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Abstract. We propose a new general algorithm for constructing interpolation weights in al-
gebraic multigrid (AMG). It exploits a proper extension mapping outside a neighborhood about a
fine degree of freedom (dof) to be interpolated. The extension mapping provides boundary values
(based on the coarse dofs used to perform the interpolation) at the boundary of the neighborhood.
The interpolation value is then obtained by matrix dependent harmonic extension of the boundary
values into the interior of the neighborhood.

We describe the method, present examples of useful extension operators, provide a two-grid anal-
ysis of model problems, and, by way of numerical experiments, demonstrate the successful application
of the method to discretized elliptic problems.
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1. Introduction. The classical algebraic multigrid (AMG) algorithm [2, 3, 9]
was developed for operators represented by symmetric, positive definite M-matrices.
While the algorithm works well for many real-world problems [10, 6, 11], there are
situations in which it does not perform particularly well. One reason for this is that in
some instances the classical definition of interpolation does not adequately interpolate
the smooth modes of the error. More specifically, standard AMG interpolation makes
certain assumptions about the nature of the smooth error which may not be valid for
operators that are not M-matrices. A more sophisticated characterization of smooth
error is required to develop an adequate interpolation formula.

To provide a better characterization of smooth error, a method known as AMGe,
for element-based algebraic multigrid, was developed recently [4] for finite element
discretizations. AMGe provides an accurate interpolation formula by using the in-
dividual element stiffness matrices to construct a neighborhood matrix for each fine
degree of freedom (dof). The neighborhood matrix—the sum of the individual stiffness
matrices for all the elements containing the point at which the dof is defined—acts
as a local “Neumann”-type version of the original operator. According to AMGe the-
ory, once the local matrix is developed and coarse-grid points are chosen, solving a
simple minimization problem yields the optimal interpolation operator for each dof.
It is shown in [4] that the method indeed produces superior interpolation and leads
to improved convergence rates on several types of problems, including both scalar
problems and systems of PDEs, such as elasticity problems.

An obvious drawback to AMGe, naturally, is that it requires that the element
stiffness matrices be available. While this is often the case, their storage can be
expensive. Further, AMGe requires that coarse level elements be constructed and
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their individual stiffness matrices be available. Determining the coarse elements is a
difficult and laborious task.

In this paper we examine the construction of the interpolation operator in both
classical AMG and AMGe and present them within a common framework. Our pur-
pose is to extend and generalize the classical interpolation, which was originally mo-
tivated for M-matrices, to develop a rule applicable in more general settings. Ac-
cordingly, we propose a new method for determining the interpolation weights that
attempts to capture the benefits of AMGe interpolation without requiring access to
the individual element stiffness matrices. This method is applicable to finite difference,
finite element, or finite volume discretizations, and we concentrate on the symmetric
positive definite case. Essentially, it seeks to determine, for each fine dof, a neighbor-
hood matrix that can be utilized in the same manner that the local assembled stiffness
matrix is used in AMGe. We do this by defining a neighborhood for the fine dof and
examining the rows of the original matrix that correspond to the points in that neigh-
borhood. A set of exterior dofs is defined and a mapping developed that extends
functions on the neighborhood to the exterior dofs. This essentially imposes a set of
boundary conditions on the neighborhood. Here we propose a unified way of building
these boundary conditions. One may view them as an extension (extrapolation) of a
vector defined on the neighborhood to its immediate exterior. This extension can be
performed using constant vectors or any other vectors that may be of interest (such
as the rigid body motions in elasticity problems). The extension can be built for each
dof in the exterior based on the matrix sparsity pattern.

By incorporating the action of the extension operator into the local connections
of the neighborhood, a modified local matrix is created. This matrix is then used in a
manner similar to that employed in AMGe, that is, by solving a minimization problem,
to create the interpolation operator. We consider the construction of the extension
operator and the respective minimization procedure to build the interpolation weights
as our main contribution. We give examples of several extension operators and show
how they relate to both classical AMG and other, more recently proposed algorithms.
A two-grid model analysis of the properties of the resulting interpolation mappings is
provided as well. In particular, we prove that they exhibit approximately “harmonic”
properties as well as “partition of unity” properties, desirable in standard two-grid
analyses of the AMG methods.

Numerical results are presented to demonstrate the method. We include both
scalar problems and systems of PDEs in the form of elasticity problems. Finally, we
draw some conclusions and comment on the direction that continued research will
take.

It is important to note that while the choice of coarse-grid points, like the con-
struction of the interpolation operator, is crucial to the success of the AMG method,
we do not consider the coarse-grid selection here; rather, we leave that topic to future
research while focusing on the interpolation problem here. Furthermore, we observe
that neither AMGe nor the method proposed here are intended to replace or com-
pete with classical AMG on problems characterized by simple M-matrices, such as
the model Laplacian problem on a regular grid. Instead, they are intended for com-
plicated problems, such as thin-body elasticity, posed typically on unstructured grids.
Nonetheless, we apply the new method (and AMGe) to model problems because they
illustrate, in simple fashion, the features of the methods. We therefore compare re-
sults of our method with AMGe on these problems but do not include comparisons
to classical AMG, which would be used in practice.
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Some notational conventions follow: to denote a vector we will use boldface, e.g.,
v,w, . . . . The ith component of v will be denoted in different contexts as v(i), v(i),
or vi. In the latter two cases v (i.e., not in boldface) will have a meaning of a “grid”
function.

2. A framework for AMG interpolation. Assume that the problem Ax = f
is to be solved, where A is a sparse, symmetric, positive definite matrix. AMG is
a multigrid method in which no geometric grid information is used (and often isn’t
available or doesn’t even exist). Accordingly, all of the components of a multigrid
algorithm, the hierarchy of grids, interpolation and restriction operators, and the
coarse-grid versions of the original operator must be constructed using only the in-
formation contained in the entries of A. For any multigrid algorithm, several basic
components are required. In the case of AMG, they can be described as follows:

• A fine grid is required. For AMG, this is generally a set D comprising the
degrees of freedom of the original problem.
• A coarse grid Dc is necessary. This set of dofs is typically a subset of D.
• An interpolation operator P is necessary to map vector functions defined on
the coarse grid Dc to the fine grid D, P : Dc −→ D.
• A restriction operatorR : D −→ Dc, mapping fine-grid functions to the coarse
grid, is needed. For AMG the restriction is frequently defined by R = PT ,
and we will use that definition here.
• A coarse-grid version of the original operator A is needed. For AMG the
coarse operators are generally defined by the Galerkin relation Ac = PTAP .
• A smoothing iteration, G, is used. It is typical to use a point-relaxation
method such as Gauss–Seidel or Jacobi relaxation.

