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Abstract

We develop a general framework for the global analysis of linear and nonlinear wave equa-
tions on geometric classes of Lorentzian manifolds, based on microlocal analysis on com-
pactified spaces. The main examples of manifolds that fit into this framework are cosmo-
logical spacetimes such as de Sitter and Kerr-de Sitter spaces, as well as Minkowski space,
and perturbations of these spacetimes. In particular, we establish the global solvability of
quasilinear wave equations on cosmological black hole spacetimes and obtain the asymp-
totic behavior of solutions using a novel approach to the global study of nonlinear hyperbolic
equations. The framework directly applies to nonscalar problems as well, and we present
linear and nonlinear results both for scalar equations and for equations on natural vector
bundles.

To a large extent, our work was motivated by the black hole stability problem for
cosmological spacetimes, and we expect the resolution of this problem to be within reach

with the methods presented here.
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Chapter 1

Introduction

In this thesis, we give a detailed analysis of the long-time behavior of linear and nonlinear
waves on cosmological black hole spacetimes, in particular establishing the global-in-time
existence and the asymptotic structure of nonlinear waves with small amplitudes.

From a physical perspective, cosmological spacetimes are solutions to Einstein’s (vac-

uum) field equations
Ric(g) + Ag =0, (1.0.1)

where A > 0 is the cosmological constant and ¢ is a Lorentzian metric with signature
(+,—,...,—) on a manifold M°. A special family of solutions (M?°, g) of (1.0.1) describing
spacetimes containing rotating black holes is the Kerr-de Sitter family, which is parameter-
ized by the cosmological constant, the mass of the black hole and its angular momentum. A
major open problem in the theory of general relativity is the black hole stability conjecture;
in the present context, this conjecture asserts that spacetimes solving (1.0.1) which closely
resemble a Kerr-de Sitter spacetime initially settle down to another Kerr-de Sitter space-
time for large times. Putting in an extra structure, namely choosing a gauge to eliminate
the diffeomorphism invariance, Einstein’s field equations can be recast as a quasilinear wave
equation for the metric tensor g. In recent years, there has been a substantial amount of
work on aspects of the black hole stability problem; the primary focus (mostly in the case
A = 0) has been on obtaining a robust understanding of the decay of linear scalar waves on

black hole spacetimes, modelled by the Cauchy problem for the equation

Ogu =0 (1.0.2)



2 CHAPTER 1. INTRODUCTION

for an unknown function u on M?°, as well as of electromagnetic waves, described by
Maxwell’s equations; on the Minkowski spacetime, with A = 0 and without black holes,
similar developments led to a proof of the stability of Minkowski space [20]. We refer to
§85.1.1 and 6.1.1 for a review of the literature.

We follow this tradition, but present a new perspective for the global study of waves
that enables us to give the first proof of global existence, asymptotics and decay for scalar
and non-scalar quasilinear wave equations, of a very general form, on black hole spacetimes.
In fact, we believe that the global nonlinear stability of the Kerr-de Sitter family is within
reach with the methods described here. We expect the general scheme of our approach,
which originates from the work of Vasy [114], and many of the methods to be applicable
and useful in other contexts as well.

Concretely, we adopt Melrose’s philosophy [82, 83, 84] of studying natural differential
operators P, e.g. the Laplace (or wave) operator, on a non-compact space M° by (partially)
compactifying M° to a manifold M with boundary (or corners) by adding ‘ideal boundaries,’
the concrete choice of compactification being tied to the geometric structure of M° near
infinity. The operator P then degenerates in a controlled manner at the added boundaries,
and there are well-established tools with which one can analyze the resulting degeneracies.
For instance, we compactify cosmological spacetimes equipped with a stationary metric (i.e.
invariant under translations in a time coordinate ¢) by adding ‘future infinity,” given by the
vanishing of 7 := e, to the spacetime. The wave operator [J; on the compactified space
then is a so-called b-differential operator, the ‘b’ standing for ‘boundary’ and indicating
the precise nature of the degeneracy. This approach has proven to be very powerful for
elliptic problems [82, 81], and we show here how to study hyperbolic equations like (1.0.2)
from this point of view. The key observation is that the main qualitative properties of
the cosmological spacetime can be read off from the structure of the null-geodesic flow, i.e.
the paths of light rays, at the ideal boundary at future infinity: Horizons, like the event
horizon which separates the black hole interior from the exterior region and the cosmological
horizon defining the boundary of the observable universe, appear in the form of saddle
points for the flow, see Figure 1.1, and trapped trajectories, i.e. light rays that neither
escape through the cosmological horizon nor fall through the event horizon, are correctly
encoded at future infinity as well — for any finite amount of time, there is no trapping from
the global, spacetime point of view.

Note that thus encoding the causal structure of the spacetime is very convenient also
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Figure 1.1: Null-geodesic flow near a horizon #* in the compactified picture: Null-geodesics
that do not exactly follow the horizon drift away from it exponentially; this is related to
the red shift effect. The flow extends smoothly to future infinity OM = {7 = 0}, and at the
set R where the horizon intersects M, the extended flow has a saddle point.

from the point of view of nonlinear problems, since even for spacetimes which are merely
asymptotically stationary, i.e. settle down to stationary spacetimes exponentially fast, only
the structure at future infinity matters for the study of regularity, asymptotics and decay.
On stationary spacetimes, one can of course simply study spatial slices {t = const} in-
stead, but without modifications, this approach immediately breaks down for non-stationary
spacetimes, whereas there are no additional complications whatsoever in the compactified
b-picture.

The b-picture furthermore allows to precisely capture the structures responsible for
asymptotic expansions, energy decay and global regularity of waves. (While we only con-
sider the wave equation here, we stress that we only do this for the sake of simplicity:
The concepts outlined here apply to much more general operators as well, including per-
turbations of wave operators by lower order terms, and in fact including suitable so-called
b-pseudodifferential operators of arbitrary order.) Namely, they are encoded in the so-called
normal operator family ﬁ\g(a), obtained by freezing the coefficients of the wave operator
O, at future infinity (which produces a t-independent operator that agrees with O, up to
exponentially decaying terms) and taking the Fourier transform in —¢, with o denoting the
frequency (dual) variable. Just like in time-independent scattering theory, solutions of the

equation (1.0.2) then have an asymptotic expansion
u(t,x) = Z e "ivjaj(z) + ' (t,z), (1.0.3)
J

with 2 denoting points on ¢ = const slices, where the o; are poles of the meromorphic con-

tinuation of the inverse normal operator family Dg(a)*l, called resonances or quasinormal
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modes, and the a; are resonant states and only depend on the operator Lg; the coefficients
uj are complex numbers, and the function v’ is a remainder term whose regularity and
decay we can quantify precisely. (At poles of order larger than 1, additional powers of ¢
appear in the expansion (1.0.3).)

The global analysis of regularity and decay allows one to formulate the Cauchy or
forward problem for linear wave-type equations as a (non-elliptic) Fredholm problem (or
in fact an invertible one) on suitable global function spaces, which are weighted L2-based
Sobolev spaces on the compactified spacetime M and take into account the asymptotic
expansion (1.0.3). Moreover, such a Fredholm statement, which is rather qualitative in
nature, relies solely on qualitative properties of (M, g) and its causal structure, that is, on
the global dynamics of the null-geodesic flow (structure of the horizons, the trapped set, the
non-trapping or mildly trapping nature of the flow), and is very robust under perturbations
of the metric. The non-elliptic Fredholm framework for the stationary operators ﬁ\g(a)
developed by Vasy [114] is very closely related to the spacetime framework.

For applications to nonlinear wave equations, one needs more detailed quantitative in-
formation, most prominently boundedness and mode stability, which means excluding reso-
nances ¢ with Imo > 0, which in the resonance expansion (1.0.3) would cause exponential
growth of u in time, and excluding resonances on the real line as well, apart from allowing
a simple resonance at o = 0; then the expansion (1.0.3) shows that u(¢,x) solving (1.0.2)
decays exponentially in ¢ to a stationary state, which is a resonant state corresponding to
the resonance at 0, or to 0 in the absence of a zero resonance. Such results, which amount to
showing the triviality of the kernel of the (non-elliptic) partial differential operator E\]g(a)
for certain o, rely on the exact form of the operator. (Thus, the non-elliptic Fredholm
framework makes the global study of waves analogous to the study of elliptic equations, say
on closed manifolds: Qualitative results, like the index or the smoothness of eigenfunctions,
are robust and rely only on qualitative properties of the operator, whereas quantitative re-
sults, e.g. the triviality of the kernel, are rather sensitive to the precise form of the operator;
but one already has a considerable amount of information from the Fredholm analysis when
commencing the quantitative analysis.)

To demonstrate how one can then solve nonlinear wave equations, we consider as a

simple example the scalar semilinear equation

Ogu = [Vul> + f (1.0.4)



on a Kerr-de Sitter spacetime (with small angular momentum a, or a = 0, which is
Schwarzschild-de Sitter space), with vanishing initial data, and the small forcing f gen-
erating the nonlinear wave. In this case, one does have mode stability, and a crude form of
the resonance expansion (1.0.3) for solutions of the linear equation Oyu = 0 reads u = c+/,
with ¢ a constant and u’ exponentially decaying in ¢t. The global point of view suggests an
iteration scheme for solving (1.0.4) in which one solves a linear equation globally at each

step: Namely, with the initial guess ug = 0, we let
upsr =0, (|Vup> + ), k=0,1,.... (1.0.5)

(The actual iteration scheme is a bit more involved due to the loss of derivatives in the
presence of trapping; on de Sitter space on the other hand, it works as written.) Then
uy converges to a solution u = ¢ + ' of the nonlinear equation (1.0.4), with ¢ and u’ as
above. We point out that the stationary state c¢ to which the nonlinear wave decays is
automatically found by the global iteration scheme, which is made possible due to the fact
that the linear analysis sees future infinity and thus the mechanism for asymptotics and
decay at every step of the iteration; it is unclear and conceptually much less apparent how
a solution scheme that proceeds via extending the solution for a finite time at each step
would achieve this. The advantage of our global perspective becomes even more striking

when we consider quasilinear equations, say
Ogu,vuyu = q(u, Vu) + f, (1.0.6)

with ¢(0,0) a Kerr-de Sitter metric, where now the metric, including its asymptotic form,
can depend on the solution itself. Again, a global iteration scheme, solving a linear equation
at each step, solves (1.0.6). We can consider this PDE not only in the scalar setting, but
also in the setting of waves which are sections of a natural tensor bundle, e.g. the bundle of
differential forms, for which the space of stationary states is no longer 1-dimensional. We
therefore see that the problem of orbital stability for such equations can be resolved in a
very natural way. (The black hole stability problem poses additional difficulties, specifically
regarding the gauge freedom, and we do not discuss it further in this thesis.)

To put the global iteration scheme (1.0.5) into context, we recall that the traditional way
of solving nonlinear evolution equations proceeds by first establishing short time existence

and then arguing that the solution persists as long as certain energies remain bounded,
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which, combined with a priori energy bounds or Strichartz estimates, gives global existence;
this crucially relies on the finite speed of propagation for hyperbolic differential operators,
which in particular guarantees that the forward solution to a (nonlinear) evolution equation
at a given time is unaffected by any data that lie in its future. (There are natural problems
even for wave equations which cannot be treated in this way, namely when considering the
Feynman propagator instead of the advanced or retarded propagator [51].) Our approach on
the other hand disregards the local evolution character of the wave equation to some extent
and instead sets up a global framework which is more akin to elliptic problems. (Changing
an elliptic equation in an arbitrary open set will in general affect its solutions everywhere,
which renders a localized solution scheme for nonlinear elliptic equations impossible.) The
type of problem one wants to study, for example the forward or the Feynman problem for the
wave equation [yu = f, merely dictates the function spaces on which one has invertibility
or Fredholm properties of [J,. While we only study nonlinear small data problems here, it is
an interesting question whether this global setup can also facilitate the analysis or provide
a new perspective for large data evolution problems.

Our global approach to the study of linear and nonlinear wave equations at present only
works on cosmological black hole spacetimes, i.e. when A > 0. (We can however study
semilinear waves on spacetimes which are asymptotically Minkowskian.) There are two
main complications arising in the study of spaces with A = 0, such as Schwarzschild and
Kerr spacetimes: Firstly, due to the presence of an asymptotically flat end of a spatial slice
{t = const} (rather than an asymptotically hyperbolic end for cosmological spacetimes),
the question of meromorphy of the inverse normal operator family becomes much more
delicate, and in fact linear scalar waves only decay polynomially with a fixed rate [105].
Secondly, when studying quasilinear problems using a compactified perspective, the correct
choice of compactification of, say, a perturbation of the Kerr spacetime depends on the long
range part of the perturbation and thus would change at each step of our above iteration
scheme, which therefore would not have a chance of converging. Regarding the first issue,
it is reasonable to expect suitable bounds for the normal operator family to hold up to the
real line, even though this has not been worked out yet, but it is unclear how to address the
second issue. We point out that other, more traditional methods based on energy estimates
and vector fields have been very successful in the treatment of linear scalar waves on exact
Kerr spacetimes [27, 31]; some perturbative results are also available [105], as well as results

for semilinear forward problems. See §5.1.1 for further references, including works also in



the case A < 0, i.e. for anti-de Sitter universes.

Going back to the global Fredholm framework for linear wave equations, we need to
understand global regularity and decay properties of waves, and as mentioned above, the
normal operator analysis provides asymptotics and decay. In order to perform the regularity,
i.e. high frequency, analysis on the other hand, we use microlocal analysis to convert infor-
mation on the null-geodesic flow of the metric g in phase space, i.e. in the cotangent bundle
of M? rather than on M?° itself, into regularity properties of solutions to [Llyju = 0. The con-
nection between the two is the following: The null-geodesic flow is the flow of the Hamilton
vector field of the Hamiltonian G(z,€) = |§]§($) on T*M?°, while O, can be viewed as a
quantization of GG, thus replacing classical observables such as position £ and momentum &
by their quantum analogues, namely multiplication by x (for the position) and differentia-
tion with respect to x (for the momentum), up to normalizations. The fundamental example
illustrating this connection is the Duistermaat-Hormander theorem on the propagation of
singularities [38], which states that singularities of solutions of Oyu = 0 propagate along
the corresponding classical trajectories, which in this case are null-geodesics; this statement
indeed takes place in phase space and makes use of a refined notion of singularities. Since
we work on compactified spaces M, which include a boundary at which the wave operator
degenerates, we use Melrose’s b-calculus to do the microlocal analysis on M, in particular
analyzing the regularity of solutions near the boundary at future infinity by exploiting the
aforementioned special structures present there. Thus, the microlocal approach is very clean
conceptually and, as we show in this thesis, very powerful for global nonlinear problems,
because it is very robust; as an important example, we mention the trapped set for Kerr
(and Kerr-de Sitter) spacetimes: While the image of the set of trapped null-geodesics on
the base M changes from a sphere for Schwarzschild (and Schwarzschild-de Sitter) to a set
with non-empty interior (on a spatial slice/at future infinity) for rotating Kerr, the picture
in phase space is essentially unchanged: The trapped set, located at future infinity, in the
cotangent bundle is a smooth conic codimension 4 submanifold, with smooth stable and
unstable manifolds. (This normally hyperbolic nature of the trapping was first noted by
Wunsch and Zworski [124].)

In the remainder of the thesis, we will elaborate on the ideas outlined above. We refer to
the introductions of the respective chapters for further background and more details, as well
as for references to the literature. We begin in Chapter 2 by introducing the language of b-

analysis which describes the geometry of our compactified spacetimes in a natural way, and
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show how de Sitter and Kerr-de Sitter spacetimes fit into this picture. The understanding
of the qualitative properties of the global dynamics of the null-geodesic flow on these is of
paramount importance, both conceptually and practically, for the analysis of wave equations
in subsequent chapters. Next, in Chapter 3, we recall the ‘classical’ microlocal analysis on
Euclidean space and on closed manifolds, including the propagation of singularities, before
giving an account of b-microlocal analysis. The main new results proved there concern
the b-microlocal regularity at horizons and trapped sets of the types that appear at future
infinity for our cosmological spacetimes. The study of ‘standard’ local and global energy
estimates for wave operators on b-geometries in Chapter 4 provides a means of obtaining the
invertibility of the forward problems on weak function spaces; this is thus the first instance
where quantitative assumptions come into play, in that such energy estimates and global
invertibility statements only hold for hyperbolic differential operators, rather than more
general b-pseudodifferential operators.

Chapter 5, see specifically §5.2.1, combines the results gathered thus far and provides
the global Fredholm/invertibility framework for forward problems on (asymptotically) de
Sitter, Kerr-de Sitter and Minkowski spacetimes. This is then used as in (1.0.5) to show the
global solvability of semilinear wave equations on such spaces; since the resonances for scalar
equations are known from previous works [13, 111, 40], we mostly consider scalar equations
here, but the methods in principle apply to tensor-valued waves as well. We mention here
that the study of asymptotically Minkowski spacetimes in §5.5 illustrates the relationship
between qualitative and quantitative analysis in a different way: The function spaces on
which we invert the wave operator, or in fact any pseudodifferential operator with a similar
structure, are specified in terms of choices of (microlocal) regularity /decay conditions at the
light cones at past and future infinity, while the identification of the resulting inverse for the
wave operator (given the suitable choice of function spaces) with the forward propagator
again requires the use of standard energy estimates.

We then proceed to demonstrate how to analyze linear, and thus nonlinear, tensor-
valued waves on black hole spacetimes: In Chapter 6, we obtain the resonance expansion
(1.0.3) with exponentially decaying remainder term for general tensor-valued waves on per-
turbations of Schwarzschild-de Sitter space. However, the wave operator acting on tensors
of a certain rank may or may not satisfy mode stability, and there are in fact a number of
natural wave operators on tensors which differ by 0-th order curvature terms, some of which

do satisfy mode stability and some of which do not. For differential form-valued waves, we



show in Chapter 7 that mode stability does hold for the Hodge wave operator dé + dd
on a large class of spacetimes, which, given the ensuing chapters, immediately implies the
global solvability of quasilinear differential form-valued waves on cosmological black hole
spacetimes, as indicated above.

The analysis of quasilinear waves necessitates the study of operators with non-smooth
coefficients, since the nonlinearity can no longer be considered a lower order perturbation
of the wave operator but must be treated directly. Thus, Chapter 8 develops the technical
tools that enables us to do the global b-microlocal analysis for operators with non-smooth
coefficients exactly as in the case of smooth coefficients. In the final chapter of this thesis,
Chapter 9, we show how this leads to a general framework for the global study of quasilinear
forward problems for wave-type equations. While the ideas of the arguments given there are
essentially the same as in the semilinear or even linear setting of Chapter 5, the quasilinear
nature of the problems considered requires the technical preliminaries of Chapter 8 and a
slightly more sophisticated iteration scheme, namely Nash-Moser iteration, though we only
need a very simple version thereof [99].

A large part of the material in this thesis is based on the following papers and preprints:

e Chapters 4 and 5 as well as parts of Chapter 3 are based on: Peter Hintz and Andrés
Vasy. Semilinear wave equations on asymptotically de Sitter, Kerr-de Sitter and

Minkowski spacetimes. Preprint, 2013. Accepted for publication in Analysis & PDE.

e Parts of Chapter 3 are based on: Peter Hintz and Andras Vasy. Non-trapping esti-
mates near normally hyperbolic trapping. Math. Res. Lett., 21(6):1277-1304, 2014.

e Chapter 6 is based on: Peter Hintz. Resonance expansions for tensor-valued waves on

Kerr-de Sitter space. Preprint, 2015.

e Chapter 7 is based on: Peter Hintz and Andras Vasy. Asymptotics for the wave

equation on differential forms on Kerr-de Sitter space. Preprint, 2015.

e Chapters 8, 9 as well as parts of Chapter 2 are based on: Peter Hintz. Global well-
posedness of quasilinear wave equations on asymptotically de Sitter spaces. Preprint,
2013, and: Peter Hintz and Andrés Vasy. Global analysis of quasilinear wave equations

on asymptotically Kerr-de Sitter spaces. Preprint, 2014.



Chapter 2

Structure of de Sitter and Kerr-de

Sitter spacetimes

We discuss the two prime examples of spacetimes considered in this thesis in some detail,
namely de Sitter space in §2.2, which is the analogue of flat Minkowski space in the context
of a positive cosmological constant A, and Kerr-de Sitter space in §§2.3 and 2.4, which is
a rotating black hole in a de Sitter universe and thus the analogue of the Kerr spacetime,
which is a rotating black hole in an asymptotically flat (Minkowskian) universe. They will
serve as motivations for the geometric settings in which we will work later on, and conversely
as very explicit models to which our general theorems apply.

Both spacetimes are stationary in the sense that they are invariant under translations in
a time variable t,. This suggests that one should study asymptotic properties of geometric
features like the (null-)geodesic flow and analytic ones like asymptotics of waves in terms

t+. Adding ‘future infinity,” 7 = 0, to the spacetime, thus (partially)

of the quantity 7 := e~
compactifying it, asymptotic features then appear in a concise way at 7 = 0, as we will
detail in the subsequent sections, in particular §2.1.3. Note that the natural vector fields
on such compactified spaces are 0;, = —70; and ‘spatial’ derivatives; these are precisely
the vector fields tangent to 7 = 0. We give a brief overview of geometric aspects of such
b-spaces (‘b for ‘boundary’) in §2.1; analytic aspects will be discussed in §3.3.

We shall also have the occasion to study waves on Minkowski space and more general
asymptotically Minkowski spacetimes, but their study will be of a somewhat different flavor

than that of cosmological spacetimes (with A > 0); we refer to §5.5 for details.

10
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2.1 b-geometry

Throughout this section, M denotes a manifold with boundary X = M. This will be the
main case in our applications, but we point out that the study of b-geometry on manifolds

with corners only requires minor, mostly notational modifications.

2.1.1 b-vector fields, operators and metrics; natural bundles

Denote by V(M) the Lie algebra of vector fields on M which are tangent to the boundary;
we call elements of V},(M) b-vector fields. Then Vi, (M) is the space of sections of a natural
vector bundle PT'M over M, the b-tangent bundle [82, §2], which over the interior of M
is naturally identified with TM. In local coordinates (z,y) € [0,00) x R"~! near a point
in X, with X locally given by 2 = 0, the bundle PT'M is spanned by z0,, Oyrs- vy Oy,_y,
and V(M) is spanned over C*°(M) by these vector fields. Note that z0, is non-trivial
as a b-vector field even at # = 0. The universal enveloping algebra Diff, (M) of linear
combinations of products of b-vector fields is called the algebra of b-differential operators;
elements of Diffy,(M) act on C®(M) as well as on C>(M), the space of smooth functions
on M which vanish to infinite order at the boundary.

The bundle dual to PTM, denoted PT*M and called b-cotangent bundle, is spanned
locally near the boundary by d?"”,dyl, ...,dyp—1; in particular, dx/x is non-singular (and
non-trivial) as a b-covector at = 0. We can then form the b-form bundle PAM, which is
the exterior algebra generated by PT*M; thus, b-differential forms are linear combinations
of wedge products of ‘i—m, dy1,...,dyn—1. The exterior derivative d on differential forms on
M induces an exterior b-differential *d: C*°(M,"AM) — C=(M,"AM), as follows from the

observation

In fact, this shows that d is a first order b-differential operator, Pd € Diff,lD(M, PAM). This
is thus a re-interpretation of the differential df of f in terms of the 1-forms d?x and dy; dual
to the vector fields zd, and 9, hence it is invariantly defined.

Over the boundary, PT'M and PT*M have natural subspaces: Indeed, the kernel of the
natural map PTx M — TxM gives the b-normal bundle of the boundary, denoted PN X,
and the image of the adjoint map TxM — bT)*(M gives the b-cotangent bundle of the

boundary, denoted PT*X, which is canonically isomorphic to the cotangent bundle 7% X:
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we merely keep the notation PT* X to emphasize its nature as a subbundle of bT)*(M . Thus,
PNX = span{zd,} if = is a boundary defining function of M, while PT* X is the annihilator
of P NX in bT)*(M . Note that the natural b-bundles PN X and PT*X are reversed compared
to the natural bundles TX and N*X in the smooth setting. In local coordinates (x,y; &, n)
of PT*M, i.e. writing b-covectors as fd?z +ndy, we have PT*X = {(z = 0,y;£ = 0,7)}.

Next, if Z C X is a submanifold inside the boundary, we can naturally define its b-
tangent bundle PT'Z within M, which is the preimage of TZ under the map "T; M — Ty M,
equivalently, the bundle of all b-tangent vectors on M which are tangent to Z. The b-
conormal bundle PN*Z of Z is the annihilator of PT'Z in bT}M . Splitting the boundary
coordinates y = (y/,y"), with Z = {y/ = 0}, and correspondingly splitting the dual variables
n=(n,n"), then " N*Z = {(x = 0,4 = 0,9y";¢ = 0,77, 7" = 0)}; note here that df does not
annihilate 20, € PTZ. Further, PN*Z is canonically isomorphic to the conormal bundle
of Z within X. As a trivial example, if Z = X, then PTX = PTx M, and PN*X is the
0-section of bT)"‘(]\/[ .

A smooth b-metric g on M is a symmetric, non-degenerate section of the second sym-
metric tensor power S2PT*M, i.e. a linear combination

dx? dx dx
9=9o0—5 + <90k*®dyk +gk0dyk®7> + > e dyr © dyg (2.1.1)
T T T

k ke
with g;; = gj; € C*°(M) and (g;;) non-degenerate. If the signature of g is Riemannian
(resp. Lorentzian), we call g a Riemannian (resp. Lorentzian) b-metric. The volume density
|dg| of a b-metric is a non-vanishing b-density (more precisely, a b-1-density), and we can
more consider b-density bundles PQ®(M) (a € R) in general, which are locally spanned by
|z~ dx dy|*. We thus have |dg| = a(x,y)|z~'dz dy| with a > 0 smooth.

We consider the geodesic flow of a b-metric g: In the interior of M, the flow, lifted to the
cotangent bundle T*M?°, is generated by the Hamilton vector field Hg of the dual metric
function G (up to a factor of 2 in the fiber direction); in local coordinates z1, ..., z, on M°
and the corresponding dual variables (1, ..., (, (that is, writing covectors as ), (; dz;), the
latter is defined by G(z,() = ]Qé(z) =>4 GF¢e o, with G* the coefficients of the dual
metric on T*M, thus (G**) = (g;;)!, and the Hamilton vector field is given by

Hg =) (0,60, — (0:,G)d, (2.1.2)
j=1



2.1. B-GEOMETRY 13

Notice that G € C*(PT*M), and G is homogeneous of degree 2 with respect to dilations in
the fibers of PT*M. Now suppose the coordinate system z1,. .., z, is the restriction to M°
of a coordinate system = = z1, y; = z; (i = 2,...,n). The natural coordinates &, 1 on the
fibers of PT*M are defined by writing b-covectors as & d?x + > Mk dyg, thus & = z1¢; and
n, = (. Correspondingly, 9,, = 9, + 2710, O, = 20, and therefore

n

Hg = (0:G)ady — (£0:G)0¢ + > _(95,G)0y; — (0y,G)0y. (2.1.3)
=2

This directly shows that Hg € V,(°T*M) is a b-vector field. In particular, its integral

curves are either disjoint from OPT*M = bT)”}M or entirely contained in it, and in this

sense, the boundary X is ‘at infinity.” Since we need to understand the causal structure of

M, we will be interested in the structure of the null-geodesic flow, i.e. the flow of Hg within

the characteristic set ¥ := {G = 0} C PT*M \ o, which is a conic subset.

We already remark here that the restriction

n
HG|bT)*(M = Z(aﬁzG)ayz - (ayzG)am € V(bT)*(M)
i=2
encodes some of the asymptotic behavior of the Hamilton flow in a natural way, as indicated
in the introduction to this chapter, since it loses the dependence on x and its dual variable &;
it will often be important to retain information on the behavior of the flow in the direction
transverse to the boundary, and this is naturally accomplished by restricting Hg to ij}M

as a b-vector field, thus keeping the first term in (2.1.3). We resume this discussion in §2.1.3.

2.1.2 Smoothness and conormality

We briefly digress to clarify the relevance of the notion of smoothness of b-objects, specif-
ically b-metrics. For simplicity, assume that M = [0,00), x Rp~!. Then the smoothness
of a b-metric g means that it be of the form (2.1.1) with coefficients g;;(x,y) which are
smooth functions in the local coordinate chart; thus they are infinitely differentiable with
respect to the vector fields 0;,0y,,...,0y,_,. If g arises from a metric, not assumed to be
stationary, on R; x R;}_l by letting x = e~* (motivated by the introductory remarks at the
beginning of this chapter), then the smoothness of g as a b-metric requires the coefficients

of g in the (¢, y)-coordinates to be smooth functions of e~* and y, which is very restrictive
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and rather unnatural: For instance, rescaling the time variable and then compactifying,
thus using e.g. e *W = 2o o ¢ COO(RZ_l) positive, as a boundary defining function,
gives a different smooth structure on the compactified space. Notice however that if the
metric g was ‘stationary,” i.e. t-independent, it is a smooth b-metric on the compactified
space independently of the choice of the boundary defining function e~*®?,

One obtains a more natural notion of ‘smoothness’ for general, non-stationary b-metrics
by observing that the vector fields 0; and 0,,...,0,,_, lift to a basis of the space of
b-vector fields on the compactification, regardless of the choice e=*®W? of the boundary
defining function. Therefore, we can naturally and invariantly define a class of b-metrics g
on M by requiring that g = go + ¢’, where go is stationary, while the coefficients g;; of ¢’
satisfy

Vi -Vigi; € 2V L°(M), k>0,Vi,...,Vi € Vp(M), (2.1.4)

with + > 0 uniformly over compact sets; in our applications, we will use L? instead of L,
because L2-based spaces are more convenient for Fourier-based analysis. (Functions with
iterated regularity under the application of vector fields tangent to a hypersurface, X in
the case of (2.1.4), are called conormal to the hypersurface; see §3.3 for more on this.) In
applications, the smooth b-metric gy will then be a ‘stationary’ metric, i.e. independent of
the boundary defining function after fixing a collar neighborhood of the boundary, and the
non-stationary, dynamical part of the metric is encoded in ¢’. We will refer to such metrics
g = go+¢ as asymptotically stationary; we will give a more concise description in §3.3, and

discuss examples in Chapters 5, 6 and 9, see in particular §5.2.2.

2.1.3 Flow near infinity; radial compactifications

We continue to denote by g a b-metric on M, with dual metric function G. Since G is
homogeneous of degree 2, Hg is homogeneous of degree 1 with respect to dilations in the
fibers of PT* M. It is often convenient to rescale homogeneous functions and vector fields so
as to obtain objects on the quotient PS*M := (PT*M \ 0)/R,. For vector fields however,
one loses information about their behavior in the radial direction, i.e. along orbits of the
R, -action. Following Vasy [114, §3], we therefore instead view PS*M as the boundary of
the radial compactification bT*M of PT* M , a concept that we briefly review; see also [84,

§1.8]. We start by defining the radial compactification of R™, which proceeds by adding a
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sphere at infinity: Concretely,
R = (R"U([0,00) x S*™ 1))/ ~, (0,00) x S" ' 3 (r,w) ~ 7w € R,

and R”, equipped with the natural smooth structure, thus becomes a manifold with bound-
ary. Then, we radially compactify each fiber of PT*M in this manner; the compactified
fibers can be arranged to depend smoothly on the base point by first fixing a smooth func-
tion p € C*®(PT*M \ o), homogeneous of degree —1, which plays the role of the inverse
distance 7~! to the origin near infinity in PT*M, and p then extends smoothly to bT M
and provides a defining function for PS*M. (One of course needs to smooth out p near
the zero section to obtain a globally smooth boundary defining function.) Thus, gluing the
fiber-wise compactifications together, we obtain the fiber-radial compactification bTM, a
fiber bundle over M with typical fiber a closed ball in R™. This is a manifold with corners;
in the case that M is a manifold with boundary, its boundary hypersurfaces are bT}M and
bS*M, and the corner is bS}M. See Figure 2.1.

bS* M

*

T M
oM

0x

Figure 2.1: The radially compactified b-cotangent bundle ST M near bT}M ; the cosphere
bundle PS$* M, viewed as the boundary at fiber infinity of PT" M, is also shown, as well as
the zero section op; C DT M and the zero section over the boundary ox C bT}M.

Now, for a function f € C®(PT*M \ o) which is homogeneous of degree m € R, we
can restrict p™ f € C>°(PT M) to fiber infinity, thus p” f € €°°(PS*M). This provides an
identification of homogeneous functions of fixed degree with elements of C*°(*S*M). (This
identification depends on the choice of p, hence we are really identifying homogeneous
functions with sections of a line bundle over PS*M; this bundle is canonically trivial only
for m = 0.) The Hamilton vector field H is homogeneous of degree (m — 1); therefore, we
can view

Hy == p" 'Hy € V(°T M),
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which is tangent to *S*M and T’y M, as an element of Vy,(°S*M) by restriction. However,
if Hf = 0 at a point (2,() € bS*M, then Hy is radial, i.e. a multiple of the generator of
dilations in the fibers of PT*M. If it is a non-zero multiple, then H f, while vanishing at
(z,() as a vector field, is non-trivial as a b-vector field there, and as such encodes whether
Hy is radially pointing towards infinity in the fiber, or inwards towards 0. Thus, in these

degenerate situations, we shall view
Hi € W("T M),

with the relevant information encoded in Hy|vg«y,, the restriction to fiber infinity as a
b-vector field.

Returning to the case of smooth b-metrics g, we conclude the discussion of b-geometry
by showing how one can subdivide the task of studying the dynamics of the null-geodesic
flow of Hg near the boundary into a study of the flow within the boundary and its behavior
transverse to it. A concrete example to keep in mind is that of de Sitter space, detailed in
the next section. Now, in local coordinates (z,y; &, n) of PT* M near the boundary as before,
the b-cotangent bundle of the boundary, "T* X, is equal to {(0,y;0,7)} C "T*M. (From
the perspective of doing analysis on stationary spacetimes by viewing them as being foliated
by isometric spacelike hypersurfaces X, PT*X is ‘the same as’ T*X.) With 2 denoting a

boundary defining function of M, we can then consider the subspace

d
T =+ y ey, (2.1.5)
xr

so in local coordinates as before, 7w = {(0,y;+1,1)} C bT)*(M. In fact, T4 is well-defined
independently of the choice of z, since Ty = {w € PT{M: w(20,) = £1}, and the vector
field 20, € PTx M does not depend on the choice of z. The point is that the characteristic
set ¥ = G~1(0), which is conic, can be identified with its intersection with T4 away from the
places where it intersects PT*X \ 0; and moreover, the Hamilton vector field H¢ is tangent
to T4. Thus, the study of the Hamilton flow over X can be reduced to the study over T%.
Since G, being a polynomial, is fully homogeneous, not merely positively homogeneous, the
restriction to Ty of course suffices: Passing from Ty to 7_ merely requires changing the sign
of all fiber coordinates and the direction of the Hamilton vector field. In order to encode the
intersection ¥ NPT* X, which is a conic set, in this picture, we observe that we can radially

compactify the affine spaces T4, using the restriction to T+ of the boundary defining function
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for fiber infinity used to compactify "T*M. In other words, we can consider the closure of Ty
in PT" M : denote it by T+. Observe that the intersection of T4 with fiber infinity PS*M is
the set PS*X = 9(PT"X). The characteristic set within PT* X then appears at fiber infinity
of T4 and T_. See Figure 2.2. The rescaled Hamilton vector field Hg € W, (PT" M) restricts
to an element of V;,(T+). Therefore, the flow generated by Hg within the b-cotangent bundle
of M over X can be completely understood in terms of HG‘Ti €eW(T1).

*

Figure 2.2: The radial compactification bT;M of the fiber of PT*M over a point p € X =
OM, together with the (radial) compactifications bT;X , T+ of the natural affine subspaces
bT;X , 1L C bT; M. In red: A conic subset X of bT; M and its identification with a subset

of T, UT_. (This is precisely the picture of the characteristic set for the static de Sitter
metric in 2 spacetime dimensions over a point on the cosmological horizon; see §2.2.1.)

Now, if p € Ty is a point with Hg|, # 0, the 2d,-component Hg(x) of Hg € Vb(bT*M),
which disappears when considering HG|Ti» has a single order of vanishing at X > p as a
vector field, hence does not affect the qualitative behavior of the Hg-flow near p. However,
if Hgl, = 0 (as an element of PT),(T1)), then in order to understand the nature of the
critical point p of the Hamiltonian flow, one does need information on z~'Hg(z): In the
situations considered below, critical points p of Hg|7 . will be sources/sinks for the flow
within 7'y, and whether they are sources/sinks or saddle points with a single stable/unstable
direction transverse to the boundary for the ‘full’ flow in bT* M depends precisely on whether
r7'Hg(z) is positive or negative at p (provided we are in the non-degenerate situation that
the latter quantity is non-vanishing).

In §3.3.4, we will complete the above discussion by showing that the Hamilton flow of G

on T is equal (under certain natural identifications) to the (semiclassical) Hamilton flow



18 CHAPTER 2. DE SITTER AND KERR-DE SITTER SPACETIMES

of the so-called normal operator family (which is a family of operators on X depending on
a parameter o € C, obtained by Mellin transforming in x) of the Laplace-Beltrami operator
Ay, and the transverse component z~'Hg(z) of the flow can also be understood in terms of
this family. This then shows that properties of the normal operator family of A, directly

translate to properties of the Hamilton flow of the b-metric g, and vice versa.

2.2 de Sitter space

We consider (n + 1)-dimensional Minkowski space R?*! with metric gy := dz?2 41— dz? —
-++ —dz2. Then n-dimensional de Sitter space is the one-sheeted hyperboloid
M = {2 — == = 1)

with metric g induced by go; thus, g has signature (+,—,...,—). Moreover, M{ inherits

the usual time orientation from the ambient Minkowski space, in which 0, is future

n+1
timelike. We can introduce global coordinates using the map R, ,, X Sgil, (zn+1,0) —
((1+ z%+1)1/20, Znt1) € R™Mand the metric becomes

g:%—(l—kz2 )db?
We compactify Mg, first at future infinity by introducing z = z;il in z,41 > 1, say, so the

metric becomes

-2 dx? 2\ 192 —2_
g==zx 522 (1+2%)do* ) =2 =g, (2.2.1)
x

where g is a smooth Lorentzian metric down to z = 0, and likewise at past infinity; thus,

we have compactified M to a cylinder
Mo = [-1,1]p x $"71,

say with T" =1 — 2 near x = 0, and 7" = 0 at 2,417 = 0. The metric g is a so-called
0-metric, see [81]. Null-geodesics of g are merely reparametrizations of null-geodesics of the

conformally related metric g.
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2.2.1 Static model of de Sitter space

From the point of view of causality, one can localize the study of de Sitter space My by
picking a point ¢, say T =1, § = e; € S*! C R", at future infinity and considering only
the interior M of the backward light cone from ¢, intersected with {T" > 0} for convenience;

we call Mg the static model of de Sitter space." For an illustration, see Figure 2.3.

Figure 2.3: The ‘future half’ of the static model Mg of de Sitter space, a submanifold of
(compactified) de Sitter space My, is the backward light cone from the point ¢ at future
infinity, intersected with 7" > 0. The full static model is the intersection of the interiors of
the backward light cone from ¢ and the corresponding point at past infinity.

We make this explicit in the coordinates z1, ..., z,+1 of the ambient Minkowski space:

Namely, for each fixed w € Sh2 ¢ RZ; }.,zn’ the affine curve
'Yw(Zn+1) = (Zn+1,w;2'n+1) & M(()) C R1+(n*1)+1

is a geodesic on de Sitter space My, and written in the coordinates z = z;il, 0= (2 +

o4 227 Y2(2, ..., 2) € S introduced in the previous section, it is equal to
Yolzni1) = (2,60(2), 0(z) = (1+2%)72(er + aw).

Thus, we see that the family {v,: w € S"2} exactly sweeps out the backward light cone

from the point x = 0, 6 = ey, thus is the boundary of the static model Mg. In other words,

1Strictly speaking, this is only the future half of the static model; the full static model is the intersection
of the interior of the backward light cone from (T' = 1,6 = e;) with the forward light cone from (T'= —1,0 =
e1), see [114, §4] for details.
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in the Minkowskian coordinates,
Mg' = {(Zlﬁ"'vzn—O—l) € M(()): Zntl =2 O,Z%‘f'"'-i-zg < 1}.

The backward light cone is a cosmological horizon for Mg: Any causal (timelike or null)
future-oriented curve in Mg, starting at a point in Mg, which crosses the cosmological
horizon, can never return to Mg.

On Mg, one can choose coordinates t € R,Y ¢ R*1 |Y] < 1, with respect to which
the metric g is t-independent, and writing Y = rw, r € (0,1), w € S"~2, away from Y = 0,
one has

g=1—=7rHdt?> — (1 —rH) " dr® — r? dw?

this is the special case of the Schwarzschild-de Sitter metric (2.3.1) with vanishing black
hole mass M, and cosmological constant A = 3, see §2.3. One can compactify this at

t as a boundary defining function; the coordinate singularity

future infinity using r = e~
of the metric at » = 1 can then be resolved by means of a suitable blow up of the corner
xz = 0,r = 1, with g extending smoothly and non-degenerately past the front face of the
blow-up near the side face * = 0; see [114, §4] for details. In practice, this procedure
amounts to performing a singular change of coordinates at » = 1, and we will give details
for Schwarzschild-de Sitter and Kerr-de Sitter black holes in §§2.3 and 2.4.

We describe a different way of arriving at such a smooth extension of the static metric
past the cosmological horizon. First, we recall the relation of hyperbolic space H" = {z,% 11—
22— =22 =1,2,.1 > 0} as a subset of Minkowski space to the upper half plane model:

Define the global coordinate chart

O: H" 5 (21,22, -+ 2ns 2nt1) — (T, 9),
2 2
P (000), y— ) o
21 + Zn+1 21 + Zn+1

then the induced metric on H" takes the simple form z72(dz? + dy?). The above map ®
is in fact well-defined on {z; + 2,41 > 0}, and restricting ® to M5 N {z1 + zp+1 > 0}, the
metric on My has the form

g =z 3(dz? — dy?).

Moreover, the point ¢ at future infinity singled out above has coordinates x = 0,y = 0,
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where we extended ® by continuity to My N {z1 + zp+1 > 0}, and the backward light cone
from q is simply the set {|y| = z}; the static model, compactified at future infinity, therefore
is

Ms = {ly| < z,z > 0}.

Blowing up (0, 0) spherically, we can introduce coordinates 7 = x € [0,1),Y = y/x € R* 1,
|Y| < 1 near the interior of the front face, with respect to which

g=(1-[Y]) di; v gy —ay? = di; - (Yd—T + dY)2 (2.2.2)

T T T T

which extends non-degenerately as a Lorentzian b-metric past the cosmological horizon
|Y| = 1. Moreover, 7 and 1/z,11 are comparable (i.e. bounded by constant multiples of
each other) near ¢, and in terms of the static time coordinate ¢, we have 7 ~ e~! over
compact subsets of Mg, i.e. away from the cosmological horizon. In fact, we can define a
new time coordinate t, by

T=e ",

which is thus smooth on Mg up to (and beyond) the cosmological horizons. We point this
out here since the extension of the metric across horizons in the Schwarzschild-de Sitter
setting in §2.3 will involve a rescaled time coordinate t, in exactly the same fashion.

The dual metric of g is

G= Yoy —70,)° — 0. (2.2.3)

Concretely, with 7 = |Y| and w = 7~Y, we introduce u = 1 — r? as a defining function of

r =1, and compute
G = —4pr*;, + 4r*70, 0, + (10:)* — r 202, (2.2.4)

valid away from r = 0, which extends non-degenerately to u < 0. The same blow-up
procedure can be applied to more general, asymptotically de-Sitter like spaces, see §2.2.2.
Since at the horizon p = 1, we expect the null-geodesic flow to be somewhat degenerate,

we study the flow in a slightly enlarged domain
Q:{hZO,QZO}, ty =1 —T, t2:/.t+5 (2.2.5)

with 79 > 0 fixed, § > 0 small. Thus, t; defines a Cauchy hypersurface Hy, while t5 defines
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a hypersurface Hs; see Figure 2.4 below. The domain €2 will be the model for the types of

domains on which we shall later study linear and nonlinear wave equations. We view
QC M:={u>-20<7 <27},

with M given the (dual) metric (2.2.4) in p < 0. We introduce M here merely to have an
ambient manifold to work in; the point is that €2 is a domain with boundary in M, with
the boundaries H; and H» being ‘artificial,” namely contained in M° if disjoint from OM or
intersecting OM transversally (see below), while the only boundary of €2 that deserves this

name from the b-perspective is
Y =QNoM ={u> 4,7 =0},

the boundary of 2 at future infinity.
We proceed to analyze the null-geodesic flow, lifted to the cotangent bundle, and the

global causal structure of ). Concretely, we first check:
Proposition 2.2.1. The domain Q enjoys the following properties:
(1) Q is compact,

(2) the differentials of t; and ta have the opposite timelike character near their respective

zero sets within €2, more specifically, t1 is future timelike, to past timelike,

(8) the artificial boundary hypersurfaces H;j := tj_l(O), j = 1,2, intersect the boundary
OM transversally, and Hy and Hs intersect only in the interior of M, and they do so

transversally,

(4) the defining function T of future infinity of M has dt /7 timelike on Q N OM, with

timelike character opposite to the one of t1, i.e. dr/T is past oriented.

Proof. (1) is clear. With t;, j = 1,2, defined in (2.2.5), we compute

G(Pdty, Pdty) |y,—0 = G<—77, —T?> lrery = 78 >0,
G(Pdty, Pdty)|r,—0 = G(dp, dpp)|u=—5 = 46(1 + 6) > 0,
G(Pdty, Pdta) | —i=0 = —4(1 + 6)70 < 0,
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hence t; and ty are timelike with opposite timelike character; indeed, t; is future oriented
and tg is past oriented, as is d7/7. Moreover, dts and dr are clearly linearly independent
at Y N Ho, as are dt; and dty at H; N Ho. This establishes (2) and (3). Finally, (4) follows
from G(%,4C) =1 > 0. O

T T

Next, we establish properties of the null-geodesic flow. Denote by ¥ = G~1(0) the

characteristic set, i.e. the (dual) light cones for the metric g, by
Yq =X NPSEM

the characteristic set over the domain 2, and by R C X the radial set: This is the set
of all points in Xq, identified with half-lines in PT*M, at which the Hamilton vector field
H¢ is radial; equivalently, R is the set of critical points of the rescaled Hamilton vector
field Hg € V(PS5 M) within Xg. We will view X and R as conic subsets of PT3M \ o
whenever convenient. We will show in Proposition 2.2.3 below that the characteristic set X
has two components, ¥ = 34 UX_, corresponding to the backward (+) and forward (—)
light cones. In order to capture the behavior of the Hg-flow near the radial set, we then

make the following general definition:

Definition 2.2.2. A smooth submanifold L C PSiM C PTy M is called a generalized

b-radial set if the following holds for one choice of signs:

(1) L C X is given by £ NPS; M, where £ is a smooth submanifold of ¥ transversal to
bS;‘,M, with Hg tangent to £,

(2) for a defining function p of fiber infinity *S*M within T M, and a defining function
7 of OM within M, we have

P '"Hep=TFho, —7 ‘Her =TFBho (2.2.6)

at L, with Bo,ﬁ € C*(L) positive,

(3) there exists a quadratic defining function py of £ within X, see below, such that

FHepo — Bipo =0 (2.2.7)

holds, with 8; > 0 near L, modulo terms that vanish cubically at L.
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The function py being a quadratic defining function means that it vanishes quadratically
at £ (and vanishes only at £), with the vanishing non-degenerate, in the sense that the
Hessian is positive definite on the normal bundle of £ within ¥, corresponding to py being
a sum of squares of linear defining functions whose differentials span the conormal bundle
of £ within 3.

Then L C ¥ is a sink (top signs)/source (bottom signs) within PS{ M in the sense that
nearby bicharacteristics within bS;‘/M all tend to L as the parameter along them goes to
+o00; in fact, the behavior of the rescaled flow on bT;M is sink/source even in the fiber-
radial direction. At L however, there is also a unstable/stable manifold, namely £: Indeed,
bicharacteristics in £ remain there by the tangency of Hg to £; further 7 — 0 along them
as the parameter goes to Foo by (2.2.6), at least sufficiently close to 7 = 0, since L is
defined in £ by 7 = 0. Notice that we do not assume that the Hamilton vector field be
radial at L: While there might be non-trivial dynamics within L, the above definition is
designed to only capture the saddle point dynamics in the directions normal to L. For the
static de Sitter spacetime, L indeed consists of radial points, and the manifold £ is (one
half of) the conormal bundle of the cosmological horizon. For rotating black holes with
non-zero angular momentum, discussed in §2.4, there are non-trivial dynamics within L,
but the qualitative behavior in the normal directions is the same as in the present, static

de Sitter context.
Proposition 2.2.3. The null-geodesic flow on £ has the following properties:

(5) The characteristic set ¥ = G=1(0) is a smooth codimension 1 submanifold transversal
to bS{,M and has the form ¥ = ¥, UX_ with X1 a union of connected components
of X,

6) the radial set is the union R = R. UR_ with Ry C Y4; put L+ = OR4+ C PSEM,
Q

then Ly is a generalized b-radial set in the sense of Definition 2.2.2; concretely, L

(resp. L_) is a sink (resp. source) for the rescaled Hamilton flow within ®Ty M \ o,

with an unstable (resp. stable) direction transversal to bT;M,

(7) the metric g is non-trapping in the following sense: All bicharacteristics in Y from
any point in o N (X4 \ Ly) flow (within ¥q) to ijZhMUL_,_ in the forward direction
(i.e. either enter bS}“_IlM in finite time or tend to Ly ) and to bS}k{QM U Ly in the
backward direction, and from any point in Yo N (X_ \ L_) to bS}}QM U L_ in the

forward direction and to bS;EIIM U L_ in the backward direction.
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See Figure 1.1 for the flow near the radial set R, and also Figures 2.4 and 5.1.

Proof of Proposition 2.2.3. We introduce coordinates on the b-cotangent bundle by writing

b-covectors as

d d
U—T—i—CdY, resp. ol—l-ﬁd,u—l—ndw,
T T

and the dual metric function is then given by
G = —4r’ug® + 4ot +o® —r 2> = (Y - ¢ —0)* = [¢]%, (2:2.8)

see (2.2.4) and (2.2.3). Correspondingly, we compute the Hamilton vector field by formula
(2.1.3) to be

Hg = 4r°(—2p€ + 0)0, — (483 (1 — 2r%) — do& —r~*|n|*)0;
T (4% + 20)70, — 172 H (2:29)
=2(Y - (—0)(YOy — (O —70;) — 2( - Oy

We begin by proving (5), i.e. that G~1(0) is a smooth conic 1-codimensional submanifold
of PT*M \ o transversal to Ty M. We have to show that dG # 0 whenever G = 0. We

compute

dG = (4€%(1 — 2r%) — do€ — v~ n|?)dp + 4r? (—2ué + o)d¢
+ (4(1 — p)€ + 20)do — r2d|n|*

Thus if dG = 0, all coefficients have to vanish, thus o = 2u§ and o = 2(p—1)¢, giving £ =0
and thus ¢ = 0, hence also n = 0. Thus dG vanishes only at the zero section of PT*M in

this coordinate system. In the coordinates valid near r = 0, we compute
dG=2(Y - (—0)(-dY +2((Y - (= 0)Y —2() -d( —2(Y - { — 0) do,

thus dG = 0 implies Y - ( = o, hence ( = 0 and then ¢ = 0. The transversality statement is
clear since dG and dr are linearly independent at ¥ by inspection. Moreover, from (2.2.8),

we have
G = (0 +2r26)% — 4262 —r72|)?, (2.2.10)
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and thus ¥ = X4 U X_, where
Yy ={£t(c+2r%) >0}NT={£(c - Y () >0},

because G = 0, o + 2r2¢ = 0 implies £ = = 0, thus o = 0, hence {0 + 2r2¢ = 0} does not
intersect the characteristic set G~1(0), and similarly in the (Y, 7,(, o) coordinates.

Next, we locate the radial set: Since g is a Lorentzian b-metric, the Hamilton vector
field Hg cannot be radial except at the boundary Y = M at future infinity, where 7 = 0.
In the coordinate system near r = 0, one easily checks using (2.2.9) that there are no radial
points over Y = 0. At radial points, we then moreover have Hgu = 4r?(—2ué + o) = 0,
thus o = 2u. Further, the vanishing of H,2 at a radial point requires n = 0. Now, if
& =0, then ¢ = 0, i.e. all fiber variables vanish and we are outside the characteristic set
3; thus € # 0. At points where 0 = 2u&,n = 0,7 = 0, the expression for G simplifies to
G = 4r21€? + 4p2€? = 4p€?, which does not vanish unless © = 0. Hence, u = 0,7 = 0,7 =
0,0 = 0, and we easily check that these conditions are also sufficient for a point in this

coordinate patch to be a radial point. Therefore, the radial set is R = R. U R_ with

Re={p=0,7=0,n=0,0=0,££ >0}
:{T:O,O'ZO,Y::FC/KHCZ

Clearly, we have R4+ C Y4. To analyze the flow near Ly := OR4 C PS*M, we introduce
normalized coordinates

. 1 _ . n_. o

PmEIm et
and consider the homogeneous degree 0 vector field Hg := |[p|Hg. We get a first qualitative
understanding of the dynamics near Ly by looking at the linearization W of +Hg = pHg,
following the arguments of [8, §3]. Note that (¢)~! is a defining function of the boundary of

bT*M at fiber infinity near Ly. The coordinate vector fields in the new coordinate system

are
Oy = PO,  £0c = —pOs — 10 — 505.

Hence

pHG = 4r* (=21 + )0, + (4(1 — 2r®) — 46 — v~ Y7*) (505 + 7707 + 505)
+ (4r% 4 26)10, — T_2ﬁH|n‘2.
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We have pHg € Vo (PT M) (where it is defined). Since pHg vanishes (as a vector field) at
a radial point ¢ € PT" M, it maps the ideal Z of functions in COO(bT*M ) vanishing at ¢ into
itself. The linearization of pH at g then is the vector field pHg acting on Z/Z? = T;bT*M,
where the isomorphism is given by f + Z% + df|,. Computing the linearization W of pH
at ¢ now amounts to ignoring terms of pHg that vanish to at least second order at ¢, which
gives

W = 4(—2p+ )0, — 4(p0; + 105 + 705) + 410, — 2K (W) 04,

where we introduced a local coordinate system on the sphere. We read off the eigenvectors

and corresponding eigenvalues:

dp, dn, do with eigenvalue — 4,
dp — do with eigenvalue — 8,
dt with eigenvalue + 4,

dw; — %K "I dp; with eigenvalue 0.

Thus, Ly (L_) is a sink (source) of the Hamilton flow within PSSy, M, with an unstable
(stable) direction normal to the boundary. More precisely, the 7-independence of the metric

suggests the definition
Li=0{p=00=0,7=0+6>0} cPS*M

of the unstable (stable) manifold, so that Ly = bS;M N L4; moreover L4+ C X, and Hg is
tangent to L4 ; indeed,
Hg = 4€%0¢ + 4670, at Ly (2.2.11)

Now, going back to the full rescaled Hamilton vector field Hg, we have at L1 (in fact, at
L1):
Al 'Helpl = FBo,  —7 "Har = BB (2.2.12)

with Syg = 4 and 5 = 1, thus establishing condition (2.2.6) for generalized b-radial sets;

furthermore, near £,
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modulo terms that vanish quadratically at £+, hence, putting 81 = 8, the quadratic defining
function pg := 1% 462 + (u — 7)? of L1 within ¥ satisfies THgpo — S1p0 > 0 modulo terms
that vanish cubically at Ly (in fact at £4), thus (2.2.7) holds. This establishes (6).

It remains to check the non-trapping assumption (7). Let us first analyze the flow
in PT, oM\ bT. v M; recall from §2.1.1 that bicharacteristics intersecting bT{;M are in fact
contained in bT{iM , and correspondingly bicharacteristics containing points in be*zM \
bTEM stay in PTgM \ PTy M. There,

+ Hor = +2(0 + 2r%6)7 > 0 on . (2.2.13)

In particular, in X \ PTyM, bicharacteristics reach "T}; M (i.e. 7 = 79) in finite time in
the forward (+), resp. backward (—), direction. We show that they stay within "7 M: For
this, observe that G = 0 and p < 0, thus r > 1, imply

20¢| < 2rl¢] < |o + 2r%¢|

by equation (2.2.10). In fact, if £ # 0, the first inequality is strict, and if £ = 0, the second

inequality is strict, and we conclude the strict inequality
21¢| < |o +2r%¢| if G =0, < 0.
Hence, on (¥4 \ T3 M) N Sq, if 4 < 0, then
+ Hop = +4r% (0 4 2r2€ — 26) > 0, (2.2.14)

thus in the forward (on ), resp. backward (on X_), direction, bicharacteristics cannot
Cross bTI’QZM ={u=-0}.

Next, backward, resp. forward, bicharacteristics in £4 \ L1 tend to Ly by (2.2.13), since
H¢ is tangent to L4, and Ly = L4 N {7 = 0}; in fact, by (2.2.6), more is true, namely
these bicharacteristics, as curves in bT* M \ o, tend to L4 if the latter is considered a subset
of the boundary PS*M of PT" M at fiber infinity. Now, consider backward, resp. forward,
bicharacteristics v in (34 \ £1) NPT M, including those within P73 M. By (2.2.13), 7 is
non-increasing along v, and by (2.2.14), u is strictly decreasing along v once «y enters p < 0,

hence it then reaches PT 71, M in finite time, staying within bT, oM. We have to show that
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necessarily enters p < 0 in finite time. Assume this is not the case. Then observe that
FHg(o-Y - ¢) = F2/¢f = F2(0 — Y - ()* on X4, (2.2.15)

thus o — Y - ¢ converges to 0 along 7. Now on X, |(| = |0 — Y - (|, thus, also ¢ converges to

0, and moreover, on Y, we have
o] <Y ([ +1Y - ¢—ol < (1+[Y])C]|

since we are assuming |Y'| < 1 on ~, hence o converges to 0 along v. But Hgo =0, i.e. 0 is
constant. Thus necessarily o = 0, hence G = 0 gives |Y - (| = |(|, and thus we must in fact
have |Y| = 1 on v, more precisely Y = F(/|(|; therefore 7 lies in £, which contradicts
our assumption v ¢ L. Hence, v enters |Y| > 1 in finite time, and so, as we have already
seen, reaches bTI’:&M in finite time.

Finally, we show that forward, resp. backward, bicharacteristics v in (X4 N PTyHM \
Ri)NXEq tend to Ly. By equation (2.2.15), £(0 — Y - () — oo (in finite time) along ~,
hence || = |0 —Y - (| on v C X tends to oo, and therefore

Yol lo-Y-dl ol

Y| >
=5 = g e

because o is constant along v. On the other hand, at points on v where |Y| > 1, i.e. u <0,

we have £Hgp > 0 by (2.2.14). We conclude that 7 tends to |Y| = 1, i.e. 4 = 0. Moreover,

(Y-C—U>2:10n2,
(SIS

thus ‘Y . C/]CH — 1 along ~; together with |Y| — 1, this implies Y — F{/|(], and since o
is constant and || — oo, we conclude that 7 tends to Ly. This concludes the proof of the

non-trapping nature of the flow (7). O

Remark 2.2.4. Conditions (6) and thus (7) are not stable under arbitrary perturbations
of g as a b-metric, and it will in fact be crucial later that they can be relaxed. Namely,
we do not need to require that null-bicharacteristics of a small perturbation of g tend to
Ly, but only that they reach a fixed small neighborhood of L.; this condition is stable

under perturbations. See Remark 3.3.11. We moreover point out that changing g by an
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exponentially decaying (in the time coordinate —log7) conormal metric perturbation, see
§2.1.2, does not affect any of the properties established in Propositions 2.2.1 and 2.2.3 if the
size of the perturbation is sufficiently small, as the Hamilton vector field at 0M is unaffected

by such a perturbation.

As indicated in §2.1.3, Proposition 2.2.3 can also be proved by working only over the
sets T+ C PTy M (see (2.1.5)), and the flow in T is precisely the Hamilton flow of the
semiclassical principal symbol of the Mellin transformed normal operator family. Thus, the
description of the semiclassical flow near the horizon in [115, Lemma 3.2] and in the static
region in [114, §4.6] yields the same result, apart from the description of the unstable/stable
direction at the radial set, which is transversal to the boundary; the latter can be recovered

from the parameter-dependence of the normal operator family. See §3.3.4 for details.

2.2.2 Asymptotically de Sitter-like spaces

As a slight generalization of the construction of the static model of de Sitter space from the
global space, we now consider an asymptotically de Sitter-like space (M ,g), which means
[111] that M = [-1,1]7 x X is an n-dimensional manifold with two connected boundary
components )Z'+ (at future infinity, 7= 1) and X_ (past infinity, at T'= —1); furthermore,
for the boundary defining function x = 1 F T near T' = =£1, the metric ¢ has the form

_ dx®—h
9= —>5

x2

where h is a symmetric 2-tensor on M, and h|g is in fact a Riemannian metric on X.

Remark 2.2.5. The geometric condition is that § = 27 2gy for a smooth metric gy on M,
and go(dz,dx) =1 at )?i, which makes the asymptotic curvature constant and the bound-
ary at infinity )N(i spacelike. Analogously to asymptotically hyperbolic spaces, where this
was shown by Graham and Lee [55], on such a space one can always introduce a product
decomposition [0,4), X (8M )y near oM , possibly changing x, such that the metric has a
warped product structure go = dz? — h(z,y,dy), § =z~ 2go.

Thus, an asymptotically de Sitter-like space is the Lorentzian analogue of the Rieman-
nian conformally compact spaces of Mazzeo and Melrose [81]. If & is even [57], i.e. only even
powers of x appear in the Taylor expansion of h at X , we say that (M ,g) is an even asymp-

totically de Sitter-like space. We now fix a point ¢ € )~(+ at future infinity and consider
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the homogeneous blow-up [M ; q], and within it the lift of the interior of the backward light
cone from ¢; we denote by ¢ the lift of the metric g to [M ;q]. Introducing local geodesic
coordinates y of )h near ¢, which is then given by z = y = 0, this means that we use
Y =y/x € R" ! and 7 = z as coordinates near the front face of the blow-up, and then
g=(1-|Y? d—T; —ov T gy — gy
T T

plus a section of S25T* M that vanishes at 7 = 0. Thus, g is a b-metric near the front face
(but away from the side face), and g agrees to first order at 7 = 0 with the static de Sitter
metric, see (2.2.2). Furthermore, the intersection of the lift of the backward light cone from
q with the front face x = 0 is equal to the set {x = 0,|Y| = 1}. Thus, the interior of
the backward light cone from ¢, which we denote by Mg, is a generalization of the static
model of de Sitter space; if M is actual de Sitter space, then Mg is the actual static model.
We bordify Mg at future infinity by adding 7 = 0, thus obtaining Mg. We can consider a
neighborhood M = [0,00)7 x X of Mg in []\7, q], where X is given by

X ={z=0,]Y| <1+26} (2.2.16)

for 6 > 0 small, and then a domain 2 C M, defined as in (2.2.5). Since g and the static
de Sitter metric agree at 9€2, Propositions 2.2.1 and 2.2.3 continue to hold in the present
context as long as the initial surface H; is sufficiently close to 7 = 0, e.g. when Hy = tl_l(O)
with t; = 79—7, 70 > 0 small, and we take Hy = t;*(0) with t = 1+ — Y| near |Y| = 1+4.
See Figure 2.4. We call (2, g) a generalized static model.

2.3 Schwarzschild-de Sitter space

The Schwarzschild-de Sitter black hole in n > 4 spacetime dimensions is the space Mg =
R; x Xg, Xg = (r_, 74 ), xS 2 with 7+ defined below, equipped with the stationary metric

go = pdt* — (u=tdr? +r? dw?), (2.3.1)

where dw? is the round metric on the sphere S"~2, and

2A

_ 2M,
(n—2)(n—-1)’

p=1—=m A% A=
r
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Figure 2.4: Setup of the ‘static’ asymptotically de Sitter problem. Indicated are the blow-up
of M at g, the front face, the lift of the backward light cone to [M;q] (solid), and lifts of
backward light cones from points nearby p (dotted); moreover, Q C M (dashed boundary)
is a submanifold with corners within M (which is not drawn here). H; is a Cauchy hy-
persurface, and Hy (which for higher-dimensional generalized static models is connected) is
an artificial spacelike hypersurface — once null-geodesics cross Ho in the outward direction,
they can never return to €.

with M, > 0 the black hole mass and A > 0 the cosmological constant. The assumption

M2A3 < (2.3.2)

guarantees that g has two unique positive roots 0 < r_ < r,. Indeed, let i = r—2p =

r=2 —2Myr'=" — A\, Then i/ = —2r~"(r"~3 — (n — 1)M,) has a unique positive root
rp = [(n — 1) M,/ (=3)] (2.3.3)

' (r) > 0 for r € (0,rp) and f'(r) < 0 for r > r,; moreover, i(r) < 0 for r > 0 small and

u(r) = =X\ < 0 as r — oo, thus the existence of the roots 0 < r— < r4 of 11 is equivalent

to the requirement fi(ry,) = Z—j’r;z — A > 0, which is equivalent to (2.3.2). In view of the

form (2.3.1), we call the coordinates (t,r,w) static coordinates.

Define o = /2, thus da = %,u’ofl dr, and let

(2.3.4)
near r4, so B4 (rx) > 0 there. Then the metric g can be written as
g=a?dt? —h, h=a?dr’+r*dw® = pLdo® +r? duw?,

The singularity of the metric as one approaches a = 0 is merely a coordinate singularity.
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We thus introduce a new time variable, at first only near r = r, to wit
te=t—F(a), 0.,F(a)= - 2ace(p), (2.3.5)
with ¢ a smooth function, to be determined momentarily. Then one computes (with 8 = 8)
g = pdt? — (B +2uc) dt. du + (uc® + Be) du* — r* dw? (2.3.6)

In particular, the determinant of g restricted to the (%, 1)-plane equals —%2, hence g is non-
degenerate down to p = 0. Therefore, g extends as a non-degenerate stationary Lorentzian
metric to a neighborhood M° = Ry, x X of Mg, where X = (r_ — 25,71 +26) x S"2. We
claim that we can choose c¢(p) such that dt, is timelike on M°: Indeed, with G denoting

the dual metric to g, this amounts to requiring
G(dt,,dt,) = —487%(uc* + Bc) > 0. (2.3.7)

This is trivially satisfied if ¢ = —f3/2u, which corresponds to undoing the change of coordi-
nates in (2.3.5); however, we want ¢ to be smooth at = 0. But for p > 0, (2.3.7) holds
provided —f/u < ¢ < 0; hence, we can choose a smooth ¢ verifying (2.3.7) in p > 0 and
such that moreover ¢ = —(/2u in p > py for any fixed small gy > 0. Thus, we can choose
F asin (2.3.5) with F =0 in o > py (in particular, F is defined globally on X) such that
(2.3.7) holds, and

te=tin pu>pp > 0. (2.3.8)

As usual, we compactify M° at future infinity, with 7 = e~’* as the boundary defining
function, to the space M = [0,00), x X. We remark that as in the de Sitter case, there is an
equivalent, more geometric way of phrasing the extension of Mg beyond the horizons to the
manifold M thus defined, see [87], which involves compactifying Mg at future infinity using
e~! and at the horizons using o as the boundary defining function, and then performing a
(non-homogeneous) blow-up of the corners.

We now again consider a domain
Q:{tlzo,fQZO}, ti=m—1, tgzu—i—é. (239)

Thus, © bounded by the (artificial) Cauchy surface H; = {7 = 79}, which is spacelike, and
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by the hypersurface Hy = |J, {r = 7+ £4d}, which has two components, one lying beyond the
black hole horizon (r_) and the other beyond the cosmological horizon (r4); see Figure 2.5;

both components are spacelike in view of
G(dp,dp) = —4672u > 0 at p = —0.

Future infinity of Q2 is given by Y := QNOM = {u > —d,7 = 0}, and it is the only boundary
of ) from the point of view of b-analysis, since the metric near the H; is simply a smooth
metric up to Hj, rather than a b-metric (cf. the discussion preceding Proposition 2.2.1).

The analogue of Proposition 2.2.1 holds in the present context as well, by the same proof.

Figure 2.5: Diagrammatic representation of Schwarzschild-de Sitter space. Shown are the
black hole horizon H ™ and the cosmological horizon ﬁJr, beyond which we put an artificial
spacelike hypersurface Ho with two connected components; the hypersurface Hy will play
the role of a Cauchy hypersurface. The domain €2 is bounded by the hypersurfaces Hi
and Hy. The ‘point at future infinity’ in the usual Penrose diagrammatic representation is
shown blown-up here, since the metric is well-behaved (namely, a Lorentzian b-metric) on
the blown-up space.

