with Hm,∗,∗
b functions (m ≥ 0), one wants to solve this PDE on a function space

that keeps track of these small improvements.

Definition 5.5.20. For l ∈ R, k ∈ N0 and α ≥ 0, define the space X l,k,α := {v ∈
H1,l+α,k

b (Ω)• : Lv ∈ H0,l,k
b (Ω)•} with norm

‖v‖X l,k,α = ‖v‖
H1,l+α,k

b (Ω)•
+ ‖Lv‖

H0,l,k
b (Ω)•

. (5.5.19)

By an argument similar to the one used in the proof of Theorem 5.2.6, we see that

X l,k,α is a Banach space. On X l,k,α, which α > 0 chosen below, we want to run an iteration

argument: Start by defining the operator T : X l,k,α → H1,−∞,k
b (Ω)• by

T : ũ 7→ S
(
f̃ − ρ(n−2)/2ũLũ

)
+ 1

2ρ
(n−2)/2ũ2.

Note that ũ ∈ X l,k,α implies, using Corollary 5.5.10 with δ < 1/n,

ρ(n−2)/2ũ2 ∈ ρ(n−2)/2H
1,2(l+α)−1/2+δ,k
b (Ω)• = H

1,2l+α+(n−3)/2+δ+α,k
b (Ω)•,

ρ(n−2)/2ũLũ ∈ H0,2l+α+(n−3)/2+δ,k
b (Ω)•, (5.5.20)

S(ρ(n−2)/2ũLũ) ∈ H1,2l+α+(n−3)/2+δ,k
b (Ω)•,

where in the last inclusion, we need to require 1 + (2l+α+ (n− 3)/2 + δ) < 1/2, which for

n = 4 means

l < −1/2− (α+ δ)/2; (5.5.21)

let us assume from now on that this condition holds. Furthermore, (5.5.20) implies T ũ ∈
H

1,2l+α+(n−3)/2+δ,k
b (Ω)•. Finally, we analyze

L(T ũ) ∈ H0,2l+α+(n−3)/2+δ,k
b (Ω)• +

1

2
L(ρ(n−2)/2ũ2).
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Using that L is a second-order b-differential operator, we have

ρ(n−2)/2L(ũ2) ∈ 2ρ(n−2)/2ũLũ+ ρ(n−2)/2H0,l+α,k
b (Ω)•H0,l+α,k

b (Ω)•

⊂ H0,2l+α+(n−3)/2+δ,k
b (Ω)• +H

0,2(l+α)+(n−3)/2,k
b (Ω)•

= H
0,2l+α+(n−3)/2+min{α,δ},k
b (Ω)•,

which gives

L(ρ(n−2)/2ũ2) ∈ L(ρ(n−2)/2)ũ2 + ρ(n−2)/2L(ũ2)

+ ρ(n−2)/2H1,l+α,k
b (Ω)•H0,l+α,k

b (Ω)•

⊂ H1,2l+α+(n−3)/2+δ+α,k
b (Ω)• +H

0,2l+α+(n−3)/2+min{α,δ},k
b (Ω)•

+H
0,2l+α+(n−3)/2+δ+α
b (Ω)•

= H
0,2l+α+(n−3)/2+min{α,δ},k
b (Ω)•.

Hence, putting everything together,

L(T ũ) ∈ H0,2l+α+(n−3)/2+min{α,δ},k
b (Ω)•.

Therefore, we have T ũ ∈ X l,k,α provided

2l + α+ (n− 3)/2 + δ ≥ l + α

2l + α+ (n− 3)/2 + min{α, δ} ≥ l,

which for 0 < α < δ and n = 4 is equivalent to

l ≥ −1/2− δ, l ≥ −1/2− 2α. (5.5.22)

This is consistent with condition (5.5.21) if −1/2− (α+ δ)/2 > −1/2− 2α, i.e. if α > δ/3.

Finally, for the map T to be well-defined, we need Sf̃ ∈ X l,k,α, hence f̃ ∈ RanX l,k,α L,

which is in particular satisfied if f̃ ∈ H0,l+α,k
b (Ω)•. Indeed, since 1 + l+ α < 1− 1/2− (δ−

α)/2 < 1/2 by condition (5.5.21), the element Sf̃ ∈ H1,l+α,k
b (Ω)• is well-defined.

We have proved:

Theorem 5.5.21. Let c ∈ C, 0 < δ < 1/4, δ/3 < α < δ, and let −1/2 − 2α ≤ l <
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−1/2 − (α + δ)/2. Then for small enough R > 0, there exists a constant C > 0 such that

for all f ∈ H0,l+3+α,k
b (Ω)• with norm ≤ C, the equation

�gu = f + cQ(scdu)

has a unique solution u ∈ X l+1,k,α, with norm ≤ R, that depends continuously on f .



Chapter 6

Resonance expansions for

tensor-valued waves

6.1 Introduction

We study linear tensor-valued wave equations on perturbations of Schwarzschild-de Sitter

spaces (thus including Kerr-de Sitter spaces) with spacetime dimension n ≥ 4; in particular,

this includes wave equations for differential forms and symmetric 2-tensors. (We mention

symmetric 2-tensors here explicitly because of their role in the study of Einstein’s field

equations, which, as stated in Chapter 1, is one of the main motivations for large parts

of this thesis.) As mentioned in Remark 5.3.5, the additional complications of working on

sections of non-trivial bundles rather than on scalar functions are twofold: One needs to

prove high energy estimates, in a strip below the real line in order to obtain exponential

decay up to a finite-dimensional space of resonances, and one needs to understand this latter

space in case one wants to study nonlinear equations. In this chapter, we tackle the first

complication; in Chapter 7, the second, in the case that the bundle is the differential form

bundle and the operator is the Hodge d’Alembertian.

In the form that is easiest to state, we will prove:

Theorem 6.1.1. Let (M, g) denote a Kerr-de Sitter spacetime in n ≥ 4 spacetime di-

mensions, with small angular momentum. Let E ⊂ Tk be a subbundle of the bundle Tk of

(covariant) rank k tensors on M , so that the tensor wave operator �g = − tr∇2 acts on

sections of E; for instance, one can take E to be equal to Tk, symmetric rank k-tensors or

203
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differential forms of degree k. Let Ω denote a small neighborhood of the domain of outer

communications, bounded beyond but close to the cosmological and the black hole horizons

by spacelike boundaries as in §§2.3 and 2.4, and let t∗ be a smooth time coordinate on Ω,

given by (2.4.2). See Figure 2.5 for the setup.

Then for any f ∈ C∞c (Ω, E), the wave equation �gu = f has a unique global forward

solution (supported in the causal future of supp f) u ∈ C∞(Ω, E), and u has an asymptotic

expansion

u =
N∑
j=1

mj−1∑
m=0

dj∑
`=1

e−it∗σj tm∗ ujm`ajm`(x) + u′,

where ujm` ∈ C, the resonant states ajm`, only depending on �g, are smooth functions of the

spatial coordinates and σj ∈ C are resonances with Imσj > −δ (whose multiplicity is mj ≥ 1

and for which the space of resonant states has dimension dj), while u′ ∈ e−δt∗L∞(Ω, E) is

exponentially decaying, for δ > 0 small; we measure the size of sections of E by means of a

t∗-independent positive definite inner product.

The same result holds true if we add any stationary 0-th order term to �, and one can

also add stationary first order terms which are either small or subject to a natural, but

somewhat technical condition, which we explain in Remark 6.4.9. In fact, we can even work

on spacetimes which merely approach a stationary perturbation of Schwarzschild-de Sitter

space exponentially fast. See §6.2 for the form of the Schwarzschild-de Sitter metric and

the precise assumptions on regularity and asymptotics of perturbations, for details on the

setup, and Theorem 6.2.1 for the full statement of Theorem 6.1.1.

The resonances and resonant states depend strongly on the precise form of the operator

and which bundle one is working on. In the case of the trivial bundle, thus considering scalar

waves, they were computed in the Kerr-de Sitter setting by Dyatlov [40], following work by

Sá Barreto and Zworski [5] as well as Bony and Häfner [13]. In Chapter 7, we will compute

the resonances for the Hodge d’Alembertian on differential forms, which equals the tensor

wave operator plus a zeroth order curvature term: We show that there is only one resonance

σ1 = 0 in Imσ ≥ 0, of order m1 = 1, and we canonically identify the 0-resonant states with

cohomological information of the underlying spacetime. Note however that we will deal with

a very general class of warped product type spacetimes with asymptotically hyperbolic ends,

while the present chapter is only concerned with (perturbations of) Schwarzschild-de Sitter

spacetimes. We remark that in general one expects that �g = − tr∇2 on a bundle E as in
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Theorem 6.1.1 has resonances in Imσ > 0, thus causing linear waves to grow exponentially

in time.

We point out that if there are no resonances for �g (plus lower order terms) in Imσ ≥ 0,

thus solutions decay exponentially, we can combine Theorem 6.1.1 with the framework for

quasilinear wave-type equations developed in Chapters 8 and 9 and immediately obtain

the global solvability of quasilinear equations. This also works if there is merely a simple

resonance at σ = 0 which is annihilated by the nonlinearity. See Remark 7.5.3 for an

example for differential forms.

The proof of Theorem 6.1.1 is essentially the same as the proof of the analogous Theo-

rems 5.2.3 and 5.3.1. In the context of scalar waves, more general and precise versions of

Theorem 6.1.1 are known, see the references in §5.1.1. Thus, the main advance is that we

give a conceptually transparent framework that allows us to deal with tensor-valued waves

on black hole spacetimes, where the natural inner product on the tensor bundle induced by

the spacetime metric is not positive definite. Notice that in order to obtain energy estimates

for waves, one needs to work with positive inner products on the tensor bundle, relative to

which however � is in general not well-behaved: Most severely, it is in general far from being

symmetric at the trapped set, which prevents the use of semiclassical estimates at normally

hyperbolic trapping; see the statement of Theorem 3.3.14 for the role of symmetry for the

normally hyperbolic b-estimate. On a pragmatic level, we show that one can conjugate �

by a suitable 0-th order pseudodifferential operator so as to make the conjugated operator

(almost) symmetric at the trapped set with respect to a positive definite inner product,

and one can then directly apply Dyatlov’s methods [42] to obtain a spectral gap. In other

words, we reduce the high frequency analysis of tensor-valued waves to an essentially scalar

problem. The conceptually correct point of view to accomplish this conjugation is that of

pseudodifferential inner products, which we introduce in §6.3.

Roughly speaking, pseudodifferential inner products on E →M (with M a closed man-

ifold now for simplicity) replace ordinary inner products
∫
〈B0(u), v〉 |dg|, where B0 is an

inner product on the fibers of E , mapping E into its anti-dual E∗, by ‘inner products’ of

the form
∫
〈B(x,D)u, v〉 |dg|, where B ∈ Ψ0 is a zeroth order pseudodifferential operator

mapping sections of E into sections of E∗. Thus, we gain a significant amount of flexibility,

since we can allow the inner product to depend on the position in phase space, rather than

merely on the position in the base: Indeed, the principal symbol b = σ0(B) is an inner

product on the vector bundle π∗E over T ∗M \ o, where π : T ∗M \ o→M is the projection.
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One can define adjoints of operators P ∈ Ψm(M, E) (e.g. P = �g), acting on sections

of E , relative to a pseudodifferential inner product B, denoted P ∗B, which are well-defined

modulo smoothing operators. Moreover, there is an invariant symbolic calculus involving

the subprincipal operator Ssub(P ), which is a first order differential operator on T ∗M \ o
acting on sections of π∗E that invariantly encodes the subprincipal part of P , for computing

principal symbols of commutators and imaginary parts of such operators. In the case that P

is principally scalar and real, the principal symbol of P −P ∗B ∈ Ψm−1(M, E) then vanishes

in some conic subset of phase space T ∗M \ o if and only if Ssub(P )− Ssub(P )∗b does, which

in turn can be reinterpreted as saying that the principal symbol of QPQ−1 − (QPQ−1)∗B0

vanishes there, where B0 is an ordinary inner product on E , and Q ∈ Ψ0(M, E) is a suitably

chosen elliptic operator. In the case considered in Theorem 6.1.1 then, it turns out that

the subprincipal operator of �g on tensors, decomposed into parts acting on tangential

and normal tensors according to the product decompositions M = Rt × Xx and X =

(r−, r+) × Sn−2, at the trapped set equals the derivative along the Hamilton vector field

HG, G the dual metric function, plus a nilpotent zeroth order term. This then enables one

to choose a positive definite inner product b on π∗E relative to which Ssub(�g) is arbitrarily

close to being symmetric at the trapped set; see §6.3.5 for the argument in a toy example.

Thus with B = b(x,D), the operator �g is arbitrarily close to being symmetric with respect

to the pseudodifferential inner product B. Hence, one can indeed appeal to Dyatlov’s results

on spectral gaps by considering a conjugate of �g, which is the central ingredient in the

proof of Theorem 6.1.1.

We point out that refined microlocal propagation results, in the sense of polarization

sets, for systems were proved by Dencker [34], and in fact the subprincipal operator we

define here is very closely related to the partial connection along the Hamilton flow defined

in [34]; see also Remark 6.3.10.

6.1.1 Previous and related work

The study of non-scalar waves on black hole backgrounds has focused primarily on Maxwell’s

equations, which describe the electromagnetic field on Lorentzian spacetimes: Sterbenz and

Tataru [103] showed local energy decay for Maxwell’s equations on a class of spherically

symmetric asymptotically flat spacetimes including Schwarzschild. Blue [11] established

conformal energy and pointwise decay estimates in the exterior of the Schwarzschild black

hole; Andersson and Blue [3] proved similar estimates on slowly rotating Kerr spacetimes.
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These followed earlier results for Schwarzschild by Inglese and Nicolo [65] on energy and

pointwise bounds for integer spin fields in the far exterior of the Schwarzschild black hole,

and by Bachelot [4], who proved scattering for electromagnetic perturbations. Finster,

Kamran, Smoller and Yau [47] proved local pointwise decay for Dirac waves on Kerr. There

are further works which in particular establish bounds for certain components of the Maxwell

field, see Donninger, Schlag and Soffer [37] and Whiting [120]. Dafermos [22, 23] studied the

nonlinear Einstein-Maxwell-scalar field system under the assumption of spherical symmetry.

See §5.1.1 for further references.

We moreover point out that Vasy [112] proved the meromorphic continuation of the

resolvent of the Laplacian on differential forms on asymptotically hyperbolic spaces (fol-

lowing earlier works by Mazzeo and Melrose [81] and Guillarmou [57] in the scalar setting

and Mazzeo [79], Carron and Pedon [15] and Guillarmou, Moroianu and Park [58] for forms

and spinors; see also the work of Dyatlov, Faure and Guillarmou [45], which in particular

involves a discussion of Laplacians on compact hyperbolic manifolds acting on symmetric

tensors). The fact that the analysis presented in [114], which underlies [112], works on

sections of vector bundles just as it does on functions is crucial for us here.

6.2 Detailed setup and proof of the main theorem

We denote by Ω the domain (2.3.9) inside the extension M of Schwarzschild-de Sitter space

in n ≥ 4 spacetime dimensions, and equip M with the Schwarzschild-de Sitter metric g0,

which is a Lorentzian b-metric. Suppose g is a Lorentzian b-metric such that for some

smooth Lorentzian b-metric g′, we have g − g′ ∈ H∞,rb (Ω, S2bT ∗M) for some r > 0 as in

(5.2.11). Changing g′ so as to make it invariant under time translations does not affect

this condition, so let us assume g′ is t∗-invariant. We consider the wave operator �g

acting on sections of the bundle Tk of covariant tensors of rank k over Ω. We assume

that g′ and g0 are close (in the Ck sense for sufficiently high k), so that the dynamical and

geometric structure of g is close to that of g0; in other words, the metric g is exponentially

approaching a stationary metric close to the Schwarzschild-de Sitter metric, so for instance

perturbations (within this setting) of Kerr-de Sitter spaces are allowed. Most importantly,

the nature of the trapping for g′ (and thus for g) is still normally hyperbolic, and the

subprincipal operator (see §6.3.3) of �g at the trapped set, while not necessarily having

the nilpotent structure alluded to in the introduction and explained in §6.4.2, has small



208 CHAPTER 6. TENSOR-VALUED WAVES

imaginary part relative to (the symbol of) a pseudodifferential inner product on Tk. Recall

that the trapping for Schwarzschild-de Sitter space is r-normally hyperbolic for every r, and

r-normal hyperbolicity (for large, but finite r) is structurally stable under perturbations of

the metric, so this perturbation framework is indeed quite flexible. In the language of

Definition 2.5.1, our setup amounts to allowing non-trapping spacetimes with normally

hyperbolic trapping which are close to Schwarzschild-de Sitter space within this class of

spacetimes.

We then have:

Theorem 6.2.1. In the above notation, if g′ is sufficiently close to the Schwarzschild-

de Sitter metric g0, then there exist s0 ∈ R and δ > 0 as well as a finite set {σj : j =

1, . . . , N} ⊂ C, Imσj > −δ, integers mj ≥ 1 and dj ≥ 1, and smooth functions ajm` ∈
C∞(∂∞Ω), 1 ≤ j ≤ N , 0 ≤ m ≤ mj − 1, 1 ≤ ` ≤ dj, such that the following holds: The

equation

�gu = f, f ∈ Hs,δ
b (Ω, Tk)•,−, s ≥ s0, (6.2.1)

has a unique solution u ∈ H−∞,−∞b (Ω, Tk)•,−, which has an asymptotic expansion

u = χ(τ)
N∑
j=1

mj−1∑
m=0

dj∑
`=1

τ iσj | log τ |mujm`ajm` + u′,

where χ is a cutoff function, i.e. χ(τ) ≡ 1 near τ = 0 and χ(τ) ≡ 0 near the Cauchy surface

H1, and ujm` ∈ C, while the remainder term is u′ ∈ Hs,δ
b (Ω, Tk)•,−.

The same result holds true if we restrict to a subbundle of Tk which is preserved by the

action of �, for instance the degree k form bundle, or the symmetric rank k tensor bundle.

If V ∈ C∞(M,End(Tk)) + H∞,rb (Ω,End(Tk)), r > 0, is a smooth (conormal) End(Tk)-
valued potential (without restriction on its size), the analogous result holds for �g replaced

by �g +V . We may even change �g by adding a first order b-differential operator L acting

on Tk with coefficients which are elements of C∞ +H∞,rb , provided either the coefficients of

L are small, or the subprincipal operator of �g + L is sufficiently close to being symmetric

with respect to a pseudodifferential inner product on Tk, see Remark 6.4.9.

The numbers σj are of course the resonances, and the functions ajm` the resonant states.

They have been computed in various special cases; see the discussion in the introduction

for references. The threshold regularity s0 is related to the dynamics of the flow of the
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Hamiltonian vector field HG of the dual metric function G (i.e. G(x, ξ) = |ξ|2G(x), with G

the dual metric of g) near the horizons which are generalized radial sets, see §3.3.1. Thus,

s0 can easily be made explicit, but this is not the point of the present chapter.

The proof of Theorem 6.2.1 proceeds in the same way as the proofs of Theorems 5.2.3 and

5.3.1 using a contour deformation argument, regaining derivatives lost in view of treating

�g−N(�g) as a perturbation by appealing to the b-radial point and b-normally hyperbolic

trapping estimates from §§3.3.1 and 3.3.2. The main issue is to show high energy estimates

for �̂(σ)−1, see below. The fact that the remainder term u′ has the same regularity as the

forcing term f , thus u′ loses 2 derivatives relative to the elliptic gain of 2 derivatives, comes

from the high energy estimate losing a power of 2, which in turn is caused by the same loss

for high energy estimates at normally hyperbolic trapping, see [42, Theorem 1], and 9.2.5

for a microlocalized version of Dyatlov’s estimate, as well as Theorem 9.2.9 for the global

estimate (in the more general setting of non-trapping spacetimes with normally hyperbolic

trapping).

Thus, the crucial point is to obtain high energy estimates at the trapped set for the

operator � acting on Tk in Imσ > −δ. Dyatlov’s result [42, Theorem 1] (see also the

discussion preceding Theorem 9.2.5) shows that a sufficient condition for these to hold is

|σ|−1σb,1

( 1

2i
(�−�∗)

)
< νmin/2 (6.2.2)

at the trapped set Γ, where νmin is the minimal normal expansion rate of the Hamilton

flow at the trapping, see [42] and the computation in §2.3, in particular (2.3.11). Here, the

adjoint is taken with respect to a positive definite inner product on Tk; note that the inner

product induced by g, with respect to which� is of course symmetric, is not positive definite,

except when k = 0, i.e. for the scalar wave equation. Since g is close to the Schwarzschild-de

Sitter metric, it suffices (by the dynamical stability of the trapping) to obtain such a bound

for the Schwarzschild-de Sitter metric g0. While this bound is impossible to obtain directly

for the full range of Schwarzschild-de Sitter spacetimes, we show in §6.4.2 how it can be

obtained if we use pseudodifferential products. Prosaically, this means that we consider a

conjugated operator P := Q�Q−, where Q ∈ Ψ0
b(M, Tk) is elliptic with parametrix Q−,

and for any ε > 0, we can arrange |σ|−1σb,1( 1
2i(P −P

∗)) < ε (with the adjoint taken relative

to an ordinary positive definite inner product on Tk), thus (6.2.2) holds for � replaced by

P ; we will prove this in Theorem 6.4.8. Hence [42, Theorem 1] applies to P , establishing
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a spectral gap; indeed, by the remark following [42, Theorem 1], Dyatlov’s result applies

for operators on bundles as well, as soon as one establishes (6.2.2). Arranging (6.2.2) in a

natural fashion lies at the heart of §§6.3 and 6.4.

For later reference, we recall from (2.3.12) that the spacetime trapped set, i.e. the set

of points in phase space that never escape through either horizon along the Hamilton flow,

not restricted to future infinity, is given by

Γ = {(t, r = rp, ω;σ, ξ = 0, η) : σ2 = Ψ2|η|2}, (6.2.3)

where Ψ = αr−1, Ψ′(rp) = 0. We thus change the notation from Γ̃ in (2.3.12) to Γ here to

make the notation less cumbersome.

6.3 Pseudodifferential inner products

We now develop a general theory of pseudodifferential inner products, which we apply to

the setting of Theorem 6.2.1 in §6.4.

We work on a complex rank N vector bundle E over the smooth compact n-dimensional

manifold X without boundary. We will define pseudodifferential inner products on E , which

are inner products depending on the position in phase space T ∗X, rather than merely the

position in the base X. As indicated in the introduction, we achieve this by replacing

ordinary inner products by pseudodifferential operators whose symbols are inner products

on the bundle π∗E → T ∗X \ o, where π : T ∗X \ o→ X is the projection.

6.3.1 Notation

Let V be a complex N -dimensional vector space. We denote by V the complex conjugate

of V, i.e. V = V as sets, and the identity map ι : V → V is antilinear, so ι(λv) = λι(v) for

v ∈ V, λ ∈ C, which defines the linear structure on V. (We prefer to write ι(v) rather than

v to prevent possible confusion with taking complex conjugates in complexifications of real

vector spaces.) A Hermitian inner product H on V is thus a linear map H : V⊗V → C such

that H(u, ι(v)) = H(v, ι(u)) for u, v ∈ V, and H(u, ι(u)) > 0 for all non-zero u ∈ V. This

can be rephrased this in terms of the linear map B : V → V∗ defined by B(u) = H(u, ·) and

the natural dual pairing of V∗ with V, namely 〈Bu, ι(v)〉 = 〈Bv, ι(u)〉, and 〈Bu, ι(u)〉 > 0

for u ∈ V non-zero.
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A map A : V → V∗ has a transpose AT : V → V∗, which satisfies 〈Au, ι(v)〉 = 〈u,AT ι(v)〉
for all u, v ∈ V, and an adjoint A∗ : V → V∗ satisfying 〈Au, ι(v)〉 = 〈A∗v, ι(u)〉. Concretely,

defining the antilinear map

j : V∗ → V∗, 〈j(`), ι(v)〉 = 〈`, v〉,

we have A∗ = jAT ι. The symmetry of a Hermitian inner product B as above is simply

expressed by B = B∗. Similarly, a map P : V → V has a transpose P T : V∗ → V∗ and an

adjoint P ∗ : V∗ → V∗ defined by 〈`, ι(Pv)〉 = 〈P ∗`, ι(v)〉 for ` ∈ V∗ and v ∈ V, and one

easily finds P ∗ = jP T j−1. We point out that the definitions of adjoints of maps A : V → V∗

and P : V → V are compatible in the sense that (AP )∗ = P ∗A∗. Furthermore, if B : V → V∗

is a Hermitian inner product and Q : V → V is invertible, then B1 = Q∗BQ defines another

Hermitian inner product, 〈B1u, ι(v)〉 = 〈BQu, ι(Qv)〉.
Now, given an inner product B on V and any map P : V → V, the adjoint P ∗B of P

with respect to B is the unique map P ∗B : V → V such that 〈BPu, ι(v)〉 = 〈Bu, ι(P ∗Bv)〉
for all u, v ∈ V. We find a formula for P ∗B by computing

〈BPu, ι(v)〉 = 〈B∗(B∗)−1P ∗B∗v, ι(u)〉 = 〈Bu, ι((BPB−1)∗v)〉,

i.e. P ∗B = (BPB−1)∗ = B−1P ∗B. The self-adjointness of P with respect to B is thus

expressed by the equality P = B−1P ∗B.

If E is a complex rank N vector bundle, we can similarly define the complex conjugate

bundle E as well as adjoints of vector bundle maps E → E and E → E∗. We can also define

adjoints of pseudodifferential operators mapping between these bundles: For convenience,

we remove the dependence of adjoints on a volume density on X by tensoring all bundles

with the half-density bundle Ω
1
2 over X, and we have a natural pairing

(E∗ ⊗ Ω
1
2 )x × (E ⊗ Ω

1
2 )x 3 (`, ι(v)) 7→ 〈`, ι(v)〉 ∈ Ω1

x, x ∈ X,

likewise for the complex conjugate of E . Thus, an operator A ∈ Ψm(X, E ⊗ Ω
1
2 , E∗ ⊗ Ω

1
2 )

has an adjoint A∗ ∈ Ψm(X, E ⊗ Ω
1
2 , E∗ ⊗ Ω

1
2 ) defined by∫

X
〈A∗u, ι(v)〉 =

∫
X
〈Av, ι(u)〉,
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with principal symbol σm(A∗) = σm(A)∗ ∈ Sm(T ∗X \ o, π∗Hom(E , E∗)), and likewise P ∈
Ψm(X, E ⊗ Ω

1
2 ) has an adjoint P ∗ ∈ Ψm(X, E∗ ⊗ Ω

1
2 ) with σm(P ∗) = σm(P )∗.

6.3.2 Definition of pseudodifferential inner products; adjoints

We work with classical, i.e. one-step polyhomogeneous, symbols and operators, and denote

by Smhom(T ∗X \ o) symbols which are homogeneous of degree m with respect to dilations in

the fibers of T ∗X \ o.

Definition 6.3.1. A pseudodifferential inner product (or Ψ-inner product) on the vector

bundle E → X is a pseudodifferential operator B ∈ Ψ0(X; E ⊗Ω
1
2 , E∗ ⊗Ω

1
2 ) satisfying B =

B∗, and such that moreover the principal symbol σ0(B) = b ∈ S0
hom(T ∗X \o;π∗Hom(E , E∗))

of B satisfies

〈b(x, ξ)u, ι(u)〉 > 0 (6.3.1)

for all non-zero u ∈ Ex, where x ∈ X, ξ ∈ T ∗xX \ o. If the context is clear, we will also call

the sesquilinear pairing

C∞(X, E ⊗ Ω
1
2 )× C∞(X, E ⊗ Ω

1
2 ) 3 (u, v) 7→

∫
X
〈B(x,D)u, ι(v)〉

the pseudodifferential inner product associated with B.

In particular, the principal symbol b of B is a Hermitian inner product on π∗E . Con-

versely, for any b ∈ S0
hom(T ∗X \ o;π∗Hom(E , E∗)) satisfying b = b∗ and (6.3.1), there exists

a Ψ-inner product B with σ0(B) = b; indeed, simply take B̃ to be any quantization of b

and put B = 1
2(B̃ + B̃∗).

Remark 6.3.2. While we will develop the theory of Ψ-inner products only in the standard

calculus on a closed manifold, everything works mutatis mutandis in other settings as well.

Thus, in the b-calculus, see §3.3, Ψb-inner products on a manifold with boundary are defined

similarly to Ψ-inner products, except that adjoints are defined on the space Ċ∞ of functions

vanishing to infinite order at the boundary, and the space of ‘trivial,’ smoothing operators is

now Ψ−∞b , likewise for the scattering calculus [84], replacing ‘b’ by ‘sc.’ In the semiclassical

calculus on a closed manifold, adjoints are again defined on C∞, but the space of ‘trivial’

operators is now h∞Ψ−∞~ , and suitable factors of h need to be put in for computations

involving subprincipal symbols.

We next discuss adjoints of ps.d.o.s relative to Ψ-inner products.
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Definition 6.3.3. Let B be a Ψ-inner product, and let P ∈ Ψm(X, E ⊗ Ω
1
2 ), then P ∗B ∈

Ψm(X, E ⊗ Ω
1
2 ) is called an adjoint of P with respect to B if there exists an operator

R ∈ Ψ−∞(X, E ⊗ Ω
1
2 , E∗ ⊗ Ω

1
2 ) such that∫

〈BPu, ι(v)〉 =

∫
〈Bu, ι(P ∗Bv)〉+

∫
〈Ru, ι(v)〉 (6.3.2)

for all u, v ∈ C∞(X, E ⊗ Ω
1
2 ).

Remark 6.3.4. This definition and the following lemma have straightforward generalizations

to the case that P maps sections of E into sections of another vector bundle F , provided a

(Ψ-)inner product on F is given.

Lemma 6.3.5. In the notation of Definition 6.3.3, the adjoint of P with respect to B exists

and is uniquely determined modulo Ψ−∞(X, E ⊗ Ω
1
2 ). In fact, P = (BPB−)∗, where B−

is a parametrix for B. Moreover, (P ∗B)∗B = P modulo Ψ−∞(X, E ⊗ Ω
1
2 ). In particular,

ImB P = 1
2i(P − P

∗B) is self-adjoint with respect to B (i.e. its own adjoint modulo Ψ−∞).

Proof. Let B− be a parametrix of B and put RL = I −B−B ∈ Ψ−∞(X, E ⊗ Ω
1
2 ). Then∫

〈BPu, ι(v)〉 =

∫
〈BPB−Bu, ι(v)〉+ 〈BPRLu, ι(v)〉,

hence (6.3.2) holds with P ∗B = (BPB−)∗ and R = BPRL. To show the uniqueness of P ∗B

modulo smoothing operators, suppose that P̃ is another adjoint of P with respect to B,

with error term R̃ (i.e. (6.3.2) holds with P ∗B and R replaced by P̃ and R̃). Then∫
〈B(P ∗B − P̃ )v, ι(u)〉 =

∫
〈Bu, ι((P ∗B − P̃ )v)〉 =

∫
〈(R̃−R)u, ι(v)〉

=

∫
〈(R̃−R)∗v, ι(u)〉

for u, v ∈ C∞(X, E ⊗Ω
1
2 ), so B(P ∗B − P̃ ) = (R̃−R)∗ ∈ Ψ−∞(X, E ⊗Ω

1
2 , E∗⊗Ω

1
2 ), and the

ellipticity of B implies P ∗B − P̃ ∈ Ψ−∞(X, E ⊗ Ω
1
2 ), as claimed.

Since B is self-adjoint, we can assume that B− is self-adjoint by replacing it by 1
2(B−+

(B−)∗) (which changes B− by an operator in Ψ−∞). Then the second claim follows from

(P ∗B)∗B = (BP ∗BB−)∗ = B−BPB−B = P

modulo Ψ−∞(X, E ⊗ Ω
1
2 ).
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Lemma 6.3.6. Suppose P ∈ Ψm(X, E ⊗ Ω
1
2 ) is self-adjoint with respect to B. Then its

principal symbol p is self-adjoint with respect to b = σ0(B), i.e.

〈b(x, ξ)p(x, ξ)u, ι(v)〉 = 〈b(x, ξ)u, ι(p(x, ξ)v)〉, x ∈ X, ξ ∈ TxX,u, v ∈ Ex.

Proof. The hypothesis on P means (BPB−)∗ = P modulo Ψ−∞, thus on the level of

principal symbols, p = b−1p∗b = p∗b, which proves the claim.

We now specialize to the case that P ∈ Ψm(X, E ⊗ Ω
1
2 ) has a real, scalar principal

symbol. Fix a coordinate system of X and a local trivialization of E , then the full symbol of

P is a sum of homogeneous symbols p ∼ pm + pm−1 + . . ., with pj homogeneous of degree j

and valued in complex N ×N matrices. Recall from [64, §18] that the subprincipal symbol

σsub(P ) = pm−1(x, ξ)− 1

2i

∑
j

∂xjξjpm(x, ξ) ∈ Sm−1
hom (T ∗X \ o,CN×N ) (6.3.3)

is well-defined under changes of coordinates; however, it does depend on the choice of local

trivialization of E . We compute the principal symbol of

ImB P :=
1

2i
(P − P ∗B)

for such P in a local trivialization of E ; we will give an invariant formulation in Proposi-

tion 6.3.11 below.

Lemma 6.3.7. Let P ∈ Ψm(X, E⊗Ω
1
2 ) be a principally real and scalar, and let B = b(x,D)

be a Ψ-inner product on E. Then ImB P ∈ Ψm−1(X, E ⊗ Ω
1
2 ) has the principal symbol

σm−1(ImB P ) = Imb σsub(P ) +
1

2
b−1Hp(b), (6.3.4)

where Imb σsub(P ) = 1
2i

(
σsub(P )− σsub(P )∗b

)
. Here, we interpret b and σsub(P ) as N ×N

matrices of scalar-valued symbols using a local frame of E and the corresponding dual frame

of E∗, and the action of Hp is component-wise.

Proof. We compute in a local coordinate system over which E and E are trivialized by a

choice of N linearly independent sections e1, . . . , eN , and E∗ and E∗ are trivialized by the

dual sections e∗1, . . . , e
∗
N ∈ E∗ satisfying e∗i (ej) = δij , extended linearly as linear functionals

on E , resp. on E , in the case of E∗, resp. E∗. We trivialize Ω
1
2 using the section |dx|

1
2 . Let



6.3. PSEUDODIFFERENTIAL INNER PRODUCTS 215

bij(x, ξ) = 〈b(x, ξ)ej , ι(ei)〉, then b(x, ξ) = (bij(x, ξ))i,j=1,...,N , a linear map from the fibers

of E to the fibers of E∗, is the symbol of B in local coordinates: If u =
∑

j ujej |dx|
1
2 and

v =
∑

j vjej |dx|
1
2 , we have

〈b(x, ξ)u, ι(v)〉 =
∑
ij

bij(x, ξ)uj · vi|dx|,

thus ∫
〈Bu, ι(v)〉 =

∑
ij

∫
(bij(x,D)uj) · vj dx.

Note that b(x, ξ) is a Hermitian matrix, i.e. bij(x, ξ) = bji(x, ξ), and in fact B = b(x,D) is

self-adjoint (with respect to the standard Hermitian inner product on CN ). The adjoint of

P = p(x,D), which in local coordinates is simply an N ×N matrix of scalar ps.d.o.s, with

respect to B is the operator P̃ = p̃(x,D) such that∫
b(x,D)p(x,D)u · v dx =

∫
b(x,D)u · p̃(x,D)v dx+

∫
Ru · v dx, R ∈ Ψ−∞.

Let B− := b−(x,D) be a parametrix for b(x,D), in particular b−(x, ξ) = b(x, ξ)−1 modulo

S−1; we may assume B−(x,D)∗ = B−(x,D). We then have

p̃(x,D) = b−(x,D)p(x,D)∗b(x,D)

by Lemma 6.3.5. Write p(x, ξ) = pm(x, ξ) + pm−1(x, ξ) + . . ., then the full symbol of

P − P̃ = B−(BP − P ∗B) (where P ∗ is the adjoint of P with respect to the standard

Hermitian inner product on CN ) is given, modulo Sm−2, by

b−1
(
bpm +

1

i

∑
j

∂ξjb∂xjpm + bpm−1

− p∗mb−
1

i

∑
j

(∂xjξjp
∗
m)b− 1

i

∑
j

∂ξjp
∗
m∂xjb− p∗m−1b

)
=
(
pm−1 −

1

2i

∑
j

∂xjξjpm

)
− b−1

(
pm−1 −

1

2i

∑
j

∂xjξjpm

)∗
b+ ib−1Hpm(b),

where we used that pm is scalar and real. The claim follows.
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6.3.3 Invariant formalism for subprincipal symbols of operators acting on

bundles

We continue to denote by P ∈ Ψm(X, E⊗Ω
1
2 ) a principally scalar ps.d.o. acting on the vector

bundle E , with principal symbol p. (The discussion until Proposition 6.3.8 in fact works

for principally non-scalar operators as well with mostly notational changes.) We will show

how to modify the definition (6.3.3) of the subprincipal symbol of P , expressed in terms of

a local trivialization of E , in an invariant fashion, i.e. in a way that is both independent of

the choice of local trivialization and of local coordinates on X. This provides a completely

invariant formulation of Lemma 6.3.7.

Let U ⊂ X be an open subset over which E is trivial, and pick a frame e(x) =

{e1(x), . . . , eN (x)} trivializing E over U . Let us write P e for P in the frame e, i.e. P e =

(P ejk)j,k=1,...,N is the N ×N matrix of operators P ejk ∈ Ψm(U,Ω
1
2 ) defined by

P (
∑
k

uk(x)ek(x)) =
∑
jk

P ejk(uk)ej(x), uk ∈ C∞(U,Ω
1
2 ).

Then σesub(P ) as defined in (6.3.3), with the superscript making the choice of frame explicit,

is simply an N ×N matrix of scalar symbols:

σesub(P ) = (σsub(P ejk))j,k=1,...,N .

We will consider the effect of a change of frame on the subprincipal symbol (6.3.3). Thus,

let C ∈ C∞(U,End(E)) be a change of frame, i.e. C(x) is invertible for all x ∈ X. Then

ej(x) = C(x)e′j(x) defines another frame e′(x) = {e′1(x), . . . , e′N (x)} of E over U . One easily

computes

σe
′

sub(C−1PC) = (Ce
′
)−1σe

′
sub(P )Ce

′ − i(Ce′)−1Hp(C
e′),

with Hp interpreted as the diagonal N × N matrix 1N×NHp of first order differential op-

erators, and Ce
′

is the matrix of C in the frame e′. Now note that (C−1PC)e
′

= P e and

(Ce
′
)−1Hp(C

e′) = (Ce
′
)−1HpC

e′ −Hp; thus, we obtain

σesub(P )− iHp = (Ce
′
)−1
(
σe
′

sub(P )− iHp

)
Ce
′

(6.3.5)

Thus, viewing σe
′

sub(P ) − iHp as the N ×N matrix (in the frame e′) of a differential oper-

ator acting on C∞(T ∗X \ o, π∗E), the right hand side of (6.3.5) is the matrix of the same
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differential operator, but expressed in the frame e. Notice that the principal symbol p of

P as a scalar, i.e. diagonal, N ×N matrix of symbols, is well-defined independently of the

choice of frame. To summarize:

Definition 6.3.8. For P ∈ Ψm(X, E ⊗ Ω
1
2 ) with scalar principal symbol p, there is a well-

defined subprincipal operator Ssub(P ) ∈ Diff1(T ∗X \ o, π∗E), homogeneous of degree m− 1

with respect to dilations in the fibers of T ∗X \ o, defined as follows: If {e1(x), . . . , eN (x)}
is a local frame of E , define the operators Pjk ∈ Ψm(X,Ω

1
2 ) by P (

∑
k uk(x)ek(x)) =∑

jk Pjk(uk)ej(x), uk ∈ C∞(X,Ω
1
2 ). Then

Ssub(P )
(∑

k

qk(x, ξ)ek(x)
)

:=
∑
jk

(σsub(Pjk)qk)ej − i
∑
k

(Hpqk)ek.

In shorthand notation, Ssub(P ) = σsub(P )− iHp, understood in a local frame as a matrix of

first order differential operators. We emphasize the dependence on the order of the operator

by writing Ssub,m(P ), so that for P ∈ Ψm(X, E ⊗ Ω
1
2 ), we have Ssub,m+1(P ) = σm(P ).

We shall compute the subprincipal operator of the Laplace-Beltrami operator acting on

sections of the tensor bundle in §6.4.

Remark 6.3.9. For Ψb-inner products, the subprincipal operator of P ∈ Ψm
b (X, E ⊗ Ω

1
2
b )

acting on E-valued b-half-densities is an element of Diff1
b(bT ∗X \ o, π∗bE), where πb : bT ∗X \

o → X is the projection. In the semiclassical setting, P ∈ Ψm
~ (X, E ⊗ Ω

1
2 ), we have

Ssub(P ) ∈ Diff1(T ∗X,π∗E).

Remark 6.3.10. Dencker [34] proved that polarization sets propagate along so-called Hamil-

ton orbits, which are line subbundles of the pullback of π∗E to null-bicharacteristics, and

which are spanned by sections of this bundle which are parallel with respect to a partial

connection DP . In the case of interest for us, when P is principally scalar, his definition

[34, Equation (4.6)] (taking p̃ = id) agrees with our definition of Ssub(P ) up to a factor of

i.

We can now express the symbols of commutators and imaginary parts in a completely

invariant fashion:

Proposition 6.3.11. Let P ∈ Ψm(X, E ⊗ Ω
1
2 ) be a ps.d.o. with scalar principal symbol p.

(1) Suppose Q ∈ Ψm′(X, E ⊗ Ω
1
2 ) is an operator acting on E-valued half-densities, with



218 CHAPTER 6. TENSOR-VALUED WAVES

principal symbol q. (We do not assume Q is principally scalar.) Then

σm+m′−1([P,Q]) = [Ssub(P ), q].

If Q is elliptic with parametrix Q−, then

Ssub(QPQ−) = qSsub(P )q−1. (6.3.6)

(2) Suppose in addition that p is real. Let B be a Ψ-inner product on E with principal

symbol b, then

σm−1(ImB P ) = Imb Ssub(P ), (6.3.7)

where Imb Ssub(P ) = 1
2i

(
Ssub(P ) − Ssub(P )∗b

)
; we take the adjoint of the differential

operator Ssub(P ) with respect to the inner product b on π∗E and the symplectic volume

density on T ∗X.

Proof. We verify this in a local frame e(x) = {e1(x), . . . , eN (x)} of E . We compute

Ssub(P )
(∑
jk

qjk(x, ξ)uk(x, ξ)ej(x)
)

=
∑
j`

(∑
k

σsub(P )jkqk` − iHp(qj`)
)
u`ej − iqj`Hp(u`)ej − iqj`u`ejHp,

while

qSsub(P )
(∑

`

u`(x, ξ)e`(x)
)

=
∑
j`

(∑
k

qjkσsub(P )k`

)
u`ej − iqj`Hp(u`)ej − iqj`u`ejHp,

hence Ssub(P )q− qSsub(P ) = [σsub(P ), q]− iHp(q) as an endomorphism (a zeroth order dif-

ferential operator acting on sections of E) of E in the frame e, which equals σm+m′−1([P,Q])

according to the usual (full) symbolic calculus.

Furthermore,

Ssub,m(QPQ−) = Ssub,m(P ) + Ssub,m(Q[P,Q−])

= Ssub,m(P ) + qσm+m′−1([P,Q−]) = Ssub,m(P ) + q[Ssub,m(P ), q−1]
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= qSsub,m(P )q−1,

noting that Q[P,Q−] is of order m− 1.

For the second part, we have Ssub(P )∗b = σsub(P )∗b − (iHp)
∗b = b−1σsub(P )∗b +

ib−1(Hp)
∗b, where (Hp)

∗ is the adjoint of Hp as an operator acting on C∞c (T ∗X \ o), and we

equip T ∗X with the natural symplectic volume density |dx dξ|. We have (Hp)
∗ = −Hp̄ =

−Hp since p is real. Therefore,

Ssub(P )− Ssub(P )∗b = σsub(P )− σsub(P )∗b − iHp + ib−1Hpb

= σsub(P )− σsub(P )∗b + ib−1Hp(b),

which indeed gives (6.3.4) upon division by 2i.

In particular, (6.3.7) provides a very elegant point of view for understanding the imag-

inary part of a principally scalar and real (pseudo)differential operator with respect to a

Ψ-inner product B, as already indicated in the introduction: For instance, the principal

symbol of the imaginary part ImB P vanishes (or is small relative to b = σ0(B)) in a sub-

set of phase space if and only if the imaginary part of the first order differential operator

Ssub(P ) on T ∗X \o has vanishing (or small with respect to the fiber inner product b of π∗E)

coefficients in this subset.

6.3.4 Interpretation of pseudodifferential inner products in traditional

terms

We now show how to interpret the imaginary part ImB P of an operator P with respect

to a Ψ-inner product B in terms of the imaginary part of a conjugated version of P with

respect to a standard inner product:

Proposition 6.3.12. Let B be a Ψ-inner product on E. Then for any positive definite

Hermitian inner product B0 ∈ C∞(X,Hom(E ⊗Ω
1
2 , E∗ ⊗Ω

1
2 )) on E, there exists an elliptic

operator Q ∈ Ψ0(X,End(E⊗Ω
1
2 )) such that B−Q∗B0Q ∈ Ψ−∞(X,Hom(E⊗Ω

1
2 , E∗⊗Ω

1
2 )).

In particular, denoting by Q− ∈ Ψ0(X,End(E ⊗ Ω
1
2 )) a parametrix of Q, we have for

any P ∈ Ψm(X, E ⊗ Ω
1
2 ) with real and scalar principal symbol:

Q(ImB P )Q− = ImB0(QPQ−), (6.3.8)
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and σm−1(ImB P ) and σm−1(ImB0(QPQ−)) (which are self-adjoint with respect to σ0(B)

and B0, respectively, hence diagonalizable) have the same eigenvalues.

On a symbolic level, equation 6.3.8 is the same as equation (6.3.6).

Proof of Proposition 6.3.12. In order to shorten the notation, fix a global trivialization

of Ω
1
2 over X and use it to identify E ⊗ Ω

1
2 with E , likewise for all other half-density

bundles appearing in the statement. Denote the principal symbol of B by b ∈ S0
hom(T ∗X \

o, π∗Hom(E , E∗)). We similarly put b0 := B0, which is an inner product on π∗E that only

depends on the base point.

We start with on the symbolic level by constructing an elliptic symbol q1 ∈ S0
hom(T ∗X \

o, π∗ End(E)) such that b = q∗1b0q1; recall that q∗1 ∈ S0
hom(T ∗X\o, π∗ End(E∗)). For t ∈ [0, 1],

define the Hermitian inner product bt := (1 − t)b0 + tb. We will construct a differentiable

family qt of symbols such that bt = q∗t b0qt for t ∈ [0, 1]. Observe that for any such family, we

have ∂tbt = b−b0 = (∂tqt)
∗b0qt+q

∗
t b0∂tqt, which suggests requiring ∂tqt = 1

2b
−1
0 (q∗t )

−1(b−b0),

which we can write as a linear expression in qt by noting that (q∗t )
−1 = b0qtb

−1
t . Moreover,

q0 = id is a valid choice for qt at t = 0. Thus, we are led to define qt, t ∈ [0, 1], as the

solution of the ODE

∂tqt =
1

2
qtb
−1
t (b− b0), q0 = id .

Reversing these arguments, for the solution qt we then have q∗t b0qt = bt for t = 0, and both

q∗t b0qt and bt are solutions of the same ODE, namely

∂tb̃t =
1

2

(
(b− b0)b−1

t b̃t + b̃tb
−1
t (b− b0)

)
, b̃0 = b0,

hence q∗t b0qt = bt for all t ∈ [0, 1].

Let Q1 ∈ Ψ0(X,End(E)) be a quantization of q1, then we conclude that B −Q∗1B0Q1 ∈
Ψ−1. We iteratively remove this error to obtain a smoothing error: Suppose the operator

Qk ∈ Ψ0(X,End(E)) is such that B − Q∗kB0Qk ∈ Ψ−k for some k ≥ 1. We will find

Dk ∈ Ψ−k, a quantization of dk ∈ S−khom(T ∗X \ o, π∗E), such that Qk+1 := Qk +Dk satisfies

B −Q∗k+1B0Qk+1 ∈ Ψ−k−1. This is equivalent to the equality of symbols

rk := σ−k(B −Q∗kB0Qk) = σ−k(D∗kB0Qk +Q∗kB0Dk) = d∗kb0q1 + (b0q1)∗dk,

which in view of r∗k = rk is satisfied for dk = 1
2((b0q1)∗)−1rk. We define Q ∈ Ψ0(X,End(E))

to be the asymptotic limit of the Qk as k →∞, i.e. Q ∼ Q1 +
∑∞

k=1Dk, which thus satisfies
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B −Q∗B0Q ∈ Ψ−∞. This proves the first part of the proposition.

For the second part, denote parametrices of B and Q by B− and Q−, respectively. Then,

modulo operators in Ψ−∞, we have

P ∗B = (BPB−)∗ = (Q∗B0QPQ
−B−1

0 (Q−)∗)∗ = Q−(QPQ−)∗B0Q,

hence

Q(P − P ∗B)Q− = (QPQ−)− (QPQ−)∗B0

modulo Ψ−∞.

6.3.5 A simple example

On Rnx = Rx1 × Rn−1
x′ , we consider the operator P = Dx1 + A ∈ Ψ1(Rn,CN ), where

A = A(x,D) ∈ Ψ0(Rn,CN ) is independent of x1. Trivializing the half-density bundle over

Rn via |dx|
1
2 , we can consider P as an operator in Ψ1(Rn,CN ⊗ Ω

1
2 ). Its principal symbol

is σ1(P )(x, ξ) = ξ1, where we use the standard coordinates on T ∗Rn, i.e. writing covectors

as ξ dx, so the Hamilton vector field is Hσ1(P ) = ∂x1 ; moreover, in the trivialization of CN

by means of its standard basis, σsub(P )(x, ξ) = A(x, ξ). Thus, the subprincipal operator of

P is

Ssub(P )(x, ξ) = A(x, ξ)− i∂x1 ∈ Diff1(T ∗Rn \ o, π∗CN ),

with A homogeneous of degree 0 in the fiber variables. Suppose we are interested in bound-

ing 1
2i(P − P

∗) on Z := T ∗{x′=0}R
n \ o relative to a suitably chosen inner product. Let us

assume that A(0, ξ) is nilpotent for all |ξ| = 1, and that in fact at x = 0 and |ξ| = 1, we

can choose a smooth frame e1(ξ), . . . , eN (ξ) of the bundle π∗CN → T ∗Rn \o so that A(0, ξ),

written in the basis e1(ξ), . . . , eN (ξ), is a single Jordan block with zeros on the diagonal

and ones directly above. Extend the ej by homogeneity (of degree 0) in the fiber variables,

and define them to be constant in the x1-direction along Z, i.e. ej(x1, 0; ξ) = ej(0, 0; ξ), and

extend them in an arbitrary manner to a neighborhood of Z.

Now, on Z we have Aej = ej−1, writing e0 := 0. Introduce a new frame e′j := εjej with

ε > 0 fixed, then Ae′j = εe′j−1. Define the inner product b on π∗CN by

〈b(x, ξ)(e′i(x, ξ)), ι(e′j(x, ξ))〉 = δij ,

that is, {e′1, . . . , e′N} is an orthonormal frame for b. Then on Z, we find that Imb Ssub(P )
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(which is of order 0) in the frame {e′1, . . . , e′N} is given by the matrix which is zero apart

from entries ε/2i directly above and −ε/2i directly below the diagonal. Thus, defining the

Ψ-inner product B = b(x,D), we have arranged that ‖σ0(ImB P )(x, ξ)‖b ≤ ε on Z. Since

σ0(ImB P ) is self-adjoint with respect to b, this is really the statement that its eigenvalues

are bounded from above and below by ε and −ε, respectively.

Using Proposition 6.3.12, we can rephrase this as follows: If vj denotes the standard basis

of CN and 〈B0(vi), ι(vj)〉 = δij the standard inner product on CN (the particular choice

of an ordinary inner product being irrelevant, see the statement of Proposition 6.3.12),

define the map q(x, ξ) ∈ S0
hom(T ∗Rn \ o, π∗CN ) by q(x, ξ)e′j(x, ξ) = vj . Let Q = q(x,D)

and denote by Q− a parametrix of Q, then we find that QPQ− ∈ Ψ1(Rn,CN ) satisfies

‖σ0(ImB0 QPQ−)‖B0 ≤ ε.
If A has several Jordan blocks not all of which are nilpotent, one can (under the as-

sumption of the existence of a smooth family of Jordan bases) similarly construct a Ψ-inner

product so that the imaginary part of A relative to it is bounded by the maximal imaginary

part of the eigenvalues of A (plus ε) from above, and by the minimal imaginary part (minus

ε) from below.

6.4 Subprincipal operators of tensor Laplacians

Let (M, g) be a smooth manifold equipped with a metric tensor g of arbitrary signature.

Denote by TkM =
⊗k T ∗M , k ≥ 1, the bundle of (covariant) tensors of rank k on M .

The metric g induces a metric (which we also call g) on TkM . We study the symbolic

properties of ∆k = − tr∇2 ∈ Diff2(M, TkM), the Laplace-Beltrami operator on M acting

on the bundle TkM . Denote by G ∈ C∞(T ∗M) the metric function, i.e. G(x, ξ) = |ξ|2G(x),

where G is the dual metric of g.

Proposition 6.4.1. The subprincipal operator of ∆k is

Ssub(∆k)(x, ξ) = −i∇π
∗TkM
HG

∈ Diff1(T ∗M \ o, π∗TkM), (6.4.1)

where ∇π∗TkM is the pullback connection, with π : T ∗M \ o→M being the projection.

Proof. Since both sides of (6.4.1) are invariantly defined, it suffices to prove the equality in

an arbitrary local coordinate system. At a fixed point x0 ∈M , introduce normal coordinates
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so that ∂kgij = 0 at x0. Then we schematically have

(∆ku)i1...ik = −gjkui1...ik,jk = −gjk(∂kui1...ik,j + Γ · ∂u)

= −gjk∂jkui1...ik + ∂(Γ · u) + Γ · ∂u

= −gjk∂jkui1...ik + Γ · ∂u+ ∂Γ · u,

with Γ denoting Christoffel symbols. This suffices to see that the full symbol of ∆k in the

local coordinate system is given by

σ(∆k)(x, ξ) = gjk(x)ξjξk + (xj − xj0)`j(x, ξ) + e(x),

where `j(x, ξ) is a linear map in ξ with values in End((TkM)x), and e(x) is an endomorphism

of (TkM)x. Therefore, σsub(∆k)(x0, ξ) = 0, since ∂ig
jk(x0) = 0. Thus,

Ssub(∆k)(x0, ξ) = −iH|ξ|2g = −2igjkξk∂xj . (6.4.2)

We now compute the right hand side of (6.4.1). First, writing dxI = dxi1 ⊗ · · · ⊗ dxik for

multiindices I = (i1, . . . , ik), we note that sections of π∗TkM are of the form uI(x, ξ) dx
I ,

while pullbacks (under π) of sections of TkM are of the form uI(x) dxI . By definition, the

pullback connection ∇π∗TkM is given by

∇π
∗TkM
∂
xj

(uI(x) dxI) = ∇TkM∂
xj

(uI(x) dxI), ∇π
∗TkM
∂ξk

(uI(x) dxI) = 0

on pulled back sections and extended to sections of the pullback bundle using the Leibniz

rule; thus,

∇π
∗TkM
∂
xj

(uI(x, ξ) dx
I) = ∇TkM∂

xj
(uI(·, ξ) dxI)(x),

∇π
∗TkM
∂ξk

(uI(x, ξ) dx
I) = ∂ξkuI(x, ξ) dx

I .

Thus, in normal coordinates at x0 ∈M , we simply have ∇π
∗TkM
∂
xj

= ∂xj and ∇π
∗TkM
∂ξk

= ∂ξk ,

therefore

∇π
∗TkM
H|ξ|2g

= 2gjkξk∂xj

at x0, which verifies (6.4.1) in view of (6.4.2).
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To simplify the study of the pullback connection on π∗TkM for general k, we observe

that there is a canonical bundle isomorphism π∗TkM ∼=
⊗k π∗T ∗M ; hence the connection

∇π∗TkM is simply the product connection on
⊗k π∗T ∗M . Therefore, if we understand

certain properties of Ssub(∆1), we can easily deduce them for Ssub(∆k) for any k. In

our application, we will need to choose a positive definite pseudodifferential inner product

Bk = bk(x,D) on the bundle TkM with respect to which ∆k is arbitrarily close to being

symmetric in certain subsets of phase space. Concretely, this means that we want the

operator Ssub(∆k) to be (almost) symmetric with respect to the inner product bk on π∗TkM .

The following lemma shows that it suffices to accomplish this for k = 1:

Lemma 6.4.2. Let U ⊂ T ∗M\o be open, and let f ∈ C∞(U) be real-valued. Fix a Hermitian

inner product b (antilinear in the second slot) on π∗T ∗M , and define R ∈ End(π∗T ∗M) by

requiring that ∫
U
〈i∇π∗T ∗MHf

u, v〉b dσ −
∫
U
〈u, i∇π∗T ∗MHf

v〉b dσ =

∫
U
〈u,Rv〉b dσ

for all u, v ∈ C∞c (U, π∗T ∗M), where dσ is the natural symplectic volume density on T ∗M .

There exists a constant Ck > 0, independent of U, f and b, such that the following holds: If

supU ‖R‖b ≤ ε (using b to measure the operator norm of R acting on each fiber) for some

ε > 0, then the inner product bk =
⊗k b induced by b on

⊗k π∗T ∗M ∼= π∗TkM satisfies∫
U
〈i∇π

∗TkM
Hf

u, v〉bk dσ −
∫
U
〈u, i∇π

∗TkM
Hf

v〉bk dσ =

∫
U
〈u,Rkv〉bk dσ,

u, v ∈ C∞c (U, π∗TkM), for Rk ∈ End(π∗TkM) satisfying supU ‖Rk‖bk ≤ kε.

Proof. We show this for k = 2, the proof for general k being entirely analogous. Denote

S = i∇π∗T ∗MHf
, then S2 = i∇π

∗T2M
Hf

acts by S2(u1⊗ u2) = Su1⊗ u2 + u1⊗Su2. Hence using

S(au) = aSu+ iHf (a)u for sections u of π∗T ∗M and functions a on U , we calculate∫
U
〈S2(u1 ⊗ u2), v1 ⊗ v2〉b2 dσ =

∫
U
〈Su1, v1〉b〈u2, v2〉b + 〈u1, v1〉b〈Su2, v2〉b dσ

=

∫
U

〈
u1, S

(
v1〈u2, v2〉b

)〉
b

+

∫
U

〈
u2, S

(
v2〈u1, v1〉b

)〉
b
dσ

+

∫
U
〈u1 ⊗ u2, (R⊗ id + id⊗R)(v1 ⊗ v2)〉b2 dσ

=

∫
U
〈u1 ⊗ u2, S2(v1 ⊗ v2)〉b2 dσ − i

∫
U
Hf (〈u1, v1〉b〈u2, v2〉b) dσ
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+

∫
U
〈u1 ⊗ u2, R2(v1 ⊗ v2)〉b2 dσ

=

∫
U
〈u1 ⊗ u2, S2(v1 ⊗ v2)〉b2 dσ +

∫
U
〈u1 ⊗ u2, R2(v1 ⊗ v2)〉b2 dσ

with R2 = R ⊗ id + id⊗R, where we used that
∫
U Hfu dσ = −

∫
U uHf1 dσ = 0 for u ∈

C∞c (U). From the explicit form of R2, we see that ‖R2‖b2 ≤ 2ε indeed.

6.4.1 Warped product spacetimes

Let X be an (n− 1)-dimensional manifold equipped with a smooth Riemannian metric h =

h(x, dx), and let α ∈ C∞(X) be a positive function. We consider the manifold M = Rt×X,

equipped with the Lorentzian metric

g = α2 dt2 − h. (6.4.3)

On such a spacetime, we have a natural splitting of 1-forms into their tangential and normal

part relative to αdt, i.e.

u = uT + uNαdt. (6.4.4)

In this section, we will compute the form of∇π∗T ∗MHG
as a 2×2 matrix of differential operators

with respect to this decomposition. For brevity, we will use the notation ∇̃M := ∇π∗T ∗M ,

similarly ∇̃X := ∇π∗T ∗X , and we will moreover use the abstract index notation, fixing

x0 = t, and x′ = (x1, . . . , xn−1) are coordinates on X (independent of t). We let Greek

indices µ, ν, λ, . . . run from 0 to n−1, Latin indices i, j, k, . . . from 1 to n−1. Moreover, the

canonical dual variables26 ξ0 =: σ and ξ′ = (ξ1, . . . , ξn−1) on the fibers of T ∗M are indexed

by decorated Greek indices µ̃ (running from 0 to n− 1) and Latin indices ĩ, j̃, . . . (running

from 1 to n − 1). If an index appears both with and without tilde in one expression, it is

summed accordingly, for instance ajbj̃ =
∑n

j=1 ajbj̃ . Thus, for a section u of π∗T ∗M , we

have

∇̃Mµ uν = ∇Mµ uν , ∇̃Mµ̃ uν = ∂µ̃uν ,

where we interpret ∇Mµ as acting on u for fixed values of the fiber variables, i.e. viewing u as

a family of sections of T ∗M depending on the fiber variables. As before, we denote by G the

26Thus, once we discuss Schwarzschild-de Sitter space in the next section, in the region where t∗ = t
(which we can in particular arrange near the trapped set), σ in the present notation is equal to −σ in the
notation of §6.2.
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metric function on T ∗M , and we let H denote the metric function on T ∗X, interpreted as

a (t, σ)-independent function on T ∗M . Lastly, we denote the Christoffel symbols of (M, g)

by MΓκµν , and those of (X,h) by XΓkij .

Lemma 6.4.3. The Christoffel symbols of M are given by:

MΓ0
00 = 0, MΓ0

i0 = α−1αi,
MΓ0

ij = 0,

MΓk00 = αhk`α`,
MΓki0 = 0, MΓkij = XΓkij .

(6.4.5)

Proof. We have g00 = α2, g0i = gi0 = 0 and gij = −hij , and g is t-independent, thus

∂0gµν = 0. Using MΓκµν = 1
2(∂µgκν + ∂νgκµ − ∂κgµν), we then compute

MΓ000 = 0, MΓ0i0 = ααi,
MΓ0ij = 0,

MΓk00 = −ααk, MΓki0 = 0, MΓkij = −XΓkij ,

which immediately gives (6.4.5).

Proposition 6.4.4. For the metric g as in (6.4.3), the subprincipal operator of �1 (the

tensor wave operator acting on 1-forms on M) in the decomposition (6.4.4) of 1-forms is

given by

iSsub(�1)(t, x′, σ, ξ′)

=

(
2α−2σ∂t + σ2∇̃XHα−2

− ∇̃XHH −2α−2σ dα

−2α−2σi∇Xα 2α−2σ∂t + σ2Hα−2 −HH

)
.

Proof. We start by computing the form of ∇̃Mµ uν and ∇̃Mµ̃ uν for tangential and normal

1-forms. For tangential forms u = uµ dx
µ with u0 = 0, we have

∇̃M0 u0 = −MΓλ00uλ = −α〈dα, u〉H , ∇̃M0 ui = ∂0ui,

∇̃Mj u0 = 0, ∇̃Mj ui = ∇Xj ui, ∇̃Mµ̃ u0 = 0, ∇̃Mµ̃ ui = ∂µ̃ui,

while for normal forms u = uµ dx
µ with ui = 0 and u0 = αv, we compute

∇̃M0 u0 = α∂tv, ∇̃M0 ui = −αiv,

∇̃Mj u0 = ∂j(αv)− αjv = α∂jv, ∇̃Mj ui = 0, ∇̃Mµ̃ u0 = α∂µ̃v, ∇̃Mµ̃ ui = 0.
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Since G = α−2σ2 −H, we find HG = 2α−2σ∂t + σ−2Hα−2 −HH . Using 〈dα, ·〉H = i∇Xα,

we obtain

∇̃M∂t =

(
∂t −dα

−i∇Xα ∂t

)
.

Moreover, for any f ∈ C∞(T ∗X) (we will take f = α−2 and f = H), viewed as a (t, σ)-

independent function on T ∗M , we have Hf = fj̃∂j − fj∂j̃ . Hence on tangential forms,

∇̃MHfu0 = 0, ∇̃MHfui = fj̃∇
X
j ui − fj∂j̃ui = ∇̃XHfui,

while on normal forms as above,

∇̃MHfu0 = αfj̃∂jv − αfj∂j̃v = αHfv, ∇̃MHfui = 0.

Thus,

∇̃MHf =

(
∇̃XHf 0

0 Hf

)
.

The claim follows.

6.4.2 Schwarzschild-de Sitter space

We stay in the setting of the previous section, and now the spatial metric h has a decom-

position

h = α−2 dr2 + r2 dω2,

where dω2 is the round metric on the unit sphere Y = Sn−2, with dual metric denoted Ω;

see (2.3.1). Thus, writing ξ, resp. η, for the dual variables of r, resp. ω ∈ Sn−2, we have

H = α2ξ2 + r−2|η|2Ω. Write 1-forms on X as

u = uT + uNα
−1 dr. (6.4.6)

Abbreviate the derivative of a function f with respect to r by f ′. Since dα = α′ dr and

∇Xα = α2α′∂r, we have, in the decomposition (6.4.6),

dα =

(
0

αα′

)
, i∇Xα =

(
0 αα′

)
.
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We will need the Christoffel symbols of h. We continue using the notation to the previous

section, except now x1 = r and ξ1 = ξ, while x2, . . . , xn are r-independent coordinates on

Sn−2, and moreover the lower bound for Greek indices is 1, and 2 for Latin indices.

Lemma 6.4.5. The Christoffel symbols of X are given by:

XΓ1
11 = −α−1α′, XΓ1

i1 = 0, XΓ1
ij = −rα2(dω2)ij ,

XΓk11 = 0, XΓki1 = r−1δki ,
XΓkij = Y Γkij .

(6.4.7)

Proof. We have h11 = α−2, h1i = hi1 = 0 and hij = r2(dω2)ij , and (dω2)ij is r-independent.

We then compute

XΓ111 = −α−3α′, XΓ1i1 = 0, XΓ1ij = −r(dω2)ij ,

XΓk11 = 0, XΓki1 = r(dω2)ki,
XΓkij = r2Y Γkij ,

which immediately gives (6.4.7).

We are only interested in the subprincipal operator of �1 at the trapped set, which we

recall from (6.2.3) to be the set

Γ = {r = rp, ξ = 0, σ2 = Ψ2|η|2}, where Ψ = αr−1,Ψ′(rp) = 0. (6.4.8)

Thus, at Γ, we have

HH = 2α2ξ∂r − 2αα′ξ2∂ξ + 2r−3|η|2∂ξ + r−2H|η|2 = 2r−3|η|2∂ξ + r−2H|η|2 ,

while σ2Hα−2 = 2σ2α−3α′∂ξ. Now α−1α′ = (rΨ)−1(rΨ)′ = r−1 at r = rp, therefore

σ2α−3α′ = r−3|η|2, and we thus obtain

σ2Hα−2 −HH = −r−2H|η|2 at Γ. (6.4.9)

Notice that |η|2 ∈ C∞(T ∗Y ) is independent of (r, ξ).

Lemma 6.4.6. For a function f ∈ C∞(T ∗Y ), viewed as an (r, ξ)-independent function on

X, we have

∇̃XHf =

(
∇̃YHf αr(iHfdω

2)

−αr−1iHf Hf

)
.
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in the decomposition (6.4.6) of 1-forms on X.

Proof. On tangential forms u, i.e. u1 = 0, we have

∇̃Xj u1 = −r−1uj , ∇̃Xj ui = ∇Yj ui, ∇̃X
j̃
u1 = 0, ∇̃X

j̃
ui = ∂j̃ui,

thus using Hf = fj̃∂j − fj∂j̃ , we get, using that π∗T ∗X can be canonically identified with

the horizontal subbundle of T ∗(T ∗X):

∇̃XHfu1 = −r−1fj̃uj = −r−1u(Hf ) = −r−1iHfu, ∇̃XHfui = ∇̃YHfui.

On normal forms u, i.e. u1 = α−1v, ui = 0, we compute

∇̃Xj u1 = α−1∂jv, ∇̃Xj ui = rα(dω2)ijv, ∇̃X
j̃
u1 = α−1∂j̃v, ∇̃X

j̃
ui = 0,

hence

∇̃XHfu1 = α−1fj̃∂jv − α
−1fj∂j̃v = α−1Hfv,

∇̃XHfui = fj̃rα(dω2)ijv = αr(iHfdω
2)v.

The claim follows immediately.

Combining Proposition 6.4.4 and Lemma 6.4.6, we can thus compute the subprincipal

operator of �1 acting on 1-forms (sections of the pullback of T ∗M to T ∗M \ o) decomposed

as

u = uTT + uTNα
−1 dr + uNαdt. (6.4.10)

In view of (6.4.9), we merely need to apply Lemma 6.4.6 to f = |η|2, in which case Hf =

2Ωjkηj∂k − ∂`Ωjkηjηk∂˜̀, so iHf = 2iη on 1-forms (identifying the 1-form η with a tangent

vector using the metric dω2), while iHfdω
2 = 2η. Thus, we obtain:

Proposition 6.4.7. In the decomposition (6.4.10), the subprincipal operator of �1 on
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Schwarzschild-de Sitter space at the trapped set Γ is given by

iSsub(�1)

=


2α−2σ∂t − r−2∇̃YH|η|2 −2αr−1η 0

2αr−3iη 2α−2σ∂t − r−2H|η|2 −2r−1σ

0 −2r−1σ 2α−2σ∂t − r−2H|η|2

 .
(6.4.11)

Since �1 is symmetric with respect to the natural inner product G on the 1-form bundle,

which in the decomposition (6.4.10) is an orthogonal direct sum of inner products, G =

(−r−2Ω) ⊕ (−1) ⊕ 1, the operator Ssub(�1) is a symmetric operator acting on sections

of π∗T ∗M over T ∗M \ o if we equip π∗T ∗M with the fiber inner product G and use the

symplectic volume density on T ∗M \ o.
The matrix −2r−2s, with

s =


0 Ψr2η 0

−Ψiη 0 rσ

0 rσ 0

 ,

of 0-th order terms of Ssub(�1) is nilpotent, which suggests in analogy to the discussion

in §6.3.5 that the imaginary part of Ssub(�1) with respect to a Riemannian fiber inner

product can be made arbitrarily small. Indeed, for any fixed ε > 0, define the ‘change of

basis matrix’

q =


id 0 0

0 ε−1Ψr2 0

−ε−2|η|−1Ψ2r2iη 0 ε−2|η|−1Ψr3σ

 ,

then

qsq−1 =


0 εη 0

0 0 ε|η|
0 0 0

 .

In order to compute qSsub(�1)q−1, we note that the diagonal matrix of t-derivatives in

(6.4.11) commutes with q, and it remains to study the derivatives along H|η|2 ; more specif-

ically, q has a block structure, with the columns and rows 1, 3 being the first block and the

(2, 2) entry the second, and the (2, 2) block is an η-independent multiple of the identity,

hence commutes with the relevant (2, 2) entry ir−2H|η|2 of Ssub(�1). For the 1, 3 block, we
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compute

[∇̃YH|η|2 0

0 H|η|2

 ,

(
id 0

−ε−2|η|−1Ψ2r2iη ε−2|η|−1Ψr3σ

)]

= ε−2Ψ2r2|η|−1

 0 0

iη∇̃YH|η|2 −H|η|2iη 0

 .

(6.4.12)

Now ∇̃YH|η|2 and H|η|2 are the restrictions of the pullback connection ∇π∗ΛSn−2

H|η|2
of the full

form bundle to 1-forms and functions, respectively, and the latter commutes with iη, since

by Proposition 6.3.11,

0 = Ssub([�, δ]) = −i[Ssub(�), iη] = −
[
∇π∗ΛSn−2

H|η|2
, iη
]
,

where � denotes the Hodge d’Alembertian on the form bundle and δ is the codifferential.

Thus, (6.4.12) in fact vanishes, and therefore

qSsub(�1)q−1

= −i


2α−2σ∂t − r−2∇̃YH|η|2 −2r2εη 0

0 2α−2σ∂t − r−2H|η|2 −2r2ε|η|
0 0 2α−2σ∂t − r−2H|η|2

 .

Equip the 1-form bundle over M in the decomposition (6.4.10) with the Hermitian inner

product

B0 = Ω⊕ 1⊕ 1, (6.4.13)

then qSsub(�1)q−1 has imaginary part (with respect to B0) of size O(ε). Put differently,

Ssub(�1) has imaginary part of size O(ε) relative to the Hermitian inner product b :=

B0(q·, q·), which is the symbol of a pseudodifferential inner product on π∗T ∗M . We can

now invoke Lemma 6.4.2 on a neighborhood of Γ ∩ {|σ| = 1} and use the homogeneity of

q, b and Ssub(�1) to obtain:

Theorem 6.4.8. For any ε > 0, there exists a (positive definite) t∗-independent pseu-

dodifferential inner product B = b(x,D) on TkM (thus, b is an inner product on π∗TkM ,



232 CHAPTER 6. TENSOR-VALUED WAVES

homogeneous of degree 0 with respect to dilations in the base T ∗M \ o), such that

sup
Γ
|σ|−1

∥∥∥∥ 1

2i
(Ssub(�k)− Ssub(�k)

∗b)

∥∥∥∥
b

≤ ε,

where Γ is the trapped set (6.4.8). Put differently, there is an elliptic ps.d.o. Q, invariant

under t∗-translations, acting on sections of TkM , with parametrix Q−, such that relative to

the ordinary positive definite inner product (6.4.13), we have

sup
Γ
|σ|−1

∥∥∥∥σ1

(
1

2i
(Q�kQ

− − (Q�kQ
−)∗B0)

)∥∥∥∥
B0

≤ ε.

By restriction, the analogous statements are true for � acting on subbundles of the tensor

bundle on M , for instance differential forms of all degrees and symmetric 2-tensors.

By the t∗-translation invariance of the involved symbols, inner products and operators,

this is really a statement about Ψb-inner products, and Q is a b-pseudodifferential operator;

see the discussion preceding Theorem 6.2.1 for the relationship of the stationary and the

b-picture.

Remark 6.4.9. Adding a 0-th order term to � does not change � or its imaginary part

at the principal symbol level, thus does not affect the subprincipal operator of � either;

therefore, Theorem 6.4.8 holds in this case as well.

Adding a first order operator L (acting on sections of TkM), which we assume to be

t-independent for simplicity, does affect the subprincipal operator, more specifically its 0-th

order part, since Ssub(�+L) = Ssub(�)+σ1(L). Thus, if σ1(L) is small at Γ, we can use the

same Ψ-inner product as for � and obtain a bound on Imb Ssub(�+L) which is small, but

no longer arbitrarily small. However, the bound merely needs to be smaller than νmin/2,

see (6.2.2), which does hold for small L.

If we do not restrict the size of L, we can still obtain a spectral gap, provided one

can choose a Ψ-inner product as in Theorem 6.4.8, again with ε > 0 sufficiently (but not

necessarily arbitrarily) small. This is the case if the 0-th order part of Ssub(� + L) is

nilpotent (or has small eigenvalues) and can be conjugated in a t-independent manner to

an operator which is sufficiently close to being symmetric, in the sense that it satisfies the

bound (6.2.2) with � replaced by �+ L.

We remark that the subprincipal operator iSsub(�) = HG + iσsub(G) induces a notion

of parallel transport on π∗TkM along the Hamilton flow of HG. As a consequence of the



6.4. SUBPRINCIPAL OPERATORS OF TENSOR LAPLACIANS 233

nilpotent structure of Ssub(�) at the trapped set, parallel sections along the trapped set

grow only polynomially in size (with respect to a fixed t-invariant positive definite inner

product), rather than exponentially. Parallel sections as induced by Ssub(� + L), with L

as in Remark 6.4.9, may grow exponentially, with their size bounded by Ceκ|σ|t for some

constants C > 0 and κ, where the additional factor of |σ| in the exponent accounts for the

homogeneity of the parallel transport. If such a bound does not hold for any κ < νmin/2,

the dispersion of waves concentrated at the trapped set caused by the normally hyperbolic

nature of the trapping is expected to be too weak to counteract the exponential growth

caused by the subprincipal part of � + L, and correspondingly one does not expect a

spectral gap. Notice that the growth of parallel sections is an averaged condition in that it

involves the behavior of the parallel transport for large times, while the choice of Ψ-inner

products as explained above is a local condition and depends on the pointwise structure of

Ssub(�).