The basic two-grid algorithm can then be described as follows: Begin with an
initial approximation x0 to the solution of Ax = f .

1. Smooth the error by x0 ← G(A, f ,x0).
2. Compute the residual r = f −Ax0.
3. Restrict the residual to the coarse grid fc = Rr.
4. Solve the coarse-grid residual equation ec = A−1

c fc.
5. Interpolate the coarse-grid error to the fine grid and correct the fine-grid

approximation x0 ← x0 + Pec.

For a multigrid method, a hierarchy of coarse grids D ≡ D0 ⊃ D1 ⊃ D2 ⊃ · · · ⊃
DJ is present, and the two-grid algorithm is applied recursively, i.e., the two-grid
algorithm is repeated each time step 4 is encountered, except that a direct solve is
employed at the coarsest grid.

For the multigrid method an interpolation operator Pi is required mapping func-
tions on each grid (level i) to the next finer grid (level i−1). Unlike many conventional
(geometric) multigrid algorithms, in AMG the interpolation operators are rarely the
same for different levels. Similarly, the Galerkin relation is employed to define versions
of the original operator A on all levels, thusly: Ai+1 ≡ RiAiPi.

There are many ways in which to select the coarse-grid dofs in AMG [9, 11, 5].
Commonly, the coarse set Dc is a maximally independent subset of D, but this is not
required. We will not discuss the question of coarse-grid selection further, except to
note that each fine-grid dof i is connected to its nearest neighbors (e.g., j) by way of
having a nonzero coefficient aij , and that the value of a interpolated function at i is
typically a weighted average of the values of its nearest neighbors that are coarse-grid
dofs. For the remainder of this paper, we shall simply assume that a coarse grid has
been selected and that the coarse neighbors are known for any fine dof.
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With this description of the basic components of AMG, we can describe a simple
framework for computing the entries of the interpolation operator. Let i ∈ D be a
fine-grid dof whose value is to be interpolated. We first define a subset Ω(i) ⊂ D to
be the neighborhood of i. For now we place no particular restrictions on what dofs
can be in Ω(i). For example, the set Ω(i) could consist of i and all of its nearest
neighbors, or i and its nearest coarse neighbors, or i, its neighbors, and all of their
neighbors. Indeed, within the framework we describe here, the exact character of the
interpolation operator will depend largely on what sort of neighborhood is defined.
Since the value at i will be interpolated from coarse points in the neighborhood, it is
useful to denote the set of coarse dofs in the neighborhood to be Ωc(i).

To construct the interpolation for i, we examine the entries of the operator A in
the following way. We begin, without loss of generality, by permuting the rows and
columns of A and partitioning it so the first set of rows and columns corresponds to
i and the fine dofs in the neighborhood, that is, to Ω(i)\Ωc(i). The next set of rows
and columns corresponds to the coarse neighbors Ωc(i), while the final set of rows
and columns corresponds to the rest of the grid D\Ω(i). Hence the partitioning of A,
along with the identity of the rows corresponding to the partitions, appears as

A =

 Aff Afc ∗
∗ ∗ ∗
∗ ∗ ∗

 } Ω(i)\Ωc(i),
} Ωc(i),
} D\Ω(i).

For our purposes we are concerned only with two blocks of the partitioned matrix.
The block Aff gives the connections among i and the fine-grid neighbors while the
block Afc links i and the fine neighbors to the coarse neighbors.

Armed with these concepts of neighborhood partitioning of the operator, we can
examine classical AMG, AMGe, and our proposed method in terms of choices of
neighborhood and definition of the neighborhood matrices.

3. Interpolation in classical AMG. For classical AMG [9], the interpolation
is computed in the following fashion. The neighborhood Ω(i) is defined to be the dof
i and all dofs connected to it (all j for which aij = 0). We then replace both Aff and

Afc with modified versions, Âff and Âfc, respectively.

Aff is modified in two ways. Let Si denote the set of dofs that are strongly
connected to the dof i, let Ci denote the set of C-points in the neighborhood Ω(i), and
let Wi denote the dofs that are weakly connected to the dof i. (By strongly (weakly)
connected we mean that the magnitude of aij is greater (smaller) than some pre-
defined threshold. A common choice is that if the magnitude of aij is less than θ times
the largest magnitude of all off-diagonal entries in the ith row, then j is considered to
be weakly connected to i.) Then we modify the row of Aff corresponding to the dof
i (which we will hereafter refer to as the ith row, regardless of the actual numerical
ordering) by

âii = aii +
∑
j∈Wi

aij ,(3.1)

âi,j =

{
0, j ∈Wi,
ai,j , j ∈ Si.(3.2)
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For j ∈ Wi we replace the jth row of Aff by a zero row and then place a 1 in
column j and −1 in column i. For all other rows of Aff , i.e., for j ∈ Si, we zero out
the off-diagonal entries, and replace the diagonal entry ajj with

âjj = −
∑
k∈Ci

aj,k.

The block Afc is modified to Âfc by zeroing the jth row for j ∈Wi.

Once the modified blocks Âff and Âfc are computed, the entries of the ith row
of the interpolation matrix P are determined by taking the entries of the ith row of
the matrix

−
(
Â−1
ff Âfc

)
.

4. Interpolation in AMGe. For AMGe a similar description of the interpola-
tion is easily given. In this setting, the neighborhood Ω(i) is defined naturally as the
union of all finite elements having i as a vertex (Figure 4.1). In the figure, the set
Ω(i) consists of all vertices in the shaded region, including i (the open circle in the
center). The shaded region consists of the six triangular finite elements having i as
a vertex. Members of Ωc(i) are indicated by the square vertices. Since AMGe gives
us access to the individual element stiffness matrices, we may create a neighborhood
matrix AΩ(i) simply by summing together all the individual element stiffness matrices
of the elements in the neighborhood. In AMGe the interpolation operator for the
dof i is determined by solving a constrained min-max problem, that is, by finding
interpolation coefficients that minimize a certain measure from finite element theory.
The solution to the min-max problem can be computed in several ways, one of which
fits into the framework we are developing here. We partition the neighborhood matrix
into the rows and columns associated with the fine dofs in the neighborhood and the
rows and columns associated with the coarse dofs, as

AΩ(i) =

(
Aff Afc
∗ ∗

) } Ω(i) \Ωc(i),
} Ωc(i).