A crucial new feature of Schwarzschild-de Sitter space as compared to de Sitter space is
the presence of forward/backward trapped rays, which are null-geodesics that do not escape
to either horizon in the forward/backward direction, and trapped rays, which are both
forward and backward trapped. In the present spherically symmetric setting, we locate
the trapped set by determining when r is constant along the flow. For easier comparison
with [43, 114, 124], we consider the flow of the rescaled Hamilton vector field —r?Hg on
Ty C PTyM defined in (2.1.5) (with 7 playing the role of z there). Notice that on the
characteristic set, where G = 0, we have —r?Hg = H_,2. Introducing coordinates on

bT* M by writing b-covectors as o dT—T + & dr 4+ ndw and putting

A, =72 =11 = ?) = 2M,r5 ",
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the rescaled dual metric function of g in static coordinates (working away from r = r4, see
(2.3.8)) is given by

4
”
p=-1"G=A& — KUQ + \77|2,
T

and correspondingly the Hamilton vector field is
2 rt
Hylz, = 2,60, — (a,,Arg . ar<E))a£ + Hpypo,

since 0 = £1 on T4. If Hyr = 2A,§ = 0, then £ = 0, in which case ng =2AH)¢ =
2A,.0,(r*/A,). Recall the definition of the function i = u/r? = A, /r*, then we can rewrite
this as H2r = —2A,1~(0r1). We have already seen that 0,/ has a single root 1, € (r_,74),
and (r —7p)8.fu < 0 for r # rp. Therefore, H2r = 0 implies (still assuming Hyr = 0) 7 = .
We rephrase this to show that the only trapping occurs in the cotangent bundle over r = 7
Let F(r) = (r —rp)?, then HyF = 2(r —r,)Hpr and HEF = 2(Hpr)? +2(r — rp)ng. Thus,
if H,F' = 0, then either r = 7}, in which case HgF = 2(Hpr)? > 0 unless Hyr = 0, or
Hpr = 0, in which case HXF = 2(r — rp)H2r > 0 unless r = r,. So H,F = 0,p = 0 implies
either HgF >0orr=r,H,yr=0,ie.

(i) € T i= {(rpswiO,1m): o= = I} 2310
r,wig,n h = rp,wi;y,m): Ar =M 3 cd.

so I'y, is the only trapping in 7%, and F' is an escape function. (The notation reflects the
relation to the semiclassical rescaling of the wave operator associated with the metric g.)
The trapped set is spherically symmetric, and its projection to the base {r = rp} is called
the photon sphere.

We claim that the trapping is hyperbolic in the normal directions to I';: We compute

the linearization of the Hy-flow at I'j in the normal coordinates r — 7, and £ to be

I (7‘ — rp> _ < 0 27‘;4,/7|T:rp> (7" — rp>
"\ ¢ 2(n — 3)ry (fily=r,) > 0 3

+O(r — > + [€%),

where we used Opfi|r=r, = —2(n — 3)7‘54, which gives 0,11 = —2(n — 3)7“;4(7“ —1p)+O(|r —
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7p|?). The eigenvalues of the linearization are therefore

) 1/2
n—

dor [T )
P (1 — "_%’TQ)\>

n p

which reduces to the expression given in [114, p. 85] in the case n = 4, where r, = 3M, = %rs

with 7y = 2M,, and A = A/3. In particular, the minimal expansion rate for the flow of H,

at the trapping 'y, in the directions normal to I'y is

. 1/2
Vinin = 21, " (%) > 0. (2.3.11)

1-— m?’%)\

(The maximal expansion rate equals vy, as well.) The expansion rate of the flow within
the trapped set is 0 by spherical symmetry; note that integral curves of H, on I';, are simply
unit speed geodesics of the round unit sphere S*~2. This shows the normal hyperbolicity
(in fact, r-normal hyperbolicity for every r) of the trapping, which in this setting was first
studied in [124]. We refer to [124] and [44, §5] for definitions, and to [43, §2.2] for details on
how the spacetime description of trapping and its normally hyperbolic nature relates to the
above ‘semiclassical’ description. The consequences of normally hyperbolic trapping which
are relevant in our applications will be explained below in Definition 2.3.1.

By the discussion of §2.1.3, the spacetime trapped set, i.e. the set of points in bS;‘ZM

that never escape through either horizon along the Hamilton flow, is given by

T ={(r,r =rpw;0,6 =0,n): 0° = V?[n*}, (2.3.12)

where ¥ = ar~!, ¥'(r,) = 0, in view of (2.3.10). However, every null-geodesic in T which
is not contained in {7 = 0} escapes to H; in either the forward or backward direction, and
thus we will only consider I' := rn bT;iM to be the trapped set, which thus is a subset
of the b-cotangent bundle at future infinity. The trapped set I' is normally hyperbolically
trapped in the b-sense:

Definition 2.3.1. On a manifold M with boundary Y, equipped with a smooth b-metric
g, we say that (M, g) has normally hyperbolic trapping in the b-sense at I' C ¥ N bS;‘/M,
with ¥ := G~1(0) denoting the characteristic set (G being the dual metric), if the following

conditions are satisfied for a fixed choice of sign for the rescaled Hamilton vector field
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V = +Hgq:
(1) T € ¥NPSE M is a smooth submanifold disjoint from PT*9M,
(2) I'; is a smooth orientable submanifold of ¥ N "S- M in a neighborhood Uy of T,
(3) I'_ is a smooth orientable submanifold of ¥ transversal to ¥ NS} M in Uy,
(4) T';+ has codimension 2 in ¥, I"_ has codimension 1,
(5) Ty and I'_ intersect transversally in ¥ with 'y NT'_ =T,

(6) the vector field V' is tangent to both I'y and I'_, and thus to I,
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(7) T'; is backward trapped for the Hamilton flow (i.e. bicharacteristics in I'y near I" tend

to I as the parameter goes to —o0), i.e. is the unstable manifold of T', while T'_ is
forward trapped, i.e. is the stable manifold of I'; in particular, I" is a trapped set.
Quantitatively, let 7 denote a fixed boundary defining function, ¢, € C®("S*M) a
defining function of I'y within bS;‘,M (thus, T'y is defined within PS*M by 7 = 0,
¢, = 0), and ¢_ € C>®°(PS*M) a defining function of I'_ (within PS*M). We then

assume that near T,

V1T =—cyr, cy>0, (2.3.13)

and moreover, with G denoting a homogeneous degree 0 rescaling of G,

Vop=—cAop +purm+viG, Vo =g +v_G, (2.3.14)

with cx+ > 0 smooth near I' and g4, vy smooth near I', and finally

{6s.6_} = Hy p_ >0 (2.3.15)

near I'.

Note that (2.3.13) is consistent with the stability of I'_, and (2.3.14) is consistent with

the (in)stability of I'_ (I'y). Furthermore, in condition (7), the tangency of V' to Iy implies

Voyr =oay¢r + py7m +v4G6and Voo = a_¢_ + v_G, thus this condition merely amounts

to requiring that a and a_ have a sign.

See Figure 2.6 for an illustration.



38 CHAPTER 2. DE SITTER AND KERR-DE SITTER SPACETIMES

bS M

pel_

Figure 2.6: An exemplary situation with normally hyperbolic trapping in the b-sense:
Shown are the (projection from PS* M to the base M of the) trapped set I, the b-cosphere
bundle over X as well as a forward bicharacteristic starting at a point p € I'_.

The fact that the trapped set I' in the Schwarzschild-de Sitter spacetime satisfies this
definition follows from the normally hyperbolic nature of the semiclassical trapped set I'j;
the translation between b-trapped sets and semiclassically trapped sets is explained in detail
in §3.3.4. We denote the two components of the trapped set I' by I* =T'N Xy C X4, and
correspondingly the forward and backward trapped sets have two components I't € ¥, and

Ff € Y+. We now have the following analogue of Proposition 2.2.3:

Proposition 2.3.2. The null-geodesic flow on Q2 enjoys the properties (5) and (6) of Propo-
sition 2.2.3, whose notation we continue to use here. The non-trapping statement now is:

Q has normally hyperbolic trapping in the b-sense at I' C bS;zM, and

(7’) the metric g is non-trapping in the following sense: All bicharacteristics in Yo :=
ENPSHEM from any point in SoN (X4 \ (L ULT)) flow (within g) to * S MUL, UL
in the forward direction (i.e. either enter bS}}lM in finite time or tend to the radial
set Ly or the trapped set Tt ) and to bS}k{QMUL+ U in the backward direction, and
from any point in ToN(X_\ (L_UT7)) to bS}‘bMU L_UT~ in the forward direction
and to bS;EIlM UL_UT™ in the backward direction, with tending to I't allowed in

only one of the two directions.

Again, this follows from the corresponding semiclassical analysis, see [114, §6]. See

Figure 2.7.
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bS M

A

S, M

bSH M

Figure 2.7: Illustration of the null-geodesic flow in the b-cosphere bundle PS*M of
Schwarzschild-de Sitter space. For a description of the flow, see the statement of Propo-
sition 2.3.2. Indicated is the flow in the component ¥, of the characteristic set. What
is labeled bSl’EbM is only a part of the cosphere bundle over the event, resp. cosmological
horizon, and the component of bS}“bM not shown here lies at the cosmological, resp. event
horizon. (Thus, the edges and corners in this figure merely mark the ends of the part of
bS*M shown here.) The picture of the flow in ¥_ is analogous, with all arrows reversed
and L_, F(i) replaced by L, Fa); the sign of V' in Definition 2.3.1 now is V = —Hg.

2.4 Kerr-de Sitter family

In stationary coordinates, Kerr-de Sitter space with black hole mass M, > 0, cosmological
constant A > 0 and angular momentum a € R is the 4-dimensional spacetime Mg = Ry x Xg,
with Xg = (r_, 74 ), x S?, equipped with the metric

dr?  db? % sin 0
g:—p2(— ) 1 2(adt—(7“2—|—a2)dgz§)2

poow /) (1+9)%
+ W(dt — asin?0dg)?,

where we use standard coordinates ¢ € [0,27), § € (0,7) on S?, and

p? =712+ a?cos? 0,
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w=(r*+a? (1 - ?) — 2M,r,
k=1+cos®b,

A
V=5

We assume that p has positive roots r— < ry satisfying

F i (re) >0, (2.4.1)

which implies that r_ and r; are the two largest of the three positive roots of u (see
[114, §6]); we only consider values of the parameters M,, A and a for which this non-
degeneracy condition holds, see also [114, Equation (6.2)]. If a = 0, the Kerr-de Sitter metric
reduces to the Schwarzschild-de Sitter metric in n = 4 spacetime dimensions. Thus, if M,
and A satisfy the non-degeneracy condition (2.3.2) for Schwarzschild-de Sitter spaces with
spacetime dimension n = 4, the above non-degeneracy holds for Kerr-de Sitter spacetimes
with sufficiently small a as well.

Apart from the singularity of the spherical coordinate system at the poles, which can
be resolved by working with coordinates which are valid there [114, §6.2],% the metric g is

again singular at the horizons r = ro. We thus introduce new coordinates
te =t—"h(r), ¢«=0¢— P(r) (2.4.2)

near r = ry, with

14~

) = 2200 ) s, P = L1,

L (2.4.3)

where c4 (1) is smooth up to r = 74, chosen such that dt, is timelike, see [114, §6.4]; similarly
to the Schwarzschild-de Sitter setting, one can choose c4.(r) = —HTW(TQ + a?) away from
r = r4, which undoes the coordinate change, i.e. t, = ¢ there. Then, we can extend Mg
to a larger spacetime M° = Ry, x X, X = (r_ — 2,7, + 2J) x S?, extend the metric g as
a stationary metric to M°, and compactify M° at future infinity, using 7 = e, to the
spacetime M = [0,00),; X X, on which ¢ is a Lorentzian b-metric. Kerr-de Sitter space

exhibits normally hyperbolic trapping in the b-sense as well, in fact the trapping is still

20ur signs of h and P are changed relative to [114, §6].



2.5. MORE GENERAL GEOMETRIES 41

r-normally hyperbolic for every r, and Proposition 2.3.2 holds; this is the point where the
full generality of b-radial sets in Definition 2.2.2 is needed. Furthermore, we can consider
domains (2, extending the static region Mg, as in the discussion of Schwarzschild-de Sitter
space, with an artificial spacelike boundary Hy placed beyond the event and cosmological
horizons, thus Hs has two connected components, and a Cauchy hypersurface H;.

Next, we observe that by the nature of the construction of cy in [114, §6.4], one can
make c+ depend smoothly on the parameters M,, A,a. Therefore, if we fix M, = MY
and a = a” and consider the Kerr-de Sitter metric 9n9 a0 O M as above, then nearby
metrics gu, o, With M, and a close to MY and a®, respectively, are smooth Lorentzian b-
metrics on M as well, and the event and cosmological horizons stay within M. Moreover,
the (forward/backward) trapped sets, computed in [43, §3.2], depend smoothly on the
spacetime parameters as well. Varying the cosmological constant is also be harmless, but

may be disregarded as unphysical.

2.5 DMore general geometries

The geometry of the neighborhoods of the static patch of de Sitter space and of Schwarz-
schild-de Sitter and Kerr-de Sitter spaces discussed in the preceding sections are the model
cases whose natural generalizations we will study beginning in Chapter 5. We thus make

the following definition:

Definition 2.5.1. Let M be a manifold with boundary equipped with a Lorentzian b-
metric g, and let 2 C M be a domain with corners, bounded by the spacelike hypersurfaces
H; (considered a Cauchy hypersurface) and Hy (considered artificial hypersurfaces beyond
the horizons). Then:

(1) (2,9) is an exact non-trapping spacetime if it satisfies conditions (1)-(7) of Proposi-
tions 2.2.1 and 2.2.3. If § is a smooth or conormal perturbation of g (within the class
of Lorentzian b-metrics) which is sufficiently small in the sense of Remark 2.2.4, we

call (2,9) a non-trapping spacetime.

(2) (2,9) is an exact non-trapping spacetime with normally hyperbolic trapping if it sat-
isfies conditions (1)-(6) of Propositions 2.2.1 and 2.2.3 as well as the non-trapping
condition (77) of Proposition 2.3.2. If g is a smooth or conormal perturbation of g

(within the class of Lorentzian b-metrics) which is sufficiently small in the sense of
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Remark 2.2.4 and so that ¢ still only has normally hyperbolic trapping in the b-sense,

we call (2,9) a non-trapping spacetime with normally hyperbolic trapping.

Thus, the static model of de Sitter space (or rather a neighborhood thereof, see §2.2.1)
and its generalization (§2.2.2) are examples of exact non-trapping spacetimes; Schwarz-
schild-de Sitter and Kerr-de Sitter spaces (§§2.3 and 2.4) are examples of exact non-trapping
spacetimes with normally hyperbolic trapping.

As stated, the metrics are assumed to be smooth or conormal, and the forward and
backward trapped sets are assumed to be smooth submanifolds. While this is adequate for
the study of linear or even semilinear wave-like equations on such spacetimes, as we will
see in Chapter 5, the study of quasilinear wave equations in Chapter 9 will require these
smoothness assumptions to be relaxed. We remark however that every result we give will
only depend on finitely many (b-)derivatives of the metric and the C*-regularity (for some
finite k) of the trapping by ‘abstract nonsense,’ i.e. simply due to the fact that, for instance,
operator bounds on finite regularity spaces only require a finite number of derivatives on
the coefficients of the operator. In the specific case of Kerr-de Sitter spacetimes, or more
general non-trapping spacetimes with normally hyperbolic trapping whose trapping is -
normally hyperbolic for every r, the regularity of the trapping will be C” for fixed large
r for sufficiently small metric perturbations; see Dyatlov [44] and Hirsch, Shub and Pugh
[61]. Therefore, such perturbations satisfy Definition 2.5.1 in this high, but finite regularity
sense.

We finish this chapter by stressing a fundamental feature of our analysis that we already
indicated in the introduction: Due to the robustness of microlocal techniques, the qualitative
properties of (the null-geodesic flow on) spacetimes covered by the above definition are all
one needs to assume in order to draw rather strong conclusions about properties of the
wave equation (and lower order perturbations thereof), such as asymptotics and decay of

solutions.



Chapter 3

Pseudodifferential operators and

microlocal analysis

In this chapter, we introduce analytic tools that we will use in the sequel to study waves
on geometric classes of spacetimes including those introduced in §2.5: We recall the notions
of pseudodifferential operators on Euclidean space in §3.1, on compact manifolds without
boundary in §3.2 and on compact manifolds with boundary in §3.3. The study of ps.d.o.s
and their mapping properties is intimately tied to the notion of wave front set (§3.1.2), which
allows for a very precise understanding of the location, direction and strength of singularities
of distributions by analyzing their high frequency behavior in the Fourier domain. We
present several standard results relating the singularities of solutions of (pseudo)differential
equations Pu = 0 to properties of the operator P, such as elliptic regularity (§3.2.1) and
real principal type propagation of singularities (§3.2.2). We also briefly discuss complex
absorbing potentials (§3.2.3), following [114, §2.5], which is a simple modification of the
semiclassical results of Nonnenmacher and Zworski [94] and Datchev and Vasy [32]. We
refer to [86, 62, 64, 101, 129, 38] and references therein for detailed accounts of ‘classical’
microlocal analysis.

We stress that the calculus of ps.d.o.s is very simple by virtue of a principal symbol
map, which assigns to an operator P on a manifold X a function on the cotangent bundle
of X that captures the behavior of P to leading order; this transforms the qualitative study
of many aspects of differential equations into algebraic computations and manipulations. In
fact, one can use this calculus in an ‘abstract’ fashion, since the underlying analytic details

of its construction are irrelevant from the point of view of most applications, as we shall
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see in many instances.

In view of the description of spacetime geometries in Chapter 2, microlocal analysis on
manifolds with boundary via so-called b-pseudodifferential operators, introduced by Melrose
and Mendoza [88] and discussed in detail by Melrose [82], will play the starring role in our
global analysis of wave equations. The regularity analysis of waves near the structures
at infinity described in Definitions 2.2.2 and 2.3.1, b-radial sets and normally hyperbolic
trapping, requires further work. We will analyze the class of radial sets present in (Kerr-)de
Sitter-type spaces in §3.3.1; radial points were first discussed in the context of Fuclidean
scattering theory in [83], and in the semiclassical setting directly related to the b-setting
(see §3.3.4) in [114], as well as on a different class of b-geometries in [8]; we will apply the
latter work in §5.5 to the study of nonlinear waves on asymptotically Minkowski spacetimes.
Estimates at normally hyperbolic trapping for semiclassical problems were pioneered in [124]
and further developed in [44, 42, 94]. This was in turn much preceded by the work of Gérard
and Sjostrand [52] in the analytic category. We give a b-result that suits our purposes in
§3.3.2.

We give a number of technical details even in the parts that are well-known, specifically
in the development of the calculus on R"”, since, firstly, we shall later need to generalize
the ps.d.o.s to operators with non-smooth coefficients, see Chapter 8, and secondly, our
treatment of b-operators with conormal (rather than smooth) coefficients in §3.3.5 is based
directly on the Euclidean calculus.

To keep the notation simple, we restrict ourselves to operators acting on scalar functions,
with the exception of a brief discussion of bundles in §3.2, but all definitions and theorems
have analogues for operators mapping between sections of complex vector bundles (which
are trivial over R"), unless stated otherwise. We will explicitly include bundles in the
notation when discussing applications in §5.2.2, when studying pseudodifferential operators

with rough coefficients in Chapter 8, and in the quasilinear applications in §9.2.
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3.1 Calculus on Euclidean space

3.1.1 Symbols, operators and compositions

Consider a differential operator A =3, <, aa(z)D on R" with smooth coefficients aq.

We can write the action of A on Schwartz functions u € . (R") as

Au() = Y aa(@)F e Fu = (20) / / Vo, Eyuly) dy de,

|| <m

where we put a(z,§) = ngm aq(x)Y. The integral on the right hand side makes sense
for functions a(x, &) which are more general than polynomials in €. For instance, the inverse
of P = p(z,D) = I + A with p(z,£) = 1+ [£]? can be expressed in the above form, with
a(z,€) = (1+1]£]?)71, and we can likewise hope to construct (approximate) inverses of more
general, z-dependent elliptic operators (see §3.1.2). To obtain a simple but sufficiently
powerful calculus, it is desirable to retain some of the key properties of polynomials a(z, §).

We only consider the simplest generalization here:

Definition 3.1.1. For m € R, let S™(RY; ]R?) denote the space of symbols on R" of order

m, which is the set of all a € C*°(R™ x R™) such that for all multiindices «, 3, the estimate
sup [Dg DJa(, €)| < Cap(§)™ (3.1.1)
x
holds with a constant C,3 < oo. The left quantization of a is the operator
a1(@)u = al. D)u = Op(@u(a) = (20) " [ = ¥a(a, u(y) dy ds

defined for u € .(R"), and we define U (R"), the space of pseudodifferential operators on
R™ of order m, to be the space of left quantizations of symbols a € S (R"; R"™).

In particular, polynomials in £ of order m with uniformly bounded (with all derivatives)

coefficients in x are elements of S™(R™;R™). We also note the multiplicative property
feS™RY;RY), g€ 8™ (RY;RY) = fg e S™T™ (R R).

It is easy to see [86, §2.2] that operators A = a(z, D) in the class U™ (R") define bounded
maps . (R") — (R") and thus by duality bounded maps .#/(R") — /(R™). Their
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(Schwartz) kernels

Ka(z,y) = (2m) " / ¢ Vea (e, €) de

are smooth and rapidly decaying in |z — y| away from the diagonal x = y. We think of
STOMRMR") =N, ST (R R™) and ¥=°(R") = (,,cg Y (R™) as ‘trivial’ symbols and
operators; operators in U~>°(R"™) will be shown to be smoothing operators, i.e. they map
tempered distributions into smooth functions.

We can also consider differential operators A =37, -, D®aq(z) written in right reduced

form: We then have

Au(z) = qr(a)u = a(D, z)u = (2m)™" / ¢=ea(y, Eyuly) dy de

with a(y,&) = Z|a|§m aq(y)€%, and we correspondingly call A the right quantization of
a; we can again take a to be a symbol in S™. Intuitively speaking, left quantizations
act on functions w by first differentiating and then multiplying by the coefficients of A,
while the order is reversed for right quantizations. More generally, we can consider symbols
a € S™(RY, RY; RY), which is to say

sup | Dg DY DYa(x,y, €)| < Cogn (&)™ (3.1.2)
$7y
for all multiindices «, 3,7, and define their quantization ¢(a) by

q(a)u = (2m)™" / ez, y, Ouly) dy dE. (3.1.3)

Allowing such symbols increases flexibility, but their quantizations can equivalently ex-
pressed as left (or right) quantizations, as we will recall below. Note that if the symbolic
order of a is sufficiently negative, m < —n, the integral in (3.1.3) converges absolutely;

otherwise, it needs to be interpreted as an oscillatory integral [62, §1], [86, §2.2].

Proposition 3.1.2. [86, §2.4]. The range of the quantization map q on S™(Ry,Ry;RY)
is equal to the space W™ (R"). That is, for any a € S™(RY, RY;RE), there exists ap €
S™(RY;RY) such that g(a) = ar(z, D).

Proof. The idea of the proof is to expand a(z,y,&) in a Taylor series around y = z and

use q((y; — wj)a) = q(D¢;a) for j = 1,...,n. (For this to make sense, we need to allow
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polynomial weights in |z — y| for our symbols; see [86, §3].) Thus,

1 N ~
a($7y7£) = Z aaga(xay’é)‘y:x(y_x)a + Z a(y—iﬁ)a"”N(%yaf)
la|<N laj=N
with 7y € S™ implies q(a) = ar y(x, D) + q(ry) with ry € S™ V| where

1
aL,N<x7£): Z JD? 5a(m,y,§)|y:x.
la|<N

Since 7 can be made to have arbitrarily negative symbol order, the operator ¢(rx) will be
irrelevant for practical purposes for large N. To finish the proof, we however need to remove
rn completely; we achieve this by asymptotically summing (see below) iD?@;‘abzm which
has symbolic order m — |a|, over all multiindices «, which produces o’ with g(a) —qr(a}) =
q(rj) for all j with r; € S™J. Thus, the Schwartz kernel of R := q(r), r = a — a’;, is equal
to

Kr(z,z+2)=(2m)™" / e Zri(x, x4 2,¢) d¢, (3.1.4)

and thus R is the left quantization of b given by

b(z, &) = /eingR(:c, T+ z)dz. (3.1.5)

One then establishes that Kr(x,z + z) decays superpolynomially in z (uniformly in x)
together with all derivatives, and (3.1.5) then gives b € S™°°. Putting ar, = a’; + b finishes
the proof. O

Thus, in the notation of this proposition, we have ¢(a) = ar(x, D), where ay, is an

asymptotic sum
1 [eZae%
GL($,§) Nzan ya(l‘ay7§)‘y=x' (316)
e

This by definition means that

1 _
ar(@,€) = Y —DEdja(w,y,&)ly=s € S" 7V (RERY)
laj<N

for all N. We can similarly write ¢(a) = ar(D, x) as a right reduction of a symbol ar € S™
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which is an asymptotic sum

—1)led
ap(x,&) ~ Z ( 014? Doy a(w,y,§)|y=z- (3.1.7)

We can now prove that U*(R") = | J,, U (R") is a filtered *-algebra:

Proposition 3.1.3. For m,m’ € R, we have U™ (R") o U™ (R™) C W™+ (R™). In fact, if
a(z, D) € U™(R™) and b(z, D) € U™ (R"), then a(x, D)b(x, D) = c¢(x, D) with

1 (6% 6%
Moreover, ¥ (R"™) is closed under adjoints, and a(x,D)* = c¢(x, D) with

1 [0 5aTe %
c(x, &) ~ Z JDf ova(z,§). (3.1.9)
Proof. We can write b(z, D) as a right quantization b(z, D) = qr(br) with symbol br(y, )
given by (3.1.7), thus a(z, D)b(z, D) = q(a(x,&)br(y,£)), which we can write as the left
quantization of a symbol ¢ by Proposition 3.1.2. The formula (3.1.8) follows from thus
combining (3.1.6) and (3.1.7). For the second part, we have a(x, D)* = qr(a)* = qr(a),

whose left reduction can be computed using (3.1.6). O

Note in particular that the formula for the leading term (in terms of the symbolic order)

is very simple, being simply the product of (the leading terms) of a and b. More precisely:

Definition 3.1.4. For A = a(z, D) € U™ (R"™), define its principal symbol to be the equiv-
alence class
om(A) = [a] € S™(R™;R™)/S™ L,

Somewhat imprecisely, we will often call any representative of o,,(A) the principal symbol
of A.

Thus, (3.1.8) and (3.1.9) show that
Omim (Ao B) = 0m(A)op (B), om(A*) = on(A).

In particular, the noncommutative operation of composing two operators amounts to the

multiplication of their principal symbols, which is a commutative operation.
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Clearly, one has 0,,(A) = 0 if and only if A € ¥~ 1(R"). Now, [A,B] = AoB—BoA €
grmtm’ (R™) has vanishing principal symbol, so we can ask what is symbol as an operator in

\I/erm/*l(R") is. Using (3.1.8), but including the next to leading order terms, we calculate:

Proposition 3.1.5. For A € Y"(R") and B € g’ (R™) with principal symbols a and b,
respectively, we have
Omam/—1(i[A, B]) = Hgb, (3.1.10)

where H, is the Hamilton vector field of a, defined in (2.1.2).

We briefly discuss the topology of U™(R™): We endow S™(R"™;R™) with the locally
convex topology given by the seminorms sup, (€) ="+ \D?Df a(z,&)| (which computes the
smallest constant for which (3.1.1) holds) for multiindices «, 5. Now, the invertibility of
the Fourier transform on the space .#’(R?") of tempered distributions, which contains
S™(R™; R™), implies that the map ¢, is injective. We can thus endow W™ (R™) with the
topology induced by qr,, which makes ¢, into a topological isomorphism. One can check
[86, §2.1] that S™°° is dense in S™ in the topology of S™ for every m/ > m, and hence the
analogous statement holds for the corresponding spaces of pseudodifferential operators.

Finally, we recall the notion of classical (or one step polyhomogeneous) symbols:

Definition 3.1.6. A symbol a € S™(R";R") is called classical if it is an asymptotic sum

a(@,&) ~ Y am—j(x,8), (3.1.11)

>0

where a,,_; is positively homogeneous of degree m—j, i.e. am—;(z, \) = X" a,,_j(z,€) for
|€] > 1, A > 1. Left quantizations of classical symbols are called classical pseudodifferential

operators.

For classical operators A = a(x, D), with a as in (3.1.11), we can identify the principal
symbol o,,(A) with the leading order homogeneous part a,,. The proof of Proposition 3.1.2
shows that the class of classical pseudodifferential operators is a filtered *-algebra as well.

3.1.2 Parametrices for elliptic operators; wave front set

As a first application of the calculus, we construct parametrices for elliptic operators.
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Definition 3.1.7. Let m € R. The symbol a(z,£) € S™(R™;R") is elliptic at a point
(z0,&0) € R™ x (R™\ o) if there exists constants ¢, R > 0 and a conic (in the £ variables)
neighborhood U of (xg,&p) in R™ x (R™\ 0) such that

la(z, &) = (O™

for all (x,&) € U, || > R. The set of all points (z9,&p) at which a is elliptic is called the
elliptic set Ell(a) of a, and its complement in R™ x (R™\ o) the characteristic set Char(a).
We say that a is uniformly elliptic if it is elliptic at every point (z,£) € R™ x (R™\ o), with

the constants ¢ and R uniform in z.

Thus, ellipticity at a point (z9,&y) measures the non-degeneracy of the symbol in a
neighborhood of the ray (zo,Rs0&p). Changing an elliptic symbol of order m by a lower
order symbol does not affect ellipticity, hence we say that an operator A € ¥™(R") is
(uniformly) elliptic if its principal symbol is; we likewise define the elliptic and characteristic

sets of A to be the respective sets for its principal symbol.

Proposition 3.1.8. If A € ¥"(R") is uniformly elliptic, there exists Q € ¥~™(R"™) such
that PQ — I,QP — I € U—(R").

Proof. Take Q € U~™(R"™) to be a quantization of x(§)/om(A), where x is a smooth cutoff,
equal to 0 in |{| < R (with R as in definition 3.1.7) and 1 in [¢{| > 2R. Then 0¢(PQ) = 1,
hence PQ — I = R € U~}(R"). By a simple iterative argument [86, §2.10], one can improve

@ so as to remove the error term R up to an error in U~°°(R"). O

This implies that if u € .#/(R") is a distributional solution to the equation Au = 0 and
A is uniformly elliptic, then v = QAu+ (I — QP)u = (I — QP)u is in fact smooth. This is
the statement of elliptic reqularity.

A statement similar to the above proposition holds for operators which are elliptic only
at (thus, near) a point. To make this precise, we need the notion of the wave front set of

an operator:

Definition 3.1.9. Let m € R and a € S"(R";R"™). Then the essential support esssupp a C
R™ x (R™\ 0) of a is the complement of the set of all (zg,&) € R™ x (R™ \ o) for which
a € S7% in a conic neighborhood of (zg,&p); the latter means that for all N € N, there
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exists a constant C > 0 such that
la(z,€)] < Cn (&)Y (3.1.12)

for all (x, &) such that z is close to zp and &/|¢| is close to &y/|&o|-
For an operator A = a(z, D) € ¥™(R"), we define its wave front set as WF'(A) :=

€ess supp a.

By [86, §5.8], the estimate (3.1.12) and the symbolic nature of a imply the same estimate
for all derivatives of a.

The operator wave front set WF'(A) thus measures where the full symbol a of A =
a(x, D) is non-trivial. Note that by the asymptotic formulas (3.1.6) and (3.1.7), we could
equivalently have defined the wave front set of an operator using its right reduced symbol.
By (3.1.8), we have

WF' (Ao B) C WF'(A) N WF'(B);

moreover, if WF'(A) = 0, then A € U~°(R").

The microlocal version of Proposition 3.1.8 is:

Proposition 3.1.10. /86, §5.9]. If A € V™(R") is elliptic at (x0,&p), there exists Q €
U—"(R"™) such that (zo,&) ¢ WF'(PQ — I), WF'(QP — I).

Guided by the statement of elliptic regularity, we now define:

Definition 3.1.11. Let u € 2'(R™). We define the wave front set WF(u) as follows: Then
(z,€) € R™ x (R™\ 0) is not contained in WF(u) if and only if there exists an operator
A € WO(R") which is elliptic at (x,£) and a smooth cutoff ¢ € C3°(R™), 1)(z) # 0, such that
A(yu) € C*(R™).

We mention in passing that the wave front set WF’(A) of the operator A is closely
related to the wave front set of the Schwartz kernel of A as a distribution on R?*", see [86,
§5.12], [62, §2].

The wave front set has a simple intuitive characterization:

Proposition 3.1.12. /86, §5.11]. Let u € 2'(R™). Then (xo,&) ¢ WF(u) if and only if
there exist ¢ € C°(R™), ¢p(xo) # 0, and x € C®(R™) of the form x(§) = xX(&/[€]) in €] > 1,
where X € C*(S"~1) with X(&0/|é0|) = 1, such that for all N, there exists a constant Cy > 0
such that |x(&)(pu)~(&)] < ON(&)™N for all £ € R™.
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Proof. Since u +— F~1xF¢u is the right quantization of x(£)é(x) € SO(R™;R"), the di-
rection (<) is clear. To prove the direction (=), one observes that if A € WO elliptic
at (x0,&0), and ¢ € CX(R™), ¥(xo) # 0, are such that A(yu) € C°, then we also have
B(yu) € C* for all B € ¥° with WF'(B) contained in the elliptic set of A; this follows
from Proposition 3.1.10 and the discussion preceding it. In particular, we can take B to be

a right quantization of x¢ with x and ¢ as stated. O

Recall that by definition, the point zg € R™ is not contained in the singular support
singsuppu of u € Z'(R") if pu € C* for some ¢ € C°(R™) with ¢(xg) # 0. Thus, the wave
front set does not only measure the location of singularities, but also their ‘co-directions,’
i.e. the frequencies which contribute to u near z( in a non-trivial manner. By [62, §2], we
indeed have m(WF(u)) = singsupp(u), where 7: R} x (R \ o) — R7 is the projection.
Therefore, WF(u) = ) is equivalent to u € C*°(R").

Directly from the definitions, one can show [86, §5.10] that for A € ¥(R"), u € ./ (R"),
we have

WF(Au) € WF'(A) NWF(u), WF(u) C WF(Au) U Char(A).

In particular, if A is elliptic at (z,§), then (z,&) € WF(u) if and only if (z,§) € WF(Au),
thus Au is singular (in the sense of wave front sets) if and only if w is. This is the statement

of microlocal elliptic reqularity.

3.1.3 Mapping properties on Sobolev spaces; Sobolev wave front set

We recall the definition of Sobolev spaces: For s € Ny, we define H*(R™) to consist of all
u € L?(R™) such that 0%u € L?(R") for all |a| < s, and then for all real s by duality and

interpolation. Equivalently,
HR™) = {u € ' (R"): (£)*u() € L*(R)}, (3.1.13)

and the norm on H® is |ju|gs = ||(§)°ul|p2. We say that v € HY (R") if pu € H*(R")
for all ¢ € C°(R™). Notice that (D)™ € ¥ (R"™), hence by definition, (D)™: H*(R") —

H*~™(R™) is an isometric isomorphism.

Proposition 3.1.13. Every A € ¥"(R"™) defines a bounded map H*(R™) — H* ™(R"),
s eR.
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Proof. Replacing A by (D)*™™o0 Ao (D)~*, it suffices to treat the case m = s = 0. If in fact
A € U~°(R™), the asserted boundedness follows from Schur’s lemma and the rapid decay of
the Schwartz kernel of A away from the diagonal, see [86, §2.12]. For general A € WO(R"),

one can use Hérmander’s square root trick [86, §2.13]. O

As we will see in Chapter 8, one can assume much less regularity than a € S° (but some
decay in x) to guarantee the boundedness of a(z, D) on L?: For instance, supe [la(-, §) |l ms <
oo for some s > n/2 is sufficient. See also [62, Theorem 18.1.11'] for a related result.

By Proposition 3.1.13, we can equivalently define H*(R") to consist of all u € .#/(R")
such that Au € L?(R") for all A € U¥(R"); more economically, fixing a uniformly elliptic
operator A € U¥(R"), we have u € H*(R") if and only if Au € L?(R™). (This is merely a
rephrasing of global elliptic regularity.)

Using these mapping properties, we can refine the notion of wave front set given in
Definition 3.1.11:

Definition 3.1.14. Fix s € R, and let v € 2'(R"). Then (z,£) € R" x (R \ o) is not
contained in the H*-wave front set WF*(u) if and only if there exists an operator A € WO(R")
which is elliptic at (z,£) and ¢ € C°(R™), ¥(z) # 0, such that A(yu) € H*(R™).

Using elliptic regularity and mapping properties on Sobolev spaces, one can show [86,
§5.14] that WF*(u) = 0 if and only if u € HS (R™).
We have the following direct analogue of Proposition 3.1.12:

Proposition 3.1.15. Let s € R and u € 2'(R™). Then (x9,&) ¢ WF*(u) if and only if
there exist ¢ € C°(R™), ¢p(xo) # 0, and x € C®(R™) of the form x(§) = x(&/[€]) in €] > 1,
where X € C>®(S" 1) with x(&/|é0|) = 1, such that F~1xFou € H*(R"), i.e. such that
JIXE)PI(6u) () P(€)> dé < oo.

Combining the mapping properties of pseudodifferential operators with the calculus for

their wave front sets, one deduces the following microlocal elliptic regularity result:

Proposition 3.1.16. Let A € V™(R") and v € Z'(R™). Suppose A is elliptic at (z,§).
Then (z,€) € WF*(u) if and only if (z,£) € WF*™™(Au).

We remark that the proof of this result in fact gives the following quantitative bound:

There exist operators By, By € WO(R"), elliptic at (z, &), such that for any N € R there is
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a constant C > 0 such that
[Brul|rs-m < C(||BaAullgs + [lul|g~) (3.1.14)

for all w € HY, in the strong sense that if the right hand side is finite, then so is the left
hand side, and the inequality holds. Here, we think of N as being very negative, so the
H" -norm is very weak. We point out that the qualitative statement of Proposition 3.1.16
is in fact equivalent to the quantitative statement (3.1.14) by the closed graph theorem, see
[64, Proof of Theorem 26.1.7] and [115, §4.3], except that we lose control over the constant
C. For applications to nonlinear problems however, it is of course crucial to know at least

the rough dependence of C' on seminorms of A (and on N).

3.1.4 Change of coordinates

Let k: U — V be a diffeomorphism between two open sets U,V C R". For an operator
A = a(z,D) € V™(R") whose Schwartz kernel is compactly supported in U x U, we can
define the pushforward of A, which is an operator A, with Schwartz kernel compactly
supported in V x V, by defining (A,v) ok = A(vo k), v € . (R™). The main result [62,
§2.1] is that A, € U™(R™), and the full symbol a, of A, has an asymptotic expansion

ap(k(x),n) ~ > %c%la(x,t/i/(x)n)Dz‘eip”(ymy:x, (3.1.15)
o
where p,(y) = k(y) — k(x) — ' (x)(y — x) vanishes to second order at z. In particular, if
we view k as a change of coordinates on R”, we see from (3.1.15) that the principal symbol
transforms as a function on the cotangent bundle T*R".

Correspondingly, one should really view o,,,(A4) € S™(T*R"™)/S™ ! (with symbolic be-
havior in the fiber variables), and moreover the elliptic set of A is an open conic subset
of T*R™ \ o, while characteristic sets and wave front sets of operators as well as wave
front sets (including H*-wave front sets) are closed conic subsets of T*R™ \ 0. Moreover,
the Hamilton vector field H,  (4) (fixing a representative of the principal symbol, or us-
ing the homogeneous representative if A is classical) is invariantly defined as a vector field
on T*R™ \ o. This invariant point of view will allow for a very concise description of the

standard pseudodifferential calculus on closed manifolds in §3.2.
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3.1.5 Radial compactification

In a manner that is entirely analogous to the construction in §2.1.3, we can radially com-
pactify T*R"™ to T*R”, and we denote by S*R" = OT R" the cosphere bundle, which we thus
view as the boundary at fiber infinity of 7" R™. Then, we can view WF(u) for u € 2'(R"),
WEF'(A) for A € ¥(R"), as well as Ell(A) and Char(A), which are conic subsets of T*R™\ o,
as subsets of S*R".

We briefly recall the homogeneity discussion in §2.1.3 in the present context: Let us fix
pE COO(T*R”) a defining function of S*R™, i.e. p > 0 in T*R™ c T'R™, p = 0 at S*R", and
dp|s+rn # 0. We can for instance take p = (¢)~!. Then, for a classical operator A € ¥™(R")

™ where

with homogeneous principal symbol a,,(x,&), we can write a,,(z,§) = a(x,&)p~
a € C®(S*R™). Furthermore, the Hamilton vector field H,,, is homogeneous of degree
(m —1); therefore, H,,, :== p" 1H,, € V(S*R") by restriction. However, at points in S*R"™
where V' = 0, it is useful to keep information on the behavior of H,, in the fiber-radial

direction, which we do by viewing H,,, € Wy (T*R”), with the relevant information encoded

in V|g+grn, the restriction to fiber infinity as a b-vector field.

3.2 Calculus on compact manifolds without boundary

Using local coordinate charts and partitions of unity, one can construct a calculus for
pseudodifferential operators on manifolds starting from the calculus on R™: Thus, if X is
an n-dimensional manifold, we say that an operator A: C°(X) — C*>°(X) is an element
of ¥™(X) if for every local coordinate chart x: U C X — R"™ and ¢,9 € C°(k(U)), the
operator

w s (k) AR (Gu)

is an element of W™ (R™). See [64, §18.1] for details. Note that if X is compact, one
can freely compose any two such operators; in the non-compact case, one needs to make
additional assumptions on the behavior of the Schwartz kernels of elements of ¥ (X)), for
instance proper support in X x X, or appropriate decay conditions away from the diagonal,
as for example in the Euclidean case. In this section, we only consider compact manifolds
X, and microlocal analysis is cleanest in this setting. The calculus for a class of operators
on compact manifolds with boundary discussed in §3.3 is only slightly more delicate and

will be very closely related to the non-compact setting on Euclidean space.
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Throughout the rest of this section, X denotes a compact n-dimensional manifold without

boundary.

The calculus on Euclidean space combined with the discussion of coordinate invariance

in §3.1.4 gives the following pseudodifferential calculus on the closed n-dimensional manifold

X; see also [122, §3.4] for a general overview and [64, §18.1] for details.

(1)

(2)

Spaces of operators. For every m € R, we have a vector space ¥ (X) consisting of
bounded operators C*°(X) — C*°(X). For m € Ny, we have Diff " (X ) C ¥"(X).

Algebra property. The space |J,,cg V" (X) is a filtered *-algebra: For A € ¥ (X),
B € U™ (X), we have Ao B € U™ (X) and A* € ¥"(X), where we compute the

adjoint of A with respect to a fixed volume density on X.

Principal symbol, ellipticity. For each m € R, there is a principal symbol map
Om: U(X) = S™(T*X) /8™,

with the spaces S (17X ) defined in local coordinates as in Definition 3.1.1. Restrict-
ing to classical operators (which in a coordinate chart are classical operators on R,
(T*X), which is the space

of homogeneous functions in the fibers of 7% X. The short sequence

see the end of §3.1.1), the symbol map takes values in S7"

hom

0— v (X)) = v"(X) I S™MT*X)/S™ =0

is exact. Thus, o, measures if an operator in U™ (X) is in fact of lower order,
and moreover every principal symbol a can be quantized, i.e. there is an operator
A € ™ (X) with 0,,(A) = a. We say that A is elliptic at a point (z,§) € S*X (see
§3.1.5) if its principal symbol a is, see Definition 3.1.7; the set of points at which
A is elliptic is denoted Ell(A), and its complement is the (closed) characteristic set
Char(A) C S*X. If Ell(A) = S*X, we call A elliptic.

Properties of the principal symbol map. For A € ¥"(X), B € ¥ (X), we have
Um+m’(AOB) = Um(A)Um’(B)v Um(A*) = Um(A)

Furthermore,
Omam/—1(i[A, B]) = Hgb,
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where a and b are representatives of o,,(A) and o,,/(B), respectively.

(5) Mapping properties. For m,s € R, every A € ¥ (X) extends by continuity to a
bounded map A: H*(X) — H*®* ™(X), where the Sobolev spaces H*(X) are de-
fined using partitions of unity and the spaces H*(R™). In particular, operators in
U=2(X) = ,,er ¥™(X) are smoothing, i.e. map C~*°(X) — C*°(X) continuously,
where C~°°(X) is the dual space of C*°(X) (fixing a volume density on X).

(6) Operator wave front sets. Let A € W™ (X). The set of points (x,¢) in the cosphere
bundle S*X for which the essential support (Definition 3.1.9) of the full symbol of
A in a coordinate chart contains (z,§) is well-defined, and is called the wave front
set WF/(A) C S*X of A; it is a closed set. We have WF/(A) = 0 if and only if
A€ U=(X). For Ac U"(X) and B € U™ (X), we have

WF/(A + B) C WF'(A) UWF/(B), WF/ (Ao B) C WF'(4) N WF/(B).

(7) Wave front sets of distributions. Let w € C™>°(X), s € R. Then the H*-wave front
set (resp. wave front set) of u, denoted WF?®(u) C S*X (resp. WF(u) C S*X), is
the complement of the set of all (z,£) € S*X for which there exists an operator
A € UY(X), elliptic at (x,&), such that Au € H%(X) (resp. Au € C*(X)). We say
that w € C~°°(X) is in H® microlocally in a subset Z C S*X if WF*(u) N Z = ().

Use a more invariant language for defining pseudodifferential operators [62, §2.4], we
can define ps.d.o.s to be exactly those operators whose Schwartz kernels are distributions
on X x X conormal to the diagonal Ax — X x X.

The calculus extends to operators that map sections of a rank d¢ vector bundle £ — X
to sections of the rank dr vector bundle F — X, and the space of such operators of order
m is denoted U™ (X, &, F), or in the case F = & simply U™ (X,E). In local coordinates
and local trivializations of the bundles, elements of ¥ (X, &, F) are simply quantizations
of symbols of order m which take values in dr X dg¢ matrices, or equivalently, they are
dr X dg matrices of scalar symbols. Such operators can be composed in the natural fashion,
schematically

U™ (X, F,G) o U™(X,E,F) Cc U™ (X,E,G),

where § — X is another vector bundle. If £ and F are equipped with fiber metrics

(not necessarily positive definite) and X comes with a volume density, the adjoint of A €
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U™(X,E F) is well-defined, A* € U™(X,F,€); in general, the adjoint is always well-
defined in (X, F* @ QY £* @ O), where Q! — X is the rank 1 bundle of (1-)densities on
X. In particular, this applies to scalar operators, so the adjoint of A € U (X)) naturally is
A* € U™(X,Q), or more symmetrically, the adjoint of A € U™ (X, Q%) is A* € ¥ (X, Q%),
this symmetry is part of the reason why %-densities are useful on a technical level. See also
the discussion in §6.3. The natural Sobolev spaces of bundle-valued sections H*(X,E) are
defined using partitions of unity on X and local trivializations of £ (using a smooth positive
definite inner product on &), and an operator A € V™ (X, £, F) defines a continuous map
H*(X,E) - H*"™(X,F) for all s € R.

The principal symbol map now is
Om: VX, E,F) = S™(T*X,n* Hom(&, F))/S™ 1,
where 7: T*X — X denotes the projection, and we have a short exact sequence
09" YX,EF) = U(X,EF) I S™(T* X, 7* Hom(E, F))/S™ 1 — 0.

We have the natural subclass of operators in ¥ (X, ) which are principally scalar, i.e.
whose principal symbol has a scalar (multiple of the identity endomorphism on &) repre-
sentative, and conversely scalar symbols can be quantized to give principally scalar oper-
ators acting on sections of £. The principal symbol of the commutator of two operators
A€ U™(X,E)and B € U™ (X,E) then equals 0y, 1 ([A, B]) = 1H, (4)0n(B)if Aand
B are principally scalar, and 0, ([A, B]) = [om(A), om(B)] if their principal symbols do
not commute (which can only happen if they are principally non-scalar); note the symbolic
orders in which we compute the principal symbols here. If the principal symbols do com-
mute, say A is principally scalar but B is not, then the principal symbol 0,4 —1([4, B])
involves subprincipal terms of the full symbol of A; see §6.3.3.

The ellipticity of a symbol a € S™(T*X,7* Hom(E, F)) at (z,£) € S*X means that
in a conic neighborhood of (z,&) and sufficiently far from the zero section of T*X, the
symbol a can be inverted by a symbol b € ST (T*X, 7" Hom(F,£)). (This is equivalent
to the existence of b € S~™ such that ab — id € S™YT*X,7* End(F)) and ba — id €
S=HT*X,7* End(€)).) If the symbol a € S™ is classical, a ~ > j>0@m—j, this is simply
the requirement that a,, be invertible at (z,&).

We can then define the elliptic set, operator wave front set and distributional wave front
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set as in the scalar setting. We remark that there is a refined notion of wave front set
for bundle-valued distributions introduced by Dencker [34], called polarization set, which

however we will not use here.

3.2.1 Elliptic regularity; Fredholm estimates

We briefly discuss elliptic regularity, mainly to give a simple example of so-called Fredholm
estimates. There is a direct analogue of microlocal elliptic regularity, Proposition 3.1.16, on
manifolds, including the quantitative estimate (3.1.14), so we shall not restate this here.
Thus, consider an (everywhere) elliptic operator A € U™ (X). The parametrix construc-
tion of Proposition 3.1.8 works equally well on a manifold (and only relies on the features
of the calculus listed in the previous section); thus, we can find B € =™ (X) such that
BA—1=R e ¥ (X). Now, fix s € R, and let N € R be arbitrary, N < s. Then, for
uw € HV(X) with Au € H*~™(X), the mapping properties of B and R on Sobolev spaces
imply v = BAu — Ru € H*(X) 4+ C*>(X) = H*(X), and we in fact obtain an estimate

[ullgs < C(|Aull grs—m + [lullgx).- (3.2.1)
Considering the L? adjoint A* of A, which is elliptic as well, we deduce
[ull gror < CUA | ror—m + [l ) (3.2.2)

for all &', N € R. Now, if we let s’ = —(s —m), thus ' —m = —s, the estimates (3.2.1) and
(3.2.2) precisely mean by a standard functional analytic argument, see [64, Proof of The-
orem 26.1.7], that A: H*(X) — H* ™(X) is Fredholm, with finite-dimensional nullspace
(since the inclusion HV(X) < H*(X) is compact for N < s) and closed range, which is
equal to the orthogonal complement of the finite-dimensional space ker A* C H ST (X)
with respect to the L2-pairing of H*~™(X) with H—*T™(X). (Of course, by elliptic regu-
larity, ker A and ker A* are contained in C°°(X) and thus independent of s.)

For more complicated operators A which are non-elliptic, one can no longer construct
an elliptic parametrix, but estimates of the form (3.2.1) and (3.2.2) may still hold (with
changes in the norms on Au and A*u, and possibly only for a certain range of values of
s and §'), and one deduces that A is Fredholm between suitable spaces; see §3.2.3 for an

example. Thus, we call the estimates (3.2.1) and (3.2.2) Fredholm estimates.
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3.2.2 Real principal type propagation of singularities

As the simplest non-elliptic setting, we now consider the case of operators whose principal
symbol is real and vanishes non-degenerately at the characteristic set. We will sketch a
proof of the celebrated Duistermaat-Hormander theorem on the propagation of singulari-
ties [38, §6], which roughly speaking states that microlocal regularity of solutions u to an
equation Pu = 0 propagates along null-bicharacteristics of P, i.e. along integral curves of
the Hamilton vector field of the principal symbol of P within the characteristic set of P.
The main example to keep in mind is the case of wave operators on Lorentzian manifolds,
as discussed in Chapter 2: In this case, null-bicharacteristics are null-geodesics, lifted to the
cotangent bundle, and the Duistermaat-Hormander theorem asserts that singularities (in
the precise, microlocal sense of wave front sets!) to solutions of the wave equation propagate
along light rays.

Thus, let P € U™ (X) be a classical operator with real homogeneous principal symbol
Pm = om(P) € S (T*X). Fix a boundary defining function p of fiber infinity in T X. As

explained in §3.1.5, we can rescale the Hamilton vector field

H,, :=p" 'H, cV(S*X),

m

and we also rescale the principal symbol, defining
p=p"pmeCCS"X).

Recall that within the characteristic set Char(P) = p~1(0) C S*X, the rescaled vector field
Hp,, induces a flow, which is merely a rescaling of the Hamilton flow of p,, if we identify the
subset Char(P) C S*X with the corresponding conic subset of T*X \ 0. We remark that
H,,. vanishes (as a vector field) at a point ¢ € S*X if and only if H),, is radial at ¢ (i.e. at
the ray in 7% X \ o associated with (), and in this case the integral curve of H,,, through ¢
is trivial, i.e. constant.

Now suppose (g € S*X is such that H, |, # 0, hence the Hamilton flow in Char(P)
starting at (y is non-trivial; denote by ~v: [0, 7] — S*X a segment of a null-bicharacteristic,
i.e. an integral curve of H,, , starting at 7(0) = (o. We prove the propagation of regularity
for u solving Pu = f along forward bicharacteristics, but the analogous statement holds for

backward bicharacteristics as well: One can simply replace P by —P and use the forward
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result, or reverse signs in the proof given below. We point out already here that this

symmetry is broken once we allow p,, to have a non-vanishing imaginary part, see §3.2.3.

Theorem 3.2.1. [38, Theorem 6.1.1']. Let s, N € R. Suppose, in the above notation,
that w € HN(X) is a solution of Pu = f € HN(X). If (¢ ¢ WF*(u) and ~([0,T]) N
WEs=™FL(f) = 0, then v(T) ¢ WF*(u). Thus, since T was arbitrary, H*-regularity prop-
agates along null-bicharacteristics. Put differently, WF*(u) \ WF*™™VL(f) is the union of
mazimally extended null-bicharacteristics.

Quantitatively, suppose E, B,G € W°(X) are pseudodifferential operators; assume that
E is elliptic at (o, B 1is elliptic at v(T), and G 1is elliptic on v([0,T]), such that every
backward null-bicharacteristic starting at a point in WF'(B) reaches EN(E) in finite time,
remaining in EN(G). Then

[Bullgs < C(||GPull gs=m+1 + | Eullzrs + [[ull ). (3.2.3)

Notice that the propagation estimate (3.2.3) requires control on the H*~™%!lnorm of
Pu, rather than the H*~"-norm required for elliptic P. We thus say that the propaga-
tion estimate loses one derivative (relative to the elliptic setting). See Figure 3.1 for an

illustration of the setup for (3.2.3).

Figure 3.1: Setup for the propagation of singularities and the estimate (3.2.3): We propagate
a priori H®-control of u on the elliptic set of E forward along the null-bicharacteristic flow
of P and deduce H?*-regularity of u on the elliptic set of B, assuming H ™% !-control of
Pu on the elliptic set of G.

Proof of Theorem 3.2.1. We only give a brief sketch of the proof along the lines of [122,
§4.2]; see [86, §5] (and, using more sophisticated tools, [38, §6]) for details. We give a full
proof for rough pseudodifferential operators in §8.5.

We begin by straightening out the flow: Thus, we introduce local coordinates ¢ =
(q1,4') € R x R?""2 on S*X mear (j such that (o = (0,0), and H,,, = 9,,, hence y(T) =
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(T,0), and we have microlocal H?® regularity of u in a small neighborhood U = {|¢1/, |¢| <
26} of (. For a commutant C = c(x, D) € U=+ (X)) to be chosen later and satisfying

C = C*, we compute
2Im(f, Cu) = i((Cu, Pu) — (Pu, Cu)) = Re(((i[P, C] + i(P* — P)C)u,u)). (3.2.4)

The principal symbol of i[P,C] is given by Hp, c. Using the rescaling c = p?*~™*lc €

C*>°(S*X), one can choose ¢ in such a way that
H,,c=—b?— Mc+e (3.2.5)

where b € C*°(S*X) is non-negative, and positive in {q1 € (4,1 + 9),|¢'| < 0}, while
e € C°(S*X) is supported in the neighborhood U where we have a priori control on wu;
the term involving the fixed but arbitrary parameter M > 0 will be used to absorb error
terms later on. One can for instance take ¢ to be a product c(q1,¢") = c1(q1)c’(¢'), and then
choose c; to be exponentially decaying in g > §/2, while cutting it off near ¢; = 0, which

produces the error term e. See §8.5 for details in a more general setting. Now
Hp,c=p~ " H,, (07" c) = p>*(Hp,.c — (2s — m + 1)cp™'Hy, p) (3.2.6)

Let b= p~°b, e = p~2%¢, and let B € ¥*(X) and E € ¥?*(X) be quantizations of b and e,

respectively. In view of (3.2.5), the commutator calculation (3.2.4) then implies

(B*Bu,u) + M(Cu,u) = (Eu,u) + (Cu, i(P* — P)u) + (RCu,u)
—2Im{f, Cu) + (R'u,u),

where R € UY(X) comes from the second term on the right hand side of (3.2.6), and
R' € U?571(X) is a lower order error term, arising from the fact that (3.2.5) and (3.2.6)
are merely equalities of principal symbols. The pairing here is the L? pairing between
Sobolev spaces and their duals. Now, improving the choice of C by arranging C = D*D,
we can write the second term on the left as M|/ Dul|?, while we can use Cauchy-Schwarz
and the Peter-Paul inequality on the terms on the right involving C'v and absorb them into

the term M| Dul|?; notice that we crucially use the fact that P is principally real, thus
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P* — P € U™ 1(X). In effect, we can then drop the terms involving C'u, and obtain
|Bull® < (Bu,u) + |GF|? + (R'u, u), (3.2.7)

with G € Us~™*+1(X) (which we introduce to keep the control required on f microlocal)
elliptic on WF/(C'). By construction, the wave front sets of all operators in this expression
are localized near v([0, T]). Now, if we already have v € H*~'/2 microlocally near ([0, T]),
the estimate (3.2.7) implies that Bu € L?*(X), thus u € H* microlocally near «([0,77]).
Thus, starting with the a priori knowledge v € HY (X), one can iteratively improve the
regularity of w by 1/2 in each step, until one obtains H®-regularity as desired.

To make this into a rigorous argument, one needs to justify various integrations by parts;
to do this, one regularizes the argument by replacing the commutant C' by a family C¢ of
lower order operators, converging to C' strongly as € — 0, and similarly replacing the other
symbols and operators in the proof. This can be conveniently done by fixing a regularization
of the identity by operators J. € ¥"(X), r < 0, with principal symbol (1 4+ e¢p~1)", and
putting C. = J.C etc.; commuting J. through P generates additional error terms, which
are handled as before. O

This proof is the prime example of a positive commutator argument: A quantity ¢ which
is monotone (possibly modulo error terms) along the Hamilton flow of the operator P gives
rise to a microlocal energy estimate like (3.2.3), by commuting a quantization of ¢ through
P. We will encounter many more instances of this fundamental principle in the following
sections.

We point out that positive commutator arguments for operators acting on sections of a
vector bundle &, require the use a Hermitian, i.e. positive definite, fiber inner product on £.
In applications, the natural fiber inner product is often not positive definite, e.g. the inner
product on the form bundle on a manifold equipped with a Lorentzian metric. This causes
complications in settings where subprincipal terms (P* — P in the above proof) can only
be controlled if they are sufficiently small (thus, the propagation of singularities as above is
unaffected by this problem): While this will be largely irrelevant for our applications in the
study of radial sets in §3.3.1, it will cause difficulties in the study of normally hyperbolic
trapping (see §3.3.2), which we deal with in §§6.3 and 6.4.
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3.2.3 Complex absorbing potentials

The propagation of singularities theorem 3.2.1 shows that H?*-regularity propagates once
it holds somewhere. Thus, one would ideally like to have a place where one gets H*®-
regularity ‘for free.” Radial points (with a certain structure) are a natural such device and
will be discussed for b-pseudodifferential operators in §3.3.1. A very cheap (even if artificial
in most situations) alternative is the use of complexr absorption: In the notation of the
previous section, we consider the operator P—i@), where QQ € ¥ (X), the complex absorbing
potential, is classical and has a real principal symbol ¢. At places in S*X where ¢ # 0, the
operator P — i@ is elliptic, and we show that if ¢ > 0, one can propagate regularity forward
along the Hamilton flow of P, while for ¢ < 0, one can propagate regularity backward along
the flow. (Thus, singularities propagate backwards where ¢ > 0, and forward where ¢ < 0.)

We show this for forward propagation, i.e. with ¢ > 0: Replace P in the calcula-
tion (3.2.4) by P —iQ; let us assume @ = Q7Q; for some () € \I/m/z(X) for simplicity; in
general, one would need to use the sharp Garding inequality [64, §18.1]; see [114, §2.5] for
details. The term

i((P—iQ)" — (P —iQ)) = i(P" — P) —2Q

now has an additional term 2Q € ¥?™(X), while i[P — iQ,C] = i[P,C] + [Q, C] includes
the term [@,C]. Recall that we arranged i[P,C] to be the negative of a square (up to
error terms), thus —2Q = —2Q7Q; has the same sign and can therefore be dropped in the

subsequent estimates. As for [@Q, C], we need to take care of

Re([Q, Clu,u) = ([Q, €1 + [Q, CT")u, w);

but [@Q, C] has purely imaginary principal symbol, thus [Q, C] + [Q,C]* € ¥?71(X) is a
lower order operator than the main term ¢[P, C] and can hence be put into the error term
called R’ in (3.2.7).

The argument for backward propagation follows from the forward argument by consid-
ering the operator (—P) —i(—Q) = —(P — Q) instead (or one can give an analogous direct
proof).

We now have all the necessary ingredients for the simplest non-elliptic Fredholm problem:
Suppose P —iQ € V" (X), with P = P* and Q = Q™ classical operators with real principal
symbols p and ¢, is non-trapping in the following sense: For every point ¢ € Char(P)\EI(Q),
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both the forward and the backward bicharacteristic from ¢ remain in {g > 0} until they
enter ¢ > 0 in finite time. Then, if u € HN(X) solves (P —iQ)u = f € H* ™ (X)),
microlocal elliptic regularity implies that u is in H*T! microlocally at the elliptic set of Q;
and by the propagation of singularities with complex absorption, we can propagate H*®-
regularity of u along forward bicharacteristics of P, starting in Char(P) N {q > 0} and
propagating forward along the Hamilton flow of p. By the non-trapping assumption, we
thus obtain WF*(u) = (), i.e. u € H*(X). Quantitatively,

Jull s < CUI(P = iQ)ul gs—m+1 + [Jull ).

The adjoint (P — iQ)* = P + iQ satisfies the analogous non-trapping property, but now
the sign of @ (and thus ¢q) is switched; thus, for solutions of (P —iQ)*u = f, we propagate

microlocal regularity along backward bicharacteristics of P. We obtain
Jull gor < C(P —iQ) ull or—msr + [[ull ).

Thus, choosing s’ = —(s—m+1), so & —m+1 = —s, we obtain Fredholm estimates analogous
to (3.2.1) and (3.2.2). They imply that for any s € R, the operator P —i@Q: X5 — Ys—m+!

is Fredholm, where
X ={uec HX): (P —iQ)u e H* ™ (X)}, Y™l = gs—mtl(X),

and the kernels of P — i@ and (P —iQ)* are both subspaces of C*(X).

3.3 b-calculus on compact manifolds with boundary

The discussion of the geometry of certain classes of stationary spacetimes in Chapter 2
already demonstrated the usefulness of the language of b-geometry; we now discuss the
analytical tools needed to work on such spaces. A full treatment with a slightly different
flavor is given in [82], and a nice discussion of the geometric point of view for understanding
the kernels of b-operators, compositions etc. is given in [56].

Thus, let M be a smooth compact n-dimensional manifold with boundary X = oM.
In order to motivate the choices of function and operator spaces below, consider first a

coordinate patch (z,y) € R = [0, 00), X RZ‘I near a point in M, with x a local boundary
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defining function. The perspective on b-analysis that we wish to emphasize here is that it
provides tools for uniform analysis on stationary spacetimes; hence, paralleling the discus-
sion in Chapter 2, we introduce t := —logz € (0,00), with ¢ — oo as z — 0. One would

for instance like to consider the Laplace-type operator
A= D} + A, = (zD;)* + A, € Difff(R?)

to be elliptic in the b-sense; notice however that it degenerates as an ordinary differential
operator on M as  — 0. (More generally, the Laplace-Beltrami operator associated
with any smooth Riemannian b-metric on X should be elliptic in the b-sense; notice here
that since V,(X) is a Lie algebra, a b-metric ¢ induces a covariant derivative of b-vector
fields along b-vector fields in view of the Koszul formula, and therefore A, € Diff3(X)
indeed.) Now, T*R{, is naturally isomorphic to bT*(@)%y: Indeed, with the natural
coordinates (t,y,o0,n) on T*R™ and (z,y,§,n) on bT*]RT]’|r7 this isomorphism is given by
(t,y,o.m) — (e7',y,—o,n). We therefore view the principal symbol op,2(A) of A as a
function on bT*M, formally obtained from A by replacing D, by ¢ and D, by 5. For a
general Riemannian b-metric g on M, we thus have op,2(Ay) = G € S2_(PT*M), where
G is the dual metric function; and G is invertible (non-zero) away from the zero section of
bT*M.

Continuing in local coordinates, we note that due to the ¢-translation invariance of the
operator A, it naturally acts on exponentially weighted Sobolev spaces e " H*(R™), r € R.

Changing coordinates, we are thus led to define the weighted b-Sobolev space
H'(R) = o (e " H*(R™)), @(z,y) = (—logz,y), (3.3.1)

and via partitions of unity, one can define weighted b-Sobolev spaces Hy" (M) = o" H (M)

on compact manifolds with boundary; we have
HE" (M) C HE" (M) if and only if &' < 5,7/ < 1.

Unweighted spaces are denoted Hj (M) = HS’O(M), and we have the b-L%-space LZ(M) =
HY(M). In local coordinates, one has v € L{(R%) if and only if u € L*(R?%, %’ dy); note
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that df dy is a b-density. Then, for s € Ny, we have v € Hy (M} if and only if
Vi---Vou € L%(@), Vi,..o, Ve e {x0,,0,4},0 <4 <s.

Thus, on manifolds, we have L2(M) = L?(M,v) for any fixed non-vanishing b-density
v € C®(M,PQ'), and

HY (M) ={uea"L{y(M): Vi---Vaue a"Ly(M),V1,..., Vi € W(M),0< £ < s}

for integer s. For non-integer s, one can then equivalently define H," (M) by duality and
interpolation. Picking a different density v leads to the same space with an equivalent norm.
We have natural space of distributions, C~(M) := C>°(M)* (fixing a b-1-density for

convenience) which contains H,"" (M) for all s,r € R; in fact,

¢>() = (Hy (M), ¢~ = | J By (M),

The space C~>°(M) is called the space of extendible distributions [64, Appendix B], since
the Hahn-Banach theorem shows that it can equivalently be characterized as the space of
restrictions of distributions on a closed ambient manifold M , containing M as a submanifold
with boundary, to M°. Considering instead C~°°(M) := C°>°(M)*, we obtain the space of
supported distributions, which can be viewed as the space of distributions on M that have
support in M.

We now present a calculus of b-pseudodifferential operators, a symbolic calculus for
quantizations of symbols defined on the b-cotangent bundle of M (and thus for instance
allowing for symbolic inversions of elliptic b-differential operators), which is almost entirely

analogous to the calculus presented in §3.2.

(1) Spaces of operators. For every m € R, the vector space WJ'(M) consists of bounded
operators C*(M) — C*(M). For m € Ny, we have Diff{" (M) C ¥ (M).

(2) Algebra property. The space |J,,cg V1'(M) is a filtered *-algebra (fixing a non-

vanishing b-density on M to compute adjoints).

(3) Principal symbol, ellipticity. For each m € R, there is a principal symbol map

O UM — S™(PT*M)/S™
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Restricting to classical operators, the symbol map takes values in S{{ém(bT*M ). The

short sequence

Ob,m

0 — U (M) - I (M) =" S™(PT*M)/S™ ™ -0

is exact. We say that A is elliptic at a point (z,¢) € PS*M if its principal symbol a
is; the set of points at which A is elliptic is denoted Ell(A), and its complement is the
characteristic set Char(A) C PS*M.

Properties of the principal symbol map. For A € W*(M), B € \I'{)”/(M), we have
O'b,m+m’(A o B) = 0'b7m(A)O'b7m/(B), O'b7m(A*) = O’b’m(A).

Furthermore,
O-b,m—i-m’—l(i[A, B]) = Hab7

where a and b are representatives of oy, ,(A) and oy, (B), respectively.

Mapping properties. For m,s,r € R, every A € ¥"(M) defines a bounded map
A: H"(M) — H*™™"(M). In particular, operators in W, (M) = (M)
are smoothing acting between Sobolev spaces with the same weight, i.e. they map

H5" (M) — H*"(M) for every s,r € R.

meR

Operator wave front sets. Let A € W*(M). The set of points (z, () in b§* M for which
the essential support of the full symbol of A in a coordinate chart contains (z,() is
well-defined and closed, and is called the wave front set WF} (A) C PS*M of A. We
have WF}(A) = 0 if and only if A € ¥;>°(M). For A € ¥*(M) and B € 9" (M),

we have

WF) (A + B) C WF},(A) UWF},(B), WF} (Ao B)C WF}(A) N WF}(B).

Wave front sets of distributions. Let s,r € R, and suppose v € H, *"(M). Then the
H"-wave front set of u, denoted WF}" (u) C bS*M, is the complement of the set of
all (z,¢) € PS*M for which there exists an operator A € WY (M), elliptic at (z,(),
such that Au € H;"(M). We say that v € H, ™" (M) is in H,"" microlocally in a
subset Z C PS*M if WF}" (u) N Z = 0.
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Notice that b-pseudodifferential operators only act between b-Sobolev spaces with the
same weight; thus one can only define the Hg’r—wave front set for distributions u that are
already known to have weight r, which is of course a much more restrictive assumption
than merely u € C7°°(M). We moreover point out that the calculus ¥y,(M) only includes
operators which have smooth coefficients on M, while operators with conormal coefficients
are very natural from the point of view of applications, as discussed in §2.1.2. We indicate
how to extend U,(M) to a calculus Wy 1,.(M) allowing for coefficients which are smooth
plus conormal in §3.3.5.

The proofs of (microlocal) elliptic regularity, propagation of singularities and complex
absorption on closed manifolds given in §§3.2.1, 3.2.2 and 3.2.3 depend purely on the symbol
calculus and therefore go through mutatis mutandis for b-operators as well; again, in order
to prove HS’T—regularity for a distribution w using these symbolic arguments, one needs to
assume a priori that v € Hy °>"(M): Symbolic arguments cannot lead to improvements in
the weight 7. Thus, elliptic regularity for A € ¥{"(M), elliptic at o € bS* M, states that
if ue H °"(M), then o ¢ WF; ™" (Au) implies a ¢ WF}" (u), while the propagation of
singularities states that for u € H, °" (M), the set WE;" (u) \ WES ™" (Au) is the union
of maximally extended null-bicharacteristics of A.

