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Abstract. This paper contains the main ideas for an AMGe (algebraic multigrid for finite
elements) method based on element agglomeration. In the method, coarse grid elements are formed
by agglomerating fine grid elements. Compatible interpolation operators are constructed which yield
coarse grid basis functions with a minimal energy property. Heuristics based on interpolation quality
measures are used to guide the agglomeration procedure. The performance of the resulting method
is demonstrated in two-level numerical experiments.
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1. Introduction. The algebraic multigrid (AMG) [5], [6], [13], [14], was devel-
oped as a generalization of the standard geometric multigrid to problems that either
had no grid or were posed on unstructured grids where standard geometric multigrid
methods are difficult to apply. The standard AMG method works well for many prob-
lems; however, its performance on some finite element problems is unsatisfactory. The
heuristics used in the standard AMG method are based on properties of M-matrices,
and finite element discretizations can produce non-M-matrices. This deficiency in the
standard AMG method led Brezina et al. [7] to develop the algebraic multigrid for fi-
nite elements (AMGe). This previous paper showed how to use multigrid convergence
theory and the local stiffness matrices for the individual finite elements to produce
interpolation operators superior to those produced by standard AMG. This current
paper uses AMGe ideas to produce not only interpolation operators but coarse grids
(and elements) as well. The coarse elements are based on agglomeration of fine ele-
ments. A key point is the construction of a local, compatible interpolation operator.
The interpolation is local in the sense that degrees of freedom (dofs) in an agglom-
erate interpolate only from other dofs in the same agglomerate. The interpolation is
compatible in that the interpolation to dofs shared by two or more agglomerates is
uniquely defined. In this way, the coarse element matrices are variationally related
to the assembled matrices in a given agglomerated element, and (due to the com-
patibility) the global coarse matrix is variationally obtained from the global fine grid
matrix.

In the remainder of this introductory section, we outline the proposed agglomer-
ation AMGe method. The goal is to solve a system

Au = f ,

where A is the positive definite matrix arising from a finite element discretization. In
the agglomeration AMGe method, we assume that we have access to the individual
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element matrices. Our goal is to produce the components needed for a two-level solver:
a coarse grid, grid transfer operators, and the coarse grid operator. In order to apply
the method recursively (i.e., multigrid as opposed to two-level), individual element
matrices on the coarse level must be produced. These goals are outlined below.

• Given information.
1. A list Df = {d} of the fine grid dofs.
2. A list Ef of fine grid elements {e}, where each element e, by definition,

is a list of dofs, i.e., e = {d1, d2, . . . , dne
}. Typically, Ef provides an

overlapping partition of the set Df .
3. The element matrices Ae, i.e., a list of ne × ne real numbers associated

with the dofs of e = {d1, d2, . . . , dne}. Equivalently, one may say that
a quadratic form ae(v, v) = vT

e Aeve is given, where v is a vector (or
discrete function) defined on Df restricted to e; i.e.,

ve = v|e =


v(d1)
v(d2)
...

v(dne
)

 .
Note that this will be the notation consistently used throughout this
paper, namely, for any subset Ω ⊂ D and a vector v defined on D we
will denote by vΩ = v|Ω the restriction of v to Ω. When it simplifies the
notation, we will sometimes use superscripts instead of subscripts with
the same meaning (restriction to subset).

• Output coarse information.
1. A coarse set of dofs, Dc ⊂ Df .
2. A set of coarse elements Ec = {Ec}, i.e., an overlapping partition of Dc.
3. The coarse element matrices AEc for each Ec ∈ Ec.
4. An interpolation mapping P : Dc 
→ Df such that

P =

[
P f
c

I

] }Df \ Dc

}Dc
.

To be specific, assume that our “algebraic” elements (i.e., a list of collections {e}
of dofs) come from a finite element triangulation of a three-dimensional (3D) domain
and respective conforming finite element spaces with nodal dofs. To create the coarse
information we propose the following steps.

• Create a set of agglomerated elements E = {E}, where each E = e1 ∪ e2 ∪
· · · ∪ enE

, ei ∈ Ef , and E is a connected set. By connected we mean that for
any two elements, ei, ej ∈ E, there exists a connecting path of elements also
in E beginning with ei and ending with ej such that consecutive elements
in the path have nonempty intersection. This is a result of the “topological”
algorithm used in the agglomeration procedure (Algorithm 4.1). Note that
each fine grid element e should belong to a unique agglomerated element.

• Define faces and vertices of the agglomerated elements as follows.
1. Consider all intersections Ei ∩Ej for all pairs of different agglomerated

elements Ei and Ej . An intersection of this type is called a face if it
is a maximal one, i.e., if it is not contained in any other intersection.
This defines the set of faces F = {F}. We will also assume that a list
of boundary faces ∂D will be given, and we will append them to Ef . A
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formal definition of a boundary face is then simply a maximal set of the
type E ∩ ∂D, i.e., it is not a proper subset of any other intersection set
(either of type Ei ∩ Ej or of type Ei ∩ ∂D).

2. Finally, consider all faces F ∈ F as lists of dofs. For each dof d compute
the intersection ∩{F : d ∈ F}. The minimal (nonempty) intersections
define the set of vertices V = {V }.

For true finite element applications the last set of vertices will be disjoint sets; each
vertex may contain more than one dof. This is the case if the underlying problem is a
finite element discretization of a system of PDEs, such as elasticity, for example. For
3D problems, one may refine the above algorithm to create edges of the agglomerated
elements; edges are defined to be maximal intersections of faces. In order to keep the
presentation simple, we will focus mostly on two-dimensional (2D) problems.

At any rate, the above “topological” information (faces and vertices of elements)
is readily provided by most of the finite element grid generators. So one may assume
that this information is given on the fine grid. If not, one can create it as explained
above based on computing, for faces, the maximal intersection sets of the type ei∩ej ,
ei �= ej or of the type ei∩ boundary surface.