Again, our only interest is in the rows of the neighborhood matrix corresponding to
the fine dofs, including i. With this partitioning, it turns out that one way to solve
the min-max problem is to take, as the coefficients for the interpolation operator for
i, the entries of the ith row of the matrix

−
(
A−1
ffAfc

)
.

It is useful to note that, unlike the classical AMG case, there is no need to modify
the matrix Aff prior to computing the interpolation coefficients. Essentially, this is
because the element stiffness matrices have built into them local versions of the null
space and near-null space of the operator; we do not need to make alterations to the
local matrices to ensure that these spaces are represented.

For many problems the AMGe method produces a superior interpolation and
results in good convergence rates [4]. In the remainder of this paper our goal is to
accomplish a superior interpolation without the knowledge (and hence, expense) of
the individual stiffness matrices.
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Fig. 4.1. The neighborhood of the fine dof i (large open circle).

5. Interpolation for element-free AMGe. The process we propose for build-
ing the interpolation operator is very similar to the processes described for AMG and
AMGe. Once again, we will proceed by defining a neighborhood of the fine dofs
and an associated neighborhood matrix. Let ψ be a set of fine dofs whose values we
wish to interpolate. We define Ω(ψ) to be the neighborhood of ψ, which includes the
coarse dofs that will be used to interpolate the dofs in ψ. The set of coarse dofs in
the neighborhood we denote Ωc(ψ).

Now, however, we define a third set of dofs:

ΩX (ψ) = {j∈/Ω(ψ) | aij = 0 for some i ∈ Ω(ψ)\Ωc(ψ)} .
That is, Ω(ψ) can be viewed as the interior of the set Ω(ψ) ≡ Ω(ψ) ∪ ΩX (ψ). Figure
5.1 gives an example of such a neighborhood.

We begin the construction of a neighborhood matrix by examining the rows of
the matrix A that correspond to the fine dofs in Ω(ψ); that is, we will be concerned
with the following partitioning of A:

A =


Aff Afc AfX 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


} Ω(ψ) \Ωc(ψ),
} Ωc(ψ),
} ΩX (ψ),
} everything else on grid.

5.1. Local (neighborhood) quadratic form. Our next task is to define a
matrix associated with ψ that yields a local version of the operator A, performing the
same function as does the neighborhood matrix in AMGe. To do this we first build
an extension mapping (matrix) E(ψ) that maps a vector defined on Ω(ψ) to Ω(ψ),

E(ψ) :

(
vf
vc

)
−→
 vf
vc
vX

 ,

using the relation

vX = EXf (ψ)vf + EXc(ψ)vc.

That is, the extension operator looks like

E =

 I 0
0 I

EXf (ψ) EXc(ψ)

 .
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χ χ
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χ

Fig. 5.1. The extended neighborhood Ω(ψ), including the fine dofs to be interpolated (solid
circles), the coarse interpolatory set Ωc(ψ) (squares), and the extension dofs (open circles marked
X ).

For now we will not be specific about the exact nature of the extension operator.
Rather, we will describe how it may be used to develop an interpolation formula, after
which we shall discuss desirable properties of the operator.

We construct a neighborhood matrix from the first block of rows of the partitioned
matrix (

Âff , Âfc

)
= (Aff , Afc, AfX )

 I 0
0 I

EXf (ψ) EXc(ψ)


so that

Âff = Aff +AfXEXf (ψ) and Âfc = Afc +AfXEXc(ψ).

For any vector [vf

vc
], consider its extension

v =

 vfvc
vX

 ,
where vX is given by vX = EXf (ψ)vf + EXc(ψ)vc. Let

v̂ =

 −A−1
ff (Afcvc +AfXvX )

vc
vX


be the so-called harmonic extension of v|Ωc(ψ)∪ΩX (ψ) into Ω(ψ) \Ωc(ψ). That is, one
extends v, restricted to the “boundary” Ωc(ψ) ∪ ΩX (ψ), into the “interior” Ω(ψ) \
Ωc(ψ).

We use the vf that minimizes the difference v − v̂ in energy norm in the inter-
polation procedure. Since

v − v̂ =
 vf − (v̂)f

0
0

 ,
its energy norm is computable and equals

||v − v̂||2A = (vf − (v̂)f )
TAff (vf − (v̂)f )

= (vf +A−1
ff (Afcvc +AfXvX ))TAff (vf +A−1

ff (Afcvc +AfXvX )).
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Since Aff is positive definite, this implies that if we solve the equation

0 = Affvf + (Afcvc +AfXvX )
= (Aff +AfXEXf )vf + (Afc +AfXEXc)vc
= Âffvf + Âfcvc,

the minimization of ||vf−(v̂)f ||A is attained with zero minimum by vf = −Â−1
ff Âfcvc.

We can actually show (see Remark 7.1 and Lemma 7.1) that in the model finite
element case considered in section 7 the minimization procedure is equivalent to a
quadratic functional minimization involving Neumann assembled matrices, as in the
AMGe method (cf. [4]).

It is natural to ask whether Âff is invertible. If EXf = 0, there is no difficulty,

since then Âff = Aff . In general, if EXf is sufficiently small in norm, Aff+AfXEXf
will be invertible.

6. Examples of extension operators. We describe here four extension oper-
ators E that can be used to construct the interpolation operator in the element-free
approach. These are by no means all the useful extensions that we could concoct;
they form, however, a simple set of examples that will allow us to demonstrate the
efficacy of the method and its underlying philosophy.

The first we call the L2-extension because it is a simple averaging method. Given
v defined on Ω(i), we wish to extend it to vX , defined on ΩX (ψ). Suppose that iX is
an exterior dof, that is, a point from ΩX (ψ) whose value we wish to determine from
the values of the dofs in Ω(i). Let S = {j ∈ Ω(i) : aiX ,j = 0}; that is, S comprises
those dofs in Ω(i) to which the point iX is connected. It seems natural to consider
using a simple average over these dofs as the extension at iX . Thus, the extension
formula, for the dof iX , is given by

vX (iX ) =
1∑

j∈S
1

∑
j∈S
v(j).