For b-operators, a crucial new feature arises, corresponding to the non-compactness of
the translation-invariant picture Ry, introduced at the beginning of this section: Namely,
the inclusion HéV’T(M) — Hy" (M) for N < s is no longer compact, since there is no gain
in the weight. This for instance shows that symbolic properties alone are not sufficient
to guarantee Fredholm properties of elliptic b-(pseudo)differential operators on M, which
in fact do not hold in general; the missing piece is the analysis of a model operator at
OM, discussed in §3.3.3. (Until §3.3.3, we shall however only study symbolic properties of
b-ps.d.o.s.) The map from ¥y,(M) into the (non-commutative!) algebra of such model oper-
ators is a ‘non-commutative symbol map’; the non-commutativity of this map is intimately
related to the necessity in symbolic calculations to work on spaces with fixed weights.

We now indicate how to construct the above b-calculus by localizing to coordinate charts
and using the Euclidean theory to the largest possible extent (after a logarithmic change
of coordinates as above); parts of the presentation follow [116].> We want to describe a

class of ps.d.o.s on @ which has composition and mapping properties analogous to (2)

3We again refer to [82] for a more geometric treatment, describing the Schwartz kernels of b-
pseudodifferential operators as conormal distributions on the b-double space [M x M;90M x OM] (for OM
connected) with infinite order of vanishing on the side faces.
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and (5) above; working on R},, t = —logz, we therefore want to define ps.d.o.s A on R},
which are continuous between exponentially weighted spaces e H*(R™). Equivalently, if
Ka(t,y,t',y’) denotes the Schwartz kernel of A, we want the operator with Schwartz kernel
e " Ka(t,y, t'y )e”/ to act between unweighted Sobolev spaces H*(R™). Thus, we are led
to require superexponential decay of K4(t,y,t',y') in |t —¢'|. Now ¢(t' —t) K4 € U™ (R"),
with ¢ € C2°(R) identically 1 near 0, satisfies this automatically, and (1 — ¢(t' —t))K4 €
¥ ~°°(R™) has smooth Schwartz kernel on R?"; simplify the presentation by switching freely
between (z,y) and (¢, y) coordinates, and identifying operators with their Schwartz kernels,

we therefore define:

Definition 3.3.1. The local smooth b-algebra |J,, V'(R™) consists of operators of the
form A = A"+ R € UJ(R); here Ka/(t,y,t',y) = (t' —t)Kp(t,y,t',y'), with ¢ € C°(R)
identically 1 near 0, where Kp is the Schwartz kernel of the left quantization of a symbol
b(t,y;0,n) € S™(R™;R™) satisfying

(" )" 05 07b(t, ¥ O)| < Cagre(¢)™ (3.3.2)
for all o, 8, k, ¢, while Kg(t,y,t',y") € U~°(R"™) satisfies

[(c'0n)*0La0 L) (Ka(t,y,t + 5,9))| < Caprenre M (y — /)~ (3.3.3)

for all o, 8, k, ¢, M.

The weighted t-derivatives simply correspond to the requirement that our operators have
smooth coefficients in x; recall 9, = —e'd;. A more symmetric definition would use et o,
rather than e’0; in order to have an exponential weight as t approaches +o0, but since we
are only studying a local model for b-operators, thus only work in {z < ¢} = {t > —loge},
we decree that all operators and symbols in the local model are compactly supported in x,
or equivalently supported in a half-line t > ty, without making this explicit in the notation.
Then, under the identification of (the interior of) R? with R™ via the logarithmic change
of coordinates, we have UJ'(R") C ¥™(R").

We will prove below that |J,, UJ'(R") is indeed an algebra. First, we observe that one
can represent elements of Wi (]l@r) in a more convenient way by exploiting the relation of

superexponential decay and entire functions via the Fourier transform. Concretely:
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Definition 3.3.2. For m € R, denote by S"(R) (‘b-symbols’) the space of all smooth

functions a(zx,y; &, n) which are holomorphic in & and satisfy
10505060, alx,y;€,0)| < Cagren (L+|Re &l + )™~ JImg| <N, (3.34)

for all o, 8, k, ¢, N.

Here and in what follows, we omit the fiber variables in the notation of spaces of symbols;
for local considerations, the fiber is always R™ if n is the dimension of the base.
In (¢, y)-coordinates, condition (3.3.4) reads

('00)* 83050 alt, y; 0,m)| < Cagren(1+ [Re& + [n)™ 1P |Imé] < N,

which is a stronger requirement than (3.3.2). We show below in Lemma 3.3.6 that any
symbol in S™(R") can be modified by a symbol in S™>°(R") to yield a symbol in S{*(R7).

Proposition 3.3.3. For m € R, we have A € UJ(RY) if and only if A = qr(a) for a
(uniquely determined) symbol a € SI"(RT), i.e. if

Ka(z,z+w) :/e_“”ca(z,g) dc.

Proof. We will ignore the tangential variables on @, since they come along for the ride.
Thus, we simply assume that we are working on Ry, i.e. with n = 1. Then, if 4 € V(R ),
thus a forteriori A € U™ (R) after a change of variables, we obtain the left reduced symbol

a from the Schwartz kernel K 4(t,t') using (3.1.5), that is,
a(t,o) = /eiS”KA(t,t + s)ds.

Writing A = A’ 4+ R as in Definition 3.3.1, the estimates (3.3.3) for the Schwartz kernel
Kg(t,t+s) of R imply that [ €7 Kp(t,t+s)ds € S, *°(R;) indeed, while for A’, we have

/ K p(t t+s)ds = (2m) 7! / / 15778 (5)b(t, N) d\ ds = / Do — N)b(t, \) d,

where 1) denotes the inverse Fourier transform of 1. Since v is smooth with compact
support, we have
10,0(0)] < Cn(1+|Reo)™™, |Imo| <N
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for all NV; thus, using the assumption b € S™, we can estimate for o € R

\/&w—AwmAmﬂs«ﬂm/ﬁﬁﬁxawnwzxw%

which follows from (A\)™ < (o — A\)™ + (o)™ for m > 0 and (o)™ < (0 — A) 7" 4+ (A\)™™
for m < 0, together with the finiteness of [(\)"*dA for s > 1. We similarly obtain an

estimate for general o € C, and for e7t9; and d,-derivatives. Hence,
/eiSUKA/ (t, t+ S) ds € S{)n(E)

indeed, proving the direction (=). For the converse direction (<), given a € S/*(Ry), we
note that

Kalt,t +5) = (2m)" / i a(t, o) do

is indeed superexponentially decaying in s away from s = 0 together with all its e!9; and 0,-
derivatives, since we can shift the contour of integration from R to Im o = —M sgn s, which
does not affect the symbol estimates for a by definition of the space S{)”(E) but introduces
an exponential weight |e=%?| = ¢~MIsl in the integrand. Thus, the part (1—1(s))K (¢, t+5)
satisfies the estimates (3.3.3) of the remainder term, while ¢(s)Ka(t,t + s) is the left
quantization of a/(t,o) := [)(o — Na(t,\) d\ € S™(Ry). O

Now, we can follow the discussion in §3.1.1, introducing a more general class of ‘two-

sided’ symbols satisfying
|0k0a 005 0kl a(x, y, 2’y €, m)| < Caprowen (L + | Re&| + [n))™ 718 |Im¢| < N,

in analogy to (3.1.2) in the Euclidean setting, and establishing that quantizations of such
symbols can uniquely be written as left /right quantizations of symbols in SJ* (M) Indeed,
for the proof of Proposition 3.1.2, we first observe that one can asymptotically sum sequences
aj(t,y,o,n) with a; € S]T_j (R™), j = 0,1,..., by asymptotically summing in the class of
standard symbols, obtaining a(t,y,o,n) € S™(R") with @ ~ > a;; then we define a €

S(R™) in terms of its Fourier transform in o by

/ e a(t,y,0,m) do == (1) / e 7"a(t,y, 0,n) do,
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i.e. cutting off the Fourier transform of @ in o near ¢ = 0 (which is where the Fourier
transform is conormall), which only changes a by an element of S™°°(R"); thus a ~ > a;.
Furthermore, in the last step of the proof of Proposition 3.1.2, in which the arbitrarily good
remainder R (in terms of symbolic order) is expressed as the left quantization of a symbol
b, we need to show that b € Sp °°(R"), rather than merely b € S~°°(R"); that is, we need
to argue that iterated e!’d;-derivatives of b enjoy symbolic estimates; this however follows
easily from a contour shifting argument applied to (3.1.4).

We can now conclude that the space |J,,, U7'(R") of Definition 3.3.1 is indeed an alge-
bra, and its elements act on the exponentially weighted spaces H,"(R".) defined in (3.3.1).
Notice that away from the boundary R, elements of \Ifﬁ}(@) are simply standard pseu-
dodifferential operators on open subsets of R . Using \I/ﬁ}(lf@r) as a local model for b-ps.d.o.s

on M, we then define:

Definition 3.3.4. The b-calculus® |J,, ¥7*(M) on the compact manifold M with boundary

consists of operators A € W'(M) characterized as follows:
(1) A: C=(M) — C®(M) continuously,

(2) if U is any coordinate chart with ®: U — UcCR"a diffeomorphism, with U open
in R™ or in R7, then for all ¢ € C°(U), we have Ay := (®71)*pAyp®@* € U™ (R") or
A¢ S \Il{g(m>

(3) If Yy, vy € C°(M) have disjoint supports in local coordinate charts U, resp. V, then
the Schwartz kernel of ¥y Ay is conormal (i.e. has iterated regularity relative to
b-vector fields) on M x M relative to bounded functions which decay rapidly as x /2’
tends to 0 or 0o, i.e. have bounds C(z/2")Y in x/2’ < 1 and Cn(2'/2)Y in x/2" > 1,
where z, resp. ' denote the pullbacks of the boundary defining function of M from

the first, resp. second factor of M x M.
In more detail, (3) means the following:
(3.1) If U and V are disjoint from 0M, then 1y Ay has C*°(M x M) Schwartz kernel,

(3.2) if U is disjoint from OM and V is not (resp. V is disjoint from 0M and U is not), then
Yy Ay has a C°(M x M) Schwartz kernel vanishing to infinite order at M x OM
(resp. OM x M),

“In the language of [82], this is the ‘small’ b-calculus, since the Schwartz kernels of its operators vanish
to infinite order at the left and right boundary of the b-double space.
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(3.3) if U and V both intersect OM, with a product decomposition U = [0,¢€), x Uy,
V 2 0,€), x Vo, and with coordinate charts ®y: U — [0,€), x Ry~! and ®y: V —
[0, €)y X RZ,_I, then the Schwartz kernel K7y of (‘Dal)*wUAw\/(I)*V satisfies

|(e'0r)F 050500 (Kuv (t,y,t + 5,9)| < Cagrenre ™, (3.3.5)

where t = —logx and t + s = —loga’; notice that these are exactly the estimates
(3.3.3) apart from the y — 3/ factor, which is irrelevant here in view of the compact

support both in y and /.

The main task in proving that the space |J,, ¥§'(M) thus defined indeed gives the
aforementioned symbolic calculus is checking the composition property; this amounts to
showing that compositions of various localized pieces of Schwartz kernels of b-ps.d.o.s behave
in the above manner. This is somewhat tedious but straightforward; we refer to [82, §5]
for a rather direct treatment and [85] for a geometric proof that generalizes easily to more
degenerate calculi.

We end by proving the following simple characterization of WF{(u), analogous to
Proposition 3.1.15 in the Euclidean setting. We work on @, writing points z € M as

z = (z,y) € [0,00) x R*~L. For brevity, we write
"D = (zD,, Dy), (3.3.6)

with D =i~ 19 as usual.

Lemma 3.3.5. Let u € H, *(R7%). Then R x (R™\ 0) 3 (20, (o) € WF;(u) if and only if
there exists ¢ € C°(R'Y), ¢(z0) # 0, and a conic neighborhood K of (o in R™ such that

XK (O{C)*du € LAR™), (3.3.7)

where XK 1s the characteristic function of K; here, q/ﬁa is the Mellin transform of ¢u in x

and the Fourier transform in y.

Proof. Tt suffices to prove the lemma when xx is replaced by xx € C>*(R"), positively
homogeneous away from the origin, where Xx = 1 on the ray R>;(p. Given such a xx and
¢ € C°(R™) so that (3.3.7) holds (with xx replaced by Yk ), the map

A v (X ("D)("D)* + r("D))(¢v)
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is an element of ¥§ (R") for an appropriate choice of r(¢) € S™° by Lemma 3.3.6 below.
Since 7(°D): H, *(R%) — H°(R™), we conclude that Au € L?(R™), which by Plancherel’s
theorem gives (2o, (o) ¢ WEF} (u), as desired.

For the converse direction, given A € W§ (R™), oy, 5(A)(20,¢0) # 0, with Au € L(R%),
take ¢ € C°(R™) and Xk € C°(R™) with ¢(z0) # 0, Xk (o) # 0 such that A is elliptic
on WF} (B), where B = (Yk(°D)(*°D)* + r(°D))¢ € ¥; (R™), again with an appropriately
chosen r € §7°°. A straightforward application of the symbol calculus gives the existence of
C e U} (R?),R' € ¥;*°(R") such that B = CA — R'; thus Bu = C(Au) — R'u € L}(R7).
Since r(°D): Hy, * — H°, we conclude that XK(C)(QS@ € L*(R"). O

To complete the proof, we show that S™ + S7>° = S[" on M:

Lemma 3.3.6. For any symbol a € S™((R), X RZ‘l;Rg x Ry), there is a symbol a € S|
with a —a € S™°.

Proof. Fix ¢ € C°(R) identically 1 near 0 and put

a(a,y; &m) = Feor (00 (F ) (@, y58,1m))

Then a € S}' by the proof of Proposition 3.3.3. Moreover, .Fg_ln(a — a) is smooth and
rapidly decaying, thus the lemma follows. ]

Lastly, we note that the operator with full symbol (¢)® is not a b-ps.d.o. unless s € 2N.
By the preceding Lemma, this can be fixed by changing (¢)® by a symbol of order —oo;

more precisely:

Corollary 3.3.7. For each s € R, there is A € U5 (RT) with full symbol As(¢) € S§(RL x
R™), As(¢) # 0 for all ¢ € R™, such that As — (¢)* € S™°(R}. x R").

Proof. The only statement left to be proved is that As can be arranged to be non-vanishing.
Let A, € Sy be the symbol constructed in Lemma 3.3.6. Since X differs from the positive
function (¢)* € S\ S*~! by a symbol of order S~ it is automatically positive for large
|¢]; thus we can choose C' = C(s) large such that As(¢) = As(¢) 4+ C(s)e¢" is positive for
all ¢ € R™. Since e e S, °°, the proof is complete. O
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3.3.1 Radial points

The theorem on the propagation of singularities for an equation Pu = f, P € W*(M), only
gives information about the wave front set of w over the interior, and, separately from this,
over the boundary, since bicharacteristics of P either lie completely within the boundary
or do not intersect it at all. Hence, for the global analysis of non-elliptic b-operators, one
needs additional structure in order to connect these two pieces. Generalized b-radial sets,
see Definition 2.2.2, are such a structure, and we now discuss the propagation of singularities
near them.

We recall the setup, compressing both choices of signs (corresponding to source/sink
behavior within PT 'y M): Let P € U (M) be an operator with real principal symbol p, and
assume that dp does not vanish where p does, i.e. at ¥ = p~1(0), and is linearly independent
of dr, 7 a boundary defining function of M, at {r = 0,p = 0} = S NPS% M. Thus, ¥ is a
smooth submanifold of P $* M transversal to bS}}M . For the generalized radial set L, assume
that L = L4 U L_ with Ly smooth disjoint submanifolds of bS}}M, given by L4 N bS}k(M
where L4 are smooth disjoint submanifolds of ¥ transversal to bS}}M , defined locally near

bS}}M . Fix a defining function p of fiber infinity *S*M C bT M, then we assume that
H, =p""'H,
is tangent to L1 ; we require

P Hpploe = Fho,  —7 Hpln, = TBbo,

_ ” (3.3.8)
BO)B € COO(L:I:)a ﬁ()vﬁ > 0,

and, for a homogeneous degree zero quadratic defining function pg of £ within X, that

F pro — BLOO >0 (339)

within bS}}M , modulo cubic vanishing terms at Ly, with 81 > 0. Then L_ is a source
and L, is a sink within bS}}M , but at L_ there is also a stable, and at L, an unstable,

manifold, namely £_, resp. L. In order to simplify the statements, we assume that

/3 is constant on Ly; 8=/ > 0; (3.3.10)
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we refer to [114, Equation (2.5)-(2.6)], and the discussion throughout that paper, as well
as the numerology in §8.5.4, where a general B is allowed, at the cost of either supg or
inf B playing a role in various statements depending on signs. Finally, we assume that

P—P*e \Ifg"”_z(M ) for convenience; see Remark 3.3.10 for the general case.

Proposition 3.3.8. Suppose P is as above.

Ifs>s,s—(m—1)/2> Br, and if u € H, """ (M) then Ly (and thus a neighborhood
of L) is disjoint from WF}" (u) provided Ly N WFE_mH’T(Pu) =0, Ly N WFEI’T(U) =0,
and in a neighborhood of Ly, L+ N {7 > 0} are disjoint from WE}" (u).

On the other hand, if s — (m —1)/2 < Br, and if uw € H, " (M) then Ly (and thus a
neighborhood of Ly) is disjoint from WF}" (u) provided Ly N WFE_mH’T(Pu) =0 and a
punctured neighborhood of Ly, with Ly removed, in %N bS}}M is disjoint from WFZ’T(U).

Thus, if the a priori regularity s’ of u at L4 exceeds a certain threshold value, we can
propagate H*-regularity from the interior into the boundary. In the low regularity regime,
the threshold value gives an upper bound for the amount of regularity u can have. Roughly
speaking then, the threshold regularity is precisely the regularity of certain conormal solu-
tions of Pu € Hgo " and having higher a priori regularity excludes these, while they are

generally present below the threshold regularity.

Remark 3.3.9. The decay order r plays the role of —Im o in [114] in view of the Mellin trans-
form in the dilation invariant setting identifying weighted b-Sobolev spaces with weight r
with semiclassical Sobolev spaces on the boundary on the line Imo = —r, see [114, Equa-
tion (3.8)-(3.9)] and §3.3.4. Thus, the numerology in this proposition is a direct translation
of that in [114, Propositions 2.3-2.4]. See [114, Remark 4.5] for further information on the

conceptual reason behind the threshold numerology in the semiclassical setting.

Remark 3.3.10. The natural assumption is that the principal symbol of 2%(77 —P*) €
U (M) at Ly is
+BBop ™, BeC™(Ly). (3.3.11)

If B vanishes, Proposition 3.3.8 is valid without a change; otherwise it shifts the threshold

quantity s — (m — 1)/2 — fBr in Proposition 3.3.8 to s — (m —1)/2 — Br + B if B is constant,

with modifications as in [114, Proof of Propositions 2.3-2.4] otherwise.

Remark 3.3.11. While the assumptions listed above for Proposition 3.3.8 are not stable

under perturbations of the operator P € WJ*(M), the estimates derived from it are, as the
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positive commutator proof below relies on the positivity of certain Hamilton derivatives,

and positivity is an open condition.

Proof of Proposition 3.5.8. We remark first that H,pp vanishes quadratically on L4 since
H, is tangent to L4 and pg itself vanishes there quadratically. Further, this quadratic
expression is positive definite near 7 = 0 because it is such at 7 = 0. Correspondingly, we

can strengthen (3.3.9) to

F pro — %po (3.3.12)

being non-negative modulo cubic terms vanishing at £1 in a neighborhood of 7 = 0.
Notice next that, using (3.3.12) in the first case and (3.3.8) in the second, and that L1
is defined in X by 7 = 0, pg = 0, there exist §o > 0 and 41 > 0 such that

a € X, po(a) < do, T(a) < d1, po(a) # 0= (FHppo)(a) >0

and

a €%, pola) < 8y, T(a) < 6 = (27 H,uT) (@) > 0.

Similarly to [114, Proof of Propositions 2.3-2.4], which is not in the b-setting, and [8, Proof
of Proposition 4.4], which is but concerns only sources/sinks (corresponding to Minkowski

type spaces), we consider commutants
Cc T—T\I,Z*(mfl)/Z(M) _ \I,z*(mfl)/Z*T(M)
with principal symbol
¢ = ¢(po)do(po) g1 (r)p > TV py = pp,

where ¢y € C°(R) is identically 1 near 0, ¢ € C°(R) is identically 1 near 0 with ¢/ <0 in
[0,00) and ¢ supported in (—dp, dy), while ¢; € C°(R) is identically 1 near 0 with ¢} < 0
in [0, 00) and ¢ supported in (—d1,07), so that

a € suppd(¢ o pg) Nsupp(¢1 0 7) NE = F(Hppo)(a) > 0,

and 77 'H,7 remains positive on supp(¢1 o 7) N supp(¢ o po).
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The main contribution then comes from the weights, which give
Hp(,/O;S—"_(m_l)/QT_T) _ :F(_ ( - 1)/2 + /BT)B ~—s+(m— 1)/2 —r

where the sign of the factor in parentheses on the right hand side being negative, resp.
positive, gives the first, resp. the second, case of the statement of the proposition. Further,
the sign of the term in which ¢1(7), resp. ¢(po), gets differentiated, yielding :l:Tgﬁogb’l (1),
resp. ¢ (po)Hppo, is, when s — (m — 1)/2 — fr > 0, the opposite, resp. the same, of these
terms, while when s — (m —1)/2 — fr < 0, it is the same, resp. the opposite, of these terms.

Correspondingly,

025(ilP, C*C]) = 72— fo(s = "L~ Br)d6ubr — oBrocud)
T (H ppo)¢ dod + mBopoddhon ) dosip T

We can regularize using using S, € ¥, 3(M) for € > 0, uniformly bounded in v (M),
converging to Id in \II{S)I(M) for &' > 0, with principal symbol (1 + ep~!)7%, as in [114,
Proof of Propositions 2.3-2.4], where the only difference was that the calculation was on
X = OM, and thus the pseudodifferential operators were standard ones, rather than b-
pseudodifferential operators. The a priori regularity assumption on WFi/’T (u) arises as the
regularizer has the opposite sign as compared to the contribution of the weights, thus the
amount of regularization one can do is limited. The positive commutator argument then
proceeds completely analogously to [114, Proof of Propositions 2.3-2.4], except that, as in
[114], one has to assume a priori bounds on the term with the sign opposite to that of
s — (m —1)/2 — pr, of which there is exactly one for either sign (unlike in [114], in which
only s—(m—1)/2+ S Imo < 0 has such a term), thus on XNsupp(¢} o7)Nsupp(¢opg) when
s—(m—1)/2—Br > 0 and on X Nsupp(¢py o7)Nsupp(¢’' opg) when s — (m—1)/2— Fr < 0.

Using the openness of the complement of the wave front set we can finally choose ¢ and
¢1 (satisfying the support conditions, among others) so that the a priori assumptions are
satisfied, choosing ¢, first and then shrinking the support of ¢ in the first case, with the
choice being made in the opposite order in the second case. This completes the proof of the

proposition. [

We will give full details for the proof in the case that the operator P has non-smooth

coefficients, see Theorem 8.5.10.
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Another type of generalized b-radial set shows up on (asymptotically) Minkowski spaces,
the difference being that there is no relative sign difference between p~'H,p and 77 !H,7
in (3.3.8): Thus, the (generalized) radial set in this case is a source/sink not only within
bT}M , but also in the direction transverse to the boundary. In this case, one can in par-
ticular obtain microlocal regularity for free at the radial set provided the a priori regularity
is sufficiently high, since all terms in the positive commutator computation are positive, so
no regularity needs to be required elsewhere. (For saddle points as in Proposition 3.3.8,
the intuitive statement is: If no singularities flow into the saddle, none flow out of it.
For the propagation out of sources/sinks on the other hand, there is no place from which
singularities could propagate.) See [8, §4] and Proposition 5.5.3 for details.

We end this section by presenting a very simple toy example in which a threshold
behavior as in Proposition 3.3.8 can be observed; our applications of course provide much
better examples, but they will be less explicit. To wit, on R, consider the operator P defined
by Pu(x) = zu(x); within the characteristic set T*R \ o, P has radial points at the two
boundary points of TS]R, and the value of the threshold regularity is (0 —1)/2 = —1/2 in

this case, 0 being the order of P. Concretely, suppose v € H? (R) is such that Pu € C*(R).

loc
Then one can write

u=u_(r—1i0)"" +uy(x+i0)"" +us

with u+ € C and us € C*°(R). Now (z £1i0)~! € ngcl/zfo(R); therefore, if we assume a
priori that the regularity of u is 8" > —1/2, then we can conclude that u € C*°(R); on the
other hand, if we only have s’ < —1/2 a priori, then we can only obtain u € H_l/Q_O(R),

loc

but © can have non-trivial conormal behavior at = 0.

3.3.2 Normally hyperbolic trapping

One needs separate microlocal regularity results at (normally hyperbolically) trapped sets,
see Definition 2.3.1. Generalizing the geometric setting considered there slightly, suppose
P e (M), P-P € \P?_Q(M). Let p be the principal symbol of P, which is thus a
homogeneous degree m function on PT*M \ o, which we assume to be real-valued. Let p
denote a defining function of PS* M, and let

o

Z/)\O = b,
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so ¥ = py *(0) € PS*M is the characteristic set. We define the rescaled Hamilton vector
field as H, = p™"'H, € W, (bT*M ). We assume that P has normally hyperbolic trapping in
the b-sense according to Definition 2.3.1, replacing G by p, at the set I' C X, with forward
(resp. backward) trapped set I'_ (resp. I';), and we adopt the notation used there: In
particular, we have the defining function ¢_ € C®(PS*M) of I'_ within PS*M and the
defining function ¢, € C®(PS*M) of I'; within bS}‘(M, in a neighborhood Uy of I'; which
satisfy

Hpdy = —c by + 7 + vy, Hpd— = o + v_po, (3.3.13)

with ¢4 > 0 smooth near I' and p4, v+ smooth near I', and

{4,090} =Hy, ¢ >0 (3.3.14)

near I'; while the boundary defining function 7 of M satisfies
Hym = —car, cp > 0. (3.3.15)

Here we recall from [44, Lemma 5.1], see also [42, Lemma 2.4], that in the closely related

semiclassical setting, one can arrange for any (small) € > 0 that
0 <Vnmin—€< Ci < Vmax T €, (3316)

where iy and Vpyax are the minimal and maximal normal expansion rates; see [44, Equa-
tions (5.1) and (5.2)] for the definition of the latter, with v, also given in (9.2.4) in
Chapter 9, and see also the discussion prior to Theorem 9.2.9. Note that in these works of
Dyatlov our ¢ is denoted by ci. In particular, if M is replaced by [0,00) x X, and if P
is dilation invariant, then the semiclassical and the b-settings are equivalent; since in our
general case C+|bgs s is what matters, we can replace P by N(P), and in particular (3.3.16)
applies, with the expansion rate calculated using p\bT)*{ M-

Let Uy C Uy C Uy be a neighborhood of T" such that the Poisson bracket in (3.3.14) as
well as c+ have positive lower bounds. There is an asymmetry between the roles of ¢+ and

7, and thus we consider the parabolic defining function of I'

pr = ¢% + M7 (3.3.17)
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with M > 0 to be chosen. Then near I,

Py =Hppy = =267 635 + 204647 + 20464 Do — McyT

= —2c4 ¢% — (Mcy — 204 64)T + 20464 Do (3.3.18)
< = py + 2v4. 64 Do, cr >0,

if M > 0 is chosen sufficiently large, consistently with the forward trapped nature of I'_.
(Here the term with py is considered harmless as one essentially restricts to the characteristic
set, o = 0.) Also, note that one can use the reciprocal p = |o|~! of the principal symbol
o of 7D, as the local defining function of »S* M as fiber-infinity in P7*M near I'. (Indeed,
in the semiclassical setting, see §3.3.4, after Mellin transforming this problem, |o|~! plays
the role of the semiclassical parameter h, which in that case commutes with the operator.)
Then

Hpp = —cspt (3.3.19)

with ¢y smooth.

We briefly pause to address the differences and similarities between generalized b-radial
sets and normally hyperbolic trapping in the b-sense: Recall from the previous section that
the b-radial set, locally defined within ¥ by 7 = p = 0, pp = 0, has a stable (7 = 0) and
unstable (p = 0, pp = 0) manifold, with p = py = 0 defining the b-radial set within the
stable manifold, and pg is its defining function within 7 = 0 which gives an advantageous
sign when differentiated along H,, see (3.3.9). Now, the functions p and 7 correspond to
the two fundamental properties of b-spaces, namely regularity and decay, and this is a
fundamental reason why one can prove microlocal regularity estimates near radial sets in
ordinary weighted b-Sobolev spaces: These spaces consist precisely of those functions which
land in L% when one applies appropriate quantizations of p and 7 to them. The analogue
for trapped sets, which have a stable (¢_ = 0) and unstable (7 = ¢+ = 0) manifold within
3, is to engineer spaces whose elements are mapped into L% when one applies quantizations
of ¢1,¢_ and 7 (or rather 71/2, in accordance with (3.3.17)) to them; thus, elements of
such spaces ‘degenerate’ in a controlled manner at ¢, = ¢_ =0 and 7 = 0.

We therefore introduce spaces which we call normally isotropic at I'.> Concretely, let

®Note that ®T* M is not a symplectic manifold (in a natural way) since the symplectic form on PT5;0 M
does not extend smoothly to ®T* M. Thus, the word ‘normally isotropic’ is not completely justified; we use
it since it reflects that in the analogous semiclassical setting, see [124], the set I" is symplectic, and the origin
in the symplectic orthocomplement (7,,I')* of T,,T', which is also symplectic, is isotropic within (T, T')*.
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Qs+ € lllg(M ) have principal symbol ¢4, ﬁo € \I/%(M ) have principal symbol py, and let
Qo € V(M) be elliptic, with real principal symbol for convenience, on U§ (and thus nearby).

Definition 3.3.12. The (global) b-normally isotropic space at I' of order s, H; 1, is defined
by the norm

lulf . = 1 Qouliz; + 19wl + 1Q—wlly + Il + 1 Pouliy + 12, (3.3:20)
Its dual space relative to L} is denoted by H;'1*, is°
’HZ:ES =QoH, *+QiH *+Q_H *+ 71/2Hb—s + ISOH];S i Hb—s+1/2.

Note that microlocally away from I', H} 1 is just the standard H; space, while HZFS is
H_#, since at least one of Qp, @+ and 7 is elliptic. Moreover, \Iflg(M) SA:Hyp — Hf)}k is
continuous since [Q4, A] € \Il]g_l(M ) etc.; the analogous statement also holds for the dual

spaces. We also note the inclusions

H{(M) C M (M) C H V(M) 0 HY ™ (M),

(3.3.21)
HPP (M) + HYVP(M) € My (M) © HE(M).

Further, the last term in (3.3.20) can be replaced by ||u|]?qs,l as i|Q+,Q-] = B*B + R,
b
B e W, '*(M) elliptic at T, R € W; >(M): Indecd, this gives

1Bullfry S 1Q-ullfry + 1QulEry + llullfys

after integration by parts, which thus controls the Hﬁfl/ % norm of u microlocally near I'.

Remark 3.3.13. The notation Hj (M) is justified for the space is independent of the par-
ticular defining functions ¢4 chosen; near I' any other choice would replace ¢+ by smooth

non-degenerate linear combinations plus a multiple of 7 and of py, denote these by gi, and

5We refer to [91, Appendix A] for a general discussion of the underlying functional analysis. In particular,
Lemma A.3 there essentially gives the density of C°°(M) in H3 p(M): One can simply drop the subscript ‘e’
in the statement of that lemma to conclude that Hy®(M) (so in particular Hy(M)) is dense in Hy, (M), and
then the density of C*(M) in Hf)/(M) for any s’ completes the argument. The completeness of Hj, (M)
follows from the continuity of WY (M) on Hiil/z(M).



84 CHAPTER 3. MICROLOCAL ANALYSIS

thus the corresponding @i can be expressed as
ByQi +B_Q_+ Bor + BPy+ BoQo + R, Bu, By, By, B € WY(M), R e U (M),

so the new norm can be controlled by the old norm and vice versa in view of the non-

degeneracy.
The propagation of singularities result at I" then is:
Theorem 3.3.14. With P, Hj 1, HyL as above, for any neighborhood U of T and for any N

there exist By € V(M) elliptic at T' and By, By € W) (M) with WFy(B;) C U, j =0,1,2,
WFL(B2) NI+ =0 and C > 0 such that

1Boullz . < 1B1Pullyre-msr + || Baullig + Cllull v, (3.3.22)

i.e. if all the functions on the right hand side are in the indicated spaces, then Bou € Hirs
and the inequality holds. The same conclusion also holds if we require WF} (By) NT_ = {)
instead of WF(B2) N T4 = 0.

Finally, if r < 0, then, with WF} (Bs) NTy = 0, the analogue of estimate (3.3.22) on

weighted b-Sobolev spaces is

||B0u||H§m < ||Bl73u\|H§_m+1,r + HBguHsz + CHUHHb—N,r, (3.3.23)
while if r > 0, then, with WFL(By) NT_ =0,

[Boullgr < | BiPul| gs—msrr + [| Baul| prgor + Cllul] g (3.3.24)

Remark 3.3.15. Note that the weighted versions (3.3.23)-(3.3.24) use standard weighted b-
Sobolev spaces. This corresponds to non-trapping semiclassical estimates if the subprincipal

symbol has the correct, definite, sign at I'.

Proof. We may assume that U C Uy is disjoint from a neighborhood of WF} (Qo), and thus
ignore the Q¢ term in the definition of Hp - We first prove that there exist By, By, By as
above and Bz € V(M) with WF} (B3) C U such that

1Boullzeg . < 1 BiPullyremm+r + || Baull g + || Bsull -1 + Cllull - (3.3.25)
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An iterative argument will then prove the theorem.
We start by pointing out that for any By € U)(M) and any Bs € U (M) elliptic on
WEF! (Bp), we have

1P Boull g < cuéopuan_m + c’||§3u||H§_1, (3.3.26)

by simply using that P, is an elliptic multiple of P modulo W H(M). Since | BoPul e S
CHBOPUHHE,}-m, the Py contribution to ||B0u||7.1f),F in (3.3.25) is thus automatically con-
trolled.

So let xo(t) = e F/t for t > 0, xo(t) = 0 for t < 0, with f/ > 0 (large) to be specified,
X € C([0,00)) be identically 1 near 0 with X’ < 0, and indeed with X'y = —x3%, x1 >
0, x1 € CX([0,00)), and let ¢» € C*°(R) be identically 1 near 0. As we use the Weyl
quantization,” we write P as the Weyl quantization of p = pg + pp1, with pp; of order m — 1.

Let
a=p D 2y0(py — ¢ + K)x(p4)1(Bo), (3.3.27)

k > 0 small. Notice that if x is supported in [0, R], then on supp a, we have
pr <R, ¢ <pi+r=R+k,

so a is localized near I' if R and x are taken sufficiently small. In particular, the argument

of xo is bounded above by R + k, so given any Mg > 0 one can take F > 0 large so that
Xox0 — Moxg = b*xpxo,

with b smooth and b > 1/2 on the range of the argument of xo.

In fact, we also need to regularize, namely introduce
ac=(1+ep 7 %a, ec0,1], (3.3.28)

which is a symbol of order s —(m—1)/2—2 for € > 0, and is uniformly bounded in symbols of
order s — (m —1)/2 as € varies in [0, 1]. In order to avoid more cumbersome notation below,

we ignore the regularizer and work directly with a; since the regularizer gives the same kind

"The Weyl quantization is in fact irrelevant: If A € ¥ (X) and the principal symbol of A is real, then
the real part of the subprincipal symbol is defined independently of choices, which suffices below.
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of contributions to the commutator as the weight p~5t(m=1/2 these contributions can be
dominated in exactly the same way.

Put W = p™~ 2H p» Which is a smooth vector field near bS*M as pp; is order m — 1,
then Wp = —cy17p similarly to (3.3.19), and W = ¢y 17 by the tangency of W to 7 = 0;
so with p = pg + pp1 as above, we have
1 ~ o~ ~
ZHp(GQ) == (=p+/2+ 22 +v_¢_Po — ppr (W) — pMearT + po— (W)

X 52 (xox0) (p+ — &2 + K)x(p+)*¥(Po)”

(=25 +m —1)p **(—cr — cr)mxo(pr — 6% + £)*x(p1)*$([P0)*  (3.3.29)

+
L\’)M—MJ;\)—K

P2 (P 4+ DW o) (X' x) (p+)x0(p+ — &> + K)*P(Do)?
(—cr —cp1)p 2 (Po)x0(p+ — &2 + £)*x(p+)* (V) (Po)-

+ o+
M\S

A key point is that the second term on the right hand side, given by the weight p—2s+tm—1

being differentiated, can be absorbed into the first by making F > 0 large so that py x{(p4+—
#? + k) dominates

| =25 +m — Lles|rxo(p4 — ¢ + &)

on supp a, which can be arranged as | — 2s +m — 1||c¢|7 is bounded by a sufficiently large

multiple of py there. Thus,

1

4Hp(a2) =—ctal —cta® —aj+2gray +29-a_ +e+e+2ayjip+2a_j_p (3.3.30)

with

ax = 70w/ (xoxb) (01 — &% + )X (P )(Bo),

ap = porl/? ((M(ca/z) — pi+ ¢+ — PMca 1) (xoxo) (p+ — 62 + )

/
25t m = D — epnolpr — 62+ 1)) X(pi (G0,
g = £ (Wos) — v )y Cox) (o — 62 + )x(p4)(Fo).
e = —27 (1 + Wo)xalos Pxolps — 6% + K)0(P0)’,

~ m

€= 5P 2P0 (—c — cr)mxolpr — &% + K) X (o) (V¥ (Bo),
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1 ~
e = E5vsp " 00X o+ — 62 + KIX(p4 )Y (F0)

the square root in ay is that of a non-negative quantity and is C* for M large (so that p4 ¢
can be absorbed into M(cy/2)) and F large (so that a small multiple of x{, can be used to

dominate o), as discussed earlier. Moreover,

suppe C suppa, suppe NIy = (),
supp € C suppa, suppe N = (.

This gives, with the various operators being Weyl quantizations of the corresponding lower
case symbols,
i * k * *
1P AT Al = —(CrAL)"(C4Ay) = (C-A-)(C-A-) — A54p
FGLALHALGL + GEALFALGL (3.3.31)
+YE+E+ALLP AP IA + AT PHPIA_ 4 F

where A € U™ VR(0) AL Ag € UE(M), Gy € UETH(M), E € W2 (M), E € U25(M),
Jp € UFT™(M), F € U ?(M) with WF}(F) C suppa.
Thus, first using P — P* € W' 2(M),

IC5 Ajul* + | C- A—ul]® + || Aoul|
< [(Bu,u)| + [(Bu,u)| + (APu, Au)| + 2| Asul[|Grull + 2| A—ul [G_u|  (3.3.32)

+ 2[(J4 Pu, Apu)| + 2[(J_Pu, A_u)| + 01||151UH§I§_1 + ClHuH?{gN,

where we took Fy € W9(M) elliptic on WF}(F) and with WF} (F}) near I'. Noting that
WF{)(E) N =, elliptic regularity yields

[(Eu,u)| < C||B1Pul[fysm + Cllull;

-N
H,

if By € \Ilg(M) is elliptic on suppe. Let A € \Ill()m_l)/z(M) be elliptic with real principal
symbol A, and let A~ € \IJ};(mfl)/Q(M) be a parametrix for it so that AA™ —Id = Ry €
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U °(M). Then

IA

|(APu, Au)| < [(A~APu, A*Au)|| + [{RoAPu, Au)|

IN

1 - 2 €ilax 2 / 2
2—€HA APul HEZ% + §||A AUHH‘Q); + C'||ul|

—N
Hb

As A*A € Vi (M), for sufficiently small € > 0, the term %HA*AuH,igF can be absorbed
into ||Cy A ul]? + |C_A_u||® + ||Asul? plus ||B0ﬁ0u|]%{g, and as discussed above, the lat-
ter already has the control required for (3.3.25). (The point here is that A% C1C AL —
eA*AQ Q+A* A has principal symbol ciai — eanbi)\z which can be written as the square
of a real symbol for € > 0 small in view of the main difference in vanishing factors in the
two terms being that xj in a%r is replaced by ¢ in a, and thus the corresponding operator
can be expressed as C*C for suitable C', modulo an element of U2572(M), with the latter
contributing to the Hg_l error term on the right hand side of (3.3.25).) On the other hand,
taking By € ¥) (M) elliptic on WF} (A), as A=A € Ui+ (Mr),

[A=APul,.o < C"IBPul3yeimis + C"lull
b, b,I’

HN:
Similarly, to deal with the J4 terms on the right hand side of (3.3.32), one writes
1 2 2 € 2
(Pu, Asu)] < o (1B1Pulem +C"ul ) + 5 Asuls
1 2 1", 112 € 2
< e (IBIPl e+ C"ullf ) + G Asul .
while the G4 terms can be estimated by
el Aul® + e H|Gpul® + el A—ul® + M| G_ul|?,

and for € > 0 sufficiently small, the ||A1u||?> terms in both cases can be absorbed into the
left hand side of (3.3.32) while the G into the error term. This gives, with F5 having

properties as ﬁl,

ICT Agul® + [C-A_ul]® + [|Apul
< [(Bu, u)| + C| ByPull? s msr + Col|Faull s + Collull?,_~.
b,I" b b

By the remark before the statement of the theorem, if By € ¥{ (M) is such that xo(p+ —
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% + k)x(p+)(p) > 0 on WFY(By), HBOUHZS,I/2 can be added to the left hand side at
b

the cost of changing the constant in front of ||Fhu2.._, + ||u|\iI,N on the right hand side.
b b

Taking such By € U (M), and By elliptic on WF} (A) as before, By € W) (M) elliptic on

WF} (E) but with WF} (B2) disjoint from I'y, we conclude that

2 2 2 =2 2
I1Boullzg . < CHBlPUHH;ﬁ;mH + C||Baul|3; + CHFW”H?1 + CHUHHb—M

proving (3.3.25), up to redefining B; by multiplication by a positive constant. Recall that
unless one makes sufficient a priori assumptions on the regularity of u, one actually needs
to regularize, but as mentioned after (3.3.28), the regularizer is handled in exactly the same
manner as the weight.

Now in general, with x as before, but supported in [0, 1] instead of [0, R], let xgr = x(-/R)
and write a = ap, to emphasize its dependence on these quantities. When R and x are
decreased, supp ag,, also decreases in ¥ in the strong sense that 0 < R < R’ and 0 < k < &/
imply that ag . is elliptic on suppag, within ¥, and indeed globally if the cutoff v is
suitably adjusted as well. Thus, if u € Hb_N, say, one uses first (3.3.25) with s = =N + 1,
and with B; given by the proof above, so the Bzu term is a priori bounded, to conclude

H, N+1/2 microlocally near

that Bou € Hf),r and the estimate holds, so in particular, u is in
I' (concretely, on the elliptic set of By). Now one decreases k and R by an arbitrarily small
amount and applies (3.3.25) with s = —N + 3/2; the Bsu term is now a priori bounded

N+1/2, and one concludes that Bou € nglerS/Q’

by the microlocal membership of u in H
so in particular u is microlocally in H N+1 " Proceeding inductively, one deduces the first
statement of the theorem, (3.3.22).

If one reverses the role of ' and I'_ in the statement of the theorem, one simply reverses
the roles of py = ¢% + M7 and ¢2 in the definition of a in (3.3.27). This reverses the signs
of all terms on the right hand side of (3.3.29) whose sign mattered below, and thus the
signs of the first three terms on the right hand side of (3.3.31), which then does not affect
the rest of the argument.

In order to prove (3.3.23), one simply adds a factor 72" to the definition of a in (3.3.27).
This adds a factor 772" to every term on the right hand side of (3.3.31), as well as an

additional term

r

57*27"/’)“2%3)(0(/4 — ¢* 4+ k)*Xx(p1)*Y(p)?,

which for 7 < 0 has the same sign as the terms whose sign was used above, and indeed can
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be written as the negative of a square. Thus (3.3.30) becomes

1
2y _ _ 2 2 2 2 _ 2
—Hy(a") = —cja} —cZa” —aj —a;

4 (3.3.33)
+29+a+ +29_a_+e+e+2jap+2j_a_p

with
=T s
ar = \/?T pc “xolpr — 62 + ©)x(p+ U (p),

" in the definition of

and all other terms as above apart from the additional factor of 7~
ay, etc. Since a, is actually elliptic at I" when r # 0, this proves the desired estimate (and
one does not need to use the improved properties given by the Weyl calculus!). When the
role of I'y and I'_ is reversed, there is an overall sign change, and thus r > 0 gives the

advantageous sign; the rest of the argument is unchanged. O

Remark 3.3.16. The estimate (3.3.22) can be strengthened by adding the term HBOﬁOUHH§+1
to the left hand side, which is controlled by elliptic regularity, likewise for (3.3.23)—(3.3.24).
A more natural way of phrasing such an improvement is to use ‘coisotropic, normally
isotropic’ spaces ﬁ}iI and ﬁf;‘; in the estimate (3.3.22), where the squared norm on ﬁ]‘;r
is defined by

IIUII%EF = [1Qoullfrs + 1Q+ulltys +11Q-ullZs + 17/ 2ull; + HPOUHZE-H/? + IIUIIZE—I/Q,

i.e. strengthening the norm of ]30u by a half, which strengthens the space and weakens its
dual. To obtain the necessary elliptic estimate (3.3.26) with the strengthened norms on
the terms involving Eo, but keeping the norm on Bsu (which is required for the iterative
argument at the end of the proof), one can choose By with WF} (I — By) N T = ) so that
Bs can be chosen to be microsupported away from I'. Then |\§3UHH§_1/2 < CHEE”U’HHE}I/Q
is controlled using the estimate (3.3.22) (with s — 1/2 in place of s), noting that the norm
on BjPu in this case is ||Bl73u||H;:§,m+1/2 < CHBlPuHﬁg,’?—m-&-l, and the error term being

. —3/2 _ .
measured in Hg / ) Hg 1, as required.

3.3.3 Normal operator family; Fredholm analysis for b-operators

We only discuss normal operators of b-differential operators here; for the case of general
b-ps.d.o.s, see [82, §4].
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The normal operator of a b-differential operator A is a model operator at the boundary
X = OM of M, obtained by freezing coefficients of A at X. In order to do this in a
natural way globally on M, we follow [114, §3.1] and trivialize the inward pointing normal
bundle  NX C TxM by a choice of an inward pointing vector field V', which fixes the
differential of a global boundary defining function x. This gives an identification N X =
[0,00); x X =: My. Thus, b-differential operators on M which are invariant under dilations

in  (equivalently: translations in ¢ = —log x) have the form

> ba(y)(=D.) Dy,

jtlal<m

where y are local coordinates in X, and the space of such operators is denoted Diffy'1(Mj).
Now, writing A € Diff{*(M) as

A= Y ajo(z,y)(zD.) DY,
j+lal<m

we define the normal operator of A, denoted N(A), as the operator

N(A) == Y aa(0,y)(zD,) Dy € Diff’; (M) (3.3.34)

jtlal<m

We can (non-canonically) identify a collar neighborhood of X in M with a neighborhood
of {0}z x X in Mjp; transferring A € Diff{'(M) to this neighborhood and extending it
arbitrarily to an operator on My, we then have A — N(A) € «Diff'(My).

Since N(A) is dilation-invariant in z, i.e. translation-invariant in ¢t = —logz, it is
naturally studied by conjugating it by the Mellin transform in z and considering the normal
operator family

~

N(A)(o)

A(o) = Z aja(O,y)ajD;, (3.3.35)
jtlal<m

which is a family of operators in Diff™(X) depending holomorphically on ¢. Thus, E(o)

is the operator on X acting on u € C*>°(X) by choosing any extension f € C>*(M) of u

and defining A(o)u = (27 Az f)|sas; see also [110, §2]. We remark that the normal

operator (family) enjoys many naturality properties: For instance, if A, B € Diff},(M), then

N(AoB) = N(A)oN(B), similarly for the normal operator families; moreover, if v = {%‘T’ v

is the product decomposition of a smooth non-vanishing b-1-density on M near X, with v/
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a 1-density on X (depending on z), then
N(A%)(o) = N(A)*(o), (3.3.36)

where the adjoint of A* is computed relative to v, and the adjoint of N(A) relative to /| x.

One can study A\(O') as a large parameter family of differential operators, or perform a
semiclassical rescaling and thus recast the normal operator family as a semiclassical opera-
tor; we give details and examples in §3.3.4. For now, we content ourselves with showing how
invertibility properties of N(A) on weighted b-Sobolev spaces imply Fredholm properties of
A for elliptic operators A € Diff{"(M); completely analogous arguments will apply in the
non-elliptic settings discussed in Chapter 5. Thus, let us assume that s’ < s € R and the
weight r € R are such that N(A): Hgl’T(M[) — H]‘;/_m’T(MI) is invertible. (Since we con-
sider only elliptic A here, this is only a restriction on the weight; the regularity orders s and
s’ < s can be chosen arbitrarily. Moreover, as we shall see in §3.3.4, the mapping properties
of N(A) on such weighted spaces are determined by N (A)(c) for Im o = —r; combined with
(3.3.36), this will imply that N(A*) is invertible as a map H{;"’_T(MI) — H]i”_m’_T(MI)

for s” € R.) We can then combine the elliptic regularity estimate

el S 4wl + Nl oo (3.3.37)
with the invertibility of the normal operator, to wit

o] S [IN(A)]]

He S (3.3.38)

HY (M)

in the following way: Choose a cutoff x € C*°(M), identically 1 near OM and vanishing
outside a collar neighborhood of dM, then

s’ r < s/ .r 1 - s'r
Il g agy S Il gy + 1L = X0l gy

under an identification of the collar neighborhood of M with a neighborhood of {0} x X
in M; as above. Since (1 — x)u is supported away from the boundary, we have ||(1 —

oo < (1 — o ! f "€ R. To deal with yu, 3.3.38 d
X]iuHHb’ S II( X)uHHb, () for any 7 o deal with yu, we use ( ) an
obtain

Il gy S IV AU

(My) ~ (Mr)
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< [IxAull ) T IX(N(A) = A)ul [N (A), X]ul

H =™ (My)

(3.3.39)

Rty oy

S Al ey £ lixu

(M) o=t Tl 10 oy,

where we used in the last step that N(A) — A € zDiff}’(M;), and that [N(A),x] €
Diff{)"*l(MI) is supported away from OM;. Plugging this into (3.3.37) gives

lell ez any S N Al ro=mr gy + el garir-a (3.3.40)

/
and now the inclusion H; "

(M) < H"(M) is compact. Together with an analogous
estimate for the adjoint of A, we hence obtain Fredholm estimates for A analogous to those
in the boundaryless setting in §3.2.1, implying that ker A C H;"" (M) is finite-dimensional,
and ran A C Hy """ (M) has finite codimension and is equal to the annihilator of ker A* C

H, 57 (M).

3.3.4 Mellin transform and semiclassical analysis

We proceed to describe mapping properties of normal operators, i.e. general dilation-
invariant operators on the model space M; = [0,00), x X. We first study function spaces:
Recall from [114, §3] that the Mellin transform

> dx
(Mu)(or) = [ o u(ay) (3:3.41)
0 T
gives an isometric isomorphism of L?(M, d% dp) with L?(R,, L?(X,dp)) by Plancherel’s
theorem, where du is a 1-density on X, and its inverse is

(M0)(w.9) = 5 [ a*u(oy)dos

more generally, for u € 2" L3 (M), Mu(-—ir) is well-defined as an element of L?(R,, L*(X)),

and the inverse Mellin transform becomes

1
o

(M) (z,y) /I N (0, y) do. (3.3.42)

If u € 2" L%(M;) has compact support in x, the Mellin transform Mu extends to a holo-

morphic function in Imo > —r with values in L%*(X), satisfying sup_,.o<c [[Mu(- +
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i) 2, L2(x)) < oo for all C' < oo, and Mu(- + ia) extends continuously to a = —r
in the topology of L?(R,, L?(X)). Since M intertwines differentiation D, and multiplica-

tion by o, we obtain similar statements for weighted b-Sobolev spaces, namely

k
HE"(Mp) 3 u s Mu(- —ir) € m Y ILA(R Hk_j(X))Z<0’>_kL2(Ro,Hk>71(X))

(o
7=0
(3.3.43)

is an isometric isomorphism, where H }’f(X ) is the semiclassical Sobolev space on X, i.e
u € HF(X) if up to k semiclassical derivatives of u are in L?*(X), where semiclassical
derivatives are ordinary derivatives weighted by h, i.e. hd, with y coordinates on X. Thus
HF(X) = H*(X) as a space, and the norms are equivalent for h bounded away from 0, but
not as h — 0. By interpolation and duality, the isomorphism (3.3.43) extends to all k£ € R.
For u € HS’T(M 1) compactly supported in z, the Mellin transform Mu is holomorphic in
Imo > —r as before, with spaces changed according to (3.3.43).
Now, a dilation-invariant operator A € Diffj;(My) acts on u € Hy"(My) by

M(Au)(0) = A(o)(Mu)(o), Imo = —r.

Hence, in view of (3.3.43), mapping properties of g(a) on semiclassical Sobolev spaces imply
mapping properties of A on weighted b-Sobolev spaces. It is therefore convenient to rescale
A\(a) (which is a differential operator on X of order m large parameter o) to a semiclassical

operator: We introduce h = ||~ and z = ho, so z € C has |z| = 1, and consider
Ap.. == W A(h™'2) € Diff*(X), (3.3.44)

where Diff}"(X) is the algebra of semiclassical differential operators, generated by semiclas-

sical vector fields hV, V € V(X). Concretely then, suppose Ay, . satisfies the estimate
vl (x) < h_ZHAh,zUHHZ—m—e), Im z = —hr, (3.3.45)

where £ is the ‘loss of derivatives’ of Ay, , relative to elliptic operators, for which ¢ = 0,

8ndeed, if A is elliptic as a b—operator then Ay, . is elliptic as a semiclassical operator for Im z = O(h),
and elliptic regularity gives |[v||m: (x) < [|A4n, ZUHH> mex) + AN ||v ||H—N(X) for any N. The error term can be
absorbed in the left hand side for h > 0 sufﬁmently small, giving (3 3.45) for small h, corresponding to the
invertibility of A(c) for |[Imo| < C (for arbitrary, fixed C' > 0) and | Reo| > 1. The full statement (3.3.45)

then requires the invertibility of A(o) for o in the remaining, compact part of the line Imo = —r.
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then [[ull grgr(ary) S 1A ga-cm0 -

One can consider semiclassical pseudodifferential operators on closed manifolds, analo-
gously to ordinary ps.d.o.s on closed manifolds, except that due to the additional semiclas-
sical parameter h, symbolic expansions include additional powers of h; see [129] for details.
In particular, the principal symbol of a semiclassical operator in Wj*(X) is a well-defined
function in S™(7*X), with no homogeneity properties in compact subsets of 7 X; notice
that we are not taking a quotient here. Then, ellipticity, wave front sets etc. can be defined
for semiclassical operators and distributions, see [115, §4.4].

The central feature of the relation between dilation-invariant b-operators A € W (M)
on My = [0,00); x X and their semiclassical rescalings Ay, . then is the following, recalling
that T*X C bT)*(M 7 in a natural fashion here, since we are given a boundary defining
function z, see §2.1.3: The set PS% M; \ PS*X can be identified with Ty UT_ = (d?"” +
T°X) U (—df + T*X) (which in turn can be identified with two copies of T%X) since
bT)‘}MI = span {df } ®T*X, and each R -orbit outside "T* X intersects T, UT_ in a unique
point; see also (2.1.5). This provides the connection between the b- and the semiclassical
perspectives, i.e. between b-analysis on bT)*(M 7 and semiclassical analysis on T*X: In fact,
if a = oy, (A), which is a homogeneous degree m function, then p™a, where p can be taken
as the reciprocal of the absolute value of the symbol of zD, in this region (which is well-
defined, independent of choices), i.e. p = |o|~! = h in the above notation, gives a function
on {£1} x T*X. We thus see that p™a (which can be identified with a|r,, thus with a
function on T*X) is the semiclassical principal symbol ay, . (depending in addition on the
parameter z = ho) of the rescaled operator family Ay, .; that is, h™a(h™12,1) = ap .(n).

In particular, if a conic set is disjoint from 7*X in PT*M;, then its image under the
semiclassical identification lies in a compact subset of 7*X. Thus, for A € U (M7) dilation
invariant, the large parameter principal symbol and wave front set of the Mellin conjugate
A(o) of A are exactly those of A under the above identification of ol @ e PT M,
w € PT*X, with (0,0) € R x T*X, and then the analogous statement also holds for A
considered as an element of ¥;(X) under the semiclassical identification.

>~

Radially compactifying T4 T*X as in §2.1.3, we moreover see that the rescaled
Hamilton vector field of a, restricted to T+ as a b-vector field on T, is equal to the
Hamilton vector field of 5”a on T X . Notice however that this loses information about H,

as a b-vector field in the direction transverse to bT}M 7. This is easily recovered: Formula
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(2.1.3) yields (dropping the dependence on variables in 7% X)
r 'Hyx = Oya(o) = 80(]a]ma(\a]_1a)) =mzap,, + Ozap,,

at ¢ = £1, so 7 H,z = 0,ay,, at the semiclassical characteristic set a};i(O) (which for
z = 41 equals the intersection of the b-characteristic set a=1(0) with 7). The knowledge
of 2= H,x is therefore equivalent to that of 0.ap, .. Let us rephrase this from a different
perspective for A € U*(My) dilation-invariant with real principal symbol a, and let us in
fact assume A — A* € W?_Q(M[): Introducing A, := x7"A2", r € R, we have Zl\r(o) =

~

A(o —ir). In view of
A — Al =A—- A"+ "[A 2"+ [A" 2 |,

we have

1
Tbm—1 (;(AT - A:)) = —rz 'H,z.
i
Hence, for ¢ = g9 — ir € C, 09,7 € R, we compute the large parameter principal symbol

(with r fixed and oq the large parameter)

Tt (%(X(@ - 21(@*)) = Gt (%(A\T(ao) - Zﬂ(ao)*)) — (Imo)zr 'Haz, (3.3.46)

or in the semiclassical rescaling, allowing z = ho (with h = |o|™!) to be complex,

1

A% — -1
2ih(Ah’z Ah,z)) (Imz)z™ " Hyx.

Oh,m—1 (

In particular, at generalized b-radial sets as discussed in §§2.2.1 and 3.3.1, the numerology

(3.3.8) in the normal-to-boundary direction translates directly to the numerology in the

semiclassical setting, see [114, Propositions 2.3 and 2.4] for the general statement and

[114, §4.4], specifically the displayed equation after [114, Equation (4.12)], for the concrete
computation on static de Sitter space.’

At normally hyperbolic trapping in the b-sense, the sign of the Hamilton derivative

of z (analogous to (3.3.15)), i.e. the normal-to-boundary dynamics at the trapped set,

corresponds to a sign condition on the derivative of the semiclassical principal symbol in

9Note that computing the semiclassical principal symbol at fiber infinity, which is the location of the
radial set, is equivalent to computing the principal symbol in (3.3.46) in the standard sense, i.e. without
large parameter.
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the parameter z, see [124, Theorem 1] and [114, §6.4]. In the notation of §3.3.2, notice
that if we merely assume the normal hyperbolicity within bS}}M , in the sense of the above
identification with semiclassical analysis on T*X, as in [124, §1.2], then [124, Lemma 4.1],
as corrected in [123], gives defining functions ¢ of 'y within PS% M; taking an arbitrary
extension in case of ¢, and an extension which is a defining function of I'_ in case of ¢_,
we thus infer that the b-setting considered in §3.3.2 is indeed in one-to-one correspondence
with the semiclassical setting of [44, 124], including the precise numerology.

Anticipating Chapter 4, where we prove global energy estimates for wave equations
on b-spacetimes, we mention a further conceptual analogy between b- and semiclassical
analysis: These estimates rely on the timelike nature of the boundary defining function, in
which case they imply the global forward solvability of linear wave equations in HS’T for
sufficiently negative r, i.e. in growing spaces. In the semiclassical setting, having a timelike
boundary defining function implies the absence of resonances (poles of the inverse normal
operator family acting on suitable function spaces) in Im o > —r for sufficiently negative 7,
which in the dilation-invariant setting also guarantees forward solvability in Hg’r forr <0
by the Paley-Wiener theorem, see [114, Lemma 3.1].

Lastly, we point out the role of high energy estimates for the normal operator family
of an operator A € Diff{'(M): By this, we mean estimates of the form (3.3.45) which are
however only valid for h < hg sufficiently small; thus, undoing the semiclassical rescaling,
these are operator norm estimates for the inverse normal operator family /T(O’)_l which are
polynomial in |o| as | Reo| — oo, with Im o bounded. The exponent of the bound (as well
as the precise function spaces on which one inverts A(c)) determines how many derivatives
one loses (relative to the order of the operator) when inverting N(A) (on matching function
spaces). The polynomial nature of the bound allows to deduce asymptotic expansions to
solutions of Au = f of the form (1.0.3) via a contour shifting argument, see [114, Lemma 3.1],
which we will use frequently in this thesis, see for example Theorem 5.2.3.

Let us summarize our general discussion of b-analysis: The analysis of a b-(pseudo)dif-
ferential operator P has two ingredients, corresponding to the two orders, smoothness and

decay, of the Sobolev spaces:

(1) b-regularity analysis. This provides the framework for understanding PDEs at high
b-frequencies, which in non-degenerate situations involves the b-principal symbol and
perhaps a subprincipal term (as in elliptic regularity and the propagation of singular-

ities in various context, see §§3.3.1 and 3.3.2). This is sufficient in order to control



98 CHAPTER 3. MICROLOCAL ANALYSIS

solutions u in H,"" modulo Hg,’r, s’ < s, i.e. modulo a space with higher regularity,
but no additional decay. Since for the inclusion H;" — Hﬁl’rl to be compact one
needs both s > s’ and r > 7/, this does not control the problem modulo relatively

compact errors.

(2) Normal operator analysis. This provides a framework for understanding the decay
properties of solutions of the PDE. The b-regularity analysis, in non-degenerate situ-
ations, gives control of this family P(c) in a Fredholm sense, uniformly as |o| — oo

~

with Im o bounded [114]. However, in any such strip, P(o)

L will still typically have
finitely many poles o;; these poles, called resonances, dictate the asymptotic behavior
of solutions of the PDE.

In order for P to be a Fredholm operator, one needs to work in spaces such as H;",
where r is such that there are no resonances o; with Imo; = —r, see [82, §6]. We will see
this general perspective in action at many places in the sequel, in particular in Chapters 5
and 9.

3.3.5 Conormal coefficients

Motivated by the discussion of smoothness and conormality in §2.1.2, we show how to extend
the b-pseudodifferential calculus with smooth coefficients to allow for weighted conormal
coefficients. In the local model M with coordinates x,y as usual, we thus want to allow

coefficients a(x,y) € C* (R’ ) satisfying
|(20:)' 0 a(z,y)| < Cjaz”

for all a,j, where v € R is a fixed weight; such functions a are called conormal of order
~v. If v > 0, then a extends by continuity to z = 0 and equals 0 there; in fact, a is in the
Hoélder class Ck’a(@) for k + a < 7. Of course, away from x = 0, conormal functions are

smooth. In terms of t = — log x, the conormality condition becomes

22 a(t, )] < Crae™

for all a,j, which again shows the direct connection of conormal coefficient operators on

M with the uniform calculus on Euclidean space.
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Definition 3.3.17. For m,~y € R, denote by Sv7(R™) (‘b-conormal symbols’) the space
of all functions a(x,y;§,n) € R} x R™ which are holomorphic in § and satisfy

|(20,)F 05 0f08 a(x, y; €,m)| < Caprena” (1 + | Re&| + [n))™ 1l |Im¢| < N, (3.3.47)

for all o, 8, k, ¢, N. Define WIE’J(M)? the space of local conormal b-operators, as the space

of (left) quantizations of such symbols.

As in the considerations following Definition 3.3.1, we only consider symbols and op-
erators with compact support in x, and we shall restrict attention to weights v > 0 for
convenience. Then ¥"7(R™) can be viewed as a subspace of ¥ (R™) after the change
of coordinates from (z,y) to (¢,y). In order to understand compositions of operators in

\Ilﬁjg (M), one also needs to consider two-sided symbols a subject to the condition

|(20:)F05 (20, )F 05 OED alx, y, 2",y €, )]
< Coprowone™ (2')?(1 + |Re €| + )™=l | Imé| < N,

where 71,72 € R are weights. As before, one can extend the proof of Proposition 3.1.2
to show that a quantization of such a two-sided symbols can be written in a unique way
as the left quantization of a b-conormal symbol of order m with weight v = 1 + 2; this
then shows that for A € ¥"7(R?) and B € \Ilﬁ)llc’v/ (R™), one has Ao B € \I/T;:m,’wwl (R™).
Since UM(RY) C \IJE’CO(M), we automatically understand compositions of conormal b-
operators with standard b-operators as well: Namely, such compositions simply produce
local conormal b-operators.

The analytic continuation of b-conormal symbols in £ ensures, as before, that elements
of /(R™) act on weighted b-Sobolev spaces; concretely, since elements of U (R™) act

on standard Sobolev spaces on R", which are the push-forwards of unweighted b-Sobolev

spaces on R”, see (3.3.1), we have

W () 5 A: 1 (RE) — Hy (R,

We can transport the local conormal b-algebra U,,cg >0 ip. (R%) to manifolds in a

way that is analogous to Definition 3.3.4; we thus obtain spaces \Ifgé"y (M) of b-ps.d.o.s on M
of order m with weight ~. (Since we have ensured that operators in the space W27 (M) act

on weighted b-Sobolev spaces, we can in fact allow v to be arbitrary, but the case of v <0
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is of no interest for us here.) The only non-trivial adjustment concerns point (3.3) there:
Namely, condition (3.3.5) for the Schwartz kernel localized off-diagonally near OM x oM
now becomes

|0F 07,050 Ky (t.y.t',y/)| < Caprenre™™ 1,
i.e. the exponential weight in the t-derivative is removed. We can now define:

Definition 3.3.18. We define the algebra Wy, ,c(M) = U,per 50 Yi pe(M) of b-conormal
operators by requiring that elements A € W7 (M) have the form A = B + C with B €
P (M) and C € U (M).

Since we are assuming that the weight ~ is positive, the principal symbol of A €
e (M) is well-defined, and is a sum of a smooth and a conormal (of order ) sym-
bol, in particular it is smooth in ij\}oM , continuous up to ng M, and its restriction to
ngMM is smooth. Hence, the notions of operator wave front set, ellipticity etc. are de-
fined for b-conormal operators as well, and one has a symbolic calculus, elliptic regularity,
propagation of singularities etc.

Furthermore, if we write A = B+ C as in the above definition, we can define the normal
operator of A to be the normal operator of the smooth part, so N(A) := N(B), and we
then have A — N(A) € \Ilg?fofin(l’w)(M) near OM: If v < 1, the normal operator N(A) only
equals A up to an error of size 7. Therefore, for an elliptic b-conormal operator A whose
normal operator is invertible on some weighted Sobolev space, the argument presented in
§3.3.3 establishing the Fredholm property of A goes through once we replace the weight
r—1byr—+in (3.3.39) and (3.3.40).

While many of our later results about wave equations on spacetimes equipped with
smooth Lorentzian b-metrics will also apply to b-metrics which are merely smooth plus
conormal (of positive order), we will usually not make this explicit, except in §5.2.2. Note
that we are not hiding any serious technicalities here, since it will be apparent from the
arguments involving Wy,(M) that they go through with operators in Wy, (M) as well after

almost entirely notational modifications.



Chapter 4
Energy estimates for b-operators

On manifolds M with boundary, we prove local and global energy estimates for b-operators
which equal the wave operator to leading order. Thus, we consider P € Diff2(M) and

assume that there is a Lorentzian b-metric g on M such that
P — 0, € Diff} (M).

The reason for the interest in energy estimates is the fact that initial value problems for
wave equations do not mesh well with microlocal analysis on the spacetime level, i.e. working
directly on M rather than foliating M by spacelike hypersurfaces; for instance, Cauchy
hypersurfaces force a lower bound on the level of Sobolev regularity one can work with.
More to the point, the failure of microlocal analysis to reproduce physical space energy
estimates (that is on M rather than on PS*M), which are closely related to the finite
speed of propagation for the wave equation, is due to the fact that the wave operator is
indistinguishable microlocally, i.e. at high frequencies, from any other real principal type
(possibly pseudodifferential) operator, whereas finite speed of propagation holds only for
hyperbolic differential operators. (Thus, this ‘failure’ really is a feature, as it allows for a
very general, unified treatment of many central aspects of large classes of operators, e.g.
even in the context of wave equations transcending physical space methods when studying
Feynman propagators [51].) We remark that complex absorption may be used to obtain
‘forward’ solutions in the sense of their singularity structure, but in general, this does not
produce forward solutions in the sense of supports; see §5.2.1 for more on this.

Thus, we use energy estimates near spacelike hypersurfaces in order to obtain regularity

101
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for solutions of the Cauchy problem for P nearby, from which point on microlocal analysis,
propagation of singularities etc. is directly applicable. Furthermore, very crude global energy
estimates imply the existence of solutions in low regularity, exponentially growing spaces,
which are then improved in regularity using microlocal high frequency analysis and in decay
using normal operator analysis, as outlined at the end of §3.3.3.