In order to generate the same information on a coarse level, it can be advanta-
geous to carry out the intersection sets algorithm by preserving the dimensionality
(or topology) in the following sense. If E is an agglomerated element, one has the
option to represent E either in terms of the dofs of the original elements or in terms
of the faces of the original elements. If the agglomerated elements and the boundary
surfaces ∂D are represented in terms of the faces of the original elements, then all
nonempty intersections of the type Ei ∩ Ej or Ei ∩ ∂D are maximal. This is the
storage (agglomerated elements in terms of faces of elements) that we use in practice.

Definition 1.1 (coarse dofs). Having computed the set of vertices, we define
our (minimal) coarse set of dofs to be those dofs which are contained in a vertex of
an agglomerated element:

Dc = {d ∈ Df : ∃V ∈ V with d ∈ V }.

Note that in practice, one may have to enrich the minimal (vertex) set of coarse dofs
for better performance.

Figure 1 shows the coarse dofs for a 2D scalar problem. Note that for a scalar
problem, vertex and degree of freedom are synonymous.

Definition 1.2 (coarse elements). For each agglomerated element E, we define
a coarse element Ec consisting of dofs contained in a vertex of E, i.e.,

Ec = Dc ∩ E.

For each agglomerated element E (or, equivalently, for each coarse element Ec),
we construct a local interpolation operator PE . This operator maps a vector defined
at coarse dofs in Ec to a vector defined at the fine dofs in E. We require the set of
local interpolation operators be compatible in that if d ∈ E1 ∩E2, then PE1

vEc
1
(d) =

PE2vEc
2
(d) for all vectors v. In other words, compatibility means that at shared dofs,

the interpolation rules for the agglomerates must agree. Compatibility implies the
following restriction.

Requirement 1.1. For d ∈ Df , let N(d) = ∩{all agglomerated elements E(d)
that contain d}. Then the value v(d) must be interpolated from the dofs at the
vertices of N(d). Note that we assume interpolation is the identity at the vertices.
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Fig. 1. Triangulation of domain Ω into triangular and quadrilateral fine grid elements. Ag-
glomerated elements E1, E2, . . . , E5 and coarse dofs.

Definition 1.3 (interpolation mapping). Having constructed a compatible set of
local interpolation mappings {PE}, define a global mapping P : Dc 
→ D by Pvc|E ≡
PEvEc . Compatibility implies that this uniquely defines P .

Definition 1.4 (coarse element matrices). Assume that a compatible set of
interpolation operators {PE} has been computed. Let AE be the assembled matrix
corresponding to the agglomerated element E = e1 ∪ e2 ∪ · · · ∪ enE

defined by

vT
EAEwE ≡

nE∑
i=1

vT
eiAeiwei for any vE , wE .(1.1)

Then, the coarse element matrix for the coarse element Ec is defined by

Ac
E ≡ PT

EAEPE .(1.2)

Note that the global coarse (stiffness) matrix Ac defined as

Ac = PTAP

can be assembled from the coarse element matrices, i.e., that

vT
c A

cwc =

nc∑
i=1

vT
Ec

i
Ac

Ei
wEc

i
.

Indeed, for Ei =
⋃nEi

j=1 e
j
i ,

nc∑
i=1

vT
Ec

i
Ac

Ei
wEc

i
=

nc∑
i=1

(PEivEc
i
)TAEi(PEiwEc

i
)

=
nc∑
i=1

(Pvc|Ei
)TAEi

(Pwc|Ei
)

=
nc∑
i=1

nEi∑
j=1

(Pvc|eji )
TAeji

(Pwc|eji )

=
nf∑
i=1

(Pvc|ei)TAei(Pwc|ei)
= vT

c P
TAPwc.
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We should mention at this point that there are other approaches of constructing
AMG methods that target non-M-matrices. One example is the aggregation based
AMG of Vanek, Mandel, and Brezina [15]. In this method, one constructs aggre-
gates (nonoverlapping partitions of the dofs) and forms a generally unstable (but
simple) tentative prolongator. Finally, a smoothing step is applied in order to get a
better quality interpolation. In Wan, Chan, and Smith [17], a direct approach of con-
structing coarse bases is proposed. The bases are selected by minimizing a quadratic
energy functional while enforcing locality and a partition of unity property. In Man-
del, Brezina, and Vanek [12], this approach was further developed by proposing fast
algorithms for minimizing the quadratic functional. In Chan, Xu, and Zikatanov [9],
the construction of the agglomerated elements is used a posteriori in the sense that
one first selects a coarse grid (as a maximal independent set) and then agglomerated
elements are constructed (based on the dual matrix graph). The agglomerates are sub-
sequently divided into triangles, and the procedure can be recursively applied. The
interpolation weights are computed based on averaging. In that sense, the present
paper substantially differs from [9]. Our agglomeration algorithm is different (the
coarse dofs are selected after the agglomeration is performed), and we assume more
information. Namely, similar to the original AMGe paper [7], we require access to the
individual elements and the respective element matrices on the fine grid. Note that
this information is readily provided by most finite element grid generators. In contrast
to [7] we are able to more systematically generate the input information (elements and
their respective element matrices) on the coarse levels. This allows straightforward
recursive use of the same two-level algorithm.

The remainder of the present paper is organized as follows. In section 2 we con-
sider the construction of the local interpolation mappings based on a minimal energy
principle. Section 3 deals with the energy minimization property of the coarse basis.
In section 4, we specify an algorithm for agglomerating elements, which provides nicely
matched agglomerated elements for structured triangular or quadrilateral meshes. We
also discuss using measures of interpolation quality to guide the agglomeration pro-
cedure yielding semicoarsening for problems with anisotropy. In the final section, the
performance of the resulting method is demonstrated in two-level numerical experi-
ments.

2. The local interpolation mappings. In this section we present an algorithm
for generating the local interpolation mappings in a way that produces coarse grid ba-
sis functions with a quasi-minimal energy property. Most of the proofs in this section
rely on basic properties of Schur complements of symmetric positive semidefinite ma-
trices. A summary of these properties can be found, for example, in [1, section 3.2].
The problems that we target are second-order scalar elliptic problems without the
low-order term as well as elasticity in two and three dimensions.