A somewhat more sophisticated extension we call the A-extension because it is
a simple operator-induced method. The A-extension operator for the dof iX is given
by the formula

vX (iX ) =
1∑

j∈S
|aiX ,j |

∑
j∈S

(|aiX ,j |v(j)) .

It may be seen that in this case the extension to the exterior is a simple weighted
average of the values of the neighborhood dofs to which the exterior point is connected.
The weights in the average are given by the absolute values of the matrix coefficients.

The two methods just described share the property that they are computed point
by point. That is, the extension formulas for the dofs in ΩX (ψ) are determined
independently. A second feature shared by the methods is that if the neighborhood
vector v is constant, then the extended values are also constant and have the same
value as the entries of the neighborhood vector. This feature is clearly desirable for
many elliptic PDEs, where the constant vector is in the null space or near-null space
of the operator A.
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The third example we describe is based on the minimization of a quadratic func-
tional. Again, let v be a vector defined on Ω(i) that we wish to extend to ΩX (ψ). We
construct the extension to be that operator which produces vX that minimizes the
functional Q(vX ), where

Q(vX ) =
∑

iX∈ΩX (ψ)
j∈Ω(i)

|aiX ,j | (viX − vj)
2
.(6.1)

It is evident that, like the previous extension operators, if v is constant on Ω(i)
then the dofs in ΩX (ψ) will also have the same constant value. Unlike the previous
extension operators, which are determined one dof at a time, this is a “simultaneous”
extension, computing formulas for extending to all of the exterior dofs together. As
such, it is necessarily more expensive to compute. We also note that this extension,
and the interpolation it generates, is equivalent to the method recently proposed in [1].

A final example is given by minimizing the following “cut-off” quadratic func-
tional:

(θv)TAΩ(ψ)(θv) �→ min,

where Ω(ψ) ≡ Ω(ψ) ∪ ΩX (ψ) subject to vf , vc fixed. Here

θ =

[
I 0
0 θX

] } Ω(ψ),
} ΩX (ψ)

is a diagonal matrix. A good choice is a diagonal matrix θX formed from the vector

θX = −(AXX )−1 [AXf , AXc]
[
(1)f
(1)c

]
.

Here we used the blocks of A corresponding to its ΩX (ψ) rows.
It is easily seen that the extension mapping is actually defined as

vX = EXcvc + EXfvf

= −θ−1
X (AXX )−1 [AXf , AXc]

[
vf
vc

]
.

Note that this extension mapping is also a simultaneous extension operator and an
averaging one; i.e., if vc = (1)c and vf = (1)f , then vX = (1)X .

6.1. Classical AMG as an extension method. The interpolation method
of the classical AMG algorithm popularized by Ruge and Stüben [9] may be viewed
as an extension method. Here the neighborhood is just the dof to be interpolated
together with the dofs that will be used to compute the interpolated value. That is,
Ω(i) = {i} ∪ Ωc(i). The extended neighborhood then includes all fine dofs that are
connected to i:

ΩX (ψ) = {j ∈/Ω(i) : aij = 0} .
An A-extension is defined in the following manner. For each iX ∈ ΩX (ψ), set viX = vi
if iX is weakly connected to i. (Recall that in classical AMG, as developed for M -
matrices, the dof i is said to be strongly connected to the dof j if

−aij > θmax
k �=i

(−aik),
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Fig. 6.1. The neighborhood of the fine dof i (large solid circle) for the stretched quadrilateral
element problem. The problem is semicoarsened; squares denote the coarse neighbors Ωc(i) while
the open circles are the exterior points ΩX (ψ).

where θ is a user-specified parameter, and weakly connected otherwise.) If iX is
strongly connected to i, the extension is defined by

viX =
1∑

j∈Ωc(ψ)

aiX ,j

∑
j∈Ωc(ψ)

aiX ,jvj .

6.2. An example of the extensions. A simple example should suffice to il-
lustrate these extension methods. Suppose the problem −Uxx − Uyy = f(x, y) is
discretized using a regular Cartesian grid of points making up the vertices of quadri-
lateral elements. Suppose further that the elements had dimension hx × hy where
hx � hy. As hy/hx → 0 the operator stencil tends toward −1 −4 −1

2 8 2
−1 −4 −1

 .
Since there is effectively no coupling between a given point and its neighbors to the
east or west, the appropriate choice is to semicoarsen, selecting every other line of
points with constant y-coordinate to be coarse points. Using the same logic, the
natural interpolation is to have each fine dof interpolated using only the values to the
north and south of it, each with equal weighting of 1/2. Consider the interpolation of
one point, i, shown in the center of its neighborhood in Figure 6.1. For either the L2-
or A-extensions, we might select Ω(i) = {i} ∪ Ωc(i), where, in this instance, Ωc(i) =
{N,S, SW,NW,SE,NE}. Then ΩX (ψ) = {W,E}. We see then that Aff = [8],
Afc = [ −4 −4 −1 −1 −1 −1 ], and AfX = [ 2 2 ]. For the A-extension it
is easy to compute the extension operators

EXc =
1

12

(
1 1 4 4
1 1 4 4

)
and EXf =

1

12

(
2
2

)
,

from which

Âff =

(
104

12

)
and Âfc =

1

3

( −11 −11 −1 −1 −1 −1 ) ,
which yields an interpolation operator

PA =
1

26

(
11 11 1 1 1 1

)
.
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We see that the values to the north and south are used in the interpolation with
weights 11/26 ≈ 0.423 and that the four points diagonally adjacent to i are all
weighted 1/26 ≈ 0.038. The ideal weights, of course, are 0.5 and 0, respectively,
so the interpolation weights computed by the A-extension method, while quite good,
are not perfect.

A similar calculation for the weights using the L2-extension yields the interpola-
tion operator

PL2 =
1

44

(
16 16 3 3 3 3

)
.

Here the dofs to the north and south are weighted 16/44 ≈ 0.364 while the diagonally
adjacent dofs are weighted by 3/44 ≈ 0.068. For this problem, then, the A-extension
is significantly better than the L2-extension.

By contrast, it is a straightforward calculation to show that classical AMG pro-
duces the interpolation operator

PAMG =
1

12

(
4 4 1 1 1 1

)
,

where the north and south dofs are weighted by 4/12 ≈ 0.333 and the diagonally
adjacent dofs are weighted by 1/12 ≈ 0.083; these weights are farther from the ideal
than the weights produced by either the A- or L2-extension.