Concretely, we work on domains with corners 2 C M bounded by a artificial spacelike
surfaces as well as by ‘future infinity’ M, motivated by (2.2.5) and Proposition 2.2.1;
we recall the setup below. In §4.1, we prove energy estimates near the artificial surfaces,
uniform up to dM, in fact providing a rather general setting for b-energy estimates on
domains with corners, while §4.2 provides global estimates on 2 on sufficiently weighted

spaces.

4.1 Local energy estimates

Assume that U C M is open, and we have two functions t;,to € C>°(M), both of which,
restricted to U, are timelike (in particular have non-zero differential) near their respective
0-level sets H; and Hs, and

Q= t71(]0, 00)) N5 ([0, 00)) € U.

Notice that the timelike assumption forces dt; to not lie in N*X = N*OM (for its image in
the b-cosphere bundle would be zero), and thus if the H; intersect X, they do so transver-
sally. We assume that the H; intersect only away from X, and that they do so transversally,
i.e. the differentials of t; are independent at the intersection. Then 2 is a manifold with
corners with boundary hypersurfaces Hy, Ho and X (all intersected with §2). We however
keep thinking of €2 as a domain in M.

On a manifold with corners, such as €2, one can consider supported and extendible
distributions; see [64, Appendix B.2] for the smooth boundary setting, with only simple
changes needed for the corners setting, which is discussed e.g. in [110, §3] and indicated in
§3.3. Here we consider 2 as a domain in M, and thus its boundary face X N() is regarded as
having a different character from the H; N €, i.e. the support/extendibility considerations
do not arise at X — all distributions are regarded as acting on a subspace of C*° functions on
Q) vanishing at X to infinite order, i.e. they are automatically extendible distributions at X.

On the other hand, at H; we consider both extendible distributions, acting on C* functions
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vanishing to infinite order at H;, and supported distributions, which act on all C*° functions
(as far as conditions at H; are concerned). For example, the space of supported distributions
at Hy extendible at Hs (and at X, as we always tacitly assume) is the dual space of the
subspace of C*°(€2) consisting of functions vanishing to infinite order at Hy and X (but not
necessarily at Hp). An equivalent way of characterizing this space of distributions is that
they are restrictions of elements of the dual of C*°(M) (consisting of C* functions on M
vanishing to infinite order at X') with support in t; > 0 to C* functions on € which vanish
to infinite order at X and Ha, i.e. in the terminology of [64], restriction to Q \ (Hy U X).

The main interest is in spaces induced by the Sobolev spaces HS’T(M ). For instance,
HT ()

with the first superscript on the right denoting whether supported (e) or extendible (—)
distributions are discussed at H;, and the second the analogous property at Hs, consists of
restrictions of elements of H,'" (M) with support in t; > 0 to @\ (HoUX). (Notice that the
Sobolev norm is of completely different nature at X than at the H;, namely the derivatives
are based on complete, rather than incomplete, vector fields: WV, (M) is being restricted to
€2, so one obtains vector fields tangent to X but not to the H;.) Then elements of C*°(2)
with the analogous vanishing conditions, so in the example vanishing to infinite order at
H; and X, are dense in H;"(M)*~; further the dual of H,"(M)*~ is H, ™ " (M)™* with
respect to the L? (sesquilinear) pairing.

First we work locally. For this purpose it is convenient to introduce another function Ij,

not necessarily timelike, and consider
Qpotr) = 4 ([t0,00)) NG (=00, 11]), Qeggay) = & ((t0,00)) NE (=00, 1)),

and similarly on half-open, half-closed intervals. Thus, {2, ;] becomes smaller as g becomes
larger or t; becomes smaller.

We then consider energy estimates on Qp, 7. In order to set up the following argu-
ments, choose

T_-<T <Ty, Th<T,<Ty,

and assume that Q7 7, is compact, Q7 7v) is non-empty, and t; is timelike on Q7,5

The energy estimates propagate estimates in the direction of either increasing or decreasing
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t;. With the extendible/supported character of distributions at E = T4 being irrelevant for
this matter in the case being considered and thus dropped from the notation, so (—) refers

to extendibility at t; = Tp, consider
) - 727 -
P: ng(Q[To,T+]) — HE T(Q[T07T+]) s s, T € R.

The energy estimate, with backward propagation in t;, from Ij*l([T ", T4]), in this setting

takes the form:

Lemma 4.1.1. Let r € R. There is C > 0 such that for u € Hﬁ’T(Q[To,T+})‘,

”uHHﬁ)’T(Q[TO,Tﬂ)f < C(HPUHHS’T(Q[TO,TH)* + HUHH}I,’T(Q[TO,THﬂzjl([TL,TA))*)' (4.1.1)

This also holds with P replaced by P*, acting on the same spaces.

Remark 4.1.2. The lemma is also valid if one has several boundary hypersurfaces, i.e. if
one replaces fj_l([t[), 00)) by tj_l([tjp, 00)) Nt ([tk,0,00)) in the definition of Qto,,]> and/or
I;l((—oo, t1]) by?;l((—oo, tjyl])ﬁzlzl((—oo, tra]), i.e. regarding t; and/or t; as vector valued,
and propagating backwards in t;, for some fixed jo, under the additional hypothesis that
tj, is timelike in Qp ), and all t;, j # jo, are timelike near their respective zero sets, with
the same timelike character at t;,. (One can also have more than two such functions.) To
see this, replace x(t;) by Xj,(tj,)xx(tx), and analogously with X in the definition of V' in
(4.1.2), where xy is the characteristic function of [ty ,0), while letting W = G(Pdt;,, ).
Then x/'Y7®A! is replaced by X}Xk)?jiszo‘Au + XXX XkTO A etc., and our additional
hypothesis guarantees that the matrix A" is indeed positive definite: The contribution from
differentiating x, is positive definite by the timelike nature of dt;,, while the contribution
from differentiating x;, 7 # Jjo, giving J-distributions at the hypersurfaces tj_l(tj,o), is
positive definite by the second part of the above additional hypothesis and can therefore be
dropped as in the proof of Lemma 4.1.1 below. Thus X;O can still be used to dominate x;;
and the terms in which X; is differentiated have support where t; is in (T‘/f'7j’ Ty ;), so the
control region on the right hand side of (4.1.1) is the union of these sets.

In our application this situation arises as we need domains of the form Q;, j = 1,2,3,

described in Figure 4.1.
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X
t1:T1 tlle
O | Hy 0y H, Qs H,
t, =0 =0
H t, =0
! ! t =0 t =0 t, =0 M1 =0

=T =0

Figure 4.1: Domains on which we will use the energy estimate (4.1.1), with a priori control on
the dark shaded regions. Left: Q1 = t; ([0, 00))Nt; 1 ([To, T1]), written as Q; = t; ([0, 00))N
((=t1)7*((=00,0]) Nt; ' ((—00, T1])), propagating estimates backwards in to. Middle: Qy =
t71([0,71]) N5 ([0, 00)), written as Qo = t71([0,00)) N (t7 ' ([—00, T1)) N (—t2) "L ((—00, 0])),
propagating estimates backwards in to. Right: The same domain, now written as (13 =
((—t1) ([T, 0)) N t2([0,00))) N (—t1)((—00,0]), propagating estimates backwards in
—t;. Equivalently, Q3 = ;([0, 00))N (tl_l((—oo, T1]))N(—t2) "' ((—0o0,0])), and we propagate
in the forward direction in t; using the estimate (4.1.4).

Proof of Lemma 4.1.1. To see (4.1.1), one proceeds as in [114, §3.3] and considers

V= —iX(fj)y(tj)TaW (4.1.2)
with W = G(dt;,-) a timelike vector field and with x,x € C*(R), both non-negative, to
be specified. Then choosing a Riemannian b-metric ¢ with respect to which we compute

adjoints,
. * * * b
—i(V*Oy — O;V) = Pd3C" P,
with the subscript on the right making the dependence of the adjoint on the metric g
explicit, and with
C” = X'XroAF + XX T AF + \XTO R
where Af, Af and R’ are bundle endomorphisms of CPT*M, and AF is positive definite be-

cause W and (the b-vector field dual to) dt; have the same timelike orientation. Proceeding

further, replacing O, by P, one has

—i(V*P = P*V) = Pd5C* Pd + (Ey)5mxX"d + Pdim XX B,

L A (4.1.3)
Cr=x XT“‘Ajj + xX TOAY 4 XXTO‘Rﬁ,
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with Ej bundle maps from the trivial bundle over M to CPT* M, A, A as before, and R

a bundle endomorphism of CPT* M, as follows by expanding
—i(VH(P —0,) — (P —0,)"V)

using that P -0, € Diff{ (M). We regard the second term on the right hand side of the def-
inition of C* in (4.1.3) as the one requiring a priori control by Hu”Hﬁ’T(Q[TO,THﬁle([T’+7T+]))*;
we achieve this by making X supported in (—oo, T} ), identically 1 near (—oo,T?], so dx is
supported in (77,T4). Now making x’ > 0 large relative to x on supp(xX), as in'0 [114,
Equation (3.27)], allows one to dominate all terms without derivatives of x. In order to
obtain a non-degenerate estimate up to t; = Tp, one cuts off x at t; = Tp using the Heaviside
function, so x’ gives a (positive!) d-distribution there. Applying (4.1.3) to v, pairing with
v and integrating by parts, the §-distributions have the same sign as x’A* and can thus be
dropped. Put differently, without the sharp cutoff, one again computes the same pairing,
but this time on the domain 7, 7., thus picking up boundary terms with the correct sign
in the integration by parts, so these terms can be dropped. This proves the energy estimate
(4.1.1) when one takes v = —2r. O

We refer to the proof of the analogous Proposition 8.6.1, in which we discuss the case
of non-smooth metrics, for further details.

Propagating in the forward direction in t;, with a priori bounds in tj_l([T_, T"]), where
now (—) denotes the character of the space at 77, so (—) refers to extendibility at t; = 717,

we have

”uHH}I)’T(Q[TO,Tl])i S C(‘|PUHH£’T(Q[T77T1])* + ||U||Hé,T(Q[T,,Tl]m{jil([TfyTl,]))i) (414)

In particular, for v supported in t; > Tp, the last estimate becomes, with the first superscript
on the right denoting whether supported (e) or extendible (—) distributions are discussed

at t = Tj, the second superscript the same at t = 77,

||u||Hkl)’7"( .o, — < CHPUHHS,T( o3

Q[ToﬁTll) Q[TOle])

Tn [114, Equation (3.27)] the sign of X’ is opposite, as the estimate is propagated in the opposite
direction.
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when
P:HY ()™ — HS*Q’T(Q[TO,TA)"_

and u € HE’T(Q[TOTH)"*. To summarize, we state both this and (4.1.1) in terms of these

supported spaces:

Corollary 4.1.3. Let r,7 € R. Foru € HS’T(Q[T()’TI])"_, one has
||u”H];1,’r(Q[T0,T1]).’7 < C”PUHHS’T(Q[TO,TH)"" (4.1.5)
while for v € HE’F(Q[TO,TH)*", the estimate

e SCIP ] or g (4.1.6)

HUHHLIJF(Q[TOvTﬂ) [TO*Tl])_J

holds.
A duality argument, combined with propagation of singularities, thus gives:

Lemma 4.1.4. Let s > 0, r € R. Then there is C > 0 with the following property: If
fe Hi_l’T(Q[TO’TI])"_, then there exists u € Hy" (Qpy 1y))*~ such that Pu = f and

HUHHS’T(Q[TO,Tl]).’_ < CHfHHf,il’r(Q[To,Tﬂ)"i .

Remark 4.1.5. As in Remark 4.1.2, the lemma remains valid in more generality, provided
that the t; have linearly independent differentials on their joint zero set, and similarly for
the Ij. The place where this linear independence is used (the energy estimate above does
not need this) is for the continuous Sobolev extension map, valid on manifolds with corners,

see [110, §3].

Proof. We work on the slightly bigger region Q7 VAL applying the energy estimates with
Ty replaced by T” , Ty replaced by T, . First, by the supported property at t; = Tp, one can

regard f as an element of Hg_l’T(Q[TLTﬂ) '~ with support in Q) 7). Let
fe By Qg )™ CHY Y (Qupr )™

be an extension of f, so fis supported in Q[T&TH, and restricts to f; by the definition of

spaces of extendible distributions as quotients of spaces of distributions on a larger space,
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see [64, Appendix B.2], we can assume

7 — < o 1.
”fHHb 1, (Q[T’_,T_"_]).’i > 2HfHHb 1, (Q[T’_,Tl]).’7 (4 1 7)

By (4.1.1) applied with P replaced by P*, ¥ = —r,

I < : g
HQZ)HH;’ (Q[TL’Tjr])—,. = CHP ¢||HS’ (Q[T',,Tﬁr])_"’

for ¢ € Hﬁ’?(ﬂm,m)"'- Correspondingly, by the Hahn-Banach theorem, there exists
~ 0,7 —,o\k _ 770, °—
ue (B, Q)™ = Hy (e 1)

such that
(P, ¢) = (@P*0) = (f,0), ¢ €H (1)),

and

|| o.r < OF| -1 1.
HUHHS (Q[T’_,T_’F]).’7 > CHfHHb 1 (Q[T’_,T_"_]).’7 (4 1 8)

One can regard u as an element of HS’T(Q[TﬂT“)"_ with support in Q[TivTJ’r]v with f
similarly extended; then (Pu, ¢) = (f, ¢) for ¢ € C(?O(Q(T_jjr)) (here the dot over C* refers
to infinite order vanishing at X = dM!), so Pu = f in distributions. Since u vanishes on
Qr_ 1), and

fe HS_LT(Q[T,,TH).’_7

propagation of singularities applied on Q7. ) (which has only the boundary OM = X)

r
loc

gives that u € H;’ (Qr ’T-/‘r)) (i.e. here we are ignoring the two boundaries, t; = T_, T,
not making a uniform statement there, but we are not ignoring M = X). In addition, for

X, X € CSO(Q(T_,Tjr))a X = 1 on supp x, we have the estimate

Il gy < COURPE g, gy ) (419)

In view of the support property of u, this gives that restricting to (r_ 7;), we obtain an
element of Hy" (Qr_ p,1)~, with support in Qg 7y, i.e. an element of H)" (Qz, 1,))® - The
desired estimate follows from (4.1.8), controlling the second term of the right hand side of

(4.1.9), and (4.1.7) as well as using Pu = f. O
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At this point, u given by Lemma 4.1.4 is not necessarily unique. However:
Lemma 4.1.6. Let s,7 € R. Ifu € HY" (g, 1,))* is such that Pu =0, then u = 0.

Proof. Propagation of singularities, as in the proof of Lemma 4.1.4, regarding u as a dis-
tribution on (7-,T1) with support in [Ty, T1) gives that u € Hy ) (. 71,)). Taking
Ty < T7 < Th, letting v’ = ulig 1y, (4.1.5) shows that v’ = 0. Since Tj is arbitrary,

this shows u = 0. O

Corollary 4.1.7. Let s > 0, r € R. Then there is C > 0 with the following property: If
fe HS_I’T(Q[ToyTI])"*, then there exists a unique u € Hy'" (Qp 1,))®~ such that Pu = f.
Further, this unique u satisfies

Hu”Hg‘T(Q[TO,Tl])"_ < CHfHHliil’r(Q[To,Tﬂ).’i .

Proof. Existence is Lemma 4.1.4, uniqueness is linearity plus Lemma 4.1.6, which together

with the estimate in Lemma 4.1.4 prove the corollary. O

Corollary 4.1.8. Let s >0, r,7 € R.
Foru € HY" (Qqry 1))~ with Pu € HY " (Qpy )~

||u||H§’T(Q[T07T1])'ﬁ < CHPU‘|H§71’T(Q[TO,T1]).’_7 (4.1.10)
while for v € Hg’F(Q[TmTﬂ)_" with P*v € HéiLF(Q[TO,Tl])_’.J
S, < * s—1,7 . A,
HUHHb’ (Q[T(),Tl])i’. = CHP UHHb 1, (Q[TO,Tﬂ)i’. (4 ]. 1]_)

Remark 4.1.9. Again, this estimate remains valid for vector valued t; and Ij, see Re-

marks 4.1.2 and 4.1.5, under the linear independence condition of the latter.

Proof of Corollary /.1.8. It suffices to consider (4.1.10). Let f = Pu € Hgl’T(Q[TmTﬂ)"_,
and let v/ € HS’T(Q[TO,TI])"* be given by Corollary 4.1.7. In view of the uniqueness state-

ment of Corollary 4.1.7, u = u’. Then the estimate of Corollary 4.1.7 proves the claim. [J
This yields the following propagation of singularities type result:

Proposition 4.1.10. Let s >0, r € R.
Ifu c Hg%,*OO(Q[TO’Tl]).y_ U}Zth PU c Hgil’r(Q[TO’Tl]).’_, then u € HE’T(Q[To,Tl])”_'
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If instead uw € Hy ™" (Qupy 1))~ with Pu € Hl‘j_l’r(Q[TO’Tl])_’_ and for some Ty >
Ty, v € Hijr(Q[To,Tl] \Q(TO,Tl])_7_’ then u € HS’T(Q[TO’Tl])_’_.

Remark 4.1.11. One can ‘mix and match’ the two parts of the proposition in the setting of
Remark 4.1.2, with say a supportedness condition at Ij, and only an extendibility assump-
tion at f, but with H," membership assumption on u in Qz, 7,1\ ' ((—o0, ), Ty < Ti,
with a completely analogous argument. For instance, in the setting of Figure 4.1, one gets
the regularity under supportedness assumptions at Hj, just extendibility at to = 77, but a

priori regularity for ty € (fl, Ty).

Proof of Proposition /.1.10. Applying the existence part of Corollary 4.1.7, we let u/ €
Hy" (Qry,m))®~ be the unique solution in Hy" (Qp 1y1)*~ of Pu' = f where f = Pu €
H Y (Qpym))®™ Then w,u/ € Hy, *™™(Qp ) and P(u — o) = 0. Applying
Lemma 4.1.6, we conclude that u = v/, which completes the proof of the first part.

For the second part, let x € C>°(R) be supported in (7p, 00), identically 1 near [To, 00),
and consider v’ = (x o tj)u € Hé’T(Q[T()’Tl])"*, with the support property arising from the
vanishing of x near Tp. Then Pu’ = [P, (x o tj)]u + (x o t;)Pu. Now the first term on the
right hand side is in Hgfl’r(Q[TmTﬂ)"_ as on the support of dx, which is in Q7 7] \Q(%’Tﬂ,
u is in Hlf’r, and the commutator is first order, while the second term is in the desired space
since Pu € Hsfl’r(Q[TO,Tl])_v_, and as for u itself, the cutoff improves the support property.
Thus, the first part of the lemma is applicable, giving that yu € HS’T(Q[TO,Tl])"*. Since

(1 —x)u € Hy" (Qy,ry)) "~ by the a priori assumption, the conclusion follows. O

4.2 Global energy estimates

We keep the notation from the previous section. We now consider, for s > 0,
P HY Q)%™ — HI7 2 ()%

and
PHD Q)T — HEP(Q) 0.

We now prove global energy estimates; we assume that €2 is such that there is a boundary
defining function T of M with d{ timelike on €1, of the same timelike character as to, opposite

to t1. (As explained in [114, §7], in this case there is C' > 0 such that for Imo > C,
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ﬁ(a) is necessarily invertible.) This in particular holds for the spacetimes described in
Definition 2.5.1.

The energy estimate is:

Lemma 4.2.1. There exists ro < 0 such that for r < rg, —7 < rq, there is C > 0 such that
foru e Hﬁ’r(Q)"*, v E Hg’?(Q)*", one has

ll e < CUHPull o e o)

o « SO0l o

It - (@)=

Proof. We run the argument of Lemma 4.1.1 globally on €2 using a timelike vector field
(e.g. starting with W = G(dTT, .)) that has, as a multiplier, a sufficiently large positive
power o« = —2r of 7, i.e. replacing (4.1.2) by

V = —it*W.

Then the term with 7 differentiated (which in (4.1.3) is included in the R term), and thus
possessing a factor of «, is used to dominate the other, ‘error,” terms in (4.1.3), completing

the proof of the lemma as in Lemma 4.1.1. ]

This can be used as in Lemma 4.1.4 to show the solvability of Pu = f € Hgl’r(Q)”_
by u € HY (Q)*~.

In order to improve regularity, one needs further assumptions on the null-bicharacteristic
flow in 2. We thus assume from now on that Q is a non-trapping spacetime, possibly with
normally hyperbolic trapping, according to Definition 2.5.1: One then uses the propagation
of singularities, which includes the use of the radial point estimate in Proposition 3.3.8,
noting that we are automatically above the weight-regularity-threshold for large negative
weights, and in the trapping case in addition Theorem 3.3.14, specifically the estimate

(3.3.23). We then obtain the following analogues of Corollaries 4.1.7 and 4.1.8.

Corollary 4.2.2. There is rg < 0 such that for r < rg and for s > 0 there is C' > 0 with
the following property: If f € H{jfl’T(Q)"_, then there exists a unique u € H"" ()%~ such
that Pu = f. Further, this unique u satisfies

[ull iy m @y < CllFl e e
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Corollary 4.2.3. There is rg < 0 such that if r < ro, —7 < rg and s > 0 then there is
C > 0 such that the following holds: For u € H," ()%~ with Pu € Hgfl’r(Q)”_, one has

HUHHS’T(Q)'!7 S CHPU/HHﬁ*LT(Q)Q,fu (422)
while for v € Hg’?(Q)_" with P*v € Hg_l’?((l)_”, one has

lv e SCIP | yerr (4.2.3)

”Hﬁ%) ()il

We restate Corollary 4.2.2 as an invertibility statement.

Theorem 4.2.4. There is ro < 0 with the following property: Suppose s > 0, r < rg, and
let
ST — {u c HS,T(Q)O,—: Py € L[§*177’(Q)0,—}7 yS:T = Hg’r(Q).’_,

where P is a priori a map P: Hy" ()~ — H§_2’T(Q)"*. Then
P xS _>ys—1,r

1 a continuous, tnvertible map, with continuous inverse.

Remark 4.2.5. Note that Y*", X" are complete, in the case of X'*" with the natural norm

being [|u||%s.r = [|ul? sr(ye T | Pull _, as follows by the continuity of P as a map

2
HhT ()
HY™(Q)*~ — H7>"(Q)*~ and the completeness of the b-Sobolev spaces H;" (Q)*~.

This will be the starting point for the global analysis of linear and nonlinear waves,

starting with the discussion of generalized static models in §5.2.1.



Chapter 5

Semilinear wave equations

5.1 Introduction

The purpose of this chapter is to show how the microlocal analysis of Chapter 3 and the
energy estimates of Chapter 4 can be combined to give the global solvability of linear and
semilinear wave equations on many classes of spacetimes, in particular those covered by
Definition 2.5.1. The study of much more general quasilinear equations requires technically
more sophisticated tools and is deferred to Chapters 8 and 9.

Concretely, we consider semilinear wave equations in contexts such as asymptotically
de Sitter and Kerr-de Sitter spaces, as well as asymptotically Minkowski spaces. The
word ‘asymptotically’ here does not mean that the asymptotic behavior has to be that of
exact de Sitter, etc., spaces, or even a perturbation of these at infinity; much more general
infinities, that nonetheless possess a similar structure as far as the underlying analysis is
concerned, are allowed, such as spacetimes covered by Definition 2.5.1. Recent progress
[114] and [8] allows one to set up the analysis of the associated linear problem globally
as a Fredholm problem, concretely using the framework of Melrose’s b-pseudodifferential
operators, discussed in §3.3, on appropriate compactifications M of these spaces. This
allows one to use the contraction mapping theorem to solve semilinear equations with small
data in many cases since typically the semilinear terms can be considered perturbations of
the linear problem. That is, as opposed to solving an evolution equation on time intervals
of some length, possibly controlling this length in some manner, and iterating the solution
using (almost) conservation laws, we solve the equation globally in one step.

As Fredholm analysis means that one has to control the linear operator L modulo

113
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compact errors, which in these settings means modulo terms which are both smoother and
more decaying, see §3.3.3, the underlying linear analysis involves both arguments based on
the principal symbol of the wave operator and on its (b-)normal operator family N (L)(o)
on OM. At the principal symbol level one encounters real principal type phenomena as
well as radial points of the Hamilton flow at the boundary of the compactified underlying
space M; these allow for the usual (for wave equations) loss of one (b-)derivative relative
to elliptic problems. Physically, in the de Sitter and Kerr-de Sitter type settings, radial
points correspond to a red shift effect. (In Kerr-de Sitter spaces there is an additional loss
of derivatives dues to trapping.) On the other hand, the b-normal operator family enters
via the poles oj, also called resonances, of the meromorphic inverse N(L)(o)™!; these
poles determine the decay/growth rates of solutions of the linear problem at dM, namely
Imo; > 0 means growing while Imo; < 0 means decaying solutions. Translated into the
nonlinear setting, taking powers of solutions of the linear equation means that growing linear
solutions become even more growing, thus the nonlinear problem is uncontrollable, while
decaying linear solutions become even more decaying, thus the nonlinear effects become
negligible at infinity. Correspondingly, the location of these resonances becomes crucial
for nonlinear problems. We note that in addition to providing solvability of semilinear
problems, our results can also be used to obtain the asymptotic expansion of the solution.

In short, we present a systematic approach to the analysis of semilinear wave and Klein-
Gordon equations: Given an appropriate structure of the space at infinity and given that
the location of the resonances fits well with the nonlinear terms, see the discussion below,
one can solve (suitable) semilinear equations. Thus, the main purpose of this chapter is to
present the first step towards a general theory for the global study of linear and nonlinear
wave-type equations; the semilinear applications we give are meant to show how far we
can get in the nonlinear regime using relatively simple means, and lend themselves to
meaningful comparisons with existing literature, see the discussion below. The approach
readily generalizes to the analysis of quasilinear equations, provided one understands the
necessary (b-)analysis in the setting of non-smooth metrics; see Chapters 8 and 9 for such
a generalization in both the de-Sitter and Kerr-de Sitter type settings.

We now describe our setting in more detail. We consider semilinear wave equations of
the form

(g — N = f + qlu, du)
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on a manifold M where ¢ is (typically; more general functions are also considered) a poly-

nomial vanishing at least quadratically at (0,0), so contains no constant or linear terms,

which should be included either in f or in the operator on the left hand side. The derivative

du is measured relative to the metric structure (e.g. when constructing polynomials in it).

Here g and A fit in one of the following scenarios, which we state slightly informally, with

references to the precise theorems.

(1)

A neighborhood of the backward light cone from future infinity in an asymptotically
de Sitter space, i.e. of a ‘static’ asymptotically de Sitter space, or more general non-
trapping spacetimes in the sense of Definition 2.5.1. In order to solve the semilinear
equation, if A > 0, one can allow ¢ to be an arbitrary polynomial with quadratic
vanishing at the origin, or indeed a more general function. If A = 0 and ¢ depends on
du only, the same conclusion holds. Further, in either case, one obtains an expansion

of the solution at infinity. See Theorems 5.2.6 and 5.2.17, and Corollary 5.2.9.

Kerr-de Sitter space, including a neighborhood of the event horizon, or more general
non-trapping spacetimes with normally hyperbolic trapping in the sense of Defini-
tion 2.5.1. In the main part of the section we assume A > 0, and allow ¢ = q(u)
with quadratic vanishing at the origin. We also obtain an expansion at infinity. See
Theorems 5.3.6 and 5.3.10, and Corollary 5.3.9. However, in §5.3.3 we briefly discuss
non-linearities involving derivatives which are appropriately behaved at the trapped

set.

Global even asymptotically de Sitter spaces. These are in some sense the easiest
examples as they correspond, via extension across the conformal boundary, to working
on a manifold without boundary. Here A = (n —1)2/4+ 0% If Imo < 0 is sufficiently
small and the dimension satisfies n > 6, quadratic vanishing of ¢ suffices; if n > 4
then cubic vanishing is sufficient. If ¢ does not involve derivatives, Imo > 0 small
also works, and if Imo > 0,n > 5, or Imo = 0, n > 6, then quadratic vanishing of
q is sufficient. (The equation is unchanged if one replaces o by —o. The process of
extending across the boundary, however, breaks this symmetry, and in §5.4 we mostly
consider Imo < 0.) See Theorems 5.4.10, 5.4.12 and 5.4.15. Using the results from
‘static’ asymptotically de Sitter spaces, quadratic vanishing of ¢ in fact suffices for all
A > 0, and indeed A > 0 if ¢ = ¢(du), but the decay estimates for solutions are lossy
relative to the decay of the forcing. See Theorem 5.4.17.
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(4) Non-trapping Lorentzian scattering (generalized asymptotically Minkowski) spaces,
A= 0. If ¢ = ¢q(du), we allow ¢ with quadratic vanishing at 0 if n > 5; cubic if
n > 4. If ¢ = q(u), we allow ¢ with quadratic vanishing if n > 6; cubic if n > 4.
Further, for ¢ = ¢(du) quadratic satisfying a null condition, n = 4 also works. See
Theorems 5.5.13, 5.5.15 and 5.5.21.

See [111, 114, 117] for relating analysis on ‘global’ and ‘static’ problems, and see Chap-
ter 2 for a discussion of the settings (1)—(3). We refer to [8, §3] and to §5.5.1 here for a
definition of asymptotically Minkowski spaces, but roughly they are manifolds with bound-
ary M with Lorentzian metrics g on the interior M° conformal to a b-metric § as g = 772,
with 7 a boundary defining function'! (so these are Lorentzian scattering metrics in the
sense of Melrose [83], i.e. symmetric cotensors in the second power of the scattering cotan-
gent bundle, and of signature (1,n — 1)), with a real C*> function v defined on M with dv,
dr linearly independent at S = {v = 0, 7 = 0}, and with a specific behavior of the metric at
S which reflects that of Minkowski space on its radial compactification near the boundary
of the light cone at infinity so that S is the light cone at infinity in this greater generality.
Concretely, the specific form is

72g:§:vd—7-22— (dl®a+a®dl) —h,
T T T

where « is a smooth one form on M, equal to %dv at S, h is a smooth 2-cotensor on M ,
which is positive definite on the annihilator of dr and dv (which is a codimension 2 space).
The difference between the de Sitter-type and Minkowski settings is in part this conformal
factor 772, which however does not affect the behavior of the null-bicharacteristics so one can
consider those of § on PS*M instead; more importantly, at the spherical conormal bundle
bPSN*S of S, the nature of the radial points is source/sink rather than a saddle point (as
in the static de Sitter context) of the flow. One also makes a non-trapping assumption in
the asymptotically Minkowski setting.

We now indicate the specific ways in which these settings fit into the b-framework, and

how the various restrictions described above arise:

(1) Asymptotically ‘static’ de Sitter. Due to a zero resonance for the linear problem when

A = 0, which moves to the lower half plane for A > 0, in this setting A > 0 works in

"1n §5.5 we switch to p as the boundary defining function for consistency with [8].
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general; A = 0 works if ¢ depends on du but not on . The relevant function spaces are
L?-based b-Sobolev spaces on the bordification (partial compactification) of the space,
or analogous spaces plus a finite expansion. Further, the semilinear terms involving
du have coefficients corresponding to the b-structure, i.e. b-objects are used to create

functions from the differential forms, or equivalently b-derivatives of u are used.

Kerr-de Sitter space. This is an extension of (1), i.e. the framework is essentially
the same, with the difference being that there is now trapping corresponding to the
photon sphere. This makes first order terms in the non-linearity non-perturbative,
unless they are well-adapted to the trapping. Thus, we assume A > 0. The relevant

function spaces are as in the asymptotically de Sitter setting.

Global even asymptotically de Sitter spaces. In order to get reasonable results, one
needs to measure regularity relatively finely, using the module of vector fields tangent
to what used to be the conformal boundary in the extension. The relevant function
spaces are thus Sobolev spaces with additional (finite) conormal regularity. Further,
du has coefficients corresponding to the O-structure of Mazzeo and Melrose, in the
same sense the b-structure was used in (1). The range of A here is limited by the
process of extension across the boundary; for non-linearities involving u only, the
restriction amounts to (at least very slowly) decaying solutions for the linear problem

(without extension across the conformal boundary).

Another possibility is to view global de Sitter space as a union of static patches. Here,
the b-Sobolev spaces on the static parts translate into 0-Sobolev spaces on the global
space, which have weights that are shifted by a dimension-dependent amount relative
to the weights of the b-spaces. This approach allows for most of the non-linearities
that we can deal with on static parts; however, the resulting decay estimates on u are

quite lossy relative to the decay of the forcing term f.

Non-trapping Lorentzian scattering (generalized asymptotically Minkowski) spaces,
A = 0. Note that if A > 0, the type of the equation changes drastically; it naturally
fits into Melrose’s scattering algebra rather than the b-algebra which can be used
for A = 0. While the results here are quite robust and there are no issues with
trapping, they are more involved as one needs to keep track of regularity relative to
the module of vector fields tangent to the light cone at infinity. The relevant function

spaces are b-Sobolev spaces with additional b-conormal regularity corresponding to
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the aforementioned module. Further, du has coefficients corresponding to Melrose’s
scattering structure. These spaces, in the special case of Minkowski space, are related
to the spaces used in [69], using the infinitesimal generators of the Lorentz group,
but while the analysis in [69] takes place in an L>°L? setting, we remain purely in a
(weighted) L? based setting, as the latter is more amenable to the tools of microlocal

analysis.

We reiterate that while the way de Sitter, Minkowski, etc., type spaces fit into it differs
somewhat, the underlying linear framework is that of L?-based b-analysis, on manifolds
with boundary, except that in the global view of asymptotically de Sitter spaces one can
eliminate the boundary altogether.

In order to underline the generality of the method, we emphasize that, corresponding
to cases (1) and (2), in b-settings in which one can work on standard b-Sobolev spaces,
the restrictions on the solvability of the semilinear equations are simply given firstly by
the presence of resonances for the Mellin transformed normal operator family in Imo >
0, which would allow growing solutions to the equation, making the non-linearity non-
perturbative, with an exception if Im o = 0, in which case the nonlinear iterative arguments
produce growth unless the non-linearity has a special structure; and secondly by the losses
at high energy estimates for this Mellin transformed operator and the closely related b-
principal symbol estimates when one has trapping: These losses cause the difference in the
trapping setting for non-linearities with or without derivatives. In particular, the results
are necessarily optimal in the non-trapping setting of (1), as shown even by an ODE, see
Remark 5.2.11. In the trapping setting, the treatment of non-linearities with derivatives
requires a more powerful approach, see Chapter 9, though when there are no derivatives in
the non-linearity, we already have no restrictions on the non-linearity, and to this extent
our result is optimal.

On Lorentzian scattering spaces more general function spaces are used, and it is not
in principle clear whether the results are optimal, but at least comparison with the work
of Klainerman and Christodoulou for perturbations of Minkowski space [19, 69, 70] gives
consistent results; see the comments below. On global asymptotically de Sitter spaces, the
framework of [114] and [115] is very convenient for the linear analysis, but it is not clear to
what extent it gives optimal results in the nonlinear setting. The reason why more precise
function spaces become necessary is the following: There are two basic properties of spaces

of functions on manifolds with boundaries, namely differentiability and decay. Whether
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one can have both at the same time for the linear analysis depends on the (Hamiltonian)
dynamical nature of radial points: when defining functions of the corresponding boundaries
of the compactified cotangent bundle have opposite character (stable vs. unstable), which
in particular means that the radial point is a saddle, one can have both at the same time,
otherwise not; see Propositions 3.3.8 and 5.5.3 for details. For nonlinear purposes, the most
convenient setting, in which we are in (1), is if one can work with spaces of arbitrarily
high regularity and fast decay, and corresponds to saddle points of the flow in the above
sense. In (4) however, working in higher regularity spaces, which is necessary in order to
be able to make sense of the non-linearity, requires using faster growing (or at least less
decaying) weights, which is problematic when dealing with non-linearities (e.g. polynomials)
since multiplication gives even worse growth properties then. Thus, to make the nonlinear
analysis work, the function spaces we use need to have more structure; it is a module
regularity that is used to capture some weaker regularity in order to enable work in spaces
with acceptable weights.

While all results are stated for the scalar equation, analogous results hold in many cases
for operators on vector bundles, such as the d’Alembertian (or Klein-Gordon operator) on
differential forms, since the linear arguments work in general for operators with scalar prin-
cipal symbol whose subprincipal symbol satisfies appropriate estimates at radial sets (which
are automatic, for sufficiently high regularity, on de Sitter and Kerr-de Sitter spacetimes),
though of course for semilinear applications the presence of resonances in the closed upper
half plane has to be checked, see §5.2.2 and Remark 5.3.5. This already suffices to obtain
the well-posedness of the semilinear equations on asymptotically de Sitter that we consider
in this chapter; for semilinear equations on asymptotically Kerr-de Sitter spaces, one more-
over needs suitable high energy estimates in the presence of trapping for operators acting
on vector bundles, and while these are not automatic, we prove them for natural vector
bundles on Kerr-de Sitter space in Chapter 6. On asymptotically Minkowski spaces, the
absence of poles of an asymptotically hyperbolic resolvent has to be checked in addition, see
Theorem 5.5.4, and the numerology depends crucially on the delicate balance of weights and
regularity, as alluded to above. (On perturbations of Minkowski space, this follows from the
appropriate behavior of poles of the resolvent of the Laplacian on forms on ezact hyperbolic
space.) We will study resonances for waves on bundles in Chapters 6 and 7, and will point
out the ramifications of the results proved there for applications to nonlinear equations, see

in particular Remark 7.5.3.
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While the basic ingredients of the necessary linear b-analysis were analyzed in [114], the
solvability framework was only discussed in the dilation invariant setting, and in general the
asymptotic expansion results were slightly lossy in terms of derivatives in the non-dilation-
invariant case. We remedy these issues here, providing a full Fredholm framework. The
key technical tools are the propagation of b-singularities at b-radial points which are saddle
points of the flow in PS*M, see Proposition 3.3.8, as well as the b-normally hyperbolic
versions, proved in §3.3.2, of the semiclassical normally hyperbolic trapping estimates [42,
44, 94, 124]; the rest of the Fredholm setup is discussed in §5.2.1 in the non-trapping and
§5.3.1 in the normally hyperbolic trapping setting. The analogue of Proposition 3.3.8 for
sources/sinks was already proved in [8, §4]; our Lorentzian scattering metric Fredholm
discussion, which relies on this, is in §5.5.1.

We emphasize that our analysis would be significantly less cumbersome in terms of tech-
nicalities if we were not including Cauchy hypersurfaces and solved a globally well-behaved
problem by imposing sufficiently rapid decay at past infinity instead (it is standard to con-
vert a Cauchy problem into a forward solution problem). Cauchy hypersurfaces are only
necessary for us if we deal with a problem ill-behaved in the past because complex ab-
sorption does not force appropriate forward supports even though it does so at the level
of singularities; otherwise we can work with appropriate (weighted) Sobolev spaces. The
latter is the case with Lorentzian scattering spaces, which thus provide an ideal example
for our setting. It can also be done in the global setting of asymptotically de Sitter spaces,
as in setting (3) above, essentially by realizing these as the boundary of the appropriate
compactification of a Lorentzian scattering space, see [117]. In the case of Kerr-de Sit-
ter black holes, in the presence of dilation invariance, one has access to a similar luxury:
Complex absorption does the job as in [114]; the key aspect is that it needs to be imposed
outside the static region we consider. For a general Lorentzian b-metric with a normally
hyperbolic trapped set, this may not be easy to arrange, and we do work by adding Cauchy
hypersurfaces, even at the cost of the resulting (rather artificial in terms of PDE theory)
technical complications. We remark that Cauchy hypersurfaces are somewhat ill-behaved
for L? based estimates, which we use, but match L>L? estimates quite well, which explains
the large role they play in existing hyperbolic theory, such as [69] or [64, Chapter 23.2].

We also explain the role that the energy estimates (as opposed to microlocal energy
estimates) play: These mostly enter to deal with the artificially introduced boundaries; if

other methods (like complex absorption) were used to truncate the flow, their role reduces
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to checking that in certain cases, when the microlocal machinery only guarantees Fredholm
properties of the underlying linear operators, the potential finite dimensional kernel and
cokernel are indeed trivial. Asymptotically Minkowski spaces illustrate this best, as the
Hamilton flow is globally well-behaved there; see §5.5.1.

The other key technical tool is the algebra property of b-Sobolev spaces and other
spaces with additional conormal regularity. These are stated in the respective sections;
the case of the standard b-Sobolev spaces reduces to the algebra property of the standard
Sobolev spaces on R™. Given the algebra properties, the results are proved by applying the
contraction mapping theorem to the linear operator.

In summary, the plan of this chapter is the following: In each of the sections below
we consider one of these settings, and first describe the Sobolev spaces on which one has
invertibility for the linear problems of interest, then analyze the algebra properties of these
Sobolev spaces and finally prove the solvability of the semilinear equations by checking that

the hypotheses of the contraction mapping theorem are satisfied.

5.1.1 Previous and related work

The degree to which these nonlinear problems have been studied differ, with the Minkowski
problem (on perturbations of Minkowski space, as opposed to our more general setting)
being the most studied. There semilinear and indeed even quasilinear equations are well
understood due to the work of Christodoulou [19] and Klainerman [69, 70], with their
book on the global stability of Einstein’s equation [20] being one of the main achievements.
(We also refer to the work of Lindblad and Rodnianski [74, 75] simplifying some of the
arguments, of Bieri and Zipser [10] relaxing some of the decay conditions, of Wang [119]
obtaining asymptotic expansions, and of Lindblad [73] for results on a class of quasilinear
equations. Hoérmander’s book [63] provides further references in the general area. There
are numerous works on the linear problem, and estimates this yields for the nonlinear
problems, such as Strichartz estimates; here we refer to the recent work of Metcalfe and
Tataru [92] for a parametrix construction in low regularity, and references therein.) Here we
obtain results comparable to these (when restricted to the semilinear setting), on a larger
class of manifolds, see Remark 5.5.18. For non-linearities which do not involve derivatives,
slightly stronger results have been obtained, in a slightly different setting, in [21]; see
Remark 5.5.19. On the other hand, there is little work on the asymptotically de Sitter
and Kerr-de Sitter settings. The paper by Baskin [7] has roughly comparable generality in
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terms of the setting, though on ezact de Sitter space Yagdjian [126, 125] has studied a large
class of semilinear equations with no derivatives. Baskin’s result is for a semilinear equation
with no derivatives and a single exponent, using his parametrix construction [6], namely
uP with'? p =1+ %, and for A > (n — 1)?/4. In the same setting, p > 1 + % works
for us, and thus Baskin’s setting is in particular included. Yagdjian works with the explicit
solution operator (derived using special functions) in exact de Sitter space, again with no
derivatives in the non-linearity. While there are some exponents that his results cover (for
A > (n—1)%/4, all p > 1 work for him) that ours do not directly (but indirectly, via the
(n=1)2 1 (n=1)°
( 4 - 1 4 )
him while covered by our work for sufficiently large p. However, we point out that the

static model, we in fact obtain such results), the range is excluded by
microlocal, high regularity approach that we take in this chapter (as well as in Chapters 8
and 9) does not apply to low regularity non-linearities covered by the results of Baskin and
Yagdjian. In the (asymptotically) Kerr-de Sitter setting, to our knowledge, there has been
no similar semilinear work. Fully general stability results for Einstein’s equations on de
Sitter space specifically are available by the works of Friedrich [50, 49, 48], Anderson [2],
Rodnianski and Speck [98], Ringstrém [97] and Speck [102].

There is more work on the linear problem in de Sitter, de Sitter-Schwarzschild and
Kerr-de Sitter spaces: We refer to [114] for more details; some references are Polarski [96],
Yagdjian and Galstian [127], S4 Barreto and Zworski [5], Bony and Héfner [13], Vasy [111],
Baskin [6], Dafermos and Rodnianski [26], Melrose, S& Barreto and Vasy [87] and Dyatlov
[40, 39, 41]. Also, while it received more attention, the linear problem on Kerr space
does not fit directly into our setting; see the introduction of [114] for an explanation and
for further references, [27] for more background and additional references, and the recent
work of Dafermos, Rodnianski and Shlapentokh-Rothman [31] on scalar wave decay on all
subextremal Kerr spacetimes, building on their earlier works [30, 29, 100] and following
pioneering work by Kay and Wald [67, 118] in the Schwarzschild setting. Tataru and
Tohaneanu [105, 106] proved decay and Price’s law for slowly rotating Kerr using local
energy decay estimates, and Strichartz estimates were proved by Marzuola, Metcalfe, Tataru
and Tohaneanu [78]. There is further work by Donninger, Schlag and Soffer [36] on L*°
estimates on Schwarzschild black holes, following L> estimates of Dafermos and Rodnianski
[28, 25] and of Blue and Soffer [12] on non-rotating charged black holes giving L® estimates.

There are also nonlinear results on Kerr spacetimes: Tohaneanu [109] and Luk [76] studied

2The dimension of the spacetime in Baskin’s paper is n + 1; we continue using our notation above.
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semilinear forward problems on Kerr, and Dafermos, Holzegel and Rodnianski [24] gave a
scattering construction of dynamical black holes.

There is also physics literature on the subject, starting with Carter’s discovery of Kerr-
de Sitter spacetime [17, 16|, either using explicit solutions in special cases, or numerical
calculations, see in particular [128], and references therein. We also refer to the paper
of Dyatlov and Zworski [46] connecting recent mathematical advances with the physics

literature.

5.2 Generalized static models

In this section we discuss solving semilinear wave equations on asymptotically de Sitter
spaces from the ‘static perspective,” i.e. in neighborhoods (in a blown-up space) of the
backward light cone from a fixed point at future conformal infinity; see Figure 2.4. The
first ingredient is extending the linear theory from that of [114] in various ways, which is
the subject of §5.2.1. Following this, we use this extension to solve semilinear equations

and to obtain their asymptotic behavior.

5.2.1 The linear Fredholm framework

The goal of this section is to fully extend the results of [114] on linear estimates for wave
equations for b-metrics to non-dilation-invariant settings. Namely, while the results of [114]
on linear estimates for wave equations for b-metrics are optimally stated when the metrics
and thus the corresponding operators are dilation-invariant, i.e. when near 7 = 0 the normal
operator can be identified with the operator itself, see [114, Lemma 3.1], the estimates for
Sobolev derivatives are lossy for general b-metrics in [114, Proposition 3.5], essentially
because one should not treat the difference between the normal operator and the actual
operator purely as a perturbation. We first strengthen the linear results in [114] in the
non-dilation-invariant setting using the analysis of b-radial points which are saddle points
of the Hamilton flow, see §3.3.1. This is then used to set up a Fredholm framework for the
linear problem. If one is mainly interested in the dilation invariant case, one can use [114,
Lemma 3.1] in place of Theorem 5.2.3 below, either adding the boundary corresponding to

Hj below, or still using complex absorption as was done in [114].
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Complex absorption

In order to have good Fredholm properties we either need a complete Hamilton flow, or
need to ‘stop it’ in a manner that gives suitable estimates; one may want to do the latter to
avoid global assumptions on the flow on the ambient space. The microlocally best behaved
version is given by complex absorption, discussed in §3.2.3; it is microlocal, works easily
with Sobolev spaces of arbitrary order, and makes the operator elliptic in the absorbing
region, giving rise to very convenient analysis. The main downside of complex absorption is
that it does not automatically give forward mapping properties for the support of solutions
in wave equation-like settings, even though at the level of singularities, it does have the
desired forward property. It was used extensively in [114] — in the dilation invariant setting,
the bicharacteristics on M; = X x [0,00), are controlled (by the invariance) as 7 — oo as
well as when 7 — 0, and thus one need not use complex absorption there, instead decay
as T — oo (corresponding to growth as 7 — 0 on these dilation invariant spaces) gives
the desired forward property; complex absorption was only used to cut off the flow within
the boundary X. Here we want to localize in 7 as well, and while complex absorption
can achieve this, it loses the forward support character of the problem. However, as it is
conceptually much cleaner, we discuss Fredholm properties using it first before turning to
adding artificial (spacelike) boundary hypersurfaces instead.

So suppose P € W' (M), M a manifold with boundary X = 0M, and let p be the
principal symbol of P. Assume that the characteristic set % of P has the form

S=%,U%_,

with each of ¥4 being a union of connected components, and that P has a (generalized)
radial set L = L U L_ with Ly C ¥X4; we adopt the notation used there, see in particular
(3.3.8), (3.3.9) and (3.3.10). Adding complex absorption, we now consider P—iQ € W' (M),
Q € V" (M), with real principal symbol ¢, being the complex absorption similarly to [114,
§62.2 and 2.8]; we assume that WF} (Q)N L = ). Here the semiclassical version, discussed in
[114] with further references there, is a close parallel to our b-setting; it is equivalent to the
b-setting in the special case that P, Q are dilation-invariant, for then the Mellin transform

gives rise exactly to the semiclassical problem, see §3.3.4.

Fq > 0 near 4.
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Under these sign conditions on ¢, we showed in §3.2.3 (which translates directly to the
b-setting) that estimates can be propagated in the backward direction along the Hamilton
flow on X and in the forward direction for ¥_, or, phrased as a wave front set statement
(the property of being singular propagates in the opposite direction as the property of being
regular!), WF}" (u) is invariant in £y \ WFS™™*L7(P — jQ)u under the forward Hamilton
flow, and in ¥_ \ WF*~™FL7((P —iQ)u) under the backward flow.

In analogy with Definition 2.5.1, we say that P—¢Q is non-trapping if all bicharacteristics
in ¥ from any point in ¥\ (Ly U L_) flow to Ell(¢) U Ly U L_ in both the forward and
backward directions (i.e. either enter Ell(¢) in finite time or tend to L4 U L_). Notice that
as Xy are closed under the Hamilton flow, bicharacteristics in £y \ (L4 U L_) necessarily
enter the elliptic set of Q in the forward (in X ), resp. backward (in 3_) direction. Indeed,
by the non-trapping hypothesis, these bicharacteristics have to reach the elliptic set of Q
as they cannot tend to Ly, resp. L_: for £, and £_ are unstable, resp. stable manifolds,
and these bicharacteristics cannot enter the boundary (which is preserved by the flow), so
cannot lie in the stable, resp. unstable, manifolds of L, U L_, which are within bS}M .
Similarly, bicharacteristics in (X NPS% M) \ (L4 U L_) necessarily reach the elliptic set of
Q in the backward (in X, ), resp. forward (in ¥_) direction. Then for s,r satisfying

s—(m—1)/2> pr
one has an estimate

[ullgpr < CIP = iQ)ull ys—msrr + Cllull (5.2.1)

sliry
Hb

provided one assumes s’ < s,
/
s —(m—1)/2>pr, ueH "

Indeed, this is a simple consequence of the fact that u € Hﬁl’r and (P —iQ)u € Hg_mﬂ’r
imply w € HJ". This implication in turn holds as on the elliptic set of Q one has the
stronger statement u € Hgﬂ’r under these conditions, and then using real-principal type
propagation of regularity in the backward direction on ¥ and the forward direction on ¥ _|

one can propagate the microlocal membership of Hﬁ’r (i.e. the absence of the corresponding
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wave front set) in the backward, resp. forward, direction on ¥, resp. ¥_. Since bichar-
acteristics in L4 \ (L4 U L_) necessarily enter the elliptic set of Q in the forward, resp.
backward direction, and thus one has H;"" membership along them by what we have shown,
Proposition 3.3.8 extends this membership to Ly, and hence to a neighborhood of these,
and by our non-trapping assumption every bicharacteristic enters either this neighborhood
of L4 or the elliptic set of Q in finite time in the backward, resp. forward, direction, so by
the real principal type propagation of singularities we have the claimed microlocal mem-
bership everywhere. This implies (5.2.1) either via the closed graph theorem, or directly if
one uses the quantitative versions of elliptic regularity, propagation of singularities etc., see
also the discussion at the end of §3.1.3.

Reversing the direction in which one propagates estimates, one also has a similar esti-

mate for the adjoint P* + iQ*, except now one needs to have
s—(m—1)/2< pr

in order to propagate through the saddle points in the opposite direction, i.e. from within
bS% M to L4. Then for s’ < s,

[ull gy < ClI(P* +iQ%)ull ys-msrr + Cllull (5.2.2)

J2

As already pointed out in §3.3, the issue with these estimates is that Hg’r does not
include compactly into the error term Hgl’r on the right hand side due to the lack of
additional decay. We thus further assume that there are no poles of the inverse of the
Mellin transformed normal operator family (P —iQ) (o) (see §3.3.3) on the line Imo = —r.
Then using the Mellin transform, which is an isomorphism between weighted b-Sobolev
spaces and semiclassical Sobolev spaces (see §3.3.4), and the estimates for (P —iQ) (o)
(including the high energy, i.e. semiclassical, estimates, all of which is discussed in detail in
[114, §2] — the high energy assumptions of [114, §2] hold by our assumptions on the b-flow
at bS}}M , and which imply that for all but a discrete set of r the aforementioned lines do

not contain such poles), we obtain that on Ry x oM

[ollgggem < ClIN(P = iQ)vl| yo—m1.r
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when
s—(m—=1)/2> pr.

Again, we have an analogous estimate for N(P* +iQ*):
[l zgr < CIN(P™ +iQ7) vl ys—msrr,
provided —r is not the imaginary part of a pole of the inverse of (P*+iQ*)”, and provided
s—(m—1)/2 < pr.

As (P*+1iQ*) (o) = (P —1Q)")*(7), see (3.3.36), the requirement on —r is the same as
r not being the imaginary part of a pole of the inverse of (P —iQ)".

We apply these results using the same argument that led up to (3.3.40); in the present
context, the estimate (5.2.1) requires control of (P —iQ)u in a b-Sobolev space whose reg-
ularity is 1 stronger than what would be needed for elliptic operators, and correspondingly

the norm of the second term in (3.3.39) needs to be increased by 1. Thus,

lull gr < CHP — iQ)ull grg—mrr + Cllull srsa.r—a, (5.2.3)

‘11 .
H; 71 s compact when we choose, as we may, s’ < s—1,

where now the inclusion H;"" —
requiring, however, s’ — (m — 1)/2 > fr, so that the radial point estimate can be applied
to N(P —iQ). Recall that this argument required that s,r, s’ satisfied the requirements
preceding (5.2.1), and that —r is not the imaginary part of any pole of (P —iQ)".

Analogous estimates hold for (P —iQ)* where now we write s, 7 and §’ for the Sobolev

orders for the eventual application:
lull e < CUP = Q) ull pg-merm + Cllull a7, (5.2.4)

provided s, 7 in place of s and r satisfy the requirements stated before (5.2.2), and provided
—7 is not the imaginary part of a pole of (P*+iQ*)™ (i.e. 7 of (P —iQ)"). Note that we do
not have a stronger requirement for 5’, unlike for s’ above, since upper bounds for s imply
those for s’ < s.

The estimates (5.2.3) and (5.2.4) are ‘Fredholm estimates’ as in §3.2.1; we thus obtain
Fredholm properties of P — ¢Q (see also [114, §2.6] for the functional analytic argument
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in the present context), in particular solvability, modulo a (possible) finite dimensional
obstruction, in H™" if
s—(m—1)/2—1> pr. (5.2.5)

Concretely, we take s =m — 1 —s, 7 = —r, s’ < s — 1 sufficiently close to s — 1 so that
s’ — (m —1)/2 > pr (which is possible by (5.2.5)). Thus, s — (m — 1)/2 > [r means
s—(m—1)/2=(m—1)/2 —s < —fr = T, so the space on the left hand side of (5.2.3)
is dual to that in the first term on the right hand side of (5.2.4), and the same for the
equations interchanged, and notice that the condition on the poles of the inverse of the
Mellin transformed normal operators is the same for both P —iQ and P* +i¢Q*: —r is not

the imaginary part of a pole of (P — Q). This yields:
Proposition 5.2.1. Suppose that P is non-trapping. Suppose s,7 € R, s—(m—1)/2—1 >
Br, —r is not the imaginary part of a pole of (P —iQ)~ and let
XS ={ue HY'(M): (P —iQu € H " (M)}, Y*" = H>" (M),

where P —1Q is a priori a map

. R —27

P—iQ: HX"(M)— Hy =" (M).

Then

P—iQ: X5 — ysir
s Fredholm.

We remark that V", X*" are complete, in the case of X*" with the natural norm being

|ul/%sr = [|ull? sy + (P — iQ)uHZ{:_M(M). See Remark 4.2.5.
Initial value problems

As already mentioned, the main issue with this argument using complex absorption that it
does not guarantee the forward nature (in terms of supports) of the solution for a wave-like
equation, although it does guarantee the correct microlocal structure. So now we assume
that P € DiffZ (M) with

P — O, € Diff} (M) (5.2.6)
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for a Lorentzian b-metric g, as in Chapter 4. Then one can run an argument completely
analogous to the above, obtaining Fredholm properties of P using energy estimates by
restricting the domain we consider to be a manifold €2 with corners, where the new boundary
hypersurfaces are spacelike with respect to g, i.e. given by level sets of timelike functions.
Such a possibility was mentioned in [114, Remark 2.6], though it was not described in
detail as it was not needed there, essentially because the existence/uniqueness argument
for forward solutions was given only for dilation invariant operators. The main difference
between using complex absorption and adding boundary hypersurfaces is that the latter
limit the Sobolev regularity one can use, with the most natural choice coming from energy
estimates. However, a posteriori one can improve the result to better Sobolev spaces using
propagation of singularities type results.

We assume that €2 C M, equipped with the b-metric g, is a non-trapping spacetime
in the sense of Definition 2.5.1, and that P € Diffz(M) satisfies P — O, € Diff}(M). We
proved global energy estimates and b-regularity on weighted spaces for P in §4.2, see in
particular Theorem 4.2.4, giving the invertibility of P: X*" — Y517 for s > 0, r < 0,
with

X5 ={ue HY"(Q)%": Pue HIV(Q)%7), Y9 = HY(Q)".

Correspondingly, the normal operator family 73(0) is a family of operators on
Y:=QnX, X=0M,

and the semiclassical analysis of 73(0) therefore takes place on supported/extendible Sobolev

spaces. Concretely, 73(0): X5 — yg—l is Fredholm, with
X5 = {ue H(Y)": Blojue HUY) ), D= H(Y),

for s >1/2—fBImo, s > 0, the latter requirement coming from the use of energy estimates
near the Cauchy hypersurface 0Y, and one has non-trapping high energy estimates on
semiclassical Sobolev spaces. (Note here that the space X only depends on the principal
symbol of P(c), which is independent of o, cf. the discussion around [114, Equation (2.22)]
and in §A.2.)

Remark 5.2.2. Using normal operators as in the discussion leading to Proposition 5.2.1,

one would get the following statement: Suppose s > 1, s —3/2 > fBr. Then with A'*",
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Y*" as above, P: X%" — V5" is Fredholm. Here the main loss, which is an artifact of
combining local energy estimates with the b-theory, is that one needs to assume s > 1; this
is done since in the argument one needs to take s’ with s’ + 1 < s in order to transition
the normal operator estimates from N(P)u to Pu and still have a compact inclusion, but
the normal operator estimates need s’ > 0 as they are again based on energy estimates
due to the boundary Hs; in the semiclassical setting of the normal operator analysis, the
latter are proved in [114, Proposition 3.8] when combined with semiclassical propagation of
singularities, see [115, §4.4]. Using the direct global energy estimate eliminates this loss. In
particular, in the complex absorption setting, this problem does not arise, but on the other

hand, one need not have the forward support property of the solution.

The methods of [114] are immediately applicable to obtain an expansion of the solutions;
the main point of the following theorem is the elimination of the losses in differentiability

in [114, Proposition 3.5] due to Proposition 3.3.8.

Theorem 5.2.3. (Strengthened version of [114, Proposition 3.5].) Let Q C M, equipped
with the b-metric g, be a non-trapping spacetime as above, with T a boundary defining
function with dr /T timelike, t; = 10 — T as in (2.2.5), and P as in (5.2.6).

Let o be the poles 0f7/5_1, and let ¢ be such that Imoj+0 ¢ N for all j. Let ¢ € C*(R) be
such that supp ¢ C (0,00), and pot; =1 near’Y = X NQ. Then for s > 3/2+ 5L, there are
mj € N such that solutions of Pu = f with f € H{j_l’e(Q)"_, and with v € H*"°(Q)*~,
s> s0>1, s9—1/2> pro satisfy that for some aj,, € C°(Y),

' =u— Z Z Z 79 (log 7)%(¢ 0 t1)aj, € HS’K(Q)"ﬂ (5.2.7)

Jj leN k<my

where the sum is understood to be over a finite set with —Im o+l < £. Here the (semi)norms
of both ajy, in C(Y) and u’ in HS’E(Q)"_ are bounded by a constant times that of f in
H V@)

The analogous result also holds if f possesses an expansion modulo Hg_l’Z(Q)"_ of the
form

F=F+> > m(logr)"(¢otr)aje,
J Kr<m

with ' € Hgfl’g(ﬂ)”_ and aj,. € C*(Y'), where terms corresponding to the expansion of the
f are added to (5.2.7) in the sense of the extended union of index sets [82, §5.18], recalled
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below in Definition 5.2.12.

Thus, on static de Sitter space, in terms of the time coordinate t, = —log7 as in §2.2.1
(which extends across the cosmological horizon), the expansion (5.2.7) yields (in the case
¢ < 0) exponential decay in ¢, up to a finite-dimensional space of resonances. See also
Theorem 6.1.1 for a formulation of the above theorem (albeit in the Kerr-de Sitter setting)

in these terms.

Remark 5.2.4. Here the factor ¢ oty is added to cut off the expansion away from H;, thus
assuring that «’ is in the indicated space (a supported distribution).

Also, the sum over [ is generated by the lack of dilation invariance of P. If we take ¢
such that —Imoj; > £ — 1 for all j, then all the terms in the expansion arise directly from
the resonances, thus [ = 0 and mjg + 1 is the order of the pole of P~ at oj, with the ajo,

being resonant states.

Proof of Theorem 5.2.5. First assume that —Imo; > ¢ for every j; thus there are no terms
subtracted from w in (5.2.7). We proceed as in [114, Proposition 3.5], but use the propaga-

tion of singularities, in particular Propositions 3.3.8 and 4.1.10, to eliminate the losses. See

Figure 5.1.
Le XLy
Hs Q Hs
H,

Figure 5.1: Setup for the discussion of the forward problem on non-trapping spacetimes.
Near the spacelike hypersurfaces H; and Hs, which are the replacement for the complex
absorbing operator Q, we use standard (non-microlocal) energy estimates, and away from
them, we use b-microlocal propagation results, including at the radial sets L. The bichar-
acteristic flow, in fact its projection to the base, is only indicated near Ly; near L_, the
directions of the flowlines are reversed.

First, by the propagation of singularities, using sg — 1/2 > fBrg and s > sg, s > 0,

ue HI Q).
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Thus, as P — N(P) € 7Diff3 (M),
NPwu=f—f, [f=@P—NP)uecH > Q) (5.2.8)

Applying'® [114, Lemma 3.1] (using s > so > 1), which is the lossless version of [114,
Proposition 3.5] in the dilation invariant case, one obtains (5.2.7) with ¢ replaced by ¢ =
min(¢, 79 + 1) except that u = u’ € Hﬁfl’fl(Q)”_ corresponding to the f term in N(P)u
rather than v = v’ € HS’K/(Q)"* as desired. However, using Pu = f € Hé_l’gl (Q)*~, we
deduce by the propagation of singularities, using s — 1 > 8¢/ +1/2, s > 0, that v = v’ €
Hﬁ’[(ﬂ)”_. If ¢ < rop+ 1, we have proved (5.2.7). Otherwise we iterate, replacing ro by
ro + 1. We thus reach the conclusion, (5.2.7), in finitely many steps.

If there are j such that —Imo; < £, then in the first step, when using [114, Lemma 3.1],
we obtain the partial expansion u; corresponding to ¢/ = min(¢, 79 + 1) in place of ¢; here
we may need to decrease ¢/ by an arbitrarily small amount to make sure that ¢ is not
—Imo; for any j. Further, the terms of the partial expansion are annihilated by N(P), so
u’ satisfies

Pu' = Pu— N(P)uy — (P — N(P))us € Hy™ (@)%~

as (P — N(P))u; € HSO’TOH(Q)"* in fact due to the conormality of u; and P — N(P) €
TDiﬂ“%(M ). Correspondingly, the propagation of singularities result is applicable as above
to conclude that v’ € HS’EI(Q)"_. It £ < rop+ 1 we are done. Otherwise we have better

information on fin the next step, namely

f=(P=N(P)u=(P-NP) +(P-NP)u

with the first term in H; > (Q)*~ (same as in the case first considered above, without

relevant resonances), while the expansion of u; shows that (P — N(P))u; has a similar
expansion, but with an extra power of 7 (i.e. 7% is shifted to 79%*1). We can now apply
[114, Lemma 3.1] again; in the case of the terms arising from the partial expansion, uq,

+1

there are now new terms corresponding to shifting the powers 7% to 799 Tl as stated

in the referred Lemma, and possibly causing logarithmic terms if o; — ¢ is also a pole of

B [114], Lemma 3.1 is stated on the normal operator space M7, which does not have a boundary face
corresponding to Ha, i.e. Sz X [0,00), with complex absorption instead. However, given the analysis on Y
discussed above, all the arguments go through essentially unchanged: This is a Mellin transform and contour
deformation argument.
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PL Iterating in the same manner proves the theorem when f € H{:_l’e(Q)"_. When f
has an expansion modulo Hﬁfl’e(Q)"_, the same argument works; [114, Lemma 3.1] gives
the terms with the extended union, which then further generate additional terms due to

P — N(P), just as the resonance terms did. O

There is one problem with this theorem for the purposes of semilinear equations: The
resonant terms with Imo; > 0 which give rise to unbounded, or at most just bounded,
terms in the expansion which become larger when one takes powers of these, or when one
iteratively applies P~ (with the latter being the only issue if Im o; = 0 and the pole is
simple). See Remark 5.2.11.

Concretely, we now consider an asymptotically de Sitter-like space (M ,g) and blow
up a point ¢ at the future boundary )N(+, as discussed in §2.2.2, to obtain the analogue
M = [M ;q] of the static model of de Sitter space with the pullback-metric g, which is a
b-metric near the front face; let P = [, — A. The metric of the asymptotically de Sitter
space, frozen at ¢, induces a de Sitter metric, gg, which is well defined at the front face of
the blow up M (but away from its side faces) as a b-metric. In particular, the resonances in
the ‘static region’ of any asymptotically de Sitter space are the same as in the static model
of actual de Sitter space.

On actual de Sitter space, the poles of P~ are those on the hyperbolic space in the
interior of the light cone equipped by a potential, as described in [111, Lemma 7.11], or
indeed in [114, Proposition 4.2] where essentially the present notation is used.'* As shown
in Corollary 7.18 of [111], converted to our notation, the only possible poles are at

n—1 (n—1)2

B2 —iN, 5N = T+ y

— (5.2.9)

and for A = 0, the highest resonance s (0) = 0 is simple. (We will give a direct, robust proof
of the latter fact in Chapter 7, see Theorem 7.5.1, which does not recover the entire set of
possible poles though; however, for nonlinear applications, control of the highest resonance
in this way is already sufficient to obtain existence and exponential decay to a zero resonant

2

state.) In particular, when A = m*, m > 0, we conclude:

Lemma 5.2.5. Form >0, P =0, — m?, g induced by an asymptotically de Sitter metric

as above, all poles of P have strictly negative imaginary part.

1n [111, Lemma 7.11), —o? plays the same role as ¢ here or in [114, Proposition 4.2].
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In other words, for small mass m > 0, there are no resonances o of the Klein-Gordon
operator with Imo > —¢p for some ¢y > 0. Therefore, the expansion of u as in (5.2.7)
no longer has a constant term. Let us fix such m > 0 and ¢y > 0, which ensures that
for 0 < € < €p, the only term in the asymptotic expansion (5.2.7), when s > 1/2 + € and
fe Hgfl’e(Q)"_, is the ‘remainder’ term «' € H"“(Q)*~. Here we use that § = 1 in de
Sitter space, hence on an asymptotically de Sitter space, see (2.2.12), and in the semiclassical
setting [114, §4.4], in particular the second displayed equation after Equation (4.16) there
which computes § in accordance with Remark 3.3.9.

Being interested in finding forward solutions to (nonlinear) wave equations on generalized

static de Sitter spaces, we now define the forward solution operator
Ska: HYV(Q)S™ — HY(Q)%~ (5.2.10)
using Theorems 4.2.4 and 5.2.3.

5.2.2 Operators on bundles; conormal metrics

As already alluded to in §5.1, we point out that the above arguments, leading up to Theo-
rem 5.2.3, go through without changes on general non-trapping spacetimes (M, g) for second
order b-differential operators P acting on sections of a finite rank complex vector bundle £
over M if o1, 2(P) = G -id (in particular, P is principally scalar), which generalizes (5.2.6),
yielding resonance expansions for forward solutions of Pu = f as in Theorem 5.2.3; note
here that the energy estimates developed in Chapter 4 work with bundles as well by the
same proofs, and the microlocal energy estimates, both in the b- and in the semiclassical
(normal operator) setting, are symbolic arguments that only rely on the principal sym-
bol, except at radial points, where the subprincipal symbol enters through the threshold
regularity; see also [114, Remark 2.1].

More precisely, in order to make sense of adjoints and integration by parts in positive
commutator estimates, which we use both for standard and for microlocal energy estimates,
equip £ with an arbitrary Hermitian inner product and any smooth b-connection, which
gives a notion of differentiating sections of £ along b-vector fields; over € (which is compact),
all choices of inner products are equivalent. We can then define the b-Sobolev space H (€2, E)
for s € Ny to consist of all sections of £ over ) which are square integrable (with respect

to the volume density |dg| induced by the metric g) together with all of its b-derivatives up
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to order s, using the b-connection on £ to define the latter, and extend this to all s € R
by duality and interpolation, or via the use of b-pseudodifferential operators. Weighted
b-Sobolev spaces HS’T(Q, E)*~ of extendible/supported distributions are defined as in the
scalar setting. Likewise, we can define Sobolev spaces (including semiclassical versions of
these) of sections of £ over Q2 N OM with extendible/supported character at the boundary.

