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Preface

Finite and boundary element methods belong to the most used numerical dis-
cretization methods for the approximate solution of elliptic boundary value
problems. Finite element methods (FEM) are based on a variational formu-
lation of the partial differential equation to be solved. The definition of a
conforming finite dimensional trial space requires an appropriate decomposi-
tion of the computational domain into finite elements. The advantage of using
finite element methods is their almost universal applicability, e.g. when con-
sidering nonlinear partial differential equations. Contrary, the use of boundary
element methods (BEM) requires the explicit knowledge of a fundamental so-
lution, which allows the transformation of the partial differential equation to a
boundary integral equation to be solved. The approximate solution then only
requires a decomposition of the boundary into boundary elements. Bound-
ary element methods are often used to solve partial differential equations
with (piecewise) constant coefficients, and to find solutions of boundary value
problems in exterior unbounded domains. In addition, direct boundary el-
ement methods provide a direct computation of the complete Cauchy data
which are the real target functions in many applications. In finite element
methods, the Cauchy data can be computed by using Lagrange multipliers
and by solving related saddle point problems. By combining both discretiza-
tion methods it is possible to profit from the advantages of both methods.

Although the aim of this book is to give a unified introduction into fi-
nite and boundary element methods, the main focus of the presentation is on
the numerical analysis of boundary integral equation methods. Therefore, we
only consider some linear model problems such as the potential equation, the
system of linear elasticity, the Stokes system, and the Helmholtz equation.
When considering the above mentioned elliptic boundary value problems it is
possible to describe and to analyze finite and boundary element methods in
a unified manner. After the description of the model problems, we introduce
the function spaces which are needed later. Then we discuss variational meth-
ods for the solution of operator equations with and without side conditions. In
particular, this also includes the formulation of saddle point problems by using
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Lagrange multipliers. The variational formulation of boundary value problems
is the basis of finite element methods, but on the other hand, domain varia-
tional methods are also needed in the analysis of boundary integral operators.
After the computation of fundamental solutions we define certain boundary
integral operators, and analyze their mapping properties such as bounded-
ness and ellipticity. For the solution of different boundary value problems we
then describe and analyze different boundary integral equations to find the
complete Cauchy data. Numerical discretization methods are first formulated
and investigated in a more abstract setting. Afterwards, appropriate finite
dimensional trial spaces are constructed, and corresponding approximation
properties are given. For the solution of mixed boundary value problems we
then discuss different finite and boundary element methods. In particular, we
investigate the properties of the associated linear systems of algebraic equa-
tions. For this, we also describe appropriate preconditioned iterative solution
strategies where the proposed preconditioning techniques involves both the
preconditioning with integral operators of the opposite order, and a hierarchi-
cal multilevel preconditioner. Since the Galerkin discretization of boundary
integral operators leads to dense stiffness matrices, fast boundary element
methods are used to obtain an almost optimal complexity of storage and of
matrix by vector multiplications. Finally, we describe domain decomposition
methods to handle partial differential equations with jumping coefficients, and
to couple and parallelize different discretization techniques such as finite and
boundary element methods.

Boundary element methods are a well established numerical method for
elliptic boundary value problems as discussed in this textbook. For the sake
of simplicity in the presentation, we only consider the case of linear and self–
adjoint partial differential equations. For more general partial differential op-
erators one has to consider the fundamental solution of the formally adjoint
operator. While the existence of fundamental solutions can be ensured for a
large class of partial differential operators their explicit knowledge is manda-
tory for a numerical realization. For nonlinear partial differential equations
there also exist different approaches to formulate boundary integral equation
methods which are often based on the use of volume potentials to cover the
nonlinear terms.

While there exists a rather huge number of textbooks on finite element
methods, e.g. [5, 21, 31, 41, 57] just to mention a few of them, much less
is available on boundary integral and boundary element methods. For the
analysis of boundary integral operators related to elliptic partial differential
equations we refer to [3, 60, 81, 88, 102, 103] while for the numerical analysis
of boundary element methods we mention [39, 124, 126, 135]. In addition, the
references [9, 15, 19, 30, 61, 77] are on practical aspects of the use of boundary
element methods in engineering. In [74, 98, 125, 158] one may find recent
results on the use of advanced boundary element algorithms. For a detailed
description of fast boundary element methods starting from the basic ideas
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and proceeding to their practical realization see [117] where also numerous
examples are given.

Since the aim of this textbook is to give a unified introduction into finite
and boundary element methods, not all topics of interest can be discussed.
For a further reading we refer, e.g., to [51, 130] for hp finite element methods,
to [2, 8, 10, 153] for a posteriori error estimators and adaptive finite element
methods, and to [24, 69] for multigrid methods. In the case of boundary el-
ement methods we refer, e.g., to [17, 99, 100, 131, 146] for hp methods, to
[37, 38, 56, 128, 129] for a posteriori error estimators and adaptive methods,
and to [96, 111, 147] for multigrid and multilevel methods. Within this text-
book we also do not discuss the matter of numerical integration, for this we
refer to [55, 67, 87, 93, 115, 123, 132, 148] and the references given therein.

This textbook is based on lectures on the numerical solution of elliptic
partial differential equations which I taught at the University of Stuttgart, at
the Technical University of Chemnitz, at the Johannes Kepler University of
Linz, and at Graz University of Technology. Chapters 1–4, 8, 9, 11, and 13 can
be used for an introductory lecture on finite element methods, while chapters
1–8, 10, 12, and 13 are on the basics of the boundary element method. Chapter
14 gives an overview on fast boundary element methods. Besides the use as
a complementary textbook it is also recommended for self–study for students
and researchers, both in applied mathematics, in scientific computing, and in
computational engineering.

It is my great pleasure to thank W. L. Wendland for his encouragement
and support over the years. Many results of our joint work influenced this
book. Special thanks go to J. Breuer and G. Of, who read the original German
manuscript and made valuable comments and corrections. This text book was
originally published in a German edition [140]. Once again I would like to
thank J. Weiss and B. G. Teubner for the fruitful cooperation.

When preparing the English translation I got many responses, suggestions
and hints on the German edition. I would like to thank all who helped to
improve the book. In particular I thank G. Of, S. Engleder and D. Copeland
who read the English manuscript. Finally I thank Springer New York for the
cooperation and the patience when preparing this book.

Graz, August 2007 Olaf Steinbach
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1

Boundary Value Problems

In this chapter we describe some stationary boundary value problems with
self–adjoint partial differential operators of second order. As simple model
problems we consider the scalar potential equation and the Helmholtz equa-
tion, while for a system we consider the equations of linear elasticity and, as
for incompressible materials, the Stokes system.

1.1 Potential Equation

Let Ω ⊂ R
d (d = 2, 3) be a bounded and simply connected domain with

sufficiently smooth boundary Γ = ∂Ω, and n(x) is the exterior unit normal
vector which is defined almost everywhere for x ∈ Γ . For x ∈ Ω we consider a
self–adjoint linear partial differential operator of second order which is applied
to a scalar real valued function u,

(Lu)(x) := −
d∑

i,j=1

∂

∂xj

[
aji(x)

∂

∂xi
u(x)

]
+ a0(x)u(x) . (1.1)

The coefficient functions aji(x) are assumed to be sufficient smooth satisfying
aij(x) = aji(x) for all i, j = 1, . . . , d, x ∈ Ω. Partial differential operators
of the form (1.1) are used to model, for example, the static heat transfer,
electrostatic potentials, or ideal fluids.

For a classification [79] of scalar partial differential operators L we consider
the real eigenvalues λk(x) of the symmetric coefficient matrix

A(x) = (aij(x))d
i,j=1 , x ∈ Ω.

The partial differential operator L is called elliptic at x ∈ Ω iff λk(x) > 0 is
satisfied for all k = 1, . . . , d. If this condition is satisfied for all x ∈ Ω, then L
is elliptic in Ω. If there exists a uniform lower bound λ0 > 0 satisfying

λk(x) ≥ λ0 for k = 1, . . . , d and for all x ∈ Ω, (1.2)

the partial differential operator L is called uniformly elliptic in Ω.
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The starting point for what follows is the well known theorem of Gauss
and Ostrogradski, i.e.∫

Ω

∂

∂xi
f(x)dx =

∫
Γ

γint
0 f(x)ni(x)dsx, i = 1, . . . , d,

where
γint
0 f(x) := lim

Ω�x̃→x∈Γ
f(x̃) for x ∈ Γ = ∂Ω (1.3)

is the interior boundary trace of a given function f(x), x ∈ Ω.
For sufficiently smooth functions u, v we consider f(x) = u(x)v(x) to

obtain the formula of integration by parts,∫
Ω

v(x)
∂

∂xi
u(x)dx =

∫
Γ

γint
0 u(x)γint

0 v(x)ni(x)dsx−
∫
Ω

u(x)
∂

∂xi
v(x)dx. (1.4)

When multiplying the partial differential operator (1.1) with a sufficiently
smooth test function v, and integrating the result over Ω, this gives∫

Ω

(Lu)(x)v(x)dx = −
d∑

i,j=1

∫
Ω

∂

∂xj

[
aji(x)

∂

∂xi
u(x)

]
v(x)dx .

Applying integration by parts, see (1.4), we obtain∫
Ω

(Lu)(x)v(x)dx =
d∑

i,j=1

∫
Ω

aji(x)
∂

∂xi
u(x)

∂

∂xj
v(x)dx

−
d∑

i,j=1

∫
Γ

nj(x)γint
0

[
aji(x)

∂

∂xi
u(x)

]
γint
0 v(x)dsx,

and therefore Green’s first formula

a(u, v) =
∫
Ω

(Lu)(x)v(x)dx +
∫
Γ

γint
1 u(x)γint

0 v(x)dsx (1.5)

by using the symmetric bilinear form

a(u, v) :=
d∑

i,j=1

∫
Ω

aji(x)
∂

∂xi
u(x)

∂

∂xj
v(x)dx (1.6)

as well as the interior conormal derivative

γint
1 u(x) := lim

Ω�x̃→x∈Γ

⎡⎣ d∑
i,j=1

nj(x)aji(x̃)
∂

∂x̃i
u(x̃)

⎤⎦ for x ∈ Γ. (1.7)



1.1 Potential Equation 3

As in (1.5) we find, by exchanging the role of u and v, the analogue Green’s
formula

a(u, v) = a(v, u) =
∫
Ω

(Lv)(x)u(x)dx +
∫
Γ

γint
1 v(x)γint

0 u(x)dsx .

Combining this with (1.5) we therefore obtain Green’s second formula∫
Ω

(Lu)(x)v(x)dx +
∫
Γ

γint
1 u(x)γint

0 v(x)dsx (1.8)

=
∫
Ω

(Lv)(x)u(x)dx +
∫
Γ

γint
1 v(x)γint

0 u(x)dsx

which holds for arbitrary but sufficiently smooth functions u and v.

Example 1.1. For the special choice aij(x) = δij where δij is the Kronecker
delta with δij = 1 for i = j and δij = 0 for i �= j, the partial differential
operator (1.1) is the Laplace operator

(Lu)(x) = −∆u(x) := −
d∑

i=1

∂2

∂x2
i

u(x) for x ∈ R
d. (1.9)

The associated conormal derivative (1.7) coincides with the normal derivative

γint
1 u(x) =

∂

∂nx
u(x) := n(x) · ∇u(x) for x ∈ Γ.

Let Γ = ΓD ∪ ΓN ∪ ΓR be a disjoint decomposition of the boundary
Γ = ∂Ω. The boundary value problem is to find a scalar function satisfying
the partial differential equation

(Lu)(x) = f(x) for x ∈ Ω, (1.10)

the Dirichlet boundary conditions

γint
0 u(x) = gD(x) for x ∈ ΓD, (1.11)

the Neumann boundary conditions

γint
1 u(x) = gN (x) for x ∈ ΓN , (1.12)

and the Robin boundary conditions

γint
1 u(x) + κ(x)γint

0 u(x) = gR(x) for x ∈ ΓR (1.13)

where f , gD, gN , gR, and κ are some given functions. The boundary value
problem (1.10) and (1.11) with Γ = ΓD is called a Dirichlet boundary value
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problem, while the boundary value problem (1.10) and (1.12) with Γ = ΓN is
called a Neumann boundary value problem. In the case Γ = ΓR the problem
(1.10) and (1.13) is said to be a Robin boundary value problem. In all other
cases we have to solve boundary value problems with boundary conditions of
mixed type. Note that one may also consider nonlinear Robin type boundary
conditions [119]

γint
1 u(x) + G(γint

0 u, x) = gR(x) for x ∈ ΓR

where G(v, ·) is some given function, e.g. G(v, ·) = v3 or G(v, ·) = v4.
In the classical approach, the solution of the boundary value problem

(1.10)–(1.13) has to be sufficiently differentiable, in particular we require

u ∈ C2(Ω) ∩ C1(Ω ∪ ΓN ∪ ΓR) ∩ C(Ω ∪ ΓD)

where we have to assume that the given data are sufficiently smooth. For
results on the unique solvability of boundary value problems in the classical
sense we refer, for example, to [92].

In the case of a Neumann boundary value problem (1.10) and (1.12) addi-
tional considerations are needed to investigate the solvability of the boundary
value problem. Obviously, v1(x) = 1 for x ∈ Ω is a solution of the homoge-
neous Neumann boundary value problem

(Lv1)(x) = 0 for x ∈ Ω, γint
1 v1(x) = 0 for x ∈ Γ. (1.14)

Applying Green’s second formula (1.8) we then obtain the orthogonality∫
Ω

(Lu)(x)dx +
∫
Γ

γint
1 u(x)dsx = 0 . (1.15)

When considering the Neumann boundary value problem (1.10) and (1.12),

(Lu)(x) = f(x) for x ∈ Ω, γint
1 u(x) = gN (x) for x ∈ Γ, (1.16)

and using the orthogonality (1.15) for the given data f and gN , we have to
assume the solvability condition∫

Ω

f(x)dx +
∫
Γ

gN (x)dsx = 0. (1.17)

Since there exists a non–trivial solution v1(x) = 1 for x ∈ Ω of the homoge-
neous Neumann boundary value problem (1.14), we conclude that the solution
of the Neumann boundary value problem (1.16) is only unique up to an ad-
ditive constant. Let u be a solution of (1.16). Then, for any α ∈ R we can
define

ũ(x) = u(x) + α for x ∈ Ω
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to be also a solution of the Neumann boundary value problem (1.16). The
constant α ∈ R is uniquely determined when requiring an additional scaling
condition on the solution u of (1.16), e.g.∫

Ω

u(x) dx = 0, or
∫
Γ

γint
0 u(x) dsx = 0.

1.2 Linear Elasticity

As an example for a system of partial differential equations we consider the
system of linear elasticity. For any x ∈ Ω we have to find a vector valued
function u(x) with components ui(x), i = 1, 2, 3, describing the displacements
of an elastic body where we assume a reversible, isotropic and homogeneous
material behavior. In particular, we consider the equilibrium equations

−
3∑

j=1

∂

∂xj
σij(u, x) = fi(x) for x ∈ Ω, i = 1, 2, 3. (1.18)

In (1.18), σij(u, x) are the components of the stress tensor which is linked to
the strain tensor eij(u, x) by Hooke’s law,

σij(u, x) =
Eν

(1 + ν)(1 − 2ν)
δij

3∑
k=1

ekk(u, x) +
E

1 + ν
eij(u, x) (1.19)

for x ∈ Ω, i, j = 1, 2, 3, and with the Young modulus E > 0 and with the
Poisson ratio ν ∈ (0, 1

2 ). Moreover, when assuming small deformations the
linearized strain tensor is given by

eij(u, x) =
1
2

[
∂

∂xi
uj(x) +

∂

∂xj
ui(x)

]
for x ∈ Ω, i, j = 1, 2, 3. (1.20)

Multiplying the equilibrium equations (1.18) with a test function vi, integrat-
ing over Ω, and applying integration by parts, this gives for i = 1, 2, 3∫
Ω

fi(x)vi(x)dx = −
∫
Ω

3∑
j=1

∂

∂xj
σij(u, x)vi(x)dx

=
∫
Ω

3∑
j=1

σij(u, x)
∂

∂xj
vi(x)dx −

∫
Γ

3∑
j=1

nj(x)σij(u, x)vi(x)dsx.

Taking the sum for i = 1, 2, 3 we obtain Betti’s first formula

−
∫
Ω

3∑
i,j=1

∂

∂xj
σij(u, x)vi(x)dx = a(u, v) −

∫
Γ

γint
0 v(x)�γint

1 u(x)dsx (1.21)
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with the bilinear form

a(u, v) :=
∫
Ω

3∑
i,j=1

σij(u, x)
∂

∂xj
vi(x)dx

=
∫
Ω

3∑
i,j=1

σij(u, x)
1
2

[
∂

∂xj
vi(x) +

∂

∂xi
vj(x)

]
dx

=
∫
Ω

3∑
i,j=1

σij(u, x)eij(v, x)dx, (1.22)

and with the conormal derivative

(γint
1 u)i(x) :=

3∑
j=1

σij(u, x)nj(x) for x ∈ Γ, i = 1, 2, 3. (1.23)

Inserting the strain tensor (1.20) as well as Hooke’s law (1.19) into the equi-
librium equations (1.18) we obtain a system of partial differential equations
where the unknown function is the displacement field u. First we have

3∑
k=1

ekk(u, x) =
3∑

k=1

∂

∂xk
uk(x) =: divu(x)

and therefore

σii(u, x) =
Eν

(1 + ν)(1 − 2ν)
divu(x) +

E

1 + ν

∂

∂xi
ui(x),

σij(u, x) =
E

2(1 + ν)

[
∂

∂xi
uj(x) +

∂

∂xj
ui(x)

]
for i �= j.

From this we obtain

− E

2(1 + ν)
∆ui(x) −

[
Eν

(1 + ν)(1 − 2ν)
+

E

2(1 + ν)

]
∂

∂xi
div u(x) = fi(x)

for x ∈ Ω, i = 1, 2, 3. By introducing the Lamé constants

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
(1.24)

we finally conclude the Navier system

−µ∆u(x) − (λ + µ)grad divu(x) = f(x) for x ∈ Ω. (1.25)
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The bilinear form (1.22) can be written as

a(u, v) =
3∑

i,j=1

∫
Ω

σij(u, x)eij(v, x)dx

= 2µ
∫
Ω

3∑
i,j=1

eij(u, x)eij(v, x)dx + λ

∫
Ω

divu(x) div v(x) dx (1.26)

implying the symmetry of the bilinear form a(·, ·).
The first component of the conormal derivative (1.23) is

(γint
1 u)1(x) =

3∑
j=1

σ1j(u, x)nj(x)

=
[
λ div u(x) + 2µ

∂

∂x1
u1(x)

]
n1(x) + µ

[
∂

∂x1
u2(x) +

∂

∂x2
u1(x)

]
n2(x)

+µ

[
∂

∂x1
u3(x) +

∂

∂x3
u1(x)

]
n3(x)

= λ divu(x)n1(x) + 2µ
∂

∂nx
u1(x) + µ

[
∂

∂x1
u2(x) − ∂

∂x2
u1(x)

]
n2(x)

+µ

[
∂

∂x1
u3(x) − ∂

∂x3
u1(x)

]
n3(x).

From this we obtain the following representation of the boundary stress op-
erator for x ∈ Γ ,

γint
1 u(x) = λ div u(x)n(x) + 2µ

∂

∂nx
u(x) + µ n(x) × curlu(x). (1.27)

In many applications of solid mechanics the boundary conditions (1.11) and
(1.12) are given within their components, i.e.

γint
0 ui(x) = gD,i(x) for x ∈ ΓD,i,

(γint
1 u)i(x) = gN,i(x) for x ∈ ΓN,i,

(1.28)

where Γ = ΓD,i ∪ ΓN,i for i = 1, 2, 3.
The non–trivial solutions of the homogeneous Neumann boundary value

problem

−µ∆u(x) − (λ + µ)grad divu(x) = 0 for x ∈ Ω, γint
1 u(x) = 0 for x ∈ Γ

are given by the rigid body motions vk ∈ R where

R = span

⎧⎨⎩
⎛⎝1

0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠ ,

⎛⎝ 0
0
1

⎞⎠ ,

⎛⎝−x2

x1

0

⎞⎠ ,

⎛⎝ 0
−x3

x2

⎞⎠ ,

⎛⎝ x3

0
−x1

⎞⎠⎫⎬⎭ . (1.29)
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Note that Betti’s first formula (1.21) reads

a(u, v) = −
∫
Ω

3∑
i,j=1

∂

∂xj
σij(u, x)vi(x)dx +

∫
Γ

γint
0 v(x)�γint

1 u(x)dsx,

a(v, u) = −
∫
Ω

3∑
i,j=1

∂

∂xj
σij(v, x)ui(x)dx +

∫
Γ

γint
0 u(x)�γint

1 v(x)dsx

when exchanging the role of u and v. From the symmetry of the bilinear form
a(·, ·) we then obtain Betti’s second formula

−
∫
Ω

3∑
i,j=1

∂

∂xj
σij(u, x)vi(x)dx +

∫
Γ

γint
0 v(x)�γint

1 u(x)dsx (1.30)

= −
∫
Ω

3∑
i,j=1

∂

∂xj
σij(v, x)ui(x)dx +

∫
Γ

γint
0 u(x)�γint

1 v(x)dsx.

Inserting the rigid body motions vk ∈ R into Betti’s second formula (1.30)
this gives the orthogonality

−
∫
Ω

3∑
i,j=1

∂

∂xj
σij(u, x)vk,i(x)dx +

∫
Γ

γint
0 vk(x)�γint

1 u(x)dsx = 0

for all vk ∈ R. Hence, for the solvability of the Neumann boundary value
problem

−µ∆u(x) − (λ + µ)grad divu(x) = f(x) for x ∈ Ω,

γint
1 u(x) = g

N
(x) for x ∈ Γ

we have to assume the solvability conditions∫
Ω

vk(x)�f(x)dx +
∫
Γ

γint
0 vk(x)�g

N
(x)dsx = 0 for all vk ∈ R. (1.31)

Note that the solution of the Neumann boundary value problem is only unique
up to the rigid body motions (1.29). A unique solution can be defined when
considering either nodal or scaling conditions in addition.

The second order system (1.25) of linear elasticity can also be written as
a scalar partial differential equation of fourth order. By setting

u(x) := ∆w(x) − λ + µ

λ + 2µ
grad divw(x) for x ∈ Ω (1.32)
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from the equilibrium equations (1.25) we obtain the scalar Bi–Laplace equa-
tion

−µ∆2w(x) = f(x) for x ∈ Ω. (1.33)

When considering a homogeneous partial differential equation with f ≡ 0
the solution of (1.25) can be described by setting w2 ≡ w3 ≡ 0 where the
remaining component w1 = ψ is the solution of the Bi–Laplace equation

−∆2ψ(x) = 0 for x ∈ Ω.

Then,

u1(x) := ∆ψ(x) − λ + µ

λ + 2µ
∂2

∂x2
1

ψ(x),

u2(x) := − λ + µ

λ + 2µ
∂2

∂x1∂x2
ψ(x),

u3(x) := − λ + µ

λ + 2µ
∂2

∂x1∂x3
ψ(x)

is a solution of the homogeneous system (1.25). The function ψ is known as
Airy’s stress function.

1.2.1 Plane Elasticity

To describe problems of linear elasticity in two space dimensions one may con-
sider two different approaches. In plain stress we assume that the stress tensor
depends on two space coordinates (x1, x2) only, and that the x3–coordinates
of the stress tensor disappear:

σij(x1, x2, x3) = σij(x1, x2) for i, j = 1, 2;
σ3i(x) = σi3(x) = 0 for i = 1, 2, 3.

Applying Hooke’s law (1.19) we then obtain

e3i(u, x) = ei3(u, x) = 0 for i = 1, 2 (1.34)

and
e33(u, x) = − ν

1 − ν
[e11(u, x) + e22(u, x)]. (1.35)

The resulting stress–strain relation reads

σij(u, x) =
Eν

(1 + ν)(1 − ν)
δij

2∑
k=1

ekk(u, x) +
E

1 + ν
eij(u, x)

for x ∈ Ω and i, j = 1, 2. With

ui(x1, x2, x3) = ui(x1, x2) for i = 1, 2



10 1 Boundary Value Problems

we further obtain from (1.34)

u3(x1, x2, x3) = u3(x3) .

In addition, (1.35) gives

∂

∂x3
u3(x3) = − ν

1 − ν

[
∂

∂x1
u1(x1, x2) +

∂

∂x2
u2(x1, x2)

]
,

and therefore

u3(x) = − ν

1 − ν

[
∂

∂x1
u1(x) +

∂

∂x2
u2(x)

]
x3.

To ensure compatibility with (1.34) we have to neglect terms of order O(x3)
in the definition of the strain tensor eij(u, x). By introducing the modified
Lamé constants

λ̃ =
Eν

(1 + ν)(1 − ν)
, µ̃ =

E

2(1 + ν)

we then obtain a system of partial differential equations to find the displace-
ment field (u1, u2) such that

−µ̃∆u(x) − (λ̃ + µ̃)grad divu(x) = f(x) for x ∈ Ω ⊂ R
2.

In plain strain we assume that all components eij(u, x) of the strain tensor
depend only on the space coordinates (x1, x2) and that the x3–coordinates
vanish:

eij(u, x1, x2, x3) = eij(u, x1, x2) for i, j = 1, 2;
e3i(u, x) = ei3(u, x) = 0 for i = 1, 2, 3.

For the associated displacements we then obtain

ui(x1, x2, x3) = ui(x1, x2) for i = 1, 2, u3(x) = constant,

and the stress–strain relation reads

σij(u, x) =
Eν

(1 + ν)(1 − 2ν)
δij

2∑
k=1

ekk(u, x) +
E

1 + ν
eij(u, x)

for i, j = 1, 2 yielding the equilibrium equations (1.25) to find the displacement
field (u1, u2). Obviously,

σ3i(u, x) = σi3(u, x) = 0 for i = 1, 2,

and
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σ33(u, x) =
Eν

(1 + ν)(1 − 2ν)
[e11(u, x) + e22(u, x)] .

With

σ11(u, x) + σ22(u, x) =
E

(1 + ν)(1 − 2ν)
[e11(u, x) + e22(u, x)]

we finally get
σ33(u, x) = ν [σ11(u, x) + σ22(u, x)] .

In both cases of two–dimensional plane stress and plane strain linear elasticity
models the rigid body motions are given as

R = span
{(

1
0

)
,

(
0
1

)
,

(
−x2

x1

)}
. (1.36)

For the first component of the boundary stress we obtain for x ∈ Γ

(γint
1 u)1(x) =

2∑
j=1

σ1j(u, x)nj(x)

=
[
λ div u(x) + 2µ

∂

∂x1
u1(x)

]
n1(x) + µ

[
∂

∂x1
u2(x) +

∂

∂x2
u1(x)

]
n2(x)

= λ divu(x)n1(x) + 2µ
∂

∂nx
u1(x) + µ

[
∂

∂x1
u2(x) − ∂

∂x2
u1(x)

]
n2(x),

and for the second component

(γint
1 u)2(x) = λ div u(x)n2(x) + 2µ

∂

∂nx
u2(x)

+µ

[
∂

∂x2
u1(x) − ∂

∂x1
u2(x)

]
n1(x).

If we define for a two–dimensional vector field v the rotation as

curl v =
∂

∂x1
v2(x) − ∂

∂x2
v1(x),

and if we declare

a × α := α

(
a2

−a1

)
, a ∈ R

2, α ∈ R,

we can write the boundary stress as in the representation (1.27),

γint
1 u(x) = [λ div u(x)]n(x) + 2µ

∂

∂nx
u(x) + µ n(x) × curl v(x), x ∈ Γ.
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1.2.2 Incompressible Elasticity

For d = 2, 3 we consider the system (1.25) describing the partial differential
equations of linear elasticity. Here we are interested in almost incompressible
materials, i.e. for ν → 1

2 we conclude λ → ∞. Hence we introduce

p(x) := −(λ + µ) div u(x) for x ∈ Ω

to obtain from (1.25)

−µ∆u(x) + ∇p(x) = f(x), div u(x) = − 1
λ + µ

p(x) for x ∈ Ω.

In the incompressible case ν = 1
2 this is equivalent to

−µ∆u(x) + ∇p(x) = f(x), divu(x) = 0 for x ∈ Ω (1.37)

which coincides with the Stokes system which plays an important role in fluid
mechanics.

1.3 Stokes System

When considering the Stokes system [91] we have to find a velocity field u and
the pressure p satisfying the system of partial differential equations

−µ ∆u(x) + ∇p(x) = f(x), divu(x) = 0 for x ∈ Ω ⊂ R
d (1.38)

where µ is the viscosity constant. If we assume Dirichlet boundary conditions
u(x) = g(x) for x ∈ Γ , integration by parts of the second equation gives

0 =
∫
Ω

divu(x) dx =
∫
Γ

[n(x)]�u(x)dsx =
∫
Γ

[n(x)]�g(x)dsx. (1.39)

Therefore, the given Dirichlet data g(x) have to satisfy the solvability condi-
tion (1.39.) Moreover, the pressure p is only unique up some additive constant.

When multiplying the components of the first partial differential equa-
tion in (1.38) with some test function vi, integrating over Ω, and applying
integration by parts this gives∫

Ω

fi(x)vi(x)dx = −µ

∫
Ω

∆ui(x)vi(x)dx +
∫
Ω

∂

∂xi
p(x)vi(x)dx (1.40)

= −µ

∫
Ω

∆ui(x)vi(x)dx −
∫
Ω

p(x)
∂

∂xi
vi(x)dx +

∫
Γ

p(x)ni(x)vi(x)dsx.
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Moreover we have

∂

∂xj
[eij(u, x)vi(x)] = vi(x)

∂

∂xj
eij(u, x) + eij(u, x)

∂

∂xj
vi(x),

as well as
d∑

i,j=1

eij(u, x)
∂

∂xj
vi(x) =

d∑
i,j=1

eij(u, x)eij(v, x).

For d = 3 and i = 1 we compute

3∑
j=1

∂

∂xj
e1j(u, x) =

∂

∂x1
e11(u, x) +

∂

∂x2
e12(u, x) +

∂

∂x3
e13(u, x)

=
∂2

∂x2
1

u1(x) +
1
2

∂

∂x2

[
∂

∂x1
u2(x) +

∂

∂x2
u1(x)

]
+

1
2

∂

∂x3

[
∂

∂x1
u3(x) +

∂

∂x3
u1(x)

]
=

1
2
∆u1(x) +

1
2

∂

∂x1

[
∂

∂x1
u1(x) +

∂

∂x2
u2(x) +

∂

∂x3
u3(x)

]
=

1
2
∆u1(x) +

1
2

∂

∂x1
divu(x).

Corresponding results hold for i = 2, 3 and d = 2, respectively. Then we obtain

d∑
i,j=1

∂

∂xj
[eij(u, x)vi(x)] =

d∑
i,j=1

∂

∂xj
eij(u, x)vi(x) +

d∑
i,j=1

eij(u, x)
∂

∂xj
vi(x)

=
1
2

d∑
i=1

[
∆ui(x) +

∂

∂xi
divu(x)

]
vi(x) +

d∑
i,j=1

eij(u, x)eij(v, x).

This can be rewritten as

−
d∑

i=1

∆ui(x)vi(x) = 2
d∑

i,j=1

eij(u, x)eij(v, x) − 2
d∑

i,j=1

∂

∂xj
[eij(u, x)vi(x)]

+
d∑

i=1

vi(x)
∂

∂xi
divu(x).

Taking the sum of (1.40) for i = 1, . . . , d, substituting the above results, and
applying integration by parts this gives
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Ω

v(x)�f(x)dx = −µ

∫
Ω

d∑
i=1

vi(x)∆ui(x)dx +
∫
Ω

d∑
i=1

vi(x)
∂

∂xi
p(x) dx

= 2µ
∫
Ω

d∑
i,j=1

eij(u, x)eij(v, x)dx − 2µ

∫
Ω

d∑
i,j=1

∂

∂xj
[eij(u, x)vi(x)] dx

+µ

∫
Ω

d∑
i=1

vi(x)
∂

∂xi
divu(x)dx +

∫
Ω

d∑
i=1

vi(x)
∂

∂xi
p(x) dx

= 2µ
∫
Ω

d∑
i,j=1

eij(u, x)eij(v, x)dx − 2µ

∫
Γ

d∑
i,j=1

nj(x)eij(u, x)γint
0 vi(x)dsx

−µ

∫
Ω

div u(x) div v(x) dx + µ

∫
Γ

divu(x)n(x)�γint
0 v(x)dsx

−
∫
Ω

p(x)div v(x)dx +
∫
Γ

p(x)n(x)�γint
0 v(x)dsx.

Hence we obtain Green’s first formula for the Stokes system

a(u, v) =
∫
Ω

d∑
i=1

[
−µ∆ui(x) +

∂

∂xi
p(x)

]
vi(x)dx (1.41)

+
∫
Ω

p(x)div v(x)dx +
∫
Γ

d∑
i=1

ti(u, p)vi(x)dsx

with the symmetric bilinear form

a(u, v) := 2µ
∫
Ω

d∑
i,j=1

eij(u, x)eij(v, x)dx − µ

∫
Ω

divu(x) div v(x) dx, (1.42)

and with the conormal derivative

ti(u, p) := −[p(x) + µdiv u(x)]ni(x) + 2µ
d∑

j=1

eij(u, x)nj(x)

defined for x ∈ Γ and i = 1, . . . , d. For divergence–free functions u satisfying
divu = 0 we obtain, as for the system of linear elastostatics, the representation

t(u, p) = −p(x)n(x) + 2µ
∂

∂nx
u(x) + µ n(x) × curlu(x), x ∈ Γ. (1.43)

Besides the standard boundary conditions (1.28) sliding boundary conditions
are often considered in fluid mechanics. In particular, for x ∈ ΓS we describe
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non–penetration in normal direction and no adherence in tangential direction
by the boundary conditions

n(x)�u(x) = 0, tT (x) := t(x) − [n(x)�t(x)]n(x) = 0.

1.4 Helmholtz Equation

The wave equation

1
c2

∂2

∂t2
U(x, t) = ∆U(x, t) for x ∈ R

d (d = 2, 3)

describes the wave propagation in a homogeneous, isotropic and friction–free
medium having the constant speed of sound c. Examples are acoustic scatter-
ing and sound radiation problems.

For time harmonic acoustic waves

U(x, t) = Re
(
u(x)e−iωt

)
with a frequency ω we obtain a reduced wave equation or the Helmholtz
equation

−∆u(x) − k2u(x) = 0 for x ∈ R
d (1.44)

where u is a scalar valued complex function and k = ω/c > 0 is the wave
number.

Let us first consider the Helmholtz equation (1.44) in a bounded domain
Ω ⊂ R

d,
−∆u(x) − k2u(x) = 0 for x ∈ Ω.

Multiplying this with a test function v, integrating over Ω, and applying
integration by parts, this gives Green’s first formula

a(u, v) =
∫
Ω

[−∆u(x) − k2u(x)]v(x)dx +
∫
Γ

γint
1 u(x)γint

0 v(x)dsx (1.45)

with the symmetric bilinear form

a(u, v) =
∫
Ω

∇u(x)∇v(x)dx − k2

∫
Ω

u(x)v(x)dx.

Note that γint
1 u = n(x) · ∇u(x) is the normal derivative of u in x ∈ Γ .

Exchanging the role of u and v we obtain in the same way

a(v, u) =
∫
Ω

[−∆v(x) − k2v(x)]u(x)dx +
∫
Γ

γint
1 v(x)γint

0 u(x)dsx,
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and by using the symmetry of the bilinear form a(·, ·) we conclude Green’s
second formula∫

Ω

[−∆u(x) − k2u(x)]v(x)dx +
∫
Γ

γint
1 u(x)γint

0 v(x)dsx (1.46)

=
∫
Ω

[−∆v(x) − k2v(x)]u(x)dx +
∫
Γ

γint
1 v(x)γint

0 u(x)dsx.

For any solution u of the Helmholtz equation (1.44) we find from (1.45) by
setting v = u∫

Ω

|∇u(x)|2dx − k2

∫
Ω

|u(x)|2dx =
∫
Γ

γint
1 u(x)γint

0 u(x)dsx. (1.47)

Next we consider the Helmholtz equation (1.44) in an unbounded domain,

−∆u(x) − k2u(x) = 0 for x ∈ Ωc = R
d\Ω

where we have to add the Sommerfeld radiation condition∣∣∣∣ x

|x| · ∇u(x) − iku(x)
∣∣∣∣ = O

(
1

|x|2
)

as |x| → ∞. (1.48)

For x0 ∈ Ω let BR(x0) be a ball with center x0 and radius R such that
Ω ⊂ BR(x0) is satisfied. Then, ΩR = BR(x0)\Ω is a bounded domain for
which we can write (1.47) as∫

ΩR

|∇u(x)|2dx − k2

∫
ΩR

|u(x)|2dx

= −
∫
Γ

γext
1 u(x)γext

0 u(x)dsx +
∫

∂BR(x0)

γint
1 u(x)γint

0 u(x)dsx

taking into account the opposite direction of the normal vector on Γ . This
clearly implies

Im
∫

∂BR(x0)

γint
1 u(x)γint

0 u(x)dsx = Im
∫
Γ

γext
1 u(x)γext

0 u(x)dsx = O(1).

On the other hand, from the Sommerfeld radiation condition (1.48) we also
conclude the weaker condition due to Rellich,

lim
R→∞

∫
∂BR(x0)

∣∣∣γint
1 u(x) − ikγint

0 u(x)
∣∣∣2 dsx = 0. (1.49)
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From this we find

0 = lim
R→∞

∫
∂BR(x0)

∣∣∣γint
1 u(x) − ikγint

0 u(x)
∣∣∣2 dsx

= lim
R→∞

⎡⎢⎣ ∫
∂BR(x0)

∣∣∣γint
1 u(x)

∣∣∣2 dsx + k2

∫
∂BR(x0)

∣∣∣γint
0 u(x)

∣∣∣2 dsx

−2k Im
∫

∂BR(x0)

γint
1 u(x)γint

0 u(x)dsx

⎤⎥⎦
= lim

R→∞

⎡⎢⎣ ∫
∂BR(x0)

∣∣∣γint
1 u(x)

∣∣∣2 dsx + k2

∫
∂BR(x0)

∣∣∣γint
0 u(x)

∣∣∣2 dsx

−2k Im
∫
Γ

γext
1 u(x)γext

0 u(x)dsx

⎤⎦
and therefore

2k Im
∫
Γ

γext
1 u(x)γext

0 u(x)dsx

= lim
R→∞

⎡⎢⎣ ∫
∂BR(x0)

∣∣∣γint
1 u(x)

∣∣∣2 dsx + k2

∫
∂BR(x0)

∣∣∣γint
0 u(x)

∣∣∣2 dsx

⎤⎥⎦ ≥ 0

implying

lim
R→∞

∫
∂BR(x0)

∣∣∣γint
0 u(x)

∣∣∣2 dsx = O(1)

as well as

|u(x)| = O
(

1
|x|

)
as |x| → ∞. (1.50)

1.5 Exercises

1.1 For x ∈ R
2 we consider polar coordinates

x1 = x1(r, ϕ) = r cos ϕ, x2 = x2(r, ϕ) = r sin ϕ for r > 0, ϕ ∈ [0, 2π).

Then, a given function u(x) can be written as

u(x1, x2) = u(x1(r, ϕ), x2(r, ϕ)) = ũ(r, ϕ).
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Express the gradient of ũ(r, ϕ) in terms of the gradient of u(x1, x2), i.e. find
a matrix J such that

∇(r,ϕ)ũ(r, ϕ) = J ∇xu(x).

Derive a representation of ∇xu(x) in terms of ∇(r,ϕ)ũ(r, ϕ).

1.2 Rewrite the two–dimensional Laplace operator

∆u(x) =
∂2

∂x2
1

u(x) +
∂2

∂x2
2

u(x)

when using polar coordinates.

1.3 Prove that for any α ∈ R+ and x �= 0

u(x) = ũ(r, ϕ) = rα sin(αϕ)

is a solution of the two–dimensional Laplace equation.

1.4 Rewrite the three–dimensional Laplace operator

∆u(x) =
∂2

∂x2
1

u(x) +
∂2

∂x2
2

u(x) +
∂2

∂x2
3

u(x) for x ∈ R
3

when using spherical coordinates

x1 = r cos ϕ sin ϑ, x2 = r sin ϕ sin ϑ, x3 = r cos ϑ

where r > 0, ϕ ∈ [0, 2π), ϑ ∈ [0, π].

1.5 Consider the Navier system

−µ∆u(x) − (λ + µ)grad divu(x) = f(x) for x ∈ R
d.

Determine the constant α ∈ R such that the solution of the Navier system

u(x) = ∆w(x) + α grad divw(x)

can be found via the solution of a Bi–Laplace equation.

1.6 Compute all eigenvalues λk and associated eigenvectors uk of the Dirichlet
eigenvalue problem

−u′′
k(x) = λuk(x) for x ∈ (0, 1), uk(0) = uk(1) = 0.



2

Function Spaces

In this chapter we introduce the most important function spaces as needed
for the weak formulation of boundary value problems. For a further reading
we refer to [1, 103, 106].

2.1 The Spaces Ck(Ω), Ck,κ(Ω) and Lp(Ω)

For d ∈ N we call a vector α = (α1, . . . , αd), αi ∈ N0, multi index with the
absolute value |α| = α1 + · · · + αd and with the factorial α! = α1! . . . αd!. For
x ∈ R

d we can therefore write

xα = xα1
1 · · ·xαd

d .

If u is a sufficient smooth real valued function, then we can write partial
derivatives as

Dαu(x) :=
(

∂

∂x1

)α1

. . .

(
∂

∂xd

)αd

u(x1, . . . , xd).

Let Ω ⊆ R
d be some open subset and assume k ∈ N0. Ck(Ω) is the space of

functions which are bounded and k times continuously differentiable in Ω. In
particular, for u ∈ Ck(Ω) the norm

‖u‖Ck(Ω) :=
∑
|α|≤k

sup
x∈Ω

|Dαu(x)|

is finite. Correspondingly, C∞(Ω) is the space of functions which are bounded
and infinitely often continuously differentiable. For a function u(x) defined for
x ∈ Ω we denote

suppu := {x ∈ Ω : u(x) �= 0}
to be the support of the function u. Then,
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C∞
0 (Ω) := {u ∈ C∞(Ω) : suppu ⊂ Ω}

is the space of C∞(Ω) functions with compact support.
For k ∈ N0 and κ ∈ (0, 1) we define Ck,κ(Ω) to be the space of Hölder

continuous functions equipped with the norm

‖u‖Ck,κ(Ω) := ‖u‖Ck(Ω) +
∑
|α|=k

sup
x,y∈Ω,x �=y

|Dαu(x) − Dαu(y)|
|x − y|κ .

In particular for κ = 1 we have Ck,1(Ω) to be the space of functions u ∈ Ck(Ω)
where the derivatives Dαu of order |α| = k are Lipschitz continuous.

The boundary of an open set Ω ⊂ R
d is defined as

Γ := ∂Ω = Ω ∩ (Rd\Ω) .

We require that for d ≥ 2 the boundary Γ = ∂Ω can be represented locally
as the graph of a Lipschitz function using different systems of Cartesian coor-
dinates for different parts of Γ , as necessary. The simplest case occurs when
there is a function γ : R

d−1 → R such that

Ω :=
{
x ∈ R

d : xd < γ(x̃) for all x̃ = (x1, . . . , xd−1) ∈ R
d−1
}

.

If γ(·) is Lipschitz,

|γ(x̃) − γ(ỹ)| ≤ L |x̃ − ỹ| for all x̃, ỹ ∈ R
d−1

then Ω is said to be a Lipschitz hypograph with boundary

Γ =
{
x ∈ R

d : xn = γ(x̃) for all x̃ ∈ R
d−1
}

.

Definition 2.1. The open set Ω ⊂ R
d, d ≥ 2, is a Lipschitz domain if its

boundary Γ = ∂Ω is compact and if there exist finite families {Wi} and {Ωj}
having the following properties:

i. The family {Wj} is a finite open cover of Γ , i.e. Wj ⊂ R
d is an open

subset and Γ ⊆ ∪jWj.
ii. Each Ωj can be transformed to a Lipschitz hypograph by a rigid motion,

i.e. by rotations and translations.
iii. For all j the equality Wj ∩ Ω = Wj ∩ Ωj is satisfied.

The local representation of a Lipschitz boundary Γ = ∂Ω, i.e. the choice
of families Wj and Ωj , is in general not unique. Examples for non–Lipschitz
domains are given in Fig. 2.1, see also [103].

If the parametrizations satisfy γ ∈ Ck(Rd−1) or γ ∈ Ck,κ(Rd−1) we call
the boundary k times differentiable or Hölder continuous, respectively. If this
holds only locally, we call the boundary piecewise smooth.
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Fig. 2.1. Examples for non–Lipschitz domains.

By Lp(Ω) we denote the space of all equivalence classes of measurable
functions on Ω whose powers of order p are integrable. The associated norm
is

‖u‖Lp(Ω) :=

⎧⎨⎩
∫
Ω

|u(x)|pdx

⎫⎬⎭
1/p

for 1 ≤ p < ∞.

Two elements u, v ∈ Lp(Ω) are identified with each other if they are different
only on a set K of zero measure µ(K) = 0. In what follows we always consider
one represent u ∈ Lp(Ω). In addition, L∞(Ω) is the space of functions u which
are measurable and bounded almost everywhere with the norm

‖u‖L∞(Ω) := ess sup
x∈Ω

{|u(x)|} := inf
K⊂Ω,µ(K)=0

sup
x∈Ω\K

|u(x)| .

The spaces Lp(Ω) are Banach spaces with respect to the norm ‖ · ‖Lp(Ω).
There holds the Minkowski inequality

‖u + v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω) for all u, v ∈ Lp(Ω). (2.1)

For u ∈ Lp(Ω) and v ∈ Lq(Ω) with adjoint parameters p and q, i.e.

1
p

+
1
q

= 1,

we further have Hölder’s inequality∫
Ω

|u(x)v(x)|dx ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω). (2.2)
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Defining the duality pairing

〈u, v〉Ω :=
∫
Ω

u(x)v(x)dx,

we obtain

‖v‖Lq(Ω) = sup
0 �=u∈Lp(Ω)

|〈u, v〉Ω |
‖u‖Lp(Ω)

for 1 ≤ p < ∞,
1
p

+
1
q

= 1.

In particular, Lq(Ω) is the dual space of Lp(Ω) for 1 ≤ p < ∞. Moreover,
L∞(Ω) is the dual space of L1(Ω), but L1(Ω) is not the dual space of L∞(Ω).

For p = 2 we have L2(Ω) to be the space of all square integrable functions,
and Hölder’s inequality (2.2) turns out to be the Cauchy–Schwarz inequality∫

Ω

|u(x)v(x)|dx ≤ ‖u‖L2(Ω)‖v‖L2(Ω). (2.3)

Moreover, for u, v ∈ L2(Ω)we can define the inner product

〈u, v〉L2(Ω) :=
∫
Ω

u(x)v(x)dx

and with
〈u, u〉L2(Ω) = ‖u‖2

L2(Ω) for all u ∈ L2(Ω)

we conclude that L2(Ω) is a Hilbert space.

2.2 Generalized Derivatives and Sobolev Spaces

By Lloc
1 (Ω) we denote the space of locally integrable functions, i.e. u ∈ Lloc

1 (Ω)
is integrable with respect to any closed bounded subset K ⊂ Ω .

Example 2.2. Let Ω = (0, 1) and let u(x) = 1/x. Due to

1∫
0

u(x)dx = lim
ε→0

1∫
ε

1
x

dx = lim
ε→0

ln
1
ε

= ∞

we find u �∈ L1(Ω). For an arbitrary closed interval K := [a, b] ⊂ (0, 1) = Ω
with 0 < a < b < 1 we obtain∫

K

u(x)dx =

b∫
a

1
x

dx = ln
b

a
< ∞

and therefore u ∈ Lloc
1 (Ω).
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For functions ϕ,ψ ∈ C∞
0 (Ω) we may apply integration by parts,∫

Ω

∂

∂xi
ϕ(x)ψ(x) dx = −

∫
Ω

ϕ(x)
∂

∂xi
ψ(x) dx.