Chapter 7

Resonances for differential forms

7.1 Introduction

Maxwell’s equations describe the dynamics of the electromagnetic field on a 4-dimensional

spacetime (M, g). Writing them in the form (d + δg)F = 0, where δg is the codifferential,

for the electromagnetic field F (a 2-form) suggests studying the operator d + δg, whose

square �g = (d + δg)
2 is the Hodge d’Alembertian, i.e. the wave operator on differential

forms. It is then very natural to study solutions of (d + δg)u = 0 or �gu = 0 without

restrictions on the form degree. Important examples of spacetimes that fit into the class

of spacetimes studied in the present chapter are Schwarzschild-de Sitter spacetimes with

spacetime dimension n ≥ 4, and by very simple perturbation arguments, we can readily

analyze waves on perturbations of these, in particular on Kerr-de Sitter spaces. Concretely,

a special case of our general results is:

Theorem 7.1.1. Let (M, ga) denote a non-degenerate Kerr-de Sitter space with black hole

mass M• > 0, cosmological constant Λ > 0 and angular momentum a, see §2.4, more

precisely a suitable neighborhood Ω of the domain of outer communications as in (2.3.9),

and denote by t∗ a smooth time coordinate. Suppose u ∈ C∞(M ; ΛM) is a solution of the

equation

(d+ δga)u = 0,

with smooth initial data, and denote by uj the form degree j part of u, j = 0, . . . , 4. Then

u2 decays exponentially in t∗ to a stationary state, which is a linear combination of the

t∗-independent 2-forms ua,1, ua,2. In the standard (Boyer-Lindquist) local coordinate system

234
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on Kerr-de Sitter space, ua,1 and ua,2 have explicit closed form expressions; in particular,

on Schwarzschild-de Sitter space, u0,1 = r−2 dt ∧ dr, and u0,2 = ω is the volume element

of the round unit 2-sphere. Moreover, u1 and u3 decay exponentially to 0, while u0 decays

exponentially to a constant, and u4 to a constant multiple of the volume form.

Suppose now u ∈ C∞(M ; ΛM) instead solves the wave equation

�gau = 0

with smooth initial data, then the same decay as before holds for u0, u2 and u4, while u1

decays exponentially to a member of a 2-dimensional family of stationary states, likewise

for u3.

The Schwarzschild-de Sitter case of this theorem, i.e. the special case a = 0, will be

proved in §7.4.2, and we give explicit expressions for all stationary states, see Theorems 7.4.3

and 7.4.5, and §7.5 provides the perturbation arguments, see in particular Theorem 7.5.1.

For the explicit form of ua,1 and ua,2, see Remark 7.5.4. Notice that asymptotics and

decay of differential form solutions to the wave equation are much stronger statements than

corresponding statements for Maxwell’s equations or for the Hodge-de Rham equation.

We stress that the main feature of the spacetimes (M, g) considered in this chapter is

a warped product type structure of the metric, whereas we do not make any symmetry

assumptions on M . From a geometric point of view then, the main result of this chapter

is a general cohomological interpretation of stationary states, which in the above theorem

are merely explicitly given. On a technical level, we show how to explicitly analyze quasi-

normal modes (or resonances) for equations on vector bundles whose natural inner product

is not positive definite, which is somewhat complementary to the high frequency analysis

in Chapter 6. To stress the generality of the method, we point out that symmetries only

become relevant in explicit calculations for specific examples such as Schwarzschild-de Sitter

and Kerr-de Sitter spaces. Even then, the perturbation analysis around Schwarzschild-de

Sitter space works without restrictions on the perturbation; only for the explicit form of the

space 〈ua,1, ua,2〉 of stationary states do we need the very specific form of the Kerr-de Sitter

metric. Thus, combining the perturbation analysis with the nonlinear framework developed

in §9, we can immediately solve suitable quasilinear wave equations on differential forms

on Kerr-de Sitter spacetimes; see Remark 7.5.3. To put this into context, part of the moti-

vation for the present chapter again is the black hole stability problem, and we expect that
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the approach taken here will facilitate the linear part of the stability analysis, which, when

accomplished, rather directly gives the nonlinear result when combined with the nonlinear

analysis presented in Chapters 8 and 9.

7.1.1 Outline of the general result

Going back to the linear problem studied here, we proceed to explain the general setup

in more detail; one should keep Schwarzschild-de Sitter space, as presented in §2.3, as the

main example in mind.

Remark 7.1.2. Notationally, M◦S , X
◦
S in §2.3 correspond to M and X in the present chapter,

whereas the extended manifolds are called M̃ and X̃ here: This is in order to emphasize

the role of M and X (and of the warped product metric on them), while the analysis on the

extended spaces M̃ and X̃, even though it plays a central role in the setup, is somewhat

secondary for our analysis here.

Thus, let X be a connected, compact, orientable (n − 1)-dimensional manifold with

non-empty boundary Y = ∂X 6= ∅ and interior X = X
◦
, and let M = Rt×X, which is thus

n-dimensional. Denote the connected components of Y , which are of dimension (n− 2), by

Yi, for i in a finite index set I. We assume that M is equipped with the metric

g = α(x)2 dt2 − h(x, dx), (7.1.1)

where h is a smooth Riemannian metric onX (in particular, incomplete) and α is a boundary

defining function of X, i.e. α ∈ C∞(X), α = 0 on Y , α > 0 in X and dα|Y 6= 0. We

moreover assume that every connected component Yi of Y , i ∈ I, has a collar neighborhood

[0, εi)α × (Yi)y in which h takes the form

h = β̃i(α
2, y) dα2 + ki(α

2, y, dy) (7.1.2)

with β̃i(0, y) ≡ βi > 0 constant along Yi. In particular, h is an even metric in the sense of

Guillarmou [57]. Thus, de Sitter and Schwarzschild-de Sitter spaces fit into this framework,

whereas asymptotically flat spacetimes like Schwarzschild (or Kerr) do not. We change the

smooth structure on X to only include even functions of α, and show how one can then

extend the metric g to a stationary metric (denoted g̃, but dropped from the notation in

the sequel) on a bigger spacetime M̃ = Rt∗×X̃, where t∗ is a shifted time coordinate. Since
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the operator d + δ commutes with time translations, it is natural to consider the normal

operator family

δ̃(σ) + δ̃(σ) = eit∗σ(d+ δ)e−it∗σ

acting on differential forms (valued in the form bundle of M) on a slice of constant t∗,

identified with X̃; the normal operator family �̃(σ) of � is defined completely analogously.

As discussed before, see in particular §3.3.3, the proper way to view the normal operator

family is as a family of operators on the boundary at infinity of a bordified version of M̃ ,

where one introduces τ = e−t∗ and adds τ = 0, i.e. future infinity, to the manifold M̃ .

Since the Hodge d’Alembertian (and hence the normal operator family �̃(σ)) has a scalar

principal symbol, it can easily be shown to fit into the microlocal framework developed

by Vasy [114]; we prove this in §7.2. In particular, �̃(σ)−1 is a meromorphic family of

operators in σ ∈ C, and under the assumption that the inverse family �̃(σ)−1 verifies

suitable high energy bounds as |Reσ| → ∞ and Imσ > −C (for C > 0 small), one

can deduce exponential decay of solutions to �u = 0, up to contributions from a finite

dimensional space of resonances, as in Theorems 5.2.3 and 5.3.1. Thus again, proving wave

decay and asymptotics is reduced to studying high energy estimates, which for the problem

at hand depend purely on geometric properties of the spacetime and will be further discussed

below, and the location of resonances as well as the spaces of resonant states. Our main

theorem is then:

Theorem 7.1.3. The only resonance of d + δ in Imσ ≥ 0 is σ = 0, and 0 is a simple

resonance. Zero resonant states are smooth, and the space H̃ of these resonant states is

equal to ker d̃(0) ∩ ker δ̃(0). (In other words, resonant states, viewed as t∗-independent

differential forms on M̃ , are annihilated by d and δ.) Using the grading H̃ =
⊕n

k=0 H̃k of

H̃ by form degrees, there is a canonical exact sequence

0→ Hk(X)⊕Hk−1(X, ∂X)→ H̃k → Hk−1(∂X). (7.1.3)

Furthermore, the only resonance of � in Imσ ≥ 0 is σ = 0. Zero resonant states are

smooth, and the space K̃ =
⊕n

k=0 K̃k of these resonant states, graded by form degree and

satisfying K̃k ⊃ H̃k, fits into the short exact sequence

0→ Hk(X)⊕Hk−1(X, ∂X)→ K̃k → Hk−1(∂X)→ 0. (7.1.4)



238 CHAPTER 7. RESONANCES FOR DIFFERENTIAL FORMS

Lastly, the Hodge star operator on M̃ induces natural isomorphisms ? : H̃k
∼=−→ H̃n−k and

? : K̃k
∼=−→ K̃n−k, k = 0, . . . , n.

See Theorem 7.3.20 for the full statement, including the precise definitions of the maps in

the exact sequences. In fact, the various cohomology groups in (7.1.3) and (7.1.4) correspond

to various types of resonant differential forms, namely forms which are square integrable

on X with respect to a natural Riemannian inner product on forms on M (obtained by

switching the sign in (7.1.1)), as well as ‘tangential’ and ‘normal’ forms in a decomposition

u = uT + α−1 dt ∧ uN of the form bundle corresponding to the warped product structure

of the metric. Roughly speaking, (7.1.4) encodes the fact that resonant states for which

a certain boundary component vanishes are square integrable with respect to the natural

Riemannian inner product on X and can be shown to canonically represent absolute (for

tangential forms) or relative (for normal forms) de Rham cohomology of X, while the

aforementioned boundary component is a harmonic form on Y and can be specified freely

for resonant states of �. (Notice by contrast that the last map in the exact sequence (7.1.3)

for d+ δ is not necessarily surjective.)

The proof of Theorem 7.1.3 proceeds in several steps. First, we exclude resonances in

Imσ > 0 in §7.3.1; the idea here is to relate the normal operator family of d + δ (a family

of operators on the extended space X̃) to another normal operator family d̂(σ) + δ̂(σ) =

eitσ(d + δ)e−itσ, which is a family of operators on X that degenerates at ∂X, but has the

advantage of having a simple form in view of the warped product type structure (7.1.1) of

the metric: Since one formally obtains d̂(σ)+ δ̂(σ) by replacing each ∂t in the expression for

d+ δ by −iσ, we see that on a formal level d̂(σ)+ δ̂(σ) for purely imaginary σ resembles the

normal operator family of the Hodge-de Rham operator of the Riemannian metric on M

mentioned above; then one can show the triviality of ker(d̂(σ) + δ̂(σ)) in a way that is very

similar to how one would show the triviality of ker(A+ σ) for self-adjoint A and Imσ > 0.

For not purely imaginary σ, but still with Imσ > 0, one can change the tangential part of

the metric on M in (7.1.1) by a complex phase and then run a similar argument, using that

the resulting ‘inner product,’ while complex, still has some positivity properties. Next, in

§7.3.2, we exclude non-zero real resonances by means of a boundary pairing argument, which

is a standard technique in scattering theory [84]. Finally, the analysis of the zero resonance

in §7.3.3 relies on a boundary pairing type argument, and we again use the Riemannian

inner product on forms on M . The fact that this Riemannian inner product is singular at

∂X implies that resonant states are not necessarily square integrable, and whether or not
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a state is square integrable is determined by the absence of a certain boundary component

of the state. This is a crucial element of the cohomological interpretation of resonant states

in §7.3.4.

As already alluded to, deducing wave expansions and decay from Theorem 7.1.3 requires

high energy estimates for the normal operator family. These are easy to obtain if the metric

h on X is non-trapping, i.e. all geodesics escape to ∂X, as is the case for the static patch

of de Sitter space, discussed in the present chapter in §7.4.1 and in the scalar setting in

§5.2. Another instance in which suitable estimates hold is when the only trapping within

X is normally hyperbolic, as is the case for Kerr-de Sitter spaces with parameters in a

certain range. As discussed in Chapter 6, such estimates are now widely available in the

scalar setting [42, 124]; the proof of exponential decay then relies on high energy estimates

in a strip below the real line. For � acting on differential forms, obtaining high energy

estimates requires a smallness assumption on the imaginary part of the subprincipal symbol

of � relative to a positive definite inner product on the form bundle, and we showed how

to tackle this issue by means of pseudodifferential inner products in Chapter 6 for � on

tensors of arbitrary rank on perturbations of Schwarzschild-de Sitter space.

This chapter gives the first proof of asymptotics for differential forms solving the wave

or Hodge-de Rham equation in all form degrees and in this generality, and also the first to

demonstrate the forward solvability of non-scalar quasilinear wave equations on black hole

spacetimes; however, we point out that for applications in general relativity, our results

require the cosmological constant to be positive, as discussed in Chapter 1 and §5.1, whereas

previous works on Maxwell’s equations deal with asymptotically flat spacetimes; see §6.1.1

for references.

We moreover remark that Vasy’s proof of the meromorphy of the (modified) resolvent

of the Laplacian on differential forms on asymptotically hyperbolic spaces [112] makes use

of the same microlocal framework as the present chapter, and it also shows how to link

the ‘intrinsic’ structure of the asymptotically hyperbolic space and the form of the Hodge-

Laplacian with a ‘non-degenerately extended’ space and operator.

7.2 Analytic setup

Recall that we are working on a spacetime M = Rt × X, equipped with a metric g as in

(7.1.1)-(7.1.2), where X is the interior of a connected, compact, orientable manifold X with
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non-empty boundary Y = ∂X 6= ∅ and boundary defining function α ∈ C∞(X). Fixing

a collar neighborhood of Y identified with [0, ε)α × Y , denote by Xeven the manifold X

with the smooth structure changed so that only even functions in α are smooth, i.e. smooth

functions are precisely those for which all odd terms in the Taylor expansion at all boundary

components vanish. For brevity, we assume from now on that Y is connected,

h = β̃(α2, y)2 dα2 + k(α2, y, dy) (7.2.1)

in a collar neighborhood of Y , and thus β̃(0, y) ≡ β is a single constant, but all of our argu-

ments readily go through in the case of multiple boundary components. The main examples

of spaces which directly fit into this setup are the static patch of de Sitter space (with 1

boundary component) and Schwarzschild-de Sitter space (with 2 boundary components);

see §7.4 for details.

On M , we consider the Hodge-de Rham operator d + δ, acting on differential forms.

We put its square, the Hodge d’Alembertian � = (d+ δ)2, which is principally scalar, into

the microlocal framework developed in [114]. First, we resolve the coordinate singularity at

α = 0; proceeding as in §2.3, see in particular (2.3.5), we renormalize the time coordinate t

in the collar neighborhood of Y by writing

t = t∗ + F (α), ∂αF (α) = − β̃
α
− 2αc(α2, y) (7.2.2)

with c smooth, hence F (α) ∈ −β logα+ C∞(Xeven); notice that the above requirement on

F only makes sense near Y . We introduce the boundary defining function µ = α2 of Xeven;

then one computes

g = µdt2∗ − (β̃ + 2µc) dt∗ dµ+ (µc2 + β̃c) dµ2 − k(µ, y, dy). (7.2.3)

In particular, the determinant of g in these coordinates equals − β̃2

4 det(k), hence g is non-

degenerate up to Y . Furthermore, we claim that we can choose c(µ, y) such that dt∗ is

timelike on Rt∗ ×Xeven; this requirement is explained below and in [114, §7], as well as in

§4.2. That is, we want to arrange, with G denoting the dual metric to g, that

G(dt∗, dt∗) = −4β̃−2(µc2 + β̃c) > 0. (7.2.4)
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This is trivially satisfied if c = −β̃/2µ, which corresponds to undoing the change of coor-

dinates in (7.2.2), however we want c to be smooth at µ = 0. But for µ ≥ 0, (7.2.4) holds

provided −β̃/µ < c < 0; hence, we can choose a smooth c verifying (7.2.4) in µ ≥ 0 and

such that moreover c = −β̃/2µ in µ ≥ µ1 (intersected with the collar neighborhood of Y )

for any fixed µ1 > 0. Thus, we can choose F as in (7.2.2) with F = 0 in α2 ≥ µ1 (in

particular, F is defined globally on X) such that (7.2.4) holds.

Since the metric g in (7.2.3) is stationary (t∗-independent) and non-degenerate on Xeven,

it can be extended to a stationary Lorentzian metric on an extension X̃δ into which Xeven

embeds. Concretely, one defines X̃δ = (Xevent ([−δ, ε)µ×Yy))/ ∼ with the obvious smooth

structure, where ∼ identifies elements of [0, ε)µ × Yy with points in Xeven by means of

the collar neighborhood of Y . Then, extending β̃ and k, and thus g, in an arbitrary t∗-

independent manner to X̃δ, the extended metric, which we denote by g̃, is non-degenerate

on X̃δ for sufficiently small δ > 0, and ∂t∗ remains timelike uniformly on Rt∗ × X̃δ: Indeed,

in µ < 0, (7.2.4) (with the dual metric G̃ of g̃ in place of G) holds for any negative function

c as long as β̃ remains positive on X̃δ. Reducing δ > 0 further if necessary (to enforce the

relevant structure of the null-geodesic flow near Y within X̃δ \Xeven, see [114, §2]), we let X̃

be the double space of X̃δ, which is thus a compact manifold without boundary, and denote

by g̃ the extended metric on X̃, slightly modified near ∂X̃δ to ensure the smoothness of g̃

on the double space X̃.

The operator d + δg on M now extends to an operator d + δg̃ on M̃ = Rt∗ × X̃.

Correspondingly, the wave operator �g on M extends to the wave operator �g̃ on M̃ .

Denote the normal operator family of �g̃ by �̃g̃(σ), that is to say (using e−t∗ as the Mellin

transform variable, and dropping the subscript g̃ for brevity)

�̃(σ) = eit∗σ�e−it∗σ;

since � is invariant under translations in t∗, this amounts to replacing each ∂t∗ in the

expression for � by −iσ. The operator �̃(σ) acts on sections of the pullback Λ
X̃
M̃ of the

form bundle ΛM̃ under the map X̃ → M̃ , x̃ 7→ (0, x̃), and writing differential forms ũ on

M̃ as

ũ = ũT + dt∗ ∧ ũN (7.2.5)

with ũT and ũN valued in forms on X̃, we can identify Λ
X̃
M̃ with ΛX̃ ⊕ ΛX̃.

The last step required to show that �, more precisely �̃(σ), fits into the framework
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described in [114] is classical non-trapping for the bicharacteristic flow of �̃(σ); complex

absorption can be dealt with by the arguments of [114, §§3-4]. But in fact, we even have

ellipticity in X: Indeed, on X, we have

�̃(σ) = e−iFσeitσ�e−itσeiFσ = e−iFσ�̂(σ)eiFσ, (7.2.6)

where �̂(σ) = eitσ�e−itσ is the conjugation of � by the Fourier transform in −t, and F is as

in (7.2.2); here, we view �̂(σ) as an operator acting on sections of Λ
X̃
M̃ |X . Now, the latter

bundle can by identified with ΛX ⊕ ΛX by writing differential forms as u = uT + dt ∧ uN ,

with uT and uN valued in forms on X, and switching between this identification and (7.2.5)

amounts to conjugating �̂(σ) by a bundle isomorphism on ΛX ⊕ ΛX, which preserves

ellipticity. The standard principal symbol of �̂(σ) as a second order operator acting on

sections of ΛX ⊕ ΛX is given by (−H) ⊕ (−H), where H is the dual metric to h, here

identified with the dual metric function on T ∗X; this follows from the calculations in the

next section. Since H is Riemannian, this implies that �̂(σ), hence �̃(σ), is classically

elliptic in X, which trivially implies the non-trapping property.

Hence by [114, Theorem 7.3], �̃(σ) is an analytic family of Fredholm operators on

suitable function spaces, and the inverse family �̃(σ)−1 : C∞(X̃; ΛX̃⊕ΛX̃)→ C−∞(X̃; ΛX̃⊕
ΛX̃) (where we use the identification (7.2.5)) admits a meromorphic continuation from

Imσ � 0 to the complex plane; note however that without further assumptions on the

geodesic flow (for instance, semiclassical non-trapping or normally hyperbolic trapping),

we do not obtain any high energy bounds. Moreover (see [114, Lemma 3.5]), the Laurent

coefficient at the poles are finite rank operators mapping sufficiently regular distributions

to elements of C∞(X̃; ΛX̃ ⊕ ΛX̃).

For present purposes, it is actually more convenient to replace complex absorption by

Cauchy hypersurfaces outside of Xeven as in Chapter 5, for instance §5.2; the above prop-

erties on �̃(σ)−1 hold true in this setting as well. We then deduce:

Lemma 7.2.1. A complex number σ ∈ C is a resonance of �, i.e. �̃(σ)−1 has a pole at

σ, if and only if there exists a non-zero u ∈ α−iβσC∞(Xeven; ΛXeven ⊕ ΛXeven) (using the

identification (7.2.5)) such that �̂(σ)u = 0.

Proof. If σ ∈ C is a resonance, then there exists a non-zero ũ ∈ C∞(X̃; ΛX̃ ⊕ ΛX̃) with

�̃(σ)ũ = 0. Restricting to X, this implies by (7.2.6) and (7.2.2) that �̂(σ)u = 0 for

u = eiFσũ|X ∈ α−iβσC∞(Xeven; ΛXeven⊕ΛXeven). If u = 0, then ũ vanishes to infinite order
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at Y , and since �̃(σ) is a conjugate of a wave or Klein-Gordon operator on an asymptotically

de Sitter space, see [117], unique continuation at infinity on the de Sitter side as in [111,

Proposition 5.3] (which is in the scalar setting, but works similarly in the present context

since it relies on a semiclassical argument in which only the principal symbol of the wave

operator matters, and this is the same in our setting) shows that ũ ≡ 0 on X̃; this is the

place where we use that we capped off X̃ outside of Xeven by a Cauchy hypersurface. Hence,

u 6= 0, as desired.

Conversely, given a u ∈ α−iβσC∞(Xeven; ΛXeven ⊕ ΛXeven) with �̂(σ)u = 0, we define

ũ′ ∈ C∞(X̃; ΛX̃ ⊕ ΛX̃) to be any smooth extension of e−iFσu from Xeven to X̃. Then

�̃(σ)ũ′ is identically zero in X and thus vanishes to infinite order at Y ; hence, we can solve

�̃(σ)ṽ = −�̃(σ)ũ′

in X̃ \X with ṽ vanishing to infinite order at Y ; thus, extending ṽ by 0 to X, we find that

ũ = ũ′ + ṽ is a non-zero solution to �̃(σ)ũ = 0 on X̃.

Since � = (d+ δ)2, we readily obtain the following analogue of Lemma 7.2.1 for d+ δ,

dropping the bundles from the notation for simplicity:

Lemma 7.2.2. The map kerC∞(X̃)
(d̃(σ) + δ̃(σ)) → kerα−iβσC∞(Xeven)(d̂(σ) + δ̂(σ)), ũ 7→

eiFσũ|X , is an isomorphism.

Proof. Since ũ ∈ ker(d̃(σ) + δ̃(σ)) implies ũ ∈ ker �̃(σ), injectivity follows from the proof of

Lemma 7.2.1. To show surjectivity, take u ∈ eiFσC∞(Xeven) with (d̂(σ) + δ̂(σ))u = 0 and

choose any smooth extension ũ′ of e−iFσu to X̃. Solving �̃(σ)ṽ′ = −(d̃(σ) + δ̃(σ))ũ′ with

supp ṽ′ ⊂ X̃ \X and then defining ṽ = (d̃(σ) + δ̃(σ))ṽ′, we see that ũ = ũ′ + ṽ extends ũ′

to X̃ and is annihilated by d̃(σ) + δ̃(σ).

Thus, when studying the location and structure of resonances, we already have very

precise information about regularity and asymptotics (on X) of potential resonant states.

Lastly, we remark that since �̃(σ) = (d̃(σ) + δ̃(σ))2 is an analytic family of Fred-

holm operators with meromorphic inverse, the same holds for d̃(σ) + δ̃(σ). More precisely,

�̃(σ) : X s → Ys−1 with X s = {u ∈ Hs(X̃; ΛX̃ ⊕ΛX̃)− : �̃(σ)u ∈ Hs−1(X̃; ΛX̃ ⊕ΛX̃)} and

Ys−1 = Hs−1(X̃; ΛX̃⊕ΛX̃)−, with (−) denoting extendible distributions [64, Appendix B],

is Fredholm provided s is large enough (depending on Imσ), and thus d̃(σ)+ δ̃(σ) : Zs → Ys

with Ys = {u ∈ Hs(X̃; ΛX̃ ⊕ ΛX̃)− : (d̃(σ) + δ̃(σ))u ∈ Hs(X̃; ΛX̃ ⊕ ΛX̃)} is Fredholm for
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the same s. In addition, d̃(σ) + δ̃(σ) acting on these spaces is invertible if and only if its

square �̃(σ) is. In particular, d̃(σ)+ δ̃(σ) has index 0, being an analytic family of Fredholm

operators which is invertible for Imσ � 0.

7.3 Resonances in the closed upper half plane

Using Lemma 7.2.2, we now study the resonances of in Imσ ≥ 0 by analyzing the operator

d̂(σ) + δ̂(σ) (and related operators) on Xeven. Recall that a resonance at σ ∈ C and a

corresponding resonant state ũ yield a solution (d+ δ)(e−it∗σũ) = 0, hence Imσ > 0 implies

in view of |e−it∗σ| = et∗ Imσ that e−it∗σũ grows exponentially in t∗, whereas resonances with

Imσ = 0 yield solutions which at most grow polynomially in t∗ (and do not decay). We

will continue to drop the metric g or g̃ from the notation for brevity.

In order to keep track of fiber inner products and volume densities, we will use the

following notation.

Definition 7.3.1. For a density µ on X and a complex vector bundle E → X equipped

with a positive definite Hermitian form B, let L2(X,µ; E , B) be the space of all sections u

of E for which ‖u‖2µ,B :=
∫
X B(u, u) dµ <∞.

If B is merely assumed to be sesquilinear (but not necessarily positive definite), we

define the pairing

〈u, v〉µ,B :=

∫
X
B(u, v) dµ

for all sections u, v of E for which B(u, v) ∈ L1(X,µ). If the choice of the density µ or inner

product B is clear from the context, it will be dropped from the notation.

Remark 7.3.2. It will always be clear what bundle E we are using at a given time, so E will

from now on be dropped from the notation; also, X will mostly be suppressed.

Since the metric g in (7.1.1) has a warped product structure and αdt has unit squared

norm, it is natural to write differential forms on M = Rt ×Xx as

u(t, x) = uT (t, x) + αdt ∧ uN (t, x), (7.3.1)

where the tangential and normal forms uT and uN are t-dependent forms on X, and we will

often write this as

u(t, x) =

(
uT (t, x)

uN (t, x)

)
.



7.3. RESONANCES IN THE CLOSED UPPER HALF PLANE 245

Thus, the differential d on M is given in terms of the differential dX on X by

d =

(
dX 0

α−1∂t −α−1dXα

)
. (7.3.2)

Since the dual metric is given by G = α−2∂2
t −H, the fiber inner product Gk on k-forms is

given by

Gk =

(
(−1)kHk 0

0 (−1)k−1Hk−1

)
, (7.3.3)

where Hq denotes the fiber inner product on q-forms on X. Furthermore, the volume density

on M is |dg| = α|dt dh|, and we therefore compute the L2(M, |dg|)-adjoint of d to be

δ =

(
−α−1δXα −α−1∂t

0 δX

)
, (7.3.4)

where δX is the L2(X, |dh|; ΛX,H)-adjoint of dX . Thus,

d̂(σ) =

(
dX 0

−iσα−1 −α−1dXα

)
, δ̂(σ) =

(
−α−1δXα iσα−1

0 δX

)
. (7.3.5)

In the course of our arguments we will need to justify various integrations by parts and

boundary pairing arguments. This requires a precise understanding of the asymptotics of uT

and uN for potential resonant states u at Y = ∂Xeven. To this end, we further decompose

the bundle ΛX ⊕ ΛX near Y by writing uT as

uT = uTT + dα ∧ uTN (7.3.6)

and similarly for uN , hence

u = uTT + dα ∧ uTN + αdt ∧ uNT + αdt ∧ dα ∧ uNN , (7.3.7)

where the u•• are forms on X valued in ΛY . Now for a resonant state u, we have

u = α−iβσ(ũ′TT + d(α2) ∧ ũ′TN + dt∗ ∧ ũ′NT + dt∗ ∧ d(α2) ∧ ũ′NN ) (7.3.8)

near Y with ũ′•• ∈ C∞(Xeven; ΛY ), which we rewrite in terms of the decomposition (7.3.7)
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using (7.2.2), obtaining

u = α−iβσ
(
ũ′TT + dα ∧ (2αũ′TN − F ′(α)ũ′NT )

+ αdt ∧ α−1ũ′NT + 2αdt ∧ dα ∧ ũ′NN
)
;

hence introducing the ‘change of basis’ matrix

C =


1 0 0 0

0 α βα−1 0

0 0 α−1 0

0 0 0 1


and defining the space

C∞(σ) := Cα−iβσ


C∞(Xeven; ΛY )

C∞(Xeven; ΛY )

C∞(Xeven; ΛY )

C∞(Xeven; ΛY )

 ⊂


α−iβσC∞(Xeven; ΛY )

α−iβσ−1C∞(Xeven; ΛY )

α−iβσ−1C∞(Xeven; ΛY )

α−iβσC∞(Xeven; ΛY )

 , (7.3.9)

we obtain 
uTT

uTN

uNT

uNN

 = Cα−iβσ


ũTT

ũTN

ũNT

ũNN

 ∈ C∞(σ) (7.3.10)

with ũ•• ∈ C∞(Xeven; ΛY ), where the u•• are the components of u in the decomposition

(7.3.7).

We will also need the precise form of d̂(σ) and δ̂(σ) near Y . Since in the decomposition

(7.3.6), the fiber inner product on ΛX-valued forms is H = K ⊕ β̃−2K in view of (7.2.1),

we have

dX =

(
dY 0

∂α −dY

)
and δX =

(
δY ∂∗α

0 −δY

)
, (7.3.11)

where dY is the differential on Y and ∂∗α is the formal adjoint of ∂α : C∞(X; ΛY ) ⊂
L2(X, |dh|; ΛY,K) → L2(X, |dh|; ΛY, β̃−2K). Thus, if β̃ and k are independent of α near
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Y , we simply have

∂∗α = −β−2∂α,

and in general, ∂∗α = −β−2∂α + α2p1∂α + αp2, where p1, p2 ∈ C∞(Xeven).

Finally, we compute the form of d̂(σ) near Y acting on forms as in (7.3.10):

d̂(σ)C =


dY 0 0 0

∂α −αdY −βα−1dY 0

−iσα−1 0 −α−1dY 0

0 −iσ −iσβα−2 − α−1∂α dY

 . (7.3.12)

Thus, applying d̂(σ) to u ∈ C∞(σ) yields an element

d̂(σ)u ∈


α−iβσC∞(Xeven; ΛY )

α−iβσ−1C∞(Xeven; ΛY )

α−iβσ−1C∞(Xeven; ΛY )

α−iβσC∞(Xeven; ΛY )

 ,

where we use that there is a cancellation in the (4, 3) entry of d̂(σ)C in view of (iσβα−2 +

α−1∂α)α−iβσ = 0; without this cancellation, the fourth component of d̂(σ)u would only lie

in α−iβσ−2C∞(Xeven; ΛY ). Similarly, we compute

δ̂(σ)C =


−δY −α−1∂∗αα

2 −βα−1∂∗α + iσα−2 0

0 αδY βα−1δY iσα−1

0 0 α−1δY ∂∗α

0 0 0 −δY

 , (7.3.13)

thus applying δ̂(σ) to u ∈ C∞(σ) also gives an element

δ̂(σ)u ∈


α−iβσC∞(Xeven; ΛY )

α−iβσ−1C∞(Xeven; ΛY )

α−iβσ−1C∞(Xeven; ΛY )

α−iβσC∞(Xeven; ΛY )

 ,

where there is again a cancellation in the (1, 3) entry of δ̂(σ)C ; without this cancellation,
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the first component of d̂(σ)u would only lie in α−iβσ−2C∞(Xeven; ΛY ).

In fact, a bit more is true: Namely, one checks that the operators αiβσC−1d̂(σ)Cα−iβσ

and αiβσC−1δ̂(σ)Cα−iβσ preserve the space C∞(Xeven; ΛY )4 (in the decomposition (7.3.8)),

hence if u ∈ C∞(σ), then also d̂(σ)u, δ̂(σ)u ∈ C∞(σ). Indeed, this follows either by a direct

computation, or one notes that these operators are equal (up to a smooth phase factor) to

the matrices of the Fourier transforms in t∗ of d and δ with respect to the form decomposition

(7.3.8), which are smooth on the extended manifold X̃. Since it will be useful later, we check

this explicitly for σ = 0 by computing

C−1d̂(0)C =


dY 0 0 0

α−1∂α −dY 0 0

0 0 −dY 0

0 0 −α−1∂α dY

 (7.3.14)

and

C−1δ̂(0)C =


−δY −α−1∂∗αα

2 −α−1∂∗αβ 0

0 δY 0 −βα−1∂∗α

0 0 δY α∂∗α

0 0 0 −δY

 . (7.3.15)

7.3.1 Absence of resonances in the upper half plane

The fiber inner product on the form bundle is not positive definite, thus we cannot use

standard arguments for (formally) self-adjoint operators to exclude a non-trivial kernel of

d̂(σ) + δ̂(σ). We therefore introduce a different inner product (by which we mean here

a non-degenerate sesquilinear form), related to the natural inner product induced by the

metric, which does have some positivity properties. Concretely, for θ ∈ (−π/2, π/2), we use

the inner product H ⊕ e−2iθH, i.e. on pure degree k-forms on M , the fiber inner product is

given by Hk ⊕ e−2iθHk−1 in the decomposition into tangential and normal components as

in (7.3.1).

Lemma 7.3.3. Let θ ∈ (−π/2, π/2). Suppose that u ∈ L2(α|dh|;H ⊕ H) is such that

〈u, u〉H⊕e−2iθH = 0. Then u = 0.
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Proof. With u = uT + αdt ∧ uN , we have ‖uT ‖2L2(α|dh|;H) + e−2iθ‖uN‖2L2(α|dh|;H) = 0. Mul-

tiplying this equation by eiθ and taking real parts gives

cos(θ)‖u‖2L2(α|dh|;H⊕H) = 0,

hence u = 0, since cos θ > 0 for θ in the given range.

Using the volume density α|dh| to compute adjoints, we have

〈d̂(σ)u, v〉H⊕e−2iθH = 〈u, δ̂θ(σ)v〉H⊕e−2iθH , u, v ∈ C∞c (X; ΛX ⊕ ΛX)

for the operator

δ̂θ(σ) =

(
α−1δXα ie2iθσ̄α−1

0 −δX

)
,

which equals −δ̂(σ) provided e2iθσ̄ = −σ, i.e. σ ∈ eiθ · i(0,∞).

Remark 7.3.4. Since the inner product H ⊕ e−2iθH is not Hermitian, we do not have

〈δ̂θ(σ)u, v〉H⊕e−2iθH = 〈u, d̂(σ)v〉H⊕e−2iθH in general. Rather, one computes

〈δ̂θ(σ)u, v〉H⊕e2iθH = 〈v, δ̂θ(σ)u〉H⊕e−2iθH

= 〈d̂(σ)v, u〉H⊕e−2iθH = 〈u, d̂(σ)v〉H⊕e2iθH .
(7.3.16)

Now suppose u ∈ C∞(σ) is a solution, with Imσ > 0, of

(d̂(σ) + δ̂(σ))u = 0. (7.3.17)

We claim that every such u must vanish. To show this, we apply d̂(σ) to (7.3.17) and pair

the result with u; this gives

0 = 〈d̂(σ)δ̂(σ)u, u〉H⊕e−2iθH = 〈δ̂(σ)u, δ̂θ(σ)u〉H⊕e−2iθH

= −〈δ̂(σ)u, δ̂(σ)u〉H⊕e−2iθH ,
(7.3.18)

where we choose θ ∈ (−π/2, π/2) so that σ ∈ eiθ · i(0,∞); the integration by parts will

be justified momentarily. By Lemma 7.3.3, this implies δ̂(σ)u = 0. On the other hand,
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applying δ̂(σ) to (7.3.17) and using (7.3.16), we get, for σ ∈ eiθ · i(0,∞),

0 = 〈δ̂(σ)d̂(σ)u, u〉H⊕e2iθH = −〈δ̂θ(σ)d̂(σ)u, u〉H⊕e2iθH
= −〈d̂(σ)u, d̂(σ)u〉H⊕e2iθH ,

(7.3.19)

hence d̂(σ)u = 0 by Lemma 7.3.3, again modulo justifying the integration by parts.

Using the splitting (7.3.1) and the form (7.3.5) of d̂(σ), the second component of the

equation d̂(σ)u = 0 gives iσuT + dXαuN = 0. Taking the L2(α|dh|;H)-pairing of this with

uT gives (the integration by parts to be justified below)

0 = iσ‖uT ‖2 + 〈dXαuN , uT 〉 = iσ‖uT ‖2 + 〈uN , δXαuT 〉, (7.3.20)

and then the first component of δ̂(σ)u = 0, i.e. δXαuT = iσuN , can be used to rewrite the

pairing on the right hand side; we obtain 0 = i(σ‖uT ‖2 − σ̄‖uN‖2). Writing σ = ieiθσ̃ with

σ̃ > 0 real, this becomes

0 = σ̃(eiθ‖uT ‖2 + e−iθ‖uN‖2), (7.3.21)

and taking the real part of this equation gives uT = 0 = uN , hence u = 0.

We now justify the integrations by parts used in (7.3.18) and (7.3.19), which is only an

issue at Y . First of all, since u ∈ C∞(σ) and Imσ > 0, the pairings are well-defined in the

strong sense that all functions which appear in the pairings are elements of L2(α|dh|;H⊕H);

in fact, all functions in these pairings lie in C∞(σ). In view of the block structure H⊕e−2iθH =

K⊕β̃−2K⊕e−2iθK⊕β̃−2e−2iθK of the inner product, the only potentially troublesome term

for the integration by parts there is the pairing of the first components, since this is where

we need the cancellation mentioned after (7.3.13) to ensure that δ̂(σ)u ∈ L2. However,

if we only use the cancellation in one of the terms, we pair α−iβσC∞(Xeven; ΛY ) against

α−iβσ−2C∞(Xeven; ΛY ) in the first component, thus this pairing is still absolutely integrable

and one can integrate by parts. Likewise, the integration by parts used in (7.3.19) only has

potential issues in the pairing of the fourth components, since we need the cancellation men-

tioned after (7.3.12) to ensure that d̂(σ)u ∈ L2. But again, if we only use this cancellation

in one of the terms, we pair α−iβσC∞(Xeven; ΛY ) against α−iβσ−2C∞(Xeven; ΛY ), which is

absolutely integrable.
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In order to justify (7.3.20), we observe using (7.3.11) that near Y ,

uT , dXαuN ∈

(
α−iβσC∞

α−iβσ−1C∞

)
, uN , δXαuT ∈

(
α−iβσ−1C∞

α−iβσC∞

)
,

where we write C∞ = C∞(Xeven; ΛY ). These membership statements do not rely on any

cancellations, and since all these functions are in L2(α|dh|; ΛY,K) near Y , the integration

by parts in (7.3.20) is justified.

We summarize the above discussion and extend it to a quantitative version:

Proposition 7.3.5. There exists a constant C > 0 such that for all σ ∈ C with Imσ > 0,

we have the following estimate for u ∈ C∞(σ):

‖u‖L2(α|dh|;H⊕H) ≤ C
|σ|
| Imσ|2

‖(d̂(σ) + δ̂(σ))u‖L2(α|dh|;H⊕H). (7.3.22)

Proof. Write σ = ieiθσ̃, θ ∈ (−π/2, π/2), σ̃ > 0, as before. Let f = (d̂(σ) + δ̂(σ))u; in

particular f ∈ C∞(σ). Then d̂(σ)δ̂(σ)u = d̂(σ)f , so

〈δ̂(σ)u, δ̂(σ)u〉H⊕e−2iθH = −〈d̂(σ)δ̂(σ)u, u〉H⊕e−2iθH = 〈f, δ̂(σ)u〉H⊕e−2iθH , (7.3.23)

and similarly

〈d̂(σ)u, d̂(σ)u〉H⊕e2iθH = 〈f, d̂(σ)u〉H⊕e2iθH . (7.3.24)

Multiply (7.3.23) by eiθ, (7.3.24) by e−iθ and take the sum of both equations to get

eiθ(‖(δ̂(σ)u)T ‖2 + ‖(d̂(σ)u)N‖2) + e−iθ(‖(δ̂(σ)u)N‖2 + ‖(d̂(σ)u)T ‖2)

= eiθ〈f, δ̂(σ)u〉H⊕e−2iθH + e−iθ〈f, d̂(σ)u〉H⊕e2iθH .

Here, the norms without subscript are L2(α|dh|;H ⊕ H)-norms as usual. Taking the real

part and applying Cauchy-Schwarz to the right hand side produces the estimate

‖d̂(σ)u‖+ ‖δ̂(σ)u‖ ≤ 4

cos θ
‖f‖ =

4|σ|
Imσ

‖f‖. (7.3.25)

We estimate u in terms of the left hand side of (7.3.25) by following the arguments leading

to (7.3.21): Put v = d̂(σ)u and w = δ̂(σ)u. Then iσuT + dXαuN = −αvN ; we pair this
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with uT in L2(α|dh|;H) and obtain

iσ‖uT ‖2 + 〈uN , δXαuT 〉 = −〈αvN , uT 〉.

Using −δXαuT + iσuN = αwT , this implies

iσ‖uT ‖2 − iσ̄‖uN‖2 = −〈αvN , uT 〉+ 〈uN , αwT 〉,

thus

σ̃(eiθ‖uT ‖2 + e−iθ‖uN‖2) = 〈αvN , uT 〉 − 〈uN , αwT 〉.

Taking the real part and applying Cauchy-Schwarz, we get

(cos θ)‖u‖ ≤ |σ|−1(‖αv‖+ ‖αw‖) . |σ|−1(‖v‖+ ‖w‖).

In combination with (7.3.25), this yields (7.3.22).

7.3.2 Boundary pairing and absence of non-zero real resonances

We proceed to exclude non-zero real resonances for d + δ by means of a boundary pairing

argument similar to [84, §2.3].

Proposition 7.3.6. Suppose σ ∈ R, σ 6= 0. If u ∈ C∞(σ) solves (d̂(σ) + δ̂(σ))u = 0, then

u = 0.

Proof. Writing u = uT + αdt ∧ uN as usual, we can expand (d̂(σ) + δ̂(σ))u = 0 as

(αdX − δXα)uT + iσuN = 0 (7.3.26)

−iσuT + (−dXα+ αδX)uN = 0.

Applying (−dXα+αδX) to the first equation and using the second equation to simplify the

resulting expression produces a second order equation for uT ,

(dXαδXα+ αδXαdX − dXα2dX − σ2)uT = 0. (7.3.27)

Writing uT = uTT +dα∧uTN as in (7.3.6), we see from the definition of the space C∞(σ) that

uT ∈ C∞(σ),T := α−iβσC∞(Xeven; ΛY )⊕ α−iβσ−1C∞(Xeven; ΛY )
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near Y . Notice that the space C∞(σ),T barely fails to be contained in L2(α|dh|).
We will deduce from (7.3.27) that uT = 0; equation (7.3.26) then gives uN = 0, as σ 6= 0.

Now, the L2(α|dh|;H)-adjoint of dXα is δXα, hence even ignoring the term dXα
2dX , the

operator in (7.3.27) is not symmetric. However, we can obtain a simpler equation from

(7.3.27) by applying dX to it; write vT = dXuT ∈ C∞(σ),T , and near Y ,

vT =

(
α−iβσṽTT

α−iβσ−1ṽTN

)
, ṽTT , ṽTN ∈ C∞(Xeven; ΛY ).

Then vT satisfies the equation

(dXαδXα− σ2)vT = 0,

and dXαδXα is symmetric with respect to the L2(α|dh|;H)-inner product. We now compute

the boundary pairing formula (using the same inner product); to this end, pick a cutoff

function χ ∈ C∞(X) such that in a collar neighborhood [0, δ)α × Yy of Y in X, χ = χ(α) is

identically 0 near α = 0 and identically 1 in α ≥ δ/2, and extend χ by 1 to all of X. Define

χε(α) = χ(α/ε) and χ′ε(α) = χ′(α/ε). Then

0 = lim
ε→0

(〈(dXαδXα− σ2)vT , χεvT 〉 − 〈vT , χε(dXαδXα− σ2)vT 〉)

= lim
ε→0
〈vT , [dXαδXα, χε]vT 〉.

(7.3.28)

The coefficients of the commutator are supported near Y , hence we use (7.3.11) to compute

its form as

[dXαδXα, χε] =

[(
dY αδY α dY α∂

∗
αα

∂ααδY α ∂αα∂
∗
αα+ dY αδY α

)
, χε

]

=

(
0 dY α[∂∗α, χε]α

[∂α, χε]αδY α [∂αα∂
∗
αα, χε]

)

= ε−1

(
0 −β−2(α2 +O(α4))χ′εdY

χ′εαδY α χ′εα∂
∗
αα− ∂α(α2 +O(α4))β−2χ′ε

)
.
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In (7.3.28), the off-diagonal terms of this give terms of the form∫
Y

∫
α∓iβσα±iβσ−1ε−1α2χ′εṽ dα |dk| (7.3.29)

with ṽ ∈ C∞(Xeven), and are easily seen to vanish in the limit ε → 0. For the non-zero

diagonal term, recall that the volume density is given by α|dh| = αβ dα|dk|, and the fiber

inner product in the (TN)-component is β−2K, so

ε−1〈α−iβσ−1ṽTN , (χ
′
εα∂

∗
αα− ∂αα2β−2χ′ε)α

−iβσ−1ṽTN 〉L2(X;αβ dα|dk|;ΛY ;β−2K)

= 2

∫
Y

∫
〈ṽTN , iβ−2σṽTN 〉Kε−1χ′ε dα|dk|+ o(1)

ε→0−−→ −2iβ−2σ‖ṽTN |Y ‖2L2(Y,|dk|;K);

here, both summands in the pairing yield the same result, as is most easily seen by inte-

grating by parts in α, hence the factor of 2, and the o(1)-term comes from differentiating

ṽTN , which produces a term of the form (7.3.29). We thus arrive at

0 = 〈(dXαδXα− σ2)vT , vT 〉 − 〈vT , (dXαδXα− σ2)vT 〉 = −2iβ−2σ‖ṽTN |Y ‖2,

whence ṽTN |Y = 0 in view of σ 6= 0, so we in fact have

vT =

(
α−iβσṽTT

α−iβσṽ′TN

)
, ṽ′TN ∈ C∞(Xeven; ΛY ). (7.3.30)

For the next step, we need the language of 0-differential operators, explained briefly in

§5.4.5. Often, as in our case, one is considering solutions of 0-differential equations with

additional properties, such as having an expansion in powers of α (and perhaps logα) with

smooth coefficients, i.e. polyhomogeneous functions. In these cases αDiffb(X) ⊂ Diff0(X)

acts ‘trivially’ on an expansion in that it maps each term to one with an additional order

of vanishing, so in particular, one can analyze the asymptotic expansion of solutions of

0-differential equations in this restrictive class by ignoring the αDiffb(X) terms. Notice

that α∂yj ∈ αDiffb(X) in particular, so the tangential 0-derivatives can be dropped for this

purpose. The indicial equation is then obtained by freezing the coefficients of A ∈ Diff0(X)

at ∂X, i.e. writing it as
∑

k,β ak,β(α, y)(α∂α)k(α∂y)
β, where ak,β are bundle endomorphism

valued, and restricting α to 0, and dropping all terms with a positive power of α∂y, to obtain
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∑
k ak,0(0, y)(α∂α)k. This can be thought of as a regular-singular ODE in α for each y; its

indicial roots are called the indicial roots of the original 0-operator, and they determine the

asymptotics of solutions of the homogeneous PDE with this a priori form.

Now dXαδXα− σ2 ∈ Diff2
0(X) is a 0-differential operator which equals

dXαδXα− σ2 =

(
−σ2 0

0 −β−2∂αα∂αα− σ2

)

modulo αDiff2
b(X); hence its indicial roots are ±iβσ − 1. In particular, −iβσ + j, j ∈ N0,

is not an indicial root. Thus, a standard inductive argument starting with (7.3.30) shows

that vT ∈ Ċ∞(X; ΛX).

Next, we note that vT lies in the kernel of the operator

dXαδXα+ α−1δXα
3dX − σ2 ∈ Diff2

0(X; 0ΛX),

which has the same principal part as α2∆X , hence is principally a 0-Laplacian; thus, we can

apply Mazzeo’s result on unique continuation at infinity [80] to conclude that the rapidly

vanishing vT must in fact vanish identically.

We thus have proved dXuT = 0. Since uT satisfies (7.3.27), we deduce that uT itself

satisfies

(dXαδXα− σ2)uT = 0,

thus repeating the above argument shows that this implies uT = 0, hence u = 0, and the

proof is complete.

7.3.3 Analysis of the zero resonance

We have shown now that the only potential resonance for d + δ in Imσ ≥ 0 is σ = 0,

and we proceed to study the zero resonance in detail, in particular giving a cohomological

interpretation of it in §7.3.4.

We begin by establishing the order of the pole of (d̃(σ) + δ̃(σ))−1:

Lemma 7.3.7. (d̃(σ) + δ̃(σ))−1 has a pole of order 1 at σ = 0.

Proof. Since d̃(0) + δ̃(0) annihilates constant functions (which are indeed elements of C∞(0)),

(d̃(σ) + δ̃(σ))−1 does have a pole at 0. Denote the order of the pole by N . Then there is

a holomorphic family ũ(σ) ∈ C∞(X̃) with ũ(0) 6= 0 such that (d̃(σ) + δ̃(σ))ũ(σ) = σN ṽ,



256 CHAPTER 7. RESONANCES FOR DIFFERENTIAL FORMS

where ṽ ∈ C∞(X̃). Define u(σ) = eiFσũ(σ)|X ∈ C∞(σ) and v(σ) = eiFσṽ|X ∈ C∞(σ), then

(d̂(0) + δ̂(0))u(σ) = σNv(σ). Moreover, since (d̃(0) + δ̃(0))ũ(0) = 0 and ũ(0) is non-zero,

Lemma 7.2.2 shows that u(0) 6= 0.

Let us assume now that N ≥ 2. For σ ∈ i(0,∞) close to 0, the quantitative estimate in

Proposition 7.3.5 now gives

‖u(σ)‖ . |σ|−1+N‖v(σ)‖ ≤ |σ|‖v(σ)‖, (7.3.31)

where we use the norm of L2(α|dh|;H ⊕H); observe that in the notation of §7.3.1, we have

δ̂0(0) = −δ̂(0), hence using the Riemannian fiber inner product H ⊕ H is indeed natural

when studying the zero resonance. Notice that (7.3.31) does not immediately give u(0) = 0

since v(0) /∈ L2(α|dh|;H ⊕H). However, we can quantify the degeneration of the L2-norm

of v(σ) as σ → 0. To see this, we first observe that the L2-norm of v(σ) restricted to the

complement of any fixed neighborhood of Y does stay bounded, so it remains to analyze

the L2-norms of the four components of v(σ) near Y in the notation of (7.3.7); denote these

components by α−iβσṽTT (σ), α−iβσ−1ṽTN (σ), α−iβσ−1ṽNT (σ) and α−iβσṽNN (σ), so that the

ṽ••(σ) ∈ C∞(Xeven; ΛY ) uniformly. Since the fiber metric in this basis has a block diagonal

form and any C∞(Xeven)-multiple of α−iβσ is uniformly square-integrable with respect to

the volume density α|dh|, the degeneration of the L2-norm of v is caused by the (TN)

and (NT ) components. For these, we compute, with w̃(σ) ∈ C∞(Xeven; ΛY ) denoting any

continuous family supported near Y ,∫
Y

∫
α2(−iβσ−1)‖w̃‖2K αdα|dk|

= ‖w̃(0)‖2L2(Y,|dk|;K)

∫
α−2iβσ−1χ(α) dα+O(1),

where χ ∈ C∞(X) is a cutoff, equal to 1 near α = 0. We can rewrite the integral using an

integration by parts, which yields∫
α−2iβσ−1χ(α) dα =

1

2iβσ

∫
α−2iβσχ′(α) dα = O(|σ|−1).

Therefore, we obtain the bound ‖v(σ)‖ = O(|σ|−1/2). Plugging this into (7.3.31), we

conclude using Fatou’s Lemma that u(0) = 0, which contradicts our assumption that u(0) 6=
0. Hence, the order of the pole is N ≤ 1, but since it is at least 1, it must be equal to 1.
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Next, we identify the resonant states. For brevity, we will write d̂ = d̂(0), δ̂ = δ̂(0) and

�̂ = �̂g(0).

Proposition 7.3.8. kerC∞
(0)

(d̂+ δ̂) is equal to the space

H = {u ∈ C∞(0) : d̂u = 0, δ̂u = 0}. (7.3.32)

Proof. Given u ∈ C∞(0) with (d̂ + δ̂)u = 0, we conclude that �̂u = 0, and since �̂ is sym-

metric on L2(α|dh|;H ⊕ H), we can obtain information about u by a boundary pairing

type argument: Concretely, for a cutoff χ ∈ C∞(X) as in the proof of Proposition 7.3.6,

identically 0 near Y , identically 1 outside a neighborhood of Y and a function of α in a

collar neighborhood of Y , and with χε(α) = χ(α/ε), χ′ε(α) = χ′(α/ε), we have

0 = − lim
ε→0
〈χε(d̂ δ̂ + δ̂ d̂)u, u〉 = lim

ε→0
(〈δ̂u, δ̂χεu〉+ 〈d̂u, d̂χεu〉)

= lim
ε→0

(‖χ1/2
ε δ̂u‖2 + ‖χ1/2

ε d̂u‖2) + lim
ε→0

(〈δ̂u, [δ̂, χε]u〉+ 〈d̂u, [d̂, χε]u〉). (7.3.33)

Since the commutators are supported near Y , we can compute them in the basis (7.3.7).

Let us write u = C ũ as in (7.3.10) with σ = 0, then in view of (7.3.13), we have

[δ̂C , χε] = ε−1χ′ε


0 β−2α+O(α3) β−1α−1 +O(α) 0

0 0 0 0

0 0 0 −β−2 +O(α2)

0 0 0 0

 , (7.3.34)

and since therefore only the (TT ) and (NT ) components of [δ̂C , χε]ũ are non-zero, we

merely compute

(δ̂C ũ)TT = −δY ũTT − α−1∂∗αα
2ũTN − βα−1∂∗αũNT

∈ −δY ũTT + 2β−2ũTN − βα−1∂∗αũNT + αC∞(Xeven; ΛY ),

(δ̂C ũ)NT = α−1δY ũNT + ∂∗αũNN ∈ α−1δY ũNT + C∞(Xeven; ΛY ).

Notice here that α−1∂α = 2∂µ indeed preserves elements of C∞(Xeven; ΛY ). Now in (7.3.33),

the pairing corresponding to the (1, 2)-component of (7.3.34) is of the form (7.3.29) (recall

that the volume density is α|dh| = αβ dα|dk|) and hence vanishes in the limit ε → 0, and
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we conclude that

lim
ε→0
〈δ̂u, [δ̂, χε]u〉 = −〈δY ũTT |Y , ũNT |Y 〉+ 2β−2〈ũTN |Y , ũNT |Y 〉

− β〈(α−1∂∗αũNT )|Y , ũNT |Y 〉 − β−1〈δY ũNT |Y , ũNN |Y 〉,
(7.3.35)

where we use the L2(Y, |dk|;K) inner product on the right hand side; we absorbed the factor

of β from the volume density αβ dα|dk| into the functions in the pairings.

In a similar vein, we can use (7.3.12) to compute

[d̂C , χε] = ε−1χ′ε


0 0 0 0

1 0 0 0

0 0 0 0

0 0 −α−1 0

 (7.3.36)

and

(d̂C ũ)TN = ∂αũTT − αdY ũTN − α−1dY βũNT

∈ −βα−1dY ũNT + C∞(Xeven; ΛY ),

(d̂C ũ)NN = −α−1∂αũNT + dY ũNN .

Correspondingly,

lim
ε→0
〈d̂u, [d̂, χε]u〉 = −〈dY ũNT |Y , ũTT |Y 〉+ β−1〈(α−1∂αũNT )|Y , ũNT |Y 〉

− β−1〈dY ũNN |Y , ũNT |Y 〉,
(7.3.37)

where we again use the L2(Y, |dk|;K) inner product on the right hand side; notice with

regard to the powers of β that on the (TN) and (NN) components, the fiber inner product

is β−2K.

As a consequence of these computations, we conclude that the pairings in (7.3.33) stay

bounded as ε → 0, hence d̂u, δ̂u ∈ L2(α|dh|;H ⊕ H) by Fatou’s Lemma. Looking at the

most singular terms of d̂C ũ and δ̂C ũ (again using (7.3.12) and (7.3.13)), this necessitates

dY ũNT |Y = 0, δY ũNT |Y = 0. (7.3.38)
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Therefore, taking (7.3.35) and (7.3.37) into account, (7.3.33) simplifies to

0 = ‖δ̂u‖2+‖d̂u‖2 + β−1〈(α−1∂αũNT )|Y , ũNT |Y 〉

− β〈(α−1∂∗αũNT )|Y , ũNT |Y 〉+ 2β−2〈ũTN |Y , ũNT |Y 〉.
(7.3.39)

Moreover, the fourth component of the equation (d̂+ δ̂)C ũ = 0 yields

−(α−1∂αũNT )|Y + dY ũNN |Y − δY ũNN |Y = 0,

which we can pair with ũNT |Y relative to L2(Y, |dk|;K), and then an integration by parts

together with (7.3.38) shows that the first boundary pairing in (7.3.39) vanishes. Likewise,

the first component of (d̂+ δ̂)C ũ = 0 gives

dY ũTT |Y − δY ũTT |Y + 2β−2ũTN |Y − β(α−1∂∗αũNT )|Y = 0,

which we can again pair with ũNT |Y , and in view of (7.3.38), we conclude that the second

line of (7.3.39) vanishes as well. Thus, finally, (7.3.39) implies that d̂u = 0 and δ̂u = 0.

Conversely, every u ∈ C∞(0) satisfying d̂u = 0 and δ̂u = 0 trivially lies in the kernel of

d̂+ δ̂.

The above proof in particular shows:

Corollary 7.3.9. Let u = C ũ ∈ C∞(0) be such that d̂ δ̂u = 0 (resp. δ̂ d̂u = 0), and assume

that ũNT |Y = 0, or equivalently u ∈ L2(α|dh|). Then δ̂u = 0 (resp. d̂u = 0). In particular,

kerC∞
(0)
∩L2 �̂ = H ∩ L2.

Proof. Suppose d̂ δ̂u = 0. With a cutoff function χε as above, we obtain

0 = − lim
ε→0
〈χεd̂ δ̂u, u〉 = lim

ε→0
‖χ1/2

ε δ̂u‖2 + lim
ε→0
〈δ̂u, [δ̂, χε]u〉.

In view of (7.3.35) and ũNT |Y = 0, the second term on the right hand side vanishes, and

we deduce δ̂u = 0. The proof that δ̂ d̂u = 0 implies d̂u = 0 is similar and uses (7.3.37).

Corollary 7.3.10. We have ker �̂ = ker d̂ δ̂ ∩ ker δ̂ d̂.

Proof. If u ∈ ker �̂, then (d̂+ δ̂)u ∈ H, thus δ̂(d̂+ δ̂)u = δ̂ d̂u = 0 and d̂ δ̂u = 0.
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We record another setting in which the boundary terms in the proof of Proposition 7.3.8

vanish:

Lemma 7.3.11. Suppose v ∈ C∞(0) is a solution of δ̂ d̂ δ̂v = 0. Then d̂ δ̂v = 0. Likewise, if

v ∈ C∞(0) is a solution of d̂ δ̂ d̂v = 0, then δ̂ d̂v = 0.

Proof. Write w = δ̂v ∈ C∞(0). Then δ̂ d̂w = 0 implies, by the proof of Proposition 7.3.8, that

d̂w ∈ L2(α|dh|;H ⊕ H). Writing w = C w̃, this in particular implies dY w̃NT |Y = 0; but

writing v = C ṽ, we have

w̃NT = (C−1δ̂C ṽ)NT = δY ṽNT + α∂∗αṽNN ,

as follows from (7.3.15). Restricting to Y , we thus have w̃NT |Y = δY ṽNT |Y , and hence

0 = dY δY ṽNT |Y . We pair this in L2(Y, |dk|;K) with ṽNT and integrate by parts, obtaining

δY ṽNT |Y = 0. But this implies that w̃NT |Y = 0. By Corollary 7.3.9, this gives d̂w = d̂ δ̂v =

0.

For the second part, we proceed analogously: Letting w = d̂v ∈ C∞(0), we have d̂ δ̂w = 0,

thus δ̂w ∈ L2. This gives δY w̃NT |Y = 0; but by (7.3.14), w̃NT |Y = −dY ṽNT |Y , therefore

δY w̃NT |Y = 0 implies dY ṽNT |Y = 0, so w̃NT |Y = 0, which in turn gives δ̂w = 0 by

Corollary 7.3.9, hence δ̂ d̂v = 0.

7.3.4 Cohomological interpretation of zero resonant states

In this section, we will always work with σ = 0 and hence simply write d̂ = d̂(0), δ̂ = δ̂(0),

d̃ = d̃(0), δ̃ = δ̃(0), �̂ = �̂(0) and �̃ = �̃(0).

The space H defined in Proposition 7.3.8 is graded by the form degree, i.e.

H =

n⊕
k=0

Hk, (7.3.40)

where Hk is the space of all u ∈ H of pure form degree k. In the decomposition (7.3.1), this

means that uT is a differential k-form on X, and uN is a differential (k−1)-form. Likewise,

K := ker �̂ is graded by form degree, and we write

kerC∞
(0)
�̂ =

n⊕
k=0

Kk. (7.3.41)



7.3. RESONANCES IN THE CLOSED UPPER HALF PLANE 261

We aim to relate the spaces Hk and Kk to certain cohomology groups associated with X.

As in the Riemannian setting, the central tool is a Hodge type decomposition adapted to d̂

and δ̂:

Lemma 7.3.12. The following Hodge type decomposition holds on X:

C∞(0) = kerC∞
(0)
�̂⊕ ranC∞

(0)
�̂. (7.3.42)

Proof. We first claim that such a decomposition holds on X̃, i.e. we claim that

C∞(X̃) = ker �̃⊕ ran �̃. (7.3.43)

First of all, since �̃ is Fredholm with index 0, its range is closed, and the codimension of the

range equals the dimension of the kernel. Hence, in order to show (7.3.43), we merely need to

check that the intersection of ker �̃ and ran �̃ is trivial. Thus, let ũ ∈ ker �̃∩ran �̃, and write

ũ = �̃ṽ. Let v = ṽ|X . Then ũ ∈ ker �̃ means, restricting to X and using Corollary 7.3.10,

that d̂ δ̂ d̂ δ̂v = 0 and δ̂ d̂ δ̂ d̂v = 0. Repeated application of Lemma 7.3.11 thus implies

δ̂ d̂v = 0 and d̂ δ̂v = 0, hence δ̃ d̃ṽ and d̃ δ̃ṽ are supported in X̃ \X. (This argument shows

the uniqueness of the decomposition (7.3.42).) Therefore ũ is a solution of �̃ũ = 0 which

is supported in X̃ \X. By unique continuation at infinity on the asymptotically de Sitter

side X̃ \X of X̃, this implies ũ ≡ 0, as claimed.

Now if u ∈ C∞(0) is given, extend it arbitrarily to ũ ∈ C∞(X̃), apply (7.3.43) and restrict

both summands back to X. This establishes (7.3.42).

Remark 7.3.13. The decomposition (7.3.42) does not hold if we replace �̂ in (7.3.42) by

d̂+ δ̂. Indeed, if it did hold, this would say that �̂u = 0 implies (d̂+ δ̂)u = 0, since (d̂+ δ̂)u

lies both in ker(d̂ + δ̂) and ran(d̂ + δ̂) in this case. Since certainly (d̂ + δ̂)u = 0 conversely

implies �̂u = 0, this would mean that ker �̂ = ker(d̂ + δ̂). Now by Lemmas 7.2.1 and

7.2.2, this in turn would give ker �̃ = ker(d̃ + δ̃). Now since �̃ and d̃ + δ̃ are Fredholm

with index 0, we could further deduce ker �̃∗ = ker(d̃ + δ̃)∗, where the adjoints act on the

space Ċ−∞(X̃) of supported distributions at the (artificial) Cauchy hypersurface ∂X̃, see

[64, Appendix B]. Since we have ker(d̃ + δ̃)∗ ⊂ ker �̃∗ unconditionally, we can show the

absurdity of this last equality by exhibiting an element u in ker �̃∗ which does not lie in

ker(d̃ + δ̃)∗. This however is easy: Just let u = 1X be the characteristic function of X.

Then from (7.3.14) and (7.3.15), we see that (d̃+ δ̃)u = d̃u is a non-zero delta distribution
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supported at Y which is annihilated by δ̃.

This argument shows that we always have ker �̂ ) ker(d̂+ δ̂). It is possible though that

Hk = Kk for some form degrees k (but this must fail for some value of k). For instance,

this holds for k = 0 by Corollary 7.3.9. We will give a more general statement below, see

in particular Remark 7.3.18.

We now define a complex whose cohomology we will relate to the spacesHk and Kk: The

space C∞(0)∩L
2(α|dh|) of smooth forms u = C ũ with ũNT |Y = 0 has a grading corresponding

to form degrees, thus

D := C∞(0) ∩ L
2(α|dh|) =

n⊕
k=0

Dk.

Since in the above notation u ∈ L2(α|dh|) (and thus ũNT |Y = 0) is equivalent to ũNT ∈
α2C∞(Xeven; ΛY ) near Y , one can easily check using (7.3.14) that d̂ acts on C∞(0)∩L

2(α|dh|).
We can then define the complex

0→ D0 d̂−→ D1 → . . .
d̂−→ Dn → 0.

We denote its cohomology by

HkL2,dR = ker(d̂ : Dk → Dk+1)/ ran(d̂ : Dk−1 → Dk). (7.3.44)

There is a natural map from HkL2,dR into Hk:

Lemma 7.3.14. Every cohomology class [u] ∈ HkL2,dR has a unique representative u′ ∈ Hk,

and the map i : [u] 7→ u′ is injective.

Proof. Let [u] ∈ HkL2,dR, hence d̂u = 0 and, writing u = C ũ, ũNT |Y = 0. We first show the

existence of a representative, i.e. an element u− d̂v with v ∈ D, which is annihilated by δ̂.

(Since it is clearly annihilated by d̂, this means u− d̂v ∈ Hk.) That is, we need to solve the

equation δ̂ d̂v = δ̂u with v ∈ D. To achieve this, we use Lemma 7.3.12 to write

u = u1 + (d̂ δ̂ + δ̂ d̂)u2, u1 ∈ ker �̂.

By our assumption on u and Corollary 7.3.10, u and u1 are annihilated by δ̂ d̂, giving

δ̂ d̂ δ̂ d̂u2 = 0. By Lemma 7.3.11, this implies δ̂ d̂u2 = 0, hence

u = u1 + d̂ δ̂u2. (7.3.45)
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Applying d̂ δ̂, we obtain

d̂ δ̂ d̂ δ̂u2 = d̂ δ̂u ∈ L2. (7.3.46)

Now writing u2 = C ũ2, and noting that for any w = C w̃ ∈ C∞(0), (C−1d̂C w̃)NT |Y =

−dY w̃NT |Y as well as (C−1δ̂C w̃)NT |Y = δY w̃NT |Y by (7.3.14) and (7.3.15), the (NT )

component of C−1 times equation (7.3.46) reads dY δY dY δY ũ2,NT |Y = 0, which yields

δY ũ2,NT |Y = 0. As a consequence of this, v := δ̂u2 ∈ L2 and therefore d̂ δ̂u2 ∈ L2. Hence

(7.3.45) gives u1 ∈ L2; by Corollary 7.3.9 then, u1 ∈ H, in particular u1 is annihilated by

δ̂. Therefore, applying δ̂ to (7.3.45) yields δ̂(u− d̂v) = 0, as desired.

Next, we show that the representative is unique: Thus, suppose u − d̂v1, u − d̂v2 ∈ Hk

with u, v1, v2 ∈ D, then with v = v1 − v2 ∈ D, we have d̂v ∈ Hk, thus δ̂ d̂v = 0, and by

Corollary 7.3.9, we obtain d̂v = 0. Therefore, u − d̂v1 = u − d̂v2, establishing uniqueness,

which in particular shows that the map i is well-defined.

Finally, we show the injectivity of i: Suppose u ∈ D satisfies d̂u = 0. There exists an

element v ∈ D such that u− d̂v ∈ Hk. Now if i[u] = 0, this precisely means that u− d̂v = 0;

but then [u] = [d̂v] = 0 in HkL2,dR.

From the definition of the space D, it is clear that u ∈ Hk lies in the image of i if and

only if u ∈ L2, i.e. if and only if r(u) = 0, where r is the map

r : C∞(0) → C
∞(Y ; ΛY ), u = C ũ 7→ ũNT |Y . (7.3.47)

Thus, r extracts the singular part of u and thereby measures the failure of a given form

u ∈ C∞(0) to lie in D. Observe that if u = C ũ ∈ Hk, then dY ũNT |Y = 0 and δY ũNT |Y = 0, i.e.

r(u) is a harmonic form on Y . Since the space ker(∆Y,k−1) of harmonic forms on the closed

manifold Y is isomorphic to the cohomology group Hk−1(Y ) by standard Hodge theory, we

thus obtain:

Proposition 7.3.15. The sequence

0→ HkL2,dR
i−→ Hk r−→ Hk−1(Y ) (7.3.48)

is exact. Here, i is the map defined in Lemma 7.3.14, and r is the restriction map (7.3.47)

(composed with the identification ker(∆Y,k−1) ∼= Hk−1(Y )). Moreover, the map i : HkL2,dR →
Hk ∩ D is an isomorphism with inverse Hk ∩ D 3 u 7→ [u] ∈ HkL2,dR.
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Proof. We only need to check the last claim. If u ∈ Hk∩D, then [u] does define a cohomology

class in HkL2,dR, and i([u]) is the unique representative of [u] which lies in Hk. Since u itself

is such a representative, we must have i([u]) = u. For the converse, we note that for any

[u] ∈ HkL2,dR we have i([u]) = u− d̂v for some v ∈ D, hence [i([u])] = [u− d̂v] = [u].

We can make a stronger statement: If we merely have u ∈ ker �̂, then the proof of

Proposition 7.3.8 shows that d̂u, δ̂u ∈ L2, hence r(u) is harmonic.

Proposition 7.3.16. We have a short exact sequence

0→ HkL2,dR
i−→ Kk r−→ Hk−1(Y )→ 0, (7.3.49)

where the first map is i defined in Lemma 7.3.14 (composed with the inclusion Hk ↪→ Kk),

and the second map is the restriction r, defined in (7.3.47) (composed with the identification

ker(∆Y,k−1) ∼= Hk−1(Y )).

Proof. The second map is well-defined by the comment preceding the statement of the

proposition. Since the range of HkL2,dR in Kk consists of L2 forms, we have r ◦ i = 0.

Moreover, if u ∈ ker r, then u is an L2 element of ker �̂, thus u ∈ Hk by Corollary 7.3.9.

By the remark following the proof of Lemma 7.3.14, therefore u ∈ ran i.

It remains to show the surjectivity of r: Thus, let w ∈ ker(∆Y,k−1), and let u′ = C ũ′ ∈
C∞(0) be any extension of w, i.e. ũ′NT |Y = w. Then (d̂+ δ̂)u′ ∈ D, since its (NT ) component

vanishes, and thus �̂u′ ∈ D. Writing u′ = u1 + �̂u2 with u1 ∈ ker �̂, we conclude that

�̂u′ = �̂2u2; taking the (NT ) component of this equation gives 0 = ∆2
Y ũ2,NT |Y (where we

write u2 = C ũ2 as usual), hence dY ũ2,NT |Y = 0 and δY ũ2,NT |Y = 0. But then �̂u2 ∈ L2.

Therefore, w = r(u′) = r(u1 + �̂u2) = r(u1). Since the degree k part of u1 lies in Kk by

the definition of u1, we are done.

Remark 7.3.17. Remark 7.3.13, which states that Hk ( Kk for some values of k, implies in

particular that the last map of (7.3.48) is not always onto.

Remark 7.3.18. Since dimY = n − 2, we have Hk−1(Y ) = 0 for k = 0 and k = n. Hence,

for these extreme values of k, Propositions 7.3.15 and 7.3.16 show Hk = Kk ∼= HkL2,dR, and

this holds more generally for all k for which Hk−1(Y ) = 0.

The spaces HkL2,dR are related to standard cohomology groups associated with the mani-

fold with boundary X: First, notice that elements of the space D = C∞(0)∩L
2 are not subject
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to any matching condition on singular terms, simply because the singular term (ũNT |Y in

the notation used above) vanishes. This means that we can split D into tangential and

normal forms, D = DT ⊕ DN , thereby identifying elements (uT , uN ) ∈ DT ⊕ DN with

uT + αdt ∧ uN ∈ D, where DT consists of all uT ∈ C∞(X; ΛX) which are of the form

uT =

(
uTT

αuTN

)
, uTT , uTN ∈ C∞(Xeven; ΛY ),

near Y . Thus, elements uT ∈ DT are forms of the type uT = uTT + dα ∧ αuTN = uTT +
1
2dµ∧ uTN with uTT , uTN smooth ΛY -valued forms on Xeven; hence, we simply have DT =

C∞(Xeven; ΛXeven). Likewise, DN consists of all uN ∈ C∞(X; ΛX) which are of the form

uN =

(
αuNT

uNN

)
, uNT , uNN ∈ C∞(Xeven; ΛY ),

near Y . Thus, elements uN ∈ DT are forms of the type αuN = µuNT + 1
2dµ∧uNN ; therefore,

αDN = C∞R (Xeven; ΛXeven) := {u ∈ C∞(Xeven; ΛXeven) : j∗u = 0}, where j : ∂Xeven ↪→
Xeven is the inclusion.

Since the differential d̂ on D acts as dX ⊕ (−α−1dXα) on DT ⊕DN , the cohomology of

the complex (D, d̂) in degree k is the direct sum of the cohomology of (DT , dX) in degree k

and of (αDN , dX) in degree (k − 1). Since we identified DT as simply the space of smooth

forms on Xeven, the cohomology of (DT , dX) in degree k equals the absolute cohomology

Hk(Xeven) ∼= Hk(X). (Here, we use that Xeven is diffeomorphic to X, with diffeomorphism

given by gluing the map α2 7→ α near Y to the identity map away from Y .) Moreover, since

DN is the space of smooth forms on Xeven which vanish at the boundary in the precise sense

described above, the cohomology of (αDN , dX) in degree k equals the relative cohomology

Hk(Xeven; ∂Xeven) ∼= Hk(X; ∂X) (see e.g. [108, §5.9]). In summary:

Proposition 7.3.19. With HkL2,dR defined in (7.3.44), there is a canonical isomorphism

HkL2,dR
∼= Hk(X)⊕Hk−1(X, ∂X). (7.3.50)

Let us summarize the results obtained in the previous sections:

Theorem 7.3.20. The only resonance of d + δ in Imσ ≥ 0 is σ = 0, and 0 is a simple
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resonance. Zero resonant states of the extended operator (d + δ on M̃) are uniquely de-

termined by their restriction to X, and the space H of these resonant states on X is equal

to kerC∞
(0)
d̂(0) ∩ kerC∞

(0)
δ̂(0). Also, resonant states on X̃ are elements of ker d̃(0) ∩ ker δ̃(0).

Using the grading H =
⊕n

k=0Hk of H by form degrees, there is a canonical exact sequence

0→ Hk(X)⊕Hk−1(X, ∂X)→ Hk → Hk−1(∂X), (7.3.51)

where the first map is the composition of the isomorphism (7.3.50) with the map i defined

in Lemma 7.3.14, and the second map is the composition of the map r defined in (7.3.47)

with the isomorphism ker(∆∂X,k−1) ∼= Hk−1(∂X).