We can also generalize the class of metrics we work in, namely we can use asymptoti-
cally stationary metrics as discussed in §§2.1.2 and 3.3.5: Namely, we can allow g to be a

Lorentzian b-metric such that for some smooth Lorentzian b-metric ¢’, we have
g—9g € H'(Q, S2PT* M) for some 7 > 0. (5.2.11)

We can of course similarly relax the requirements on the lower order terms of P; thus, we
require

P € Diffy (M, €) + H°" (Q)Diffy (M, €),  op2(P) = G.

We again stress that this is an invariant condition, since different choices of the boundary
defining function merely rescale the weight . Now, as long as g satisfies the geometric and
dynamical requirements of a non-trapping spacetime in Definition 2.5.1, our proofs again
go through: The microlocal arguments now require the use of the b-conormal calculus
developed in §3.3.5. We point out the only serious change in the proof of Theorem 5.2.3: In
the contour shifting argument, we can only shift the line over which we integrate in order
to compute the inverse Mellin transform by at most the amount min(r, 1), rather than 1,
the reason being that P — N(P) € r™»("VDiffZ (M, £) now.

In the nonlinear theorems developed below, we can likewise allow the coefficients of non-
linearities to be smooth plus conormal (in the sense of Hp°, no decay relative to smooth
coefficients is needed for the conormal coefficients) rather than merely smooth, and the
proofs go through unchanged; see Theorems 9.1.15 and 9.2.2 for details in the quasilinear
setting.

As already mentioned above, one needs to control the resonances in the closed upper half
plane in order to obtain global nonlinear well-posedness results: If there are no resonances
in Imo > 0, any (polynomial) non-linearity works, furthermore a simple resonance at o = 0

is allowed as well, provided the non-linearity annihilates the corresponding resonant states.
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5.2.3 A class of semilinear equations

Continuing to work on generalized static de Sitter models, let us fix m > 0 and ¢y > 0 as
above for statements about semilinear equations involving the Klein-Gordon operator; for
equations involving the wave operator only, let —ey be equal to the largest imaginary part

of all non-zero resonances of [,,.

Theorem 5.2.6. Let 0 < € < ¢ and s > 3/2 + . Moreover, let q: H ()%™ x
HY V(s 2T M)~ — HYV(Q)* be a continuous function with q(0,0) = 0 such that

there exists a continuous non-decreasing function L: R>o — R satisfying
b b
lg(u, *du) — q(v, "dv)|| < L(R)[lu — o[, [Jul], lv] < R,

where we use the morms corresponding to the map q. Then there is a constant Cr, > 0 so
that the following holds: If L(0) < Cp, then for small R > 0, there exists C > 0 such that
forall f € HS_I’E(Q)"* with norm < C, the equation

Oy —m*)u = f + q(u, "du) (5.2.12)

has a unique solution u € Hi’e(ﬂ) =, with norm < R, that depends continuously on f.

More generally, suppose
g: HYS(Q)® x HY S (Q5PTEM) ™ x HE 6 (Q)% — HY M (@)
satisfies q(0,0,0) = 0 and
llg(u, *du, w) — q(u',Pdu’,w')|| < L(R)(lu — || + [lw — w])

provided ||u]| + ||w]|, ||v'|] + ||w'|| < R, where we use the norms corresponding to the map q,
for a continuous non-decreasing function L: R>g — R. Then there is a constant Cr, > 0 so
that the following holds: If L(0) < Cf, then for small R > 0, there exists C > 0 such that
for all f € HS_I’C(Q)"* with norm < C, the equation

Oy —m*)u = f + q(u, "du, Oyu) (5.2.13)
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has a unique solution uw € Hy“(Q)*~, with HU”HQE + [Ogul| ys-1.c < R, that depends con-
b

tinuously on f.

Further, if € > 0 and the non-linearity is of the form q(du), with
q: Hy B PTEM)™ — Hy Q)™

having a small Lipschitz constant near 0, then for small R > 0, there exists C > 0 such

that for all f € Hg_l’e(Q)”* with ||f|| < C, the equation
Ogu = f + q(du)

has a unique solution w with u — (¢ o t1)c = v’ € H(Q)*~, where ¢ € C, that depends
continuously on f, in the sense that ¢ € C and u' € HS’E(Q)”_ depend continuously on
f. Here, ¢ € C®(R) with support in (0,00) and t1 are as in Theorem 5.2.5. In fact, the

statement even holds for non-linearities q(u,du) provided
q: (C(potr) ® HY(Q)) x HY S (Q;PTEM)™ — HY ()™~

has a small Lipschitz constant near 0.

Note that when one writes e.g. q(u, Pdu), one could instead, at least locally, write

a(u, x0pu, Oy, . .., Oy, 1),

where z is a local boundary defining function and the y; are local coordinates on the

boundary; however, the Pdu notation is more concise and invariant.

Proof of Theorem 5.2.6. To prove the first part, let Skg be the forward solution operator
for O, —m? asin (5.2.10). We want to apply the Banach fixed point theorem to the operator
Txa: HYC(Q)*™ — HY(Q)*, Tkau = Ska(f + q(u,Pdu)).

Let Cp = ||Skc|| ™!, then we have the estimate
T — Tl < IISkal LRl — vl] < Collu — ] (5.2.14)

for ||ul|, ||v]| £ R and a constant Cy < 1, granted that L(R) < Cy||Skc|| ™!, which holds for
small R > 0 by assumption on L. Then, Txg maps the R-ball in H(Q)*~ into itself if
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ISkcll (£l + L(R)R) < R, ie. if | f|| < R(|[Skcl ™" — L(R)). Put
C = R(||Skcll™" — L(R)).

Then the existence of a unique solution u € H,(2)*~ with norm < R to the PDE (5.2.12)
with || f|| s-1.c < C follows from the Banach fixed theorem.
b

To prove the continuous dependence of u on f, suppose we are given u; € Hy ()%,
Jj =1,2, with norms < R, f; € Hg_l’E(Q)”* with norms < C, such that

(Dg - m2)uj = f] + Q(ujvbduj)a .] = 1,2

Then
(Og —m?)(u1 — uz) = fi — fo + q(ur, "dur) — q(uz, "dus),

hence
Jur — uzl| < [|Skall([[f1 — foll + L(R)|lu1r — uz),

which in turn gives

I.f1 = fall

— | < M2
lux = waf| = 25—

This completes the proof of the first part.
For the more general statement, we use that one can think of [, in the non-linearity as

a first order operator. Concretely, we work on the coisotropic space
X ={ue HX()* : Oyue H ()"}

with norm
[ulla = llull ppe@ye.- + [Bgull go—re(qpe.--

o, —

This is a Banach space: Indeed, if (uy) is a Cauchy sequence in X, then uy, — win Hy ()%,
and Ogup, — v in HS_I’E(Q)"’; in particular, Oguy — Ogu and Dguy, — v in 7¢H2(Q)*,
thus Oyu = v € HY "(Q)*~, which was to be shown. We then define Tkg: X — X by
Tkcu = Ska(f + q(u, "du,04u)) and obtain the estimate

I Tau — Teavllx = | Trau — Travll gee + lla(u, "du, Ogu) — g(v,Pdo, Bgv)ll g1«

< (ISkall + DLR)(lu = vl gpe + [Hgu = Ogvl| gs-1.¢)
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= (ISkall + DL(R)[|u — v]x < Collu — vllx

for u,v € X with norms < R, with Cyp < 1 if R > 0 is small enough, provided we require
L(0) < Cf := (||Ska]|| + 1)t Then, for u € X with norm < R,

Tkcullx < (19xall + D) fll gs-1.c + LIR)R) < R

if || f]] < C, C > 0 small. Thus, Tk is a contraction on X, and we obtain the solvability
of equation (5.2.13). The continuous dependence of the solution on the forcing term f is
proved as above.

For the third part, we use the forward solution operator S': Hﬁfl’ﬁ(ﬂ)”_ )Y =Co
Hy“()*~ for Og. Clearly, Y is a Banach space with norm ||(c, ') [y = [e| + [[t/[| g5 (o3
see §5.2.4 for related and more general statements. We will apply the Banach fixed point
theorem to the operator T: Y — Y, Tu = S(f + q(u,du)): We again have an estimate
like (5.2.14), since Pdu € Hg_l’g(ﬂ;bTéM)"_ for u € Y, and for small R > 0, T' maps the
R-ball around 0 in Y into itself if the norm of f in Hﬁfl’e(Q)'v_ is small, as above. The

continuous dependence of the solution on the forcing term is proved as above. O

The following basic statement ensures that there are interesting non-linearities ¢ that

satisfy the requirements of the theorem; see also §5.2.4.

Lemma 5.2.7. Let s > n/2, then HS(R") is an algebra. In particular, H(N) is an algebra

on any compact n-dimensional manifold N with boundary which is equipped with a b-metric.

Proof. The first statement is the special case £k = 0 of Lemma 5.4.4 after a logarithmic
change of coordinates, which gives an isomorphism Hy(R") = H*(R"); the lemma is well-
known in this case, see e.g. [108, Chapter 13.3]. The second statement follows by localization

and from the coordinate invariance of Hy. O

More and related statements will be given in §5.4.2.

Remark 5.2.8. The algebra property of Hi(N) for s > dim(/N)/2 is a special case of the
fact that for any F' € C*°(R), for real valued u, or F' € C*°(C), for complex valued u, with
F(0) = 0, the composition map Hy(N) 3 u + Fou € H{(N) is well-defined and continuous,
see for example [108, Chapter 13.10]. In the real valued u case, if F'(0) # 0, then writing
F(t) = F(0) + tF(t) shows that Fou € C+ HZ(N). If r > 0, then H;"(N) C H{(N)
shows that Fy(u) € Hi(N), thus Fou = F(0)+uF;(u) € C+ H,"(N); and if F vanishes to
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order k at 0, then F(t) = t*Fy(t), so F ou = uF(Fy o u), and the multiplicative properties
of HY"(N) show that Fowu € HZ* (N). The argument is analogous for complex valued w,

indeed for RE-valued u, using Taylor’s theorem on F' at the origin.

As a corollary of Theorem 5.2.6, we have:

Corollary 5.2.9. If s > n/2, the hypotheses of Theorem 5.2.6 hold for non-linearities
q(u) = cuP, p > 2 integer, c € C, as well as q(u) = qou?, qo € H(M).
If s — 1 > n/2, the hypotheses of Theorem 5.2.6 hold for non-linearities q

q(u,bdu) = Z qjauj H Xo iU, (5.2.15)
2<j+lal<d k<lal

whereqjo € C+ HS (M), Xo € Vo(M).

Thus, in either case, for m > 0, 0 < € < €, s > 3/2+ ¢, and for small R > 0, there
exists C' > 0 such that for all f € Hgfl’E(Q)”_ with norm < C, the equation

Oy — m*)u = f + q(u, "du) (5.2.16)

has a unique solution u € HS’G(Q)‘**, with norm < R, that depends continuously on f.

The analogous conclusion also holds for Uyu = f + q(u,Pdu) provided e > 0 and

q(u, Pdu) = > g || Xaxu, (5.2.17)
2<jHal<d,|a|>1 k<o

with the solution being in C(¢oty) @& HY(Q)* ™, poty identically 1 near X NQ, vanishing

near Hi.

For such polynomial non-linearities, the Lipschitz constant L(R) in the statement of

Theorem 5.2.6 actually satisfies L(0) = 0.

Remark 5.2.10. In this chapter, we do not yet prove that one obtains smooth (i.e. conormal)
solutions if the forcing term is smooth (conormal); see Theorem 9.1.15 for such a result
in the more general quasilinear setting on generalized static models, and, more robustly,

Theorem 9.2.2, using Nash-Moser iteration.

Since in Theorem 5.2.6, we allow ¢ to depend on [ju, we can also solve certain quasi-
linear equations (rather unnatural ones though) if s > max(1/2 + ¢,n/2 + 1): Suppose for

example that ¢': H(Q)*~ — H{ ™ (Q2)*~ is continuous with [|¢'(u) —¢'(v)|| < L'(R)|lu—v|
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for u,v € Hg’e(Q)"_ with norms < R, where L': R>¢ — R is locally bounded, then we can
solve the equation
(144 (w)(Oy —m*)u = f € Hy "(2)""

provided the norm of f is small. Indeed, put q(u,w) = —¢'(u)(w — m?u), then g(u, Oyu) =
—¢'(u)(0y — m?)u, and the PDE becomes

Oy — m*)u = f + q(u, Dgu),

which is solvable by Theorem 5.2.6, since, with || - || = || - || jjs=1.c, for u, v/ € H(Q)*,
b
w,w' € Hy M ()%~ with [[ul] + [[wl], [«/[| + |w'|] < R, we have

llg(u, w) — (v, w)]
< lg'(w) = ¢ (@)lllw = m?ull + |’ () [[lw — w" = m?(u — )|
< L(R)((1+m*)R+m*R)[lu — || + L'(R)R|jw — w'||
< LB)([lu = /|| + [lw — w'[])

with L(R) — 0 as R — 0. By a similar argument, one can also allow ¢’ to depend on Pdu

and Lgu.

Remark 5.2.11. Recalling the discussion following Theorem 5.2.3, let us emphasize the
importance of ﬁ(a)_l having no poles in the closed upper half plane by looking at the

explicit example of the operator P = 9, in 1 dimension. In terms of 7 = e¢™%

, we have
P = —78;, thus P(c) = —io, considered as an operator on the boundary (which is a single
point) at +oo of the radial compactification of R; hence ]3(0)_1 has a simple pole at ¢ = 0,
corresponding to constants being annihilated by P. Now suppose we want to find a forward
solution of v/ = u? + f, where f € C>°(R). In the first step of the iterative procedure
described above, we will obtain a constant term; the next step gives a term that is linear
in z (z being the antiderivative of 1), i.e. in log 7, then we get quadratic terms and so on,
therefore the iteration does not converge (for general f), which is of course to be expected,
since solutions to u/ = u? + f in general blow up in finite time. On the other hand, if
P = 8, + 1, then P(0)~! = (1 —io)~!, which has a simple pole at ¢ = —i, which means
that forward solutions u of u' +u = u? + f with f as above can be constructed iteratively,

and the first term of the expansion of u at oo is ¢7/ (- = ce™*, ¢ € C.
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5.2.4 Semilinear equations with polynomial non-linearities

We stay in the setting of generalized static models. With polynomial non-linearities as in
(5.2.15), we can use the second part of Theorem 5.2.3 to obtain an asymptotic expansion
for the solution; see Remark 5.2.18 and, in a slightly different setting, §5.3.2 for details on
this. Here, we instead define a space that encodes asymptotic expansions directly in such a
way that we can run a fixed point argument directly. To describe the exponents appearing

in the expansion, we use index sets as introduced by Melrose, see [82].

Definition 5.2.12. An index set is a discrete subset & of C x Ny satisfying the conditions
(1) (z,k) e & = (z,j) e & for 0 < j <k,
(2) If (25,k;) € &, |2j| + kj = 00 = Rezj — 0.

For any index set &, define

max{k € No: (2,k) € &}, (2,0) €&

—00 otherwise.

For two index sets &, &, define their extended union by
EUE =EUE U{(z,l+1'+1): (z,1) € &, (2,1') € &'}

and their product by &6 = {(z + 2,1 +1'): (2,1) € &,(¢,I') € &'}. We shall write &* for
the k-fold product of & with itself. Lastly, a positive indezx set is an index set & with the
property that Rez > 0 for all z € C with (z,0) € &.

Remark 5.2.13. To ensure that the class of polyhomogeneous conormal distributions with
a given index set & is invariantly defined, Melrose [82] in addition requires that (z,k) € &
implies (z + j,k) € & for all j € Ny. In particular, this is a natural condition in non-
dilation-invariant settings as in Theorem 5.2.3. A convenient way to enforce this condition
in all relevant situations is to enlarge the index set corresponding to the poles of the inverse
of the normal operator accordingly; see the statement of Theorem 5.2.17. Observe though
that this condition is not needed in the dilation-invariant cases of the solvability statements

below.
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Since we want to capture the asymptotic behavior of solutions near X N, we fix a
cutoff ¢ € C*°(R) with support in (0,00) such that ¢ o t; = 1 near X N Q (we already used

such a cutoff in Theorem 5.2.3), and make the following definition.

Definition 5.2.14. Let & be an index set, and let s, € R. For ¢ > 0 with the property
that there is no (z,0) € & with Rez = ¢, define the space Xz to consist of all tempered
distributions v on M with support in Q such that

V=v— > r*(logm)f(¢oti)v.p € HY(Q)TT (5.2.18)

(z,k)eé&
Re z<e

with v, € H™(X N Q).

Observe that the terms v, in the expansion (5.2.18) are uniquely determined by v,
since € > Rez for all z € C for which (z,0) appears in the sum (5.2.18); then also v' are

uniquely determined by v. Therefore, we can use the isomorphism

e (P ET(XN9) e ()

(z,k)e&
Re z<e

to give X2 the structure of a Banach space.

Lemma 5.2.15. Let &2,.% be positive index sets, and let ¢ > 0. Define & = PUZF and
recursively &, = PU(F U Ukzz(éo]’v)k); put En = {(z,k) € &4: 0 < Rez < €}. Then
there exists Nog € N such that &x = &, for all N > Ny; moreover, the limiting index set
Exc(P,.F €)= &N, 1s finite.

Proof. Writing 7 : C x Ng — C for the projection, one has
k
mél = {z: 0<Rez<ez= ZZ]': k> 1,Zj S Wléao},
j=1

and it is then clear that m &y = m1 & for all N > 1. Since & is a positive index set, there
exists & > 0 such that Rez > ¢ for all z € &j; hence m & = w187 is finite.

To finish the proof, we need to show that for all z € C, the number weg, (2) stabilizes.
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Defining p(z) = wa(z)+1 for z € m & and p(z) = 0 otherwise, we have a recursion relation

k
wey (2) = p(z) + max{wg(z), __max {Z w(gNl(zj)}}, N > 1. (5.2.19)
k22,;j€7r1é"];c 7j=1

For each z; appearing in the sum, we have Imz; < Imz — §. Thus, we can use (5.2.19)
with z replaced by such z; and N replaced by N — 1 to express we, (%) in terms of a finite
number of p(z,) and w (24 ), Im 2z, < Im 2, and a finite number of we,,_,(23), 2z < Im 2z—20.
Continuing in this way, after No = [ (Im 2)/d| +1 steps we have expressed wg, () in terms of
a finite number of p(z,) and wz(2y), Im 2z, <Imz, only, and this expression is independent
of N as long as N > Nj. O

Definition 5.2.16. Let &2,.% be positive index sets, and let € > 0 be such that there is
0 (2,0) € Ex(P,.F,€) with Rez = €, with &, (L, .%,€) as defined in the statement of
Lemma 5.2.15. Then for s, € R, define the Banach spaces
s,re S,T,€
X5 7 =X (o7
0 S,re S,T,€
X597 = X (2.7, 0000}

Note that the spaces (O)X;‘?} are Banach algebras for s > n/2, up to rescaling their
norms, or equivalently in the sense that there is a constant C' > 0 such that [|uv| < C||ul|||v]]
for all u,v € (O)X;;S;. Moreover, X7 interacts well with the forward solution operator
Sk of Og — m? in the sense that u € X35, k > 2, with & being related to the poles of
7/5(0)*1, where P = L, — m?, as will be made precise in the statement of Theorem 5.2.17

. . k 8,8,€
below, implies Ska(u”) € X5 7%
We can now state the result giving an asymptotic expansion of the solution of (O, —

m?)u = f + q(u, ®du) for polynomial non-linearities q.

Theorem 5.2.17. Let e > 0,s > max(3/2+¢,n/2+ 1), and q as in (5.2.15). Moreover, if
oj € C are the poles of the inverse family 73(0)_1, where P = 0O, —m?, and m; + 1 is the
order of the pole of P(c)~! at oj, let Z ={(ioj+k,£): 0 <l <mj,keNg}. Assume that
€ # Re(ioj) for all j, and that moreover m > 0, which implies that & is a positive index
set by Lemma 5.2.5. Finally, let F be a positive index set.

Then for small enough R > 0, there exists C > 0 such that for all f € X;_l’s_l’e with
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norm < C, the equation
(8 —m®*)u = f +q(u, "du)

has a unique solution v € X", with norm < R, that depends continuously on f; in

particular, u has an asymptotic expansion with remainder term in HS’G(Q)”_.
Further, if the polynomial non-linearity is of the form q(Pdu), then for small R > 0,

there exists C > 0 such that for all f € X;{LS_LE with norm < C, the equation

Ogu = £ + q(°du)

has a unique solution u € OX;;SE;, with norm < R, that depends continuously on f.

Proof. By Theorem 5.2.3 and the definition of the space X = X3’7, we have a forward

solution operator Skg: X — & of [, — m?2.

theorem to the operator T: X — X, Tu = Ska(f + q(u, Pdu)), where we note that ¢: X —

Thus, we can apply the Banach fixed point

X, which follows from the definition of X and the fact that ¢ is a polynomial only involving
terms of the form u/ [11<jo) Xaku for j + |a| = 2. This condition on g also ensures that 7'
is a contraction on a sufficiently small ball in A .

For the second part, writing X = OX;fé, we have a forward solution operator S: X —
OX. But q(bdu): OX — X, since Pd annihilates constants, and we can thus finish the proof
as above.

The continuous dependence of the solution on the right hand side is proved as in the

proof of Theorem 5.2.6. O

Note that € > 0 is (almost) unrestricted here, and thus we can get arbitrarily many
terms in the asymptotic expansion if we work with arbitrarily high Sobolev spaces.

The condition that the polynomial g(u,”du) does not involve a linear term is very
important as it prevents logarithmic terms from stacking up in the iterative process used to
solve the equation. Also, adding a term vu to g(u, Pdu) effectively changes the Klein-Gordon
parameter from —m? to v — m?, which will change the location of the poles of 13(0)*1; in
the worst case, if ¥ > m?, this would even cause a pole to move to Im o > 0, corresponding
to a resonant state that blows up exponentially in time. Lastly, let us remark that the form
(5.2.17) of the non-linearity is not sufficient to obtain an expansion beyond leading order,
since in the iterative procedure, logarithmic terms would stack up in the next-to-leading

order term of the expansion.
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Remark 5.2.18. Instead of working with the spaces (©) Zf;, which have the expansion built
in, one could alternatively first prove the existence of a solution u in a (slightly) decaying
b-Sobolev space, which then allows one to regard the polynomial non-linearity as a pertur-
bation of the linear operator [, — m?; then an iterative application of the dilation-invariant
result [114, Lemma 3.1] gives an expansion of the solution to the nonlinear equation. We will
follow this idea in the discussion of polynomial non-linearities on asymptotically Kerr-de

Sitter spaces in the next section.

5.3 Kerr-de Sitter space

In this section we analyze semilinear waves on Kerr-de Sitter space, and more generally on
non-trapping spacetimes with normally hyperbolic trapping, see Definition 2.5.1. The effect
of the trapping is a loss of derivatives for the linear estimates in general, but we show that
at least derivatives with principal symbol vanishing on the trapped set are well-behaved.
We then use these results to solve semilinear equations in the rest of the section.

For concreteness, we focus on Kerr-de Sitter spaces, see however Remark 5.3.5.

5.3.1 Linear Fredholm theory

The linear theorem in the case of normally hyperbolic trapping for P = [, — X is the

following:

Theorem 5.3.1. (Strengthened version of [11/, Theorem 1.4].) Let M be a manifold with a
dilation-invariant b-metric g as above, with boundary X, and let T be the boundary defining
function, P as in (5.2.6); suppose that @ C M is a domain as above (see also (2.2.5)),
and Q is a non-trapping spacetime with normally hyperbolic trapping. Let ¢ € C*°(R) be as
in Theorem 5.2.5. Then there exist C' > 0, 2 > 0, B € R such that for 0 < ¢ < C' and
s> 1/2+p0, s >0, solutions u € H, °~(Q)* of (Og—Nu = f with f € H}‘TH”’E(Q)"_
satisfy that for some aj, € C*°(Q2 N X) (which are the resonant states) and o; € C (which

are the resonances),

w=u— Z Z 7% (log 7)"(¢ 0 t1)ajx € HS’Z(Q)"_. (5.3.1)
J k<m;

Here the (semi)norms of both aj. in C*°(QN X) and v in HS’E(Q)"* are bounded by a



5.3. KERR-DE SITTER SPACE 147

constant times that of f in HS_H}"Z(Q)”_.

The same conclusion holds for sufficiently small (not necessary dilation-invariant!) per-
turbations of the metric as a symmetric bilinear form on PTM provided the trapping is
normally hyperbolic.

In the non-dilation-invariant setting, one could similarly proceed precisely as the proof
of Theorem 5.2.3; now, in order to regain the regularity lost by treating P — N(P) as a
perturbation as in (5.2.8) in the course of the contour shifting argument, while we are still
in Imo > 0 (i.e. working on growing spaces), we need to appeal to Theorem 3.3.14, more
specifically (3.3.23), in addition to the radial point and propagation estimates. However, an
inspection of the argument, see in particular (5.2.8), reveals that a forcing term f € H]‘;_H%’Z
only yields a solution with remainder term v’ € Hgfl’g, which is insufficient for our simple
contraction mapping arguments for nonlinear equations.

Again, as mentioned after the statement of Theorem 5.2.3, the above theorem states
exponential decay in t, := —log 7, see (2.3.5) and (2.4.2), up to a finite-dimensional space
of resonances.

In order to state the analogue of Theorem 5.2.3 when one has normally hyperbolic
trapping in the b-sense at I' C bS}}M , see Definition 2.3.1 and Proposition 2.3.2, we will
employ the non-trapping estimates on normally isotropic function spaces Hg’F(M ) and
HE‘; (M), see Definition 3.3.12, established in Theorem 3.3.14. In particular, we now do not
require g to be dilation-invariant. Now, if 2 C M, as in §5.2, is such that bS}}jQ NI =0,
7 = 1,2, then spaces such as

Hir ()"

are not only well-defined, but are standard H-spaces near the H;. The relations between
normally isotropic and b-Sobolev spaces analogous to (3.3.21) also hold for the correspond-
ing spaces over ).

Notice that elements of W} (M) only map Hf (M) to Hpp™” ~Y(M), with the issues
being at T' corresponding to (3.3.21) (thus there is no distinction between the behavior on
the Q vs. the M-based spaces). However, if A € \II{';(M ) has principal symbol vanishing on
I" then

A H p (M) — H7P(M), A:H3(M)— HE:;_’)(M), (5.3.2)

as A can be expressed as A1 Q1 +A_Q_ + AyT+ AP+ ApQo+ R, A+, Ao, Ay, Ac \I'g(M),
Re Vv, L(M), with the second mapping property following by duality as WP (M) is closed
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under adjoints, and the principal symbol of the adjoint vanishes wherever that of the original
operator does. Correspondingly, if A; € \I'Z” (M), j = 1,2, have principal symbol vanishing
at T' then Ay Agu : H} (M) — Hyp ™ "2 (M).

We consider P as a map
P Hy (T = HE P ()™,

and let
X ={ueHyp(": Pue '}, P =HT(Q)".

While X is complete,'® it is a slightly exotic space, unlike X'* in Theorem 4.2.4 which is a
coisotropic space depending on ¥ (and thus the principal symbol of P) only, since elements
of WP (M) only map Hj (M) to Hyp ™ “!(M) as remarked earlier. Correspondingly, A
actually depends on P modulo \I/g(M ) plus first order pseudodifferential operators of the
form AiAs, Ay € W%(M), Ay € \II%)(M), both with principal symbol vanishing at I' — here
the operators should have Schwartz kernels supported away from the Hj; near H; (but away
from T'), one should say P matters modulo Diff} (M), i.e. only the principal symbol of P
matters.

We then have:

Theorem 5.3.2. Suppose s > 3/2, and that the inverse of the Mellin transformed normal
operator 73(0)_1 has no poles with Imo > 0. Then

g - Y

1s invertible, giving the forward solution operator.

Proof. First, with r < —1/2, thus with dual spaces having weight 7 > 1/2, Theorem 4.2.4
holds without changes as Theorem 3.3.14 gives non-trapping estimates in this case on the
standard b-Sobolev spaces. In particular, if r < 0, Ker P is trivial even on Hgfl/Q’T(Q)”_,

hence certainly on its subspace Hj p(€2)®7. Similarly, KerP* is trivial on H]‘;’F(Q)*",

5 Also, elements of C*°(£2) vanishing to infinite order at H; and X N are dense in XgE. Indeed, in view
of [91, Lemma A.3] the only possible issue is at I', thus the distinction between € and M may be dropped.
To complete the argument, one proceeds as in the quoted lemma, using the ellipticity of o at I', letting
An € (M), n € N, be a quantization of ¢(c/n)a, a € C>(*S* M) supported in a neighborhood of T,
identically 1 near I', ¢ € CZ°(R), noting that [A,,P] € ¥, (M) is uniformly bounded in W{ (M) + 7} (M)
in view of (2.1.3), and thus for v € A, PApu = ApPu+ [P, AnJu — Puin HZ:ffl since [P, Ay] is uniformly

bounded Hy "* M HY ™Y - BTV 0 HE 7Y, and thus My p — Hpp ! by (3.3.21).
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7 > 0. Therefore, if r < —1/2 and f € Hy, ""(Q)*, there exists u € Hy"(Q)*~ with
Pu = f. Further, making use of the non-trapping estimates in Theorem 3.3.14, if r < 0
and f € HS_I’T(Q)”*, then the argument of Theorem 5.2.3 improves this statement to
ue H)"(Q)*.

In particular, if f € HZZ%ﬁl(Q)”_ C H}‘jfl’o(Q)"_, then u € Hy"(Q)*~ for r < 0. This
can be improved using the argument of Theorem 5.2.3. Indeed, with —1 < r < 0 arbitrary,
P — N(P) € 7Diff3(M) implies as in (5.2.8) that

NPw=f—f, f=(P—NP)uecH >"TQ)*"".

But f € HEZ?_I(Q)”* C HS_I’O(Q)"’, hence the right hand side is in H§_2’O(Q)°”; thus
the dilation-invariant result, [114, Lemma 3.1], gives u € Hﬁ_l’o(ﬂ)”_. This can then be
improved further since in view of Pu = f € HZ’}_I(Q)"_, propagation of singularities,
most crucially Theorem 3.3.14, yields u € ’HEI(Q)”_. This completes the proof of the

theorem. O

This result shows the importance of controlling the resonances in Im o > 0. For the wave
operator on exact 4-dimensional Kerr-de Sitter space, Dyatlov’s analysis [39, 40] shows that
the zero resonance of [, is the only one in Imo > 0, the residue at 0 having constant
functions as its range; in §7.5, we will prove a generalization of this result to perturbations
of higher-dimensional Schwarzschild-de Sitter spacetimes that also covers the case of differ-
ential form-valued waves. (The very precise analysis of [41], relying on the exact form of the
Kerr-de Sitter metric, could presumably be used in nonlinear applications as well, giving
a much more precise resonance expansion of solutions, but we will not consider this here.)
For the Klein-Gordon operator [, — m?, the statement is even better from our perspective
as there are no resonances in Imo > 0 for m > 0 small. This is pointed out in [40]; we give

a direct proof based on perturbation theory.

Lemma 5.3.3. Let P = [, on exact Kerr-de Sitter space. Then for small m > 0, all poles

of (7/5(0) —m?2)~! have strictly negative imaginary part.

Proof. By the perturbation theory results in Appendix A, the inverse family of 73(0) — A has
a simple pole at o(A) coming with a single resonant state ¢(\) and a dual state ¥(\), with
analytic dependence on A, where 0(0) = 0,¢(0) = 1,9(0) = 1y,,50; (see also Theorem 7.5.1),
where we use the notation of §2.4. Differentiating P(c()))d(A) = Ad(A) with respect to A
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and evaluating at A = 0 gives

Pairing this with (0), which is orthogonal to Ran 7/5(0), yields

(¥(0), ¢(0))

a'(0) = =
(¥(0),0,P(0)¢(0))

Since ¢(0) = 1 and 9(0) = 1y,,50y, this implies
sgnImo’(0) = —sgnIm(1(0), 9,P(0)$(0)). (5.3.3)

To find the latter quantity, we note that the only terms in the expression of the d’Alem-
bertian that could possibly yield a non-zero contribution here are terms involving 7D, and
either D,, Dy or Dy. Concretely, using the explicit form of the dual metric, see [114,
Equation (6.1)],'° G in the new coordinates t, = t — h(r), ¢« = ¢ — P(r),7 = e~'*, with
h(r), P(r) as in (2.4.3),

1 2
(1+ Z) (—asin® 070, + 0,,)* + K0

G=—p2 <u(ar + B (r)70: — P'(r)0s.)% +

Bkl Z’”z (—(r? + a2y, + a8¢*)2) ,

K sin

and its determinant |det G|'/2 = (1 + )2p~2(sinf) !, we see that the only non-zero con-

tribution to the right hand side of (5.3.3) comes from the term

—(1+7)%p%(sind) "D, (1+ 7)2p% sin Hp_zuh’(r))TDT
= ip_QOT(,uh,(T))TDT

of the d’Alembertian. Mellin transforming this amounts to replacing 7D, by o; then dif-

ferentiating the result with respect to o gives

(1(0), 05 P(0)(0)) = i / p 20, (uh! (r)) dvol

p>0

What we call t, t«, @, b, i1, R(r), P(r) here is denoted t,t, 55, o, i, —h(r), —P(r) in [114].
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T 2w Ty

=i [T ) 0, () dr o ds
0JoO r_
47y

= el ) = Gk )| (5.3
Since the singular part of h/(r) at 74 (which are the roots of p) is h/(r) = iHTV(r2 +a?), the
right hand side of (5.3.4) is positive up to a factor of ; thus Im¢’(0) < 0 as claimed. [

In other words, for small mass m > 0, there are no resonances o of the Klein-Gordon
operator with Imo > —¢g for some ¢y > 0. Therefore, the expansion of v as in (5.3.1) no
longer has a constant term. Correspondingly, for ¢ € R, € < ¢y, Theorem 5.3.1 gives the

forward solution operator
Skar: HE779(Q)%™ — HY(Q)*~ (5.3.5)

in the dilation-invariant setting. Further, Theorem 5.3.2 is applicable and gives the forward
solution operator

Ska: Myt Q)%™ = Hy ()% (5.3.6)

on normally isotropic spaces, without the assumption of dilation-invariance.

For semilinear applications, for non-linearities without derivatives, it is important that
the loss of derivatives s in the space H{;_H%’e is < 1. This is not explicitly specified in the
paper of Wunsch and Zworski [124], though their proof directly gives that, for small € > 0,
s can be taken proportional to €, and there is ¢, > 0 such that s € (0,1] for € < €f; see
especially the part before [124, §4.4]. We reduce ¢y > 0 above if needed so that ¢y < €;
then (5.3.5) holds with » = ce € (0,1] if € < ¢y, where ¢ > 0. In fact however, one does
not need to go through the proof of [124], for the Phragmén-Lindel6f theorem allows one to

obtain the same conclusion from their final result:

Lemma 5.3.4. Suppose h: U — E is a holomorphic function on the half strip U = {z €
C:0 <Imz < ¢,Rez > 1} which is continuous on U, with values in a Banach space E,

and suppose moreover that there are constants A,C' > 0 such that

Ih(2)]| < Ol Tmz =0,
Ih(2)]l < Cl*, Imz=e,

|h(2)]] < Cexp(4|z]), z€U.
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Then there is a constant C' > 0 such that

1h(z)]| < C'|2|F1 (1= 7e5) ket

forall z € U.

.kog—k
Proof. Consider the function f(z) = it "2 which is holomorphic on a neighborhood

of U. Writing z € U as z = = + iy with z,y € R, one has

1£(2)| = | 2| exp (Im <k2 ; klzlogz))

k2

—k ko — k
= |z|F1|2| = FImz oy ( 2 1:1:arctan(y/x)> .
c

Noting that |z arctan(y/x)| = y|(x/y) arctan(y/x)| is bounded by ¢ for all z + iy € U, we

conclude that

171mz

et —hil|lr (1=22)HRe B2 < £(2)] < elfehlpa (1252 Hha 2,

Therefore, f(z)~'h(z) is bounded by a constant C’ on U, and satisfies an exponential
bound for z € U. By the Phragmén-Lindeldf theorem, || f(2)~h(2)||p < C’, and the claim
follows. O

Since for any § > 0, we can bound |logz| < Cs|z|® for |Rez| > 1, we obtain that the
inverse family R(c) = P(o)~! of the normal operator of O, on (asymptotically) Kerr-de
Sitter spaces as in [114], here in the setting of artificial boundaries as opposed to complex
absorption, satisfies a bound

HR(U)H\a\*“”HEL(XOQ)%\U\—SHlsgl_l(XOQ) < Cylo] 710
for any § > 0, Imo > —cs¢' and | Reo| large. Therefore, as mentioned above, by the proof
of Theorem 5.3.1, i.e. [114, Theorem 1.4], in particular using [114, Lemma 3.1], we can
assume » € (0,1] in the dilation-invariant result, Theorem 5.3.1, if we take C’ > 0 small
enough, i.e. if we do not go too far into the lower half plane Im o < 0, which amounts to
only taking terms in the expansion (5.3.1) which decay to at most some fixed order, which

we may assume to be less than —Imo; for all resonances o;.
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Remark 5.3.5. As in §5.2.2, we can again consider general non-trapping spacetimes with
normally hyperbolic trapping, equipped with metrics which have a conormal part as well,
and moreover treat operators acting on vector bundles. The b-regularity analysis again only
relies on principal symbol considerations (plus contributions from the subprincipal symbol
at radial points, which only shifts the regularity requirement for forward solutions); but
in order to obtain the resonance expansion with exponentially decaying remainder as in
Theorem 5.3.1, one needs in addition high energy estimates for the normal operator family
in a strip below the real axis. In the scalar setting, these are well understood [44, 42, 94, 124],
but for operators on bundles, they require additional work; see Chapter 6 for their proof for
wave operators on subbundles of the tensor bundle on Kerr-de Sitter spaces. Furthermore,
one needs to know the location of resonances: If there are none in Imo > 0, our methods
for semilinear equations in this section go through; if there is a simple resonance at ¢ = 0,
as is the case for the scalar wave equation on Kerr-de Sitter space, we cannot prove any
semilinear results with the methods employed in the present chapter. However, with more
machinery, we can even handle very general quasilinear wave equations in this case, see

Chapters 8 and 9.

5.3.2 A class of semilinear equations; polynomial non-linearities

In the following semilinear applications, let us fix s € (0,1] and €y as explained before
Lemma 5.3.4, so that we have the forward solution operator Skg1 as in (5.3.5). We then
have statements paralleling Theorems 5.2.6, 5.2.17 and Corollary 5.2.9, see Theorems 5.3.6,

5.3.10 and Corollary 5.3.9, respectively.

Theorem 5.3.6. Suppose (M, g) is dilation-invariant. Let —oo < € < €y, > 1/2 + fe,
s> 1, and let q: HY ()%™ — H7 ()% be a continuous function with ¢(0) = 0 such

that there exists a continuous non-decreasing function L: R>o — R satisfying
lg(u) = q(u)|| < L(R)|lu— o], [[ul], lv] < R.

Then there is a constant Cr, > 0 so that the following holds: If L(0) < Cp,, then for small
R > 0, there exists C > 0 such that for all f € HiiH%’e(Q)"_ with norm < C, the equation

Oy —m?)u = f +qlu)
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has a unique solution u € Hg’e(Q) ', with norm < R, that depends continuously on f.

More generally, suppose
q: HS,E(Q).,f % Hg—l—i—%,e(g)o,— N H£_1+%’€(Q).’7
satisfies q(0,0) = 0 and
lg(u, w) — q(u’,w")|| < L(R)(Jlu — /|| + [lw — w'[])

provided ||u]| + ||w]|, ||v/[] + ||w'|| < R, where we use the norms corresponding to the map q,
for a continuous non-decreasing function L: R>q — R. Then there is a constant Cr, > 0 so
that the following holds: If L(0) < Cp, then for small R > 0, there exists C > 0 such that
for all f € Hng’{’E(Q)”_ with norm < C, the equation

(Bg —m*)u = f + q(u, Ogu)
has a unique solution w € Hy(Q)%~, with |lul gse + |Ogul| jys-14xc < R, that depends
b
continuously on f.

Proof. We use the proof of the first part of Theorem 5.2.6, where in the current setting
the solution operator Sk maps Hy " ¢(Q)*%~ — H“(Q)*~, and the contraction map
is T: HX(Q)* — H(Q)* ™, Tu = Ska1(f + q(u)).

For the general statement, we follow the proof of the second part of Theorem 5.2.6,

where we now instead use the space
X ={ue HX()* : Ogue H (0"}
with norm
llle = e + 13l e ge-vo
which is a Banach space by the same argument as in the proof of Theorem 5.2.6. O

We have a weaker statement in the general, non-dilation-invariant case, where we work

in unweighted spaces.

Theorem 5.3.7. Let s > 1, and suppose q: Hy(2)*~ — H{(Q)® ™ is a continuous function

with q(0) = 0 such that there exists a continuous non-decreasing function L: R>g — R
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satisfying
lq(u) = q()|| < L(R)|lu—vl|, [[ul], lv] < R.

Then there is a constant Cr, > 0 so that the following holds: If L(0) < Cr,, then for small
R >0, there exists C > 0 such that for all f € H(Q)*~ with norm < C, the equation

Oy —m?*)u = f+q(u)

has a unique solution w € H(2)*~, with norm < R, that depends continuously on f.
An analogous statement holds for non-linearities ¢ = q(u,0gu) which are continuous
maps q: Hy(Q)*~ x HS(Q)*™ — HZ(Q)*~, vanish at (0,0) and have a small Lipschitz

constant near 0.

Proof. Since
Ska: Hy(Q)™ c Hys A @) — HP@Q) c By,

by (3.3.21) and (5.3.6), this follows again from the Banach fixed point theorem. O

Remark 5.3.8. The proof of Theorem 5.3.2 shows that equations on function spaces with
negative weights (i.e. growing near infinity) behave as nicely as equations on the static part
of asymptotically de Sitter spaces, discussed in §5.2. However, naturally occurring non-
linearities (e.g., polynomials) will not be continuous nonlinear operators on such growing

spaces.

Corollary 5.3.9. If s > n/2, the hypotheses of Theorem 5.5.7 hold for non-linearities
q(u) = cuP, p > 2 integer, c € C, as well as q(u) = qou?, qo € H(M).

Thus for small m > 0 and R > 0, there exists C' > 0 such that for all f € HZ(2)%™
with norm < C, the equation

(g —m*)u = f+q(u)

has a unique solution w € Hy(2)*~, with norm < R, that depends continuously on f.

If f satisfies stronger decay assumptions, then u does as well. More precisely, writing
P =0, —m?

the inverse normal operator family 73(0)_1 has poles only in Imo < 0 for small m > 0 (cf.



156 CHAPTER 5. SEMILINEAR WAVE EQUATIONS

Lemma 5.3.3 and [40, 114]). Then, defining the spaces X" and X" analogously to the

corresponding spaces in §5.2.4, we have the following result:

Theorem 5.3.10. Fiz 0 < ¢ < min{C’,1/2} and let s > s’ > max(1/2 + Be,n/2,1 + ).

(A concrete bound for s will be given in the course of the proof, see equation 5.3.8.) Let
d
q(u) =) aqpu’, gy € Hy(M).
p=2

Moreover, if o; € C are the poles of P(o)™L, and m;j + 1 is the order of the pole of P(o)~!
at 0j, let & = {(io; + k,£): 0 <l <mj, k € No}. Assume that € # Re(io;) for all j, and
that m > 0 is so small that & is a positive index set. Finally, let F be a positive index set.
Then for small enough R > 0, there exists C > 0 such that for all f € X3 with norm

< C, the equation
(Oy —mHu = f+ q(u) (5.3.7)

! o
has a unique solution u € X;z”}’e, with norm < R, that depends continuously on f; in

o, —

particular, u has an asymptotic expansion with remainder in Hil’E(Q)

Proof. Let us write P = O, —m?. Let § < 1/2 be such that 0 < 2§ < Rez for all (z,0) € .Z,
then f € Hﬁ’%(Q)"_. Now, for u € Hf;’(s(Q)"_, consider Tu := Skg(f + q(u)). First of all,
f+qu) e H§’25(Q)'7_ C H(£2)*, thus the proof of Theorem 5.3.2 shows that we have
Tu € HTY(Q)*, r < 0 arbitrary. Therefore,

N(P)u= f+q(u) + (N(P) — P)u € H* Q)% + H 7" (@)~ ¢ B (),

and thus if 6 > 0 is sufficiently small, namely, § < inf{—1Imo;}/2, Theorem 5.3.1 implies

u € HS_%’%(Q)"*. Since we can choose s = ¢ for some constant ¢ > 0, we obtain

Tue (VHS Q) nHTX @) ¢ () By 20/~ (e
r>0 >0

by interpolation. In particular, choosing § > 0 even smaller if necessary, we obtain Tu €
H§’6 (Q)*~. Applying the Banach fixed point theorem to the map T thus gives a solution
u € H ()% to the equation (5.3.7).
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For this solution u, we obtain
N(P)u=Pu+ (N(P) - Pyu € HZ® + H 2% < g%

since q only has quadratic and higher terms. Hence Theorem 5.3.1 implies that v = uj +u/,
where u; is an expansion with terms coming from poles of P! whose decay order lies
between ¢ and 26, and u' € Hgflf}”%(ﬁ)"_. This in turn implies that f 4 ¢(u) has an

expansion with remainder term in Hg_l_%’mln{4é’e}(9)°”, thus

N(P)u e H§737%’min{45’6}(§2)"_ plus an expansion,
and we proceed iteratively, until, after k more steps, we have 4 - 2¥§ > ¢, and then u has an
expansion with remainder term Hgf?’*%*%’e(Q)”_ provided we can apply Theorem 5.3.1
in the iterative procedure, i.e. provided s — 3 — 2k — » =: s’ > max(1/2 + fe,n/2,1 + »).
This is satisfied if

s >max(1/2 + fe,n/2,1 + ) + 2[logy(€/9)] + » — 1. (5.3.8)
O

5.3.3 Semilinear equations with derivatives in the non-linearities

Theorem 5.3.2 allows one to solve even semilinear equations with derivatives in some cases.
For instance, in the case of 4-dimensional Schwarzschild-de Sitter space, within XN bS}‘(M ,
I is given by r = rp, 01(D,) = 0, where r}, = %rs = 2M, is the radius of the photon sphere,
see e.g. [114, §6.4], and similarly in higher dimensions, see §2.3 and equation (2.3.3) for the
radius 7, of the photon sphere in general. Thus, nonlinear terms such as (r — r,)(9yu)?
are allowed for s > 5 + 1 since 0, : ”Hf)’F(M) — Hgfl(M), with the latter space being
an algebra, while multiplication by r — r, maps this space to H;";_l by (5.3.2). Thus, a
straightforward modification of Theorem 5.3.7, applying the fixed point theorem on the

normally isotropic spaces directly, gives well-posedness.

5.4 Asymptotically de Sitter spaces: global approach

We can approach the problem of solving nonlinear wave equations on global asymptotically

de Sitter spaces in two ways: Either, we proceed as in the previous two sections, first showing
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invertibility of the linear operator on suitable spaces and then applying the contraction
mapping principle to solve the nonlinear problem; or we use the solvability results from §5.2
for backward light cones from points at future conformal infinity and glue the solutions on
all these ‘static’ parts together to obtain a global solution. The first approach, which we will
follow in §§5.4.1-5.4.4, has the disadvantage that the conditions on the non-linearity that
guarantee the existence of solutions are quite restrictive, however in case the conditions are
met, one has good decay estimates for solutions. The second approach on the other hand,
detailed in §5.4.5, allows many of the non-linearities, suitably reinterpreted, that work on
‘static’ asymptotically de Sitter spaces (i.e. backward light cones), but the decay estimates
for solutions are quite weak relative to the decay of the forcing term because of the gluing

process.

5.4.1 The linear framework

Let g be the metric on an n-dimensional asymptotically de Sitter space X, see §2.2.2,7
and let p denote a defining function of the boundaries at future and past infinity. Then,

following [114, §4], the operator!®

— i0/2—(n n—1\2 —io n -
P, — 120/ <+1>/4<Dg< . ) U2>M 21 /412 (5.4.1)

extends non-degenerately to an operator on a closed manifold X which contains the com-
pactification X of the asymptotically de Sitter space as a submanifold with boundary Y,
where ¥ = Y_ U Y, has two connected components, which we call the boundary of X
at past, resp. future, infinity; non-degenerately here means that near Yy, P, fits into the
framework of [114]. Here, u = 0 is the defining function of Y, and p > 0 is the interior
of the asymptotically de Sitter space. Moreover, null-bicharacteristics of P, tend to Y1 as
t — too.

Following [117], let us in fact assume that X = C_ U X U Cy is the union of the
compactifications of asymptotically de Sitter space X and two asymptotically hyperbolic

caps C4; one might need to take two copies of X to construct X , see [117]. See Figure 5.2.

"We use a slightly different notation here to make the notation less cumbersome: The focus here is on
the global space rather than on its static patches.

8P, in our notation corresponds to Pi in [114], the latter operator being the one for which one solves
the forward problem.
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Figure 5.2: Embedding of the asymptotically de Sitter space X as an open subset of the
closed manifold X, here drawn as a sphere. The boundary at future (past) infinity of the
compactification X is Y, (Y_). One obtains X from X by adding asymptotically hyperbolic
caps Cy. Also shown is a null-geodesic on X.

Then P, is the restriction to X of an operator P, € Diff?(X), which is Fredholm as a map

P X8 5 Y7l X={uecH*: Pyue H*'}, Y™ '=H"1

where s € C>($*X), monotone along the bicharacteristic flow, is such that s|y-y >
1/2—Imo, s|y+y, <1/2—Imo, and s is constant near S*Y;."” The spaces H*® are variable
order Sobolev spaces as in [8, §1 and Appendix].

Restricting our attention to X, we define the space H*(X)®~ to be the completion in
H*(X) of the space of C* functions that vanish to infinite order at Y_; thus the superscripts
indicate that distributions in H*(X)®~ are supported distributions near Y_ and extendible

distributions near Y. Then, define the spaces

XS ={uec HX)> : Pbuc HY (X))}, Y& l=H"1(X)*".

1

Denote by ¢ a global time function on X, e.g. t = £~ near Y4, so that t — 400 along

bicharacteristics tending to Y.

Theorem 5.4.1. Fizo € C and s € C°(S*X) as above. Then Py: X* — Y*~1 is invertible,
and Pyt HS Y X)*%™ — H¥(X)®~ is the forward solution operator of P,.

9The choice of signs here is opposite to the one in [117], since here we are going to construct the forward
solution operator on X.
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Proof. First, let us assume Re o > 0 so semiclassical/large parameter estimates are appli-
cable to ﬁa, and let Ty € R be such that s is constant in {t < Ty}. Then for any 77 < Ty,
we can paste together microlocal energy estimates for P, near C_ and standard energy
estimates for the wave equation in {t < 71} away from Y_ as in the derivation of [114,

Equation (3.29)], and thereby obtain

||UHH1({t§T1}) S HIBO’UHHO({tSTI}); (5.4.2)

thus, for f € C®(X), suppf C {t > Ti} implies supp P;1f c {t > T1}. Choosing
¢ € C®(X) with support in {t > Ti} and ¢ € C°°(X) with support in {t < T}, we
therefore obtain wﬁg ¢ = 0. Since ﬁ; 1 is meromorphic, this continues to hold for all
o € C such that Imo > 1/2 — s. Since T1 < T is arbitrary, this, together with standard
energy estimates on the asymptotically de Sitter space X, proves that P I propagates
supports forward, provided P, is invertible. Moreover, elements of ker ]30 are supported in
o

This (and the corresponding statement for the adjoint P}) implies the invertibility of
P, on the spaces in the statement in the theorem; this follows from [8, Lemma 8.3], see also
Footnote 15 there. Concretely, let E: H5~1(X)*~ — H* (X)) be a continuous extension
operator that extends by 0 in C_ and R: H¥(X) — H*(X) ™~ the restriction, then R o

P;' o E does not have poles. Since

U B ({t>T})* c B (X)*,
Th<Top

where (o) denotes supported distributions at {t = T1}, resp. Y_, is dense, Ro P;l o E
in fact maps into H*(X)*~, thus P;! = Ro P;! o E indeed exists and has the claimed
properties. ]

In our quest for finding forward solutions of semilinear equations, we restrict ourselves
to a submanifold with boundary 2 C X containing and localized near future infinity, so
that we can work in fixed order Sobolev spaces; moreover, it will be useful to measure
the conormal regularity of solutions to the linear equation at the conormal bundle of the

boundary of X at future infinity more precisely. So let H®* ()N( ,Y.) be the subspace of
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H*(X) with k-fold regularity with respect to the U9(X)-module
M= {X € BH(X): o1(X)|n+y, =0} (5.4.3)

of first order ps.d.o.s with principal symbol vanishing on N*Y,.. By [59, Theorem 6.3], with
s9 = 1/2—Imo in our case, shows that f € Hsfl’k()?, Yy), Pou = f, wa distribution, in fact
imply that v € H**(X,Y,). So if we let HF(€2)*~ denote the space of all u € H*(X)*~
which are restrictions to §2 of functions in H Sk()? ,Y,), supported in QU CY, the argument

of Theorem 5.4.1 shows that we have a forward solution operator
S, Hs—l,k(g)o,— N Hs’k(Q).’_’

provided
s<1/2—=1Imo. (5.4.4)

The analysis of semilinear equations thus requires the study of algebra properties of the

spaces H**(2)*~, which will be the subject of §5.4.2.

The backward problem

Another problem that we will briefly consider below is the backward problem, i.e. where
one solves the equation on X backward from Yy, which is the same, up to relabelling,
as solving the equation forward from Y_. Thus, we have a backward solution operator
So: H7LR Q)™ — H*(Q)™* (where Q is chosen as above so that we can use constant
order Sobolev spaces), provided s > 1/2 — Imo. Similarly to the above, (—) denotes
extendible distributions at 92 N X° and (e) supported distributions at Y, ; the module

regularity is measured at Y.

5.4.2 Algebra properties of Sobolev spaces with module regularity

We now study spaces like H**(Q)—, e in a slightly more general setting.
Let us call a polynomially bounded measurable function w: R™ — (0,00) a weight

function. For such a weight function w, we define

HO(R") = {ue ' (R"): wi € L*(R™)}.
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The following lemma is similar in spirit to, but different from, Strichartz’ result on Sobolev
algebras [104]; it is the basis for the multiplicative properties of the more delicate spaces

considered below.

Lemma 5.4.2. Let w1, wo,w be weight functions such that one of the quantities

My = 5&5/ <wl<n>lzuu(f<)a - 77)>2 o
w 2
M- = “HS/ <w1(77)w(2£()€—77)) %

is finite. Then HWD(R™) . H®2)(R™) ¢ H®W)(R").

(5.4.5)

Proof. For u,v € . (R™), we use Cauchy-Schwarz to estimate
vl = [ wieP ()P de
2
= [w@? ([ wmiamuats - lote - lort (e -t dn) e

</ (/ (e 77)>2 d”)

< ( [ ate - e - n>|2dn) e

< Moy [l o 101 3

as well as

ol < [ ([ wate a2t — o an)
) (/ <w1(n)uu])(2§(2§ - n))gwl(n)%(n)'?dn) “

— 2 20720112 w(s) ?
— ol [ wr(?atn) ( [ (G ) d&) dn

< Ml 10l -

Since .7 (R™) is dense in H®1)(R") and H®2)(R"), the lemma follows. O
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In particular, if

< 00, (5.4.6)

then H™) is an algebra.

For example, the weight function w(§) = (£)® for s > n/2 satisfies (5.4.6) as we will check
below, which implies that H*(R") is an algebra for s > n/2; this is the special case k = 0
of Lemma 5.4.4 below, and is well-known, see e.g. [108, Chapter 13.3]. Also, product-type
weight functions wy(€) = (€')*(€")% (where € = (¢/,£") € R for s > d/2, k > (n—d)/2
satisfy (5.4.6).

The following lemma, together with the triangle inequality (£)¢ < () + (§ — n)® for
a > 0, will often be used to check conditions like (5.4.5).

Lemma 5.4.3. Suppose o, 5 > 0 are such that o+ 3 > n. Then

dn 0 (Tom
L e € )

Proof. Splitting the domain of integration into the two regions {(n) < (¢ —n)} and {(n) >
(¢ —n)}, we obtain the bound

dn dn
/an@—WBSQ/nWW%’

which is finite in view of o + 3 > n. O

Another important consequence of Lemma 5.4.2 is that H* (R") is an H*(R")-module
provided |¢'| < s, s > n/2, which follows for s’ > 0 from M, < oo, and for s < 0
either by duality or from M_ < oo (with M4 as in the statement of the lemma, with the

corresponding weight functions).

Lemma 5.4.4. Write z € R" as x = (2/,2") € RT=D For s € R,k € Ny, let
YRR = {u € H*(R™): DFu € H*(R™)}.

Then for s > d/2,s+k >n/2, y;’k(R”) is an algebra.

Proof. Using the Leibniz rule, we see that it suffices to show that if u,v € y&’“, then
D2,uD’,v € H*, provided |a| + || < k. Since D%u € Y"1 and D0 € Y7711 this
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amounts to showing that
Yoyt c He ifa+b> k. (5.4.7)

Using the characterization Y% = H®) for w(¢) = (£)*(¢”)*, Lemma 5.4.2 in turn reduces

this to the estimate

(&)
/<T7>28<?7”>2a (€ — 77>25 (& — 77//>217 dn

dn dn
<
~ / <77”>2a <£ _ n>23 <§/1 _ 77//>2b + / <77>2s <77//>2a<f// _ 77//>2b
d77/ d77”
< / <£/ _ n/>23’ / (77”>2a<€” _ 77//>2b+2(sfs’)

+ dn/ dn”
<77/>2s’ <77//>2a+2(s—5’) <§// _ n//>2b’

where we choose d/2 < s’ < s such that a +b+ s — s > (n — d)/2, which holds if

k+ s> (n—d)/2+ s, which is possible by our assumptions on s and k. The integrals are
uniformly bounded in &: For the n/-integrals, this follows from s’ > d/2; for the n”-integrals,

we use Lemma 5.4.3. O

We shall now use this (non-invariant) result to prove algebra properties for spaces with
iterated module regularity: Consider a compact manifold without boundary X and a sub-
manifold Y. Let M D ¥9(X) be the ¥9(X)-module of first order ps.d.o.s whose principal
symbol vanishes on N*Y. For s € R, k € Ny, define

H*(X,Y) = {uec H*(X): M"u e H*(X)}.

Proposition 5.4.5. Suppose dim(X) = n and codim(Y') = d. Assume that s > d/2 and
s+k>n/2. Then H**(X,Y) is an algebra.

Proof. Away from Y, H**(X,Y) is just H*t*(X), which is an algebra since s + k >
dim(X)/2. Thus, since the statement is local, we may assume that we have a product
decomposition near Y, namely X = RY, x R” 4y = {2/ = 0}, and that we are given
arbitrary u,v € H¥¥(X,Y’) with compact support close to (0,0) for which we have to show
wv € H¥*(X,Y). Notice that for f € H*(X) with such small support, f € H**(X,Y)
is equivalent to M’*f € H*(X), where M’ is the C*°(M)-module of differential operators

generated by Id, 8%/,3:;-8%, where 1 <i<n-—d,1<7jk<d.
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Thus the proposition follows from the following statement: For s, k as in the statement

of the proposition,
HS*(R", R := {u € H*(R"): (x')aDg,Df,,u € H*(R"), |a] = |a|, |a] + 8] < k}
is an algebra. Using the Leibniz rule, we thus have to show that
((z"Y*D% D, u)((«')Y D, DS,v) € H, (5.4.8)

provided |a| = |af, 7| = |y, |a| + |5] + |7] + |0] < k. Since the two factors in (5.4.8) lie in
Hsk=lal=18l and HS”“*W'*“S', respectively, this amounts to showing that H. H ¢ H* for
a+b > k. This however is easy to see, since H*¢ C Y7 for all ¢ € Ng, and Y, - y;”’ C H?
was proved in (5.4.7). O

In order to be able to obtain sharper results for particular nonlinear equations in §5.4.3,
we will now prove further results in the case codim(Y) = 1, which we will assume to hold

from now on; also, we fix n = dim(X).

Proposition 5.4.6. Assume that s > 1/2 and k > (n—1)/2. Then
H*(X,Y) - HVF(X,Y) c HS MR (X,Y).

Proof. Using the Leibniz rule, this follows from Y;* - yf*“’ C H* ! for a+b > k. This, as
before, can be reduced to the local statement on R" = R, x R:,_l with Y = {z; = 0}. We
write £ = (£1,€") € RV and 5 = (n1,7') € R**(~1), By Lemma 5.4.2, the case s > 1

follows from the estimate

/ (e
(m)2s ()22 (& —m)2s— (g — )2
dn dn

& / (m)(n)2a(& — m)2s=1 (g — )2 * / (m)2s (/)22 (&' — /)%
dm dn’ o
= 2/ ()2 / (n')2a(e — ') € ke

by Lemma 5.4.3.

dn

If 1/2 < s <1, then & and & play different roles in the following sense: The background

regularity to be proved is H*~!, s — 1 < 0, thus the continuity of multiplication in the
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conormal direction to Y is proved by ‘duality’ (i.e. using Lemma 5.4.2 with M_ < o0),
whereas the continuity in the tangential (to Y) directions, where both factors have k& >
(n—1)/2 derivatives, is proved directly (i.e. using Lemma 5.4.2 with M < oo). Concretely

s—1,b

then, let u € Y%, v € Y} , and put

uo(€) = (€)*(€)*u(€) € LAR™), vo(€) = (£)°H(¢))*v(€) € L*(R™).

Then
1—s
&6 = [ e o b

hence by Cauchy-Schwarz and Lemma 5.4.3

/ ()20 [ e) [ de

§/</< >2b<?7'_n )( '/ 18 wo(€ = m)vo(n )dn12dn')d£
<JI(/ ruo<§—n>|2dm) ( / <§>2(§”Z)(<: n>28|vo(77)|2dm) i dg
S [[ ol = lRateotmP

1 1 ,
. (/ E—n> T @I gD d&) 4

I3

s 1,bs

< ful3ea ol

since 1/2 < s <1, thus 1 —s > 0 and 2s — 1 > 0, and the &;-integral is thus bounded from
above by

1 1
+ dé; € L
/ (€1 —m)2s  (&)20-8) (€] — pp)22s—1) &1 € Ly,
The proof is complete. .

For semilinear equations whose non-linearity does not involve any derivatives, one can
afford to lose derivatives in multiplication statements. We give two useful results in this

context, the first being a consequence of Proposition 5.4.6.

Corollary 5.4.7. Let u € C*(X) be a defining function forY, i.e. uly =0, du #0 on'Y,
and p vanishes on'Y only. Suppose s > 1/2 and { € C are such that Rel + 3/2 > s. Then
multiplication by uﬁ defines a continuous map H**(X,Y) — H*"VH(X|Y) for all k € Ny.
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Proof. By the Leibniz rule, it suffices to prove the statement for £k = 0. We have ,uﬂ €
HRet+1/2=620(X V) for all € > 0: Indeed, the Fourier transform of x(z)z% on R, with
X € CX(R), is bounded by a constant multiple of (¢)~Re¢~1 which is an element of (¢ >*7"L§
if and only if r — Rel — 1 < —1/2, i.e. if Re/ + 1/2 > r. Hence the corollary follows
from Proposition 5.4.6, since one has Rel + 1/2 — € > s — 1 for some ¢ > 0 provided
Rel+3/2 > s. O

Proposition 5.4.8. Let 0 < §',s1,80 < 1/2 be such that s’ < s1 4+ s2 — 1/2, and let
k> (n—1)/2. Then H*(X,Y)- H>*(X,Y) C H'*(X,Y).

Proof. Using the Leibniz rule, this reduces to the statement that Y;y"* - ny’b c HY if
a+ b > k. Splitting variables & = (£1,¢'), n = (m,n’), Lemma 5.4.2 in turn reduces this to
the observation that

/ (©)*
PGP E — (e — )
dm dny
S (/ <m>2(5178/)<§1 — 1p)282 +/ (m1)251 (&) — 771)2(525/))
dn/
| e =

is uniformly bounded in by Lemma 5.4.3 in view of s’ < s1 + s3 —1/2 < min{sy, s2}, thus

dn

s1—8 >0and sy —s >0,and s1+s9— s >1/2, aswellasa+b> (n—1)/2. O

Corollary 5.4.9. Let p e N and s = 1/2 —€ with 0 < e < 1/2p, and let k > (n —1)/2.
Then u € H**(X,Y) = uP € H**(X,Y).

Proof. Proposition 5.4.8 gives u? € HY/2 2=k for all ey > 0, thus u? € H1/2=3e=esk for
all €5 > 0, since €, > 0 is arbitrary; continuing in this way gives u? € H/>7P<~%F for all

€, > 0, and the claim follows. O

5.4.3 A class of semilinear equations

Recall that we have a forward solution operator S,: H*“1F(Q)*~ — H%K(Q)*~ of P,
defined in (5.4.1), provided s < 1/2 — Imo. Let us fix such s € R and ¢ € C. Undoing the

conjugation, we obtain a forward solution operator

S = M—1/2M—ia/2+(n+1)/4SU”ia/2—(n+1)/4M—l/2’
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with the mapping property

9

S - M(n+3)/4+lmU/QHS_l’k(Q).’_ N M(n—l)/4+1ma/2Hs,k(Q)o,—

of O, — (n — 1)2/4 — 0. Since g is a O-metric, the natural vector fields to appear in a
nonlinear equation are 0-vector fields; see §5.4.5 for a brief discussion of these concepts.
However, since the analysis is based on ordinary Sobolev spaces relative to which one has
b-regularity (regularity with respect to the module M), we consider b-vector fields in the
non-linearities. In case one does use O-vector fields, the solvability conditions can be relaxed;
see §5.4.4.

Theorem 5.4.10. Suppose s < 1/2 —Imo. Let

q: Iul(nfl)/4+lm O'/QHs,k(Q)o,f > M(nfl)/4+lm 0'/2Hs,k71(Q; bTéM)o,f
N M(n+3)/4+1m J/2Hs—1,k(Q)o,—

be a continuous function with q(0,0) = 0 such that there exists a continuous non-decreasing

function L: R>g — R satisfying
llg(u,Pdu) = q(v, dv)|| < L(R)|[u = vll, |ul, o]l < R.

Then there is a constant C, > 0 so that the following holds: If L(0) < Cp, then for small
R > 0, there exists C' > 0 such that for all f € p("+3)/4+Ime/2 frs=1Lk ()%= with norm < C,

the equation
—1\2
(Dg— (n ) —02>u:f+q(u,bdu)

2

has a unique solution u € u("fl)/“lm”/QHS’k(Q)"*, with norm < R, that depends contin-

uwously on f.
Proof. Use the Banach fixed point theorem as in the proof of Theorem 5.2.6. O

Remark 5.4.11. As in Theorem 5.2.6, we can also allow non-linearities q(u, "du, Ogu), pro-
vided

q: M(nfl)/4+lma/2Hs,k(Q)o,f > M(nfl)/4+lma/2H571,k(Q; bTéM)o,f
« M(n+3)/4+lmJ/QHS_l’k(Q).’_
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N M(n+3)/4+1m J/QHs—l,k(Q)o,—
is continuous, ¢(0,0,0) = 0 and ¢ has a small Lipschitz constant near 0.

5.4.4 Semilinear equations with polynomial non-linearities

Next, we want to find a forward solution of the semilinear PDE

(Dg - (n ; 1)2 - 02>u = f + cp P X (u) (5.4.9)
where ¢ € C(X), and X (u) = ;1-:1 Xju is a ¢g-fold product of derivatives of u along vector
fields X; € M; recall the definition (5.4.3) of the module M. What follows is a computation
in the course of which we will obtain conditions on A, p,q which guarantee that the map
U > c,uAupX(u) satisfies the conditions of the map ¢ in Theorem 5.4.10. Note that the
derivatives in the non-linearity lie in the module M (in coordinates: ud,, dy), whereas, as
mentioned above, the natural vector fields are O-derivatives (in coordinates: xd, = 2ud,
and z0, = ,ul/ 28y), but since it does not make the computation more difficult, we consider
module instead of O-derivatives and compensate this by allowing any weight p in front of
the non-linearity.

Rephrasing the equation (5.4.9) in terms of P, using & = pi/2-(n+1/441/2y and f =
/2 +i0 /2= 1)/ £ e obtain

q
P = [+ cpA =1/ /2= D)/4) (o) (—io /24+(n=1)/4) H (f5 + X;u)

, (5.4.10)
= [+ @ [](f; + Xj0),
j=1
where f; € C>®(X) and
C=A+{p+q—1)(—ic/2+ (n—1)/4) — 1. (5.4.11)

Therefore, if 4 € H**(Q)*~, we obtain that the right hand side of the equation lies in
HsF=1(Q)* if f € H**1(Q)*, s > 1/2,k > (n + 1)/2, which by Proposition 5.4.5
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implies that H*¥~1(Q)*~ is an algebra, and if
Rel+1/2=A+(p+q¢—1)(Imo/2+ (n—1)/4) —1/2 > s, (5.4.12)

since this condition ensures that ;¢ € H®>°(X), which implies that multiplication by yx‘ is a
bounded map H*F~1(Q)*~ — H*F~1(Q)*~.20 Given the restriction (5.4.4) on s and Im o,

we see that by choosing s > 1/2 close to 1/2, Imo < 0 close to 0, we obtain the condition

A(1 — A)

n—1

pH+qg>1+ (5.4.13)

If these conditions are satisfied, the right hand side of equation (5.4.10) is an element of
H*F1(Q)*~ ¢ H*1#(Q)*~, so Theorem 5.4.10 is applicable, and thus (5.4.9) is well-posed
in these spaces. For instance, from (5.4.13) with A = 0, we see that quadratic non-linearities
are fine for n > 6, cubic ones for n > 4.