Finally, consider the extension operator based on minimizing the “cut-off” quadratic
functional. The additional matrix blocks involved read

AXX =

[
8 0
0 8

]
,

AXf =

[
2
2

]
,

AXc =

[ −1 −1 −4 −4 0 0
−1 −1 0 0 −4 −4

]
.

The vector θX = −A−1
XX [AXf AXc][

(1)f
(1)c

] = (1)X . This is seen as follows:

AXf (1)f = 2(1)X , AXc(1)c = −10(1)X ,
and hence

AXf (1)f +AXc(1)c = −8(1)X ,
which implies

θX = −A−1
XX (AXf (1)f +AXc(1)c) = −1

8
[−8(1)X ] = (1)X .

That is, the diagonal matrix θ is the identity and hence the extension matrices then
read

EXf = −A−1
XXAXf = − 1

4

[
1
1

]
,

EXc = −A−1
XXAXc = 1

8

[
1 1 4 4 0 0
1 1 0 0 4 4

]
.
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The modified matrices Âff and Âfc take the form

Âff = Aff +AfXEXf = 8− [2, 2] 14

[
1
1

]
= 7,

Âfc = Afc +AfXEXc = [−4,−4,−1,−1,−1,−1] + [2, 2] 18

[
1 1 4 4 0 0
1 1 0 0 4 4

]
= [−4,−4,−1,−1,−1,−1] + [ 12 ,

1
2 , 1, 1, 1, 1]

= [− 7
2 ,− 7

2 , 0, 0, 0, 0].

That is, the interpolation coefficients are the “perfect” ones (corresponding to semi-
coarsening): (

(−Âff )−1Âfc

)
i
=

[
1

2
,
1

2
, 0, 0, 0, 0

]
.

7. Two-grid analysis for a model finite element problem. Before pro-
viding numerical results, we present an analysis of the quality of the “element-free
AMGe” interpolation. That is, we prove an “approximate” harmonic property of the
interpolation mapping and show that it provides a partition of unity. Specifically, we
assume that the problem is a standard finite element discretization of a second-order
elliptic problem

a(u, v) ≡
∫

a(x)∇u · ∇v dx = (f, v), v ∈ V,

where V is a finite element space of piecewise linear functions over quasi-uniform
triangular elements that cover a given two-dimensional polygonal domain. For sim-
plicity, we assume that homogeneous Neumann boundary conditions are imposed and
that (f, 1) = 0 (to ensure solvability).

Let us denote, for any element e,

"(e) = sup
x∈e

max
ξ∈R2

ξTa(x)ξ

ξT ξ
·(7.1)

In the following, we assume that the differential operator coefficients are essen-
tially constant in each element, so that "(e) gives rise to the local ellipticity constant.

Further, we assume (only for simplicity) that the neighborhood Ω(i) ≡ Ω(i) ∪
ΩX (i) for any fine dof i is formed by a union of triangles that share dof i as a common
vertex. Thus we will use i instead of ψ to denote the neighborhoods (Ω(i), ΩX (i), and
Ωc(i)) and the extension mappings. In particular, we denote Ei = [EXf , EXc] where
for brevity EXf = EXf (i) and EXc = EXc(i). A closer look at the analysis to follow,
however, shows that it applies as well to more general (i.e., larger) neighborhoods.

In what follows, for any subdomain (union of triangles) G, we let aG(., .) denote
the bilinear form a restricted to G. The corresponding subdomain matrix (assem-
bled from the individual element matrices Ae) will be denoted by ANG . We omit the
superscript N when there is no confusion between ANG and AG, the submatrix of
the original matrix A (corresponding to G). Note that in the latter case AG cor-
responds to a matrix with homogeneous Dirichlet boundary conditions imposed on
∂(G ∪ {elements neighboring G}).
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For this discussion we assume that Ei, the local extension mapping used to build
the interpolation coefficients, is based on averaging, although no specific rule is as-
sumed. We do, however, assume that E = E(i) has the particular form I 0

0 I
0 EXc

 }Ω(i),}Ωc(i),
}ΩX (i).

That is, EXf = 0 and Ei = [0, EXc].
Remark 7.1. The general case of Ei = [EXf , EXc] can be reduced to the partic-

ular case above by using the modified extension mapping Êi = [0, ÊXc], where

ÊXc = EXf
(
−Â−1

ff Âfc

)
+ EXc.

To see this, recall that Âff = Aff + AfXEXf and Âfc = Afc + AfXEXc, and note
that the modified extension mapping extends a constant vector defined on Ωc(i) to be
the same constant on ΩX (i), that is,

ÊXc(1)c = −EXf Â−1
ff Âfc(1)c + EXc(1)c

= EXf (1)f + EXc(1)c
= (1)X .

Here we have used the fact that since (for the model second-order elliptic problem)
Aff (1)f + AfX (1)X + Afc(1)c = 0, then Aff (1)f + AfX (EXf (1)f + EXc(1)c) +
Afc(1)c = 0. That is, Âff (1)f + Âfc(1)c = 0, implying that (1)f = −Â−1

ff Âfc(1)c.

We still must show that the modified extension mapping Êi leads to the same
interpolation as does Ei, i.e., that

−A−1
ff

(
AfX ÊXc +Afc

)
= −Â−1

ff Âfc.

For this we observe that

−A−1
ff (AfX ÊXc +Afc) = −A−1

ff

[
AfX
(
EXf (−Â−1

ff Âfc) + EXc
)
+Afc

]
= −A−1

ff

[
AfXEXc +Afc −AfXEXf Â−1

ff Âfc

]
= −A−1

ff

[
Âfc −AfXEXf Â−1

ff Âfc

]
= −A−1

ff

[
Âff −AfXEXf

]
Â−1
ff Âfc

= −A−1
ff (Aff ) Â

−1
ff Âfc

= −Â−1
ff Âfc.

Consider the minimization problem

find vf such that

 vf
vc
Eiv

T AN
Ω(i)

 vf
vc
Eiv

 = inf
w: wc=vc
wX=Eiw

aΩ(i)(w, w).(7.2)

Thus we seek vf , the value of w on Ω(i) \ Ωc(i), which minimizes the quadratic form
aΩ(i)(w, w) when the values of w are fixed at the coarse points and are “slave” at the
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exterior points (ΩX (i)); that is, they are extrapolated from the interior Ω(i) and the
coarse points Ωc(i) by Eiw.