Note that all integrals may be defined even for non–smooth functions. This
motivates the following definition of a generalized derivative.

Definition 2.3. A function u ∈ Lloc
1 (Ω) has a generalized partial derivative

with respect to xi, if there exists a function v ∈ Lloc
1 (Ω) satisfying∫

Ω

v(x)ϕ(x)dx = −
∫
Ω

u(x)
∂

∂xi
ϕ(x)dx for all ϕ ∈ C∞

0 (Ω). (2.4)

Again we denote the generalized derivative by
∂

∂xi
u(x) := v(x).

The recursive application of (2.4) enables us to define a generalized partial
derivative Dαu(x) ∈ Lloc

1 (Ω) by∫
Ω

[Dαu(x)]ϕ(x)dx = (−1)|α|
∫
Ω

u(x)Dαϕ(x)dx for all ϕ ∈ C∞
0 (Ω). (2.5)

Example 2.4. Let u(x) = |x| for x ∈ Ω = (−1, 1). For an arbitrary ϕ ∈ C∞
0 (Ω)

we have

1∫
−1

u(x)
∂

∂x
ϕ(x)dx = −

0∫
−1

x
∂

∂x
ϕ(x)dx +

1∫
0

x
∂

∂x
ϕ(x)dx

= − [x ϕ(x)]0−1 +

0∫
−1

ϕ(x)dx + [x ϕ(x)]10 −
1∫

0

ϕ(x)dx

=

0∫
−1

ϕ(x)dx −
1∫

0

ϕ(x)dx = −
1∫

−1

sign(x)ϕ(x)dx

with

sign(x) :=

{
1 for x > 0,

−1 for x < 0.

The generalized derivative of u(x) = |x| is therefore given by

∂

∂x
u(x) = sign(x) ∈ Lloc

1 (Ω).

To compute the second derivative of u(x) = |x| we obtain
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1∫
−1

sign(x)
∂

∂x
ϕ(x)dx = −

0∫
−1

∂

∂x
ϕ(x)dx +

1∫
0

∂

∂x
ϕ(x)dx = −2ϕ(0) .

However, there exists no locally integrable function v ∈ Lloc
1 (Ω) satisfying

1∫
−1

v(x)ϕ(x)dx = 2ϕ(0)

for all ϕ ∈ C∞
0 (Ω). Later we will find the generalized derivative of sign(x) in

the distributional sense.

For k ∈ N0 we define norms

‖u‖W k
p (Ω) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎧⎨⎩∑
|α|≤k

‖Dαu‖p
Lp(Ω)

⎫⎬⎭
1/p

for 1 ≤ p < ∞,

max
|α|≤k

‖Dαu‖L∞(Ω) for p = ∞.

(2.6)

By taking the closure of C∞(Ω) with respect to the norm ‖ ·‖W k
p (Ω) we define

the Sobolev space
W k

p (Ω) := C∞(Ω)
‖·‖

W k
p (Ω) . (2.7)

In particular, for any u ∈ W k
p (Ω) there exists a sequence {ϕj}j∈N ⊂ C∞(Ω)

such that
lim

j→∞
‖u − ϕj‖W k

p (Ω) = 0.

Correspondingly, the closure of C∞
0 (Ω) with respect to ‖ · ‖W k

p (Ω) defines the
Sobolev space

◦
W p

k(Ω) := C∞
0 (Ω)

‖·‖
W k

p (Ω) . (2.8)

The definition of Sobolev norms ‖·‖W k
p (Ω) and therefore of the Sobolev spaces

(2.7) and (2.8) can be extended for any arbitrary s ∈ R. We first consider
0 < s ∈ R with s = k + κ and k ∈ N0, κ ∈ (0, 1). Then,

‖u‖W s
p (Ω) :=

{
‖u‖p

W k
p (Ω)

+ |u|pW s
p (Ω)

}1/p

is the Sobolev–Slobodeckii norm, and

|u|pW s
p (Ω) =

∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x) − Dαu(y)|p
|x − y|d+pκ

dxdy

is the associated semi–norm. In particular for p = 2 we have W s
2 (Ω) to be a

Hilbert space with inner product
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〈u, v〉W k
2 (Ω) :=

∑
|α|≤k

∫
Ω

Dαu(x)Dαv(x) dx

for s = k ∈ N0 and

〈u, v〉W s
2 (Ω) := 〈u, v〉W k

2 (Ω) (2.9)

+
∑
|α|=k

∫
Ω

∫
Ω

(Dαu(x) − Dαu(y))(Dαv(x) − Dαv(y))
|x − y|d+2κ

dxdy.

for s = k + κ, k ∈ N0, κ ∈ (0, 1).
For s < 0 and 1 < p < ∞ the Sobolev space W s

p (Ω) is defined as the dual

space of
◦

W q
−s(Ω). Hereby we have 1/q + 1/p = 1, and the associated norm is

‖u‖W s
p (Ω) := sup

0 �=v∈
◦

W q
−s(Ω)

|〈u, v〉Ω |
‖v‖W−s

q (Ω)

.

Correspondingly,
◦

W p
s(Ω) is the dual space of W−s

q (Ω).

2.3 Properties of Sobolev Spaces

In this section we state some properties of Sobolev spaces W s
p (Ω) which are

needed later in the numerical analysis of finite and boundary element methods.
Assuming a certain relation for the indices s ∈ R and p ∈ N a function

u ∈ W s
p (Ω) turns out to be bounded and continuous.

Theorem 2.5 (Imbedding Theorem of Sobolev). Let Ω ⊂ R
d be a

bounded domain with Lipschitz boundary ∂Ω and let

d ≤ s for p = 1, d/p < s for p > 1.

For u ∈ W s
p (Ω) we obtain u ∈ C(Ω) satisfying

‖u‖L∞(Ω) ≤ c ‖u‖W s
p (Ω) for all u ∈ W s

p (Ω).

For a proof of Theorem 2.5 see, for example, [31, Theorem 1.4.6], [103,
Theorem 3.26].

The norm (2.6) of the Sobolev space W 1
2 (Ω) is

‖v‖W 1
2 (Ω) =

{
‖v‖2

L2(Ω) + ‖∇v‖2
L2(Ω)

}1/2

where
|v|W 1

2 (Ω) = ‖∇v‖L2(Ω)

is a semi–norm. Applying the following theorem we may deduce equivalent
norms in W 1

2 (Ω).
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Theorem 2.6 (Norm Equivalence Theorem of Sobolev).
Let f :W 1

2 (Ω)→R be a bounded linear functional satisfying

0 ≤ |f(v)| ≤ cf ‖v‖W 1
2 (Ω) for all v ∈ W 1

2 (Ω).

If f(constant) = 0 is only satisfied for constant = 0, then

‖v‖W 1
2 (Ω),f :=

{
|f(v)|2 + ‖∇v‖2

L2(Ω)

}1/2

(2.10)

defines an equivalent norm in W 1
2 (Ω).

Proof. Since the linear functional f is bounded we conclude

‖v‖2
W 1

2 (Ω),f = |f(v)|2 + ‖∇v‖2
L2(Ω)

≤ c2
f‖v‖2

W 1
2 (Ω) + ‖∇v‖2

L2(Ω) ≤ (1 + c2
f )‖v‖2

W 1
2 (Ω).

The proof of the opposite direction is indirect. Assume that there is no con-
stant c0 > 0 such that

‖v‖W 1
2 (Ω) ≤ c0 ‖v‖W 1

2 (Ω),f for all v ∈ W 1
2 (Ω).

Then there would exist a sequence {vn}n∈N ⊂ W 1
2 (Ω) with

n ≤
‖vn‖W 1

2 (Ω)

‖vn‖W 1
2 (Ω),f

for n ∈ N.

For the normalized sequence {v̄n}n∈N with

v̄n :=
vn

‖vn‖W 1
2 (Ω)

we therefore have

‖v̄n‖W 1
2 (Ω) = 1, ‖v̄n‖W 1

2 (Ω),f =
‖vn‖W 1

2 (Ω),f

‖vn‖W 1
2 (Ω)

≤ 1
n
→ 0 as n → ∞.

From this and (2.10) we conclude

lim
n→∞

|f(v̄n)| = 0, lim
n→∞

‖∇v̄n‖L2(Ω) = 0.

Since the sequence {v̄n}n∈N is bounded in W 1
2 (Ω) and since the imbedding

W 1
2 (Ω) ↪→ L2(Ω) is compact [160], there exists a subsequence {v̄n′}n′∈N ⊂

{v̄n}n∈N which converges in L2(Ω). In particular, v̄ := lim
n′→∞

v̄n′ ∈ L2(Ω).

From
lim

n′→∞
‖∇v̄n′‖L2(Ω) = 0

we obtain v̄ ∈ W 1
2 (Ω) with ‖∇v̄‖L2(Ω) = 0, i.e. v̄ = constant. With
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0 ≤ |f(v̄)| = lim
n′→∞

|f(v̄n′)| = 0

we then conclude f(v̄) = 0 and therefore v̄ = 0. However, this is a contradic-
tion to

‖v̄‖W 1
2 (Ω) = lim

n′→∞
‖v̄n′‖W 1

2 (Ω) = 1. ��

Example 2.7. Equivalent norms in W 1
2 (Ω) are given by

‖v‖W 1
2 (Ω),Ω :=

⎧⎪⎨⎪⎩
⎡⎣ ∫

Ω

v(x) dx

⎤⎦2

+ ‖∇v‖2
L2(Ω)

⎫⎪⎬⎪⎭
1/2

(2.11)

and

‖v‖W 1
2 (Ω),Γ :=

⎧⎪⎨⎪⎩
⎡⎣ ∫

Γ

v(x) dsx

⎤⎦2

+ ‖∇v‖2
L2(Ω)

⎫⎪⎬⎪⎭
1/2

.

We therefore obtain ‖∇ · ‖L2(Ω) to be an equivalent norm in
◦

W1
2(Ω)

Using the equivalent norm (2.11) as given in Example 2.7 the Poincaré
inequality

∫
Ω

|v(x)|2dx ≤ cP

⎧⎪⎨⎪⎩
⎡⎣ ∫

Ω

v(x) dx

⎤⎦2

+
∫
Ω

|∇v(x)|2dx

⎫⎪⎬⎪⎭ (2.12)

for all v ∈ W 1
2 (Ω) follows.

To derive some approximation properties of (piecewise) polynomial trial
spaces the following result is needed.

Theorem 2.8 (Bramble–Hilbert Lemma).
For k ∈ N0 let f : W k+1

2 (Ω) → R be a bounded linear functional satisfying

|f(v)| ≤ cf ‖v‖W k+1
2 (Ω) for all v ∈ W k+1

2 (Ω).

By Pk(Ω) we denote the space of all polynomials of degree k defined in Ω. If

f(q) = 0

is satisfied for all q ∈ Pk(Ω) then we also have

|f(v)| ≤ c(cp) cf |v|W k+1
2 (Ω) for all v ∈ W k+1

2 (Ω)

where the constant c(cp) depends only on the constant cp of the Poincaré
inequality (2.12).
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Proof. We give only the proof for the case k = 1, i.e. P1(Ω) is the space of
linear functions defined on Ω. For v ∈ W 2

2 (Ω) and q ∈ P1(Ω) we have, due to
the assumptions,

|f(v)| = |f(v) + f(q)| = |f(v + q)| ≤ cf ‖v + q‖W 2
2 (Ω).

Moreover,

‖v + q‖2
W 2

2 (Ω) = ‖v + q‖2
L2(Ω) + |v + q|2W 1

2 (Ω) + |v + q|2W 2
2 (Ω)

= ‖v + q‖2
L2(Ω) + ‖∇(v + q)‖2

L2(Ω) + |v|2W 2
2 (Ω),

since the second derivatives of a linear function disappear. Applying the
Poincaré inequality (2.12) this gives

‖v+q‖2
W 2

2 (Ω) ≤ cP

⎡⎣∫
Ω

[v(x) + q(x)]dx

⎤⎦2

+(1+cP ) ‖∇(v+q)‖2
L2(Ω)+|v|2W 2

2 (Ω).

For the second term we apply the Poincaré inequality (2.12) once again to
obtain

‖∇(v + q)‖2
L2(Ω) =

d∑
i=1

∫
Ω

∣∣∣∣ ∂

∂xi
[v(x) + q(x)]

∣∣∣∣2 dx

≤ cP

d∑
i=1

⎧⎪⎨⎪⎩
⎡⎣∫

Ω

∂

∂xi
[v(x) + q(x)]dx

⎤⎦2

+
d∑

j=1

∫
Ω

[
∂2

∂xi∂xj
[v(x) + q(x)]

]2
dx

⎫⎪⎬⎪⎭
= cP

d∑
i=1

⎡⎣∫
Ω

∂

∂xi
[v(x) + q(x)]dx

⎤⎦2

+ cP |v|2W 2
2 (Ω)

and hence

‖v + q‖2
W 2

2 (Ω) ≤ cP

⎡⎣∫
Ω

[v(x) + q(x)]dx

⎤⎦2

+(1 + cP )cP

d∑
i=1

⎡⎣∫
Ω

∂

∂xi
[v(x) + q(x)]dx

⎤⎦2

+ [1 + (1 + cP )cP ] |v|2W 2
2 (Ω).

The assertion is proved if we can choose q ∈ P1(Ω) so that the first two terms
are zero, i.e.∫

Ω

[v(x) + q(x)]dx = 0,
∫
Ω

∂

∂xi
[v(x) + q(x)]dx = 0 for i = 1, . . . , d.
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With

q(x) = a0 +
d∑

i=1

aixi

we get

ai = − 1
|Ω|

∫
Ω

∂

∂xi
v(x)dx for i = 1, . . . , d

and therefore

a0 = − 1
|Ω|

∫
Ω

[
v(x) +

d∑
i=1

aixi

]
dx.

The proof for general k ∈ N is almost the same. ��

2.4 Distributions and Sobolev Spaces

As it was observed in Example 2.4 not every function in Lloc
1 (Ω) has a gener-

alized derivative in Lloc
1 (Ω). Hence we also introduce derivatives in the sense

of distributions, see also [103, 150, 156, 161].
For Ω ⊆ R

d we first define D(Ω) := C∞
0 (Ω) to be the space of all test

functions.

Definition 2.9. A complex valued continuous linear form T acting on D(Ω)
is called a distribution. T is continuous on D(Ω), if ϕk → ϕ in D(Ω) always
implies T (ϕk) → T (ϕ). The set of all distributions on D(Ω) is denoted by
D′(Ω).

For u ∈ Lloc
1 (Ω) we define the distribution

Tu(ϕ) :=
∫
Ω

u(x)ϕ(x)dx for ϕ ∈ D(Ω). (2.13)

Distributions of the type (2.13) are called regular. Local integrable func-
tions u ∈ Lloc

1 (Ω) can be identified with a subset of D′(Ω). Hence, instead
of Tu ∈ D′(Ω) we simply write u ∈ D′(Ω). Nonregular distributions are called
singular. For example, the Dirac distribution for x0 ∈ Ω,

δx0(ϕ) = ϕ(x0) for ϕ ∈ D(Ω),

can not be represented as in (2.13).
For the computation of the derivative of the function v(x) = sign(x) as

considered in Example 2.4 we now obtain:
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Example 2.10. Using integration by parts we have for v(x) = sign(x)

1∫
−1

sign(x)
∂

∂x
ϕ(x)dx = −2ϕ(0) = −

1∫
−1

∂

∂x
v(x)ϕ(x)dx for all ϕ ∈ D(Ω).

Hence the derivative of v in the distributional sense is given by

∂

∂x
v = 2 δ0 ∈ D′(Ω).

As for the generalized derivative (2.5) we can define higher order deriva-
tives DαTu ∈ D′(Ω) of a distribution Tu ∈ D(Ω) by

(DαTu)(ϕ) = (−1)|α|Tu(Dαϕ) for ϕ ∈ D(Ω).

In what follows we introduce Sobolev spaces Hs(Ω) which may be equivalent
to the previously introduced Sobolev spaces W s

2 (Ω) when some regularity
assumptions on Ω are satisfied. The definition of Sobolev spaces Hs(Ω) is
based on the Fourier transform of distributions. Hence we need to introduce
first the space S(Rd) of rapidly decreasing functions.

Definition 2.11. S(Rd) is the space of functions ϕ ∈ C∞(Rd) satisfying

‖ϕ‖k,	 := sup
x∈Rd

(
|x|k + 1

) ∑
|α|≤	

|Dαϕ(x)| < ∞ for all k, � ∈ N0.

In particular, the function ϕ and all of their derivatives decreases faster than
any polynomial.

Example 2.12. For the function ϕ(x) := e−|x|2 we have ϕ ∈ S(Rd), but
ϕ �∈ D(Ω) = C∞

0 (Rd).

As in Definition 2.9 we can introduce the space S ′(Rd) of tempered distri-
butions as the space of all complex valued linear forms T over S(Rd).

For a function ϕ ∈ S(Rd) we can define the Fourier transform ϕ̂ ∈ S(Rd),

ϕ̂(ξ) := (Fϕ)(ξ) = (2π)−
d
2

∫
Rd

e−i〈x,ξ〉ϕ(x)dx for ξ ∈ R
d. (2.14)

The mapping F : S(Rd) → S(Rd) is invertible and the inverse Fourier trans-
form is given by

(F−1ϕ̂)(x) = (2π)−
d
2

∫
Rd

ei〈x,ξ〉ϕ̂(ξ)dξ for x ∈ R
d. (2.15)

In general, ϕ ∈ D(Rd) does not imply ϕ̂ ∈ D(Rd).
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For ϕ ∈ S(Rd) we have

Dα(Fϕ)(ξ) = (−i)|α|F(xαϕ)(ξ) (2.16)

as well as
ξα(Fϕ)(ξ) = (−i)|α|F(Dαϕ)(ξ). (2.17)

Lemma 2.13. The Fourier transform maintains rotational symmetries, i.e.
for u ∈ S(Rd) we have û(ξ) = û(|ξ|) for all ξ ∈ R

d iff u(x) = u(|x|) for all
x ∈ R

d.

Proof. Let us first consider the two–dimensional case d = 2. Using polar
coordinates,

ξ =

(
|ξ| cos ψ

|ξ| sin ψ

)
, x =

(
r cos φ

r sin φ

)
,

we obtain

û(ξ) = û(|ξ|, ψ) =
1
2π

∞∫
0

2π∫
0

e−ir |ξ|[cos φ cos ψ+sin φ sin ψ]u(r)rdφdr

=
1
2π

∞∫
0

2π∫
0

e−ir|ξ| cos(φ−ψ)u(r)rdφdr.

With ψ0 ∈ [0, 2π) and substituting φ̃ := φ − ψ0 it follows that

û(|ξ|, ψ + ψ0) =
1
2π

∞∫
0

2π∫
0

e−ir|ξ| cos(φ−ψ−ψ0)u(r)rdφdr

=
1
2π

∞∫
0

2π−ψ0∫
−ψ0

e−ir|ξ| cos(φ̃−ψ)u(r)rdφ̃dr.

By using
0∫

−ψ0

e−ir|ξ| cos(φ̃−ψ)dφ̃ =

2π∫
2π−ψ0

e−ir|ξ| cos(φ̃−ψ)dφ̃

we then obtain

û(|ξ|, ψ) = û(|ξ|, ψ + ψ0) for all ψ0 ∈ [0, 2π)

and therefore the assertion û(ξ) = û(|ξ|).
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For d = 3 we use spherical coordinates

ξ =

⎛⎜⎝ |ξ| cos ψ sin ϑ

|ξ| sin ψ sin ϑ

|ξ| cos ϑ

⎞⎟⎠ , x =

⎛⎜⎝ r cos φ sin θ

r sin φ sin θ

r cos θ

⎞⎟⎠
to obtain

û(|ξ|, ψ, ϑ) =

=
1

(2π)3/2

∞∫
0

2π∫
0

π∫
0

e−ir|ξ|[cos(φ−ψ) sin θ sin ϑ+cos θ cos ϑ]u(r)r2 sin θdθdφdr.

As for the two–dimensional case d = 2 we conclude

û(|ξ|, ψ + ψ0, ϑ) = û(|ξ|, ψ, ϑ) for all ψ0 ∈ [0, 2π).

For a fixed ϑ ∈ [0, π] and for a given radius � we also have û(ξ) = û(|ξ|) = û(�)
along the circular lines

ξ2
1 + ξ2

2 = �2 sin2 ϑ, ξ3 = � cos ϑ.

Using permutated spherical coordinates we also find û(ξ) = û(�) along the
circular lines

ξ2
1 + ξ2

3 = �2 sin2 ϑ, ξ2 = � cos ϑ . ��

For a distribution T ∈ S ′(Rd) we can define the Fourier transform T̂ ∈ S ′(Rd)

T̂ (ϕ) := T (ϕ̂) for ϕ ∈ S(Rd).

The mapping F : S ′(Rd) → S ′(Rd) is invertible and the inverse Fourier trans-
form is given by

(F−1T )(ϕ) := T (F−1ϕ) for ϕ ∈ S(Rd).

The rules (2.16) and (2.17) remain valid for distributions T ∈ S ′(Rd).
For s ∈ R and u ∈ S(Rd) we define the Bessel potential operator

J su(x) := (2π)−d/2

∫
Rd

(1 + |ξ|2)s/2û(ξ)ei〈x,ξ〉dξ, x ∈ R
d,

which is a bounded linear operator J s : S(Rd) → S(Rd). The application of
the Fourier transform gives

(FJ su)(ξ) = (1 + |ξ|2)s/2(Fu)(ξ) .
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From this we conclude that the application of J s corresponds in the Fourier
space to a multiplication with a function of order O(|ξ|s). Therefore, using
(2.17) we can see J s as a differential operator of order s.

For T ∈ S ′(Rd) we define a bounded and linear operator J s : S ′(Rd) →
S ′(Rd) acting on the space of tempered distributions,

(J sT )(ϕ) := T (J sϕ) for all ϕ ∈ S(Rd).

The Sobolev space Hs(Rd) is the space of all distributions v ∈ S ′(Rd) with
J sv ∈ L2(Rd) where the associated inner product

〈u, v〉Hs(Rd) := 〈J su,J sv〉L2(Rd)

implies the norm

‖u‖2
Hs(Rd) := ‖J su||2L2(Rd) =

∫
Rd

(1 + |ξ|2)s|û(ξ)|2dξ .

The connection with the Sobolev spaces W s
2 (Rd) can be seen from the follow-

ing theorem, see for example [103, 160].

Theorem 2.14. For all s ∈ R there holds

Hs(Rd) = W s
2 (Rd) .

For a bounded domain Ω ⊂ R
d we define the Sobolev space Hs(Ω) by

restriction,
Hs(Ω) :=

{
v = ṽ|Ω : ṽ ∈ Hs(Rd)

}
,

with the norm
‖v‖Hs(Ω) := inf

ṽ∈Hs(Rd),ṽ|Ω=v
‖ṽ‖Hs(Rd).

In addition we introduce Sobolev spaces

H̃s(Ω) := C∞
0 (Ω)

‖·‖
Hs(Rd) , Hs

0(Ω) := C∞
0 (Ω)

‖·‖Hs(Ω)

which will coincide for almost all s ∈ R+, see for example [103, Theorem 3.33].

Theorem 2.15. Let Ω ⊂ R
d be a Lipschitz domain. For s ≥ 0 we have

H̃s(Ω) ⊂ Hs
0(Ω).

In particular,

H̃s(Ω) = Hs
0(Ω) for s �∈

{
1
2
,
3
2
,
5
2
, . . .

}
.

Moreover,

H̃s(Ω) = [H−s(Ω)]′, Hs(Ω) = [H̃−s(Ω)]′ for all s ∈ R.
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The equivalence of Sobolev spaces W s
2 (Ω) and Hs(Ω) holds only when

certain assumptions on Ω are satisfied. Sufficient for the norm equivalence is
the existence of a linear bounded extension operator

EΩ : W s
2 (Ω) → W s

2 (Rd).

This condition is ensured for a bounded domain Ω ⊂ R
d, if a uniform cone

condition is satisfied, see for example [161, Theorem 5.4].

Theorem 2.16. For a Lipschitz domain Ω ⊂ R
d we have

W s
2 (Ω) = Hs(Ω) for all s > 0.

For the analysis of the Stokes system we need to have some mapping
properties of the gradient ∇.

Theorem 2.17. [53, Theorem 3.2, p. 111] Let the Lipschitz domain Ω ⊂ R
d

be bounded and connected. Then there holds

‖q‖L2(Ω) ≤ c1

{
‖q‖H−1(Ω) + ‖∇q‖[H−1(Ω)]d

}
for all q ∈ L2(Ω)

as well as

‖q‖L2(Ω) ≤ c2 ‖∇q‖[H−1(Ω)]d for all q ∈ L2(Ω) with
∫
Ω

q(x)dx = 0. (2.18)

Bounded linear operators can be seen as maps between different Sobolev
spaces inducing different operator norms. Then one can extend the bound-
edness properties to Sobolev spaces between. For a general overview on in-
terpolation spaces we refer to [16, 103] . Here we will use only the following
result.

Theorem 2.18 (Interpolation Theorem). Let A : Hα1(Ω) → Hβ(Ω) be
some bounded and linear operator with norm

‖A‖α1,β := sup
0 �=v∈Hα1 (Ω)

‖Av‖Hβ(Ω)

‖v‖Hα1 (Ω)
.

For α2 > α1 let A : Hα2(Ω) → Hβ(Ω) be bounded with norm ‖A‖α2,β. Then
the operator A : Hα(Ω) → Hβ(Ω) is bounded for all α ∈ [α1, α2] and the
corresponding operator norm is given by

‖A‖α,β ≤ (‖A‖α1,β)
α−α2

α1−α2 (‖A‖α2,β)
α−α1

α2−α1 .

Let the operator A : Hα(Ω) → Hβ1(Ω) be bounded with norm ‖A‖α,β1 and
let A : Hα(Ω) → Hβ2(Ω) be bounded with norm ‖A‖α,β2 assuming β1 < β2.
Then the operator A : Hα(Ω) → Hβ(Ω) is bounded for all β ∈ [β1, β2] and
the corresponding operator norm is given by

‖A‖α,β ≤ (‖A‖α,β1)
β−β2

β1−β2 (‖A‖α,β2)
β−β1

β2−β1 .
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2.5 Sobolev Spaces on Manifolds

Let Ω ⊂ R
d be a bounded domain (d = 2, 3) and let the boundary Γ = ∂Ω

be given by some arbitrary overlapping piecewise parametrization

Γ =
J⋃

i=1

Γi, Γi :=
{
x ∈ R

d : x = χi(ξ) for ξ ∈ Ti ⊂ R
d−1
}

. (2.19)

With respect to (2.19) we also consider a partition of unity, {ϕi}p
i=1, of non–

negative cut off functions ϕi ∈ C∞
0 (Rd) satisfying

J∑
i=1

ϕi(x) = 1 for x ∈ Γ, ϕi(x) = 0 for x ∈ Γ\Γi.

For any function v defined on the boundary Γ we can write

v(x) =
J∑

i=1

ϕi(x)v(x) =
J∑

i=1

vi(x) for x ∈ Γ

with vi(x) := ϕi(x)v(x). Inserting the local parametrizations (2.19) we obtain
for i = 1, . . . , J

vi(x) = ϕi(x)v(x) = ϕi(χi(ξ))v(χi(ξ)) =: ṽi(ξ) for ξ ∈ Ti ⊂ R
d−1.

The functions ṽi are defined with respect to the parameter domains Ti ⊂ R
d−1

for which we can introduce appropriate Sobolev spaces. Taking into account
the chain rule we have to ensure the existence of all corresponding derivatives
of the local parametrization χi(ξ). For the definition of derivatives of order
|s| ≤ k we therefore have to assume χi ∈ Ck−1,1(Ti). In particular for a
Lipschitz domain with a local parametrization χi ∈ C0,1(Ti) we can only
introduce Sobolev spaces Hs(Ti) for |s| ≤ 1.

In general we can define the Sobolev norm

‖v‖Hs
χ(Γ ) :=

{
J∑

i=1

‖ṽi‖2
Hs(Ti)

}1/2

(2.20)

for 0 ≤ s ≤ k and therefore the corresponding Sobolev space Hs(Γ ).

Lemma 2.19. For s = 0 an equivalent norm in H0
χ(Γ ) is given by

‖v‖L2(Γ ) :=

⎧⎨⎩
∫
Γ

|v(x)|2dsx

⎫⎬⎭
1/2

.
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Proof. First we note that

‖v‖2
H0

χ(Γ ) =
J∑

i=1

∫
Ti

[ϕi(χi(ξ))v(χi(ξ))]2dξ

and

‖v‖2
L2(Γ ) =

∫
Γ

[v(x)]2dsx =
J∑

i=1

∫
Γi

ϕi(x)[v(x)]2dsx.

Inserting the local parametrization this gives

‖v‖2
L2(Γ ) =

J∑
i=1

∫
Ti

ϕi(χi(ξ))[v(χi(ξ))]2detχi(ξ)dξ.

From this the assertion follows, where the constants depend on both the chosen
parametrization (2.19) and on the particular definition of the cut off functions
ϕi. ��

For s ∈ (0, 1) we find in the same way that the Sobolev–Slobodeckii norm

‖v‖Hs(Γ ) :=

⎧⎨⎩‖v‖2
L2(Γ ) +

∫
Γ

∫
Γ

[v(x) − v(y)]2

|x − y|d−1+2s
dsxdsy

⎫⎬⎭
1/2

is an equivalent norm in Hs
χ(Γ ).

As in the Equivalence Theorem of Sobolev (Theorem 2.6) we may also
define other equivalent norms in Hs(Γ ). For example,

‖v‖H1/2(Γ ),Γ :=

⎧⎪⎨⎪⎩
⎡⎣ ∫

Γ

v(x)dsx

⎤⎦2

+
∫
Γ

∫
Γ

[v(x) − v(y)]2

|x − y|d dsxdsy

⎫⎪⎬⎪⎭
1/2

defines an equivalent norm in H1/2(Γ ).
Up to now we only considered Sobolev spaces Hs(Γ ) for s ≥ 0. For s < 0

Hs(Γ ) is defined as the dual space of H−s(Γ ),

Hs(Γ ) := [H−s(Γ )]′,

where the associated norm is

‖w‖Hs(Γ ) := sup
0 �=v∈H−s(Γ )

〈w, v〉Γ
‖v‖H−s(Γ )

with respect to the duality pairing

〈w, v〉Γ :=
∫
Γ

w(x)v(x)dsx .
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Let Γ0 ⊂ Γ be some open part of a sufficient smooth boundary Γ = ∂Ω. For
s ≥ 0 we introduce the Sobolev space

Hs(Γ0) :=
{
v = ṽ|Γ0 : ṽ ∈ Hs(Γ )

}
with the norm

‖v‖Hs(Γ0) := inf
ṽ∈Hs(Γ ):ṽ|Γ0=v

‖ṽ‖Hs(Γ )

as well as the Sobolev space

H̃s(Γ0) :=
{
v = ṽ|Γ0 : ṽ ∈ Hs(Γ ), supp ṽ ⊂ Γ0

}
.

For s < 0 we define the appropriate Sobolev spaces by duality,

Hs(Γ0) := [H̃−s(Γ0)]′, H̃s(Γ0) := [H−s(Γ0)]′ .

Finally we consider a closed boundary Γ = ∂Ω which is piecewise smooth,

Γ =
J⋃

i=1

Γ i, Γi ∩ Γj = ∅ for i �= j.

For s > 0 we define by

Hs
pw(Γ ) :=

{
v ∈ L2(Γ ) : v|Γi

∈ Hs(Γi), i = 1, . . . , J
}

the space of piecewise smooth functions with the norm

‖v‖Hs
pw(Γ ) :=

{
J∑

i=1

‖v|Γi
‖2

Hs(Γi)

}1/2

while for s < 0 we have

Hs
pw(Γ ) :=

J∏
j=1

H̃s(Γj) (2.21)

with the norm

‖w‖Hs
pw(Γ ) :=

J∑
j=1

‖w|Γj
‖

H̃s(Γj)
. (2.22)

Lemma 2.20. For w ∈ Hs
pw(Γ ) and s < 0 we have

‖w‖Hs(Γ ) ≤ ‖w‖Hs
pw(Γ ).
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Proof. By duality we conclude

‖w‖Hs(Γ ) = sup
0 �=v∈H−s(Γ )

|〈w, v〉Γ |
‖v‖H−s(Γ )

≤ sup
0 �=v∈H−s(Γ )

J∑
j=1

|〈w, v〉Γj
|

‖v‖H−s(Γ )

≤ sup
0 �=v∈H−s(Γ )

J∑
j=1

|〈w|Γj
, v|Γj

〉Γj
|

‖v|Γj
‖H−s(Γj)

≤
J∑

j=1

sup
0 �=vj∈H−s(Γj)

|〈w|Γj
, vj〉Γj

|
‖vj‖H−s(Γj)

= ‖w‖Hs
pw(Γ ). ��

If Γ = ∂Ω is the boundary of a Lipschitz domain Ω ⊂ R
d, then we have

to assume |s| ≤ 1 to ensure the above statements.
For a function u given in a bounded domain Ω ⊂ R

d the application of the
interior trace (1.3) gives γint

0 u as a function on the boundary Γ = ∂Ω. The
relations between the corresponding function spaces are stated in the next
two theorems, see, for example, [1, 103, 160].

Theorem 2.21 (Trace Theorem). Let Ω ⊂ R
d be a Ck−1,1–domain. For

1
2 < s ≤ k the interior trace operator

γint
0 : Hs(Ω) → Hs−1/2(Γ )

is bounded satisfying

‖γint
0 v‖Hs−1/2(Γ ) ≤ cT ‖v‖Hs(Ω) for all v ∈ Hs(Ω).

For a Lipschitz domain Ω we can apply Theorem 2.21 with k = 1 to
obtain the boundedness of the trace operator γint

0 : Hs(Ω) → Hs−1/2(Γ ) for
s ∈ (1

2 , 1]. This remains true for s ∈ ( 1
2 , 3

2 ), see [44] and [103, Theorem 3.38].

Theorem 2.22 (Inverse Trace Theorem). Let Ω be a Ck−1,1–domain.
For 1

2 < s ≤ k the interior trace operator γint
0 : Hs(Ω) → Hs−1/2(Γ ) has a

continuous right inverse operator

E : Hs−1/2(Γ ) → Hs(Ω)

satisfying γint
0 Ew = w for all w ∈ Hs−1/2(Γ ) as well as

‖Ew‖Hs(Ω) ≤ cIT ‖w‖Hs−1/2(Γ ) for all w ∈ Hs−1/2(Γ ).

Therefore, for s > 0 we can define Sobolev spaces Hs(Γ ) also as trace
spaces of Hs+1/2(Ω). The corresponding norm is given by

‖v‖Hs(Γ ),γ0 := inf
V ∈Hs+1/2(Ω),γint

0 V =v
||V ||H1/2+s(Ω).

However, for a Lipschitz domain Ω ⊂ R
d the norms ‖v‖Hs(Γ ),γ0 and ‖v‖Hs(Γ )

are only equivalent for |s| ≤ 1.
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Remark 2.23. The interpolation theorem (Theorem 2.18) holds also for appro-
priate Sobolev spaces Hs(Γ ).

As in Theorem 2.8 we also have the Bramble–Hilbert lemma:

Theorem 2.24. Let Γ = ∂Ω the boundary of a Ck−1,1–domain Ω ⊂ R
d and

let f : Hk+1(Γ ) → R be a bounded linear functional satisfying

|f(v)| ≤ cf ‖v‖Hk+1(Γ ) for all v ∈ Hk+1(Γ ).

If
f(q) = 0

is satisfied for all q ∈ Pk(Γ ) then we also have

|f(v)| ≤ c cf |v|Hk+1(Γ ) for all v ∈ Hk+1(Γ ).

2.6 Exercises

2.1 Let u(x), x ∈ (0, 1), be a continuously differentiable function satisfying
u(0) = u(1) = 0. Prove

1∫
0

[u(x)]2dx ≤ c

1∫
0

[u′(x)]2dx

where c should be as small as possible.

2.2 Consider the function

u(x) =

{
0 for x ∈ [0, 1

2 ],
1 for x ∈ ( 1

2 , 1].

Determine those values of s ∈ (0, 1) such that

1∫
0

1∫
0

[u(x) − u(y)]2

|x − y|1+2s
dx dy < ∞

is finite.
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Variational Methods

The weak formulation of boundary value problems leads to variational prob-
lems and associated operator equations. In particular, the representation of
solutions of partial differential equations by using surface and volume po-
tentials requires the solution of boundary integral operator equations to find
the complete Cauchy data. In this chapter we describe the basic tools from
functional analysis which are needed to investigate the unique solvability of
operator equations.

3.1 Operator Equations

Let X be a Hilbert space with the inner product 〈·, ·〉X and with the induced
norm ‖ · ‖X =

√
〈·, ·〉X . Let X ′ be the dual space of X with respect to the

duality pairing 〈·, ·〉. Then it holds that

‖f‖X′ = sup
0 �=v∈X

|〈f, v〉|
‖v‖X

for all f ∈ X ′. (3.1)

Let A : X → X ′ be a bounded linear operator satisfying

‖Av‖X′ ≤ cA
2 ‖v‖X for all v ∈ X. (3.2)

We assume that A is self–adjoint, i.e., we have

〈Au, v〉 = 〈u,Av〉 for all u, v ∈ X.

For a given f ∈ X ′ we want to find the solution u ∈ X of the operator equation

Au = f . (3.3)

Instead of the operator equation (3.3) we may consider an equivalent varia-
tional problem to find u ∈ X such that
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〈Au, v〉 = 〈f, v〉 for all v ∈ X. (3.4)

Obviously, any solution u ∈ X of the operator equation (3.3) is also a solution
of the variational problem (3.4). To show the reverse direction we now consider
u ∈ X to be a solution of the variational problem (3.4). Using the norm
definition (3.1) we then obtain

‖Au − f‖X′ = sup
0 �=v∈X

|〈Au − f, v〉|
‖v‖X

= 0

and therefore 0 = Au − f ∈ X ′, i.e., u ∈ X is a solution of the operator
equation (3.3).

The operator A : X → X ′ induces a bilinear form

a(u, v) := 〈Au, v〉 for all u, v ∈ X

with the mapping property

a(·, ·) : X × X → R. (3.5)

In the reverse case, any bilinear form (3.5) defines an operator A : X → X ′.

Lemma 3.1. Let a(·, ·) : X × X → R be a bounded bilinear form satisfying

|a(u, v)| ≤ cA
2 ‖u‖X‖v‖X for all u, v ∈ X.

For any u ∈ X there exists an element Au ∈ X ′ such that

〈Au, v〉 = a(u, v) for all v ∈ X.

The operator A : X → X ′ is linear and bounded satisfying

‖Au‖X′ ≤ cA
2 ‖u‖X for all u ∈ X.

Proof. For a given u ∈ X we define 〈fu, v〉 := a(u, v) which is a bounded
linear form in X, i.e., we have fu ∈ X ′. The map u ∈ X → fu ∈ X ′ defines a
linear operator A : X → X ′ with Au = fu ∈ X ′ and satisfying

‖Au‖X′ = ‖fu‖X′ = sup
0 �=v∈X

|〈fu, v〉|
‖v‖X

= sup
0 �=v∈X

|a(u, v)|
‖v‖X

≤ cA
2 ‖u‖X . ��

If A : X → X ′ is a self–adjoint and positive semi–definite operator we can
derive a minimization problem which is equivalent to the variational formu-
lation (3.4).

Lemma 3.2. Let A : X → X ′ be self–adjoint and positive semi–definite, i.e.,

〈Av, v〉 ≥ 0 for all v ∈ X.
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Let F be the functional

F (v) :=
1
2
〈Av, v〉 − 〈f, v〉 for v ∈ X .

The solution of the variational formulation (3.4) is then equivalent to the
solution of the minimization problem

F (u) = min
v∈X

F (v) . (3.6)

Proof. For u, v ∈ X we choose an arbitrary t ∈ R. Then we have

F (u + tv) =
1
2
〈A(u + tv), u + tv〉 − 〈f, u + tv〉

= F (u) + t [〈Au, v〉 − 〈f, v〉] +
1
2
t2 〈Av, v〉.

If u ∈ X is a solution of the variational problem (3.4) we then obtain

F (u) ≤ F (u) +
1
2
t2 〈Av, v〉 = F (u + tv)

for all v ∈ X and t ∈ R. Therefore, u ∈ X is also a solution of the minimization
problem (3.6).

Let u ∈ X be now a solution of (3.6). Then, as a necessary condition,

d

dt
F (u + tv)|t=0 = 0 for all v ∈ X.

From this we obtain

〈Au, v〉 = 〈f, v〉 for all v ∈ X

and therefore the equivalence of both the variational and the minimization
problem. ��

To investigate the unique solvability of the operator equation (3.3) we now
consider a fixed point iteration. For this we need to formulate the following
Riesz representation theorem.

Theorem 3.3 (Riesz Representation Theorem). Any linear and bounded
functional f ∈ X ′ can be written as

〈f, v〉 = 〈u, v〉X

where u ∈ X is uniquely determined by f ∈ X ′, and

‖u‖X = ‖f‖X′ . (3.7)



44 3 Variational Methods

Proof. Let f ∈ X ′ be arbitrary but fixed. Then we can find u ∈ X as the
solution of the variational problem

〈u, v〉X = 〈f, v〉 for all v ∈ X. (3.8)

Using Lemma 3.2 this variational problem is equivalent to the minimization
problem

F (u) = min
v∈X

F (v) (3.9)

where the functional is given by

F (v) =
1
2
〈v, v〉X − 〈f, v〉 for v ∈ X.

Hence we have to investigate the unique solvability of the minimization prob-
lem (3.9). From

F (v) =
1
2
〈v, v〉X − 〈f, v〉 ≥ 1

2
‖v‖2

X − ‖f‖X′‖v‖X

=
1
2

[‖v‖X − ‖f‖X′ ]2 − 1
2
‖f‖2

X′ ≥ −1
2
‖f‖2

X′

we find that F (v) is bounded below for all v ∈ X. Hence there exists the
infimum

α := inf
v∈X

F (v) ∈ R.

Let {uk}k∈N ⊂ X be a sequence approaching the minimum, i.e., F (uk) → α
as k → ∞. With the identity

‖uk − u	‖2
X + ‖uk + u	‖2

X = 2
{
‖uk‖2

X + ‖u	‖2
X

}
we then obtain

0 ≤ ‖uk − u	‖2
X = 2 ‖uk‖2

X + 2 ‖u	‖2
X − ‖uk + u	‖2

X

= 4
{

1
2
‖uk‖2

X − 〈f, uk〉
}

+ 4
{

1
2
‖u	‖2

X − 〈f, u	〉
}

+4 〈f, uk + u	〉 − ‖uk + u	‖2
X

= 4 F (uk) + 4 F (u	) − 8 F

(
1
2
(uk + u	)

)
≤ 4 F (uk) + 4 F (u	) − 8α → 0 as k, � → ∞.

Therefore, {uk}k∈N is a Cauchy sequence, and since X is a Hilbert space, we
find the limit

u = lim
k→∞

uk ∈ X.
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Moreover,

|F (uk) − F (u)| ≤ 1
2

|〈uk, uk〉X − 〈u, u〉X | + |〈f, uk − u〉|

=
1
2

|〈uk, uk − u〉X + 〈u, uk − u〉X | + |〈f, uk − u〉|

≤
{

1
2
‖uk‖X +

1
2
‖u‖X + ‖f‖X′

}
‖uk − u‖X ,

and hence
F (u) = lim

k→∞
F (uk) = α.

In particular, u ∈ X is a solution of the minimization problem (3.9) and
therefore also a solution of the variational problem (3.8).

It remains to prove the uniqueness. Let ũ ∈ X be another solution of (3.9)
and (3.8), respectively. Then,

〈ũ, v〉X = 〈f, v〉 for all v ∈ X.

Subtracting this from (3.8) this gives

〈u − ũ, v〉X = 0 for all v ∈ X.

Choosing v = u − ũ we now obtain

‖u − ũ‖2
X = 0

and therefore u = ũ, i.e., u ∈ X is the unique solution of (3.8) and (3.9),
respectively.

Finally,
‖u‖2

X = 〈u, u〉X = 〈f, u〉 ≤ ‖f‖X′‖u‖X

and

‖f‖X′ = sup
0 �=v∈X

|〈f, v〉|
‖v‖X

= sup
0 �=v∈X

|〈u, v〉X |
‖v‖X

≤ ‖u‖X ,

imply the norm equality (3.7). ��
The map J : X ′ → X as introduced in Theorem 3.3 is called the Riesz

map u = Jf and satisfies the variational problem

〈Jf, v〉X = 〈f, v〉 for all v ∈ X. (3.10)

Moreover,
‖Jf‖X = ‖f‖X′ . (3.11)
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3.2 Elliptic Operators

To ensure the unique solvability of the operator equation (3.3) and of the vari-
ational problem (3.4) we need to have a further assumption for the operator
A and for the bilinear form a(·, ·), respectively. The operator A : X → X ′ is
called X–elliptic if

〈Av, v〉 ≥ cA
1 ‖v‖2

X for all v ∈ X (3.12)

is satisfied with some positive constant cA
1 .

Theorem 3.4 (Lax–Milgram Lemma). Let the operator A : X → X ′ be
bounded and X–elliptic. For any f ∈ X ′ there exists a unique solution of the
operator equation (3.3) satisfying the estimate

‖u‖X ≤ 1
cA
1

‖f‖X′ .

Proof. Let J : X ′ → X be the Riesz operator as defined by (3.10). The
operator equation (3.3) is then equivalent to the fixed point equation

u = u − �J(Au − f) = T�u + �Jf

with the operator
T� := I − �JA : X → X

and with a suitable chosen parameter 0 < � ∈ R. From the boundedness
estimate (3.2) and from the ellipticity assumption (3.12) of A as well as from
the properties (3.10) and (3.11) of the Riesz map J we conclude

〈JAv, v〉X = 〈Av, v〉 ≥ cA
1 ‖v‖2

X , ‖JAv‖X = ‖Av‖X′ ≤ cA
2 ‖v‖X

and therefore

‖T�v‖2
X = ‖(I − �JA)v‖2

X

= ‖v‖2
X − 2�〈JAv, v〉X + �2‖JAv‖2

X

≤ [1 − 2�cA
1 + �2(cA

2 )2] ‖v‖2
X .

Hence we obtain that for � ∈ (0, 2cA
1 /(cA

2 )2) the operator T� is a contraction
in X, and the unique solvability of (3.3) follows from Banach’s fixed point
theorem [163]. Let u ∈ X be the unique solution of the operator equation
(3.3). Then,

cA
1 ‖u‖2

X ≤ 〈Au, u〉 = 〈f, u〉 ≤ ‖f‖X′‖u‖X ,

which is equivalent to the remaining bound. ��
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Applying Theorem 3.4 this gives the inverse operator A−1 : X ′ → X and
we obtain

‖A−1f‖X ≤ 1
cA
1

‖f‖X′ for all f ∈ X ′. (3.13)

From the boundedness of the self–adjoint and invertible operator A we also
conclude an ellipticity estimate for the inverse operator A−1.

Lemma 3.5. Let A : X → X ′ be bounded, self–adjoint and X–elliptic. In
particular we assume (3.2), i.e.,

‖Av‖X′ ≤ cA
2 ‖v‖X for all v ∈ X.

Then,

〈A−1f, f〉 ≥ 1
cA
2

‖f‖2
X′ for all f ∈ X ′.

Proof. Let us consider the operator B := JA : X → X satisfying

‖Bv‖X = ‖JAv‖X = ‖Av‖X′ ≤ cA
2 ‖v‖X for all v ∈ X.