To sum this up, we revert back to u = p(=D/4=10/2 and f = p(n+3)/4=io/2 f.

Theorem 5.4.12. Let s > 1/2,k > (n+1)/2, and assume A € R and p,q € Ny, p +
q > 2 satisfy condition (5.4.12). Moreover, suppose o € C satisfies (5.4.4), i.e. Imo <
1/2 — s. Finally, let ¢ € C°(M) and X (u) = i Xju, where X; are vector fields in
M. Then for small enough R > 0, there exists a constant C' > 0 such that for all f €
p(n3)/AtIma /2 sk (Q)e= with norm < C, the PDE

(Dg (") - 02>u e X ()

has a unique solution u € u(”_l)/4+lm"/2H5’k(Q)'7_, with norm < R, that depends contin-
uwously on f.
The same conclusion holds if the non-linearity is a finite sum of terms of the form

cpuP X (u), provided each such term separately satisfies (5.4.4).

Proof. Reformulating the PDE in terms of & and ]?as above, this follows from an application

20Tf one works in higher regularity spaces, s > 3/2, we in fact only need Ref + 3/2 > s, since then
multiplication by p‘ is a bounded map H**~'(Q)*~ c H* 'F(Q)*~ — H*'*(Q)*~. However, the
solvability criterion (5.4.13) would be weaker, namely the role of the dimension n shifts by 2, since in order
to use s > 3/2, we need Imo < —1.
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of the Banach fixed point theorem to the map
_ q
HOMQ)™ 575 S, (f ot T + ijz)) & Ho ()"
j=1

with ¢ given by (5.4.11) and f; € COO()?). Here, p + g > 2 and the smallness of R ensure

that this map is a contraction on the metric ball of radius R in H* (). O

Remark 5.4.13. Even though the above conditions force Imo < 0, let us remark that the
conditions of the theorem, most importantly (5.4.12), can be satisfied if m? = (n —1)%/4 +
02 > 0 is real, which thus means that we are in fact considering a nonlinear equation
involving the Klein-Gordon operator [, — m?. Indeed, let ¢ = ic with & < 0, then
condition (5.4.12) with A =0,p+ ¢ = 2, becomes ¢ > 2 — (n — 1)/2 (where we accordingly
have to choose s > 1/2 close, depending on &, to 1/2), and the requirement o < 0 forces

n > 6. On the other hand, we want (n —1)?/4 — 2 = m? > 0; we thus obtain the condition

2 2
9 n—1 n—1
A I () B
0<m << 5 ) < 5 )

for masses m that Theorem 5.4.12 can handle, which does give a non-trivial range of allowed

m for n > 6.

Remark 5.4.14. Let us compare the numerology in Theorem 5.4.12 with the numerology
for the static model of an asymptotically de Sitter space in §5.2: First, we can solve fewer
equations globally on asymptotically de Sitter spaces, and second, we need stronger regu-
larity assumptions in order to make an iterative argument work: In the static model, we
needed to be in a b-Sobolev space of order > (n + 2)/2, which in the non-blown-up picture
corresponds to O-regularity of order > (n + 2)/2, see §5.4.5, whereas in the global version,
we need a background Sobolev regularity > 1/2, relative to which we have ‘b-regularity’
(i.e. regularity with respect to the module M) of order > (n + 1)/2. This comparison is of
course only a qualitative one, though, since the underlying geometries in the two cases are

different.

Using Proposition 5.4.6 and Corollary 5.4.7, one can often improve this result. Thus,
let us consider the most natural case of equation (5.4.9) in which we use 0-derivatives
X, corresponding to the O-structure on the not even-ified manifold X, and no additional

weight. The only difference this makes is if there are tangential 0-derivatives (in coordinates:
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©1/29,). For simplicity of notation, let us therefore assume that X; = ,u1/25(:j, 1<j<a,
and X; = )N(j, a < j < q, where the )?j are merely vector fields in M. Then the PDE (5.4.9),

rewritten in terms of P,, u and f, becomes

q
Pyt = f+ cp@ [ (f; + X;0) (5.4.14)
j=1

with f; € C®(X), where
l=a/24+(p+q—1)(—ic/2+ (n—1)/4) — 1.

First, suppose that there are no derivatives in the non-linearity so that p > 2, ¢ = o = 0.
Then p‘aP € H*~5F(Q)*~ provided Re/ + 3/2 > s > 1/2 by Corollary 5.4.7; choosing s

arbitrarily close to 1/2, this is equivalent to
Imo/2+(n—1)/4> 0. (5.4.15)

This is a very natural condition: The solution operator for the linear wave equation produces

solutions with asymptotics ,u(”_l)/ dtio/2

, given the numerology (5.2.9) and recalling that
we are working with the even-ified manifold with boundary defining function p = x2; the
nonlinear equation (5.4.9) should therefore only be well-behaved if solutions to the linear
equation decay at infinity, i.e. if £Imo + (n —1)/4 > 0. Since we need Imo < 0 to be
allowed to take s > 1/2, condition (5.4.15) is equivalent to the (small) decay of solutions to
the linear equation at infinity (where p = 0).

Next, let us assume that ¢ > 0. Then the nonlinear term in equation (5.4.14) is an
element of

MZHs,k(Q)o,— . Hs,k—l(Q)o,— C Hs,k—l(Q)o,—
by Proposition 5.4.6, provided Ref + 1/2 > s > 1/2, which gives the condition
Imo/2+ (n—1)/4>1—a«/2

where we again choose s > 1/2 arbitrarily close to 1/2, i.e. for a = 2, we again get condition
(5.4.15), and for @ > 2, we get an even weaker one.

Finally, let us discuss a nonlinear term of the form cuu?, p > 2, in the setting of even



5.4. ASYMPTOTICALLY DE SITTER SPACES: GLOBAL APPROACH 173

lower regularity 0 < s < 1/2, the technical tool here being Corollary 5.4.9: Rewriting the
PDE (5.4.9) with this non-linearity in terms of P,, u and f~‘, we get

Pyi=f+cp'@P, (=A+(p—1)(—io/2+ (n—1)/4) - 1.

Let s = 1/2 — € with 0 < € < 1/2p. Then if 4 € HY?>=F(Q)*~ with k > (n —1)/2,
Corollary 5.4.9 yields u? € H%*(Q)*~, thus

Mﬁfdp e HO,k(Q)o,f C Hsfl,k(Q)o,—

provided Re? > 0, i.e.
41-4)

n>1+ —2Imo, (5.4.16)

where we still require Imo < 1/2 — s = ¢, which in particular allows o to be real if € > 0.

In summary:

Theorem 5.4.15. Let p > 2 be an integer, 1/2 —1/2p < s < 1/2,k > (n—1)/2, and
suppose o € C is such that Imo < 1/2 — s. Moreover, assume A € R and the dimension
n satisfy condition (5.4.16). Then for small enough R > 0, there exists a constant C > 0
such that for all f € p(3)/4H a2 sk Q)= with norm < C, the PDE

(Dg— (n;l)Q —02>u: f+ eptuP

has a unique solution u € u(”_l)/4+1m”/2H5’k(Q)"_, with norm < R, that depends contin-

uwously on f.

In particular, if 1/4 < s < 1/2, 0 < Imo < 1/2 — s and A = 0, then quadratic
non-linearities are fine for n > 5; if Imo = 0 and A = 0, then they work for n > 6.
Backward solutions to semilinear equations with polynomial non-linearities

Let us briefly turn to the backward problem for (5.4.9), which we rephrase in terms of P,
as above. For simplicity, let us only consider the ‘least sophisticated’ conditions, namely
s>1/2,k>(n+1)/2,

A+(p+q¢—1)(Imo/2+ (n—-1)/4)—1/2 > s, (5.4.17)
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and the important change compared to the forward problem is that now s > 1/2 — Imo,
which guarantees the existence of the backward solution operator S . Thus, if Imo > 0 is
large enough and s > 1/2 satisfies (5.4.17), then (5.4.9) is solvable in any dimension.

In the special case that we only consider 0-derivatives and no extra weight, which cor-

responds to putting A = ¢ + /2, we obtain the condition

41-q—a/2)—(p+q—1)(n—1)
2(p+q+1)

Imo >

if we choose s > 1/2 —Imo close to 1/2, which in particular allows Imo > 0, and thus o>

arbitrary, if p > 1 + % (so p > 2 is acceptable if n > 6) or ¢ + /2 > 1.

5.4.5 From static parts to global asymptotically de Sitter spaces

Let us consider the equation
Oy — mHu = f + q(u,°du), (5.4.18)

where the reason for using the O-differential °d, see below, will be given momentarily. The
idea is that every point in X lies in the interior of the backward light cone from some point
p at future infinity Y, , denoted Sp; that is, the blow-up of X at p contains the static part Sp
of an asymptotically de Sitter space where the solvability statements have been explained
in §5.2. Consider a suitable neighborhood €2, C [X;p] of the static patch as in §5.2, so
the boundary of €}, is the union of 95, and an ‘artificial’ spacelike boundary, which on
the non-blown-up space X all meet at the point p. In fact, we may choose the €, in a
fashion that is uniform in p, using the construction in §2.2.2, see in particular (2.2.16). We
then solve equation (5.4.18) on (2, thereby obtaining a forward solution w,, and by local
uniqueness for [, — m? in X, all such solutions agree on their overlap, i.e. Up = ug On
2, N Q. Therefore, we can define a function u by setting u = u, on €, p € Y, which then
is a solution of (5.4.18) on X. To make this precise, we need to analyze the relationships
between the function spaces on the ,, p € Y, and X. As we will see in Lemma 5.4.16
below, b-Sobolev spaces on the blow-ups €2, of X at boundary points are closely related to
0-Sobolev spaces on X.

Recall the definition of 0-Sobolev spaces on a manifold with boundary M (for us, M =

X) with a O-metric, i.e. a metric of the form 272§ with 2 a boundary defining function,
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where g extends non-degenerately to the boundary; 0-geometry was introduced in [81] to
analyze the resolvent on asymptotically hyperbolic spaces: If Vo(M) = V(M) denotes the
Lie algebra of 0-vector fields, where V(M) are smooth vector fields on M, and Diff;(M) the

enveloping algebra of 0-differential operators, then
HE(M) = {u € L*(M,dvol): Pu € L*(M, dvol), P € Diff§(M)},

and H(I; ’E(M ) = 2HF(M) when z is a boundary defining function. For clarity, we shall
write L3(M) = L?(M, dvol). We also recall the definition of the 0-(co)tangent spaces: If
7, denotes the ideal of C*>°(M) functions vanishing at p € M, then the O-tangent space at
p is defined as “T,M = Vo(M)/Z, - Vo(M), and the O-cotangent space at p, 0T];‘]W, as the
dual of °T,M. In local coordinates (z,y) € R, x RZ‘I near the boundary of M, we have

dvol = f(x, y)d?‘” xﬁal with f smooth and non-vanishing, and Vy(M) is spanned by xd, and
x0y; also x0, and zdy,, j = 2,...,n, form a basis of 0Tp]W (for p € OM, which is the only
place where 0O-spaces differ from the standard spaces), and %Z, %, j=2,...,n, form a
basis of OT;M . The exterior derivative d induces the first order O-differential operator °d

on sections of A°T'M:; this follows from
dx dy
& = (@) dx + 0y F) dy = (20.) © + (20,) L.

Now, let  C X be a domain as in §5.4.1. Moreover, let 3,: €, — X be the blow-down
map. We then have:

Lemma 5.4.16. Let k € Ny, £ € R. Then there are constants C' > 0 and Cs > 0 such that
for all 6 > 0,

11l gyt t=nnrr2-5 )0 < Cis Sup 185 F Wl g,y < CCslF Nl g ye- (5.4.19)
per4

Here, (o) indicates supported distributions at the ‘artificial’ boundary and (—) extendible

distributions at all other boundary hypersurfaces.

=~ S"~1 is compact, all constructions

Proof. Let us work locally near a point p € Y, ; since Y
are uniform in p. The only possible issues are near the boundary Y, = {x = 0}, with x
a boundary defining function; hence, let us work in a product neighborhood Y, x [0, 2¢),,

e >0, of Y, and let us assume u is supported is Y5 x [0, €].
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We use coordinates x,y2,...,y, such that y; = 0 at p. Coordinates on (2, are then
z,Ya, ..., Y, with Y = y; /2, ie. By(2,Y) = (x,2Y), with the restriction Y 7, ;2 < 1.

Therefore,

dzr

* 2 o * 2
50 = [ 18R T ay = [ e ay

dr d
/\f T e SN T

Adding weights to this estimate is straightforward. Next, we observe

‘2 dz

20s(By)(@,Y) = 20uf (a,2Y) + Yy f(x,2Y) (5.4.20)

and since |Y] is bounded on 2, we conclude that 3, f € HL () is equivalent to f, 20, f,
z0yf € L3(B,(y)), which proves the second inequality in (5.4.19) in the case k = 1; the
general case is similar.

For the first inequality in (5.4.19), we first note that the additional weight comes from
the number of static parts, i.e. interiors of backward light cones from points in Y., that one
needs to cover any fixed half space {x > zp}: Namely, for 0 < zy < €, let Z(z9) C Yy be
a set of points such that every point in {z > z¢} lies in Q, for some p € H(zy); then we
can choose #(xg) such that |2 (zg)| < Caco( a ), where |- | denotes the number of elements
in a set. This follows from the observation that the area of the slice x = xg of €2, within
Y, = S" ! is bounded from below by cx’g_l for some p-independent constant ¢ > 0, where
we fix a volume element on S"~!. Indeed, note that null-geodesics of the O-metric g are,
up to reparametrization, the same as null-geodesics of the conformally related metric 22g,
which is a non-degenerate Lorentzian metric up to Y. See also Figure 5.3 below.

Thus, putting a« = (n — 1)/2 4, § > 0, we estimate

o dm dy / o o dx dy
x xz f(x, —
| st Z B

o
220 S B £ 32T swp (1612
=0 pPEY+

peB(2—i~1e)

A
NE

<.
Il
o

9J(2a=n+1) sup |57 fliz2.
pEY

A

<
Il
o
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with the sum converging since 2ac —n 4+ 1 = 26 > 0. Weights and higher order Sobolev
spaces are handled similarly, using (5.4.20). O

In particular, this explains why in equation (5.4.18) we take d = °d: Hg’é(X) —
Hg _M(X ;0T* X)), namely this is necessary in order to make the global equation interact
well with the static patches.

Since we want to consider local problems to solve the global one, the non-linearity ¢
must be local in the sense that q(u,°du)(p) for p € X only depends on p and its arguments
evaluated at p; let us for simplicity assume that ¢ is in fact a polynomial as in (5.2.15).

Using Corollary 5.2.9, we then obtain:

Theorem 5.4.17. Let 0 < € < ¢y with €y as in §5.2.3, and s > max(3/2 +¢,n/2 + 1),
s € N. Let

q(u’du) = Y gawd [T Xagu,
2<j+|al<d k<|al
Gja € C+HE(X), Xax € Vo(M). Then there exists C > 0 such that for all f € Hgfl’e(Q)'

with norm < C, the equation

(g — m2)u =f+ q(u,odu)

has a unique solution u € (5 Hg’ef(nfl)ﬂfa(fl)

® that depends continuously on f. Here,
we allow m = 0 if every summand of ¢ contains at least one 0-derivative, and require m > 0
if this is not the case, e.g. if ¢ = q(u) is simply the sum of (multiples of) power of w.

The analogous conclusion also holds for Ugu = f + q(°du) provided ¢ > 0, with the
solution u being in (s HS’_(n_l)/2_5(Q)'. Moreover, for all p € Yy, the limit ug(p) =
limy s pex u(p') exists, ug € CO(Y4), and u — ug(¢p o p) € 2°CO(X), where ¢ o p is

identically 1 near Yy and vanishes near the ‘artificial’ boundary of €.

Proof. We start by proving the first part: If f € HS_I’G(Q)‘, then f, = B, f € Hg_l’e(Qp)
is a uniformly bounded family in the respective norms by Lemma 5.4.16. We can then use
Corollary 5.2.9 to solve

(B —m*)up = fp + a(up, "duy)

in the static part €2,, where we use that ¢ is a polynomial and the fact that bT;‘, 2, naturally
injects into OTB*p(p,)Q for p’ € Q, to make sense of the non-linearity; we thus obtain a

uniformly bounded family u, = |, € H(2,)*. By local uniqueness and since f
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vanishes near Y_, we see that the function u, defined by u(B,(p')) = wup(p') for p € Y7,
p' € Qp, is well-defined, and by Lemma 5.4.16, we indeed have u € Hg’ﬁf(nfl)/%é(ﬂ)' for
all § > 0.
For the second part, we follow the same strategy, obtaining solutions u, = ¢,(¢o u) +uj,
of
Ogup = fp + q(duy),

where ¢, € C and u;) € HS’E(QP)”_ are uniformly bounded, thus u, is uniformly bounded in
Hg’_é(Q)' for every fixed 6 > 0, and therefore the existence of a unique solution u follows
as before. Put ug(p) := ¢p, then ug(p) = limy_p yeq, u(p'), since ul, € zC°(),) by the
Sobolev embedding theorem. We first prove that ug so defined is e-Holder continuous. Let
us work in local coordinates (x,y) near a point (0, o) in Y. Now, uj, is uniformly bounded
in zC°(€),), and since for zo > 0 arbitrary, we have ¢,, + ), (20, y+) = ¢p, + uf,, (T0, Y+
for all p1,pe € Y4, provided |p; — pa| < cxo for some constant ¢ > 0, which ensures that
Qp, NQp, N{x = 20} is non-empty and thus contains a point (zg,y«) (see Figure 5.3), we
obtain

oy — Cpo| = lup, (20, Ys) — p, (0, )| < Cxfy,  |p1 — po| < exo

for all zg, thus

[ua(p1) — uolp:) <C, pi,p2€Yy.

Ip1 — pol©

Figure 5.3: Setup for the proof of ug € C%¢(Y,): Shown are the backward light cones from
two nearby points p1, pe € Y that intersect within the slice {x = 2} at a point (zg, y«).

This in particular implies that

u(z,y) = ua(0,90)| < [u(z,y) —ua(0,y)] + [ua(0,y) — ua(0,30)]

0 (5.4.21)
) ———0,

< C(ly = ol + 2
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hence we in fact have ug(p) = limy _,, yex u(p’). Finally, putting y = yo in (5.4.21) proves
that u — ug(¢ o pu) € z°C°(X). O

The major lossy part of the argument is the conversion from f to the family g, f: Even
though the second inequality in Lemma 5.4.16 is optimal (e.g., for functions which are
supported in a single static patch), one loses (n —1)/2 orders of decay relative to the gluing
estimate, i.e. the first inequality in Lemma 5.4.16, which is used to pass from the family w,
to u. Observe on the other hand that the decay properties of u, without regard to those of f,
in the first part of the theorem are very natural, since the constant function 1 is an element

of Ns=o Hgo’_(n_l)/2_6(X), thus u has an additional decay of € relative to constants.

Remark 5.4.18. For the proof of Theorem 5.4.17, it is irrelevant whether certain 0-Sobolev
spaces are algebras, since the main analysis, Corollary 5.2.9, is carried out on b-Sobolev

spaces.

5.5 Lorentzian scattering spaces

5.5.1 The linear Fredholm framework

We now consider n-dimensional non-trapping asymptotically Minkowski spacetimes (M, g),
a notion which includes the radial compactification of Minkowski spacetime. This notion
was briefly recalled in §5.1; here we restate this in the notation of [8, §3] where this notion
was introduced.

Thus, M is compact with smooth boundary, with a boundary defining function p (we
switch the notation from 7 mainly to emphasize that p is not everywhere timelike), and
scattering vector fields V' € Vs.(M), introduced in [83], are smooth vector fields of the form
pV', V' € Vy,(M). Hence, if the z; are local coordinates on OM extended to a neighborhood
in M, then a local basis of these vector fields over C>(M) is p*9,, p0-;. Correspondingly,
Vsc(M) is the set of smooth sections of a vector bundle ¢T'M, which is therefore, roughly
speaking, pPTM. The dual bundle, called the scattering cotangent bundle, is denoted by
SCT*M. If M is the radial compactification of R™, then V(M) is spanned by (the lifts
of) the translation invariant vector fields over C*°(M). (Recall from §2.1.3 that the radial
compactification means gluing a sphere at infinity to R™ via the reciprocal polar coordinate
map (r,w) — (r~1w) € (0,1),xSE1, i.e. adding p = 0 to the right hand side, corresponding

to ‘r = 00’.) The vector field p28p is well-defined up to a positive factor at p = 0, and is
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called the scattering normal vector field.

Definition 5.5.1. A Lorentzian scattering metric g is a Lorentzian signature, taken to be
(1,7 — 1), metric on °T'M, i.e. a smooth symmetric section of **T*M ® S°T*M with this

signature with the following additional properties:

(1) There is a real C* function v defined on M with dv, dp linearly independent at ‘the
light cone at infinity,” S = {v =0, p = 0},

(2) g(p*9,, p*0,) has the same sign as v at p = 0, thus p?9, is timelike in v > 0, spacelike
inv <0
(3) near S,
dp? (dp a « _dp h
- (5®- —®—)——,
o 2 2 2

g=uv +
p o p P
where « is a smooth one-form on M,

1
a=g dv+ O(v) + O(p),

I is a smooth 2-cotensor on M, which is positive definite on the (codimension two)

annihilator of dp and dwv.
A Lorentzian scattering metric is non-trapping if

(1) 8 =S54 US_ (each a disjoint union of connected components), in X = 9M the open
set {v > 0} N X decomposes as Cy UC_ (disjoint union), with 0Cy = Sy, 0C_ = S_;
we write Cp = {v < 0} N X,

(2) the projections of all null-bicharacteristics in *T*M \ o to M tend to St as their

parameter tends to +oo or vice versa.

Since a conformal factor only reparameterizes bicharacteristics, this means that with
g = p’g, which is a b-metric on M, the projections of all null-bicharacteristics of g in
PT*M \ o tend to Si. As already pointed out in §5.1, the difference between the de Sitter-
type and Minkowski settings is that at the spherical conormal bundle PSN*S of S, the
nature of the radial points is source/sink rather than a saddle point of the flow at Li
discussed in §§3.3.1 and 5.2.
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We first state solvability properties, namely we show that under the assumptions of
(8, §3], the problem of finding a tempered solution to Ojyw = f is a Fredholm problem in
suitable weighted Sobolev spaces. In particular, there is only a finite dimensional obstruction
to existence. Then we strengthen the assumptions somewhat and show actual solvability in
the strong sense that in these spaces the solution w satisfies that if f is vanishing to infinite
order near C_, then so does w.
Let
L=p "=2/2,720, p(n=2)/2 ¢ Diff2 (M) (5.5.1)

be the ‘conjugated’ b-wave operator (as in [8, §4]), which is formally self-adjoint with respect

to the density of the Lorentzian b-metric

g=rg, (5.5.2)

further

where v € C>°(M) is real-valued. Let

m € C*°(°S* M) a variable (Sobolev) order function, decreasing along (5.5.3)
the direction of the Hamilton flow oriented to the future, i.e. towards S,. -

Remark 5.5.2. In the actual application of asymptotically Minkowski spaces, one can take
m to be a function on M rather than PS*M by making it take constant values near C,
resp. C_, corresponding to the requirements at R, resp. R_ below, and transitioning in
between using a time function f as introduce in the discussion preceding Theorem 5.5.4, i.e.
making m of the form F ot for appropriate F. Since this simplifies some arguments below,
we assume this whenever it is convenient.
With
Ry =PSN*S,, resp. R_ =PSN*S_,

the future, resp. past, radial sets in "S*M, see [8, §3.6], and with

m+l<1/2at Ry, m+1>1/2at R_,
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m constant near R4 UR_, one has an estimate
lull s < CllLull v+ Cllull o s, (5.5.4)
provided one assumes m’ < m,
m +1>1/2at R, ue H™'.

To see this, we recall and record a slight improvement of [8, Proposition 4.4]:

Proposition 5.5.3. Suppose L is as above.

Ifm+1<1/2, and if u € Hb_oo’l(M) then R+ (and thus a neighborhood of Ry) is
disjoint from WF?’Z(U) provided R+ N WFbmfl’l(Lu) = () and a punctured neighborhood of
R+, with R+ removed, in ¥ NPS*M is disjoint from WF{)n’l(u).

On the other hand, if m" +1 > 1/2, m > m/, u € Hb_oo’l(M) and if WFZL,’I(U) N
Ry = 0 then Ry (and thus a neighborhood of Ry) is disjoint from WFLn’l(u) provided
Ry NWE M (Lu) = 0.

Proof. The first statement is proved in [8, Proposition 4.4]. The second statement follows
the same way, but in that case the product of the required powers of the boundary defining

functions, p~2p—2m+l

, with p the defining function of fiber infinity?' as in §3.3.1, in the
commutant of [8, Proposition 4.4] provides a favorable sign, thus [8, Equation (4.1)] holds
without the E term. However, when regularizing, the regularizer contributes a term with the
opposite sign, exactly as in [114, Proof of Propositions 2.3-2.4]; this forces the requirement
on the a priori regularity, namely WFg%,’l(u) NR+ = 0, exactly as in the referred results of

114]; see also Proposition 3.3.8 above. O]
[114]; p

Indeed, due to the closed graph theorem, (5.5.4) follows immediately from the b-radial
point regularity statements of Proposition 5.5.3 for sources/sinks, and the propagation of
b-singularities for variable order Sobolev spaces, which is not proved in [8], but whose ana-
logue in standard Sobolev spaces is proved there in [8, Proposition A.1] (with additional
references given to related results in the literature), and as it is a purely symbolic argu-
ment, the extension to the b-setting is straightforward, cf. Proposition 3.3.8 here and 8,
Proposition 4.4] extending the radial point results, Propositions 2.3-2.4, of [114], from the
boundaryless setting to the b-setting.

21 This defining function is denoted by v in [8].
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One also has a similar estimate for L when one replaces m by a weight m which is

increasing along the direction of the Hamilton flow oriented towards the past,
m+l>1/2at Ry, m+1<1/2atR_,
provided one assumes m’ < m,
W+ 1> 1/2at Ry, we H
Further L can be replaced by L*. Thus,

Jul g < Ll s+ Clu (555

g

Just as in the asymptotically de Sitter/Kerr-de Sitter settings, one wants to improve
these estimates so that the space H{)n ’l, resp. H]T ’7, on the left hand side includes compactly
into the error term on the right hand side. This argument is completely analogous to §5.2.1
using the Mellin transformed normal operator estimates obtained in [8, §5]. We thus further
assume that there are no poles of the Mellin conjugate E(O‘) on the line Imo = —I. Then
using the Mellin transform and the estimates for E(O’) (including the high energy estimates,
which imply that for all but a discrete set of [ the aforementioned lines do not contain such

poles), as in §5.2.1, we obtain that on Ry x OM
loll g < CIIN(L)0]| yn. (5.5.6)

when m € C®(S*0M) is a variable order function decreasing along the direction of the
Hamilton flow oriented to the future, Ay, resp. A_, the future, resp. past, radial sets in
S*OM, and with

m+1<1/2at Ay, m+1>1/2at A_.

One can take
m = m|r+an,

for instance, under the identification of T*0M as a subspace of ngMM by means of the
boundary defining function p (see §2.1.1), taking into account that homogeneous degree

zero functions on T*0M \ o are exactly functions on S*OM, and analogously on bTé‘ uM.
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However, in the limit ¢ — oo, one should use norms depending on o reflecting the depen-
dence of the semiclassical norm on h. We recall from Remark 5.5.2 that in the main case of
interest one can take m to be a pullback from M, and thus the Mellin transformed operator
norms are independent of . In either case, we simply write m in place of m.

Again, we have an analogous estimate for N(L*):

L < CIN(L (5.5.7)

ol . e
provided —1 is not the imaginary part of a pole of I , and provided m satisfies the require-
ments above. As L*(¢) = (L)*(5), the requirement on —I is the same as | not being the
imaginary part of a pole of L.

At this point the argument in §5.2.1, which in turn followed §3.2.1, can be repeated
verbatim to yield that for m with m +1 > 3/2 at R_ (with the stronger restriction coming
from the requirements on m’ at R_, m’ at R4, and m’ < m—1, m’ < m —1; recall that one

needs to estimate the normal operator on these primed spaces), and m +1 < 1/2 at R,
lull gy < CllLull v + Cllull o111, (5.5.8)

/ _
where now the inclusion Hgn’l — H," +1i-1

is compact (as we choose m’ < m — 1); this
argument required m, [, m’ satisfied the requirements preceding (5.5.4), and that —I is not
the imaginary part of any pole of L.

Analogous estimates hold for L*:

HUHH{?T <C|L UHHI;?FLT"‘ Cllul| (5.5.9)

H{)n/Jrl,l—la
provided m, l~, m’ satisfy the requirements stated before (5.5.5), m’ < m — 1, and provided
—{ is not the imaginary part of a pole of L* (i.e. I of E)

Via the same functional analytic argument as in §5.2.1 we thus obtain Fredholm prop-
erties of L, in particular solvability, modulo a (possible) finite dimensional obstruction, in
HM

m+1>3/2at R_, m+1<—1/2at R;. (5.5.10)

More precisely, we take m = 1 — m, | = —l, so m+1 < —1/2 at Ry means m +1 =

1 —(m+1) > 3/2, so the space on the left hand side of (5.5.8) is dual to that in the first
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term on the right hand side of (5.5.9), and the same for the equations interchanged. Then

the Fredholm statement holds for
L: Xm,l N ymfl,l

where

X" ={ue HY: Lue HS "), Yo =H.

Note that, by propagation of singularities, i.e. most importantly using Proposition 5.5.3,

with Ker L ¢ H™, Ker L* € H} ™" a priori,
Ker L ¢ H™", Ker L* ¢ H\™™"! (5.5.11)

ifm? +1>1/2atR_, m" +1<1/2at Ry.
Using the same argument, we can thus improve (5.5.10) using the propagation of singu-

larities. Namely, suppose one merely has
m+1>3/2at R, m+1<1/2at R4, (5.5.12)

so the requirement at R is weakened. Then let mf = m — 1 near R, mf < m everywhere,
but still satisfying the requirements for the order function along the Hamilton flow, so
the Fredholm result is applicable with m! in place of m. Now, if u € Xmﬁ’l, Lu = f,
feymtic ym”—lul, then Proposition 5.5.3 gives u € X™!. Further, if Ker L and Ker L*
are trivial, this gives that for m,[ as in (5.5.12), satisfying also the conditions along the
Hamilton flow, L: X™! — Y™~ Ll is invertible.

Now, as invertibility (the absence of kernel and cokernel) is preserved under sufficiently
small perturbations, it holds in particular for perturbations of the Minkowski metric which
are Lorentzian scattering metrics in our sense, with closeness measured in smooth sections
of the second symmetric power of PT*M. (Note that non-trapping is also preserved under
such perturbations.)

For more general asymptotically Minkowski metrics we note that, due to Theorem 5.2.3
(which does not have any requirements for the timelike nature of the boundary defining
function, and which works locally near C_ either by working on (extendible) function spaces
or by using the localization given by wave propagation as in §3.3 of [114] or §5.4.1 here)

elements of Ker L on H{)n’l, with m,[ as above, lie in COO(M) locally near C_ provided all
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resonances, i.e. poles of f(a), in Imo < —I have polar parts (coefficients of the Laurent
series) that map into distributions supported on Cy. As shown in [117, Remark 4.17]
when L(o) arises from a Lorentzian conic metric as in?? [117, Equation (3.5)], but with
the arguments applicable without significant changes in our more general case, see also
[8, §7] for our general setting, and [114, Remark 4.6] for a related discussion with complex
absorption, the resonances of E(O') consist of the resonances of the asymptotically hyperbolic
resolvents on the caps, namely R¢, (o), Ro_(—0), as well as possibly imaginary integers,
o € iZ \ {0}, with resonant states when Imo < 0 being differentiated delta distributions
at Sy = 0C4 while the dual states are differentiated delta distributions at S_ = 9C_
when Im o > 0; the latter arise, e.g. as poles on even dimensional Minkowski space. More
generally, when composed with extension of C2°(C_ U Cp) by zero to C*°(X) from the right
and with restriction to C_ U Cy from the left, the only poles of L(c) are those of R (—0)
as well as the possible 0 € iN,. Thus, fixing [ > —1, one can conclude that elements of
Ker L are in C*°(M) locally near C_ provided R¢_ () has no poles in Im& > 1. (The only
change for [ < —1 is that one needs to exclude the potential pure imaginary integer poles
as well.) The analogous statement for Ker L* on H{;ﬁ g is that fixing 1> —1, elements are
in C>°(M) near C, provided R¢ . (0) has no poles in Imo > I. As [ = —I for our duality
arguments, the weakest symmetric assumption (in terms of strength at C; and C_) is that
Rc, do not have any poles in the closed upper half plane; here the closure is added to

! with 1 = 0. In general, if one wants to use other

make sure L is actually Fredholm on ng
values of [, one needs to assume the absence of poles in Imo > —|I| (if one wants to keep
the hypotheses symmetric).

Note that assuming d—p” is timelike (with respect to g, defined in (5.5.2)) near C_, one
automatically has the absence of poles of R¢_ in an upper half plane, and the finiteness
(with multiplicity) of the number of poles in any upper half plane, by the semiclassical
estimates of [114, §§3.2, 7.2] (one can ignore the complex absorption discussion there), so in
this case the issue is that of a possible finite number of resonances. There is an analogous
statement if % is timelike near Cy for R, .

Now, assuming still that d—pp is timelike at, hence near C_, it is easy to construct a

22In [117], the boundary defining function used to define the Mellin transform is replaced by its reciprocal,
which effectively switches the sign of o in the operator, but also the backward propagator is considered
(propagating toward the past light cone), which reverses the role of o and —o again, so in fact, the signs
in [117] and [8] agree for the formulae connecting the asymptotically hyperbolic resolvents and the global
operator, L(o).
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function t which has a timelike differential near C_, and appropriate sublevel sets are small
neighborhoods of C_. Once one has such a function t, energy estimates can be used to
conclude that rapidly vanishing, in such a neighborhood, solutions of Lu = 0 actually
vanish in this neighborhood, so elements of Ker L have support disjoint from C_; similarly
elements of Ker L* have support disjoint from C .

Concretely, with G the dual b-metric of g, let U_ be a neighborhood of C_, and let
0<e <€, €>0,9 >0 besuch that {p <€ v > —e} NU_ is a compact subset of U_,

and on U_

dp d
ff) pp>>6’

d
p <, —€1<’U<—€0:>G( pdv><0 G(dv dv) >

p <€, v>—61:>G<

Such U_ and constants indeed exist. First, there is U_ and € > 0, €] > 0 such that
{p<¥&, v>—€|}NU_ is a compact subset of U_ since C_ is defined by {p =0, v > 0} in
a neighborhood of C_ with dp # 0 there and dv # 0 near v = 0; we then consider € < €,
€1 < €} below. Next, since G( dp @) is positive on a neighborhood of C_ by assumption
(thus for any sufficiently small €7, € there is a desired ¢ so that the first inequality is satisfied)
and @(d—ég,dv)] s_ = —2, any sufficiently small ¢; and € give G( ,dv) < 0 in the desired
region, and finally G(dv,dv) > 0 on Cy near S_ (as G(dv,dv) = —4v + O(v?) there), so
choosing ¢ sufficiently small, ¢y < €1, and then € sufficiently small satisfies all criteria.

Now let e_, ey be such that 0 < e_ < ey <€, and let ¢ € C>°(R) have ¢’ <0, ¢ = 0 near
[—€0,00), ¢ > € near (—oo, —€1], ¢’ < 0 when ¢ takes values in [e_,e;]. Then t = p + ¢(v)
has the property that on U_

t<er=p,00)<er=p<Ev>—€
and
v > —€e=t=np.

Thus, on U_ if v > —¢p and t < €4 then dt is timelike as dp is such, while if v < —¢g, t < €4
then

G(dt, dt) —pQé(dpp,Ci)p) +2¢/ (v )pG(dp dv) + (¢! (0))2G(dv, dv)

and all terms are > 0 in view of —e; < v < —¢q, p < €, with the inequality being strict when
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t€ e, eq] (as well as in M° Nt~ 1((—o0,€e4])). Thus, near t~*([e_, e ])NU_, tis a timelike
function; the same is true on M° Nt~((—o0, e ]) NU_. Let x € C>®*(R) with ' <0, y =1
near (—oo, e_|, x = 0 near [e4,00), and let x ot, defined by this formula in U_, be extended
to M as 0 outside U_; since t~1((—00, €4]) NU_ is a compact subset of U_, this gives a C*°
function. Further, p is also timelike, with d—/f and dt in the same component of the timelike
cone; see Figure 5.4. Correspondingly, one can apply energy estimates using the timelike
vector field V' = (x o t)p_gé(d—pp, .), cf. [114, §3.3] leading up to Equation (3.24) and the
subsequent discussion, which in turn is based on [113, §§3-4]. Here one needs to make both
—x' large relative to x and £ > 0 large (making the b-derivative of p~¢ large relative to
p~Y), as discussed in the Mellin transformed setting in [114, §3.3], in [113, §§3-4], as well as
§4.1 here (with 7 in place of p, but with the sign of ¢ reversed due to the difference between
b-saddle points and b-sinks/sources). Notice that taking ¢ large is exactly where the rapid

decay near C_ is used.

Figure 5.4: Setup for energy estimates near C_: The shaded region is the support of X’ o t,
where —x’ is used to dominate x to give positivity in the energy estimate; near p = 0 and
on supp(x o t), i.e. in the region between p = 0 and the shaded region, a sufficiently large
weight p~¢ gives positivity.

We have seen that the existence of appropriate timelike functions, such as t, in a neigh-
borhood of C; and C_ is automatic (in a slightly degenerate sense at C1 themselves) when
d—pp is timelike in these regions; indeed these functions could be extended to a neighborhood
of Cy if v is appropriately chosen. In order to conclude that elements of Ker L and Ker L*
vanish globally, however, we need to control all of the interior of M. This can be accom-
plished by showing global hyperbolicity*® of M°, which in turn can be seen by applying a
result due to Geroch [53]. Namely, by [53, Theorem 11] it suffices to show that a suitable S
is a Cauchy surface, which by [53, Property 6] follows if we show that S is achronal, closed,

2In Geroch’s notation, our M° is M.
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and every null-geodesic intersects and then re-emerges from S. In order to define S, it is
useful to define t = 1 ot in U_, where ¢ € C®(R), ¢/ > 0, ¢h(t) = t near t < e_, ¢)/(t) > 0
for t < ey, p'(t) = 0fort > ey; let T =1p(e;) > e_. Further, extend t to M as = T outside
U_; since U_ Nt~ 1((—o0, e4]) is compact, this gives a C* function on M. Thus, t € C*°(M)
is a globally weakly time-like function in that @(d?, d/t) > 0, and it is strictly time-like in
M° Nt 1((—o0o,ey)). In particular, it is monotone along all null-geodesics. Further, t=0
at S_ and t =T > 0 at S, indeed near S;. Then we claim that S =t '(e_) N M° is a
Cauchy surface.

Now, S is closed in M° since S is closed in M; indeed it is a closed embedded sub-
manifold. By our non-trapping assumption, every null-geodesic in M° tends to S in one
direction and S_ in the other direction, so on future oriented null-geodesics (ones tending
to S;), t is monotone increasing, attaining all values in (0,7]. Since at the e_ level set
of t, hence of t, dt is strictly time-like, the value e_ is attained exactly once for t along
null-geodesics. Thus, every null-geodesic intersects S and then re-emerges from it. Finally,
S is achronal, i.e. there exist no time-like curves connecting two points on S: any future
oriented time-like curve (meaning with tangent vector in the time-like cone whose boundary
is the future light cone) in M°Nt~!((—ooc, e4)) has t monotone increasing, with the increase
being strict near S, so again the value e_ can be attained at most once on such a curve.
In summary, this proves that M° is globally hyperbolic, so every solution of Lu = 0 with
vanishing Cauchy data on & vanishes identically, in particular by what we have observed,
Ker L and Ker L* are trivial on the indicated spaces.

In summary:

Theorem 5.5.4. If (M, g) is a non-trapping Lorentzian scattering metric in the sense of
[8], |l < 1, and

(1) The induced asymptotically hyperbolic resolvents R have no poles in Imo > —|l],
(2) d—pp is timelike near Cy U C_,

then for order functions m € C>(PS* M) satisfying (5.5.3) and (5.5.12), the forward problem

for the conjugated wave operator L, see (5.5.1), i.e. with L considered as a map
L: Xm,l N ym—l,l’

1s invertible.
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Extending the notation of [8], especially (8, §4], we denote by H}" LR, where m, 1 €
R,k € Ny, the space of all u € H{)n’l(M) (i.e. u € p'H™(M), where p is the boundary
defining function of M) such that MJu € H{)n’l(M) for all 0 < j < k. Here, M C ¥} (M)
is the WY (M)-module of pseudodifferential operators with principal symbol vanishing on
the radial set R of the operator L = p_(”_2)/2p_2Dgp(”_2)/2; in the coordinates p, v,y as
in [8] (p being as above, v a defining function of the light cone at infinity within oM, y
coordinates within in the light cone at infinity), M has local generators pd,, pOy, v0y, Oy.
Then the results of [8], concretely Proposition 4.4, extend our theorem to the spaces with
module regularity. Namely the reference guarantees the module regularity u € Hﬁn bk (M)
of a solution u of Lu = f if f has matching module regularity®! f € H{)nfl’l’k(M) and if u
is in H" ™™ (M) near C_. 1f f € H™ ""¥(M), then in particular f is locally in HF 1!
near C_, thus, taking into account that m + [ > 1/2 already there, u is in ngk’l in that
region by Proposition 5.5.3 (by the first case there, i.e. in the high regularity regime). Thus,

an application of the closed graph theorem gives the following boundedness result:

Theorem 5.5.5. Under the assumptions of Theorem 5.5.4, L™' has the property that it
restricts to

-1 —1,Lk Lk
L Hg" — Hf)ﬂ , k>0,
as a bounded map.

In particular, letting Q2 = {I > 0}, where f="1—e_ so that it attains the value 0 within
M\ (C1 UC-), we have a forward solution operator S of L which maps Hgn_l’l’k(Q)' into
H{)n’l’k(Q)‘, given that m+1 < 1/2; let us assume that m is constant in . Here, Hg“”“(Q)'
consists of supported distributions at 9Q N Cg = {t = 0}.

Remark 5.5.6. Using the arguments leading to Theorem 5.5.4 in the current, forward prob-
lem, setting, but now also using standard energy estimates near the artificial boundary
=0 of Q, we see that if suffices to control the resonances of the asymptotically hyperbolic

resolvent in the upper cap C in order to ensure the invertibility of the forward problem.

24This Proposition in [8] is stated making the stronger assumption, f € Hf)n71+k’l(M). However, the
proof goes through for just f € H;"il’l’k(M) in a completely analogous manner to the result of Haber and
Vasy [59, Theorem 6.3], where (in the boundaryless setting, for a Lagrangian radial set) the result is stated
in this generality.



5.5. LORENTZIAN SCATTERING SPACES 191

5.5.2 Algebra properties of b-Sobolev spaces with module regularity

In order to discuss nonlinear wave equations on an asymptotically Minkowski space, we need
to discuss the algebra properties of the spaces Hgb bk Even though we are only interested
in H""*(Q)*, we consider H™"*(M), where m is constant on M for notational simplicity,
and the results we prove below are valid for H}" ’l’k(Q)' by the same proofs.

We start with the following lemma:
Lemma 5.5.7. Let b, ly € R, k> n/2. Then HY" . gO2k ¢ ghhtlz=1/2k,

Proof. The generators p0,, p0y, v0,, 0y of M take on a simpler form if we blow up the point
(p,v) = (0,0). It is most convenient to use projective coordinates on the blown-up space,

namely:

(1) Near the interior of the front face, we use the coordinates p=p > 0 and s =v/p € R.
We compute pd, = pd; — 05, v0, = 50, pd, = Js; and since d—; dv dy = dpds dy (this
is the b-density from Hg’l’k), the space Hg’l’k becomes

AR = {u e p'L2(dpds dy): Alu e p'L*(dpds dy),0 < j < k},

where A is the C*°-module of differential operators generated by 05, p05, 0.

Now, observe that p'L?(dpds dy) = ﬁiil/zLQ(%ﬁ ds dy); therefore, we can rewrite

AR =y e ﬁ—l/zLQ(%ﬁ dsdy): Alu e ﬁi—l/QL?(%ﬁ dsdy),0 < j < k}
= § VP HE(%2 ds dy).
In particular, by the Sobolev algebra property, Lemma 5.2.7, and the locality of the

multiplication, choosing k& > n/2 ensures that ,511*1/2H{f . ﬁ{rl/zH]]; C [)ilH?*lH{f,
which is to say Ak . Alk ¢ glitla=1/2k

(2) Near either corner of the blown-up space, we use v = v and t = p/v (say, v >
0,t > 0). We compute pd, = tdy, v0, = V05 — t0y, pdy = tv0y — t20;; and since

d—pp dvdy = % dv dy, the space Hg’l’k becomes

B = {u € () L*(L dv dy): Blu € (0)'L* (L dvdy),0 < j < k},
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where B is the C°°-module of differential operators generated by t0t,v05, 0,. Again,

we can rewrite this as
Lk _ l~1—1/2 r7k(dt do
B =t / Hb (7 % dy),

which implies that for k > n/2,

1,k lo,k li4lo, l1+lo—1 p7k dt dv li4+1la—1/2,k
Bk Blak ¢ yhtlzyhla=lpk(dt 4O g,y  phetle=1/2k,

To relate these two statements to the statement of the lemma, we use cutoff functions x4, xB
to localize within the two coordinate systems. More precisely, choose a cutoff function
X € CX(R,) such that x(s) = 1 near s = 0, x(s) = 0 for |s| > 2, and x/? € C(R,).
Then multiplication with xa(p,v) := x(v/p) is a continuous map Hg’l’k — Ab*. Indeed,
to check this, one simply observes that MJiy4 € L* for all j € Ny. Similarly, letting
xB(p,v) :=1—x4(p,v), multiplication with xp is a continuous map Hg’l’k — BY*. Finally,
note that we have A% BbF Hg’l’k.

To put everything together, take u; € Hg’lj’k (j =1,2), then

urug = (xau1)(xauz) + (xpu1)(xBu2) + (xau1)(xpu2) + (xBu1)(XAU2)-

The first two terms then lie in Hg’ll+12_1/2’k. To deal with the third term, write

/

(XAUI)(XBUQ) = (X}4/2U1)(X,14 2XBuz) € Al Aok C Hg’llﬂrl/zk;

0,l1+12—1/2,k
Hb,1+2 /2,

likewise for the fourth term. Thus, ujus € , as claimed. ]

Remark 5.5.8. The proof actually shows more, namely that
R R e (5.5.13)

where pg is the defining function of the front face p = v = 0, e.g. pg = (p? + v?)/2. The
reason for (5.5.13) to be a natural statement is that module- and b-derivatives are the same
away from p = v = 0, hence regularity with respect to the module M is, up to a weight,
which is a power of pg, the same as b-regularity.

More abstractly speaking, the above proof shows the following: If p, denotes a boundary
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defining function of the other boundary hypersurface of [M;Sy], i.e. I[M;Sy] \ , then
HY' 2 o (o) HE (M5 1)),

Note that one can also show this in one step, introducing the coordinates pg > 0 and
s=v/(p+pg) € [-1,1] on [M;S4] in a neighborhood of ff, and mimicking the above proof,
which however is computationally less convenient.

Remark 5.5.9. We can extend the lemma to Hg"’l’ngn’ll’k C len’lﬂl_l/z’k for m € Ny using

the Leibniz rule to distribute the m b-derivatives among the two factors, and then using

the lemma for the case m = 0.

The following corollary improves Lemma 5.5.7 if we have higher b-regularity; it will play

an important role in §5.5.5.

Corollary 5.5.10. Let k >n/2,0<d§ <1/n and l,l' € R. Then
(1) Hé,z,ng,z’,k - Hl()),l+l’—1/2+6,k:'
(2) H&,l,kHéJ’,k c Hé,l+l’71/2+5,k'

Proof. Take s =1/(20) > n/2, then
HE R ¢ gk, (5.5.14)

indeed, using the Leibniz rule to distribute the k module derivatives among the two factors
and cancelling the weights, this amounts to showing that H]‘;’O’kl Hg’o’k2 C Hg,o,o for k1+ka >
k; but this is true even for ki = ko = 0, since H} is a multiplier on Hg provided s > n/2.

The lemma on the other hand gives
Hg,l,ng,l’,k C p—l/QH]g,lJrl’,k_ (5.5.15)

Interpolating in the first factor between (5.5.14) and (5.5.15) thus gives the first statement.

For the second statement, use the Leibniz rule to distribute the one b-derivative to either

’ 0,141/ —1/2+48,k
Ll,ngJ k Hb,+ /244,

factor; then, one has to show Hy , and the same inclusion with [

and I’ switched, which is what we just proved. O

Lemma 5.5.7 and Remark 5.5.8 imply that for u € H]T’l’k, p>1, withm >0,k >n/2,

we have uP € Hgn ; in fact, uP € pg b . Using Corollary 5.5.10, we can
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improve this to the statement u € H{f“l’k = uP € H]:l’pl*(pfl)/ﬂ(p*l)a’k for m > 1.

For non-linearities that only involve powers u”, we can afford to lose differentiability, as

at the end of §5.4.2, and gain decay in return, as the following lemma shows.

Lemma 5.5.11. Let a« > 1/2, 1 € R, k € Ng. Then pf}o‘Hg’l’k - pl/Q*O‘Hgl’l’k, where
pr = (p* + 02,

Proof. We may assume [ = 0, and that u is supported in |v| < 1, p < 1. First, consider the
case k = 0. Let u € pz*HY, and put

v
u(p,v,y) = / u(p, w,y) dw,
—00
80 O0pu = u. We have to prove yu € pl/z_aHg if ¥ = 1 near supp u, which implies v € H; !,

as Oy : Hg — Hgl, and the b-Sobolev space are local spaces. But

1 1
[w(p, v, y)|* < (/1pff(p,w)mIU(p,w,y)!de) /1pﬁ(p, w) > dw; (5.5.16)

now,

1 1p dz
—2a 1-2a 12«
pg " dw = p / S
/1 i —1/p (L4 [22)"

for @ > 1/2, therefore, with the v integral considered on a fixed interval, say |v| < 2 (notice

that the right hand side in (5.5.16) is independent of v!),

s d i d
///an 1IU(p,v,y)IZppdvdy,ﬁ///pﬁr IU(p,w,y)IQfdwdy,

proving the claim for k = 0. Now, pd, and 9, just commute with this calculation, so the
corresponding derivatives are certainly well-behaved. On the other hand, d,u = u, so the

estimates involving at least one v-derivative are just those for u itself. O

Corollary 5.5.12. Let k,p € N be such that k > n/2, p>2. Letl € R, u € Hg’l’k. Then
uP € Hgl’lpf(pfl)/wrl/%é’k with d =0 1ifp>3 and § >0 if p=2.

(p—1)/2—6 £40,lp,k
p Hb p

Proof. This follows from u? € pg and the previous lemma, using that (p —

1)/2+ 9 > 1/2 with § as stated. O

1/2—6

In other words, we gain the decay p if we give up one derivative.
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5.5.3 A class of semilinear equations

We are now set to discuss solutions to nonlinear wave equations on an asymptotically
Minkowski space. Under the assumptions of Theorem 5.5.4, we obtain a forward solution
operator S': Hgnil’l’k(ﬂ)’ — H}T’l’k(Q)' of P = p=(=2/2p=20,p("=2)/2 provided |I] < 1,
m+1<1/2and k > 0.

Undoing the conjugation, we obtain a forward solution operator of [,

§ = pn2/2g,72 ;= (n-2)/2,

which is a bounded operator

§: H{)n—l,l—i—(n—2)/2+2,k(9). _>H£n,l+(n—2)/2,k(9)..

Since g is a Lorentzian scattering metric, the natural vector fields to appear in a nonlinear
equation are scattering vector fields. Since the wave equation (as opposed to the Klein-
Gordon equation with non-zero mass) can be recast as a non-degenerate b-equation, we in

fact allow b-vector fields:

Theorem 5.5.13. Let
q: ng7l+(n—2)/2,k(ﬂ). % H;n—l,l+(n—2)/2,k(Q;bTéM)o BN H;n—l,l+(n—2)/2+2,k(Q)o

be a continuous function with q(0,0) = 0 such that there exists a continuous non-decreasing

function L: R>o — R satisfying
lg(u, Pdu) —q(v,"dv) | < L(R)[u— o], [ul, o]l < R.

Then there is a constant C, > 0 so that the following holds: If L(0) < Cp, then for small
R > 0, there exists C' > 0 such that for all f € H?_l’l+("_2)/2+2’k(ﬂ)’ with norm < C, the
equation

Ogu = f + q(u, Pdu)

Hgl,l+(nf2)/2,k(9).

has a unique solution u € , with norm < R, that depends continuously

on f.

Proof. Use the Banach fixed point theorem as in the proof of Theorem 5.2.6. O
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Remark 5.5.14. Here, just as in Theorem 5.4.10, we can also allow ¢ to depend on Uju as

well.

5.5.4 Semilinear equations with polynomial non-linearities

Next, we want to find a forward solution of the semilinear PDE
Ogu = f + cuP X (u),

where ¢ € C*(M), p € Ny, and X (u) = [[]_; pV;(u) is a g-fold product of derivatives of u
along scattering vector fields; here, V; are b-vector fields. Let us assume p + ¢ > 2 in order

for the equation to be genuinely nonlinear. We rewrite the PDE as

L(p~ =272y = p=(n=2/2=2 1 o 0p=2p(p=1)(n=2)/2 (= (n=2)/2,)p
q
j=1
Introducing @ = p~(™2/2y and f: p~("=2)/2=2 ¢ vields the equation
_ q
LU = f 4 cpP~D(n=2)/2=2p H p”/2(fjﬂ + V@)

J=1

q
= f + cplrN=2/2ran2=2p TT( £330 + Vi), (5.5.17)
j=1

where the f; are smooth functions. Now suppose that u € H{)n’l’k(Q)' with m +1 < 1/2,
m > 1 and k > n/2, so Hg”_l’_oo’k(ﬂ)’ is an algebra. Then the second summand of the
right hand side of (5.5.17) lies in Hgnfl’g’k(ﬂ)', where

(=p-1)(n—-2)/24+q/2—2+pl—(p—1)/2+ql—(g—1)/2 —1/2.

For this space to lie in H}" _U’k(ﬂ)' (which we want in order to be able to apply the solution
operator S and land in H{)n’l’k(Q)' so that a fixed point argument as in §5.2 can be applied),

we thus need ¢ > [, which can be rewritten as

-1+ (n—-3)/2)+q(l+(n—-1)/2) > 2. (5.5.18)
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With the amount m = 1 of b-regularity and correspondingly weight [ < 1/2 — m less than,
but close to —1/2, we thus get the condition

(p—1)(n—4)+q(n—2) > 4.

If there are only non-linearities involving derivatives of u, i.e. p = 0, we get the condition
g >1+42/(n — 2), i.e. quadratic non-linearities are fine for n > 5, cubic ones for n > 4.

Note that if ¢ = 0, we can actually choose m = 0 and [ < 1/2 close to 1/2, and we have
Corollary 5.5.12 at hand. Thus we can improve (5.5.18) to (p—1)(1/24+(n—3)/2) > 2—-1/2,
ie. p > 1+ 3/(n—2), hence quadratic non-linearities can be dealt with if n > 6, whereas
cubic non-linearities are fine as long as n > 4. Observe that this condition on p always
implies p > 1, which is a natural condition, since p = 1 would amount to changing [,
into Ly — m? (if one chooses the sign appropriately). However, the Klein-Gordon operator
naturally fits into a scattering framework rather than the b-framework discussed here, i.e.
requires a different analysis; we will not pursue this further here.

To summarize the general case, we undo the conjugation used to define L in terms of [,:
Note that u € H?’M(Q)’ is equivalent to u € ng,l+(nf2)/2,k(9).’ and f € Hg”_l’l’k(Q)‘ to
f e P nTRATE e Thys:

Theorem 5.5.15. Let |I| <1,m+1<1/2,k > n/2, and assume that p,q € Ng, p+q > 2,
satisfy condition (5.5.18) or the weaker conditions given above in the cases where p = 0
or q = 0; let m > 0 if ¢ = 0, otherwise let m > 1. Moreover, let ¢ € C*°(M) and
X(u) = ngl Xju, where X; is a scattering vector field on M. Then for small enough
R > 0, there exists a constant C' > 0 such that for all f € Hf)n_l’lﬂn_z)/%z’k(fl)‘ with
norm < C, the equation

Ogu = f + cu’ X (u)

has a unique solution u € Hgn’l+(n72)/2’k(9)°

on f.

The same conclusion holds if the non-linearity is a finite sum of terms of the form

, with norm < R, that depends continuously

cuP X (u), provided each such term separately satisfies (5.5.18).

Proof. Reformulating the PDE in terms of w and fas above, this follows from an application
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of the Banach fixed point theorem to the map

q
HMHQ)* 57 s( f 4 cpr D=2 ran2=20e TT (i + Vja)> e HM"F(Q)*
j=1
with m, [,k as in the statement of the theorem. Here, p + ¢ > 2 and the smallness of R

ensure that this map is a contraction on the ball of radius R in Hl:n’l’k(Q)°. t

Remark 5.5.16. If the derivatives in the non-linearity only involve module derivatives, we get
a slightly better result since we can work with u € Hg’l’k (©)*: Indeed, a module derivative
falling on u gives an element of Hg’l’k_l((l)’, applied to which the forward solution operator
produces an element of Hé’l’k71(9)° C Hg’l’k(Q)°.
The numerology works out as follows: In condition (5.5.18), we now take [ < 1/2 close
to 1/2, thus obtaining
(p—1)(n—2)+gn > 4.

Thus, in the case that there are only derivatives in the non-linearity, i.e. p = 0, we get

q > 1+ 2/n, which allows for quadratic non-linearities provided n > 3.

Remark 5.5.17. We can further improve (5.5.18) in the case p > 1, ¢ > 1, m > 1 by using
the d-improvement from Corollary 5.5.10, namely, the right hand side of (5.5.17) actually

lies in Hgl_l’ﬁ’k(ﬁ)‘, where now
l=p-1)(n—-2)/24qgqn/2-2+pl—(p—1)/24+(p—-1)d+ql—(¢—1)/2—-1/2+9,
which satisfies £ > [ if
(p—=1U+(n=3)/24+6) +q(l+(n—1)/2)+0 =2,

which for I < —1/2 close to —1/2 means: (p — 1)(n — 4 + 26) + g(n — 2) + 2§ > 4, where
0<d<1/n.

Remark 5.5.18. Let us compare the above result with Christodoulou’s [19]. A special case
of his theorem states that the Cauchy problem for the wave equation on Minkowski space
with small initial data in®® Hy 1 (R"!) admits a global solution u € H, k (R™) with decay

loc

lu(z)] < (1 + (v/p)?)~("=2/2; here, k = n/2 + 2, and n is assumed to > 4 and even; in

ZNote that n is the dimension of Minkowski space here, whereas Christodoulou uses n + 1.
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case n = 4, the non-linearity is moreover assumed to satisfy the null condition. The only
polynomial non-linearity that we cannot deal with using the above argument is thus the
null-form non-linearity in 4 dimensions.

To make a further comparison possible, we express H, k’g(]R”_l) as a b-Sobolev space on
the radial compactification of R"~!: Note that u € Hy s(R"™1) is equivalent to ((x)D,)%u €
() OL*(R™ 1), |a|] < k. In terms of the boundary defining function p of OR"~1 and the
standard measure dw on the unit sphere S*~2 C R"~!, we have L?(R"!) = LQ(% pff%) =
p("*l)/zLQ(d—;’ dy), and thus Hys(R"1) = p(=D/2H [kt = 0). Therefore, converting
(nfl)/2+k71,O(Q). _

the Cauchy problem into a forward problem, the forcing lies in H]I;’
H€/2+2’n+1/2’0(ﬂ)'. Comparing this with the space Hg’l+(n_2)/2+2’"/2+1 (with [ < 1/2)
needed for our argument, we see that Christodoulou’s result applies to a regime of fast

decay which is disjoint from our slow decay (or even mild growth) regime.

Remark 5.5.19. In the case of non-linearities u”, the result of Christodoulou [19] implies
the existence of global solutions to Lyu = f + u” if the spacetime dimension n is even and
n > 4 if p > 3; in even dimensions n > 6, p > 2 suffices; the above result extends this
to all dimensions satisfying the respective inequalities. In a somewhat similar context, see
the work of Chrusciel and Leski [21], it has been proved that p > 2 in fact works in all

dimensions n > 5.

5.5.5 Semilinear equations with null condition

With g the Lorentzian scattering metric on an asymptotically Minkowski space satisfying
the assumptions of Theorem 5.5.4 as before, define the null form Q(*°du, °dv) := ¢’ kﬁjuﬁkv,
where %¢d: C>°(M) — C°(M;5°T*M) is the scattering differential, defined analogously to
Pd and Od. For brevity, let us write Q(*du) for Q(*°du,*du). We are interested in solving
the PDE

Ogu = Q(*°du) + f.

The previous discussion solves this for n > 5; thus, let us from now on assume n = 4.
To make the computations more transparent, we will keep the n in the notation and
only substitute n = 4 when needed. Rewriting the PDE in terms of the operator L =
p*2p*("*2)/2Dgp(”*2)/2 as above, we get

Lii = [+ p~("D222Q(¢d(p" D)),
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where @@ = p~("2/2y and f = p~(D/2-2f  We can write Q(*du) = 304 (u?) — ubgu,
thus the PDE becomes

LU= f_,_ pf(nf2)/2f2(%|:|g(pnf2a2) B p(an)/QaDg(p(nfﬁ/Qﬂ))
= [+ SL(p"22%) — p =D 2q q,

Since the results of §5.5.2 give small improvements on the decay of products of Hkl)’*’*
functions with H{"*" functions (m > 0), one wants to solve this PDE on a function space

that keeps track of these small improvements.

Definition 5.5.20. For | € R,k € Ny and a > 0, define the space X\*e .= {v €
H];’H_a’k(Q)': Lv e Hg’l’k(Q)'} with norm

lv] ytka = ”U||Hé,l+a,k(ﬂ). + HLUHHE,Z,;C(Q).. (5.5.19)

By an argument similar to the one used in the proof of Theorem 5.2.6, we see that
XLk s a Banach space. On X% which o > 0 chosen below, we want to run an iteration

argument: Start by defining the operator T': XLk — Hé’_oo’k(Q)‘ by
T: v S(f — p™22uLa) + 1pn=2/232,
Note that @ € X% implies, using Corollary 5.5.10 with § < 1/n,

(n—2)/232 (n72)/2Hé,2(l+a)71/2+6,k(Q). _ Hé,2l+a+(n73)/2+6+a,k(Q).

P € P ’

p("fz)/zﬂLﬂE Hg,2l+a+(n—3)/2+5,k’<ﬂ)o’ (5520)
S(p(n_2)/2ﬂ[ﬂ) c H&’21+a+(n_3)/2+6’k(9).

)

where in the last inclusion, we need to require 1+ (2l + a + (n —3)/2+J) < 1/2, which for
n = 4 means
l<—1/2— (a+6)/2; (5.5.21)

let us assume from now on that this condition holds. Furthermore, (5.5.20) implies Tu €

Hkl),2l+a+(n73)/2+5’k(9)', Finally, we analyze

o~ o n— ° 1 — ~
L(Tu) c Hg,2l+ +( 3)/2+5,k(Q) +§L(p(n 2)/2u2).
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Using that L is a second-order b-differential operator, we have

p(n—2)/2L(a2) c 2p(n—2)/ZHLH + p(n—2)/2Hg,l+a,k(Q).Hg,l—i-a,k(g)o
c Hg,2l+a+(n—3)/2+6,k(Q)o +Hl()),2(l+a)+(n—3)/2,k(g)o

_ Hg,2l+a+(n73)/2+min{a,5},k (Q).

which gives

L(p(an)/2ﬁ2) c L(p(an)/Q)ﬂQ +p(n72)/2L(ﬁ2)

+ p(n—2)/2Hé,l+a,k(Q).H](D),l-l-a,k(g)o
c Hkl),2l+a+(n—3)/2+5+a,k(Q). +Hl()),2l+a+(n—3)/2+min{a,6},k:(Q)o

n Hg,2l+a+(n—3)/2+5+a(ﬂ)o
_ Hg,2l+a+(n73)/2+min{a,6},k(Q).'
Hence, putting everything together,

L(Tﬁ) c H£,2l+a+(n—3)/2+min{a,5},k (Q).

Therefore, we have Tu € X4%2 provided

204+a+(n—-3)/2+0 >+«
20+ a+ (n—3)/2 + min{a, 0} > I,

which for 0 < a < § and n = 4 is equivalent to
1>-1/2-6, 1>-1/2—2a. (5.5.22)

This is consistent with condition (5.5.21) if —1/2 — (a+6)/2 > —1/2 — 2q, i.e. if a« > 6/3.
Finally, for the map T to be well-defined, we need Sf € Xk hence f € Ranyira L,
which is in particular satisfied if f € Hg7l+o"k(§2)'. Indeed, since 1 +l+a <1—-1/2— (6 —
@)/2 < 1/2 by condition (5.5.21), the element Sf € Hkl)’Ha’k(Q)‘ is well-defined.
We have proved:

Theorem 5.5.21. Let c € C, 0 < § < 1/4, /3 < a < 0, and let —1/2 —2a < | <
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—1/2 — (o +0)/2. Then for small enough R > 0, there exists a constant C' > 0 such that
forall f € Hg’l+3+a’k(§2)° with norm < C, the equation

Ogu = f + cQ(*du)

has a unique solution u € XFLE2 with norm < R, that depends continuously on f.



Chapter 6

Resonance expansions for

tensor-valued waves

6.1 Introduction

We study linear tensor-valued wave equations on perturbations of Schwarzschild-de Sitter
spaces (thus including Kerr-de Sitter spaces) with spacetime dimension n > 4; in particular,
this includes wave equations for differential forms and symmetric 2-tensors. (We mention
symmetric 2-tensors here explicitly because of their role in the study of Einstein’s field
equations, which, as stated in Chapter 1, is one of the main motivations for large parts
of this thesis.) As mentioned in Remark 5.3.5, the additional complications of working on
sections of non-trivial bundles rather than on scalar functions are twofold: One needs to
prove high energy estimates, in a strip below the real line in order to obtain exponential
decay up to a finite-dimensional space of resonances, and one needs to understand this latter
space in case one wants to study nonlinear equations. In this chapter, we tackle the first
complication; in Chapter 7, the second, in the case that the bundle is the differential form
bundle and the operator is the Hodge d’Alembertian.

In the form that is easiest to state, we will prove:

Theorem 6.1.1. Let (M,g) denote a Kerr-de Sitter spacetime in n > 4 spacetime di-
mensions, with small angular momentum. Let & C Ty be a subbundle of the bundle Ty of
(covariant) rank k tensors on M, so that the tensor wave operator O, = —trV? acts on

sections of E; for instance, one can take € to be equal to Ty, symmetric rank k-tensors or

203
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differential forms of degree k. Let € denote a small neighborhood of the domain of outer
communications, bounded beyond but close to the cosmological and the black hole horizons
by spacelike boundaries as in §§2.3 and 2./, and let t, be a smooth time coordinate on 2,
given by (2.4.2). See Figure 2.5 for the setup.

Then for any f € C°(2,E), the wave equation Ogu = f has a unique global forward
solution (supported in the causal future of supp f) u € C*(Q,E), and u has an asymptotic

expansion

U

N m]‘—l j

_ —itsojam /
U= g eIt U imeame(x) + U,
1

~
Il

j=1 m=0
where wjme € C, the resonant states ajme, only depending on Uy, are smooth functions of the
spatial coordinates and o; € C are resonances with Im o > —§ (whose multiplicity is m; > 1
and for which the space of resonant states has dimension d;), while u' € e L®(Q,E) is
exponentially decaying, for d > 0 small; we measure the size of sections of £ by means of a

t.-independent positive definite inner product.

The same result holds true if we add any stationary 0-th order term to [J, and one can
also add stationary first order terms which are either small or subject to a natural, but
somewhat technical condition, which we explain in Remark 6.4.9. In fact, we can even work
on spacetimes which merely approach a stationary perturbation of Schwarzschild-de Sitter
space exponentially fast. See §6.2 for the form of the Schwarzschild-de Sitter metric and
the precise assumptions on regularity and asymptotics of perturbations, for details on the
setup, and Theorem 6.2.1 for the full statement of Theorem 6.1.1.

The resonances and resonant states depend strongly on the precise form of the operator
and which bundle one is working on. In the case of the trivial bundle, thus considering scalar
waves, they were computed in the Kerr-de Sitter setting by Dyatlov [40], following work by
Sé Barreto and Zworski [5] as well as Bony and Héfner [13]. In Chapter 7, we will compute
the resonances for the Hodge d’Alembertian on differential forms, which equals the tensor
wave operator plus a zeroth order curvature term: We show that there is only one resonance
01 =01in Imo > 0, of order m; = 1, and we canonically identify the O-resonant states with
cohomological information of the underlying spacetime. Note however that we will deal with
a very general class of warped product type spacetimes with asymptotically hyperbolic ends,
while the present chapter is only concerned with (perturbations of) Schwarzschild-de Sitter

spacetimes. We remark that in general one expects that [, = —tr V2 on a bundle £ as in
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Theorem 6.1.1 has resonances in Im ¢ > 0, thus causing linear waves to grow exponentially
in time.

We point out that if there are no resonances for [y (plus lower order terms) in Imo > 0,
thus solutions decay exponentially, we can combine Theorem 6.1.1 with the framework for
quasilinear wave-type equations developed in Chapters 8 and 9 and immediately obtain
the global solvability of quasilinear equations. This also works if there is merely a simple
resonance at ¢ = 0 which is annihilated by the nonlinearity. See Remark 7.5.3 for an
example for differential forms.