We begin by defining, for each fine grid dof d, the following sets:

• a neighborhood Ω(d) = ∪{all agglomerated elements E(d) that contain d};
• a minimal set N(d) = ∩{all agglomerated elements E(d) that contain d}.

Note that N(d) can be a vertex, a face, or even an agglomerated element. From
the definition of vertices, each N(d) contains at least one vertex. Note also that there
might be multiple copies of N(d), i.e., N(di) = N(dj) for a di �= dj . We next introduce
the following definition for the boundary of the sets N(d).

Definition 2.1. For any set N(d) different than a face or an agglomerated
element, define the boundary of N(d), denoted ∂N(d), to be the vertices contained in
N(d) (which is a nonempty set). If N(d) is a face of an agglomerated element, define
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∂N(d) as the dofs in N(d) that belong to more than one face. Finally, if N(d) is an
agglomerated element E, define the boundary, ∂E, as the union of all faces of E.

We now describe the construction of the local and compatible interpolation map-
pings. The set of interpolatory coarse dofs dc1, . . . , d

c
p that will be used to interpolate

to d is constructed according to Requirement 1.1. That is, dc1 = d if d belongs to a
vertex; otherwise, the interpolatory coarse dofs are the vertices of the set N(d).

To define the interpolation weights for a dof d we use the following recursive
procedure. The interpolation is the identity at the vertices. Then, for the set N(d)
assume that the interpolation at the dofs on ∂N(d) has already been defined, i.e.,
(Pvc)|∂N(d) is well defined for vc specified at the vertices of N(d). Now extend the

definition of Pvc on N(d) \ (∂N(d)) by considering the neighborhood Ω(d) of all ag-
glomerated elements that contain d. Let AΩ(d) be the assembled matrix corresponding
to all elements contained in that neighborhood. Consider the following two-by-two
block structure of AΩ(d), corresponding to the partitioning (Ω(d) \ ∂N(d)) ∪ ∂N(d),

AΩ(d) =

[
Aii Aib

Abi Abb

] }Ω(d) \ ∂N(d),
}∂N(d).

Here “i” stands for interior, and “b” stands for boundary dofs. Note that {dc1, . . . , dcp} ⊂
∂N(d). The interpolation coefficients wd, dc

i
, i = 1, 2, . . . , p are obtained by solving

the following equation (xc given):

Aiix
i +Aib(Px

c)∂N(d) = 0.

Then the equation corresponding to a dof df in N(d) \ ∂N(d) gives

(xi)df
=
(−A−1

ii Aib(Px
c)∂N(d)

)∣∣
df
.

That is, in particular for df = d, and xc = [ 01 ]
}vertices of N(d)\{dc

i},
}dc

i
, one gets the

interpolatory coefficient

wd, dc
i
=

(
− A−1

ii Aib

(
P

[
0
1

] }vertices of N(d) \ {dci}
}dci

)
∂N(d)

)∣∣∣∣∣
d

.

This approach assumes that Aii is invertible. As the following lemma shows, this
is always the case for symmetric positive semidefinite matrices AΩ(d) if the set of
boundary dofs ∂N(d) is sufficiently rich.

Lemma 2.2. Given a set E, a union of fine elements, partition it into two groups:
“f”-dofs denoted by DE, f and “c”-dofs denoted DE, c. Let AE be the assembled matrix
corresponding to E partitioned as follows:

AE =

[
AE, ff AE, fc

AE, cf AE, cc

]
.

If there exists a basis {di} for the null-space of the assembled, symmetric positive
semidefinite matrix AE, such that {di} restricted to DE, c remain linearly independent,
then AE, ff is invertible.

Proof. Assume that AE, ffx
f = 0. This implies that[
xf

0

]T
AE

[
xf

0

]
= 0,
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and since AE is positive semidefinite, this implies

AE

[
xf

0

]
= 0.

That is, [x
f

0 ] is in the null-space of AE . Therefore, we can expand it in terms of the
basis of the null-space, i.e., [

xf

0

]
=
∑
i

cidi.

The second block equation implies

0 =
∑
i

cid
c
i .

The assumption that {di} remains linearly independent when restricted to DE, c

means that {dc
i} are linearly independent. Thus all ci = 0 and xf = 0. That is,

AE, ffx
f = 0 implies xf = 0; hence AE, ff is invertible.

Remark 2.1. For the model case of second-order scalar elliptic equations, Lu ≡
−div(a∇u) = F , a basis of the null-space of AE is

[
1

.

.

.
1

]
, and its restriction onto the

set of coarse dofs is again the constant vector; hence it is linearly independent. The
above lemma shows that the corresponding AE, ff will be invertible.

Remark 2.2. If x is in the null-space of AE , i.e.,

x =

[
xf

xc

]
and AEx = 0,

then

AE, ffx
f +AE, fcx

c = 0.

Thus the previously defined interpolation procedure is exact for vectors in the null-
space of AE .

In showing that the interpolation mappings produce coarse basis functions en-
joying a certain energy minimization property, we rely on the following relationships
between energy minimization and Schur complements.

Remark 2.3. Consider a matrix A with any two-by-two blocking

A =

[
Aff Afc

Acf Acc

]
.

Assume Aff is invertible, and define the Schur complement of A on c as Sc ≡ Acc −
AcfA

−1
ffAfc. If A is symmetric positive semidefinite, then

vT
c Scvc = inf

v|c=vc

vTAv.(2.1)

In cases where Aff is not invertible, (2.1) can be used to define the Schur complement.
Note that if A is symmetric positive semidefinite, then so is Sc. Finally, one has the
identity

Av =

[
0
Scvc

]
(2.2)
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for any minimizer v, i.e., for any vector v for which vT
c Scvc = vTAv and v|c = vc.

The following lemma is a straightforward consequence of Remark 2.3.
Lemma 2.3. Using the notation of the previous remark, assume Aff is invertible,

and let vc be a null-vector of Sc; then vc can be uniquely extended to the null-space
of A.

We are now ready to show several energy minimization properties of the local
interpolation mappings PE formulated for simplicity for 2D elements.