Furthermore, the only resonance of �g in Imσ ≥ 0 is σ = 0. Elements of ker �̃(0),

which are the zero resonant states of the extended operator (�g on M̃) if the zero resonance

is simple, are uniquely determined by their restriction to X. The space K =
⊕n

k=0Kk ⊂ C∞(0)

of these resonant states on X, graded by form degree, satisfying Kk ⊃ Hk, fits into the short

exact sequence

0→ Hk(X)⊕Hk−1(X, ∂X)→ Kk → Hk−1(∂X)→ 0, (7.3.52)

with maps as above. We moreover have

Kk ∩ L2 = Hk ∩ L2 ∼= Hk(X)⊕Hk−1(X, ∂X)

where L2 = L2(X,α|dh|;H⊕H). More precisely then, the summand Hk(X) in (7.3.51) and

(7.3.52) corresponds to the tangential components (in the decomposition (7.3.1)) of elements

of Hk ∩ L2, and the summand Hk−1(X, ∂X) to the normal components.

Lastly, the Hodge star operator on M induces isomorphisms Hk
∼=−→ Hn−k and Kk

∼=−→
Kn−k, k = 0, . . . , n.

Proof. We prove the statement about resonant states for d + δ on the extended space M̃ :

Thus, if ũ ∈ ker(d̃(0) + δ̃(0)), then the restriction of ũ to X lies in ker d̂(0) ∩ ker δ̂(0),

therefore d̃(0)ũ = −δ̃(0)ũ is supported in X̃ \X; but then �̃(0)(d̃(0)ũ) = d̃(0)δ̃(0)d̃(0)ũ = 0

and the asymptotically de Sitter nature of X̃ \X implies d̃(0)ũ ≡ 0, hence also δ̃(0)ũ ≡ 0,

as claimed.

The only remaining part of the statement that has not yet been proved is the last:

Viewing u ∈ Hk as a t-independent k-form on M = Rt × X (with the metric (7.1.1)), we
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have (d + δ)u = 0, and for any t-independent k-form u on M , we have that (d + δ)u = 0

implies u ∈ Hk, where we view the t-independent form as a form on X valued in the form

bundle of M , as explained in §7.2. Then u ∈ Hk is equivalent to du = 0, δu = 0, which in

turn is equivalent to δ(?u) = 0, d(?u) = 0, and thus ?u ∈ Hn−k. The proof for the spaces

Kk is the same and uses ?� = �?.

This in particular proves Theorem 7.1.3.

7.4 Results for static de Sitter and Schwarzschild-de Sitter

spacetimes

We now supplement the results obtained in the previous section by high energy estimates

for the inverse normal operator family from Chapter 6 and deduce expansions and decay for

solutions to Maxwell’s equations as well as for more general linear waves on de Sitter and

Schwarzschild-de Sitter backgrounds. The rather detailed description of asymptotics in the

Schwarzschild-de Sitter setting will be essential in our discussion of Kerr-de Sitter space in

§7.5.

7.4.1 de Sitter space

We recall from §2.2 that de Sitter space is the hyperboloid {z2
1 + · · · + z2

n − z2
n+1 = 1}

in (n + 1)-dimensional Minkowski space, equipped with the induced Lorentzian metric.

Introducing a boundary defining function τ = z−1
n+1 of future infinity, and adding the τ = 0

to the spacetime, we obtain the bordified space N = [0, 1)τ × Z with Z = Sn−1, modifying

τ slightly, the metric has the form

g0 = τ−2ḡ, ḡ = dτ2 − h0(τ, x, dx),

with h0 even in τ , i.e. h0 is a metric on Z which depends smoothly on τ2; this is of course in

particular an example of an even asymptotically de Sitter-like space, see §2.2.2. Thus, g0 is

a 0-metric in the sense of Mazzeo and Melrose [81]. Fixing a point p at future infinity, the

static model of de Sitter space, which we denote by M here, consistent with the notation

in this chapter (see however Remark 7.1.2), is the interior of the backward light cone from

p. We introduce static coordinates on M , denoted (t, x) ∈ R ×X, where X = B1 ⊂ Rn−1
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is the open unit ball in Rn−1 and x ∈ Rn−1 are the standard coordinates on Rn−1, with

respect to which the induced metric on M is given by

g = α2 dt2 − h, α = (1− |x|2)1/2,

h = dx2 +
1

1− |x|2
(x · dx)2 = α−2 dr2 + r2 dω2,

using polar coordinates (r, ω) on Rn−1
x near r = 1, and denoting the round metric on the

unit sphere Sn−2 by dω2. We compactify X to the closed unit ball Xeven = B1 ⊂ Rn−1,

and denote by X the space which is Xeven topologically, but with α added to the smooth

structure. In order to see that the metric g fits into the framework of Theorem 7.3.20, note

that dr = −αr−1 dα, so

h = r−2 dα2 + r2 dω2,

and r = (1−α2)1/2, thus h is an even metric on the space X and has the form (7.1.2) with

β = 1. Using Theorem 7.3.20, we can now easily compute the spaces of resonances:

Theorem 7.4.1. On an n-dimensional static de Sitter spacetime, n ≥ 4, the spaces of

resonances of � and d+ δ are

K0 = H0 = 〈1〉, Kn = Hn = 〈rn−2 dt ∧ dr ∧ ω〉,

where ω denotes the volume form on the round sphere Sn−2. Furthermore,

K1 = 〈−α−2r dr + α−1 dt〉,H1 = 0, Kn−1 = 〈?(−α−2r dr + α−1 dt)〉,Hn−1 = 0,

Kk = Hk = 0, k = 2, . . . , n− 2.

In particular, on 4-dimensional static de Sitter space, if u is a solution of (d+ δ)u = 0 with

smooth initial data, then the degree 0 component of u decays exponentially to a constant, the

degree 1, 2 and 3 components decay exponentially to 0, and the degree 4 component decays

exponentially to a constant multiple of the volume form. Analogous statements hold on any

n-dimensional static de Sitter space, n ≥ 5.

Proof. We compute the cohomological data that appear in (7.3.51) and (7.3.52) using X ∼=
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B1 and ∂X ∼= Sn−2:

dimHk−1(∂X) =

0, k = 0, 2, . . . , n− 2, n,

1, k = 1, n− 1

dimHk(X) =

1, k = 0

0, 1 ≤ k ≤ n,

dimHk−1(X, ∂X) =

0, 0 ≤ k ≤ n− 1

1, k = n.

Thus, we immediately deduce

dimK0 = dimK1 = dimKn−1 = dimKn = 1, dimKk = 0, 2 ≤ k ≤ n− 2,

dimH0 = dimHn = 1, dimHk = 0, 2 ≤ k ≤ n− 2.

Now, since d + δ annihilates constants, we find 1 ∈ K0 = H0 and ?1 ∈ Kn = Hn, which in

view of the 1-dimensionality of these spaces already concludes their computation.

In order to compute K1, notice that we have K1 ∼= H0(∂X) from (7.3.52), thus an

element u spanning K1 has non-trivial singular components at α = 0. One is led to the

guess u = α−1 dα+ α−1 dt = −α−2r dr + α−1 dt, which is indeed annihilated by �; we will

give full details for this computation in the next section when discussing Schwarzschild-

de Sitter spacetimes, which in the case of vanishing black hole mass are static de Sitter

spacetimes, with a point removed, see in particular the calculations following (7.4.9); but

since u as defined above is smooth at r = 0, we obtain �u = 0 at r = 0 as well by

continuity. Since K1 is 1-dimensional, we therefore deduce K1 = 〈u〉. One can then check

that (d + δ)u 6= 0, and this implies H1 = 0. The corresponding statements for Kn−1 and

Hn−1 are immediate consequences of this and the fact that the Hodge star operator induces

isomorphisms H1 ∼= Hn−1 and K1 ∼= Kn−1.

The high energy estimates for d+ δ required to deduce asymptotic expansions for solu-

tions of (d + δ)u = 0 follow from those of its square �, which is principally scalar and fits

directly into the framework described in [114, §2-4]. Thus, a contour deformation argument

as in the proof of Theorem 5.2.3 finishes the proof.

By studying the space of dual resonant states of d+ δ, one can in fact easily show that
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the 0-resonance of � is simple and thus deduce exponential decay of smooth solutions to

�u = 0 to an element of Kk in all form degrees k = 0, . . . , n. We give details in the next

section on Schwarzschild-de Sitter space.

In the present de Sitter setting, one can deduce asymptotics very easily in a different

manner using the global de Sitter space picture, by analyzing indicial operators in the 0-

calculus: Concretely, we write differential k-forms (by which we mean smooth sections of

the k-th exterior power of the 0-cotangent bundle of N) as

u = τ−kuT +
dτ

τ
∧ τ1−kuN , (7.4.1)

where uT and uN are smooth forms on Z of form degrees k and (k − 1), respectively. One

readily computes the differential dk acting on k-forms to be

dk =

(
τdZ 0

−k + τ∂τ −τdZ

)
.

Furthermore, by the choice of basis in (7.4.1), the inner product on k-forms induced by g0

is given by

G0
k =

(
(−1)kH0

k 0

0 (−1)k−1H0
k−1

)
.

Using that the volume density is |dg0| = τ−n dτ |dh0|, we compute the codifferential δk

acting on k-forms to be

δk =

(
−τδZ −(k − 1) + τn−1τ∂∗τ τ

1−n

0 τδZ

)
=

(
−τδZ n− k − τ∂τ +OC∞(N)(τ)

0 τδZ

)
,

where ∂∗τ is the L2(N, |dḡ|)-adjoint (suppressing the bundles in the notation) of ∂τ , and we

use the even-ness of g0 in the second step to deduce ∂∗τ = −∂τ +OC∞(N)(τ). Therefore, the

indicial roots of d+ δ on the degree k-part of the form bundle are k and n− k.

Next, for 0 ≤ k ≤ n, we compute the Hodge d’Alembertian, dealing with the cases

k = 0 and k = n simultaneously with 1 ≤ k ≤ n− 1 by implicitly assuming that for k = 0,

only the (1, 1)-part of this operator is present, acting on 0-forms, and for k = n, only the

(2, 2)-part is present, acting on n-forms:

�k = dk−1δk + δk+1dk
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=

(
−τdZτδZ − τδZτdZ − Pk τdZ

−τδZ −τdZτδZ − τδZτdZ − Pk−1

)
+ODiff1

0
(τ)

where Pk = (τ∂τ )2 − (n− 1)τ∂τ + k(n− k − 1). Thus, the indicial polynomial of �k is

I(�k)(s) =

(
s2 − (n− 1)s+ k(n− k − 1) 0

0 s2 − (n− 1)s+ (k − 1)(n− k)

)
.

On tangential forms, the indicial roots of �k are therefore k, n−1−k, and on normal forms,

they are k − 1, n− k. We thus have:

form degree 0 1 2 ≤ k ≤ n− 2 n− 1 n

tgt. ind. roots 0, n− 1 1, n− 2 k, n− 1− k 0, n− 1 −
norm. ind. roots − 0, n− 1 k − 1, n− k 1, n− 2 0, n− 1

Hence in particular, all roots are ≥ 0, and 0 is never a double root. Thus, the arguments

of [111] (which are in the scalar setting, but work in the current setting as well with only

minor modifications) show that solutions u to the wave equation on differential k-forms on

N with smooth initial data at τ = τ0 > 0 decay exponentially (in − log τ) if 0 is not an

indicial root, and decay to a stationary state if 0 is an indicial root. (Of course, since we

know all indicial roots, we could be much more precise in describing the asymptotics, but

we only focus on the 0-resonance here.) Explicitly, scalar waves decay to a smooth function

on Z, 1-form waves decay to an element of dτ
τ C
∞(Z), k-form waves decay exponentially to

0 for 2 ≤ k ≤ n− 2, (n− 1)-form waves decay to an element of C∞(Z; Λn−1Z), and n-form

waves finally decay to an element of dτ
τ ∧ C

∞(Z; Λn−1Z).

Since the static model of de Sitter space arises by blowing up a point p at future infinity

of compactified de Sitter space and considering the backward light cone from p, we can

find the resonant states for the static model by simply finding the space of restrictions to

p of the asymptotic states described above; but since the fibers of Λ0(Z) and Λn−1(Z) are

1-dimensional, hence we have reproved Theorem 7.4.1.

We point out that if one wants to analyze differential form-valued waves or solutions

to Maxwell’s equations on Schwarzschild-de Sitter space, there is no global picture (in the

sense of a 0-differential problem) as in the de Sitter case. Thus, the direct approach outlined

in the proof of Theorem 7.4.1 is the only possible one in this case, and it is very instructive

as it shows even more clearly how the cohomological interpretation of the space of zero

resonant states can be used very effectively.
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7.4.2 Schwarzschild-de Sitter space

The computation of resonant states for Schwarzschild-de Sitter spacetimes of any dimension

is no more difficult than the computation in 4 dimensions, thus we directly treat the general

case of n ≥ 4 spacetime dimensions. Recall from §2.3 that the metric of n-dimensional

Schwarzschild-de Sitter space M = Rt ×X, X = (r−, r+)r × Sn−2
ω , is given by

g = µdt2 − (µ−1 dr2 + r2 dω2),

where dω2 is the round metric on the sphere Sn−2, and µ = 1− 2M•
rn−3 − λr2, λ = 2Λ

(n−2)(n−1) ,

where the black hole mass M• and the cosmological constant Λ are positive. We assume the

non-degeneracy condition (2.3.2), which guarantees that µ has two unique positive roots

0 < r− < r+.

As in §2.3, we define α = µ1/2, thus dα = 1
2µ
′α−1 dr, and

β± := ∓ 2

µ′(r±)
> 0,

then the metric g can be written as

g = α2 dt2 − h, h = β̃2
± dα

2 + r2 dω2,

where β̃± = ∓2/µ′(r). Thus, if we let Xeven = [r−, r+]r × Sn−2
ω with the standard smooth

structure, then β̃± = β± modulo α2C∞(Xeven), where we note that r is a smooth function

of µ, thus an even function of α, near r = r± in view of µ′(r±) 6= 0. The manifold X is

Xeven topologically, but with smooth functions of α = µ1/2 added to the smooth structure.

We denote Y = ∂X = Sn−2 t Sn−2.

By the analysis in §7.2, all zero resonant states u, written in the form (7.3.7) near Y ,

lie in the space C∞(0), defined in (7.3.9). In the current setting, it is more natural to write

differential forms as

u = uTT + α−1 dr ∧ uTN + αdt ∧ uNT + αdt ∧ α−1 dr ∧ uNN , (7.4.2)

since α−1 dr has squared norm −1 (with respect to the metric g). We compute how the

matching condition on the singular terms of u, encoded in the β±α
−1 entry of the matrix C ,

changes when we thus change the basis of the form bundle: Namely, we have β±α
−1 dα =
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(∓1 + α2C∞(Xeven))α−1α−1 dr; thus, for u written as in (7.4.2), we have

u ∈ C∞(0) ⇐⇒


uTT

uTN

uNT

uNN

 ∈ C±


C∞(Xeven; ΛSn−2)

C∞(Xeven; ΛSn−2)

C∞(Xeven; ΛSn−2)

C∞(Xeven; ΛSn−2)


near r = r±, where

C± =


1 0 0 0

0 α ∓α−1 0

0 0 α−1 0

0 0 0 1

 . (7.4.3)

We now proceed to compute the explicit form of the operators dp, δp and �p, where the

subscript p indicates the form degree on which the operators act. First, we recall (7.3.2)

and (7.3.4) in the form

dp =

(
dX,p 0

α−1∂t −α−1dX,p−1α

)
, δp =

(
−α−1δX,pα −α−1∂t

0 δX,p−1

)
,

and these operators act on forms u = uT +αdt∧ uN , with uT and uN differential forms on

X. Writing forms on X as v = vT + α−1 dr ∧ vN , we have

dX,p =

(
dSn−2,p 0

α∂r −dSn−2,p−1

)
. (7.4.4)

In order to compute the codifferential, we observe that the volume density on X induced by

h is given by α−1rn−2 dr|dω|, while the induced inner product on the fibers on the bundle

of p-forms is

Hp =

(
r−2pΩp 0

0 r−2(p−1)Ωp−1

)
,

where Ωp is the fiber inner product on the p-form bundle on Sn−2. Therefore,

δX,p =

(
r−2δSn−2,p ∂∗r,p−1

0 −r−2δSn−2,p−1

)
,

∂∗r,p−1 = −αr−(n−2)r2(p−1)∂rr
−2(p−1)rn−2.

(7.4.5)
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We obtain:

Lemma 7.4.2. In the bundle decomposition (7.4.2), we have

dp =


dSn−2,p 0 0 0

α∂r −dSn−2,p−1 0 0

α−1∂t 0 −dSn−2,p−1 0

0 α−1∂t −∂rα dSn−2,p−2

 (7.4.6)

and

δp =


−r−2δSn−2,p −α−1∂∗r,p−1α −α−1∂t 0

0 r−2δSn−2,p−1 0 −α−1∂t

0 0 r−2δSn−2,p−1 ∂∗r,p−2

0 0 0 −r−2δSn−2,p−2

 . (7.4.7)

Moreover,

−r2�p =


∆p −2αrdp−1 0 0

−2αr−1δp ∆p−1 −r2µ−1µ′∂t 0

0 −r2µ−1µ′∂t ∆p−1 −2αrdp−2

0 0 −2αr−1δp−1 ∆p−2



+


r2α−1∂∗r,pα

2∂r 0 0 0

0 r2α∂rα
−1∂∗r,p−1α 0 0

0 0 r2∂∗r,p−1∂rα 0

0 0 0 r2∂rα∂
∗
r,p−2



+


r2µ−1∂tt 0 0 0

0 r2µ−1∂tt 0 0

0 0 r2µ−1∂tt 0

0 0 0 r2µ−1∂tt

 .

(7.4.8)

We can now compute the spaces K and H of zero resonances for � and d+δ and deduce

asymptotics for solutions of (d+ δ)u = 0:

Theorem 7.4.3. On an n-dimensional Schwarzschild-de Sitter spacetime, n ≥ 4, there exist

two linearly independent 1-forms u± = f1,±(r)µ−1 dr+ f2,±(r) dt ∈ K1 = ker �̂1 ⊂ C∞(0), and
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we then have:

K0 = H0 = 〈1〉, Kn = Hn = 〈rn−2 dt ∧ dr ∧ ω〉,

where ω denotes the volume form on the round sphere Sn−2. Furthermore,

K1 = 〈u+, u−〉,H1 = 0, Kn−1 = 〈?u+, ?u−〉,Hn−1 = 0,

Kk = Hk = 0, k = 3, . . . , n− 3.

For n = 4,

K2 = H2 = 〈ω, r−2 dt ∧ dr〉,

while for n > 4,

K2 = H2 = 〈r−(n−2) dt ∧ dr〉, Kn−2 = Hn−2 = 〈ω〉.

In particular, on 4-dimensional Schwarzschild-de Sitter space, if u is a solution of (d +

δ)u = 0 with smooth initial data, then the degree 0 component of u decays exponentially

to a constant, the degree 1 and degree 3 components decay exponentially to 0, the degree 2

component decays exponentially to a linear combination of ω and r−2 dt∧dr, and the degree

4 component decays exponentially to a constant multiple of the volume form. Analogous

statements hold on any n-dimensional Schwarzschild-de Sitter space, n ≥ 5.

The forms u± in fact have a simple explicit form, see (7.4.9) and the parenthetical

remark following (7.4.10).

Proof of Theorem 7.4.3. First, we observe that

Hk(X) ∼= Hk(Sn−2), Hk−1(X, ∂X) ∼= Hn−k(X) ∼= Hn−k(Sn−2)

by Poincaré duality, and

Hk−1(∂X) ∼= Hk−1(Sn−2)⊕Hk−1(Sn−2).

Thus, the short exact sequence (7.3.52) immediately gives the dimensions of the spaces Kk,
and (7.3.51) gives the dimensions of Hk for all values of k except k = 1 and k = n− 1.

We now computeH and K in the case n = 4. For k = 0, the short exact sequence (7.3.52)

reads 0→ H0(X)⊕0→ K0 → 0→ 0, and since H0(X) = 〈[1]〉, this suggests 1 as a resonant
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state for � on 0-forms (i.e. functions), and indeed �1 = 0, hence K0 = 〈1〉. Theorem 7.3.20

also shows that H0 = K0. Then we immediately obtain H4 = K4 = 〈?1〉 = 〈r2 dt ∧ dr ∧ ω〉.
Next, we treat the form degree k = 2. Then (7.3.52) reads 0→ H2(X)⊕H1(X, ∂X)→

K2 → 0→ 0. Now H2(X) = 〈[ω]〉, and a generator of H1(X, ∂X) is given by the Poincaré

dual of ω (which generates H2(X)). This suggests the ansatz u = f(r)ω for an element

of K2 = H2 (the latter equality following from (7.3.51)), and then ?u will be the second

element of a basis of K2. Now, in the decomposition (7.4.2), we compute using Lemma 7.4.2

that δ̂2(0)u = 0 for u = f(r)ω, and

d̂2(0)u = d̂2(0)


f(r)ω

0

0

0

 =


0

αf ′(r)ω

0

0

 ,

which vanishes precisely if f(r) is constant.

The analysis of resonant states in form degree k = 1 is just a bit more involved. Since

(7.3.52) now reads 0→ 0⊕ 0→ K1 → H0(S2 t S2)→ 0, every non-trivial element u of K1

fails to be in L2(α|dh|), and in fact the singular behavior is expected to be u = C±ũ with

ũNT |r=r± = c± ∈ C, since H0(S2 tS2) is generated by locally constant functions, which are

therefore constant on r = r− as well as on r = r+. We thus make the ansatz

u = α−1f1(r)α−1 dr + αdt ∧ α−1f2(r). (7.4.9)

We then compute

−�̂1(0)u =


0

α∂rα
−1∂∗r,0f1

∂∗r,0∂rf2

0

 ,

and by definition of ∂∗r,p in (7.4.5), this vanishes if and only if f1 and f2 satisfy the ODEs

∂rr
−2∂rr

2f1 = 0,

r−2∂rr
2∂rf2 = 0.
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The general form of the solution is

f1(r) = f11r + f12r
−2,

f2(r) = f21 + f22r
−1,

(7.4.10)

fjk ∈ C, j, k = 1, 2. (On n-dimensional Schwarzschild-de Sitter space, the exponents 2 and

−2 in these ODEs get replaced by n− 2 and 2− n, and the general forms of the solutions

are f1(r) = f11r + f12r
2−n and f2(r) = f21 + f22r

3−n. The subsequent analysis of the

matching conditions goes through with obvious modifications.) Now recall that resonant

states are elements of C∞(0) and thus satisfy a matching condition in the singular components,

which is captured by the matrix (7.4.3). Concretely, we require f2(r−) = f1(r−) and

f2(r+) = −f1(r+); in terms of fjk, j, k = 1, 2, these conditions translate into

(
r− r−2

− −1 −r−1
−

r+ r−2
+ 1 r−1

+

)
f11

f12

f21

f22

 =

(
0

0

)
.

Since the 2× 4 matrix on the left has rank 2, we get a 2-dimensional space of solutions. In

fact, it is easy to see that we can freely specify the values f1(r−) and f1(r+), and f1 and f2

are then uniquely determined. To be specific, we can for instance define u+ ∈ K1 to be the 1-

form with f1(r−) = 0, f1(r+) = 1, and u− ∈ K1 to be the 1-form with f1(r−) = 1, f1(r+) = 0,

and we then have K1 = 〈u+, u−〉, as claimed.

Next, since H1 ⊂ K1, computing H1 simply amounts to finding all linear combinations

of u− and u+ which are annihilated by both d̂1(0) and δ̂1(0). But

d̂1(0)


0

α−1f1(r)

α−1f2(r)

0

 =


0

0

0

−∂rf2

 = 0
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requires f2 to be constant, and

δ̂1(0)


0

α−1f1(r)

α−1f2(r)

0

 =


−α−1∂∗r,0f1

0

0

0

 = 0

implies r−2∂rr
2f1 = 0, hence f1(r) = f1(r−)(r/r−)−2. The matching condition requires

f1(r+) = f1(r−)(r+/r−)−2 = −f2(r+) = −f2(r−) = −f1(r−) and is therefore only satisfied

if f1(r−) = 0, which implies f1 ≡ 0 and f2 ≡ 0. This shows that H1 = 0 and finishes

the computation of the spaces of resonances for n = 4. The computation for spacetime

dimensions n ≥ 5 is completely analogous.

Finally, the statement about asymptotics of solutions to (d + δ)u = 0 follows from the

above computations combined with high energy estimates for d+δ, which follow from those

for �, and Lemma 7.3.7. To see the relevance of the latter, recall that if (d̂(σ)+δ̂(σ))−1 had a

second order pole at 0, then solutions to (d+δ)u = 0 would generically blow up linearly; the

simplicity of the pole ensures that solutions stay bounded with the asymptotic stationary

state given by an element of H. The high energy estimates for � acting on differential

forms however were proved in Chapter 6 and follow from combining Theorem 6.4.8 with

Dyatlov’s result [42]. Recall that the problem is that one needs the subprincipal symbol of

� (or a conjugated version thereof), relative to a positive definite fiber inner product, at the

trapping to be smaller than νmin/2, where νmin is the minimal expansion rate in the normal

direction at the trapped set, computed in (2.3.11) for the operator −r2�. We briefly show

how in certain situations, in particular in dimensions n ≥ 5, one can use ordinary (rather

than pseudodifferential) inner products to resolve this problem: Thus, we want to bound

the imaginary part of P = −r2�g in terms of νmin, in order to obtain high energy estimates

below the real line. That is, we want to show that

Q := |τ |−1σ1

(
1

2i
(P − P∗)

)
<
νmin

2

at the trapped set, cf. also the discussion in §9.2.6, where we take the adjoint with respect

to some Riemannian inner product B, to be chosen, on the bundle ΛpSn−2 ⊕ Λp−1Sn−2 ⊕
Λp−1Sn−2 ⊕ Λp−2Sn−2; notice that Q is a self-adjoint section of the endomorphism bundle
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of this bundle. An obvious guess is to use B = H ⊕H in the tangential-normal decompo-

sition (7.3.6), thus

B = r−2pΩp ⊕ r−2(p−1)Ωp−1 ⊕ r−2(p−1)Ωp−1 ⊕ r−2(p−2)Ωp−2.

In this case, the expression (7.4.8) shows that the only parts of P that are not symmetric

with respect to B at the spacetime trapped set

Γ = {(t, rp, ω; τ, 0, η) :
r4

∆r
τ2 = |η|2},

see (2.3.12) (we are using the notation of that section), are the (2, 3) and (3, 2) components;

thus, taking adjoints with respect to B, we compute

Q =


0 0 0 0

0 0 ±r2µ−1µ′ 0

0 ±r2µ−1µ′ 0 0

0 0 0 0


at Γ, with the sign depending the sign of τ . Now (µ/r2)′ = 0 at r = rp implies µ−1µ′r2

p = 2rp

there; the eigenvalues of Q are therefore ±2rp, and they are bounded by νmin/2, see (2.3.11),

if and only if

r2
pλ >

(5− n)(n− 3)

4(n− 1)
,

which in spacetime dimensions n ≥ 5 is always satisfied. In dimension n = 4 however, the

condition becomes r2
pλ > 1/12, or

9M•Λ >
1

4
,

while the non-degeneracy condition (2.3.2) requires 9M•Λ < 1. Therefore, only for very

massive black holes or very large cosmological constants does the above choice of positive

definite inner product B yield a sufficiently small imaginary part of P. In fact, for param-

eters M• and Λ with 9M•Λ ≤ 1/4, the endomorphism Q is not bounded by νmin/2 for any

choice of B, and pseudodifferential inner products indeed become necessary to remove this

restriction on M• and Λ in n = 4.

We can in fact prove boundedness and asymptotics for solutions of the wave equation
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on differential forms in all form degrees as well. To begin, write

(d̃(σ) + δ̃(σ))−1 = σ−1A−1 +O(1), A−1 =

4∑
j=1

〈·, ψj〉φj , (7.4.11)

near σ = 0, where {φj}j=1,...,4 is a basis of the space of resonant states and {ψj}j=1,...,4

is a basis of the space H∗ = ker(d̃(0) + δ̃(0))∗ of dual states. (After choosing the φ′j , the

ψ′j are uniquely determined, and vice versa, see Remark A.1.5.) Therefore, we need to

understand the dual states of d + δ in order to understand the order and structure of the

pole of �̃(σ)−1 =
(
(d̃(σ) + δ̃(σ))−1

)2
as σ = 0. Notice here that the adjoint (d̃(σ) + δ̃(σ))∗

acts on distributions on X̃ which are supported at the Cauchy hypersurface ∂X̃ (see [64,

Appendix B] for this and related notions). In particular, an element ũ ∈ ker(d̃(σ) + δ̃(σ))∗

satisfies ũ ∈ ker �̃(σ) and is a supported distribution at ∂X̃, thus by local uniqueness, ũ

vanishes in the hyperbolic region X̃ \X, hence supp ũ ⊂ X.

Lemma 7.4.4. The spaces H∗ and K∗ of dual states for d + δ and �, respectively, on

n-dimensional Schwarzschild-de Sitter space, n ≥ 4, are graded by form degree, H∗ =⊕n
k=0Hk∗, K∗ =

⊕n
k=0Kk∗ , and have the following explicit descriptions:

K0
∗ = 〈1X〉,H0

∗ = 0, Kn∗ = 〈1Xrn−2 dt ∧ dr ∧ ω〉,Hn∗ = 0,

H1
∗ = 〈δr=r− dr, δr=r+ dr〉, Hn−1

∗ = 〈δr=r− dr ∧ ω, δr=r+ dr ∧ ω〉,

Hk∗ = 0, k = 2, . . . , n− 2,

where ω denotes the volume form on the round sphere Sn−2. Furthermore, K1
∗ = H1

∗,

Kn−1
∗ = Hn−1

∗ and

Kk∗ = 0, k = 3, . . . , n− 3.

For n = 4,

K2
∗ = 〈1Xω, 1Xr−2 dt ∧ dr〉,

while for n > 4,

K2
∗ = 〈1Xr2−n dt ∧ dr〉, Kn−2

∗ = 〈1Xω〉.

We have 〈φ, ψ〉 = 0 for all φ ∈ H, ψ ∈ H∗.

Proof. For computing the dual resonant states, we need to compute the form of �̃(0) near

the two components of ∂X = Sn−2 t Sn−2. Since dual states are supported in Xeven, it
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suffices to compute C−1
± �̂(0)C±, since any smooth extension of this operator to X̃ agrees

with �̃(0) in X and to infinite order at ∂Xeven, thus the difference annihilates dual states.

Using Lemma 7.4.2, we compute

−C−1
± �̂p(0)C± = r−2


∆p 0 0 0

0 ∆p−1 0 0

0 0 ∆p−1 0

0 0 0 ∆p−2



+


α−1∂∗r,pα

2∂r −2α2r−1dp−1 ±2r−1dp−1 0

−2r−3δp ∂rα
−1∂∗r,p−1α

2 ±(2(p− 1)− (n− 2))r−2 ∓2r−1dp−2

0 0 α∂∗r,p−1∂r −2α2r−1dp−2

0 0 −2r−3δp−1 ∂rα∂
∗
r,p−2

 ,

where the Laplace operators, differentials and codifferentials are the operators on Sn−2.

This does extend to an operator acting on smooth functions on (r± − δ, r± + δ) × Sn−2,

δ > 0 small, near r±.

Now for p = 0, clearly α−1∂∗r,0α
2∂r1X = ∓α−1∂∗r,0(µδr=r±) = 0, hence K0

∗ = 〈1X〉.
(Observe that since �̃0(0) is Fredholm of index 0 and has a 1-dimensional kernel according

to Theorem 7.4.3, the space of dual 0-form resonances is 1-dimensional as well.) Likewise,

for p = n, we have

∂rα∂
∗
r,n−2(1Xr

n−2 dt ∧ dr ∧ ω) = −∂rµrn−2∂r(1X dt ∧ dr ∧ ω) = 0,

confirming Kn∗ = 〈1Xrn−2 dt ∧ dr ∧ ω〉. By completely analogous arguments, we find

1Xr
2−n dt ∧ dr ∈ K2

∗ and 1Xω ∈ Kn−2
∗ .

In order to proceed, notice that d̃(0) + δ̃(0) maps K∗ into H∗. Hence, we can find dual

states for d+δ by applying d̃(0)+δ̃(0) to the dual states of � that we have already identified.

For this computation, we note

C−1
± d̂p(0)C± =


dSn−2,p 0 0 0

∂r −dSn−2,p−1 0 0

0 0 −dSn−2,p−1 0

0 0 −∂r dSn−2,p−2

 ,
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C−1
± δ̂p(0)C± =


−r2δSn−2,p −α−1∂∗r,p−1α

2 ±α−1∂∗r,p−1 0

0 r−2δSn−2,p−1 0 ±α−1∂∗r,p−2

0 0 r−2δSn−2,p−1 α∂∗r,p−2

0 0 0 −r−2δSn−2,p−2

 .

Thus, (d̃0(0) + δ̃0(0))1X and (d̃2(0) + δ̃2(0))(1Xr
2−n dt∧dr) are both linear combinations of

δr=r± dr, hence δr=r± dr ∈ H1
∗ ⊂ K1

∗, and similarly (d̃n(0) + δ̃n(0))(1X ? 1) and (d̃n−2(0) +

δ̃n−2(0))(1Xω) are both linear combinations of δr=r± dr ∧ ω, hence δr=r± dr ∧ ω ∈ Hn−1
∗ ⊂

Kn−1
∗ .

We have therefore identified 4 and 8 linearly independent dual states for d + δ and �,

which is equal to the dimensions of H and K, respectively, and since d̃(0) + δ̃(0) and �̃(0)

have index 0, all dual states are linear combinations of these, i.e. we have thus identified a

basis of the spaces of dual states. The orthogonality of resonant and dual states for d + δ

follows immediately from the explicit forms of both derived in Theorem 7.4.3 and in this

lemma: All dual states have form degree 1 or n − 1, while all resonant states have form

degree 0, 2, n− 2 or n.

The orthogonality statement in Lemma 7.4.4 combined with (7.4.11) immediately gives

A2
−1 = 0, hence the coefficient of σ−2 in the Laurent expansion of �̂(σ)−1 at σ = 0 vanishes.

For precisely those form degrees 0 ≤ p ≤ n for which Kp is non-trivial, �̂(σ)−1 does have a

simple pole at σ = 0, and

�̂p(σ)−1 = σ−1
dimKp∑
j=1

〈·, ψ′j〉φ′j +O(1),

where φ′j and ψ′j run over a basis of ker �̂p(0) ∼= Kp and Kp∗ = ker �̂p(0)∗, respectively.

Theorem 7.4.5. On 4-dimensional Schwarzschild-de Sitter space, if 0 ≤ p ≤ 4 and u is a

differential form of degree p which solves �u = 0 with smooth initial data, then u decays

exponentially to

• a constant for p = 0,

• a linear combination of u+ and u−, defined in the statement of Theorem 7.4.3, for

p = 1,

• a linear combination of ω and r−2 dt ∧ dr for p = 2,
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• a linear combination of ?u+ and ?u− for p = 3 and

• a constant multiple of r2 dt ∧ dr ∧ ω for p = 4.

Analogous statements hold on any n-dimensional Schwarzschild-de Sitter space, n ≥ 5.

7.5 Results for Kerr-de Sitter spacetimes

We now prove that some of the results obtained in the previous section for the 4-dimensional

Schwarzschild-de Sitter spacetime are stable under perturbations, which allows us to draw

conclusions about asymptotics for solutions of (d + δ)u = 0 or �u = 0 on Kerr-de Sitter

space with very little effort. Thus, fixing the black hole mass M• and the cosmological

constant Λ > 0, denote by ga the Kerr-de Sitter metric with angular momentum a; thus,

g0 is the Schwarzschild-de Sitter metric. Assuming the non-degeneracy condition (2.3.2),

which ensures that the cosmological horizon lies outside the black hole event horizon, the

same will be true for small |a|, which is the setting in which work here. Only very basic

facts about the Kerr-de Sitter metric will need to be used; we refer to §2.4 for details and

further information. We will write δga for the codifferential with respect to the metric ga.

We furthermore denote by M = Rt × X the domain of exterior communications, and by

M̃ = Rt∗ × X̃ the ‘extended’ spacetime.

To begin, recall that the scalar wave equation (and by essentially the same arguments the

wave equation on differential forms, since the principal symbol of the Hodge d’Alembertian

is scalar, see also [112, §4] for a discussion in a related context) on the Kerr-de Sitter

spacetime fits into the microlocal framework developed in [114]. In particular, asymptotics

for waves follow directly from properties of the Mellin transformed normal operator family,

and moreover the analysis of the latter is stable under perturbations: This means that the

set of resonances in any compact subset of the complex plane depends continuously on the

metric, see Appendix A, while the existence of the spectral gap is stable under perturbations

in view of the r-normal hyperbolicity (for every r) of the trapped set of Schwarzschild-de

Sitter (in fact, Kerr-de Sitter) space. In the present context, this concretely means that

for any ε > 0, there exists aε > 0 such that for all angular momenta a with |a| < aε,

the meromorphic family of operators Ra(σ) := (d̃(σ) + δ̃ga(σ))−1 has no poles in |σ| ≥ ε,

Imσ ≥ 0, and such that moreover all poles in |σ| < ε are perturbations of the pole of

R0(σ) at 0, in the sense that the total rank of the poles of Ra(σ) in |σ| < ε is unchanged,
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namely, equal to 4 by Theorem 7.4.3. Now, Lemma 7.4.4 suggests considering dual resonant

states instead, which have a simpler form; the same stability result as for Ra(σ) holds for

R∗a(σ) := ((d̃(σ)+ δ̃ga(σ))∗)−1. However, just as in the case of Schwarzschild-de Sitter space,

we can immediately write down 4 linearly independent dual 0-resonant states for d + δga :

Namely, apply d̃(0) + δ̃ga(0) to 1X (this is a dual resonant state for �ga), which produces

a sum of δ-distributions supported at the horizons r = r±, and splitting this up into the

part supported at r− and the part supported at r+, we obtain 2 linearly independent dual

resonant states for d + δ in form degree 1. The same procedure can be applied to ?ga1X ,

yielding 2 linearly independent dual resonant states for d + δ in form degree 3 (which are

simply the Hodge duals of the dual states in form degree 1). Hence,

Ha := ker(d̃(0) + δ̃ga(0)), (7.5.1)

which has the same dimension as

Ha,∗ := ker(d̃(0) + δ̃ga(0))∗, (7.5.2)

is at least 4-dimensional for small |a|, but it is also at most 4-dimensional by the above

perturbation stability argument! Hence, for small |a|, we deduce that 0 is the only pole

of Ra(σ), i.e. the only resonance of d + δga , in Imσ ≥ 0 (and also the only pole of R∗a(σ)

in this half space), and is simple due to the equality of the rank of the resonance and the

dimension of the nullspace of d̃(0) + δ̃ga(0), see Lemma A.1.3.

We can use this in turn to prove the stability of the zero resonance for �ga in all form

degrees. Let πk : C∞(M̃ ; ΛM̃)→ C∞(M̃ ; ΛM̃) denote the projection onto differential forms

with pure form degree k ∈ {0, . . . , 4}, which induces a map on C∞(X̃; ΛX̃ ⊕ ΛX̃). Let

Ka := ker �̃ga(0) =
4⊕

k=0

Kka (7.5.3)

be the grading of the zero resonant space of �ga by form degree, likewise

Ka,∗ := ker �̃ga(0)∗ =
4⊕

k=0

Kka,∗ (7.5.4)

for the space of dual resonant states. Observe that πkHa ⊆ Kka, since u ∈ Ha implies
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0 = πk�gau = �gaπku. Now, since �ga1 = 0, we have K0
a = 〈1〉 for small |a| by stability,

likewise K4
a = 〈?ga1〉. Furthermore, K2

a is at most 2-dimensional for small |a| (since K2
0

is 2-dimensional), but also K2
a ⊇ π2Ha; now π2H0 is 2-dimensional by Theorem 7.4.3 and

Ha depends smoothly on a, see also Remark A.1.7. Thus K2
a = π2Ha is 2-dimensional for

small |a|; therefore K2
a = π2Ha is 2-dimensional. Finally, we have H1

a,∗ ⊆ K1
a,∗, hence by

the analysis of d + δga above, K1
a,∗, hence K1

a, is at least 2-dimensional, but since K1
0 is 2-

dimensional, we must in fact have dimK1
a = 2 for small |a|; likewise dimK3

a = 2. Hence, we

have dimKka = dimKk0 for k = 0, . . . , 4, which in particular means that the zero resonance

of �ga is the only resonance in Imσ ≥ 0, and the resonance is simple.

We now summarize the above discussion, including a small improvement. The follow-

ing theorem is completely parallel to Theorem 7.4.3, Lemma 7.4.4 and Theorem 7.4.5 for

Schwarzschild-de Sitter spacetimes, extending these to Kerr-de Sitter spacetimes with small

angular momentum:

Theorem 7.5.1. For small |a|, the only resonance of d + δga in Imσ ≥ 0 is a simple

resonance at σ = 0, likewise for �ga. The spaces Ha and Ha,∗ of resonant and dual resonant

states for d + δga are graded by form degree as Ha =
⊕4

k=0Hka, Ha,∗ =
⊕4

k=0Hka,∗. In

particular, denoting the degree of differential forms on which operators act by subscripts,

we have Hka = ker d̃k(0) ∩ ker(δ̃ga)k(0), with

H0
a = 〈1〉, H1

a = 0, H2
a = 〈ua,1, ua,2〉, H3

a = 0, H4
a = 〈?ga1〉

for some 2-forms ua,1, ua,2, which can be chosen to depend smoothly on a, with u0,1 =

r−2 dt ∧ dr, u0,2 = ω in the notation of Theorem 7.4.3, and

H0
a,∗ = 0, H1

a,∗ = 〈δr=r− dr, δr=r+ dr〉,

H2
a,∗ = 0, H3

a,∗ = ?gaH1
a,∗, H4

a,∗ = 0.

For the spaces Ka and Ka,∗ of resonant and dual resonant states for �ga, we have

K0
a = H0

a, K1
a = 〈ua,+, ua,−〉, K2

a = H2
a, K3

a = ?gaK1
a, K4

a = H4
a

for some 1-forms ua,±, which can be chosen to depend smoothly on a, with u0,± = u± in
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the notation of Theorem 7.4.5, and

K0
a,∗ = 〈1X〉, K1

a,∗ = H1
a,∗,

K2
a,∗ = 〈1Xua,1, 1Xua,2〉, K3

a,∗ = H3
a,∗, K4

a,∗ = 〈?ga1X〉.

In particular, the form degree k part of a solution u to (d+ δga)u = 0, resp. �gau = 0, with

smooth initial data decays exponentially to an element of Hka, resp. Kka, for k = 0, . . . , 4.

We derive an explicit expression for ua,1 and ua,2 in Remark 7.5.4 below.

Remark 7.5.2. Since for all k = 0, . . . , 4, either Hka = 0 or Hka,∗ = 0, hence Ha and H∗ are

orthogonal, we obtain another proof, as in the Schwarzschild-de Sitter case, of the fact that

�ga acting on differential forms only has a simple resonance at 0.

Proof of Theorem 7.5.1. We only need to prove that the space Ha is graded by form degree:

Let πeven = π0 + π2 + π4 denote the projection onto even form degree parts, then since

d + δga maps even degree forms to odd degree forms and vice versa, πeven maps Ha into

itself. Now suppose u ∈ πevenHa, and write u = u0 + u2 + u4 with uk = πku, k = 0, 2, 4.

Then 0 = π1(d + δga)u = du0 + δgau2, using the identification of resonant states with t∗-

independent forms as in the proof of Theorem 7.3.20. Applying δga to this equation gives

0 = �gau0, which implies u0 ∈ K0
a, i.e. u0 is a constant, as discussed before the statement

of the theorem. Likewise, u4 ∈ K4
a, so u4 is the Hodge dual of a constant. Therefore, d+ δga

annihilates both u0 and u4, hence u2 ∈ Ha. This argument shows that in fact π2Ha ⊂ Ha.
Since π2Ha is 2-dimensional, as noted above, we have

〈1〉 ⊕ π2Ha ⊕ 〈?ga1〉 ⊆ Ha,

with both sides having the same dimension (namely, 4), and thus equality holds, providing

the grading of Ha by form degree.

This in particular proves Theorem 7.1.1.

Remark 7.5.3. Observe that all ingredients in the Fredholm analysis of the normal opera-

tor family, which here in particular involves estimates at normally hyperbolic trapping, as

well as all of the above arguments which lead to a characterization of the spaces of reso-

nances are stable in the sense that they apply to any stationary perturbation of a given
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Schwarzschild-de Sitter spacetime (4-dimensional for the above, but similar arguments ap-

ply in all spacetime dimensions ≥ 4), not only to slowly rotating Kerr-de Sitter black holes.

In fact, using the analysis of operators with non-smooth coefficients developed in Chap-

ters 8 and 9, we can deduce decay and expansions in the exact same form as in the above

theorem for waves on spacetimes which are merely ‘asymptotically stationary’ and close to

Schwarzschild-de Sitter, i.e. for which the metric tensor differs from a stationary metric close

to Schwarzschild-de Sitter by an exponentially decaying symmetric 2-tensor (with suitable

regularity).

This shows at once that quasilinear wave equations on differential forms of the form

�g(u,∇u)u = q(u,∇u) with small initial data can be solved globally, provided g(0, 0) is close

to the Schwarzschild-de Sitter metric, g(u,∇u) = g(0, 0) for 0-resonant states u of �g(0,0),

and the non-linearity q annihilates 0-resonant states; to give an (artificial) example, on

2-forms, one could take q(u,∇u) = |du|2u, and g(u,∇u) = g(0, 0) + g′(du, δu), where g′

is a smooth bundle map from the form bundle into symmetric 2-tensors which vanishes at

least simply at (0, 0), so g′ is merely an exponentially small perturbation. Notice that in

this example, we force the asymptotic model to be fixed, since in general the space of zero

resonant states may vary with u, which causes additional complications that are difficult to

deal with in this generality.

Remark 7.5.4. In the case of the Kerr-de Sitter metric, we can in fact explicitly write down

ua,1 ∈ H2
a (and then take ua,2 = ?gaua,1 to obtain a basis of H2

a). Indeed, on the Kerr

spacetime, Andersson and Blue [3] give the values of the spin coefficients of the Maxwell

field for the Coulomb solution in [3, §3.1], and reconstructing the Maxwell field itself (in the

basis given by wedge products of differentials of the Boyer-Lindquist coordinates t, r, θ, φ) is

then an easy computation using the explicit form of the null tetrad given in [3, Introduction,

§2.4].27 A tedious but straightforward calculation shows that the resulting 2-form

ua,1 := Fa,TR(r,θ) (dt− a sin2 θ dφ) ∧ dr

+ Fa,ΘΦ(r, θ) sin θ dθ ∧ (a dt− (r2 + a2) dφ)

27In the definition of φ0 in [3, §2.4], the second summand F [Θ̂, Φ̂PNV] should be replaced by F [m̄,m] to
yield the correct result, see also [18, Equation (2)†].
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with

Fa,TR(r, θ) =
r2 − a2 cos2 θ

(r2 + a2 cos2 θ)2
, Fa,ΘΦ(r, θ) =

2ar cos θ

(r2 + a2 cos2 θ)2

is a solution of Maxwell’s equations on Kerr-de Sitter space as well, i.e. when the cosmo-

logical constant is positive.



Chapter 8

Pseudodifferential operators with

rough coefficients

8.1 Introduction

We now prepare the analysis of quasilinear wave equations on non-trapping spacetimes

(with normally hyperbolic trapping) according to Definition 2.5.1; the equations we will

consider have the form

�g(u,du)u = f + q(u, du),

that is, the metric tensor g is now allowed to depend on the solution u itself. Thus, even at

the level of the principal symbol, such equations exhibit non-smooth behavior: If u only has

limited regularity, then so does the metric g(u, du), and correspondingly the characteristic

set, the null-bicharacteristic flow etc. Since we showed in Chapter 5 that weighted b-Sobolev

are natural spaces in the global study of linear waves on such spacetimes, we shall consider

pseudodifferential operators with coefficients lying in such spaces here. Similar operators

with rough coefficients were considered before on Euclidean space in the work of Beals and

Reed [9], and we will follow many of their ideas. Note that nonlinear analysis in Fréchet

spaces like C∞ requires an even finer control of regularity properties for operators with

non-smooth coefficients, since this necessitates an analysis of operators with non-smooth

coefficients which is uniform in a certain sense as one varies the regularity requirement.

We will give the details on how one solves quasilinear equations using the technology

of rough ps.d.o.s in Chapter 9, but roughly speaking, the plan is to repeat the analysis

289
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of semilinear equations in Chapter 5, replacing standard microlocal regularity results in

the smooth setting by their rough counterparts, and use suitable iteration schemes. On

spaces with normally hyperbolic trapping, any iteration scheme for general equations with

derivatives in the non-linearity will lose derivatives, as we saw in §5.3.2, and our use of

the Nash-Moser iteration scheme (see [60, 99] and the references therein) in §9.2 forces us

to be rather precise in our regularity estimates; indeed, what we need are so-called tame

estimates; see below.

Thus, the main ingredient of the framework in which will analyze b-operators with

non-smooth coefficients on manifolds with boundary is a partial calculus for what we call

b-Sobolev b-pseudodifferential operators; for brevity, we will refer to these as ‘non-smooth

operators’ to distinguish them from ‘smooth operators,’ by which we mean standard b-

pseudodifferential operators, discussed in §3.3. b-Sobolev b-ps.d.o.s are (generalizations of)

b-ps.d.o.s with coefficients in b-Sobolev spaces.28 This calculus allows us to prove the mi-

crolocal regularity results for b-Sobolev b-ps.d.o.s which we discussed in the smooth setting

in §§3.2.1 (elliptic regularity), 3.2.2 (real principal type propagation), 3.2.3 (complex ab-

sorbing potentials), 3.3.1 (b-radial points) and 3.3.2 (normally hyperbolic trapping in the

b-sense); see §§8.5 and 8.8.2 for their non-smooth counterparts. We only develop a local

calculus for non-smooth operators on Rn+ (and Rn) rather than providing an invariant calcu-

lus on a manifold. For our applications on (static) de Sitter and Kerr-de Sitter spacetimes,

which are diffeomorphic to open subsets of Rn+ when compactified at future infinity, this is

sufficient; further, elliptic regularity and the real principal type propagation of singularities

are purely local results and do not require an invariant calculus, as we will explain in §8.9.

Radial point and trapping estimates on the other hand have a non-local character in that the

radial or trapped set may in general not be contained in a single coordinate patch. Hence,

the non-smooth microlocal study of more general geometries requires additional arguments,

and we show in §8.9 how to deduce radial point and trapping estimates on manifolds from

the local results using simple partition of unity arguments.

We remark that paradifferential methods would give sharper results with respect to the

regularity of the spaces on which we prove our microlocal regularity results, and correspond-

ingly we do not make any substantial effort here to push the regularity down: Our entirely

L2-based method is both conceptually and technically relatively straightforward, powerful

28Beals and Reed [9] consider operators on Euclidean space with coefficients in microlocal Sobolev spaces;
this generality is not needed for our purposes, even though including it would only require more care in
bookkeeping.
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enough for our purposes, and lends itself very easily to generalizations in other contexts.

The study of ps.d.o.s with non-smooth coefficients is not new: Beals and Reed [9]

developed a partial calculus with coefficients in L2-based Sobolev spaces on Euclidean space,

which is the basis for our extension to manifolds with boundary. Marschall [77] gave an

extension of the calculus to Lp-based Sobolev spaces (and even more general spaces) and

in addition proved the invariance of certain classes of non-smooth operators under changes

of coordinates. Witt [121] extended the L2-based calculus to contain elliptic parametrices.

Pseudodifferential calculi for coefficients in Ck spaces have been studied by Kumano-go and

Nagase [72]. In a slightly different direction, paradifferential operators, pioneered by Bony

[14] and Meyer [93], are a widely used tool in nonlinear PDE, often giving more precise

results than rough ps.d.o.s, at the expense of significant technical complications; see e.g.

Hörmander [63] and Taylor [108, 107] and the references therein.

We will now give the idea how to generalize b-ps.d.o.s to the non-smooth setting. First,

recall that the action of a b-ps.d.o. A ∈ Ψm
lb(Rn+) with smooth full symbol a = a(x, y;λ, η) ∈

Smb ((Rn+)x,y×Rnλ,η), see Definitions 3.3.1 and 3.3.2 for the notation used here, can be written

as

Au(x, y) =

∫
R×Rn−1×(0,∞)×Rn−1

ei(y−y
′)ηsiλa(x, y, λ, η)u(x/s, y′) dλ dη

ds

s
dy′, (8.1.1)

where we did not make the logarithmic change of coordinates that we used in §3.3. Recall

then the asymptotic expansion for the composition of two b-ps.d.o.s A,B ∈ Ψlb(Rn+),

σ(A ◦B)(z, ζ) ∼
∑
β≥0

1

β!
(∂βζ a

bDβ
z b)(z, ζ), (8.1.2)

where a and b are the full symbols of A and B, and bDz = (xDx, Dy), where D = −i∂
as usual. The analogous non-smooth operators that we discuss in this chapter, b-Sobolev

b-ps.d.o.s, are locally defined by (8.1.1), but we now allow the symbol a to be less regular.

As an example, for many remainder terms in our computations, it will suffice to merely

have ∥∥∥∥a(z, ζ)

〈ζ〉m

∥∥∥∥
Hs

b((Rn+)z)

≤ C, uniformly in ζ ∈ Rn, (8.1.3)
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which already implies that A = a(z, bDz) defines a continuous map

A : Hs′
b → Hs′−m

b , s ≥ s′ −m, s > n/2 + max(0,m− s′); (8.1.4)

see Proposition 8.2.9. Assuming more regularity of the symbols in ζ, we can study composi-

tions of such non-smooth operators; the main tool here is the asymptotic expansion (8.1.2),

which must be cut off after finitely many terms in view of the limited regularity of the

symbols, and the remainder term will be estimated carefully. In §8.2, we will develop the

(partial) calculus of b-Sobolev b-ps.d.o.s as far as needed for our applications in Chapter 9.

Next, recall that elliptic regularity, on unweighted spaces for the sake of brevity, states

that if u ∈ H−∞b satisfies Pu ∈ Hσ−m
b for P ∈ Ψm

b which is elliptic at a point ζ in the

cosphere bundle, then u is in Hσ
b microlocally at ζ. The proof is an easy application of the

symbolic calculus – one essentially takes the reciprocal of the symbol of P near ζ to obtain

an approximate inverse of P there – and readily generalizes to the non-smooth setting as

shown in §8.4; the main technical task is to understand reciprocals of non-smooth symbols,

which we will deal with in §8.3.

Further, given an operator P ∈ Ψm
b with real homogeneous principal symbol p, we

need to study the singularities for solutions u ∈ H−∞b of Pu = f ∈ Hσ−m+1
b within the

characteristic set Σ = p−1(0) of u, where we assume dp 6= 0 at Σ so that Σ is a smooth conic

codimension 1 submanifold of bT ∗M \ o. The propagation of singularities, in the setting of

closed manifolds discussed in §3.2.2, then states that WFσb(u) is invariant under the flow

of the Hamilton vector field Hp of p. In other words, WFσb(u) is the union of maximally

extended null-bicharacteristics of P . We will generalize this statement to the case of non-

smooth P in §8.5.3 in a way that is similar to the outline of the proof of Theorem 3.2.1.

Since P now only acts on a certain range of b-Sobolev spaces, the allowed degrees σ of

regularity that we can propagate have bounds both from above and from below in terms of

the regularity s of the coefficients of P ; also, since non-smooth operators like the ones given

by symbols as in (8.1.3) have very restricted mapping properties on low or negative order

spaces, see (8.1.4), we need to assume higher regularity Hs
b of the coefficients of P when

we want to propagate low regularity Hσ
b of solutions u. The main bookkeeping overhead

of the proof of the propagation of singularities thus comes from the need to make sense of

all compositions, dual pairings, adjoints and actions of non-smooth operators that appear

in the course of the positive commutator argument. On a more technical side, we strive
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to limit the number of non-smooth operators as much as possible and thus have to absorb

certain non-smooth terms appearing in the argument into an additional error term F of

symbolic order 2σ; by judiciously choosing the operators in the positivity and the a priori

control regions (called B and E in the proof of Theorem 3.2.1), we can however ensure

that the symbol of F in fact has a sign, thus the additional term 〈Fu, u〉 appearing in the

positive commutator argument can be bounded by the sharp G̊arding inequality, which we

will prove for non-smooth operators in §8.5.1.

The propagation of singularities near radial points and near normally hyperbolic trap-

ping in the b-sense, as present in our applications on asymptotically de Sitter and Kerr-de

Sitter space, is proved for non-smooth operators in §§8.5.4 and 8.5.5. The proof again pro-

ceeds via positive commutators, thus similar comments about the interplay of regularities

as in the real principal type setting apply.

In order to have analogues of the local and global energy estimates proved in Chapter 4

available in the non-smooth setting, we include a full proof of the standard local energy

energy estimate in the non-smooth setting; see §8.6.

We now give an example of the kinds of estimates that the non-smooth microlocal

arguments give: Elliptic regularity for the equation Pu = f , where P = Op(p) is of order

m and has coefficients in Hs, schematically yields the quantitative statement

‖u‖Hσ ≤ C(1 + ‖p‖Hs)‖Pu‖Hσ−m , 0 ≤ σ ≤ s, (8.1.5)

dropping all localizers etc. As we will explain in §9.2, the Nash-Moser iteration scheme

requires more precise estimates: Namely, we need the right hand side of (8.1.5) to be linear

in high regularity norms, to wit, for σ ≈ s,

‖u‖Hσ ≤ C(‖p‖Hs0 )
(
‖Pu‖Hσ−m + ‖p‖Hs‖Pu‖Hs0

)
, (8.1.6)

where s0 is fixed and independent of σ, s. In our applications, the coefficients of P depend

on u; thus, when one uses smoothing operators (which have large operator norms) to im-

prove the regularity of u – this being necessary if every iteration step loses derivatives –, the

constant in the tame estimate (8.1.6) depends linearly on the operator norm of the smooth-

ing operator (mapping a lower regularity space into a higher regularity space), rather than

quadratically as in (8.1.5); this is what allows for the fast convergence of Newton itera-

tion (which underlies the Nash-Moser scheme) to dominate the blow-up of the smoothing
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operator norms. See [99] for details.

The purpose of §§8.7 and 8.8 is to show estimates of the form (8.1.6). Morally speaking,

the only serious non-smoothness of b-Sobolev b-ps.d.o.s is that of their coefficients (rather

than of the dependence on the fiber variables), which get multiplied by derivatives of the

function the ps.d.o. acts on. Thus, once one has a way to prove a tame estimate in L2-based

spaces setting using Fourier methods, i.e. an estimate of the form

‖uv‖Hs ≤ C(‖u‖Hs‖v‖Hs0 + ‖u‖Hs0‖v‖Hs), s ≥ s0 > n/2, u, v ∈ Hs(Rn), (8.1.7)

one can easily obtain tame estimates for operator compositions in the non-smooth calculus,

which then give tame microlocal regularity estimates. The idea of the proof of the estimate

(8.1.7), see Corollary 8.7.2, is to split the product uv up in the Fourier-domain into a piece

where u is localized at high frequency and v in low frequency, and another piece where this

relationship is reversed.

8.2 A calculus for operators with b-Sobolev coefficients

We work locally on Rn+. To analyze the action of operators with non-smooth coefficients on

b-Sobolev functions, we need a convenient formula. Given A ∈ Ψm
b (Rn+) with full symbol

a(x, y;λ, η) ∈ Sm(Rn+), compactly supported in x, y, we have for u ∈ Ċ∞c (Rn+)

Au(x, y) =

∫∫∫∫
eiλ log(x/x′)eiη(y−y′)a(x, y;λ, η)u(x′, y′)

dx′

x′
dy′ dλ dη

=

∫∫
xiλeiηya(x, y;λ, η)û(λ, η) dλ dη.

Writing â for the Mellin transform in x and the Fourier transform in y, we obtain

Âu(σ, γ) =

∫∫∫∫
x−i(σ−λ)e−i(γ−η)a(x, y;λ, η)û(λ, η) dλ dη

dx

x
dy (8.2.1)

=

∫∫
â(σ − λ, γ − η;λ, η)û(λ, η) dλ dη.

Even though this makes sense as a distributional pairing, it is technically inconvenient to

use directly: The problem is that if a does not vanish at x = 0, then â(σ, γ;λ, η) has a pole
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at σ = 0 (cf. [82, Proposition 5.27]). This is easily dealt with by decomposing

a = a(0)(y;λ, η) + a(1)(x, y;λ, η), (8.2.2)

where a(0)(y;λ, η) = a(0, y;λ, η) and a(1)(x, y;λ, η) = xã(1)(x, y;λ, η) with ã(1) ∈ Sm. (Of

course, a(0) in general no longer has compact support; however, this will be completely

irrelevant for the analysis, due to the fact that a(0) has ‘nice’ behavior in y, independently

in x.) Then â(1)(σ, γ;λ, η) is smooth and rapidly decaying in (σ, γ), and we write

(A(1)u)̂(ζ) =

∫
â(1)(ζ − ξ; ξ)û(ξ) dξ. (8.2.3)

For A(0) = a(0)(y, bD), we obtain

(A(0)u)̂(σ, γ) =

∫
Fa(0)(γ − η;σ, η)û(σ, η) dη, (8.2.4)

and Fa(0)(γ;σ, η) is rapidly decaying in γ.

Remark 8.2.1. Either we read off equation (8.2.4) directly from equation (8.2.1), where

we observe that the symbol a(0) is independent of x, thus the integrals over x and λ

are Mellin transform and inverse Mellin transform, respectively, and therefore cancel; or

we observe that, with a(0)(x, y;λ, η) := a(0)(y;λ, η), we have â(0)(σ − λ, γ − η;λ, η) =

2πδσ=λFa(0)(0, γ − η;λ, η). The second argument also shows that many manipulations on

integrals that compute A(1)u (or compositions of b-operators) also apply to the computation

of A(0)u if one reads integrals as appropriate distributional pairings.

Notice that (8.2.3) is, with the change in meaning of â(1) and û and keeping in mind

that a(1) = xã(1) is a rather special symbol, the same formula as for pseudodifferential

operators on a manifold without boundary used by Beals and Reed [9]. Since also the

characterization of Hs
b functions in terms of their mixed Mellin and Fourier transform

(Lemma 3.3.5) is completely analogous to the characterization of Hs functions in terms

of their Fourier transform, the arguments presented in [9] carry over to this restricted b-

setting. In order to introduce necessary notation and construct a (partial) calculus in the

full b-setting, containing weights, we will go through most arguments of [9], extending and

adapting them to the b-setting; and of course we will have to treat the term A0 separately.

The class of operators we are interested in are b-differential operators whose coefficients

lie in (weighted) b-Sobolev spaces of high order. Let us remark that we do not develop
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an invariant calculus that can be transferred to a manifold; in particular, all definitions

are on Rn+. For examples of invariant symbol classes and invariant calculi, see [77, §5] and

[121]. However, as mentioned in the introduction and explained in detail in §8.9, our local

calculus suffices even for non-local regularity estimates. We thus define the following classes

of non-smooth symbols:

Definition 8.2.2. For m, s ∈ R, define the spaces of symbols

Hs
bS

m
(b) =

{∑
finite

aj(z)pj(z, ζ) : aj ∈ Hs
b, pj ∈ Sm(b)

}
,

and denote by Hs
bΨm

(b) the corresponding spaces of operators, i.e.

Hs
bΨm

(b) = {a(z, bD) : a(z, ζ) ∈ Hs
bS

m
(b)}.

Moreover, let Ψm = {a(z, bD) : a(z, ζ) ∈ Sm}.

Remark 8.2.3. In this chapter, we will only deal with operators that are quantizations of

symbols on the b-cotangent bundle, and thus with Ψm we will always mean the space defined

above.

Remark 8.2.4. In a large part of the development of the calculus for non-smooth b-ps.d.o.s

in this section, we will keep track of additional information on the symbols of most ps.d.o.s,

encoded in the space of symbols S∗b, in order to ensure that they act on weighted b-Sobolev

spaces. Although this requires a small conceptual overhead, it simplifies some computations

later on.

The spaces H∗bΨ∗(b) are not closed under compositions, in fact they are not even left

Ψ∗b-modules. To get around this, which will be necessary in order to develop a sufficiently

powerful calculus, we will consider less regular spaces, which however are still small enough

to allow for good analytic (i.e. mapping and composition) properties.

Definition 8.2.5. For s,m ∈ R, k ∈ N0, define the space

Sm;0Hs
b =

{
p(z, ζ) : p ∈ 〈ζ〉mL∞ζ ((Hs

b)z)
}

=
{
p(z, ζ) :

〈η〉sp̂(η; ζ)

〈ζ〉m
∈ L∞ζ L2

η

}
.
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Let Sm;0
b Hs

b be the space of all symbols p(x, y;λ, η) ∈ Sm;0Hs
b which are entire in λ with

values in 〈η〉mL∞η ((Hs
b)z) such that for all N the following estimate holds:

‖p(z;λ+ iµ, η)‖Hs
b
≤ CN 〈λ, η〉m, |µ| ≤ N. (8.2.5)

Finally, define the spaces

Sm;k
(b) H

s
b =

{
p(z, ζ) : ∂βζ p ∈ S

m−|β|;0
(b) Hs

b, |β| ≤ k
}
.

The spaces of operators which are left quantizations of these symbols are denoted by

Ψm;0Hs
b, Ψm;0

b Hs
b and Ψm;k

(b) H
s
b, respectively.

Weighted versions of these spaces, involving Hs,α
b for α ∈ R, are defined analogously.

Compare (8.2.5) with (3.3.4). We shall occasionally write Op(a) := a(z, bD) for (left)

quantizations of symbols.

We can also define similar symbol and operator classes for operators acting on bundles:

Let E,F,G be the trivial (complex or real) vector bundles over Rn+ of ranks dE , dF , dG,

respectively, equipped with a smooth metric (Hermitian for complex bundles) on the fibers

which is the standard metric on the fibers over the complement of a compact subset of Rn+,

then we can define

Hs
bS

m(Rn+;G) := {(ai)1≤i≤dG : ai ∈ Hs
bS

m}.

We then define the space Hs
bΨm(Rn+;E,F ) to consist of left quantizations of symbols in

Hs
bS

m(Rn+; Hom(E,F )); likewise for all other symbol and operator classes. We shall also

write Hs
bΨm(Rn+;E) := Hs

bΨm(Rn+;E,E).

Remark 8.2.6. If we considered, as an example, the wave operator corresponding to a non-

smooth metric acting on differential forms, the natural metric on the fibers of the form

bundle would be non-smooth. Even though this could be dealt with directly in this setting,

we simplify our arguments by choosing an ‘artificial’ smooth metric to avoid regularity

considerations when taking adjoints, etc.

The first step is to prove mapping properties of operators in the classes just defined;

compositions will be discussed in §8.2.2.
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8.2.1 Mapping properties

The mapping properties of operators in Ψm;0Hs
b are easily proved using the following simple

integral operator estimate.

Lemma 8.2.7. (Cf. [9, Lemma 1.4].) Let g(η, ξ) ∈ L∞ξ L2
η and G(η, ξ) ∈ L∞η L2

ξ . Then the

operator

Tu(η) =

∫
G(η, ξ)g(η − ξ, ξ)u(ξ) dξ

is bounded on L2 with operator norm ≤ ‖G‖L∞η L2
ξ
‖g‖L∞ξ L2

η
.

Proof. Cauchy-Schwarz gives

‖Tu‖2L2 ≤
∫ (∫

|G(η, ξ)|2 dξ
)(∫

|g(η − ξ, ξ)u(ξ)|2 dξ
)
dη

≤ ‖G‖2L∞η L2
ξ

∫ (∫
|g(η − ξ, ξ)|2 dη

)
|u(ξ)|2 dξ

≤ ‖G‖2L∞η L2
ξ
‖g‖2L∞ξ L2

η
‖u‖2L2 .

The most common form of G in this chapter is given by and estimated in the following

lemma. We use the notation

a+ := max(a, 0), a ∈ R. (8.2.6)

Lemma 8.2.8. Suppose s, r ∈ R are such that s ≥ r, s > n/2 + (−r)+, then

G(η, ξ) =
〈η〉r

〈η − ξ〉s〈ξ〉r
∈ L∞η (Rn;L2

ξ(Rn)).

Proof. First, suppose r ≥ 0. Then

G(η, ξ)2 ≤ 1

〈η − ξ〉2(s−r)〈ξ〉2r
+

1

〈η − ξ〉2s
.

Since s > n/2, the ξ-integral of the second fraction is finite and η-independent. For the

ξ-integral of the first fraction, we split the domain of integration into two parts and obtain∫
|ξ|≤|η−ξ|

1

〈η − ξ〉2(s−r)〈ξ〉2r
dξ +

∫
|η−ξ|≤|ξ|

1

〈η − ξ〉2(s−r)〈ξ〉2r
dξ

≤
∫

1

〈ξ〉2s
dξ +

∫
1

〈η − ξ〉2s
dξ ∈ L∞η .
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Next, if r < 0, then

G(η, ξ)2 =
〈ξ〉−2r

〈η − ξ〉2s〈η〉−2r
≤ 1

〈η − ξ〉2(s−(−r)) +
1

〈η − ξ〉2s
,

where in the first fraction, we discarded the term 〈η〉−2r ≥ 1. Since s − (−r) > n/2, the

integrals of both fractions are finite, and the proof is complete.

Proposition 8.2.9. Let m ∈ R. Suppose s ≥ s′−m and s > n/2 + (m− s′)+. Then every

A = a(z, bD) ∈ Ψm;0Hs
b(Rn+;E,F ) is a bounded operator Hs′

b (Rn+;E) → Hs′−m
b (Rn+;F ). If

A ∈ Ψm;0
b Hs

b(Rn+;E,F ), then A is also a bounded operator Hs′,α
b (Rn+;E)→ Hs′−m,α

b (Rn+;F )

for all α ∈ R.

Note that this proposition also deals with ‘low’ regularity in the sense that negative

b-Sobolev orders are permitted in the target space. We shall have occasion to use this in

arguments involving dual pairings in §8.5.

Proof of Proposition 8.2.9. Let us first prove the statement without bundles, i.e. for com-

plex-valued symbols and functions. Let u ∈ Hs′
b be given. Then

〈ζ〉s′−mÂu(ζ) =

∫
〈ζ〉s′−m〈ξ〉m

〈ζ − ξ〉s〈ξ〉s′
a0(ζ − ξ; ξ)u0(ξ) dξ

for a0(ζ; ξ) ∈ L∞ξ L2
ζ , u0 ∈ L2. Lemma 8.2.8 ensures that the fraction in the integrand is an

element of L∞ζ L
2
ξ , and then Lemma 8.2.7 implies 〈ζ〉s′−mÂu(ζ) ∈ L2

ζ .

In order to prove the second statement, we write for u ∈ Ċ∞c

a(x, y, xDx, Dy)u(x, y) =

∫∫
Imλ=0

eiλ log xeiηya(x, y;λ, η)û(λ, η) dλ dη

=

∫∫
Imλ=0

ã(λ)(η;x, y)û(λ, η) dλ dη,

where

ã(λ)(η;x, y) = xiλeiηya(x, y;λ, η);

we want to shift the contour of integration to Imλ = −α. Assuming that suppx,y a is

compact, we have that for any N ,

‖ã(λ)(η, ·, ·)‖
Hs,−N

b
≤ CN 〈λ, η〉m+s, | Imλ| < N,
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and ã(λ) is holomorphic in λ with values in Hs,−N
b for fixed η. Since û(λ, η) is rapidly

decaying, we infer for all sufficiently large M > 0∫
‖ã(λ)(η, ·, ·)‖

Hs,−N
b
|û(λ, η)| dη ≤ CN

∫
〈λ, η〉m+s−M dη

= CNM 〈λ〉m+s−M+n−1,

thus

ã′(λ)(x, y) :=

∫
ã(λ)(η;x, y)û(λ, η) dη ∈ 〈λ〉−ML∞λ (Hs,−N

b )

for all M > 0, and ã′ : C→ Hs,−N
b is holomorphic. Therefore, if we choose N > |α|, we can

shift the contour of integration to the horizontal line R− iα:

a(x, y, xDx, Dy)u(x, y) =

∫
Imλ=−α

ã′(λ)(x, y) dλ

= xα
∫∫

Imλ=0
eiλ log xeiηya(x, y;λ− iα, η)(x−αu)̂(λ, η) dλ dη.

By definition, a|Imλ=−α satisfies symbolic bounds just like a|Imλ=0, thus we are done by the

first half of the proof.

Adding bundles is straightforward: Write A ∈ Ψm;0Hs
b(Rn+;E,F ) as A = (Aij), Aij ∈

Ψm;0Hs
b(Rn+) and u ∈ Hs′

b (Rn+;E) as u = (uj), uj ∈ Hs′
b (Rn+). Then Au = (

∑dE
j=1Aijuj),

thus Au ∈ Hs′−m
b (Rn+;F ) follows by component-wise application of what we just proved.

Corollary 8.2.10. Let s > n/2. Then Hs
b(Rn+; End(E)) is an algebra. Moreover, the space

Hs′
b (Rn+; Hom(E,F )) is a left Hs

b(Rn+; End(E))- and a right Hs
b(Rn+; End(F ))-module for

|s′| ≤ s.

Proof. As in the proof of Proposition 8.2.9, we can reduce the proof to the case of complex-

valued functions. For s′ ≥ 0, the claim follows from Hs′
b ⊂ Ψ0;0

b Hs′
b and the previous

Proposition. For s′ ≤ 0, use duality.

A simple tame version of this is given in Corollary 8.7.2.

8.2.2 Operator compositions

The basic idea is to mimic the formula for the asymptotic expansion of the full symbol of an

operator which is the composition of P = p(z, bD) ∈ Ψm
lb(Rn+) and Q = q(z, bD) ∈ Ψm′

lb (Rn+),
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namely

σ(P ◦Q)(z, ζ) ∼
∑
β≥0

1

β!
(∂βζ p

bDβ
z q)(z, ζ);

recall the notation (3.3.6). If p or q only have limited regularity in ζ or z, we only keep

finitely many terms of this expansion and estimate the resulting remainder term carefully.

More precisely, we compute for u ∈ Ċ∞c , keeping Remark 8.2.1 in mind:

(PQu)̂(η) =

∫∫
p̂(η − ξ; ξ)q̂(ξ − ζ; ζ)û(ζ) dζ dξ

=

∫ (∫
p̂(η − ζ − ξ; ζ + ξ)q̂(ξ; ζ) dξ

)
û(ζ) dζ, (8.2.7)

and

[(∂βζ p
bDβ

z q)(z,
bD)u]̂(η) =

∫
(∂βζ p

bDβ
z q)̂(η − ζ; ζ)û(ζ) dζ

=

∫ (∫
∂βζ p̂(η − ζ − ξ; ζ)ξβ q̂(ξ; ζ) dξ

)
û(ζ) dζ.

We now apply Taylor’s theorem to the second argument of p̂ at ξ = 0 in the inner integral

in (8.2.7), keeping track of terms up to order k− 1 ∈ N0 (the case k = 0 is handled easily),

and obtain a remainder

r̂(η − ζ; ζ) =
∑
|β|=k

k

β!

∫ (∫ 1

0
(1− t)k−1∂βζ p̂(η − ζ − ξ; ζ + tξ) dt

)
ξβ q̂(ξ; ζ) dξ,

corresponding to the operator

r(z, bD) = P ◦Q−
∑
|β|<k

1

β!
(∂βζ p

bDβ
z q)(z,

bD). (8.2.8)

We rewrite the remainder as

r̂(η; ζ) =
∑
|β|=k

k

β!

∫ (∫ 1

0
(1− t)k−1∂βζ p̂(η − ξ; ζ + tξ) dt

)
(bDβ

z q)̂(ξ; ζ) dξ. (8.2.9)

We will start by analyzing the terms in an expansion like (8.2.8) when the symbols

involved are not smooth. When we deal with smooth b-operators by using the decomposition

(8.2.2) of their symbols, we will need multiple sets of dual variables of x and y. For clarity,
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we will stick to the following names for them:

(Mellin-)dual variables of x : σ, λ, ρ,

(Fourier-)dual variables of y : γ, η, θ.