Since
〈Bu, v〉X = 〈JAu, v〉X = 〈Au, v〉 = 〈u,Av〉 = 〈u,Bv〉X

holds for all u, v ∈ X the operator B is self–adjoint satisfying the ellipticity
estimate

〈Bv, v〉X = 〈Av, v〉 ≥ cA
1 ‖v‖2

X for all v ∈ X.

Hence there exists a self–adjoint and invertible operator B1/2 satisfying
B = B1/2B1/2, see, e.g., [118]. In addition we define B−1/2 := (B1/2)−1.
Then we obtain

‖B1/2v‖2
X = 〈Bv, v〉X ≤ ‖Bv‖X‖v‖X ≤ cA

2 ‖v‖2
X for all v ∈ X

and further
‖B1/2v‖X ≤

√
cA
2 ‖v‖X for all v ∈ X.

For an arbitrary f ∈ X ′ we then conclude

‖f‖X′ = sup
0 �=v∈X

|〈f, v〉|
‖v‖X

= sup
0 �=v∈X

|〈Jf, v〉X |
‖v‖X

= sup
0 �=v∈X

|〈B−1/2Jf,B1/2v〉X |
‖v‖X

≤ sup
0 �=v∈X

‖B−1/2Jf‖X‖B1/2v‖X

‖v‖X
≤
√

cA
2 ‖B−1/2Jf‖X ,

and therefore

‖f‖2
X′ ≤ cA

2 ‖B−1/2Jf‖2
X = cA

2 〈B−1Jf, Jf〉X = cA
2 〈A−1f, f〉. ��
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3.3 Operators and Stability Conditions

Let Π be a Banach space and let B : X → Π ′ be a bounded linear operator
satisfying

‖Bv‖Π′ ≤ cB
2 ‖v‖X for all v ∈ X. (3.14)

The operator B implies a bounded bilinear form b(·, ·) : X × Π → R,

b(v, q) := 〈Bv, q〉 for (v, q) ∈ X × Π.

The null space of the operator B is

ker B := {v ∈ X : Bv = 0} .

The orthogonal complement of kerB in X is given as

(ker B)⊥ := {w ∈ X : 〈w, v〉X = 0 for all v ∈ ker B} ⊂ X .

Finally,

(ker B)0 := {f ∈ X ′ : 〈f, v〉 = 0 for all v ∈ ker B} ⊂ X ′ (3.15)

is the polar space which is induced by kerB.
For a given g ∈ Π ′ we want to find solutions u ∈ X of the operator

equation
Bu = g. (3.16)

Obviously we have to require the solvability condition

g ∈ ImXB := {Bv ∈ Π ′ for all v ∈ X} . (3.17)

Let B′ : Π → X ′ the adjoint of B : X → Π ′, i.e.

〈v,B′q〉 := 〈Bv, q〉 for all (v, q) ∈ X × Π.

Then we have

ker B′ := {q ∈ Π : 〈Bv, q〉 = 0 for all v ∈ X} ,

(ker B′)⊥ := {p ∈ Π : 〈p, q〉Π = 0 for all q ∈ ker B′} ,

(ker B′)0 := {g ∈ Π ′ : 〈g, q〉 = 0 for all q ∈ ker B′} .

To characterize the image ImXB we will use the following result, see, for
example, [163].

Theorem 3.6 (Closed range theorem). Let X and Π be Banach spaces,
and let B : X → Π ′ be a bounded linear operator. Then the following proper-
ties are all equivalent:

i. ImXB is closed in Π ′.
ii. ImΠB′ is closed in X ′.
iii. ImXB = (kerB′)0.
iv. ImΠB′ = (kerB)0.
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Proof. Here we only prove that iii. follows from i., see also [163]. From the
definition of the polar space with respect to B′ we find that

(ker B′)0 = {g ∈ Π ′ : 〈g, q〉 = 0 for all q ∈ ker B′}
= {g ∈ Π ′ : 〈g, q〉 = 0 for all q ∈ Π : 〈Bv, q〉 = 0 for all v ∈ X}

and therefore
ImXB ⊂ (ker B′)0 .

Let g ∈ (ker B′)0 with g �∈ ImXB. Applying the separation theorem for closed
convex sets there exists a q̄ ∈ Π and a constant α ∈ R such that

〈g, q̄〉 > α > 〈f, q̄〉 for all f ∈ ImX(B) ⊂ Π ′.

Since B is linear we obtain for an arbitrary given f ∈ ImXB also −f ∈ ImXB
and therefore

α > −〈f, q̄〉.
From this we obtain α > 0 as well as |〈f, q̄〉| < α. For f ∈ ImΠB and for any
arbitrary n ∈ N we also conclude nf ∈ ImΠB and therefore

|〈f, q̄〉| <
α

n
for all n ∈ N

which is equivalent to

〈f, q̄〉 = 0 for all f ∈ ImX(B).

For any f ∈ ImX(B) there exists at least one u ∈ X with f = Bu. Hence,

0 = 〈f, q̄〉 = 〈Bu, q̄〉 = 〈u,B′q̄〉 for all u ∈ X,

and therefore q̄ ∈ ker B′. On the other hand, for g ∈ (ker B)0 we have

〈g, q〉 = 0 for all q ∈ ker B′

and therefore 〈g, q̄〉 = 0 which is a contradiction to 〈g, q̄〉 > α > 0. ��
The solvability condition (3.17) is equivalent to

〈g, q〉 = 0 for all q ∈ ker B′ ⊂ Π . (3.18)

If the equivalent solvability conditions (3.17) and (3.18) are satisfied, then
there exists at least one solution u ∈ X satisfying Bu = g. When the null
space ker B is non–trivial, we can add an arbitrary u0 ∈ ker B, in particular,
u + u0 is still a solution of B(u + u0) = g. In this case, the solution is not
unique in general. Instead we consider only solutions u ∈ (ker B)⊥. To ensure
unique solvability in this case, we have to formulate additional assumptions.
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Theorem 3.7. Let X and Π be Hilbert spaces and let B : X → Π ′ be a
bounded linear operator. Further we assume the stability condition

cS ‖v‖X ≤ sup
0 �=q∈Π

〈Bv, q〉
‖q‖Π

for all v ∈ (kerB)⊥. (3.19)

For a given g ∈ ImX(B) there exists a unique solution u ∈ (kerB)⊥ of the
operator equation Bu = g satisfying

‖u‖X ≤ 1
cS

‖g‖Π′ .

Proof. Since we assume g ∈ ImXB there exists at least one solution
u ∈ (ker B)⊥ of the operator equation Bu = g satisfying

〈Bu, q〉 = 〈g, q〉 for all q ∈ Π.

Let ū ∈ (ker B)⊥ be a second solution satisfying

〈Bū, q〉 = 〈g, q〉 for all q ∈ Π.

Then,
〈B(u − ū), q〉 = 0 for all q ∈ Π.

Obviously, u − ū ∈ (ker B)⊥. From the stability condition (3.19) we then
conclude

0 ≤ cS ‖u − ū‖X ≤ sup
0 �=q∈Π

〈B(u − ū), q〉
‖q‖Π

= 0

and therefore uniqueness, u = ū. Applying (3.19) for the solution u this gives

cS ‖u‖X ≤ sup
0 �=q∈Π

〈Bu, q〉
‖q‖Π

= sup
0 �=q∈Π

〈g, q〉
‖q‖Π

≤ ‖g‖Π′ . ��

3.4 Operator Equations with Constraints

In many applications we have to solve an operator equation Au = f where
the solution u has to satisfy an additional constraint Bu = g. In this case we
have to assume first the solvability condition (3.17). For a given g ∈ Π ′ we
then define the manifold

Vg := {v ∈ X : Bv = g} .

In particular, V0 = kerB. Further, the given f ∈ X ′ has to satisfy the solv-
ability condition

f ∈ ImVg
A := {Av ∈ X ′ for all v ∈ Vg} .
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Then we have to find u ∈ Vg satisfying the variational problem

〈Au, v〉 = 〈f, v〉 for all v ∈ V0. (3.20)

The unique solvability of (3.20) now follows from the following result.

Theorem 3.8. Let A : X → X ′ be bounded and V0–elliptic, i.e.

〈Av, v〉 ≥ cA
1 ‖v‖2

X for all v ∈ V0 := kerB,

where B : X → Π ′. For f ∈ ImVg
A and g ∈ ImXB there exists a unique

solution u ∈ X of the operator equation Au = f satisfying the constraint
Bu = g.

Proof. Since g ∈ ImXB is satisfied there exists at least one ug ∈ X with
Bug = g. It remains to find u0 = u−ug ∈ V0 satisfying the operator equation

Au0 = f − Aug

which is equivalent to the variational problem

〈Au0, v〉 = 〈f − Aug, v〉 for all v ∈ V0.

From the assumption f ∈ ImVg
A we conclude f − Aug ∈ ImV0A. Then there

exists at least one u0 ∈ V0 with Au0 = f − Aug. It remains to show the
uniqueness of u0 ∈ V0. Let ū0 ∈ V0 be another solution with Aū0 = f − Aug.
From the V0–ellipticity of A we then obtain

0 ≤ cA
1 ‖u0 − ū0‖2

X ≤ 〈A(u0 − ū0), u0 − ū0〉 = 〈Au0 − Aū0, u0 − ū0〉 = 0

and therefore u0 = ū0 in X.
Note that ug ∈ Vg is in general not unique. However, the final solution

u = u0 + ug is unique independent of the chosen ug ∈ Vg: For ûg ∈ X with
Bûg = g there exists a unique û0 ∈ V0 satisfying A(û0 + ûg) = f . Due to

B(ug − ûg) = Bug − Bûg = g − g = 0 in Π ′

we have ug − ûg ∈ ker B = V0 . Using

A(u0 + ug) = f, A(û0 + ûg) = f

we obtain
A(u0 + ug − û0 − ûg) = 0.

Obviously, u0 − û0 + (ug − ûg) ∈ V0, and from the V0–ellipticity of A we
conclude

u0 − û0 + (ug − ûg) = 0

and therefore uniqueness, u = u0 + ug = û0 + ûg. ��
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For what follows we assume that for g ∈ ImXB there exists a ug ∈ Vg

satisfying
‖ug‖X ≤ cB ‖g‖Π′ (3.21)

with some positive constant cB . Then we can bound the norm of the unique
solution u ∈ Vg satisfying the variational problem (3.20) by the norms of the
given data f ∈ X ′ and g ∈ Π ′.

Corollary 3.9. Let us assume the assumptions of Theorem 3.8 as well as
assumption (3.21). The solution u ∈ Vg of Au = f satisfies the estimate

‖u‖X ≤ 1
cA
1

‖f‖X′ +
(

1 +
cA
2

cA
1

)
cB ‖g‖Π′ .

Proof. Applying Theorem 3.8, the solution u of Au = f admits the represen-
tation u = u0 + ug where u0 ∈ V0 is the unique solution of the variational
problem

〈Au0, v〉 = 〈f − Aug, v〉 for all v ∈ V0.

From the V0–ellipticity of A we obtain

cA
1 ‖u0‖2

X ≤ 〈Au0, u0〉 = 〈f − Aug, u0〉 ≤ ‖f − Aug‖X′‖u0‖X

and therefore
‖u0‖X ≤ 1

cA
1

[
‖f‖X′ + cA

2 ‖ug‖X

]
.

Now the assertion follows from the triangle inequality and using assumption
(3.21). ��

3.5 Mixed Formulations

Instead of the operator equation Au = f with the constraint Bu = g we may
introduce a Lagrange multiplier p ∈ Π to formulate an extended variational
problem: Find (u, p) ∈ X × Π such that

〈Au, v〉 + 〈Bv, p〉 = 〈f, v〉
〈Bu, q〉 = 〈g, q〉 (3.22)

is satisfied for all (v, q) ∈ X ×Π. Note that for any solution (u, p) ∈ X ×Π of
the extended variational problem (3.22) we conclude that u ∈ Vg is a solution
of Au = f . The second equation in (3.22) describes just the constraint u ∈ Vg

while the first equation in (3.22) coincides with the variational formulation
to find u0 ∈ V0 when choosing as test function v ∈ V0. It remains to ensure
the existence of the Lagrange multiplier p ∈ Π such that the first equation in
(3.22) is satisfied for all v ∈ X, see Theorem 3.11.
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For the Lagrange functional

L(v, q) :=
1
2
〈Av, v〉 − 〈f, v〉 + 〈Bv, q〉 − 〈g, q〉,

which is defined for (v, q) ∈ X×Π, we first find the following characterization.

Theorem 3.10. Let A : X → X ′ be a self–adjoint bounded and positive semi–
definite operator, i.e. 〈Av, v〉 ≥ 0 for all v ∈ X. Further, let B : X → Π ′ be
bounded. (u, p) ∈ X × Π is a solution of the variational problem (3.22) iff

L(u, q) ≤ L(u, p) ≤ L(v, p) for all (v, q) ∈ X × Π. (3.23)

Proof. Let (u, p) be a solution of the variational problem (3.22). From the
first equation in (3.22) we then obtain

L(v, p) − L(u, p) =
1
2
〈Av, v〉 − 〈f, v〉 + 〈Bv, p〉 − 〈g, p〉

−1
2
〈Au, u〉 + 〈f, u〉 − 〈Bu, p〉 + 〈g, p〉

=
1
2
〈A(u − v), u − v〉 + 〈Au, v − u〉 + 〈B(v − u), p〉 − 〈f, v − u〉

=
1
2
〈A(u − v), u − v〉 ≥ 0,

and therefore
L(u, p) ≤ L(v, p) for all v ∈ X.

Using the second equation of (3.22) this gives

L(u, p) − L(u, q) =
1
2
〈Au, u〉 − 〈f, u〉 + 〈Bu, p〉 − 〈g, p〉

−1
2
〈Au, u〉 + 〈f, u〉 − 〈Bu, q〉 + 〈g, q〉

= 〈Bu, p − q〉 − 〈g, p − q〉 = 0

and therefore
L(u, q) ≤ L(u, p) for all q ∈ Π.

For a fixed p ∈ Π we consider u ∈ X as the solution of the minimization
problem

L(u, p) ≤ L(v, p) for all v ∈ X.

Then we have for any arbitrary w ∈ X

d

dt
L(u + tw, p)|t=0 = 0. (3.24)
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From

L(u + tw, p) =
1
2
〈Au, u〉 − 〈f, u〉 + 〈Bu, p〉 − 〈g, p〉 +

1
2
t2〈Aw,w〉

+ t [〈Au,w〉 + 〈Bw, p〉 − 〈f, w〉] ,

and using (3.24) we obtain the first equation of (3.22),

〈Au,w〉 + 〈Bw, p〉 − 〈f, w〉 = 0 for all w ∈ X.

Now, let p ∈ Π satisfy

L(u, q̃) ≤ L(u, p) for all q̃ ∈ Π.

For an arbitrary q ∈ Π we define q̃ := p + q. Then,

0 ≤ L(u, p) − L(u, p + q)

=
1
2
〈Au, u〉 − 〈f, u〉 + 〈Bu, p〉 − 〈g, p〉

−1
2
〈Au, u〉 + 〈f, u〉 − 〈Bu, p + q〉 + 〈g, p + q〉

= −〈Bu, q〉 + 〈g, q〉 .

For q̃ := p − q we obtain in the same way

0 ≤ L(u, p) − L(u, p − q) = 〈Bu, q〉 − 〈g, q〉,

and therefore,
〈Bu, q〉 = 〈g, q〉 for all q ∈ Π,

which is the second equation of (3.22). ��
Any solution (u, p) ∈ X × Π of the variational problem (3.22) is hence

a saddle point of the Lagrange functional L(·, ·). This is why the variational
problem (3.22) is often called a saddle point problem. The unique solvability
of (3.22) now follows from the following result.

Theorem 3.11. Let X and Π be Banach spaces and let A : X → X ′ and
B : X → Π ′ be bounded operators. Further, we assume that A is V0–elliptic,

〈Av, v〉 ≥ cA
1 ‖v‖2

X for all v ∈ V0 = kerB ,

and that the stability condition

cS ‖q‖Π ≤ sup
0 �=v∈X

〈Bv, q〉
‖v‖X

for all q ∈ Π (3.25)

is satisfied.
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For g ∈ ImXB and f ∈ ImVg
A there exists a unique solution (u, p) ∈ X × Π

of the variational problem (3.22) satisfying

‖u‖X ≤ 1
cA
1

‖f‖X′ +
(

1 +
cA
2

cA
1

)
cB ‖g‖Π′ , (3.26)

and

‖p‖Π ≤ 1
cS

(
1 +

cA
2

cA
1

) {
‖f‖X′ + cB cA

2 ‖g‖Π′
}

. (3.27)

Proof. Applying Theorem 3.8 we first find a unique u ∈ X satisfying

〈Au, v〉 = 〈f, v〉 for all v ∈ V0

and
〈Bu, q〉 = 〈g, q〉 for all q ∈ Π.

The estimate (3.26) is just the estimate of Corollary 3.9.
It remains to find p ∈ Π as the solution of the variational problem

〈Bv, p〉 = 〈f − Au, v〉 for all v ∈ X.

First we have f −Au ∈ (ker B)0, and using Theorem 3.6 we obtain f −Au ∈
ImΠ(B′) and therefore the solvability of the variational problem.

To prove the uniqueness of p ∈ Π we assume that there are given two
arbitrary solutions p, p̂ ∈ Π satisfying

〈Bv, p〉 = 〈f − Au, v〉 for all v ∈ X

and
〈Bv, p̂〉 = 〈f − Au, v〉 for all v ∈ X.

Then,
〈Bv, p − p̂〉 = 0 for all v ∈ X.

Using the stability condition (3.25) we obtain

0 ≤ cS ‖p − p̂‖Π ≤ sup
0 �=v∈X

〈Bv, p − p̂〉
‖v‖X

= 0

and therefore p = p̂ in Π.
Using again (3.25) for the unique solution p ∈ Π this gives

cS ‖p‖Π ≤ sup
0 �=v∈X

〈Bv, p〉
‖v‖X

= sup
0 �=v∈X

〈f − Au, v〉
‖v‖X

≤ ‖f‖X′ + cA
2 ‖u‖X

and applying (3.26) we finally obtain (3.27). ��
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The statement of Theorem 3.11 remains valid when we assume that
A : X → X ′ is X–elliptic, i.e.

〈Av, v〉 ≥ cA
1 ‖v‖2

X for all v ∈ X.

For an arbitrary p ∈ Π there exists a unique solution u = A−1[f −B′p] ∈ X
of the first equation of (3.22). Inserting this into the second equation of (3.22)
we obtain a variational problem to find p ∈ Π such that

〈BA−1B′p, q〉 = 〈BA−1f − g, q〉 (3.28)

is satisfied for all q ∈ Π. To investigate the unique solvability of the vari-
ational problem (3.28) we have to check the assumptions of Theorem 3.4
(Lax–Milgram theorem).

Lemma 3.12. Let the assumptions of Theorem 3.11 be satisfied. The operator
S := BA−1B′ : Π → Π ′ is then bounded and from the stability condition
(3.25) it follows that S is Π–elliptic,

〈Sq, q〉 ≥ cS
1 ‖q‖2

Π for all q ∈ Π. (3.29)

Proof. For q ∈ Π we have u := A−1B′q as unique solution of the variational
problem

〈Au, v〉 = 〈Bv, q〉 for all v ∈ X.

Using the X–ellipticity of A : X → X ′ and applying Theorem 3.4 we conclude
the existence of the unique solution u ∈ X satisfying

‖u‖X = ‖A−1B′q‖X ≤ 1
cA
1

‖B′q‖X′ ≤ cB
2

cA
1

‖q‖Π .

From this we obtain

‖Sq‖Π′ = ‖BA−1B′q‖Π′ = ‖Bu‖Π′ ≤ cB
2 ‖u‖X ≤ [cB

2 ]2

cA
1

‖q‖Π

for all q ∈ Π and therefore the boundedness of S : Π → Π ′. Further,

〈Sq, q〉 = 〈BA−1B′q, q〉 = 〈Bu, q〉 = 〈Au, u〉 ≥ cA
1 ‖u‖2

X .

On the other hand, the stability condition (3.25) gives

cS ‖q‖Π ≤ sup
0 �=v∈X

〈Bv, q〉
‖v‖X

= sup
0 �=v∈X

〈Au, v〉
‖v‖X

≤ cA
2 ‖u‖X

and therefore the ellipticity estimate (3.29) with cS
1 = cA

1 [cS/cA
2 ]2. ��

From Lemma 3.12 we see that (3.28) is an elliptic variational problem to
find p ∈ Π. Hence we obtain the unique solvability of (3.28) when applying
Theorem 3.4. Moreover, for the solution of the variational problem (3.22) we
obtain the following result.
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Theorem 3.13. Let X and Π be Banach spaces and let A : X → X ′ and
B : X → Π ′ be bounded operators. We assume that A is X–elliptic, and that
the stability condition (3.25) is satisfied. For f ∈ X ′ and g ∈ Π ′ there exists
the unique solution (u, p) ∈ X×Π of the variational problem (3.22) satisfying

‖p‖Π ≤ 1
cS
1

‖BA−1f − g‖Π′ ≤ 1
cS
1

[
cB
2

cA
1

‖f‖X′ + ‖g‖Π′

]
(3.30)

and

‖u‖X ≤ 1
cA
1

(
1 +

[cB
2 ]2

cA
1 cS

1

)
‖f‖X′ +

cB
2

cA
1 cS

1

‖g‖Π′ . (3.31)

Proof. The application of Theorem 3.4 (Lax–Milgram lemma) gives the
unique solvability of the variational problem (3.28) as well as the estimate
(3.30). For a known p ∈ X we find u ∈ X as the unique solution of the
variational problem

〈Au, v〉 = 〈f − B′p, v〉 for all v ∈ X.

From the X–ellipticity of A we obtain

cA
1 ‖u‖2

X ≤ 〈Au, u〉 = 〈f − B′p, u〉 ≤ ‖f − B′p‖X′‖u‖X

and therefore

‖u‖X ≤ 1
cA
1

‖f‖X′ +
cB
2

cA
1

‖p‖Π .

Applying (3.30) this gives the estimate (3.31). ��

3.6 Coercive Operators

Since the ellipticity assumption (3.12) is too restrictive for some applications
we now consider the more general case of coercive operators. An operator
A : X → X ′ is called coercive if there exists a compact operator C : X → X ′

such that there holds a G̊ardings inequality, i.e.

〈(A + C)v, v〉 ≥ cA
1 ‖v‖2

X for all v ∈ X. (3.32)

An operator C : X → Y is said to be compact if the image of the unit sphere
of X is relatively compact in Y . Note that the product of a compact operator
with a bounded linear operator is compact. Applying the Riesz–Schauder
theory, see for example [163], we can state the following result.

Theorem 3.14 (Fredholm alternative). Let K : X → X be a compact
operator. Either the homogeneous equation

(I − K)u = 0
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has a non–trivial solution u ∈ X or the inhomogeneous equation

(I − K)u = g

has, for every given g ∈ X, a uniquely determined solution u ∈ X satisfying

‖u‖X ≤ c ‖g‖X .

Based on Fredholm’s alternative we can derive a result on the solvability
of operator equations Au = f when A is assumed to be coercive.

Theorem 3.15. Let A : X → X ′ be a bounded coercive linear operator and
let A be injective, i.e., from Au = 0 it follows that u = 0. Then there exists
the unique solution u ∈ X of the operator equation Au = f satisfying

‖u‖X ≤ c ‖f‖X′ .

Proof. The linear operator D = A + C : X → X ′ is bounded and, due to
assumption (3.32), X–elliptic. Applying the Lax–Milgram lemma (Theorem
3.4) this gives the inverse operator D−1 : X ′ → X. Hence, instead of the
operator equation Au = f we consider the equivalent equation

Bu = D−1Au = D−1f (3.33)

with the bounded operator

B = D−1A = D−1(D − C) = I − D−1C : X → X.

Since the operator D−1C : X → X is compact we can apply Theorem 3.14
to investigate the unique solvability of the operator equation (3.33). Since
A is assumed to be injective the homogeneous equation D−1Au = 0 has
only the trivial solution. Hence there exists a unique solution u ∈ X of the
inhomogeneous equation Bu = D−1f satisfying

‖u‖X ≤ c ‖D−1f‖X ≤ c̃ ‖f‖X′ . ��



4

Variational Formulations
of Boundary Value Problems

In this chapter we describe and analyze variational methods for second order
elliptic boundary value problems as given in Chapter 1. To establish the unique
solvability of the associated variational formulations we will use the methods
which were given in the previous Chapter 3. The weak formulation of boundary
value problem is the basis to introduce finite element methods. Moreover,
from these results we can also derive mapping properties of boundary integral
operators (cf. Chapter 6) as used in boundary element methods.

4.1 Potential Equation

Let us consider the scalar partial differential operator (1.1),

(Lu)(x) = −
d∑

i,j=1

∂

∂xj

[
aji(x)

∂

∂xi
u(x)

]
for x ∈ Ω ⊂ R

d, (4.1)

the trace operator (1.3),

γint
0 u(x) = lim

Ω�x̃→x∈Γ
u(x̃) for x ∈ Γ = ∂Ω,

and the associated conormal derivative (1.7),

γint
1 u(x) = lim

Ω�x̃→x∈Γ

d∑
i,j=1

nj(x)aji(x̃)
∂

∂x̃i
u(x̃) for x ∈ Γ = ∂Ω. (4.2)

Note that Green’s first formula (1.5),

a(u, v) =
∫
Ω

(Lu)(x)v(x)dx +
∫
Γ

γint
1 u(x)γint

0 v(x)dsx,
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remains valid for u ∈ H1(Ω) with Lu ∈ H̃−1(Ω) and v ∈ H1(Ω), i.e. we have

a(u, v) = 〈Lu, v〉Ω + 〈γint
1 u, γint

0 v〉Γ (4.3)

where a(·, ·) is the symmetric bilinear form as defined in (1.6),

a(u, v) =
d∑

i,j=1

∫
Ω

aji(x)
∂

∂xi
u(x)

∂

∂xj
v(x) dx. (4.4)

Lemma 4.1. Assume that aij ∈ L∞(Ω) for i, j = 1, . . . , d with

‖a‖L∞(Ω) := max
i,j=1,...,d

sup
x∈Ω

|aij(x)|. (4.5)

The bilinear form a(·, ·) : H1(Ω) × H1(Ω) → R is bounded satisfying

|a(u, v)| ≤ cA
2 |u|H1(Ω)|v|H1(Ω) for all u, v ∈ H1(Ω) (4.6)

with cA
2 := d ‖a‖L∞(Ω).

Proof. Using (4.5) we first have

|a(u, v)| =

∣∣∣∣∣∣
d∑

i,j=1

∫
Ω

aji(x)
∂

∂xi
u(x)

∂

∂xj
v(x)dx

∣∣∣∣∣∣
≤ ‖a‖L∞(Ω)

∫
Ω

d∑
i=1

∣∣∣∣ ∂

∂xi
u(x)

∣∣∣∣ d∑
j=1

∣∣∣∣ ∂

∂xj
v(x)

∣∣∣∣ dx.

Applying the Cauchy–Schwarz inequality twice we then obtain

|a(u, v)| ≤ ‖a‖L∞(Ω)

⎛⎝ ∫
Ω

[
d∑

i=1

∣∣∣∣ ∂

∂xi
u(x)

∣∣∣∣
]2

dx

⎞⎠1/2

⎛⎜⎝ ∫
Ω

⎡⎣ d∑
j=1

∣∣∣∣ ∂

∂xj
v(x)

∣∣∣∣
⎤⎦2

dx

⎞⎟⎠
1/2

≤ ‖a‖L∞(Ω)

⎛⎝ ∫
Ω

d
d∑

i=1

∣∣∣∣ ∂

∂xi
u(x)

∣∣∣∣2 dx

⎞⎠1/2

⎛⎝ ∫
Ω

d

d∑
j=1

∣∣∣∣ ∂

∂xj
v(x)

∣∣∣∣2 dx

⎞⎠1/2

= d ‖a‖L∞(Ω) ‖∇u‖L2(Ω)‖∇v‖L2(Ω). ��
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From (4.6) we further get the estimate

|a(u, v)| ≤ cA
2 ‖u‖H1(Ω)‖v‖H1(Ω) for all u, v ∈ H1(Ω). (4.7)

Lemma 4.2. Let L be a uniform elliptic partial differential operator as given
in (4.1). For the bilinear form (4.4) we then have

a(v, v) ≥ λ0 |v|2H1(Ω) for all v ∈ H1(Ω) (4.8)

where λ0 is the positive constant of the uniform ellipticity estimate (1.2).

Proof. By using wi(x) :=
∂

∂xi
v(x) for i = 1, . . . , d we have

a(v, v) =
∫
Ω

(A(x)w(x), w(x)) dx

≥ λ0

∫
Ω

(w(x), w(x)) dx = λ0 ‖∇v‖2
L2(Ω). ��

4.1.1 Dirichlet Boundary Value Problem

We start to consider the Dirichlet boundary value problem (1.10) and (1.11),

(Lu)(x) = f(x) for x ∈ Ω, γint
0 u(x) = g(x) for x ∈ Γ. (4.9)

The manifold to be used in the weak formulation is defined as

Vg :=
{

v ∈ H1(Ω) : γint
0 v(x) = g(x) for x ∈ Γ

}
, V0 = H1

0 (Ω).

The variational formulation of the Dirichlet boundary value problem (4.9)
then follows from Green’s first formula (4.3): Find u ∈ Vg such that

a(u, v) = 〈f, v〉Ω (4.10)

is satisfied for all v ∈ V0. Since the Dirichlet boundary condition is explic-
itly incorporated as a side condition in the manifold Vg, we call boundary
conditions of Dirichlet type also essential boundary conditions.

The variational problem (4.10) corresponds to the abstract formulation
(3.20). Hence we can apply Theorem 3.8 and Corollary 3.9 to establish the
unique solvability of the variational problem (4.10).

Theorem 4.3. For f ∈ H−1(Ω) and g ∈ H1/2(Γ ) there exists a unique solu-
tion u ∈ H1(Ω) of the variational problem (4.10) satisfying

‖u‖H1(Ω) ≤ 1
cA
1

‖f‖H−1(Ω) +
(

1 +
cA
2

cA
1

)
cIT ‖g‖H1/2(Γ ). (4.11)
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Proof. For any given Dirichlet datum g ∈ H1/2(Γ ) we find, by applying the
inverse trace theorem (Theorem 2.22), a bounded extension ug ∈ H1(Ω) sat-
isfying γint

0 ug = g and

‖ug‖H1(Ω) ≤ cIT ‖g‖H1/2(Γ ).

It remains to find u0 := u−ug ∈ V0 as the solution of the variational problem

a(u0, v) = 〈f, v〉Ω − a(ug, v) for all v ∈ V0 . (4.12)

Recall that

‖v‖W 1
2 (Ω),Γ :=

⎧⎪⎨⎪⎩
⎡⎣ ∫

Γ

γint
0 v(x) dsx

⎤⎦2

+ ‖∇v‖2
L2(Ω)

⎫⎪⎬⎪⎭
1/2

defines an equivalent norm in H1(Ω) (cf. Example 2.7). For v ∈ V0 = H1
0 (Ω)

we then find from Lemma 4.2

a(v, v) ≥ λ0 |v|2H1(Ω) = λ0 ‖v‖2
W 1

2 (Ω),Γ ≥ cA
1 ‖v‖2

H1(Ω). (4.13)

Therefore, all assumptions of Theorem 3.4 (Lax–Milgram lemma) are satisfied.
Hence we conclude the unique solvability of the variational problem (4.12).

For the unique solution u0 ∈ V0 of the variational problem (4.12) we have,
since the bilinear form a(·, ·) is V0–elliptic and bounded,

cA
1 ‖u0‖2

H1(Ω) ≤ a(u0, u0) = 〈f, u0〉Ω − a(ug, u0)

≤
[
‖f‖H−1(Ω) + cA

2 ‖ug‖H1(Ω)

]
‖u0‖H1(Ω),

from which we finally get the estimate (4.11). ��
The unique solution u ∈ Vg of the variational problem (4.10) is also

denoted as weak solution of the Dirichlet boundary value problem (4.9).
For f ∈ H̃−1(Ω) we can determine the associated conormal derivative
γint
1 u ∈ H−1/2(Γ ) as the solution of the variational problem

〈γint
1 u, z〉Γ = a(u, Ez) − 〈f, Ez〉Ω (4.14)

for all z ∈ H1/2(Γ ). In (4.14), E : H1/2(Γ ) → H1(Ω) is the bounded exten-
sion operator as defined by the inverse trace theorem (Theorem 2.22). The
unique solvability of the variational formulation (4.14) follows when applying
Theorem 3.7. Hence we need to assume the stability condition

‖w‖H−1/2(Γ ) = sup
0 �=z∈H1/2(Γ )

〈w, z〉Γ
‖z‖H1/2(Γ )

for all w ∈ H−1/2(Γ ). (4.15)
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Lemma 4.4. Let u ∈ H1(Ω) be the unique solution of the Dirichlet boundary
value problem (4.10) when assuming g ∈ H1/2(Γ ) and f ∈ H̃−1(Ω). For the
associated conormal derivative γint

1 u ∈ H−1/2(Γ ) we then have

‖γint
1 u‖H−1/2(Γ ) ≤ cIT

{
‖f‖

H̃−1(Ω)
+ cA

2 |u|H1(Ω)

}
. (4.16)

Proof. Using the stability condition (4.15) and the variational formulation
(4.14) we find from the boundedness of the bilinear form a(·, ·) and by applying
the inverse trace theorem

‖γint
1 u‖H−1/2(Γ ) = sup

0 �=z∈H1/2(Γ )

|〈γint
1 u, z〉Γ |

‖z‖H1/2(Γ )

= sup
0 �=z∈H1/2(Γ )

|a(u, Ez) − 〈f, Ez〉Ω |
‖z‖H1/2(Γ )

≤
{

cA
2 |u|H1(Ω) + ‖f‖

H̃−1(Ω)

}
sup

0 �=z∈H1/2(Γ )

‖Ez‖H1(Ω)

‖z‖H1/2(Γ )

≤ cIT

{
‖f‖

H̃−1(Ω)
+ cA

2 |u|H1(Ω)

}
. ��

In particular for the solution u of the Dirichlet boundary value problem
with a homogeneous partial differential equation, i.e. f ≡ 0, we obtain the
following result which is essential for the analysis of boundary integral oper-
ators.

Corollary 4.5. Let u ∈ H1(Ω) be the weak solution of the Dirichlet boundary
value problem

(Lu)(x) = 0 for x ∈ Ω, γint
0 u(x) = g(x) for x ∈ Γ

where L is a uniform elliptic partial differential operator of second order.
Then,

a(u, u) ≥ c ‖γint
1 u‖2

H−1/2(Γ ) . (4.17)

Proof. By setting f ≡ 0 the estimate (4.16) first gives

‖γint
1 u‖2

H−1/2(Γ ) ≤ [cIT cA
2 ]2 |u|2H1(Ω) .

The assertion now follows from the semi–ellipticity (4.8) of the bilinear form
a(·, ·). ��

When Ω is a Lipschitz domain we can formulate stronger assumptions on
the given data f and g to establish higher regularity results for the solution
u of the Dirichlet boundary value problem and for the associated conormal
derivative γint

1 u.
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Theorem 4.6. [106, Theorem 1.1, p. 249] Let Ω ⊂ R
d be a bounded Lipschitz

domain with boundary Γ = ∂Ω. Let u ∈ H1(Ω) be the weak solution of the
Dirichlet boundary value problem

(Lu)(x) = f(x) for x ∈ Ω, γint
0 u(x) = g(x) for x ∈ Γ.

If f ∈ L2(Ω) and g ∈ H1(Γ ) are satisfied, then we have u ∈ H3/2(Ω) with

‖u‖H3/2(Ω) ≤ c1

{
‖f‖L2(Ω) + ‖g‖H1(Γ )

}
as well as γint

1 u ∈ L2(Γ ) satisfying

‖γint
1 u‖L2(Γ ) ≤ c2

{
‖f‖L2(Ω) + ‖g‖H1(Γ )

}
.

When formulating stronger assumptions both on the domain Ω and on
the given data f and g we can establish even higher regularity results for the
solution u of the Dirichlet boundary value problem (4.9). Let the boundary
Γ = ∂Ω be either smooth or piecewise smooth, but assume that Ω is convex,
and let f ∈ L2(Ω). If g = γint

0 ug is the trace of a function ug ∈ H2(Ω), then
we have u ∈ H2(Ω). For more general results on the regularity of solutions of
boundary value problems we refer, for example, to [66].

4.1.2 Lagrange Multiplier Methods

In what follows we will consider a saddle point variational formulation which
is equivalent to the variational problem (4.10). The Dirichlet boundary con-
ditions are now formulated as side conditions, and the associated conor-
mal derivative corresponds to the Lagrange multiplier [7, 24]. Starting from
Green’s first formula (4.3) we obtain by introducing the Lagrange multi-
plier λ := γint

1 u ∈ H−1/2(Γ ) the following saddle point problem: Find
(u, λ) ∈ H1(Ω) × H−1/2(Γ ) such that

a(u, v) − b(v, λ) = 〈f, v〉Ω
b(u, µ) = 〈g, µ〉Γ

(4.18)

is satisfied for all (v, µ) ∈ H1(Ω)×H−1/2(Γ ). Here we have used the bilinear
form

b(v, µ) := 〈γint
0 v, µ〉Γ for (v, µ) ∈ H1(Ω) × H−1/2(Γ ).

To investigate the unique solvability of the saddle point problem (4.18) we
will apply Theorem 3.11. Obviously,

ker B :=
{

v ∈ H1(Ω) : 〈γint
0 v, µ〉Γ = 0 for all µ ∈ H−1/2(Γ )

}
= H1

0 (Ω).

Hence, due to (4.13), we have the ker B–ellipticity of the bilinear form a(·, ·).
It remains to establish the stability condition

cS ‖µ‖H−1/2(Γ ) ≤ sup
0 �=v∈H1(Ω)

〈γint
0 v, µ〉Γ

‖v‖H1(Ω)
for all µ ∈ H−1/2(Γ ) . (4.19)
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Lemma 4.7. The stability condition (4.19) is satisfied for all µ ∈ H−1/2(Γ ).

Proof. Let an arbitrary µ ∈ H−1/2(Γ ) be given. Applying Theorem 3.3 (Riesz
Representation Theorem) we find a uniquely determined uµ ∈ H1/2(Γ ) satis-
fying

〈uµ, v〉H1/2(Γ ) = 〈µ, v〉Γ for all v ∈ H1/2(Γ )

and
‖uµ‖H1/2(Γ ) = ‖µ‖H−1/2(Γ ) .

Using the inverse trace theorem (Theorem 2.22) there exists an extension
Euµ ∈ H1(Ω) with

‖Euµ‖H1(Ω) ≤ cIT ‖uµ‖H1/2(Γ ).

For v = Euµ ∈ H1(Ω) we then have

〈v, µ〉Γ
‖v‖H1(Ω)

=
〈uµ, µ〉Γ

‖Euµ‖H1(Ω)
=

〈uµ, uµ〉H1/2(Γ )

‖Euµ‖H1(Ω)

≥ 1
cIT

‖uµ‖H1/2(Γ ) =
1

cIT
‖µ‖H−1/2(Γ )

and therefore the stability condition (4.19) is satisfied. ��
Hence we can conclude the unique solvability of the saddle point problem

(4.18) due to Theorem 3.11.
Recall that the bilinear form a(·, ·) in the saddle point formulation (4.18)

is only H1
0 (Ω)–elliptic. However, the saddle point problem (4.18) can be re-

formulated to obtain a formulation where the modified bilinear form ã(·, ·) is
now H1(Ω)–elliptic. Since the Lagrange multiplier λ := γint

1 u ∈ H−1/2(Γ )
describes the conormal derivative of the solution u, using the orthogonality
relation (1.15) we have ∫

Ω

f(x)dx +
∫
Γ

λ(x)dsx = 0 . (4.20)

On the other hand, with the Dirichlet boundary condition γint
0 u = g we also

have ∫
Γ

γint
0 u(x)dsx =

∫
Γ

g(x)dsx . (4.21)

Hence we can reformulate the saddle point problem (4.18) to find (u, λ) ∈
H1(Ω) × H−1/2(Γ ) such that
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Γ

γint
0 u(x)dsx

∫
Γ

γint
0 v(x)dsx + a(u, v) − b(v, λ) (4.22)

= 〈f, v〉Ω +
∫
Γ

g(x)dsx

∫
Γ

γint
0 v(x)dsx

b(u, µ) +
∫
Γ

λ(x)dsx

∫
Γ

µ(x)dsx = 〈g, µ〉Γ −
∫
Ω

f(x)dx

∫
Γ

µ(x)dsx (4.23)

is satisfied for all (v, µ) ∈ H1(Ω) × H−1/2(Γ ).
The modified saddle point problem (4.22) and (4.23) is uniquely solv-

able, and the solution is also the unique solution of the original saddle point
problem (4.18), i.e. the saddle point formulations (4.22)–(4.23) and (4.18) are
equivalent.

Theorem 4.8. The modified saddle point problem (4.22) and (4.23) has a
unique solution (u, λ) ∈ H1(Ω)×H−1/2(Γ ), which is also the unique solution
of the saddle point formulation (4.18).

Proof. The extended bilinear form

ã(u, v) :=
∫
Γ

γint
0 u(x)dsx

∫
Γ

γint
0 v(x)dsx + a(u, v)

is bounded for all u, v ∈ H1(Ω). Using Lemma 4.2 and Example 2.7 we find

ã(v, v) =

⎡⎣∫
Γ

γint
0 v(x)dsx

⎤⎦2

+ a(v, v) ≥ min{1, λ0}‖v‖2
W 1

2 (Ω),Γ ≥ cÃ
1 ‖v‖2

H1(Ω)

for all v ∈ H1(Ω) and therefore the H1(Ω)–ellipticity of the extended bilinear
form ã(·, ·). Applying Theorem 3.11 we obtain as in Theorem 3.13 the unique
solvability of the saddle point problem (4.22) and (4.23). In particular for
(v, µ) ≡ (1, 1) we have

|Γ |
∫
Γ

γint
0 u(x)dsx −

∫
Γ

λ(x)dsx =
∫
Ω

f(x)dx + |Γ |
∫
Γ

g(x)dsx,

∫
Γ

γint
0 u(x)dsx + |Γ |

∫
Γ

λ(x)dsx =
∫
Γ

g(x)dsx − |Γ |
∫
Ω

f(x)dx.

Multiplying the first equation with |Γ | > 0 and adding the result to the second
equation this gives

(1 + |Γ |2)
∫
Γ

γint
0 u(x)dsx = (1 + |Γ |2)

∫
Γ

g(x)dsx

and therefore (4.21). Then we immediately get also (4.20), i.e. (u, λ) is also a
solution of the saddle point problem (4.18). ��
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4.1.3 Neumann Boundary Value Problem

In addition to the Dirichlet boundary value problem (4.9) we now consider
the Neumann boundary value problem (1.10) and (1.12),

(Lu)(x) = f(x) for x ∈ Ω, γint
1 u(x) = g(x) for x ∈ Γ. (4.24)

Hereby we have to assume the solvability condition (1.17),∫
Ω

f(x)dx +
∫
Γ

g(x)dsx = 0. (4.25)

Moreover, the solution of the Neumann boundary value problem (4.24) is only
unique up to an additive constant. To fix this constant, we formulate a suitable
scaling condition. For this we define

H1
∗ (Ω) :=

⎧⎨⎩v ∈ H1(Ω) :
∫
Ω

v(x)dx = 0

⎫⎬⎭ .

Using Green’s first formula (4.3) we obtain the variational formulation of the
Neumann boundary value problem (4.24) to find u ∈ H1

∗ (Ω) such that

a(u, v) = 〈f, v〉Ω + 〈g, γint
0 v〉Γ (4.26)

is satisfied for all v ∈ H1
∗ (Ω).

Theorem 4.9. Let f ∈ H̃−1(Ω) and g ∈ H−1/2(Γ ) be given satisfying the
solvability condition (4.25). Then there exists a unique solution u ∈ H1

∗ (Ω) of
the variational problem (4.26) satisfying

‖u‖H1(Ω) ≤ 1
c̃A
1

{
‖f‖

H̃−1(Ω)
+ cT ‖g‖H−1/2(Γ )

}
.

Proof. Recall that

‖v‖W 1
2 (Ω),Ω :=

⎧⎪⎨⎪⎩
⎡⎣ ∫

Ω

v(x) dx

⎤⎦2

+ ‖∇v‖2
L2(Ω)

⎫⎪⎬⎪⎭
1/2

defines an equivalent norm in H1(Ω) (cf. Example 2.7). Using Lemma 4.2 we
then have

a(v, v) ≥ λ0 ‖∇v‖2
L2(Ω) = λ0 ‖v‖2

W 1
2 (Ω),Ω ≥ c̃A

1 ‖v‖2
H1(Ω) (4.27)

for all v ∈ H1
∗ (Ω) and therefore the H1

∗ (Ω)–ellipticity of the bilinear form
a(·, ·) follows. The unique solvability of the variational problem (4.26) we
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now conclude from Theorem 3.4 (Lax–Milgram lemma). Using the H1
∗ (Ω)–

ellipticity of the bilinear form a(·, ·) we further have

c̃A
1 ‖u‖2

H1(Ω) ≤ a(u, u) = 〈f, u〉Ω + 〈g, γint
0 u〉Γ

≤ ‖f‖
H̃−1(Ω)

‖u‖H1(Ω) + ‖g‖H−1/2(Γ )‖γint
0 u‖H1/2(Γ ).

Applying the trace theorem (Theorem 2.21) gives the assertion. ��
In what follows we will consider a saddle point formulation which is equiv-

alent to the variational problem (4.26). The scaling condition to define the
trial space H1

∗ (Ω) is now formulated as a side condition. By using a scalar
Lagrange multiplier we obtain the following variational problem (cf. Section
3.5) to find u ∈ H1(Ω) and λ ∈ R such that

a(u, v) + λ

∫
Ω

v(x)dx = 〈f, v〉Ω + 〈g, γint
0 v〉Γ∫

Ω

u(x)dx = 0
(4.28)

is satisfied for all v ∈ H1(Ω). To establish the unique solvability of the saddle
point problem (4.28) we have to investigate the assumptions of Theorem 3.11.
The bilinear form

b(v, µ) := µ

∫
Ω

v(x)dx for all v ∈ H1(Ω), µ ∈ R

is bounded, and we have kerB = H1
∗ (Ω). Hence we obtain the ker B–ellipticity

of the bilinear form a(·, ·) from the ellipticity estimate (4.27). It remains to
prove the stability condition

cS |µ| ≤ sup
0 �=v∈H1(Ω)

b(v, µ)
‖v‖H1(Ω)

for all µ ∈ R. (4.29)

For an arbitrary given µ ∈ R we define v∗ := µ ∈ H1(Ω) to obtain the
stability estimate (4.29) with cS = 1/

√
|Ω|. By applying Theorem 3.11 we

now conclude the unique solvability of the saddle point problem (4.28).
Choosing in (4.28) the test function v ≡ 1 we obtain for the Lagrange

parameter λ from the solvability condition (4.25)

λ = 0.

Instead of (4.28) we may now consider an equivalent saddle point formulation
to find (u, λ) ∈ H1(Ω) × R such that

a(u, v) + λ

∫
Ω

v(x)dx = 〈f, v〉Ω + 〈g, γint
0 v〉Γ∫

Ω

u(x)dx − λ = 0
(4.30)
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is satisfied for all v ∈ H1(Ω). Using the second equation we can eliminate the
scalar Lagrange multiplier λ ∈ R to obtain a modified variational problem to
find u ∈ H1(Ω) such that

a(u, v) +
∫
Ω

u(x)dx

∫
Ω

v(x)dx = 〈f, v〉Ω + 〈g, γint
0 v〉Γ (4.31)

is satisfied for all v ∈ H1(Ω).