The proof of Theorem 6.1.1 is essentially the same as the proof of the analogous Theo-
rems 5.2.3 and 5.3.1. In the context of scalar waves, more general and precise versions of
Theorem 6.1.1 are known, see the references in §5.1.1. Thus, the main advance is that we
give a conceptually transparent framework that allows us to deal with tensor-valued waves
on black hole spacetimes, where the natural inner product on the tensor bundle induced by
the spacetime metric is not positive definite. Notice that in order to obtain energy estimates
for waves, one needs to work with positive inner products on the tensor bundle, relative to
which however U is in general not well-behaved: Most severely, it is in general far from being
symmetric at the trapped set, which prevents the use of semiclassical estimates at normally
hyperbolic trapping; see the statement of Theorem 3.3.14 for the role of symmetry for the
normally hyperbolic b-estimate. On a pragmatic level, we show that one can conjugate [
by a suitable 0-th order pseudodifferential operator so as to make the conjugated operator
(almost) symmetric at the trapped set with respect to a positive definite inner product,
and one can then directly apply Dyatlov’s methods [42] to obtain a spectral gap. In other
words, we reduce the high frequency analysis of tensor-valued waves to an essentially scalar
problem. The conceptually correct point of view to accomplish this conjugation is that of
pseudodifferential inner products, which we introduce in §6.3.

Roughly speaking, pseudodifferential inner products on &€ — M (with M a closed man-
ifold now for simplicity) replace ordinary inner products [(By(u),v)|dg|, where By is an
inner product on the fibers of £, mapping & into its anti-dual €', by ‘inner products’ of
the form [(B(z, D)u,v) |dg|, where B € WY is a zeroth order pseudodifferential operator
mapping sections of £ into sections of P Thus, we gain a significant amount of flexibility,
since we can allow the inner product to depend on the position in phase space, rather than
merely on the position in the base: Indeed, the principal symbol b = oo(B) is an inner

product on the vector bundle 7*& over T*M \ o, where w: T*M \ o — M is the projection.
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One can define adjoints of operators P € W™ (M, &) (e.g. P = [,), acting on sections
of £, relative to a pseudodifferential inner product B, denoted P*B, which are well-defined
modulo smoothing operators. Moreover, there is an invariant symbolic calculus involving
the subprincipal operator Ssu,(P), which is a first order differential operator on T*M \ o
acting on sections of 7*€ that invariantly encodes the subprincipal part of P, for computing
principal symbols of commutators and imaginary parts of such operators. In the case that P
is principally scalar and real, the principal symbol of P — P*B € W™~1(M, £) then vanishes
in some conic subset of phase space 7% M \ o if and only if Sgup(P) — Ssup(P)*® does, which
in turn can be reinterpreted as saying that the principal symbol of QPQ ! — (QPQ_I)*BO
vanishes there, where By is an ordinary inner product on &, and Q € WO(M, £) is a suitably
chosen elliptic operator. In the case considered in Theorem 6.1.1 then, it turns out that
the subprincipal operator of [], on tensors, decomposed into parts acting on tangential
and normal tensors according to the product decompositions M = R; x X, and X =
(r_,ry) x S"2, at the trapped set equals the derivative along the Hamilton vector field
Hg, G the dual metric function, plus a nilpotent zeroth order term. This then enables one
to choose a positive definite inner product b on 7*& relative to which Squp,(0y) is arbitrarily
close to being symmetric at the trapped set; see §6.3.5 for the argument in a toy example.
Thus with B = b(x, D), the operator [, is arbitrarily close to being symmetric with respect
to the pseudodifferential inner product B. Hence, one can indeed appeal to Dyatlov’s results
on spectral gaps by considering a conjugate of [y, which is the central ingredient in the
proof of Theorem 6.1.1.

We point out that refined microlocal propagation results, in the sense of polarization
sets, for systems were proved by Dencker [34], and in fact the subprincipal operator we
define here is very closely related to the partial connection along the Hamilton flow defined
in [34]; see also Remark 6.3.10.

6.1.1 Previous and related work

The study of non-scalar waves on black hole backgrounds has focused primarily on Maxwell’s
equations, which describe the electromagnetic field on Lorentzian spacetimes: Sterbenz and
Tataru [103] showed local energy decay for Maxwell’s equations on a class of spherically
symmetric asymptotically flat spacetimes including Schwarzschild. Blue [11] established
conformal energy and pointwise decay estimates in the exterior of the Schwarzschild black

hole; Andersson and Blue [3] proved similar estimates on slowly rotating Kerr spacetimes.
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These followed earlier results for Schwarzschild by Inglese and Nicolo [65] on energy and
pointwise bounds for integer spin fields in the far exterior of the Schwarzschild black hole,
and by Bachelot [4], who proved scattering for electromagnetic perturbations. Finster,
Kamran, Smoller and Yau [47] proved local pointwise decay for Dirac waves on Kerr. There
are further works which in particular establish bounds for certain components of the Maxwell
field, see Donninger, Schlag and Soffer [37] and Whiting [120]. Dafermos [22, 23] studied the
nonlinear Einstein-Maxwell-scalar field system under the assumption of spherical symmetry.
See §5.1.1 for further references.

We moreover point out that Vasy [112] proved the meromorphic continuation of the
resolvent of the Laplacian on differential forms on asymptotically hyperbolic spaces (fol-
lowing earlier works by Mazzeo and Melrose [81] and Guillarmou [57] in the scalar setting
and Mazzeo [79], Carron and Pedon [15] and Guillarmou, Moroianu and Park [58] for forms
and spinors; see also the work of Dyatlov, Faure and Guillarmou [45], which in particular
involves a discussion of Laplacians on compact hyperbolic manifolds acting on symmetric
tensors). The fact that the analysis presented in [114], which underlies [112], works on

sections of vector bundles just as it does on functions is crucial for us here.

6.2 Detailed setup and proof of the main theorem

We denote by 2 the domain (2.3.9) inside the extension M of Schwarzschild-de Sitter space
in n > 4 spacetime dimensions, and equip M with the Schwarzschild-de Sitter metric go,
which is a Lorentzian b-metric. Suppose g is a Lorentzian b-metric such that for some
smooth Lorentzian b-metric ¢’, we have g — ¢’ € HgO’T(Q,S%T*M) for some r > 0 as in
(5.2.11). Changing ¢’ so as to make it invariant under time translations does not affect
this condition, so let us assume ¢’ is t,-invariant. We consider the wave operator [,
acting on sections of the bundle 7 of covariant tensors of rank k over 2. We assume
that ¢’ and gg are close (in the C* sense for sufficiently high k), so that the dynamical and
geometric structure of g is close to that of gg; in other words, the metric g is exponentially
approaching a stationary metric close to the Schwarzschild-de Sitter metric, so for instance
perturbations (within this setting) of Kerr-de Sitter spaces are allowed. Most importantly,
the nature of the trapping for ¢’ (and thus for g) is still normally hyperbolic, and the
subprincipal operator (see §6.3.3) of [, at the trapped set, while not necessarily having

the nilpotent structure alluded to in the introduction and explained in §6.4.2, has small



208 CHAPTER 6. TENSOR-VALUED WAVES

imaginary part relative to (the symbol of) a pseudodifferential inner product on 7. Recall
that the trapping for Schwarzschild-de Sitter space is r-normally hyperbolic for every r, and
r-normal hyperbolicity (for large, but finite r) is structurally stable under perturbations of
the metric, so this perturbation framework is indeed quite flexible. In the language of
Definition 2.5.1, our setup amounts to allowing non-trapping spacetimes with normally
hyperbolic trapping which are close to Schwarzschild-de Sitter space within this class of
spacetimes.
We then have:

Theorem 6.2.1. In the above notation, if ¢’ is sufficiently close to the Schwarzschild-
de Sitter metric go, then there exist so € R and 6 > 0 as well as a finite set {o;: j =
1,...,N} Cc C, Imoj > =9, integers mj > 1 and d; > 1, and smooth functions ajme €
C®(0xf), 1 <j<N,0<m<my;—1,1< €< dy, such that the following holds: The
equation

Ogu=f, feH’ (T, s> s0, (6.2.1)

has a unique solution u € Hb_oo’_oo(Q, Tr)®~, which has an asymptotic expansion

<

N mj—1 d;
u=x(1)) 7% log 7| wjmeajme + o,
j=1 m=0 =1

where x is a cutoff function, i.e. x(7) =1 near 7 = 0 and x(7) = 0 near the Cauchy surface
Hy, and ujme € C, while the remainder term is u' € Hg"s(Q, Te) .

The same result holds true if we restrict to a subbundle of Ty, which is preserved by the
action of 11, for instance the degree k form bundle, or the symmetric rank k tensor bundle.

If V e C°(M,End(Ty)) + H”" (0, End(Tr)), > 0, is a smooth (conormal) End(Tr,)-
valued potential (without restriction on its size), the analogous result holds for Oy replaced
by Oy +V. We may even change [y by adding a first order b-differential operator L acting
on Ty, with coefficients which are elements of C*° + H.", provided either the coefficients of
L are small, or the subprincipal operator of Uy + L is sufficiently close to being symmetric

with respect to a pseudodifferential inner product on Ti, see Remark 6./.9.

The numbers o; are of course the resonances, and the functions a;,,¢ the resonant states.
They have been computed in various special cases; see the discussion in the introduction

for references. The threshold regularity sg is related to the dynamics of the flow of the
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Hamiltonian vector field H¢g of the dual metric function G (i.e. G(z,§) = |§\2G($), with G
the dual metric of g) near the horizons which are generalized radial sets, see §3.3.1. Thus,
so can easily be made explicit, but this is not the point of the present chapter.

The proof of Theorem 6.2.1 proceeds in the same way as the proofs of Theorems 5.2.3 and
5.3.1 using a contour deformation argument, regaining derivatives lost in view of treating
O, — N(Oy) as a perturbation by appealing to the b-radial point and b-normally hyperbolic
trapping estimates from §§3.3.1 and 3.3.2. The main issue is to show high energy estimates
for ﬁ(a)*l, see below. The fact that the remainder term v’ has the same regularity as the
forcing term f, thus u’ loses 2 derivatives relative to the elliptic gain of 2 derivatives, comes
from the high energy estimate losing a power of 2, which in turn is caused by the same loss
for high energy estimates at normally hyperbolic trapping, see [42, Theorem 1], and 9.2.5
for a microlocalized version of Dyatlov’s estimate, as well as Theorem 9.2.9 for the global
estimate (in the more general setting of non-trapping spacetimes with normally hyperbolic
trapping).

Thus, the crucial point is to obtain high energy estimates at the trapped set for the
operator J acting on 7; in Imo > —¢. Dyatlov’s result [42, Theorem 1] (see also the

discussion preceding Theorem 9.2.5) shows that a sufficient condition for these to hold is
-1 1 *
o on1 (?(D —O )) < Vmin/2 (6.2.2)
i

at the trapped set I', where v, is the minimal normal expansion rate of the Hamilton
flow at the trapping, see [42] and the computation in §2.3, in particular (2.3.11). Here, the
adjoint is taken with respect to a positive definite inner product on Ti; note that the inner
product induced by g, with respect to which [ is of course symmetric, is not positive definite,
except when k£ = 0, i.e. for the scalar wave equation. Since g is close to the Schwarzschild-de
Sitter metric, it suffices (by the dynamical stability of the trapping) to obtain such a bound
for the Schwarzschild-de Sitter metric go. While this bound is impossible to obtain directly
for the full range of Schwarzschild-de Sitter spacetimes, we show in §6.4.2 how it can be
obtained if we use pseudodifferential products. Prosaically, this means that we consider a
conjugated operator P := QUQ~, where Q@ € VY(M,Ty) is elliptic with parametrix @,
and for any € > 0, we can arrange |o|~loy, 1 (2 (P — P*)) < € (with the adjoint taken relative
to an ordinary positive definite inner product on 7g), thus (6.2.2) holds for [J replaced by
P; we will prove this in Theorem 6.4.8. Hence [42, Theorem 1] applies to P, establishing
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a spectral gap; indeed, by the remark following [42, Theorem 1], Dyatlov’s result applies
for operators on bundles as well, as soon as one establishes (6.2.2). Arranging (6.2.2) in a
natural fashion lies at the heart of §§6.3 and 6.4.

For later reference, we recall from (2.3.12) that the spacetime trapped set, i.e. the set
of points in phase space that never escape through either horizon along the Hamilton flow,

not restricted to future infinity, is given by
T ={(t,;r =rpw;o,§ =0,n): 0 = V2|n*}, (6.2.3)

where ¥ = ar~1, ¥'(r,) = 0. We thus change the notation from T in (2.3.12) to T here to

make the notation less cumbersome.

6.3 Pseudodifferential inner products

We now develop a general theory of pseudodifferential inner products, which we apply to
the setting of Theorem 6.2.1 in §6.4.

We work on a complex rank N vector bundle £ over the smooth compact n-dimensional
manifold X without boundary. We will define pseudodifferential inner products on £, which
are inner products depending on the position in phase space T* X, rather than merely the
position in the base X. As indicated in the introduction, we achieve this by replacing
ordinary inner products by pseudodifferential operators whose symbols are inner products

on the bundle 7*& — T*X \ o, where w: T*X \ 0 — X is the projection.

6.3.1 Notation

Let V be a complex N-dimensional vector space. We denote by V the complex conjugate
of V,i.e. V =V as sets, and the identity map ¢: V — V is antilinear, so ¢(\v) = A(v) for
v € V, A € C, which defines the linear structure on V. (We prefer to write ¢(v) rather than
v to prevent possible confusion with taking complex conjugates in complexifications of real
vector spaces.) A Hermitian inner product H on V is thus a linear map H: V@V — C such
that H(u,t(v)) = H(v,u(u)) for u,v € V, and H(u,t(u)) > 0 for all non-zero v € V. This
can be rephrased this in terms of the linear map B: V — V" defined by B(u) = H(u, -) and
the natural dual pairing of V" with V, namely (Bu,:(v)) = (Bv, 1(u)), and (Bu,t(u)) > 0

for u € V non-zero.
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Amap A: V — V" has a transpose AT: V — V*, which satisfies (Au, 1(v)) = (u, AT4(v))
for all u,v € V, and an adjoint A*: V — V" satisfying (Au, 1(v)) = (A*v, t(u)). Concretely,

defining the antilinear map

JVE =V (i(0.u(v) = (L),

we have A* = jAT,. The symmetry of a Hermitian inner product B as above is simply
expressed by B = B*. Similarly, a map P: V — V has a transpose PT: V* — V* and an
adjoint P*: V' — V" defined by (7, 1(Pv)) = (P*(,u(v)) for £ € V" and v € V, and one
casily finds P* = jPTj~1. We point out that the definitions of adjoints of maps A: V — V"
and P: V — V are compatible in the sense that (AP)* = P*A*. Furthermore, if B: V — V"
is a Hermitian inner product and @: V — V is invertible, then B; = Q*B(@ defines another
Hermitian inner product, (Biu,t(v)) = (BQu, t(Qv)).

Now, given an inner product B on V and any map P:V — V, the adjoint P*B of P
with respect to B is the unique map P*5:V — V such that (BPu,(v)) = (Bu,(P*5v))
for all u,v € V. We find a formula for P*Z by computing

(BPu,u(v)) = (B*(B*)~1P*B*v,1(u)) = (Bu,((BPB~")*v)),

ie. P*P = (BPB~1)* = B~'P*B. The self-adjointness of P with respect to B is thus
expressed by the equality P = B~ P*B.

If £ is a complex rank N vector bundle, we can similarly define the complex conjugate
bundle € as well as adjoints of vector bundle maps & — € and € — & . We can also define
adjoints of pseudodifferential operators mapping between these bundles: For convenience,
we remove the dependence of adjoints on a volume density on X by tensoring all bundles

with the half-density bundle Q2 over X , and we have a natural pairing
(E* @ 02), x (E@Q2), 3 (0,1(v) = (L,u(v)) €QL, z € X,

likewise for the complex conjugate of £. Thus, an operator A € V"(X,E ® Q%,?* ® Q%)
has an adjoint A* € U"™(X,E ® Q%,?* ® Q%) defined by

J o = [ T,
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with principal symbol o,,(A*) = 0, (4)* € S™(T*X \ 0, 7* Hom(&,E")), and likewise P €
U™ (X,E ® Q) has an adjoint P* € U™(X, & ® Q2) with 0, (P*) = o (P)*.

6.3.2 Definition of pseudodifferential inner products; adjoints

We work with classical, i.e. one-step polyhomogeneous, symbols and operators, and denote

by S7*

hom

the fibers of 7% X \ o.

(T*X \ 0) symbols which are homogeneous of degree m with respect to dilations in

Definition 6.3.1. A pseudodifferential inner product (or W-inner product) on the vector
bundle £ — X is a pseudodifferential operator B € ¥9(X;€ ® Q%,E* ® Q%) satisfying B =
B*, and such that moreover the principal symbol 0(B) = b € S0 (T* X\ 0; 7* Hom(&,£"))
of B satisfies

(b(z,&)u, t(u))y >0 (6.3.1)

for all non-zero u € &,, where x € X, £ € T X \ o. If the context is clear, we will also call

the sesquilinear pairing
C¥(X, € ® OF) x C¥(X, € O3) 5 (u,0) / (B(z, D)u, 1(0))
X

the pseudodifferential inner product associated with B.

In particular, the principal symbol b of B is a Hermitian inner product on 7*€. Con-
versely, for any b € Sp,_(T*X \ o;7* Hom(&,E")) satisfying b = b* and (6.3.1), there exists
a W-inner product B with ¢°(B) = b; indeed, simply take B to be any quantization of b
and put B = %(E + E*)

Remark 6.3.2. While we will develop the theory of W-inner products only in the standard
calculus on a closed manifold, everything works mutatis mutandis in other settings as well.
Thus, in the b-calculus, see §3.3, Wy-inner products on a manifold with boundary are defined
similarly to W-inner products, except that adjoints are defined on the space C> of functions
vanishing to infinite order at the boundary, and the space of ‘trivial,” smoothing operators is
now W >, likewise for the scattering calculus [84], replacing ‘b’ by ‘sc.” In the semiclassical
calculus on a closed manifold, adjoints are again defined on C*°, but the space of ‘trivial’
operators is now h*°W¥, > and suitable factors of h need to be put in for computations

involving subprincipal symbols.

We next discuss adjoints of ps.d.o.s relative to W-inner products.



6.3. PSEUDODIFFERENTIAL INNER PRODUCTS 213

Definition 6.3.3. Let B be a W-inner product, and let P € (X, £ ® Q%), then P*B ¢
V(X E® Q%) is called an adjoint of P with respect to B if there exists an operator
ReVU X, E® Q%,Z* ® Q%) such that

/ (BPu, i(v)) = / (Bu, o(P*Bo)) + / (Ru, 1(v)) (6.3.2)

for all u,v € C®(X, €& ®Q%)

Remark 6.3.4. This definition and the following lemma have straightforward generalizations
to the case that P maps sections of £ into sections of another vector bundle F, provided a

(P-)inner product on F is given.

Lemma 6.3.5. In the notation of Definition 6.5.3, the adjoint of P with respect to B exists
and is uniquely determined modulo ¥~>°(X, € ® Q%) In fact, P = (BPB™)*, where B~
is a parametriz for B. Moreover, (P*P)*B = P modulo V=°(X,£ ® Q%) In particular,
Im? P = 5 (P — P*B) is self-adjoint with respect to B (i.e. its own adjoint modulo ¥=°).

Proof. Let B~ be a parametrix of B and put R, = — B "B € V" >*(X,£® Q%) Then
/<BP’LL, t(v)) = /<BPB_BU, t(v)) + (BPRpu,t(v)),

hence (6.3.2) holds with P*B = (BPB~)* and R = BPR/. To show the uniqueness of P*5
modulo smoothing operators, suppose that P is another adjoint of P with respect to B,
with error term R (i.e. (6.3.2) holds with P*B and R replaced by P and R). Then

[ BEE=Poatw) = [(BudP? - P = [(R- Bt
- / (R - R)v, (u))

for u,v € C°(X,E£®02), s0o B(P*B —P) = (R— R)* € U==(X,£®02,& ®Q2), and the
ellipticity of B implies P*B — Pe U (X, E® Q%), as claimed.

Since B is self-adjoint, we can assume that B~ is self-adjoint by replacing it by %(B_ +
(B7)*) (which changes B~ by an operator in ¥~°°). Then the second claim follows from

(P*P)y*B — (BP*PB~)* = BT BPB "B =P

modulo U=%(X, £ ® Q2). 0
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Lemma 6.3.6. Suppose P € V" (X, £ ® Q%) is self-adjoint with respect to B. Then its
principal symbol p is self-adjoint with respect to b= c°(B), i.e.

(b(x,&)p(x,§u, t(v)) = (b(x,&)u, (p(x,&v)), =z X, €T, X,u,veEé&,.

Proof. The hypothesis on P means (BPB~)* = P modulo ¥~°°, thus on the level of
principal symbols, p = b~ !p*b = p**, which proves the claim. O

We now specialize to the case that P € V™ (X,& ® Q%) has a real, scalar principal
symbol. Fix a coordinate system of X and a local trivialization of £, then the full symbol of
P is a sum of homogeneous symbols p ~ py, +pm—1 + ..., with p; homogeneous of degree j

and valued in complex N x N matrices. Recall from [64, §18] that the subprincipal symbol
1 m— *
USUb(P) - pm—l(x, g) - Z Z aa?jfjpm(x7 5) € Shoml(T X \ 0, CNXN) (633)
J

is well-defined under changes of coordinates; however, it does depend on the choice of local

trivialization of £. We compute the principal symbol of

1
Im? P := 5 (P - p*B)
1

for such P in a local trivialization of £; we will give an invariant formulation in Proposi-

tion 6.3.11 below.

Lemma 6.3.7. Let P € V™ (X, 5®Q%) be a principally real and scalar, and let B = b(z, D)
be a W-inner product on . Then ImP P € U (X, £ ® Q%) has the principal symbol

1
o™ Y Im? P) = Im® o4 (P) + §b_1Hp(b), (6.3.4)

where Im? ogp, (P) = %(Usub(P) — Usub(P)*b). Here, we interpret b and ogy,(P) as N x N
matrices of scalar-valued symbols using a local frame of £ and the corresponding dual frame

of &", and the action of H, is component-wise.

Proof. We compute in a local coordinate system over which £ and £ are trivialized by a
choice of N linearly independent sections ey, ...,en, and £* and & are trivialized by the
dual sections e},..., ey € £* satisfying €] (e;) = d;;, extended linearly as linear functionals

on &, resp. on &, in the case of £*, resp. £, We trivialize Q> using the section |da;|% Let
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bij(x,€&) = (b(z,&)ej, t(e;)), then b(x, &) = (bij(x,€))ij=1,.. n, a linear map from the fibers
of £ to the fibers of £, is the symbol of B in local coordinates: If u = > ujej|da:|% and

v=73; ’Uj€j|d.1“%, we have
(b, Eu,u(v)) =D byj(a, E)u; - vy da,
]

thus

[tBuie) =3 [ Gt Dw;) vrde.

Note that b(z,§) is a Hermitian matrix, i.e. bjj(z,§) = bji(x,€), and in fact B = b(z, D) is
self-adjoint (with respect to the standard Hermitian inner product on CV). The adjoint of
P = p(z, D), which in local coordinates is simply an N x N matrix of scalar ps.d.o.s, with

respect to B is the operator P = p(x, D) such that

/b(x, D)p(x,D)u-vdx = /b(x,D)u -p(x, D)vdr + /Ru -vdr, Re¥™™.

Let B~ := b~ (x, D) be a parametrix for b(z, D), in particular b~ (z,¢) = b(x,£)~! modulo
S~ we may assume B~ (x, D)* = B~ (x, D). We then have

p(z,D) =b" (z,D)p(x, D)*b(x, D)

by Lemma 6.3.5. Write p(z,&) = pm(x,&) + pm-1(x,&) + ..., then the full symbol of
P — P = B~ (BP — P*B) (where P* is the adjoint of P with respect to the standard

Hermitian inner product on CV) is given, modulo S™~2, by

1
b_l (bpm + ; Z afjbaxjpm + bpmfl
J

J

Phb S B Pdb— + 3 0P, b P ib)
J
= (pnr - le 3 Ouseyom) — b (1 - 2% >, &pm) bt i Hy, (),
J J

where we used that p,, is scalar and real. The claim follows. O
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6.3.3 Invariant formalism for subprincipal symbols of operators acting on
bundles

We continue to denote by P € U™ (X, E ®Q%) a principally scalar ps.d.o. acting on the vector
bundle £, with principal symbol p. (The discussion until Proposition 6.3.8 in fact works
for principally non-scalar operators as well with mostly notational changes.) We will show
how to modify the definition (6.3.3) of the subprincipal symbol of P, expressed in terms of
a local trivialization of £, in an invariant fashion, i.e. in a way that is both independent of
the choice of local trivialization and of local coordinates on X. This provides a completely
invariant formulation of Lemma 6.3.7.

Let U C X be an open subset over which & is trivial, and pick a frame e(z) =
{e1(z),...,en(x)} trivializing £ over U. Let us write P¢ for P in the frame e, i.e. P =
(Pfk)j,kzl,...,N is the N x N matrix of operators Po. € \I/m(U,Q%) defined by

P(>" un(@)en( Z < (up)e;(x), uy, € CO(U,07).
k

Then of, (P) as defined in (6.3.3), with the superscript making the choice of frame explicit,

is simply an N x N matrix of scalar symbols:

U:ub(P) (Usub(Pk))jk 1,..,N-

We will consider the effect of a change of frame on the subprincipal symbol (6.3.3). Thus,
let C € C*°(U,End(€)) be a change of frame, i.e. C'(z) is invertible for all + € X. Then

ej(x) = C(x)e}(z) defines another frame e'(z) = {e}(z),...,ely(x)} of £ over U. One easily

computes

ol (CTIPC) = (C¢) Lol (P)C —i(C¢) T H, (0,

sub

with H), interpreted as the diagonal N x N matrix 1y yH), of first order differential op-
erators, and C° is the matrix of C' in the frame ¢/. Now note that (C~'PC)¢ = P¢ and
(CY"TH,(C¢) = (C¢)~'H,C* — H,; thus, we obtain

/

o(P) — iH, = (C¢) Y (0%, (P) — iH,) C® (6.3.5)

sub sub

Thus, viewing asub(P) — iH)p as the N x N matrix (in the frame ¢’) of a differential oper-
ator acting on C*°(T*X \ o,7*E), the right hand side of (6.3.5) is the matrix of the same
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differential operator, but expressed in the frame e. Notice that the principal symbol p of
P as a scalar, i.e. diagonal, N x N matrix of symbols, is well-defined independently of the

choice of frame. To summarize:

Definition 6.3.8. For P € V" (X, £ ® Q%) with scalar principal symbol p, there is a well-
defined subprincipal operator Sgu,(P) € Diff!(T*X \ 0, 7*E), homogeneous of degree m — 1
with respect to dilations in the fibers of 7% X \ o, defined as follows: If {ei(z),...,en(z)}
is a local frame of £, define the operators Pj;, € \I/m(X,Q%) by P>, uk(x)ex(x)) =
> ik Pik(ur)ej(z), ui, € C‘X’(X,Q%). Then

Ssub () (Z ax(z, f)ek(ﬂf)) = (osun(Pip)ar)e; — i > (Hpar)ex.
k ik k

In shorthand notation, Sgu,(P) = osub(P) —iH)p, understood in a local frame as a matrix of

first order differential operators. We emphasize the dependence on the order of the operator

by writing Sgub,m (P), so that for P € (X, ® Q%), we have Ssubm+1(P) = om(P).

We shall compute the subprincipal operator of the Laplace-Beltrami operator acting on

sections of the tensor bundle in §6.4.

Remark 6.3.9. For Wy-inner products, the subprincipal operator of P € ¥'(X,& ® Qé)
acting on E-valued b-half-densities is an element of Diff}, (°PT* X \ o, 7€), where m,: PT*X \
o — X is the projection. In the semiclassical setting, P € U"(X,& ® Q%), we have
Seun(P) € Diff}(T* X, 7*€).

Remark 6.3.10. Dencker [34] proved that polarization sets propagate along so-called Hamil-
ton orbits, which are line subbundles of the pullback of 7*& to null-bicharacteristics, and
which are spanned by sections of this bundle which are parallel with respect to a partial
connection Dp. In the case of interest for us, when P is principally scalar, his definition
[34, Equation (4.6)] (taking p = id) agrees with our definition of Sgu,(P) up to a factor of

7.

We can now express the symbols of commutators and imaginary parts in a completely

invariant fashion:
Proposition 6.3.11. Let P € V"(X,E® Q%) be a ps.d.o. with scalar principal symbol p.

(1) Suppose @Q € gm' (X, &€ ® Q%) is an operator acting on &-valued half-densities, with
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principal symbol q. (We do not assume Q is principally scalar.) Then

Jm+m/_1([P, Q]) = [Ssub(P>aQ]'

If Q is elliptic with parametriz QQ—, then
SSub(QPQi) = quub(P)qiy (636)

(2) Suppose in addition that p is real. Let B be a V-inner product on £ with principal
symbol b, then

o™ 1 (Im? P) = Im® Sy, (P), (6.3.7)

where Tm® Sy, (P) = %(Ssub(P) - Ssub(P)*b); we take the adjoint of the differential
operator Sgy, (P) with respect to the inner product b on & and the symplectic volume

density on T*X.

Proof. We verify this in a local frame e(z) = {e1(z),...,en(x)} of £. We compute
San(P) (3 ajee, ©)ui(w, €)e; ()

Ik
= Z(Z Tsub(P) ke — in(qje))wej — iqjeHp(ug)e; — igjeuee; Hyp,
itk
while

0 (P) (3 el E)en() )

14

= Z(Z ijﬂsub(P)ke) uee; — iqjeHp(ue)e; — iqjeuce; Hp,
itk

hence Squb(P)q — ¢Ssub(P) = [0sub(P), ¢] — iH,(q) as an endomorphism (a zeroth order dif-
ferential operator acting on sections of &) of £ in the frame e, which equals o™ ~1([P, Q])
according to the usual (full) symbolic calculus.

Furthermore,

Ssub,m(QPQ_) = Ssub,m(P) + Ssub,m(Q[Pa Q_D
= sub,m(P) + qu—l—m’—l([Pa Q_]) = Ssub,m(P) + Q[Ssub,m(P)»q_l]
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= quub,m(P)q_la

noting that Q[P, Q] is of order m — 1.

For the second part, we have Seu(P)* = owb(P)*® — (iHp)™ = b logwn(P)*b +
ib=1(H,)*b, where (H,)* is the adjoint of H, as an operator acting on C°(T*X \ 0), and we
equip 7*X with the natural symplectic volume density |dx d§|. We have (Hp)* = —Hp =

—H),, since p is real. Therefore,

Ssub(P) — Ssub(P)** = 0 (P) — 0 (P)*® — i H,, + b~ H b
= Usub(P) - Usub(P)*b + ib_lHP(b)a

which indeed gives (6.3.4) upon division by 2i. O

In particular, (6.3.7) provides a very elegant point of view for understanding the imag-
inary part of a principally scalar and real (pseudo)differential operator with respect to a
U-inner product B, as already indicated in the introduction: For instance, the principal
symbol of the imaginary part Im” P vanishes (or is small relative to b = ¢*(B)) in a sub-
set of phase space if and only if the imaginary part of the first order differential operator
Ssub(P) on T* X \ o has vanishing (or small with respect to the fiber inner product b of 7*&)

coefficients in this subset.

6.3.4 Interpretation of pseudodifferential inner products in traditional

terms

We now show how to interpret the imaginary part Im® P of an operator P with respect
to a W-inner product B in terms of the imaginary part of a conjugated version of P with

respect to a standard inner product:

Proposition 6.3.12. Let B be a V-inner product on £. Then for any positive definite
Hermitian inner product By € C*° (X, Hom (£ ® Q%,?* ® Q%)) on &, there exists an elliptic
operator Q € WO(X, End(E@Q%)) such that B—Q*Bp(Q € ¥~>°(X, Hom(é’@Q%,?* ®Q%))

In particular, denoting by Q~ € ¥O(X,End(£ ® Q%)) a parametriz of QQ, we have for
any P e V"(X,E® Q%) with real and scalar principal symbol:

Q(Im? P)Q~ = ImP(QPQ™), (6.3.8)
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and o™ Y(Im® P) and o™ (ImP°(QPQ™)) (which are self-adjoint with respect to o°(B)

and By, respectively, hence diagonalizable) have the same eigenvalues.

On a symbolic level, equation 6.3.8 is the same as equation (6.3.6).

Proof of Proposition 6.3.12. In order to shorten the notation, fix a global trivialization
of Q2 over X and use it to identify £ ® Q2 with &, likewise for all other half-density
bundles appearing in the statement. Denote the principal symbol of B by b € Sgom(T*X \
o, 7™ Hom(E 7?*)). We similarly put by := By, which is an inner product on 7*€ that only
depends on the base point.

We start with on the symbolic level by constructing an elliptic symbol ¢; € Sﬁom(T*X \
o,7* End(€)) such that b = ¢}boqy; recall that ¢; € SP,_(T*X \o, * End(£")). Fort € [0, 1],
define the Hermitian inner product b; := (1 — )by + tb. We will construct a differentiable
family ¢ of symbols such that b, = ¢;bog; for ¢t € [0,1]. Observe that for any such family, we
have 0;by = b—by = (0rqt)*boq:+q; boOrqs, which suggests requiring 0,q; = %bal(qj{)_l(b—bo),
which we can write as a linear expression in ¢; by noting that (g;)~1 = bogrb; L Moreover,
qo = id is a valid choice for ¢, at ¢ = 0. Thus, we are led to define ¢, t € [0,1], as the
solution of the ODE

1 .
Orqr = §tht l(b - b0)7 qo = id.

Reversing these arguments, for the solution ¢; we then have ¢;bog: = b; for t = 0, and both

qiboq: and by are solutions of the same ODE, namely
~ 1 - o~ ~
diby = 5((b — bo)b; tby + by (b —bo)), by = bo,

hence qfbyg = b for all ¢ € [0, 1].

Let Q1 € VY(X,End(£)) be a quantization of g, then we conclude that B — Q;ByQ1 €
U~!. We iteratively remove this error to obtain a smoothing error: Suppose the operator
Qr € Y9(X,End(£)) is such that B — Q;BoQk € V~F for some k > 1. We will find
Dy, € U~k a quantization of dj, € S{olfn(T*X \ 0,7*E), such that Qx41 := Qk + Dy, satisfies
B — Q. 1BoQk+1 € U—F=1 This is equivalent to the equality of symbols

=0 F(B - QtBoQk) = o *(D;BoQy. + Qi BoDy) = diboqi + (boq1)*di,

which in view of 7} = ry, is satisfied for d = 3((bog1)*) 1ry. We define @ € V°(X,End(€))
to be the asymptotic limit of the Qy, as k — oo, i.e. Q ~ Q1+ > 7~ ; Dy, which thus satisfies
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B — Q*ByQ € ¥~°°. This proves the first part of the proposition.
For the second part, denote parametrices of B and ) by B~ and Q—, respectively. Then,

modulo operators in ¥~°°, we have
PP = (BPB™)" = (Q"BoQPQ™ B, (Q7)")" = Q7 (QPQ7)™Q,

hence

QP - P*P)Q™ = (QPQ™) — (QPQ~)*P

modulo W—°, O

6.3.5 A simple example

On R? = R,, X RZ,_I, we consider the operator P = D,, + A € WY(R",C"V), where
A = A(z,D) € ¥O(R",C") is independent of z1. Trivializing the half-density bundle over
R"™ via \dac]%, we can consider P as an operator in W!(R", CVN ® Q%) Its principal symbol
is 01(P)(x, &) = &1, where we use the standard coordinates on T*R", i.e. writing covectors
as  dz, so the Hamilton vector field is H,, (p)y = 0,; moreover, in the trivialization of cN
by means of its standard basis, ogub(P)(z,&) = A(z,&). Thus, the subprincipal operator of
Pis
S (P)(x.£) = A(2,€) — i0y, € D' (T°R" \ 0, 7°C),

with A homogeneous of degree 0 in the fiber variables. Suppose we are interested in bound-
ing %(P —PYYon Z:=T fm/:O}Rn \ o relative to a suitably chosen inner product. Let us
assume that A(0,&) is nilpotent for all |{| = 1, and that in fact at = 0 and [§| = 1, we
can choose a smooth frame e1(€),...,en (&) of the bundle 7*CY — T*R™\ 0 so that A(0, &),
written in the basis e1(§),...,en(§), is a single Jordan block with zeros on the diagonal
and ones directly above. Extend the e; by homogeneity (of degree 0) in the fiber variables,
and define them to be constant in the z;-direction along Z, i.e. ej(x1,0;¢) = €;(0,0;¢), and
extend them in an arbitrary manner to a neighborhood of Z.

Now, on Z we have Ae; = e;_1, writing eg := 0. Introduce a new frame e; = ejej with

€ > 0 fixed, then Ae; = ee;-_l. Define the inner product b on 7*C» by

(b=, §)(€ej(x,€)), v(€](x,£))) = dij

that is, {€],...,e/y} is an orthonormal frame for b. Then on Z, we find that Im® Sy, (P)
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(which is of order 0) in the frame {e,...,€/y} is given by the matrix which is zero apart
from entries €/2i directly above and —e/2i directly below the diagonal. Thus, defining the
T-inner product B = b(x, D), we have arranged that ||oo(Im? P)(z,¢)||y < € on Z. Since
00 (ImB P) is self-adjoint with respect to b, this is really the statement that its eigenvalues
are bounded from above and below by € and —e, respectively.

Using Proposition 6.3.12, we can rephrase this as follows: If v; denotes the standard basis
of CV and (By(v;),t(v;)) = &;; the standard inner product on CV (the particular choice
of an ordinary inner product being irrelevant, see the statement of Proposition 6.3.12),
define the map g(z,&) € SO, (T*R™ \ o, 7*CN) by q(z,8)e}(w,§) = vj. Let Q = q(x, D)
and denote by @~ a parametrix of @, then we find that QPQ~ € W!(R",C") satisfies
loo(Im™ QPQ™)|[5, < .

If A has several Jordan blocks not all of which are nilpotent, one can (under the as-
sumption of the existence of a smooth family of Jordan bases) similarly construct a W-inner
product so that the imaginary part of A relative to it is bounded by the maximal imaginary
part of the eigenvalues of A (plus €) from above, and by the minimal imaginary part (minus

€) from below.

6.4 Subprincipal operators of tensor Laplacians

Let (M, g) be a smooth manifold equipped with a metric tensor g of arbitrary signature.
Denote by ToM = @"T*M, k > 1, the bundle of (covariant) tensors of rank k on M.
The metric g induces a metric (which we also call g) on TyM. We study the symbolic
properties of A, = —trV? € Diﬂ2(M,ﬁM), the Laplace-Beltrami operator on M acting
on the bundle 7M. Denote by G € C>°(T*M) the metric function, i.e. G(z,§) = ’§|2G(a:)7

where G is the dual metric of g.

Proposition 6.4.1. The subprincipal operator of Ay is
Seub(Ap) (@, &) = =iV "M € Diff (T M \ o, 7" T M), (6.4.1)

where V™ TeM s the pullback connection, with m: T* M \ 0 = M being the projection.

Proof. Since both sides of (6.4.1) are invariantly defined, it suffices to prove the equality in

an arbitrary local coordinate system. At a fixed point g € M, introduce normal coordinates
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so that Org;; = 0 at x9. Then we schematically have

(Arw)iy..ip = _gjkuil...ikvjk' = _gjk(ak‘uil...ik,j +1'- Ou)
= _gjkajkuil...ik + 0 -u)+T-0u
= _gjkajkuil,..ik +TI'-0u+ 0T - u,

with T" denoting Christoffel symbols. This suffices to see that the full symbol of Ay in the

local coordinate system is given by
o(Ap)(w,€) = g (@) + (27 — wp)lj(w, €) + e(x),

where ¢;(z, £) is a linear map in £ with values in End((7;M);), and e(x) is an endomorphism
of (TxM),. Therefore, ogu,(Ar) (g, &) = 0, since 9;¢7%(2¢) = 0. Thus,

Ssub(Ak)(x()vé) = _iHIE\ﬁ = _Qigjkgkazj‘ (642)

We now compute the right hand side of (6.4.1). First, writing do! = d2" ® --- ® da'* for
multiindices I = (i1, ...,i), we note that sections of 7*7, M are of the form u;(z,¢)dx’,
while pullbacks (under 7) of sections of T, M are of the form wu;(x)dxz’. By definition, the

pullback connection V™ 7+ is given by
V5 M s () dat) = VI (s (@) dat), 95T (un o) dal) = 0

on pulled back sections and extended to sections of the pullback bundle using the Leibniz

rule; thus,

Vi M (u(w, &) da’) = VI (ur (&) da’) (w),

vg;;TkM(uI(xvg) d'rl) = 8£kuf(x7§) dxl'

Thus, in normal coordinates at xq € M, we simply have Vg*ﬁM = 0,; and Vg:TkM = g,
x k
therefore

*TeM ik
vzlﬁ\z = 2.9] gkaxj
g

at xo, which verifies (6.4.1) in view of (6.4.2). O
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To simplify the study of the pullback connection on 7#*7.M for general k, we observe
that there is a canonical bundle isomorphism 7*7, M = ®k 7T M ; hence the connection
V™ TeM s simply the product connection on ®k 7a*T* M. Therefore, if we understand
certain properties of Sgup(A1), we can easily deduce them for Sy, (Ag) for any k. In
our application, we will need to choose a positive definite pseudodifferential inner product
By, = bi(z, D) on the bundle T M with respect to which Ay is arbitrarily close to being
symmetric in certain subsets of phase space. Concretely, this means that we want the
operator Sgup(Ag) to be (almost) symmetric with respect to the inner product by on 77 M.

The following lemma shows that it suffices to accomplish this for £ = 1:

Lemma 6.4.2. Let U C T*M\o be open, and let f € C>°(U) be real-valued. Fiz a Hermitian
inner product b (antilinear in the second slot) on m*T*M, and define R € End(7*T*M) by

requiring that
/<iV”H*fT*Mu,v)bda—/(u,ivng*Mwde:/(u, Ruv)y do
U U U

for all u,v € C°(U, m*T*M), where do is the natural symplectic volume density on T*M.
There exists a constant Cy, > 0, independent of U, f and b, such that the following holds: If
supy || R||» < € (using b to measure the operator norm of R acting on each fiber) for some
€ > 0, then the inner product by = ®k b induced by b on ®k T T*M = T, M satisfies

/(ivgfﬂ“MU,v)bk do — / (u,iVanMwbk do = / (u, Riv)y, do,
U U U

u,v € C°(U, m*TiM), for Ry, € End(m* T M) satisfying supys || Rills, < ke.

Proof. We show this for k& = 2, the proof for general k being entirely analogous. Denote
S = iV”H*fT*M, then Sy = ivngM acts by Sa(u; ® ug) = Su; ® ug + u; ® Suy. Hence using

S(au) = aSu + iH¢(a)u for sections u of 7*T*M and functions a on U, we calculate

/ (S2(u1 ® ug),v1 ® va)p, do = / (Su1,v1)p(u2, v2)p + (w1, v1)p(Sug, v2)p do
U U

:/U<U1’S(Ul<u2,vg>b)>b—|—/(]<u2,5(02<u1,vl>b)>bda

+ / (w1 ® uz, (R ®id +id @R) (01 ® v2))y, do
U

= / <u1 ®’U,2,SQ(U1 ®U2)>b2 dU—i/ Hf(<u1,v1>b<u2,v2)b) do
U U
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+ / <u1 X u2, RQ(Ul X U2)>b2 do
U

= / (u1 ® ug, So(v1 ® v2))p, do + / (u1 ® ug, Ra(v1 @ v2))p, do
U U

with Ry = R ® id+id ®R, where we used that [, Hfudo = — [;uHsldo = 0 for u €
C°(U). From the explicit form of Ry, we see that || Ra||p, < 2¢ indeed. O

6.4.1 Warped product spacetimes

Let X be an (n — 1)-dimensional manifold equipped with a smooth Riemannian metric h =
h(z,dx), and let a € C*°(X) be a positive function. We consider the manifold M = Ry x X,

equipped with the Lorentzian metric
g =a*dt* —h. (6.4.3)

On such a spacetime, we have a natural splitting of 1-forms into their tangential and normal
part relative to a dt, i.e.

u = ur + unadt. (6.4.4)

In this section, we will compute the form of V’EGT*M as a 2 x 2 matrix of differential operators
with respect to this decomposition. For brevity, we will use the notation VM .= gy T M ,
similarly VX = yrTX , and we will moreover use the abstract index notation, fixing

20 =t and 2’ = (2!,..., 2" 1)

are coordinates on X (independent of t). We let Greek
indices u, v, A, ... run from 0 to n— 1, Latin indices ¢, j, k, . .. from 1 to n— 1. Moreover, the
canonical dual variables®® &y =: 0 and ¢/ = (£1,...,&,_1) on the fibers of T*M are indexed
by decorated Greek indices pz (running from 0 to n — 1) and Latin indices W, (running
from 1 to n — 1). If an index appears both with and without tilde in one expression, it is
summed accordingly, for instance ajb]w = Z?Zl ajbj. Thus, for a section u of 7*T* M, we
have

oM M oM
Viw =V, uw, Viu =0du,

where we interpret VF]‘LJ as acting on u for fixed values of the fiber variables, i.e. viewing u as

a family of sections of T* M depending on the fiber variables. As before, we denote by G the

26Thus, once we discuss Schwarzschild-de Sitter space in the next section, in the region where t. = t
(which we can in particular arrange near the trapped set), o in the present notation is equal to —o in the
notation of §6.2.
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metric function on T*M, and we let H denote the metric function on 7% X, interpreted as
a (t,o)-independent function on T*M. Lastly, we denote the Christoffel symbols of (M, g)

by MI‘ZV, and those of (X, h) by XF%,

Lemma 6.4.3. The Christoffel symbols of M are given by:

Mg =0, MYy =a'lay, MIY =0,

M1k kel Mk Mpk _ Xtk (6.4.5)
Proof. We have goo = o2, go; = gio = 0 and gij = —hij, and g is t-independent, thus
009,y = 0. Using MI‘,.W, = %(augm, + 0y 9ru — Oxguv), We then compute
MPooo =0, Moo = acy, Mgy =0,
Moo = —aag, MTpio=0, My = —FTwy,
which immediately gives (6.4.5). O

Proposition 6.4.4. For the metric g as in (6.4.3), the subprincipal operator of O (the
tensor wave operator acting on 1-forms on M) in the decomposition (6.4.4) of 1-forms is

given by

Z.Ssub(ljl)(t’ :E/’ g, 5,)
(204_20375 + 0'26?1&_2 - ﬁﬁH —20 %0 da > .

—2a 20igx,, 20200, + 0?H, > — Hy

Proof. We start by computing the form of 6% u, and %%4 u, for tangential and normal

1-forms. For tangential forms u = u, dz* with ug = 0, we have

o M M o M
VO Uy = — FOOUA = —a<dOé,U>H7 VO U; = 80ui,

— M — M X oM oM
Vj Uy = O, Vj U; = v]- Uj, Vﬁ Uug = 0, Vﬁ U; = 6ﬁu,~,

while for normal forms u = u, dz* with u; = 0 and ug = av, we compute

Véwuo = ad, Véwui = —ay,

%?/[uo = 0j(aw) — a;jv = adjv, %yul =0, %fyuo = adyv, 6%/[% =0.
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Since G = a20% — H, we find Hg = 2a~200; + 0 2H, > — Hy. Using (da, )y = iyx,,

we obtain
~ 0 —d
v “).
_iVX(X 875

Moreover, for any f € C®(T*X) (we will take f = a2 and f = H), viewed as a (t,0)-

independent function on T*M, we have Hy = f;(?j — fj(?; Hence on tangential forms,
VAH/‘[fUO =0, VAH/[fUz' = f;V]XUi — [i05u; = vl)t(lfuia
while on normal forms as above,

%AH{,UO = af;0v — afjov = aHyv, ﬁj\H{,u, =0.

oM _ Vi, 0
Hf_ .
0 Hy

The claim follows. O

Thus,

6.4.2 Schwarzschild-de Sitter space

We stay in the setting of the previous section, and now the spatial metric h has a decom-
position

h=a2dr? 4+ r? dw?,

where dw? is the round metric on the unit sphere Y = S"~2, with dual metric denoted 2;
see (2.3.1). Thus, writing &, resp. 1, for the dual variables of r, resp. w € S* 2, we have

H = a?¢% 4+ r~2|nl34. Write 1-forms on X as
u=up +uya~tdr. (6.4.6)

Abbreviate the derivative of a function f with respect to r by f’. Since da = o/ dr and

VXa = a?d/d,, we have, in the decomposition (6.4.6),

0
do = ( />, IyX g = (O ao/).
aa
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We will need the Christoffel symbols of h. We continue using the notation to the previous
section, except now ! = r and & = &, while z2,..., 2" are r-independent coordinates on

S"=2, and moreover the lower bound for Greek indices is 1, and 2 for Latin indices.

Lemma 6.4.5. The Christoffel symbols of X are given by:

X+l -1 7 X1l Xl 2 2
Fll——a o, F,L-l—(), F,L]——TOZ (dw )U’

Xk X1k 15k Xpk _ Yk (6.4.7)
I'1; =0, I =r""6;, i ="15.

Proof. We have hi1 = a~2, hy; = h;1 = 0 and hij = r2(dw2)¢j, and (de)ij is r-independent.

We then compute

X 3 X X 2
I'in=—-aa, “T'iy=0, Ty =—r(dw),

X X 2 X 2y
Lrin =0, “Thin =r(dw )k, “Trij =r"" Tiy,

which immediately gives (6.4.7). O

We are only interested in the subprincipal operator of [J; at the trapped set, which we

recall from (6.2.3) to be the set
T={r=r,£6=00°=9%n?}, where ¥ =ar ! ¥(r,)=0. (6.4.8)
Thus, at I', we have
Hpy = 20%80, — 20a/€20¢ + 2r > |n|*0¢ + 7‘72H|n|2 = 2r3|n|?0¢ + 7”72H|77‘2,

while 02H,-2> = 20%a73a/0;. Now a~'o/ = (r¥®)~'(r¥) = r~! at r = rp, therefore

o?a73a’ = r~3|n|%, and we thus obtain

0°Hy— — Hyp = —r*Hj,2 at T, (6.4.9)

Notice that |n|? € C*°(T*Y) is independent of (r, &).

Lemma 6.4.6. For a function f € C*(T*Y), viewed as an (r,§)-independent function on

X, we have
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in the decomposition (6.4.6) of 1-forms on X.

Proof. On tangential forms u, i.e. u; = 0, we have
X ~1 o X Y <X X
Viur=—r"uj, Viu=Vju, V} u; =0, V; u; = 8J~.ui,

J

thus using Hy = ffj@j — fjf)j., we get, using that 77" X can be canonically identified with
the horizontal subbundle of T*(7T*X):

X -1 -1 —1; X oY
Vi,ui = —r"" fiuj = —r uw(Hy) = —r~"ig;u,  Viui = Vi u;.
On normal forms u, i.e. u; = a v, u; = 0, we compute

Vg(ul = a_lajv, Vi(ui = ra(de)ijv, V?ul = a_l&jv, V»jfui =0,

hence
%ﬁful = a_lfjajv — oz_lfjajfv = a_lev,
Vﬁfui = f;ra(de)ijv = ar(indwg)v.
The claim follows immediately. O

Combining Proposition 6.4.4 and Lemma 6.4.6, we can thus compute the subprincipal
operator of [J; acting on 1-forms (sections of the pullback of T*M to T*M \ 0) decomposed
as

u=upr +urya”tdr + uya dt. (6.4.10)

In view of (6.4.9), we merely need to apply Lemma 6.4.6 to f = |n|?, in which case Hf =
200k, 0 — 0yV*n;n1.07, so ig, = 2iy on 1-forms (identifying the 1-form 7 with a tangent

vector using the metric dw?), while iy ; dw?® = 2n. Thus, we obtain:

Proposition 6.4.7. In the decomposition (6.4.10), the subprincipal operator of [y on
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Schwarzschild-de Sitter space at the trapped set I' is given by

iSsub(Dl)
20260, — r VY, —2ar~! 0
a0 =TV o (6.4.11)
= 20z7‘_3i77 20200, — T_2H|m2 —2r~lg
0 —2r7 1o 20200, — r*2H|77|2

Since [y is symmetric with respect to the natural inner product G on the 1-form bundle,
which in the decomposition (6.4.10) is an orthogonal direct sum of inner products, G =
(—r72Q) @ (=1) @ 1, the operator Sg,,(J1) is a symmetric operator acting on sections
of m*T*M over T*M \ o if we equip 7*T*M with the fiber inner product G and use the
symplectic volume density on T*M \ o.

The matrix —2r~2s, with

0 Urlp 0
s= |-V, 0 ro |,
0 ro 0

of 0-th order terms of Sgu, (1) is nilpotent, which suggests in analogy to the discussion
in §6.3.5 that the imaginary part of Sg,p([J1) with respect to a Riemannian fiber inner
product can be made arbitrarily small. Indeed, for any fixed € > 0, define the ‘change of

basis matrix’

id 0 0
q= 0 e 1ur? 0 ,
—6_2|77|_1\I/2T2i,7 0 e 2|n|~ rio
then
0 enp O
gsg” ' = [0 0 e
0 O 0

In order to compute ¢Ssu(01)g™ !, we note that the diagonal matrix of ¢-derivatives in
(6.4.11) commutes with ¢, and it remains to study the derivatives along H,2; more specif-
ically, ¢ has a block structure, with the columns and rows 1,3 being the first block and the
(2,2) entry the second, and the (2,2) block is an n-independent multiple of the identity,
hence commutes with the relevant (2,2) entry ir_2H|n|2 of Squb(01). For the 1,3 block, we
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compute

(6.4.12)

Now 6{1‘ 2 and H),2 are the restrictions of the pullback connection V”H*‘AS”_Q of the full
n n
form bundle to 1-forms and functions, respectively, and the latter commutes with i, since

by Proposition 6.3.11,
. . TFASP2
0 = Ssun([H,0]) = _Z[Ssub(D)Jn} == [VH‘:S ’Zﬂ]’

where [ denotes the Hodge d’Alembertian on the form bundle and ¢ is the codifferential.
Thus, (6.4.12) in fact vanishes, and therefore

¢Ssub(Ch)g ™
207200, — r_zﬁ}%np —2r2en 0
= —i 0 207200, — T_Qsz —2r2¢|n|
0 0 200200 — 2 H,p2

Equip the 1-form bundle over M in the decomposition (6.4.10) with the Hermitian inner
product
Bo=Qalal, (6.4.13)

then ¢Ssu,(J1)g ! has imaginary part (with respect to By) of size O(e). Put differently,
Ssub(d1) has imaginary part of size O(e) relative to the Hermitian inner product b :=
By(g-,q-), which is the symbol of a pseudodifferential inner product on 7*T*M. We can
now invoke Lemma 6.4.2 on a neighborhood of I' N {|o| = 1} and use the homogeneity of

q,b and Sgup(0;) to obtain:

Theorem 6.4.8. For any € > 0, there exists a (positive definite) t.-independent pseu-
dodifferential inner product B = b(x, D) on T M (thus, b is an inner product on w*T; M,



232 CHAPTER 6. TENSOR-VALUED WAVES

homogeneous of degree 0 with respect to dilations in the base T*M \ o), such that

! (Ssub(‘:‘k) - Ssub(Dk)*b)

- <e
2i -7

sup |o] !

r b
where T is the trapped set (6.4.8). Put differently, there is an elliptic ps.d.o. Q, invariant
under ti-translations, acting on sections of T M , with parametriz Q~, such that relative to

the ordinary positive definite inner product (6.4.13), we have

<ee.
By

7 (o - @ ™)

sup |o| ™
r

By restriction, the analogous statements are true for [ acting on subbundles of the tensor

bundle on M, for instance differential forms of all degrees and symmetric 2-tensors.

By the t,-translation invariance of the involved symbols, inner products and operators,
this is really a statement about ¥y-inner products, and @ is a b-pseudodifferential operator;
see the discussion preceding Theorem 6.2.1 for the relationship of the stationary and the

b-picture.
Remark 6.4.9. Adding a 0-th order term to [0 does not change [J or its imaginary part

at the principal symbol level, thus does not affect the subprincipal operator of (I either;
therefore, Theorem 6.4.8 holds in this case as well.

Adding a first order operator L (acting on sections of TxM), which we assume to be
t-independent for simplicity, does affect the subprincipal operator, more specifically its 0-th
order part, since Sgup (04 L) = Squp(0)+01(L). Thus, if 01 (L) is small at I, we can use the
same W-inner product as for [J and obtain a bound on Im? Ssub(d + L) which is small, but
no longer arbitrarily small. However, the bound merely needs to be smaller than v, /2,
see (6.2.2), which does hold for small L.

If we do not restrict the size of L, we can still obtain a spectral gap, provided one
can choose a W-inner product as in Theorem 6.4.8, again with € > 0 sufficiently (but not
necessarily arbitrarily) small. This is the case if the 0-th order part of Sgu,(OJ + L) is
nilpotent (or has small eigenvalues) and can be conjugated in a t-independent manner to
an operator which is sufficiently close to being symmetric, in the sense that it satisfies the
bound (6.2.2) with O replaced by O + L.

We remark that the subprincipal operator iSsy, () = Hg + i0sub(G) induces a notion

of parallel transport on 7*7,M along the Hamilton flow of Hg. As a consequence of the
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nilpotent structure of Sgu,(0J) at the trapped set, parallel sections along the trapped set
grow only polynomially in size (with respect to a fixed t-invariant positive definite inner
product), rather than exponentially. Parallel sections as induced by Sgu,(0 + L), with L
as in Remark 6.4.9, may grow exponentially, with their size bounded by Ce*?lt for some
constants C' > 0 and s, where the additional factor of |o| in the exponent accounts for the
homogeneity of the parallel transport. If such a bound does not hold for any £ < vmin/2,
the dispersion of waves concentrated at the trapped set caused by the normally hyperbolic
nature of the trapping is expected to be too weak to counteract the exponential growth
caused by the subprincipal part of O + L, and correspondingly one does not expect a
spectral gap. Notice that the growth of parallel sections is an averaged condition in that it
involves the behavior of the parallel transport for large times, while the choice of W-inner
products as explained above is a local condition and depends on the pointwise structure of
Ssub (D).



Chapter 7

Resonances for differential forms

7.1 Introduction

Maxwell’s equations describe the dynamics of the electromagnetic field on a 4-dimensional
spacetime (M, g). Writing them in the form (d + d,)F = 0, where J, is the codifferential,
for the electromagnetic field F' (a 2-form) suggests studying the operator d + d,, whose
square O, = (d + 59)2 is the Hodge d’Alembertian, i.e. the wave operator on differential
forms. It is then very natural to study solutions of (d + d4)u = 0 or Oyu = 0 without
restrictions on the form degree. Important examples of spacetimes that fit into the class
of spacetimes studied in the present chapter are Schwarzschild-de Sitter spacetimes with
spacetime dimension n > 4, and by very simple perturbation arguments, we can readily
analyze waves on perturbations of these, in particular on Kerr-de Sitter spaces. Concretely,

a special case of our general results is:

Theorem 7.1.1. Let (M, g,) denote a non-degenerate Kerr-de Sitter space with black hole
mass Mo > 0, cosmological constant A > 0 and angular momentum a, see §2.4, more
precisely a suitable neighborhood Q2 of the domain of outer communications as in (2.3.9),
and denote by t. a smooth time coordinate. Suppose u € C°(M;AM) is a solution of the
equation

(d+6g,)u=0,

with smooth initial data, and denote by u; the form degree j part of u, j =0,...,4. Then
us decays exponentially in t. to a stationary state, which is a linear combination of the

ty-independent 2-forms uq 1, Uq,2. In the standard (Boyer-Lindquist) local coordinate system

234
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on Kerr-de Sitter space, uq;1 and uq.2 have explicit closed form expressions; in particular,
on Schwarzschild-de Sitter space, ug1 = r=2dt Adr, and Up,2 = w s the volume element
of the round unit 2-sphere. Moreover, u1 and ug decay exponentially to 0, while uy decays
exponentially to a constant, and uy to a constant multiple of the volume form.

Suppose now u € C°(M; AM) instead solves the wave equation
Ug,u =10

with smooth initial data, then the same decay as before holds for ug,us and ug, while uy
decays exponentially to a member of a 2-dimensional family of stationary states, likewise

for us.

The Schwarzschild-de Sitter case of this theorem, i.e. the special case a = 0, will be
proved in §7.4.2, and we give explicit expressions for all stationary states, see Theorems 7.4.3
and 7.4.5, and §7.5 provides the perturbation arguments, see in particular Theorem 7.5.1.
For the explicit form of u,1 and wug2, see Remark 7.5.4. Notice that asymptotics and
decay of differential form solutions to the wave equation are much stronger statements than
corresponding statements for Maxwell’s equations or for the Hodge-de Rham equation.

We stress that the main feature of the spacetimes (M, g) considered in this chapter is
a warped product type structure of the metric, whereas we do not make any symmetry
assumptions on M. From a geometric point of view then, the main result of this chapter
is a general cohomological interpretation of stationary states, which in the above theorem
are merely explicitly given. On a technical level, we show how to explicitly analyze quasi-
normal modes (or resonances) for equations on vector bundles whose natural inner product
is not positive definite, which is somewhat complementary to the high frequency analysis
in Chapter 6. To stress the generality of the method, we point out that symmetries only
become relevant in explicit calculations for specific examples such as Schwarzschild-de Sitter
and Kerr-de Sitter spaces. Even then, the perturbation analysis around Schwarzschild-de
Sitter space works without restrictions on the perturbation; only for the explicit form of the
space (Uq,1,Uq,2) of stationary states do we need the very specific form of the Kerr-de Sitter
metric. Thus, combining the perturbation analysis with the nonlinear framework developed
in §9, we can immediately solve suitable quasilinear wave equations on differential forms
on Kerr-de Sitter spacetimes; see Remark 7.5.3. To put this into context, part of the moti-

vation for the present chapter again is the black hole stability problem, and we expect that
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the approach taken here will facilitate the linear part of the stability analysis, which, when
accomplished, rather directly gives the nonlinear result when combined with the nonlinear

analysis presented in Chapters 8 and 9.

7.1.1 Outline of the general result

Going back to the linear problem studied here, we proceed to explain the general setup
in more detail; one should keep Schwarzschild-de Sitter space, as presented in §2.3, as the

main example in mind.

Remark 7.1.2. Notationally, Mg, Xg in §2.3 correspond to M and X in the present chapter,
whereas the extended manifolds are called M and X here: This is in order to emphasize
the role of M and X (and of the warped product metric on them), while the analysis on the
extended spaces M and X , even though it plays a central role in the setup, is somewhat

secondary for our analysis here.

Thus, let X be a connected, compact, orientable (n — 1)-dimensional manifold with
non-empty boundary Y = X # @ and interior X = X, and let M = R, x X, which is thus
n-dimensional. Denote the connected components of Y, which are of dimension (n — 2), by

Y;, for ¢ in a finite index set I. We assume that M is equipped with the metric
g = a(z)?dt* — h(z,dz), (7.1.1)

where h is a smooth Riemannian metric on X (in particular, incomplete) and « is a boundary
defining function of X, i.e. @« € C®(X), a = 0on Y, a > 0 in X and daly # 0. We
moreover assume that every connected component Y; of Y, i € I, has a collar neighborhood
[0,€i)a % (Yi)y in which h takes the form

h=Bi(a”,y) da® + ki(a®,y, dy) (7.1.2)

with Ei((), y) = B;i > 0 constant along Y;. In particular, h is an even metric in the sense of
Guillarmou [57]. Thus, de Sitter and Schwarzschild-de Sitter spaces fit into this framework,
whereas asymptotically flat spacetimes like Schwarzschild (or Kerr) do not. We change the
smooth structure on X to only include even functions of a, and show how one can then
extend the metric g to a stationary metric (denoted g, but dropped from the notation in

the sequel) on a bigger spacetime M= Ry, % X , where t, is a shifted time coordinate. Since
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the operator d + § commutes with time translations, it is natural to consider the normal

operator family

5(0) + 0(0) = €7 (d + 8)e "7

acting on differential forms (valued in the form bundle of M) on a slice of constant t.,,
identified with X; the normal operator family ((c) of ( is defined completely analogously.
As discussed before, see in particular §3.3.3, the proper way to view the normal operator
family is as a family of operators on the boundary at infinity of a bordified version of M ,
where one introduces 7 = e % and adds 7 = 0, i.e. future infinity, to the manifold M.

Since the Hodge d’Alembertian (and hence the normal operator family (J(c)) has a scalar
principal symbol, it can easily be shown to fit into the microlocal framework developed

1

by Vasy [114]; we prove this in §7.2. In particular, E(U)* is a meromorphic family of

L verifies

operators in ¢ € C, and under the assumption that the inverse family ﬁ(a)_
suitable high energy bounds as |Reo| — oo and Imo > —C (for C' > 0 small), one
can deduce exponential decay of solutions to Ou = 0, up to contributions from a finite
dimensional space of resonances, as in Theorems 5.2.3 and 5.3.1. Thus again, proving wave
decay and asymptotics is reduced to studying high energy estimates, which for the problem
at hand depend purely on geometric properties of the spacetime and will be further discussed
below, and the location of resonances as well as the spaces of resonant states. Our main

theorem is then:

Theorem 7.1.3. The only resonance of d + 9 in Imo > 0 is 0 = 0, and 0 is a simple
resonance. Zero resonant states are smooth, and the space H of these resonant states is
equal to kerd(0) N kerd(0). (In other words, resonant states, viewed as t,-independent
differential forms on ]TJ/, are annihilated by d and 6.) Using the grading H= Di_o HE of

H by form degrees, there is a canonical exact sequence
0— H*X) o H '(X,0X) —» H" — H 1 (0X). (7.1.3)

Furthermore, the only resonance of O in Imo > 0 is 0 = 0. Zero resonant states are
smooth, and the space K= Di_o Kk of these resonant states, graded by form degree and
satisfying K* D H*, fits into the short exact sequence

0— H*X)a H(X,0X) » K¥ - H*1(6X) — 0. (7.1.4)
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Lastly, the Hodge star operator on M induces natural 1somorphisms *: H = H =k and
x: IC i/%"*k, k=0,...,n.

See Theorem 7.3.20 for the full statement, including the precise definitions of the maps in
the exact sequences. In fact, the various cohomology groups in (7.1.3) and (7.1.4) correspond
to various types of resonant differential forms, namely forms which are square integrable
on X with respect to a natural Riemannian inner product on forms on M (obtained by
switching the sign in (7.1.1)), as well as ‘tangential’ and ‘normal’ forms in a decomposition
u = up + a1 dt A uy of the form bundle corresponding to the warped product structure
of the metric. Roughly speaking, (7.1.4) encodes the fact that resonant states for which
a certain boundary component vanishes are square integrable with respect to the natural
Riemannian inner product on X and can be shown to canonically represent absolute (for
tangential forms) or relative (for normal forms) de Rham cohomology of X, while the
aforementioned boundary component is a harmonic form on Y and can be specified freely
for resonant states of [J. (Notice by contrast that the last map in the exact sequence (7.1.3)
for d + § is not necessarily surjective.)

The proof of Theorem 7.1.3 proceeds in several steps. First, we exclude resonances in
Imo > 0 in §7.3.1; the idea here is to relate the normal operator family of d + ¢ (a family
of operators on the extended space X) to another normal operator family c/l\(a) + 3(0) =
e (d + 6)e~"? which is a family of operators on X that degenerates at X, but has the
advantage of having a simple form in view of the warped product type structure (7.1.1) of
the metric: Since one formally obtains (?(0) —1—5\(0) by replacing each 0, in the expression for
d+ 6 by —io, we see that on a formal level c/l\(a) —i—g(a) for purely imaginary o resembles the
normal operator family of the Hodge-de Rham operator of the Riemannian metric on M
mentioned above; then one can show the triviality of ker(g(a) + g(a)) in a way that is very
similar to how one would show the triviality of ker(A + o) for self-adjoint A and Imo > 0.
For not purely imaginary o, but still with Imo > 0, one can change the tangential part of
the metric on M in (7.1.1) by a complex phase and then run a similar argument, using that
the resulting ‘inner product,” while complex, still has some positivity properties. Next, in
§7.3.2, we exclude non-zero real resonances by means of a boundary pairing argument, which
is a standard technique in scattering theory [84]. Finally, the analysis of the zero resonance
in §7.3.3 relies on a boundary pairing type argument, and we again use the Riemannian
inner product on forms on M. The fact that this Riemannian inner product is singular at

0X implies that resonant states are not necessarily square integrable, and whether or not
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a state is square integrable is determined by the absence of a certain boundary component
of the state. This is a crucial element of the cohomological interpretation of resonant states
in §7.3.4.

As already alluded to, deducing wave expansions and decay from Theorem 7.1.3 requires
high energy estimates for the normal operator family. These are easy to obtain if the metric
h on X is non-trapping, i.e. all geodesics escape to X, as is the case for the static patch
of de Sitter space, discussed in the present chapter in §7.4.1 and in the scalar setting in
§5.2. Another instance in which suitable estimates hold is when the only trapping within
X is normally hyperbolic, as is the case for Kerr-de Sitter spaces with parameters in a
certain range. As discussed in Chapter 6, such estimates are now widely available in the
scalar setting [42, 124]; the proof of exponential decay then relies on high energy estimates
in a strip below the real line. For [ acting on differential forms, obtaining high energy
estimates requires a smallness assumption on the imaginary part of the subprincipal symbol
of O relative to a positive definite inner product on the form bundle, and we showed how
to tackle this issue by means of pseudodifferential inner products in Chapter 6 for [J on
tensors of arbitrary rank on perturbations of Schwarzschild-de Sitter space.