Lemma 8.2.11. Let s, s′,m,m′ ∈ R be such that s > n/2, |s′| ≤ s. Then

Sm;0Hs
b · Sm

′;0Hs′
b ⊂ Sm+m′;0Hs′

b ,

Sm · Sm′;0Hs′
b ⊂ Sm+m′;0Hs′

b .

The same statements are true if all symbol classes are replaced by the corresponding b-symbol

classes.

Proof. In light of the definitions of the symbol classes, we can assume m = m′ = 0. The

first statement then is an immediate consequence of Corollary 8.2.10. In order to prove

the second statement, we simply observe that, given p ∈ S0, p(·; ζ) is a uniformly bounded

family of multipliers on Hs′
b . A direct proof of the sort that we will use in the sequel goes

as follows: Decompose the symbol p as in (8.2.2). The part p(1) ∈ S0;0H∞b can then be

dealt with using the first statement. Thus, we may assume p = p(0), i.e. p = p(y;λ, η) is

x-independent. Let q ∈ S0;0Hs′
b be given. Choose N large and put

p0(γ;λ, η) = 〈γ〉N |Fp(γ;λ, η)|, q0(σ, γ;λ, η) = 〈σ, γ〉s′ |q̂(σ, γ;λ, η)|,

r0(σ, γ;λ, η) = 〈σ, γ〉s′ |p̂q(σ, γ;λ, η)|.

Then ∫∫
r0(σ,γ;λ, η)2 dσ dγ

≤
∫∫ (∫

〈σ, γ〉s′

〈γ − θ〉N 〈σ, θ〉s′
p0(γ − θ;λ, η)q0(σ, θ;λ, η) dθ

)2

dσ dγ

. ‖p0(γ;λ, η)‖2L∞λ,ηL2
γ
‖q0(σ, θ;λ, η)‖2L∞λ,ηL2

σ,θ

by Cauchy-Schwarz.

Recall Remark 8.2.3 for the notation used in the following theorem on the composition

properties of non-smooth operators:
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Theorem 8.2.12. Let m,m′, s, s′ ∈ R, k, k′ ∈ N0. For two operators P = p(z, bD) and

Q = q(z, bD) of orders m and m′, respectively, let

R = P ◦Q−
∑
|β|<k

1

β!
(∂βζ p

bDβ
z q)(z,

bD).

Denote the sum of the terms in the expansion for which |β| = j by Ej.

(1) Composition of non-smooth operators, k ≥ m+ k′, k ≥ k′.

(a) Suppose s > n/2 and s ≤ s′ − k [s ≤ s′ − 2k + m + k′]. If P ∈ Ψm;kHs
b,

Q ∈ Ψm′;0Hs′
b , then

Ej ∈ Ψm+m′−j;0Hs
b, R ∈ Ψm′−k′;0Hs

b [Ψm+m′−k;0Hs
b].

(b) If P ∈ Ψm;kH∞b , Q ∈ Ψm′;0Hs′
b , then

Ej ∈ Ψm+m′−j;0Hs′−j
b , R ∈ Ψm′−k′;0Hs′−k

b ∩Ψm+m′−k;0Hs′−2k+m+k′

b .

(2) Composition of smooth with non-smooth operators.

(a) Suppose k ≥ m+ k′, k ≥ k′. If P ∈ Ψm, Q ∈ Ψm′;0Hs′
b , then

Ej ∈ Ψm+m′−j;0Hs′−j
b , R ∈ Ψm′−k′;0Hs′−k

b ∩Ψm+m′−k;0Hs′−2k+m+k′

b .

(b) Suppose k ≤ k′ and k′ ≥ m. If P ∈ Ψm;k′Hs
b, Q ∈ Ψm′, then

Ej ∈ Ψm+m′−j;0Hs
b, R ∈ Ψm+m′−k;0Hs

b.

(3) Composition of smooth with non-smooth operators, k ≤ m + k′, k ≥ k′. If P ∈ Ψm,

Q ∈ Ψm′;0Hs′
b , then

Ej ∈ Ψm+m′−j;0Hs′−j
b , R = R1Λm+k′−k + Λm+k′−kR2,

where R1, R2 ∈ Ψm′−k′;0Hs′−k
b , and Λs = λs(

bD) in the notation of Corollary 3.3.7.

Moreover, (1)-(2) hold as well if all operator spaces are replaced by the corresponding b-

spaces. Also, all results hold, mutatis mutandis, if P maps sections of F to sections of G,
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and Q maps sections of E to sections of F .

Proof. The statements about the Ej follow from Lemma 8.2.11. It remains to analyze the

remainder operators. We will only treat the case k > 0; the case k = 0 is handled in a

similar way. We prove parts (1), (2a) and (3) of the theorem for k′ = 0 first.

(1a). Consider the case s ≤ s′ − k. We use formula (8.2.9) and define

p0(η, ξ; ζ) =
∑
|β|=k

k

β!
〈η〉s

∫ 1

0
|∂βζ p̂(η; ζ + tξ)| dt,

q0(ξ; ζ) =
〈ξ〉s′−k|(bDk

z q)̂(ξ; ζ)|
〈ζ〉m′

,

where bDk
z denotes the vector (bDβ

z )|β|=k. Since p0 ∈ L∞ζ,ξL2
η in view of k ≥ m, i.e. ∂βζ p is a

symbol of order m− k ≤ 0, and q0 ∈ L∞ζ L2
ξ , we obtain

〈η〉s|r̂(η; ζ)|
〈ζ〉m′

≤
∫

〈η〉s

〈η − ξ〉s〈ξ〉s′−k
p0(η − ξ, ξ; ζ)q0(ξ; ζ) dξ ∈ L∞ζ L2

η

by Lemma 8.2.7, as claimed. Next, if s ≤ s′ − 2k +m, we instead define

p0(η, ξ; ζ) =
∑
|β|=k

k

β!
〈η〉s

∫ 1

0
〈ζ + tξ〉k−m|∂βζ p̂(η; ζ + tξ)| dt ∈ L∞ζ,ξL2

η, (8.2.10)

thus

〈η〉s|r̂(η; ζ)|
〈ζ〉m+m′−k ≤

∫
〈η〉s

〈η − ξ〉s〈ξ〉s′−k
· 〈ζ〉k−m

inf0≤t≤1〈ζ + tξ〉k−m

× p0(η − ξ, ξ; ζ)q0(ξ; ζ) dξ

with q0 ∈ L∞ζ L2
ξ as above. Now

〈ζ〉k−m

inf0≤t≤1〈ζ + tξ〉k−m
. 〈ξ〉k−m, (8.2.11)

since for |ξ| ≤ |ζ|/2, the left hand side is uniformly bounded, and for |ζ| ≤ 2|ξ|, we estimate

the infimum from below by 1 and the numerator from above by 〈ξ〉k−m. Therefore, we get

r0 ∈ L∞ζ L2
η in this case as well.
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(1b) is proved similarly: Define q0(ξ; ζ) as above, and choose N large and put

p0(η, ξ; ζ) =
∑
|β|=k

k

β!
〈η〉N

∫ 1

0
|∂βζ p̂(η; ζ + tξ)| dt.

Then
〈η〉s′−k|r̂(η; ζ)|

〈ζ〉m′
≤
∫

〈η〉s′−k

〈η − ξ〉N 〈ξ〉s′−k
p0(η − ξ, ξ; ζ)q0(ξ; ζ) dξ,

and the fraction in the integrand is an element of L∞η L
2
ξ by Lemma 8.2.8, thus an application

of Lemma 8.2.7 yields R ∈ Ψm′;0Hs′−k
b . In a similar manner, now using (8.2.11), we obtain

R ∈ Ψm+m′−k;0Hs′−2k+m
b .

(2). Decomposing the smooth operator as in (8.2.2), the x-dependent part has coefficients

in H∞b , thus we can apply part (1). Therefore, we may assume that the smooth operator is

x-independent in both cases.

(2a). The remainder is

r̂(σ, γ;λ, η) =
∑
|β|=k

k

β!

∫ (∫ 1

0
(1− t)k−1∂βλ,ηFp(γ − θ;λ+ tσ, η + tθ) dt

)
× (bDβ

z q)̂(σ, θ;λ, η) dθ;

therefore, choosing N large and defining

p0(γ, σ, θ;λ, η) =
∑
|β|=k

k

β!
〈γ〉N

∫ 1

0
|∂βλ,ηFp(γ;λ+ tσ, η + tθ)| dt ∈ L∞σ,θ,λ,ηL2

γ ,

q0(σ, θ;λ, η) =
〈σ, θ〉s′−k|(bDβ

z q)̂(σ, θ;λ, η)|
〈λ, η〉m′

∈ L∞λ,ηL2
σ,θ,

we get

〈σ, γ〉s′−k|r̂(σ, γ;λ, η)|
〈λ, η〉m′

≤
∫

〈σ, γ〉s′−k

〈γ − θ〉N 〈σ, θ〉s′−k
p0(γ − θ, σ, θ;λ, η)q0(σ, θ;λ, η) dθ,

which is an element of L∞λ,ηL
2
σ,γ by Lemmas 8.2.8 and 8.2.7. This proves R ∈ Ψm′;0Hs′−k

b ,

and in a similar way we obtain R ∈ Ψm+m′−k;0Hs′−2k+m
b .
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(2b). Here, the remainder is

r̂(σ, γ;λ, η) =
∑
|β|=k

k

β!

∫ (∫ 1

0
(1− t)k−1∂βλ,ηp̂(σ, γ − θ;λ, η + tθ) dt

)
×F (bDβ

z q)(θ;λ, η) dθ,

and arguments similar to those used in (a) give the desired conclusion if k = k′. If k < k′, we

just truncate the expansion after Ek−1 and note that the resulting remainder term, which

is the sum of the remainder term after expanding to order k′ and the expansion terms

Ek, . . . , Ek′−1, indeed lies in Ψm+m′−k;0Hs
b.

(3). We again use formula (8.2.9) for the remainder term and put

r̂1(η; ζ) =
r̂(η; ζ)χ(|ζ| ≥ |η + ζ|)

λm−k(ζ)
, r̂2(η; ζ) =

r̂(η; ζ)χ(|ζ| < |η + ζ|)
λm−k(η + ζ)

,

the point being that, by equation (8.2.3), for any u ∈ Ċ∞c ,

(r(z, bD)u)̂(η) =

∫
r̂(η − ζ, ζ)û(ζ) dζ

=

∫
r̂1(η − ζ, ζ)(Λm−ku)̂(ζ) dζ + λm−k(η)

∫
r̂2(η − ζ, ζ)û(ζ) dζ

= (r1(z, bD)Λm−ku)̂(η) + (Λm−kr2(z, bD)u)̂(η).

It remains to prove that r1(z, bD), r2(z, bD) ∈ Ψm′;0Hs′−k
b . First, we treat the case P ∈ xΨm.

Then for any N ∈ N, we obtain, using

sup
0≤t≤1

〈ζ + tξ〉m−k . 〈ζ〉m−k + 〈ξ〉m−k,

that

〈η〉s′−k|r̂1(η, ζ)|
〈ζ〉m′

.
∫
〈η〉s′−k(1 + 〈ξ〉m−k/〈ζ〉m−k)

〈η − ξ〉N 〈ξ〉s′−k
χ(|ζ| ≥ |η + ζ|)

× p0(η − ξ, ξ; ζ)q0(ξ; ζ) dξ

≡
∫
G(η, ξ; ζ)p0(η − ξ, ξ; ζ)q0(ξ; ζ) dξ,
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where p0(η, ξ; ζ) ∈ L∞ξ,ζL2
η is defined as in (8.2.10) (with s replaced by N) and q0 ∈ L∞ζ L2

ξ

as before. We have to show G(η, ξ; ζ) ∈ L∞η,ζL2
ξ in order to be able to apply Lemma 8.2.7.

For |ξ| ≥ 2|η|, we immediately get, for N large enough,

G(η, ξ; ζ) .
1

〈ξ〉N ′
(

1 +
〈ξ〉m−k

〈ζ〉m−k

)
∈ L∞η,ζL2

ξ(|ξ| ≥ 2|η|),

where N ′ = N − (k − s′)+. On the other hand, if |ξ| < 2|η|, we estimate

G(η, ξ; ζ) .
〈η〉s′−k

〈η − ξ〉N 〈ξ〉s′−k

(
1 +
〈η〉m−k

〈ζ〉m−k

)
χ(|ζ| ≥ |η + ζ|)

and use that |ζ| ≥ |η + ζ| implies |η| ≤ |η + ζ|+ | − ζ| ≤ 2|ζ|, hence the product of the last

two factors is uniformly bounded, giving G(η, ξ; ζ) ∈ L∞η,ζL2
ξ(|ξ| < 2|η|) by Lemma 8.2.8.

In the case P = p(0, y;xDx, Dy), we get the estimate

〈σ, γ〉s′−k|r̂1(σ, γ;λ, η)|
〈λ, η〉m′

≤
∫
G(σ, γ, θ;λ, η)p0(γ − θ, σ, θ;λ, η)q0(σ, θ;λ, η) dθ,

where p0(γ, σ, θ;λ, η) ∈ L∞σ,θ,λ,ηL2
γ , q0(σ, θ;λ, η) ∈ L∞λ,ηL2

σ,θ, and

G(σ, γ, θ;λ, η) =
〈σ, γ〉s′−k

〈γ − θ〉N 〈σ, θ〉s′−k

(
1 +
〈σ, θ〉m−k

〈λ, η〉m−k

)
× χ

(
|(λ, η)| ≥ |(σ, γ) + (λ, η)|

)
.

As above, separating the cases |(σ, θ)| ≥ 2|(σ, γ)| and |(σ, θ)| < 2|(σ, γ)|, one obtains G ∈
L∞σ,γ,λ,ηL

2
θ, and we can again apply Lemma 8.2.7.

The second remainder term r2 is handled in the same way.

Next, we prove that (1)-(2) also hold for the corresponding b-operator spaces. Using exactly

the same estimates as above, one obtains the respective symbolic bounds for the remainders

on each line Imλ = α0. What remains to be shown is the holomorphicity of the remainder

operator in λ. This is a consequence of the fact that the derivatives ∂λ∂
β
ζ p, |β| = k, and

∂λq, satisfy the same (in the case of symbols of smooth b-ps.d.o.s, even better by one order)

symbol estimates as ∂βζ p and q, respectively. Indeed, for (1a), i.e. for non-smooth b-symbols,
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this follows from the Cauchy integral formula, which for ∂λq gives

∂λq(z;λ, η) =
1

2πi

∮
γ(λ)

q(z;σ, η)

(σ − λ)2
dσ

where γ(λ) is the circle around λ with radius 1. Namely, since |σ − λ| = 1 for σ ∈ γ(λ),

we get the desired estimate for ∂λq from the corresponding estimate for q itself. We handle

∂λ∂
β
ζ p similarly. (1b) and (2) for b-operators follow in the same way.

Finally, let us prove (1), (2a) and (3) for k′ > 0 following the argument of Beals and Reed

in [9, Corollary 1.6], starting with (1a): Choose a partition of unity on Rn consisting of

smooth non-negative functions χ0, . . . , χn with suppχ0 ⊂ {|ζ| ≤ 2}, and |ζl| ≥ 1 on suppχl.

Then

P ◦Qχ0(bD) ∈ Ψm;kHs
b ◦Ψ−∞;0Hs′

b

can be treated using (1a) with k′ = 0, taking an expansion up to order k ≥ m + k′ ≥ m;

all terms in the expansion as well as the remainder term are elements of Ψ−∞;0Hs
b, hence

P ◦Qχ0(bD) ∈ Ψ−∞;0Hs
b can be put into the remainder term of the claimed expansion.

Let us now consider P ◦ Qχl(bD). For brevity, let us replace Q by Qχl(
bD) and thus

assume |ζl| ≥ 1 on supp q(z, ζ). Then by the Leibniz rule,

P ◦QbDk′
zl

= P bDk′
zl
◦Q−

k′∑
j=1

cjk′P
bDk′−j

zl
◦ (bDj

zl
q)(z, bD)

for some constants cjk′ ∈ R. Composing on the right with bD−k
′

zl
, or rather a regularized

version thereof, bD−k
′

zl
χ̃l(

bD), where χ̃l ≡ 1 on suppχl and |ζl| ≥ 1/2 on supp χ̃l, thus shows

that P ◦Q is an element of the space

k′∑
j=0

Ψm+k′−j;0Hs
b ◦Ψm′−k′Hs′−j

b .

In view of the part of (1a) already proved, the j-th summand has an expansion to order

k − j ≥ m + k′ − j with error term in Ψm′−k′;0
b Hs

b [Ψm+m′−k;0
b Hs

b], where we use k − j ≥
k− k′ ≥ 0 and s ≤ (s′− j)− (k− j) [s ≤ (s′− j)− 2(k− j) + (m+ k′− j)]. Using the same

idea, one can prove (1b), (2a) and (3).
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Notice that we do not claim in (3) that R1 and R2 lie in b-operator spaces if q does. The

issue is that 1/λm(ζ) in general has singularities for non-real ζ. In applications later in this

chapter, we will only need the proposition as stated, with the additional assumption that

p is a b-symbol, since instead of letting the operators in the expansion and the remainder

operator act on weighted spaces, we will conjugate P and Q by the weight before applying

the theorem.

8.3 Reciprocals of and compositions with functions in b-

Sobolev spaces

In this section, we recall some basic results about 1/u and, more generally, F (u), for u

in appropriate b-Sobolev spaces on an n-dimensional compact manifold with boundary M ,

and smooth/analytic functions F .

Remark 8.3.1. We will give direct proofs here which in particular do not give Moser-type

bounds; see [108, §§13.3, 13.10] for examples of the latter. However, at least special cases of

the results below (e.g. when C∞(M) is replaced by C or R) can easily be proved in a way as

to obtain such bounds: The point is that the analysis can be localized and thus reduced to

the case M = Rn+; a logarithmic change of coordinates then gives an isometric isomorphism

of Hs
b(Rn+) and Hs(Rn), and on the latter space, Moser-type reciprocal/composition results

are standard, see [108]. However, we will give ‘tame’ improvements in §8.7.3.

8.3.1 Reciprocals

Let M be a compact n-dimensional manifold with boundary.

Lemma 8.3.2. Let s > n/2 + 1. Suppose u,w ∈ Hs
b(M) and a ∈ C∞(M) are such that

|a+ u| ≥ c0 > 0 on suppw. Then w/(a+ u) ∈ Hs
b(M), and one has an estimate

∥∥∥∥ w

a+ u

∥∥∥∥
Hs

b

≤ CK‖w‖Hs
b

(
1 + ‖u‖Hs

b

)dse(
1 +

∥∥∥∥ 1

a+ u

∥∥∥∥
L∞(K)

)dse+1

(8.3.1)

for any neighborhood K of suppw.

Proof. We can assume that suppw and suppu lie in a coordinate patch of M . Note that

clearly w/(a+ u) ∈ L2
b. We will give an iterative argument that improves on the regularity

of w/(a+ u) by (at most) 1 at each step, until we can eventually prove Hs
b-regularity.
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To set this up, let us assume w/(a+u) ∈ Hs′−1
b for some 1 ≤ s′ ≤ s. Recall the operator

Λs′ = λs′(
bD) from Corollary 3.3.7, and choose ψ0, ψ ∈ C∞(M) such that ψ0 ≡ 1 on suppw,

ψ ≡ 1 on suppψ0, and such that moreover |a+u| ≥ c′0 > 0 on suppψ, which can be arranged

since u ∈ Hs
b ⊂ C0. Then for K = suppψ,

∥∥∥Λs′
w

a+ u

∥∥∥
L2

b

≤
∥∥∥(1− ψ)Λs′

ψ0w

a+ u

∥∥∥
L2

b

+
∥∥∥ψΛs′

ψ0w

a+ u

∥∥∥
L2

b

.
∥∥∥ w

a+ u

∥∥∥
L2

b

+
∥∥∥ 1

a+ u

∥∥∥
L∞(K)

∥∥∥ψ(a+ u)Λs′
w

a+ u

∥∥∥
L2

b

.
∥∥∥ w

a+ u

∥∥∥
L2

b

+
∥∥∥ 1

a+ u

∥∥∥
L∞(K)

(
‖ψΛs′w‖L2

b
+
∥∥∥ψ[Λs′ , a+ u]

w

a+ u

∥∥∥
L2

b

)
.
∥∥∥ w

a+ u

∥∥∥
L2

b

+
∥∥∥ 1

a+ u

∥∥∥
L∞(K)

×
(
‖w‖

Hs′
b

+
∥∥∥ w

a+ u

∥∥∥
Hs′−1

b

+
∥∥∥ψ[Λs′ , u]

w

a+ u

∥∥∥
L2

b

)
,

(8.3.2)

where we used that the support assumptions on ψ0 and ψ imply (1− ψ)Λs′ψ0 ∈ Ψ−∞, and

ψ[Λs′ , a] ∈ Ψs′−1. Hence, in order to prove that w/(a + u) ∈ Hs′
b , it suffices to show that

[Λs′ , u] : Hs′−1
b → L2

b. Let v ∈ Hs′−1
b . Since

(Λs′uv)̂(ζ) =

∫
λs′(ζ)û(ζ − η)v̂(η) dη

(uΛs′v)̂(ζ) =

∫
û(ζ − η)λs′(η)v̂(η) dη,

we have, by taking a first order Taylor expansion of λs′(ζ) = λs′(η+ (ζ − η)) around ζ = η,

([Λs′ , u]v)̂(ζ) =
∑
|β|=1

∫ (∫ 1

0
∂βζ λs′(η + t(ζ − η)) dt

)
(bDβ

z u)̂(ζ − η)v̂(η) dη.

We will to prove that this is an element of L2
ζ using Lemma 8.2.7. Since for |β| = 1,

|∂βζ λs′(η + t(ζ − η))| . 〈η + t(ζ − η)〉s′−1,

|(bDβ
z u)̂(ζ − η)| = u0(ζ − η)

〈ζ − η〉s−1
, |v̂(η)| = v0(η)

〈η〉s′−1
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for u0, v0 ∈ L2, it is enough to observe that

〈η + t(ζ − η)〉s′−1

〈ζ − η〉s−1〈η〉s′−1
.

1

〈ζ − η〉s−1
+

1

〈ζ − η〉s−s′〈η〉s′−1
∈ L∞ζ L2

η,

uniformly in t ∈ [0, 1], since s− 1 > n/2.

To obtain the estimate (8.3.1), we proceed inductively, starting with the obvious estimate

‖w/(a+ u)‖L2
b
≤ ‖w‖L2

b
‖1/(a+ u)‖L∞(K) ≤ ‖w‖Hs

b

(
1 +

∥∥∥ 1

a+ u

∥∥∥
L∞(K)

)
.

Then, assuming that for integer 1 ≤ m ≤ s, one has

‖w/(a+ u)‖Hm−1
b
. ‖w‖Hs

b

(
1 +

∥∥∥ 1

a+ u

∥∥∥
L∞(K)

)m (
1 + ‖u‖Hs

b

)m−1

we conclude, using the estimate (8.3.2),∥∥∥ w

a+ u

∥∥∥
Hm

b

.
∥∥∥ w

a+ u

∥∥∥
L2

b

+
∥∥∥ 1

a+ u

∥∥∥
L∞(K)

(
‖w‖Hs

b
+ (1 + ‖u‖Hs

b
)
∥∥∥ w

a+ u

∥∥∥
Hm−1

b

)
. ‖w‖Hs

b

(
1 +

∥∥∥ 1

a+ u

∥∥∥
L∞(K)

)m+1 (
1 + ‖u‖Hs

b

)m
.

Thus, one gets such an estimate for m = bsc; then the same type of estimate gives (8.3.1),

since one has control over the Hs−1
b -norm of w/(a+u) in view of s−1 < bsc and the bound

on ‖w/(a+ u)‖
H
bsc
b

.

In particular:

Corollary 8.3.3. Let s > n/2 + 1.

(1) If u ∈ Hs
b(M) does not vanish on suppφ, where φ ∈ C∞c (M), then φ/u ∈ Hs

b(M).

(2) Let α ≥ 0. If u ∈ Hs,α
b (M) is bounded away from −1, then 1/(1 + u) ∈ 1 +Hs,α

b (M).

Proof. The second statement follows from

1− 1

1 + u
=

u

1 + u
∈ Hs,α

b (M).

We also obtain the following result on the inversion of non-smooth elliptic symbols:
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Proposition 8.3.4. Let s > n/2 + 1, m ∈ R, k ∈ N0.

(1) Suppose p(z, ζ) ∈ Sm;kHs
b(Rn+; Hom(E,F )) and a(z, ζ) ∈ S0 are such that the elliptic-

ity bound ‖p(z, ζ)−1‖Hom(F,E) ≤ c0〈ζ〉−m, c0 <∞, holds on supp a. Then

ap−1 ∈ S−m;kHs
b(Rn+; Hom(F,E)).

(2) Suppose that the symbols p′(z, ζ) ∈ Sm;kHs,α
b (Rn+; Hom(E,F )) with α ≥ 0, p′′(z, ζ) ∈

Sm(Rn+; Hom(E,F )) and a(z, ζ) ∈ S0 are such that

‖(p′′)−1‖Hom(F,E), ‖(p′ + p′′)−1‖Hom(F,E) ≤ c0〈ζ〉−m on supp a.

Then

a(p′ + p′′)−1 ∈ a(p′′)−1 + S−m;kHs,α
b (Rn+; Hom(F,E)).

Proof. By multiplying the symbols p and p′ by 〈ζ〉−m, we may assume that m = 0.

(1) Let us first treat the case of complex-valued symbols. By Corollary 8.3.3, we have

a(·, ζ)/p(·, ζ) ∈ Hs
b uniformly in ζ; thus a/p ∈ S0;0Hs

b. Moreover, for |α| ≤ k,

∂αζ

(
a

p

)
=
∑

cβ1···γν

∏µ
j=1 ∂

βj
ζ a

∏ν
l=1 ∂

γl
ζ p

pν+1
,

where the sum is over all β1 + · · ·+ βµ + γ1 + · · ·+ γν = α with |γj | ≥ 1, 1 ≤ j ≤ ν.

Hence, using that Hs
b is an algebra and that the growth order of the numerator is −|α|,

we conclude, again by Corollary 8.3.3, that ∂αζ (a/p) ∈ S−|α|;0Hs
b; thus a/p ∈ S0;kHs

b.

If p is bundle-valued, we obtain ap−1 ∈ S0;0Hs
b(Rn+; Hom(F,E)) using the explicit

formula for the inverse of a matrix and Corollaries 8.2.10 and 8.3.3; then, by virtue of

∂ζ(ap
−1) = (∂ζa− ap−1(∂ζp))p

−1,

similarly for higher derivatives, we get ap−1 ∈ S0;kHs
b(Rn+; Hom(F,E)).

(2) Since a(p′ + p′′)−1 =
(
a(p′′)−1

)(
I + p′(p′′)−1

)−1
, we may without loss of generality

assume p′ ∈ S0;kHs,α
b (Rn+; End(F )), p′′ = I and a ∈ S0(Rn+; Hom(F,E)), and we need

to show

(I + p′)−1 − I ∈ S0;kHs,α
b (Rn+; End(F )).
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But we can write

(I + p′)−1 − I = −p′(I + p′)−1,

which is an element of S0;0Hs,α
b (Rn+; End(F )) by assumption. Then, by an argument

similar to the one employed in the first part, we obtain the higher symbol estimates.

8.3.2 Compositions

Using the results of the previous subsection and the Cauchy integral formula, we can prove

several results on the regularity of F (u) for F smooth or holomorphic and u in a weighted

b-Sobolev space. The main use of such results for us will be that they allow us to understand

the regularity of the coefficients of wave operators associated to non-smooth metrics.

In all results in this section, we shall assume that M is a compact n-dimensional manifold

with boundary, s > n/2 + 1, and α ≥ 0.

Proposition 8.3.5. Let u ∈ Hs,α
b (M). If F : Ω→ C is holomorphic in a simply connected

neighborhood Ω of u(M), then F (u) − F (0) ∈ Hs,α
b (M). Moreover, there exists ε > 0 such

that F (v)− F (0) ∈ Hs,α
b (M) depends continuously on v ∈ Hs,α

b (M), ‖u− v‖Hs,α
b

< ε.

Proof. Observe that u(M) is compact. Let γ ⊂ C denote a smooth contour which is disjoint

from u(M), has winding number 1 around every point in u(M), and lies within the region

of holomorphicity of F . Then, writing F (z)−F (0) = zF1(z) with F1 holomorphic in Ω, we

have

F (u)− F (0) =
u

2πi

∮
γ
F1(ζ)

1

ζ − u
dζ,

Since γ 3 ζ 7→ u/(ζ − u) ∈ Hs,α
b (M) is continuous by Lemma 8.3.2, we obtain the desired

conclusion F (u)− F (0) ∈ Hs,α
b .

The continuous dependence of F (v)−F (0) on v near u is a consequence of Lemma 8.3.2

and Corollary 8.2.10.

Proposition 8.3.6. Let u′ ∈ C∞(M), u′′ ∈ Hs,α
b (M); put u = u′ + u′′. If F : Ω → C

is holomorphic in a simply connected neighborhood Ω of u(M), then F (u) ∈ C∞(M) +

Hs,α
b (M); in fact, F (v) depends continuously on v in a neighborhood of u in the topology of

C∞(M) +Hs,α
b (M).
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Proof. Let γ ⊂ C denote a smooth contour which is disjoint from u(M), has winding

number 1 around every point in u(M), and lies within the region of holomorphicity of F .

Since u′′ = 0 at ∂M and u′′ is continuous by the Riemann-Lebesgue lemma, we can pick

φ ∈ C∞(M), φ ≡ 1 near ∂M , such that γ is disjoint from u′(suppφ). Then

φF (u) =
1

2πi

∮
γ
φ
F (ζ)/(ζ − u′)

1− u′′/(ζ − u′)
dζ

=
1

2πi

∮
γ
φ
F (ζ)

ζ − u′
dζ +

1

2πi

∮
γ
φ

(F (ζ)/(ζ − u′))u′′

(ζ − u′)− u′′
dζ;

the first term equals φF (u′), and the second term is an element of Hs,α
b by Corollary 8.3.3.

Next, let φ̃ ∈ C∞(M) be identically equal to 1 on supp(1− φ), and φ̃ ≡ 0 near ∂M . Then

φ̃u ∈ Hs
b; in fact, it lies in any weighted such space. Thus,

(1− φ)F (u) =
1

2πi

∮
γ

(1− φ)F (ζ)

ζ − φ̃u
dζ ∈ Hs,α

b ,

and the proof is complete.

If we only consider F (u) for real-valued u, it is in fact sufficient to assume F ∈ C∞(R;C)

using almost analytic extensions, see e.g. [35, Chapter 8]: For any such function F and an

integer N ∈ N, let us define

F̃N (x+ iy) =

N∑
k=0

(iy)k

k!
(∂kxF )(x)χ(y), x, y ∈ R, (8.3.3)

where χ ∈ C∞c (R) is identically 1 near 0. Then, writing z = x+ iy, we have for y close to 0:

∂z̄F̃N (z) =
1

2
(∂x + i∂y)F̃N (z) =

(iy)N

2N !
(∂N+1
x F )(x)χ(y) = O(| Im z|N ). (8.3.4)

Observe that all u ∈ C∞(M) + Hs,α
b (M) are bounded, hence in analyzing F (u), we may

assume without restriction that F ∈ C∞c (R;C).

Proposition 8.3.7. Let F ∈ C∞c (R;C). Then for u ∈ Hs,α
b (M ;R), we have F (u)−F (0) ∈

Hs,α
b (M); in fact, F (u)− F (0) depends continuously on u.



8.3. RECIPROCALS AND COMPOSITIONS 315

Proof. Write F (x) − F (0) = xF1(x). Then, with (F̃1)N defined as in (8.3.3), the Cauchy-

Pompeiu formula gives the pointwise identity

F (u)− F (0) = −u
π

∫
C

∂ζ̄(F̃1)N (ζ)

ζ − u
dx dy, ζ = x+ iy.

Here, note that the integrand is compactly supported, and 1/(ζ−u(z)) is locally integrable

for all z. In particular, we can rewrite

F (u)− F (0) = − 1

π
lim
δ↘0

∫
| Im ζ|>δ

∂ζ̄(F̃1)N (ζ)
u

ζ − u
dx dy. (8.3.5)

Now Lemma 8.3.2 gives ∥∥∥ u

ζ − u

∥∥∥
Hs,α

b

. C(‖u‖Hs,α
b

)| Im ζ|−s−2,

since u is real-valued. Thus, if we choose N ≥ s+ 2, then

C \ R 3 ζ 7→ ∂ζ̄(F̃1)N (ζ)
u

ζ − u
∈ Hs,α

b

is bounded by (8.3.4), hence integrable, and therefore the limit in (8.3.5) exists in Hs,α
b ,

proving the proposition.

We also have an analogue of Proposition 8.3.6.

Proposition 8.3.8. Let F ∈ C∞c (R;C), and u′ ∈ C∞(M ;R), u′′ ∈ Hs,α
b (M ;R); put u =

u′ + u′′. Then F (u) ∈ C∞(M) +Hs,α
b (M); in fact, F (u) depends continuously on u.

Proof. As in the proof of the previous proposition, we have the pointwise identity

F (u′ + u′′)− F (u′)

= − 1

π
lim
δ↘0

∫
| Im ζ|>δ

∂ζ̄(F̃1)N (ζ)

(
1

ζ − u′ − u′′
− 1

ζ − u′

)
dx dy

= − 1

π
lim
δ↘0

∫
| Im ζ|>δ

∂ζ̄(F̃1)N (ζ)

ζ − u′
· u′′

(ζ − u′)− u′′
dx dy

Writing fN := ∂ζ̄(F̃1)N , we estimate the Hs,α
b -norm of the integrand for ζ ∈ C \ R using
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Lemma 8.3.2 by∥∥∥∥fN (ζ)

ζ − u′

∥∥∥∥
L(Hs,α

b )

∥∥∥∥ u′′

(ζ − u′)− u′′

∥∥∥∥
Hs,α

b

.

∥∥∥∥fN (ζ)

ζ − u′

∥∥∥∥
L(Hs,α

b )

| Im ζ|−s−2;

here, we denote by ‖h‖L(Hs,α
b ), for a function h, the operator norm of multiplication by h

on Hs,α
b . We claim that the operator norm

bs :=

∥∥∥∥fN (ζ)

ζ − u′

∥∥∥∥
L(Hs,α

b )

is bounded by | Im ζ|N−s−1; then choosing N ≥ 2s+3 finishes the proof as before. To prove

this bound, we use interpolation: First, since u′ is real-valued, we have

b0 = O(| Im ζ|−1|fN (ζ)|) = O(| Im ζ|N−1)

by (8.3.4). Next, for integer k ≥ 1, the Leibniz rule gives

bk .
k∑
j=0

| Im ζ|−1−j |∂k−jx fN (ζ)| . | Im ζ|N−k−1,

where we use that |∂`xfN (ζ)| = O(| Im ζ|N ) for all `, as follows directly from the definition

of fN . By interpolation, we thus obtain bs . | Im ζ|N−s−1, as claimed.

8.4 Elliptic regularity

With the partial calculus developed in §8.2, it is straightforward to prove elliptic regularity

for b-Sobolev b-pseudodifferential operators. Notice that operators with coefficients in Hs
b

for s > n/2 must vanish at the boundary by the Riemann-Lebesgue lemma, thus they

cannot be elliptic there. A natural class of operators which can be elliptic at the boundary

is obtained by adding smooth b-ps.d.o.s to b-Sobolev b-ps.d.o.s, and we will deal with such

operators in the second part of the following theorem.

Theorem 8.4.1. Let m, s, r ∈ R and ζ0 ∈ bS∗Rn+. Suppose P̃ = P̃m + R̃, where P̃m ∈
Hs

bΨm
b (Rn+;E,F ) has principal symbol p̃, and R̃ ∈ Ψm−1;0

b Hs−1
b (Rn+;E,F ).

(1) Let P = P̃ , and suppose p ≡ p̃ is elliptic at ζ0, or
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(2) let P = P0 + P̃ , where P0 ∈ Ψm
b (Rn+;E,F ) has principal symbol p0, and suppose

p = p̃+ p0 is elliptic at ζ0.

Let s̃ ∈ R be such that s̃ ≤ s − 1 and s > n/2 + 1 + (−s̃)+. Then in both cases, if

u ∈ H s̃+m−1,r
b (Rn+;E) satisfies

Pu = f ∈ H s̃,r
b (Rn+;F ),

it follows that ζ0 /∈WFs̃+m,rb (u).

Proof. We will only prove the theorem without bundles; adding bundles only requires simple

notational changes. In both cases, we can assume that r = 0 by conjugating P by x−r;

moreover, R̃u ∈ H s̃
b by Proposition 8.2.9 by the assumptions on s and s̃, thus we can absorb

R̃u into the right hand side and hence assume R̃ = 0. Choose a0 ∈ S0 elliptic at ζ0 such

that p is elliptic on supp a0 (and non-vanishing there, which only matters near the zero

section).

(1) Let λm be as in Corollary 3.3.7. By Proposition 8.3.4,

q(z, ζ) := a0(z, ζ)λm(ζ)/p(z, ζ) ∈ S0;∞Hs
b.

Put Q = q(z, bD). Then by Theorem 8.2.12 (1a), using P = P̃m ∈ Ψm;0Hs
b,

Q ◦ P = a0(z, bD)Λm +R′

with R′ ∈ Ψm−1;0Hs−1
b , hence by29 Proposition 8.2.9

a0(z, bD)Λmu = Qf −R′u ∈ H s̃
b.

Then standard microlocal ellipticity implies ζ0 /∈WFs̃+mb (u).

(2) If ζ0 /∈ bT ∗
∂Rn+

Rn+, then the proof of part (1) applies, since away from ∂Rn+, one

has Ψm
b ⊂ Hs

bΨm
b . Thus, assuming ζ0 ∈ bT ∗

∂Rn+
Rn+, we note that the ellipticity of

p at ζ0 implies p0 6= 0 near ζ0, since the function p̃ vanishes at ∂Rn+. Therefore,

29For Qf ∈ H s̃
b, we need s ≥ s̃ and s > n/2 + (−s̃)+. For R′u ∈ H s̃

b, we need s − 1 ≥ s̃ and s − 1 >
n/2 + (−s̃)+.
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Proposition 8.3.4 applies if one chooses a0 ∈ S0 as in the proof of part (1), yielding

q(z, ζ) := a0(z, ζ)λm(ζ)/p(z, ζ) = q̃0(z, ζ) + q0(z, ζ),

where q̃0 ∈ S0;∞Hs
b, q0 ∈ S0. Put Q̃0 = q̃0(z, bD), Q0 = q0(z, bD), then

(Q̃0 +Q0) ◦ (P̃m + P0) = a0(z, bD)Λm +R′

with

R′ ∈ Ψm−1;0Hs−1
b + Ψm−1;0Hs

b + Ψm−1;0Hs−1
b + Ψm−1

b

⊂ Ψm−1;0Hs−1
b + Ψm−1

b ,

where the terms are the remainders of the first order expansions of Q̃0 ◦ P̃m, Q̃0 ◦ P0,

Q0 ◦ P̃m and Q0 ◦P0, in this order; to see this, we use Theorem 8.2.12 (1a), (2b), (2a)

and composition properties of b-ps.d.o.s, respectively. Hence

a0(z, bD)Λmu = Q̃0f +Q0f −R′u ∈ H s̃
b,

which implies ζ0 /∈WFs̃+mb (u).

Remark 8.4.2. Notice that it suffices to have only local H s̃,r
b -membership of f near the base

point of ζ0. Under additional assumptions, even microlocal assumptions are enough, see in

particular [9, Theorem 3.1]; we will not need this generality though.

8.5 Propagation of singularities

We next study the propagation of singularities, equivalently the propagation of regularity,

for certain classes of non-smooth operators. The results cover operators that are of real

principal type (§8.5.3), have a specific radial point structure (§8.5.4) or normally hyperbolic

trapping in the b-sense (§8.5.5). For a microlocally more complete picture, we also include

a brief discussion of complex absorption. Beals and Reed [9] discuss the propagation of

singularities on manifolds without boundary for non-smooth ps.d.o.s, and parts of §§8.5.1

and 8.5.3 follow their exposition closely.
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8.5.1 Sharp G̊arding inequalities

We will need various versions of the sharp G̊arding inequality, which will be used to obtain

one-sided bounds for certain terms in positive commutator arguments later. For the first

result, we follow the proof of [9, Lemma 3.1]. We introduce the notation

a+ = max(a, 0), a ∈ R.

Proposition 8.5.1. Let s,m ∈ R be such that s ≥ 2 − m and s > n/2 + 2 + m+. Let

p(z, ζ) ∈ S2m+1;2Hs
b(Rn+; End(E)) be a symbol with non-negative real part, i.e.

Re〈p(z, ζ)e, e〉 ≥ 0 z ∈ Rn+, ζ ∈ Rn, e ∈ E,

where 〈·, ·〉 is the inner product on the fibers of E. Then there is C > 0 such that P =

p(z, bD) satisfies the estimate

Re〈Pu, u〉 ≥ −C‖u‖2Hm
b
, u ∈ Ċ∞c (Rn+;E).

Proof. Let q ∈ C∞c (Rn) be a non-negative even function, supported in |ζ| ≤ 1, with∫
q2(ζ) dζ = 1, and put

F (ζ, ξ) =
1

〈ζ〉n/4
q

(
ξ − ζ
〈ζ〉1/2

)
.

Define the symmetrization of p to be

psym(η, z, ζ) =

∫
F (η, ξ)p(z, ξ)F (ζ, ξ) dξ.

Observe that the integrand has compact support in ξ for all η, z, ζ, therefore psym is well-

defined. Moreover,

(psym(bD, z, bD)u)̂(η) =

∫
p̂sym(η, η − ζ, ζ)û(ζ) dζ,

hence, writing u = (uj), p = (pij), psym = ((psym)ij), and summing over repeated indices,

Re〈psym(bD, z, bD)u, u〉 = Re

∫∫
p̂sym(η, η − ζ, ζ)ij û(ζ)j ûi(η) dζ dη

= Re

∫∫ (∫
eizζF (ζ, ξ)û(ζ) dζ

)
j

(∫
eizηF (η, ξ)û(η) dη

)
i

pij(z, ξ) dξ dz
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=

∫∫
Re
〈
p(z, ξ)F (bD; ξ)u(z), F (bD; ξ)u(z)

〉
dξ dz ≥ 0.

Thus, putting r(z, bD) = psym(bD, z, bD) − p(z, bD), it suffices to show that r(z, ζ) ∈
S2m;0Hs−2

b (Rn+; End(E)), i.e.

〈η〉s−2‖r̂(η; ζ)‖End(E)

〈ζ〉2m
≤ r0(η; ζ), r0(η; ζ) ∈ L∞ζ L2

η. (8.5.1)

in order to conclude the proof, since Proposition 8.2.9 then implies the continuity of

r(z, bD) : Hm
b (Rn+;E) → H−mb (Rn+;E). From now on, we will suppress the bundle E in

our notation and simply write | · | for ‖ · ‖End(E). Now, r(z, bD) acts on Ċ∞c by

(r(z, bD)u)̂(η) =

∫
r̂(η − ζ, ζ)û(ζ) dζ;

hence

r̂(η; ζ) = p̂sym(η + ζ, η, ζ)− p̂(η; ζ)

=

∫
F (η + ζ, ξ)p̂(η; ξ)F (ζ, ξ) dξ − p̂(η; ζ) (8.5.2)

=

∫
F (η + ζ, ξ)

(
p̂(η; ξ)− p̂(η; ζ)

)
F (ζ, ξ) dξ

+

∫ (
F (η + ζ, ξ)− F (ζ, ξ)

)
p̂(η; ζ)F (ζ, ξ) dξ,

(8.5.3)

where we use
∫
F (ζ, ξ)2 dξ = 1. To estimate r̂(η; ζ), we use that

|p̂(η; ζ)| = 〈ζ〉
2m+1

〈η〉s
p0(η; ζ), p0(η; ζ) ∈ L∞ζ L2

η.

We get a first estimate from (8.5.2):

|r̂(η; ζ)| .
∫
S

1

〈η + ζ〉n/4〈ζ〉n/4〈η〉s
〈ξ〉2m+1p0(η; ξ) dξ +

〈ζ〉2m+1

〈η〉s
p0(η; ζ),

where S is the set

S = {|ξ − ζ| ≤ 〈ζ〉1/2, |ξ − (η + ζ)| ≤ 〈η + ζ〉1/2}.



8.5. PROPAGATION OF SINGULARITIES 321

In particular, we have 〈ζ〉 ∼ 〈ξ〉 ∼ 〈η + ζ〉 on S, which yields

|r̂(η; ζ)| . 〈ζ〉
2m+1−n/2

〈η〉s

∫
|ξ−ζ|≤〈ζ〉1/2

p0(η; ξ) dξ +
〈ζ〉2m+1

〈η〉s
p0(η; ζ).

We contend that

p′0(η; ζ) := 〈ζ〉−n/2
∫
|ξ−ζ|≤〈ζ〉1/2

p0(η; ξ) dξ ∈ L∞ζ L2
η.

Indeed, this follows from Cauchy-Schwarz:∫ ∣∣∣∣∫
|ξ−ζ|≤〈ζ〉1/2

p0(η; ξ) dξ

∣∣∣∣2 dη . ∫ 〈ζ〉n/2 ∫
|ξ−ζ|≤〈ζ〉1/2

|p0(η; ξ)|2 dξ dη

. 〈ζ〉n‖p0(η; ξ)‖2L∞ξ L2
η
.

We deduce

|r̂(η; ζ)| ≤ 〈ζ〉
2m+1

〈η〉s
p′′0(η; ζ), p′′0(η; ζ) ∈ L∞ζ L2

η.

If |η| ≥ |ζ|/2, this implies

〈η〉s−1|r̂(η; ζ)|
〈ζ〉2m

≤ 〈ζ〉
〈η〉

p′′0(η; ζ) . p′′0(η; ζ), (8.5.4)

thus we obtain a forteriori the desired estimate (8.5.1) in the region |η| ≥ |ζ|/2.

From now on, let us thus assume |η| ≤ |ζ|/2. We estimate the first integral in (8.5.3).

By Taylor’s theorem,

p̂(η; ξ)− p̂(η; ζ) = ∂ζ p̂(η; ζ) · (ξ − ζ)

+

∫ 1

0
(1− t)〈ξ − ζ, ∂2

ζ p̂(η; ζ + t(ξ − ζ)) · (ξ − ζ)〉 dt,

and since 〈ξ〉 ∼ 〈ζ〉 on suppF (ζ, ξ), this gives

p̂(η; ξ)− p̂(η; ζ) = ∂ζ p̂(η; ζ) · (ξ − ζ) + |ξ − ζ|2O(〈ζ〉2m−1) on suppF (ζ, ξ),

where we say f ∈ O(g) if |f | ≤ |g|h for some h ∈ L∞ζ L2
η. The first integral in (8.5.3) can
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then be rewritten as

∂ζ p̂(η; ζ) ·
∫

(ξ − ζ)
(
F (η + ζ, ξ)− F (ζ, ξ)

)
F (ζ, ξ) dξ

+O(〈ζ〉2m−1)

∫
|ξ − ζ|2F (η + ζ, ξ)F (ζ, ξ) dξ,

where we use
∫

(ξ − ζ)F (ζ, ξ)2 dξ = 0, which is a consequence of q being even.

Taking the second integral in (8.5.3) into account, we obtain

|r̂(η; ζ)| . (M1 +M2 +M3)p′′′0 (η; ζ), p′′′0 (η; ζ) ∈ L∞ζ L2
η, (8.5.5)

where

M1(η, ζ) =
〈ζ〉2m+1

〈η〉s

∫
|ξ − ζ|
〈ζ〉

|F (η + ζ, ξ)− F (ζ, ξ)|F (ζ, ξ) dξ

M2(η, ζ) =
〈ζ〉2m+1

〈η〉s

∫
|ξ − ζ|2

〈ζ〉2
F (η + ζ, ξ)F (ζ, ξ) dξ

M3(η, ζ) =
〈ζ〉2m+1

〈η〉s

∣∣∣∣∫ (F (η + ζ, ξ)− F (ζ, ξ)
)
F (ζ, ξ) dξ

∣∣∣∣ .
M2 is estimated easily: On the support of the integrand, one has |ξ − ζ|2 ≤ 〈ζ〉, thus

M2(η, ζ) .
〈ζ〉2m

〈η〉s
· 〈ζ〉n/2

〈η + ζ〉n/4〈ζ〉n/4
;

here, the term 〈ζ〉n/2 in the numerator is (up to a constant) an upper bound for the volume

of the domain of integration. Since we are assuming |η| ≤ |ζ|/2, we have 〈η + ζ〉 & 〈ζ〉,
which gives M2(η, ζ) . 〈ζ〉2m/〈η〉s.

In order to estimate M1 and M3, we will use

∂ζF (ζ, ξ) =
a0(ζ)

〈ζ〉n/4+1
q1

(
ξ − ζ
〈ζ〉1/2

)
+

a1(ζ)

〈ζ〉n/4+1/2
∂ζq

(
ξ − ζ
〈ζ〉1/2

)
,

∂2
ζF (ζ, ξ) =

a2(ζ)

〈ζ〉n/4+1
q2

(
ξ − ζ
〈ζ〉1/2

)
,

where the aj are scalar-, vector- or matrix-valued symbols of order 0, and qj ∈ C∞c (Rn).
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Hence, writing F (η + ζ, ξ)− F (ζ, ξ) = η · ∂ζF (ζ + t̄η, ξ) for some 0 ≤ t̄ ≤ 1, we get

M1(η, ζ) .
〈ζ〉2m+1

〈η〉s
· 〈ζ〉n/2|η|
〈ζ〉1/2〈ζ + t̄η〉n/4+1/2〈ζ〉n/4

.
〈ζ〉2m

〈η〉s−1
,

where we again use |η| < |ζ|/2 and 〈ζ + t̄η〉 & 〈ζ〉.
Finally, to bound M3, we write

F (η + ζ, ξ)− F (ζ, ξ) = η · ∂ζF (ζ, ξ) +

∫ 1

0
(1− t)〈η, ∂2

ζF (ζ + tη, ξ) · η〉 dt

and deduce

M3(η, ζ) .
〈ζ〉2m+1

〈η〉s

(
〈ζ〉n/2|η|

〈ζ〉n/4+1〈ζ〉n/4

+
|η|

〈ζ〉n/4+1/2

∣∣∣∣∫ (∂ζq)

(
ξ − ζ
〈ζ〉1/2

)
q

(
ξ − ζ
〈ζ〉1/2

)
dξ

∣∣∣∣
+

〈ζ〉n/2|η|2

〈ζ〉n/4+1〈ζ〉n/4

)
.
〈ζ〉2m

〈η〉s−2
,

where we use ∫
(∂ζq)

(
ξ − ζ
〈ζ〉1/2

)
q

(
ξ − ζ
〈ζ〉1/2

)
dξ = 0,

which holds since q has compact support. Plugging the estimates for Mj , j = 1, 2, 3, into

(8.5.5) proves that (8.5.1) holds. The proof is complete.

The idea of the proof can also be used to prove the sharp G̊arding inequality for smooth

b-ps.d.o.s:

Proposition 8.5.2. Let m ∈ R, and let p(z, ζ) ∈ S2m+1(Rn+; End(E)) be a symbol with

non-negative real part. Then there is C > 0 such that P = p(z, bD) satisfies the estimate

Re〈Pu, u〉 ≥ −C‖u‖2Hm
b
, u ∈ Ċ∞c (Rn+;E).

Proof. Write p(x, y; ζ) = p(0)(y; ζ) + p(1)(x, y; ζ), where p(0)(y; ζ) = p(0, y; ζ) and p(1) =

xp̃ ∈ H∞b S2m+1. The symmetrized operator p(bD, z, bD), defined as in the proof of Propo-

sition 8.5.1 is again non-negative, and the symbol of the remainder operator r(z, bD) =
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psym(bD, z, bD) − p(z, bD) is the sum of two terms p
(0)
sym − p(0) and p

(1)
sym − p(1). The proof

of Proposition 8.5.1 shows that p
(1)
sym − p(1) ∈ S2m;0H∞b . It thus suffices to assume that

p = p(0) is independent of x, which implies that psym is independent of x as well, and to

prove r(y, bD) = (psym − p)(y, bD) : Hm
b → H−mb .

Similarly to the proof of Proposition 8.5.1, we put

F (λ, η;σ, γ) =
1

〈λ, η〉n/4
q

(
(σ − λ, γ − η)

〈λ, η〉1/2

)
psym(ρ, θ; y;λ, η) =

∫∫
F (ρ, θ;σ, γ)p(y;σ, γ)F (λ, η;σ, γ) dσ dγ

and obtain

(psym(bD; y; bD)u)̂(ρ, θ) =

∫
Fpsym(ρ, θ; θ − η; ρ, η)û(ρ, η) dη

F r(θ;λ, η) = Fpsym(λ, θ + η; θ;λ, η)−Fp(θ;λ, η),

thus

F r(θ;λ, η)

=

∫∫
F (λ, θ + η;σ, γ)

(
Fp(θ;σ, γ)−Fp(θ;λ, η)

)
F (λ, η;σ, γ) dσ dγ

+

∫∫ (
F (λ, θ + η;σ, γ)− F (λ, η;σ, γ)

)
Fp(θ;λ, η)F (λ, η;σ, γ) dσ dγ.

Then, following the argument in the previous proof, we obtain

|F r(θ;λ, η)| ≤ 〈λ, η〉
2m

〈θ〉N
r0(θ;λ, η), r0(θ;λ, η) ∈ L∞λ,ηL2

θ, (8.5.6)

where we use

|Fp(θ;λ, η)| = 〈λ, η〉
2m+1

〈θ〉N+2
p0(θ;λ, η), p0(θ;λ, η) ∈ L∞λ,ηL2

θ,

which holds for every integer N (with p0 depending on the choice of N). An estimate similar

to the one used in the proof of Proposition 8.2.9 shows that (8.5.6) implies r(y, bD) : Hs
b →

Hs−2m
b for all s ∈ R.

Finally, we merge Propositions 8.5.1 and 8.5.2.
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Corollary 8.5.3. Let s,m ∈ R be such that s ≥ 2−m, s > n/2 + 2 +m+. Let p0(z, ζ) ∈
S2m+1(Rn+; End(E)) and p̃(z, ζ) ∈ S2m+1;2Hs

b(Rn+; End(E)) be symbols such that p = p0 + p̃

has non-negative real part. Then there is C > 0 such that P = p(z, bD) satisfies the estimate

Re〈Pu, u〉 ≥ −C‖u‖2Hm
b
, u ∈ Ċ∞c (Rn+;E).

Proof. The symmetrized operator psym(bD, z, bD) is again non-negative, and the symbol

of the remainder operator r(z, bD) = psym(bD, z, bD) − p(z, bD) is the sum of two terms

(p0)sym − p0 and p̃sym − p̃. The proofs of Propositions 8.5.1 and 8.5.2 show that ((p0)sym −
p0)(z, bD) and (p̃sym − p̃)(z, bD) map Hm

b to H−mb , hence r(z, bD) maps Hm
b to H−mb , and

the proof is complete.

8.5.2 Mollifiers

In order to deal with certain kinds of non-smooth terms in §§8.5.3 and 8.5.4, we will need

smoothing operators in order to smooth out and approximate non-smooth functions in

a precise way. We only state the results for unweighted spaces, but the corresponding

statements for weighted spaces hold true by the same proofs.

Lemma 8.5.4. Let s ∈ R, χ ∈ C∞c (R+). Then χ(x/ε) → 0 strongly as a multiplication

operator on Hs
b(Rn+) as ε→ 0, and in norm as a multiplication operator from Hs,α

b (Rn+)→
Hs

b(Rn+) for α > 0.

Proof. We start with the first half of the lemma: For s = 0, the statement follows from the

dominated convergence theorem. For s a positive integer, we use that

(x∂x)s
(
χ
(x
ε

))
=

s∑
j=1

csj

(x
ε

)j
χ(j)

(x
ε

)
, csj ∈ R,

is bounded and converges to 0 pointwise in x > 0 as ε → 0, thus by virtue of the Leibniz

rule and the dominated convergence theorem, we obtain χ(x/ε)u(x, y) → 0 in Hs
b(Rn+) for

u ∈ Hs
b(Rn+). For s ∈ −N, the statement follows by duality.

Finally, to treat the case of general s, we first show that χ(·/ε) is a uniformly bounded

family (in ε > 0) of multiplication operators on Hs
b(Rn+) for all s ∈ R: For s ∈ N0, this

follows from the above estimates, for s ∈ Z again by duality, and then for general s ∈ R
by interpolation. Now, put M = sup0<ε≤1 ‖χ(·/ε)‖Hs

b→H
s
b
< ∞. Let w ∈ Hs

b and δ > 0



326 CHAPTER 8. OPERATORS WITH ROUGH COEFFICIENTS

be given, and choose w′ ∈ H∞b such that ‖w′ − w‖Hs
b
< δ/2M . By what we have already

proved, we can choose ε0 > 0 so small that

‖χ(·/ε)w′‖Hs
b
≤ ‖χ(·/ε)w′‖

H
dse
b

< δ/2, ε < ε0;

then

‖χ(·/ε)w‖Hs
b
≤ ‖χ(·/ε)(w − w′)‖Hs

b
+ ‖χ(·/ε)w′‖Hs

b
< M

δ

2M
+
δ

2
= δ.

Concerning the second half of the lemma, the case s = 0 is clear since xαχ(x/ε) → 0

in L∞(R+) as ε → 0; as above, this implies the statement for s a positive integer, and the

case of real s again follows by duality and interpolation.

Lemma 8.5.5. Let M be a compact manifold with boundary. Then there exists a family of

operators Jε : C−∞(M) → C∞c (M◦), ε > 0, such that Jε ∈ Ψ−∞b (M), and for all s, r ∈ R,

Jε is a uniformly bounded family of operators on Hs,r
b (M) that converges strongly to the

identity map I as ε→ 0.

Proof. Choosing a product decomposition ∂M × [0, ε0)x near the boundary of M and χ ∈
C∞c (R), χ ≡ 1 near 0, suppχ ⊂ [0, 1/2], we can define the multiplication operators χ(x/ε)

globally on H−∞b (M). By the previous lemma, I−χ(·/ε) converges strongly to I on Hs
b(M);

moreover, supp(u − χ(·/ε)u) ⊂ {x ≥ ε}. Thus, if we let J̃ε be a family of mollifiers,

J̃ε ∈ Ψ−∞b (M), J̃ε → I in Ψδ′
b (M) for δ′ > 0, such that on the support of the Schwartz

kernel of J̃ε, we have |x1 − x2| < ε/2 near ∂M × ∂M where x1, x2 are the lifts of x to the

left and right factor of M ×M , then we have that J̃ε(u−χ(·/ε)u) is an element of H∞b (M)

with support in {x ≥ ε/2}, thus is smooth. Therefore, the family Jε := J̃ε ◦ (I − χ(·/ε))
satisfies all requirements.

8.5.3 Real principal type propagation, complex absorption

We will prove real principal type propagation estimates of b-regularity for operators with

non-smooth coefficients by following the arguments outlined in §3.2.2 in the smooth co-

efficient case as closely as possible. We make a more robust and flexible choice however,

following [33].

Theorem 8.5.6. Let m, r, s, s̃ ∈ R, α > 0. Suppose P̃ = P̃m + P̃m−1 + R̃, where P̃m ∈
Hs,α

b Ψm
b (Rn+;E) has a real, scalar, homogeneous principal symbol p̃m; moreover, let P̃m−1 ∈
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Hs−1,α
b Ψm−1

b (Rn+;E) and R̃ ∈ Ψm−2
b (Rn+;E) + Ψm−2;0

b Hs−1,α
b (Rn+;E). Suppose s and s̃ are

such that

s̃ ≤ s− 1, s > n/2 + 7/2 + (2− s̃)+. (8.5.7)

(1) Let P ≡ P̃ and p ≡ p̃m, or

(2) let P = P0 + P̃ , where P0 ∈ Ψm
b (Rn+;E) has a real, scalar, homogeneous principal

symbol p0. Denote p = p0 + p̃m.

In both cases, if u ∈ H s̃+m−3/2,r
b (Rn+;E) is such that Pu ∈ H s̃,r

b (Rn+;E), then WFs̃+m−1,r
b (u)

is a union of maximally extended null-bicharacteristics of p, i.e. of integral curves of the

Hamilton vector field Hp within the characteristic set p−1(0) ⊂ bT ∗Rn+ \ o.

The proof, which will occupy the remainder of this section, in fact gives an estimate

for the H s̃+m−1,r
b -norm of u: Suppose A,B,G ∈ Ψ0

b are such that all forward or backward

null-bicharacteristics from WF′b(B) reach the elliptic set of A while remaining in the elliptic

set of G, and ψ ∈ C∞c (Rn+) is identically 1 on π(WF′b(B)), where π : bT ∗Rn+ → Rn+ is the

projection, then

‖Bu‖
H s̃+m−1,r

b

≤ C(‖GPu‖
H s̃,r

b
+ ‖Au‖

H s̃+m−1,r
b

+ ‖ψPu‖
H s̃−1,r

b
+ ‖u‖

H
s̃+m−3/2,r
b

)
(8.5.8)

in the sense that if all quantities on the right hand side are finite, then so is the left

hand side, and the inequality holds. In particular, it suffices to have only microlocal H s̃,r
b -

membership of Pu near the parts of null-bicharacteristics along which we want to propagate

H s̃+m−1,r
b -regularity of u. The term involving ψPu comes from the local requirements for

elliptic regularity, see Remark 8.4.2. The constant C depends on natural (semi-)norms

of the spaces in which the coefficients of P lie; for the more precise ‘tame’ estimate, see

Proposition 8.8.3.

Later in this section, we will add complex absorption and obtain the following statement.

Theorem 8.5.7. Under the assumptions of Theorem 8.5.6, let Q ∈ Ψm
b (Rn+;E), Q = Q∗.

Suppose A,B,G ∈ Ψ0
b are such that all forward, resp. backward, bicharacteristics from

WF′b(B) reach the elliptic set of A while remaining in the elliptic set of G, and suppose

moreover that q ≤ 0, resp. q ≥ 0, on WF′b(G), further let ψ ∈ C∞c (Rn+) be identically 1 on
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π(WF′b(B)), then

‖Bu‖
H s̃+m−1,r

b
≤ C(‖G(P − iQ)u‖

H s̃,r
b

+ ‖Au‖
H s̃+m−1,r

b

+ ‖ψ(P − iQ)u‖
H s̃−1,r

b
+ ‖u‖

H
s̃+m−3/2,r
b

)
(8.5.9)

in the sense that if all quantities on the right hand side are finite, then so is the left hand

side, and the inequality holds.

In other words, we can propagate estimates from the elliptic set of A forward along the

Hamilton flow to WF′b(B) if q ≥ 0, and backward if q ≤ 0.

Conjugating by xr (where x is the standard boundary defining function), it suffices to

prove Theorems 8.5.6 and 8.5.7 for r = 0. Moreover, as in the smooth setting, we can

apply Theorem 8.4.1 on the elliptic set of P in both cases and deduce microlocal H s̃+m
b -

regularity of u there, which implies that WFs̃+m−1
b (u) is a subset of the characteristic set of

P , and thus we only need to prove the propagation result within the characteristic set. We

will begin by proving the first part of Theorem 8.5.6; the proof is then easily modified to

yield the second part of Theorem 8.5.6. To keep the notation simple, we will only consider

the case of complex-valued symbols (hence, operators acting on functions); in the general,

bundle-valued case, all arguments go through with purely notational changes.

Propagation in the interior

For brevity, denote M = Rn+. We start with the first half of Theorem 8.5.6, where we can

in fact assume α = 0 since we are working away from the boundary, as explained below.

Thus, let P = Pm + Pm−1 +R, where we assume m ≥ 1 for now,

Pm ∈ Hs
bΨm

b with real homogeneous principal symbol,

Pm−1 ∈ Hs−1
b Ψm−1

b ,

R ∈ Ψm−2;0
b Hs−1

b ,

and let us assume that we are given a solution

u ∈ Hσ−1/2
b , (8.5.10)
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to the equation

Pu = f ∈ Hσ−m+1
b ,

where σ = s̃+m− 1 with s̃ as in the statement of Theorem 8.5.6. In fact, since

R : H
σ−1/2
b ⊂ Hσ−1

b → Hσ−m+1
b

by Proposition 8.2.9,30 we may absorb the term Ru into the right hand side; thus, we can

assume R = 0, hence P = Pm + Pm−1. We denote the symbol of Pm by p.

Let γ be a null-bicharacteristic of p, and assume that Hp is never radial on γ. Note that

this in particular means that γ ∩ bT ∗∂MM = ∅ since p vanishes identically at the boundary,

and in fact this setup is the correct one for the discussion of real principal type propagation

in the interior of M . All functions we construct in this section are implicitly assumed to

have support away from ∂M . Even though we are working away from the boundary, we

will still employ the b-notation throughout this section, since the proof of the real principal

type propagation result (near and) within the boundary will only require minor changes

compared to the proof of the interior result given here.

The objective is to propagate microlocal Hσ
b -regularity along γ to a point ζ0 ∈ bT ∗M \o,

assuming a priori knowledge of microlocalHσ
b -regularity of u near a point ζ∗ on the backward

bicharacteristic from ζ0; the location and size of this region will be specified later, see

Proposition 8.5.8. We will use a positive commutator argument.

The idea, following [33, §2], is to arrange for Hp = ρ1−mHp, ρ = 〈ζ〉,

Hpa = −b2 + e− f, (8.5.11)

where a, b, e are smooth symbols and f is a non-smooth symbol, absorbing non-smooth

terms of Hpa in an appropriate way, which however has a definite sign; by virtue of the

sharp G̊arding inequality, we will be able to bound terms involving f using the a priori

regularity assumptions on u. As in the smooth case, terms involving e will be controlled

by the a priori assumptions of u near ζ∗. If b is elliptic at ζ0, we are thus able to prove

the desired Hσ
b -regularity at ζ0. The actual commutant to be used, which has the correct

symbolic order and is regularized, will be constructed later; see Proposition 8.5.8 for its

relevant properties.

30We need s− 1 ≥ σ −m+ 1 and s− 1 > n/2 + (m− σ − 1)+.
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The general strategy for choosing the non-smooth symbol f is as follows: Non-smooth

terms T , which arise in the computation and are positive, say T ≥ c > 0, are smoothed

out using a mollifier J , giving a smooth function JT , but only as much as to still preserve

some positivity JT − c/4 ≥ c/4 > 0, and in such a way that the error T − JT + c/4 is

non-negative; then b2 = JT − c/4 is a smooth, positive term, and f = T − JT + c/4 is

non-smooth, but has a sign, and T = b2 + f. The mollifiers we shall use were constructed

in Lemma 8.5.5.

To start, choose η̃ ∈ C∞(bS∗M) with η̃(ζ0) = 0, Hpη̃(ζ0) > 0, i.e. η̃ measures, at least

locally, propagation along the Hamilton flow. Choose σj ∈ C∞(bS∗M), j = 1, . . . , 2n − 2,

with σj(ζ0) = 0 and Hpσj(ζ0) = 0, and such that dη̃, dσj span T ∗ζ0(bS∗M). Put ω =∑2n−2
j=1 σ2

j , so that ω1/2 approximately measures how far away one is from the bicharacteristic

through ζ0. Thus, |η̃| + ω1/2 is, near ζ0, equivalent to the distance from ζ0 with respect

to any distance function given by a Riemannian metric on bS∗M . Then for δ ∈ (0, 1), ε ∈
(0, 1], β ∈ (0, 1] and z > 0 (large) to be chosen later, let

φ = η̃ +
1

ε2δ
ω,

and, taking χ0(t) = e−1/t for t > 0, χ0(t) = 0 for t ≤ 0, and χ1 ∈ C∞(R), χ1 ≥ 0,
√
χ1 ∈ C∞(R), suppχ1 ⊂ (0,∞), suppχ′1 ⊂ (0, 1), and χ1 ≡ 1 in [1,∞), consider

a = χ0

(
z−1

(
2β − φ

δ

))
χ1

(
η̃ + δ

εδ
+ 1

)
.

First, we observe that Hpφ(ζ0) = Hpη̃(ζ0) > 0; but χ1

(
η̃+δ
εδ + 1

)
≡ 1 near ζ0, so

Hpa(ζ0) = −z−1δ−1Hpφ(ζ0)χ′0(2z−1β) < 0

has the right sign at ζ0.

Next, we analyze the support of a: First of all, If ζ ∈ supp a, then

φ(ζ) ≤ 2βδ, η̃(ζ) ≥ −δ − εδ ≥ −2δ.

Since ω ≥ 0, we get η̃ = φ− ω/ε2δ ≤ φ ≤ 2βδ ≤ 2δ, thus ω = ε2δ(φ− η̃) ≤ 4ε2δ2, i.e.

− δ − εδ ≤ η̃ ≤ 2βδ, ω1/2 ≤ 2εδ on supp a. (8.5.12)
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In particular, we can make supp a to be arbitrarily close to ζ0 by choosing δ > 0 small,

hence there is δ0 > 0 small such that Hpη̃ ≥ c0 > 0 whenever |η̃| ≤ 2δ0 and ω1/2 ≤ 2δ0. The

support of a becomes localized near ω = 0 by choosing ε > 0 small. The parameter β then

allows one to localize supp a near the segment η̃ ∈ [−δ; 0]. Moreover, we have

− δ − εδ ≤ η̃ ≤ −δ, ω1/2 ≤ 2εδ on supp a ∩ suppχ′1, (8.5.13)

which is the region where we will assume a priori microlocal control on u. Observe that by

taking ε > 0 small, we can make this region arbitrarily closely localized at η̃ = −δ, ω = 0.

Choose χ̃1 ∈ C∞(R), χ̃1 ≥ 0, such that χ̃1 ≡ 1 on suppχ′1, and supp χ̃1 ⊂ [0, 1]. Since

the coefficients of Hp are continuous because of s > n/2 + 1, we can choose a mollifier J

as in Lemma 8.5.5, acting on a function f defined on bT ∗Rn+ by (Jf)(z, ζ) = J(f(·, ζ))(z),

such that for

e = χ0

(
z−1

(
2β − φ

δ

))
(JHp)

(
χ1

(
η̃ + δ

εδ
+ 1

))
+ χ̃1

(
η̃ + δ

εδ
+ 1

)
,

f ′ = χ0

(
F−1

(
2β − φ

δ

))[
χ̃1

(
η̃ + δ

εδ
+ 1

)
(8.5.14)

+ (JHp − Hp)

(
χ1

(
η̃ + δ

εδ
+ 1

))]
,

hence e − f ′ = χ0Hpχ1, we have f ′ ≥ 0. Note that e ∈ C∞ has support as indicated in

(8.5.13), and f ′ ∈ Hs−1
b in the base variables.

In order to have (8.5.11), it remains to prove that the remaining term of Hpa, namely

χ1Hpχ0, is non-positive; for this, it is sufficient to require Hpφ ≥ c0/2 on supp a if δ < δ0.

From the definition of φ, this would follow provided

|Hpω| ≤ c0ε
2δ/2 (8.5.15)

on supp a. Now, since for s > n/2 + 2, Hpσj is Lipschitz continuous and vanishes at ζ0, we

have

|Hpω| ≤ 2

2n−2∑
j=1

|σj ||Hpσj | ≤ Cω1/2
(
|η̃|+ ω1/2

)
, (8.5.16)

hence (8.5.15) holds if 2Cεδ(2δ + 2εδ) ≤ c0ε
2δ/2, which is satisfied provided 16Cδ/c0 ≤ ε.

Let us choose ε = 16Cδ/c0, with δ small enough such that ε ≤ 1. For later use, let us note
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that then near η̃ = −δ, the ‘width’ of the support of a is

ω1/2 ≤ c0ε
2δ/2

C(ω1/2 + |η̃|)
. δ2, (8.5.17)

hence by (8.5.13), the region where we will assume a priori microlocal control on u (i.e.

supp e) has size ∼ δ2.

Now, let

b = (zδ)−1/2
√

(JHp)φ− c0/4

√
χ′0

(
z−1

(
2β − φ

δ

))√
χ1

(
η̃ + δ

εδ
+ 1

)
,

f ′′ = (zδ)−1 ((Hp − JHp)φ+ c0/4)χ′0

(
z−1

(
2β − φ

δ

))
χ1

(
η̃ + δ

εδ
+ 1

)
,

where J is the same mollifier as used in (8.5.14); we assume it is close enough to I so

that |(Hp − JHp)φ| < c0/8, which implies (JHp)φ − c0/4 ≥ c0/8 > 0 and f ′′ ≥ 0. Putting

f = f ′ + f ′′, which is Hs−1
b in the base variables, we thus have achieved (8.5.11).

Next, we have to make the commutant, a, a symbol of order 2σ − (m− 1), so that the

‘principal symbol’ of i[P,A], i.e. Hpa, is of order 2σ, hence b has order σ, which is what we

need, since we want to prove Hσ
b -regularity of u at ζ0. Thus, define

ǎ = ρσ−(m−1)/2a1/2,

and let

ϕt = (1 + tρ)−1 (8.5.18)

be a regularizer, ϕt ∈ S−1 for t > 0, which is uniformly bounded in S0 for t ∈ [0, 1] and

satisfies ϕt → 1 in S` for ` > 0 as t→ 0. We define the regularized symbols to be ǎt = ϕtǎ

and at = ϕ2
tρ

2σ−(m−1)a = ǎ2
t .

We compute Hpϕt = −tϕ2
tHpρ. Amending (8.5.11) by another term which will be used

to absorb certain terms later on, we aim to show that we can choose bt, et and ft such that,

in analogy to (8.5.11), for M > 0 fixed, to be specified later,

Hpat = ϕ2
tρ

2σ
(
Hpa +

(
(2σ −m+ 1)− 2tϕtρ

)
(ρ−1Hpρ)a

)
= −b2t −M2ρm−1at + et − ft,
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that is to say,

ϕ2
tρ

2σ
(
Hpa +

[(
(2σ −m+ 1)− 2tϕtρ

)
(ρ−1Hpρ) +M2

]
a
)

= −b2t + et − ft. (8.5.19)

Here, note that, using the definition of ϕt, tρϕt is a uniformly bounded family of symbols

of order 0. To achieve (8.5.19), let us take

et = ϕ2
tρ

2σe

ft = f ′t + f ′′t , f ′t = ϕ2
tρ

2σf ′,
(8.5.20)

where e, f ′ are given by (8.5.14); we will define f ′′t momentarily. Using χ0(t) = t2χ′0(t), we

obtain

Hpa +
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1Hpρ) +M2

]
a

= e− f ′ − (zδ)−1

(
Hpφ

−
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1Hpρ) +M2

]
z−1δ

(
2β − φ

δ

)2
)

× χ′0
(
z−1

(
2β − φ

δ

))
χ1

(
η̃ + δ

εδ
+ 1

)
Thus, if z is large enough, the term in the large parentheses is bounded from below by

3c0/8 on supp a, since |2β − φ/δ| ≤ 4 there. (The last statement follows from −2δ ≤ η̃ ≤
φ ≤ 2βδ ≤ 2δ and β ≤ 1.) Therefore, we can put

bt = (zδ)−1/2ϕtρ
σ

(
(JHp)φ (8.5.21)

−
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1(JHp)ρ) +M2

]
×z−1δ

(
2β − φ

δ

)2
− c0

8

)1/2

×

√
χ′0

(
z−1

(
2β − φ

δ

))√
χ1

(
η̃ + δ

εδ
+ 1

)
,

f ′′t = (zδ)−1ϕ2
tρ

2σ

(
(Hp − JHp)φ

−
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1(Hp − JHp)ρ)

]
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×z−1δ
(

2β − φ

δ

)2
+
c0

8

)
× χ′0

(
z−1

(
2β − φ

δ

))
χ1

(
η̃ + δ

εδ
+ 1

)
,

with f ′′t ≥ 0 if the mollifier J is close enough to I, and thus obtain (8.5.19).

We now summarize this construction, slightly rephrased, retaining only the important

properties of the constructed symbols. Let us fix any Riemannian metric on bS∗M near ζ0

and denote the metric ball around a point p with radius r in this metric by B(p, r).