Theorem 4.10. For any f ∈ H̃−1(Ω) and for any g ∈ H−1/2(Γ ) there is a
unique solution u ∈ H1(Ω) of the modified variational problem (4.31).
If f ∈ H̃−1(Ω) and g ∈ H−1/2(Γ ) satisfy the solvability condition (4.25),
then we have u ∈ H1

∗ (Ω), i.e. the modified variational problem (4.31) and the
saddle point formulation (4.28) are equivalent.

Proof. The modified bilinear form

ã(u, v) := a(u, v) +
∫
Ω

u(x)dx

∫
Ω

v(x)dx

is H1(Ω)–elliptic, i.e for all v ∈ H1(Ω) we have

ã(v, v) ≥ λ0 ‖∇v‖2
L2(Ω) +

⎡⎣ ∫
Ω

v(x)dx

⎤⎦2

≥ min{λ0, 1} ‖v‖2
W 1

2 (Ω),Ω ≥ ĉA
1 ‖v‖2

H1(Ω).

Hence we conclude the unique solvability of the modified variational problem
(4.31) due the Theorem 3.4 (Lax–Milgram lemma) for arbitrary given data
f ∈ H̃−1(Ω) and g ∈ H−1/2(Γ ).

Choosing as test function v ≡ 1 we get, when assuming the solvability
condition (4.25),

|Ω|
∫
Ω

u(x)dx = 〈f, 1〉Ω + 〈g, 1〉Γ = 0

and therefore u ∈ H1
∗ (Ω). The solution of the modified variational problem

(4.31) is therefore also a solution of the saddle point formulation (4.28), i.e.
both formulations are equivalent. ��

Since the solution of the Neumann boundary value problem (4.24) is not
unique, we can add an arbitrary constant α ∈ R to the solution u ∈ H1

∗ (Ω)
to obtain the general solution ũ := u + α ∈ H1(Ω).
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4.1.4 Mixed Boundary Value Problem

We now consider the boundary value problem (1.10)–(1.12) with boundary
conditions of mixed type,

(Lu)(x) = f(x) for x ∈ Ω,

γint
0 u(x) = gD(x) for x ∈ ΓD,

γint
1 u(x) = gN (x) for x ∈ ΓN .

We assume Γ = ΓD∪ΓN as well as meas(ΓD) > 0. The associated variational
problem again follows from Green’s first formula (4.3) to find u ∈ H1(Ω) with
γint
0 u(x) = gD(x) for x ∈ ΓD such that

a(u, v) = 〈f, v〉Ω + 〈gN , γint
0 v〉ΓN

(4.32)

is satisfied for all v ∈ H1
0 (Ω,ΓD) where

H1
0 (Ω,ΓD) :=

{
v ∈ H1(Ω) : γint

0 v(x) = 0 for x ∈ ΓD

}
.

The unique solvability of the variational problem (4.32) is a consequence of
the following theorem.

Theorem 4.11. Let f ∈ H̃−1(Ω), gD ∈ H1/2(ΓD) and gN ∈ H−1/2(ΓN )
be given. Then there exists a unique solution u ∈ H1(Ω) of the variational
problem (4.32) satisfying

‖u‖H1(Ω) ≤ c
[
‖f‖

H̃−1(Ω)
+ ‖gD‖H1/2(ΓD) + ‖gN‖H−1/2(ΓN )

]
. (4.33)

Proof. For gD ∈ H1/2(ΓD) we first find a bounded extension g̃D ∈ H1/2(Γ )
satisfying

‖g̃D‖H1/2(Γ ) ≤ c ‖gD‖H1/2(ΓD).

Applying the inverse trace theorem (Theorem 2.22) there exists a second ex-
tension ug̃D

∈ H1(Ω) with γint
0 ug̃D

= g̃D and satisfying

‖ug̃D
‖H1(Ω) ≤ cIT ‖g̃D‖H1/2(Γ ) .

It remains to find u0 ∈ H1
0 (Ω,ΓD) as the unique solution of the variational

formulation

a(u0, v) = 〈f, v〉Ω + 〈gN , γint
0 v〉ΓN

− a(ug̃D
, v)

for all v ∈ H1
0 (Ω,ΓD). As in Example 2.7 we can define

‖v‖W 1
2 (Ω),ΓD

:=

⎧⎪⎨⎪⎩
⎡⎣ ∫

ΓD

γint
0 v(x) dsx

⎤⎦2

+ ‖∇v‖2
L2(Ω)

⎫⎪⎬⎪⎭
1/2
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which is an equivalent norm in H1(Ω). Using Lemma 4.2 we find

a(v, v) ≥ λ0 ‖∇v‖2
L2(Ω) = λ0 ‖v‖2

W 1
2 (Ω),ΓD

≥ cA
1 ‖v‖2

W 1
2 (Ω)

for all v ∈ H1
0 (Ω,ΓD). Hence all assumptions of Theorem 3.4 (Lax–Milgram

lemma) are satisfied, and therefore, the unique solvability of the variational
problem (4.32) follows.

For the unique solution u0 ∈ H1
0 (Ω,ΓD) of the variational problem (4.32)

we then obtain

cA
1 ‖u0‖2

H1(Ω) ≤ a(u0, u0)

= 〈f, u0〉Ω + 〈gN , γint
0 u0〉ΓN

− a(ug̃D
, u0)

≤
[
‖f‖

H̃−1(Ω)
+ cA

2 ‖ug̃D
‖H1(Ω)

]
‖u0‖H1(Ω)

+‖gN‖H−1/2(ΓN )‖γint
0 u0‖H̃1/2(ΓN )

,

from which we conclude the estimate (4.33). ��

4.1.5 Robin Boundary Value Problems

We finally consider the boundary value problem (1.10) and (1.13) with bound-
ary conditions of Robin type,

(Lu)(x) = f(x) for x ∈ Ω, γint
1 u(x) + κ(x)γint

0 u(x) = g(x) for x ∈ Γ.

The associated variational formulation is again a direct consequence of Green’s
first formula (4.3) to find u ∈ H1(Ω) such that

a(u, v) +
∫
Γ

κ(x)γint
0 u(x)γint

0 v(x)dsx = 〈f, v〉Ω + 〈g, γint
0 v〉Γ (4.34)

is satisfied for all v ∈ H1(Ω).

Theorem 4.12. Let f ∈ H̃−1(Ω) and g ∈ H−1/2(Γ ) be given. Assume that
κ(x) ≥ κ0 > 0 holds for all x ∈ Γ . Then there exists a unique solution
u ∈ H1(Ω) of the variational problem (4.34) satisfying

‖u‖H1(Ω) ≤ c
[
‖f‖

H̃−1(Ω)
+ ‖g‖H−1/2(Γ )

]
. (4.35)

Proof. As in Example 2.7 we can define

‖v‖W 1
2 (Ω),Γ :=

{
‖γint

0 v‖2
L2(Γ ) + ‖∇v‖2

L2(Ω)

}1/2

which is an equivalent norm in H1(Ω). Applying Lemma 4.2 and by using
κ(x) ≥ κ0 > 0 for x ∈ Γ we obtain
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a(v, v) +
∫
Γ

κ(x)[γint
0 v(x)]2dsx ≥ λ0 ‖∇v‖2

L2(Ω) + κ0 ‖γint
0 v‖2

L2(Γ )

≥ min{λ0, κ0} ‖v‖2
H1(Ω),Γ ≥ cA

1 ‖v‖2
H1(Ω).

Hence we can apply Theorem 3.4 (Lax–Milgram lemma) to conclude the
unique solvability of the variational problem (4.34). The estimate (4.35) then
follows as in the proof of Theorem 4.11. ��

4.2 Linear Elasticity

Next we consider the system of linear elasticity,

Liu(x) = −
d∑

j=1

∂

∂xj
σij(u, x) for x ∈ Ω ⊂ R

d, i = 1, . . . , d.

Inserting Hooke’s law (1.19) this is equivalent to

Lu(x) = −µ∆u(x) − (λ + µ)grad divu(x) for x ∈ Ω ⊂ R
d

with the Lamé constants

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)

where we assume E > 0 and ν ∈ (0, 1/2). Using the associated conormal
derivative (1.23) and the bilinear form (1.26),

a(u, v) = 2µ

∫
Ω

d∑
i,j=1

eij(u, x)eij(v, x)dx + λ

∫
Ω

div u(x) div v(x)dx

=
∫
Ω

d∑
i,j=1

σij(u, x)eij(v, x)dx,

we can write Betti’s first formula as (1.21),

a(u, v) = 〈Lu, v〉Ω + 〈γint
1 u, γint

0 v〉Γ .

First we show that the bilinear form a(·, ·) is bounded.

Lemma 4.13. The bilinear form (1.26) is bounded, i.e.

|a(u, v)| ≤ 2E

1 − 2ν
|u|[H1(Ω)]d |v|[H1(Ω)]d (4.36)

for all u, v ∈ [H1(Ω)]d.
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Proof. In the case d = 3 we can write Hooke’s law (1.19) as⎛⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ33

σ12

σ13

σ23

⎞⎟⎟⎟⎟⎟⎟⎠ =
E

(1 + ν)(1 − 2ν)

⎛⎜⎜⎜⎜⎜⎜⎝

1 − ν ν ν
ν 1 − ν ν
ν ν 1 − ν

1 − 2ν
1 − 2ν

1 − 2ν

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

e11

e22

e33

e12

e13

e23

⎞⎟⎟⎟⎟⎟⎟⎠
or in short,

σ =
E

(1 + ν)(1 − 2ν)
C e .

Due to the symmetries σij(u, x) = σji(u, x) and eij(v, x) = eji(v, x) we have

a(u, v) =
E

(1 + ν)(1 − 2ν)

∫
Ω

(DCe(u, x), e(v, x)) dx

with the diagonal matrix D = diag(1, 1, 1, 2, 2, 2). The eigenvalues of the ma-
trix DC ∈ R

6×6 are

λ1(DC) = 1 + ν, λ2,3(DC) = 1 − 2ν, λ4,5,6(DC) = 2(1 − 2ν).

Hence, by applying the Cauchy–Schwarz inequality,

|a(u, v)| =

∣∣∣∣∣∣ E

(1 + ν)(1 − 2ν)

∫
Ω

(DCe(u, x), e(v, x)) dx

∣∣∣∣∣∣
≤ E

(1 + ν)(1 − 2ν)

∫
Ω

‖DCe(u, x)‖2‖e(v, x)‖2 dx

≤ E

(1 + ν)(1 − 2ν)
max{(1 + ν), 2(1 − 2ν)}

∫
Ω

‖e(v, x)‖2‖e(v, x)‖2 dx

≤ 2E

1 − 2ν

⎛⎝∫
Ω

‖e(u, x)‖2
2 dx

⎞⎠1/2⎛⎝∫
Ω

‖e(v, x)‖2
2 dx

⎞⎠1/2

.

Using

‖e(v, x)‖2
2 =

d∑
i=1

d∑
j=i

[eij(u, x)]2 =
1
4

d∑
i=1

d∑
j=i

[
∂

∂xi
uj(x) +

∂

∂xj
ui(x)

]2

≤ 1
2

d∑
i,j=1

{[
∂

∂xj
ui(x)

]2
+
[

∂

∂xi
uj(x)

]2}
=

d∑
i,j=1

[
∂

∂xj
ui(x)

]2
we obtain
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Ω

‖e(u, x)‖2
2 dx ≤

∫
Ω

d∑
i,j=1

[
∂

∂xj
ui(x)

]2
dx = |u|2[H1(Ω)]d

and therefore the estimate (4.36). In the case d = 2 the assertion follows in
the same way. ��

The proof of the [H1
0 (Ω)]d–ellipticity of the bilinear form a(·, ·) requires

several steps.

Lemma 4.14. For v ∈ [H1(Ω)]d we have

a(v, v) ≥ E

1 + ν

∫
Ω

d∑
i,j=1

[eij(v, x)]2dx . (4.37)

Proof. The assertion follows from the representation (1.26), i.e.

a(v, v) = 2µ
∫
Ω

d∑
i,j=1

[eij(v, x)]2dx + λ

∫
Ω

[div v(x)]2 dx

≥ 2µ

∫
Ω

d∑
i,j=1

[eij(v, x)]2 dx =
E

1 + ν

∫
Ω

d∑
i,j=1

[eij(v, x)]2 dx. ��

Next we can formulate Korn’s first inequality for v ∈ [H1
0 (Ω)]d.

Lemma 4.15 (Korn’s First Inequality). For v ∈ [H1
0 (Ω)]d we have∫

Ω

d∑
i,j=1

[eij(v, x)]2dx ≥ 1
2
|v|2[H1(Ω)]d . (4.38)

Proof. For ϕ ∈ C∞
0 (Ω) we first have

∫
Ω

d∑
i,j=1

[eij(ϕ, x)]2dx =
1
4

∫
Ω

d∑
i,j=1

[
∂

∂xj
ϕi(x) +

∂

∂xi
ϕj(x)

]2
dx

=
1
2

d∑
i,j=1

∫
Ω

[
∂

∂xj
ϕi(x)

]2
dx +

1
2

d∑
i,j=1

∫
Ω

∂

∂xj
ϕi(x)

∂

∂xi
ϕj(x)dx.

Applying integration by parts twice, this gives∫
Ω

∂

∂xj
ϕi(x)

∂

∂xi
ϕj(x)dx =

∫
Ω

∂

∂xi
ϕi(x)

∂

∂xj
ϕj(x)dx



4.2 Linear Elasticity 75

and therefore

d∑
i,j=1

∫
Ω

∂

∂xj
ϕi(x)

∂

∂xi
ϕj(x)dx =

d∑
i,j=1

∫
Ω

∂

∂xi
ϕi(x)

∂

∂xj
ϕj(x)dx

=
∫
Ω

[
d∑

i=1

∂

∂xi
ϕi(x)

]2

dx ≥ 0.

Hence we have∫
Ω

d∑
i,j=1

[eij(ϕ, x)]2dx ≥ 1
2

d∑
i,j=1

∫
Ω

[
∂

∂xj
ϕi(x)

]2
dx =

1
2
|ϕ|2[H1(Ω)]d .

Considering the closure of C∞
0 (Ω) with respect to the norm ‖ · ‖H1(Ω) we

conclude the assertion for v ∈ [H1
0 (Ω)]d. ��

Using suitable equivalent norms in [H1(Ω)]d we now conclude the [H1
0 (Ω)]d–

ellipticity of the bilinear form a(·, ·).

Corollary 4.16. For v ∈ [H1
0 (Ω)]d we have

a(v, v) ≥ c ‖v‖2
[H1(Ω)]d . (4.39)

Proof. For v ∈ [H1
0 (Ω)]d we can define by

‖v‖[H1(Ω)]d,Γ :=

⎧⎪⎨⎪⎩
d∑

i=1

⎡⎣ ∫
Γ

vi(x) dsx

⎤⎦2

+ |v|2[H1(Ω)]d

⎫⎪⎬⎪⎭
1/2

(4.40)

an equivalent norm in [H1(Ω)]d (cf. Theorem 2.6). The assertion then follows
from Lemma 4.14 and by using Korn’s first inequality (4.38). ��

The ellipticity estimate (4.39) remains valid for vector functions v, where
only some components vi(x) are zero for x ∈ ΓD,i ⊂ Γ . Let

[H1
0 (Ω,ΓD)]d =

{
v ∈ [H1(Ω)]d : γint

0 vi(x) = 0 for x ∈ ΓD,i, i = 1, . . . , d
}

.

Then we have

a(v, v) ≥ c ‖v‖2
[H1(Ω)]d for all v ∈ [H1

0 (Ω,ΓD)]d. (4.41)

As for the scalar Laplace operator we can extend the bilinear form a(·, ·)
of the system of linear elasticity by some L2 norm to obtain an equivalent
norm in [H1(Ω)]d. This is a direct consequence of Korn’s second inequality,
see [53].
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Theorem 4.17 (Korn’s Second Inequality). Let Ω ⊂ R
d be a bounded

domain with piecewise smooth boundary Γ = ∂Ω. Then we have∫
Ω

d∑
i,j=1

[eij(v, x)]2dx + ‖v‖2
[L2(Ω)]d ≥ c ‖v‖2

[H1(Ω)]d for all v ∈ [H1(Ω)]d.

Using Theorem 2.6 we can introduce further equivalent norms in [H1(Ω)]d.

Corollary 4.18. Let R = span{vk}
dim (R)
k=1 be the space of all rigid body mo-

tions as given in (1.29). Then we can define

‖v‖[H1(Ω)]d,Γ :=

⎧⎪⎨⎪⎩
dim (R)∑

k=1

⎡⎣∫
Ω

vk(x)�v(x)dx

⎤⎦2

+
∫
Ω

d∑
i,j=1

[eij(v, x)]2dx

⎫⎪⎬⎪⎭
1/2

as an equivalent norm in [H1(Ω)]d.

4.2.1 Dirichlet Boundary Value Problem

The Dirichlet boundary value problem of linear elasticity reads

−µ∆u(x)−(λ+µ)grad divu(x) = f(x) for x ∈ Ω, γint
0 u(x) = g(x) for x ∈ Γ.

As for the scalar potential equation we define the solution manifold

Vg :=
{

v ∈ [H1(Ω)]d : γint
0 vi(x) = gi(x) for x ∈ Γ, i = 1, . . . , d

}
where V0 = [H1

0 (Ω)]d. Then we have to find u ∈ Vg such that

a(u, v) = 〈f, v〉Ω (4.42)

is satisfied for all v ∈ V0. Since the bilinear form a(·, ·) is bounded (cf. (4.36))
and [H1

0 (Ω)]d–elliptic (cf. (4.39)) we conclude the unique solvability of the
variational problem (4.42) by applying Theorem 3.8. Moreover, the unique
solution of (4.42) satisfies

‖u‖[H1(Ω)]d ≤ c1 ‖f‖[H−1(Ω)]d + c2 ‖g‖[H1/2(Γ )]d .

For the solution u ∈ [H1(Ω)]d of the Dirichlet boundary value problem we now
compute the associated boundary stress γint

1 u ∈ [H−1/2(Γ )]d as the solution
of the variational problem

〈γint
1 u,w〉Γ = a(u, Ew) − 〈f, Ew〉Ω

for all w ∈ [H1/2(Γ )]d. Here, E : H1/2(Γ ) → H1(Ω) is the extension operator
which is applied to the components wi ∈ H1/2(Ω). Note that

‖γint
1 u‖[H−1/2(Γ )]d ≤ cIT

{
‖f‖

[H̃−1(Ω)]d
+

E

1 − 2ν
|u|[H1(Ω)]d

}
.
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Lemma 4.19. Let u ∈ [H1(Ω)]d be the weak solution of the Dirichlet bound-
ary value problem

−µ∆u(x) − (λ + µ)grad divu(x) = 0 for x ∈ Ω, u(x) = g(x) for x ∈ Γ.

Then we have
a(u, u) ≥ c ‖γint

1 u‖2
[H−1/2(Γ )]d . (4.43)

Proof. The associated conormal derivative γint
1 u ∈ [H−1/2(Γ )]d is defined as

the unique solution of the variational problem

〈γint
1 u,w〉Γ = a(u, Ew) for all w ∈ [H1/2(Γ )]d.

As in the proof of Lemma 4.13 we have

|a(u, Ew)| ≤ 2E

1 − 2ν

⎛⎝∫
Ω

‖e(u, x)‖2
2dx

⎞⎠1/2⎛⎝∫
Ω

‖e(Ew, x)‖2
2dx

⎞⎠1/2

and ∫
Ω

‖e(Ew, x)‖2
2dx ≤ |Ew|2[H1(Ω)]d .

Moreover, ∫
Ω

‖e(u, x)‖2
2dx ≤

∫
Ω

d∑
i,j=1

[eij(u, x)]2dx ≤ 1 + ν

E
a(u, u).

Applying the inverse trace theorem (Theorem 2.22) this gives

‖γint
1 u‖[H−1/2(Γ )]d = sup

0 �=w∈[H1/2(Γ )]d

〈γint
1 u,w〉Γ

‖w‖[H1/2(Γ )]d

= sup
0 �=w∈[H1/2(Γ )]d

a(u, Ew)
‖w‖[H1/2(Γ )]d

≤ c
√

a(u, u).

Note that the constant c in the estimate (4.43) tends to zero when ν → 1
2 . ��

4.2.2 Neumann Boundary Value Problem

For the solvability of the Neumann boundary value problem

−µ∆u(x)−(λ+µ)grad divu(x) = f(x) for x ∈ Ω, γint
1 u(x) = g(x) for x ∈ Γ

we have to assume the solvability conditions (1.31),
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Ω

vk(x)�f(x)dx +
∫
Γ

γint
0 vk(x)�g(x)dsx = 0 for all vk ∈ R

where vk are the rigid body motions (cf. (1.29)). On the other hand, the
solution of the Neumann boundary value problem is only unique up to the
rigid body motions. To fix the rigid body motions, we formulate appropriate
scaling conditions. For this we define

[H1
∗ (Ω)]d =

⎧⎨⎩v ∈ [H1(Ω)]d :
∫
Ω

vk(x)�v(x)dx = 0 for all vk ∈ R

⎫⎬⎭ .

The weak formulation of the Neumann boundary value problem is to find
u ∈ [H1

∗ (Ω)]d such that

a(u, v) = 〈f, v〉Ω + 〈g, γint
0 v〉Γ (4.44)

is satisfied for all v ∈ [H1
∗ (Ω)]d. Using Corollary 4.18 we can establish the

[H1
∗ (Ω)]d–ellipticity of the bilinear form a(·, ·) and therefore we can conclude

the unique solvability of the variational problem (4.44) in [H1
∗ (Ω)]d.

By introducing Lagrange multipliers we can formulate the scaling condi-
tions conditions of [H1

∗ (Ω)]d as side conditions in a saddle point problem.
Then we have to find u ∈ [H1(Ω)]d and λ ∈ R

dim(R) such that

a(u, v) +
dim R∑

k=1

λk

∫
Ω

vk(x)�v(x)dx = 〈f, v〉Ω + 〈g, γint
0 v〉Γ∫

Ω

v	(x)�u(x)dx = 0
(4.45)

is satisfied for all v ∈ [H1(Ω)]d and � = 1, . . . ,dim(R). When choosing as test
functions v	 ∈ R we then find from the solvability conditions (1.31)

dim R∑
k=1

λk

∫
Ω

vk(x)�v	(x)dx = 0 for � = 1, . . . ,dim(R).

Since the rigid body motions are linear independent, we obtain λ = 0. In-
serting this result into the second equation in (4.45), and eliminating the
Lagrange multiplier λ we finally obtain a modified variational problem to find
u ∈ [H1(Ω)]d such that

a(u, v) +
dim R∑

k=1

∫
Ω

vk(x)�u(x)dx

∫
Ω

vk(x)�v(x)dx = 〈f, v〉Ω + 〈g, γint
0 v〉Γ

(4.46)
is satisfied for all v ∈ [H1(Ω)]d.
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The extended bilinear form of the modified variational formulation (4.46) is
[H1(Ω)]d–elliptic (cf. Corollary 4.18). Hence there exists a unique solution
u ∈ [H1(Ω)]d of the variational problem (4.46) for any given f ∈ [H̃−1(Ω)]d

and g ∈ [H−1/2(Γ )]d. If the solvability conditions (1.31) are satisfied, then
we have u ∈ [H1

∗ (Ω)]d, i.e. the variational problems (4.46) and (4.44) are
equivalent.

If u ∈ [H1
∗ (Ω)]d is a weak solution of the Neumann boundary value prob-

lem, then we can define

ũ := u +
dim R∑

k=1

αkvk ∈ [H1(Ω)]d

which is also a solution of the Neumann boundary value problem.

4.2.3 Mixed Boundary Value Problems

We now consider a boundary value problem with boundary conditions of
mixed type,

−µ∆u(x) − (λ + µ)grad divu(x) = f(x) for x ∈ Ω,

γint
0 ui(x) = gD,i(x) for x ∈ ΓD,i,

(γint
1 u)i(x) = gN,i(x) for x ∈ ΓN,i

where Γ = ΓD,i ∪ ΓN,i and meas(ΓD,i) > 0 for i = 1, . . . , d. The associated
variational formulation is to find u ∈ [H1(Ω)]d with γint

0 ui(x) = gD,i(x) for
x ∈ ΓD,i such that

a(u, v) = 〈f, v〉Ω +
d∑

i=1

〈gN,i, γ
int
0 vi〉ΓN,i

(4.47)

is satisfied for all v ∈ [H1
0 (Ω,ΓD)]d.

Using (4.41) we conclude the [H1
0 (Ω,ΓD)]d–ellipticity of the bilinear form

a(·, ·) and therefore the unique solvability of the variational problem (4.47).

4.3 Stokes Problem

Next we consider the Dirichlet boundary value problem for the Stokes system
(1.38),

−µ∆u(x)+∇p(x) = f(x), divu(x) = 0 for x ∈ Ω, γint
0 u(x) = g(x) for x ∈ Γ.

Due to (1.39) we have to assume the solvability condition
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Γ

[n(x)]�g(x)dsx = 0. (4.48)

Note that the pressure p is only unique up to an additive constant. However,
as for the Neumann boundary value problem for the potential equation we
can introduce an appropriate scaling condition to fix this constant. For this
we define

L2,0(Ω) =

⎧⎨⎩q ∈ L2(Ω) :
∫
Ω

q(x)dx = 0

⎫⎬⎭ .

To derive a variational formulation for the solution u of the Dirichlet boundary
value problem of the Stokes system, we consider Green’s first formula (1.41),

a(u, v) =
∫
Ω

p(x)div v(x)dx + 〈f, v〉Ω + 〈t(u, p), γint
0 v〉Γ .

Due to divu(x) = 0 for x ∈ Ω, the bilinear form (1.42) is given as

a(u, v) := 2µ
∫
Ω

d∑
i,j=1

eij(u, x)eij(v, x)dx.

Hence we have to find u ∈ [H1(Ω)]d satisfying u(x) = g(x) for x ∈ Γ and
p ∈ L2,0(Ω) such that

a(u, v) −
∫
Ω

p(x) div v(x)dx = 〈f, v〉Ω ,∫
Ω

q(x) divu(x) dx = 0
(4.49)

is satisfied for all v ∈ [H1
0 (Ω)]d and q ∈ L2,0(Ω).

Let ug ∈ [H1(Ω)]d be any arbitrary but fixed extension of the given Dirich-
let datum g ∈ [H1/2(Γ )]d. It remains to find u0 ∈ [H1

0 (Ω)]d and p ∈ L2,0(Ω)
such that

a(u0, v) −
∫
Ω

p(x) div v(x)dx = 〈f, v〉Ω − a(ug, v),∫
Ω

q(x) div u0(x) dx = −〈div ug, q〉Ω
(4.50)

is satisfied for all v ∈ [H1
0 (Ω)]d and q ∈ L2,0(Ω).

To investigate the unique solvability of the saddle point problem (4.50)
we have to check the assumptions of Theorem 3.11. The bilinear form a(·, ·) :
[H1

0 (Ω)]d × [H1
0 (Ω)]d → R induces an operator A : [H1

0 (Ω)]d → [H−1(Ω)]d.
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The bilinear form

b(v, q) :=
∫
Ω

q(x) div v(x) dx for v ∈ [H1
0 (Ω)]d, q ∈ L2(Ω)

induces an operator B : [H1
0 (Ω)]d → L2(Ω). Note that

|b(v, q)| =

∣∣∣∣∣∣
∫
Ω

q(x) div v(x) dx

∣∣∣∣∣∣
≤ ‖q‖L2(Ω)‖div v‖L2(Ω) ≤ ‖q‖L2(Ω)‖v‖[H1(Ω)]d .

We further have

ker B :=
{
v ∈ [H1

0 (Ω)]d : div v = 0
}
⊂ [H1

0 (Ω)]d.

Applying Korn’s first inequality (4.38) this gives

a(v, v) = 2µ
∫
Ω

d∑
i,j=1

[eij(v, x)]2dx ≥ µ |v|2[H1(Ω)]d

for all v ∈ [H1
0 (Ω)]d. Using the equivalent norm (4.40) we then find the

[H1
0 (Ω)]d–ellipticity of the bilinear form a(·, ·),

a(v, v) ≥ c ‖v‖2
[H1(Ω)]d for all v ∈ [H1

0 (Ω)]d.

Due to ker B ⊂ [H1
0 (Ω)]d we also have the ker B–ellipticity of the bilinear

form a(·, ·). It remains to prove the stability condition (3.25),

cS ‖q‖L2(Ω) ≤ sup
0 �=v∈[H1

0 (Ω)]d

∫
Ω

q(x) div v(x)dx

‖v‖[H1(Ω)]d
for all q ∈ L2,0(Ω). (4.51)

This is a direct consequence of Theorem 2.17:

Lemma 4.20. Let Ω ⊂ R
d be a bounded and connected Lipschitz domain.

Then there holds the stability condition (4.51) .

Proof. For q ∈ L2,0(Ω) we have ∇q ∈ [H−1(Ω)]d satisfying, by using Theorem
2.17,

‖q‖L2(Ω) ≤ c ‖∇q‖[H−1(Ω)]d .

Recalling the norm definition in [H−1(Ω)]d by duality, this gives

1
c
‖q‖L2(Ω) ≤ ‖∇q‖[H−1(Ω)]d = sup

0 �=w∈[H1
0 (Ω)]d

〈w,∇q〉Ω
‖w‖[H1(Ω)]d

= sup
0 �=w∈[H1

0 (Ω)]d

−
∫
Ω

q(x) divw(x)dx

‖w‖[H1(Ω)]d
.

Hence, choosing v := −w we finally obtain the stability condition (4.51). ��
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Therefore, all assumptions of Theorem 3.11 are satisfied, and hence, the saddle
point problem (4.50) is unique solvable.

The scaling condition to fix the pressure p ∈ L2,0(Ω) can now be reformu-
lated as for the Neumann boundary value problem for the potential equation.
By introducing a scalar Lagrange multiplier λ ∈ R we may consider the fol-
lowing extended saddle point problem to find u ∈ [H1(Ω)]d with u(x) = g(x)
for x ∈ Γ as well as p ∈ L2(Ω) and λ ∈ R such that

a(u, v) −
∫
Ω

p(x) div v(x)dx = 〈f, v〉Ω ,∫
Ω

q(x) divu(x) dx + λ

∫
Ω

q(x)dx = 0,∫
Ω

p(x)dx = 0

(4.52)

is satisfied for all v ∈ [H1
0 (Ω)]d and q ∈ L2(Ω). Choosing as test function

q ≡ 1 this gives

λ |Ω| = −
∫
Ω

divu(x) dx = −
∫
Γ

n(x)�g(x)dsx = 0

and using the solvability condition (4.48) we get λ = 0. Hence we can write
the third equation in (4.52) as∫

Ω

p(x)dx − λ = 0.

Eliminating the Lagrange multiplier λ we finally obtain a modified saddle
point problem which is equivalent to the variational formulation (4.50) to find
u0 ∈ [H1

0 (Ω)]d and p ∈ L2(Ω) such that

a(u0, v) −
∫
Ω

p(x) div v(x)dx = 〈f̃ , v〉Ω∫
Ω

q(x) divu0(x) dx +
∫
Ω

p(x)dx

∫
Ω

q(x)dx = −〈divug, q〉Ω
(4.53)

is satisfied for all v ∈ [H1
0 (Ω)]d and q ∈ L2(Ω) where

〈f̃ , v〉Ω := 〈f, v〉Ω − a(ug, v) for all v ∈ [H1
0 (Ω)]d

induces f̃ ∈ [H−1(Ω)]d.
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By

〈Au, v〉Ω := a(u, v),
〈Bu, q〉L2(Ω) := b(u, q),

〈v,B′p〉Ω := 〈Bv, p〉Ω = b(v, p),

〈Dp, q〉L2(Ω) :=
∫
Ω

p(x)dx

∫
Ω

q(x)dx

for all u, v ∈ [H1
0 (Ω)]d and p, q ∈ L2(Ω) we can define bounded operators

A : [H1
0 (Ω)]d → [H−1(Ω)]d,

B : [H1
0 (Ω)]d → L2(Ω),

B′ : L2(Ω) → [H−1(Ω)]d,
D : L2(Ω) → L2(Ω).

Hence we can write the variational problem (4.53) as an operator equation,(
A −B′

B D

)(
u0

p

)
=

(
f̃

−Bug

)
.

Since A is [H1
0 (Ω)]d–elliptic we find

u0 = A−1
[
f̃ + B′p

]
and inserting this into the second equation we obtain the Schur complement
system [

BA−1B′ + D
]
p = −Bug − A−1f̃ . (4.54)

Lemma 4.21. The operator S := BA−1B′ + D : L2(Ω) → L2(Ω) is bounded
and L2(Ω)–elliptic.

Proof. For p ∈ L2(Ω) we have up = A−1B′p ∈ [H1
0 (Ω)]d which is defined as

the unique solution of the variational problem

a(up, v) = b(v, p) for all v ∈ [H1
0 (Ω)]d.

Since A is [H1
0 (Ω)]d–elliptic, and since B is bounded, we obtain

cA
1 ‖up‖2

[H1(Ω)]d ≤ a(up, up) = b(up, p) ≤ cB
2 ‖up‖[H1(Ω)]d‖p‖L2(Ω)

and therefore

‖up‖[H1(Ω)]d ≤ cB
2

cA
1

‖p‖L2(Ω).
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Applying the Cauchy–Schwarz inequality this gives

〈Sp, q〉L2(Ω) = 〈[BA−1B + D]p, q〉L2(Ω)

=
∫
Ω

q(x)divup(x)dx +
∫
Ω

p(x)dx

∫
Ω

q(x)dx

≤ cB
2 ‖q‖L2(Ω)‖up‖[H1(Ω)]d + |Ω| ‖p‖L2(Ω)‖q‖L2(Ω)

≤ c ‖p‖L2(Ω)‖q‖L2(Ω)

and hence we conclude the boundedness of S : L2(Ω) → L2(Ω).
For an arbitrary given p ∈ L2(Ω) we consider the decomposition

p = p0 +
1
|Ω|

∫
Ω

p(x)dx

where p0 ∈ L2,0(Ω) and

‖p‖2
L2(Ω) = ‖p0‖2

L2(Ω) +
1

|Ω|2

⎡⎣ ∫
Ω

p(x) dx

⎤⎦2

.

For p0 ∈ L2,0(Ω) we can use the stability condition (4.51), the definition of
up0

= A−1B′p0 ∈ [H1
0 (Ω)]d and the boundedness of A to obtain

cS ‖p0‖L2(Ω) ≤ sup
0 �=v∈[H1

0 (Ω)]d

b(v, p0)
‖v‖[H1(Ω)]d

= sup
0 �=v∈[H1

0 (Ω)]d

a(up0
, v)

‖v‖[H1(Ω)]d
≤ cA

2 ‖up0
‖[H1(Ω)]d

and therefore

‖p0‖2
L2(Ω) ≤

[
cA
2

cS

]2
‖up0

‖2
[H1(Ω)]d ≤ 1

cA
1

[
cA
2

cS

]2
a(up0

, up0
) = c b(up0

, p0).

Inserting the definition of up0
= A−1B′p0 ∈ [H1

0 (Ω)]d we get

〈BA−1B′p0, p0〉L2(Ω) = 〈Bup0
, p0〉L2(Ω) ≥ 1

c
‖p0‖2

L2(Ω).

For v ∈ [H1
0 (Ω)]d we have

〈B′p, v〉Ω =
∫
Ω

p(x)div v(x)dx = −〈v,∇p〉Ω = −〈v,∇p0〉Ω
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and hence

〈BA−1B′p, p〉L2(Ω) = 〈BA−1B′p0, p0〉L2(Ω) ≥ 1
c
‖p0‖2

L2(Ω).

From this we obtain

〈Sp, p〉L2(Ω) = 〈BA−1B′p, p〉L2(Ω) + 〈Dp, p〉L2(Ω)

= 〈BA−1B′p0, p0〉L2(Ω) +

⎡⎣ ∫
Ω

p(x) dx

⎤⎦2

≥ 1
c
‖p0‖2

L2(Ω) +

⎡⎣ ∫
Ω

p(x) dx

⎤⎦2

≥ min
{

1
c
, |Ω|2

}
‖p‖2

L2(Ω),

i.e., S is L2(Ω)–elliptic. ��
Applying Theorem 3.4 (Lax–Milgram lemma) we finally obtain the unique

solvability of the operator equation (4.54).

4.4 Helmholtz Equation

Finally we consider the interior Dirichlet boundary value problem for the
Helmholtz equation,

−∆u(x) − k2u(x) = 0 for x ∈ Ω, γint
0 u(x) = g(x) for x ∈ Γ. (4.55)

The related variational formulation is to find u ∈ H1(Ω) with γint
0 u(x) = g(x)

for x ∈ Γ such that∫
Ω

∇u(x)∇v(x)dx − k2

∫
Ω

u(x)v(x)dx = 0 (4.56)

is satisfied for all v ∈ H1
0 (Ω). The bilinear form

a(u, v) =
∫
Ω

∇u(x)∇v(x) dx − k2

∫
Ω

u(x)v(x)dx

can be written as
a(u, v) = a0(u, v) − c(u, v) (4.57)

where the symmetric and bounded bilinear form

a0(u, v) =
∫
Ω

∇u(x)∇v(x) dx for u, v ∈ H1(Ω)
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is H1
0 (Ω)–elliptic, and the bilinear form

c(u, v) = k2

∫
Ω

u(x)v(x)dx = 〈Cu, v〉Ω

induces a compact operator C : H1(Ω) → H−1(Ω). Hence, the bilinear form
a(·, ·) : H1

0 (Ω) × H1
0 (Ω) → R induces a coercive and bounded operator A :

H1
0 (Ω) → H−1(Ω). Therefore it remains to investigate the injectivity of A,

i.e. we have to consider the solvability of the homogeneous Dirichlet boundary
value problem

−∆u(x) − k2u(x) = 0 for x ∈ Ω, γint
0 u(x) = 0 for x ∈ Γ. (4.58)

Proposition 4.22. If k2 = λ is an eigenvalue of the interior Dirichlet eigen-
value problem of the Laplace equation,

−∆u(x) = λu(x) for x ∈ Ω, γint
0 (x) = 0 for x ∈ Γ,

then there exist non–trivial solutions of the homogeneous Dirichlet boundary
value problem (4.58).
If k2 is not an eigenvalue of the Dirichlet problem of the Laplace operator,
then the operator A : H1

0 (Ω) → H−1(Ω) which is induced by the bilinear form
(4.57) is injective.

Hence we conclude, that if k2 is not an eigenvalue of the Dirichlet eigen-
value problem of the Laplace operator the operator A : H1

0 (Ω) → H−1(Ω)
which is induced by the bilinear form (4.57) is coercive and injective, and
therefore the variational problem (4.56) admits a unique solution.

4.5 Exercises

4.1 Derive the variational formulation of the following boundary value prob-
lem with nonlinear Robin boundary conditions

−∆u(x)+u(x) = f(x) for x ∈ Ω, γint
1 u(x)+[γint

0 u(x)]3 = g(x) for x ∈ Γ

and discuss the unique solvability of the variational problem.

4.2 Consider the bilinear form

a(u, v) =
∫
Ω

d∑
i,j=1

aji(x)
∂

∂xi
u(x)

∂

∂xj
v(x)dx +

∫
Ω

d∑
i=1

bi(x)
∂

∂xi
u(x)v(x)dx

+
∫
Ω

c(x)u(x)v(x)dx
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which is related to a uniform elliptic partial differential operator, and where
we assume c(x) ≥ c0 > 0. Formulate a sufficient condition on the coefficients
bi(x) such that the bilinear form a(·, ·) is H1(Ω)–elliptic.

4.3 Consider the Dirichlet boundary value problem

−div[α(x)∇u(x)] = f(x) for x ∈ Ω, γint
0 u(x) = 0 for x ∈ Γ

where

α(x) =

{
ε for x ∈ Ω0 ⊂ Ω,

1 for x ∈ Ω\Ω0.

Prove the unique solvability of the related variational formulation. Discuss the
dependence of the constants on the parameter ε << 1. Can these constants be
improved when using other norms?

4.4 Formulate a sufficient condition on the wave number k such that the
variational formulation of the interior Neumann boundary value problem of
the Helmholtz equation,

−∆u(x) − k2u(x) = 0 for x ∈ Ω, γint
1 u(x) = g(x) for x ∈ Γ,

admits a unique solution.



5

Fundamental Solutions

We now consider the scalar partial differential equation (1.10),

(Lu)(x) = f(x) for x ∈ Ω ⊂ R
d,

with an elliptic partial differential operator of second order,

(Lu)(x) = −
d∑

i,j=1

∂

∂xj

[
aji(x)

∂

∂xi
u(x)

]
.

The associated conormal derivative (1.7) is

γint
1 u(x) =

d∑
i,j=1

nj(x)aji(x)
∂

∂xi
u(x) for x ∈ Γ

and Green’s second formula (1.8) reads for the solution u of the partial dif-
ferential equation (1.10) and for an arbitrary test function v∫

Ω

(Lv)(y)u(y)dy =
∫
Γ

γint
1 u(y)γint

0 v(y)dsy −
∫
Γ

γint
1 v(y)γint

0 u(y)dsy

+
∫
Ω

f(y)v(y)dy.

If there exists for any x ∈ Ω a function v(y) := U∗(x, y) satisfying∫
Ω

(LyU∗)(x, y)u(y)dy = u(x) (5.1)

then the solution of the partial differential equation (1.10) is given by the
representation formula for x ∈ Ω
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u(x) =
∫
Γ

U∗(x, y)γint
1 u(y)dsy −

∫
Γ

γint
1,y U∗(x, y)γint

0 u(y)dsy (5.2)

+
∫
Ω

U∗(x, y)f(y)dy.

Hence we can describe any solution of the partial differential equation (1.10)
just by knowing the Cauchy data [γint

0 u(x), γint
1 u(x)] for x ∈ Γ .

Due to
u(x) =

∫
Ω

δ0(y − x)u(y)dy for x ∈ Ω

we have to solve a partial differential equation in the distributional sense to
find the solution of (5.1),

(LyU∗)(x, y) = δ0(y − x) for x, y ∈ R
d. (5.3)

Any solution U∗(x, y) of (5.3) is called a fundamental solution.
The existence of a fundamental solution U∗(x, y) is essential to derive the

representation formula (5.2), and therefore to formulate appropriate boundary
integral equations to find the complete Cauchy data. For general results on
the existence of fundamental solutions for partial differential operators we
refer to [79, 90]. In particular for partial differential operators with piecewise
constant coefficients the existence of a fundamental solution is ensured. But
here we will only consider the explicit computation of fundamental solutions
for the Laplace operator, for the system of linear elastostatics, for the Stokes
system, and for the Helmholtz operator.

5.1 Laplace Operator

Let us first consider the Laplace operator

(Lu)(x) := −∆u(x) for x ∈ R
d, d = 2, 3.

The corresponding fundamental solution U∗(x, y) is the distributional solution
of the partial differential equation

−∆yU∗(x, y) = δ0(y − x) for x, y ∈ R
d.

Since the Laplace operator is invariant with respect to translations and rota-
tions, we can find the fundamental solution as U∗(x, y) = v(z) with z := y−x.
Hence we have to solve

−∆v(z) = δ0(z) for z ∈ R
d. (5.4)

Applying the Fourier transformation (2.14) this gives, when considering the
derivation rule (2.17),
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|ξ|2 v̂(ξ) =
1

(2π)d/2

and therefore
v̂(ξ) =

1
(2π)d/2

1
|ξ|2 ∈ S ′(Rd).

For the Fourier transform v̂ of a tempered distribution v ∈ S ′(Rd) we have
by definition

〈v̂, ϕ〉L2(Rd) = 〈v, ϕ̂〉L2(Rd) for all ϕ ∈ S(Rd).

Using

ϕ(ξ) = (2π)−d/2

∫
Rd

ei〈z,ξ〉ϕ̂(z)dz

it follows that

〈v̂, ϕ〉L2(Rd) =
1

(2π)d

∫
Rd

1
|ξ|2
∫
Rd

ei〈z,ξ〉ϕ̂(z)dzdξ.

Since the integral ∫
Rd

1
|ξ|2 dξ

does not exist we can not exchange the order of integration. However, using

∆ze
i〈z,ξ〉 = −|ξ|2ei〈z,ξ〉

we can consider a splitting of the exterior integral, apply integration by parts
and exchange the order of integration, and repeat integration by parts to
obtain

〈v̂, ϕ〉L2(Rd) =
1

(2π)d

∫
Rd

1
|ξ|2
∫
Rd

ei〈z,ξ〉ϕ̂(z)dzdξ

=
1

(2π)d

∫
|ξ|≤1

1
|ξ|2
∫
Rd

ei〈z,ξ〉ϕ̂(z)dzdξ +
1

(2π)d

∫
|ξ|>1

1
|ξ|2
∫
Rd

[
−∆z

ei〈z,ξ〉

|ξ|2
]

ϕ̂(z)dzdξ

=
1

(2π)d

∫
|ξ|≤1

1
|ξ|2
∫
Rd

ei〈z,ξ〉ϕ̂(z)dzdξ +
1

(2π)d

∫
|ξ|>1

1
|ξ|4
∫
Rd

ei〈z,ξ〉 [−∆zϕ̂(z)] dzdξ

=
1

(2π)d

∫
Rd

ϕ̂(z)
∫

|ξ|≤1

ei〈z,ξ〉

|ξ|2 dξdz +
1

(2π)d

∫
Rd

[−∆zϕ̂(z)]
∫

|ξ|>1

ei〈z,ξ〉

|ξ|4 dξdz

=
∫
Rd

ϕ̂(z)
1

(2π)d

⎡⎢⎣ ∫
|ξ|≤1

ei〈z,ξ〉

|ξ|2 dξ − ∆z

∫
|ξ|>1

ei〈z,ξ〉

|ξ|4 dξ

⎤⎥⎦ dz.
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In the three–dimensional case d = 3 we use spherical coordinates

ξ1 = r cos ϕ sin θ, ξ2 = r sin ϕ sin θ, ξ3 = r cos θ

for r ∈ (0,∞), ϕ ∈ (0, 2π), θ ∈ (0, π) to obtain, by using Lemma 2.13,

v(z) = v(|z|) =
1

(2π)3

⎡⎢⎣ ∫
|ξ|≤1

ei〈z,ξ〉

|ξ|2 dξ − ∆z

∫
|ξ|>1

ei〈z,ξ〉

|ξ|4 dξ

⎤⎥⎦
=

1
(2π)3

⎡⎣ 2π∫
0

π∫
0

1∫
0

ei|z|r cos θ sin θ dr dθ dϕ

−∆z

2π∫
0

π∫
0

∞∫
1

ei|z|r cos θ sin θ

r2
dr dθ dϕ

⎤⎦
=

1
(2π)2

⎡⎣ π∫
0

1∫
0

ei|z|r cos θ sin θ dr dθ − ∆z

π∫
0

∞∫
1

ei|z|r cos θ sin θ

r2
dr dθ

⎤⎦ .

The transformation u := cos θ gives

π∫
0

ei|z|r cos θ sin θdθ =

1∫
−1

ei|z|rudu =
1

i|z|r
[
ei|z|r − e−i|z|r

]
=

2
|z|r sin |z|r

and therefore

v(z) =
1

2π2

⎡⎣ 1∫
0

sin |z|r
|z|r dr − ∆z

∞∫
1

sin |z|r
|z|r3

dr

⎤⎦ .

Using the transformation s := |z|r we obtain for the first integral

I1 :=

1∫
0

sin |z|r
|z|r dr =

1
|z|

|z|∫
0

sin s

s
ds =

Si(|z|)
|z| .

With ∫
sin ax

x3
dx = −1

2
sin ax

x2
+

a

2

∫
cos ax

x2
dx

= −1
2

sin ax

x2
− a

2
cos ax

x
− a2

2

∫
sin ax

x
dx

the computation of the second integral gives
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I2 :=

∞∫
1

sin |z|r
|z|r3

dr =
[
−1

2
sin |z|r
|z|r2

− 1
2

cos |z|r
r

]∞
1

− |z|
2

∞∫
1

sin |z|r
r

dr

=
1
2

sin |z|
|z| +

1
2

cos |z| − |z|
2

⎡⎣ ∞∫
0

sin |z|r
r

dr −
1∫

0

sin |z|r
r

dr

⎤⎦
=

1
2

sin |z|
|z| +

1
2

cos |z| − |z|
2

[π
2
− Si(|z|)

]
.