We first demonstrate an energy minimization property for dofs interior to an
agglomerated element. Let d belong to a unique agglomerated element E. Thus the
neighborhood Ω(d), used to define interpolation, consists of the fine-grid elements
that are contained in E. Then, P = PE is constructed based on the following block-
ordering of AE :

AE =

[
Aii Aib

Abi Abb

] } E \ ∂E,
} ∂E.

The coefficients of PE are obtained by solving the equation (xc given)

AE, iix
i +AE, ib(PEx

c)∂E = 0.

It is equivalent then to say that xi = −A−1
ii Aib(PEx

c) solves the minimization problem

min
x: x|∂E=(PExc)∂E

xTAEx.(2.3)

By definition, PExc|d = − A−1
ii Aib(PEx

c)∂E
∣∣
d
for all d ∈ E that do not belong to a

face of E.
We next show an energy minimization property for dofs on faces; this is used later

to show a global energy minimization property of the coarse grid basis functions. For
every face F , the neighborhood used to define interpolation is E+

F ∪ E−
F , where E+

F

and E−
F are the two neighboring agglomerated elements that form the face F (one of

them can be ∅ if F is a boundary face).
Lemma 2.4. For every face F = E+

F ∩ E−
F , the interpolation P minimizes the

quadratic form (wF )
T (SE+

F , F + SE−
F , F )wF for wF fixed at the vertices of F , where

SE, F denotes the Schur complement of AE on F .
Proof. Denote E1 = E−

F and E2 = E+
F . Each dof on F which is not a ver-

tex is interpolated from the vertices of F based on the assembled matrix AE1∪E2

corresponding to the domain E1 ∪ E2. To define P on F , one looks at the matrix

AE1∪E2
=

[
Aff Afc

Acf Acc

] }E1 ∪ E2 \ ( vertices of F ),
}( vertices of F ).

Then (Pvc)(df ) = (−A−1
ffAfcv

c)(df ) for any df ∈ F \ ( vertices of F ). Equivalently,
from the equations that define P on F ,

Affw
f +Afcw

c = 0,

one can eliminate the dofs that are on E1 ∪ E2 \ F , thus ending up with the Schur
complement problem

SE1∪E2, Fw
F
∣∣
F\( vertices of F )

= 0, wF =

[
wf

wc

] }F \ ( vertices of F ),
} vertices of F.

(2.4)
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Since F is a separator for E1 ∪ E2, one has that SE1∪E2, F = SE1, F + SE2, F . Since
SE1∪E2, F is symmetric semidefinite, (2.4) is equivalent to the following minimization
problem:

inf
wF |vertices of F

=wc
(wF )TSE1∪E2, Fw

F .

By definition wF = Pwc solves (2.4) and thus has this equivalent minimization
property.

Throughout the remainder of the paper we will assume the following relations be-
tween the null-spaces of the assembled matrices AE− and AE+

for any two neighboring
agglomerated elements E− and E+ that share a common face F .

Assumption 2.1. For any xE− such that AE−xE− = 0 there is an extension x of
xE− defined on E− ∪ E+ such that AE−∪E+x = 0 and x|E− = xE− . Equivalently,

AE+xE+ = 0 and x|F = xE− |F .
As a corollary of the above assumption, the respective Schur complements SE−; F

and SE+; F of AE− and AE+
on the face F are spectrally equivalent or, equivalently,

have the same null-space.
Actually, the following local estimates hold.
Lemma 2.5. Assume, in addition to Assumption 2.1, that every null-vector v of

AE restricted to a face F of E is uniquely determined from its vertex values vc on
F . Note that this is always the case if the set of coarse dofs on any F is sufficiently
rich (see Lemma 2.2). If we have determined x = PExc first on ∂E and then in the
interior of E as specified above, the local quadratic forms

(PExc)
TAEPExc, inf

x: x|Dc
=xc

xTAEx

are spectrally equivalent. That is, there exists a constant ηE such that

inf
x: x|Dc

=xc

xTAEx ≤ (PExc)
TAEPExc ≤ ηE inf

x: x|Dc
=xc

xTAEx.

In other words, the coarse element matrix Ac
Ec

and the Schur complement Sc of AE

on Dc ∩ E are spectrally equivalent.
Proof. To prove the result it is sufficient to show that both matrices have the

same null-space. Assume now that Scxc = 0. For any face F of E one can compute
the Schur complement of Sc on F denoted by Sc, F . It is clear then (see (2.2)) that

Sc, Fxc, F = 0.(2.5)

Our goal is to show that (PE)
TAEPExc = 0, which is equivalent to AE(PExc) =

0. By construction, one has AE(PExc) = 0 in the interior of E. Also, from the
definition of PE for dofs on faces F (see (2.4)) one has

(SE,F + SE+,F ) (PExc)F
∣∣
F\vertices of F

= 0.

Here, E+ is the neighboring element to E which shares a common face F with E.
From Assumption 2.1 it follows that SE,F +SE+,F and SE,F have the same null-space.
Therefore, their respective Schur complements on the vertices of F (F ∩Dc), σc, F and
Sc, F will have the same null-space. Then (2.5) implies that σc, Fxc, F = 0. Applying
identity (2.2) (based on Lemma 2.4) yields

(SE,F + SE+,F ) (PExc)F =

[
0

σc, Fxc, F

] } F \ vertices of F,
} vertices of F,
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from which it follows that

(SE,F + SE+,F ) (PExc)F = 0 on F.

Again, the fact that SE,F + SE+,F and SE,F have the same null-space implies that

SE,F (PExc)F = 0 on F.

This shows that (PExc)F is a restriction of a null-vector of AE on F . Assumption 2.1
and the additional assumption we have made that every vector in the null-space of
AE restricted to a face is uniquely determined by its vertex values on that face then
imply that (PExc)∂E is the restriction of a null-vector of AE on ∂E. This together
with the fact that AE (PExc) = 0 in the interior of E finally show that

AE (PExc) = 0 on E.

This completes the proof that PExc is in the null-space of AE , i.e., that xc is in
the null-space of Ac

Ec
. The converse is also true. Namely, Ac

Ec
xc = 0 implies that

(PExc)
TAEPExc = 0, and since AE is symmetric positive semidefinite, one gets

that AEPExc = 0 or that PExc belongs to the null-space of AE . Therefore, xc =
PExc|vertices of E belongs to the null-space of the Schur complement Sc of AE .