Proposition 8.5.8. There exist δ0 > 0 and C0 > 0 such that for 0 < δ ≤ δ0, the following

holds: For any M > 0, there exist a symbol ǎ ∈ Sσ−(m−1)/2 and uniformly bounded families

of symbols ǎt = ϕtǎ ∈ Sσ−(m−1)/2 (with ϕt defined by (8.5.18)), bt ∈ Sσ, et ∈ S2σ and

ft ∈ S2σ;∞Hs−1
b , ft ≥ 0, supported in a coordinate neighborhood (independent of δ) of ζ0

and supported away from ∂M , that satisfy the following properties:

(1) ǎtHpǎt = −b2t −M2ρm−1ǎ2
t + et − ft.

(2) bt → b0 in Sσ+` for ` > 0, and b0 is elliptic at ζ0.

(3) The support of et is contained in B(ζ0 − δHp(ζ0), C0δ
2).

(4) For t > 0, the symbols have lower order: ǎt ∈ Sσ−(m−1)/2−1, bt ∈ Sσ−1, et ∈ S2σ−2

and ft ∈ S2σ−2;∞Hs−1
b .

The commutant given by this proposition will now be used to deduce the propagation

of regularity in a direction which agrees with the Hamilton flow to first order.

Let Ǎ ∈ Ψ
σ−(m−1)/2
b be a quantization of ǎ with WF′b(Ǎ) ⊂ supp ǎ, let Φt be a quantiza-

tion of ϕt, i.e. Φt ∈ Ψ0
b is a uniformly bounded family, Φt ∈ Ψ−1

b for t > 0, and let Ǎt = ǍΦt.

Moreover, let Bt ∈ Ψσ
b be a quantization of bt, with uniform b-microsupport contained in

a conic neighborhood of γ, such that Bt ∈ Ψσ
b is uniformly bounded, and Bt ∈ Ψσ−1

b for

t > 0. Similarly, let Et ∈ Ψ2σ
b be a quantization of et with uniform b-microsupport disjoint

from WFσb(u) in the sense that

‖Etu‖Hσ
b

is uniformly bounded for t > 0. (8.5.22)

This is the requirement that u is in Hσ
b on a part of the backwards bicharacteristic from ζ0,

more precisely in the ball specified in Proposition 8.5.8.
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In a sense that we will make precise below, the principal symbol of the commutator

iǍ∗t [Pm, Ǎt] is given by ǎtHpǎt, which is what we described in Proposition 8.5.8. We compute

for t > 0, following the proof of [9, Theorem 3.2]:

Re〈iǍ∗t [Pm, Ǎt]u, u〉 = Re
(
〈iPmǍtu, Ǎtu〉 − 〈iǍtPmu, Ǎtu〉

)
=

1

2
〈i(Pm − P ∗m)Ǎtu, Ǎtu〉 − Re〈iǍtf, Ǎtu〉+ Re〈iǍtPm−1u, Ǎtu〉, (8.5.23)

where 〈·, ·〉 denotes the sesquilinear pairing between spaces which are dual to each other

relative to L2
b. The adjoints here are taken with respect to the b-density dx

x dy, and in the

case where P acts on a vector bundle, we use the smooth metric in the fibers of E for the

adjoint. This computation needs to be justified, namely we must check that all pairings are

well-defined by the a priori assumptions on u so that we can perform the integrations by

parts.

First, we observe that

Ǎ∗t ǍtPmu ∈ Ǎ∗t ǍtHs
b ·H

σ−m−1/2
b ⊂ H−σ+1/2

b ,

because of s ≥ |σ − m − 1/2| and Ǎ∗t Ǎt ∈ Ψ2σ−m−1
b . Since (σ − 1/2) + (−σ + 1/2) = 0

is non-negative, the pairing 〈Ǎ∗t ǍtPmu, u〉 is well-defined. By the same token, the pairing

〈ǍtPmu, Ǎtu〉 is well-defined, hence we can integrate by parts, justifying half of the first

equality in (8.5.23). For the second half of the first equality, we use Pm ∈ Hs
bΨm

b and31

Corollary 8.2.10 to obtain

PmǍtu ∈ PmHm/2
b ⊂ H−m/2b ,

Ǎ∗tPmǍtu ∈ H
−σ+1/2
b ,

which by the same reasoning as above proves the first equality in (8.5.23). For the second

equality, we write Pm as a sum of terms of the form wQm with w ∈ Hs
b, Qm ∈ Ψm

b , for

which we have

〈Ǎtu,wQmǍtu〉 = 〈w̄Ǎtu,QmǍtu〉 = 〈Q∗mw̄Ǎtu, Ǎtu〉, (8.5.24)

31This requires s ≥ m/2; recall that we are assuming m ≥ 1.
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where the first equality follows from Ǎtu ∈ H
m/2
b and QmǍtu ∈ H

−m/2
b ,32 and for the

second equality, one observes that the two pairings on the right hand side in (8.5.24) are

well-defined, and we can integrate by parts, i.e. move Qm to the other side, taking its

adjoint.

Now, since the principal symbol of Pm is real, we can apply Theorem 8.2.12 (3) with k =

1, k′ = 0 to obtain Pm−P ∗m ∈ Ψm−1
b ◦Ψ0;0Hs−1

b +Ψm−1;0Hs−1
b . Therefore, Proposition 8.2.9

implies that Pm − P ∗m defines a continuous map from H
(m−1)/2
b to H

−(m−1)/2
b ,33 thus

|〈(Pm − P ∗m)Ǎtu, Ǎtu〉| ≤ C1‖Ǎtu‖2
H

(m−1)/2
b

(8.5.25)

with a constant C1 only depending on Pm.

Looking at the next term in (8.5.23), we estimate

|〈Ǎtf, Ǎtu〉| ≤
1

4
‖Ǎtf‖2

H
−(m−1)/2
b

+ ‖Ǎtu‖2
H

(m−1)/2
b

≤ C2 + ‖Ǎtu‖2
H

(m−1)/2
b

,

where we use that

Ǎtf ∈ Hσ−m+1−σ+(m−1)/2
b = H

−(m−1)/2
b

uniformly.

For the last term on the right hand side of (8.5.23), the well-definedness is easily

checked.34 To bound it, we rewrite it as

〈ǍtPm−1u, Ǎtu〉 = 〈Pm−1Ǎtu, Ǎtu〉+ 〈[Ǎt, Pm−1]u, Ǎtu〉.

The first term on the right hand side is bounded by C3‖Ǎtu‖2
H

(m−1)/2
b

for some constant C3

only depending on Pm−1; indeed, Pm−1 : H
(m−1)/2
b → H

−(m−1)/2
b is continuous.35 For the

second term, note that Pm−1Ǎt ∈ Hs−1
b Ψ

σ+(m−1)/2
b can be expanded to zeroth order, the

first (and only) term being pm−1ǎt and the remainder being R′1 ∈ H
s−1
b Ψ

σ+(m−1)/2−1
b ; for

notational convenience, we drop the explicit t-dependence here; inclusions are understood

to be statements about a t-dependent family of operators being uniformly bounded in the

respective space. Next, we can expand ǍtPm−1 to zeroth order by Theorem 8.2.12 (3)

32We need s ≥ m/2 and can then use Corollary 8.2.10.
33Provided s− 1 ≥ (m− 1)/2 and s− 1 > n/2 + (m− 1)/2.
34We need s− 1 ≥ |σ −m+ 1/2| and can then use Corollary 8.2.10 to obtain Pm−1u ∈ Hσ−m+1/2

b .
35This requires s− 1 ≥ (m− 1)/2 and s− 1 > n/2.
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with36 k′ = 0 – again obtaining pm−1ǎt as the first term – which yields a remainder term

R′′1 +R2, where

R′′1 ∈ Ψσ+(m−1)/2−1;0Hs−2
b

R2 ∈ Ψ
σ−(m−1)/2−1
b ◦Ψm−1;0Hs−2

b .
(8.5.26)

We can then use Proposition 8.2.9 to conclude that

R1 := R′′1 −R′1 ∈ Ψσ+(m−1)/2−1;0Hs−2
b

is a uniformly bounded family of maps37

R1 : H
σ−1/2
b → H

−m/2+1
b .

which shows that 〈R1u, Ǎtu〉 is uniformly bounded. Moreover, we can apply Proposi-

tion 8.2.9 and use the mapping properties of smooth b-ps.d.o.s to prove that R2u ∈
H
−(m−1)/2
b is uniformly bounded.38 We thus conclude that

|〈[Ǎt, Pm−1]u, Ǎtu〉| ≤ C4(M) + ‖Ǎtu‖2
H

(m−1)/2
b

, (8.5.27)

where C4, while it depends on M in the sense that it depends on a seminorm of the M -

dependent operator Ǎ constructed in Proposition 8.5.8, is independent of t.

Plugging all these estimates into (8.5.23), we thus obtain

Re〈iǍ∗t [Pm, Ǎt]u, u〉 ≥ −(C2 + C4(M))− (C1 + 1 + C3 + 1)‖Ǎtu‖2
H

(m−1)/2
b

,

where all constants are independent of t > 0, and C1, C2, C3 are in addition independent

of the real number M in Proposition 8.5.8. Choosing M2 > C1 + C3 + 2, this implies that

there is a constant C <∞ such that for all t > 0, we have

Re
〈(
iǍ∗t [Pm, Ǎt] +M2(ΛǍt)

∗(ΛǍt)
)
u, u

〉
≥ −C, (8.5.28)

36Assuming σ − (m− 1)/2 ≥ 1.
37The requirements are s− 2 ≥ −m/2 + 1, s− 2 > n/2 + (m/2− 1)+.
38Indeed, we have u ∈ Hσ−1/2

b ⊂ Hσ−1
b , and Ψm−1;0Hs−2

b : Hσ−1
b → Hσ−m

b is continuous if s−2 ≥ σ−m,
s− 2 > n/2 + (m− σ)+.



338 CHAPTER 8. OPERATORS WITH ROUGH COEFFICIENTS

where Λ := Λ(m−1)/2. Therefore,

Re
〈(
iǍ∗t [Pm, Ǎt] +B∗tBt +M2(ΛǍt)

∗(ΛǍt)− Et
)
u, u

〉
≥ −C + ‖Btu‖2L2

b
. (8.5.29)

Here, we use that 〈Etu, u〉 is uniformly bounded by (8.5.22).

The next step is to exploit the commutator relation in Proposition 8.5.8 in order to find

a t-independent upper bound for the left hand side of (8.5.29). Theorem 8.2.12 (3), gives39

i[Pm, Ǎt] = (Hpǎt)(z,
bD) + R̃1 + R̃2

with uniformly bounded families of operators

R̃1 ∈ Ψσ+(m−1)/2−1;0Hs−2
b

R̃2 ∈ Ψ
σ−(m−1)/2−2
b ◦Ψm;0Hs−2

b .

Notice that Hpǎt ∈ Hs−1
b Sσ+(m−1)/2 uniformly. If we applied Theorem 8.2.12 (3) directly to

the composition Ǎ∗t (Hpǎt)(z,
bD), the regularity of the remainder operator, say R, obtained

by applying Theorem 8.2.12 (3), would be too weak in the sense that we could not bound

〈Ru, u〉. To get around this difficulty, choose

J+ ∈ Ψ
σ−(m−1)/2−1
b , J− ∈ Ψ

−σ+(m−1)/2+1
b

with real principal symbols j+, j− such that

J+J− = I + R̃, R̃ ∈ Ψ−∞b . (8.5.30)

Observe that J−Ǎ∗t is uniformly bounded in Ψ1
b. Then by Theorem 8.2.12 (3),

iJ−Ǎ∗t [Pm, Ǎt] = (j−ǎtHpǎt)(z,
bD) +R1 +R2 +R3 +R4, (8.5.31)

39Applicable with k = 2, k′ = 0 if σ − (m− 1)/2 ≥ 2.
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where

R1 = J−Ǎ∗t R̃1 ∈ Ψ1
b ◦Ψσ+(m−1)/2−1;0Hs−2

b

R2 = J−Ǎ∗t R̃2 ∈ Ψ
σ−(m−1)/2−1
b ◦Ψm;0Hs−2

b

R3 ∈ Ψ
σ+(m−1)/2;0
b Hs−2

b

R4 ∈ Ψ0
b ◦Ψσ+(m−1)/2;0Hs−2

b .

(8.5.32)

Applying Proposition 8.2.9,40 we conclude that Rj (1 ≤ j ≤ 4) is a uniformly bounded

family of operators

H
σ−1/2
b → H

−m/2
b ,

thus, since (J+)∗ ∈ Hm/2
b , the pairings 〈Rju, (J+)∗u〉 are uniformly bounded.

Hence, Proposition 8.5.8 implies

J+
(
iJ−Ǎ∗t [Pm, Ǎt] + J−B∗tBt + J−M2(ΛǍt)

∗(ΛǍt)− J−Et
)

= J+
(

[j−(ǎtHpǎt + b2t +M2ρm−1ǎ2
t − et)](z, bD) +R+G

)
= J+

(
(−j−ft)(z, bD) +R+G

)
, (8.5.33)

where R = R1 + R2 + R3 + R4 and G ∈ Ψ
σ+(m−1)/2
b ; G appears because the principal

symbols of the smooth operators on both sides are equal. We already proved that 〈J+Ru, u〉
is uniformly bounded; also, 〈J+Gu, u〉 is uniformly bounded, since J+G ∈ Ψ2σ−1

b and

u ∈ Hσ−1/2
b .

It remains to prove a uniform lower bound on41

Re〈J+(j−ft)(z,
bD)u, u〉 = Re〈(j−ft)(z, bD)u, (J+)∗u〉.

In order to be able to apply the sharp G̊arding inequality, Proposition 8.5.1, we need to

rewrite this. Since j+ is bounded away from 0, we can write

(j−ft)(z,
bD) =

[
j−ft
j+

]
(z, bD) ◦ (J+)∗ +R, R ∈ Ψσ+(m−1)/2;0Hs−1

b

40The conditions s− 2 ≥ −m/2 + 1 and s− 2 > n/2 +m/2 are sufficient to treat R1, R3 and R4. For R2,
we need s− 2 ≥ σ −m− 1/2 and s− 2 > n/2 + (m+ 1/2− σ)+.

41To justify the integration by parts here, note that j−ft ∈ Sσ+(m−1)/2−1;∞Hs−1
b for t > 0, thus

(j−ft)(z,
bD)u ∈ H

−m/2+1
b provided s − 1 ≥ −m/2 + 1, s − 1 > n/2 + (m/2 − 1)+, which follows from

the conditions in Footnote 40.
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by Theorem 8.2.12 (2b), since j−ft/j
+ ∈ Sm+1;∞Hs−1

b . Now 〈Ru, (J+)∗u〉 is uniformly

bounded, since (J+)∗u ∈ Hm/2
b and Ru ∈ H−m/2b are uniformly bounded.42 We can now

apply the sharp G̊arding inequality to deduce that

Re

〈[
j−ft
j+

]
(z, bD)(J+)∗u, (J+)∗u

〉
≥ −C‖(J+)∗u‖2

H
m/2
b

≥ −C, (8.5.34)

where the constant C only depends on the uniform S2σ;∞Hs−1
b -bounds on ft and theH

σ−1/2
b -

norm of u.43

Putting (8.5.29), (8.5.33) and (8.5.34) together by inserting I = J+J− − R̃ in front of

the large parenthesis in (8.5.29) and observing that the error term

Re
〈
R̃
(
iǍ∗t [Pm, Ǎt] +B∗tBt +M2(ΛǍt)

∗(ΛǍt)− Et
)
u, u

〉
is uniformly bounded,44 we deduce that ‖Btu‖L2

b
is uniformly bounded for t > 0. Therefore,

a subsequence Btku, tk → 0, converges weakly to v ∈ L2
b as k → ∞. On the other hand,

Btku → Bu in H−∞b ; hence Bu = v ∈ L2
b, which implies that u ∈ Hσ

b microlocally on the

elliptic set of B.

To eliminate the assumption that m ≥ 1, notice that the above propagation estimate for a

general m-th order operator can be deduced from the m0-th order result for any m0 ≥ 1,

simply by considering

PΛ+(Λ−u) = f + PRu,

where Λ+ ∈ Ψ
−(m−m0)
b is elliptic with parametrix Λ− ∈ Ψm−m0

b , and Λ+Λ− = I + R, R ∈
Ψ−∞b . If we pass from P to PΛ+, which means passing from m to m0, we correspondingly

have to pass from σ to σ0 = σ−m+m0 in equation (8.5.10); in other words, the difference

σ−m = σ0−m0 remains the same. Thus, let us collect the conditions on s and s̃ = σ−m+1

as given in the footnotes in the course of the argument: All conditions are satisfied provided

3/2− s ≤ s̃ ≤ s− 1, s̃ ≥ (5−m0)/2, (8.5.35)

42For Ru, we need s− 1 > n/2 +m/2, which follows from the conditions in Footnote 40.
43This requires s− 1 ≥ 2−m/2 and s− 1 > n/2 + 2 +m/2.
44Indeed, Ǎ∗t ǍtPmu ∈ H

−σ−3/2
b is uniformly bounded because of s ≥ |σ−m−1/2|; and Ǎtu ∈ Hm/2−1

b is

uniformly bounded, hence so is PmǍtu ∈ H−m/2−1
b in view of s ≥ m/2 +1, which follows from the condition

in Footnote 35, and therefore Ǎ∗tPmǍtu ∈ H
−σ−3/2
b is uniformly bounded.
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s > n/2 + 2 + (3/2− s̃)+, s > n/2 + 3 +m0/2 (8.5.36)

for some m0 ≥ 1. The optimal choice for m0 is thus m0 = max(1, 5− 2s̃) = 1 + 2(2− s̃)+;

plugging this in, we obtain the conditions in the statement of Theorem 8.5.6:

s > n/2 + 7/2 + (2− s̃)+, s̃ ≤ s− 1.

Thus, we have proved a propagation result which propagates estimates in a direction which

is ‘correct to first order.’ To obtain the final form of the propagation result, we use an

argument by Melrose and Sjöstrand [89, 90], in the form given in [33, Lemma 8.1]. This

finishes the proof of the first part of Theorem 8.5.6.

Remark 8.5.9. For second order real principal type operators of the form considered above,

with the highest order derivative having Hs
b-coefficients, the maximal regularity one can

prove for a solution u with right hand side f ∈ Hs−1
b is H s̃+1

b with s̃ being at most s−1, i.e.

one can prove u ∈ Hs
b, which is exactly what we will need in our quest to solve quasilinear

wave equations.

Propagation near the boundary

We now aim to prove the corresponding propagation result (near and) within the boundary

∂M : Thus, let P = P0 + P̃ , where P̃ = P̃m + P̃m−1 + R̃, with P0 ∈ Ψm
b and P̃m ∈ Hs,α

b Ψm
b

having real homogeneous principal symbols, P̃m−1 ∈ Hs−1,α
b Ψm−1

b and R̃ ∈ Ψm−2;0
b Hs−1,α

b

as before, and let us assume that we are given a solution

u ∈ Hσ−1/2
b

to the equation

Pu = f ∈ Hσ−m+1
b ,

where σ = s̃+m− 1. In fact, since

R̃ : H
σ−1/2
b ⊂ Hσ−1

b → Hσ−m+1
b ,

we may absorb the term R̃u into the right hand side; thus, we can assume R̃ = 0, hence

P̃ = P̃m + P̃m−1.
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Moreover, let γ be a null-bicharacteristic of p = p0 + p̃m; we assume Hp is never radial on

γ. Since Hp̃m = 0 at bT ∗∂MM , this in particular implies that Hp0 is not radial on γ∩bT ∗∂MM ,

and the positivity of the principal symbol ǎtHpǎt of the commutator there comes from the

positivity of ǎtHp0 ǎt.

The proof of the interior propagation, with small adaptations, carries over to the new

setting. We indicate the changes: First, using the same notation, Hpσj now only is Hölder

continuous with exponent α, thus (8.5.16) becomes

|Hpω| ≤ Cω1/2
(
|η̃|+ ω1/2

)α
.

Hence, for (8.5.15) to hold, we need

Cω1/2(|η̃|+ ω1/2)α ≤ c0ε
2δ/2,

which holds if 21+2αCδ1+α ≤ c0εδ/2, suggesting the choice ε = 41+αCδα/c0; in particular

ε ≤ 1 for δ small enough. Thus, the size of the a priori control region near η̃ = −δ, cf.

(8.5.17), becomes

ω1/2 ≤ c0ε
2δ

2C(|η̃|+ ω1/2)α
= Cαδ

1+α,

which is small enough for the argument in [33, Lemma 8.1] to work. Further, defining the

commutant a as before, we replace the a priori control terms e, f ′ in (8.5.14) by

e = χ0(Hp0 + JHp̃m)χ1 + χ̃1,

f ′ = χ0(JHp̃m − Hp̃m)χ1 + χ̃1,
(8.5.37)

where we choose the mollifier J to be so close to I that f ′ ≥ 0; here, we use that the

first summand in the definition of f ′ is an element of Hs−1
b in the base variables, hence for

s > n/2 + 1 in particular continuous and vanishing at the boundary ∂M , and can therefore

be dominated by χ̃1. We then let et and f ′t be defined as in (8.5.20) with the above e and

f ′. We change the terms bt and f ′′t in (8.5.21) in a similar way: We take

bt = (zδ)−1/2ϕtρ
σ

(
(Hp0 + JHp̃m)φ

−
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1(JHp̃m + Hp0)ρ) +M2

]
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×z−1δ
(

2β − φ

δ

)2
− c0

8

)1/2

×

√
χ′0

(
z−1

(
2β − φ

δ

))√
χ1

(
η̃ + δ

εδ
+ 1

)
,

f ′′t = (zδ)−1ϕ2
tρ

2σ

(
(Hp̃m − JHp̃m)φ

−
[(

(2σ −m+ 1)− 2tϕtρ
)
(ρ−1(Hp̃m − JHp̃m)ρ)

]
z−1δ

(
2β − φ

δ

)2
+
c0

8

)
× χ′0

(
z−1

(
2β − φ

δ

))
χ1

(
η̃ + δ

εδ
+ 1

)
.

As before, we can control the term 〈Etu, u〉 in (8.5.29) by the a priori assumptions on u. The

new feature here is that f ′t , f
′′
t ≥ 0 are not just symbols with coefficients having regularity

Hs−1
b , but there are additional smooth terms involving χ̃1 and c0/8. Thus, we need to

appeal to the version of the sharp G̊arding inequality given in Corollary 8.5.3 to obtain a

uniform lower bound on the term 〈J+(j−ft)(z,
bD)u, u〉 in (8.5.33).

Since the computation of compositions and commutators in the proof of the previous

section for P0 is standard as P0 is a smooth b-ps.d.o., and since P̃m and P̃m−1 lie in the

same spaces as the operators called Pm and Pm−1 there, all arguments now go through after

straightforward changes that take care of the smooth b-ps.d.o. P0.

This finishes the proof of Theorem 8.5.6.

Complex absorption

We next aim to prove Theorem 8.5.7, namely we add a complex absorbing potential Q =

q(z, bD) ∈ Ψm
b with Q = Q∗ and prove the propagation of Hσ

b -regularity of solutions u ∈
H
σ−1/2
b to the equation

(P − iQ)u = f ∈ Hσ−m+1
b ,

where γ is a null-bicharacteristic of P , in a direction which depends on the sign of q near

γ. Namely, we can propagate Hσ
b -regularity forward along the flow of the Hamilton vector

field Hpm if q ≥ 0 near γ, and backward along the flow if q ≤ 0 near γ.

Let Γ be an open neighborhood of γ. It suffices to consider the case that q ≥ 0 in Γ;

recall that the proof of Theorem 8.5.6 showed the propagation forward along the flow, so

the only step there that we have to change is the right hand side of equation (8.5.23), where
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we have an additional term in view of Pmu = f − Pm−1u+ iQu, namely

−Re〈iǍt iQu, Ǎtu〉 = Re〈ǍtQu, Ǎtu〉 = Re〈QǍtu, Ǎtu〉+ Re〈Ǎ∗t [Ǎt, Q]u, u〉.

The first term on the right is bounded from below by−C5‖Ǎtu‖H(m−1)/2
b

and will be absorbed

as in (8.5.28), and the second term is bounded by the a priori microlocal H
σ−1/2
b -regularity

of u in Γ, since

Re〈Ǎ∗t [Ǎt, Q]u, u〉 =
1

2
〈Q̃tu, u〉

with

Q̃t = Ǎ∗t [Ǎt, Q] + [Q, Ǎ∗t ]Ǎt

= (Ǎ∗t − Ǎt)[Ǎt, Q] + [Ǎt, [Ǎt, Q]] + [Q, Ǎ∗t − Ǎt]Ǎt

uniformly bounded in Ψ2σ−1
b in view of the principal symbol of Ǎt being real and the

presence of double commutators.

This finishes the proof of Theorem 8.5.7.

8.5.4 Propagation near radial points

We will only consider the class of radial points which will be relevant in our applications,

cf. §§5.2 and 5.3. We recall the setting from §3.3.1, explicitly including bundles this time:

There, we considered an operator P0 ∈ Ψm
b (M ;E) with real, scalar, homogeneous principal

symbol p on a compact manifold M with boundary X = ∂M and boundary defining function

x. Here, we take M = Rn+, and write x for the boundary defining function, since we are

only working in a local model here. The assumptions on p0 are as follows:

(1) At p0 = 0, dp0 6= 0, and at bS∗XM∩p
−1
0 (0), dp0 and dx are linearly independent; hence

Σ = p−1
0 (0) ⊂ bS∗M is a smooth codimension 1 submanifold transversal to bS∗XM .

(2) L = L+ ∪ L−, where L± are smooth disjoint submanifolds of bS∗XM , given by L± =

L± ∩ bS∗XM , where L± are smooth disjoint submanifolds of Σ transversal to bS∗XM ,

defined locally near bS∗XM . Moreover, Hp0 = ρ1−mHp0 is tangent to L±, where, as

before, ρ = 〈ζ〉.
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(3) There are functions β0, β̃ ∈ C∞(L±), β0, β̃ > 0, such that

ρHp0ρ
−1|L± = ∓β0, −x−1Hp0x|L± = ∓β̃β0. (8.5.38)

(4) For a homogeneous degree 0 quadratic defining function ρ0 of L = L+ ∪L− within Σ,

∓ Hp0ρ0 − β1ρ0 ≥ 0 modulo terms that vanish cubically at L±, (8.5.39)

where β1 ∈ C∞(Σ), β1 > 0 at L±.

(5) The imaginary part of the subprincipal symbol is homogeneous, and equals

σb,m−1

(
1

2i
(P0 − P ∗0 )

)
= ±β̂β0ρ

m−1 at L±, (8.5.40)

where β̂ ∈ C∞(L±;π∗ End(E)), π : L± → M being the projection to the base; note

that β̂ is self-adjoint at every point.

Recall that these conditions imply that L± is a sink, resp. source, for the bicharacteristic

flow within bS∗XM , in the sense that nearby null-bicharacteristics tend to L± in the forward,

resp. backward, direction; but at L± there is also an unstable, resp. stable, manifold, namely

L±.

In the non-smooth setting, we will make the exact same assumptions on the ‘smooth

part’ of the operator; the guiding principle is that non-smooth operators with coefficients

in Hs,α
b , α > 0, s > n/2 + 1, have symbols and associated Hamilton vector fields that

vanish at the boundary in view of the Riemann-Lebesgue lemma, thus would not affect the

above conditions anyway, with the exception of condition (4), which in the proof however

is only used close to, but away from L±, just as in the proof of Proposition 3.3.8, and the

positivity of ∓Hp0ρ0 there is preserved when one adds small non-smooth terms in Hs,α
b to

p0. In order to be able to give a concise expression for the threshold regularity (determining

whether one can propagate into or out of the boundary), let us define for a function b ∈
C∞(L±, π

∗ End(E)) with values in self-adjoint endomorphisms of the fiber,

inf
L±

b := inf{λ ∈ R : b ≥ λ I everywhere on L±},

sup
L±

b := sup{λ ∈ R : b ≤ λ I everywhere on L±}.
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We then have the following theorem:

Theorem 8.5.10. Let m, r, s, s̃ ∈ R, α > 0. Let P = P0 + P̃ , where P0 ∈ Ψm
b (Rn+;E)

has a real, scalar, homogeneous principal symbol p0, further P̃ = P̃m + P̃m−1 + R̃ with

P̃m ∈ Hs,α
b Ψm

b (Rn+;E) having a real, scalar, homogeneous principal symbol p̃m, moreover

P̃m−1 ∈ Hs−1,α
b Ψm−1

b (Rn+;E) and R̃ ∈ Ψm−2
b (Rn+;E) + Ψm−2;0

b Hs−1,α
b (Rn+;E). Suppose that

the above conditions (1)-(5) hold for p0. Finally, assume that s and s̃ satisfy

s̃ ≤ s− 1, s > n/2 + 7/2 + (2− s̃)+. (8.5.41)

Suppose u ∈ H s̃+m−3/2,r
b (Rn+;E) is such that Pu ∈ H s̃,r

b (Rn+;E).

(1) If s̃+ (m− 1)/2− 1 + infL±(β̂− rβ̃) > 0, let us assume that in a neighborhood of L±,

L± ∩ {x > 0} is disjoint from WFs̃+m−1,r
b (u).

(2) If s̃+ (m− 1)/2 + supL±(β̂− rβ̃) < 0, let us assume that a punctured neighborhood of

L±, with L± removed, in Σ ∩ bS∗
∂Rn+

Rn+ is disjoint from WFs̃+m−1,r
b (u).

Then in both cases, L± is disjoint from WFs̃+m−1,r
b (u).

Adjoints are again taken with respect to the b-density dx
x dy and the smooth metric

on the vector bundle E. In fact, condition (8.5.40) is insensitive to changes both of the

b-density and the metric on E by the radiality of Hp0 at L±; see [114, Footnote 19] for

details.

Remark 8.5.11. Since WFs̃+m−1,r
b (u) is closed, we in fact have the conclusion that a neigh-

borhood of L± is disjoint from WFs̃+m−1,r
b (u). As in the real principal type setting (see

equation (8.5.8) in particular), one can also rewrite the wavefront set statement as an es-

timate on the L2
b norm of an operator of order s̃ + m − 1, elliptic at L±, applied to u. In

particular, we will see that it suffices to have only microlocal H s̃,r
b -membership of Pu near

the part of the radial set that we propagate to/from, and local membership in H s̃−1
b , which

comes from a use of elliptic regularity (Theorem 8.4.1) in our argument.

Moreover, as before, see Remark 3.3.11, the theorem also holds for operators P which

are perturbations of those for which it directly applies: Even though the dynamical as-

sumptions (1)-(4) are not stable under perturbations, the estimates derived from these are.

Here, perturbations are to be understood in the sense that P0 may be perturbed within

Ψm
b , and P̃m, P̃m−1 and R̃ may be changed arbitrarily, with the estimate corresponding to

the wavefront set statement of the theorem being locally uniform.
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Proof of Theorem 8.5.10. We again drop the bundle E from the notation. The proof is an

adaptation of the proof of Proposition 3.3.8 to our non-smooth setting. Since R̃u ∈ H s̃
b by

the a priori regularity on u, we can absorb R̃u into f = Pu and thus assume R̃ = 0. Finally,

let us assume m ≥ 1 and r = 0 for now; these conditions will be eliminated at the end of

the proof.

Define the regularizer ϕt(ρ) = (1 + tρ)−1 for t ≥ 0 as in the proof of Theorem 8.5.6, put

p0 = ρ−mp0 and σ = s̃+m− 1, and consider the commutant

at = ϕt(ρ)ψ(ρ0)ψ0(p0)ψ1(x)ρσ−(m−1)/2,

where ψ,ψ0, ψ1 ∈ C∞c (R) are equal to 1 near 0 and have derivatives which are ≤ 0 on

[0,∞); we will be more specific about the supports of ψ,ψ0, ψ1 below. Let us also assume

that
√
−ψψ′ and

√
−ψ1ψ′1 are smooth in a neighborhood of [0,∞). As usual, we put

Hp̃m = ρ1−mHp̃m . We then compute, using Hp̃mϕt = −tϕ2
tHp̃mρ:

atHp̃mat = ϕ2
tρ

2σψψ0ψ1

(
(σ − (m− 1)/2− tρϕt)(ρ−1Hp̃mρ)ψψ0ψ1

+ (x−1Hp̃mx)xψψ0ψ
′
1 + (Hp̃mρ0)ψ′ψ0ψ1 + Hp̃m(p0)ψψ′0ψ1

)
,

and to compute atHp0at, we can use (8.5.38) to simplify the resulting expression.

To motivate the next step, recall that the objective is to obtain an estimate similar

to (8.5.28); however, since in our situation, the weight ρσ−(m−1)/2 can only give a limited

amount of positivity at L±, we need to absorb error terms, in particular the ones involving

P − P ∗, into the commutator atHpmat. Thus, consider

atHpmat ± ρm−1a2
tβ0β̂ = ±ϕ2

tρ
2σψψ0ψ1

×
([
β0(σ − (m− 1)/2− tρϕt + β̂)

± (σ − (m− 1)/2− tρϕt)(ρ−1Hp̃mρ)
]
ψψ0ψ1

+ (β̃β0 ± x−1Hp̃mx)xψψ0ψ
′
1 ± (Hp0ρ0 + Hp̃mρ0)ψ′ψ0ψ1

+ (−mβ0p0 ± Hp̃mp0)ψψ′0ψ1

)
.

Recall that tρϕt is a bounded family of symbols in S0, and we in fact have |tρϕt| ≤ 1 for

all t. We now proceed to prove the first case of the theorem. Let us make the following

assumptions:
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• On supp(ψ ◦ ρ0) ∩ supp(ψ0 ◦ p0) ∩ supp(ψ1 ◦ x):

β0(σ − (m− 1)/2− 1 + β̂) ≥ c0 > 0 (8.5.42)

|(σ − (m− 1)/2− tρϕt)(ρ−1Hp̃mρ)| ≤ c0/4 for all t > 0.

The first condition is satisfied at L± by assumption, and the second condition is

satisfied close to X = {x = 0}, since ρ−1Hp̃mρ = o(1) as x→ 0 by Riemann-Lebesgue.

• On supp d(ψ1 ◦ x) ∩ supp(ψ ◦ ρ0) ∩ supp(ψ0 ◦ p0):

β̃β0 ≥ c1 > 0, |x−1Hp̃mx| ≤ c1/2.

The second condition is satisfied close to X, since x−1Hp̃mx = o(1) as x→ 0.

• On supp d(ψ ◦ ρ0) ∩ supp(ψ1 ◦ x) ∩ supp(ψ0 ◦ p0):

∓ Hp0ρ0 ≥
β1

2
ρ0 ≥ c2 > 0, |Hp̃mρ0| ≤ c2/2. (8.5.43)

• On supp d(ψ0 ◦ p0) ∩ supp(ψ ◦ ρ0) ∩ supp(ψ1 ◦ x):

|ρ−mpm| ≥ c3 > 0. (8.5.44)

This can be arranged as follows: First, note that we can ensure

|p0| ≥ 2c3 (8.5.45)

there; then, since |ρ−mp̃m| = o(1) as x → 0, shrinking the support of ψ1 if necessary

guarantees (8.5.44).

We can ensure that all these assumptions are satisfied by first choosing ψ1, localizing near

bS∗XM , then ψ, localizing near L± within the characteristic set (p0)−1(0) of P ′′m, such that

the inequalities in (8.5.42) and (8.5.43) are strict on (p0)−1(0), then choosing ψ0 (localizing

near (p0)−1(0)) such that strict inequalities hold in (8.5.42), (8.5.43) and (8.5.45), and finally

shrinking the support of ψ1, if necessary, such that all inequalities hold.

We can then write

atHpmat ± ρm−1a2
tβ0β̂ = ±

(c0

8
ρm−1a2

t + b21,t + b22,t − b23,t + ft + gt

)
, (8.5.46)
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where, with a mollifier J as in Lemma 8.5.5,

b1,t = ϕtρ
σψψ0ψ1

[
β0(σ − (m− 1)/2− tρϕt + β̂)

± (σ − (m− 1)/2− tρϕt)(ρ−1JHp̃mρ)− c0

2

]1/2
,

b2,t = ϕtρ
σψ0ψ1

√
−ψψ′

[
∓
(
Hp0ρ0 + JHp̃mρ0

)
− c2

4

]1/2
,

b3,t = ϕtρ
σψψ0

√
−ψ1ψ′1

[(
β̃β0 ± x−1JHp̃mx+

c1

4

)
x
]1/2

,

gt = ϕ2
tρ

2σψ2ψ0ψ
′
0ψ

2
1(−mβ0p0 ± Hp̃mp0),

and ft = f1,t + f2,t + f3,t with

f1,t = ϕ2
tρ

2σψ2ψ2
0ψ

2
1

×
[
±(σ − (m− 1)/2− tρϕt)

(
ρ−1(Hp̃m − JHp̃m)ρ

)
+

3c0

8

]
,

f2,t = ϕ2
tρ

2σψψ′ψ2
0ψ

2
1

(
±
(
Hp̃m − JHp̃m

)
ρ0 −

c2

4

)
,

f3,t = ϕ2
tρ

2σψ2ψ2
0ψ1ψ

′
1

(
±x−1

(
Hp̃m − JHp̃m

)
x− c1

4

)
x.

In particular, b1,t, b2,t ∈ Sσ, b3,t ∈ x1/2Sσ, ft ∈ S2σ;∞Hs−1
b + S2σ, gt ∈ Hs−1

b S2σ + S2σ

uniformly, with the symbol orders one lower if t > 0 for bj,t, j = 1, 2, 3, and two lower for

ft, gt. The term b21,t will give rise to an operator which is elliptic at L±. The term b22,t

(which has the same, ‘advantageous,’ sign as b1,t) can be discarded, and the term −b23,t,
with a ‘disadvantageous’ sign, will be bounded using the a priori regularity assumptions on

u. An important point here is that the non-smooth symbol ft is non-negative if we choose

the mollifier J to be close enough to I; in fact, we then have fj,t ≥ 0 for j = 1, 2, 3. Lastly,

we will be able to estimate the contribution of the term gt using elliptic regularity, noting

that its support is disjoint from the characteristic set p−1
m (0) of Pm.

Let At ∈ Ψ
σ−(m−1)/2
b , B1,t, B2,t, B3,t ∈ Ψσ

b denote quantizations with uniform b-wave

front set contained in the support of the respective full symbols at, b1,t, b2,t and b3,t. Then

we compute as in the proof of real principal type propagation (see equation (8.5.23) there),

letting Pm = P0 + P̃m:

Re〈iA∗t [Pm, At]u, u〉 = −
〈

1

2i
(Pm − P ∗m)Atu,Atu

〉
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− Re〈iAtf,Atu〉+ Re〈iAtP̃m−1u,Atu〉

We split the first term on the right hand side into two pieces corresponding to the decom-

position Pm = P0 + P̃m. The piece involving P0 will be dealt with later. For the other

piece, note that P̃m is a sum of terms of the form ταwQm, where w ∈ Hs
b is real-valued and

Qm = qm(z, bD) ∈ Ψm
b has a real principal symbol. Now,

ταwQm − (ταwQm)∗

= ταw(Qm −Q∗m) + τα(wQ∗m −Q∗mw) + τα(Q∗m − τ−αQ∗mτα)w,

thus, using Theorem 8.2.12 (3) with k = 1, k′ = 0 (applicable because we are assuming

m ≥ 1) to compute Q∗mw and with k = 0, k′ = 0 to compute the last term, we get

i(P̃m − P̃ ∗m) = R1 +R2 +R3,

where

R1 ∈ Hs−1,α
b Ψm−1

b , R2 ∈ Ψm−1
b ◦Ψ0;0Hs−1,α

b , R3 ∈ Ψm−1;0Hs−1,α
b .

Let χ ∈ C∞c (R+), χ ≡ 1 near 0. Writing R1 as the sum of terms of the form w′Q′, where

w′ ∈ Hs−1,α
b and Q′ ∈ Ψm−1

b , we have for ε′ > 0, which we can choose to be as small as we

like provided we shrink the support of the Schwartz kernel of At:

〈w′(z)Q′Atu,Atu〉 = 〈χ(x/ε′)w′(z)Q′Atu,Atu〉;

by Lemma 8.5.4, this can be bounded by cε′‖Atu‖2
H

(m−1)/2
b

, where cε′ → 0 as ε′ → 0.45 In a

similar manner, we can treat the terms involving R2 and R3. Hence, under the assumption

that the Schwartz kernel of At is localized sharply enough near ∂M × ∂M , we have

|〈(P̃m − P̃ ∗m)Atu,Atu〉| ≤ Cδ + δ‖Atu‖2
H

(m−1)/2
b

(8.5.47)

for an arbitrarily small, but fixed δ > 0.

45This argument requires that elements of Hs−1
b are multipliers on H

(m−1)/2
b , which is the case if s− 1 ≥

(m− 1)/2.
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Next, for δ > 0, we estimate

|〈Atf,Atu〉| ≤ Cδ + δ‖Atu‖2
H

(m−1)/2
b

,

using that ‖Atf‖H−(m−1)/2
b

is uniformly bounded.

Finally, we can bound the term 〈AtP̃m−1u,Atu〉 as in the proof of Theorem 8.5.6, thus

obtaining

|〈AtP̃m−1u,Atu〉| ≤ Cδ + δ‖Atu‖2
H

(m−1)/2
b

.

Therefore, writing Q := 1
2i(P0 − P ∗0 ) ∈ Ψm−1

b , we get

±Re〈(iA∗t [Pm, At] +A∗tQAt)u, u〉 ≤ Cδ + δ‖Atu‖2
H

(m−1)/2
b

Now, using that |〈B∗t,3Bt,3u, u〉| = ‖Bt,3u‖2L2
b

is uniformly bounded because of the assumed

a priori control of u in a neighborhood of L± in L±∩{x > 0}, we deduce, using the operator

Λ = Λ(m−1)/2:

Re
〈(
±iA∗t [Pm, At]±A∗tQAt −

c0

8
(ΛAt)

∗(ΛAt)

−B∗1,tB1,t −B∗2,tB2,t +B∗3,tB3,t

)
u, u

〉
≤ Cδ +

(
δ − c0

8

)
‖Atu‖2

H
(m−1)/2
b

− ‖B1,tu‖2L2
b
,

(8.5.48)

where we discarded the negative term −〈B∗2,tB2,tu, u〉 on the right hand side. If we choose

δ < c0/8, then we can also discard the term on the right hand side involving Atu, hence

‖B1,tu‖2L2
b
≤ C − Re

〈(
±iA∗t [Pm, At]±A∗tQAt −

c0

8
(ΛAt)

∗(ΛAt)

−B∗1,tB1,t −B∗2,tB2,t +B∗3,tB3,t

)
u, u

〉
.

(8.5.49)

We now exploit the commutator relation (8.5.46) in the same way as in the proof of Theo-

rem 8.5.6: If we introduce operators

J+ ∈ Ψ
σ−(m−1)/2−1
b , J− ∈ Ψ

−σ+(m−1)/2+1
b

with real principal symbols j+, j−, satisfying J+J− = I + R̃, R̃ ∈ Ψ−∞b , we obtain, keeping
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in mind (8.5.40),

Re
〈
J−
(
±iA∗t [Pm, At]±A∗tQAt −

c0

8
(ΛAt)

∗(ΛAt)

−B∗1,tB1,t −B∗2,tB2,t +B∗3,tB3,t

)
u, (J+)∗u

〉
≥ Re

〈[
j−
(
±atHpmat + ρm−1a2

tβ0β̂ −
c0

8
ρm−1a2

t

− b21,t − b22,t + b23,t

)]
(z, bD)u, (J+)∗u

〉
− C

= Re〈(j−ft)(z, bD)u, (J+)∗u〉+ Re〈(j−gt)(z, bD)u, (J+)∗u〉 − C,

where we absorbed various error terms in the constant C; see the discussion around equa-

tion (8.5.33) for details. The term involving ft is uniformly bounded from below as explained

in the proof of Theorem 8.5.6 after equation (8.5.33). It remains to bound the term involv-

ing gt. Note that we can write (j−gt)(z, ζ) as a sum of terms of the form w(z)ϕt(ζ)2s(z, ζ),

where w ∈ Hs−1
b , or w ∈ C∞, and s ∈ Sσ+(m−1)/2+1, and we can assume

(bS∗M ∩ supp s) ∩ p−1
m (0) = ∅,

since this holds for gt in place of s. Thus, on bS∗M ∩ supp s, we can use elliptic regularity,

Theorem 8.4.1, to conclude that WFσ+1
b (u) ∩ (bS∗M ∩ supp s) = ∅; but this implies that

(wϕ2
t s)(z,

bD)u ∈ H−(m−1)/2
b

is uniformly bounded. Therefore, we finally obtain from (8.5.49) a uniform bound on

‖B1,tu‖L2
b
, which implies B1,0u ∈ L2

b and thus the claimed microlocal regularity of u at

L±, finishing the proof of the first part of the theorem in the case m ≥ 1, r = 0.

The proof of the second part is similar, only instead of requiring (8.5.42), we require

β0(σ − (m− 1)/2 + β̂) ≤ −c0 < 0

on supp(ψ ◦ ρ0) ∩ supp(ψ0 ◦ p0) ∩ supp(ψ1 ◦ x), and we correspondingly define

b1,t = ϕtρ
σψψ0ψ1

[
−β0(σ − (m− 1)/2− tρϕt + β̂)

∓ (σ − (m− 1)/2− tρϕt)(ρ−1JHp̃mρ)− c0

2

]1/2
.
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We also redefine

b3,t = ϕtρ
σψψ0

√
−ψ1ψ′1

[(
β̃β0 ± x−1JHp̃mx−

c1

4

)
x
]1/2

,

f1,t = ϕ2
tρ

2σψ2ψ2
0ψ

2
1[

∓(σ − (m− 1)/2− tρϕt)
(
ρ−1(Hp̃m − JHp̃m)ρ

)
+

3c0

8

]
,

f3,t = ϕ2
tρ

2σψ2ψ2
0ψ1ψ

′
1

(
∓x−1

(
Hp̃m − JHp̃m

)
x− c1

4

)
x.

Equation (8.5.46) then becomes

atHpmat ± ρm−1a2
tβ0β̂ = ∓

(c0

8
ρm−1a2

t + b21,t − b22,t + b23,t + ft + gt

)
,

and the rest of the proof proceeds as before, the most important difference being that

now the term b23,t has an advantageous sign (namely, the same as b21,t), whereas −b22,t does

not, which is the reason for the microlocal regularity assumption on u in a punctured

neighborhood of L± within bS∗
∂Rn+

Rn+.

The last step in the proof is to remove the restrictions on m (the order of the operator)

and r (the growth rate of u and f). We accomplish this by rewriting the equation Pu = f

(without restrictions on m and r) as

(x−rPΛ+xr)(x−rΛ−u) = x−rf + x−rPRxr(x−ru),

where Λ± ∈ Ψ
∓(m−m0)
b , m0 ≥ 1, have principal symbols ρ∓(m−m0) and satisfy Λ+Λ− = I+R,

R ∈ Ψ−∞b . Then x−rPΛ+xr has order m0, and, recalling s̃ = σ −m+ 1,

x−rf ∈ H s̃
b, x−rΛ−u ∈ H s̃+m0−3/2

b

lie in unweighted b-Sobolev spaces. The principal symbol of P0,r := x−rP0Λ+xr is an elliptic

multiple of the principal symbol of P0, hence the Hamilton vector fields of P0,r and P0 agree,

up to a positive non-vanishing factor, on the characteristic set of P0; in particular, even

though β0 in equation (8.5.38) may be different for P0,r than for P0, β̃ does not change, at

least on L±. However, the imaginary part of the subprincipal symbol, hence β̂, does change,

resulting in a shift of the threshold values in the statement of the theorem: Concretely, we
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claim

σb,m0−1

(
1

2i
(P0,r − P ∗0,r)

)
= ±ρm0−1β0

(
β̂ +

m−m0

2
− rβ̃

)
at L±. (8.5.50)

Granted this, the threshold quantity is the sup, resp. inf, over L± of

s̃+ (m0 − 1)/2 + β̂ + (m−m0)/2− rβ̃ = s̃+ (m− 1)/2 + β̂ − rβ̃.

To prove (8.5.50), let us write P0 = P ′m + P ′m−1, where we can assume that Λ+ and P ′m

are (formally) self-adjoint by letting P ′m = (P0 + P ∗0 )/2 and P ′m−1 = (P0 − P ∗0 )/2. We then

compute

σb,m0−1

(
1

2i

(
x−rP ′m−1Λ+xr − xrΛ+(P ′m−1)∗x−r

))
= ρm0−1ρ1−mσb,m−1

(
1

2i
(P ′m−1 − (P ′m−1)∗)

)
= ±ρm0−1β0β̂,

and

σb,m0−1

(
1

2i

(
x−rP ′mΛ+xr − xrΛ+P ′mx

−r))
= σb,m0−1

(
1

2i
[P ′m,Λ

+]

)
+ σb,m0−1

(
1

2i

(
x−r[P ′mΛ+, xr]− xr[Λ+P ′m, x

−r]
))

= ±m−m0

2
β0ρ

m0−1 − rx−1Hp0ρm0−mx

= ±
(
m−m0

2
β0 − rβ̃β0

)
ρm0−1 − rp0x

−1Hρm0−mx.

The last term on the right hand side involving p0 vanishes at L±, proving (8.5.50).

Lastly, the regularities needed for the proof to go through are that the conditions in

(8.5.35) hold for some m0 ≥ 1; thus, choosing m0 = max(1, 5 − 2s̃) = 1 + 2(2 − s̃)+, we

obtain the conditions (8.5.41).

8.5.5 Normally hyperbolic trapping

We now extend the proof of non-trapping estimates on weighted b-Sobolev spaces at nor-

mally hyperbolically trapped sets given in Theorem 3.3.14, more specifically the estimates

(3.3.23) and (3.3.24), to the non-smooth setting.
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To set this up, let P0 ∈ Ψm
b (Rn+) with

1

2i
(P0 − P ∗0 ) = E1 ∈ Ψm−1

b (Rn+), (8.5.51)

where the adjoint is taken with respect to a fixed smooth b-density; an example to keep

in mind here and in what follows is P0 = �g for a smooth Lorentzian b-metric g on Rn+,

considered a coordinate patch of Kerr-de Sitter space, in which case E1 = 0, and the

threshold weight in Theorem 8.5.12 below is r = 0. Let p0 be the principal symbol of

P0. Let us use the coordinates (z; ζ) = (x, y;λ, η) on bT ∗Rn+ as usual and write M =

Rn+, X = ∂Rn+. With Σ ⊂ bS∗M denoting the characteristic set of P0, we assume that P0

has normally hyperbolic trapping in the b-sense at Γ ⊂ Σ ∩ bS∗XM , see Definition 2.3.1,

with Γ+ ⊂ Σ ∩ bS∗XM denoting the unstable manifold and Γ− ⊂ Σ the stable manifold at

Γ. Recall that Γ ∩ bT ∗X = ∅, so xDx is elliptic near Γ; thus

ρ = 〈λ〉 near Γ

extends to the inverse of a boundary defining function of bS∗M in bT
∗
M . The rescaled

Hamilton vector field

V = ρ−m+1Hp0

is tangent to Γ±, and Γ+ is backward trapped for the Hamilton flow, while Γ− is forward

trapped, and Γ is trapped. We recall the corresponding quantitative assumptions: Let

φ+ ∈ C∞(bS∗M) be a defining function of Γ+ in bS∗XM , and let φ− ∈ C∞(bS∗M) be a

defining function of Γ−. Thus, Γ+ is defined within bS∗M by x = 0, φ+ = 0. Let

p̂0 = ρ−mp0.

We then assume that φ+ and φ− satisfy

V φ+ = −c2
+φ+ + µ+x+ ν+p̂0, V φ− = c2

−φ− + ν−p̂0, (8.5.52)

with c± > 0 smooth near Γ and µ+, ν± smooth near Γ, consistent with the (in)stability of

Γ− (Γ+); further, x satisfies

V x = −c∂x, c∂ > 0, (8.5.53)
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which is consistent with the stability of Γ−, and near Γ,

ρ−1V ρ = cfx (8.5.54)

for some smooth cf , which holds in view of our choice of ρ. These definitions are entirely

analogous to (3.3.13), (3.3.15) and (3.3.19).

We now perturb P0 by a non-smooth operator P̃ , that is, we consider the operator

P = P0 + P̃ , P̃ = P̃m + P̃m−1 + R̃, (8.5.55)

where for some fixed α > 0, we have P̃m−j ∈ Hs−j,α
b Ψm−j

b , j = 0, 1, and R̃ ∈ Ψm−2;0
b Hs−1,α

b .

We then have the following tame non-trapping estimate at Γ:

Theorem 8.5.12. Using the above notation and making the above assumptions, let s, s̃ ∈ R
be such that

s̃ ≤ s− 1, s > n/2 + 7/2 + (2− s̃)+. (8.5.56)

Suppose u ∈ H s̃+m−3/2,r
b (Rn+) is such that Pu = f ∈ H s̃,r

b (Rn+).

Then for r < − supΓ ρ
−m+1σb,m−1(E1)/c∂ and for any neighborhood U of Γ, there ex-

ists a set U2 ⊂ U with U2 ∩ Γ+ = ∅ such that if WFs̃+m−1,r
b (u) ∩ U2 = ∅, then in fact

WFs̃+m−1,r
b (u) ∩ Γ = ∅; thus, we can propagate microlocal regularity into Γ.

On the other hand, for r > − infΓ ρ
−m+1σb,m−1(E1)/c∂ and for a suitable set U2 ⊂ U

with U2 ∩ Γ− = ∅, we can again propagate regularity of u into Γ.

Proof. The main part of the argument, in particular the choice of the commutant, is a slight

modification of the positive commutator argument used in §3.3.2; the handling of the non-

smooth terms is a modification of the proof of the radial point estimate, Theorem 8.5.10. In

particular, the positivity comes from differentiating the weight x−r in the commutant. To

avoid working in weighted b-Sobolev spaces for the non-smooth problem, we will conjugate

P by x−r, giving an advantageous (here meaning negative) contribution to the imaginary

part of the subprincipal symbol of the conjugated operator near Γ.

Throughout this proof, we denote operators and their symbols by the corresponding capital

and lower case letters, respectively.

Concretely, put σ = s̃+m− 1, and define

ur := x−ru ∈ Hσ−1/2
b , fr := x−rf ∈ Hσ−m+1

b ,



8.5. PROPAGATION OF SINGULARITIES 357

Pr := x−rPxr = P0,r + P̃r, P0,r = x−rP0x
r, P̃r = x−rP̃ xr,

where

P̃r = P̃m,r + P̃m−1,r + R̃r, P̃m−j,r ∈ Hs−j,α
b Ψm−j

b , R̃r ∈ Ψm−2;0
b Hs−1,α

b ;

then Prur = fr, and we must show a non-trapping estimate for ur on unweighted b-Sobolev

spaces. A simple computation shows that

1

2i
(P0,r − P ∗0,r)−

(
1

2i
(P0 − P ∗0 )−Op(rx−1Hp0x)

)
∈ Ψm−2

b ;

but x−1Hp0x = −ρm−1c∂ with c∂ > 0 near Γ by (8.5.53), hence, using (8.5.51),

1

2i
(P0,r − P ∗0,r) = E1 + E′1 +B (8.5.57)

with B,E′1 ∈ Ψm−1
b , where B has principal symbol b = rc∂ρ

m−1 near Γ, and WF′b(E′1)∩Γ =

∅. Notice that by assumption on r, B + E1 is elliptic on Γ.

We now turn to the positive commutator argument: Fix 0 < β < min(1, α) and define

ρ+ = φ2
+ + xβ.

Let χ0(t) = e−1/t for t > 0 and χ0(t) = 0 for t < 0, further χ ∈ C∞c ([0, R)) for R > 0 to be

chosen below, χ ≡ 1 near 0, χ′ ≤ 0, and finally ψ ∈ C∞c ((−R,R)), ψ ≡ 1 near 0. Define for

κ > 0, specified later,

a = ρσ−(m−1)/2χ0(ρ+ − φ2
− + κ)χ(ρ+)ψ(p̂0).

On supp a, we have ρ+ ≤ R, thus the argument of χ0 is bounded above by R+κ. Moreover,

φ2
− ≤ R + κ and x ≤ R1/β, therefore a is supported in any given neighborhood of Γ if

one chooses R and κ small. Notice that a is merely a conormal symbol which does not

grow at the boundary, but we showed in §3.3.5 that we have a full symbolic calculus for

such symbols as well. We also remark that the proofs of composition results of smooth and

non-smooth b-ps.d.o.s presented in §8.2 go through without changes if one uses b-ps.d.o.s

with non-growing conormal, instead of smooth, symbols.46

46A somewhat more direct way of dealing with this issue goes as follows: Assume, as one may, that
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Define the regularizer ϕδ(ζ) = (1 + δρ)−1 near Γ, and put aδ = ϕδa. Put Ṽ =

ρ−m+1Hp̃m,r and define c̃∂ , c̃f ∈ Hs−1,α
b near Γ by Ṽ x = −c̃∂x, ρ−1Ṽ ρ = c̃fx. Then,

with pm,r = p0,r + p̃m,r, we obtain, using (8.5.52)-(8.5.54):

aδHpm,raδ = ϕ2
δρ

2σχ2
0χ

2ψ2(σ − (m− 1)/2− δρϕδ)(cf + c̃f )x

− ϕ2
δρ

2σχ0χ
′
0χ

2ψ2(2c2
+φ

2
+ + βc∂x

β − 2µ+φ+x− 2ν+φ+p̂0

+ 2c2
−φ

2
− + 2ν−φ−p̂0 − Ṽ φ2

+ + βc̃∂x
β + Ṽ φ2

−)

+ ϕ2
δρ

2σχ2
0χχ

′ψ2(V ρ+ + Ṽ ρ+) + ϕ2
δρ

2σχ2
0χ

2ψψ′(V p̂0 + Ṽ p̂0)

= −c2
+a

2
+,δ − c2

−a
2
−,δ + a+,δh+,δpm,r + a−,δh−,δpm,r + eδ + gδ − fδ, (8.5.58)

where, writing p̂0 = ρ−mpm,r − ρ−mp̃m,r in the second and third line,

a±,δ = ϕδρ
σ
√

2χ0χ′0χψφ±,

h±,δ = ±ϕδρσ−m
√

2χ0χ′0χψν±,

eδ = ϕ2
δρ

2σχ2
0χχ

′ψ2(V ρ+ + Ṽ ρ+),

gδ = ϕ2
δρ

2σχ2
0χ

2ψψ′(V p̂0 + Ṽ p̂0),

fδ = ϕ2
δρ

2σχ0χ
2ψ2
[(
β(c∂ + c̃∂)xβ − 2µ+φ+x− Ṽ φ2

+ + Ṽ φ2
−

+ 2(ν+φ+ − ν−φ−)ρ−mp̃m,r
)
χ′0

− (σ − (m− 1)/2− δρϕδ)(cf + c̃f )xχ0

]
Note that in the definition of fδ, by the choice of β and using the fact that χ0 is bounded

by a constant multiple of χ′0 on its support, the constant being uniform for R + κ < 1,

the term c∂x
β dominates all other terms on the support of fδ ∈ S2σ;∞Hs−1

b for R and κ

small enough, hence fδ ≥ 0, and its contribution will be controlled by virtue of the sharp

G̊arding inequality. The term arising from eδ will be controlled using the a priori regularity

` := β−1 ∈ N. Then, even though a is not a smooth symbol of Rn+ with the standard smooth structure, it

becomes smooth if one changes the smooth structure of Rn+ by blowing up the boundary to the `-th order,

i.e. by taking x′ = xβ as a boundary defining function, thus obtaining a manifold M`, which is Rn+ as a

topological manifold, but with a different smooth structure; in particular, the function x = (x′)` is smooth
on M` in view of ` ∈ N. Moreover, the blow-down map M` → Rn+ induces isomorphisms (see e.g. [82, §4.18])

Hs′,γ
b (Rn+) ∼= Hs′,`γ

b (M`), s′, γ ∈ R.

Therefore, one can continue to work on Rn+, tacitly assuming that all functions and operators live on, and
all computations are carried out on, M`.
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assumption of ur on Γ−, and gδ, which is supported away from the characteristic set, will

be controlled using elliptic regularity.

Proceeding with the argument, we first make the simplification R̃r = 0 by replacing f

by f − R̃rur, and we assume m ≥ 1 and s̃ ≥ (5 −m)/2 for now. Then we have, as in the

proof of Theorem 8.5.10,

Re〈iA∗δ [P0,r + P̃m,r, Aδ]ur, ur〉+

〈
1

2i
(P0,r − P ∗0,r)Aδur, Aδur

〉
= −

〈
1

2i
(P̃m,r − P̃ ∗m,r)Aδur, Aδur

〉
− Re〈iAδf,Aδur〉+ Re〈iAδP̃m−1,rur, Aδur〉.

Estimating each term on the right hand side as in the proof of Theorem 8.5.10 and using

(8.5.57), we obtain for any µ > 0:

Re
〈(
A∗δ(i[P0,r + P̃m,r, Aδ] + E1 + E′1 +B)Aδ

)
ur, ur

〉
≥ −Cµ − µ‖Aδur‖2(m−1)/2. (8.5.59)

Here and in what follows, we in particular absorb all terms involving ‖ur‖σ−1/2 into the

constant Cµ. On the left hand side, the E′1-term can be dropped because of WF′b(E′1) ∩
WF′b(A) = ∅ for sufficiently localized a. Moreover, the principal symbol of E1 + B near Γ

is e1 + b = −q2 with q an elliptic symbol of order (m − 1)/2, since, by assumption on r,

we have e1 + rc∂ρ
m−1 < 0 near Γ. Therefore, we can write E1 + B = −Q∗Q + E′′1 + E2,

where E′′1 ∈ Ψm−1
b , E2 ∈ Ψm−2

b , WF′b(E′′1 )∩Γ = ∅. Again, the resulting term in the pairing

(8.5.59) involving E′′1 can be dropped; also, the term involving E2 can be dropped at the

cost of changing the constant Cµ, since ur ∈ Hσ−1/2
b .

Hence, introducing J± ∈ Ψ
±(σ−(m−1)/2−1)
b , with real principal symbols, satisfying I −

J+J− ∈ Ψ−∞b , we get

Re
〈
Op(j−aδHpm,raδ)ur, (J

+)∗ur
〉
− ‖QAδur‖20 ≥ −Cµ − µ‖Aδur‖2(m−1)/2. (8.5.60)

We now plug the commutator relation (8.5.58) into this estimate. We obtain several terms,

which we bound as follows: First, since j−eδ ∈ (C∞ + Hs−1,α
b )Sσ+(m−1)/2+1 uniformly,

Op(j−eδ) is a uniformly bounded family of maps Hσ
b → H

−(m+1)/2
b ; thus, choosing Ẽ ∈ Ψ0

b
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with WF′b(Ẽ) ⊂ U and with WF′b(I − Ẽ) disjoint from supp eδ, we conclude

|〈Op(j−eδ)ur, (J
+)∗ur〉| ≤ C + |〈Op(j−eδ)ur, (J

+)∗Ẽur〉| ≤ C + ‖B2ur‖2σ

for some B2 ∈ Ψ0
b with WF′b(B2) ∩ Γ+ = ∅.

Next, the term 〈Op(j−gδ)ur, (J
+)∗ur〉 is uniformly bounded, as detailed in the proof of

Theorem 8.5.10. Moreover, by the sharp G̊arding inequality, see the argument in the proof

of Theorem 8.5.6,

Re〈Op(−j−fδ)ur, (J+)∗ur〉 ≤ C.

Further, we obtain two terms involving h±,δ; introducing B3 ∈ Ψ0
b elliptic on WF′b(A),

these can be bounded for µ > 0 by

|〈Op(j−a±,δh±,δpm,r)ur, (J
+)∗ur〉|

≤ C + |〈Op(j−a±,δh±,δ)(P0,r + P̃m,r)ur, (J
+)∗ur〉|

≤ C + |〈H±,δfr, A±,δur〉|+ |〈Op(j−a±,δh±,δ)P̃m−1,rur, (J
+)∗ur〉|

≤ C + µ‖A±,δur‖20 + Cµ‖B3fr‖2σ−m.

Here, for the first estimate, we employ Theorem 8.2.12 (3) to obtain

Op(j−a±,δh±,δ)P̃m,r −Op(j−a±,δh±,δp̃m,r)

=: Υδ ∈ Ψ
σ+(m−1)/2;0
b Hs−1

b + Ψ
σ−(m−1)/2−1
b ◦Ψm;0

b Hs−1
b ,

and Υδ is easily seen to be uniformly bounded from H
σ−1/2
b to H

−m/2
b , whereas (J+)∗ur ∈

H
m/2
b , thus |〈Υδur, (J

+)∗ur〉| ≤ C. For the second estimate, we simply use (P0,r+P̃m,r)ur =

fr−P̃m−1,rur, and for the third estimate, we apply the Peter–Paul inequality to the first pair-

ing; to bound the second pairing, we use the boundedness of P̃m−1,r : H
σ−1/2
b → H

σ−m+1/2
b .

Finally, including the terms c2
±a

2
±,δ into the estimate obtained from (8.5.60) by making

use of the above estimates, we obtain

‖C+A+,δur‖20 + ‖C−A−,δur‖20 + ‖QAδur‖20
≤ Cµ + µ‖A+,δur‖20 + µ‖A−,δur‖20 + µ‖Aδur‖2(m−1)/2

+ ‖B2ur‖2σ + ‖B1fr‖2σ−m+1 + Cµ‖χfr‖2σ−m,
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where B1 ∈ Ψ0
b is elliptic on WF′b(A) with WF′b(B1) ⊂ U , and χ ∈ C∞c (M) is identically

1 near the projection of Γ ⊂ bS∗M to the base M . Since c+ and c− have positive lower

bounds near Γ, we can absorb the terms on the right involving A±,δ into the left hand

side by choosing µ sufficiently small, at the cost of changing the constant Cµ; likewise,

ρ−(m−1)/2q has a positive lower bound near supp a, hence the term on the right involving

Aδ can be absorbed into the left hand side for small µ. Dropping the first two terms on the

left hand side, we obtain the Hσ
b -regularity of ur at Γ, hence WFσ,rb (u) ∩ Γ = ∅.

Next, we remove the restriction m ≥ 1: Let m0 ≥ 1. The idea, as before, is to rewrite

Pu = f as PΛ+(Λ−u) = f + PRu, where Λ± ∈ Ψ
±(m0−m)
b , with real principal symbols,

satisfy Λ+Λ− = I+R. We now have to be a bit careful though to not change the imaginary

part of the subprincipal symbol of PΛ+ at Γ. Concretely, we choose Λ+ self-adjoint with

principal symbol λ+ = ρm0−m near Γ; then

P0Λ+ − (P0Λ+)∗ = Λ+(P0 − P ∗0 ) + [P0,Λ
+].

Clearly, Λ+(P0 − P ∗0 ) ∈ xΨm0−1
b + Ψm0−2

b , and the principal symbol of the second term is

σb,m0−1([P0,Λ
+]) = −iHp0λ

+ = −ix(m0 −m)ρm0−1cf

near Γ by (8.5.54), hence, using (8.5.51),

P0Λ+ − (P0Λ+)∗ = Λ+E1 + xE′1 + E′′1 + E2

with E′1, E
′′
1 ∈ Ψm0−1

b , E2 ∈ Ψm0−2
b and WF′b(E′′1 ) ∩ Γ = ∅; therefore, the first part of the

proof with P and u replaced by PΛ+ and Λ−u, respectively, applies. The proof of the

theorem in the case r < − supΓ ρ
−m+1e1/c∂ is complete.

When the role of Γ+ and Γ− is reversed, there is an overall sign change, and we thus

get a advantageous (now meaning positive) contribution to the subprincipal part of the

conjugated operator Pr for r > − infΓ ρ
−m+1e1/c∂ ; the rest of the argument is unchanged.



362 CHAPTER 8. OPERATORS WITH ROUGH COEFFICIENTS

8.6 Energy estimates

Let (M, g) be a compact manifold with boundary equipped with a Lorentzian b-metric g

satisfying

g ∈ C∞(M ;S2bT ∗M) +Hs
b(M ;S2bT ∗M),

where the b-Sobolev space here is defined using an arbitrary fixed smooth b-density on M .

Let U ⊂M be open, and suppose t : U → (t0, t1) is a proper function such that dt is timelike

on U . We consider the operator

P = �g + L, L ∈ (C∞ +Hs−1
b )Diff1

b + (C∞ +Hs−2
b ).

For s > n/2, one obtains using Lemma 8.3.2 and Corollary 8.2.10 that in any coordinate

system the coefficients Gij of the dual metric G are elements of C∞+Hs
b, and all Christoffel

symbols are elements of C∞+Hs−1
b . Therefore, by definition of �g, one easily obtains that

�g ∈ (C∞ +Hs
b)Diff2

b + (C∞ +Hs−1
b )Diff1

b,

thus

P ∈ (C∞ +Hs
b)Diff2

b + (C∞ +Hs−1
b )Diff1

b + (C∞ +Hs−2
b ). (8.6.1)

We prove the following energy estimate, analogous to [114, Proposition 3.8]; we restrict

ourselves to operators acting on functions for brevity, but the proof works for bundles as

well.

Proposition 8.6.1. Let t0 < T0 < T ′0 < T1 < t1 and r ∈ R, and suppose s > n/2+2. Then

there exists a constant C > 0 such that for all u ∈ H2,r
b (M), the following estimate holds:

‖u‖
H1,r

b (t−1([T ′0,T1]))
≤ C(‖Pu‖

H0,r
b (t−1([T0,T1]))

+ ‖u‖
H1,r

b (t−1([T0,T ′0]))
).

This also holds with P replaced by P ∗. If one replaces C by any C ′ > C, the estimate also

holds for small perturbations of P in the space indicated in (8.6.1).

Proof. Let us work in a coordinate system z1 = x, z2 = y1, . . . , zn = yn−1, where x is a

boundary defining function in case we are working near the boundary. By piecing together

estimates from coordinate patches, one can deduce the full result. Write b∂j = ∂zj for

2 ≤ j ≤ n, and b∂1 = x∂x if we are working near the boundary, b∂1 = ∂x otherwise.
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Moreover, let us fix the Riemannian b-metric

g̃ =
dx2

x2
+ dy2

near the boundary, g̃ = dx2 + dy2 away from it. We adopt the summation convention in

this proof.

We will imitate the proof of [114, Proposition 3.8], which proves a similar result in

a smooth, semiclassical setting. Thus, consider the commutant V = −iZ, where Z =

x−2rχ(t)W with χ ∈ C∞(R), chosen later in the proof, and W = G(−, bdt), which is

timelike in U . We will compute the ‘commutator’

− i(V ∗P − P ∗V ) = −i(V ∗�g −�∗gV )− iV ∗L+ iL∗V, (8.6.2)

where the adjoints are taken with respect to the (b-)metric g̃. First, we need to make sense

of all appearing operator compositions. Notice that V ∈ x−2r(C∞ +Hs
b)Diff1

b, and writing

V = −iZjb∂j , we get

V ∗ = −ib∂jZj = V − i(b∂jZ
j) ∈ x−2r(C∞ +Hs

b)Diff1
b + x−2r(C∞ +Hs−1

b ),

similarly

�g,�
∗
g, P

∗ ∈ (C∞ +Hs
b)Diff2

b + (C∞ +Hs−1
b )Diff1

b + (C∞ +Hs−2
b );

now, since

(C∞ +Hs−j
b )Diffjb(C∞ +Hs−k

b )Diffkb ⊂
∑
l≤j

(C∞ +Hs−j
b Hs−k−l

b )Diffj+k−lb ,

it suffices to require s > n/2 + 2, since then Hs−j
b Hs−k−j

b ⊂ Hs−k−j
b for 0 ≤ j, k ≤ 2,

0 ≤ j + k ≤ 3.

Returning to the computation of (8.6.2), we conclude that −i(V ∗�g − �∗gV ) ∈ (C∞ +

Hs−3,−2r
b )Diff2

b, and thus its principal symbol is defined. Since it is a formally self-adjoint

(with respect to g̃) operator with real coefficients that vanishes on constants, it equals
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bd∗Cbd provided the principal symbols are equal. To compute it, let us write

−i(V ∗�g −�∗gV ) = −(b∂kZ
k)�g + i[�g, V ]− i(�g −�∗g)V.

(See [113, §3-4] for a similar computation.) We define Si ∈ C∞ +Hs−1
b by

σ2
b(−i(�g −�∗g)V ) = 2SiZjζiζj = (SiZj + SjZi)ζiζj .

Moreover, with HG denoting the Hamilton vector field of the dual metric of g,

HG = Gijζi
b∂j +Gijζj

b∂i − (b∂kG
ij)ζiζj∂ζk ,

we find σ2
b(−i(V ∗�g −�∗gV )) = Bijζiζj with

Bij = −b∂k(Z
kGij) +Gik(b∂kZ

j) +Gjk(b∂kZ
i) + SiZj + SjZi

∈ x−2r(C∞ +Hs−1
b ),

thus

−i(V ∗�g −�∗gV ) = bd∗Cbd, Cji = Bij .

Let us now plug Z = x−2rχW into the definition of Bij and separate the terms with

derivatives falling on χ, the idea being that the remaining terms, considered error terms,

can then be dominated by choosing χ′ large compared to χ. We get

Bij = x−2r(b∂kχ)(GikW j +GjkW i −GijW k)

+ χ
(
Gik(b∂kx

−2rW j) +Gjk(b∂kx
−2rW i)

− b∂k(x
−2rW kGij) + x−2r(SiW j + SjW i)

)
.

Notice here that for a b-1-form ω ∈ C∞(M ; bT ∗M), the quantity

EW,bdχ(ω) :=
1

2
(b∂kχ)(GikW j +GjkW i −GijW k)ωiωj

=
1

2

[
(ω, bdχ)Gω(W ) + ω(W )(bdχ, ω)G − bdχ(W )(ω, ω)G

]
= χ′(t)EW,bdt(ω)
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is related to the sesquilinear energy-momentum tensor

EW,bdt(ω) = Re
(
(ω, bdt)Gω(W )

)
− 1

2
bdt(W )(ω, ω)G,

where (·, ·)G is the sesquilinear inner product on CbT ∗M . This quantity, rewritten in terms

of b-vector fields as

EX,Y (ω) = Re(ω(X)ω(Y ))− 1

2
〈X,Y 〉(ω, ω)G,

is well-known to be positive definite provided X and Y are both future (or both past)

timelike, see e.g. [1]. In our setting, we thus have EW,bdt = EW,W > 0 by our definition of

W . Correspondingly,

C = x−2rχ′A+ x−2rχR

with A positive definite and R symmetric.

We obtain47

〈−i(V ∗P − P ∗V )u, u〉 = 〈Cbdu, bdu〉 − 〈iLu, V u〉+ 〈iV u, Lu〉. (8.6.3)

We now finish the proof by making χ′ large compared to χ on t−1([T ′0, T1]), as follows: Pick

T ′1 ∈ (T1, t1) and let

χ̃(s) = χ̃1

(
s− T0

T ′0 − T0

)
χ0(−z−1(s− T ′1)), χ(s) = χ̃(s)H(T1 − s),

where H is the Heaviside step function, χ0(s) = e−1/sH(s) ∈ C∞(R) (which satisfies χ′0(s) =

s−2χ0(s)) and χ̃1 ∈ C∞(R) equals 0 on (−∞, 0] and 1 on [1,∞); see Figure 8.1.

Then in (T ′0, T
′
1),

χ′(s) = −z−1χ′0(−z−1(s− T ′1))H(T1 − s)− χ0(−z−1(T1 − T ′1))δT1

= −z(s− T ′1)−2χ(s)− χ0(−z−1(T1 − T ′1))δT1 ,

47The integrations by parts here and further below are readily justified using s > n/2 + 2: In fact, since
we are assuming u ∈ H2,r

b , we have V u ∈ H1,−r
b for s > n/2, s ≥ 1, and then P ∗V u ∈ H−1,−r

b provided
multiplication with an Hs−j

b function is continuous H1
b → H1−j

b for j = 0, 1, 2, which is true for s > n/2 + 1;
similarly, one has Pu ∈ H0,r

b provided s > n/2, and then V ∗Pu ∈ H−1,−r
b if multiplication by an Hs−j

b

function is continuous H−jb → H−1
b for j = 0, 1, which holds for s > n/2, s ≥ 1.
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Figure 8.1: Graph of the commutant χ. The dashed line is the graph of the part of χ̃ that
is cut off using the Heaviside function in the definition of χ.

in particular χ(s) = −z−1(s − T ′1)2χ′(s) on (T ′0, T1); hence for any γ > 0, we can choose

z > 0 so large that χ ≤ −γχ′ on (T ′0, T1); therefore

−(χ′A+ χR) ≥ −1

2
χ′χ̃1A on (T ′0, T1).