Inserting this and applying the differentiation we obtain

v(z) =
1

2π2

{
Si(|z|)
|z| − ∆z

[
1
2

sin |z|
|z| +

1
2

cos |z| − π

4
|z| + 1

2
|z|Si(|z|)

]}
=

1
8π

∆z|z| +
1

2π2

{
Si(|z|)
|z| − ∆z

[
1
2

sin |z|
|z| +

1
2

cos |z| + 1
2
|z|Si(|z|)

]}
︸ ︷︷ ︸

=0

=
1
4π

1
|z| .

Hence the fundamental solution of the Laplace operator in three space dimen-
sions is

U∗(x, y) =
1
4π

1
|x − y| for x, y ∈ R

3.

For the two–dimensional case d = 2 the inverse Fourier transform of the
fundamental solution has to be regularized in some appropriate way [154]. By

〈P 1
|x|2 , ϕ〉L2(Rd) =

∫
x∈R2:|x|≤1

ϕ(x) − ϕ(0)
|x|2 dx +

∫
x∈R2:|x|>1

ϕ(x)
|x|2 dx

we first define the tempered distribution P 1
|x|2 ∈ S ′(Rd). Then,

2π 〈v, ϕ̂〉L2(R2) = 〈P 1
|ξ|2 , ϕ〉L2(R2) =

∫
ξ∈R2:|ξ|≤1

ϕ(ξ) − ϕ(0)
|ξ|2 dξ +

∫
ξ∈R2:|ξ|>1

ϕ(ξ)
|ξ|2 dξ

for all ϕ ∈ S(R2). With

ϕ(ξ) =
1
2π

∫
R2

ei〈z,ξ〉ϕ̂(z)dz, ϕ(0) =
1
2π

∫
R2

ϕ̂(z)dz

we then obtain

(2π)2〈v, ϕ̂〉L2(R2) =
∫

ξ∈R2:|ξ|≤1

1
|ξ|2
∫
R2

[ei〈z,ξ〉−1]ϕ̂(z)dzdξ+
∫

ξ∈R2:|ξ|>1

1
|ξ|2
∫
R2

ei〈z,ξ〉ϕ̂(z)dzdξ.
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Again we can not exchange the order of integration in the second term. How-
ever, as in three–dimensional case we can write

(2π)2〈v, ϕ̂〉L2(R2) =
∫
R2

ϕ̂(z)

⎡⎢⎣ ∫
ξ∈R2:|ξ|≤1

ei〈z,ξ〉 − 1
|ξ|2 dξ +

∫
ξ∈R2:|ξ|>1

ei〈z,ξ〉

|ξ|2 dξ

⎤⎥⎦ dz.

With Lemma 2.13 we further have

v(z) = v(|z|) =
1

(2π)2

∫
ξ∈R2:|ξ|≤1

ei〈z,ξ〉 − 1
|ξ|2 dξ +

∫
ξ∈R2:|ξ|>1

ei〈z,ξ〉

|ξ|2 dξ

and using polar coordinates we obtain

v(z) =
1

(2π)2

1∫
0

2π∫
0

1
r

[
eir|z| cos ϕ − 1

]
dϕdr +

1
(2π)2

∞∫
1

2π∫
0

1
r
eir|z| cos ϕdϕdr

=
1
2π

1∫
0

1
r
[J0(r|z|) − 1]dr +

1
2π

∞∫
1

1
r
J0(r|z|)dr

with the first order Bessel function [63, Subsection 8.411],

J0(s) =
1
2π

2π∫
0

eis cos ϕdϕ.

Substituting r := s/� we compute

v(z) =
1
2π

�∫
0

J0(s) − 1
s

ds +
1
2π

∞∫
�

J0(s)
s

ds

=
1
2π

1∫
0

J0(s) − 1
s

ds +
1
2π

∞∫
1

J0(s)
s

ds +
1
2π

1∫
�

1
s
ds

= − 1
2π

log |z| − C0

2π
(5.5)

with the constant

C0 :=

1∫
0

1 − J0(s)
s

ds −
∞∫
1

J0(s)
s

ds.

Since any constant satisfies the homogeneous Laplace equation we can ne-
glect constant terms in the definition of the fundamental solution. Hence the
fundamental solution of the Laplace operator in two space dimensions is
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U∗(x, y) = − 1
2π

log |x − y| for x, y ∈ R
2.

In what follows we will describe an alternative approach to compute the fun-
damental solution for the Laplace operator in two space dimensions. From
Lemma 2.13 we know that the solution v(z) depends only on the absolute
value � := |z|. For z �= 0 the partial differential equation (5.4) can be rewrit-
ten in polar coordinates as[

∂2

∂�2
+

1
�

∂

∂�

]
v(�) = 0 for � > 0.

The general solution of this ordinary differential equation is given by

v(�) = a log � + b, a, b ∈ R.

In particular for b = 0 we have

U∗(x, y) = a log |x − y| .

For x ∈ Ω and for a sufficient small ε > 0 let Bε(x) ⊂ Ω be a ball with center
x and with radius ε. For y ∈ Ω\Bε(x) the fundamental solution U∗(x, y) is
a solution of the homogeneous Laplace equation −∆yU∗(x, y) = 0. Applying
Green’s second formula (1.8) with respect to the bounded domain Ω\Bε(x)
we obtain

0 =
∫
Γ

U∗(x, y)
∂

∂ny
u(y)dsy −

∫
Γ

∂

∂ny
U∗(x, y)u(y)dsy +

∫
Ω\Bε(x)

U∗(x, y)f(y)dy

+
∫

∂Bε(x)

U∗(x, y)
∂

∂ny
u(y)dsy −

∫
∂Bε(x)

∂

∂ny
U∗(x, y)u(y)dsy.

Taking the limit ε → 0 we first bound∣∣∣∣∣∣∣
∫

∂Bε(x)

U∗(x, y)
∂

∂ny
u(y)dsy

∣∣∣∣∣∣∣ = |a| | log ε|

∣∣∣∣∣∣∣
∫

∂Bε(x)

∂

∂ny
u(y)dsy

∣∣∣∣∣∣∣
≤ |a| 2π ε | log ε| ‖u‖C1(Ω).

Using ny =
1
ε
(x − y) for y ∈ ∂Bε(x) we have∫

∂Bε(x)

∂

∂ny
U∗(x, y)u(y)dsy = a

∫
∂Bε(x)

(ny, y − x)
|x − y|2 u(y)dsy = −a

ε

∫
∂Bε(x)

u(y)dsy.

The Taylor expansion
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u(y) = u(x) + (y − x)∇u(ξ)

with a suitable ξ = x + t(y − x), t ∈ (0, 1) yields∫
∂Bε(x)

∂

∂ny
U∗(x, y)u(y)dsy = −a 2π u(x) − a

ε

∫
∂Bε(x)

(y − x)∇u(ξ)dy

where ∣∣∣∣∣∣∣
a

ε

∫
∂Bε(x)

(y − x)∇u(ξ)dy

∣∣∣∣∣∣∣ ≤ |a| 2π ε ‖u‖C1(Ω) .

Taking the limit ε → 0 gives

−a 2π u(x) =
∫
Γ

U∗(x, y)
∂

∂ny
u(y)dsy −

∫
Γ

∂

∂ny
U∗(x, y)u(y)dsy

+
∫
Ω

U∗(x, y)f(y)dy

and therefore the representation formula when choosing a = −1/2π.
To summarize, the fundamental solution of the Laplace operator is given

by

U∗(x, y) =

⎧⎪⎪⎨⎪⎪⎩
− 1

2π
log |x − y| for d = 2,

1
4π

1
|x − y| for d = 3.

(5.6)

Any solution of the partial differential equation

−∆u(x) = f(x) for x ∈ Ω ⊂ R
d

is therefore given by the representation formula for x ∈ Ω

u(x) =
∫
Γ

U∗(x, y)
∂

∂ny
u(y)dsy −

∫
Γ

∂

∂ny
U∗(x, y)u(y)dsy (5.7)

+
∫
Ω

U∗(x, y)f(y)dy.

5.2 Linear Elasticity

Let us now consider the system of linear elastostatics (1.25),

−µ∆u(x) − (λ + µ)grad divu(x) = f(x) for x ∈ Ω ⊂ R
d,
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and the associated second Betti formula (1.30),∫
Ω

d∑
i,j=1

∂

∂yj
σij(v, y)ui(y)dy =

∫
Γ

γint
0 v(y)�γint

1 u(y)dsy (5.8)

−
∫
Γ

γint
0 u(y)�γint

1 v(y)dsy +
∫
Ω

f(y)�v(y)dy.

To derive a representation formula for the components uk(x), x ∈ Ω, we
therefore have to find solutions vk(x, y) satisfying∫

Ω

d∑
i,j=1

∂

∂yj
σij(vk(x, y), y)ui(y)dy = uk(x) for x ∈ Ω, k = 1, . . . , d.

Let ek ∈ R
d be the unit vector with ek

	 = δk	 for k, � = 1, . . . , d. Using the
transformation z := y − x we have to solve the partial differential equations,
k = 1, . . . , d,

−µ∆zv
k(z) − (λ + µ)gradzdivzv

k(z) = δ0(z) ek for z ∈ R
d.

Using (1.32),

vk(z) := ∆[ψ(z)ek] − λ + µ

λ + 2µ
grad div [ψ(z)ek],

we have to find the Airy stress function ψ satisfying the Bi–Laplace equation

−µ∆2ψ(z) = δ0(z) for z ∈ R
d

or
−µ∆ϕ(z) = δ0(z), ∆ψ(z) = ϕ(z) for z ∈ R

d.

From the fundamental solution of the Laplace operator we find

ϕ(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

µ

1
2π

log |z|, for d = 2,

1
µ

1
4π

1
|z| for d = 3.

For d = 2 we have to solve the remaining Poisson equation when using polar
coordinates, [

∂2

∂�2
+

1
�

∂

∂�

]
ψ̃(�) = − 1

µ

1
2π

log � for � > 0,

with the general solution
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ψ̃(�) = − 1
µ

1
8π

[
�2 log � − �2

]
+ a log � + b for � > 0, a, b ∈ R.

In particular for a = b = 0 we have

ψ̃(�) = − 1
µ

1
8π

[
�2 log � − �2

]
.

Due to ∆2|z|2 = 0 we then obtain for � = |z|

ψ(z) = − 1
µ

1
8π

|z|2 log |z| .

For k = 1 we find for v1(z)

v1
1(z) = ∆ψ(z) − λ + µ

λ + 2µ
∂2

∂z2
1

ψ(z), v1
2(z) = − λ + µ

λ + 2µ
∂2

∂z1∂z2
ψ(z).

Using
∂

∂zi
|z| =

zi

|z| we obtain

∂

∂zi
ψ(z) = − 1

µ

1
8π

[2zi log |z| + zi] (i = 1, 2)

∂2

∂z2
i

ψ(z) = − 1
µ

1
8π

[
2 log |z| + 2

z2
1

|z|2 + 1
]

(i = 1, 2)

∂2

∂z1∂z2
ψ(z) = − 1

µ

1
4π

z1z2

|z|2

and therefore

v1
1(z) = − 1

4π

λ + 3µ
µ(λ + 2µ)

log |z| + 1
4π

λ + µ

µ(λ + 2µ)

[
z2
1

|z|2 − 3
2

]
,

v1
2(z) =

1
4π

λ + µ

µ(λ + 2µ)
z1z2

|z|2 .

For k = 2 the computation is almost the same. Since the constants are so-
lutions of the homogeneous system we can neglect them when defining the
fundamental solution. From vk for k = 1, 2 we then find the Kelvin solution
tensor U∗(x, y) = (v1, v2) with the components

U∗
k	(x, y) =

1
4π

λ + µ

µ(λ + 2µ)

[
−λ + 3µ

λ + µ
log |x − y| δk	 +

(yk − xk)(y	 − x	)
|x − y|2

]
for k, � = 1, 2. Inserting the Lamé constants (1.24) this gives

U∗
k	(x, y) =

1
4π

1
E

1 + ν

1 − ν

[
(4ν − 3) log |x − y| δk	 +

(yk − xk)(y	 − x	)
|x − y|2

]
.
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This is the fundamental solution of linear elastostatics in two space dimensions
which even exists for incompressible materials with ν = 1/2.

For d = 3 we have to solve the Poisson equation, by using spherical coor-
dinates we obtain

1
�2

∂

∂�

[
�2 ∂

∂�
ψ̃(�)

]
=

1
µ

1
4π

1
�

for � > 0,

with the general solution

ψ̃(�) =
1
µ

1
4π

[
1
2
� +

a

�
+ b

]
, for � > 0, a, b ∈ R.

For a = b = 0 we have
ψ(z) =

1
µ

1
8π

|z| .

For k = 1 we obtain v1(z)

v1
1(z) = ∆ψ(z) − λ + µ

λ + 2µ
∂2

∂z2
1

ψ(z),

v1
2(z) = − λ + µ

λ + 2µ
∂2

∂z1∂z2
ψ(z),

v1
3(z) = − λ + µ

λ + 2µ
∂

∂z1∂z3
ψ(z)

and with the derivatives

∂

∂zi
ψ(z) =

1
µ

1
8π

zi

|z| ,
∂2

∂z2
i

ψ(z) =
1
µ

1
8π

[
1
|z| −

z2
i

|z|3
]

,

∂2

∂zi∂zj
ψ(z) = − 1

µ

1
8π

zizj

|z|3 for i �= j

we then find for the components of the solution v1

v1
1(z) =

1
8π

λ + 3µ
µ(λ + 2µ)

1
|z| +

1
8π

λ + µ

µ(λ + 2µ)
z2
1

|z|3 ,

v1
2(z) =

1
8π

λ + µ

µ(λ + 2µ)
z1z2

|z|3 ,

v1
3(z) =

1
8π

λ + µ

µ(λ + 2µ)
z1z3

|z|3 .

For k = 2, 3 the computations are almost the same. Hence, the Kelvin solution
tensor is given by U∗(x, y) = (v1, v2, v3) where

U∗
k	(x, y) =

1
8π

λ + µ

µ(λ + 2µ)

[
λ + 3µ
λ + µ

δk	

|x − y| +
(yk − xk)(y	 − x	)

|x − y|3
]
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for k, � = 1, . . . , 3. Inserting the Lamé constants (1.24) this gives the funda-
mental solution of linear elastostatics in three space dimensions

U∗
k	(x, y) =

1
8π

1
E

1 + ν

1 − ν

[
(3 − 4ν)

δk	

|x − y| +
(yk − xk)(y	 − x	)

|x − y|3
]

.

Hence we have the fundamental solution of linear elastostatics

U∗
k	(x, y) =

1
4(d − 1)π

1
E

1 + ν

1 − ν

[
(3 − 4ν)E(x, y)δk	 +

(xk − yk)(x	 − y	)
|x − y|d

]
(5.9)

for k, � = 1, . . . , d with

E(x, y) =

⎧⎪⎨⎪⎩
− log |x − y| for d = 2,

1
|x − y| for d = 3.

Inserting the solution vectors v(y) = U∗
k(x, y) into the second Betti formula

(5.8) this gives the representation formula

uk(x) =
∫
Γ

U∗
k(x, y)�γint

1 u(y)dsy −
∫
Γ

u(y)�γint
1,y U∗

k(x, y)dsy

+
∫
Ω

f(y)�U∗
k(x, y)dy (5.10)

for x ∈ Ω and k = 1, . . . , d. Thereby, the boundary stress T ∗
k(x, y) of the

fundamental solution U∗
k(x, y) is given for almost all y ∈ Γ by applying (1.27)

as

T ∗
k(x, y) := γint

1,y U∗
k(x, y)

= λ divyU∗
k(x, y)n(y) + 2µ

∂

∂ny
U∗

k(x, y) + µ n(y) × curly U∗
k(x, y).

Using

div U∗
k(x, y) =

1
4(d − 1)π

1
E

1 + ν

1 − ν
2(2ν − 1)

yk − xk

|x − y|d
we then obtain

T ∗
k(x, y) = − 1

2(d − 1)π
ν

1 − ν

yk − xk

|x − y|d n(y) +
E

1 + ν

∂

∂ny
U∗

k(x, y)

+
E

2(1 + ν)
n(y) × curly U∗

k(x, y). (5.11)

Obviously, both the fundamental solutions U∗
k(x, y) and the corresponding

boundary stress functions T ∗
k(x, y) exist also for incompressible materials with

ν = 1/2.
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5.3 Stokes Problem

Next we consider the Stokes system (1.38),

−µ∆u(x) + ∇p(x) = f(x), divu(x) = 0 for x ∈ Ω ⊂ R
d.

For the solution u and for an arbitrary vector field v we obtain from Green’s
first formula (1.41) by using the symmetry a(u, v) = a(v, u) Green’s second
formula∫

Ω

d∑
i=1

[
−µ∆vi(y) +

∂

∂yi
q(y)

]
ui(y)dy +

∫
Ω

p(y)div v(y)dy (5.12)

=
∫
Γ

d∑
i=1

ti(u, p)vi(y)dsy −
∫
Γ

d∑
i=1

ti(v, q)ui(y)dsy +
∫
Ω

f(y)�v(y)dy

with the conormal derivative t(u, p) as given in (1.43).
To obtain representation formulae for the components uk(x), x ∈ Ω, for

the velocity field u we have to find solutions vk(x, y) and qk(x, y) such that∫
Ω

d∑
i=1

[
−µ∆vk

i (x, y) +
∂

∂yi
qk(x, y)

]
ui(y)dy = uk(x), divyvk(x, y) = 0

for x ∈ Ω, k = 1, . . . , d. With the transformation z := y − x we have to solve
for k = 1, . . . , d

−µ∆vk(z) + ∇qk(z) = δ0(z)ek, div vk(z) = 0 for z ∈ R
d .

The application of the Fourier transform (2.14) gives

µ |ξ|2 v̂k
j (ξ) + i ξj q̂k(ξ) =

1
(2π)d/2

δjk (j = 1, . . . , d), i

d∑
j=1

ξj v̂
k
j (ξ) = 0.

In particular for d = 2 and k = 1 we have to solve a linear system,

µ |ξ|2 v̂1
1(ξ) + i ξ1 q̂1(ξ) =

1
2π

,

µ |ξ|2 v̂1
2(ξ) + i ξ2 q̂1(ξ) = 0,

iξ1v̂
1
1(ξ) + iξ2v̂

1
2(ξ) = 0,

yielding the solution

v̂1
1(ξ) =

1
µ

1
2π

[
1
|ξ|2 − ξ2

1

|ξ|4
]

, v̂1
2(ξ) = − 1

µ

1
2π

ξ1ξ2

|ξ|4 , q̂1(ξ) = − i

2π

ξ1

|ξ|2 .
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As for the scalar Laplace equation we obtain

v1
1(z) =

1
µ

1
(2π)2

∫
R2

ei〈z,ξ〉
[

1
|ξ|2 − ξ2

1

|ξ|4
]

dξ

=
1
µ

1
(2π)2

∫
R2

ei〈z,ξ〉 1
|ξ|2 dξ +

1
µ

∂2

∂z2
1

⎡⎣ 1
(2π)2

∫
R2

ei〈z,ξ〉 1
|ξ|4 dξ

⎤⎦
and with (5.5) we have

1
(2π)2

∫
R2

ei〈z,ξ〉 1
|ξ|2 dξ = − 1

2π
log |z| − C0

2π
.

On the other hand,

∆

⎛⎝ 1
(2π)2

∫
R2

ei〈z,ξ〉 1
|ξ|4 dξ

⎞⎠ = − 1
(2π)2

∫
R2

ei〈z,ξ〉 1
|ξ|2 dξ =

1
2π

log |z| + C0

2π

implies

1
(2π)2

∫
R2

ei〈z,ξ〉 1
|ξ|4 dξ =

1
8π

[
|z|2 log |z| − |z|2

]
+

C0

8π
|z|2 + C1 + C2 log |z|

with some constants C1, C2 ∈ R. In particular for C1 = C2 = 0 this gives

v1
1(z) =

1
µ

[
− 1

2π
log |z| − C0

2π

]
+

1
µ

∂2

∂z2
1

[
1
8π

(
|z|2 log |z| − |z|2

)
+

C0

8π
|z|2
]

=
1
µ

1
4π

[
− log |z| + z2

1

|z|2 − 2C0 + 1
2

]
.

Analogous computations yield

v1
2(z) = − 1

µ

1
(2π)2

∫
R2

ei〈z,ξ〉 ξ1ξ2

|ξ|4 dξ =
1
µ

∂2

∂z1∂z2

⎡⎣ 1
(2π)2

∫
R2

ei〈z,ξ〉 1
|ξ|4 dξ

⎤⎦
=

1
µ

∂2

∂z1∂z2

[
1
8π

(
|z|2 log |z| − |z|2

)
+

C0

8π
|z|2
]

=
1
µ

1
4π

z1z2

|z|2

and

q1(z) = − i

(2π)2

∫
R2

ei〈z,ξ〉 ξ1

|ξ|2 dξ = − ∂

∂z1

⎡⎣ 1
(2π)2

∫
R2

ei〈z,ξ〉 1
|ξ|2 dξ

⎤⎦
= − ∂

∂z1

[
− 1

2π
log |z| − C0

2π

]
=

1
2π

∂

∂z1
log |z|.
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For d = 2 and k = 2 the computations are almost the same. Neglecting the
constants we finally have the fundamental solution for the Stokes system in
two space dimensions,

U∗
k	(x, y) =

1
4π

1
µ

[
− log |x − y| δk	 +

(yk − xk)(y	 − x	)
|x − y|2

]
(5.13)

Q∗
k(x, y) =

1
2π

yk − xk

|x − y|2 (5.14)

and k, � = 1, 2.
For d = 3 we obtain in the same way the fundamental solution for the

Stokes system as

U∗
k	(x, y) =

1
8π

1
µ

[
δk	

|x − y| +
(yk − xk)(y	 − x	)

|x − y|3
]

Q∗
k(x, y) =

1
4π

yk − xk

|x − y|3

and k, � = 1, . . . , 3.
Comparing the above results with the fundamental solution of the system

of linear elasticity we obtain the equality for

1
E

1 + ν

1 − ν
=

1
µ

, (3 − 4ν) = 1

and therefore for
ν =

1
2
, E = 3µ .

The fundamental solution of the linear elasticity system with incompressible
material therefore coincides with the fundamental solution of the Stokes sys-
tem.

Inserting the fundamental solutions v(y) = U∗
k(x, y) and q(y) = Q∗

k(x, y)
into the second Greens formula (5.12) this gives the representation formulae

uk(x) =
∫
Γ

U∗
k(x, y)�t(u(y), p(y))dsy −

∫
Γ

u(y)�t(U∗
k(x, y), Q∗

k(x, y))dsy

+
∫
Ω

f(y)�U∗
k(x, y)dy (5.15)

for x ∈ Ω and k = 1, . . . , d. Hereby the conormal derivative T ∗
k(x, y) is defined

via (1.43) for almost all y ∈ Γ by

T ∗
k(x, y) = t(U∗

k(x, y), Q∗
k(x, y))

= −Q∗
k(x, y)n(x) + 2µ

∂

∂ny
U∗

k(x, y) + µ n(x) × curlU∗
k(x, y)

= − 1
2(d − 1)π

yk − xk

|x − y|d n(x) + 2µ
∂

∂ny
U∗

k(x, y) + µ n(x) × curlU∗
k(x, y).
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Hence the boundary stress (1.43) of the fundamental solution of the Stokes
system also coincides with the boundary stress (1.27) of the fundamental
solution of the linear elasticity system when choosing ν = 1

2 and E = 3µ.
It remains to find some appropriate representation formulae for the pres-

sure p. Let us first consider the case d = 2 and the second Green formula
(5.12) where we have to find solutions v3(z) and q3(z) with z := y − x such
that

−µ∆v3(z) + ∇q3(z) = 0, div v3(z) = δ0(z) for z ∈ R
2.

By applying the Fourier transformation we obtain the linear system

µ |ξ|2 v̂3
1(ξ) + i ξ1 q̂3(ξ) = 0,

µ |ξ|2 v̂3
2(ξ) + i ξ2 q̂3(ξ) = 0,

iξ1v̂
3
1(ξ) + iξ2v̂

3
2(ξ) =

1
2π

with the solution

v̂3
1(ξ) = − i

2π

ξ1

|ξ|2 , v̂3
2(ξ) = − i

2π

ξ2

|ξ|2 , q̂3(ξ) =
µ

2π
.

As before we obtain

v3
i (z) =

1
2π

∂

∂zi
log |z| (i = 1, 2), q3(z) = µδ0(z).

Using z := y − x we conclude for x ∈ Ω a representation formula for the
pressure

p(x) =
∫
Γ

2∑
i=1

ti(u, p)v3
i (x, y)dsy −

∫
Γ

2∑
i=1

ti(v3(x, y), q3(x, y))ui(y)dsy

+
∫
Ω

2∑
i=1

v3
i (x, y)fi(y)dy

where the conormal derivative (1.43) implies

ti(v3(x, y), q3(x, y)) = −[µδ0(y − x) + div v3(x, y)]ni(x)

+2µ
2∑

j=1

eij(v3(x, y), y)nj(y)

for i = 1, 2, x ∈ Ω and y ∈ Γ . Since v3 is divergence–free,

div v3(x, y) =
2∑

i=1

∂

∂yi
v3

i (x, y) =
1
2π

2∑
i=1

∂2

∂y2
i

log |x − y| = 0,



5.4 Helmholtz Equation 105

we obtain for Γ � y �= x ∈ Ω

ti(v3(x, y), q3(x, y)) = 2µ
2∑

j=1

eij(v3(x, y), y)nj(y).

Moreover,

eij(v3(x, y), y) =
1
2

[
∂

∂yi
v3

j (x, y) +
∂

∂yj
v3

i (x, y)
]

=
1
4π

[
∂

∂yi

∂

∂yj
log |x − y| + ∂

∂yj

∂

∂yi
log |x − y|

]
=

1
2π

∂

∂yi

∂

∂yj
log |x − y|

= − 1
2π

∂

∂xj

∂

∂yi
log |x − y| = − ∂

∂xj
Q∗

i (x, y).

Finally we obtain the representation formula for the pressure p, x ∈ Ω,

p(x) =
∫
Γ

2∑
i=1

ti(u, p)Q∗
i (x, y)dy + 2µ

∫
Γ

2∑
i,j=1

∂

∂xj
Q∗

i (x, y)nj(y)ui(y)dsy

+
∫
Ω

fi(y)Q∗
i (x, y)dy . (5.16)

For d = 3 one may obtain a similar formula, we skip the details.

5.4 Helmholtz Equation

Finally we consider the Helmholtz

−∆u(x) − k2u(x) = 0 for x ∈ R
d, k ∈ R (5.17)

where the computation of the fundamental solution can be done as in the
alternative approach for the Laplace equation.

For d = 3, and by using spherical coordinates we have to solve the partial
differential equation to find v(�) = v(|x|) = u(x) such that

− 1
�2

∂

∂�

[
�2 ∂

∂�
v(�)

]
− k2v(�) = 0 for � > 0.

With the transformation
v(�) =

1
�
V (�)

this is equivalent to
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V ′′(�) + k2V (�) = 0 for � > 0

where the general solution is given by

V (�) = A1 cos k� + A2 sin k�

and therefore we obtain

v(�) =
1
�
V (�) = A1

cos k�

�
+ A2

sin �

�
.

When considering the behavior as � → 0 we find a fundamental solution of
the Helmholtz equation given by

U∗
k (x, y) =

1
4π

cos k|x − y|
|x − y| for x, y ∈ R

3.

However, it is more common to use a complex combination of the above fun-
damental system to define the fundamental solution by

U∗
k (x, y) =

1
4π

eik|x−y|

|x − y| for x, y ∈ R
3. (5.18)

For d = 2, and by using polar coordinates the Helmholtz equation (5.17) reads

− ∂2

∂�2
v(�) − 1

�

∂

∂�
v(�) − k2v(�) = 0 for � > 0,

or

�2 ∂2

∂�2
v(�) + �

∂

∂�
v(�) + k2�2v(�) = 0 for � > 0.

With the substitution

s = k�, v(�) = v(
s

k
) = V (s), V ′(s) =

1
k

∂

∂�
v(�)

we then obtain a Bessel differential equation of order zero,

s2V ′′(s) + sV ′(s) + s2V (s) = 0 for s > 0. (5.19)

To find a fundamental system of the Bessel differential equation (5.19) we first
consider the ansatz

V1(s) =
∞∑

k=0

vksk, V ′
1(s) =

∞∑
k=1

vkksk−1, V ′′
1 (s) =

∞∑
k=2

vkk(k − 1)sk−2.

By inserting this into the differential equation (5.19) we obtain
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0 = s2V ′′
1 (s) + sV ′

1(s) + s2V1(s)

=
∞∑

k=2

vkk(k − 1)sk +
∞∑

k=1

vkksk +
∞∑

k=0

vksk+2

=
∞∑

k=2

[
vk−2 + k2vk

]
sk + v1s for s > 0

and thus
v1 = 0, vk = − 1

k2
vk−2 for k ≥ 2.

Hence we obtain

v2	−1 = 0, v2	 = − 1
4�2

v2(	−1) for � = 1, 2, . . .

and therefore

v2	 =
(−1)	

4	(�!)2
v0 for � = 1, 2, . . . .

In particular for v0 = 1 we have

V1(s) = 1 +
∞∑

	=1

(−1)	

4	(�!)2
s2	 =: J0(s)

which is the first kind Bessel function of order zero. Note that

lim
s→0

J0(s) = 1.

To find a second solution of the fundamental system including a logarithmic
singularity we consider the ansatz

V2(s) = J0(s) ln s + W (s) for s > 0.

By using

V ′
2(s) = J ′

0(s) ln s +
1
s
J0(s) + W ′(s),

V ′′
2 (s) = J ′′

0 (s) ln s +
2
s
J ′

0(s) −
1
s2

J0(s) + W ′′(s)

we obtain

0 = s2V ′′
2 (s) + sV ′

2(s) + s2V2(s)
=
[
s2J ′′

0 (s) + sJ ′
0(s) + s2J0(s)

]
ln s

+2sJ ′
0(s) + s2W ′′(s) + sW ′(s) + s2W (s)

= 2sJ ′
0(s) + s2W ′′(s) + sW ′(s) + s2W (s)

since J0(s) is a solution of the Bessel differential equation (5.19). Hence we
have to solve the differential equation
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s2W ′′(s) + sW ′(s) + s2W (s) + 2sI ′0(s) for s > 0.

With

W (s) =
∞∑

k=0

wksk, J ′
0(s) =

∞∑
k=1

vkksk−1

we have to solve

0 =
∞∑

k=2

[
k2wk + wk−2

]
sk + w1s + 2

∞∑
k=1

vkksk

=
∞∑

k=2

[
k2wk + wk−2 + 2kvk

]
sk + [w1 + 2v1] s for s > 0.

Hence we find
w1 = −2v1 = 0,

and
k2wk + wk−2 + 2kvk = 0 for k ≥ 2,

i.e.
wk = − 1

k2
[wk−2 + 2kvk] for k ≥ 2.

By using v2	−1 = 0 for � ∈ N we then obtain w2	−1 = 0 for � ∈ N and

w2	 = − 1
4�2
[
w2(	−1) + 4�v2	

]
= − 1

4�2
w2(	−1) −

1
�

(−1)	

4	(�!)2
.

When choosing w0 = 0 we find by induction

w2	 =
(−1)	+1

4	(�!)2

	∑
j=1

1
j

for � ∈ N.

Hence we have

V2(s) = J0(s) ln s + W (s)

=

[
1 +

∞∑
	=1

(−1)	

4	(�!)2
s2	

]
ln s −

∞∑
	=1

⎛⎝ 	∑
j=1

1
j

⎞⎠ (−1)	

4	(�!)2
s2	 .

Instead of V2(s) we will use a linear combination of V1(s) and V2(s) to define
a second solution of the fundamental system, in particular we introduce the
second kind Bessel function of order zero,

Y0(s) = [ln 2 − γ] J0(s) − V2(s)

where
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γ = lim
n→∞

⎡⎣ n∑
j=1

1
j
− ln n

⎤⎦ ≈ 0.57721566490 . . .

is the Euler–Mascheroni constant. Note that Y0(s) behaves like − ln s as s → 0.
The fundamental solution of the Helmholtz equation is then given by

U∗
k (x, y) =

1
2π

Y0(k |x − y|) for x, y ∈ R
2. (5.20)

5.5 Exercises

5.1 Consider the recursion

w0 = 0, w2	 = − 1
4�2

w2(	−1) −
1
�

(−1)	

4	(�!)2
for � ∈ N.

Prove by induction that

w2	 =
(−1)	+1

4	(�!)2

	∑
j=1

1
j

for � ∈ N.

5.2 Compute the Green function G(x, y) such that

u(x) =

1∫
0

G(x, y)f(y)dy for x ∈ (0, 1)

is the unique solution of the Dirichlet boundary value problem

−u′′(x) = f(x) for x ∈ (0, 1), u(0) = u(1) = 0.



6

Boundary Integral Operators

As a model problem we first consider the Poisson equation for d = 2, 3

−∆u(x) = f(x) for x ∈ Ω ⊂ R
d.

The fundamental solution of the Laplace operator is (cf. 5.6)

U∗(x, y) =

⎧⎪⎪⎨⎪⎪⎩
− 1

2π
log |x − y| for d = 2,

1
4π

1
|x − y| for d = 3,

and the solution of the above Poisson equation is given by the representation
formula (5.2)

u(x) =
∫
Γ

U∗(x, y)γint
1 u(y)dsy −

∫
Γ

γint
1,y U∗(x, y)γint

0 u(y)dsy (6.1)

+
∫
Ω

U∗(x, y)f(y)dy for x ∈ Ω.

To derive appropriate boundary integral equations to find the complete
Cauchy data [γint

0 u(x), γint
1 u(x)] for x ∈ Γ we first have to investigate the

mapping properties of several surface and volume potentials.

6.1 Newton Potential

By

(Ñ0f)(x) :=
∫
Ω

U∗(x, y)f(y)dy for x ∈ R
d (6.2)

we define the volume or Newton potential of a given function f(y), y ∈ Ω.
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For ϕ,ψ ∈ S(Rd) we have

〈Ñ0ϕ,ψ〉Ω =
∫
Ω

ψ(x)
∫
Ω

U∗(x, y)ϕ(y)dydx = 〈ϕ, Ñ0ψ〉Ω

and, therefore, Ñ0ϕ ∈ S(Rd). Then we can define the Newton potential
Ñ0 : S ′(Rd) → S ′(Rd) by

〈Ñ0f, ψ〉Ω := 〈f, Ñ0ψ〉Ω for all ψ ∈ S(Rd).

Theorem 6.1. The volume potential Ñ0 : H̃−1(Ω) → H1(Ω) defines a con-
tinuous map, i.e.

‖Ñ0f‖H1(Ω) ≤ c ‖f‖
H̃−1(Ω)

. (6.3)

Proof. For ϕ ∈ C∞
0 (Ω) we first have

‖ϕ‖2
H−1(Rd) =

∫
Rd

|ϕ̂(ξ)|2
1 + |ξ|2 dξ

where the Fourier transform ϕ̂ is

ϕ̂(ξ) = (2π)−
d
2

∫
Rd

e−i〈x,ξ〉ϕ(x)dx.

Due to suppϕ ⊂ Ω we have

‖ϕ‖H−1(Rd) = sup
0 �=v∈H1(Rd)

〈ϕ, v〉L2(Rd)

‖v‖H1(Rd)

≤ sup
0 �=v∈H1(Ω)

〈ϕ, v〉L2(Ω)

‖v‖H1(Ω)
= ‖ϕ‖

H̃−1(Ω)
.

Moreover,

u(x) := (Ñ0ϕ)(x) =
∫
Ω

U∗(x, y)ϕ(y)dy for x ∈ R
d.

Let Ω ⊂ BR(0), and let µ ∈ C∞
0 ([0,∞)) be a non–negative, monotone decreas-

ing cut off function with compact support, and let µ(r) = 1 for r ∈ [0, 2R].
Define

uµ(x) :=
∫
Ω

µ(|x − y|)U∗(x, y)ϕ(y)dy for x ∈ R
d.

Due to µ(|x − y|) = 1 for x, y ∈ Ω we have
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uµ(x) = u(x) for x ∈ Ω

and therefore
‖u‖H1(Ω) = ‖uµ‖H1(Ω) ≤ ‖uµ‖H1(Rd)

with
‖uµ‖2

H1(Rd) =
∫
Rd

(1 + |ξ|2) |ûµ(ξ)|2dξ.

For the computation of the Fourier transform ûµ we obtain

ûµ(ξ) = (2π)−
d
2

∫
Rd

e−i〈x,ξ〉uµ(x)dx

= (2π)−
d
2

∫
Rd

e−i〈x,ξ〉
∫
Rd

µ(|x − y|)U∗(x, y)ϕ(y)dydx

= (2π)−
d
2

∫
Rd

∫
Rd

e−i〈z+y,ξ〉µ(|z|)U∗(z + y, y)ϕ(y)dydz

= (2π)−
d
2

∫
Rd

e−i〈y,ξ〉ϕ(y)dy

∫
Rd

e−i〈z,ξ〉µ(|z|)U∗(z, 0)dz

= ϕ̂(ξ)
∫
Rd

e−i〈z,ξ〉µ(|z|)U∗(z, 0)dz .

Since the function µ(|z|)U∗(z, 0) depends only on |z|, we can use Lemma 2.13,
i.e. it is sufficient to evaluate the remaining integral in ξ = (0, 0, |ξ|)�.

Let us now consider the case d = 3 only, for d = 2 the further steps are
almost the same. Using spherical coordinates,

z1 = r cos φ sin θ, z2 = r sin φ sin θ, z3 = r cos θ

for r ∈ [0,∞), φ ∈ [0, 2π), θ ∈ [0, π), we obtain for the remaining integral

I(|ξ|) =
1
4π

∫
Rd

e−i〈z,ξ〉µ(|z|)
|z| dz

=
1
4π

∞∫
0

2π∫
0

π∫
0

e−i|ξ|r cos θ µ(r)
r

r2 sin θdθ dφ dr

=
1
2

∞∫
0

r µ(r)

π∫
0

e−ir|ξ| cos θ sin θ dθ dr.

Using the transformation u = cos θ we get for the inner integral
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π∫
0

e−ir|ξ| cos θ sin θ dθ =

1∫
−1

e−ir|ξ|u du =
[
− 1

ir|ξ|e
−ir|ξ|u

]1
−1

=
2 sin r|ξ|

r|ξ|

and therefore

I(|ξ|) =
1
|ξ|

∞∫
0

µ(r) sin r|ξ| dr .

For |ξ| > 1 we use the transformation s := r|ξ| to obtain

I(|ξ|) =
1
|ξ|2

∞∫
0

µ

(
s

|ξ|

)
sin s ds.

Due to 0 ≤ µ(r) ≤ 1 and since µ(r) has compact support, we further conclude

|I(|ξ|)| ≤ c1(R)
1
|ξ|2 for |ξ| ≥ 1.

Note that
(1 + |ξ|2)2 ≤ 4 |ξ|4 for |ξ| ≥ 1.

Then,∫
|ξ|>1

(1 + |ξ|2)|ûµ(ξ)|2dξ =
∫

|ξ|>1

(1 + |ξ|2)|I(|ξ|)ϕ̂(ξ)|2dξ

≤ [c1(R)]2
∫

|ξ|>1

1 + |ξ|2
|ξ|4 |ϕ̂(ξ)|2 dξ ≤ 4[c1(R)]2

∫
|ξ|>1

1
1 + |ξ|2 |ϕ̂(ξ)|2 dξ.

For |ξ| ≤ 1 we have

I(|ξ|) =

∞∫
0

µ(r)
sin r|ξ|
|ξ| dr

and therefore
|I(|ξ|)| ≤ c2(R) for |ξ| ≤ 1.

Hence we have∫
|ξ|≤1

(1 + |ξ|2)|ûµ(ξ)|2dξ =
∫

|ξ|≤1

(1 + |ξ|2)|I(|ξ|)ϕ̂(ξ)|2dξ

≤ 2 [c2(R)]2
∫

|ξ|≤1

|ϕ̂(ξ)|2dξ ≤ 4[c2(R)]2
∫

|ξ|≤1

1
1 + |ξ|2 |ϕ̂(ξ)|2dξ.

Taking the sum this gives
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‖uµ‖2
H1(Rd) =

∫
ξ∈Rd

(1 + |ξ|2)|ûµ(ξ)|2dξ

≤ c

∫
ξ∈Rd

1
1 + |ξ|2 |ϕ̂(ξ)|2dξ = c ‖ϕ‖2

H−1(Rd)

and therefore
‖Ñ0ϕ‖H1(Ω) ≤ c ‖ϕ‖

H̃−1(Ω)
.

Hence we have

|〈Ñ0f, ϕ〉Ω |
‖ϕ‖

H̃−1(Ω)

=
|〈f, Ñ0ϕ〉Ω |
‖ϕ‖

H̃−1(Ω)

≤
‖f‖

H̃−1(Ω)
‖Ñ0ϕ‖H1(Ω)

‖ϕ‖
H̃−1(Ω)

≤ c ‖f‖
H̃−1(Ω)

for all ϕ ∈ C∞
0 (Ω). When taking the closure with respect to the norm

‖ · ‖
H̃−1(Ω)

and using a duality arguments gives (6.3). ��

Theorem 6.2. The volume potential Ñ0f̃ is a generalized solution of the par-
tial differential equation

−∆x(Ñ0f̃)(x) = f̃(x) =

{
f(x) for x ∈ Ω,

0 for x ∈ R
d\Ω.

(6.4)

Proof. For ϕ ∈ C∞
0 (Rd) we apply integration by parts, exchange the order of

integration, and using the symmetry of the fundamental solution we obtain∫
Rd

[−∆x(Ñ0f̃)(x)]ϕ(x)dx =
∫
Rd

(Ñ0f̃)(x)[−∆xϕ(x)]dx

=
∫
Rd

∫
Rd

U∗(x, y)f̃(y)dy[−∆xϕ(x)]dx

=
∫
Rd

f̃(y)
∫
Rd

U∗(y, x)[−∆xϕ(x)]dxdy

=
∫
Rd

f̃(y)
∫
Rd

[−∆xU∗(y, x)]ϕ(x)dxdy

=
∫
Rd

f̃(y)
∫
Rd

δ0(x − y)ϕ(x)dxdy

=
∫
Rd

f̃(y)ϕ(y)dy.

When taking the closure of C∞
0 (Rd) with respect to the norm ‖ · ‖H1(Rd) this

shows that the partial differential equation (6.4) is satisfied in the sense of
H−1(Rd). ��



116 6 Boundary Integral Operators

Considering the restriction to the bounded domain Ω ⊂ R
d we further

conclude:

Corollary 6.3. The volume potential Ñ0f is a generalized solution of the
partial differential equation

−∆xÑ0f(x) = f(x) for x ∈ Ω.

The application of the interior trace operator

γint
0 (Ñ0f)(x) = lim

Ω�x̃→x∈Γ
(Ñ0f)(x̃) (6.5)

defines a linear bounded operator

N0 = γint
0 Ñ0 : H̃−1(Ω) → H1/2(Γ )

satisfying

‖N0f‖H1/2(Γ ) ≤ cN
2 ‖f‖

H̃−1(Ω)
for all f ∈ H̃−1(Ω). (6.6)

Lemma 6.4. Let f ∈ L∞(Ω). Then there holds

(N0f)(x) = γint
0 (Ñ0f)(x) =

∫
Ω

U∗(x, y)f(y)dy

for x ∈ Γ as a weakly singular surface integral.

Proof. For an arbitrary given ε > 0 we consider x̃ ∈ Ω and x ∈ Γ satisfying
|x − x̃| < ε. Then we have∣∣∣∣∣∣∣
∫
Ω

U∗(x̃, y)f(y)dy −
∫

y∈Ω:|y−x|>ε

U∗(x, y)f(y)dy

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

y∈Ω:|y−x|>ε

[U∗(x̃, y) − U∗(x, y)]f(y)dy

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

∫
y∈Ω:|y−x|≤ε

U∗(x̃, y)f(y)dy

∣∣∣∣∣∣∣ ,
and

lim
Ω�x̃→x∈Γ

∣∣∣∣∣∣∣
∫

y∈Ω:|y−x|>ε

[U∗(x̃, y) − U∗(x, y)]f(y)dy

∣∣∣∣∣∣∣ = 0 .

For the remaining term we obtain∣∣∣∣∣∣∣
∫

y∈Ω:|y−x|≤ε

U∗(x̃, y)f(y)dy

∣∣∣∣∣∣∣ ≤ ‖f‖L∞(Ω∩Bε(x))

∫
Ω∩Bε(x)

|U∗(x̃, y)|dy

≤ ‖f‖L∞(Ω)

∫
B2ε(x̃)

|U∗(x̃, y)|dy.
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In the case d = 2 we get, by using polar coordinates,∫
B2ε(x̃)

|U∗(x̃, y)|dy =
1
2π

∫
|y−x̃|<2ε

|log |y − x̃|| dy

=
1
2π

2π∫
0

2ε∫
0

| log r| r drdϕ = ε2 [1 − 2 log(2ε)] .

In the same way we find for d = 3, by using spherical coordinates,∫
B2ε(x̃)

|U∗(x̃, y)|dy =
1
4π

∫
|y−x̃|<2ε

1
|y − x̃|dy

=
1
4π

2π∫
0

π∫
0

2ε∫
0

1
r

r2 sin ψ drdψdϕ = 2 ε2 .

Taking the limits x̃ → x and ε → 0 we finally get the assertion. ��

Lemma 6.5. The operator N1 = γint
1 Ñ0 : H̃−1(Ω) → H−1/2(Γ ) is bounded,

i.e.
‖N1f‖H−1/2(Γ ) = ‖γint

1 Ñ0f‖H−1/2(Γ ) ≤ c ‖f‖
H̃−1(Ω)

is satisfied for all f ∈ H̃−1(Ω).

Proof. First we note that u = Ñ0f ∈ H1(Ω) is a generalized solution of
the partial differential equation −∆u(x) = f(x) for x ∈ Ω. For an arbitrary
given w ∈ H1/2(Γ ) we apply the inverse trace theorem to obtain a bounded
extension Ew ∈ H1(Ω) satisfying

‖Ew‖H1(Ω) ≤ cIT ‖w‖H1/2(Γ ).

Now, using Green’s first formula,

〈γint
1 u,w〉Γ =

∫
Ω

∇u(x)∇Ew(x)dx − 〈f, Ew〉Ω ,

we get from Theorem 6.1∣∣∣〈γint
1 u,w〉Γ

∣∣∣ ≤ {‖u‖H1(Ω) + ‖f‖
H̃−1(Ω)

}
‖Ew‖H1(Ω)

≤ (c + 1)cIT ‖f‖
H̃−1(Ω)

‖w‖H−1/2(Γ ). ��
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6.2 Single Layer Potential

Let w ∈ H−1/2(Γ ) be a given density function. Then we consider the single
layer potential

u(x) := (Ṽ w)(x) :=
∫
Γ

U∗(x, y)w(y)dsy for x ∈ Ω ∪ Ωc. (6.7)

Lemma 6.6. The function u(x) = (Ṽ w)(x), x ∈ Ω ∪ Ωc, as defined in (6.7)
is a solution of the homogeneous partial differential equation

−∆u(x) = 0 for x ∈ Ω ∪ Ωc.

For w ∈ H−1/2(Γ ) we have u ∈ H1(Ω) satisfying

‖u‖H1(Ω) = ‖Ṽ w‖H1(Ω) ≤ c ‖w‖H−1/2(Γ ).