We then have the following global estimate by summing up the local estimates
over the individual agglomerated elements.

Theorem 2.6. The compatible local interpolation mapping P = PE is approxi-
mately harmonic in the sense that its norm in the energy inner product is bounded,
i.e.,

vT
c Acvc = (Pvc)

TA(Pvc)
≤∑

E

ηE inf
vE |Dc∩E=vc

vT
EAEvE

≤ η inf
v|Dc

=vc

vTAv.

The exact harmonic mapping corresponds to the best constant η = 1. As shown in
Lemma 2.5, η = maxE∈E ηE, and thus the individual ηE can be estimated locally. With
this result, a classical two-level Gauss–Seidel iteration (see, e.g., Bank and Dupont [3]
or Bank [2]) will have a convergence factor bounded by γ2 = 1− 1

η .
Remark 2.4. Note that the proof of Theorem 2.6 does not require uniqueness

of the minimizers (hence of P ). Note, however, that we assumed uniqueness on the
faces (see Lemma 2.5). Hence it applies to element matrices coming from 2D and 3D
elasticity. If one assumes a little more (see Assumption 2.2) the uniqueness of P (or
of the minimizers) is guaranteed. Namely, one may assume the following.

Assumption 2.2. If dc is a dof at a vertex and E is an agglomerated element
containing that vertex, the only vector in the null-space of AE and vanishing at dc is
the zero vector.

For the model case of 2D and 3D second-order scalar elliptic equations (of the form
Lu ≡ −div a∇u = f), this assumption holds. However, it may not hold for systems of
PDEs. (It is not true for elasticity problems, for example.) If Assumption 2.2 holds,
PE is defined uniquely at the interior of N(d) (edge, face, or agglomerated element
E) based on a Schur complement of AΩ(d) (to N(d)) by harmonically extending the
values from the boundary of N(d) into its interior. In particular, one has (see (2.3))
that for each E (2.6) holds, wF = PEwc|F , for any face (or edge) F ⊂ E:

wT
c A

c
Ewc = inf

vE |F =wF , for all F⊂E
vT
EAEvE .(2.6)
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Remark 2.5. The constants ηE in Lemma 2.5 are computable and can be used
as local measures for interpolation quality in the sense that smaller ηE implies better
interpolation. Theorem 2.6 shows that the local measures imply the approximate
harmonic property of P . More details on how to compute measures of interpolation
quality and their relation with other local constants are found in section 4.

3. Energy minimization properties of coarse basis functions. With the
local interpolation operators defined, one can construct a coarse grid basis function vd
for each d ∈ Dc as follows. Define the coarse grid vector vc

d that is one at d and zero
elsewhere, and define vd as this vector interpolated to the fine grid (i.e., vd = Pvc

d). It
is clear then that it will be zero outside the neighborhood Ω(d) = ∪p

i=1Ei of the given
dof d. In this way, vd can be viewed as a basis vector (function) of the interpolated
coarse space. Using finite element terminology, one may also say that vd is a fine grid
vector representation of a coarse-grid basis function.

Lemma 3.1. For the model problem of finite element matrices (before imposing
Dirichlet boundary conditions) coming from second-order scalar elliptic problems (2D
or 3D), the {vd} provide the partition of unity, i.e.,

∑
d∈Dc

vd =

 1
...
1

 .(3.1)

Proof. In the case of finite element matrices coming from 2D (or 3D) second-order
scalar elliptic problems, constant vectors are in the null-space of the element matrices.

By Remark 2.2, if vc =

[
1

.

.

.
1

]
∈ Rnc , then v = Pvc =

[
1

.

.

.
1

]
∈ Rn. This holds since

vE = PEvc, Ec
for each coarse element Ec (or agglomerated element E). This, in

particular, implies that
∑

d∈Dc
vd =

[
1

.

.

.
1

]
∈ Rn.

Corollary 3.2. Consider the model case of finite element matrices (before im-
posing Dirichlet boundary conditions) coming from second-order scalar elliptic prob-
lems (2D or 3D) on quasi-uniform triangulation. Let {vd} be the set of basis functions
generated by the local interpolation operators. Let {wd} be any other potential set of
local basis functions, i.e., a basis function exists for each d ∈ Dc with wd(d) = 1 and
wd = 0 outside of the neighborhood Ω(d). Then the following energy minimization
property of {vd} holds: ∑

d∈Dc

vT
d Avd ≤ C

∑
d∈Dc

inf
wd

wT
d Awd.(3.2)

Proof. Applying the approximate harmonic property of PE for each agglomerated
element E (Lemma 2.5), one ends up with the estimate

(vd|E)TAE(vd|E) ≤ ηE inf
wE : w|vertices of E

=vd|vertices of E

wT
EAEwE .

Summing up over the agglomerated elements E : E ⊂ Ω(d), where Ω(d) is the union
of all agglomerated elements that contain the vertex d (note that vd is zero outside
Ω(d)), one ends up with the global estimate

vT
d Avd ≤ η inf

wd: wd|Dc
=vd|Dc

wT
d AΩ(d)wd, η = max

E
ηE .
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Note that wd = 1 at the vertex d and is zero at the remaining vertices, and it is also
zero outside Ω(d), i.e., it is locally supported.

Finally, summing over all d ∈ Dc, one ends up with the desired estimate∑
d∈Dc

vT
d Avd ≤ C

∑
d∈Dc

inf
wd: wd|Dc

=vd|Dc

wT
d AΩ(d)wd

= C
∑
d∈Dc

inf
wd: wd|Dc

=vd|Dc

wT
d Awd.

Remark 3.1. Theorem 3.2 shows, for the model case of finite element matrices
coming from second-order scalar elliptic equations as well as in the elasticity, that
the coarse basis functions corresponding to the coefficient vectors vd solve the energy
minimization functional as defined inWan, Chan, and Smith [17] up to a multiplicative
constant. Fast algorithms to solve the problem of the energy minimization functional
are proposed and analyzed in Mandel, Brezina, and Vanek [12].