Put χ1(s) = χ̃1(s)H(T1 − s), then

−〈Cbdu, bdu〉 ≥ 1

2
〈x−2r(−χ′χ1)Abdu, bdu〉

+ χ0(−z−1(T1 − T ′1))〈x−2rAδT1
bdu, bdu〉 − C ′‖bdu‖2

H0,r
b (t−1([T0,T ′0]))

,

and the term on the right hand side involving δT1 is positive, thus can be dropped. Hence,

using equation (8.6.3) and the positivity of A,

c0‖
√
−χ′χ1

bdu‖2
H0,r

b

≤ 1

2
〈x−2r(−χ′χ1)Abdu, bdu〉

≤ C ′‖bdu‖2
H0,r

b (t−1([T0,T ′0]))
+ C ′‖χ1/2Pu‖

H0,r
b
‖χ1/2bdu‖

H0,r
b

+ C ′‖χ1/2bdu‖2
H0,r

b

+ C ′‖χ1/2bdu‖
H0,r

b
‖χ1/2u‖

H0,r
b

≤ C ′′‖u‖2
H1,r

b (t−1([T0,T ′0]))
+ C ′‖χ1/2Pu‖2

H0,r
b

+ C ′γ‖
√
−χ′χ1

bdu‖2
H0,r

b

+ C ′γ‖
√
−χ′χ1u‖2H0,r

b

,

(8.6.4)

where the norms are on t−1([T0, T1]) unless otherwise specified. Choosing z large and

thus γ small allows us to absorb the second to last term on the right into the left hand

side. To finish the proof, we need to treat the last term, as follows: We compute, using

Wχ = χ′G(bdt, bdt) ≡ mχ′ with m ∈ C∞ +Hs
b positive,

〈(W ∗x−2rχ+ x−2rχW )u, u〉
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= −〈(Wx−2rχ− x−2rχW )u, u〉 − 〈(divg̃W )x−2rχu, u〉

≥ −〈x−2rmχ′u, u〉H0
b(t−1([T0,T1])) − 〈x−2rwχu, u〉 − 〈(divg̃W )x−2rχu, u〉

≥ ‖
√
−χ′χ1m

1/2u‖2
H0,r

b (t−1([T ′0,T1]))
− ‖
√
|χ′|m1/2u‖2

H0,r
b (t−1([T0,T ′0]))

− C‖√χu‖2
H0,r

b (t−1([T0,T1]))
,

where w = x2rWx−2r ∈ C∞ +Hs
b. Similarly as above, we now choose z large to obtain

‖
√
−χ′χ1u‖2H0,r

b (t−1([T ′0,T1]))
≤ C‖√χbdu‖2

H0,r
b

+ C‖
√
χ+ |χ′|u‖2

H0,r
b (t−1([T0,T ′0]))

.

Plugging this estimate into (8.6.4), we can absorb one of the resulting terms, namely

γ‖√χbdu‖2
H0,r

b (t−1([T ′0,T1]))
, into the left hand side and thus finish the proof of the estimate,

since
√
−χ′χ1 has a positive lower bound on t−1([T ′0, T1]).

That the estimate holds for perturbations of P follows simply from the observation that

all constants in this proof depend on finitely many seminorms of the coefficients of P , hence

the constants only change by small amounts if one makes a small perturbation of P .

8.7 Tame estimates in the non-smooth calculus

In this section we prove tame estimates for the Hb-coefficient, or simply non-smooth, b-

pseudodifferential operators defined in §8.2. Such estimates, as e.g. in [60, 99], are crucial

for applications in a Nash-Moser iteration scheme, as we will see in Chapter 9.

8.7.1 Mapping properties

We start with the tame mapping estimate, Proposition 8.7.1, which essentially states that for

non-smooth pseudodifferential operators A, a high regularity norm of Au can be estimated

by a high regularity norm of A times a low regularity norm of u, plus a low regularity norm

of A times a high regularity norm of u. This is stronger than the a priori continuity estimate

one gets from the bilinear map (A, u) 7→ Au, which would require a product of high norms

of both. In case A is a multiplication operator, this is essentially a b-version of a (weak)

Moser estimate, see Corollary 8.7.2.

We continue to work on the half space Rn+ with coordinates z = (x, y) ∈ [0,∞)×Rn−1;

the coordinates in the fiber of the b-cotangent bundle are denoted ζ = (λ, η), i.e. we write

b-covectors as λ dx
x +η dy. For brevity, we will use the following notation for Sobolev, symbol
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class and operator class norms, with the distinction between symbolic and b-Sobolev norms

being clear from the context:

‖u‖s := ‖u‖Hs
b
, ‖u‖s,r := ‖u‖Hs,r

b
,

‖a‖m,s := ‖a‖Sm;0Hs
b
, ‖a‖(m;k),s := ‖a‖Sm;kHs

b
,

‖A‖m,s := ‖A‖Ψm;0Hs
b
, ‖A‖(m;k),s := ‖A‖Ψm;kHs

b
.

Recall Definition 8.2.5 for the definitions of these symbol and operator classes. If A is a

b-operator acting on an element of a weighted b-Sobolev space with weight r (which will

be apparent from the context), then ‖A‖m,s is to be understood as ‖x−rAxr‖m,s, similarly

for ‖A‖(m;k),s. Lastly, for A ∈ Hs
bΨm

b , we write ‖A‖Hs
bΨmb

, by an abuse of notation, for an

unspecified Hs
bΨm

b -seminorm of A.

Recall the notation x+ = max(a, 0) for a ∈ R.

Proposition 8.7.1. (Extension of 8.2.9.) Let s ∈ R, A = Op(a) ∈ Ψm;0Hs
b, and suppose

s′ ∈ R is such that s ≥ s′ − m, s > n/2 + (m − s′)+. Then A defines a bounded map

Hs′
b → Hs′−m

b , and for all fixed µ, ν with

µ > n/2 + (m− s′)+, ν > n/2 + (m− s′)+ + s′ − s,

there is a constant C > 0 such that

‖Au‖s′−m ≤ C(‖A‖m,µ‖u‖s′ + ‖A‖m,s‖u‖ν). (8.7.1)

Observe that by the assumptions on s and s′, the intervals of allowed µ, ν are always

non-empty (since they contain µ = s and ν = s′). Estimates of the form (8.7.1) are precisely

the aforementioned ‘tame estimates.’

Proof of Proposition 8.7.1. We compute

‖Au‖2s′−m =

∫
〈ζ〉2(s′−m)|Âu(ζ)|2 dζ

≤
∫
〈ζ〉2(s′−m)

(∫
|â(ζ − ξ, ξ)û(ξ)| dξ

)2

dζ.

We split the inner integral into two pieces, corresponding to the domains of integration

|ζ − ξ| ≤ |ξ| and |ξ| ≤ |ζ − ξ|, which can be thought of as splitting up the action of A on u
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into a low-high and a high-low frequency interaction. We estimate

∫
〈ζ〉2(s′−m)

(∫
|ζ−ξ|≤|ξ|

|â(ζ − ξ, ξ)û(ξ)| dξ

)2

dζ

≤
∫ (∫

|ζ−ξ|≤|ξ|

〈ζ〉2(s′−m)〈ξ〉2m

〈ζ − ξ〉2µ〈ξ〉2s′
dξ

)

×
(∫

〈ζ − ξ〉2µ|â(ζ − ξ, ξ)|2

〈ξ〉2m
〈ξ〉2s′ |û(ξ)|2 dξ

)
dζ,

(8.7.2)

and we claim that the integral which is the first factor on the right hand side is uniformly

bounded in ζ: Indeed, if s′ −m ≥ 0, then we use |ζ| ≤ 2|ξ| on the domain of integration,

thus ∫
|ζ−ξ|≤|ξ|

〈ζ〉2(s′−m)

〈ζ − ξ〉2µ〈ξ〉2(s′−m)
dξ .

∫
1

〈ζ − ξ〉2µ
dξ ∈ L∞ζ ,

since µ > n/2; if, on the other hand, s′ −m ≤ 0, then |ξ| ≤ |ζ − ξ|+ |ζ| gives

∫
|ζ−ξ|≤|ξ|

〈ξ〉2(m−s′)

〈ζ − ξ〉2µ〈ζ〉2(m−s′) dξ .
∫

1

〈ζ − ξ〉2(µ−(m−s′)) +
1

〈ζ − ξ〉2µ
dξ ∈ L∞ζ ,

since µ > n/2 + (m − s′); hence, from (8.7.2), the Hs′−m
b norm of the low-high frequency

interaction in Au is bounded by Cµ‖a‖m,µ‖u‖s′ .
We estimate the norm of high-low interaction in a similar way: We have

∫
〈ζ〉2(s′−m)

(∫
|ξ|≤|ζ−ξ|

|â(ζ − ξ, ξ)û(ξ)| dξ

)2

dζ

≤
∫ (∫

|ξ|≤|ζ−ξ|

〈ζ〉2(s′−m)〈ξ〉2m

〈ζ − ξ〉2s〈ξ〉2ν
dξ

)

×
(∫

〈ζ − ξ〉2s|â(ζ − ξ, ξ)|2

〈ξ〉2m
〈ξ〉2ν |û(ξ)|2 dξ

)
dζ.

(8.7.3)

If s′ −m ≥ 0, the first inner integral on the right hand side is bounded by∫
|ξ|≤|ζ−ξ|

1

〈ζ − ξ〉2(s−s′+m)〈ξ〉2(ν−m)
dξ ≤

∫
1

〈ξ〉2(s−s′+ν)
dξ,

where we use s ≥ s′−m, and this integral is finite in view of ν > n/2 + s′− s; if s′−m ≤ 0,
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then ∫
|ξ|≤|ζ−ξ|

1

〈ζ〉2(m−s′)〈ζ − ξ〉2s〈ξ〉2(ν−m)
dξ ≤

∫
1

〈ξ〉2(ν−m+s)
dξ,

which is finite in view of ν > n/2+m−s. In summary, we need ν > n/2+max(m, s′)−s =

n/2 + (m − s′)+ + s′ − s and can then bound the Hs′−m
b norm of the high-low interaction

by Cν‖a‖m,s‖u‖ν . The proof is complete.

Using Hs
b ⊂ S0;0Hs

b, we obtain the following weak version (compared to [108, Proposi-

tion 13.3.7]) of the Moser estimate for the product of two b-Sobolev functions:

Corollary 8.7.2. (Extension of Corollary 8.2.10.) Let s > n/2, |s′| ≤ s. If u ∈ Hs
b, v ∈

Hs′
b , then uv ∈ Hs′

b , and one has an estimate

‖uv‖s′ ≤ C(‖u‖µ‖v‖s′ + ‖u‖s‖v‖ν)

for fixed µ > n/2 + (−s′)+, ν > n/2 + s′+ − s. In particular, for u, v ∈ Hs
b,

‖uv‖s ≤ C(‖u‖µ‖v‖s + ‖u‖s‖v‖µ)

for fixed µ > n/2.

8.7.2 Operator compositions

We give a tame estimate for the norms of expansion and remainder terms arising in the

composition of two non-smooth operators, see Theorem 8.2.12 (1a).

Proposition 8.7.3. Suppose s,m,m′ ∈ R, k, k′ ∈ N0 are such that s > n/2, s ≤ s′− k and

k ≥ m+ k′. Suppose P = p(z, bD) ∈ Ψm;kHs
b, Q = q(z, bD) ∈ Ψm′;0Hs′

b . Put

Ej :=
∑
|β|=j

1

β!
(∂βζ p

bDβ
z q)(z,

bD),

R := P ◦Q−
∑

0≤j<k
Ej .

Then Ej ∈ Ψm+m′−j;0Hs
b and R ∈ Ψm′−k′;0Hs

b, and for µ > n/2 fixed,

‖Ej‖m+m′−j,s ≤ C(‖P‖(m;j),µ‖Q‖m′,s+j + ‖P‖(m;j),s‖Q‖m′,µ+j),

‖R‖m′−k′,s ≤ C(‖P‖(m;k),µ‖Q‖m′,s+k + ‖P‖(m;k),s‖Q‖m′,µ+k).
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Proof. The statements about the Ej follow from Corollary 8.7.2. For the purpose of proving

the estimate for R, we define

p0 = ∂kζ p ∈ Sm−k;0Hs
b,

bDk
z q ∈ Sm

′;0Hs′−k
b ,

where we write ∂kζ = (∂βζ )|β|=k, similarly for bDk
z . Notice that in particular p0 ∈ S0;0Hs

b.

Then R = r(z, bD) with

|r̂(η; ζ)| .
∫ (∫ 1

0
p0(η − ξ; ζ + tξ) dt

)
q0(ξ; ζ) dξ

by Taylor’s formula, hence∫
〈η〉2s|r̂(η; ζ)|2

〈ζ〉2m′
dη

.
∫ (∫

|η−ξ|≤|ξ|

〈η〉2s

〈η − ξ〉2µ〈ξ〉2s
dξ

)

×
(∫ (∫ 1

0
〈η − ξ〉2µ|p0(η − ξ, ζ + tξ)|2 dt

)
〈ξ〉2s|q0(ξ; ζ)|2

〈ζ〉2m′
dξ

)
dη

+

∫ (∫
|ξ|≤|η−ξ|

〈η〉2s

〈η − ξ〉2s〈ξ〉2µ
dξ

)

×
(∫ (∫ 1

0
〈η − ξ〉2s|p0(η − ξ, ζ + tξ)|2 dt

)
〈ξ〉2µ|q0(ξ; ζ)|2

〈ζ〉2m′
dξ

)
dη,

which implies the claimed estimate for k′ = 0. For k′ > 0, we use the same trick of Beals

and Reed [9] as in the proof of Theorem 8.2.12 to reduce the statement to the case k′ = 0:

Recall that the idea is to split up q(z, ζ) into a ‘trivial’ part q0 with compact support in ζ

and n parts qi, where qi has support in |ζi| ≥ 1, and then writing

P ◦Qi =

k′∑
j=0

cjk′P
bDk′−j

zi ◦ (bDj
ziqi)(z,

bD)bD−k
′

zi

for some constants cjk′ ∈ R using the Leibniz rule; then what we have proved above for

k′ = 0 can be applied to the j-th summand on the right hand side, which we expand to

order k − j, giving the result.
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8.7.3 Reciprocals of and compositions with Hs
b functions

We also need sharper bounds for reciprocals and compositions of b-Sobolev functions on a

compact n-dimensional manifold with boundary. Localizing using a partition of unity, we

can simply work on Rn+.

Proposition 8.7.4. (Extension of Lemma 8.3.2.) Let s > n/2 + 1, u,w ∈ Hs
b, a ∈ C∞,

and suppose that |a+ u| ≥ c0 near suppw. Then w/(a+ u) ∈ Hs
b, and one has an estimate∥∥∥∥ w

a+ u

∥∥∥∥
s

≤ C(‖u‖µ, ‖a‖CN )c−1
0 max(c

−dse
0 , 1)

(
‖w‖s + ‖w‖µ(1 + ‖u‖s)

)
. (8.7.4)

for any fixed µ > n/2 + 1 and some s-dependent N ∈ N.

Proof. Choose ψ0, ψ ∈ C∞ such that ψ0 ≡ 1 on suppw, ψ ≡ 1 on suppψ0, and such that

moreover |a + u| ≥ c0 > 0 on suppψ. Then we have ‖w/(a + u)‖0 ≤ c−1
0 ‖w‖0. We now

iteratively prove higher regularity of w/(a+ u) as in the proof of Lemma 8.3.2, but now we

keep track of constants in order to prove an accompanying ‘tame’ estimate: Let us assume

w/(a + u) ∈ Hs′−1
b for some 1 ≤ s′ ≤ s. Let Λs′ = λs′(

bD) ∈ Ψs′
b be an operator with

principal symbol 〈ζ〉s′ . Then

∥∥∥Λs′
w

a+ u

∥∥∥
0
≤
∥∥∥(1− ψ)Λs′

ψ0w

a+ u

∥∥∥
0

+
∥∥∥ψΛs′

ψ0w

a+ u

∥∥∥
0

.
∥∥∥ w

a+ u

∥∥∥
0

+ c−1
0

∥∥∥ψ(a+ u)Λs′
w

a+ u

∥∥∥
0

≤ c−1
0 ‖w‖0 + c−1

0

(
‖ψΛs′w‖0 +

∥∥∥ψ[Λs′ , a+ u]
w

a+ u

∥∥∥
0

)
. c−1

0

(
‖w‖s′ +

∥∥∥ w

a+ u

∥∥∥
s′−1

+
∥∥∥ψ[Λs′ , u]

w

a+ u

∥∥∥
0

)
,

(8.7.5)

where we used that the support assumptions on ψ0 and ψ imply (1− ψ)Λs′ψ0 ∈ Ψ−∞b , and

ψ[Λs′ , a] ∈ Ψs′−1
b . Hence, in order to prove that w/(a + u) ∈ Hs′

b , it suffices to show that

[Λs′ , u] : Hs′−1
b → H0

b . Let v ∈ Hs′−1
b . Since

(Λs′uv)̂(ζ) =

∫
λs′(ζ)û(ζ − ξ)v̂(ξ) dξ

(uΛs′v)̂(ζ) =

∫
û(ζ − ξ)λs′(ξ)v̂(ξ) dξ,
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we have, by taking a first order Taylor expansion of λs′(ζ) = λs′(ξ + (ζ − ξ)) around ζ = ξ,

([Λs′ , u]v)̂(ζ) =
∑
|β|=1

∫ (∫ 1

0
∂βζ λs′(ξ + t(ζ − ξ)) dt

)
(bDβ

z u)̂(ζ − ξ)v̂(ξ) dξ,

thus, writing u′ = bDzu ∈ Hs−1
b ,

|([Λs′ , u]v)̂(ζ)| .
∫ (∫ 1

0
〈ξ + t(ζ − ξ)〉s′−1 dt

) ∣∣û′(ζ − ξ)∣∣|v̂(ξ)| dξ.

To obtain a tame estimate for the L2
ζ norm of this expression, we again use the method of

decomposing the integral into low-high and high-low components: The low-high component

is bounded by

∫ (∫
|ζ−ξ|≤|ξ|

sup0≤t≤1〈ξ + t(ζ − ξ)〉2(s′−1)

〈ζ − ξ〉2(µ−1)〈ξ〉2(s′−1)
dξ

)

×
(∫
〈ζ − ξ〉2(µ−1)

∣∣û′(ζ − ξ)∣∣2〈ξ〉2(s′−1)|v̂(ξ)|2 dξ
)
dζ;

the first inner integral, in view of s′ ≥ 1, so the sup is bounded by 〈ξ〉2(s′−1), which cancels

the corresponding term in the denominator, is finite for µ > n/2 + 1. For the high-low

component, we likewise estimate

∫ (∫
|ξ|≤|ζ−ξ|

sup0≤t≤1〈ξ + t(ζ − ξ)〉2(s′−1)

〈ζ − ξ〉2(s−1)〈ξ〉2ν
dξ

)

×
(∫
〈ζ − ξ〉2s

∣∣û′(ζ − ξ)∣∣2〈ξ〉2ν |v̂(ξ)|2 dξ
)
dζ,

and the first inner integral on the right hand side is bounded by∫
|ξ|≤|ζ−ξ|

1

〈ζ − ξ〉2(s−s′)〈ξ〉2ν
dξ ≤

∫
1

〈ξ〉2(s−s′+ν)
dξ

because of s ≥ s′, which is finite for ν > n/2 + s′ − s. We conclude that

‖[Λs′ , u]v‖0 ≤ Cµν(‖u‖µ‖v‖s′−1 + ‖u‖s′‖v‖ν),
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for µ > n/2 + 1, ν > n/2 + s′ − s. Plugging this into (8.7.5) yields∥∥∥∥ w

a+ u

∥∥∥∥
s′
. c−1

0

(
‖w‖s′ + (1 + ‖u‖µ)

∥∥∥∥ w

a+ u

∥∥∥∥
s′−1

+ ‖u‖s′
∥∥∥∥ w

a+ u

∥∥∥∥
ν

)
,

where the implicit constant in the inequality is independent of c0, w and u. Using the

abbreviations qσ := ‖w/(a + u)‖σ, uσ = ‖u‖σ, wσ = ‖w‖σ and fixing µ > n/2 + 1, this

means

qs′ . c
−1
0 (ws′ + (1 + uµ)qs′−1 + us′qν), ν > n/2 + s′ − s,

with the implicit constant being independent of c0, w, a, u, µ. We will use this for s′ ≤ γ :=

bn/2c+1 with ν = s′−1, and for s′ > γ, we will take ν = γ, thus obtaining a tame estimate

for qs. In more detail, for 1 ≤ s′ ≤ γ, we have

qs′ . c
−1
0 (ws′ + (1 + us′)qs′−1),

which gives, with C0 = max(1, c−1
0 ),

qγ . c
−1
0 wγ

γ−1∑
j=0

(c−1
0 (1 + uγ))j + (c−1

0 (1 + uγ))γq0 . c
−1
0 Cγ0wγ(1 + uγ)γ

using the bound q0 ≤ c−1
0 w0 ≤ c−1

0 wγ . For γ < s′ ≤ s, we have

qs′ . c
−1
0 (ws + usqγ + (1 + uµ)qs′−1),

thus for integer k ≥ 1 with γ + k ≤ s,

qγ+k ≤ c−1
0 (ws + usqγ)

k−1∑
j=0

(c−1
0 (1 + uµ))j + (c−1

0 (1 + uµ))kqγ

. c−1
0 Ck−1

0 (1 + uµ)k(ws + (1 + us)qγ)

. c−1
0 Cγ+k

0 (1 + uµ)γ+k(ws + (1 + us)wγ),

where we used µ > γ in the last inequality, thus proving the estimate (8.7.4) in case s is an

integer; in the general case, we just use qγ′ ≤ qγ for γ′ < γ, in particular for γ′ = s−ds−γe,
and use the above with qγ+k replaced by qγ′+k.
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As in §8.3.2, one thus obtains regularity results for compositions, but now with sharper

estimates. To illustrate how to obtain these, let us prove an extension of Proposition 8.3.5.

Let M be a compact n-dimensional manifold with boundary, s > n/2 + 1, α ≥ 0.

Proposition 8.7.5. Let u ∈ Hs,α
b (M). If F : Ω→ C, F (0) = 0, is holomorphic in a simply

connected neighborhood Ω of the range of u, then F (u) ∈ Hs,α
b (M), and

‖F (u)‖s,α ≤ C(‖u‖µ,α)(1 + ‖u‖s,α) (8.7.6)

for fixed µ > n/2 + 1. Moreover, there exists ε > 0 such that F (v) ∈ Hs,α
b (M) depends

continuously on v ∈ Hs,α
b (M), ‖u− v‖s,α < ε.

Proof. Observe that u(M) is compact. Let γ ⊂ C denote a smooth contour which is disjoint

from u(M), has winding number 1 around every point in u(M), and lies within the region

of holomorphicity of F . Then, writing F (z) = zF1(z) with F1 holomorphic in Ω, we have

F (u) =
1

2πi

∮
γ
F1(ζ)

u

ζ − u
dζ,

Since γ 3 ζ 7→ u/(ζ − u) ∈ Hs,α
b (M) is continuous by Proposition 8.7.4, we obtain, using

the estimate (8.7.4),

‖F (u)‖s,α ≤ C(‖u‖µ)
(
‖u‖s,α + ‖u‖µ,α(1 + ‖u‖s)

)
,

which implies (8.7.6) in view of α ≥ 0. The continuous (in fact, Lipschitz) dependence of

F (v) on v is a consequence of Proposition 8.7.4 and Corollary 8.7.2.

We also study compositions F (u) for F ∈ C∞(R;C) and real-valued u.

Proposition 8.7.6. (Extension of Proposition 8.3.7.) Let F ∈ C∞(R;C), F (0) = 0. Then

for u ∈ Hs,α
b (M ;R), we have F (u) ∈ Hs,α

b (M), and one has an estimate

‖F (u)‖s,α ≤ C(‖u‖µ,α)(1 + ‖u‖s,α) (8.7.7)

for fixed µ > n/2 + 1. In fact, F (u) depends continuously on u.

Proof. The proof is the same as the proof of Proposition 8.3.7 only we now use the sharper

estimate (8.7.4) to obtain (8.7.7).
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Proposition 8.7.7. (Extension of Proposition 8.3.8.) Let F ∈ C∞(R;C), and u′ ∈
C∞(M ;R), u′′ ∈ Hs,α

b (M ;R); put u = u′ + u′′. Then F (u) ∈ C∞(M) + Hs,α
b (M), and

one has an estimate

‖F (u)− F (u′)‖s,α ≤ C(‖u′‖CN , ‖u′′‖µ,α)(1 + ‖u′′‖s,α)

for fixed µ > n/2 + 1 and some N ∈ N. In fact, F (u) depends continuously on u.

Proof. The proof is the same as the proof of Proposition 8.3.8, but now uses the sharper

estimate (8.7.4).

8.8 Tame microlocal regularity estimates

When stating microlocal regularity estimates (like elliptic regularity, real principal type

propagation, etc.) for operators with coefficients in Hs
b(Rn+), we will give two quantitative

statements, one for ‘low’ regularities σ / n/2, in which we will not make use of any tame

estimates established earlier, and one for ‘high’ regularities n/2 / σ / s, in which the tame

estimates will be used.

To concisely write down tame estimates, we use the following notation: The right hand

side of a tame estimate will be a real-valued function, denoted by L, of the form

L(p`1, . . . , p
`
a; p

h
1 , . . . , p

h
b ;u`1, . . . , u

`
c;u

h
1 , . . . , u

h
d)

=

d∑
j=1

cj(p
`
1, . . . , p

`
a)u

h
j +

b∑
j=1

c∑
k=1

cjk(p
`
1, . . . , p

`
a)p

h
j u

`
k

(8.8.1)

here, the cj and cjk are continuous functions. In applications, p
`/h
j will be a low/high

regularity norm of the coefficients of a non-smooth operator, and u
`/h
j will be a low/high

regularity norm of a function that an operator is applied to. The important feature of

such functions L is that they are linear in the u
`/h
j , and all phj , u

h
j , corresponding to high

regularity norms, only appear in the first power.

8.8.1 Elliptic regularity

Concretely, we have the following quantitative elliptic estimate:
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Proposition 8.8.1. (Tame version of Theorem 8.4.1.) Let m, s, r ∈ R and ζ0 ∈ bS∗Rn+.

Suppose P = P̃m + R̃, where P̃m ∈ Hs
bΨm

b (Rn+) has a homogeneous principal symbol p, and

R̃ ∈ Ψm−1;0
b Hs−1

b (Rn+). Suppose p is elliptic at ζ0. Let s̃ ∈ R be such that s̃ ≤ s − 1 and

s > n/2 + 1 + (−s̃)+, and suppose that u ∈ H s̃+m−1,r
b (Rn+) satisfies

Pu = f ∈ H s̃,r
b (Rn+).

Then there exists B ∈ Ψ0
b(Rn+) elliptic at ζ0 such that Bu ∈ H s̃+m

b , and for s̃ ≤ n/2 + t,

t > 0, the estimate

‖Bu‖s̃+m,r ≤ C(‖P ′‖(m;1),n/2+1+(−s̃)++t, ‖R‖m−1,n/2+(−s̃)++t)

× (‖u‖s̃+m−1,r + ‖f‖s̃,r)
(8.8.2)

holds. For s̃ > n/2, ε > 0, there is a tame estimate

‖Bu‖s̃+m,r ≤ L(‖P ′‖(m;1),n/2+1+ε, ‖R‖m−1,n/2+ε; ‖P ′‖(m;1),s, ‖R‖m−1,s−1;

‖u‖n/2+m−1+ε,r, ‖f‖n/2−1+ε,r; ‖u‖s̃+m−1,r, ‖f‖s̃,r).
(8.8.3)

Remark 8.8.2. In our application of such an estimate to the study of nonlinear equations

it will be irrelevant what exactly the low regularity norms in (8.8.3) are; in fact, it will be

sufficient to know that there is some tame estimate of the general form (8.8.3), and this in

turn is clear without any computation, namely it follows directly from the fact that we have

tame estimates for all ‘non-smooth’ operations involved in the proof of this proposition.

The same remark applies to all further tame microlocal regularity results below. The only

point where the precise numerology does matter is when we want to find an explicit bound

on the number of required derivatives in our quasilinear applications in Chapter 9, see in

particular Theorems 9.2.2, 9.2.3 and 9.2.4.

Proof of Proposition 8.8.1. We can assume that r = 0 by conjugating P by x−r. Choose

a0 ∈ S0 elliptic at ζ0 such that pm is elliptic on supp a0. Let Λm ∈ Ψm
b be a b-ps.d.o. with

full symbol λm(ζ) independent of z, whose principal symbol is 〈ζ〉m, and define

q(z, ζ) := a0(z, ζ)λm(ζ)/pm(z, ζ) ∈ S0;∞Hs
b, Q = q(z, bD),
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then by Proposition 8.7.4 and Corollary 8.7.2, we have

‖Q‖(0;k),σ ≤ C(‖P ′‖(m;k),n/2+1+ε)(1 + ‖P ′‖(m;k),σ), σ > n/2 + 1, ε > 0. (8.8.4)

Put B = a0(z, bD)Λm, then

Q ◦ P ′ = B +R′

with R′ ∈ Ψm−1;0Hs−1
b ; by Proposition 8.7.3, we have for n/2 < σ ≤ s− 1

‖R′‖m−1,σ . ‖Q‖(0;1),µ‖P ′‖(m;1),σ+1 + ‖Q‖(0;1),σ‖P ′‖(m;1),µ+1, µ > n/2. (8.8.5)

Now, since Bu = QP ′u − R′u = Qf − QRu − R′u, we need to estimate the H s̃
b-norms of

Qf , QRu and R′u, which we will do using Proposition 8.7.1. In the low regularity regime,

we have, for t > 0 and s̃ ≤ n/2 + t, using (8.8.4) and (8.8.5):

‖Qf‖s̃ . ‖Q‖0,n/2+(−s̃)++t‖f‖s̃ ≤ C(‖P ′‖m,n/2+1+(−s̃)++t)‖f‖s̃,

‖R′u‖s̃ . ‖R′‖m−1,n/2+(−s̃)++t‖u‖s̃+m−1

≤ C(‖P ′‖(m;1),n/2+1+(−s̃)++t)‖u‖s̃+m−1,

‖QRu‖s̃ ≤ C(‖P ′‖m,n/2+1+(−s̃)++t)‖R‖m−1,n/2+(−s̃)++t‖u‖s̃+m−1,

giving (8.8.2). In the high regularity regime, in fact for 0 ≤ s̃ ≤ s− 1, we have, for ε > 0,

‖Qf‖s̃ . ‖Q‖0,n/2+ε‖f‖s̃ + ‖Q‖0,s‖f‖n/2−1+ε

≤ C(‖P ′‖m,n/2+1+ε)(‖f‖s̃ + (1 + ‖P ′‖m,s)‖f‖n/2−1+ε),

‖R′u‖s̃ . ‖R′‖m−1,n/2+ε‖u‖s̃+m−1 + ‖R′‖m−1,s−1‖u‖n/2+m−1+ε

≤ C(‖P ′‖(m;1),n/2+1+ε)(‖u‖s̃+m−1 + (1 + ‖P ′‖(m;1),s)‖u‖n/2+m−1+ε),

‖QRu‖s̃ ≤ L(‖P ′‖m,n/2+1+ε, ‖R‖m−1,n/2+ε; ‖P ′‖m,s, ‖R‖m−1,s−1;

‖u‖n/2+m−1+ε; ‖u‖s̃+m−1),

giving (8.8.3). The proof is complete.

There is a similar tame microlocal elliptic estimate for operators of the form P =

P0 + P̃ with P̃ being of the same form as P above, and P0 ∈ Ψm
b , as in the second part

of Theorem 8.4.1, where the tame estimate now also involves the CN -norm of the ‘smooth
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part’ P0 of the operator for some (s-dependent) N . Since in our application P0 will only

depend on finitely many complex parameters, there is no need to prove an estimate which

is also tame with respect to the CN -norm of P0; however, this could easily be done in

principle.

8.8.2 Real principal type propagation, radial points, normally hyperbolic

trapping

Tame estimates for propagation type statements, i.e. real principal type propagation, prop-

agation near radial points as well as near normally hyperbolic trapping, can be deduced

from a careful analysis of the proofs of the corresponding results in §8.5. The main ob-

servation is that the regularity requirements, given in the footnotes to the proofs of these

results in §8.5, indicate what regularity is needed to estimate the corresponding terms: For

example, an operator in A ∈ Ψm;0Hs
b with m ≥ 0 maps H

m/2
b to H

−m/2
b under the condition

s > n/2 +m/2, which is to say that one has a bound

‖Au‖−m/2 . ‖A‖m−1,n/2+m/2+ε‖u‖m/2, ε > 0.

This means that the only places where one needs to use tame operator bounds for operators

with coefficients of regularity s are those where the condition for mapping properties etc.

to hold reads s ' σ where σ is the regularity of the target space, i.e. where σ is comparable

to the regularity s of the coefficients.

We again only prove the tame real principal type estimate in the interior, adopting the

notation of the corresponding proof of the first part of Theorem 8.5.6. The estimate near

the boundary is proved in the same way, see also the discussion at the end of §8.8.1.

Proposition 8.8.3. (Tame version of Theorem 8.5.6.) Let m, r, s, s̃ ∈ R. Suppose Pm ∈
Hs

bΨm
b (Rn+) has a real, scalar, homogeneous principal symbol p, and let P = Pm+Pm−1 +R,

where Pm−1 ∈ Hs−1
b Ψm−1

b (Rn+), R ∈ Ψm−2;0
b Hs−1

b (Rn+). Assume that s and s̃ are such that

s̃ ≤ s− 1, s > n/2 + 7/2 + (2− s̃)+,

and let us assume that u ∈ H s̃+m−3/2,r
b (Rn+) satisfies Pu = f ∈ H s̃,r

b (Rn+). Suppose ζ0 /∈
WFs̃+m−1,r

b (u), and let γ : [0, T ] → bT ∗Rn+ \ o be a segment of a null-bicharacteristic of p

with γ(0) = ζ0, then γ(t) /∈ WFs̃+m−1,r
b (u) for all t ∈ [0, T ]. Moreover, for all A ∈ Ψ0

b
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elliptic at ζ0 there exist B ∈ Ψ0
b elliptic at γ(T ) and G ∈ Ψ0

b elliptic on γ([0, T ]) such that

for s̃ ≤ n/2 + 1, ε > 0,

‖Bu‖s̃+m−1,r

≤ C(‖Pm‖
H
n/2+7/2+(2−s̃)++ε

b Ψmb
, ‖Pm−1‖

H
n/2+1+(3/2−s̃)++ε

b Ψm−1
b

, ‖R‖n/2+1+(−s̃)+
)

× (‖u‖s̃+m−3/2,r + ‖Au‖s̃+m−1,r + ‖Gf‖s̃,r).

(8.8.6)

Moreover, for s̃ > n/2 + 1, ε > 0, there is a tame estimate

‖Bu‖s̃+m−1,r ≤ L(‖Pm‖Hn/2+7/2+ε
b Ψmb

, ‖Pm−1‖Hn/2+1+ε
b Ψm−1

b

, ‖R‖n/2+ε;

‖Pm‖Hs
bΨmb

, ‖Pm−1‖Hs−1
b Ψm−1

b
, ‖R‖m−2,s−1;

‖u‖n/2−1/2+m+ε; ‖u‖s̃+m−3/2,r, ‖Au‖s̃+m−1,r, ‖Gf‖s̃,r).

(8.8.7)

Proof. We follow the proof of Theorem 8.5.6 and state the estimates needed to establish

(8.8.6) and (8.8.7) along the way. Using the notation of the proof of Theorem 8.5.6, but

now calling the regularization parameter δ, in particular Ǎδ ∈ Ψ
s̃+(m−1)/2
b is the regularized

commutant, which depends on a positive constant M chosen below, and putting f̃ = f−Ru,

we have, assuming m ≥ 1 and s̃ ≥ (5−m)/2 for now,

Re〈iǍ∗δ [Pm, Ǎδ]u, u〉

=
1

2
〈i(Pm − P ∗m)Ǎδu, Ǎδu〉 − Re〈iǍδf̃ , Ǎδu〉+ Re〈iǍδPm−1u, Ǎδu〉

≡ I + II + III.

For ε > 0, we can bound the first term by

|I| . ‖Pm‖Hn/2+1+(m−1)/2+ε
b Ψmb

‖Ǎδu‖2(m−1)/2,

the second one by

|II| . ‖Ǎδf‖2−(m−1)/2 + ‖Ru‖2s̃ + ‖Ǎδu‖2(m−1)/2,
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where in turn

‖Ru‖s̃ .

‖R‖m−2;n/2+(−s̃)++t‖u‖s̃+m−2, s̃ ≤ n/2 + t,

‖R‖m−2;n/2+ε‖u‖s̃+m−2 + ‖R‖m−2;s−1‖u‖n/2+m−2+ε, s̃ ≥ 0

for t > 0 by Proposition 8.7.1. We estimate the third term by

|III| . ‖Pm−1‖Hmax(n/2+ε,(m−1)/2)
b Ψm−1

b

‖Ǎδu‖2(m−1)/2 + |〈[Ǎδ, Pm−1]u, Ǎδu〉|

and further, with R2 ∈ Ψ
s̃+(m−1)/2−1
b ◦ Ψm−1;0Hs−2

b denoting a part of the expansion of

[Ǎδ, Pm−1] as defined in (8.5.26),

|〈[Ǎδ, Pm−1]u, Ǎδu〉| ≤ C(M)‖Pm−1‖
H
n/2+1+(m/2−1)++ε

b Ψm−1
b

‖u‖2s̃+m−3/2

+ ‖R2u‖2−(m−1)/2 + ‖Ǎδu‖2(m−1)/2,

where

‖R2u‖−(m−1)/2

≤ C(M)


‖Pm−1‖

H
n/2+1+(1−s̃)++ε

b Ψm−1
b

‖u‖s̃+m−2, s̃ ≤ n/2 + 1 + ε,

‖Pm−1‖Hn/2+1+ε
b Ψm−1

b

‖u‖s̃+m−2

+‖Pm−1‖Hs−1
b Ψm−1

b
‖u‖n/2+m−1+ε, s̃ ≥ 1.

Therefore, we obtain, see equation (8.5.29),

Re
〈(
iǍ∗δ [Pm, Ǎδ] +B∗δBδ +M2(ΛǍδ)

∗(ΛǍδ)− Eδ
)
u, u

〉
≥ −|〈Eδu, u〉| − ‖Ǎδf‖2−(m−1)/2 − L

2 + ‖Bδu‖2L2
b
,

(8.8.8)

where

M = M(‖Pm‖Hn/2+1+(m−1)/2+ε
b Ψmb

, ‖Pm−1‖Hmax(n/2+ε,(m−1)/2)
b Ψm−1

b

),

and L is ‘tame’; more precisely, for s̃ ≤ n/2 + t, t > 0,

L ≤ C(M, ‖Pm−1‖
H
n/2+1+max(m/2−1,1−s̃)++ε

b Ψm−1
b

, ‖R‖m−2;n/2+(−s̃)++t)‖u‖s̃+m−3/2,
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and for s̃ ≥ 1,

L = L(M, ‖Pm−1‖
H
n/2+1+(m/2−1)++ε

b Ψm−1
b

, ‖R‖m−2,n/2+ε;

‖Pm−1‖Hs−1
b Ψm−1

b
, ‖R‖m−2;s−1; ‖u‖n/2+m−1+ε; ‖u‖s̃+m−3/2).

Next, in order to exploit the positive commutator of the principal symbols of Pm and Ǎδ in

the estimate (8.8.8), we introduce operators J± ∈ Ψ
±(s̃+(m−1)/2−1)
b with principal symbols

j± such that J+J− − I ∈ Ψ−∞b ; then

iJ−Ǎ∗δ [Pm, Ǎδ] = Op(j−ǎδHpǎδ) +R1 +R2 +R3 +R4,

see equation (8.5.32), where

|〈Rju, (J+)∗u〉| ≤ C(M)‖Pm‖Hn/2+2+m/2+ε
b Ψmb

‖u‖2s̃+m−3/2, j = 1, 3, 4,

and R2 ∈ Ψ
s̃+(m−1)/2−1
b ◦Ψm;0Hs−2

b , hence

|〈R2u, (J
+)∗u〉|

≤ C(M)


(1 + ‖Pm‖2

H
n/2+2+(3/2−s̃)++ε

b Ψmb

)‖u‖2s̃+m−3/2 ∀ s̃,

(1 + ‖Pm‖2
H
n/2+2+ε
b Ψmb

)‖u‖2s̃+m−3/2

+‖Pm‖2Hs
bΨmb
‖u‖2n/2−1/2+m+ε s̃ ≥ 3/2.

Thus, further following the proof of Theorem 8.5.6 to equation (8.5.33) and beyond, it

remains to bound

Re〈Op(j−fδ/j
+)(J+)∗u, (J+)∗u〉+ Re〈R′u, (J+)∗u〉, R′ ∈ Ψs̃+3(m−1)/2;0Hs−1

b ,

from below, which is accomplished by

|〈R′u, (J+)∗u〉| ≤ C(M)‖Pm‖Hn/2+1+m/2+ε
b Ψmb

‖u‖2s̃+m−3/2,

Re〈Op(j−fδ/j
+)(J+)∗u, (J+)∗u〉 ≥ −C(M)‖Pm‖Hn/2+3+m/2+ε

b Ψmb
‖u‖2s̃+m−3/2.

Lastly, for general m ∈ R, we rewrite the equation Pu = f as PΛ+(Λ−u) = f + PRu with
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Λ± ∈ Ψ
∓(m−m0)
b , R ∈ Ψ−∞b , where m0 ≥ 1; hence, replacing P by PΛ+, u by Λ−u and m by

m0 in the above estimates is equivalent to just replacing m by m0 in the b-Sobolev norms

of the coefficients of P . Choosing m0 = 1 + 2(2 − s̃)+ then implies the estimates (8.8.6)

and (8.8.7) with B = B0, G an elliptic multiple of Ǎ0, and A elliptic on the microsupport

of E0.

In a similar manner, we can analyze the proof of the radial point estimate, Theo-

rem 8.5.10, obtaining the following tame estimates:

Proposition 8.8.4. (Tame version of Theorem 8.5.10.) Let m, r, s, s̃ ∈ R, α > 0. Let

P = P0+P̃ , where P0 ∈ Ψm
b (Rn+) has a real, scalar, homogeneous principal symbol p0, further

P̃ = P̃m + P̃m−1 + R̃ with P̃m ∈ Hs,α
b Ψm

b (Rn+) having a real, scalar, homogeneous principal

symbol p̃m, moreover P̃m−1 ∈ Hs−1,α
b Ψm−1

b (Rn+) and R̃ ∈ Ψm−2
b (Rn+) + Ψm−2;0

b Hs−1,α
b (Rn+).

Suppose that the conditions (1)-(5) in §8.5.4 hold for p0. Finally, assume that s and s̃

satisfy

s̃ ≤ s− 1, s > n/2 + 7/2 + (2− s̃)+. (8.8.9)

Suppose u ∈ H s̃+m−3/2,r
b (Rn+) is such that Pu ∈ H s̃,r

b (Rn+).

(1) If s̃+ (m− 1)/2− 1 + infL±(β̂− rβ̃) > 0, let us assume that in a neighborhood of L±,

L± ∩ {x > 0} is disjoint from WFs̃+m−1,r
b (u).

(2) If s̃+ (m− 1)/2 + supL±(β̂− rβ̃) < 0, let us assume that a punctured neighborhood of

L±, with L± removed, in Σ ∩ bS∗
∂Rn+

Rn+ is disjoint from WFs̃+m−1,r
b (u).

Then in both cases, L± is disjoint from WFs̃+m−1,r
b (u).

Quantitatively, for every neighborhood U of L±, there exist B0, B1 ∈ Ψ0
b elliptic at L±,

A ∈ Ψ0
b with microsupport in the respective a priori control region in the two cases above,

with WF′b(A),WF′b(Bj) ⊂ U , j = 1, 2, and χ ∈ C∞c (U), such for s̃ ≤ n/2 + 1, ε > 0,

we have, with implicit dependence of the appearing constants on seminorms of the smooth

operator P0:

‖B0u‖s̃+m−1,r ≤ C(‖P̃m‖
H
n/2+7/2+(2−s̃)++ε,α

b Ψmb
,

‖P̃m−1‖
H
n/2+1+(3/2−s̃)++ε,α

b Ψm−1
b

, ‖R̃‖m−2,n/2+1+(−s̃)+
)

× (‖u‖s̃+m−3/2,r + ‖Au‖s̃+m−1,r + ‖B1f‖s̃,r + ‖χf‖s̃−1,r).

(8.8.10)



384 CHAPTER 8. OPERATORS WITH ROUGH COEFFICIENTS

Moreover, for s̃ > n/2 + 1, ε > 0, there is a tame estimate

‖B0u‖s̃+m−1,r ≤ L(‖P̃m‖Hn/2+7/2+ε,α
b Ψmb

, ‖P̃m−1‖Hn/2+1+ε,α
b Ψm−1

b

, ‖R̃‖m−2,n/2+ε;

‖P̃m‖Hs,α
b Ψmb

, ‖P̃m−1‖Hs−1,α
b Ψm−1

b
, ‖R̃‖m−2,s−1; ‖u‖n/2−1/2+m+ε, ‖f‖n/2−1+ε;

‖u‖s̃+m−3/2,r, ‖Au‖s̃+m−1,r, ‖B1f‖s̃,r, ‖χf‖s̃−1,r).

(8.8.11)

Proof. One detail changes as compared to the previous proof: While it still suffices to only

assume microlocal regularity B2f ∈ H s̃,r
b at L±, we now in addition need to assume local

regularity χf ∈ H s̃−1,r
b , which is due to the use of elliptic regularity in the proof given in

§8.4.

Likewise, we have the following tame non-trapping estimate at Γ:

Proposition 8.8.5. (Tame version of Theorem 8.5.12.) Under the assumptions of Theo-

rem 8.5.12, and using the notation used there, let s, s̃ ∈ R be such that

s̃ ≤ s− 1, s > n/2 + 7/2 + (2− s̃)+.

Suppose u ∈ H s̃+m−3/2,r
b (Rn+) is such that Pu = f ∈ H s̃,r

b (Rn+).

Then for r < − supΓ ρ
−m+1σb,m−1(E1)/c∂ and for any neighborhood U of Γ, there exist

B0 ∈ Ψ0
b(M) elliptic at Γ and B1, B2 ∈ Ψ0

b(M) with WF′b(Bj) ⊂ U , j = 0, 1, 2, WF′b(B2)∩
Γ+ = ∅, and χ ∈ C∞c (U), such that the following estimate holds for s̃ ≤ n/2 + 1, ε > 0:

‖B0u‖s̃+m−1,r ≤ C(‖P̃m‖
H
n/2+7/2+(2−s̃)++ε,α

b Ψmb
,

‖P̃m−1‖
H
n/2+1+(3/2−s̃)++ε,α

b Ψm−1
b

, ‖R̃‖m−2,n/2+1+(−s̃)+
)

× (‖u‖s̃+m−3/2,r + ‖B2u‖s̃+m−1,r + ‖B1f‖s̃,r + ‖χf‖s̃−1,r).

(8.8.12)

Moreover, for s̃ > n/2 + 1, ε > 0, there is a tame estimate

‖B0u‖s̃+m−1,r ≤ L(‖P̃m‖Hn/2+7/2+ε,α
b Ψmb

, ‖P̃m−1‖Hn/2+1+ε,α
b Ψm−1

b

, ‖R̃‖m−2,n/2+ε;

‖P̃m‖Hs,α
b Ψmb

, ‖P̃m−1‖Hs−1,α
b Ψm−1

b
, ‖R̃‖m−2,s−1; ‖u‖n/2−1/2+m+ε, ‖f‖n/2−1+ε;

‖u‖s̃+m−3/2,r, ‖B2u‖s̃+m−1,r, ‖B1f‖s̃,r, ‖χf‖s̃−1,r).

(8.8.13)

On the other hand, for r > − infΓ ρ
−m+1σb,m−1(E1)/c∂ and for appropriate B2 with
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WF′b(B2) ∩ Γ− = ∅, the estimates (8.8.12) and (8.8.13) hold as well. These estimates are

understood in the sense that if all quantities on the right hand side are finite, then so is the

left hand side, and the inequality holds.

8.9 Regularity estimates on manifolds

Strengthening the assumptions on our non-smooth operators in the local (on Rn+) non-

smooth microlocal regularity results established in the previous sections slightly, making

them invariant, we now show how to deduce these results on a compact manifold M with

boundary by making use of a partition of unity and the local theory.

To illustrate the idea, we begin by discussing elliptic regularity, Theorem 8.4.1, and for

brevity only the interior result (1) in the scalar case. Thus, we assume

P = P̃m + R̃, P̃m ∈ Hs
bΨm

b (M), R̃ ∈ Hs−1
b Ψm−1

b (M),

which strengthens the assumption of R̃; we stress that the class of operators Hs
bΨm

b (M) is

invariantly defined on M . Then, with s̃ ∈ R such that s̃ ≤ s− 1, s > n/2 + 1 + (−s̃)+, and

u ∈ H s̃+m−1
b (M) such that

Pu = f ∈ H s̃
b(M),

and assuming that P is elliptic at ζ0 ∈ bS∗M , we obtain ζ0 /∈WFs̃+mb (u) as follows: First,

we reduce to the case R = 0 by absorbing Ru ∈ H s̃
b(M) into the right hand side f . Next,

pick φ(0) ∈ C∞c (M) localizing within a coordinate chart, with φ(0) ≡ 1 near the base point

of ζ0, and φ(1) ∈ C∞c (M) with support in the same chart, and φ(1) ≡ 1 near suppφ(0). In

order to show microlocal elliptic regularity for u solving φ(0)Pu = φ(0)f at ζ0, we insert φ(1)

by writing

φ(0)Pu = φ(0)Pφ(1)u+ φ(0)P (1− φ(1))u;

now φ(0)P (1 − φ(1)) ∈ Hs
bΨ−∞b (M) maps u into Hs

b(M) ⊂ H s̃
b(M), hence can be absorbed

into the right hand side. Picking φ(2) ∈ C∞c (M) with φ(2) ≡ 1 near suppφ(1), localizing in

the same coordinate chart, we have thus reduced to proving elliptic regularity at ζ0 for u

solving

(φ(0)Pφ(1))(φ(2)u) ∈ H s̃
b(M), (8.9.1)

which is now completely localized in a single coordinate chart, hence Theorem 8.4.1 gives
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the desired conclusion. Hence, we circumvent the development of an invariant non-smooth

calculus by simply analyzing the mapping properties of error terms like φ(0)P (1 − φ(1)),

rather than finding a suitable symbol class which they belong to.

The arguments for propagation estimates are very similar. Since the radial point and

trapping estimates in Theorems 8.5.10 and 8.5.12 are modifications of the real principal type

propagation result, Theorem 8.5.6, we only indicate how to make the proof of the latter

work on manifolds. Again, we suppress bundles and only consider the interior propagation

result, thus in the notation of the proof of Theorem 8.5.6 in this case,

P = Pm + Pm−1 +R, Pm ∈ Hs
bΨm

b (M), Pm−1 ∈ Hs−1
b Ψm−1

b (M), R ∈ Hs−1
b Ψm−2

b (M);

note again the invariant assumption on R here. First, we note that the symbolic construction

of the commutant leading up to Proposition 8.5.8 (as well as of the commutants used for

radial point and trapping estimates) is invariant, so the task is merely to obtain estimates

for the non-smooth operators arising in the course of the positive commutator argument.

Following the proof of Theorem 8.5.6, we begin by establishing a bound on Pm − P ∗m ∈
L(H

(m−1)/2
b (M), H

−(m−1)/2
b (M)), see (8.5.25), which we obtain by writing

Pm − P ∗m =
∑
j

φjPm − P ∗mφj ,

where {φj} is a partition of unity on M subordinated to a cover by local coordinate charts;

then, writing φ(0) = φj for any fixed j, and choosing φ(1) ∈ C∞c (M) supported in the same

coordinate chart as φ(0) and identically 1 near suppφ(0), we further write

φ(0)Pm − P ∗mφ(0) =
(
φ(0)Pmφ

(1) − (φ(0)Pmφ
(1))∗

)
+
(
φ(0)Pm(1− φ(1))− (1− φ(1))P ∗mφ

(0)
)
,

where the first term is a bounded operator between the aforementioned spaces by the local

argument given in the proof of the estimate (8.5.25), while the second term belongs to the

class Hs
bΨ−∞b + Ψ−∞b Hs

b and is thus bounded on the relevant spaces as well. Here, we

remark that the regularity requirements on s for Hs
bΨ−∞b to map H

(m−1)/2
b into H

−(m−1)/2
b

are the same as or weaker than the requirements on s from the local argument, while there

are no requirements other than, say, s > n/2, in order to have Ψ−∞b Hs
b map Hσ1

b into Hσ2
b

for any σ1, σ2 ∈ R, σ1 ≥ 0, since Hs
b · H

σ1
b ⊂ H

min(s,σ1)
b gets mapped into H∞b ⊂ Hσ2

b by

Ψ−∞b . Similar remarks apply in the remaining arguments in this section; therefore, there
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is no need to analyze regularity requirements at this point, the requirements given in the

statements of the respective theorems in the previous sections being sufficient.

We further point out that for the radial point estimate we need a small operator bound

for Pm−P ∗m localized near the boundary, where Pm has now coefficients which decay at ∂M ,

see (8.5.47); such a bound follows easily from the above localization argument, combined

with the local estimate, as well.

Next, we need to show (8.5.27), i.e. adopting the notation of §8.5, we need to establish

the uniform boundedness of

[Pm−1, Ǎt] ∈ L(Hσ−1
b , H

−(m−1)/2
b ),

where σ = s̃ + m − 1; recall that Ǎt ∈ Ψ
σ−(m−1)/2
b (M) uniformly. With φ(0) being an

element of a partition of unity, localizing in a coordinate chart as before, we need to estimate

φ(0)[Pm−1, Ǎt]. Now, choosing φ(j+1) ∈ C∞c (M), supported in the same coordinate chart

and identically one near suppφ(j), we have

φ(0)[Pm−1, Ǎt] = φ(0)[φ(1)Pm−1φ
(2), φ(3)Ǎtφ

(4)]φ(5)

modulo controllable error terms, while the right hand side is estimated by the argument

leading to (8.5.27). Here, we needed to insert φ(5) in order to ensure that the commutator

on the right hand side acts on functions supported in the coordinate chart. (Thus, φ(5) here

plays the same role as φ(2) in (8.9.1).)

Lastly, we describe the analogue of (8.5.31), which relates the operator commutators

(involving non-smooth operators) to the symbolic commutator computation. Again, with

φ(j) ∈ C∞c (M) as before, it suffices to analyze

Q := φ(0)J−Ǎ∗tφ
(1)[φ(2)Pmφ

(3), φ(4)Ǎtφ
(5)]φ(6),

all other terms (involving 1− φ(j) for one or several j = 1, . . . , 6) being controlled by the a

priori assumptions as above. The local arguments following (8.5.31) show that

Q = Op
(
φ(0)j−ǎtHφ(2)p(φ

(4)ǎt)
)
φ(6)

modulo controllable error terms, with p the principal symbol of Pm, where we used φ(j)φ(k) =
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φ(j) for j < k. Since φ(j) ≡ 1 on suppφ(0) for j = 2, 4, the latter expression is equal to

Op
(
φ(0)j−ǎtHpǎt

)
φ(6).

At this point, one can plug in the terms of the symbolic positive commutator calculation

of ǎtHpǎt from Proposition 8.5.8, all of which now get multiplied by φ(0). Since we have an

invariant calculus for smooth operators, summing over the partition of unity (of which φ(0)

is a member) recovers the usual positive commutator calculation, with a non-smooth error

term of the form Op(−φ(0)j−ft)φ
(6) coming from each coordinate chart, see (8.5.33); but

each of these error terms separately has a sign and is thus controlled by the sharp G̊arding

inequality.

This shows that the positive commutator argument proving the propagation of singu-

larities generalizes to manifolds; the same then holds for the radial point and normally

hyperbolic trapping estimates by completely analogous arguments. Further, the form of the

tame estimates is unaffected by the partition of unity arguments; only the implicit constants

change.



Chapter 9

Quasilinear wave equations

9.1 Quasilinear waves on non-trapping spacetimes

To illustrate the type of global existence result for quasilinear wave equations that we will

prove in this section, we work on a domain Ω extending a part of the static model of de

Sitter space beyond the cosmological horizon, as in §2.2.1, see in particular (2.2.5), and we

denote by g0 the static de Sitter metric on Ω (more precisely, the extension of the static

metric to Ω). Recall that Ω is compact, since it contains its boundary at future infinity.

We then have:

Theorem 9.1.1. For u ∈ C(Ω), let g(u) be a b-metric with g(0) = g0, and in local coordi-

nates, g(u) = (gij(u)) with gij ∈ C∞(R). Moreover, let

q(u, du) =
∑
j

uej
Nj∏
l=1

Xjlu, ej +Nj ≥ 2, Nj ≥ 1, Xjl ∈ Vb(Ω).

Fix k > n/2 + 7 and δ ∈ (0, 1). Then there exist R,C > 0 such that for all f ∈ C∞c (Ω◦;R)

with ‖τ−1+δf‖Hk−1
b (Ω) ≤ C, the equation

�g(u)u = f + q(u, du) (9.1.1)

has a unique forward solution u = c + u′, c ∈ R, u′ ∈ τ1−δHk
b (Ω;R), satisfying the bound

|c|+ ‖τ−1+δu′‖Hk
b (Ω) ≤ R; that is, suppu ⊂ {t ≥ t0} for all t0 such that supp f ⊂ {t ≥ t0}.

Theorem 9.1.1 follows from Theorem 9.1.2 below which takes place in the more general

389
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geometric setting of non-trapping spacetimes, see Definition 2.5.1, and also allows for a

larger class of nonlinearities. See Theorem 9.1.15 for the full statement of Theorem 9.1.1

in the more general setting, in particular for statements regarding stability and higher

regularity, and the subsequent Remark 9.1.18 for more precise asymptotics. One can also

consider equations on natural vector bundles; see the discussion later in the introduction.

In a different direction, we can also solve backward problems in spaces with high decay at

τ = 0, see Theorem 9.1.24, where we can in fact replace �g(u) by �g(u) + L for first order

operators L.

The novelty of our analysis of quasilinear wave and Klein-Gordon equations lies in com-

bining the methods used in Chapter 5 to treat semilinear equations on static asymptotically

de Sitter (and more general) spaces with the technology of pseudodifferential operators with

non-smooth coefficients in the spirit of Beals and Reed [9], developed in Chapter 8, which

is used to understand the regularity properties of operators like �g(u) in the above theo-

rem. Our approach, appropriately adapted, also works in a variety of other settings, in

particular on asymptotically Kerr-de Sitter spaces, where however a more delicate analysis

is necessary in view of issues coming from trapping; we will obtain global well-posedness

results for quasilinear wave equations on asymptotically Kerr-de Sitter spaces in §9.2, and

the class of equations considered there is in fact even more general than (9.1.1) in that the

metric is also allowed to depend on derivatives of u. In a different direction, asymptotically

Minkowski spaces [8] should be analyzable as well using similar methods.

As in the results proved in previous chapters, the compactified picture is very powerful,

as it puts equation (9.1.1) into a b-framework, where it reveals a rich microlocal structure

which was already exploited in §5.2; in particular, the operator �g(u) is a perturbation of

one that has radial points at the boundary. Then, as in Chapter 5, rather than solving an

evolution equation for a short amount of time, controlling certain energies and iterating, we

again use a global iterative procedure, where at each step we solve a linear equation, with

non-smooth coefficients, of the form

Pukuk+1 ≡ (�g(uk) − λ)uk+1 = f + q(uk, duk) (9.1.2)

globally on L2-based b-Sobolev spaces or analogous spaces that encode partial expansions.

Since the non-linearity q (as well as g) must be well-behaved relative to these, we work on

high regularity spaces; recall here that Hs(Rn) is an algebra for s > n/2. Moreover, we need
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to prove decay (or at least non-growth) for solutions of (9.1.2) so that q can be considered

a perturbation. The allowed asymptotics of solutions to the linear equation (9.1.2) are

captured by the normal operator family of Puk at infinity, encoded as a compactification

of the space. By virtue of the asymptotics of scalar linear waves on (approximately) static

(asymptotically) de Sitter spaces, this family will for all k be a family of operators with

smooth coefficients, thus one can use the results of Vasy [114, 111] to understand its behavior,

in particular resonances, i.e. the location of the poles of the inverse Mellin transformed family

and their structure, as well as stability results. Just as in the semilinear setting, we need to

require the resonances to lie in the ‘unphysical half-plane’ Imσ < 0 (a simple resonance at

0 is fine as well), since resonances in the ‘physical half-plane’ Imσ > 0 would allow growing

solutions to the equation, making the non-linearity non-perturbative and thus causing our

method to fail. As in the smooth coefficient setting, we carry out the linear analysis of

equations like (9.1.2) in two steps: the invertibility on high regularity spaces which however

contain functions that are growing at future infinity (see Theorem 9.1.7), and the proof of

decay corresponding to the location of resonances (see Theorem 9.1.8).

In the iteration scheme (9.1.2), notice that if uk ∈ Hs (more precisely, an Hs
b-based

space), then the right hand side is in Hs−1. Now Puk has leading order coefficients in Hs

and subprincipal terms with regularity Hs−1, and to keep the iteration running, we need

that the solution operator for Puk maps Hs−1 to Hs, the loss of (at least) one derivative

being standard for hyperbolic problems. In other words, there is a delicate balance of the

regularities involved, and the results of Chapter 8 provided the necessary robust regularity

theory for operators like Puk on manifolds with boundary.

In order to emphasize the generality of the method, let us point out that given an

appropriate structure of the null-geodesic flow at ∞, for example radial points as above, the

only obstruction to the solvability of quasilinear equations are resonances in the upper half

plane.

To set up the precise version of the above theorem, we work on a generalized static

model Ω with Lorentzian b-metric g, see §2.2.2, and denote the defining function of future

infinity by τ ; thus, the asymptotic model at future infinity is exact static de Sitter space

(extended beyond the cosmological horizon). The domain Ω is a compact submanifold with

corners of the manifold M with boundary X as in (2.2.16), namely M is a neighborhood of

the interior of the backward light cone from a point at future infinity of an asymptotically

de Sitter-like space. See also Figure 2.4. One can in fact work on general non-trapping
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spacetimes, see Definition 2.5.1, provided the resonances and resonant states in the closed

upper half plane are as on static de Sitter space, see equation (5.2.9), i.e. �g has a simple

resonance at 0 with resonant space spanned by constant functions; we restrict ourselves to

generalized static models merely for simplicity of the presentation. As in §5.2, we work

on weighted b-Sobolev spaces Hs,α
b (M) = ταHs

b(M), or rather on the spaces Hs,α
b (Ω)•,− of

restrictions of Hs,α
b (M)-functions with support in the future of the Cauchy hypersurface H1

to Ω; that is, elements of Hs,α
b (Ω)•,− are supported at H1 and extendible at the artificial

spacelike hypersurface H2, see [64, Appendix B]. Finally, let X s,α be the space of all u which

near τ = 0 asymptotically look like a constant plus an Hs,α
b -function, i.e. for some c ∈ C,

u′ = u− cχ(τ) ∈ Hs,α
b (Ω)•,−, where χ ∈ C∞c (R), χ ≡ 1 near 0, is a cutoff near Y = Ω∩ ∂M ;

for such a function u, define its squared norm by

‖u‖2X s,α = |c|2 + ‖u′‖2Hs,α
b (Ω)•,− .

Our main theorem then is:

Theorem 9.1.2. Let s > n/2 + 7 and 0 < α < 1. Assume that for j = 0, 1,

g : X s−j,α → (C∞ +Hs−j,α
b )(M ;S2bT ∗ΩM),

q : X s−j,α ×Hs−1−j,α
b (Ω; bT ∗ΩM)•,− → Hs−1−j,α

b (Ω)•,−

are continuous, g is locally Lipschitz, and

‖q(u, bdu)− q(v, bdv)‖
Hs−1−j,α

b (Ω)•,−
≤ Lq(R)‖u− v‖X s−j,α

for u, v ∈ X s−j,α with norm ≤ R, where Lq : R≥0 → R is continuous and non-decreasing.

Then there is a constant CL > 0 so that the following holds: If Lq(0) < CL, then for small

R > 0, there is Cf > 0 such that for all f ∈ Hs−1,α
b (Ω)•,− with norm ≤ Cf , there exists a

unique solution u ∈ X s,α of the equation

�g(u)u = f + q(u, bdu)

with norm ≤ R, and in the topology of X s−1,α, u depends continuously of f .

See Theorem 9.1.11. Another case we study is g(u) = µ(u)g, i.e. we only allow conformal

changes of the metric; here, one can partly improve the above theorem, in particular allow



9.1. NON-TRAPPING SPACETIMES 393

non-linearities of the form q(u, bdu,�g(u)u); see §9.1.3. The point of the Lipschitz assump-

tions on q in all these cases is to ensure that q(u, bdu) has a sufficient order of vanishing at

u = 0 so that q(u, bdu) can be considered a perturbation of �g(u); quadratic vanishing is

enough, but slightly less (simple vanishing will small Lipschitz constant near or at 0) also

suffices.

Similar results hold for quasilinear Klein-Gordon equations with positive mass, where

the asymptotics of solutions, hence the function spaces used, are different, namely the

leading order term is now decaying; see §9.1.4 for details.

In §9.1.5 finally, we will discuss backward problems; the results there extend to the

setting of Einstein’s equations (after fixing a gauge) on static de Sitter and even on Kerr-

de Sitter spacetimes, thus enabling constructions of dynamical black hole spacetimes in

the spirit of recent work by Dafermos, Holzegel and Rodnianski [24], however the issue of

constructing appropriate initial data sets is rather involved.

While all results were stated for scalar equations, corresponding results hold for oper-

ators acting on natural vector bundles, provided that all resonances lie in the unphysical

half-plane Imσ < 0 (with a simple resonance at 0 being fine as well): Indeed, the linear

arguments go through in general for operators with scalar principal symbols; only the nu-

merology of the needed regularities depends on estimates of the subprincipal symbol at

(approximate) radial points.

Lastly, let us mention that paradifferential methods would give sharper results with

respect to the regularity of the spaces in which we solve equation (9.1.1), and correspond-

ingly we have not made any efforts here to push the regularity down. However, our entirely

L2-based method is both conceptually and technically relatively straightforward, powerful

enough for our purposes, and lends itself very easily to generalizations in other contexts.

9.1.1 Analytic, geometric and dynamical assumptions on non-smooth lin-

ear problems

Since we have a calculus for non-smooth ps.d.o.s from Chapter 8 at our disposal, as well

as energy estimates for non-smooth wave-type operators from §8.6, the arguments given in

§5.2.1 leading to a Fredholm framework for the forward problem for wave-type operators

P on non-smooth perturbations of the static model of de Sitter space, go through with

only minor technical modifications. Because there are large dimension dependent losses

in estimates for the adjoint of P , which acts on negative order b-Sobolev spaces (see the
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numerology in Proposition 8.2.9), relative to the regularity of the coefficients of P , say

C∞ +Hs
b for the highest order ones, the spaces that P acts on as a Fredholm operator are

roughly of the order s− n/2.

This can be vastly improved with a calculus for right quantizations of non-smooth sym-

bols just like the one developed in Chapter 8 for left quantizations. Right quantizations have

‘good’ mapping properties on negative order (but lossy ones on positive order) b-Sobolev

spaces. Correspondingly, all microlocal results (elliptic regularity, propagation of singulari-

ties, including at radial points) hold by the same proofs mutatis mutandis. Then, viewing

P ∗ as the right quantization of a non-smooth symbol gives estimates which allow one to

put P into a Fredholm framework on spaces with regularity s− ε, ε > 0.

Our focus here however is to prove the invertibility of the forward problem, whose dis-

cussion in §5.2.1 (in the smooth setting) we follow. Thus, consider a non-trapping spacetime

(Ω, g) as in Definition 2.5.1, the main example being a generalized static model. We assume

that for some α > 0, the metric g satisfies

g ∈ C∞(Ω;S2bT ∗ΩM) +Hs,α
b (Ω;S2bT ∗ΩM)•,−,

where M is a neighborhood of Ω as in §2.2.1; thus, the metric g is a standard (incomplete)

metric on Ω near the artificial hypersurfaces H1 and H2, while it is a b-metric near future

infinity Y = Ω ∩ ∂M . We consider the operator

P = �g + L, L ∈ (C∞ +Hs−1,α
b )Diff1

b + (C∞ +Hs−1,α
b ),

thus

P ∈ (C∞ +Hs,α
b )Diff2

b + (C∞ +Hs−1,α
b )Diff1

b + (C∞ +Hs−1,α
b ). (9.1.3)

The assumption that Ω is a non-trapping spacetime in particular means that P has radial

points, which are saddles of the Hamilton flow of the principal symbol of P , at the b-

conormal bundle of the horizons, or more generally P is a perturbation of such an operator;

see Remark 2.2.4. We use the notation L± for the radial set and β̃, β̂ for the dynami-

cal quantities at L± defined prior to Theorem 8.5.10, see equations (8.5.38) and (8.5.40).

Moreover, the metric g is non-trapping in the sense of Proposition 2.2.3 (7). Further, we

denote by t1 and t2 two smooth functions on M which are defining functions of H1 and H2,
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respectively, and put for δ1, δ2 small

Ωδ1,δ2 := t−1
1 ([δ1,∞)) ∩ t−1

2 ([δ2,∞)), Ω ≡ Ω0,0,

Ω◦δ1,δ2 := t−1
1 ((δ1,∞)) ∩ t−1

2 ((δ2,∞));

we assume that the differentials of t1 and t2 have the opposite timelike character near their

respective zero sets within Ω = Ω0, more specifically, t1 is future timelike, t2 past timelike,

and we assume that Ωδ1,δ2 is compact. Furthermore, we assume that the boundary defining

function τ is such that dτ/τ is timelike and past-oriented on Ω.

Recall Figure 5.1 for the setup, and Definition 2.5.1 for the full set of assumptions.

Denote by Hs,r
b (Ωδ1,δ2)•,− distributions which are supported (•) at the ‘artificial’ bound-

ary hypersurface t−1
1 (δ1) and extendible (−) at t−1

2 (δ2), and the other way around for

Hs,r
b (Ωδ1,δ2)−,•. Then we have the following global energy estimate, which is entirely anal-

ogous to Lemma 4.2.1.

Lemma 9.1.3. Suppose s > n/2 + 2. There exists r0 < 0 such that for r ≤ r0, −r̃ ≤ r0,

there is C > 0 such that for u ∈ H2,r
b (Ωδ1,δ2)•,−, v ∈ H2,r̃

b (Ωδ1,δ2)−,•, one has

‖u‖
H1,r

b (Ωδ1,δ2 )•,− ≤ C‖Pu‖H0,r
b (Ωδ1,δ2 )•,− ,

‖v‖
H1,r̃

b (Ωδ1,δ2 )−,•
≤ C‖P ∗v‖

H0,r̃
b (Ωδ1,δ2 )−,•

.

If one replaces C by any C ′ > C, the estimates also hold for small perturbations of P in

the space indicated in (9.1.3).

Proof. The proof follows the proof of Lemma 4.2.1, adapted to the non-smooth setting as

in Proposition 8.6.1.

By a duality argument and the propagation of singularities, we thus obtain solvability

and higher regularity, as in Corollaries 4.1.7 and 4.2.2:

Lemma 9.1.4. Let 0 ≤ s′ ≤ s and assume s > n/2 + 6. There exists r0 < 0 such that for

r ≤ r0, there is C > 0 with the following property: If f ∈ Hs′−1,r
b (Ω)•,−, then there exists a

unique u ∈ Hs′,r
b (Ω)•,− such that Pu = f , and u moreover satisfies

‖u‖
Hs′,r

b (Ω)•,−
≤ C‖f‖

Hs′−1,r
b (Ω)•,−

.
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If one replaces C by any C ′ > C, this result also holds for small perturbations of P in the

space indicated in (9.1.3).

Proof. We follow the proof of Corollary 4.1.7: Choose δ1 < 0 and δ2 < 0 small, and choose

an extension

f̃ ∈ Hs′−1,r
b (Ω0,δ2)•,− ⊂ H−1,r

b (Ω0,δ2)•,−

satisfying

‖f̃‖
Hs′−1,r

b (Ω0,δ2
)•,−
≤ 2‖f‖

Hs′−1,r
b (Ω)•,−

. (9.1.4)

By Lemma 9.1.3, applied with r̃ = −r, we have

‖φ‖
H1,r̃

b (Ω0,δ2
)−,•
≤ C‖P ∗φ‖

H0,r̃
b (Ω0,δ2

)−,•

for φ ∈ H2,r̃
b (Ω0,δ2)−,•. By the Hahn-Banach theorem, we conclude that there exists ũ ∈

H0,r̃
b (Ω0,δ2)•,− such that

〈Pũ, φ〉 = 〈ũ, P ∗φ〉 = 〈f, φ〉, φ ∈ H2,r̃
b (Ω0,δ2)−,•,

and

‖ũ‖
H0,r̃

b (Ω0,δ2
)•,−
≤ C‖f̃‖

H−1,r̃
b (Ω0,δ2

)•,−
. (9.1.5)

We can view ũ as an element of H0,r̃
b (Ωδ1,δ2)•,− with support in Ω0,δ2 , similarly for f̃ ; then

〈Pũ, φ〉 = 〈f̃ , φ〉 for all φ ∈ Ċ∞c (Ω◦δ1,δ2) (with the dot referring to infinite order of vanishing

at ∂M), i.e. Pũ = f̃ as distributions on Ω◦δ1,δ2 .

Now, ũ vanishes on Ω◦δ1,δ2 \ Ω0,δ2 , in particular is in Hs′,r
b,loc there. Elliptic regularity

and the propagation of singularities, Theorems 8.4.1, 8.5.6 and 8.5.10, imply that ũ ∈
Hs′,r

b,loc(Ω
◦
δ1,δ2

). Indeed, by Theorem 8.4.1 with s̃ = −1, ũ is in H
1/2,r
b on the elliptic set of P

within Ω◦δ1,δ2 ; Theorem 8.5.6 with s̃ = −1/2 gives H
1/2,r
b -control of ũ on the characteristic

set away from radial points, and then an application of Theorem 8.5.10 gives H
1/2,r
b -control

of ũ on all of Ω◦δ1,δ2 .48 Iterating this argument gives Hs′,r
b,loc(Ωδ1,δ2)◦, and we in fact get an

48The conditions of all theorems used here are satisfied because of s > n/2 + 6; if necessary, we need to
make r0 smaller, i.e. assume that r ≤ r0 is more negative, in order for the assumptions of Theorem 8.5.10 to
be fulfilled. Strictly speaking, we in fact need to use localized estimates in the following sense: If ũ ∈ H s̃,r

b

and Pũ ∈ H s̃−1/2,r
b , and if χ ∈ C∞c (Ω◦δ1,δ2) is identically 1 near a point x0, then Pχũ = χP ũ+ [P, χ]ũ is in

H
s̃−1/2,r
b in a neighborhood of x0 and globally in H s̃−1,r

b , since [P, χ] is a first order operator. By inspection of
the relevant theorems, in particular (8.5.8), this regularity suffices to apply the relevant microlocal regularity
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estimate

‖χũ‖
Hs′,r

b (Ωδ1,δ2 )
≤ C

(
‖χ̃P ũ‖

Hs′−1,r
b (Ωδ1,δ2 )

+ ‖χ̃ũ‖
H0,r

b (Ωδ1,δ2 )

)
for appropriate χ, χ̃ ∈ C∞c (Ω◦δ1,δ2), χ̃ ≡ 1 on suppχ. In view of the support properties

of ũ, an appropriate choice of χ and χ̃ gives that the restriction of ũ to Ω is an element

of Hs′,r
b (Ω)•,−, with norm bounded by the Hs′−1,r

b (Ω)•,−-norm of f in view of (9.1.5) and

(9.1.4).

To prove uniqueness, suppose u ∈ Hs′,r
b (Ω)•,− satisfies Pu = 0, then, viewing u as a dis-

tribution on Ω◦δ1,0 with support in Ω, elliptic regularity and the propagation of singularities,

applied as above, give u ∈ Hs,r
b,loc(Ω

◦
δ1,0

) ⊂ H2,r
b,loc(Ω

◦
δ1,0

); hence, for any δ̃ > 0, Lemma 9.1.3

applied to u′ = u|Ω
0,δ̃
∈ H2,r

b (Ω
0,δ̃

)•,− gives u′ = 0, thus, since δ̃ > 0 is arbitrary, u = 0.