Proof. For x ∈ Ω ∪ Ωc and y ∈ Γ we notice that the fundamental solution
U∗(x, y) is C∞. Hence we can exchange differentiation and integration to
obtain

−∆xu(x) = −∆x

∫
Ω

U∗(x, y)f(y)dy =
∫
Ω

[−∆xU∗(x, y)]f(y)dy = 0.

Moreover, for ϕ ∈ C∞(Ω) we have∫
Ω

u(x)ϕ(x)dx =
∫
Ω

∫
Γ

U∗(x, y)w(y)dsy ϕ(x)dx

=
∫
Γ

w(y)
∫
Ω

U∗(x, y)ϕ(x)dx dsy =
∫
Γ

w(y)(N0ϕ)(y)dsy

where
(N0ϕ)(y) = γint

0

∫
Ω

U∗(x, y)ϕ(x)dx for y ∈ Γ.

By applying the estimate (6.6) we then obtain∫
Ω

u(x)ϕ(x)dx =
∫
Γ

w(y)(N0ϕ)(y)dsy

≤ ‖w‖H−1/2(Γ )‖N0ϕ‖H1/2(Γ )

≤ cN
2 ‖w‖H−1/2(Γ )‖ϕ‖H̃−1(Ω)

.

Taking the closure of C∞(Ω) with respect to the norm ‖ · ‖
H̃−1(Ω)

and using
a duality argument finishes the proof. ��
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The single layer potential (6.7) defines a bounded linear map

Ṽ : H−1/2(Γ ) → H1(Ω).

Hence, the application of the interior trace operator to Ṽ w ∈ H1(Ω) is well
defined. This defines a bounded linear operator

V = γint
0 Ṽ : H−1/2(Γ ) → H1/2(Γ )

satisfying

‖V w‖H1/2(Γ ) ≤ cV
2 ‖w‖H−1/2(Γ ) for all w ∈ H−1/2(Γ ). (6.8)

Lemma 6.7. Let w ∈ L∞(Γ ) be given. Then we have the representation

(V w)(x) = γint
0 (Ṽ w)(x) =

∫
Γ

U∗(x, y)w(y)dsy

for x ∈ Γ as a weakly singular surface integral.

Proof. For an arbitrary ε > 0 we consider x̃ ∈ Ω and x ∈ Γ satisfying
|x − x̃| < ε. Then we have∣∣∣∣∣∣∣
∫
Γ

U∗(x̃, y)w(y)dsy −
∫

y∈Γ :|y−x|>ε

U∗(x, y)w(y)dsy

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

y∈Γ :|y−x|>ε

[U∗(x̃, y) − U∗(x, y)]w(y)dsy

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

∫
y∈Γ :|y−x|≤ε

U∗(x̃, y)w(y)dsy

∣∣∣∣∣∣∣ ,
and for the first expression we obtain

lim
Ω�x̃→x∈Γ

∣∣∣∣∣∣∣
∫

y∈Γ :|y−x|>ε

[U∗(x̃, y) − U∗(x, y)]w(y)dsy

∣∣∣∣∣∣∣ = 0 .

For the remaining term we have∣∣∣∣∣∣∣
∫

y∈Γ :|y−x|≤ε

U∗(x̃, y)w(y)dsy

∣∣∣∣∣∣∣ ≤ ‖w‖L∞(Γ∩Bε(x))

∫
Γ∩Bε(x)

|U∗(x̃, y)|dsy

≤ ‖w‖L∞(Γ )

∫
Γ∩Bε(x̃)

|U∗(x̃, y)|dsy.
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The assertion now follows as in the proof of Lemma 6.4 for x̃ → x and ε → 0,
we skip the details. ��

In the same way we obtain for the exterior trace

(V w)(x) = γext
0 (Ṽ w)(x) := lim

Ωc�x̃→x∈Γ
(Ṽ w)(x̃) for x ∈ Γ.

Hence we get the jump relation of the single layer potential as

[γ0Ṽ w] := γext
0 (Ṽ w)(x) − γint

0 (Ṽ w)(x) = 0 for x ∈ Γ. (6.9)

6.3 Adjoint Double Layer Potential

For a given density w ∈ H−1/2(Γ ) we can define Ṽ w ∈ H1(Ω) which is a
solution of the homogeneous partial differential equation (cf. Lemma 6.6).
Using Lemma 4.4 we can apply the interior conormal derivative to obtain a
bounded linear operator

γint
1 Ṽ : H−1/2(Γ ) → H−1/2(Γ )

satisfying

‖γint
1 Ṽ w‖H−1/2(Γ ) ≤ c ‖w‖H−1/2(Γ ) for all w ∈ H−1/2(Γ ).

Lemma 6.8. For w ∈ H−1/2(Γ ) we have the representation

γint
1 (Ṽ w)(x) = σ(x)w(x) + (K ′w)(x) for x ∈ Γ

in the sense of H−1/2(Γ ), i.e.

〈γint
1 Ṽ w, v〉Γ = 〈σw + K ′w, v〉Γ for all v ∈ H1/2(Γ ).

Here we used the adjoint double layer potential

(K ′w)(x) := lim
ε→0

∫
y∈Γ :|y−x|≥ε

γint
1,xU∗(x, y)w(y)dsy (6.10)

and
σ(x) := lim

ε→0

1
2(d − 1)π

1
εd−1

∫
y∈Ω:|y−x|=ε

dsy for x ∈ Γ. (6.11)

Proof. For w ∈ H−1/2(Γ ) the single layer potential Ṽ w ∈ H1(Ω) is a solution
of the homogeneous partial differential equation. Hence, from Green’s first
formula we find for ϕ ∈ C∞(Ω)
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Γ

γint
1 u(x)γint

0 ϕ(x)dsx =
∫
Ω

∇xu(x)∇xϕ(x)dx

=
∫
Ω

∇x

∫
Γ

U∗(x, y)w(y)dsy∇xϕ(x)dx.

Inserting the definition as weakly singular surface integrals and interchanging
the order of integration this gives∫

Γ

γint
1 u(x)γint

0 ϕ(x)dsx

=
∫
Ω

∇x

⎛⎜⎝ lim
ε→0

∫
y∈Γ :|y−x|≥ε

U∗(x, y)w(y)dsy

⎞⎟⎠∇xϕ(x)dx

=
∫
Γ

w(y) lim
ε→0

∫
x∈Ω:|x−y|≥ε

∇xU∗(x, y)∇xϕ(x)dxdsy .

Using again Green’s first formula we obtain for y ∈ Γ∫
x∈Ω:|x−y|≥ε

∇xU∗(x, y)∇xϕ(x)dx =
∫

x∈Γ :|x−y|≥ε

γint
1,xU∗(x, y)γint

0 ϕ(x)dsx

+
∫

x∈Ω:|x−y|=ε

γint
1,xU∗(x, y)ϕ(x)dsx.

The first summand corresponds to the double layer potential operator K ′ as
defined in (6.10). The second term can be written as∫
x∈Ω:|x−y|=ε

γint
1,xU∗(x, y)ϕ(x)dsx =

∫
x∈Ω:|x−y|=ε

γint
1,xU∗(x, y)[ϕ(x) − ϕ(y)]dsx

+ ϕ(y)
∫

x∈Ω:|x−y|=ε

γint
1,xU∗(x, y)dsx

with ∣∣∣∣∣∣∣
∫

x∈Ω:|x−y|=ε

γint
1,xU∗(x, y)[ϕ(x) − ϕ(y)]dsx

∣∣∣∣∣∣∣
≤ max

x∈Ω:|x−y|=ε
|ϕ(x) − ϕ(y)|

∫
x∈Ω:|x−y|=ε

|γint
1,xU∗(x, y)|dsx.

For d = 2 we have
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x∈Ω:|x−y|=ε

|γint
1,xU∗(x, y)|dsx ≤

∫
x∈R2:|x−y|=ε

|γint
1,xU∗(x, y)|dsx

=
1
2π

∫
x∈R2:|x−y|=ε

1
|x − y|dsx = 1

while for d = 3∫
x∈Ω:|x−y|=ε

|γint
1,xU∗(x, y)|dsx ≤

∫
x∈R3:|x−y|=ε

|γint
1,xU∗(x, y)|dsx

=
1
4π

∫
x∈R3:|x−y|=ε

1
|x − y|2 dsx = 1.

Taking the limit ε → 0 this gives

lim
ε→0

∣∣∣∣∣∣∣
∫

x∈Ω:|x−y|=ε

γint
1,xU∗(x, y)[ϕ(x) − ϕ(y)]dsx

∣∣∣∣∣∣∣ = 0 .

For the remaining integral we find by using nx =
y − x

|y − x| for x ∈ Ω, |y−x| = ε,

∫
x∈Ω:|x−y|=ε

γint
1,xU∗(x, y)dsx = − 1

2(d − 1)π

∫
x∈Ω:|x−y|=ε

(nx, x − y)
|x − y|d dsx

=
1

2(d − 1)π

∫
x∈Ω:|x−y|=ε

1
|x − y|d−1

dsx =
1

2(d − 1)π
1

εd−1

∫
x∈Ω:|x−y|=ε

dsx.

Taking into account the definitions (6.10) and (6.11) we finally obtain∫
Γ

γint
1 u(x)γint

0 ϕ(x)dsx

=
∫
Γ

w(y)

⎡⎢⎣ lim
ε→0

∫
x∈Γ :|x−y|≥ε

γint
1,xU∗(x, y)γint

0 ϕ(x)dsx + γint
0 ϕ(y)σ(y)

⎤⎥⎦ dsy

=
∫
Γ

γint
0 ϕ(x) lim

ε→0

∫
y∈Γ :|y−x|≥ε

γint
1,xU∗(x, y)w(y)dsydsx +

∫
Γ

w(y)σ(y)ϕ(y)dsy

=
∫
Γ

[σ(x)w(x) + (K ′w)(x)]γint
0 ϕ(x)dsx. ��
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Let Γ = ∂Ω be at least differentiable within a vicinity of x ∈ Γ . From the
definition (6.11) we then find

σ(x) =
1
2

for almost all x ∈ Γ.

The boundary integral operator K ′ which appears in the conormal derivative
of the single layer potential is the adjoint double layer potential. The operator
is linear and bounded, i.e.

‖K ′w‖H−1/2(Γ ) ≤ cK′
2 ‖w‖H−1/2(Γ ) for w ∈ H−1/2(Γ ).

As in the proof of Lemma 6.8 we obtain the following representation of the
exterior conormal derivative of the single layer potential Ṽ in the sense of
H−1/2(Γ ),

γext
1 (Ṽ w)(x) = [σ(x) − 1]w(x) + (K ′w)(x) for x ∈ Γ.

Lemma 6.9. For the conormal derivative of the single layer potential Ṽ there
holds the jump relation

[γ1Ṽ w] := γext
1 (Ṽ w)(x) − γint

1 (Ṽ w)(x) = −w(x) for x ∈ Γ (6.12)

in the sense of H−1/2(Γ ).

Proof. For u = Ṽ w and ϕ ∈ C∞
0 (Rd) we first have∫

Rd

[−∆u(x)]ϕ(x)dx =
∫
Rd

−∆x

∫
Γ

U∗(x, y)w(y)dsyϕ(x)dx

=
∫
Γ

w(y)
∫
Rd

−∆xU∗(x, y)ϕ(x)dxdsy

=
∫
Γ

w(y)
∫
Rd

δ0(x − y)ϕ(x)dxdsy

=
∫
Γ

w(y)γint
0 ϕ(y)dsy.

On the other hand,∫
Rd

[−∆u(x)]ϕ(x)dx = aRd(u, ϕ) = aΩ(u, ϕ) + aΩc(u, ϕ)

=
∫
Γ

γint
1 u(x)γint

0 ϕ(x)dsx −
∫
Γ

γext
1 u(x)γext

0 ϕ(x)dsx,
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and therefore∫
Γ

w(x)ϕ(x)dsx =
∫
Γ

[γint
1 u(x) − γext

1 u(x)]γint
0 ϕ(x)dsx

holds for all ϕ ∈ C∞
0 (Rd). The closure of C∞

0 (Rd) with respect to ‖ · ‖H1/2(Γ )

and a duality argument then gives the assertion. ��

6.4 Double Layer Potential

Let v ∈ H1/2(Γ ) be a given density function. Then we consider the double
layer potential

u(x) = (Wv)(x) :=
∫
Γ

[γint
1,y U∗(x, y)]v(y)dsy for x ∈ Ω ∪ Ωc. (6.13)

Lemma 6.10. The function u(x) = (Wv)(x), x ∈ Ω∪Ωc, as defined in (6.13)
is a solution of the homogeneous partial differential equation

−∆xu(x) = 0 for x ∈ Ω ∪ Ωc.

For v ∈ H1/2(Γ ) we have u ∈ H1(Ω) satisfying

‖u‖H1(Ω) = ‖Wv‖H1(Ω) ≤ c ‖v‖H1/2(Γ ).

Proof. For x ∈ Ω ∪ Ωc and y ∈ Γ we first notice that x �= y. Hence we can
interchange differentiation and integration and the first assertion follows from
the properties of the fundamental solution U∗(x, y).

For ϕ ∈ C∞(Ω) we then have

〈Wv,ϕ〉Ω =
∫
Ω

∫
Γ

[γint
1,y U∗(x, y)]v(y)dsyϕ(x)dx

=
∫
Γ

v(y)γint
1,y

∫
Ω

U∗(x, y)ϕ(x)dxdsy

=
∫
Γ

v(y)γint
1,y (Ñ0ϕ)(y)dsy = 〈v, γint

1 Ñ0ϕ〉Γ .

For f ∈ H̃−1(Ω) this gives

〈Wv, f〉Ω = 〈v, γint
1 Ñ0f〉Γ

and, by applying Corollary 6.3, Ñ0f ∈ H1(Ω) is a solution of the inhomoge-
neous partial differential equation
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−∆x(Ñ0f)(x) = f(x) for x ∈ Ω.

By Lemma 6.5 we further obtain γint
1 Ñ0f ∈ H−1/2(Γ ), and therefore

‖Wv‖H1(Ω) = sup
0 �=f∈H̃−1(Ω)

〈Wv, f〉Ω
‖f‖

H̃−1(Ω)

= sup
0 �=f∈H̃−1(Ω)

〈v, γint
1 Ñ0f〉Γ

‖f‖
H̃−1(Ω)

≤ c ‖v‖H1/2(Γ ). ��

The double layer potential (6.13) therefore defines a linear and bounded op-
erator

W : H1/2(Γ ) → H1(Ω).

When applying the interior trace operator γint
0 : H1(Ω) → H1/2(Γ ) to the

double layer potential u = Wv ∈ H1(Ω) this declares, for v ∈ H1/2(Γ ), a
linear and bounded operator

γint
0 W : H1/2(Γ ) → H1/2(Γ )

satisfying

‖γint
0 Wv‖H1/2(Γ ) ≤ c ‖v‖H1/2(Γ ) for v ∈ H1/2(Γ ).

Lemma 6.11. For v ∈ H1/2(Γ ) we have the representation

γint
0 (Wv)(x) = [−1 + σ(x)]v(x) + (Kv)(x) for x ∈ Γ (6.14)

where σ(x) is as defined in (6.11) and with the double layer potential

(Kv)(x) := lim
ε→0

∫
y∈Γ :|y−x|≥ε

[γint
1,y U∗(x, y)]v(y)dsy for x ∈ Γ.

Proof. Let ε > 0 be arbitrary but fixed. For the operator

(Kεv)(x) =
∫

y∈Γ :|y−x|≥ε

[γint
1,y U∗(x, y)]v(y)dsy

we first consider the limit Ω � x̃ → x ∈ Γ . Hence we assume |x̃ − x| < ε.
Then,
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(Wv)(x̃) − (Kεv)(x) =
∫

y∈Γ :|y−x|≥ε

[
γint
1,y U∗(x̃, y) − γint

1,y U∗(x, y)
]
v(y)dsy

+
∫

y∈Γ :|y−x|<ε

[γint
1,y U∗(x̃, y)]v(y)dsy

=
∫

y∈Γ :|y−x|≥ε

[
γint
1,y U∗(x̃, y) − γint

1,y U∗(x, y)
]
v(y)dsy

+
∫

y∈Γ :|y−x|<ε

[γint
1,y U∗(x̃, y)][v(y) − v(x)]dsy

+ v(x)
∫

y∈Γ :|y−x|<ε

γint
1,y U∗(x̃, y)dsy.

For all ε > 0 we have

lim
Ω�x̃→x∈Γ

∫
y∈Γ :|y−x|≥ε

[
γint
1,y U∗(x̃, y) − γint

1,y U∗(x, y)
]
v(y)dsy = 0

while the second term can be estimated by∣∣∣∣∣∣∣
∫

y∈Γ :|y−x|<ε

[γint
1,y U∗(x̃, y)][v(y) − v(x)]dsy

∣∣∣∣∣∣∣
≤ sup

y∈Γ :|y−x|<ε

|v(x) − v(y)|
∫

y∈Γ :|y−x|<ε

|γint
1,y U∗(x̃, y)|dsy.

For x̃ ∈ Ω we further have∫
Γ

|γint
1,y U∗(x̃, y)|dsy ≤ M .

Therefore, the second term vanishes when considering the limit ε → 0. For
the computation of the third term we consider

Bε(x) = {y ∈ Ω : |y − x| < ε} .

Then,∫
y∈Γ :|y−x|<ε

γint
1,y U∗(x̃, y)dsy =

∫
∂Bε(x)

γint
1,y U∗(x̃, y)dsy −

∫
y∈Ω:|y−x|=ε

γint
1,y U∗(x̃, y)dsy.

Using the representation formula (6.1) for u = 1 and due to x̃ ∈ Bε(x) we
obtain
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∂Bε(x)

γint
1 U∗(x̃, y)dsy = −1.

Moreover, inserting n(y) = 1
ε (y − x) we get

lim
ε→0

lim
Ω�x̃→x∈Γ

∫
y∈Ω:|y−x|=ε

γint
1 U∗(x̃, y)dsy = lim

ε→0

∫
y∈Ω:|y−x|=ε

γint
1 U∗(x, y)dsy

= − lim
ε→0

1
2(d − 1)π

∫
y∈Ω:|y−x|=ε

(ny, y − x)
|x − y|d dsy

= − lim
ε→0

1
2(d − 1)π

1
εd−1

∫
y∈Ω:|y−x|=ε

dsy = −σ(x) . ��

In the same way we obtain for the exterior trace

γext
0 (Wv)(x) = σ(x)v(x) + (Kv)(x) for x ∈ Γ

and therefore the jump relation of the double layer potential,

[γ0Wv] := γext
0 (Wv)(x) − γint

0 (Wv)(x) = v(x) for x ∈ Γ.

Lemma 6.12. For the jump of the conormal derivative of the double layer
potential there holds

[γ1Wv] = γext
1 (Wv)(x) − γint

1 (Wv)(x) = 0 for x ∈ Γ.

Proof. For the double layer potential u(x) = (Wv)(x), x ∈ R
n and for ϕ ∈

C∞
0 (Rd) we first have∫

Rd

[−∆u(x)]ϕ(x)dx =
∫
Rd

−∆x

∫
Γ

γint
1,y U∗(x, y)w(y)dsyϕ(x)dx

=
∫
Γ

w(y)γint
1,y

∫
Rd

−∆xU∗(x, y)ϕ(x)dxdsy

=
∫
Γ

w(y)γint
1,y

∫
Rd

δ0(x − y)ϕ(x)dxdsy = 0 .

On the other hand, using Green’s first formula we have

0 =
∫
Rd

[−∆u(x)]ϕ(x)dx = aRd(u, ϕ) = aΩ(u, ϕ) + aΩc(u, ϕ)

=
∫
Γ

γint
1 u(x)γint

0 ϕ(x)dsx −
∫
Γ

γext
1 u(x)γext

0 ϕ(x)dsx

and taking the closure of C∞
0 (Rd) with respect to the ‖ · ‖H1(Rd) norm we

obtain the assertion from γint
0 ϕ = γext

0 ϕ. ��
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6.5 Hypersingular Boundary Integral Operator

The conormal derivative of the double layer potential Wv for v ∈ H1/2(Γ )
defines a bounded operator

γint
1 W : H1/2(Γ ) → H−1/2(Γ ).

For

(Dv)(x) := −γint
1 (Wv)(x) = − lim

Ω�x̃→x∈Γ
nx ·∇x̃(Wv)(x̃) for x ∈ Γ (6.15)

we first have

‖Dv‖H−1/2(Γ ) ≤ cD
2 ‖v‖H1/2(Γ ) for v ∈ H1/2(Γ ). (6.16)

In the two–dimensional case d = 2 the double layer potential reads

(Wv)(x̃) =
1
2π

lim
ε→0

∫
y∈Γ :|y−x|≥ε

(x̃ − y, ny)
|x̃ − y|2 v(y)dsy for x̃ ∈ Ω.

For a fixed ε > 0 we can interchange taking the limit x̃ → x ∈ Γ and
computing the conormal derivative to obtain (d = 2)

(Dεv)(x) =
1
2π

∫
y∈Γ :|y−x|≥ε

[
− (nx, ny)
|x − y|2 + 2

(x − y, nx)(x − y, ny)
|x − y|4

]
v(y)dsy.

In the same way we find for d = 3

(Dεv)(x) =
1
4π

∫
y∈Γ :|y−x|≥ε

[
− (nx, ny)
|x − y|3 + 3

(y − x, ny)(y − x, nx)
|x − y|5

]
v(y)dsy.

However, when taking the limit ε → 0 for x ∈ Γ the integrals does not exist as
Cauchy principal value. As a generalization of the Cauchy integral we there-
fore call D a hypersingular boundary integral operator. To find an explicit
representation of D we therefore have to introduce a suitable regularisation.
Inserting u0(x) ≡ 1 into the representation formula (6.1) this gives

1 = −
∫
Γ

γint
1,y U∗(x̃, y)dsy for x̃ ∈ Ω.

Hence we have
∇x̃(Wu0)(x̃) = 0 for x̃ ∈ Ω,

and therefore
(Du0)(x) = 0 for x ∈ Γ. (6.17)
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Moreover we can write

(Dv)(x) = − lim
Ω�x̃→x∈Γ

nx · ∇x̃

∫
Γ

γint
1,y U∗(x̃, y)[v(y) − v(x)]dsy for x ∈ Γ.

If the density v is continuous, we can obtain for the hypersingular boundary
integral operator D the representation

(Dv)(x) = −
∫
Γ

γint
1,xγint

1,y U∗(x, y)[v(y) − v(x)]dsy for x ∈ Γ

as a Cauchy principal value integral.
In what follows we will describe alternative representations of the bilinear

form which is induced by the hypersingular boundary integral operator D,

〈Du, v〉Γ = −
∫
Γ

v(x)γint
1,x

∫
Γ

γint
1,y U∗(x, y)u(y)dsydsx.

In the two–dimensional case d = 2 we assume that Γ = ∂Ω is piecewise
smooth,

Γ =
p⋃

k=1

Γk,

where each part Γk is given by a local parametrization

Γk : y = y(t) =
(

y1(t)
y2(t)

)
for t ∈ (tk, tk+1). (6.18)

Moreover,

dsy =
√

[y′
1(t)]2 + [y′

2(t)]2 dt,

and the exterior normal vector is given by

n(y) =
1√

[y′
1(t)]2 + [y′

2(t)]2

(
y′
2(t)

−y′
1(t)

)
for y ∈ Γk.

For x ∈ R
2, the rotation of a scalar function ṽ is defined as

curl ṽ(x) :=

⎛⎜⎜⎝
∂

∂x2
ṽ(x)

− ∂

∂x1
ṽ(x)

⎞⎟⎟⎠ .

If v(x), x ∈ Γk, is a given function, we may consider an appropriate extension
ṽ into a neighborhood of Γk, in particular we may define

ṽ(x̃) = v(x) for x̃ = x + (x̃ − x, n(x))n(x).
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Then, for x ∈ Γk we can introduce

curlΓk
v(x) := n(x) · curl ṽ(x) = n1(x)

∂

∂x2
ṽ(x) − n2(x)

∂

∂x1
ṽ(x)

and we obtain∫
Γk

curlΓk
v(y)dsy =

∫
Γk

[
n1(y)

∂

∂y2
ṽ(y) − n2(y)

∂

∂y1
ṽ(y)

]
dsy

=

tk+1∫
tk

[
y′
2(t)

∂

∂y2
v(y(t)) + y′

1(t)
∂

∂y1
v(y(t))

]
dt

=

tk+1∫
tk

d

dt
v(y(t)) dt,

i.e. curlΓk
v does not depend on the chosen extension ṽ.

Lemma 6.13. Let Γk be an open boundary part which is given by a local
parametrization (6.18) with continuously differentiable functions yi(t), i =
1, 2. If v and w are continuously differentiable, then we have the formula of
integration by parts, i.e.∫

Γk

v(y) curlΓk
w(y) dsy = −

∫
Γk

curlΓk
v(y)w(y) dsy + v(y(t))w(y(t))|tk+1

tk
.

Proof. The assertion follows from∫
Γk

curlΓk
[v(y)w(y)]dsy =

tk+1∫
tk

d

dt
[v(y(t))w(y(t))]dt = [v(y(t))w(y(t))]t=tk+1

t=tk

through differentiation by the product rule. ��
For a function v which is defined on a closed curve Γ we define

curlΓ v(x) := curlΓk
v(x) for x ∈ Γk, k = 1, . . . , p.

As a consequence of Lemma 6.13 we then have:

Corollary 6.14. Let Γ be a piecewise smooth closed curve. If v and w are
piecewise continuously differentiable, then∫

Γ

v(y) curlΓ w(y) dsy = −
∫
Γ

curlΓ v(y)w(y) dsy +
p∑

k=1

v(y(t))w(y(t))|tk+1
tk

.

If in addition v and w are globally continuous, then∫
Γ

v(y) curlΓ w(y) dsy = −
∫
Γ

curlΓ v(y)w(y) dsy.
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By applying integration by parts we can rewrite the bilinear form which is
induced by the hypersingular boundary integral operator D as a bilinear form
which is induced by the single layer potential V . In case of the two–dimensional
Laplace operator this relation already goes back to [101].

Theorem 6.15. Let Γ be a piecewise smooth closed curve and let u and v be
globally continuous on Γ . Moreover, let u and v be continuously differentiable
on the parts Γk. Then we can rewrite the bilinear form of the hypersingular
boundary integral operator D as

〈Du, v〉Γ = − 1
2π

∫
Γ

curlΓ v(x)
∫
Γ

log |x − y| curlΓ u(y)dsydsx . (6.19)

Proof. The hypersingular boundary integral operator D is defined as the neg-
ative conormal derivative of the double layer potential W , see (6.15). For
x̃ ∈ Ω we have

w(x̃) = (Wu)(x̃) = − 1
2π

∫
Γ

u(y)
∂

∂ny
log |x̃ − y|dsy.

Since x̃ ∈ Ω and y ∈ Γ it follows that x̃ �= y. With

∂

∂yi
log |x̃ − y| =

yi − x̃i

|x̃ − y|2 = − x̃i − yi

|x̃ − y|2 = − ∂

∂x̃i
log |x̃ − y|

we obtain

∂

∂x̃i

(
∂

∂ny
log |x̃ − y|

)
= −n(y) · ∇y

(
∂

∂yi
log |x̃ − y|

)
.

Due to ∆y log |x̃ − y| = 0 for y �= x̃ we further get

curlΓ,y

(
∂

∂y1
log |x̃ − y|

)
=

= n1(y)
∂

∂y2

∂

∂y1
log |x̃ − y| − n2(y)

∂

∂y1

∂

∂y1
log |x̃ − y|

= n1(y)
∂

∂y2

∂

∂y1
log |x̃ − y| + n2(y)

∂

∂y2

∂

∂y2
log |x̃ − y|

= n(y) · ∇y

(
∂

∂y2
log |x̃ − y|

)
,

and

curlΓ,y

(
∂

∂y2
log |x̃ − y|

)
= −n(y) · ∇y

(
∂

∂y1
log |x̃ − y|

)
.

Hence we can write the partial derivatives of the double layer potential for a
globally continuous function u by applying integration by parts as
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∂

∂x̃1
w(x̃) = − 1

2π

∫
Γ

u(y)
∂

∂x̃1

∂

∂ny
log |x̃ − y| dsy

=
1
2π

∫
Γ

u(y)n(y) · ∇y

(
∂

∂y1
log |x̃ − y|

)
dsy

= − 1
2π

∫
Γ

u(y) curlΓ,y

(
∂

∂y2
log |x̃ − y|

)
dsy

=
1
2π

∫
Γ

curlΓ u(y)
∂

∂y2
log |x̃ − y| dsy,

and
∂

∂x̃2
w(x̃) = − 1

2π

∫
Γ

curlΓ u(y)
∂

∂y1
log |x̃ − y| dsy.

For the normal derivative of the double layer potential we then obtain

n(x) · ∇x̃w(x̃) =

=
1
2π

∫
Γ

curlΓ u(y)
[
n1(x)

∂

∂y2
log |x̃ − y| − n2(x)

∂

∂y1
log |x̃ − y|

]
dsy

=
1
2π

lim
ε→0

∫
y∈Γ,|y−x|≥ε

curlΓ u(y)
(

n1(x)
∂

∂y2
log |x̃ − y| − n2(x)

∂

∂y1
log |x̃ − y|

)
dsy

and taking the limit Ω � x̃ → x ∈ Γ this gives

∂

∂nx
w(x) =

=
1
2π

lim
ε→0

∫
y∈Γ :|y−x|≥ε

curlΓ u(y)
(

n1(x)
∂

∂y2
log |x − y| − n2(x)

∂

∂y1
log |x − y|

)
dsy

= − 1
2π

lim
ε→0

∫
y∈Γ :|y−x|≥ε

curlΓ u(y)
(

n1(x)
∂

∂x2
log |x − y|−n2(x)

∂

∂x1
log |x − y|

)
dsy

= − 1
2π

lim
ε→0

∫
y∈Γ :|y−x|≥ε

curlΓ u(y) curlΓ,x log |x − y| dsy.

Therefore,
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Γ

v(x)
∂

∂nx
w(x)dsx = − 1

2π

∫
x∈Γ

v(x) lim
ε→0

∫
y∈Γ :|y−x|≥ε

curlΓ u(y) curlΓ,x log |x − y| dsydsx

= − 1
2π

∫
y∈Γ

curlΓ u(y) lim
ε→0

∫
x∈Γ :|x−y|≥ε

v(x) curlΓ,x log |x − y| dsxdsy

=
1
2π

∫
y∈Γ

curlΓ u(y) lim
ε→0

∫
x∈Γ :|x−y|≥ε

curlΓ v(x) log |x − y| dsxdsy,

from which we finally obtain (6.19). ��
The representation of the hypersingular boundary integral operator D via

integration by parts can be applied correspondingly to the three–dimensional
case [50]. Let

Γ =
p⋃

k=1

Γk

be a piecewise smooth surface where each piece Γk can be described via a
parametrization

y ∈ Γk : y(s, t) =

⎛⎝ y1(s, t)
y2(s, t)
y3(s, t)

⎞⎠ for (s, t) ∈ τ

where τ is some reference element. The rotation or curl of a vector–valued
function v is defined as

curl v := ∇× v(x) for x ∈ R
3.

If u is a scalar function given on Γk, then

curlΓk
u(x) := n(x) ×∇ũ(x) for x ∈ Γk

defines the surface curl, where ũ is a suitable extension of the given u on Γk

into a three–dimensional neighborhood of Γk. Finally we introduce

curlΓk
v(x) := n(x) · curl ṽ(x) for x ∈ Γk.

Lemma 6.16. Let Γ be a piecewise smooth closed Lipschitz surface in R
3.

Assume that each surface part Γk is smooth having a piecewise smooth bound-
ary curve ∂Γk. Let u and v be globally continuous, but locally bounded and
smooth on each Γk. Then, applying integration by parts,∫

Γ

curlΓ u(x) · v(x) dsx = −
∫
Γ

u(x)curlΓ v(x)dsx .
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Proof. Using the product rule

∇× [ũ(x)v(x)] = ∇ũ(x) × v(x) + ũ(x) [∇× v(x)]

we obtain∫
Γk

curlΓk
u(x) · v(x)dsx =

∫
Γk

[n(x) ×∇ũ(x)] · v(x)dsx

=
∫
Γk

[∇ũ(x) × v(x)] · n(x) dsx

=
∫
Γk

[∇× [ũ(x)v(x)] − ũ(x) [∇× v(x)]] · n(x) dsx

=
∫

∂Γk

u(x)v(x)t(x)dσ −
∫
Γk

u(x) curlΓk
v(x)dsx

by applying the integral theorem of Stokes. ��

Theorem 6.17. Let Γ be a piecewise smooth closed surface, and let u and v
be globally continuous functions defined on Γ which are differentiable on Γk.
Then the bilinear form of the hypersingular boundary integral operator D can
be written as

〈Du, v〉Γ =
1
4π

∫
Γ

∫
Γ

curlΓ u(y) · curlΓ v(x)
|x − y| dsxdsy.

Proof. The proof follows essentially as in the two–dimensional case. For x̃ ∈ Ω
and using the definition (6.15) of the hypersingular boundary integral operator
D we have to consider the double layer potential

w(x̃) := − 1
4π

∫
Γ

u(y)
∂

∂ny

1
|x̃ − y|dsy.

Using
∂

∂yi

1
|x̃ − y| =

x̃i − yi

|x̃ − y|3 = −yi − x̃i

|x̃ − y| = − ∂

∂x̃i

1
|x̃ − y|

we obtain for the partial derivatives of the kernel function

∂

∂x̃i

(
∂

∂ny

1
|x̃ − y|

)
= −n(y) · ∇y

(
∂

∂yi

1
|x̃ − y|

)
.

Let ei be the i–th unit vector of R
3. Due to x̃ �= y we can expand the vector

product as
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curly

(
ei ×∇y

1
|x̃ − y|

)
= ∇y ×

(
ei ×∇y

1
|x̃ − y|

)
=
(
∇y · ∇y

1
|x̃ − y|

)
ei − (∇y · ei)∇y

1
|x̃ − y|

= ∆y
1

|x̃ − y| ei −
∂

∂yi

(
∇y

1
|x̃ − y|

)
= − ∂

∂yi

(
∇y

1
|x̃ − y|

)
.

When exchanging the order of differentiation and integration we then obtain
the partial derivatives of the double layer potential as

∂

∂x̃i
w(x̃) = − 1

4π

∫
Γ

u(y)
∂

∂x̃i

(
∂

∂ny

1
|x̃ − y|

)
dsy

=
1
4π

∫
Γ

u(y)ny · ∇y

(
∂

∂yi

1
|x̃ − y|

)
dsy

= − 1
4π

∫
Γ

u(y)ny · curly

(
ei ×∇y

1
|x̃ − y|

)
dsy

= − 1
4π

∫
Γ

u(y)curlΓ,y

(
ei ×∇y

1
|x̃ − y|

)
dsy.

By using Lemma 6.16 we have

∂

∂x̃i
w(x̃) =

1
4π

∫
Γ

curlΓ,yu(y) ·
(

ei ×∇y
1

|x̃ − y|

)
dsy

= − 1
4π

∫
Γ

ei ·
(

curlΓ,yu(y) ×∇y
1

|x̃ − y|

)
dsy,

and hence we can write the gradient of the double layer potential as

∇x̃w(x̃) = − 1
4π

∫
Γ

(
curlΓ,yu(y) ×∇y

1
|x̃ − y|

)
dsy

=
1
4π

∫
Γ

(
curlΓ,yu(y) ×∇x̃

1
|x̃ − y|

)
dsy.

Multiplying this with the normal vector n(x) this gives

n(x) · ∇x̃w(x̃) =
1
4π

∫
Γ

(
curlΓ,yu(y) ×∇x̃

1
|x̃ − y|

)
· n(x) dsy

= − 1
4π

∫
Γ

curlΓ,yu(y) ·
(

n(x) ×∇x̃
1

|x̃ − y|

)
dsy

= − 1
4π

lim
ε→0

∫
y∈Γ :|y−x|≥ε

curlΓ,yu(y) ·
(

n(x) ×∇x̃
1

|x̃ − y|

)
dsy.
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Taking the limit Ω � x̃ → x ∈ Γ we find

(Du)(x) = − 1
4π

lim
ε→0

∫
y∈Γ :|y−x|≥ε

curlΓ,yu(y) ·
(

n(x) ×∇x
1

|x − y|

)
dsy

= − 1
4π

lim
ε→0

∫
y∈Γ :|y−x|≥ε

curlΓ,yu(y) · curlΓ,x

1
|x − y|dsy.

For the bilinear form of the hypersingular boundary integral operator we
therefore obtain

〈Du, v〉Γ = − 1
4π

∫
Γ

v(x) lim
ε→0

∫
y∈Γ :|y−x|≥ε

curlΓ,yu(y) · curlΓ,x

1
|x − y|dsydsx

= − 1
4π

∫
Γ

lim
ε→0

∫
x∈Γ :|x−y|≥ε

(
v(x)curlΓ,yu(y)

)
· curlΓ,x

1
|x − y|dsxdsy

=
1
4π

∫
Γ

lim
ε→0

∫
x∈Γ :|x−y|≥ε

curlΓ,x

(
v(x)curlΓ,yu(y)

) 1
|x − y|dsxdsy.

By using

curlΓ,x[v(x)curlΓ,yu(y)] = n(x) ·
[
∇x × [v(x)curlΓ,yu(y)]

]
= n(x) ·

[
∇xv(x) × curlΓ,yu(y)

]
= [n(x) ×∇xv(x)] · curlΓ,yu(y)

= curlΓ,xv(x) · curlΓ,yu(y)

we finally conclude the assertion. ��

6.6 Properties of Boundary Integral Operators

Before proving the ellipticity of the single layer potential V and of the hy-
persingular boundary integral operator D we will derive some basic relations
of boundary integral operators. For this we first consider the representation
formula (6.1) for x̃ ∈ Ω,

u(x̃) =
∫
Γ

U∗(x̃, y)γint
1 u(y)dsy −

∫
Γ

γint
1,y U∗(x̃, y)γint

0 u(y)dsy

+
∫
Ω

U∗(x̃, y)f(y)dy.

Taking the limit Ω � x̃ → x ∈ Γ we find from all properties of boundary and
volume potentials as already considered in this chapter a boundary integral
equation for x ∈ Γ,
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γint
0 u(x) = (V γint

1 u)(x)+[1−σ(x)]γint
0 u(x)−(Kγint

0 u)(x)+N0f(x). (6.20)

The application of the conormal derivative to the function u defined by the
representation formula yields a second boundary integral equation for x ∈ Γ ,

γint
1 u(x) = σ(x)γint

1 u(x) + (K ′γint
1 u)(x) + (Dγint

0 u)(x) + N1f(x). (6.21)

With (6.20) and (6.21) we have obtained a system of two boundary integral
equations which can be written for x ∈ Γ as(

γint
0 u

γint
1 u

)
=

(
(1 − σ)I − K V

D σI + K ′

)(
γint
0 u

γint
1 u

)
+

(
N0f

N1f

)
(6.22)

where

C =

(
(1 − σ)I − K V

D σI + K ′

)
(6.23)

is the Calderón projection.

Lemma 6.18. The operator C as defined in (6.23) is a projection, i.e., C = C2.

Proof. Let (ψ,ϕ) ∈ H−1/2(Γ )×H1/2(Γ ) be arbitrary but fixed. The function

u(x̃) := (Ṽ ψ)(x̃) − (Wϕ)(x̃) for x̃ ∈ Ω

is then a solution of the homogeneous partial differential equation. For the
trace and for the conormal derivative of u we find from the properties of the
boundary potentials for x ∈ Γ

γint
0 u(x) = (V ψ)(x) + (1 − σ(x))ϕ(x) − (Kϕ)(x),

γint
1 u(x) = σψ(x) + (K ′ψ)(x) + (Dϕ)(x).

The function u is therefore a solution of the homogeneous partial differential
equation whereas the associated Cauchy data are determined for x ∈ Γ by
[γint

0 u(x), γint
1 u(x)]. These Cauchy data are therefore solutions of the bound-

ary integral equations (6.20) and (6.21), i.e. for x ∈ Γ

(V γint
1 u)(x) = (σI + K)γint

0 u(x),

(Dγint
0 u)(x) = ((1 − σ)I − K ′)γint

1 u(x).

This is equivalent to(
γint
0 u(x)

γint
1 u(x)

)
=

(
(1 − σ)I − K V

D σI + K ′

)(
γint
0 u(x)

γint
1 u(x)

)
.

Inserting
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γint
0 u(x)

γint
1 u(x)

)
=

(
(1 − σ)I − K V

D σI + K ′

)(
ϕ(x)
ψ(x)

)
this gives the assertion. ��

From the projection property C = C2 we can immediately conclude the
following relations of boundary integral operators.

Corollary 6.19. For all boundary integral operators there hold the relations

V D = (σI + K)((1 − σ)I − K), (6.24)

DV = (σI + K ′)((1 − σ)I − K ′), (6.25)

V K ′ = KV, (6.26)

K ′D = DK. (6.27)

Note that (6.26) describes the symmetrization of the double layer potential
K, which is in general not self–adjoint, by the single layer potential V . This
property was already described by J. Plemelj in 1911 in the case of the two–
dimensional Laplace operator [112].

From the system (6.22) of boundary integral equations we may also find
a suitable representation of the Newton potential N1f when assuming the
invertibility of the single layer potential V , see also Subsection 6.6.1.

Lemma 6.20. For the volume potential (N1f)(x), x ∈ Γ , there holds the
representation

(N1f)(x) = ([σ − 1]I + K ′)V −1(N0f)(x) .

Proof. Using the first boundary integral equation in (6.22) and assuming the
invertibility of the single layer potential V we first obtain

γint
1 u(x) = V −1(σI + K)γint

0 u(x) − V −1(N0f)(x) for x ∈ Γ.

Inserting this into the second boundary integral equation of (6.22) we get

γint
1 u(x) = (Dγint

0 u)(x) + (σI + K ′)γint
1 u(x) + (N1f)(x)

= (Dγint
0 u)(x) + (σI + K ′)[V −1(σ(x) + K)γint

0 u(x) − V −1(N0f)(x)]
+(N1f)(x)

=
[
D + (σI + K ′)V −1(σI + K)

]
γint
0 u(x)

−(σI + K ′)V −1(N0f)(x) + (N1f)(x)

and therefore the equality

−V −1(N0f)(x) = −(σI + K ′)V −1(N0f)(x) + (N1f)(x) for x ∈ Γ.

From this we immediately find the assertion. ��
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6.6.1 Ellipticity of the Single Layer Potential

By using Theorem 3.4 (Lax–Milgram theorem) we can ensure the invertibility
of the single layer potential V : H−1/2(Γ ) → H1/2(Γ ). Hence we need to
prove the H−1/2(Γ )–ellipticity of V .

The function
u(x) = (Ṽ w)(x) for x ∈ Ω

is a solution of the interior Dirichlet boundary value problem

−∆u(x) = 0 for x ∈ Ω, u(x) = γint
0 (Ṽ w)(x) = (V w)(x) for x ∈ Γ.

Assuming w ∈ H−1/2(Γ ) we have u = Ṽ w ∈ H1(Ω) and by choosing
v ∈ H1(Ω) we obtain, by applying Green’s first formula (1.5),

aΩ(u, v) :=
∫
Ω

∇u(x)∇v(x) dx = 〈γint
1 u, γint

0 v〉Γ . (6.28)

Moreover, inequality (4.17) implies

cint
1 ‖γint

1 u‖2
H−1/2(Γ ) ≤ aΩ(u, u) . (6.29)

To obtain a corresponding result for the exterior conormal derivative
γext
1 u ∈ H−1/2(Γ ) we need to investigate the far field behavior of the single

layer potential (Ṽ w)(x) as |x| → ∞. For this we first introduce the subspace

H
−1/2
∗ (Γ ) :=

{
w ∈ H−1/2(Γ ) : 〈w, 1〉Γ = 0

}
(6.30)

of functions which are orthogonal to the constants.

Lemma 6.21. For y0 ∈ Ω and x ∈ R
d we assume

|x − y0| > max{1, 2 diam(Ω)}

to be satisfied. Let w ∈ H−1/2(Γ ) for d = 3 and w ∈ H
−1/2
∗ (Γ ) for d = 2,

respectively. For u = Ṽ w we then have the bounds

|u(x)| = |(Ṽ w)(x)| ≤ c1(w)
1

|x − y0|
(6.31)

and
|∇u(x)| = |∇(Ṽ w)(x)| ≤ c2(w)

1
|x − y0|2

. (6.32)

Proof. By using the triangle inequality we have for y ∈ Ω

|x − y0| ≤ |x − y| + |y − y0| ≤ |x − y| + diam(Ω) ≤ |x − y| + 1
2
|x − y0|
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and therefore
|x − y| ≥ 1

2
|x − y0| .

In the case d = 3 we find the estimate (6.31) from

|u(x)| =
∣∣∣〈γint

0 U∗(x, ·), w〉Γ
∣∣∣

≤ ‖γint
0 U∗(x, ·)‖H1/2(Γ )‖w‖H−1/2(Γ ) ≤ cT ||U∗(x, ·)||H1(Ω)||w||H−1/2(Γ )

and by using

||U∗(x, ·)||2H1(Ω) =
1

16π2

∫
Ω

1
|x − y|2 dy +

1
16π2

∫
Ω

1
|x − y|4 dy

≤ 1
4π2

∫
Ω

1
|x − y0|2

dy+
1
π2

∫
Ω

1
|x − y0|4

dy ≤ 5
4
|Ω|
π2

1
|x − y0|2

.

The estimate (6.32) follows correspondingly from

∂

∂xi
u(x) =

1
4π

∫
Γ

yi − xi

|x − y|3 w(y)dsy.

In the case d = 2 we consider the Taylor expansion

log |y − x| = log |y0 − x| +
(y − y0, ȳ − x)

|ȳ − x|2

with an appropriate ȳ ∈ Ω. Due to w ∈ H
−1/2
∗ (Γ ) we then obtain

u(x) = − 1
2π

∫
Γ

(y − y0, ȳ − x)
|ȳ − x|2 w(y)dsy,

and therefore the estimate (6.31) follows as in the three–dimensional case.
The estimate (6.32) follows in the same way. ��

For y0 ∈ Ω and R > 2 diam(Ω) we define

BR(y0) :=
{
x ∈ R

d : |x − y0| < R
}

.

Then, u(x) = (Ṽ w)(x) for x ∈ Ωc is the unique solution of the Dirichlet
boundary value problem

−∆u(x) = 0 for x ∈ BR(y0)\Ω,

u(x) = γext
0 (Ṽ w)(x) = (V w)(x) for x ∈ Γ,

u(x) = (Ṽ w)(x) for x ∈ ∂BR(y0).

Using Green’s first formula with respect to the bounded domain BR(y0)\Ω
this gives
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aBR(y0)\Ω(u, v) = −〈γext
1 u, γext

0 v〉Γ + 〈γint
1 u, γint

0 v〉∂BR(y0)

where we have used the opposite direction of the exterior normal vector along
Γ . Choosing v = u and using Lemma 6.21 we have∣∣∣ 〈γint

1 u, γint
0 u〉∂BR(y0)

∣∣∣ ≤ c1(w)c2(w)
∫

|x−y0|=R

1
|x − y0|3

dsx ≤ cRd−4.

Hence we can consider the limit R → ∞ to obtain Green’s first formula for
u = Ṽ w with respect to the exterior domain as

aΩc(u, u) :=
∫

Ωc

∇u(x)∇u(x)dx = −〈γext
1 u, γext

0 u〉Γ . (6.33)

Note that in the two–dimensional case the assumption w ∈ H
−1/2
∗ (Γ ) is es-

sential to ensure the above result. In analogy to the estimate (4.17) for the
solution of the interior Dirichlet boundary value problem we find

cext
1 ‖γext

1 u‖2
H−1/2(Γ ) ≤ aΩc(u, u). (6.34)

Theorem 6.22. Let w ∈ H−1/2(Γ ) for d = 3 and w ∈ H
−1/2
∗ (Γ ) for d = 2,

respectively. Then there holds

〈V w,w〉Γ ≥ cV
1 ‖w‖2

H−1/2(Γ )

with a positive constant cV
1 > 0.