Lemma 7.1. The solution to the minimization problem (7.2) produces the same
interpolation coefficients as does element-free AMGe, namely, those given by
−A−1

ff (AfXEXc+Afc). That is, the minimizer is given by wf = vf ≡ −A−1
ff (AfXEXc+

Afc)vc.
Proof. Consider the Neumann matrix

AN
Ω(i)

=

 Aff Afc AfX
Acf ANcc ANcX
AXf ANXc ANXX

 .
We use the superscript N for the blocks which differ from the corresponding blocks
of AΩ(i), the principal submatrix of the original matrix A corresponding to the sub-

domain Ω(i). Note that the “N” blocks are not accessible (available) and not used
in our algorithm. We have Eiv|ΩX (i) = EXcvc. Hence, aΩ(i)(w, w) for wc = vc and

wX = Eiw|ΩX (i) leads to the following matrix expression:

aΩ(i)(w, w) =

 wf
vc

EXcvc

T
 Aff Afc AfX

Acf ANcc ANcX
AXf ANXc ANXX


 wf

vc
EXcvc


=

[
wf
vc

]T [ Aff Afc +AfXEXc
Acf + ETXcAXf ANcc +ANcXEXc + ETXc(A

N
Xc +ANXXEXc)

]

×
[
wf
vc

]
.

Minimizing this symmetric positive semidefinite quadratic form with respect to wf is
equivalent to solving the equation

Affwf + (Afc +AfXEXc)vc = 0,

which is the same equation that specifies vf in the element-free AMGe interpolation
procedure.

In the next lemma we will remove the constraint on v being fixed at the ΩX (i)
points.

Lemma 7.2. The following quadratic forms are spectrally equivalent:

q1(vc, vc) ≡ inf
v: v|Ωc(i)=vc

aΩ(i)(v, v), and q2(vc, vc) ≡ inf
v: vc fixed
vX=Eiv

aΩ(i)(v, v).

That is, there exists a positive constant η such that

q1(vc, vc) ≤ q2(vc, vc) ≤ η q1(vc, vc) for all vc.

Proof. We show the proof for two-dimensional domains. For other domains, we
must scale " by the local mesh size appropriately; otherwise, the proof remains the
same. It suffices to show that the two quadratic forms have the same null-space. The
null-space of q1 is vc = const and the null-space of q2 is the same as that of aΩ(i)(v, v)
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with v : vc = const and Eiv = const on ΩX (i). Note that aΩ(i)(v, v) = 0 implies vf
is the same constant as vc. Then Eiv is also the same constant, since it is an averaging
operator based on the values of vc and vf . Hence the forms q1 and q2 both vanish
only for constant vc. In order to show that the constant η is bounded independently
of Ei, one first easily sees that

aΩ(i)(v, v) ≤ C
∑
e⊂Ω(i)

"(e)
∑
l, k∈e

(v(l)− v(k))2.

The constant C depends only on the number of points used in the averaging procedure
(Ei), i.e., it is bounded by the total number of coarse points Ωc(i) (plus the interior
point i). The dofs l and k in the summation are either coarse dofs or i, and "(e) is
defined in (7.1) to be the maximal value of the local ellipticity bound associated with
the original elliptic operator coefficient a(x). More specifically, for each iX ∈ ΩX (i)

v(iX ) ≡ (Eiv)(iX ) =
∑

k∈Ωc(i)∪{i}
αiX , kv(k),

where ∑
k∈Ωc(i)∪{i}

αiX , k = 1, and αiX , k ≥ 0.

Then, for any j ∈ Ωc(i) ∪ {i},

(v(iX )− v(j)) =
∑

k∈Ωc(i)∪{i}
αiX , k(v(k)− v(j)),

and hence

(v(iX )− v(j))2 ≤
∑

k∈Ωc(i)∪{i}
α2
iX , k

∑
k∈Ωc(i)∪{i}

(v(k)− v(j))2

≤
∑

k∈Ωc(i)∪{i}
(v(k)− v(j))2.

As a result we see that, for vX = Eiv,

q2(vc, vc) ≤ aΩ(i)(v, v)

≤ C
∑
e⊂Ω(i)

"(e)
∑
l,k∈e

(v(l)− v(k))2

≤ C

max
e∈Ω(i)

"(e)

min
e∈Ω(i)

"(e)

∑
e⊂Ω(i)

"(e)
∑

k,j∈e∩(Ωc(i)∪{i})
(v(k)− v(j))2.

Finally, since vf is arbitrary on the right-hand side of this inequality,

q2(vc, vc) ≤ C

max
e∈Ω(i)

"(e)

min
e∈Ω(i)

"(e)
inf
vf

 ∑
e⊂Ωc(i)

"(e)
∑

k,j∈e∩(Ωc(i)∪{i})
(v(k)− v(j))2

 .
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It is also true that

q1(vc, vc) � inf
v: vc fixed

 ∑
e⊂Ω(i)

"(e)
∑
l, k∈e

(v(l)− v(k))2

 .

This shows that η can be chosen bounded independently of the actual averaging
extension mapping Ei.

The above estimates involve the factor

max
e∈Ω(i)

"(e)

min
e∈Ω(i)

"(e)
.

Whether it is large or small depends on the selection of the coarse grid (the coarse
grid reflects the form of the neighborhood Ω(i)), which we do not consider in the
present paper.

Then the following corollary, involving the element-free AMGe interpolated vector
Pvc, is proved in the same way as Lemma 7.2.

Corollary 7.3. Consider the extended neighborhood of i, Ω̂(i) = ∪{e, e ⊂
Ω(i) or e ⊂ Ω(j) for all j ∈ ΩX (i)}. There is a constant κ = κΩ̂(i) > 0, locally
estimated, such that the following bound holds:

aΩ(i)(Pvc, Pvc) ≤ κ inf
w: wc=vc

aΩ̂(i)(w, w).

Proof. Let v be defined on Ω̂(i) as follows:

v(k) =


(Pvc)(k), k ∈ Ω(i),
vc(k), k is a coarse dof outside Ω(i),
(Ejv)(k), k ∈ ΩX (j), for some j ∈ ΩX (i).