Corollary 9.1.5. (Cf. Corollary 4.2.3.) Let 0 ≤ s′ ≤ s and assume s > n/2 + 6. There

exists r0 < 0 such that for r ≤ r0, there is C > 0 with the following property: If u ∈
Hs′,r

b (Ω)•,− is such that Pu ∈ Hs′−1,r
b (Ω)•,−, then

‖u‖
Hs′,r

b (Ω)•,−
≤ C‖Pu‖

Hs′−1,r
b (Ω)•,−

.

If one replaces C by any C ′ > C, this result also holds for small perturbations of P in the

space indicated in (9.1.3).

Proof. Let u′ ∈ Hs′,r
b (Ω)•,− be the solution of Pu′ = Pu given by the existence part

Lemma 9.1.4, then P (u− u′) = 0, and the uniqueness part implies u = u′.

We also obtain the following propagation of singularities type result:

Corollary 9.1.6. (Cf. Proposition 4.1.10.) Let 0 ≤ s′′ ≤ s′ ≤ s and assume s > n/2 + 6;

moreover, let r ∈ R be such that s′′ − 1 + infL±(β̂ − rβ̃) > 0. Then there is C > 0 such

that the following holds: Any u ∈ Hs′′,r
b (Ω)•,− with Pu ∈ Hs′−1,r

b (Ω)•,− in fact satisfies

u ∈ Hs′,r
b (Ω)•,−, and obeys the estimate

‖u‖
Hs′,r

b (Ω)•,−
≤ C(‖Pu‖

Hs′−1,r
b (Ω)•,−

+ ‖u‖
Hs′′,r

b (Ω)•,−
).

If one replaces C by any C ′ > C, this result also holds for small perturbations of P in the

space indicated in (9.1.3).

results and deduce microlocal H
s̃+1/2,r
b -regularity of ũ.
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Proof. As in the proof of Lemma 9.1.4, working on Ωδ1,0 for δ1 < 0 small, we obtain

u ∈ Hs′,r
b,loc by iteratively using elliptic regularity, real principal type propagation and the

propagation near radial points; the latter, applied in the first step with s̃ = s′′− 1/2, is the

reason for the condition on s′′. Thus, u ∈ Hs′,r
b (Ω

0,δ̃
)•,− for δ̃ > 0. From here, arguing as

in the proof of Proposition 4.1.10, we obtain the desired conclusion.

Let us rephrase Lemma 9.1.4 and Corollary 9.1.5 as an invertibility statement:

Theorem 9.1.7. (Cf. Theorem 4.2.4.) Let 0 ≤ s′ ≤ s and assume s > n/2 + 6. There

exists r0 < 0 with the following property: Let r ≤ r0 and define the spaces

X s,r = {u ∈ Hs,r
b (Ω)•,− : Pu ∈ Hs−1,r

b (Ω)•,−}, Ys,r = Hs,r
b (Ω)•,−.

Then P : X s,r → Ys−1,r is a continuous, invertible map with continuous inverse.

Moreover, the operator norm of the inverse, as a map from Hs−1,r
b (Ω)•,− to Hs,r

b (Ω)•,−,

of small perturbations of P in the space indicated in (9.1.3) is uniformly bounded.

We can now apply the arguments of §5.2.1, see also [114] for the dilation-invariant case, to

obtain more precise asymptotics of solutions u to Pu = f using the knowledge of poles of the

inverse of the Mellin transformed normal operator family P̂ (σ), where the normal operator

N(P ) of P is defined just as in the smooth setting by ‘freezing’ the coefficients of P at the

boundary ∂M . This makes sense in our setting since the coefficients of P are continuous;

also, the coefficients of N(P ) are then smooth, since all non-smooth contributions to P

vanish at the boundary.

Theorem 9.1.8. (Cf. Theorem 5.2.3.) Let s > n/2 + 6, 0 < α < 1, and assume g ∈
C∞(Ω;S2bT ∗ΩM) +Hs,α

b (Ω;S2bT ∗ΩM). Let

P = �g + L, L ∈ (C∞ +Hs−1,α
b )Diff1

b + (C∞ +Hs−1,α
b ).

Further, let t1 and Ω ⊂ M and the metric g be as above. Let σj be the poles of P̂−1(σ), of

which there are only finitely many in any half space Imσ ≥ −C. Let r ∈ R be such that

r 6= Imσj and r ≤ − Imσj +α for all j, and let r0 ∈ R. Moreover, let 1 ≤ s0 ≤ s′ ≤ s, and

suppose that

s′ − 2 + inf
L±

(β̂ − rβ̃) > 0.

Finally, let φ ∈ C∞(R) be such that suppφ ⊂ (0,∞) and φ ◦ t1 ≡ 1 near ∂M ∩ Ω.
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Then any solution u ∈ Hs0,r0
b (Ω)•,− of Pu = f with f ∈ Hs′−1,r

b (Ω)•,− satisfies

u−
∑
j

xiσj (φ ◦ t1)aj = u′ ∈ Hs′,r
b (Ω)•,−

for some aj ∈ C∞(∂M ∩ Ω), where the sum is understood over the finite set of j such that

− Imσj < r < − Imσj + α.

The result is stable under small perturbations of P in the space indicated in assump-

tion (9.1.3) in the sense that, even though the σj might change, all C∞-seminorms of

the expansion terms aj and the Hs′,r
b (Ω)•,−-norm of the remainder term u′ are bounded

by C(‖u‖Hs0,r0
b (Ω)•,− + ‖f‖

Hs′−1,r
b (Ω)•,−

) for some uniform constant C (depending on which

norm we are bounding).

Proof. By making r0 smaller (i.e. more negative) if necessary, we may assume that r0 ≤ r

and

s0 − 1 + inf
L±

(β̂ − r0β̃) > 0.

First, assume σ∗ := minj{− Imσj} > r. Then u ∈ Hs0,r0
b (Ω)•,− and Pu = f ∈ Hs′−1,r

b (Ω)•,−

imply u ∈ Hs′,r0
b (Ω)•,− by Corollary 9.1.6. Since

P −N(P ) ∈ (xC∞ +Hs,α
b )Diff2

b + (xC∞ +Hs−1,α
b )Diff1

b + (xC∞ +Hs−1,α
b ),

we thus obtain f̃ := (P − N(P ))u ∈ Hs′−2,r0+α
b (Ω)•,−, where we use s ≥ s′ − 2 and

s− 1 ≥ s′ − 1; hence

N(P )u = f − f̃ ∈ Hs′−2,r′

b (Ω)•,−

with r′ = min(r, r0 + α). Applying49 [114, Lemma 3.1] gives u ∈ Hs′−1,r′

b (Ω)•,− in view

of the absence of poles of P̂ (σ) in Imσ ≥ −r; but then Pu ∈ Hs′−1,r
b (Ω)•,− implies u ∈

Hs′,r′

b (Ω)•,−, again by Corollary 9.1.6, where we use

(s′ − 1)− 1 + inf(β̂ − r′β̃) ≥ s′ − 2 + inf(β̂ − rβ̃) > 0.

If r′ = r, we are done; otherwise, we iterate, replacing r0 by r0 + α, and obtain u ∈
Hs′,r

b (Ω)•,− after finitely many steps.

49This requires s′ ≥ 1 in view of the supported/extendible spaces that we are using here; see also the
proof of Theorem 5.2.3.
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If there are σj with − Imσj < r, then, assuming that σ∗ − α < r0 < σ∗, in fact that r0

is arbitrarily close to σ∗, as we may by the first part of the proof, the application of [114,

Lemma 3.1] gives a partial expansion u1 of u with remainder u′ ∈ Hs′−1,r′

b (Ω)•,−, where

r′ = min(r, r0 + α). Now N(P )u1 = 0, and u1 is a sum of terms of the form ajx
iσj with

Imσj ≤ −σ∗ and aj ∈ C∞(∂M ∩ Ω), in particular u1 ∈ H∞,r0b (Ω)•,−; thus

(P −N(P ))u1 ∈ H∞,r0+1
b (Ω)•,− +Hs−1,σ∗+α

b (Ω)•,− ⊂ Hs−1,σ∗+α
b (Ω)•,−, (9.1.6)

where the two terms correspond to the coefficients of P − N(P ) being sums of xC∞- and

Hs−1,α
b -functions. Therefore,

Pu′ = Pu−N(P )u1 − (P −N(P ))u1 ∈ Hs′−1,r
b (Ω)•,−, (9.1.7)

which by Corollary 9.1.6 implies u′ ∈ Hs′,r′

b (Ω)•,−, finishing the proof in the case that r′ = r,

i.e. r < σ∗+α. If r = σ∗+α, we need one more iterative step to establish the improvement

in the weight of u′: We use u′ ∈ Hs′,r′

b to deduce

N(P )u = f − (P −N(P ))u ∈ Hs′−1,r
b +Hs′−2,r′+α

b +Hs−1,σ∗+α
b ⊂ Hs′−2,σ∗+α

b ,

where we use (P −N(P ))u′ ∈ Hs′−2,r′+α
b and (9.1.6). Hence [114, Lemma 3.1] implies that

the partial expansion u = u1 + u′ in fact holds with u′ ∈ Hs′−1,r
b , and then Corollary 9.1.6

and (9.1.7) imply u′ ∈ Hs′,r
b , finishing the proof in the case r = σ∗ + α.

Remark 9.1.9. In the smooth setting, one can use the partial expansion u1 to obtain better

information on f̃ for a next step in the iteration. This however relies on the fact that

P − N(P ) ∈ xDiff2
b there (see the proof of Theorem 5.2.3); here, however, we also have

terms in the space Hs−1,α
b Diff2

b in P − N(P ), and Hs−1
b -functions do not have a Taylor

expansion at x = 0, hence the above iteration scheme does not yield additional information

after the first step in which one gets a non-trivial part u1 of the expansion of u. If however

we encode more precise asymptotics in the function space in which g lies, then P−N(P ) has

a partial polyhomogeneous expansion which can be used to obtain more precise asymptotics

for u. See also Remark 9.1.18.

Combining Theorem 9.1.8 with Theorem 9.1.7 gives us a forward solution operator for

P which, provided we understand the poles of P̂ (σ)−1, will be the key tool in our discussion

of quasilinear wave equations on non-trapping spacetimes in the next section.
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9.1.2 Solving quasilinear wave equations

We are now prepared to discuss existence, uniqueness and asymptotics of solutions to quasi-

linear wave and Klein-Gordon equations for complex- and/or real-valued functions on the

static model of de Sitter space, in fact on the domain Ω described in the previous sec-

tion, with small data, i.e. small forcing. Keep in mind though that the methods work in

greater generality, as explained at the beginning of this section. In particular, we will prove

Theorems 9.1.1 and 9.1.2.

We stick to the scalar case here for simplicity, rather than considering wave equations on

natural vector bundles. We remark however that we understand resonances for instance for

differential forms rather precisely, see §7.4.1. The general statement is that as long as there

is no resonance or only a simple resonance at 0 in the closed upper half plane (with the

non-linearity annihilating it), the arguments presented in this section go through. Likewise,

we can work on the more general class of static asymptotically de Sitter spaces, since the

normal operator, hence the resonances are the same as on exact static de Sitter space, and

in fact on much more general spacetimes, namely non-trapping spacetimes in the sense of

Definition 2.5.1, provided the above resonance condition as well as all assumptions in §9.1.1

are satisfied; examples of the latter kind include perturbations (even of the asymptotic

model) of asymptotically de Sitter spaces. See Remark 9.1.12. The results on spacetimes

with normally hyperbolic trapping in §9.2 will be formulated in this type of generality.

Let us from now on denote by gdS the static de Sitter metric. We start with a discussion

of quasilinear wave equations.

Definition 9.1.10. For s, α ∈ R, define the Hilbert space

X s,α := C⊕Hs,α
b (Ω)•,−

with norm ‖(c, v)‖2X s,α = |c|2 +‖v‖2
Hs,α

b (Ω)•,−
. We will identify an element (c, v) ∈ X s,α with

the distribution (φ ◦ t1)c+ v, where φ and t1 are as in the statement of Theorem 9.1.8.

Theorem 9.1.11. Let s > n/2 + 7 and 0 < α < 1. Assume that for j = 0, 1,

g : X s−j,α → (C∞ +Hs−j,α
b )(Ω;S2bT ∗ΩM),

q : X s−j,α ×Hs−l−j,α
b (Ω; bT ∗ΩM)•,− → Hs−1−j,α

b (Ω)•,−
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are continuous, g is Lipschitz near 0, and

‖q(u, bdu)− q(v, bdv)‖
Hs−1−j,α

b (Ω)•,−
≤ Lq(R)‖u− v‖X s−j,α (9.1.8)

for u, v ∈ X s−j,α with norm ≤ R, then there is a constant CL > 0 so that the following holds:

If Lq(0) < CL, then for small R > 0, there is Cf > 0 such that for all f ∈ Hs−1,α
b (Ω)•,−

with norm ≤ Cf , there exists a unique solution u ∈ X s,α of the equation

�g(u)u = f + q(u, bdu) (9.1.9)

with norm ≤ R, and in the topology of X s−1,α, u depends continuously on f .

Remark 9.1.12. Note that the poles of the meromorphic family �̂g(u)

−1
depend continu-

ously on u (see [114]), and the simple pole at 0, corresponding to constant functions being

annihilated by N(�g(u)), is preserved under perturbations. This will be crucial in the proof,

and it also shows that we may allow the metric g(0) to be a perturbation (in the b-sense) of

gdS, rather than exact gdS, without any additional work. (As mentioned before, working on

general non-trapping spacetimes requires the understanding of the resonances, which goes

beyond the perturbative regime with which this remark deals.)

Remark 9.1.13. Of course, we require all sections g(u) of S2bT ∗ΩM to take values in sym-

metric 2-tensors with real coefficients. If we assume that q and f are real-valued, we may

therefore work in the real Hilbert space

X s,αR := R⊕Hs,α
b (Ω;R)•,− (9.1.10)

and find the solution u there. This remark also applies to all theorems later in this section.

Proof of Theorem 9.1.11. To not overburden the notation, we will occasionally write Hσ,ρ
b

in place of Hσ,ρ
b (Ω)•,− if the context is clear.

By assumption on g, there exists RS such that for u ∈ X s,α with ‖u‖X s,α ≤ RS , the

domain Ω equipped with the metric g(u) is still a non-trapping spacetime, i.e. the operator

�g(u) satisfies the assumptions listed at the beginning of §9.1.1. Hence, Theorem 9.1.7

is applicable, giving a continuous forward solution operator Sg(u) on sufficiently weighted

b-Sobolev spaces. For such u, the normal operator N(�g(u)) is a small perturbation of

N(�gdS
) in Diff2(Y ), and since further s − 2 − α > 0, we can apply Theorem 9.1.8 to
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conclude that the solution operator in fact maps

Sg(u) : Hs−1,α
b (Ω)•,− → X s,α

continuously, with uniformly bounded operator norm

‖Sg(u)‖ ≤ CS , ‖u‖X s,α ≤ RS . (9.1.11)

Let CL := C−1
S , and assume that Lq(0) < CL, then Lq(Rq) < CL for Rq > 0 small. Put

R := min(RS , Rq) and Cf = R(C−1
S − Lq(R)); let f ∈ Hs−1,α

b (Ω)•,− have norm ≤ Cf .

Define u0 := 0 and iteratively uk+1 ∈ X s,α by solving

�g(uk)uk+1 = f + q(uk,
bduk), (9.1.12)

i.e. uk+1 = Sg(uk)

(
f + q(uk,

bduk)
)
. For uk+1 to be well-defined, we need to check that

‖uk‖X s,α ≤ R for all k. For k = 0, this is clear; for k > 0, we deduce from (9.1.11) and

(9.1.8) that

‖uk+1‖X s,α ≤ CS
(
‖f‖

Hs−1,α
b

+ Lq(R)‖uk‖X s,α
)

≤ CS
(
R(C−1

S − Lq(R)) + Lq(R)R
)

= R.

We aim to show that the sequence (uk)k is in fact Cauchy in X s−1,α. First, we observe that

for u ∈ X s−1,α, we have

�g(u) = gij(u)bDi
bDj + g̃j(u, bdu)bDj

with gij(u) ∈ C∞ + Hs−1,α
b , g̃j(u, bdu) ∈ C∞ + Hs−2,α

b ; using the explicit formula for

the inverse of a metric, Corollary 8.2.10 and Lemma 8.3.2, we deduce from the Lipschitz

assumption on g that

gij : X s−1,α → C∞ +Hs−1,α
b , g̃j : X s−1,α → C∞ +Hs−2,α

b

are Lipschitz as well; hence, for some constant Cg(R), we obtain

‖�g(u) −�g(v)‖L(X s,α,Hs−2,α
b )

≤ Cg(R)‖u− v‖X s−1,α
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for u, v ∈ X s−1,α with X s,α-norms ≤ R. Therefore, we get the following estimate for the

difference of two solution operators Sg(u) and Sg(v), u, v ∈ X s,α, with a loss of 2 derivatives

relative to the elliptic setting, using a ‘resolvent identity:’

‖Sg(u)−Sg(v)‖L(Hs−1,α
b ,X s−1,α)

= ‖Sg(u)(�g(v) −�g(u))Sg(v)‖L(Hs−1,α
b ,X s−1,α)

(9.1.13)

≤ C2
S‖�g(u) −�g(v)‖L(X s,α,Hs−2,α

b )
≤ C2

SCg(R)‖u− v‖X s−1,α .

Here, we assumed CS is such that ‖Sg(u)‖L(Hs−2,α
b ,X s−1,α)

≤ CS for small u ∈ X s,α, which is

where we use that s− 1 > n/2 + 6. Returning to the goal of proving that (uk)k is Cauchy

in X s−1,α, we estimate

‖uk+1 − uk‖X s−1,α ≤
∥∥(Sg(uk) − Sg(uk−1))

(
f + q(uk−1,

bduk−1)
)∥∥
X s−1,α

+ ‖Sg(uk)(q(uk,
bduk)− q(uk−1,

bduk−1))‖X s−1,α

≤ CS
(
Lq(R) + CSCg(R)(Cf + Lq(R)R)

)
‖uk − uk−1‖X s−1,α .

Since CSLq(0) < 1, the constant on the right hand side is less than 1 for small R > 0,

recalling that Cf = Cf (R) → 0 as R → 0. Therefore, (uk)k converges exponentially fast

to a limit u ∈ X s−1,α as k → ∞. Since {uk} is bounded in the Hilbert space X s,α, it in

fact has a weakly convergent subsequence in X s,α, and the limit is necessarily equal to u,

so u ∈ X s,α. This easily implies the weak convergence of the full sequence uk ⇀ u in X s,α.

We can prove uniqueness and stability in one stroke: Suppose that u1, u2 ∈ X s,α have

norm ≤ R and satisfy

�g(uj)uj = fj + q(uj ,
bduj), j = 1, 2,

where the fj ∈ Hs−1,α
b , j = 1, 2, have norm ≤ Cf . Then the estimate (9.1.13) yields

‖u1 − u2‖X s−1,α ≤ CS
(
‖f1 − f2‖Hs−2,α

b
+

(Lq(R) + CSCg(R)(Cf + Lq(R)R))‖u1 − u2‖X s−1,α

)
.

Arguing as before, the second term on the right can be absorbed into the left hand side for

small R > 0. Hence

‖u1 − u2‖X s−1,α ≤ C ′‖f1 − f2‖Hs−2,α
b

,
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as desired.

Remark 9.1.14. In the case that g(u) ≡ g is constant, see Theorem 5.2.6 for a discussion

of the corresponding semilinear equations. There, one in particular obtains more precise

asymptotics in the case of polynomial non-linearities, see Theorem 5.2.17; see also Re-

mark 9.1.9.

We next turn to a special case of Theorem 9.1.11 which is very natural and allows for a

stronger conclusion.

Theorem 9.1.15. Let s > n/2 + 7 and 0 < α < 1. Let N,N ′ ∈ N, and suppose ck ∈
C∞(R;R), gk ∈ (C∞ + Hs

b)(Ω;S2bT ∗ΩM) for 1 ≤ k ≤ N ; define the map g : X s,αR → (C∞ +

Hs,α
b )(Ω;S2bT ∗ΩM) by

g(u) =
N∑
k=1

ck(u)gk,

and assume g(0) = gdS. Moreover, define

q(u, bdu) =
N ′∑
j=1

uej
Nj∏
k=1

Xjku, ej +Nj ≥ 2, Nj ≥ 1, Xjk ∈ (C∞ +Hs−1
b )Vb.

Then for small R > 0, there exists Cf > 0 such that for all f ∈ Hs−1,α
b (Ω;R)•,− with norm

≤ Cf , the equation

�g(u)u = f + q(u, bdu) (9.1.14)

has a unique solution u ∈ X s,αR , with norm ≤ R, and in the topology of X s−1,α
R , u depends

continuously on f . If one in fact has f ∈ Hs′−1,α
b (Ω;R)•,− for some s′ ∈ (s,∞], then

u ∈ X s
′,α

R .

The initial metric g(0) can be more general; see Remark 9.1.12.

Remark 9.1.16. One could, for instance, choose the metrics gk such that at every point

p ∈ M , the linear space S2bTpM is spanned by the gk(p), and in a similar manner the

b-vector fields Xjk.

Remark 9.1.17. The point of the last part of the theorem is that even though a priori the

radius of the ball which is the set of f ∈ Hs′−1,α
b (Ω)•,− for which one has solvability in

X s′,α according to Theorem 9.1.11 could shrink to 0 as s′ → ∞, this does not happen

in the setting of Theorem 9.1.15. We use a straightforward approach to proving this by
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differentiating the PDE; a much more robust way is to use Nash-Moser iteration, as we will

do in §9.2.

Remark 9.1.18. If f has more decay, say f ∈ H∞,∞b , it is relatively straightforward to show

that the solution u in fact has an asymptotic expansion to any fixed order, assuming f is

small in an appropriate space. Indeed, for such a statement, one only needs to replace the

spaces X s,α by similar spaces which now encode more precise partial asymptotic expansions,

as in §5.2.4, and prove the persistence of such spaces under taking reciprocals, compositions

with smooth functions etc. See also Remark 9.1.9.

For the proof, we need one more definition:

Definition 9.1.19. (Cf. [9, Definition 1.1].) For s′ > s, α ∈ R and Γ ⊂ bS∗M , let

Hs,α;s′,Γ
b := {u ∈ Hs,α

b : WFs
′,α

b (u) ∩ Γ = ∅}.

Proof of Theorem 9.1.15. The map g satisfies the requirements of Theorem 9.1.11 by Propo-

sition 8.3.8, and q satisfies (9.1.8) with Lq(0) = 0, thus Theorem 9.1.11 implies the existence

and uniqueness of solutions in X s,α with small norm as well as their stability in the topol-

ogy of X s−1,α. The uniqueness of u in all of X s,αR , in fact in Hs
b,loc(Ω

◦), follows from local

uniqueness for quasilinear symmetric hyperbolic systems, see e.g. [108, §16.3].

It remains to establish the higher regularity statement; by an iterative argument, it

suffices to prove the following: If s′ > s, u ∈ X s
′−1/2,α

R , ‖u‖X s,α ≤ R, and u solves (9.1.14)

with f ∈ Hs′−1,α
b , then u ∈ X s

′,α
R . We only assume that the X s,α-norm of u is small – the

reason for this assumption is that it ensures that �g(u) fits into our framework. We will

use the summation convention for the remainder of the proof. Equation (9.1.14) in local

coordinates reads (
gij(u)b∂2

ij + hj(u, b∂u)b∂j
)
u = f + q(u, b∂u), (9.1.15)

where gij(v), hj(v; z) and q(v; z) are C∞-functions of v and z. As is standard procedure to

obtain higher regularity (and exploited in a similar setting by Beals and Reed [9, §4]), we

will differentiate this equation with respect to certain b-vector field V : After differentiating

and collecting/rewriting terms, one obtains an equation like (9.1.15) for V u, where only

the coefficients of first order terms are changed, and without q and with a different forcing

term; one can then appeal to the regularity theory for the equation for V u, which is thus

again a wave equation with lower order terms. Concretely, suppose Σ̃ ⊂ Σ is a closed
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subset of the characteristic set of �g(u), consisting of bicharacteristic strips and contained

in the coordinate patch we are working in; we want to propagate X s′,α-regularity of u into

Σ̃, assuming we have this regularity on backward/forward bicharacteristics from Σ̃ or in a

punctured neighborhood of Σ̃. With π : bS∗M → M denoting the projection to the base,

choose χ, χ0 ∈ C∞c (Rn+) so that χ is identically 1 near π(Σ̃) and χ0 is identically 1 on suppχ.

Let V0 ∈ Vb(Rn+) be a constant coefficient b-vector field which is non-characteristic (in the

b-sense) on Σ̃, which is possible if Σ̃ is sufficiently small, and put V = χ0V0. Applying V

to (9.1.15), we obtain, suppressing the arguments u, b∂u,

(
gijb∂2

ij + [hj + (∂zjh
k)b∂ku− ∂zjq]b∂j

)
V u+ (gij)′V u b∂2

iju+ gij [V, b∂2
ij ]u

= V f + (∂vq)V u+ (∂zjq)[V,
b∂j ]u

− (∂vh
j)V u b∂ju− hj [V, b∂j ]u− (∂zjh

k)[V, b∂k]u =: f1.

Since V0 annihilates constants, V u ∈ H
s′−3/2,α
b locally near π(Σ̃). Similarly, [V, b∂j ]u ∈

H
s′−3/2,α
b locally near π(Σ̃), and hj(u, b∂u) ∈ C∞+H

s′−3/2,α
b , q(u, b∂u) ∈ Hs′−3/2,α

b , similarly

for derivatives of hj and q; lastly, V f ∈ Hs′−2,α
b , thus f1 ∈ Hs′−2,α

b locally near π(Σ̃). We

need to analyze the last two terms on the left hand side: Since V is non-characteristic on

suppχ ⊃ π(Σ̃), we can write

b∂j = (1− χ)b∂j +QjV + R̃j , Qj ∈ Ψ0
b, R̃j ∈ Ψ1

b,WF′b(R̃j) ∩ Σ̃ = ∅;

put Rj := (1− χ)b∂j + R̃j = b∂j −QjV . Note that Rj annihilates constants. We can then

write
b∂2
iju = b∂iQjV u+ b∂iRju,

and the second term is in H∞,αb microlocally near Σ̃. Thus, we have

(gij)′V u b∂2
iju =

(
(gij)′V u b∂iQj

)
V u+ (gij)′V u b∂iRju;

the second term on the right is a product of a function in H
s′−3/2,α
b with b∂iRju, the

latter a priori being an element of H
s′−5/2,α;∞,Σ̃
b ; we will prove below in Lemma 9.1.20

that this product is an element of H
s′−5/2,α;s′−3/2,Σ̃
b . Moreover, [V, b∂2

ij ] is a second order

b-differential operator, vanishing on constants, with coefficients vanishing near π(Σ̃); this
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implies gij [V, b∂2
ij ]u ∈ H

s′−5/2,α;∞,Σ̃
b . We conclude that

P1(V u) = f2 ∈ Hs′−5/2,α;s′−2,Σ̃
b , (9.1.16)

where

P1 = �g(u) + P̃ , P̃ = [(∂zjh
k)b∂ku− ∂zjq]b∂j + (gij)′V u b∂iQj .

Since we are assuming u ∈ X s′−1/2,α, and moreover P̃ is an element of H
s′−3/2,α
b Ψ1

b near

π(Σ̃), we see that, a forteriori,

P1 ∈ (C∞ +Hs′−1,α
b )Diff2

b + (C∞ +Hs′−2,α
b )Ψ1

b.

Hence, we can propagate Hs′−1,α
b -regularity of V u into Σ̃ by Theorems 8.5.6 and 8.5.10;

recall that these two theorems only deal with the propagation of regularity which is 1/2

more than than the a priori regularity of V u, which is H
s′−3/2,α
b . The point here is that real

principal type propagation only depends on the principal symbol of P1, which is the same as

the principal symbol of �g(u), and the propagation of Hs′−1,α
b -regularity near radial points

works for arbitrary Hs′−2,α
b Ψ1

b-perturbations of �g(u); see Remark 8.5.11. Therefore, writing

u = c+u′ with u′ ∈ Hs′−1/2,α
b a priori, we obtain u′ ∈ Hs′,α

b microlocally near Σ̃ by standard

elliptic regularity, since V is non-characteristic on Σ̃. Away from the characteristic set of

�g(u), which is the same as the characteristic set of P1, we simply use P1V u ∈ Hs′−5/2,α
b and

elliptic regularity for P1V to deduce that u′ ∈ Hs′+1/2,α
b there; we stress the importance of

only using local rather than microlocal regularity information of P1V u, since the proof of

Theorem 8.4.1, giving elliptic regularity for V u solving P1(V u) = f , only works with local

assumptions on f , see Remark 8.4.2. For this application of elliptic regularity, we choose

V in such a way that it is non-characteristic on a set disjoint from Σ. Putting all such

pieces of regularity information together by choosing finitely many such sets Σ̃, we obtain

u′ ∈ Hs′,α
b,loc(Ω)•,−.

We can make this is a global rather than local statement by extending Ω to the slightly

larger domain Ω0,δ2 , δ2 < 0, solving the quasilinear PDE there, and restricting back to Ω;

thus u′ ∈ Hs′,α
b (Ω)•,−.

To finish the proof, we need the following lemma, which we prove using ideas from [9,

Theorem 1.3].
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Lemma 9.1.20. Let α ∈ R and s > n/2 + 1. Then, in the notation of Definition 9.1.19,

for u ∈ Hs
b and v ∈ Hs−1,α;s,Γ

b , we have uv ∈ Hs−1,α;s,Γ
b .

Proof. Without loss, we may assume α = 0. By Corollary 8.2.10, uv ∈ Hs−1
b , and we

must prove the microlocal regularity of uv. Using a partition of unity, it suffices to assume

Γ = (Rn+)z × K for a conic set K ⊂ Rnζ \ o; moreover, since the complement of the wave

front set is open, we can assume that K is open. By assumption, we can then write

|û(ζ)| = u0(ζ)

〈ζ〉s
, u0 ∈ L2, |v̂(ζ)| =

(
χK(ζ)

〈ζ〉s
+
χKc(ζ)

〈ζ〉s−1

)
v0(ζ), v0 ∈ L2,

where χK denotes the characteristic function of K, and Kc the complement of K. Now, let

K0 ⊂ K be closed and conic. Then

χK0(ζ)|ûv(ζ)|〈ζ〉s ≤
∫
χK0(ζ)〈ζ〉s

〈ζ − ξ〉s

(
χK(ξ)

〈ξ〉s
+
χKc(ξ)

〈ξ〉s−1

)
u0(ζ − ξ)v0(ξ) dξ

We show that this is an element of L2, thus finishing the proof: We have

〈ζ〉s

〈ζ − ξ〉s〈ξ〉s
∈ L∞ζ L2

ξ ,

and on the support of χK0(ζ)χKc(ξ), we have |ζ − ξ| ≥ c|ζ|, c > 0, thus

χK0(ζ)χKc(ξ)〈ζ〉s

〈ζ − ξ〉s〈ξ〉s−1
.

1

〈ξ〉s−1
∈ L∞ζ L2

ξ ,

since s > n/2 + 1.

9.1.3 Conformal changes of the metric

Reconsidering the proof of Theorem 9.1.11, one cannot bound

‖(Sg(u) − Sg(v))‖L(Hs−1,α
b ,X s,α)

. ‖u− v‖X s,α



410 CHAPTER 9. QUASILINEAR WAVE EQUATIONS

in general,50 which however would immediately give uniqueness and stability of solutions

to (9.1.9) in the space X s,α. But there is a situation where we do have good control on

Sg(u) − Sg(v) as an operator from Hs−1,α
b to X s,α, namely when �g(u) and �g(v) have the

same characteristic set, since in this case, in (9.1.13) the composition of �g(v) −�g(u) with

Sg(v) loses no derivative (ignoring issues coming from the limited regularity of g(u), g(v) for

the moment – they will turn out to be irrelevant). This situation arises if g(u) = µ(u)g(0)

for µ(u) ∈ C∞(M) +Hs
b(M); that this is in fact the only possibility is shown by a pointwise

application of the following lemma.

Lemma 9.1.21. Let d ≥ 1, and assume g, g′ are bilinear forms on R1+d with signature

(1, d) such that the zero sets of the associated quadratic forms q, q′ coincide. Then g = µg′

for some µ ∈ R×.

Proof. By a linear change of coordinates, we may assume that g′ is the Minkowski bilinear

form on R1+d. Let gij , 0 ≤ i, j ≤ d, be the components of g, and let us write vectors in R1+d

as (x1, x
′) ∈ R× Rd. Since g′(1, 0) 6= 0, we have g(1, 0) = g00 6= 0. Dividing g by µ := g00,

we may assume g00 = 1; we now show that g = g′. For all x′ ∈ Rd, |x′| = 1 (Euclidean

norm!), we have q(1, x′) = 0 and q(1,−x′) = 0, hence q(1, x′)−q(1,−x′) = 0, in coordinates

4
∑
i≥1

g0ix
′
i = 0, |x′| = 1,

and thus g0i = 0 for all i ≥ 1. Now let q̃(x′) := q(0, x′) and q̃′(x′) := q′(0, x′), then

q̃(x′) = −1 ⇐⇒ q(1, x′) = 0 ⇐⇒ q′(1, x′) = 0 ⇐⇒ q̃′(x′) = −1,

thus by scaling q̃ ≡ q̃′ on Rd, hence by polarization gij = g′ij for 1 ≤ i, j ≤ d, and the proof

is complete.

In this restricted setting, we have the following well-posedness result; notice that the

topology in which we have stability is stronger than in Theorem 9.1.11, and we also allow

50Indeed, consider a similar situation for scalar first order operators Pa := ∂t−a∂x, a ∈ R, on [0, 1]t×Rx.
The forward solution operator Sa is constructed by integrating the forcing term along the bicharacteristics
s 7→ (s, x0 − as) of Pa, and it is easy to see that Sa ∈ L(L2, L2). However, Sa − Sb is constructed using
the difference of integrals of the forcing f along two different bicharacteristics, which one can naturally only
bound using df , i.e. one only obtains the estimate ‖(Sa−Sb)f‖L2 . |a− b|‖f‖H1 , which is an estimate with
a loss of 2 derivatives, similar to (9.1.13). The core of the problem is that there is no estimate of the form
‖f(· + a) − f‖L2 . |a|‖f‖L2 , although such an estimate holds if the norm on the right is replaced by the
H1-norm.
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more general non-linearities q.

Theorem 9.1.22. Let s > n/2 + 6, 0 < α < 1. Let g0 = gdS (but see Remark 9.1.12), and

let µ : X s,α → X s,0R be a continuous map with µ(0) = 1 and

‖µ(u)− µ(v)‖X s,0 ≤ Lµ(R)‖u− v‖X s,α (9.1.17)

for all u, v ∈ X s,α with norms ≤ R, where Lµ : R≥0 → R is continuous and non-decreasing.

Put g(u) := µ(u)g0.

(1) Let

q : X s,α ×Hs−1,α
b (Ω; bT ∗ΩM)•,− → Hs−1,α

b (Ω)•,−

be continuous with q(0) = 0, satisfying

‖q(u, bdu)− q(v, bdv)‖
Hs−1,α

b (Ω)•,− ≤ Lq(R)‖u− v‖X s,α

for all u, v ∈ X s,α with norms ≤ R, where Lq : R≥0 → R is continuous and non-

decreasing. Then there is a constant CL > 0 so that the following holds: If Lq(0) < CL,

then for small R > 0, there is Cf > 0 such that for all f ∈ Hs−1,α
b (Ω)•,− with norm

≤ Cf , there exists a unique solution u ∈ X s,α of the equation

�g(u)u = f + q(u, bdu) (9.1.18)

with norm ≤ R, which depends continuously on f .

(2) More generally, if

q : X s,α ×Hs−1,α
b (Ω; bT ∗ΩM)•,− ×Hs−1,α

b (Ω)•,− → Hs−1,α
b (Ω)•,−

is continuous with q(0) = 0 and satisfies

‖q(u1,
bdu1, w1)−q(u2,

bdu2, w2)‖
Hs−1,α

b (Ω)•,−

≤ Lq(R)
(
‖u1 − u2‖X s,α + ‖w1 − w2‖Hs−1,α

b (Ω)•,−

)
for all uj ∈ X s,α, wj ∈ Hs−1,α

b (Ω)•,− with ‖uj‖+ ‖wj‖ ≤ R, then there is a constant

CL > 0 such that the following holds: If Lq(0) < CL, then for small R > 0, there
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is Cf > 0 such that for all f ∈ Hs−1,α
b (Ω)•,− with norm ≤ Cf , there exists a unique

solution u ∈ X s,α of the equation

�g(u)u = f + q(u, bdu,�g(u)u) (9.1.19)

with ‖u‖X s,α + ‖�g0u‖Hs−1,α
b

≤ R, which depends continuously on f .

Proof. First, note that N(�g(u)) = µ(u)|YN(�g0), which is a constant multiple of N(�g0)

by the definition of the space X s,α. Thus, as in the proof of Theorem 9.1.11, there exists

RS > 0 such that

Sg(u) : Hs−1,α
b (Ω)•,− → X s,α

is continuous with uniformly bounded operator norm

‖Sg(u)‖ ≤ CS ;

for ‖u‖X s,α ≤ RS ; let us also assume that

|µ(u)| ≥ c0 > 0, ‖u‖X s,α ≤ RS . (9.1.20)

We now prove the first half of the theorem. Let CL := C−1
S , and assume that Lq(0) < CL,

then Lq(Rq) < CL for Rq > 0 small. Put R̃ := min(RS , Rq); let 0 < R ≤ R̃, to be specified

later, and put and Cf (R) = R(C−1
S − Lq(R)); let f ∈ Hs−1,α

b (Ω)•,− have norm ≤ Cf (R).

Let B(R) denote the metric ball of radius R in X s,α, and define T : B(R)→ B(R),

Tu := Sg(u)

(
f + q(u, bdu)

)
.

By the choice of R,CL and Cf , T is well-defined by the same estimate as in the proof of

Theorem 9.1.11. The crucial new feature here is that for R sufficiently small, T is in fact

a contraction. This follows once we prove the existence of a constant Ci > 0 such that for

u, v ∈ X s,α with norms ≤ R, we have

‖Sg(u) − Sg(v)‖L(Hs−1,α
b ,X s,α)

≤ CSCiLµ(R)‖u− v‖X s,α , (9.1.21)

which is an estimate on spaces with regularity improved by one relative to the estimate
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(9.1.13). Indeed, assuming (9.1.21), we obtain

‖Tu− Tv‖X s,α

≤
∥∥∥Sg(u)

(
q(u, bdu)− q(v, bdv)

)∥∥∥
X s,α

+ ‖(Sg(u) − Sg(v))(f + q(v, bdv))‖X s,α

≤
(
CSLq(R) + CSCiLµ(R)(Cf (R) + Lq(R)R)

)
‖u− v‖X s,α ;

and since CSLq(R) ≤ CSLq(R̃) < θ < 1 for R ≤ R̃, we can choose R so small that

CSCiLµ(R)(Cf (R) + Lq(R)R) ≤ θ − CSLq(R), (9.1.22)

where we use that Cf (R) → 0 as R → 0. With this choice of R, T is a contraction, thus

has a unique fixed point u ∈ X s,α which solves the PDE (9.1.18).

Continuing to assume (9.1.21), let us prove the continuous dependence of the solution

u on f . For this, let us assume that uj ∈ X s,α, j = 1, 2, solves

�g(uj)uj = fj + q(uj ,
bduj),

where fj ∈ Hs−1,α
b has norm ≤ Cf . Then, as in the proof of Theorem 9.1.11,

‖u1 − u2‖X s,α ≤ CS
(
‖f1 − f2‖Hs−1,α

b

+ (Lq(R) + CiLµ(R)(Cf + Lq(R)R))‖u1 − u2‖X s,α
)
.

Because of (9.1.22), the prefactor of ‖u1 − u2‖ on the right hand side is ≤ θ < 1, hence we

conclude

‖u1 − u2‖X s,α ≤
CS

1− θ
‖f1 − f2‖Hs−1,α

b
,

as desired.

We now prove the crucial estimate (9.1.21) by using the identity in (9.1.13), as follows:

By definition of �, we have

�g(u) = �
µ(v)g0

µ(u)
µ(v)

=
µ(v)

µ(u)
�g(v) + Eu,v, (9.1.23)
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where Eu,v ∈ Hs−1,α
b Vb satisfies the estimate51

‖Eu,v‖Hs−1,α
b Vb

≤ C
∥∥∥∥bd

(
µ(v)

µ(u)

)∥∥∥∥
Hs−1

b

,

where the constant C is uniform for ‖u‖X s,α , ‖v‖X s,α ≤ R. Thus,

‖(�g(v) −�g(u))Sg(v)‖L(Hs−1,α
b )

≤
∥∥∥∥1− µ(v)

µ(u)

∥∥∥∥
L(Hs−1,α

b )

+ ‖Eu,v‖L(X s,α,Hs−1,α
b )

‖Sg(v)‖L(Hs−1,α
b ,X s,α)

≤
∥∥∥∥1− µ(v)

µ(u)

∥∥∥∥
X s−1,0

+ CCS

∥∥∥∥bd

(
µ(v)

µ(u)

)∥∥∥∥
Hs−1

b

.

Now, ∥∥∥∥1− µ(v)

µ(u)

∥∥∥∥
X s−1,0

≤ C ′
∥∥∥∥ 1

µ(u)

∥∥∥∥
X s−1,0

‖µ(u)− µ(v)‖X s−1,0

≤ C ′iLµ(R)‖u− v‖X s,α ,
(9.1.24)

where

C ′i := C ′ sup
‖w‖Xs,α≤R

∥∥∥∥ 1

µ(w)

∥∥∥∥
X s,0

<∞

by assumption (9.1.20) and Lemma 8.3.2. Likewise, since bd(µ(v)/µ(u)) = bd
(
µ(v)/µ(u)−

1
)
, ∥∥∥∥bd

(
µ(v)

µ(u)

)∥∥∥∥
Hs−1

b

≤
∥∥∥∥1− µ(v)

µ(u)

∥∥∥∥
X s,0
≤ C ′iLµ(R)‖u− v‖X s,α ;

therefore,

‖(�g(v) −�g(u))Sg(v)‖L(Hs−1,α
b )

≤ CiLµ(R)‖u− v‖X s,α (9.1.25)

for Ci = C ′i(1 + CCS), and with ‖Sg(u)‖L(Hs−1,α
b ,X s,α)

≤ CS and the identity in (9.1.13), we

finally obtain the estimate (9.1.21).

We proceed to prove the second half of the theorem along the lines of the proof of

Theorem 5.2.6. We work on the space

Ys,α := {u ∈ X s,α : �g0u ∈ H
s−1,α
b }, ‖u‖Ys,α = ‖u‖X s,α + ‖�g0u‖Hs−1,α

b
, (9.1.26)

51To define a norm of an element E ∈ Hσ,ρ
b Vb(M), use a partition of unity on M to reduce this task to

a local one, and as the norm of E ∈ Hσ,ρ
b Vb(Rn+), take the sum of the Hσ,ρ

b -norms of the coefficients of E.
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which is complete, see Remark 4.2.5. The idea is that all operators �g(u) are (pointwise)

multiples of each other modulo first order operators, thus �g0 is as good as any other such

operator, and therefore �g0 in the third argument of the non-linearity q acts as a first order

operator on the successive approximations T k(0) in the iteration scheme implicit in the

application of the Banach fixed point theorem used above to solve equation (9.1.18). Thus,

let B(R) denote the metric ball of radius R ≤ RS in Ys,α, and define T : B(R)→ Ys,α,

Tu := Sg(u)

(
f + q(u)

)
where we write q(u) := q(u, bdu,�g(u)u) to simplify the notation. We will prove that for

R > 0 small enough, the image of T is contained in B(R). We first estimate for u ∈ B(R)

and w ∈ Ys,α, using (9.1.23) and an estimate similar to (9.1.24) (with v = 0):

‖�g(u)w‖Hs−1,α
b

≤ ‖�g(0)w‖Hs−1,α
b

+ ‖(�g(u) −�g(0))w‖Hs−1,α
b

≤ ‖w‖Ys,α + C̃i‖u‖X s,α‖w‖Ys,α ≤ (1 + C̃iR)‖w‖Ys,α

for some constant C̃i > 0. For convenience, we choose R ≤ C̃−1
i , thus

‖�g(u)w‖Hs−1,α
b

≤ 2‖w‖Ys,α , w ∈ Ys,α.

Using this, we obtain for u, v ∈ B(R):

‖�g(u)u−�g(v)v‖Hs−1,α
b

≤ ‖�g(u)(u− v)‖
Hs−1,α

b
+ ‖(�g(u) −�g(v))v‖Hs−1,α

b

≤ 2‖u− v‖Ys,α +

∥∥∥∥((1− µ(u)

µ(v)

)
�g(u) − Ev,u

)
v

∥∥∥∥
Hs−1,α

b

≤ 2‖u− v‖Ys,α + C ′Lµ(R)‖u− v‖X s,α
(
‖�g(u)v‖Hs−1,α

b
+ ‖v‖X s,α

)
≤ (2 + 3C ′Lµ(R)R)‖u− v‖Ys,α ≤ 3‖u− v‖Ys,α

for sufficiently small R, where C ′ = C ′i(1 + C). Thus, with L′q(R) := 3Lq(R), we have

‖q(u)− q(v)‖
Hs−1,α

b
≤ L′q(R)‖u− v‖Ys,α

for u, v ∈ Ys,α with norm ≤ R.

We can now analyze the map T : First, for u ∈ B(R) and f ∈ Hs−1,α
b , ‖f‖ ≤ Cf , we
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have, recalling (9.1.25), here applied with v = 0,

‖Tu‖X s,α ≤ CS(Cf + L′q(R)R)

and

‖�g(0)Tu‖Hs−1,α
b

≤ ‖(�g(0) −�g(u))Sg(u)(f + q(u))‖
Hs−1,α

b

+ ‖f + q(u)‖
Hs−1,α

b

≤ (1 + CiLµ(R)R)(Cf + L′q(R)R).

Thus, if L′q(0) < (1 + CS)−1, then

Cf (R) := R
(
(1 + CS + CiLµ(R)R)−1 − L′q(R)

)
is positive for small enough R > 0. We conclude that for f ∈ Hs−1,α

b with norm ≤ Cf (R),

the map T indeed maps B(R) into itself. We next have to check that T is in fact a

contraction on B(R), where we choose R even smaller if necessary. As in the proof of the

first half of the theorem, we can arrange

‖Tu− Tv‖X s,α ≤ θ‖u− v‖Ys,α , u, v ∈ B(R) (9.1.27)

for some fixed θ < 1. Moreover, for u, v ∈ B(R),

‖�g(0)(Tu− Tv)‖
Hs−1,α

b
≤ ‖�g(0)Sg(u)(q(u)− q(v))‖

Hs−1,α
b

+ ‖�g(0)(Sg(u) − Sg(v))(f + q(v))‖
Hs−1,α

b
.

(9.1.28)

The first term on the right can be estimated by

‖q(u)−q(v)‖
Hs−1,α

b
+ ‖(�g(u) −�g(0))Sg(u)(q(u)− q(v))‖

Hs−1,α
b

≤ L′q(R)(1 + CiLµ(R)R)‖u− v‖Ys,α .

For the second term on the right hand side of (9.1.28), we use the algebraic identity

�g(0)(Sg(u) − Sg(v)) = (I + (�g(0) −�g(u))Sg(u))(�g(v) −�g(u))Sg(v),
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which gives

‖�g(0)(Sg(u) − Sg(v))‖L(X s−1,α) ≤ (1 + CiLµ(R)R)CiLµ(R)‖u− v‖Ys,α .

Plugging this into equation (9.1.28), we obtain

‖�g(0)(Tu− Tv)‖
Hs−1,α

b
≤ C ′(R)‖u− v‖Ys,α

with

C ′(R) = (1 + CiLµ(R)R)
(
L′q(R) + CiLµ(R)(Cf (R) + L′q(R)R)

)
.

Now if L′q(0) is sufficiently small, then since the second summand of the second factor of

C ′(R) tends to 0 as R → 0, we can choose R so small that C ′(R) < 1 − θ, and we finally

get with (9.1.27):

‖Tu− Tv‖Ys,α ≤ θ′‖u− v‖Ys,α , u, v ∈ B(R),

for some θ′ < 1, which proves that T is a contraction on B(R), thus has a unique fixed

point, which solves the PDE (9.1.19). The continuous dependence on f is shown as in the

proof of the first half of the theorem.

Remark 9.1.23. The space Ys,α introduced in the proof of the second part, see equa-

tion (9.1.26), which the solution u of equation (9.1.19) belongs to, is a coisotropic space

similar to the ones used in [114] and §5.2.1, with the difference being that here �g0 is al-

lowed to have non-smooth coefficients. It still is a natural space in the sense that the space

of elements of the form c(φ ◦ t1) +w, c ∈ C, w ∈ Ċ∞c , is dense. Indeed, since �g0 annihilates

constants, it suffices to check that Ċ∞c is dense in Ys,α0 := {u ∈ Hs,α
b : �g0u ∈ H

s−1,α
b }. Let

Jε be a mollifier as in Lemma 8.5.5. Given u ∈ Ys,α0 , put uε := Jεu. Then uε → u in Hs,α
b ,

and

�g0uε = Jε�g0u+ [�g0 , Jε]u;

the first term converges to �g0u in Hs−1,α
b . To analyze the second term, observe that we

have

�g0Jε − Jε�g0 = �g0(Jε − I) + (I − Jε)�g0 → 0 strongly in L(Hs+1,α
b , Hs−1,α

b ),

and since Hs+1,α
b ⊂ Hs,α

b is dense, it suffices to show that [�g0 , Jε] is a bounded family in
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L(Hs,α
b , Hs−1,α

b ). Write

�g0 = Q1 +Q2 + E, Q1 ∈ Diff2
b, Q2 ∈ Hs,α

b Diff2
b, E ∈ (C∞ +Hs−1,α

b )Diff1
b.

Then [Q1, Jε] and [E, Jε] are bounded in L(Hs,α
b , Hs−1,α

b ). Now Q2Jε can be expanded

into a leading order term Q′ε and a remainder R1,ε which is uniformly bounded in Hs
bΨ1

b;

but also JεQ2 has an expansion by Theorem 8.2.12 (2a) (with k = k′ = 1) into the same

leading order term Q′ε and a remainder R2,ε which is uniformly bounded in Ψ1;0
b Hs−1

b .

Hence [Q2, Jε] = R1,ε − R2,ε is bounded in L(Hs,α
b , Hs−1,α

b ) by Proposition 8.2.9, finishing

the argument.

9.1.4 Solving quasilinear Klein-Gordon equations

One has corresponding results to the theorems in the previous two sections for quasilinear

Klein-Gordon equations, i.e. for Theorems 9.1.11, 9.1.15 and 9.1.22 with � replaced by

� −m2; only the function spaces need to be adapted to the situation at hand, as follows:

Denote P := �gdS
−m2 and let (σj)j∈N be the sequence of poles of P̂ (σ)−1, with multiplicity,

sorted by increasing − Imσj ; see equation (5.2.9) for the explicit formula. However, keep in

mind that everything we do works in greater generality, see the discussion at the beginning

of §9.1.2; we stick to the case of exact de Sitter space here for clarity. Let us assume that

the ‘mass’ m ∈ C is such that Imσ1 < 0. A major new feature of Klein-Gordon equations

as compared to wave equations is that non-linearities like q(u) = up can be dealt with, more

generally

q(u, bdu) =
∑
j

uej
Nj∏
l=1

Xjlu, ej +Nr ≥ 2, Xjl ∈ Vb.

See Theorem 5.2.6 for the related discussion of semilinear equations. We give an (incom-

plete) short list of possible scenarios and the relevant function spaces; for concreteness, we

work on exact de Sitter space, but our methods work in much greater generality.

(1) If Imσ1 6= Imσ2, as is e.g. the case for small mass m2 < (n − 1)2/4, let α0 =

min(1, Imσ1 − Imσ2), and for − Imσ1 < α < − Imσ1 + α0, put

X s,α := C(τ iσ1)⊕Hs,α
b .

We can then solve quasilinear equations of the form explained above with forcing
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in Hs−1,α
b and get one term, cτ iσ1 , in the expansion of the solution. Notice that

if the mass is real and small, then all σj are purely imaginary, hence the term in

the expansion is real as well if all data are, which is necessary for an analogue of

Theorem 9.1.15 to hold.

(2) If Imσ1 − Imσ2 < 1, e.g. if m2 ≥ n(n− 2)/4, let α0 := min(1, Imσ1 − Imσ3), and for

− Imσ2 < α < − Imσ1 + α0, put

X s,α := C(τ iσ1)⊕ C(τ iσ2)⊕Hs,α
b , σ2 6= σ1,

X s,α := C(τ iσ1)⊕ C(τ iσ1 log τ)⊕Hs,α
b , σ2 = σ1,

then we can solve equations as above with forcing in Hs−1,α
b and obtain two terms

in the expansion. For masses m2 > (n − 1)2/4, we have Imσ1 = Imσ2 =: −σ and

Reσ1 = −Reσ2 =: ρ, hence the terms in the expansion for real data are a linear

combination of τσ cos(ρτ) and τσ sin(ρτ).

(3) If the forcing decays more slowly than τ iσ1 , then with 0 < α < − Imσ1, we can work

on the space

X s,α := Hs,α
b ,

with forcing in Hs−1,α
b .

To prove the higher regularity statement in Theorem 9.1.15 for quasilinear Klein-Gordon

equations, one first obtains higher regularity Hs′,α
b with 0 ≤ α < − Imσ1 and then, if the

amount of decay of the forcing is high enough to allow for it, applies Theorem 9.1.8 to

obtain a partial expansion of u.

In the third setting, the assumption that the mass m is independent of the solution u

can easily be relaxed: Namely, assuming that m = m(u) or m = m(u, bdu) with continuous

(or Lipschitz) dependence on u ∈ X s,α, the poles of the inverse of the normal operator

family of �g(u) −m(u)2 depend continuously on u, hence for small u, there is still no pole

with imaginary part ≥ −α, therefore the solution operator produces an element of Hs,α
b for

small u; thus, well-posedness results analogous to Theorems 9.1.11 and 9.1.22 continue to

hold in this setting. If the forcing in fact does decay faster than τ iσ1 , these results can be

improved in many cases: Once one has the solution u ∈ Hs,α
b , in particular the mass m(u)

is now fixed, one can apply Theorem 9.1.8 to obtain a partial expansion of u.
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9.1.5 Backward problems

We briefly indicate how our methods also apply to backward problems on static patches of

(asymptotically) de Sitter spaces; see Figure 9.1 for an exemplary setup.

Figure 9.1: Setup for a backward problem on static de Sitter space: We work on spaces
with high decay, consisting of functions supported at H2 and extendible at H1 (notice the
switch compared to the forward problem). In the situation shown, we prescribe initial data
at H2 or, put differently, forcing in the shaded region.

We only state an analogue of Theorem 9.1.15, but remark that analogues of Theo-

rems 9.1.11 and 9.1.22 also hold. For simplicity, we again only work on static de Sitter

spaces. We use the notation from §9.1.1.

Theorem 9.1.24. Let s > n/2 + 6, N,N ′ ∈ N, and suppose ck ∈ C∞(R;R), gk ∈ (C∞ +

Hs
b)(Ω;S2bT ∗ΩM) for 1 ≤ k ≤ N ; for r ∈ R, define the map

g : Hs,r
b (Ω)−,• → (C∞ +Hs,r

b )(Ω;S2bT ∗ΩM), g(u) =

N∑
k=1

ck(u)gk,

and assume g(0) = gdS. Moreover, define

q(u, bdu) =
N ′∑
j=0

uej
Nj∏
k=1

Xjku, ej +Nj ≥ 2, Xjk ∈ Vb(M),

and let further L ∈ Diff1
b with real coefficients. Then there is r∗ ∈ R such that for all

r > r∗, the following holds: For small R > 0, there exists Cf > 0 such that for all f ∈
Hs−1,r

b (Ω;R)−,• with norm ≤ Cf , the equation

(�g(u) + L)u = f + q(u, bdu)

has a unique solution u ∈ Hs,r
b (Ω;R)−,• with norm ≤ R, and in the topology of Hs−1,r

b (Ω)−,•,

u depends continuously on f . If one in fact has f ∈ Hs′−1,r
b (Ω;R)−,• for some s′ ∈ (s,∞],
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then u ∈ Hs′,r
b (Ω;R)−,•.

Remark 9.1.25. Notice that the structure of lower order terms is completely irrelevant here!

One could in fact let L depend on u in a Lipschitz fashion and still have well-posedness.

Proof of Theorem 9.1.24. Let r0 < 0 as given by Lemma 9.1.3, and suppose r > −r0. As

in the proof of Lemma 9.1.4, we obtain for u ∈ Hs,r
b (Ω)−,• with ‖u‖ ≤ R, R > 0 sufficiently

small, a backward solution operator

Sg(u) : H−1,r
b (Ω)−,• → H0,r

b (Ω)−,•

for �g(u) +L, with uniformly bounded operator norm. Now, if we take r > r∗ with r∗ ≥ −r0

sufficiently large, Sg(u) restricts to an operator

Sg(u) : Hs−1,r
b (Ω)−,• → Hs,r

b (Ω)−,•.

Indeed, given v ∈ H0,r
b (Ω)−,• solving �g(u)v ∈ H

s−1,r
b (Ω)−,•, we apply the propagation near

radial points, Theorem 8.5.10, this time propagating regularity away from the boundary, and

the real principal type propagation and elliptic regularity iteratively to prove v ∈ Hs,r
b (Ω)−,•;

the last application of the radial points result requires that r be larger than an s-dependent

quantity, hence the condition on r∗ in the statement of the theorem. From here, a Picard

iteration argument, namely considering

u 7→ Sg(u)(f + q(u, bdu)),

gives existence and well-posedness. The higher regularity statement is proved as in the

proof of Theorem 9.1.15.

A slightly more elaborate version of this theorem, applied to the Einstein vacuum equa-

tions, should enable us to construct vacuum asymptotically de Sitter spacetimes as done in

the Kerr setting in [24]. In fact, apart from constructing appropriate initial data, this should

work in the Kerr-de Sitter setting as well, yielding the existence of dynamical vacuum black

holes in de Sitter spacetimes; the point here is that for the backward problem, one works

in decaying spaces, where one has non-trapping estimates as proved in §3.3.2 in the smooth

setting, and in §8.5.5 in the non-smooth setting. We point out however that the authors of

[24] consider a characteristic problem, whereas our analysis, without further modifications,
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would require initial data on spacelike hypersurfaces placed beyond the horizons, which

makes the construction of initial data much more difficult.

9.2 Quasilinear waves on spacetimes with normally hyper-

bolic trapping

We next consider quasilinear wave equations on non-trapping spacetimes with normally

hyperbolic trapping, see Definition 2.5.1, for which infinity has a structure generalizing that

of Kerr-de Sitter space, see §2.4. An important feature is that, as in perturbations of Kerr-

de Sitter space, the trapped geodesics form a normally hyperbolic invariant manifold. We

prove the global existence and decay of solutions; this means decay to constants for the

actual wave equation. The main new tool introduced in this section as compared to §9.1 is

a Nash-Moser iteration necessitated by the loss of derivatives in the linear estimates at the

normally hyperbolic trapping. To our knowledge, this is the first global result for the forward

problem for a quasilinear wave equation on either a Kerr or a Kerr-de Sitter background. We

remark, however, that Dafermos, Holzegel and Rodnianski [24] have constructed backward

solutions for Einstein’s equations on the Kerr background; for backward constructions the

trapping does not cause difficulties. For concreteness, we state our results first in the special

case of Kerr-de Sitter space, but it is important to keep in mind that the setting is more

general.

By adding an ‘ideal boundary’ at infinity in the standard description of Kerr-de Sitter

space, the region of Kerr-de Sitter space we are interested in can be considered a (non-

compact) 4-dimensional manifoldM with boundary; the boundaryX = ∂M is the boundary

of M at future infinity. See §2.4 for the setup in the language of b-geometry. The spacetime

M is equipped with a Lorentzian b-metric g0 depending on three parameters Λ > 0 (the

cosmological constant), M• > 0 (the black hole mass) and a (the angular momentum),

though we usually drop this in the notation. We continue to assume throughout this section

that Λ, M• and a are such that the non-degeneracy condition [114, (6.2)] holds, which in

particular ensures that the cosmological horizon lies outside the black hole event horizon. As

discussed in §§2.3 and 2.4, this Lorentzian metric has a specific global dynamical structure,

captured by Definition 2.5.1.

In order to set up our problem, see Figure 9.2 for an illustration, we again consider

a submanifold with corners Ω ⊂ M , which is bounded at future infinity by Ω ∩ ∂M , and



9.2. SPACETIMES WITH NORMALLY HYPERBOLIC TRAPPING 423

Figure 9.2: Setup for the discussion of the forward problem on Kerr-de Sitter space. In-
dicated are the ideal boundary X, the Cauchy hypersurface H1 and the hypersurface H2,
which has two connected components which lie beyond the cosmological horizon and be-
yond the black hole event horizon, respectively. The horizons at X themselves are the
projections to the base of the (generalized) radial sets L±, discussed below, each of which
has two components, corresponding to the two horizons. The projection to the base of the
bicharacteristic flow is indicated near a point on L+; near L−, the directions of the flow-
lines are reversed. Lastly, Γ is the trapped set, and the projection of a trapped trajectory
approaching Γ within Γ− = Γ+

− ∪ Γ−−, discussed below, is indicated.

beyond the horizons by artificial spacelike hypersurfaces H1 and H2 (intersected with Ω),

which are the level sets of two functions tj , j = 1, 2, with forward, resp. backward, time-like

differentials near their respective 0-set Hj , which are linearly independent at their joint

0-set; the domain Ω = t−1
1 ([0,∞)) ∩ t−1

2 ([0,∞)) is compact. As usual, we are interested in

solving the forward problem for wave-like equations in Ω, i.e. imposing vanishing Cauchy

data at H1, which we assume is disjoint from X; initial value problems with general Cauchy

data can always be converted into an equation of this type.

The wave equations we consider include those of the form

�g(u,bdu)u = f + q(u, bdu),

where g(0, 0) = g0, and for each p ∈ M , gp(v0, v) : R ⊕ bT ∗pM → S2bT ∗pM , depending
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smoothly on p ∈M , and

q(u, bdu) =
N ′∑
j=1

aju
ej

Nj∏
k=1

Xjku, ej , Nj ∈ N0, Nj + ej ≥ 2,

with

aj ∈ C∞(M), Xjk ∈ Vb(M). (9.2.1)

Here, aj is only relevant if Nj = 0.

Our central result in the form which is easiest to state, without reference to the natural

Sobolev spaces, is:

Theorem 9.2.1. On Kerr-de Sitter space with angular momentum |a| � M•, for α > 0

sufficiently small and f ∈ C∞c (Ω◦) with sufficiently small H14-norm, the wave equation

�g(u,bdu)u = f + q(u, bdu), with q as above with Nj ≥ 1 for all j, has a unique smooth (in

Ω◦) global forward solution of the form u = u0 + ũ, x−αũ bounded, u0 = cχ, χ ∈ C∞(Ω)

identically 1 near Ω ∩ ∂M .

Further, the analogous conclusion holds for the Klein-Gordon operator �−m2 with m >

0 sufficiently small, without the presence of the u0 term, i.e. for α > 0, m > 0 sufficiently

small, if f ∈ C∞c (Ω◦) has sufficiently small H14-norm, (�g(u,bdu)−m2)u = f + q(u, bdu) has

a unique smooth global forward solution u ∈ xαL∞(Ω). In fact, for Klein-Gordon equations

one can also obtain a leading term, analogously to u0, which now has the form cxiσ1χ, σ1

the resonance of �g(0) −m2 with the largest imaginary part; thus Imσ1 < 0, so this is a

decaying solution.

The only reason the assumption |a| � M• is made is due to the possible presence (to

the extent that we do not disprove it here) of resonances in Imσ ≥ 0, apart from the 0-

resonance with constants as the resonant state, for larger a. Below, in §9.2.1, we give a

general result in a form that makes it clear that this is the only remaining item to check –

indeed, this even holds in natural vector bundle settings.

The natural global regularity assumptions are expressed in terms of weighted b-Sobolev

spaces on Ω. We then relax (9.2.1) to

aj ∈ C∞(M) +H∞b (M), Xjk ∈ (C∞ +H∞b )Vb(M), (9.2.2)

in our assumptions. (This is an invariant assumption, see §2.1.2.) Generalizing the forcing
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as well, and making the conclusion more precise, the more natural version of Theorem 9.2.1

is, with further generalization given in Theorems 9.2.3 and 9.2.4:

Theorem 9.2.2. On Kerr-de Sitter space with angular momentum |a| � M•, for α > 0

sufficiently small and f ∈ H∞,αb with sufficiently small H14,α
b -norm, the wave equation

�g(u,bdu)u = f + q(u, bdu), with q as above with Nj ≥ 1 for all j, has a unique, smooth

in Ω◦, global forward solution of the form u = u0 + ũ, ũ ∈ H∞,αb , u0 = cχ, χ ∈ C∞(Ω)

identically 1 near Ω ∩ ∂M .

Further, the analogous conclusion holds for the Klein-Gordon equation �−m2 with m >

0 sufficiently small, without the presence of the u0 term, i.e. for α > 0, m > 0 sufficiently

small, if f ∈ H∞,αb (Ω) has sufficiently small H14,α
b -norm, (�g(u,bdu)−m2)u = f + q(u, bdu)

has a unique, smooth in Ω◦, global forward solution u ∈ H∞,αb (Ω).

For the proofs, we refer to Corollaries 9.2.17 and 9.2.20, which are special cases of The-

orems 9.2.14 and 9.2.19. For any finite amount of regularity of the solution, our arguments

only require a finite number of derivatives: Indeed, for sufficiently large s0, C ∈ R and for

s ≥ s0, it is sufficient to assume f ∈ HCs,α
b , with small H14,α

b -norm, to ensure the existence

of a unique global forward solution u with Hs,α
b -regularity, i.e. with ũ ∈ Hs,α

b in the case

of wave equations, u ∈ Hs,α
b in the case of Klein-Gordon equations; see Remark 9.2.16 for

details.

In the next section, §9.2.1, we explain the ingredients of the proof of Theorem 9.2.2, and

we also state natural generalizations.

9.2.1 Overview of the proof and the more general results

As pointed out at the end of §3.3.4, the study of b-differential operators such as wave

operators associated with a Lorentzian b-metric relies on high frequency regularity and

normal operator analysis, and both aspects have been treated both in non-trapping as well

as in trapping situations in Chapter 5, specifically §§5.2 and 5.3, and Chapters 6 and 9. In

particular, recall that for the scalar wave operator �g, the only resonance with non-negative

imaginary part is 0, with the kernel of �̂g(σ) one dimensional, consisting of constants. Since

strips above the bands of resonances caused by the trapping [44] can only have finitely many

resonances, there is r > 0 such that in Imσ ≥ −r the only resonance is 0; then Hs,r
b ⊕ C

is a space on which we have uniqueness and existence for the forward the forward problem

for �g, as described in §§5.2 and 5.3. For the Klein-Gordon equation with m > 0 small,
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the m = 0 resonance at 0 moves to σ1 = σ1(m) inside Imσ < 0, see [40] and Lemma 5.3.3.

Thus, one can either work with Hs,r′

b where r′ is sufficiently small (depending on m), or

with Hs,r
b ⊕ C, though with C now identified with cτ iσ1χ, with τ a defining function of

future infinity as usual.

We now discuss the nonlinear terms. As in Chapter 8 and §9.1, the basic point is that

Hs,0
b is an algebra if s > n/2, and thus for such s, products of elements of Hs,r

b possess even

more decay if r > 0, but they become more growing if r < 0. Thus, one is forced to work

with r ≥ 0.

First, with the simplest semilinear equation, with no derivatives in the non-linearity q

(so Nj ≥ 2 is replaced by Nj = 0), the regularity losses due to the normally hyperbolic

trapping are in principle sufficiently small to allow for a contraction mapping principle based

argument. However, for the actual wave equation on Kerr-de Sitter space, the 0-resonance

prohibits this, as the iteration maps outside the space Hs,r
b ⊕ C; see also Remark 5.2.11.

Thus, it is the semilinear Klein-Gordon equation that is well-behaved from this perspective,

and this was solved in §5.3. On the other hand, if derivatives are allowed, with an at least

quadratic behavior in bdu, then the non-linearity annihilates the 0-resonance. However,

since the normally hyperbolic estimate loses 1 + ε derivatives, as opposed to the usual real

principal type/radial point loss of one derivative, the solution operator for �g will not map

q(u, bdu) back into the desired Sobolev space, preventing a nonlinear analysis based on the

contraction mapping principle.

The Nash-Moser iteration is designed to deal with just such a situation. In this chapter

we adapt the iteration to our requirements, and in particular show that semilinear equations

of the kind just described are in fact solvable. Our arguments rely in particular strongly on

the tame estimates for linear problems with non-smooth coefficients proved in §§8.7 and 8.8.

Here we remark that Klainerman’s early work on global solvability involved the Nash-Moser

scheme [68], though this was later removed by Klainerman and Ponce [71]. In the present

situation the loss of derivatives seems much more serious, however, due to the trapping,

and is unclear whether the solution scheme can be made more ‘classical.’

Quasilinear versions of the above non-trapping scenario were studied in §9.1 on pertur-

bations of static de Sitter space; the key ingredient in dealing with quasilinear equations is

to allow operators with coefficients with regularity the same kind as what one is proving

for the solutions, in this case Hs,r
b -regularity. All of the smooth linear ingredients (microlo-

cal elliptic regularity, propagation of singularities, radial points) have their analogue for
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Hs,r
b coefficients if s is sufficiently large. In our Kerr-de Sitter situation, there is normally

hyperbolic trapping. However, notice that as we work in decaying Sobolev spaces modulo

constants, �g(u) differs from a Kerr-de Sitter operator with smooth coefficients, �g(c), by

one with decaying coefficients. This means that one can combine the smooth coefficient nor-

mally hyperbolic theory, as in the work of Dyatlov [42], with a tame estimate in Hs,r
b with

r < 0; the sign of r here is a crucial gain since for r < 0 the propagation estimates through

normally hyperbolic trapped sets behave in exactly the same way as real principal type

estimates, as we have seen in §§3.3.2 and 8.5.5. In combination this provides the required

tame estimates for Kerr-de Sitter wave equations, and Nash-Moser iteration completes the

proof of the main theorem.

We emphasize that our treatment of these quasilinear equations is systematic and gen-

eral. Thus, quasilinear equations which at X = ∂M are modelled on a finite dimensional

family L = L(v0), v0 ∈ Cd small corresponding to the zero resonances (thus the family is

0-dimensional without 0-resonances!), of smooth b-differential operators on a vector bun-

dle with scalar principal symbol which has the bicharacteristic dynamics of a non-trapping

spacetime with normally hyperbolic trapping, as described by Definition 2.5.1, fits into it,

provided two conditions hold for the normal operator :

(1) First, the resonances for the model L(v0) have negative imaginary part, or if they have

0 imaginary part, the non-linearity annihilates them.

(2) Second, the normally hyperbolic trapping estimates of Dyatlov [42] hold for L̂(σ) (as

|Reσ| → ∞) in Imσ > −r0 for some r0 > 0. In the semiclassical rescaling, with

σ = h−1z, h = |σ|−1, this is a statement about Lh,z = hmL̂(h−1z), Im z > −r0h. This

indeed is the case if Lh,z satisfies that at Γ its skew-adjoint part, 1
2i(Lh,z − L

∗
h,z) ∈

hDiff1
~(X), for z ∈ R has semiclassical principal symbol bounded above by hνmin/2 for

some ε > 0, where νmin is the minimal expansion rate in the normal directions at Γ;

see [42, Theorem 1] and the remark below it (which allows the non-trivial skew-adjoint

part, denoted by Q there, microlocally at Γ).

Further, the differential operator needs to be second order, with principal symbol a Lorentz-

ian dual metric near the Cauchy hypersurfaces if the latter are used; otherwise the order

m of the operator is irrelevant. It is important to point out that in view of the decay

of the solutions either to 0 if there are no real resonance, or to the space of resonant

states corresponding to real resonances, the conditions must be checked for at most a finite
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dimensional family of elements of the ‘smooth’ algebra Ψb(M), and moreover there is no

need to prove tame estimates, deal with rough coefficients, etc., for this point, and one

is in a dilation invariant setting, i.e. can simply Mellin transform the problem. Thus, in

principle, solving wave-type equations on more complicated bundles is reduced to analyzing

these two aspects of the associated linear model operator at infinity. In Chapters 6 and

7, we have shown how this can be done for differential forms and more general tensors.

Concretely, we have the following two theorems:

Theorem 9.2.3. Let M be a Kerr-de Sitter space with angular momentum |a| <
√

3
2 M•

that satisfies [114, (6.13)], E a vector bundle over it with a positive definite metric k on E,

and let Lg(u,bdu) ∈ Diff2
b(M ;E) have principal symbol G = g−1(u, bdu) (times the identity),

and suppose that L0 = Lg(0,0) satisfies that

(1) the large parameter principal symbol of 1
2i|σ|(L0 − L∗0), with the adjoint taken relative

to k |dg|, at the trapped set Γ is < νmin/2 as an endomorphism of E,

(2) L̂0(σ) has no resonances in Imσ ≥ 0.

Then for α > 0 sufficiently small, there exists d > 0, given in (9.2.34), such that the

following holds: If f ∈ H∞,αb (Ω) has a sufficiently small H2d
b -norm, then the equation

Lg(u,bdu)u = f+q(u, bdu) has a unique, smooth in M◦, global forward solution u ∈ H∞,αb (Ω).

(This condition on Λ,M• and a ensures non-trapping classical dynamics for the null-

geodesic flow.) In condition (1), one can in fact take k to be a pseudodifferential inner

product, as we have shown in Chapter 6. In particular, the conditions at Γ for the theorem

hold if |a| � M•, E = bΛ∗M , Lg(u,bdu) = �g(u,bdu) the differential form d’Alembertian, or

indeed if Lg(u,bdu)−�g(u,bdu) is a 0-th order operator; see Theorem 6.4.8. Thus, in this case

the only assumption in the theorem remaining to be checked is the second one, concerning

resonances.

Theorem 9.2.4. Let M be a Kerr-de Sitter space with angular momentum |a| <
√

3
2 M•

that satisfies [114, (6.13)], E a vector bundle over it with a positive definite metric k on E,

and let Lg(u,bdu) ∈ Diff2
b(M ;E) have principal symbol G = g−1(u, bdu) (times the identity).

Suppose that L0 = Lg(0,0) is such that L̂0(σ) has a simple resonance at 0, with resonant

states spanned by u0,1, . . . , u0,d, and no other resonances in Imσ ≥ 0. Consider the family

L̂g(u0,bdu0)(σ), u0 ∈ span{u0,1, . . . , u0,d} with small enough norm. Suppose that
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(1) this family only has a resonance at 0 in Imσ ≥ 0, and the corresponding resonant

states are given by span{u0,1, . . . , u0,d},

(2) Γ is uniformly normally hyperbolic for L̂g(u0,bdu0)(σ) for u0 of small norm,

(3) the large parameter principal symbol of 1
2i|σ|(L0 − L∗0), with the adjoint taken relative

to k |dg| (or a Ψ-inner product as above), at the trapped set Γ is < νmin/2,

(4) q(u0,
bdu0) = 0 for u0 ∈ span{u0,1, . . . , u0,d}.

Then for α > 0 sufficiently small, there exists d > 0, given in (9.2.34), such that the

following holds: If f ∈ H∞,αb has a sufficiently small H2d,α
b -norm, then the equation

Lg(u,bdu)u = f + q(u, bdu) has a unique, smooth in M◦, global forward solution of the

form u = u0 + ũ, ũ ∈ H∞,αb , u0 = χ
∑d

j=1 cju0,j, χ ∈ C∞(M) identically 1 near ∂M .

Here ‘uniformly normally hyperbolic’ in the theorem means that one has a smooth family

Γ = Γu0 of trapped sets, with a smooth family of stable/unstable manifolds, with uniform

bounds (within this family) on the normal expansion rates for the flow, which ensures that

the normally hyperbolic estimates are uniform within the family (for small u0); see the

discussion around (9.2.4) for details.