Proof. For u = Ṽ w we can apply both the interior and exterior Green’s for-
mulae, i.e. (6.28) and (6.33) to obtain

aΩ(u, u) = 〈γint
1 u, γint

0 u〉Γ ,

aΩc(u, u) = −〈γext
1 u, γext

0 u〉Γ .

Taking the sum of the above equations we obtain from the jump relation (6.9)
of the single layer potential

aΩ(u, u) + aΩc(u, u) = 〈[γint
1 u − γext

1 u], γ0u〉Γ .

The jump relation (6.12) of the conormal derivate of the single layer potential
reads

γint
1 u(x) − γext

1 u(x) = w(x) for x ∈ Γ

and therefore we have

aΩ(u, u) + aΩc(u, u) = 〈V w,w〉Γ .

Using the inequalities (6.29) and (6.34) this gives
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〈V w,w〉Γ = aΩ(u, u) + aΩc(u, u)

≥ cint
1 ‖γint

1 u‖2
H−1/2(Γ ) + cext

1 ‖γext
1 u‖2

H−1/2(Γ )

≥ min{cint
1 , cext

1 }
[
‖γint

1 u‖2
H−1/2(Γ ) + ‖γext

1 u‖2
H−1/2(Γ )

]
.

On the other hand, the H−1/2(Γ ) norm of w can be estimated as

‖w‖2
H−1/2(Γ ) = ‖γint

1 u − γext
1 u‖2

H−1/2(Γ )

≤
[
‖γint

1 u‖H−1/2(Γ ) + ‖γext
1 u‖H−1/2(Γ )

]2
≤ 2

[
‖γint

1 u‖2
H−1/2(Γ ) + ‖γext

1 u‖2
H−1/2(Γ )

]
. ��

In the two–dimensional case we only have the H
−1/2
∗ (Γ ) ellipticity of the single

layer potential when using the previous theorem. To obtain a more general
result we first consider the following saddle point problem, d = 2, 3, to find
(t, λ) ∈ H−1/2(Γ ) × R such that

〈V t, τ〉Γ − λ〈1, τ〉Γ = 0 for all τ ∈ H−1/2(Γ ),
〈t, 1〉Γ = 1.

(6.35)

If we consider the ansatz t := t̃ + 1/|Γ | for an arbitrary t̃ ∈ H
−1/2
∗ (Γ ) the

second equation is always satisfied. Hence, to find t̃ ∈ H
−1/2
∗ (Γ ) the first

equation reads

〈V t̃, τ〉Γ = − 1
|Γ | 〈V 1, τ〉Γ for all τ ∈ H

−1/2
∗ (Γ ).

The unique solvability of the variational problem follows from the H
−1/2
∗ (Γ )–

ellipticity of the single layer potential V , see Theorem 6.22. The resulting
solution weq := t̃ + 1/|Γ | is denoted as the natural density. By choosing
τ = weq we can finally compute the Lagrange parameter

λ = 〈V weq, weq〉Γ .

In the three–dimensional case d = 3 it follows from Theorem 6.22 that λ > 0
is strictly positive. In this case the Lagrange parameter λ is called the capacity
of Γ . In the two–dimensional case d = 2 we define by

capΓ := e−2πλ

the logarithmic capacity. For a positive number r ∈ R+ we may define the
parameter dependent fundamental solution

U∗
r (x, y) :=

1
2π

log r − 1
2π

log |x − y|
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which induces an associated boundary integral operator

(Vrw)(x) :=
∫
Γ

U∗
r (x, y)w(y)dsy for x ∈ Γ

satisfying

(Vrweq)(x) =
1
2π

log r + λ =
1
2π

log
r

capΓ

.

In particular for r = 1 we obtain

λ :=
1
2π

log
1

capΓ

.

If the logarithmic capacity capΓ < 1 is strictly less than one, we conclude λ >
0. To ensure capΓ < 1 a sufficient criteria is to assume diam Ω < 1 [81, 157].
This assumption can be always guaranteed when considering a suitable scaling
of the domain Ω ⊂ R

2.

Theorem 6.23. For d = 2 let diam(Ω) < 1 and therefore λ > 0 be satisfied.
The single layer potential V is then H−1/2(Γ )–elliptic, i.e.,

〈V w,w〉Γ ≥ c̃V
1 ‖w‖2

H−1/2(Γ ) for all w ∈ H−1/2(Γ ).

Proof. For an arbitrary w ∈ H−1/2(Γ ) we consider the unique decomposition

w = w̃ + α weq, w̃ ∈ H
−1/2
∗ (Γ ), α = 〈w, 1〉Γ

satisfying

‖w‖2
H−1/2(Γ ) = ‖w̃ + αweq‖2

H−1/2(Γ )

≤
[
‖w̃‖H−1/2(Γ ) + α ‖weq‖H−1/2(Γ )

]2
≤ 2

[
‖w̃‖2

H−1/2(Γ ) + α2 ‖weq‖2
H−1/2(Γ )

]
≤ 2 max{1, ‖weq‖2

H−1/2(Γ )}
[
‖w̃‖2

H−1/2(Γ ) + α2
]
.

On the other hand we have by using 〈V weq, w̃〉Γ = 0

〈V w,w〉Γ = 〈V (w̃ + αweq), w̃ + αweq〉Γ
= 〈V w̃, w̃〉Γ + 2α 〈V weq, w̃〉Γ + α2 〈V weq, weq〉Γ
≥ cV

1 ‖w̃‖2
H−1/2(Γ ) + α2 λ

≥ min{cV
1 , λ}

[
‖w̃‖2

H−1/2(Γ ) + α2
]
,

and therefore the ellipticity estimate follows. ��
The natural density weq ∈ H−1/2(Γ ) is a solution of an operator equation

with a constraint,
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(V weq)(x) = λ for x ∈ Γ, 〈weq, 1〉Γ = 1.

By introducing the scaling
weq := λ w̃eq

we obtain
(V w̃eq)(x) = 1 for x ∈ Γ,

1
λ

= 〈w̃eq, 1〉Γ . (6.36)

Instead of the saddle point problem (6.35) we may solve the boundary integral
equation (6.36) to find the natural density weq and afterwards we can compute
the capacity λ by integrating the natural density w̃eq.

The boundary integral operator V : H−1/2(Γ ) → H1/2(Γ ) is due to (6.8)
bounded and H−1/2(Γ )–elliptic, see Theorem 6.22 for d = 3 and Theorem 6.23
for d = 2 where we assume diam(Ω) < 1. By the Lax–Milgram theorem (The-
orem 3.4) we therefore conclude the invertibility of the single layer potential
V , i.e. V −1 : H1/2(Γ ) → H−1/2(Γ ) is bounded satisfying (see (3.13))

‖V −1v‖H−1/2(Γ ) ≤ 1
cV
1

‖v‖H1/2(Γ ) for all v ∈ H1/2(Γ ).

For w ∈ H
−1/2
∗ (Γ ) we have

〈V w,weq〉Γ = 〈w, V weq〉Γ = λ〈w, 1〉Γ = 0

and therefore V w ∈ H
1/2
∗ (Γ ) where

H
1/2
∗ (Γ ) :=

{
v ∈ H1/2(Γ ) : 〈v, weq〉Γ = 0

}
.

Thus, V : H
−1/2
∗ (Γ ) → H

1/2
∗ (Γ ) is an isomorphism.

6.6.2 Ellipticity of the Hypersingular Boundary Integral Operator

Due to (6.17) we have (Du0)(x) = 0 with the eigensolution u0(x) ≡ 1 for
x ∈ Γ . Hence we can not ensure the ellipticity of the hypersingular bound-
ary integral operator D on H1/2(Γ ). Instead we have to consider a suitable
subspace.

Theorem 6.24. The hypersingular boundary integral operator D is H
1/2
∗ (Γ )–

elliptic, i.e.,

〈Dv, v〉Γ ≥ cD
1 ‖v‖2

H1/2(Γ ) for all v ∈ H
1/2
∗ (Γ ).

Proof. For v ∈ H
1/2
∗ (Γ ) we consider the double layer potential

u(x) := −(Wv)(x) for x ∈ Ω ∪ Ωc
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which is a solution of the homogeneous partial differential equation. The ap-
plication of the trace operators gives

γint
0 u(x) = (1 − σ(x))v(x) − (Kv)(x), γint

1 u(x) = (Dv)(x) for x ∈ Γ

and

γext
0 u(x) = −σ(x)v(x) − (Kv)(x), γext

1 u(x) = (Dv)(x) for x ∈ Γ.

The function u = −Wv is therefore the unique solution of the interior Dirichlet
boundary value problem

−∆u(x) = 0 for x ∈ Ω, γint
0 u(x) = (1 − σ(x))v(x) − (Kv)(x) for x ∈ Γ

and we have, by applying Green’s first formula (1.5),∫
Ω

∇u(x)∇w(x)dx = 〈γint
1 u, γint

0 w〉Γ

for all w ∈ H1(Ω).
For y0 ∈ Ω let BR(y0) be a ball of radius R > 2 diam(Ω) which circum-

scribes Ω, Ω ⊂ BR(y0). Then, u = −Wv is also the unique solution of the
Dirichlet boundary value problem

−∆u(x) = 0 for x ∈ BR(y0)\Ω,

γext
0 u(x) = −σ(x)v(x) − (Kv)(x) for x ∈ Γ = ∂Ω,

γ0u(x) = −(Wv)(x) for x ∈ ∂BR(y0)

and the corresponding Green’s first formula reads∫
BR(y0)\Ω

∇u(x)∇w(x)dx = −〈γext
1 u, γext

0 w〉Γ + 〈γ1u, γ0w〉∂BR(y0)

for all w ∈ H1(BR(y0)\Ω). For x �∈ Γ we have by definition

u(x) =
1

2(d − 1)π

∫
Γ

(y − x, ny)
|x − y|d v(y)dsy .

In particular for x ∈ ∂BR(y0) we then obtain the estimates

|u(x)| ≤ c1(v)R1−d, |∇u(x)| ≤ c2(v)R−d .

By choosing w = u = −Wv and taking the limit R → ∞ we finally obtain
Green’s first formula with respect to the exterior domain,∫

Ωc

|∇u(x)|2dx = −〈γext
1 u, γext

0 u〉Γ .
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By taking the sum of both Green’s formulae with respect to the interior and
to the exterior domain, and considering the jump relations of the boundary in-
tegral operators involved, we obtain for the bilinear form of the hypersingular
boundary integral operator

〈Dv, v〉Γ = 〈γint
1 u, [γint

0 u − γext
0 u]〉Γ = 〈γint

1 u, γint
0 u〉Γ − 〈γext

1 u, γext
0 u〉Γ

=
∫
Ω

|∇u(x)|2dx +
∫

Ωc

|∇u(x)|2dx = |u|2H1(Ω) + |u|2H1(Ωc) .

For the exterior domain Ωc we find from the far field behavior of the double
layer potential u(x) = −(Wv)(x) as |x| → ∞ the norm equivalence

c1 ‖u‖2
H1(Ωc) ≤ |u|2H1(Ωc) ≤ c2 ‖u‖2

H1(Ωc).

For v ∈ H
1/2
∗ (Γ ), for the natural density weq ∈ H−1/2(Γ ), V weq = 1, and by

using the symmetry relation (6.26) we further obtain

〈γint
0 u,weq〉Γ = 〈(1

2
I − K)v, weq〉Γ = 〈v, weq〉Γ − 〈(1

2
I + K)v, weq〉Γ

= −〈(1
2
I + K)v, V −11〉Γ = −〈V −1(

1
2
I + K)v, 1〉Γ

= −〈(1
2
I + K ′)V −1v, 1〉Γ = −〈V −1v, (

1
2
I + K)1〉Γ = 0

and therefore γint
0 u ∈ H

1/2
∗ (Γ ). By using the norm equivalence theorem of

Sobolev (Theorem 2.6) we find

‖u‖H1∗(Ω) :=
{

[〈γint
0 u,weq〉Γ ]2 + ‖∇u‖2

L2(Ω)

}1/2

to be an equivalent norm in H1(Ω). For v ∈ H
1/2
∗ (Γ ) we have γint

0 u ∈ H
1/2
∗ (Γ )

and therefore

|u|2H1(Ω) = [〈γint
0 u,weq〉Γ ]2 + ‖∇u‖2

L2(Ω) = ‖u‖2
H1∗(Ω) ≥ c ‖u‖2

H1(Ω) .

By using the trace theorem and the jump relation of the double layer potential
we obtain

〈Dv, v〉Γ ≥ c
{
‖u‖2

H1(Ω) + ‖u‖2
H1(Ωc)

}
≥ c̃

{
‖γint

0 u‖2
H1/2(Γ ) + ‖γext

0 u‖2
H1/2(Γ )

}
≥ 1

2
c̃ ‖γint

0 u − γext
0 u‖2

H1/2(Γ ) = cD
1 ‖v‖2

H1/2(Γ )

for all v ∈ H
1/2
∗ (Γ ) and therefore the H

1/2
∗ (Γ )–ellipticity of the hypersingular

boundary integral operator D. ��
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To prove the ellipticity of the hypersingular boundary integral operator
D we have to restrict the functions to a suitable subspace, i.e. orthogonal to
the constants. When considering the orthogonality with respect to different
inner products this gives the ellipticity of the hypersingular boundary integral
operator D with respect to different subspaces.

As in the norm equivalence theorem of Sobolev (cf. Theorem 2.6) we define

‖v‖
H

1/2
∗ (Γ )

:=
{[

〈v, weq〉Γ
]2 + |v|2H1/2(Γ )

}1/2

to be an equivalent norm in H1/2(Γ ). Here, weq ∈ H−1/2(Γ ) is the natural
density as defined in (6.36).

Corollary 6.25. The hypersingular boundary integral operator D is H1/2(Γ )–
semi–elliptic, i.e.

〈Dv, v〉Γ ≥ c̄D
1 |v|2H1/2(Γ ) for all v ∈ H1/2(Γ ). (6.37)

The definition of H
1/2
∗ (Γ ) involves the natural density weq ∈ H−1/2(Γ ) as

the unique solution of the boundary integral equation (6.36). From a practi-
cal point of view, this seems not to be very convenient for a computational
realization. Hence we may use a subspace which is induced by a much simpler
inner product. For this we define

H
1/2
∗∗ (Γ ) :=

{
v ∈ H1/2(Γ ) : 〈v, 1〉Γ = 0

}
.

From (6.37) we then have for v ∈ H
1/2
∗∗ (Γ )

〈Dv, v〉Γ ≥ c̄D
1 |v|2H1/2(Γ )

= c̄D
1

{
|v|2H1/2(Γ ) + [〈v, 1〉Γ ]2

}
≥ c̃D

1 ‖v‖2
H1/2(Γ ) (6.38)

the H
1/2
∗∗ (Γ )–ellipticity of D where we again used the norm equivalence the-

orem of Sobolev (cf. Theorem 2.6).
We finally consider an open surface Γ0 ⊂ Γ . For a given v ∈ H̃1/2(Γ0) let

ṽ ∈ H1/2(Γ ) denote the extension defined by

ṽ(x) =

{
v(x) for x ∈ Γ0,

0 elsewhere.

As in the norm equivalence theorem of Sobolev (cf. Theorem 2.6) we define

‖w‖H1/2(Γ ),Γ0
:=
{
‖w‖2

L2(Γ\Γ0)
+ |w|2H1/2(Γ )

}1/2

to be an equivalent norm in H1/2(Γ ). Hence we have for v ∈ H̃1/2(Γ0)
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〈Dv, v〉Γ0 = 〈Dṽ, ṽ〉Γ ≥ c̄D
1 |ṽ|2H1/2(Γ ) = c̄D

1

[
‖ṽ‖2

L2(Γ\Γ0)
+ |ṽ|2H1/2(Γ )

]
= c̄D

1 ‖ṽ‖2
H1/2(Γ ),Γ0

≥ ĉD
1 ‖ṽ‖2

H1/2(Γ ) = ĉD
1 ‖v‖2

H̃1/2(Γ0)
(6.39)

and therefore the H̃1/2(Γ0)–ellipticity of the hypersingular boundary integral
operator D.

6.6.3 Steklov–Poincaré Operator

When considering the solution of boundary value problems the interaction of
the Cauchy data γint

0 u and γint
1 u plays an important role. Let us consider

the system (6.22) of boundary integral equations for a homogeneous partial
differential equation, i.e., f ≡ 0:(

γint
0 u

γint
1 u

)
=

(
(1 − σ)I − K V

D σI + K ′

)(
γint
0 u

γint
1 u

)
.

Since the single layer potential V is invertible, we get from the first boundary
integral equation a representation for the Dirichlet to Neumann map,

γint
1 u(x) = V −1(σI + K)γint

0 u(x) for x ∈ Γ. (6.40)

The operator

S := V −1(σI + K) : H1/2(Γ ) → H−1/2(Γ ) (6.41)

is bounded, and S is called Steklov–Poincaré operator. Inserting (6.40) into
the second equation of the Calderón projection this gives

γint
1 u(x) = (Dγint

0 u)(x) + (σI + K ′)γint
1 u(x)

=
[
D + (σI + K ′)V −1(σI + K)

]
γint
0 u(x) for x ∈ Γ. (6.42)

Hence we have obtained a symmetric representation of the Steklov–Poincaré
operator which is equivalent to (6.41),

S := D + (σI + K ′)V −1(σI + K) : H1/2(Γ ) → H−1/2(Γ ). (6.43)

With (6.40) and (6.42) we have described the Dirichlet to Neumann map

γint
1 u(x) = (Sγint

0 )u(x) for x ∈ Γ (6.44)

which maps some given Dirichlet datum γint
0 u ∈ H1/2(Γ ) to the corresponding

Neumann datum γint
1 u ∈ H−1/2(Γ ) of the harmonic function u ∈ H1(Ω)

satisfying Lu = 0.
By using the H1/2(Γ )–ellipticity of the inverse single layer potential V −1

we obtain
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〈Sv, v〉Γ = 〈Dv, v〉Γ + 〈V −1(σI + K)v, (σI + K)v〉Γ ≥ 〈Dv, v〉Γ (6.45)

for all v ∈ H1/2(Γ ). Therefore, the Steklov–Poincaré operator S admits the
same ellipticity estimates as the hypersingular boundary integral operator D.
In particular we have

〈Sv, v〉Γ ≥ cD
1 ‖v‖2

H1/2(Γ ) for all v ∈ H
1/2
∗ (Γ ) (6.46)

as well as
〈Sv, v〉Γ ≥ c̃D

1 ‖v‖2
H1/2(Γ ) for all v ∈ H

1/2
∗∗ (Γ ) (6.47)

while for Γ0 ⊂ Γ we get

〈Sv, v〉Γ0 ≥ ĉ1 ‖v‖2
H̃1/2(Γ0)

for all v ∈ H̃1/2(Γ0). (6.48)

6.6.4 Contraction Estimates of the Double Layer Potential

It is possible to transfer the ellipticity estimates of the single layer potential
V and of the hypersingular boundary integral operator D to the double layer
potential σI + K : H1/2(Γ ) → H1/2(Γ ), see [145]. Since the single layer
potential V : H−1/2(Γ ) → H1/2(Γ ) is bounded and H−1/2(Γ )–elliptic, we
may define

‖u‖V −1 :=
√

〈V −1u, u〉Γ for all u ∈ H1/2(Γ )

to be an equivalent norm in H1/2(Γ ).

Theorem 6.26. For u ∈ H
1/2
∗ (Γ ) we have

(1 − cK) ‖u‖V −1 ≤ ‖(σI + K)u‖V −1 ≤ cK ‖u‖V −1 (6.49)

with

cK =
1
2

+

√
1
4
− cV

1 cD
1 < 1 (6.50)

where cV
1 and cD

1 are the ellipticity constants of the single layer potential V
and of the hypersingular boundary integral operator D, respectively.

Proof. Using the symmetric representation (6.43) of the Steklov–Poincaré op-
erator S we have

‖(σI + K)u‖2
V −1 = 〈V −1(σI + K)u, (σI + K)u〉Γ

= 〈Su, u〉Γ − 〈Du, u〉Γ .

Let J : H−1/2(Γ ) → H1/2(Γ ) be the Riesz map which is defined via

〈Jw, v〉H1/2(Γ ) = 〈w, v〉Γ for all v ∈ H1/2(Γ ).
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Then, A := JV −1 : H1/2(Γ ) → H1/2(Γ ) is self–adjoint and H1/2(Γ )–elliptic.
Using the first representation (6.41) of the Steklov–Poincaré operator S and
considering the splitting A = A1/2A1/2 we conclude the inequality

〈Su, u〉Γ = 〈V −1(σI + K)u, u〉Γ
= 〈JV −1(σI + K)u, u〉H1/2(Γ )

= 〈A1/2(σI + K)u,A1/2u〉H1/2(Γ )

≤ ‖A1/2(σI + K)u‖H1/2(Γ )‖A1/2u‖H1/2(Γ )

and with

‖A1/2v‖2
H1/2(Γ ) = 〈A1/2v,A1/2v〉H1/2(Γ )

= 〈JV −1v, v〉H1/2(Γ )

= 〈V −1v, v〉Γ
= ‖v‖2

V −1

it follows that
〈Su, u〉Γ ≤ ‖(σI + K)u‖V −1‖u‖V −1 .

Since the hypersingular integral operator D is elliptic for u ∈ H
1/2
∗ (Γ ) we

find from the mapping properties of the inverse single layer potential V −1 the
lower estimate

〈Du, u〉Γ ≥ cD
1 ‖u‖2

H1/2(Γ ) ≥ cD
1 cV

1 〈V −1u, u〉Γ = cD
1 cV

1 ‖u‖2
V −1 .

Hence we have obtained

‖(σI + K)u‖2
V −1 = 〈Su, u〉Γ − 〈Du, u〉Γ

≤ ‖(σI + K)u‖V −1‖u‖V −1 − cV
1 cD

1 ‖u‖2
V −1 .

Denoting
a := ‖(σI + K)u‖V −1 ≥ 0, b := ‖u‖V −1 > 0

we conclude (a

b

)2

− a

b
+ cV

1 cD
1 ≤ 0

which is equivalent to

1
2
−
√

1
4
− cV

1 cD
1 ≤ a

b
≤ 1

2
+

√
1
4
− cV

1 cD
1

and therefore to the assertion. ��
The contraction property of σI + K, in particular the upper estimate in

(6.49), can be extended to hold in H1/2(Γ ).
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Corollary 6.27. For u ∈ H1/2(Γ ) there holds

‖(σI + K)u‖V −1 ≤ cK ‖u‖V −1 (6.51)

where the contraction rate cK < 1 is given as in (6.50).

Proof. For an arbitrary u ∈ H1/2(Γ ) we can write

u = ũ +
〈u,weq〉Γ
〈1, weq〉Γ

u0

where ũ ∈ H
1/2
∗ (Γ ) and u0 ≡ 1. Due to (σI + K)u0 = 0 we have by using

Theorem 6.26

‖(σI + K)u‖V −1 = ‖(σI + K)ũ‖V −1 ≤ cK ‖ũ‖V −1 .

On the other hand,

‖u‖2
V −1 = ‖ũ‖2

V −1 +
[〈u,weq〉Γ ]2

〈1, weq〉Γ
≥ ‖ũ‖2

V −1

which implies the contraction estimate (6.51). ��
Note that a similar result as in Theorem 6.26 can be shown for the shifted

operator(1 − σ)I − K.

Corollary 6.28. For v ∈ H
1/2
∗ (Γ ) there holds

(1 − cK) ‖v‖V −1 ≤ ‖([1 − σ]I − K)v‖V −1 ≤ cK ‖v‖V −1 (6.52)

where the contraction rate cK < 1 is given as in (6.50).

Proof. By using both the triangle inequality and the contraction estimate of
σI + K we obtain with

‖v‖V −1 = ‖([1 − σ]I − K)v + (σI + K)v‖V −1

≤ ‖([1 − σ]I − K)v‖V −1 + ‖(σI + K)v‖V −1

≤ ‖([1 − σ]I − K)v‖V −1 + cK ‖v‖V −1

the lower estimate in (6.52). Moreover, using both representations (6.41) and
(6.43) of the Steklov–Poincaré operator S, we conclude

‖((1 − σ)I − K)v‖2
V −1 = ‖[I − (σI + K)]v‖2

V −1

= ‖v‖2
V −1 + ‖(σI + K)v‖2

V −1 − 2〈V −1(σI + K)v, v〉Γ
= ‖v‖2

V −1 + ‖(σI + K)v‖2
V −1 − 2〈Sv, v〉Γ

= ‖v‖2
V −1 − ‖(σI + K)v‖2

V −1 − 2〈Dv, v〉Γ
≤
[
1 − (1 − cK)2 − 2cV

1 cD
1

]
‖v‖2

V −1 = c2
K ‖v‖2

V −1 .
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This gives the upper estimate in (6.52). ��
Let H

−1/2
∗ (Γ ) be the subspace as defined in (6.30). Due to V : H

−1/2
∗ (Γ ) →

H
1/2
∗ (Γ ) we can transfer the estimates (6.49) of the double layer potential

σI + K : H1/2(Γ ) → H1/2(Γ ) immediately to the adjoint double layer poten-
tial σI + K ′ : H−1/2(Γ ) → H−1/2(Γ ).

Corollary 6.29. For the adjoint double layer potential and for w ∈ H
−1/2
∗ (Γ )

there holds

(1 − cK) ‖w‖V ≤ ‖(σI + K ′)w‖V ≤ cK ‖w‖V (6.53)

where the contraction rate cK < 1 is given as in (6.50) and ‖ · ‖V is the norm
which is induced by the single layer potential V .

Proof. For w ∈ H
−1/2
∗ (Γ ) there exists a uniquely determined v ∈ H

1/2
∗ (Γ )

satisfying v = V w or w = V −1v. Using the symmetry property (6.26) we first
have

‖(σI + K ′)w‖2
V = 〈V (σI + K ′)V −1v, (σI + K ′)V −1v〉Γ

= 〈V −1(σI + K)v, (σI + K)v〉Γ = ‖(σI + K)v‖2
V −1 ,

as well as
‖w‖2

V = 〈V w,w〉Γ = 〈V −1v, v〉Γ = ‖v‖2
V −1 .

Therefore, (6.53) is equivalent to (6.49). ��
As in Corollary 6.27 we can extend the contraction property of σI + K ′

to H−1/2(Γ ).

Corollary 6.30. For w ∈ H−1/2(Γ ) there holds the contraction estimate

‖(σI + K ′)w‖V ≤ cK ‖w‖V . (6.54)

To prove related properties of the shifted adjoint double layer potential
(1 − σ)I − K ′ again we need to bear in mind the correct subspaces.

Corollary 6.31. For w ∈ H
−1/2
∗ (Γ ) we have

(1 − cK) ‖w‖V ≤ ‖((1 − σ)I − K ′)w‖V ≤ cK ‖w‖V (6.55)

where the contraction rate cK < 1 is given as in (6.50).

6.6.5 Mapping Properties

All mapping properties of boundary integral operators considered up to now
are based on the mapping properties of the Newton potential Ñ0 : H̃−1(Ω) →
H1(Ω), and on the application of trace theorems and on duality arguments.
But even for Lipschitz domains more general results hold.
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Theorem 6.32. The Newton potential Ñ0 : H̃s(Ω) → Hs+2(Ω) is a continu-
ous map for all s ∈ [−2, 0], i.e.

‖Ñ0f‖Hs+2(Ω) ≤ c ‖f‖
H̃s(Ω)

for all f ∈ H̃s(Ω).

Proof. Let s ∈ (−1, 0] and consider f̃ to be the extension of f ∈ Hs(Ω) as
defined in (6.2). Then,

‖f̃‖Hs(Rd) = sup
0 �=v∈H−s(Rd)

〈f̃ , v〉Rd

‖v‖H−s(Rd)

≤ sup
0 �=v∈H−s(Ω)

〈f, v〉Ω
‖v‖H−s(Ω)

= ‖f‖Hs(Ω),

and the assertion follows as in the proof of Theorem 6.1, i.e.

‖Ñ0f‖Hs+2(Ω) ≤ c ‖f‖
H̃s(Ω)

for all f ∈ H̃s(Ω).

Since the Newton potential Ñ0 is self–adjoint, for s ∈ [−2,−1) we obtain by
duality

‖Ñ0f‖Hs+2(Ω) = sup
0 �=g∈H̃−2−s(Ω)

〈Ñ0f, g〉Ω
‖g‖

H̃−2−s(Ω)

= sup
0 �=g∈H̃−2−s(Ω)

〈f, Ñ0g〉Ω
‖g‖

H̃−2−s(Ω)

≤ ‖f‖
H̃s(Ω)

sup
0 �=g∈H̃−2−s(Ω)

‖Ñ0g‖H−s(Ω)

‖g‖
H̃−2−s(Ω)

≤ c ‖f‖
H̃s(Ω)

. ��

By the application of Theorem 6.32 we can deduce corresponding mapping
properties for the single layer potential Ṽ as defined in (6.7) and for the
boundary integral operator V := γint

0 Ṽ by considering the trace of Ṽ .

Theorem 6.33. The single layer potential V : H− 1
2+s(Γ ) → H

1
2+s(Γ ) is

bounded for |s| < 1
2 , i.e.,

‖V w‖H1/2+s(Γ ) ≤ c ‖w‖H−1/2+s(Γ )

for all w ∈ H−1/2+s(Γ ).

Proof. For ϕ ∈ C∞(Ω) we first consider

〈Ṽ w, ϕ〉Ω =
∫
Ω

ϕ(x)
∫
Γ

U∗(x, y)w(y)dsydx =
∫
Γ

w(y)
∫
Ω

U∗(x, y)ϕ(x)dxdsy

= 〈w, γint
0 Ñ0ϕ〉Γ ≤ ‖w‖H−1/2+s(Γ )‖γint

0 Ñ0ϕ‖H1/2−s(Γ )

≤ cT ‖w‖H−1/2+s(Γ )‖Ñ0ϕ‖H1−s(Ω)

where the application of the trace theorem requires 1
2 − s > 0, see Theorem

2.21. With Theorem 6.32 we then obtain
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〈Ṽ w, ϕ〉Ω ≤ c ‖w‖H−1/2+s(Γ )‖ϕ‖H̃−1−s(Ω)
for all ϕ ∈ C∞(Ω).

By using a density argument we conclude Ṽ w ∈ H1+s(Ω). Taking the trace
this gives V w := γint

0 Ṽ w ∈ H1/2+s(Γ ) when assuming 1
2 + s > 0. ��

In the case of a Lipschitz domain Ω we can prove as in Theorem 6.33
corresponding mapping properties for all boundary integral operators.

Theorem 6.34. [44] Let Γ := ∂Ω be the boundary of a Lipschitz domain Ω.
Then, the boundary integral operators

V : H−1/2+s(Γ ) → H1/2+s(Γ ),

K : H1/2+s(Γ ) → H1/2+s(Γ ),

K ′ : H−1/2+s(Γ ) → H−1/2+s(Γ ),

D : H1/2+s(Γ ) → H−1/2+s(Γ )

are bounded for all s ∈ [− 1
2 , 1

2 ].

Proof. For the single layer potential V and for |s| < 1
2 the assertion was

already shown in Theorem 6.33. This remains true for |s| = 1
2 [152], see also

the discussion in [103].
For all other boundary integral operators the assertion follows from the

mapping properties of the conormal derivative operator.
First we consider the adjoint double layer potential K ′. Recall that the sin-
gle layer potential u(x) = (Ṽ w)(x), x ∈ Ω, is a solution of the homoge-
neous partial differential equation with Dirichlet data γint

0 u(x) = (V w)(x) for
x ∈ Γ . By using Theorem 4.6 and the continuity of the single layer potential
V : L2(Γ ) → H1(Γ ) we obtain

‖γint
1 u‖L2(Γ ) ≤ c ‖V w‖H1(Γ ) ≤ c̃ ‖w‖L2(Γ )

and therefore the continuity of γint
1 Ṽ = σI + K ′ : L2(Γ ) → L2(Γ ). On the

other hand we have by duality

‖γint
1 u‖H−1(Γ ) = sup

0 �=ϕ∈H1(Γ )

〈γint
1 u, ϕ〉Γ

‖ϕ‖H1(Γ )
.

For an arbitrary ϕ ∈ H1(Γ ) let v ∈ H3/2(Ω) be the unique solution of the
Dirichlet boundary value problem Lv(x) = 0 for x ∈ Ω and γint

0 v(x) = ϕ(x)
for x ∈ Γ . By using Theorem 4.6 this gives

‖γint
1 v‖L2(Γ ) ≤ c ‖γint

0 v‖H1(Γ ) = c ‖ϕ‖H1(Γ ).

Since both u = Ṽ w and v are solutions of a homogeneous partial differential
equation, we obtain by applying Green’s first formula (1.5) twice and taking
into account the symmetry of the bilinear form
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〈γint
1 u, ϕ〉Γ = a(u, v) = a(v, u) = 〈γint

1 v, γint
0 u〉Γ

≤ ‖γint
1 v‖L2(Γ )‖γint

0 u‖L2(Γ ) ≤ c ‖ϕ‖H1(Γ )‖V w‖L2(Γ ).

From the continuity of the single layer potential V : H−1(Γ ) → L2(Γ ) we
now conclude

‖γint
1 u‖H−1(Γ ) ≤ c ‖V w‖L2(Γ ) ≤ c̃ ‖w‖H−1(Γ )

and therefore the continuity of γint
1 Ṽ = σI +K ′ : H−1(Γ ) → H−1(Γ ). Using

an interpolation argument we obtain K ′ : H−1/2+s(Γ ) → H−1/2+s(Γ ) for all
|s| ≤ 1

2 . Due to

‖Kv‖H1/2+s(Γ ) = sup
0 �=w∈H−1/2−s(Γ )

〈Kv,w〉Γ
‖w‖H−1/2−s(Γ )

= sup
0 �=w∈H−1/2−s(Γ )

〈v,K ′w〉Γ
‖w‖H−1/2−s(Γ )

= ‖v‖H1/2+s(Γ ) sup
0 �=w∈H−1/2−s(Γ )

‖K ′w‖H−1/2−s(Γ )

‖w‖H−1/2−s(Γ )

≤ c ‖v‖H1/2+s(Γ )

we immediately conclude K : H1/2+s(Γ ) → H1/2+s(Γ ) for |s| ≤ 1
2 .

It remains to prove the assertion for the hypersingular boundary integral
operator D. The double layer potential u(x) = (Wv)(x), x ∈ Ω, yields, by the
application of Theorem 4.6,

‖Dv‖L2(Γ ) = ‖γint
1 u‖L2(Γ ) ≤ c ‖γint

0 u‖H1(Γ ) = c ‖([σ − 1]I + K)v‖H1(Γ )

and therefore D : H1(Γ ) → L2(Γ ). Again, using duality and interpolation
arguments completes the proof. ��

If the boundary Γ = ∂Ω of the bounded domain Ω ⊂ R
d is piecewise

smooth, Theorem 6.34 remains true for larger values of |s|. For example, if
Ω ⊂ R

2 is polygonal bounded with J corner points and associated interior
angles αj we may define

σ0 := min
j=1,...,J

{
min

[
π

αj
,

π

2π − αj

]}
.

Then, Theorem 6.34 holds for all |s| < σ0 [45]. If the boundary Γ is C∞, then
Theorem 6.34 remains true for all s ∈ R.

6.7 Linear Elasticity

All mapping properties of boundary integral operators as shown above for the
model problem of the Laplace equation can be transfered to general second
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order partial differential equations, when a fundamental solution is known. In
what follows we will consider the system of linear elastostatics which reads
for d = 2, 3 and x ∈ Ω ⊂ R

d as

− E

2(1 + ν)
∆u(x) − E

2(1 + ν)(1 − 2ν)
grad divu(x) = f(x). (6.56)

The associated fundamental solution is the Kelvin tensor (5.9)

U∗
ij(x, y) =

1
4(d − 1)π

1
E

1 + ν

1 − ν

[
(3 − 4ν)E(x, y)δij +

(xi − yi)(xj − yj)
|x − y|d

]
for i, j = 1, . . . , d where

E(x, y) =

⎧⎪⎨⎪⎩
− log |x − y| for d = 2,

1
|x − y| for d = 3.

For the components ui of the solution there holds the representation formula
(5.10) (Somigliana identity), x̃ ∈ Ω, i = 1, . . . , d,

ui(x̃) =
∫
Γ

d∑
j=1

U∗
ij(x̃, y)tj(y)dsy −

∫
Γ

d∑
j=1

T ∗
ij(x̃, y)uj(y)dsy

+
∫
Ω

d∑
j=1

U∗
ij(x̃, y)fj(y)dy. (6.57)

As in (6.4) we define the Newton potential

(Ñ0f)i(x̃) =
∫
Ω

d∑
j=1

U∗
ij(x̃, y)fj(y)dy for x̃ ∈ Ω, i = 1, . . . , d

which is a generalized solution of (6.56). Moreover, as in Theorem 6.1,

‖Ñ0f‖[H1(Ω)]d ≤ c ‖f‖
[H̃−1(Ω)]d

.

By taking the interior traces of ui,

(N0f)i(x) := γint
0 (Ñ0f)i(x) = lim

Ω�x̃→x∈Γ
(Ñ0f)i(x̃) for i = 1, . . . , d,

this defines a linear and bounded operator

N0 := γint
0 Ñ0 : [H̃−1(Ω)]d → [H1/2(Γ )]d.

In addition, by applying the boundary stress operator (1.23),
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(γint
1 Ñ0f)i(x) = lim

Ω�x̃→x∈Γ

d∑
j=1

σij(Ñ0f, x̃)nj(x) for i = 1, . . . , d,

we introduce a second linear and bounded operator

N1 := γint
1 Ñ0 : [H̃−1(Ω)]d → [H−1/2(Γ )]d.

For x̃ ∈ Ω ∪ Ωc the single layer potential

(Ṽ w)i(x̃) =
∫
Γ

d∑
j=1

U∗
ij(x̃, y)wj(y)dsy for i = 1, . . . , d

is a solution of the homogeneous system of linear elasticity (6.56) with f = 0.
Hence we have

Ṽ : [H1/2(Γ )]d → [H1(Ω)]d.

When considering the interior and exterior traces of Ṽ this defines a bounded
linear operator

V := γint
0 Ṽ = γext

0 Ṽ : [H−1/2(Γ )]d → [H1/2(Γ )]d

with a representation as a weakly singular surface integral,

(V w)i(x) =
∫
Γ

d∑
j=1

U∗
ij(x, y)wj(y)dsy for x ∈ Γ, i = 1, . . . , d. (6.58)

If w ∈ [H−1/2(Γ )]d is given, the single layer potential Ṽ w ∈ [H1(Ω)]d is a
solution of the homogeneous system (6.56) of linear elastostatics. Then the
application of the interior boundary stress operator (1.23),

(γint
1 Ṽ w)i(x) = lim

Ω�x̃→x∈Γ

d∑
j=1

σij(Ṽ w, x̃)nj(x) for i = 1, . . . , d,

defines a bounded linear operator

γint
1 Ṽ : [H−1/2(Γ )]d → [H−1/2(Γ )]d

with the representation

(γint
1 Ṽ w)i(x) =

1
2
wi(x) + (K ′w)i(x) for almost all x ∈ Γ, i = 1, . . . , d,

where

(K ′w)k(x) = lim
ε→0

∫
y∈Γ :|y−x|≥ε

d∑
j=1

d∑
	=1

σk	(U∗
j (x, y), x)n	(x)wj(y)dsy
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is the adjoint double layer potential, k = 1, . . . , d. For simplicity we may
assume that x ∈ Γ is on a smooth part of the surface, in particular we do
not consider the case when x ∈ Γ is either a corner point or on an edge.
Correspondingly, the application of the exterior boundary stress operator gives

(γext
1 Ṽ w)i(x) = −1

2
wi(x) + (K ′w)i(x) for almost all x ∈ Γ, i = 1, . . . , d.

Hence we obtain the jump relation for the boundary stress of the single layer
potential as

[γ1Ṽ w] := (γext
1 Ṽ w)(x) − (γint

1 Ṽ w)(x) = −w(x) for x ∈ Γ

in the sense of [H−1/2(Γ )]d.
As for the Laplace operator the far field behavior of the single layer poten-

tial Ṽ is essential when investigating the ellipticity of the single layer potential
V . The approach as considered for the Laplace equation can be applied as well
for the system of linear elastostatics. Note that the related subspace is now
induced by the rigid body motions (translations). Hence, for d = 2, we define

[H−1/2
+ (Γ )]2 :=

{
w ∈ [H−1/2(Γ )]2 : 〈wi, 1〉Γ = 0 for i = 1, 2

}
.

Lemma 6.35. For y0 ∈ Ω and x ∈ R
3 let |x − y0| > 2 diam(Ω) be satisfied.

Assume w ∈ [H−1/2(Γ )]3 for d = 3 and w ∈ [H−1/2
+ (Γ )]2 for d = 2. For

u(x) = (Ṽ w)(x) we then have

|ui(x)| ≤ c
1

|x − y0|
, i = 1, . . . , d.

Proof. Let d = 3. Due to

|ui(x)| =
1
4π

1
E

1 + ν

1 − ν

∣∣∣∣∣∣
∫
Γ

[
(3 − 4ν)

δij

|x − y| +
(xi − yi)(xj − yj)

|x − y|3
]

wj(y)dsy

∣∣∣∣∣∣
≤ 1

4π

1
E

1 + ν

1 − ν

∫
Γ

[
(3 − 4ν)

δij

|x − y| +
1

|x − y|

]
|wj(y)|dsy

we obtain the assertion as in the proof of Lemma 6.21. For d = 2 we consider
the Taylor expansion of the fundamental solution to conclude the result as in
the proof of Lemma 6.21. ��

As for the single layer potential of the Laplace operator (Theorem 6.22)
we now can prove the following ellipticity result.

Theorem 6.36. Assume w ∈ [H−1/2(Γ )]d for d = 3 and w ∈ [H−1/2
+ (Γ )]d

for d = 2. Then we have

〈V w,w〉Γ ≥ cV
1 ‖w‖2

[H−1/2(Γ )]d

with a positive constant cV
1 .
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Proof. The ellipticity estimate follows as is the proof of Theorem 6.22 by using
Lemma 4.19. ��

To prove the [H−1/2(Γ )]2–ellipticity of the two–dimensional single layer
potential V we first introduce the generalized fundamental solution

Uα
ij(x, y) =

1
4π

1
E

1 + ν

1 − ν

[
(4ν − 3) log(α|x − y|)δij +

(xi − yi)(xj − yj)
|x − y|2

]
for i, j = 1, 2 which depends on a real parameter α ∈ R+, and we consider the
corresponding single layer potential Vα : [H−1/2(Γ )]2 → [H−1/2(Γ )]2. Note
that this approach corresponds to some scaling of the computational domain
Ω ⊂ R

2 and its boundary Γ , respectively.
For w ∈ [H−1/2

+ (Γ )]2 we have by using Theorem 6.36 the ellipticity esti-
mate

〈Vαw,w〉Γ = 〈V w,w〉Γ ≥ cV
1 ‖w‖2

[H−1/2(Γ )]2 .

The further approach now corresponds to the case of the scalar single layer
potential of the Laplace operator [142] to find (w1, λ1) ∈ [H−1/2(Γ )]2 ×R

2 as
the solution of the saddle point problem

〈Vαw1, τ〉Γ − λ1
1〈1, τ1〉Γ − λ1

2〈1, τ2〉Γ = 0
〈w1

1, 1〉Γ = 1
〈w1

2, 1〉Γ = 0

to be satisfied for all τ ∈ [H−1/2(Γ )]2. By introducing w1
1 := w̃1

1 + 1/|Γ | and
w1

2 := w̃1
2 it remains to find w̃1 ∈ [H−1/2

+ (Γ )]2 as the unique solution of the
variational problem

〈Vαw̃1, τ〉Γ = − 1
|Γ | 〈Vα(1, 0)�, τ〉Γ for all τ ∈ [H−1/2

+ (Γ )]2.

When w̃1 ∈ [H−1/2
+ (Γ )]2 and therefore w1 ∈ [H−1/2(Γ )]2 is known we can

compute
λ1

1 = 〈Vαw1, w1〉Γ .

In the same way we find (w2, λ2) ∈ [H−1/2(Γ )]2 × R
2 as the solution of the

saddle point problem

〈Vαw2, τ〉Γ − λ2
1〈1, τ1〉Γ − λ2

2〈1, τ2〉Γ = 0
〈w2

1, 1〉Γ = 0
〈w2

2, 1〉Γ = 1

to be satisfied for all τ ∈ [H−1/2(Γ )]2. Moreover, we obtain

λ2
2 = 〈Vαw2, w2〉Γ ,

as well as
λ1

2 = λ2
1 = 〈Vαw1, w2〉Γ .
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Lemma 6.37. For the Lagrange multiplier λ1
i (i = 1, 2) we have the repre-

sentation
λi

i = 〈V wi, wi〉Γ +
1
4π

1
E

1 + ν

1 − ν
(4ν − 3) log α,

while the Lagrange multiplier λ1
2 = λ2

1 is independent of α ∈ R+,

λ1
2 = λ2

1 = 〈V w1, w2〉Γ .

Proof. For i = 1, a direct computation gives, by splitting the fundamental
solution log(α|x − y|),

λ1
1 = 〈Vαw1, w1〉Γ

=
1
4π

1
E

1 + ν

1 − ν

∫
Γ

∫
Γ

2∑
i=1

(4ν − 3) log(α|x − y|)w1
i (y)w1

i (x)dsxdsy

+
1
4π

1
E

1 + ν

1 − ν

∫
Γ

∫
Γ

2∑
i,j=1

(xi − yi)(xj − yj)
|x − y|2 w1

i (y)w1
j (x)dsxdsy

=
1
4π

1
E

1 + ν

1 − ν

∫
Γ

∫
Γ

2∑
i=1

(4ν − 3) log |x − y|w1
i (y)w1

i (x)dsxdsy

+
1
4π

1
E

1 + ν

1 − ν

∫
Γ

∫
Γ

2∑
i,j=1

(xi − yi)(xj − yj)
|x − y|2 w1

i (y)w1
j (x)dsxdsy

+
1
4π

1
E

1 + ν

1 − ν
(4ν − 3) log α

2∑
i=1

[
〈w1

i , 1〉Γ
]2

= 〈V1w
1, w1〉Γ +

1
4π

1
E

1 + ν

1 − ν
(4ν − 3) log α

due to 〈w1
1, 1〉Γ = 1 and 〈w1

2, 1〉Γ = 0. For λ2
2 the assertion follows in the same

way. Finally, for λ2
1 = λ1

2 we have

λ2
1 = 〈Vαw1, w2〉Γ

= 〈V1w
1, w2〉Γ +

1
4π

1
E

1 + ν

1 − ν
(4ν − 3) log α

2∑
i=1

〈w1
i , 1〉Γ 〈w2

i , 1〉Γ

= 〈V1w
1, w2〉Γ

due to 〈w2
1, 1〉Γ = 〈w1

2, 1〉Γ = 0. ��
Hence we can choose the scaling parameter α ∈ R+ such that

min{λ1
1, λ

2
2} ≥ 2 |λ1

2| (6.59)

is satisfied. An arbitrary given w ∈ [H−1/2(Γ )]2 can be written as

w = w̃ + α1w
1 + α2w

2, αi = 〈wi, 1〉Γ (i = 1, 2) (6.60)

where w̃ ∈ [H−1/2
+ (Γ )]2.
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Theorem 6.38. Let the scaling parameter α ∈ R+ be chosen such that (6.59)
is satisfied. Then the single layer potential Vα is [H−1/2(Γ )]2–elliptic, i.e.

〈Vαw,w〉Γ ≥ c̃V
1 ‖w‖2

[H−1/2(Γ )]2 for all w ∈ [H−1/2(Γ )]2.