Remark 3.2. For finite element matrices coming from 2D and 3D second-order
scalar elliptic problems on quasi-uniform triangulation, the coarse space produced by
the above algorithm also admits a weak approximation property (or, equivalently,
provides partition of unity—see Lemma 3.1 and also estimate (4.2)) since the element
matrices contain the constants in their null-space. Therefore, the constant is exactly
interpolated from the vertices of the agglomerated elements as the same constant on
the rest of the agglomerated element. That is, with the above minimization property,
the AMGe method can actually become an optimal- (or almost optimal) order MG
method if one can control the local constants ηE from Lemma 2.5 which depend on the
way we agglomerate the elements at every coarsening step. If η gets large, a potential
remedy might be the algebraic multilevel iteration (AMLI) stabilization procedure
(cf. Vassilevski [16]) which is like the W-cycle or even more cycles. Approaches
to rigorously study the convergence of the underlined AMG method can draw on
the existing analytical tools for geometric MG convergence theory for finite element
problems (see, e.g., the book by Bramble [4]). In the present paper we do not deal
with multilevel convergence results.

Remark 3.3. One can actually apply the same interpolation procedure on ag-
glomerated elements using it recursively to fine-grid element matrices coming from a
nonsymmetric elliptic operator like convection-diffusion, e.g., Lu ≡ −div(ε∇u)+b·∇u.
In Figures 2 and 3 a coarse basis function is shown (face and rotated) using four levels
of coarsening procedure for a constant convection field b1 = 1, b2 = −0.5, and ε = 0.1.
Note also that in this case of the convection-diffusion operator the basis functions
computed on the coarse levels by the proposed AMGe method will provide a partition
of unity (as in the symmetric operator case), and hence the coarse spaces will admit
a certain weak approximation property. The same applies for the so-called streamline
diffusion operator Lδu ≡ −div((ε+ δb bT )∇u) + b · ∇u, where δ is a mesh-dependent
parameter.

Remark 3.4. We finally remark that the presented AMGe method can be used in
the so-called “homogenization” procedures to generate averaged coarse problems from
problems on computationally unfeasible highly refined meshes and possibly with os-
cillatory coefficients (cf., e.g., [11] and references therein; see also [10]). The difference
that we see here is that our coarsening procedure is local. We require the solution of
small local problems (involving a few elements) rather than large subdomain solves
in order to compute the effective coarse grid basis functions (or coarse-grid element
matrices).



AMGe BASED ON ELEMENT AGGLOMERATION 121

0 2 4 6 8 10 12 14 16 18

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1

Fig. 2. AMGe constructed “minimum energy” coarse basis function for convection-diffusion
operator.

4. Algorithms for element agglomeration. This section introduces the al-
gorithm we have used in selecting the coarse grid agglomerates. The algorithm relies
of the faces and edges of the original elements {e}; to simplify the discussion, we will
focus mainly on 2D elements (i.e., having faces and vertices only). The method is
based on the face-face graph of the fine grid elements (i.e., face f1 and f2 are neighbors
if they share a common vertex) and uses an integer weight w(f) for each face f . The
eliminated faces f will have a weight w(f) = −1.

Algorithm 4.1 (element agglomeration based on the face-face graph).

• initiate. Set w(f) = 0 for all faces f ;
• global search. Find a face f with maximal w(f); set E = ∅;

1. Set E = E∪e1∪e2, where e1∩e2 = f , and set wmax = w(f), w(f) = −1;
2. Increment w(f1) = w(f1) + 1 for all faces f1 such that w(f1) �= −1 and
f1 is a neighbor of f ;

3. Increment w(f2) = w(f2) + 1 for all faces f2 such that w(f2) �= −1, f2
is a neighbor of f , and f2 and f are faces of a common element;

4. From the neighbors of f , choose a face g with a maximal w(g); if w(g) ≥
wmax, set f = g, and go to step (1);

5. If all neighbors of f have smaller weight than wmax, the agglomerated
element E is complete; set w(g) = −1 for all faces of the elements e
contained in E; go to step global search;

This algorithm tends to produce nicely matched agglomerated elements and pro-
duces standard multigrid coarsening (up to boundary effects) for structured grid
problems using linear or bilinear elements. See Figures 4 and 5 for the results of
this procedure applied to a uniform triangular mesh after one and two agglomeration
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Fig. 3. AMGe constructed “minimum energy” coarse basis function for convection-diffusion
operator, rotated.

steps, respectively. The setup cost of the algorithm is linear, i.e., proportional to the
total number of dofs. The algorithm is easily implemented using, for example, double
linked lists.

Figures 6 and 7 show the results of the algorithm for several unstructured prob-
lems. Figures 8, 9, 10, and 11, show fine unstructured grids using triangular elements,
the agglomerated elements are shown in Figures 12, 13, 14, and 15 respectively. The
latter are the actual grids on which the first set of numerical tests was performed.

In three dimensions one has the opportunity to introduce edges. Then one may
construct more refined agglomeration algorithms that exploit this additional topo-
logical information, namely, the edge-edge and edge-face graphs. This information,
however, has not been utilized in the present paper.

It is important to note that the above algorithm does not take into account any
matrix entries while agglomerating the elements. For structured grid problems with
anisotropy, it will produce full-coarsening. To produce semicoarsening for such prob-
lems, one can introduce barriers. This can be implemented by assigning to each face

another (binary) weight a(f) =
{

0, acceptable,
1, unacceptable. To prevent agglomeration through a

face f , one can simply set a(f) = 1, and then in step 4 of Algorithm 4.1 one searches
for a face g, a neighbor to f , which is with a maximal weight w(g), and if a(g) = 1
(i.e., unacceptable), one looks for an acceptable face ga (neighbor to f) such that
w(ga) = w(g). If such a face does not exist, the agglomeration step is terminated and
the agglomerated element E is ready.