Again, the conditions at Γ for the theorem hold if |a| � M•, E = bΛ∗M , if Lg(u,bdu) −
�g(u,bdu) is a 0-th order operator, �g(u,bdu) the differential form d’Alembertian; on Kerr-de

Sitter spaces with |a| �M•, we computed the space of 0-resonances in Theorem 7.5.1. See

Remark 7.5.3 for an example of a quasilinear wave equation that can be solved by means

of the method presented here. The uniform normal hyperbolicity condition at Γ holds if

|a| <
√

3
2 M•, since the hyperbolicity of Γ was shown in this generality in [114].

The plan of the rest of this section is the following. In §9.2.2, we adapt Dyatlov’s

analysis at normally hyperbolic trapping given in [42] to our needs. Then, beginning in

§9.2.3, we solve our quasilinear equations by first showing that the microlocal results of

§8.8 combine with the high energy estimates for the relevant normal operators following

from the discussion of §9.2.2 to give tame estimates for the forward propagator in, and

then showing in §9.2.4 that the Nash-Moser iteration indeed allows for solving our wave

equations. In §9.2.5, we then explain the changes required for quasilinear Klein-Gordon

equations. Finally, in §9.2.6 we show how our methods apply in the general settings of

Theorems 9.2.3 and 9.2.4.
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9.2.2 Trapping estimates at normally hyperbolic trapping

Complementing the results proved in §§3.3.2 and 8.5.5 on negatively weighted spaces, we

recall results of Dyatlov from [44, 42] on semiclassical estimates for smooth operators at

normally hyperbolic trapping, which via the Mellin transform correspond to estimates on

non-negatively weighted spaces. Here we present the results in the semiclassical setting,

then in §9.2.3 we relate this to the solvability of linear equations with Sobolev coefficients

in Theorem 9.2.9 and Theorem 9.2.10. The advantage of Dyatlov’s framework for us,

especially as espoused in [42], is the explicit size of the spectral gap, which was also shown

by Nonnenmacher and Zworski [95], the explicit inclusion of a subprincipal term of the

correct sign (which was crucial in our analysis in Chapter 6), and the relative ease with

which the parameter dependence can be analyzed.

We first recall Dyatlov’s semiclassical setting for

P̃0 = P̃0(h), Q̃0 = Q̃0(h) ∈ Ψm
~ (X),

both formally self-adjoint, with Q̃0 having non-negative principal symbol, P̃0 − iQ̃0 elliptic

in the standard sense. In fact, Dyatlov states the results in the special case m = 0, but

by ellipticity of P̃0 − iQ̃0 in the standard sense, it is straightforward to allow general m;

see also the remark [42, Bottom of p. 2]. The main assumption, see [42, p. 3], then is

that P̃0 has normally hyperbolic trapping semiclassically at Γ̃ ⊂ T ∗X compact,52 with all

bicharacteristics of P̃0, except those in the stable (−) and unstable (+) submanifolds Γ̃±,

entering the elliptic set of Q̃0 in the forward (the exception being for only the − sign), resp.

backward (+) direction, and γ < νmin/2, where νmin > 0 is the minimal normal expansion

rate of the flow at Γ̃, discussed above and in (9.2.4). If Q̃0 is microlocally in hΨ~(X) near

Γ̃, with h−1Q̃0 having a non-negative principal symbol there, Dyatlov shows that there is

h0 > 0 such that for Im z > −γ,

‖v‖Hs
~
. h−2‖(P̃0 − iQ̃0 − hz)v‖Hs−m

~
, h < h0. (9.2.3)

In view of Γ̃ lying in a compact subset of T ∗X, the order s is irrelevant in the sense that

the estimate for one value of s implies that for all other via elliptic estimates; thus, one

may just take s = 0, and even replace s−m by 0, in which case this is an L2-estimate, as

52Our Γ̃ is the intersection of Dyatlov’s K with the semiclassical characteristic set of P , and similarly our
Γ̃± are the intersection of Dyatlov’s Γ± with the characteristic set of P .
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stated by Dyatlov.

Suppose now that one has a family of operators P̃0(ω) depending on another parameter,

ω, in a compact space S, with P̃0, Q̃0 depending continuously on ω, with values in Ψm
~ (X),

satisfying all of the assumptions listed above. Suppose moreover that this family satisfies

the normally hyperbolic assumptions with Γ̃, Γ̃± continuously depending on ω in the C∞

topology, and uniform bounds for the normal expansion rates in the sense that both ν and

the constant C ′ in

sup
ρ∈Γ
‖de∓tHp(ρ)|V±‖ ≤ C ′e−νt, t ≥ 0, (9.2.4)

with V± the unstable and stable normal tangent bundles at Γ, can be chosen uniformly (cf.

[44, Equation (5.1)]); νmin is then the sup of these possible choices of ν. (Note that since the

trapped set dynamics involves arbitrarily large times, it is not automatically stable, unlike

the dynamics away from the trapped set.) In this case the implied constant C in (9.2.5), as

well as h0, is uniform in ω. Note that r-normal hyperbolicity for every r implies the local

(hence global, in view of compactness) uniformity of the normal dynamics by structural

stability; see [124, §1] and [44, §5.2].

To see this uniformity in C, we first point out that in [44, Lemma 5.1] the construction

of φ± can be done continuously with values in C∞ in this case. Then in the proof of (9.2.5)

given in [42], we only need to observe that the direct estimates provided are certainly

uniform in this case for families P̃0, Q̃0, and furthermore for the main argument, using

semiclassical defect measures, one can pass to an L2-bounded subsequence uj such that

(P̃0(ωj) − iQ̃0(ωj) − λj)uj = O(h2), with ωj → ω for some ω ∈ S in addition to h−1λj

converging to some λ̃. Concretely, all of Dyatlov’s results in [42, §2] are based on elliptic

or (positive) commutator identities or estimates which are uniform in this setting. In

particular, [42, Lemma 2.3] is valid with Pj = P (ωj) → P , Wj = W (ωj) → W with

convergence in Ψ~(X). (This uses that one can take Aj(hj) in Definition 2.1, with Aj → A,

since the difference between Aj(hj) and A(hj) is bounded by a constant times the squared

L2-norm of uj times the operator norm bound of Aj(hj) − A(hj), with the latter going to

0.) Then with Θ+,j in place of Θ+, one still gets Lemma 3.1, which means that Lemma 3.2

still holds with φ+ (the limiting φ+,j) using Lemma 2.3. Then the displayed equation above

[42, Equation (3.9)] still holds with the limiting P̃0 = P̃0(ω), again by Lemma 2.3, and then

one can finish the argument as Dyatlov did. With this modification, one obtains the desired

uniformity. This in particular allows one to apply (9.2.5) even if P̃0 and Q̃0 depend on z
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(in a manner consistent with the other requirements), which can also be dealt with more

directly using Dyatlov’s model form [44, Lemma 4.3]. It also allows for uniform estimates

for families depending on a small parameter in C, denoted by v0 below, needed in §9.2.3

and the subsequent sections.

Allowing P̃0 and Q̃0 depending on z means, in particular, that we can replace the

requirement on h−1Q̃0 by the principal symbol of h−1Q̃0 being > −β, β < νmin/2, and drop

z, so one has

‖v‖Hs
~
. h−2‖(P̃0 − iQ̃0)v‖Hs−m

~
, h < h0. (9.2.5)

At this point it is convenient to rewrite this estimate, removing Q̃0 from the right hand

side at the cost (or benefit!) of making it microlocal. An alternative would be using the

gluing result of Datchev and Vasy [32], which is closely related in approach. From here on

it is convenient to change the conventions and not require that P̃0 is formally self-adjoint

(though it is at the principal symbol level, namely it has a real principal symbol); translating

back into the previous notation, one would replace P̃0 by its (formally) self-adjoint part, and

absorb its skew-adjoint part into Q̃0. Namely, we have

Theorem 9.2.5. Suppose P̃0 satisfies the above assumptions, in particular the semiclas-

sical principal symbol of 1
2ih(P̃0 − P̃ ∗0 ) being < β < νmin/2 at Γ̃.53 With B̃j analogous to

Proposition 8.8.5, with wave front set sufficiently close to Γ̃, we have, for sufficiently small

h > 0 and for all N and s0,

‖B̃0u‖Hs
~
. h−2‖B̃1P̃0u‖Hs−m+1

~
+ h−1‖B̃2u‖Hs

~
+ hN‖u‖Hs0

~
. (9.2.6)

Note that the differential orders are actually irrelevant here due to wave front set con-

ditions.

Proof. Take Q̃0 ∈ Ψ0
~(X) with non-negative principal symbol such that WF′~(Q̃0) is disjoint

from WF′~(B̃0), and so that all backward bicharacteristics from points not in Γ̃+, as well

as forward bicharacteristics from points not in Γ̃−, reach the elliptic set of Q̃0, and with

B̃1 elliptic on the complement of the elliptic set of Q̃0. Let B̃3 ∈ Ψ0
~(X) to be such that

WF′~(I − B̃3) is disjoint from WF′~(B̃0) but WF′~(Q̃0) ∩WF′~(B̃3) = ∅. Let Ã+ ∈ Ψ0
~(X)

53The apparent sign change here as compared to before comes from the fact that for formally self-adjoint
P̃0, Q̃0, one has 1

2ih

(
(P̃0 − iQ̃0)− (P̃0 − iQ̃0)∗

)
= −h−1Q̃0; notice the minus sign on the right hand side.
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have wave front set near Γ̃+, with

WF′~(I − Ã+) ∩WF′~(B̃3) ∩ Γ̃+ = ∅

and with

WF′~(Ã+) ∩WF′~(I − B̃3) ∩ Γ̃− = ∅,

and with no backward bicharacteristic from WF′~(B̃0) reaching

WF′~(Ã+) ∩WF′~(I − B̃3) ∩ Γ̃+.

Take Q̃1 elliptic on Γ̃, with WF′~(Q̃1)∩WF′~(I− B̃3) = ∅, again with non-negative principal

symbol, with no backward bicharacteristic from WF′~(Q̃1) reaching

WF′~(Ã+) ∩WF′~(I − B̃3).

Thus, all backward and forward bicharacteristics of P̃0 reach the elliptic set of Q̃1 or Q̃0.

See Figure 9.3 for the setup.

Figure 9.3: Setup for the proof of the microlocalized normally hyperbolic trapping estimate
(9.2.6): Indicated are the backward and forward trapped sets Γ+ and Γ−, respectively,
which intersect at Γ (large dot). We use complex absorbing potentials Q̃0 (with WF′~(Q̃0)

outside the large dashed circle) and Q̃1 (with WF′~(Q̃1) inside the small dashed circle).

We obtain an estimate for B̃0u by combining (9.2.5) with microlocal propagation from the
elliptic set of B̃2.
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Then

(P̃0 − iQ̃0)B̃3u = B̃3P̃0u+ Ã+[P̃0, B̃3]u+ (I − Ã+)[P̃0, B̃3]u− iQ̃0B̃3u,

so

B̃0u = B̃0B̃3u+ B̃0(I − B̃3)u

= B̃0(P̃0 − iQ̃0)−1B̃3P̃0u+ B̃0(P̃0 − iQ̃0)−1Ã+[P̃0, B̃3]u

+ B̃0(P̃0 − iQ̃0)−1(I − Ã+)[P̃0, B̃3]u

− iB̃0(P̃0 − iQ̃0)−1Q̃0B̃3u+ B̃0(I − B̃3)u,

(9.2.7)

and by (9.2.5), for h < h0,

‖(P̃0 − iQ̃0)−1B̃3P̃0u‖Hs
~
. h−2‖B̃3P̃0u‖Hs−m

~
.

Now, Q̃0B̃3, B̃0(I−B̃3) ∈ h∞Ψ−∞~ (X), so the corresponding terms in (9.2.7) can be absorbed

into hN‖u‖Hs0
~

. On the other hand, since WF′~((I − Ã+)[P̃0, B̃3]) is disjoint from Γ̃+, the

backward bicharacteristics from it reach the elliptic set of B̃2, and so we have the microlocal

real principal type estimate for u:

‖(I − Ã+)[P̃0, B̃3]u‖Hs−m
~
. h‖B̃2u‖Hs−1

~
+ ‖B̃1P̃0u‖Hs−m

~

as (I − Ã+)[P̃0, B̃3] ∈ hΨm−1
~ (X), so by (9.2.5),

‖(P̃0 − iQ̃0)−1(I − Ã+)[P̃0, B̃3]u‖Hs
~
. h−1‖B̃2u‖Hs−1

~
+ h−2‖B̃1P̃0u‖Hs−m

~
.

Thus, (9.2.6) follows if we can prove an estimate for ‖B̃0(P̃0− iQ̃0)−1Ã+[P̃0, B̃3]u‖Hs
~
. Now,

WF′~(Ã+[P̃0, B̃3]) ∩ Γ̃− = ∅ by arrangement. In order to microlocalize, we now introduce a

nontrapping model, P̃0 − i(Q̃0 + Q̃1). We claim that

v =
(
P̃0 − i(Q̃0 + Q̃1)

)−1
Ã+[P̃0, B̃3]u− (P̃0 − iQ̃0)−1Ã+[P̃0, B̃3]u

satisfies

‖v‖
Hs′

~
. hN‖u‖Hs0

~
(9.2.8)
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for all s′, N . Notice that for any s′′ one certainly has

‖v‖
Hs′′

~
. h−1‖u‖

Hs′′−1
~

by (9.2.5) plus its non-trapping analogue. To see (9.2.8), notice that

(P̃0 − iQ̃0)v = iQ̃1

(
P̃0 − i(Q̃0 + Q̃1)

)−1
Ã+[P̃0, B̃3]u,

so by (9.2.5), with s0 replaced by any s′0 (since s0 was arbitrary), and for any N ,

‖v‖
Hs′

~
. h−2‖Q̃1

(
P̃0 − i(Q̃0 + Q̃1)

)−1
Ã+[P̃0, B̃3]u‖

Hs′−m
~

. hN‖u‖Hs0
~
,

since P̃0 − i(Q̃0 + Q̃1) is non-trapping, hence
(
P̃0 − i(Q̃0 + Q̃1)

)−1
propagates semiclassi-

cal wave front sets along forward bicharacteristics, and no backward bicharacteristic from

WF′~(Q̃1) can reach WF′~(Ã+[P̃0, B̃3]) ⊂WF′~(Ã+)∩WF′~(I−B̃3), proving the claim. Then,

since backward bicharacteristics from WF′~(B̃0) do not encounter WF′~(Ã+[P̃0, B̃3])∩Γ̃+ be-

fore reaching the elliptic set of Q̃0 or Q̃1, we conclude that

‖B̃0(P̃0 − iQ̃0)−1Ã+[P̃0, B̃3]u‖Hs
~

≤ ‖B̃0(P̃0 − iQ̃0 − iQ̃1)−1Ã+[P̃0, B̃3]u‖Hs
~

+ ‖B̃0v‖Hs
~

. h‖B̃2u‖Hs
~

+ ‖B̃1P̃0u‖Hs−m+1
~

+ hN‖u‖Hs0
~
.

This proves (9.2.6), and thus the theorem.

9.2.3 Forward solution operators

We now generalize the setting considered in §9.1.1 for the study of quasilinear equations on

static asymptotically de Sitter spaces to allow for normally hyperbolic trapping.

Thus, working on a compact manifold M with boundary X, we assume that the operator

P is of the form P = P0+P̃ , continuously depending on a small parameter v = v0+ṽ ∈ X s̃,α,

with the space X s̃,α introduced in Definition 9.1.10 and recalled below, and we assume

P0 = P0(v0) = �g(v0) + L(v0) ∈ Diff2
b(M), (9.2.9)

L(v0) ∈ Diff1
b(M), L(0)− L(0)∗ ∈ Diff0

b(M),

P̃ = P̃ (v) ∈ H s̃,α
b Diff2

b(M)
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for a smooth b-metric g on M that continuously depends on one real parameter; here,

α > 0. The main example to keep in mind for the remainder of the section is the wave

operator on an (asymptotically) Kerr-de Sitter space or a H s̃+1,α
b -perturbation thereof. We

assume that Ω ⊂M is a submanifold with corners, which, equipped with the metric g(v0),

is a non-trapping spacetime with normally hyperbolic trapping, see Definition 2.5.1, for

small v0, and is bounded by a Cauchy hypersurface H1, an artificial hypersurface (possibly

with several connected components) H2 as in Figure 9.2, and at future infinity by Ω∩ ∂M ,

with defining function τ which has dτ/τ past timelike in Ω. The metric g(v0) then has

normally hyperbolic trapping at Γ ⊂ bT ∗XM \ bT ∗X, in the sense of Definition 2.3.1, which

we assume to be uniform in v0, as described in §9.2.2; furthermore, at the (approximate)

radial sets L±, the notation and numerology for Hamilton derivatives of fiber infinity and

future infinity is taken to be as in §3.3.1. Lastly, and most importantly, the metric g(v0)

is non-trapping in the sense of non-trapping spacetimes with normally hyperbolic trapping,

i.e. the flow satisfies Proposition 2.3.2 (3’).

Recall the space Hs,r
b (Ω)•,− of distributions which are supported (•) at the ‘artifi-

cial’ boundary hypersurface H1 and extendible (−) at H2, and the other way around for

Hs,r
b (Ω)−,•. The space X s̃,α is then defined as

X s̃,α = C⊕H s̃,α
b (Ω)•,−.

We then have global energy estimates for the operator P , provided s̃ > n/2 + 2, as in

Lemma 9.1.3; recall that this only relies on the timelike nature of the boundary defining

functions of H1 and H2 and the timelike nature of dτ/τ .

Let us stress that we assume the parameter v to be small so that in particular the skew-

adjoint part of P0(v0) is small and does not affect the radial point and normally hyperbolic

trapping estimates which are used in what follows; the general case without symmetry

assumptions on P0(0) will be discussed in §9.2.6. Using a duality argument and the tame

estimates for elliptic regularity and the propagation of singularities (real principal type,

radial points, normally hyperbolic trapping) given in Propositions 8.8.1, 8.8.3, 8.8.4 and

8.8.5, we thus obtain solvability and higher regularity:

Lemma 9.2.6. (Cf. Lemma 9.1.4.) Let 0 ≤ s ≤ s̃ and assume s̃ > n/2+6, s0 > n/2+1/2.

There exists r0 < 0 such that for r ≤ r0, there is C > 0 with the following property: If

f ∈ Hs−1,r
b (Ω)•,−, then there exists a unique u ∈ Hs,r

b (Ω)•,− such that Pu = f , and u
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moreover satisfies

‖u‖Hs,r
b (Ω)•,− . ‖f‖Hs−1,r

b (Ω)•,− + ‖f‖Hs0,r
b (Ω)•,−‖v‖X s̃,α . (9.2.10)

Here, the implicit constant depends only on s and ‖v‖Xn/2+6+ε,α for ε > 0.

Proof. The proof proceeds as the proof of Lemma 9.1.4. The tame estimate (9.2.10) in

particular is obtained by iterative use of the aforementioned microlocal regularity estimates;

the given bound for s0 comes from an inspection of the norms in these estimates which

correspond to the terms called u`∗ in (8.8.1).

We deduce tame analogues of Corollaries 9.1.5 and 9.1.6:

Corollary 9.2.7. Let 0 ≤ s ≤ s̃ and assume s̃ > n/2 + 6, s0 > n/2 + 1/2. There exists

r0 < 0 such that for r ≤ r0, there is C > 0 with the following property: If u ∈ Hs,r
b (Ω)•,− is

such that Pu ∈ Hs−1,r
b (Ω)•,−, then the estimate (9.2.10) holds.

Corollary 9.2.8. Let s0 > n/2 + 1/2, s0 ≤ s′ ≤ s ≤ s̃, and assume s̃ > n/2 + 6; moreover,

let r < 0. Then there is C > 0 such that the following holds: Any u ∈ Hs′,r
b (Ω)•,− with

Pu ∈ Hs−1,r
b (Ω)•,− in fact satisfies u ∈ Hs,r

b (Ω)•,−, and obeys the estimate

‖u‖Hs,r
b (Ω)•,− . ‖Pu‖Hs−1,r

b (Ω)•,− + ‖u‖
Hs′,r

b (Ω)•,−

+ (‖Pu‖Hs0,r
b (Ω)•,− + ‖u‖

H
s0+1,r
b (Ω)•,−

)‖v‖X s̃,α .

Proof. The proof of the two corollaries is as in the referenced corollaries from the non-

trapping discussion. For the radial point estimate involved in the proof of Corollary 9.2.8,

we need the additional assumption s′ − 1 + supL±(rβ̃) > 0, which however is automatically

satisfied since s′ ≥ 1 and the sup is negative for r < 0.

We now note that the Mellin transformed normal operator N̂(P )(σ) of P , with σ the

Mellin-dual of τ , satisfies global large parameter estimates corresponding to the semiclassical

microlocal estimates of Theorem 9.2.5. Now recall from §3.3.4 that if P0 = P0(v0) ∈ Ψm
b (M),

then N(P0) is dilation invariant on [0,∞) ×X, and its conjugate by the Mellin transform

is P̂0 = N̂(P0), whose rescaling P̃0 = |σ|−mP̂0 is an element of Ψm
~ (X). Further, with P0

having normally hyperbolic trapping in the b-sense (with the convention changed regarding

formal self-adjointness, as stated before Theorem 9.2.5), P̃0 is normally hyperbolic in the
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semiclassical sense, see [42]. Fix a smooth b-density on M near X, identified with [0, ε0)×X;

we require this to be of the product form |dx|
x ν, ν a smooth density on X; we compute

adjoints with respect to this density. Then for any B ∈ Ψm
b (M), B̂∗(σ) = (B̂(σ))∗, see

also (3.3.36). In particular, if B = B∗, then B̂(σ) = (B̂(σ))∗ for σ ∈ R. Relaxing (9.2.9)

momentarily, we then assume that

1

2i
(P0 − P ∗0 ) ∈ Ψm−1

b (M), σb,m−1

( 1

2i
(P0 − P ∗0 )

)∣∣∣
Γ
< |σ|m−1νmin/2, (9.2.11)

with νmin the minimal normal expansion rate for the Hamilton flow of the principal symbol

of P0 at Γ ⊂ bT ∗XM , as above; note that σ is elliptic on Γ. This gives that for σ ∈ R,

P̂0(σ)− P̂0(σ)∗ is order m−1 in the large parameter pseudodifferential algebra, so, defining

z = σ/|σ|, the semiclassical version gives

P̃0 − P̃ ∗0 ∈ hΨm−1
~ (X), z ∈ R,

with

σ~,m−1

( 1

2ih
(P̃0 − P̃ ∗0 )

)∣∣∣
Γ̃
< νmin/2, z ∈ R,

where Γ̃ is the image of Γ under the semiclassical identification. In particular, there is

γΓ > 0 and βΓ < νmin/2 such that if | Im z| < hγΓ then

σ~,m−1

( 1

2ih
(P̃0 − P̃ ∗0 )

)∣∣∣
Γ̃
< βΓ. (9.2.12)

With this background, under our assumptions on the dynamics, propagating estimates

from the radial points towards H2, in particular through Γ̃, and using the uniformity in

parameters described above Theorem 9.2.5, we have:

Theorem 9.2.9. Let C0 > 0. Suppose P0 = P0(v0) satisfies (9.2.11) at Γ, P̃0 is the

semiclassical rescaling of P̂0 = N̂(P0), s > 1/2 + sup(β̃)γ (with β̃ coming from the radial

point numerology, see (3.3.8)), s > 1, γ < γΓ, γΓ > 0 as in (9.2.12). Then there is h0 > 0

such that for h < h0, | Im z| < hγ,

‖u‖Hs
~
. h−2‖P̃0u‖Hs−m+1

~
, (9.2.13)

with the implied constant and h0 uniform in v0 with |v0| ≤ C0.



9.2. SPACETIMES WITH NORMALLY HYPERBOLIC TRAPPING 439

Proof. This is immediate from piecing together the semiclassical propagation estimates from

radial points (which is where s > 1/2 + sup(β̃)γ is used, see also [114, Propositions 2.3 and

2.4] and the corresponding statement in the b-setting given in Proposition 3.3.8) through

Γ̃, using Theorem 9.2.5, which is where γ < γΓ is used and where h−2, rather than h−1, is

obtained for the right hand side, to H2 ∩X, which is where s > 1 is used.

An alternative proof would be using Dyatlov’s setting [42] directly, together with the

gluing of Datchev and Vasy [32], exactly as described in [114, Theorem 2.17].

Going back to the operator P0(v0) satisfying the conditions stated at the beginning

of this section, and under the additional assumption of uniform normal hyperbolicity as

explained above, we can now obtain partial expansions of solutions to Pu = f at infinity,

i.e. at X:

Theorem 9.2.10. (Cf. Theorem 9.1.8.) Let 0 < α < min(1, γΓ). Suppose P has a simple

rank 1 resonance at 0 with resonant state 1, and that all other resonances have imaginary

part less than −α. Let s̃ > n/2 + 6, s0 > max(n/2 + 1/2, 1 + sup(β̃)α),54 and assume

s0 ≤ s ≤ s̃ − 4. Let 0 6= r ≤ α. Then any solution u ∈ Hs+4,r0
b (Ω)•,− of Pu = f with

f ∈ Hs+3,r
b (Ω)•,− satisfies u ∈ X s′,r with s′ = s+ 4 for r < 0 and s′ = s for r > 0, and the

following tame estimate holds:

‖u‖X s′,r . ‖f‖Hs+3,r
b (Ω)•,− + ‖u‖

H
s+4,r0
b (Ω)•,−

+ (‖f‖Hs0,r
b (Ω)•,− + ‖u‖

H
s0+1,r0
b (Ω)•,−

)‖v‖X s̃,α .

Proof. The proof works in the same way as the proofs of Theorems 5.2.3 and 9.1.8, using

an iterative argument that consists of rewriting Pu = f as N(P )u = f − (P − N(P ))u

and employing a contour deformation argument, see also [114, Lemma 3.1] (which uses

high-energy estimates for the inverse normal operator family P̂ (σ)−1 and the location of

resonances, i.e. of the poles of this family), to improve on the decay of u by α in each

step, but losing an order of differentiability as we are treating P −N(P ) as an error term;

using tame microlocal regularity for the equation Pu = f , Corollary 9.2.8, one can regain

this loss. We obtain u ∈ Hs+1,r
b after a finite number of iterations in case r < 0,55 and

u ∈ Hs+4,r0
b for all r0 < 0 in case r > 0.

54In particular, if we merely assume s0 > n/2+1/2, then the full condition on s0 holds if we choose α > 0
sufficiently small.

55In particular, this holds under the weaker conditions s+ 1 ≤ s̃, α ≤ 1.
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Assuming we are in the latter case, the next step of the iteration gives a partial expansion

u = c + u′ with c ∈ C (identified, as before, with cχ, where χ is a smooth cutoff near the

boundary) and u′ ∈ Hs+2,r′

b for any r′ satisfying r′ ≤ r and r′ < α; here, we need 0 < α < γΓ

so that the normally hyperbolic trapping estimate (9.2.13) holds with γ > α, with loss of

two derivatives. If r = α, we can use this information to deduce

N(P )u = f − (P −N(P ))u = f − f̃ , f̃ ∈ H s̃,α
b +Hs,r′+α

b ⊂ Hs,r
b ,

which implies that the expansion u = c + u′ in fact holds with the membership u′ ∈ Hs,r
b ;

notice the improvement in the weight. Therefore, u ∈ X s,r, finishing the proof.

Pipelining this result with the existence of solutions, Lemma 9.2.6, we therefore obtain:

Theorem 9.2.11. Under the assumptions of Theorem 9.2.10 with r > 0 and s > n/2 + 2,

define the space

Ys,r = {u ∈ X s,r : Pu ∈ Hs+3,r
b (Ω)•,−}.

Then the operator P : Ys,r → Hs+3,r
b (Ω)•,− has a continuous inverse S that satisfies the

tame estimate

‖Sf‖X s,r ≤ C(s, ‖v‖X s0,α)(‖f‖
Hs+3,r

b (Ω)•,− + ‖f‖Hs0,r
b (Ω)•,−‖v‖X s+4,α). (9.2.14)

9.2.4 Solving quasilinear wave equations

We continue to work in the setting of the previous section. With the tame forward solution

operator constructed in Theorem 9.2.11 in our hands, we are now in a position to use a

Nash-Moser implicit function theorem to solve quasilinear wave equations. We use the

following simple form of Nash-Moser, given in [99]:

Theorem 9.2.12. Let (Bs, | · |s) and (Bs, ‖ · ‖s) be Banach spaces for s ≥ 0 with Bs ⊂ Bt

and indeed |v|t ≤ |v|s for s ≥ t, likewise for B∗ and ‖ · ‖∗; put B∞ =
⋂
sB

s and similarly

B∞ =
⋂
s Bs. Assume there are smoothing operators (Sθ)θ>1 : B∞ → B∞ satisfying for

every v ∈ B∞, θ > 1 and s, t ≥ 0:

|Sθv|s ≤ Cs,tθs−t|v|t if s ≥ t,

|v − Sθv|s ≤ Cs,tθs−t|v|t if s ≤ t.
(9.2.15)
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Let φ : B∞ → B∞ be a C2 map, and assume that there exist u0 ∈ B∞, d ∈ N, δ > 0 and

constants C1, C2 and (Cs)s≥d such that for any u, v, w ∈ B∞,

|u− u0|3d < δ ⇒


∀s ≥ d, ‖φ(u)‖s ≤ Cs(1 + |u|s+d),

‖φ′(u)v‖2d ≤ C1|v|3d,

‖φ′′(u)(v, w)‖2d ≤ C2|v|3d|w|3d.

(9.2.16)

Moreover, assume that for every u ∈ B∞ with |u − u0|3d < δ there exists an operator

ψ(u) : B∞ → B∞ satisfying

φ′(u)ψ(u)h = h

and the tame estimate

|ψ(u)h|s ≤ Cs(‖h‖s+d + |u|s+d‖h‖2d), s ≥ d, (9.2.17)

for all h ∈ B∞. Then if ‖φ(u0)‖2d is sufficiently small depending on δ, |u0|D and (Cs)s≤D,

where D = 16d2 + 43d+ 24, there exists u ∈ B∞ such that φ(u) = 0.

To apply this in our setting, we let Bs = X s,α(Ω) = C⊕Hs,α
b (Ω)•,− and Bs = Hs,α

b (Ω)•,−

with the corresponding norms; φ(u) will be the quasilinear equation, with implicit depen-

dence on the forcing term. We now construct the smoothing operators Sθ; we may assume,

using a partition of unity, that Ω is the closure of an open subset of Rn+, say Ω = Ω(1),

where we let Ω(x0) = {x ≤ x0, |y| ≤ 1}. Then there are bounded extension and restriction

operators

E : Hs,α
b (Ω)•,− → Hs,α

b (Rn+), R : Hs,α
b (Rn+)→ Hs,α

b (Ω)−,−,

for s ≥ 0; the operator E can be constructed such that suppEv ⊂ {x ≤ 1} for v ∈
Hs,α

b (Ω)•,−. If we then define for θ > 1 and v = (c, u) ∈ X s,α:

S1
θv = (c,RS′θEv),

where S′θ is a smoothing operator on Rn+ with properties as in (9.2.15), then S1
θ satisfies

(9.2.15) in view of RE being the identity on Hs,α
b (Ω)•,− if the norms on the left hand side

are understood to be Hs,α
b (Rn+)-norms. However, note that S1

θ does not map X∞,α into

itself, since smoothing operators such as S′θ enlarge supports; we will thus need to modify

S1
θ below to obtain the operators Sθ. In order to construct S′θ on weighted b-Sobolev spaces
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Hs,α
b , it suffices by conjugation by the weight to construct it on the unweighted spaces Hs

b;

then, by a logarithmic change of coordinates, we only need to construct the smoothing

operator S̃θ on the standard Sobolev spaces Hs(Rn), which we will do in Lemma 9.2.13

below. In order to deal with the issue of S1
θ enlarging supports, we will define S̃θ such that

v ∈ C∞c (Rnx′,y′), supp v ⊂ {x′ ≤ 0} ⇒ supp S̃θv ⊂ {x′ ≤ θ−1/2}.

In particular, when one undoes the logarithmic change of coordinates, this implies

S1
θ : X s,α(Ω(1))→ X s,α

(
Ω
(
exp(θ−1/2)

))
;

more generally, with Dλ denoting dilations Dλ(x, y) = (λx, y) on Rn+, we have

Sλθ := (D−1
λ )∗S1

θ (Dλ)∗ : X s,α(Ω(λ))→ X s,α
(

Ω
(
λ exp(θ−1/2)

))
, λ > 0, (9.2.18)

with the operator norm independent of λ near 1. Now, in our application of Theorem 9.2.12,

we will have

φ : X∞,α(Ω(x0))→ H∞,αb (Ω(x0))•,− for all x0 near 1,

and correspondingly we will have forward solution operators ψ going in the reverse direction,

with all relevant constants being uniform in x0. Looking at the proof of Theorem 9.2.12

in [99], one only uses the smoothing operator Sθk with θk = θ
(5/4)k

0 in the k-th step of the

iteration, with θ0 chosen sufficiently large; in our situation, where we have (9.2.18), we can

therefore use the smoothing operator

Sθk := Sλkθk , λk = exp

k−1∑
j=0

θ
−1/2
j


in the k-th iteration step. Note that, for θ0 large, we have

1 = λ0 ≤ λ1 ≤ · · · ≤ λ∞ = exp

 ∞∑
j=0

θ
−1/2
j

 ≤ 1 + 2θ
−1/2
0 .

The solution u to φ(u) = 0, obtained as a limit of an iterative scheme (see [99, Lemma 1]),

therefore is an element of X s,α(Ω(λ∞)). Taking the hyperbolic nature of the PDE φ(u) = 0

into account once more, it will then, in our concrete setting, be easy to conclude that in
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fact u ∈ X s,α(Ω).

We now construct the smoothing operators on Rn; the first step of the argument follows

the Appendix of [99].

Lemma 9.2.13. There is a family (S̃θ)θ>1 of operators on H∞(Rn) satisfying

‖S̃θv‖s ≤ Cs,tθs−t‖v‖t if s ≥ t ≥ 0, (9.2.19)

‖v − S̃θv‖s ≤ Cs,tθs−t‖v‖t if 0 ≤ s ≤ t, (9.2.20)

supp S̃θv ⊆ {x1 ≤ θ−1/2} (9.2.21)

for all v ∈ H∞(Rn) with supp v ⊆ H := {x1 ≤ 0}. Here ‖ · ‖s denotes the Hs(Rn)-norm,

and we write x = (x1, x
′) ∈ Rn.

Proof. Choose χ = χ1(x1)χ2(x′) ∈ S(Rn) with χ1 ∈ S(R), χ2 ∈ S(Rn−1) so that the Fourier

transform χ̂ is identically 1 near 0; put χθ(z) = θnχ(θz) and define the operator Cθv = χθ∗v.

Then (Cθv)̂ = χ̂θv̂ with χ̂θ(ξ) = χ̂(ξ/θ), therefore (9.2.19) holds for Cθ in place of S̃θ with

constants C ′s,t since χ̂ decays super-polynomially, and (9.2.20) holds for Cθ in place of S̃θ

with constants C ′s,t since 1− χ̂(ξ) vanishes at ξ = 0 with all derivatives.

Next, let ψ ∈ C∞(Rn) be a smooth function depending only on x1, i.e. ψ = ψ(x1),

so that ψ(x1) ≡ 1 for x1 ∈ (−∞, 1/2], ψ(x1) ≡ 0 for x1 ∈ [1,∞), and 0 ≤ ψ ≤ 1. Put

ψθ(x1, x
′) = ψ(θx1, x

′), and define

S̃θv := ψθ1/2Cθv.

Condition (9.2.21) is satisfied by the support assumption on ψ. Let ϕ = 1 − ψ and ϕθ =

1− ψθ. To prove the other two conditions, we use the estimate

‖ϕθ1/2Cθv‖s ≤ C ′′s,Nθ−N‖v‖L2 , supp v ⊂ H, s,N ≥ 0, (9.2.22)

which we will establish below. Taking this for granted, we obtain for v with supp v ⊂ H:

‖S̃θv‖s ≤ ‖Cθv‖s + ‖ϕθ1/2Cθv‖s ≤ C ′s,tθs−t‖v‖t + C ′′s,0‖v‖0

for s ≥ t ≥ 0, which is the estimate (9.2.19); and (9.2.20) follows from

‖v − S̃θv‖s ≤ ‖v − Cθv‖s + ‖ϕθ1/2Cθv‖s ≤ C ′s,tθs−t‖v‖t + C ′′s,t−sθ
s−t‖v‖0
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for 0 ≤ s ≤ t.
We now prove (9.2.22) for s ∈ N0. For multiindices α = (α1, α

′) with |α| ≤ s, we

have for v with supp v ⊂ H and for (x1, x
′) ∈ suppϕθ1/2Cθv, which in particular implies

x1 ≥ 1/(2θ1/2):

∂α(ϕθ1/2Cθv)(x1, x
′) =

α1∑
j=0

(
α1

j

)
θ(α1−j)/2ϕ(α1−j)(θ1/2x1)

×
∫∫

y1≥1/(2θ1/2)
θn+j+|α′|χ

(j)
1 (θy1)χ

(α′)
2 (θy′)v(x1 − y1, x

′ − y′) dy1 dy
′,

thus

‖∂α(ϕθ1/2Cθv)‖L2 ≤ Csθn+s‖χ̌θ‖L1‖v‖L2 ,

where

χ̌θ(x1, x
′) =

0, x1 < 1/(2θ1/2),∑α1
j=0 |χ

(j)
1 (θx1)χ

(α′)
2 (θx′)| otherwise.

But ‖χ̌θ‖L1 ≤ CN,sθ
−N for all N : Indeed, this reduces to the statement that for a fixed

χ0 ∈ S(R), one has∫ ∞
1/(2θ1/2)

|χ0(θx)| dx ≤ CN
∫ ∞
θ−1/2

(θx)−2N+1 dx = C ′Nθ
−N .

Hence, we obtain (9.2.22), and the proof is complete.

We now combine Theorem 9.2.11, giving the existence of tame forward solution opera-

tors, with Theorem 9.2.12, in the extended form described above, to solve quasilinear wave

equations. We use the space X s,αR of real-valued elements of X s,α.

Theorem 9.2.14. Let N ∈ N and ck ∈ C∞(R;R), gk ∈ (C∞ + H∞b )(M ;S2bTM) for

1 ≤ k ≤ N ; define the map g : X s,α → (C∞ + Hs,α
b )(M ;S2bTM) by g(u) =

∑N
k=1 ck(u)gk

and assume that �g(0) satisfies the assumptions of §9.2.3 and of Theorem 9.2.11. Moreover,

let N ′ ∈ N and define

q(u, bdu) =
N ′∑
j=1

uej
Nj∏
k=1

Xjku, (9.2.23)

where

ej , Nj ∈ N0, Nj ≥ 1, Nj + ej ≥ 2, Xjk ∈ (C∞ +H∞b )Vb.
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Then there exists Cf > 0 such that for all forcing terms f ∈ H∞,αb (Ω;R)•,− satisfying

‖f‖
H

max(12,n+5),α
b (Ω)•,−

≤ Cf , the equation

�g(u)u = f + q(u, bdu) (9.2.24)

has a unique solution u ∈ X∞,αR .

If more generally g(u, bdu) =
∑N

k=1 ck(u,X1u, . . . ,XLu), where X1, . . . , XL ∈ Vb(M)

and ck ∈ C∞(R1+L;R), then there exists Cf > 0 such that for all forcing terms f ∈
H∞,αb (Ω;R)•,− satisfying ‖f‖

H
max(14,n+5),α
b (Ω)•,−

≤ Cf , the equation

�g(u,bdu)u = f + q(u, bdu) (9.2.25)

has a unique solution u ∈ X∞,αR .

Proof. We write | · |s for the X s,α-norm and ‖ · ‖s for the Hs,α
b -norm. For brevity, we do not

specify the underlying set, which, in the notation of §9.2.3, is t−1
1 ([−λ,∞))∩ t−1

2 ([0,∞)) for

varying λ ≥ 0. We define the map

φ(u; f) = �g(u)u− q(u, bdu)− f

and check that it satisfies the conditions of Theorem 9.2.12 with u0 = 0. From the definition

of �g(u) and the tame estimates for products, reciprocals and compositions, Corollary 8.7.2

and Propositions 8.7.4 and 8.7.7, we obtain

‖φ(u; f)‖s ≤ ‖f‖s + C(|u|s0+2)(1 + |u|s+2), s ≥ s0 > n/2 + 1,

thus the first estimate of (9.2.16) for 3d ≥ s0 + 2, d ≥ s0, d ≥ 2. Next, we have φ′(u; f)v =(
�g(u) + L(u, bdu)

)
v, where the first order b-differential operator L is of the form

L =
∑
|β|≤1

( ∑
1≤|α|≤2

aαβ(u, bdu)bDαu

)
bDβv +

∑
|β|=1

aβ(u, bdu)ubDβv, (9.2.26)

with the second sum capturing one term of the linearization of terms uejXj1u in q (i.e.

terms for which Nj = 1). In particular,

φ′(u; f) = P0(u0) + P̃ (u, bDu, bD2u), (9.2.27)
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where P0 ∈ Diff2
b and P̃ ∈ Hs−2,α

b Diff2
b for u ∈ X s,α. Therefore,

‖φ′(u; f)v‖s ≤ C(|u|s+2)|v|s+2, s > n/2 + 1,

which gives the second estimate of (9.2.16) for 2d > n/2 + 1 and 3d ≥ 2d + 2. Next, we

observe that φ′′(u; f)(v, w) is bilinear in v, w, involves up to two b-derivatives of each v and

w, and the coefficients depend on up to two b-derivatives of u, thus

‖φ′′(u; f)(v, w)‖s ≤ C(|u|s+2)|v|s+2|w|s+2, s > n/2 + 1,

which gives the third estimate of (9.2.16) for 3d > n/2 + 3, 3d ≥ 2d + 2. In summary, we

obtain (9.2.16) for integer d > n/2 + 1.

Finally, we determine d so that we have the tame estimate (9.2.17): Given u ∈ X s+6,α,

we can write φ′(u; f) as in (9.2.27), with P0 ∈ Diff2
b and P̃ ∈ Hs+4,α

b Diff2
b; hence, by

Theorem 9.2.11, we obtain a solution operator

ψ(u; f) : Hs+3,α
b → X s,α,

|ψ(u; f)v|s ≤ C(s, |u|s0)(‖v‖s+3 + ‖v‖s0 |u|s+6),
(9.2.28)

where s, s0 > n/2 + 2, provided |u|s0 is small enough so that all dynamical and geometric

hypotheses hold for φ′(u; f). Notice that the subprincipal term of φ′(u; f) can differ from

that of �g(0) by terms of the form a(u0)u0
bDβ, a ∈ C∞, |β| = 1, see (9.2.26); however,

since such terms eliminate constants, the simple rank 1 resonance at 0 with resonant state

1 does not change; and moreover such terms are small because of the factor u0, hence high

energy estimates still hold in a (possibly slightly smaller) strip in the analytic continuation,

see the remark below [42, Theorem 1]. Since s0 is independent of s, we have (9.2.28) for

all s > n/2 + 2, in particular ψ(u; f) : H∞,αb → X∞,α. Now, (9.2.28) implies that (9.2.17)

holds for d > n/2 + 2, d ≥ 6, so we need to control max(12, n+ 5) derivatives of f .

Thus, we can apply Nash-Moser iteration, Theorem 9.2.12, to obtain a solution u ∈ X s,α

of the PDE (9.2.24), with the caveat that u is a priori supported on a space slightly larger

than Ω. However, local uniqueness for quasilinear hyperbolic equations, see e.g. [108, §16.3],

implies that u in fact is supported in Ω, and that u is the unique solution of (9.2.24), finishing

the proof of the first part.

The proof of the second part proceeds in the same way, only we need that d ≥ 7, which
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makes the control of the stronger H
max(14,n+5)
b -norm of f necessary.

Remark 9.2.15. In the asymptotically de Sitter setting considered in §9.1, the above theorem

extends Theorem 9.1.15 (at the cost of requiring the control of more derivatives) since we

allow the dependence of the metric g(u, bdu) on bdu as well.

Remark 9.2.16. An inspection of the proof of the abstract Nash-Moser theorem 9.2.12 in

[99] shows that there are constants C and s0, depending only on the ‘loss of derivatives’ d,

such that the following holds: In order to obtain a solution u ∈ X s,α for some finite s ≥ s0,

it is sufficient to take f ∈ HCs,α
b , still assuming the norm of f in the space indicated in the

statement of Theorem 9.2.14 to be small.

Theorem 9.2.14 immediately implies the following result on Kerr-de Sitter space:

Corollary 9.2.17. Under the assumptions of Theorem 9.2.14, the quasilinear wave equa-

tion (9.2.24), resp. (9.2.25), on a 4-dimensional asymptotically Kerr-de Sitter space with

|a| � M• has a unique global smooth (i.e. conormal, in the space X∞,α) solution if the

H12,α
b (Ω)•,−-norm, resp. H14,α

b (Ω)•,−-norm, of the forcing term f ∈ H∞,αb (Ω)•,− is suffi-

ciently small.

Proof. For a verification of the dynamical assumptions for asymptotically Kerr-de Sitter

spaces, we refer the reader to [114, §6]; the resonances on the other hand were computed

by Dyatlov [40].

9.2.5 Solving quasilinear Klein-Gordon equations

The only difference between wave and Klein-Gordon equations with mass m (which is to

be distinguished from the black hole mass M•) is that the resonance of the Klein-Gordon

operator � −m2 with largest imaginary part, which gives the leading order asymptotics,

is no longer at 0 for m 6= 0. Thus, if we sort the resonances σ1, σ2, . . . of � − m2 with

multiplicity by decreasing imaginary part, assume

0 < − Imσ1 < r < − Imσ2,

and moreover that the high energy estimates for the normal operator family of � − m2

hold in Imσ ≥ −r, the only change in the statement of Theorem 9.2.10 for Klein-Gordon

operators is that the conclusion now is u ∈ X s−3,r
σ1 , where X s−3,r

σ1 = C⊕Hs−3,r
b (Ω)•,−, with
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(c, u′) identified with cxiσ1χ+u′ for a smooth cutoff χ near the boundary.56 We thus obtain

the following adapted version of Theorem 9.2.11:

Theorem 9.2.18. In the notation of §9.2.4, under the above assumptions and for s >

n/2 + 2, define the space

Ys,rσ1
= {u ∈ X s,rσ1

: Pu ∈ Hs+3,r
b (Ω)•,−}.

Then the operator P : Ys,r → Hs+3,r
b (Ω)•,− has a continuous inverse S that satisfies the

tame estimate

‖Sf‖X s,rσ1
≤ C(s, ‖v‖X s0,ασ1

)(‖f‖
Hs+3,r

b (Ω)•,− + ‖f‖Hs0,r
b (Ω)•,−‖v‖X s+4,α

σ1
). (9.2.29)

This immediately gives:

Theorem 9.2.19. Under the above assumptions and the assumption α < −2 Imσ1, let

N,N ′ ∈ N and ck ∈ C∞(R;R), gk ∈ (C∞ + H∞b )(M ;S2bTM) for 1 ≤ k ≤ N ; define the

map g : X s,ασ1 → (C∞ + Hs,α
b )(M ;S2bTM) by g(u) =

∑N
k=1 ck(u)gk and assume that �g(0)

satisfies the assumptions of §9.2.3 and of Theorem 9.2.18. Moreover, define

q(u, bdu) =
N ′∑
j=1

aju
ej

Nj∏
k=1

Xjku,

where

ej , Nj ∈ N0, ej +Nj ≥ 2, aj ∈ C∞, Xjk ∈ (C∞ +H∞b )Vb.

Then there exists Cf > 0 such that for all forcing terms f ∈ H∞,αb (Ω;R)•,− satisfying

‖f‖
H

max(12,n+5),α
b (Ω)•,−

≤ Cf , the equation

(�g(u) −m2)u = f + q(u, bdu) (9.2.30)

has a unique solution u ∈ X∞,ασ1,R .

If more generally g(u, bdu) =
∑N

k=1 ck(u,X1u, . . . ,XLu), where X1, . . . , XL ∈ Vb(M)

and ck ∈ C∞(R1+L;R), then there exists Cf > 0 such that for all forcing terms f ∈
56There are more cases of potential interest: If r < − Imσ1, we obtain u ∈ Hs−3,r

b (Ω)•,−; if r < 0, the
statement of Theorem 9.2.10 is unchanged; and if Imσ1 and Imσ2 are close enough together (including the
case that σ1 is a double resonance), one gets two terms in the expansion of u. For brevity, we only explain
one scenario here. See also the related discussion in §9.1.4.
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H∞,αb (Ω;R)•,− satisfying ‖f‖
H

max(14,n+5),α
b (Ω)•,−

≤ Cf , the equation

(�g(u,bdu) −m2)u = f + q(u, bdu) (9.2.31)

has a unique solution u ∈ X∞,αR .

Together with Theorem 9.2.14, this proves Theorem 9.2.2.

Proof of Theorem 9.2.19. The proof proceeds as the proof of Theorem 9.2.14. Notice that

we allow the nonlinear term q to be more general, the point being that firstly, any at least

quadratic expression in (u, bdu) with u ∈ X s,ασ1 gives an element of Hs,α
b , and secondly,

every element in X s,ασ1 vanishes at the boundary, thus the normal operator family of the

linearization of �g(u) −m2 − q(u, bdu)− f at any u ∈ X s,ασ1 is equal to the normal operator

family of �g(0) −m2, for which one has high energy estimates by assumption.

By Lemma 5.3.3, the assumptions of Theorem 9.2.19 are satisfied on asymptotically

Kerr-de Sitter spaces as long as the mass parameter m is small:

Corollary 9.2.20. Under the assumptions of Theorem 9.2.19 and for a and m > 0

sufficiently small, the quasilinear Klein-Gordon equation (9.2.30), resp. (9.2.31), on a 4-

dimensional asymptotically Kerr-de Sitter space with angular momentum a has a unique

global smooth (i.e. conormal, in the space X∞,ασ1,R) solution if the H12,α
b (Ω)•,−-norm, resp.

H14,α
b (Ω)•,−-norm, of the forcing term f ∈ H∞,αb (Ω)•,− is sufficiently small.

9.2.6 Proofs of the general statements

Finally, following the same arguments as used in the previous section, we indicate how to

prove the general Theorems 9.2.3 and 9.2.4 stated in the introduction to the present sec-

tion. We continue to use, but need to generalize the setting considered in §9.2.3: Namely,

generalizing (9.2.9), we now allow L to be any first order b-differential operator, and corre-

spondingly need information on the skew-adjoint part of P0; concretely, we define β̂ at the

(generalized) radial sets L±, using the same notation as in (3.3.11), by

σb,1

( 1

2i
(P0 − P ∗0 )

)∣∣∣
L±

= ±β̂β0ρ. (9.2.32)
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Moreover, at the trapped set Γ = Γ− ∪ Γ+, we assume that

e1|Γ < νmin/2, e1 = |σ|−1σb,1

( 1

2i
(P0 − P ∗0 )

)
, (9.2.33)

with νmin the minimal normal expansion rate for the Hamilton flow of the principal symbol

of P0, and σ the Mellin dual variable of x after an identification of a collar neighborhood

of X in M with [0, ε′)x ×X; note that σ is elliptic on Γ. Let rthr be the threshold weight

for the first part of Theorem 8.8.5, i.e. rthr = − sup e1/c∂ with c∂ as defined in (8.5.53).

Then Corollary 9.2.8 holds in the current, more general setting, provided we assume

r < rthr and s′ > 1 + supL±(rβ̃ − β̂). Likewise, we obtain the high energy estimates of

Theorem 9.2.5 under the assumption s > 1/2 + supL±(γβ̃ − β̂).

In order to generalize Theorem 9.2.10, we first choose 0 < r+ < 1 such that

(e1 + r+c∂)|Γ < νmin/2,

which holds for sufficiently small r+ in view of (9.2.33) by the compactness of Γ in bS∗M .

We moreover assume that there are no (nonzero) resonances in Imσ > −r+ in the case of

Theorem 9.2.3 (Theorem 9.2.4), and we assume further that 0 < α < r+. Then in the proof

of Theorem 9.2.10, ignoring the issue of threshold regularities at radial sets momentarily, we

can use the contour shifting argument without loss of derivatives up to, but excluding, the

weight rthr, corresponding to the contour of integration Imσ = −rthr. Shifting the contour

further down, we cannot use the non-smooth real principal type estimate at Γ anymore and

thus lose 2 derivatives at each step; the total number of additional steps needed to shift the

contour down to Imσ = −α is easily seen to be at most

N = max

(
0,

⌈
α− rthr

α

⌉
+ 1

)
,

hence in order to have the final conclusion that u has an expansion with remainder in Hs,α
b ,

we need to assume that u initially is known to have regularity Hs+2N,r0
b for any r0 ∈ R,

which in turn requires s̃ ≥ s + 2N and f ∈ Hs+2N−1,r0
b for the first, lossless, part of the

argument to work. Taking the regularity requirements at the radial sets into account, we

further need to assume s ≥ s0 > max(n+ 1/2, 1 + sup(rβ̃ − β̂)). Under these assumptions,

the proof of Theorem 9.2.10 applies, mutatis mutandis, to our current situation, and we

obtain a tame solution operator as in Theorem 9.2.11, which now loses 2N − 1 derivatives.
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Thus, we can prove Theorems 9.2.3 and 9.2.4 using the same arguments which we used

in the proof of Theorem 9.2.14; the ‘loss of derivatives’ parameter d now needs to satisfy

the conditions

d ≥ 2N + 3, d > n/2 + 6, d > 1 + sup(rβ̃ − β̂), (9.2.34)

with the first condition being the actual loss of derivatives, the second one coming from

s > n/2 + 6 certainly being a high enough regularity for s̃ = s + 2N to be > n/2 + 6,

which is required for the application of the non-smooth microlocal regularity results, and

the last condition being the threshold regularity (for the non-smooth estimates) at the radial

sets. We remark that the first condition could be made independent of N once one proves

a general b-estimate on slightly decaying b-spaces analogous to the semiclassical estimate

(9.2.13): Indeed, such an estimate would then be used in the contour shifting argument to

regain lost derivatives in exactly the same fashion as the general b-estimate at radial sets

eliminated the loss in the non-trapping setting of Theorem 5.2.3.



Appendix A

Perturbation theory for resonances

We present some general results on the behavior of resonances for a semiclassical operator

under perturbations. Our arguments are essentially standard and well-known in related

contexts, see e.g. [54, 66], but in the non-elliptic Fredholm framework formulated in [114],

they require some care; thus, we give a self-contained treatment adapted to our needs

here: The main purpose of this appendix is to fully justify the arguments in the proof of

Lemma 5.3.3 and in §7.5.

We will reduce the perturbation of resonances for analytic Fredholm families in §A.2 to a

large extent to a finite-dimensional problem; therefore, we begin our discussion by studying

parameter-dependent holomorphic matrix-valued functions in §A.1.

A.1 Families of holomorphic matrix-valued functions

Let U ⊂ C be open, connected and non-empty, let A be a neighborhood of the origin in RL,

and let r ∈ {0, 1, 2, . . . ,∞, ω}. We consider a family

P (σ; a) ∈ Cr
(
Aa;O(Uσ;M(N,C))

)
(A.1.1)

of holomorphic N × N matrix-valued functions with Cr dependence on the parameter a.

We assume that P (σ; 0) is invertible for some σ ∈ U , hence P (σ; 0)−1 is meromorphic, and

therefore so is P (σ; a)−1 for |a| < δ, δ > 0 small. For the remainder of this section, we will

assume that a satisfies this smallness assumption. As usual, we call the poles of P (σ; a)−1

resonances. Our interest here lies in understanding the dependence of the order and the

452
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rank of resonances on the parameter a. Recall here that the order of P (σ; a)−1 at σ∗ is

ordσ∗ P (σ; a)−1 = min
{
` ∈ N0 : (σ − σ∗)`P (σ; a)−1 ∈ O(σ∗)

}
, (A.1.2)

with O(σ∗) denoting the space of germs holomorphic functions at σ∗; i.e. ordσ∗ P (σ; a)−1 is

the most negative power in the Laurent series expansion of P (σ; a)−1 around σ = σ∗. On

the other hand, we define the singular range [82, §5] of P (σ; a)−1 at σ = σ∗ to be

sing ranσ∗ P (σ; a)−1 =

{
u(σ) =

ord(σ∗;a)∑
j=1

uj(σ − σ∗)−j : P (σ; a)u(σ) ∈ O(σ∗)

}
,

and then

rankσ∗ P (σ; a)−1 = dim
(
sing ranσ∗ P (σ; a)−1

)
. (A.1.3)

Hence, ordσ∗ P (σ; a)−1 = 0 (and thus rankσ∗ P (σ; a)−1 = 0) if and only if P (σ; a)−1 is

regular at σ = σ∗. We introduce the notation

p. p.
σ∗

( ∞∑
j=−∞

uj(σ − σ∗)j
)

:=

−1∑
j=−∞

uj(σ − σ∗)j

for the principal part of a Laurent series. We first study P (σ; a)−1 for fixed a, so for now,

we suppress the parameter a in the notation.

Lemma A.1.1. For all σ∗ ∈ U , we have rankσ∗ P (σ)−1 ≥ ordσ∗ P (σ)−1.

Proof. This is true if σ∗ is not a resonance, so let us assume σ∗ is a resonance, and let

d = ordσ∗ P (σ)−1. Then

P (σ)−1 = (σ − σ∗)−dP−d + (σ − σ∗)−d+1O(σ∗)

with P−d ∈M(N,C) non-zero. Take v ∈ CN such that P−dv 6= 0, and put

uj(σ) = p. p.
σ∗

[
(σ − σ∗)jP (σ)−1v

]
6= 0, j = 0, 1, . . . , d− 1.

Then P (σ)u(σ) = (σ − σ∗)j(v + O(σ∗)) is holomorphic indeed, so uj ∈ sing ranσ∗ P (σ)−1,

which implies the statement of the lemma.

An analytically more convenient description of the rank is the following:
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Lemma A.1.2. Suppose σ∗ is a pole of P (σ)−1. Then

rankσ∗ P (σ)−1 = tr
( 1

2πi

∮
σ∗

P (σ)−1∂σP (σ) dσ
)
, (A.1.4)

where
∮
σ∗

is the line integral along a small circle around σ∗.

Proof. We give a proof that directly generalizes to the case that P (σ) is an analytic Fredholm

family (with meromorphic inverse). First, with k = dim kerP (σ∗), we can multiply P (σ)

from the left by an invertible constant coefficient matrix C1 so that

C1P (σ∗) =

(
id 0

0 0

)
,

where we split CN into a subspace which is complementary to kerP (σ∗) (first summand)

and kerP (σ∗) ∼= Ck (second summand). The (1, 1) block of C1P (σ) will remain invertible

for σ near σ∗, and we can then choose holomorphic matrix-valued functions C1(σ), C2(σ),

invertible near σ∗, such that

C1(σ)P (σ)C2(σ) =

(
id 0

0 P22(σ)

)
, (A.1.5)

with P22(σ) ∈ O(σ∗;M(k,C)) invertible in a punctured neighborhood of σ∗. Now, P22(σ)−1

near σ = σ∗ is a k × k matrix of meromorphic functions. Suppose that its (i, j)-entry has

a pole of order equal to d := ordσ∗ P22(σ)−1. By multiplying P22(σ)−1 from the left and

the right by holomorphic matrices C̃1(σ) and C̃2(σ), invertible near σ∗, we can move this

entry to the (1, 1)-position (within the k × k block), make it equal to (σ − σ∗)−d, and then

eliminate the remaining entries of the resulting matrix in the first row and first column.

Continuing this process with the lower (k − 1)× (k − 1) block of the resulting matrix and

iterating, we can arrange

(
C̃1(σ)P22(σ)C̃2(σ)

)−1
= D(σ)−1, D(σ) := diag

(
(σ − σ∗)e1 , . . . , (σ − σ∗)ek

)
,

with integers e1 = d ≥ e2 ≥ · · · ≥ ek, where ek ≥ 0 since P22(σ) is holomorphic. (We have

simply computed the Smith normal form of P22(σ)−1, where the principal ideal domain is

the ring of germs of meromorphic functions at σ∗.) Therefore, updating C1(σ) and C2(σ)
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in (A.1.5) correspondingly, we have arranged

P̃ (σ) := C1(σ)P (σ)C2(σ) =

(
id 0

0 D(σ)

)
. (A.1.6)

Clearly, rankσ∗ P̃ (σ)−1 = rankσ∗ D(σ)−1 =
∑k

j=1 ej , which equals the trace of

1

2πi

∮
σ∗

P̃ (σ)−1∂σP̃ (σ) dσ =

(
0 0

0 diag(e1, . . . , ek)

)
,

which proves the lemma for P̃ (σ) in place of P (σ). To prove the lemma for P (σ), we show

that both quantities in (A.1.4) are invariant when passing from P (σ) to C1(σ)P (σ)C2(σ).

For the right hand side, this follows from the cyclicity of the trace, which gives57

tr

∮
σ∗

C−1
2 P−1C−1

1 (∂σC1)PC2 dσ = tr

∮
σ∗

C−1
1 ∂σC1 dσ = 0

by analyticity, similarly when differentiating C2 instead of C1, and lastly

tr

∮
σ∗

C−1
2 P−1C−1

1 C1(∂σP )C2 dσ = tr

∮
σ∗

P−1∂σP dσ.

For the left hand side, we note that sing ranσ∗(C1PC2)−1 = sing ranσ∗(PC2)−1, and the

map

sing ranσ∗(PC2)−1 3 u(σ) 7→ p.p.
σ∗

C2(σ)u(σ) ∈ sing ranσ∗ P
−1

is invertible with inverse v(σ) 7→ p. p.σ∗ C2(σ)−1v(σ), since

p.p.
σ∗

(
C2(σ)−1

[
p.p.
σ∗

C2(σ)u(σ)
])

= p.p.
σ∗

(
C2(σ)−1

[
C2(σ)u(σ)−O(σ∗)

])
= u(σ).

This establishes sing ranσ∗(PC2)−1 ∼= sing ranσ∗ P
−1 and thus finishes the proof of the

lemma.

We remark that pulling the trace inside the integral in (A.1.4) shows that rankσ∗ P (σ)−1

equals the multiplicity of the zero of detP (σ) at σ∗.

57In the case of meromorphic Fredholm families, one needs to replace P (σ)−1 by its principal part, which
is a meromorphic family of operators acting between fixed finite-dimensional spaces, in order to pull the
trace in and out of the integral.
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From the proof of Lemma A.1.2, we can read off a simple criterion for a resonance to

be simple, i.e. for its order to be equal to 1:

Lemma A.1.3. Let σ∗ be a pole of P (σ)−1. Then rankσ∗ P (σ)−1 = dim kerP (σ∗) is a

necessary and sufficient condition for ordσ∗ P (σ)−1 = 1.

Proof. Modifying P (σ) as in (A.1.6) and noting that ordσ∗ P
−1 = ordσ∗(C1PC2)−1 for

invertible holomorphic C1, C2, which follows directly from the definition, as well as

dim kerP (σ∗) = dim kerC1(σ∗)P (σ∗)C2(σ∗),

we may assume

P (σ) =

(
id 0

0 D(σ)

)
, D(σ) = diag((σ − σ∗)e1 , . . . , (σ − σ∗)ek),

with k = dim kerP (σ∗) and e1 ≥ · · · ≥ ek ≥ 1 as before. But then

rankσ∗ P
−1 =

k∑
j=1

ej ≥ k,

with equality if and only if ej = 1 for all 1 ≤ j ≤ k, which is evidently equivalent to P (σ)−1

having a simple pole at σ∗.

We next study the parameter dependence of P (σ; a)−1. Denote by Res(a) the set of

resonances of P (σ; a)−1.

Lemma A.1.4. Suppose V ⊂ U is open and has compact closure in U , with ∂V ∩Res(0) = ∅.
Then the total rank ∑

σ∗∈Res(a)

rankσ∗ P (σ; a)−1

is constant for small a.

Proof. Since the poles of P (σ; 0)−1 are discrete, we can enumerate them in V , so V ∩
Res(0) = {σ1, . . . , σM} with M <∞. For j = 1, . . . ,M , choose rj > 0 such that the closed

ball Brj (σj) ⊂ C is contained in V and does not contain any σk for k 6= j. Then on the

compact set K := V \
⋃M
j=1Brj (σj), the operator P (σ; 0) is invertible, hence P (σ; a) is
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invertible for σ ∈ K for small a as well. Hence, V ∩ Res(a) ⊂
⋃M
j=1Brj (σj), and the total

rank then equals
M∑
j=1

tr
( 1

2πi

∮
|σ−σj |=rj

P (σ; a)−1∂σP (σ; a) dσ
)
,

which on the one hand depends continuously on a and on the other hand is an integer by

Lemma A.1.2. Hence, it is constant for small a, as desired.

For a rank 1 resonance, we can track the location of the resonance. We first note that

if σ∗ is a resonance of order 1, then the Taylor and Laurent expansions of P and P−1 are

P (σ) = P0 + (σ − σ∗)P1 + · · · , P (σ)−1 = (σ − σ∗)−1A−1 +A0 + · · · .

Now, P (σ)P (σ)−1 = id implies P0A−1 = 0, hence ranA−1 ⊂ kerP0, while P (σ)−1P (σ) = id

yields A−1P1 +A0P0 = id, so we have

A−1P1 = id on kerP0, (A.1.7)

which implies kerP0 ⊂ ranA−1. Therefore, ranA−1 = kerP0.

Remark A.1.5. If we know kerP0 = span{φ1, . . . , φk} explicitly in the order 1 case, the

above arguments imply that

A−1 =
k∑
j=1

〈·, ψj〉φj

for some ψj ∈ kerP ∗0 . Then (A.1.7) implies 〈P1φ`, ψj〉 = δ`j for 1 ≤ j, ` ≤ k, which

allows us to find the ψj provided we know kerP ∗0 explicitly. See also the discussion prior to

Lemma 7.4.4.

We can now prove:

Lemma A.1.6. Suppose P (σ; a) as in (A.1.1) has a resonance for a = 0 at σ∗ with rank

1. Then for sufficiently small r > 0 and small a, there is exactly one resonance σ∗(a) of

P (σ; a) in |σ − σ∗| < r, and the resonance is simple; moreover, σ∗(a) is a Cr-function of

a ∈ A, and we can find a Cr-family u(a) ∈ CN such that kerP (σ∗(a); a) = span{u(a)}.

Proof. Pick r > 0 so that σ∗ is the only resonance of P (σ; 0) in Br(σ∗). The total rank of

resonances in |σ − σ∗| < r remains equal to 1 for small a by the previous lemma, proving
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the existence of a unique rank 1 resonance σ∗(a) in Br(σ∗). The location of σ∗(a) is then

given by

σ∗(a) =
1

2πi

∫
|σ−σ∗|=r

σ
∂σ detP (σ; a)

detP (σ; a)
dσ,

which depends in a Cr manner on a if P (σ; a) does. To prove the last statement, fix a

non-zero u ∈ kerP0, then

u(a) :=
( 1

2πi

∮
|σ−σ∗|=r

P (σ; a)−1∂σP (σ; a) dσ
)
u

is Cr in a, lies in kerP (σ∗(a); a) by (A.1.7) and equals u 6= 0 for a = 0, hence remains

non-zero for small a and is therefore a basis of kerP (σ∗(a); a) indeed.

Remark A.1.7. In a similar vein, one obtains the following statement: Suppose P (σ; a)−1

has a single pole in |σ − σ∗| < r, located at σ∗(a) and of order 1. Then σ∗(a) is a Cr

function of a, and kerP (σ∗(a); a) depends in a Cr manner on a: Indeed, one can find a

basis of kerP (σ∗(a); a) with each basis vector a Cr-function of a.

A.2 Families of analytic Fredholm families

We now turn to the study of the parameter dependence of analytic families of operators

which are Fredholm in a non-elliptic Fredholm framework as described in [114]. For con-

creteness, our functional analytic setup is directly related to [114], so we assume:

(1) A, the parameter space, is a neighborhood of the origin in RL, and U ⊂ C is open,

connected and non-empty;

(2) for some fixed r ∈ {0, 1, . . . ,∞, ω}, we have a family P (σ; a) ∈ Cr
(
Aa;O(U ; Ψm(X))

)
of operators, and for any fixed a ∈ A, the principal symbol σm(P (σ; a)) is independent

of σ; here X is a compact manifold without boundary.

(3) There exists s0 ∈ R such that for all s > s0, we have an estimate

‖u‖Hs ≤ C(‖P (σ; a)u‖Hs−m+1 + ‖u‖Hs0 ), (A.2.1)

where the constant C = C(s) is independent of a, and a similar estimate for the

adjoint,

‖v‖H−s+m−1 ≤ C(‖P (σ; a)∗v‖H−s + ‖u‖HN ), (A.2.2)
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for any N < −s + m − 1, with C = C(s,N) independent of a. (Both estimates are

understood in the sense that if the terms on the right hand side are finite, then so is

the left hand side, and the inequality holds.)

(4) For a = 0, the inverse P (σ; 0)−1 exists for some σ ∈ U .

By a standard functional analytic argument [64, Proof of Theorem 26.1.7], the estimates

(A.2.1) and (A.2.2) imply that P (σ; a) : X s(a)→ Hs−m+1(X) is Fredholm for s > s0, where

we define

X s(a) :=
{
u ∈ Hs(X) : P (σ; a)u ∈ Hs−m+1(X)

}
,

which is independent of σ by assumption (2). Therefore, P (σ; a) ∈ L(X s(a), Hs−m+1(X))

is an analytic family of Fredholm operators, and its inverse family is meromorphic for

a = 0 by assumption (4). In [114, §2.7], it is demonstrated that then P (σ; a)−1 is a

meromorphic family of operators Hs−m+1(X)→ X s(a) for small a; moreover, P (σ; a)−1 ∈
L(Hs−m+1(X), Hs(X)) exists in an open subset of Uσ × Aa, in which it depends con-

tinuously on (σ; a) in the weak operator topology, and in fact in the norm topology of

L(Hs−m+1+ε(X), Hs−ε(X)), ε > 0.

Our goal is to prove results analogous to Lemmas A.1.4 and A.1.6 for the resonances of

P (σ; a). Observe here that for any fixed a, we can define order and rank of resonances as in

(A.1.2) and (A.1.3), and Lemmas A.1.1, A.1.2 and A.1.3 remain valid for P (σ; a) by the same

proofs, mutatis mutandis. In particular, formula (A.1.4) for the rank makes sense, since the

integrand is a σ-dependent family of operators in L(Hs(X)), as ∂σP (σ; a) ∈ Ψm−1(X) maps

Hs(X) continuously into Hs−m+1(X) which gets mapped back into Hs(X) by P (σ; a)−1,

and the integral gives a finite rank, thus trace class, operator on Hs(X). The problem to

be overcome is that the dependence on a in this space of operators is continuous only in a

very weak topology.

Now, suppose σ∗ ∈ U is a pole of P (σ; 0)−1. By (A.2.1), we have dim kerP (σ∗; 0) = k <

∞ and elements of the kernel of P (σ∗; 0) in Hs(X), s > s0, are automatically C∞, so

kerP (σ∗; 0) = span{φ1, . . . , φk}
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with φj ∈ C∞(X). Furthermore, ranC∞(X) P (σ∗; 0) ⊂ C∞(X) is closed and has codimension

k. Thus, we can choose a complementary subspace Y2 ⊂ C∞(X) of ranC∞(X) P (σ∗; 0), say

Y2 = span{ψ1, . . . , ψk}.

We define the operator

R =

k∑
j=1

〈·, φj〉ψj : D ′(X)→ C∞(X)

which is thus an element of Ψ−∞(X). The operator family

P̃ (σ; a) := P (σ; a) +R

then satisfies assumptions (2) and (3), and P̃ (σ∗; 0) is invertible, as it still has index 0

and trivial kernel by construction. We conclude that P̃ (σ; a) is invertible for (σ; a) near

(σ∗; 0), with P̃ (σ; a)−1 depending continuously on (σ; a) in L(Hs−m+1+ε, Hs−ε) for s > s0,

ε > 0. We will henceforth assume that (σ; a) are sufficiently close to (σ∗; 0) so that P̃ (σ; a)

is invertible. Note that σm(P̃ (σ; a)) = σm(P (σ; a)), so the spaces X s(a) are the same for P

and P̃ . Writing

P (σ; a)−1 = P̃ (σ; a)−1Q(σ; a)−1, Q(σ; a) = id−RP̃ (σ; a)−1,

we see that P (σ; a)−1 ∈ L(Hs−m+1,X s(a)) exists if and only if Q(σ; a) is invertible. Let us

fix s > s0, and let

Y1 = ranX s(0) P (σ∗; 0),

which is a closed subspace of Hs−m+1(X) complementary to Y2. In the decomposition

Hs−m+1(X) = Y1 ⊕ Y2, we then have

Q(σ; a) =

(
id Q12(σ; a)

0 Q22(σ; a)

)
,

where Q12 = −RP̃−1 ∈ L(Y2,Y1), and Q22 = id−RP̃−1 ∈ L(Y2) is an operator on the

finite-dimensional space Y2 whose invertibility is equivalent to that of Q(σ; a) (and thus

of P (σ; a)). Notice that Q22(σ∗; 0) = 0 is not invertible, while Q22(σ; 0) is invertible for

σ in a punctured neighborhood of σ∗, since this is true for P (σ; 0). Moreover, since R is
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smoothing, the continuous dependence of P̃−1(σ; a) on the parameter implies that Q22(σ; a)

depends continuously on a as well (and analytically on σ).

From the contour integral expression for the rank, we see that if σ∗(a) is a pole of

Q22(σ; a)−1, then

rankσ∗(a) P (σ; a)−1 = rankσ∗(a)Q22(σ; a)−1;

the explicit expression for the inverse of Q(σ; a) in terms of Q22(σ; a) yields the equality

ordσ∗(a) P (σ; a)−1 = ordσ∗(a)Q22(σ; a)−1;

and moreover the map

Φ: kerQ22(σ∗(a); a) 3 v 7→

(
−Q12(σ∗(a); a)

id

)
P̃ (σ∗(a); a)−1v ∈ kerP (σ∗(a); a) (A.2.3)

is an isomorphism. Since Lemma A.1.4 applies to Q22(σ; a), it therefore implies the analo-

gous statement for P (σ; a).

In order to obtain the analogue of Lemma A.1.6, we need to show the Cr-dependence

of Q22(σ; a) ∈ L(Y2) on a, which follows if we can show the Cr-dependence of P̃ (σ; a)−1 ∈
O(Uσ;L(Hs1 , Hs2)) on a (in the operator norm topology) for s1, s2 ∈ R which we are free

to choose. Since kerQ22 ⊂ Y1 ⊂ C∞(X), this would also imply the Cr-dependence of

kerP (σ∗(a); a) ⊂ C∞(X) on a (via the map Φ in (A.2.3)) in the setting of Lemma A.1.6.

Now for r = 1 and a ∈ A, b ∈ RL, we have

s−1
(
P̃ (σ; a+ sb)−1 − P̃ (σ; a)−1

)
= −P̃ (σ; a+ sb)−1 ◦ s−1

(
P̃ (σ; a+ sb)− P̃ (σ; a)

)
◦ P̃ (σ; a)−1,

and as s→ 0, the last term on the right hand side is constant in L(Hs−m+1, Hs), the second

term converges in C0(U ;L(Hs, Hs−m)) to D2P̃ (σ; a)(b), and the first term converges in

C0(U ;L(Hs−m, Hs−1−ε)) to P̃ (σ; a)−1 if s > s0 + 1; here, all spaces of linear operators are

equipped with the norm topology. Therefore, for all s > s0+1, the above difference quotient

converges in C0(U ;L(Hs−m+1, Hs−1−ε)) to −P̃ (σ; a)−1D2P̃ (σ; a)(b)P̃ (σ; a)−1, which itself

depends continuously on a as an element of C0(U ;L(Hs−m+1, Hs−1−ε)). This establishes

P̃ (σ; a)−1 ∈ C1
(
Aa;C

0(Uσ;L(Hs−m+1, Hs−1−ε))
)
.
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An analogous argument (with additional losses of derivatives) shows that we can in fact

replace the continuity in σ by analyticity. In an entirely analogous manner, losing additional

derivatives, we obtain the corresponding regularity statement for r > 1.
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