We see that v at every fine dof k in Ω̂(i) is an average value of some neighboring coarse

dofs from Ω̂(i). Hence, in the same way as in the proof of Lemma 7.2, we establish
the inequality

aΩ̂(i)(v, v) ≤ κ inf
w: wc=vc

aΩ̂(i)(w, w).

Since aΩ(i)(Pvc, Pvc) ≤ aΩ̂(i)(v, v), the desired result follows.

For each fine dof i, define Z(i) to be the number of overlapping domains on Ω̂(i),
that is, the number of domains Ω̂(j) such that Ω̂(j) ∩ Ω̂(i) = ∅. Then we may state
the following theorem.

Theorem 7.4. The element-free interpolation mapping P exhibits the following
approximate harmonic property:

a(Pvc, Pvc) ≤ κ inf
w: wc=vc

a(w, w),

where the constant κ = max
i=fine dof

κΩ̂(i)Z(i), and the κΩ̂(i) are the local constants from

Corollary 7.3.
Proof. The proof simply follows from the fact that

a(Pvc, Pvc) ≤
∑

i=fine dof

aΩ(i)(Pvc, Pvc)

and by summation of the local estimates from Corollary 7.3.
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Another important property of the element-free interpolation mapping P is that
it partitions unity, as we show in the following theorem.

Theorem 7.5. P provides a partition of unity. Specifically, the row sums of P
are 1.

Proof. Let vf = Pvc be given by vf =
∑
ic∈Ωc(i)

αi, icvc(ic). Assume that vc(ic) =

1 on Ωc(i). Now, P uses the formula that minimizes (7.2) and the minimum (zero) is
achieved for Eiv(j) = 1 at ΩX (i) and vf = 1. That is, we find that

1 =
∑

ic∈Ωc(i)

αi, ic ,

which is the desired unity row-sum property of P .
Remark 7.2. Theorems 7.4 and 7.5 are the main goals of many two-grid conver-

gence analyses and they imply convergence of the respective two-grid AMG methods,
cf., e.g., [14], [8], [13], and [7].

8. Numerical experiments. We describe here several sets of numerical ex-
periments designed to test the efficacy of the element-free AMGe methods described
above. For each of several problems, we apply a set of interpolation rules within an
AMG code. The problems are then solved using a CG solver, preconditioned with
one V-cycle of AMG.

The interpolation rules are
• the AMGe rule [7] for the finite element problems;
• three element-free AMGe rules from section 6:

1. L2-extension;
2. A-extension;
3. (only for scalar PDE) the simultaneous extension based on minimizing

the quadratic functional (6.1) described in section 6.
For system problems the unknowns are split into physical variables. That is, for scalar
problems the rule is as described in section 6, while for two-dimensional elasticity, with
physical variables u and v (displacement in the x- and y-directions, respectively), we
perform the extensions (and associated interpolation) of exterior dofs of type u using
only neighborhood dofs of type u; similarly, the extension to exterior dofs of type v
are carried out using neighborhood dofs of type v; this applies both to L2- and A-
extensions. The local neighborhood about a point is defined by the sparsity pattern
of the matrix about that point, and the averaging involves only dofs from the sparsity
pattern set S (see section 6).

8.1. An elliptic problem on a triangular element mesh. We apply the
various interpolation rules to a second-order elliptic PDE

−∇ · (A(x, y)∇u) = f(x, y) on G,(8.1)

u(x, y) = g(x, y) on ∂G,(8.2)

where G is the unit square. The matrix of diffusion coefficients includes functions with
relatively benign characteristics—there are both spatial variability and jump discon-
tinuity in the coefficients, but the jumps are of relatively small magnitude and the
variation is mild. The discretization is by a finite element method on an unstructured
triangular mesh. The coarsening algorithm is one of element agglomeration. That
is, the coarse grids are the vertices of coarse elements produced by an agglomeration
algorithm proposed in [7]. Figure 8.1 displays the coarsening sequence for a typical
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Fig. 8.1. Sequence increasingly coarse elements, formed by element agglomeration.

problem. Here the fine grid comprises 1600 elements, the first coarse grid has 382 el-
ements, and the remaining grids have 93, 33, 15, 7, 3, and 1 elements. Table 8.1 gives
the coarsening details for four different versions of this problem. It may be seen that
the number of elements decreases by about 75% at each coarsening for the first few
coarsenings, after which it decreases by about 50% per level. The number of nonzero
entries in the matrix decreases by approximately 50% per level, while the number of
dofs tends to decrease by 50–60% with each successive level.

For each of the four interpolation rules, the problem is solved using a precon-
ditioned CG method, where the preconditioning consists of a single V(1,1)-cycle of
AMG, with a Gauss–Seidel smoother. The iteration is run until the residual is less
than 10−8 in norm. We report the results in Table 8.2. For each problem size, we
display, for each interpolation rule, the number of preconditioned CG iterations re-
quired to achieve the desired residual size and ", the average convergence factor over
the iterations.
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Table 8.1
Coarsening history for the problem −∇·A(x.y)∇u = f on an unstructured triangular fine grid.

For each level of each problem size, “nz” is the number of nonzero entries in the operator matrix,
“dofs” gives the number of degrees of freedom, and “elts” gives the number of finite elements in the
agglomerated grid.

No. of elements
Level 25600 6400 1600 400

0 nz 90321 22761 5781 1491
dofs 13041 3321 861 231
elts 25600 6400 1600 400

1 nz 32898 9540 2602 1094
dofs 4108 1152 330 114
elts 6013 1427 382 76

2 nz 14305 4361 1397 470
dofs 1507 451 143 50
elts 1489 374 93 26

3 nz 7193 2098 634 199
dofs 643 198 64 23
elts 392 117 33 11

4 nz 3458 975 304 88
dofs 302 91 32 12
elts 158 47 15 5

5 nz 1580 453 126 36
dofs 140 45 16 6
elts 70 22 7 2

6 nz 714 188 46 16
dofs 68 22 8 4
elts 33 10 3 1

7 nz 274 84 16
dofs 30 12 4
elts 14 5 1

8 nz 120 30
dofs 16 6
elts 7 2

9 nz 42 16
dofs 8 4
elts 3 1

10 nz 16
dofs 4
elts 1

Table 8.2
CG convergence results; unstructured triangular fine grid; second-order elliptic problem;

V (1, 1)-cycle MG, Gauss–Seidel smoother used as preconditioner.