The way we have put barriers on the faces is based on the element matrices;
namely, given a face f = e1 ∩ e2, assemble Ae1∪e2 and ask if the dofs on f can be
well interpolated from the rest of the dofs in e1 ∪ e2. If the resulting measure of
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Fig. 4. Agglomerated elements for structured triangular mesh: One step of agglomeration.

interpolation quality is reasonable, we say that the face f is acceptable; otherwise,
we label f as unacceptable by initializing a(f) = 1 to prevent agglomeration of e1
and e2. To implement this approach, one must be able to access the quality of the
interpolation for the dofs on f . A measure of interpolation quality was proposed in
[7]. In our setting, it can be reformulated as follows. Given the interpolation mapping
P defined by interpolating dofs on f from the rest of the dofs in e1 ∪ e2, define the
quadratic form (or matrix) Wff for vectors on f by

vT
fWffvf = inf

vc

(v + Pvc)
TAe1∪e2(v + Pvc); v =

[
vf

0

] }dofs on f,
}e1 ∪ e2 \ f.

Then the measure of interpolation quality (denoted by M1 in [7]) is

mP =
1

λmin[D
−1
ffWff ]

,(4.1)

where Dff is, for example, the diagonal of Ae1∪e2 restricted to f . Small mP indicates
good quality interpolation; interpolation well approximates functions with low energy.
In finite element notation, smallmP means that the functions vc from the coarse space
can approximate well the fine-grid functions v in a weighted L2-norm ‖.‖0. To show
this, let m be a bound such that

inf
vc

‖v − vc‖2
0, e1∪e2 ≤ m ae1∪e2(v, v) for all v : v|Dc

= vc|Dc
.(4.2)

This is equivalent (letting v = vf + vc above) to

‖vf‖2
0, e1∪e2 ≤ m inf

vc

ae1∪e2(vf + vc, vf + vc) for all vf : vf |Dc
= 0.
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Fig. 5. Agglomerated elements for structured triangular mesh: Two steps of agglomeration.

In vector notation, this becomes

(vf )
TDffvf ≤ m inf

vc

(v + Pvc)
TAe1∪e2(v + Pvc) for all v =

[
vf

0

]
= m (vf )

TWffvf , for all vf .

This, with the best choice of m, leads to the definition (4.1) of the measure mP . It is
clear, from (4.2), that smaller mP corresponds to better interpolation quality.

Remark 4.1. One can actually compute the minimum

vT
fWffvf = min

vc

(v + Pvc)
TAe1∪e2(v + Pvc), v =

[
vf

0

] } dofs on f,
} (e1 ∪ e2) \ f.

One has, with A := Ae1∪e2 and vc := tvc for any t ∈ R,

(v + tPvc)
TA(v + tPvc) = vTAv + 2tvTAPvc + t

2(Pvc)
TAPvc.

The minimum with respect to t is achieved for t = − vTAPvc

(Pvc)TAPvc
and equals

vTAv − (vTAPvc)
2

(Pvc)TAPvc
.

Hence,

vT
fWffvf = min

vc

(
vT
f Affvf − (vTAPvc)

2

(Pvc)TAPvc

)
, v =

[
vf

0

]
.
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Fig. 6. Agglomerated elements: Rectangular domain with unstructured triangular elements.

In particular, vT
fWffvf ≤ vT

f Affvf . Here, Aff represents the f -f block of A :=
Ae1∪e2 (see (4.3) below). Note that if there is a vc such that (APvc)|f = 0, then

vT
fWffvf = vT

f Affvf . The latter is true also for the so-called “optimal” P , i.e., such

that P = −A−1
ffAfc, where Ae1∪e2 is partitioned as follows:

Ae1∪e2 =

[
Aff Afc

Acf Acc

] } dofs on f,
} (e1 ∪ e2) \ f.(4.3)

In that case, mP = 1

λmin[D
−1
ff Aff ]

.

Remark 4.2. Note that if instead of Dff one uses in (4.1) the principal submatrix
Aff of A corresponding to the fine dofs that are not coarse, then mP = 1

1−γ2 , where

γ ∈ [0, 1) stands for the cosine of the abstract angle between the coarse space Vc =
{vc = Pvc} and its hierarchical complement Vf = {vf = [vf

0 ]}. The angle is measured
in the energy inner product, i.e.,

(vf )TAe1∪e2v
c ≤ γ

√
(vf )TAe1∪e2v

f

√
(vc)TAe1∪e2v

c for all vf ∈ Vf , vc ∈ Vc.

For a proof of the relation mP = 1
1−γ2 , see, e.g., Vassilevski [16].

Instead of mP one can use γ as a measure of the interpolation quality. Then small
γ will correspond to small mP and hence to good quality interpolation, whereas γ
close to one will imply large mP and hence poor quality interpolation.

In following example, we will use γ to define a measure for strength on connections
between neighboring elements and thus label faces as acceptable or unacceptable.
Consider two fine elements e1 and e2 sharing a face f as shown in Figure 16. Let iF2 be
an interpolation rule for dof x3 from x1 and x5, and let iF1 be an interpolation rule for
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Fig. 7. Agglomerated elements: Elliptical domain with triangular elements.

Fig. 8. Fine elements: Rectangular domain with 48 unstructured triangular elements.

dof x4 from x2 and x6; these could be constructed as proposed in the previous section.
For 2D scalar elliptic problems with constant coefficients, these are linear interpolants
along the faces F1 and F2 treating x1, x2, x5, and x6 as coarse-grid nodes and x3
and x4 as complementary to the coarse-grid, fine-grid nodes. Then, given a coarse
function vc defined at the nodes x1, x2, x5, and x6, the mapping P f

c vc = { iF1
vc, x=x4,

iF2
vc, x=x3

defines a coarse-to-fine prolongation operator.

Let E = e1 ∪ e2, and let AE be the assembled matrix corresponding to E. Given
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Fig. 9. Fine elements: Rectangular domain with 1001 unstructured triangular elements.