This chapter gives the first proof of asymptotics for differential forms solving the wave
or Hodge-de Rham equation in all form degrees and in this generality, and also the first to
demonstrate the forward solvability of non-scalar quasilinear wave equations on black hole
spacetimes; however, we point out that for applications in general relativity, our results
require the cosmological constant to be positive, as discussed in Chapter 1 and §5.1, whereas
previous works on Maxwell’s equations deal with asymptotically flat spacetimes; see §6.1.1
for references.

We moreover remark that Vasy’s proof of the meromorphy of the (modified) resolvent
of the Laplacian on differential forms on asymptotically hyperbolic spaces [112] makes use
of the same microlocal framework as the present chapter, and it also shows how to link
the ‘intrinsic’ structure of the asymptotically hyperbolic space and the form of the Hodge-

Laplacian with a ‘non-degenerately extended’ space and operator.

7.2 Analytic setup

Recall that we are working on a spacetime M = R; x X, equipped with a metric g as in

(7.1.1)-(7.1.2), where X is the interior of a connected, compact, orientable manifold X with
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non-empty boundary Y = 90X # () and boundary defining function a € C®(X). Fixing
a collar neighborhood of Y identified with [0,¢), X Y, denote by Xeyen the manifold X
with the smooth structure changed so that only even functions in « are smooth, i.e. smooth
functions are precisely those for which all odd terms in the Taylor expansion at all boundary

components vanish. For brevity, we assume from now on that Y is connected,
h=B(a?y)* do® + k(a?,y, dy) (7.2.1)

in a collar neighborhood of Y, and thus 5 (0,y) = B is a single constant, but all of our argu-
ments readily go through in the case of multiple boundary components. The main examples
of spaces which directly fit into this setup are the static patch of de Sitter space (with 1
boundary component) and Schwarzschild-de Sitter space (with 2 boundary components);
see §7.4 for details.

On M, we consider the Hodge-de Rham operator d + J, acting on differential forms.
We put its square, the Hodge d’Alembertian [ = (d + §)?, which is principally scalar, into
the microlocal framework developed in [114]. First, we resolve the coordinate singularity at
a = 0; proceeding as in §2.3, see in particular (2.3.5), we renormalize the time coordinate ¢
in the collar neighborhood of Y by writing

t=t.+ F(a), 0.,F(a)= —g —2ac(a?,y) (7.2.2)

with ¢ smooth, hence F(a) € —floga + C*(Xeven); notice that the above requirement on
F only makes sense near Y. We introduce the boundary defining function p = a? of Xeven;

then one computes
g =pdt? — (B +2puc) dt, dp+ (uc® + Be) du® — k(u,y, dy). (7.2.3)

In particular, the determinant of ¢ in these coordinates equals —%2 det(k), hence g is non-
degenerate up to Y. Furthermore, we claim that we can choose ¢(u,y) such that dt, is
timelike on Ry, X Xeyen; this requirement is explained below and in [114, §7], as well as in

§4.2. That is, we want to arrange, with G denoting the dual metric to g, that

G(dty, dt.) = —4B72(uc? + Be) > 0. (7.2.4)
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This is trivially satisfied if ¢ = —B /2p, which corresponds to undoing the change of coor-
dinates in (7.2.2), however we want ¢ to be smooth at p = 0. But for g > 0, (7.2.4) holds
provided —B/,u < ¢ < 0; hence, we can choose a smooth ¢ verifying (7.2.4) in p > 0 and
such that moreover ¢ = —f3, /2u in p > py (intersected with the collar neighborhood of Y)
for any fixed p1 > 0. Thus, we can choose F' as in (7.2.2) with F' = 0 in o? > yu; (in
particular, F' is defined globally on X') such that (7.2.4) holds.

Since the metric g in (7.2.3) is stationary (¢.-independent) and non-degenerate on X eyen,
it can be extended to a stationary Lorentzian metric on an extension )?5 into which X even
embeds. Concretely, one defines X5 = (X even L ([—, €) u X Yy))/ ~ with the obvious smooth
structure, where ~ identifies elements of [0,€), x Y, with points in Xeven by means of
the collar neighborhood of Y. Then, extending B and k, and thus g, in an arbitrary t.-
independent manner to )~((5, the extended metric, which we denote by ¢, is non-degenerate
on )?5 for sufficiently small § > 0, and 0;, remains timelike uniformly on R, X )}5: Indeed,
in pu < 0, (7.2.4) (with the dual metric G of § in place of G) holds for any negative function
c as long as E remains positive on )N((;. Reducing 6 > 0 further if necessary (to enforce the
relevant structure of the null-geodesic flow near ¥ within X5\ X even, see [114, §2]), we let X
be the double space of )?5, which is thus a compact manifold without boundary, and denote
by g the extended metric on X , slightly modified near 8)?5 to ensure the smoothness of g
on the double space X.

The operator d + d, on M now extends to an operator d + dz on M = Ry, x X.
Correspondingly, the wave operator [J, on M extends to the wave operator [z on M.
Denote the normal operator family of (g by ﬁg(a), that is to say (using e~ ' as the Mellin

transform variable, and dropping the subscript g for brevity)

D(O') — eit*O'De—it*O';

since [J is invariant under translations in t., this amounts to replacing each 0y, in the
expression for [1 by —io. The operator ﬁ(a) acts on sections of the pullback A )}M of the
form bundle AM under the map XM ,  +— (0,7), and writing differential forms @ on

M as

u=ur+dts Nuy (7.2.5)

with #r and uy valued in forms on X , we can identify A )21\7 with AX @ AX.
The last step required to show that [, more precisely ﬁ(a), fits into the framework
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described in [114] is classical non-trapping for the bicharacteristic flow of [(¢); complex
absorption can be dealt with by the arguments of [114, §§3-4]. But in fact, we even have
ellipticity in X: Indeed, on X, we have

D(O’) _ e—iFaeitJDe—itoeiFJ _ e_iFUﬁ(O')eiFU, (726)

where ((c') = €7[e 7 is the conjugation of (I by the Fourier transform in —t, and F is as
in (7.2.2); here, we view (o) as an operator acting on sections of A)?M|X. Now, the latter
bundle can by identified with AX ® AX by writing differential forms as u = ur + dt A up,
with ur and uy valued in forms on X, and switching between this identification and (7.2.5)
amounts to conjugating ﬁ(a) by a bundle isomorphism on AX & AX, which preserves
ellipticity. The standard principal symbol of ﬁ(a) as a second order operator acting on
sections of AX @ AX is given by (—H) @ (—H), where H is the dual metric to h, here
identified with the dual metric function on 7*X; this follows from the calculations in the
next section. Since H is Riemannian, this implies that 0(c), hence O(c), is classically
elliptic in X, which trivially implies the non-trapping property.

Hence by [114, Theorem 7.3], O(c) is an analytic family of Fredholm operators on
suitable function spaces, and the inverse family 0(¢) ™ : C®°(X; AX®AX) — C~®(X; AX @
AX ) (where we use the identification (7.2.5)) admits a meromorphic continuation from
Imo > 0 to the complex plane; note however that without further assumptions on the
geodesic flow (for instance, semiclassical non-trapping or normally hyperbolic trapping),
we do not obtain any high energy bounds. Moreover (see [114, Lemma 3.5]), the Laurent
coefficient at the poles are finite rank operators mapping sufficiently regular distributions
to elements of C®°(X; AX @ AX).

For present purposes, it is actually more convenient to replace complex absorption by
Cauchy hypersurfaces outside of Xeyen as in Chapter 5, for instance §5.2; the above prop-

erties on (o)~ hold true in this setting as well. We then deduce:

Lemma 7.2.1. A complex number o € C is a resonance of OJ, i.e. ﬁ(a)_l has a pole at
o, if and only if there exists a non-zero u € a*iﬁ"coo(yeven; AX even @ AX oven) (using the
identification (7.2.5)) such that O(c)u = 0.

Proof. If o € C is a resonance, then there exists a non-zero u € C(X;AX ® AX) with
O(o)a = 0. Restricting to X, this implies by (7.2.6) and (7.2.2) that O(o)u = 0 for

u = et ulx € a”P7C% (X even; AX cven DAX even). If u = 0, then % vanishes to infinite order
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at Y, and since E!(a) is a conjugate of a wave or Klein-Gordon operator on an asymptotically
de Sitter space, see [117], unique continuation at infinity on the de Sitter side as in [111,
Proposition 5.3] (which is in the scalar setting, but works similarly in the present context
since it relies on a semiclassical argument in which only the principal symbol of the wave
operator matters, and this is the same in our setting) shows that u = 0 on X ; this is the
place where we use that we capped off X outside of X even by a Cauchy hypersurface. Hence,
u # 0, as desired.

Conversely, given a u € a~7C%®(X eyen; AX even ® AX even) With ﬁ(a)u = 0, we define
u € C"O()Z;A)Af @ A)Af) to be any smooth extension of e "7y from Xeyen t0 X. Then

O(o)u’ is identically zero in X and thus vanishes to infinite order at Y; hence, we can solve

O(o)o = —0(0)d’

in X \ X with ¥ vanishing to infinite order at Y’; thus, extending v by 0 to X, we find that

% = @ +7 is a non-zero solution to ()i = 0 on X. O

Since [0 = (d + 6)2, we readily obtain the following analogue of Lemma 7.2.1 for d + 4,
dropping the bundles from the notation for simplicity:

~ ~

Lemma 7.2.2. The map kercm()?)(ci(a) + 6(0)) — Ker, —igocoo (Ko (A(0) + 6(0)), U —

e'Fo| x, is an isomorphism.

Proof. Since U € ker(d(c) + (o)) implies @ € ker 0(c), injectivity follows from the proof of
Lemma 7.2.1. To show surjectivity, take u € e’f7C%®(X ¢yen) with (L/Z\(U) +4(c))u = 0 and
choose any smooth extension @ of e~#'7u to X. Solving (o) = —(d(c) + 6(0)) with
supp? C X \ X and then defining o = (d(0) + 6(0))¥, we see that & = & + ¥ extends @'
to X and is annihilated by d(o) + 6(c). O

Thus, when studying the location and structure of resonances, we already have very
precise information about regularity and asymptotics (on X) of potential resonant states.

Lastly, we remark that since O(c) = (d(0) + 8(0))? is an analytic family of Fred-
holm operators with meromorphic inverse, the same holds for d(c) 4 6(c). More precisely,
O(o): X5 — Y51 with X* = {u € H*(X; AX ®AX)": O(o)u € H*1(X; AX & AX)} and
Ys=l = Hs"1(X; AX ®AX)~, with (—) denoting extendible distributions [64, Appendix B],

is Fredholm provided s is large enough (depending on Im o), and thus d(o)+4d(0): 25 — Y*
with V5 = {u € H*(X;AX ® AX)™: (d(0) + 6(0))u € H*(X; AX @ AX)} is Fredholm for
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the same s. In addition, EZV(U) + 5(0) acting on these spaces is invertible if and only if its
square O(o) is. In particular, d(c) + 6 (o) has index 0, being an analytic family of Fredholm

operators which is invertible for Im o > 0.

7.3 Resonances in the closed upper half plane

Using Lemma 7.2.2, we now study the resonances of in Im o > 0 by analyzing the operator
c/l\(a) + g(a) (and related operators) on Xeyen. Recall that a resonance at ¢ € C and a
corresponding resonant state @ yield a solution (d+8)(e~**°%) = 0, hence Im o > 0 implies
in view of |[e” 7| = el M7 that e~#+u grows exponentially in ¢,, whereas resonances with
Imo = 0 yield solutions which at most grow polynomially in ¢, (and do not decay). We
will continue to drop the metric g or ¢ from the notation for brevity.

In order to keep track of fiber inner products and volume densities, we will use the

following notation.

Definition 7.3.1. For a density u on X and a complex vector bundle £ — X equipped
with a positive definite Hermitian form B, let L?(X, u; &, B) be the space of all sections u
of £ for which [lu]? 5 := [ B(u,u) du < oc.

If B is merely assumed to be sesquilinear (but not necessarily positive definite), we

define the pairing
(u,v) B = / B(u,v)dp
X

for all sections u,v of € for which B(u,v) € L*(X, u). If the choice of the density u or inner

product B is clear from the context, it will be dropped from the notation.

Remark 7.3.2. 1t will always be clear what bundle £ we are using at a given time, so £ will

from now on be dropped from the notation; also, X will mostly be suppressed.

Since the metric ¢ in (7.1.1) has a warped product structure and « dt has unit squared

norm, it is natural to write differential forms on M = R; x X, as
u(t,z) =ur(t,z) + adt Nun(t, ), (7.3.1)

where the tangential and normal forms ur and uy are t-dependent forms on X, and we will

_ ur(t, x)
(t,) = (uN(t, x)) '

often write this as
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Thus, the differential d on M is given in terms of the differential dx on X by

d 0
d=| % . (7.3.2)
a 10, —aldxa

Since the dual metric is given by G = a~20? — H, the fiber inner product G} on k-forms is

[ (=1)*Hy 0
(o, -

given by

where H, denotes the fiber inner product on g-forms on X. Furthermore, the volume density

on M is |dg| = a|dt dh|, and we therefore compute the L?(M, |dg|)-adjoint of d to be

_ —15 _ 1
g [T oxa —aTo (7.3.4)
0 dx

where 0y is the L?(X, |dh|; AX, H)-adjoint of dx. Thus,

3@):( ax 1 0 ) 3(o) = (‘O‘_léxa i‘m_l). (7.3.5)

—ica”l —aldxa 0 Ox

In the course of our arguments we will need to justify various integrations by parts and
boundary pairing arguments. This requires a precise understanding of the asymptotics of up
and uy for potential resonant states u at Y = 0Xcyen. To this end, we further decompose

the bundle AX & AX near Y by writing ur as
up = upy + do A upy (7.3.6)
and similarly for uy, hence
u=upr +daAury +adt Nuyt +adt ANda ANuyn, (7.3.7)
where the uee are forms on X valued in AY. Now for a resonant state u, we have
u= o P (Wpp + d(a?) AUpy + dby A Uyp + dt, Ad(a?) ATy ) (7.3.8)

near Y with w1, € C®°(Xeven; AY), which we rewrite in terms of the decomposition (7.3.7)
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using (7.2.2), obtaining

u=a (Wpp + da A 200y y — F'()uyr)

+adtN a_lﬂ’NT + 2adt N do /\%VN);

hence introducing the ‘change of basis’ matrix

1 0 0 0
0 -1
@ - a Pa
00 alt 0
0 0 0 1
and defining the space
C>® (Yeven; AY) a*iﬁacoo(yeven; AY)
; COO Yeven; AY _260—_1(:,00 Yeven; AY
ces, = warivr | € ot AT | a7 CF (Ko AV) | (7.3.9)
C*>® (Xeven; AY) a—zﬁa—lcoo (Xeven§ AY)
C>® (Yeven; AY) a*iﬁacm(yeven; AY)
we obtain
urT urT
N —gair | TN | ey (7.3.10)
UNT UNT
UNN UNN

with Uee € Cm(yeven;AY), where the uee are the components of u in the decomposition
(7.3.7).

We will also need the precise form of c?(a) and S(J) near Y. Since in the decomposition
(7.3.6), the fiber inner product on AX-valued forms is H = K ® 372K in view of (7.2.1),

we have
d 0 0 o
dy =" and oy = "), (7.3.11)
3a —dy 0 _5Y

where dy is the differential on Y and 9 is the formal adjoint of 0,: C*®(X;AY) C
L2(X,|dh|; AY, K) — L2(X,|dh|; AY, 32K). Thus, if 8 and k are independent of o near
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Y, we simply have
a; = 7/8_2804’
and in general, 0% = —3720, + a?p10a + apa, where p1, p2 € C*°(Xeyen)-

~

Finally, we compute the form of d(¢) near Y acting on forms as in (7.3.10):

dy 0 0 0

~ O —ad —Ba~td 0
d(0)E = a P~ dy . (7.3.12)

—joa! 0 —a tdy 0

0 —ic  —ioBa?—a"10, dy

~

Thus, applying d(o) to u € C(Oé’) yields an element

" Boge (X even; AY)
=R fiﬁaflcoo Y ven, AY
d(o)u € “ , (76 ens AY)

a_w“_lCOO(Xeven; AY)
a~Boge (X even; AY)

where we use that there is a cancellation in the (4, 3) entry of c?(a)‘f in view of (icBa~2 +
a™10,)a~7 = 0; without this cancellation, the fourth component of c/l\(a)u would only lie

in a=P772C% (X oyen; AY). Similarly, we compute

—by —a '9ra? —Ba o +ica? 0
0 ady Ba 18y ica™!
0 0 a1y ar
0 0 0 —dy

~

[eo]

thus applying d(o) to u € C(U) also gives an element

a”P7C% (X gyen; AY)
afiﬁoflcoo (Yeven; AY)
a—iﬁa—lcoo (yeven; AY)

a”P7C% (X gyen; AY)

g(a)u €

)

where there is again a cancellation in the (1,3) entry of g(a)‘f; without this cancellation,
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the first component of c?(a)u would only lie in a~#7=2C% (X gyen; AY).
In fact, a bit more is true: Namely, one checks that the operators aiﬁ"%_lg(a)%a_w“
and a"ﬁ"%*lg(a)%a*m" preserve the space C*(X even; AY)? (in the decomposition (7.3.8)),

~ ~

hence if u € C7,, then also d(o)u,0(c)u € C)- Indeed, this follows either by a direct
computation, or one notes that these operators are equal (up to a smooth phase factor) to
the matrices of the Fourier transforms in ¢, of d and § with respect to the form decomposition
(7.3.8), which are smooth on the extended manifold X. Since it will be useful later, we check

this explicitly for ¢ = 0 by computing

dy 0 0 0
- 19, —d 0 0
(A v (7.3.14)
0 0  —dy O
0 0 —a 19, dy
and
—6y —at9ra? —a7lo:p 0
- 0 5 0 —Ba—19y
©=15(0)% = v fo"0q (7.3.15)
0 0 Sy ady;
0 0 0 oy

7.3.1 Absence of resonances in the upper half plane

The fiber inner product on the form bundle is not positive definite, thus we cannot use
standard arguments for (formally) self-adjoint operators to exclude a non-trivial kernel of
d(o) + 8(c). We therefore introduce a different inner product (by which we mean here
a non-degenerate sesquilinear form), related to the natural inner product induced by the
metric, which does have some positivity properties. Concretely, for § € (—7/2,7/2), we use
the inner product H & e~ 2YH, i.e. on pure degree k-forms on M, the fiber inner product is
given by Hj, @ e 2P H;,_; in the decomposition into tangential and normal components as

in (7.3.1).

Lemma 7.3.3. Let § € (—n/2,7/2). Suppose that uw € L*(aldh|; H @ H) is such that

(U, u) pge—2i0fy = 0. Then u = 0.
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Proof. With u = ur + adt A uy, we have ||uTH%2(a|dh|;H) + 6_2wHuN”%2(a|dh\;H) = 0. Mul-

tiplying this equation by e and taking real parts gives

cos(0) |ull 22 apan). s rr) = 05
hence u = 0, since cos# > 0 for # in the given range. O

Using the volume density «|dh| to compute adjoints, we have

~ ~

(d(o)u, ) gae—2i0 = (U, 00(0)V) gae—2i0p7, U, v € CO(X;AX ® AX)

for the operator

-1 200 = —1
~ a Hdxa ieYoa
dp(0) = ,
0 —0x
which equals —6(o) provided ¥ = —¢, i.e. o € € - (0, 00).

Remark 7.3.4. Since the inner product H @ e 2P H is not Hermitian, we do not have

(5g(0)u, V) gaoe-20 = (U, c/l\(o*)v>H@efsz in general. Rather, one computes

~ ~

(do(o)u, U>H€ae2i9H = (v, 59(0)U>H®e*2ieH

_ N (7.3.16)
= <d(0’)1), U>H®e—2ié)H = <u, d(O’)’U>H€B62wH.
Now suppose u € CE’;’) is a solution, with Imo > 0, of
(d(c) + 6(a))u = 0. (7.3.17)

~

We claim that every such u must vanish. To show this, we apply d(o) to (7.3.17) and pair

the result with w; this gives

o~ o~ ~

0 = (d(0)3(0)tt, u) prese-20 55 = (3(0), 0 (0)u) o201 (7.3.18)

=— (S(a)u, 3(0)U>H@672i9}]a

where we choose § € (—7/2,7/2) so that o € € - i(0,00); the integration by parts will
be justified momentarily. By Lemma 7.3.3, this implies g(a)u = 0. On the other hand,
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applying 6(c) to (7.3.17) and using (7.3.16), we get, for o € € - i(0, 00),

0= (5(0)d(0)u, u) gezio gr = —(0(0)d(0)tt, ) prsezio s

= —(d(o)u, d(0)u) yeezo g,

(7.3.19)

hence c/l\(a)u = 0 by Lemma 7.3.3, again modulo justifying the integration by parts.
Using the splitting (7.3.1) and the form (7.3.5) of d(c), the second component of the
equation czl\(a)u = 0 gives iour + dxauy = 0. Taking the L?(a|dh|; H)-pairing of this with

up gives (the integration by parts to be justified below)

0= Z'J||uT||2 + {(dxaun,ur) = iUHuTH2 + (un, dxaur), (7.3.20)

~

and then the first component of d(c)u = 0, i.e. dxaur = icuy, can be used to rewrite the

pairing on the right hand side; we obtain 0 = i(co|jur|? — &|luy||?). Writing o = ie?5 with
o > 0 real, this becomes

0= url* + e “llun]?), (7.3.21)

and taking the real part of this equation gives ur = 0 = uy, hence u = 0.

We now justify the integrations by parts used in (7.3.18) and (7.3.19), which is only an
issue at Y. First of all, since u € CE’(‘;) and Imo > 0, the pairings are well-defined in the
strong sense that all functions which appear in the pairings are elements of L?(«|dh|; H® H );
in fact, all functions in these pairings lie in CE;’). In view of the block structure H ®e 2 H =
Ko B 2Kpe Ko E 2720 K of the inner product, the only potentially troublesome term
for the integration by parts there is the pairing of the first components, since this is where
we need the cancellation mentioned after (7.3.13) to ensure that d(c)u € L2. However,
if we only use the cancellation in one of the terms, we pair a*iﬂgcw(yeven;AY) against
a”B7720% (X qyen; AY) in the first component, thus this pairing is still absolutely integrable
and one can integrate by parts. Likewise, the integration by parts used in (7.3.19) only has
potential issues in the pairing of the fourth components, since we need the cancellation men-
tioned after (7.3.12) to ensure that L/Z\(O')u € L?. But again, if we only use this cancellation
in one of the terms, we pair a=7C% (X ¢ven; AY) against a7 =20 (X gyen; AY), which is
absolutely integrable.
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In order to justify (7.3.20), we observe using (7.3.11) that near Y,

a—iﬁacoo a—zﬂa—lcoo
up, dyxouy € . ,  un,0xaur € . )
a—z,@a—lcoo a—z,@ocoo

where we write C*° = C*(Xeven; AY). These membership statements do not rely on any
cancellations, and since all these functions are in L?(«|dh|; AY, K) near Y, the integration
by parts in (7.3.20) is justified.

We summarize the above discussion and extend it to a quantitative version:

Proposition 7.3.5. There exists a constant C > 0 such that for all o € C with Imo > 0,

we have the following estimate for u € CE’;) :

lol vz %

ull 2 (ojan;mem < C [(d(o) + 8(o))ull £2(a|dn); e H)- (7.3.22)

| Tm |2

Proof. Write o = ie5, 6 € (—m/2,7/2), & > 0, as before. Let f = (d(c) + 0(o))u; in

particular f € 7). Then d(o)é(o)u =d(o)f, so

~ ~ ~ ~

(0(0)u, 6(0)u) gae—2i0 17 = —<C/Z\(O')5(O')U,’U/>HEB6—QWH = (f,0(0)u) gpe—2i0 15 (7.3.23)

and similarly

~ ~

(d(o)u, d(0)u) graezior = (f, d(0)u) graeio - (7.3.24)

Multiply (7.3.23) by €%, (7.3.24) by e~% and take the sum of both equations to get

e ([[(3(a)u)r )1 + I (d(o)u)n %) + e~ (| (3(o)u)n 1> + | (d(o)u)r|?)

= &(F,0(0)u) o201 + €0 f, d(0)u) 2oy

Here, the norms without subscript are L?(«|dh|; H @ H)-norms as usual. Taking the real

part and applying Cauchy-Schwarz to the right hand side produces the estimate

~ ~ 4 4|o]
< = . 0.
oyl + 5oyl < s = 2o (7329

We estimate u in terms of the left hand side of (7.3.25) by following the arguments leading

to (7.3.21): Put v = d(o)u and w = (o)u. Then icur + dxauy = —awvy; we pair this
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with uz in L?(a|dh|; H) and obtain
ioHuTH2 + (un, dxaur) = —(avn,ur).
Using —dxaur + icuny = awrp, this implies
io|lup||? — i |un||* = —(avy, ur) + (un, cwr),

thus

(e llur® + e " llun|®) = (avn, ur) — (un, awr).

Taking the real part and applying Cauchy-Schwarz, we get
(cosO)||ull < lo| ™ ([lav]| + law]) S lo~ (o]l + [lw]).
In combination with (7.3.25), this yields (7.3.22). O

7.3.2 Boundary pairing and absence of non-zero real resonances

We proceed to exclude non-zero real resonances for d + & by means of a boundary pairing

argument similar to [84, §2.3].

Proposition 7.3.6. Suppose 0 € R, o # 0. If u € C)) solves (d(c) + 6(0))u = 0, then

u=0.

~ ~

Proof. Writing u = ur + adt A uy as usual, we can expand (d(o) + d(c))u =0 as

(adX — 5on)uT +iouny =0 (7326)

—tour + (—an + 045)()UN =0.

Applying (—dxa+ adx) to the first equation and using the second equation to simplify the

resulting expression produces a second order equation for ur,
(an(SXa + adxadx — anQdX — UQ)UT =0. (7.3.27)
Writing up = upp +da Aupy as in (7.3.6), we see from the definition of the space CE’;’) that

ur € CE)C?),T % (Yeven; AY) @ Of_wg_lcoo(yeven; AY)
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near Y. Notice that the space C7) 7. barely fails to be contained in L?(a|dhl).

We will deduce from (7.3.27) that uz = 0; equation (7.3.26) then gives uy = 0, as o # 0.
Now, the L?(a|dh|; H)-adjoint of dxa is dya, hence even ignoring the term dyxa?dy, the
operator in (7.3.27) is not symmetric. However, we can obtain a simpler equation from

7.3.27) by applying dx to it; write vy = dxur € C2° ., and near Y,
(o), T

o~ PGy I
v = o , 077, 7N € C(Xeven; AY).
a*@,ﬁafl,UTN

Then vy satisfies the equation
(dxadxa — UQ)UT =0,

and dxadxa is symmetric with respect to the L?(a|dh|; H)-inner product. We now compute
the boundary pairing formula (using the same inner product); to this end, pick a cutoff
function x € C*°(X) such that in a collar neighborhood [0,8) x Y, of Y in X, x = x(«) is
identically 0 near o = 0 and identically 1 in o > §/2, and extend x by 1 to all of X. Define
Xe(@) = x(a/€) and x(a) = x'(a/€). Then

0= lg%(«an(SXOé — o¥)ur, xevr) — (vr, xe(dxadxa — o?)vr))

(7.3.28)
= lir%(vT, [dxadxa, Xe|vr).
€E—>

The coefficients of the commutator are supported near Y, hence we use (7.3.11) to compute

its form as

Oqdy . Opadia + dyadya
_ ( 0 dy |0}, XE]a)
[Oa; XJadya  [Oaadia, X]
_ ( 0 ~B7(0” + O(ah))x(dy )
Xeadya xcadia — 0a(a® +0(ah)) %X,

dy ad dy a0
[dXOl(SXa,XE] = [( yaord Yt ) aXe]
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In (7.3.28), the off-diagonal terms of this give terms of the form
/ /aij"aiw”_l “Lo?x v da |dk| (7.3.29)
Y

with 9 € C*®°(Xeven), and are easily seen to vanish in the limit ¢ — 0. For the non-zero
diagonal term, recall that the volume density is given by a|dh| = af da|dk|, and the fiber
inner product in the (T'N)-component is 372K, so

—ifo—1~
UTN>L2(X;aﬁ daldk|;AY;872K)

—2//UTN,ZB O"UTN>K6_1X/€dOd|dk‘|—|—O(1)

- < —ifo— IUTN,(XEOza a— dua? B2 X5

=0 _2ip- 20 )|[orn v 1 22y anferc)

here, both summands in the pairing yield the same result, as is most easily seen by inte-
grating by parts in «, hence the factor of 2, and the o(1)-term comes from differentiating

vrnN, which produces a term of the form (7.3.29). We thus arrive at
0 = ((dxadxa — o*)vp,vr) — (vr, (dxadxa — o?)vr) = —=2iB 2o[ornly |,

whence vry|y = 0 in view of o # 0, so we in fact have

—ip o
vp = (a ”TT> Oy € C°(Keven; AY). (7.3.30)
«a 150"61
TN

For the next step, we need the language of 0-differential operators, explained briefly in
§5.4.5. Often, as in our case, one is considering solutions of O-differential equations with
additional properties, such as having an expansion in powers of « (and perhaps log «) with
smooth coefficients, i.e. polyhomogeneous functions. In these cases aDiff,(X) C Diffo(X)
acts ‘trivially’ on an expansion in that it maps each term to one with an additional order
of vanishing, so in particular, one can analyze the asymptotic expansion of solutions of
O-differential equations in this restrictive class by ignoring the aDiff,(X) terms. Notice
that ad,, € aDiff, (X) in particular, so the tangential O-derivatives can be dropped for this
purpose. The indicial equation is then obtained by freezing the coefficients of A € Diffy(X)
at 0X, i.e. writing it as Zkﬁ a 5(a, y)(a@a)k(aay)ﬁ, where ay, 3 are bundle endomorphism

valued, and restricting o to 0, and dropping all terms with a positive power of «d,, to obtain
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> ak0(0,y)(dy)F. This can be thought of as a regular-singular ODE in « for each y; its
indicial roots are called the indicial roots of the original 0-operator, and they determine the
asymptotics of solutions of the homogeneous PDE with this a priori form.

Now dxadxa — o € Diff2(X) is a O-differential operator which equals

_ g2 0
deé(SXoé — 02 = ?
0 —B20,00,0 — 02

modulo aDiH%(Y); hence its indicial roots are ¢80 — 1. In particular, —ifo + j, j € Ny,
is not an indicial root. Thus, a standard inductive argument starting with (7.3.30) shows
that vp € C®(X;AX).

Next, we note that vr lies in the kernel of the operator
dyadxa+ a oxady — o2 € Diﬁ%(Y; OAY),

which has the same principal part as a?Ax, hence is principally a 0-Laplacian; thus, we can
apply Mazzeo’s result on unique continuation at infinity [80] to conclude that the rapidly
vanishing v must in fact vanish identically.

We thus have proved dxup = 0. Since up satisfies (7.3.27), we deduce that up itself
satisfies

(an(SXa - UQ)UT = 0,

thus repeating the above argument shows that this implies ur = 0, hence v = 0, and the

proof is complete. O

7.3.3 Analysis of the zero resonance

We have shown now that the only potential resonance for d + § in Imo > 0 is o = 0,
and we proceed to study the zero resonance in detail, in particular giving a cohomological

interpretation of it in §7.3.4.

We begin by establishing the order of the pole of (d(o) + &(c)) ™1

Lemma 7.3.7. (d(0) + 6(c))~! has a pole of order 1 at o = 0.

Proof. Since d(0) 4 6(0) annihilates constant functions (which are indeed elements of Cé’g)),

(d(o) + 8(c))~! does have a pole at 0. Denote the order of the pole by N. Then there is
a holomorphic family @(c) € C>(X) with @(0) # 0 such that (d(c) + 0(c))u(o) = oV,
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where 7 € C°(X). Define u(o) = eF7u(o)|x € Ci) and v(o) = efor|x € C): then
(d(0) + 6(0))u(c) = oNv(c). Moreover, since (d(0) + 6(0))u(0) = 0 and @(0) is non-zero,
Lemma 7.2.2 shows that u(0) # 0.

Let us assume now that N > 2. For o € i(0, 00) close to 0, the quantitative estimate in

Proposition 7.3.5 now gives
lu(@)|| S lo|~ ¥ o(o)ll < lo][lo(o)]], (7.3.31)

where we use the norm of L?(«|dh|; H @ H); observe that in the notation of §7.3.1, we have
(%(O) = —5\(0), hence using the Riemannian fiber inner product H & H is indeed natural
when studying the zero resonance. Notice that (7.3.31) does not immediately give u(0) = 0
since v(0) ¢ L%(a|dh|; H @ H). However, we can quantify the degeneration of the L2-norm
of v(o) as ¢ — 0. To see this, we first observe that the L?-norm of v(o) restricted to the
complement of any fixed neighborhood of Y does stay bounded, so it remains to analyze
the L2-norms of the four components of v(c) near Y in the notation of (7.3.7); denote these
components by aiiﬁaﬂTT(U), Ofw‘jfliTN(a), a*w‘jflﬂNT(a) and a7y (o), so that the
Vee(0) € C°°(Xoyen; AY') uniformly. Since the fiber metric in this basis has a block diagonal
form and any C° (X even)-multiple of a~ 07 ig uniformly square-integrable with respect to
the volume density a|dh|, the degeneration of the L?-norm of v is caused by the (T'N)
and (NT) components. For these, we compute, with w(c) € C°%°(Xeven; AY) denoting any

continuous family supported near Y,

/ /a%—iﬁff—l)n@ﬁ( o dadk|
Y
= 1Oy ey [ @7 x(e) da+ O(1)

where y € C*®(X) is a cutoff, equal to 1 near a = 0. We can rewrite the integral using an

integration by parts, which yields

, 1 .
/amﬁ”lx(a) da = 5150 /amﬁoxl(a) da = O(\J]il).
Therefore, we obtain the bound |Jv(c)|| = O(|o|~'/?). Plugging this into (7.3.31), we
conclude using Fatou’s Lemma that «(0) = 0, which contradicts our assumption that u(0) #

0. Hence, the order of the pole is N < 1, but since it is at least 1, it must be equal to 1. [
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Next, we identify the resonant states. For brevity, we will write d = d(0), 6= (0) and
0 = 0,(0).

Proposition 7.3.8. kerca?) (c?—i— 3\) is equal to the space
H = {ueC): du=0,0u=0} (7.3.32)

Proof. Given u € CE’(‘]’) with (c? + g)u = 0, we conclude that Ou = 0, and since O is sym-
metric on L%(a|dh|; H @ H), we can obtain information about u by a boundary pairing
type argument: Concretely, for a cutoff Y € C(X) as in the proof of Proposition 7.3.6,
identically 0 near Y, identically 1 outside a neighborhood of Y and a function of « in a

collar neighborhood of Y, and with y.(a) = x(a/e€), xL(a) = X' (a/€), we have

~

0=— 151(1)<X5(d5 +dd)u,u) = ll_r}(l)((éu, Ixeu) + (du, dxeu))

~ o~

= lim ([[xe/*0ul® + [Ixe/*dull®) + lim ((Su, (6, xeJu) + (du, [d, xcJu))- (7.3.33)
€E—> €e—>

Since the commutators are supported near Y, we can compute them in the basis (7.3.7).

Let us write u = €u as in (7.3.10) with o = 0, then in view of (7.3.13), we have

0 B 2a+0(?®) B lal+0(a) 0
-~ 0 0 0 0
6C, xd = ¢ Y. , 7.3.34
9%, x Xl 0 0 —B724+0(a?) ( )
0 0 0

and since therefore only the (TT) and (NT) components of [0, x.|é are non-zero, we

merely compute

(gcfﬂ)TT = —O0yurr — 057162042QTN — Ba’lajﬂNT
€ —dytirr + 28 %tury — Ba OiunT + aC™ (X even; AY),

(S%Q)NT =a Yoy unT + OMuNN € a Yoy unt + C®(X oyen; AY).

Notice here that a =19, = 20,, indeed preserves elements of C (X eyen; AY). Now in (7.3.33),
the pairing corresponding to the (1, 2)-component of (7.3.34) is of the form (7.3.29) (recall
that the volume density is a|dh| = af da|dk|) and hence vanishes in the limit e — 0, and
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we conclude that

lim (5w, [6, xeJu) = — Sy Urrly, inrly) + 282 @rn |y, dnrly)

— Bl(a taranT) v, untly) — B HoyUnT]y, inn]y),

where we use the L?(Y, |dk|; K) inner product on the right hand side; we absorbed the factor
of f from the volume density af da|dk| into the functions in the pairings.

In a similar vein, we can use (7.3.12) to compute

0 0 0 0
—~ 1 0 0
dE,x] =€ X, 7.3.36
[dE, x| Xloo o o ( )
00 —alto
and
(dETW) N = Oalipr — adylipy — a~'dy BT
S _BaildYaNT + Coo(yeven; AY)7
(cTCﬁZ)NN = —OzilaaaNT +dyunn.
Correspondingly,
lim (du, [d, xeJu) = —(dyinT|y, Grrly) + B (o Oating) |y, Gnrly)
50 (7.3.37)

— B~ Hdyunnly, unt|y),

where we again use the L?(Y,|dk|; K) inner product on the right hand side; notice with
regard to the powers of /3 that on the (T'N) and (INN) components, the fiber inner product
is f2K.

As a consequence of these computations, we conclude that the pairings in (7.3.33) stay
bounded as ¢ — 0, hence du,du € L%(a|dh|; H ® H) by Fatou’s Lemma. Looking at the
most singular terms of d€u and 06 (again using (7.3.12) and (7.3.13)), this necessitates

dyuntly =0, dyunrly =0. (7.3.38)
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Therefore, taking (7.3.35) and (7.3.37) into account, (7.3.33) simplifies to

0 = [|ou]®+[|dul®> + 87H(a " dutinT) v, Unr|y) 7330
— Bl{(ar0%unT) |y, unTly) + 2672 (UrN ]y, inTly ).

Moreover, the fourth component of the equation (c/l\ + S)‘Kﬂ = 0 yields

—(a ' atunT) |y + dytinn|y — SyUunnly =0,

which we can pair with uyr|y relative to L?(Y,|dk|; K), and then an integration by parts
together with (7.3.38) shows that the first boundary pairing in (7.3.39) vanishes. Likewise,
the first component of (d + 8¢t = 0 gives

dytrr|ly — dyturrly + 28 2urn|y — Bla”tdkunT)|ly = 0,

which we can again pair with unr|y, and in view of (7.3.38), we conclude that the second
line of (7.3.39) vanishes as well. Thus, finally, (7.3.39) implies that du =0 and éu = 0.

Conversely, every u € CE’S’) satisfying du = 0 and du = 0 trivially lies in the kernel of

~

d+ 9. O
The above proof in particular shows:

Corollary 7.3.9. Let u = €u € CE)(?) be such that dou = 0 (resp. Sdu = 0), and assume
that untly = 0, or equivalently u € L*(a|dh|). Then Su=0 (resp. du = 0). In particular,
keI‘CE)g)m[g \i‘ =HN LZ.

Proof. Suppose ddu = 0. With a cutoff function Xe as above, we obtain
1 T BT 1/2’\ 2 . < <
0= —lim(xeddu, u) = lim [[xc"“0u[” + lim(du, [§, xeJu).-
In view of (7.3.35) and unr|y = 0, the second term on the right hand side vanishes, and
we deduce du = 0. The proof that 6 du = 0 implies du = 0 is similar and uses (7.3.37). O
Corollary 7.3.10. We have ker 0 = kerd § Nker 8 d.

~ ~

Proof. If u € ker O, then (c/l\+ g)u € H, thus A(c?—i— Nu = Sdu=0and dou = 0. O
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We record another setting in which the boundary terms in the proof of Proposition 7.3.8

vanish:

Lemma 7.3.11. Suppose v € CFOO) is a solution of 5dév =0. Then dov = 0. Likewise, if

v E CF(?) s a solution of dédv = 0, then 5dv = 0.

Proof. Write w = Sv € C&j’). Then & dw = 0 implies, by the proof of Proposition 7.3.8, that
dw € L?(a|dh|; H ® H). Writing w = €w, this in particular implies dywxr|y = 0; but

writing v = v, we have
Onr = (€710CT)NT = Sy UnT + adiUNN,

as follows from (7.3.15). Restricting to Y, we thus have wyr|y = dyvUn7|y, and hence
0 = dydyonT|y. We pair this in L(Y,|dk|; K) with Uyr and integrate by parts, obtaining
dyunT|y = 0. But this implies that wyr|y = 0. By Corollary 7.3.9, this gives dw = dov =
0.

For the second part, we proceed analogously: Letting w = dv € Cfg), we have d ow = 0,

thus 0w € L2. This gives dywnr|y = 0; but by (7.3.14), wnyr|y = —dyUn7|y, therefore
dywnrly = 0 implies dyonr|ly = 0, so wyr|y = 0, which in turn gives Sw = 0 by
Corollary 7.3.9, hence Sdv=0. 0

7.3.4 Cohomological interpretation of zero resonant states

~ ~

In this section, we will always work with o = 0 and hence simply write d = d(0), 5= 0),
d=d(0), 6 = 6(0), O =0(0) and O = 0(0).
The space H defined in Proposition 7.3.8 is graded by the form degree, i.e.

H=En, (7.3.40)
k=0

where HF is the space of all u € H of pure form degree k. In the decomposition (7.3.1), this
means that up is a differential k-form on X, and uy is a differential (k — 1)-form. Likewise,

K :=kerO is graded by form degree, and we write

kercgs O=k- (7.3.41)
k=0
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We aim to relate the spaces H* and K* to certain cohomology groups associated with X.
As in the Riemannian setting, the central tool is a Hodge type decomposition adapted to d
and 0:

Lemma 7.3.12. The following Hodge type decomposition holds on X :
Co) = kercgg) O rances . (7.3.42)
Proof. We first claim that such a decomposition holds on X , i.e. we claim that
C>®(X) = ker 0 @ ran . (7.3.43)

First of all, since O is Fredholm with index 0, its range is closed, and the codimension of the
range equals the dimension of the kernel. Hence, in order to show (7.3.43), we merely need to
check that the intersection of ker 0 and ran [J is trivial. Thus, let u € ker ONran ﬁ, and write
=00 Let v= U|x. Then u € ker J means, restricting to X and using Corollary 7.3.10,
that dédov = 0 and ddddv = 0. Repeated application of Lemma 7.3.11 thus implies
Sdv =0 and dév = 0, hence 6 dv and d v are supported in X \ X. (This argument shows
the uniqueness of the decomposition (7.3.42).) Therefore U is a solution of [t = 0 which
is supported in X \ X. By unique continuation at infinity on the asymptotically de Sitter
side X \ X of X, this implies @ = 0, as claimed.

Now if u € C) is given, extend it arbitrarily to u € C>®(X), apply (7.3.43) and restrict
both summands back to X. This establishes (7.3.42). O

Remark 7.3.13. The decomposition (7.3.42) does not hold if we replace O in (7.3.42) by
d+3. Indeed, if it did hold, this would say that Cu =0 implies (c/l\—i— g)u = 0, since (34— g)u
lies both in ker(d + 8) and ran(d + ) in this case. Since certainly (d + 6)u = 0 conversely
implies Ou = 0, this would mean that ker 0 = ker(cj + g) Now by Lemmas 7.2.1 and
7.2.2, this in turn would give ker O = ker(&v + g) Now since O] and d + & are Fredholm
with index 0, we could further deduce ker (* = ker(giv + N)*, where the adjoints act on the
space (f_"o()? ) of supported distributions at the (artificial) Cauchy hypersurface X, see
[64, Appendix B]. Since we have ker(J + g)* C ker [J* unconditionally, we can show the
absurdity of this last equality by exhibiting an element u in ker [J* which does not lie in
ker(g + ~)*. This however is easy: Just let u = 1x be the characteristic function of X.

Then from (7.3.14) and (7.3.15), we see that (d + 6)u = du is a non-zero delta distribution
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supported at Y which is annihilated by 5.

This argument shows that we always have ker O 2 ker(c? + A). It is possible though that
HF = KF for some form degrees k (but this must fail for some value of k). For instance,
this holds for £k = 0 by Corollary 7.3.9. We will give a more general statement below, see
in particular Remark 7.3.18.

We now define a complex whose cohomology we will relate to the spaces H* and K*: The
space Cg) N L%(aldh|) of smooth forms u = €% with uy7|y = 0 has a grading corresponding

to form degrees, thus

D :=Cfy) N L*(aldh|) = EH D",
k=0

Since in the above notation u € L?(aldh|) (and thus uyr|y = 0) is equivalent to uyr €

a?C® (X oven; AY) near Y, one can easily check using (7.3.14) that d acts on Co) NL%(aldh|).

We can then define the complex
0D 4pl . L,
We denote its cohomology by
M, 4p = ker(d: DF — D*H) /ran(d: DF! — D). (7.3.44)

There is a natural map from Hlfﬂ, 4R nto HE:
Lemma 7.3.14. Every cohomology class [u] € HIEQ ar has a unique representative u' € HF,
and the map i: [u] — v’ is injective.

Proof. Let [u] € HEQ 4r hence du=0 and, writing u = €u, unr|y = 0. We first show the
existence of a representative, i.e. an element u — dv with v € D, which is annihilated by 5.
(Since it is clearly annihilated by c?, this means u — dv € #H*.) That is, we need to solve the

equation 8 dv = du with v € D. To achieve this, we use Lemma 7.3.12 to write

A~ o~

u=1u + (d5+3\d)u2, uy € ker CJ.

By our assumption on w and Corollary 7.3.10, v and u; are annihilated by gcz giving
gc?gc?ug = 0. By Lemma 7.3.11, this implies 8\&\“2 = 0, hence

u = uy + dous. (7.3.45)
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Applying do. , we obtain
dddous = dou € L2 (7.3.46)

Now writing us = %ug, and noting that for any w = Cw € C&‘)’), (%flg%ﬁ)NT\y =
—dywnrly as well as (€710 W)nrly = dywnrly by (7.3.14) and (7.3.15), the (NT)
component of €~ times equation (7.3.46) reads dydydydyts nr|y = 0, which yields
dyus nT|y = 0. As a consequence of this, v := qu € L? and therefore Jgug € L?. Hence
(7.3.45) gives u; € L?; by Corollary 7.3.9 then, u; € H, in particular u; is annihilated by
5. Therefore, applying 5 to (7.3.45) yields g(u — c/l\v) =0, as desired.

Next, we show that the representative is unique: Thus, suppose u — c/l\vl, U — cjvg c HF
with u,v1,v2 € D, then with v = v; — vo € D, we have dv € HF, thus Sdv = 0, and by
Corollary 7.3.9, we obtain dv = 0. Therefore, u — c?vl =u— ng, establishing uniqueness,
which in particular shows that the map ¢ is well-defined.

Finally, we show the injectivity of i: Suppose u € D satisfies du = 0. There exists an
element v € D such that u— dv € H*. Now if ilu] = 0, this precisely means that u — dv = 0;
but then [u] = [c?v] =0in 7—[’227dR. O

From the definition of the space D, it is clear that u € H* lies in the image of i if and

only if u € L?, i.e. if and only if 7(u) = 0, where r is the map
r:C) = C(Y;AY),  u=%Cur unrly. (7.3.47)

Thus, r extracts the singular part of u and thereby measures the failure of a given form
u € CE’(‘]’) to lie in D. Observe that if u = €u € H¥, then dyunr|y = 0 and Sy unr|y = 0, i.e.
r(u) is a harmonic form on Y. Since the space ker(Ay ;_1) of harmonic forms on the closed
manifold Y is isomorphic to the cohomology group H*~1(Y") by standard Hodge theory, we

thus obtain:

Proposition 7.3.15. The sequence
0= HE, g = HE D HFL(Y) (7.3.48)

is exact. Here, i is the map defined in Lemma 7.3.14, and r is the restriction map (7.3.47)
(composed with the identification ker(Ay 1) = H*1(Y)). Moreover, the map i: leg,dR —

HE 0D is an isomorphism with inverse H¥ N D 5> u — [u] € HE, .
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Proof. We only need to check the last claim. If u € H*ND, then [u] does define a cohomology
class in HEQ’ gr» and i([u]) is the unique representative of [u] which lies in H*. Since u itself
is such a representative, we must have i([u]) = u. For the converse, we note that for any

[u] € ,Hi?,dR we have i([u]) = u — dv for some v € D, hence [i([u])] = [u — dv] = [u]. O

We can make a stronger statement: If we merely have u € ker ﬁ, then the proof of

Proposition 7.3.8 shows that du,du € L2, hence r(u) is harmonic.

Proposition 7.3.16. We have a short exact sequence
0 — Hha g = KF 5 HFH(Y) — 0, (7.3.49)

where the first map is i defined in Lemma 7.3.1} (composed with the inclusion HF — KF),

and the second map is the restriction r, defined in (7.3.47) (composed with the identification
ker(Ayvk_l) = Hk_l(Y))

Proof. The second map is well-defined by the comment preceding the statement of the
proposition. Since the range of HIZQ7 gr In KCF consists of L? forms, we have r o7 = 0.
Moreover, if u € kerr, then u is an L? element of ker (J, thus u € H* by Corollary 7.3.9.
By the remark following the proof of Lemma 7.3.14, therefore u € ran:.

It remains to show the surjectivity of r: Thus, let w € ker(Ay;_1), and let v’ = €’ €
C(5) be any extension of w, i.e. Wyrly = w. Then ((f—k g)u’ € D, since its (NT') component
vanishes, and thus (v’ € D. Writing v’ = uj + Ouy with u; € ker[J, we conclude that
T/ = ﬁzug; taking the (NT') component of this equation gives 0 = A%,ﬁz ~NTly (where we
write ug = €U as usual), hence dyus 7|y = 0 and dyug y7|y = 0. But then ﬁuQ e L2
Therefore, w = r(u') = r(u; + Oug) = r(uy). Since the degree k part of u; lies in KF by

the definition of u1, we are done. O

Remark 7.3.17. Remark 7.3.13, which states that H* C K* for some values of k, implies in
particular that the last map of (7.3.48) is not always onto.

Remark 7.3.18. Since dimY = n — 2, we have H*"1(Y) = 0 for k = 0 and k = n. Hence,

for these extreme values of k, Propositions 7.3.15 and 7.3.16 show H* = ICF = ’H% are and
this holds more generally for all k for which H*~1(Y) = 0.

The spaces H]ZQ qr are related to standard cohomology groups associated with the mani-

fold with boundary X: First, notice that elements of the space D = CE’S) NL? are not subject
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to any matching condition on singular terms, simply because the singular term (un7|y in
the notation used above) vanishes. This means that we can split D into tangential and
normal forms, D = Dp & Dy, thereby identifying elements (up,uy) € Dy @& Dy with
ur + adt Auy € D, where Dy consists of all up € C°°(X; AX) which are of the form

urT
ur = , urr,uryN € C®(Xeven; AY),
QuUTN

near Y. Thus, elements ur € Dr are forms of the type ur = uprr + da A aury = urr +
%du Aury with upr, ury smooth AY-valued forms on Xeven; hence, we simply have Dy =
C*®(X even; AX even). Likewise, Dy consists of all uy € C*°(X; AX) which are of the form

QuUNT -
Uy = , unT,uNN € C(Xeven; AY),
UNN

near Y. Thus, elements uy € Dr are forms of the type auy = uuNT+%dMAuNN; therefore,
oDy = CF(Xeven; AXeven) = {u € C®(Xeven; AXeven): j*u = 0}, where j: 0Xoven —
X even is the inclusion.

Since the differential d on D acts as dx ® (—a~'dxa) on Dy @ Dy, the cohomology of
the complex (D, c/l\) in degree k is the direct sum of the cohomology of (Dp,dx) in degree k
and of (aDy,dx) in degree (k — 1). Since we identified Dz as simply the space of smooth
forms on Xeven, the cohomology of (Dr,dx) in degree k equals the absolute cohomology
H*(X eyen) = H¥(X). (Here, we use that Xeyen is diffeomorphic to X, with diffeomorphism
given by gluing the map a2 + a near Y to the identity map away from Y.) Moreover, since
Dy is the space of smooth forms on X even which vanish at the boundary in the precise sense
described above, the cohomology of (aDy,dx) in degree k equals the relative cohomology

H*(X even; 0X even) = H¥(X;0X) (see e.g. [108, §5.9]). In summary:

Proposition 7.3.19. With ’HEQ qr defined in (7.3.44), there is a canonical isomorphism

Hiaqr = HY(X) @ H* (X, 0X). (7.3.50)

Let us summarize the results obtained in the previous sections:

Theorem 7.3.20. The only resonance of d+ 6§ in Imo > 0 is 0 = 0, and 0 is a simple
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resonance. Zero resonant states of the extended operator (d+ 6 on JTJ/) are uniquely de-
termined by their restriction to X, and the space H of these resonant states on X is equal
to kel“c&% d(0)n kercfg) 5(0). Also, resonant states on X are elements of ker d(0) M ker 6(0).

Using the grading H = @ _, HE of H by form degrees, there is a canonical exact sequence
0— H*X)o H" 1(X,0X) — H* - H1(0X), (7.3.51)

where the first map is the composition of the isomorphism (7.3.50) with the map i defined
in Lemma 7.3.1/, and the second map is the composition of the map r defined in (7.3.47)
with the isomorphism ker(Ayx ;) = HM1(0X).

Furthermore, the only resonance of Uy in Imo > 0 is o = 0. Elements of ker E(O),
which are the zero resonant states of the extended operator (O, on M} if the zero resonance
is simple, are uniquely determined by their restriction to X. The space K = @j_, KF CE’S)
of these resonant states on X, graded by form degree, satisfying KC¥ D H*, fits into the short

exact sequence
0— HYX)o HY(X,0X) —» K* - HF1(0X) — 0, (7.3.52)
with maps as above. We moreover have
KFNL? =HNL? =~ HYX)® H (X, 0X)

where L? = L*(X, a|dh|; H® H). More precisely then, the summand H*(X) in (7.3.51) and
(7.3.52) corresponds to the tangential components (in the decomposition (7.3.1)) of elements
of H* N L2, and the summand H*='(X,0X) to the normal components.

Lastly, the Hodge star operator on M induces isomorphisms H* = Hk and KR S
Krk k=0,...,n.

Proof. We prove the statement about resonant states for d + J on the extended space M:
Thus, if & € ker(d(0) + 6(0)), then the restriction of @ to X lies in ker d(0) N ker 6(0),
therefore d(0)d = —4&(0)a is supported in X \ X; but then 0)(0)(d(0)%) = d(0)5(0)d(0)a = 0
and the asymptotically de Sitter nature of X \ X implies d(0)a = 0, hence also 6(0)a = 0,
as claimed.

The only remaining part of the statement that has not yet been proved is the last:

Viewing v € H* as a t-independent k-form on M = R; x X (with the metric (7.1.1)), we
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have (d + 6)u = 0, and for any ¢-independent k-form w on M, we have that (d + §)u = 0
implies v € H*, where we view the t-independent form as a form on X valued in the form
bundle of M, as explained in §7.2. Then u € H* is equivalent to du = 0, du = 0, which in
turn is equivalent to &(xu) = 0, d(»u) = 0, and thus *u € H"~*. The proof for the spaces

K is the same and uses 0 = Ox. O

This in particular proves Theorem 7.1.3.

7.4 Results for static de Sitter and Schwarzschild-de Sitter

spacetimes

We now supplement the results obtained in the previous section by high energy estimates
for the inverse normal operator family from Chapter 6 and deduce expansions and decay for
solutions to Maxwell’s equations as well as for more general linear waves on de Sitter and
Schwarzschild-de Sitter backgrounds. The rather detailed description of asymptotics in the
Schwarzschild-de Sitter setting will be essential in our discussion of Kerr-de Sitter space in
§7.5.

7.4.1 de Sitter space

We recall from §2.2 that de Sitter space is the hyperboloid {27 + --- + 22 — Z%H =1}
in (n + 1)-dimensional Minkowski space, equipped with the induced Lorentzian metric.
Introducing a boundary defining function 7 = z;il of future infinity, and adding the 7 = 0
to the spacetime, we obtain the bordified space N = [0,1),; x Z with Z = S"~!, modifying
7 slightly, the metric has the form

go :7-_2§7 gZdTQ—hO(T,l',dx),

with h0 even in 7, i.e. h? is a metric on Z which depends smoothly on 72; this is of course in
particular an example of an even asymptotically de Sitter-like space, see §2.2.2. Thus, Y is
a 0-metric in the sense of Mazzeo and Melrose [81]. Fixing a point p at future infinity, the
static model of de Sitter space, which we denote by M here, consistent with the notation
in this chapter (see however Remark 7.1.2), is the interior of the backward light cone from

p. We introduce static coordinates on M, denoted (¢,z) € R x X, where X = B; ¢ R*!
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is the open unit ball in R*~! and « € R*! are the standard coordinates on R"~!, with
respect to which the induced metric on M is given by
g=a2dt? —h, a=(1-lz*)"?

h = da® + (z-dz)? = a2 dr? + 1% dw?,

1—|af?

using polar coordinates (r,w) on R?~! near 7 = 1, and denoting the round metric on the
unit sphere S*~2 by dw?. We compactify X to the closed unit ball Xewen = B; C R* 1,
and denote by X the space which is Xeven topologically, but with o added to the smooth
structure. In order to see that the metric g fits into the framework of Theorem 7.3.20, note
that dr = —ar~!da, so

h=r"2do?® + r? dw?,

and 7 = (1 — a?)'/2, thus h is an even metric on the space X and has the form (7.1.2) with

B = 1. Using Theorem 7.3.20, we can now easily compute the spaces of resonances:

Theorem 7.4.1. On an n-dimensional static de Sitter spacetime, n > 4, the spaces of

resonances of Ll and d + 9 are
KO=H0= (1), K'=H"={""2dtA\drAw),
where w denotes the volume form on the round sphere S"2. Furthermore,

K'=(—a%rdr+atdt),H' =0, K" !'=(x(—a 2rdr+atdt)),H" ! =0,
KF=HF=0 k=2,....,n—2.

In particular, on 4-dimensional static de Sitter space, if u is a solution of (d+ §)u = 0 with
smooth initial data, then the degree 0 component of u decays exponentially to a constant, the
degree 1,2 and 3 components decay exponentially to 0, and the degree 4 component decays
exponentially to a constant multiple of the volume form. Analogous statements hold on any

n-dimensional static de Sitter space, n > 5.

>~

Proof. We compute the cohomological data that appear in (7.3.51) and (7.3.52) using X
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By and 0X 2 S" 2

dim H*1(0X) =

1, k=1n-1
. b/~ A
dim H*(X) =
0, 1<k<n,
] RS , 0<k<n-1
dim H*(X,0X) =
1, k=n

Thus, we immediately deduce

dimK? =dimK' = dim K" ' =dimK" =1, dimKF=0, 2<k<n-2,
dmH’ =dimH" =1, dimH' =0, 2<k<n-2.

Now, since d 4 ¢ annihilates constants, we find 1 € K = H® and x1 € K" = H", which in
view of the 1-dimensionality of these spaces already concludes their computation.

In order to compute K!, notice that we have K! = HY(0X) from (7.3.52), thus an
element « spanning ! has non-trivial singular components at & = 0. One is led to the
guess u = o Lda+ o~ tdt = —a"%rdr + o~ dt, which is indeed annihilated by [J; we will
give full details for this computation in the next section when discussing Schwarzschild-
de Sitter spacetimes, which in the case of vanishing black hole mass are static de Sitter
spacetimes, with a point removed, see in particular the calculations following (7.4.9); but
since u as defined above is smooth at r = 0, we obtain u = 0 at r = 0 as well by
continuity. Since K! is 1-dimensional, we therefore deduce K! = (u). One can then check
that (d + 6)u # 0, and this implies H' = 0. The corresponding statements for X"~ ! and
H"~! are immediate consequences of this and the fact that the Hodge star operator induces
isomorphisms H! = H" ! and K! = K1,

The high energy estimates for d + § required to deduce asymptotic expansions for solu-
tions of (d 4 d)u = 0 follow from those of its square [J, which is principally scalar and fits
directly into the framework described in [114, §2-4]. Thus, a contour deformation argument

as in the proof of Theorem 5.2.3 finishes the proof. O

By studying the space of dual resonant states of d + §, one can in fact easily show that
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the O-resonance of [J is simple and thus deduce exponential decay of smooth solutions to
Ou = 0 to an element of CF in all form degrees k = 0,...,n. We give details in the next
section on Schwarzschild-de Sitter space.

In the present de Sitter setting, one can deduce asymptotics very easily in a different
manner using the global de Sitter space picture, by analyzing indicial operators in the 0-
calculus: Concretely, we write differential k-forms (by which we mean smooth sections of

the k-th exterior power of the 0-cotangent bundle of N) as

k k

d
u="T1 "ur+ e un, (7.4.1)
T

where up and uy are smooth forms on Z of form degrees k and (k — 1), respectively. One

readily computes the differential dj acting on k-forms to be

Tdy 0
dp = .
—k‘—|—7'87— —TdZ

Furthermore, by the choice of basis in (7.4.1), the inner product on k-forms induced by g°

0 (-1)*HY 0
¢ _< 0 <1>’f—1H,81>'

Using that the volume density is |dg®| = 77" dr|dh®|, we compute the codifferential &

is given by

acting on k-forms to be

O A e e I R RN I C)
k= 0 0y B 0 oz |

where 97 is the L?(N, |dg|)-adjoint (suppressing the bundles in the notation) of 9, and we
use the even-ness of ¢° in the second step to deduce 9} = —4, + Ocoo(n) (7). Therefore, the
indicial roots of d + § on the degree k-part of the form bundle are k and n — k.

Next, for 0 < k < n, we compute the Hodge d’Alembertian, dealing with the cases
k =0 and k = n simultaneously with 1 < k < n — 1 by implicitly assuming that for k = 0,
only the (1,1)-part of this operator is present, acting on 0-forms, and for k£ = n, only the

(2,2)-part is present, acting on n-forms:

Ok = dik—10 + O 1dk
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—71dz707 — TOz7dy — Py Tdy
—7dy4 —7dz707 — Toz7d7 — Pr_1

) + Opig (7)
where P, = (70,)% — (n — 1)70; + k(n — k — 1). Thus, the indicial polynomial of (J, is

(= (n—-1)s+k(n—k—1) 0
I(Oy)(s) = ( 0 &~ (n—1)s+ (k- 1)(n—k)> '

On tangential forms, the indicial roots of [y are therefore k,n—1—k, and on normal forms,

they are k — 1,n — k. We thus have:

form degree 0 1 2<k<n—-2|n-1 n

tgt. ind. roots Oon—1|1n—-2kn—-1-k O,n—11| —

norm. ind. roots | — Oon—1|k—-1n—k 1,n—2]0,n—-1

Hence in particular, all roots are > 0, and 0 is never a double root. Thus, the arguments
of [111] (which are in the scalar setting, but work in the current setting as well with only
minor modifications) show that solutions u to the wave equation on differential k-forms on
N with smooth initial data at 7 = 79 > 0 decay exponentially (in —log ) if 0 is not an
indicial root, and decay to a stationary state if 0 is an indicial root. (Of course, since we
know all indicial roots, we could be much more precise in describing the asymptotics, but
we only focus on the 0-resonance here.) Explicitly, scalar waves decay to a smooth function
on Z, 1-form waves decay to an element of dT—TCOO(Z ), k-form waves decay exponentially to
0 for 2 <k <n—2, (n— 1)-form waves decay to an element of C*°(Z; A"~!Z), and n-form
waves finally decay to an element of dT—T AC®(Z; A1 27).

Since the static model of de Sitter space arises by blowing up a point p at future infinity
of compactified de Sitter space and considering the backward light cone from p, we can
find the resonant states for the static model by simply finding the space of restrictions to
p of the asymptotic states described above; but since the fibers of A°(Z) and A"~1(Z) are
1-dimensional, hence we have reproved Theorem 7.4.1.

We point out that if one wants to analyze differential form-valued waves or solutions
to Maxwell’s equations on Schwarzschild-de Sitter space, there is no global picture (in the
sense of a O-differential problem) as in the de Sitter case. Thus, the direct approach outlined
in the proof of Theorem 7.4.1 is the only possible one in this case, and it is very instructive
as it shows even more clearly how the cohomological interpretation of the space of zero

resonant states can be used very effectively.
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7.4.2 Schwarzschild-de Sitter space

The computation of resonant states for Schwarzschild-de Sitter spacetimes of any dimension
is no more difficult than the computation in 4 dimensions, thus we directly treat the general
case of n > 4 spacetime dimensions. Recall from §2.3 that the metric of n-dimensional

Schwarzschild-de Sitter space M = R; x X, X = (r_,7,), x S’2, is given by

g=pdt? — (utdr? +r? dw?),

2Me 2 _ 2A
s A A= Gy

where the black hole mass M, and the cosmological constant A are positive. We assume the

where dw? is the round metric on the sphere S*2, and =1 —

non-degeneracy condition (2.3.2), which guarantees that p has two unique positive roots
O<r. < Ty
As in §2.3, we define a = p!/2, thus da = %//ofl dr, and
2

—F—2 >0,
Pe =T 06D

then the metric g can be written as
g=a’dt? —h, h=pB2da’®+r?dw?

where B’i = F2/4/(r). Thus, if we let Xeyen = [r—, 74 x SP~2 with the standard smooth
structure, then Bi = B+ modulo a?C*®(X even), Where we note that r is a smooth function
of p, thus an even function of o, near r = r+ in view of p/(r+) # 0. The manifold X is
X even topologically, but with smooth functions of o = u'/? added to the smooth structure.
We denote Y = 90X = S" 2 S 2,
By the analysis in §7.2, all zero resonant states u, written in the form (7.3.7) near Y,
0o

lie in the space C(o)v defined in (7.3.9). In the current setting, it is more natural to write

differential forms as
w=upr + o tdr Nupy + adt Aunt + adt Aot dr Auny, (7.4.2)

since a1 dr has squared norm —1 (with respect to the metric g). We compute how the
matching condition on the singular terms of u, encoded in the B+a~! entry of the matrix €,

changes when we thus change the basis of the form bundle: Namely, we have 1o~ ' da =
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(F1 + a?C%°(Xeven) ) a1t dr; thus, for u written as in (7.4.2), we have

urrt C* (Yeven; ASn_Q)
C™®(X even; AS" 2
ueCqy e (76 ¢ )
UNT COO(Xeven; ASTL_Q)
UNN C™ (yevem ASH_Q)
near r = r4, where
1 0 0 0
0 -1
g = ¢ T (7.4.3)
00 ot 0
0 0 0 1

We now proceed to compute the explicit form of the operators d,,d, and [J,, where the
subscript p indicates the form degree on which the operators act. First, we recall (7.3.2)
and (7.3.4) in the form

Q= dxp 0 5 — —a_15X7pa —a~ 1o,
a1y, —a_ldx,p_la ’ 0 0x p—1 ’

and these operators act on forms u = up + adt A uy, with up and uy differential forms on

X. Writing forms on X as v = vy + o~ " dr A vy, we have

dgn- 0
dx,p = ( St ) . (7.4.4)

O[ar _dSn—27p_1

In order to compute the codifferential, we observe that the volume density on X induced by

h is given by a~'7"~2 dr|dw|, while the induced inner product on the fibers on the bundle

T_Qpr 0
H =
0 7,72(p71)Qp_1 ,

where €, is the fiber inner product on the p-form bundle on S"—2. Therefore,

5X _ T_25Sn727p T*,pfl
” 0 2052y ) (7.4.5)

—ar~(1=2)2(0-1) g . —2(p=1)n—2,

of p-forms is

* R
rp—1 —
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We obtain:

Lemma 7.4.2. In the bundle decomposition (7.4.2), we have

dsn—2 ), 0 0 0
0 —dgn—2 ,_ 0 0
dy=| s 2p-1 (7.4.6)
a9, 0 —dgn—2 1 0
0 Ol_lat 767-01 dS”_Q,p72
and
—T_Q(;Sn—27p —O[_la:’p_la _Oé_lat 0
0 r26gn-2,_ 0 —a~ 1o,
5, = sn2p—1 ! (7.4.7)
0 0 r‘25gn_z7p_1 0y p2
0 0 0 —1r " 20gn-2, o
Moreover,
Ay —2ard,—1 0 0
20— —2ar~16, Ap_q —r2u o 0
g 0 —r2u~ ' o, Ap_q —2ardy—9
0 0 —2ar_15p_1 Ap_o
7"2(1*18:@042& 0 0 0
0 2a0,a710r 0 0
n Ao Grp1® (7.4.8)
0 0 r20r, 1 0rcx 0
0 0 0 20,0, o
r2u_18tt 0 0 0
0 r2u1o 0 0
I KOt L
0 U Ot 0
0 0 0 r2u 10y

We can now compute the spaces K and H of zero resonances for [1 and d+ 9 and deduce

asymptotics for solutions of (d 4 §)u = 0:

Theorem 7.4.3. On an n-dimensional Schwarzschild-de Sitter spacetime, n > 4, there exist

two linearly independent 1-forms uy = fli(r),u_l dr+ fo+(r)dt € K! = ker ﬁl C CE’(?), and
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we then have:
KO=H0= (1), K'=H"={""2dtA\drAw),

where w denotes the volume form on the round sphere S"2. Furthermore,

K= (upus), M =0, K = (g, ), K =0,
KF=#F=0, k=3,...,n-3

Forn =4,
K? = H? = (w,r~2dt Adr),

while for n > 4,

K2=*= (Dt ndr), K2=H"?=(w).
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In particular, on 4-dimensional Schwarzschild-de Sitter space, if u is a solution of (d +

d)u = 0 with smooth initial data, then the degree O component of u decays exponentially

to a constant, the degree 1 and degree 3 components decay exponentially to 0, the degree 2

component decays exponentially to a linear combination of w and r=2 dt Adr, and the degree

4 component decays exponentially to a constant multiple of the volume form. Analogous

statements hold on any n-dimensional Schwarzschild-de Sitter space, n > 5.

The forms uy in fact have a simple explicit form, see (7.4.9) and the p