Interp. rule 400 elts 1600 elts 6400 elts 25600 elts

AMGe iterations 14 16 21 23
� 0.115 0.172 0.252 0.289

A-extension iterations 13 15 19 20
� 0.118 0.158 0.218 0.247

L2-extension iterations 13 16 19 21
� 0.119 0.161 0.227 0.249

Quadratic funct. iterations 13 15 19 19
min. � 0.105 0.152 0.222 0.231
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Examination of the results reveals that all three of the extension methods, A-
extension, L2-extension, and quadratic functional minimization, perform at least as
well on this problem as does AMGe. In some cases the performance of the extension
methods is marginally better than AMGe. The amount of work entailed for the A-
extension and the L2-extension methods is comparable to that of AMGe, provided that
the neighborhoods are selected to be of comparable size to the element neighborhoods
(which is the case in these experiments). For the quadratic functional minimization
the work is somewhat greater but still comparable. The advantage of the element-
free methods is, of course, that there is no requirement to have the actual individual
stiffness matrices that are required in AMGe. For this experiment this represents a
considerable savings in storage.
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Fig. 8.2. The thin-beam elasticity problem domain. Homogeneous Dirichlet boundary conditions
are applied at x = 0.

8.2. Two-dimensional elasticity: The thin beam. We consider next the
two-dimensional plane-stress elasticity problem on a cantilevered beam, fixed at one
end (see Figure 8.2). The domain of the problem is G = (0, 1) × (0, d) with d ≤ 1.
For d� 1 this is the thin beam problem. The problem is

uxx +
1− ν

2
uyy +

1 + ν

2
vxy = f1,

1 + ν

2
uxy +

1− ν

2
vxx + vyy = f2,

where u and v are displacements in the x and y directions, respectively. This can
be a difficult problem for standard multigrid methods, especially when the domain is
long and thin [6]. The problem is discretized using uniform square finite elements of
size h. Nodal coarsening is used, with the coarse nodes being the vertices of elements
created by the agglomeration algorithm from [7]. After certain levels of coarsening
the algorithm agglomerates only along the x direction.

We present results in both the thick beam (d = 1.0) and thin beam (d = 0.05)
cases. In both cases we use ν = 1/3. For each case we present results for three
sizes of the discretization parameter: h = 0.05, 0.025, and 0.0125 for the thick beam
and h = 0.025, 0.0125, and 0.00625 for the thin beam. The coarsening histories of
the agglomeration algorithm are shown in Table 8.3. Table 8.4 shows the results
of the experiments for the beam problem. As in section 8.1, preconditioned CG is
used as the solver, with a single V(1,1)-cycle of AMG as the preconditioner, with a
Gauss–Seidel smoother. For this problem we show the number of iterations required
to achieve a residual norm less than 10−8, and also the convergence factor of the final
iteration. For this problem we do not implement the quadratic minimization method
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Table 8.3
Coarsening history; structured rectangular fine grid; two-dimensional elasticity, d = 1.

Thick beam d = 1.0 Thin beam d = 0.05
Level h = 0.050 h = 0.025 h = 0.0125 h = 0.025 h = 0.0125 h = 0.00625

0 nz 14884 58564 232324 3388 12532 48100
dofs 882 3362 13122 246 810 2898

1 nz 10440 40880 161760 1664 7328 30656
dofs 264 924 3444 88 252 820

2 nz 4128 17248 70488 784 3744 10152
dofs 84 264 924 44 132 252

3 nz 1000 4956 19056 384 1152 3816
dofs 32 94 284 24 48 132

4 nz 256 1404 6128 144 384 1152
dofs 16 38 104 12 24 48

5 nz 64 324 1668 64 144 384
dofs 8 18 42 8 12 24

6 nz 144 576 64 144
dofs 12 24 8 12

7 nz 64 144 64
dofs 8 12 8

8 nz 64
dofs 8

Table 8.4
CG convergence results; structured rectangular fine grid; two-dimensional elasticity, d = 1,

V (1, 1)-cycle MG, Gauss–Seidel smoother used as preconditioner.

Thick beam, d = 1.0
Interp. rule h = 0.050 h = 0.025 h = 0.0125

AMGe iterations 16 18 20
� 0.172 0.206 0.234

A-extension iterations 12 12 12
� 0.099 0.098 0.097

L2-extension iterations 13 13 13
� 0.101 0.102 0.104

Thin beam, d = 0.05
Interp. rule h = 0.025 h = 0.0125 h = 0.00625

AMGe iterations 17 18 19
� 0.180 0.198 0.22

A-extension iterations 20 23 22
� 0.227 0.286 0.280

L2-extension iterations 18 20 27
� 0.203 0.243 0.254

described in section 6. That method is for scalar problems, while this problem is a
system of PDEs. We use the AMGe method described in [4] and compare it with the
A- and L2-extension methods described above. Our expectation is that AMGe should
outperform the element-free methods, at least on the thin beam problem; this is the
problem for which AMGe was originally developed. We observe, however, that for
the thick beam problems the element-free methods both outperform AMGe. First,
we note that it takes fewer iterations to reach the tolerance. It is also apparent that
the element-free methods are more scalable, in that the number of iterations does not
grow with the problem size. The AMGe method requires more iterations for larger
problems.
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For the thin beam problem, we observe the results we naturally expect. That
is, AMGe outperforms the element-free methods, requiring fewer iterations. Further,
AMGe appears to be more scalable on this problem than the extension methods. The
L2-extension method exhibits a distinct lack of scalability as the problem grows larger.

9. Conclusions. In this paper we propose a general rule for building interpo-
lation weights in AMG, thus extending the applicability of AMG to more general
settings than the traditional M -matrix case. The applications include elliptic prob-
lems on unstructured finite element grids, where both scalar problems and systems
(like elasticity) are considered. The element-free AMGe method seems as competitive
as the AMGe methods but entails much less overhead. The element information and
the element matrices, in particular, are essential for the AMGe methods but are not
required for element-free AMGe. If we assume more information is available (such
as the rigid body modes in the case of elasticity) it may be incorporated into the
construction of the extension mappings. Thus element-free AMGe can be made to re-
produce the extra modes in the interpolation from their coarse values. This property
is important in the AMG methods for elasticity problems (cf. [12]), and incorporating
it into element-free AMGe is a subject of ongoing research.
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