Fig. 10. Fine elements: Rectangular domain with 4016 unstructured triangular elements.

a coarse-grid vector vc, let v̂c = P
f
c vc be its representation on the fine-grid. Then the

local fine-grid space is decomposed as P f
c vc ⊕ v0f , where v0f are the fine-grid functions

which vanish on the coarse-grid. As mentioned, the cosine γ ∈ [0, 1) of the angle
between these components can be used to measure a strength of connection between
e1 and e2 with respect to the given matrix AE (or pair of element matrices Ae1 and
Ae2 that correspond to the pair of elements e1 and e2). Recall that the constant γ is
defined as the best constant in the strengthened Cauchy inequality

aE(v̂c, v
0
f ) ≤ γ

√
aE(v̂c, v̂c)

√
aE(v0f , v

0
f ) for all v̂c, v

0
f .(4.4)

To write this inequality in matrix-vector notation, let

P =

[[
I
0

]
, P f

c

]
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Fig. 11. Fine elements: Rectangular domain with 16000 unstructured triangular elements.

Fig. 12. Agglomerated elements: Rectangular domain with unstructured triangular elements.

and ÂE = PTAEP . Consider the following two-by-two blocking of ÂE :

ÂE =

[
AE; ff ÂE; fc

ÂE; cf AE; cc

]
} complementary fine-grid nodes; i.e., x3, x4,
} coarse nodes; i.e., x1, x2, x5, x6.

Note that AE; cc is the resulting coarse matrix corresponding to E. Then the strength-
ened Cauchy inequality (4.4) reads

vT
c ÂE; cfv

0
f ≤ γ

√
vT
c AE; ccvc

√
v0
f
T
AE; ffv0

f for all vc, v
0
f .

A way to compute γ is to find the largest eigenvalue m = λmax ≥ 1 of the generalized
eigenvalue problem

AE, ccq = λSE, fq,
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Fig. 13. Agglomerated elements: Rectangular domain with unstructured triangular elements.

Fig. 14. Agglomerated elements: Rectangular domain with unstructured triangular elements.

where SE, f is the Schur complement of ÂE on f , i.e.,

SE, f = AE, cc − ÂE; cf (AE; ff )
−1
ÂE; fc.

Then γ =
√
1− 1

m .

Definition 4.1 (strongly connected elements). We call e1 and e2 strongly con-
nected if γ is close to zero, i.e., when the resulting local coarse space is almost or-
thogonal to its complementary (the so-called two-level hierarchical complementary)
space.

Algorithm 4.1 can be modified to agglomerate only strongly connected elements.
One would set a threshold α and label a face f unacceptable if γ > α by initializing
a(f) = 1.
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Fig. 15. Agglomerated elements: Rectangular domain with unstructured triangular elements.
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Fig. 16. Neighboring elements e1 and e2 with a common face f = {x3, x4}; the nodes x1, x2, x5,
and x6 are viewed as coarse-grid nodes.

4.1. Examples of γ. We conclude this section with examples showing that this
definition of strongly connected elements can lead to the correct semicoarsening for
anisotropic problems. Consider the model second-order elliptic bilinear form, which,
restricted to an element e, reads

ae(ϕ,ψ) =

∫
e

(
∂ϕ

∂x

∂ψ

∂x
+
∂ϕ

∂y

∂ψ

∂y

)
dx dy.(4.5)

Consider two vertically adjacent rectangular elements (see Figure 17) and bilinear test
functions. Consider the following cases.

(a) Anisotropic elements hx < hy; hx = 0.1hy, γ = 0.8649; hx = 0.01hy, γ =
0.8660. These values of γ indicate that the elements are weakly connected
and one should not agglomerate them.

(b) Anisotropic elements hx > hy; hx = 10hy, γ = 0.1698; hx = 100hy, γ =
0.0173. This example shows that since γ is close to zero, the elements are
strongly connected, and hence one should agglomerate this pair of elements.
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Fig. 17. Neighboring elements e1 and e2; (a) hx < hy, (b) hx > hy.

(c) For comparison, if hx = hy, γ = 0.7746 (or γ2 = 3
5 ).

Thus, this measure correctly leads to coarsening only in the direction of small
mesh size.

5. Numerical experiments. In this section we present some preliminary nu-
merical results that show the potential of the proposed element agglomeration AMGe
method.

We have tested the two-grid method with the coarse-grid obtained using the
agglomeration algorithm described in section 4. After the coarse dofs were selected the
interpolation mapping was constructed as described in section 2. We used one forward
Gauss–Seidel iteration as a presmoother and one backward Gauss–Seidel iteration for
a postsmoothing. The stopping criterion was a relative reduction of the residual
.2-norm by a factor of 10−6.

We tested two sets of problems.
• The Poisson equation discretized on a square domain on four “unstructured”
rectangular grids are shown in Figures 8, 9, 10, and 11, and the respective
grids with agglomerated elements are shown in Figure 12, 13, 14, and 15.
Dirichlet boundary conditions were imposed, and the results are collected in
Table 1.

• The elasticity equation which comes from minimizing the quadratic functional
discretized with square bilinear elements.

∫
Ω

[
1 + ν

2
(∂xu+ ∂yv)

2 +
1− ν
2

(∂xu− ∂yv)2 + 1− ν
2

(∂yu+ ∂xv)
2

]
dxdy.

(5.1)
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Table 1
Two-grid convergence results; unstructured triangular grid; Laplace operator; Gauss–Seidel

smoother.

Grid # 1 2 3 4

# fine elements 48 1 001 4 016 16 016
# coarse elements 20 242 1 016 3 859

# fine dof 35 523 2 085 8 095
# coarse dof 27 281 1 083 3 515
# iterations 7 9 8 8

� 0.159 0.320 0.256 0.260

Table 2
Two-grid convergence results; structured rectangular grid; elasticity operator; Gauss–Seidel

smoother.

Grid # 1 2 3 4

# fine elements 400 900 1600 2500
# coarse elements 118 253 438 673

# fine dof 882 1922 3362 5202
# coarse dof 314 624 1034 1544
# iterations 9 9 9 9

� 0.251 0.245 0.254 0.248

Here ν = 1
3 . Again, Dirichlet boundary conditions were imposed, and these

results are in Table 2.
One notices the similar convergence factors 0 and the number of iterations for

Poisson and elasticity problems.
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