Proof. For an arbitrary w ∈ [H−1/2(Γ )]2 we consider the splitting (6.60).
By using the triangle inequality as well as the Cauchy–Schwarz inequality we
obtain

‖w‖2
[H−1/2(Γ )]2 = ‖w̃ + α1w

1 + α2w
2‖2

[H−1/2(Γ )]2

≤
[
‖w̃‖[H−1/2(Γ )]2 + |α1| ‖w1‖2

[H−1/2(Γ )]2 + |α2| ‖w2‖2
[H−1/2(Γ )]2

]2
≤ 3

[
‖w̃‖2

[H−1/2(Γ )]2 + α2
1 ‖w1‖2

[H−1/2(Γ )]2 + α2
2 ‖w2‖2

[H−1/2(Γ )]2

]
≤ 3 max

{
1, ‖w1‖2

[H−1/2(Γ )]2 , ‖w2‖2
[H−1/2(Γ )]2

}[
‖w̃‖2

[H−1/2(Γ )]2 + α2
1 + α2

2

]
.

Moreover, by the construction of w1 and w2 we have

〈Vαw,w〉Γ = 〈Vα[w̃ + α1w
1 + α2w

2], w̃ + α1w
1 + α2w

2〉Γ

= 〈Vαw̃, w̃〉Γ + α2
1 〈Vαw1, w1〉Γ + α2

2 〈Vαw2, w2〉Γ
+2α1〈Vαw1, w̃〉Γ + 2α2〈Vαw2, w̃〉Γ + 2α1α2〈Vαw1, w2〉Γ

= 〈Vαw̃, w̃〉Γ + α2
1 λ1

1 + α2
2 λ2

2 + 2α1α2 λ2
1.

From the [H−1/2
+ (Γ )]2–ellipticity of Vα and by using the scaling condition

(6.59) we finally get

〈Vαw,w〉Γ ≥ cV
1 ‖w̃‖2

[H−1/2(Γ )]2 + α2
1 λ1

1 + α2
2 λ2

2 − 2|α1| |α2| |λ2
1|

≥ cV
1 ‖w̃‖2

[H−1/2(Γ )]2 + min{λ1
1, λ

2
2}
[
α2

1 + α2
2 − |α1| |α2|

]
≥ cV

1 ‖w̃‖2
[H−1/2(Γ )]2 +

1
2

min{λ1
1, λ

2
2}
[
α2

1 + α2
2

]
≥ min

{
cV
1 ,

1
2
λ1

1,
1
2
λ2

2

} [
‖w̃‖2

[H−1/2(Γ )]2 + α2
1 + α2

2

]
. ��

Therefore, the single layer potential V : [H−1/2(Γ )]d → [H1/2(Γ )]d is
bounded and [H−1/2(Γ )]d–elliptic, where for d = 2 we have to assume a
suitable scaling of the domain Ω, see (6.59). By using the Lax–Milgram lemma
(Theorem 3.4) we therefore conclude the existence of the inverse operator
V −1 : [H1/2(Γ )]d → [H−1/2(Γ )]d.

By R we denote the set of rigid body motions, i.e. (1.36) for d = 2 and
(1.29) for d = 3, respectively. Define

[H−1/2
∗ (Γ )]d :=

{
w ∈ [H−1/2(Γ )]d : 〈w, vk〉Γ = 0 for vk ∈ R

}
,
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and

[H1/2
∗ (Γ )]d :=

{
v ∈ [H1/2(Γ )]d : 〈V −1v, vk〉Γ = 0 for vk ∈ R

}
.

Obviously, V : [H−1/2
∗ (Γ )]d → [H1/2

∗ (Γ )]d is an isomorphism.
For x̃ ∈ Ω ∪ Ωc we define by

(Wv)i(x̃) :=
∫
Γ

d∑
j=1

T ∗
ij(x̃, y)uj(y)dsy, i = 1, . . . , d,

the double layer potential of linear elastostatics satisfying

W : [H1/2(Γ )]d → [H1(Γ )]d.

The application of the interior trace operator defines a bounded linear oper-
ator

γint
0 W : [H1/2(Γ )]d → [H1/2(Γ )]d

with the representation

(γint
0 Wv)i(x) = −1

2
vi(x) + (Kv)i(x) for almost all x ∈ Γ, i = 1, . . . , d,

(6.61)
where

(Kv)i(x) := lim
ε→0

∫
y∈Γ :|y−x|≥ε

d∑
j=1

T ∗
ij(x̃, y)uj(y)dsy, i = 1, . . . , d

is the double layer potential. Correspondingly, the application of the exterior
trace operator gives

(γext
0 Wv)i(x) =

1
2
vi(x) + (Kv)i(x) for almost all x ∈ Γ, i = 1, . . . , d.

Hence, we obtain the jump relation of the double layer potential as

[γ0Wv] = γext
0 (Wv)(x) − γint

0 (Wv)(x) = v(x) for x ∈ Γ.

From the Somigliana identity (6.57) we get for Ω � x̃ → x ∈ Γ by using (6.58)
and (6.61) the boundary integral equation

(V t)(x) =
(

1
2
I + K

)
u(x) − (N0f)(x) for almost all x ∈ Γ. (6.62)

Inserting the rigid body motions (1.36) for d = 2 and (1.29) for d = 3 this
gives (

1
2
I + K

)
vk(x) = 0 for x ∈ Γ and vk ∈ R.
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The application of the interior boundary stress operator γint
1 on the double

layer potential Wv defines a bounded linear operator

γint
1 W = γext

1 W : [H1/2(Γ )]d → [H−1/2(Γ )]d.

As in the case of the Laplace operator we denote by D := −γint
1 W the hyper-

singular boundary integral operator.
When applying the boundary stress operator γint

1 on the Somigliana iden-
tity (6.57) this gives the hypersingular boundary integral equation

(Du)(x) =
(

1
2
I − K ′

)
t(x) − (N1f)(x) for x ∈ Γ (6.63)

in the sense of [H−1/2(Γ )]d.
As in (6.22) we can write both boundary integral equations (6.62) and

(6.63) as a system with the Calderón projection (6.23). Note that the projec-
tion property of the Calderón projection (Lemma 6.18) as well as all relations
of Corollary 6.19 remain valid as for the scalar Laplace equation.

Analogous to the Laplace operator we can rewrite the bilinear form of the
hypersingular boundary integral operator by using integration by parts as a
sum of weakly singular bilinear forms. In particular for d = 2 we have the
representation [107]

〈Du, v〉Γ =
2∑

i,j=1

∫
Γ

curlΓ vj(x)
∫
Γ

Gij(x, y)curlΓ ui(y)dsydsx

for all u, v ∈ [H1/2(Γ ) ∩ C(Γ )]2 where

Gij(x, y) =
1
4π

E

1 − ν2

[
− log |x − y| δij +

(xi − yi)(xj − yj)
|x − y|2

]
, i, j = 1, 2.

Here, curlΓ denotes the derivative with respect to the arc length. Note that the
kernel functions Gij(x, y) correspond, up to constants, to the kernel functions
of the Kelvin fundamental solution (5.9).

In the three–dimensional case d = 3 and i, j = 1, . . . , 3 we define

Mij(∂x, n(x)) := nj(x)
∂

∂xi
− ni(x)

∂

∂xj

and

∂

∂S1(x)
:= M32(∂x, n(x)),

∂

∂S2(x)
:= M13(∂x, n(x)),

∂

∂S3(x)
:= M21(∂x, n(x)).
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The bilinear form of the hypersingular boundary integral operator D can then
be written as [75]

〈Du, v〉Γ =
µ

4π

∫
Γ

∫
Γ

1
|x − y|

(
3∑

k=1

∂

∂Sk(y)
u(y) · ∂

∂Sk(x)
v(x)

)
dsydsx

+
∫
Γ

∫
Γ

(M(∂x, n(x))v(x))�
(

µ

2π

I

|x − y| −4µ2U∗(x, y)
)

M(∂y, n(y))u(y)dsydsx

+
µ

4π

∫
Γ

∫
Γ

3∑
i,j,k=1

Mkj(∂x, n(x))vi(x)
1

|x − y|Mki(∂y, n(y))vj(y)dsydsx. (6.64)

Hence we can express the bilinear form of the hypersingular boundary integral
operator D by components of the single layer potential V only.

Moreover, for d = 3 there holds a related representation of the double layer
potential K, see [89],

(Ku)(x) =
1
4π

∫
Γ

∂

∂n(y)
1

|x − y|u(y)dsy − 1
4π

∫
Γ

1
|x − y|M(∂y, n(y))u(y)dsy

+
E

1 + ν
(V (M(∂·, n(·))u(·)))(x)

where the evaluation of the Laplace single and double layer potentials has to
be taken componentwise.

Hence we can reduce all boundary integral operators of linear elastostatics
to the single and double layer potentials of the Laplace equation. These rela-
tions can be used when considering the Galerkin discretization of boundary
integral equations, where only weakly singular surface integrals have to be
computed.

Inserting the rigid body motions (1.36) for d = 2 and (1.29) for d = 3 into
the representation formula (6.57) this gives

vk(x̃) = −(Wvk)(x̃) for x̃ ∈ Ω and vk ∈ R.

The application of the boundary stress operator γint
1 yields

(Dvk)(x) = 0 for x ∈ Γ and vk ∈ R.

As in Theorem 6.24 we can prove the [H1/2
∗ (Γ )]d–ellipticity of the hypersin-

gular boundary integral operator D,

〈Dv, v〉Γ ≥ cD
1 ‖v‖2

[H1/2(Γ )]d for all v ∈ [H1/2
∗ (Γ )]d.

In addition, the ellipticity of the hypersingular boundary integral operator D
can be formulated also in the subspace
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[H1/2
∗∗ (Γ )]d :=

{
v ∈ [H1/2(Γ )]d : 〈v, vk〉Γ = 0 for vk ∈ R

}
of functions which are orthogonal to the rigid body motions. Then we have,
as in (6.38),

〈Dv, v〉Γ ≥ c̃D
1 ‖v‖2

[H1/2(Γ )]d for all v ∈ [H1/2
∗∗ (Γ )]d.

As in Subsection 6.6.3 we can define the Dirichlet to Neumann map, which
relates given boundary displacements to the associated boundary stresses via
the Steklov–Poincaré operator. Moreover, all results on the contraction prop-
erty of the double layer potential (see Subsection 6.6.4) as well as all mapping
properties of boundary integral operators (see Subsection 6.6.5) remain valid
for the system of linear elastostatics.

6.8 Stokes System

Now we consider the homogeneous Stokes system (1.38) where we assume
µ = 1 for simplicity, i.e.,

−∆u(x) + ∇p(x) = 0, div u(x) = 0 for x ∈ Ω.

Since the fundamental solution of the Stokes system coincides with the Kelvin
fundamental solution of linear elastostatics when considering ν = 1

2 and E = 3
as material parameters, we can write the representation formula (6.57) and
all related boundary integral operators of linear elastostatics for ν = 1

2 and
E = 3 to obtain the Stokes case. However, since the analysis of the mapping
properties of all boundary integral operators of linear elastostatics assumes
ν ∈ (0, 1

2 ) we can not transfer the boundedness and ellipticity estimates from
linear elastostatics to the Stokes system. These results will be shown by con-
sidering the Stokes single layer potential which is also of interest for the case
of almost incompressible linear elasticity (ν = 1

2 ) [141].
Let Ω ⊂ R

d be a simple connected domain with boundary Γ = ∂Ω. The
single layer potential Ṽ : [H−1/2(Γ )]d → [H1(Ω)]d induces a function

ui(x̃) := (Ṽ w)i(x̃) =
∫
Γ

d∑
j=1

U∗
ij(x̃, y)wj(y)dsy for x̃ ∈ Ω, i = 1, . . . , d

which is divergence–free in Ω, and satisfies Green’s first formula

2µ

∫
Ω

d∑
i,j=1

eij(u, v)eij(v, x)dx =
∫
Γ

v(x)�(Tu)(x)dsx (6.65)

for all v ∈ [H1(Ω)]d with div v = 0. The application of the interior trace
operator defines the single layer potential
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V := γ
int/ext
0 Ṽ : [H−1/2(Γ )]d → [H1/2(Γ )]d

which allows a representation as given in (6.58). To investigate the ellipticity
of the single layer potential V we first note that u∗ = 0 and p = −1 defines
a solution of the homogeneous Stokes system. From the boundary integral
equation (6.62) we then obtain

(V t∗)(x) = (
1
2
I + K)u∗(x) = 0 for x ∈ Γ

with the associated boundary stress

t∗(x) = −p∗(x)n(x) + 2

⎛⎝ d∑
j=1

eij(u∗, x)nj(x)

⎞⎠d

i=1

= n(x) for x ∈ Γ.

Hence we can expect the ellipticity of the Stokes single layer potential V only
in a subspace which is orthogonal to the exterior normal vector n.

Let V L : H−1/2(Γ ) → H1/2(Γ ) be the Laplace single layer potential which
is H−1/2(Γ )–elliptic. Hence we can define

〈w, τ〉V L :=
d∑

i=1

〈V Lwi, τi〉Γ

as an inner product in [H−1/2(Γ )]d. When considering the subspace

[H−1/2

V L (Γ )]d :=
{

w ∈ [H−1/2(Γ )]d : 〈w, n〉V L = 0
}

we can prove the following result [50, 159]:

Theorem 6.39. The Stokes single layer potential V is [H−1/2

V L (Γ )]d–elliptic,
i.e.

〈V w,w〉Γ ≥ cV
1 ‖w‖2

[H−1/2(Γ )]d for all w ∈ [H−1/2

V L (Γ )]d.

As for the homogeneous Neumann boundary value problem for the Laplace
equation we can introduce an extended bilinear form

〈Ṽ w, τ〉Γ := 〈V w, τ〉Γ + 〈w, n〉V L〈τ , n〉V L

which defines an [H−1/2(Γ )]d–elliptic boundary integral operator Ṽ .
When the computational domain Ω is multiple connected, the dimension of

the kernel of the Stokes single layer potential is equal to the number of closed
sub–boundaries. Then we have to modify the stabilization in a corresponding
manner, see [116].



6.9 Helmholtz Equation 167

6.9 Helmholtz Equation

Finally we consider the interior Helmholtz equation

−∆u(x) − k2u(x) = 0 for x ∈ Ω ⊂ R
d

where the fundamental solution is, see (5.20) for d = 2 and (5.18) for d = 3,

U∗
k (x, y) =

⎧⎪⎪⎨⎪⎪⎩
1
2π

Y0(k|x − y|) for d = 2,

1
4π

eik|x−y|

|x − y| for d = 3.

Then we can define the standard boundary integral operators for x ∈ Γ , i.e.
the single layer potential

(Vkw)(x) =
∫
Γ

U∗
k (x, y)w(y)dsy,

the double layer potential

(Kkv)(x) =
∫
Γ

∂

∂ny
U∗

k (x, y)v(y)dsy,

the adjoint double layer potential

(K ′
kv)(x) =

∫
Γ

∂

∂nx
U∗

k (x, y)v(y)dsy,

and the hypersingular boundary integral operator

(Dkv)(x) = − ∂

∂nx

∫
Γ

∂

∂ny
U∗

k (x, y)v(y)dsy.

As for the Laplace operator there hold all the mapping properties as given in
Theorem 6.34. In particular, Vk : H−1/2(Γ ) → H1/2(Γ ) is bounded, but not
H−1/2(Γ )–elliptic. However, the single layer potential is coercive satisfying a
G̊ardings inequality.

For x ∈ Ω we consider the function

u(x) = (Ṽkw)(x) − (Ṽ w)(x) =
∫
Ω

[U∗
k (x, y) − U∗(x, y)]w(y)dsy (6.66)

where U∗(x, y) is the fundamental solution of the Laplace operator. In par-
ticular we have for y ∈ Γ and x ∈ Ω

−∆xU∗
k (x, y) − k2U∗

k (x, y) = 0, −∆xU∗(x, y) = 0.
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Then, by interchanging differentiation and integration, we obtain

[−∆x − k2]u(x) =
∫
Γ

[−∆x − k2][U∗
k (x, y) − U∗(x, y)]w(y)dsy

= k2

∫
Γ

U∗(x, y)w(y)dsy.

Moreover,

−∆x[−∆x − k2]u(x) = −k2∆x

∫
Γ

U∗(x, y)w(y)dsy = 0,

i.e. the function u as defined in (6.66) solves the partial differential equation

−∆x[−∆x − k2]u(x) = 0 for x ∈ Ω

which is of fourth order. Hence, we obtain as in the case of the Laplace oper-
ator, by considering the corresponding Newton potentials, that

Ṽk − Ṽ : H−1/2(Γ ) → H3(Ω).

Thus,
Vk − V = γint

0 [Ṽk − Ṽ ] : H−1/2(Γ ) → H5/2(Γ ),

and by the compact imbedding of H5/2(Γ ) in H1/2(Γ ) we conclude that

Vk − V : H−1/2(Γ ) → H1/2(Γ ) (6.67)

is compact.

Theorem 6.40. The single layer potential Vk : H−1/2(Γ ) → H1/2(Γ ) is
coercive, i.e. there exists a compact operator C : H−1/2(Γ ) → H1/2(Γ ) such
that the G̊ardings inequality

〈Vkw,w〉Γ + 〈Cw,w, 〉Γ ≥ cV
1 ‖w‖2

H−1/2(Γ ) for w ∈ H−1/2(Γ )

is satisfied. For d = 2 we have to assume diamΩ < 1.

Proof. By considering the compact operator

C = V − Vk : H−1/2(Γ ) → H1/2(Γ )

we have

〈Vkw,w〉Γ + 〈Cw,w〉Γ = 〈V w,w〉Γ ≥ cV
1 ‖w‖2

H−1/2(Γ )

by using Theorem 6.22 for d = 3 and Theorem 6.23 for d = 2. ��
Note that also the operators
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Dk − D : H1/2(Γ ) → H−1/2(Γ ),

Kk − K : H1/2(Γ ) → H1/2(Γ ),

K ′
K − K ′ : H−1/2(Γ ) → H−1/2(Γ )

are compact where D,K,K ′ are the hypersingular integral operator, the dou-
ble layer potential and its adjoint of the Laplace operator, respectively.

As for the Laplace operator the bilinear form of the hypersingular bound-
ary integral operator Dk can be written as, by using integration by parts
[107],

〈Dku, v〉Γ =
1
4π

∫
Γ

∫
Γ

eı k|x−y|

|x − y|
(
curlΓ u(y), curlΓ v(x)

)
dsydsx

− k2

4π

∫
Γ

∫
Γ

eı k|x−y|

|x − y| u(y)v(x)
(
n(x), n(y)

)
dsydsx . (6.68)

6.10 Exercises

Let Γ = ∂Ω be the boundary of the circle Ω = Br(0) ⊂ R
2 which can be

described by using polar coordinates as

x(t) = r

(
cos 2πt

sin 2πt

)
∈ Γ for t ∈ [0, 1).

6.1 Find a representation of the two–dimensional single layer potential

(V w)(x) = − 1
2π

∫
Γ

log |x − y|w(y)dsy for x ∈ Γ = ∂Br(0)

when using polar coordinates x = x(τ) and y = y(t), respectively.

6.2 Find a representation of the two–dimensional double layer potential

(Kv)(x) = − 1
2π

∫
Γ

(y − x, n(y))
|x − y|2 v(y)dsy for x ∈ Γ = ∂Br(0)

when using polar coordinates x = x(τ) and y = y(t), respectively.

6.3 The eigenfunctions of the double layer potential as considered in Exercise
6.2 are given by

vk(t) = ei2πkt for k ∈ N0.

Compute the associated eigenvalues.

6.4 By using the eigenfunctions as given in Exercise 6.3 compute all eigen-
values of the single layer potential as given in Exercise 6.1. Give sufficient
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conditions such that the single layer potential is invertible, and positive
definite.

6.5 Prove Corollary 6.19.

6.6 Determine the eigenfunctions of the hypersingulur boundary integral op-
erator D for x ∈ ∂Br(0) and compute the corresponding eigenvalues.

6.7 Let now Γ be the boundary of an ellipse given by the parametrization

x(t) =

(
a cos 2πt

b sin 2πt

)
∈ Γ for t ∈ [0, 2π).

Find a representation of the corresponding double layer potential

(Kv)(x) = − 1
2π

∫
Γ

(y − x, n(y))
|x − y|2 v(y)dsy for x ∈ Γ.

6.8 Prove that the eigenfunctions of the double layer potential as considered
in Exercise 6.7 are given by

vk(t) =

⎧⎪⎨⎪⎩
cos 2πkt for k > 0,

1 for k = 0,
sin 2πkt for k < 0.

Compute the corresponding eigenvalues. Describe the behavior of the maximal
eigenvalue as a

b → ∞.

6.9 Prove for the double layer potential of the Helmholtz equation that

Kk = K ′
−k

is satisfied when considering the complex inner product

〈w, v〉Γ =
∫
Γ

w(x)v(x)dsx.



7

Boundary Integral Equations

In this chapter we consider boundary value problems for scalar homogeneous
partial differential equations

(Lu)(x) = 0 for x ∈ Ω (7.1)

where L is an elliptic and self–adjoint partial differential operator of sec-
ond order, and Ω is a bounded and simple connected domain with Lipschitz
boundary Γ = ∂Ω. In particular we focus on the Laplace and on the Helmholtz
equations. Note that boundary integral equations for boundary value prob-
lems in linear elasticity can be formulated and analyzed as for the Laplace
equation. To handle inhomogeneous partial differential equations, Newton po-
tentials have to be considered in addition. By computing particular solutions
of the inhomogeneous partial differential equations all Newton potentials can
be reduced to surface potentials only, see, for example, [86, 136].

Any solution u of the homogeneous partial differential equation (7.1) is
given for x̃ ∈ Ω by the representation formula (5.2),

u(x̃) =
∫
Γ

U∗(x̃, y)γint
1 u(y)dsy −

∫
Γ

γint
1,y U∗(x̃, y)γint

0 u(y)dsy. (7.2)

Hence we have to find the complete Cauchy data γint
0 u(x) and γint

1 u(x) for
x ∈ Γ , which are given by boundary conditions only partially. For this we
will describe appropriate boundary integral equations. The starting point is
the representation formula (7.2) and the related system (6.22) of boundary
integral equations,(

γint
0 u

γint
1 u

)
=

(
[1 − σ]I − K V

D σI + K ′

)(
γint
0 u

γint
1 u

)
. (7.3)

This approach is called direct where the density functions of all boundary
integral operators are just the Cauchy data [γint

0 u(x), γint
1 u(x)], x ∈ Γ . When
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describing the solution of boundary value problems by using suitable poten-
tials, we end up with the so called indirect approach. For example, solutions
of the homogeneous partial differential equation (7.1) are given either by the
single layer potential

u(x̃) =
∫
Γ

U∗(x̃, y)w(y)dsy for x̃ ∈ Ω, (7.4)

or by the double layer potential

u(x̃) = −
∫
Γ

γint
1,y U∗(x̃, y)v(y)dsy for x̃ ∈ Ω. (7.5)

It is worth to mention that in general the density functions w and v of the
indirect approach have no physical meaning.

In this chapter we will consider different boundary integral equations to
find the unknown Cauchy data to describe the solution of several boundary
value problems with different boundary conditions.

7.1 Dirichlet Boundary Value Problem

First we consider the Dirichlet boundary value problem

(Lu)(x) = 0 for x ∈ Ω, γint
0 u(x) = g(x) for x ∈ Γ. (7.6)

When using the direct approach (7.2) we obtain the representation formula

u(x̃) =
∫
Γ

U∗(x̃, y)γint
1 u(y)dsy −

∫
Γ

γint
1,y U∗(x̃, y)g(y)dsy for x̃ ∈ Ω (7.7)

where we have to find the yet unknown Neumann datum γint
1 u ∈ H−1/2(Γ ).

By using the first boundary integral equation in (7.3) we obtain with

(V γint
1 u)(x) = σ(x)g(x) + (Kg)(x) for x ∈ Γ (7.8)

a first kind Fredholm boundary integral equation. Since the single layer poten-
tial V : H−1/2(Γ ) → H1/2(Γ ) is bounded (see (6.8)) and H−1/2(Γ )–elliptic
(see Theorem 6.22 for d = 3 and Theorem 6.23 for d = 2 when assuming
diam(Ω) < 1), we conclude the unique solvability of the boundary integral
equation (7.8) when applying the Lax–Milgram lemma (Theorem 3.4). More-
over, the unique solution γint

1 u ∈ H−1/2(Γ ) satisfies

‖γint
1 u‖H−1/2(Γ ) ≤ 1

cV
1

‖(σI + K)g‖H1/2(Γ ) ≤ cW
2

cV
1

‖g‖H1/2(Γ ).
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Since the boundary integral equation (7.8) is formulated in H1/2(Γ ), this gives

0 = ‖V γint
1 u − (σI + K)g‖H1/2(Γ )

= sup
0 �=τ∈H−1/2(Γ )

〈V γint
1 u − (σI + K)g, τ〉Γ

‖τ‖H−1/2(Γ )

.

and therefore, instead of (7.8) we may consider the equivalent variational
problem to find γint

1 u ∈ H−1/2(Γ ) such that

〈V γint
1 u, τ〉Γ = 〈(1

2
I + K)g, τ〉Γ (7.9)

is satisfied for all τ ∈ H−1/2(Γ ). Note that the definition of σ(x) gives σ(x) =
1
2 for almost all x ∈ Γ .

Instead of (7.8) we may also use the second boundary integral equation in
(7.3) to find the unknown Neumann datum γint

1 u ∈ H−1/2(Γ ), i.e.

([1 − σ]I − K ′)γint
1 u(x) = (Dg)(x) for x ∈ Γ (7.10)

which is a second kind Fredholm boundary integral equation. The solution of
this boundary integral equation is given by the Neumann series

γint
1 u(x) =

∞∑
	=0

(σI + K ′)	(Dg)(x) for x ∈ Γ. (7.11)

The convergence of the series (7.11) in H−1/2(Γ ) follows from the contraction
property (6.54) of σI+K ′ when considering the equivalent Sobolev norm ‖·‖V

which is induced by the single layer potential V .
When using the indirect single layer potential ansatz (7.4) to find the un-

known density w ∈ H−1/2(Γ ) we have to solve the boundary integral equation

(V w)(x) = g(x) for x ∈ Γ. (7.12)

Note that the boundary integral equation (7.12) differs from the boundary
integral equation (7.8) of the direct approach only in the definition of the
right hand side. Hence we can conclude the unique solvability of the boundary
integral equation (7.12) as for (7.8).

By using the double layer potential (7.5) to describe the solution of the
homogeneous partial differential equation we obtain from the jump relation
(6.14) of the double layer potential the boundary integral equation

[1 − σ(x)]v(x) − (Kv)(x) = g(x) for x ∈ Γ (7.13)

to compute the density v ∈ H1/2(Γ ) via the Neumann series

v(x) =
∞∑

	=0

(σI + K)	g(x) for x ∈ Γ. (7.14)
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The convergence of the series (7.14) in H1/2(Γ ) follows from the contraction
property (6.51) of σI + K when considering the equivalent Sobolev norm
‖ · ‖V −1 which is induced by the inverse single layer potential V −1.

To obtain a variational formulation of the boundary integral equation
(7.13) in H1/2(Γ ) we first consider

0 = ‖[1 − σ]v − Kv − g‖H1/2(Γ ) = sup
0 �=τ∈H−1/2(Γ )

〈 1
2v − Kv − g, τ〉Γ
‖τ‖H−1/2(Γ )

where we have used σ(x) = 1
2 for almost all x ∈ Γ .

This gives a variational formulation to find v ∈ H1/2(Γ ) such that

〈(1
2
I − K)v, τ〉Γ = 〈g, τ〉Γ (7.15)

is satisfied for all τ ∈ H−1/2(Γ ).

Lemma 7.1. There holds the stability condition

cS ‖v‖H1/2(Γ ) ≤ sup
0 �=τ∈H−1/2(Γ )

〈( 1
2I − K)v, τ〉Γ
‖τ‖H−1/2(Γ )

for all v ∈ H1/2(Γ )

with a positive constant cS > 0.

Proof. Let v ∈ H1/2(Γ ) be arbitrary but fixed. For τv := V −1v ∈ H−1/2(Γ )
we then have

‖τv‖H−1/2(Γ ) = ‖V −1v‖H−1/2(Γ ) ≤ 1
cV
1

‖v‖H1/2(Γ ).

By using the contraction estimate (6.51) and the mapping properties of the
single layer potential V we obtain

〈(1
2
I − K)v, τv〉Γ = 〈(1

2
I − K)v, V −1v〉Γ

= 〈V −1v, v〉Γ − 〈V −1(
1
2
I + K)v, v, 〉Γ

≥ ‖v‖2
V −1 − ‖(1

2
I + K)v‖V −1‖v‖V −1

≥ (1 − cK) ‖v‖2
V −1

= (1 − cK) 〈V −1v, v〉Γ

≥ (1 − cK)
1
cV
2

‖v‖2
H1/2(Γ )

≥ (1 − cK)
cV
1

cV
2

‖v‖H1/2(Γ )‖τv‖H−1/2(Γ )
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from which the stability condition follows immediately. ��
Hence we conclude the unique solvability of the variational problem (7.15)

by applying Theorem 3.7.

Remark 7.2. To describe the solution of the Dirichlet boundary value problem
(7.6) we have described four different boundary integral equations, and we
have shown their unique solvability. Depending on the application and on the
discretization scheme to be used, each of the above formulations may have
their advantages or disadvantages. In this book, we will mainly consider the
approximate solution of the variational formulation (7.9).

7.2 Neumann Boundary Value Problem

When considering the scalar Neumann boundary value problem

(Lu)(x) = 0 for x ∈ Ω, γint
1 u(x) = g(x) for x ∈ Γ (7.16)

we have to assume the solvability condition (1.17),∫
Γ

g(x)dsx = 0 . (7.17)

The representation formula (7.2) then yields

u(x̃) =
∫
Γ

U∗(x̃, y)g(y)dsy −
∫
Γ

γint
1 U∗(x̃, y)γint

0 u(y)dsy for x̃ ∈ Ω (7.18)

where we have to find the yet unknown Dirichlet datum γint
0 u ∈ H1/2(Γ ).

From the second boundary integral equation of the Calderon system (7.3) we
obtain

(Dγint
0 u)(x) = (1 − σ(x))g(x) − (K ′g)(x) for x ∈ Γ (7.19)

which is a first kind Fredholm boundary integral equation. Due to (6.17) we
have that u0 ≡ 1 is an eigensolution of the hypersingular boundary integral
operator, i.e. (Du0)(x) = 0. Hence we have ker D = span {u0}, and to ensure
the solvability of the boundary integral equation (7.19) we need to assume,
by applying Theorem 3.6, the solvability condition

(1 − σ)g − K ′g ∈ Im(D) = (ker D)0.

Note that (ker D)0 is the orthogonal space which is induced by kerD, see
(3.15). From

〈[1 − σ]g − K ′g, u0〉Γ = 〈g, 1〉Γ − 〈(σI + K ′)g, u0〉Γ (7.20)

= 〈g, 1〉Γ − 〈g, (σI + K)u0〉Γ = 0
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we then conclude the solvability of the boundary integral equation (7.19).
The hypersingular boundary integral operator D : H1/2(Γ ) → H−1/2(Γ ) is
bounded (see (6.16)) and H

1/2
∗ (Γ )–elliptic (see Theorem 6.24). Then, apply-

ing the Lax–Milgram lemma (Theorem 3.4), there exists a unique solution
γint
0 u ∈ H

1/2
∗ (Γ ) of the hypersingular boundary integral equation (7.19). The

equivalent varitional problem is to find γint
0 u ∈ H

1/2
∗ (Γ ) such that

〈Dγint
0 u, v〉Γ = 〈(1

2
I − K ′)g, v〉Γ (7.21)

is satisfied for all v ∈ H
1/2
∗ (Γ ).

Instead of the variational problem (7.21) with a constraint we may also
consider a saddle point problem to find (γint

0 u, λ) ∈ H1/2(Γ ) × R such that

〈Dγint
0 u, v〉Γ + λ 〈v, weq〉Γ = 〈( 1

2I − K ′)g, v〉Γ
〈γint

0 u,weq〉Γ = 0
(7.22)

is satisfied for all v ∈ H1/2(Γ ).
When inserting v = u0 ∈ H1/2(Γ ) as a test function of the first equation in

the saddle point problem (7.22) this gives Du0 = 0 and from the orthogonality
(7.20) we get

0 = λ 〈1, weq〉Γ = λ 〈1, V −11〉Γ
and therefore λ = 0, since the inverse single layer potential V −1 is elliptic.
The saddle point problem (7.22) is therefore equivalent to finding (γint

0 u, λ) ∈
H1/2(Γ ) × R such that

〈Dγint
0 u, v〉Γ + λ 〈v, weq〉Γ = 〈( 1

2I − K ′)g, v〉Γ
〈γint

0 u,weq〉Γ − λ/α = 0
(7.23)

is satisfied for all v ∈ H1/2(Γ ). Here, α ∈ R+ is some parameter to be chosen.
Hence we can eliminate the Lagrange multiplier λ ∈ R to obtain a modified
variational problem to find γint

0 u ∈ H1/2(Γ ) such that

〈Dγint
0 u, v〉Γ + α 〈γint

0 u,weq〉Γ 〈v, weq〉Γ = 〈(1
2
I − K ′)g, v〉Γ (7.24)

is satisfied for all v ∈ H1/2(Γ ). The modified hypersingular boundary integral
operator D̃ : H1/2(Γ ) → H−1/2(Γ ) which is defined via the bilinear form

〈D̃w, v〉Γ := 〈Dw, v〉Γ + α 〈w,weq〉Γ 〈v, weq〉Γ
for all v, w ∈ H1/2(Γ ) is bounded, and H1/2(Γ )–elliptic, due to

〈D̃v, v〉Γ = 〈Dv, v〉Γ + α [〈v, weq〉Γ ]2

≥ c̄D
1 |v|2H1/2(Γ ) + α [〈v, weq〉Γ ]2

≥ min{c̄D
1 , α}

{
|v|2H1/2(Γ ) + [〈v, weq〉Γ ]2

}
= min{c̄D

1 , α} ‖v‖2

H
1/2
∗ (Γ )

≥ ĉD
1 ‖v‖2

H1/2(Γ )
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for all v ∈ H1/2(Γ ). This estimate also indicates an appropriate choice of
the parameter α ∈ R+. Note that the modified variational problem (7.24)
admits a unique solution for any right hand side, and therefore for any given
Neumann datum g ∈ H−1/2(Γ ). If the given Neumann datum g satisfies the
solvability condition (7.17), then we conclude, by inserting v = u0 ≡ 1 as a
test function, from the variational problem (7.24)

α 〈γint
0 u,weq〉Γ 〈1, weq〉Γ = 0, 〈1, weq〉Γ = 〈1, V −11〉Γ > 0

and therefore γint
0 u ∈ H

1/2
∗ (Γ ). The modified variational problem (7.24) is

thus equivalent to the original variational problem (7.21).
Since the hypersingular boundary integral operator D is also H

1/2
∗∗ (Γ )–

elliptic (see (6.38)), there also exists a unique solution γint
0 u ∈ H

1/2
∗∗ (Γ ) of

the boundary integral equation (7.19). In analogy to the above treatment we
obtain a modified variational problem to find γint

0 u ∈ H1/2(Γ ) such that

〈Dγint
0 u, v〉Γ + ᾱ〈γint

0 u, 1〉Γ 〈v, 1〉Γ = 〈(1
2
I − K ′)g, v〉Γ (7.25)

is satisfied for all v ∈ H1/2(Γ ). Again, ᾱ ∈ R+ is some parameter to be chosen.
Moreover, if we assume the solvability condition (7.17) this gives γint

0 u ∈
H

1/2
∗∗ (Γ ). By the bilinear form

〈D̂w, v〉Γ := 〈Dw, v〉Γ + ᾱ 〈w, 1〉Γ 〈v, 1〉Γ (7.26)

for all w, v ∈ H1/2(Γ ) we define a modified hypersingular boundary integral
operator D̂ : H1/2(Γ ) → H−1/2(Γ ) which is bounded and H1/2(Γ )–elliptic.

When using the indirect double layer potential (7.5) to find the unknown
density v ∈ H

1/2
∗ (Γ ) we obtain the hypersingular boundary integral equation

(Dv)(x) = g(x) for x ∈ Γ, (7.27)

which can be analyzed as the boundary integral equation (7.19).
If we consider the representation formula (7.18) of the direct approach, and

use the first boundary integral equation of the resulting Calderon projection
(7.3), we find the yet unknown Dirichlet datum as the solution of the boundary
integral equation

(σI + K)γint
0 u(x) = (V g)(x) for x ∈ Γ. (7.28)

The solution of the boundary integral equation (7.28) is given by the Neumann
series

γint
0 u(x) =

∞∑
	=0

([1 − σ]I − K)	(V g)(x) for x ∈ Γ. (7.29)

The convergence of the Neumann series (7.29) follows from the contraction
property (6.52) of ([1− σ]I −K) in H

1/2
∗ (Γ ) when considering the equivalent
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Sobolev norm ‖ · ‖V −1 which is induced by the inverse single layer potential
V −1. The variational formulation of the boundary integral equation (7.28)
needs therefore to be considered in H1/2(Γ ). Since the single layer potential
V : H−1/2(Γ ) → H1/2(Γ ) is bounded and H−1/2(Γ )–elliptic, we can define

〈w, v〉V −1 := 〈V −1w, v〉Γ for w, v ∈ H1/2(Γ )

to be an inner product in H1/2(Γ ). The variational formulation of the bound-
ary integral equation (7.28) with respect to the inner product 〈·, ·〉V −1 then
reads to find γint

0 u ∈ H
1/2
∗ (Γ ) such that

〈(σI + K)γint
0 u, v〉V −1 = 〈V g, v〉V −1 (7.30)

is satisfied for all v ∈ H
1/2
∗ (Γ ). The variational problem (7.30) is equivalent

to finding γint
0 u ∈ H

1/2
∗ (Γ ) such that

〈Sγint
0 u, v〉Γ = 〈V −1(σI + K)γint

0 u, v〉Γ = 〈g, v〉Γ (7.31)

is satisfied for all v ∈ H
1/2
∗ (Γ ). Since the Steklov–Poincaré operator S :

H1/2(Γ ) → H−1/2(Γ ) admits the same mapping properties as the hyper-
singular boundary integral operator D : H1/2(Γ ) → H−1/2(Γ ), the unique
solvability of the variational problem (7.31) follows as for the variational
formulation (7.21). When using the symmetric representation (6.42) of the
Steklov–Poincaré operator S, the variational problem (7.31) is equivalent to

〈Sγint
0 u, v〉Γ = 〈

[
D + (σI + K ′)V −1(σI + K)

]
γint
0 u, v〉Γ = 〈g, v〉Γ (7.32)

When using the indirect single layer potential (7.4) we finally obtain the
boundary integral equation

(σI + K ′)w(x) = g(x) for x ∈ Γ (7.33)

to find the unknown density w ∈ H−1/2(Γ ) which is given via the Neumann
series

w(x) =
∞∑

	=0

((1 − σ)I − K ′)	g(x) for x ∈ Γ. (7.34)

The convergence of the Neumann series (7.34) follows from the contraction
property (6.55) of ((1−σ)I−K ′) in H

−1/2
∗ (Γ ) when considering the equivalent

Sobolev norm ‖ · ‖V .

Remark 7.3. For the solution of the Neumann boundary value problem (7.16)
again we have given and analyzed four different formulations of boundary
integral equations. As for the Dirichlet boundary value problem each of them
may have their advantages and disadvantages. Here we will mainly consider
the approximate solution of the modified variational formulation (7.25).
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7.3 Mixed Boundary Conditions

In addition to the standard boundary value problems (7.6) and (7.16) with
either Dirichlet or Neumann boundary conditions, boundary value problems
with mixed boundary conditions are of special interest,

(Lu)(x) = 0 for x ∈ Ω,

γint
0 u(x) = gD(x) for x ∈ ΓD,

γint
1 u(x) = gN (x) for x ∈ ΓN .

(7.35)

From the representation formula (7.2) we get for x̃ ∈ Ω

u(x̃) =
∫

ΓN

U∗(x̃, y)gN (y)dsy +
∫

ΓD

U∗(x̃, y)γint
1,y u(y)dsy (7.36)

−
∫

ΓD

γint
1,y U∗(x̃, y)gD(y)dsy −

∫
ΓN

γint
1 U∗(x̃, y)γint

0 u(y)dsy.

Hence we have to find the yet unknown Dirichlet datum γint
0 u(x) for x ∈ ΓN

and the Neumann datum γint
1 u(x) for x ∈ ΓD. Keeping in mind the differ-

ent boundary integral formulations for both the Dirichlet and the Neumann
problems, there seems to be a wide variety of different boundary integral for-
mulations to solve the mixed boundary value problem (7.35). Here we will
only consider two formulations which are based on the representation formula
(7.36) of the direct approach.

The symmetric formulation [134] is based on the use of the first boundary
integral equation in (7.3) for x ∈ ΓD while the second boundary integral
equation in (7.3) is considered for x ∈ ΓN ,

(V γint
1 u)(x) = (σI + K)γint

0 u(x) for x ∈ ΓD,

(Dγint
0 u)(x) = ((1 − σ)I − K ′)γint

1 u(x) for x ∈ ΓN .
(7.37)

Let g̃D ∈ H1/2(Γ ) and g̃N ∈ H−1/2(Γ ) be suitable extensions of the given
boundary data gD ∈ H1/2(ΓD) and gN ∈ H−1/2(ΓN ) satisfying

g̃D(x) = gD(x) for x ∈ ΓD, g̃N (x) = gN (x) for x ∈ ΓN .

Inserting these extensions into the system (7.37) this gives the symmetric
formulation to find

ũ := γint
0 u − g̃D ∈ H̃1/2(ΓN ), t̃ := γint

1 u − g̃N ∈ H̃−1/2(ΓD)

such that

(V t̃)(x) − (Kũ)(x) = (σI + K)g̃D(x) − (V g̃N )(x) for x ∈ ΓD,

(Dũ)(x) + (K ′t̃)(x) = ((1 − σ)I − K ′)g̃N (x) − (Dg̃D)(x) for x ∈ ΓN .
(7.38)
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The related variational formulation is to find (t̃, ũ) ∈ H̃−1/2(ΓD)× H̃1/2(ΓN )
such that

a(t̃, ũ; τ, v) = F (τ, v) (7.39)

is satisfied for all (τ, v) ∈ H̃−1/2(ΓD) × H̃1/2(ΓN ) where

a(t̃, ũ; τ, v) = 〈V t̃, τ〉ΓD
− 〈Kũ, τ〉ΓD

+ 〈K ′t̃, v〉ΓN
+ 〈Dũ, v〉ΓN

,

F (τ, v) = 〈(1
2
I + K)g̃D − V g̃N , τ〉ΓD

+ 〈(1
2
I − K ′)g̃N − Dg̃D, v〉ΓN

.

Lemma 7.4. The bilinear form a(·; ·) of the symmetric boundary integral for-
mulation is bounded and H̃−1/2(ΓD) × H̃1/2(ΓN )–elliptic, i.e.

a(t, u; τ, v) ≤ cA
2 ‖(t, u)‖

H̃−1/2(ΓD)×H̃1/2(ΓN )
‖(τ, v)‖

H̃−1/2(ΓD)×H̃1/2(ΓN )

and
a(τ, v; τ, v) ≥ min{cV

1 , ĉD
1 } ‖(τ, v)‖2

H̃−1/2(ΓD)×H̃1/2(ΓN )

for all (t, u), (τ, v) ∈ H̃−1/2(ΓD) × H̃1/2(ΓN ) where the norm is defined by

‖(τ, v)‖2
H̃−1/2(ΓD)×H̃1/2(ΓN )

:= ‖τ‖2
H̃−1/2(ΓD)

+ ‖v‖2
H̃1/2(ΓN )

.

Proof. By using

a(τ, v; τ, v) = 〈V τ, τ〉ΓD
− 〈Kv, τ〉ΓD

+ 〈K ′τ, v〉ΓN
+ 〈Dv, v〉ΓN

= 〈V τ, τ〉ΓD
+ 〈Dv, v〉ΓN

≥ cV
1 ‖τ‖2

H̃−1/2(ΓD)
+ ĉD

1 ‖v‖2
H̃1/2(ΓN )

we conclude the ellipticity of the bilinear form a(·, ·; ·, ·) from the ellipticity
estimates of the boundary integral operators V and D, see Theorem 6.22 for
d = 3 and Theorem 6.23 for d = 2, as well as (6.39). The boundedness of
the bilinear form a(·, ·; ·, ·) is a direct consequence of the boundedness of all
boundary integral operators. ��

Since the linear form F (τ, v) is bounded for (τ, v) ∈ H̃−1/2(ΓD) ×
H̃1/2(ΓN ), the unique solvability of the variational formulation (7.39) follows
from the Lax–Milgram lemma (Theorem 3.4).

To obtain a second boundary integral equation to solve the mixed bound-
ary value problem (7.35) we consider the Dirichlet to Neumann map (6.44) to
find γint

0 u ∈ H1/2(Γ ) such that

γint
0 u(x) = gD(x) for x ∈ ΓD,

γint
1 u(x) = (Sγint

0 u)(x) = gN (x) for x ∈ ΓN .

Let g̃D ∈ H1/2(Γ ) be some arbitrary but fixed extension of the given Dirichlet
datum gD ∈ H1/2(ΓD). Then we have to find ũ := γint

0 u − g̃D ∈ H̃1/2(ΓN )
such that
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〈Sũ, v〉ΓN
= 〈gN − Sg̃D, v〉ΓN

(7.40)

is satisfied for all v ∈ H̃1/2(ΓN ). Since the Steklov–Poincaré operator S :
H1/2(Γ ) → H−1/2(Γ ) is bounded and H̃1/2(ΓN )–elliptic (see (6.48)) we con-
clude the unique solvability of the variational problem (7.40) from the Lax–
Milgram lemma (Theorem 3.4). If the Dirichlet datum γint

0 u ∈ H1/2(Γ ) is
known, we can compute the complete Neumann datum γint

1 u ∈ H−1/2(Γ ) by
solving a Dirichlet boundary value problem.

7.4 Robin Boundary Conditions

Next we consider the Robin boundary value problem

(Lu)(x) = 0 for x ∈ Ω, γint
1 u(x) + κ(x)γint

0 u(x) = g(x) for x ∈ Γ.

To formulate a boundary integral equation to find the yet unknown Dirichlet
datum γint

0 u ∈ H1/2(Γ ) again we can use the Dirichlet to Neumann map
(6.44), i.e.

γint
1 u(x) = (Sγint

0 u)(x) = g(x) − κ(x)γint
0 u(x) for x ∈ Γ.

The related variational problem is to find γint
0 u ∈ H1/2(Γ ) such that

〈Sγint
0 u, v〉Γ + 〈κγint

0 u, v〉Γ = 〈g, v〉Γ (7.41)

is satisfied for all v ∈ H1/2(Γ ). By using (6.45) and the H1/2(Γ )–semi–
ellipticity of the hypersingular boundary integral operator D and assuming
κ(x) ≥ κ0 for x ∈ Γ we conclude

a(v, v) := 〈Sv, v〉Γ + 〈κv, v〉Γ
≥ c̄D

1 |v|2H1/2(Γ ) + κ0 ‖v‖2
Γ = min{c̄D

1 , κ0} ‖v‖2
H1/2(Γ )

and therefore the H1/2(Γ )–ellipticity of the bilinear form a(·, ·). Again we
obtain the unique solvability of the variational problem (7.41) from the Lax–
Milgram lemma (Theorem 3.4).

7.5 Exterior Boundary Value Problems

An advantage of boundary integral equation methods is the explicit consider-
ation of far field boundary conditions when solving boundary value problems
in the exterior domain Ωc := R

d\Ω. As a model problem we consider the
exterior Dirichlet boundary value problem for the Laplace equation,

−∆u(x) = 0 for x ∈ Ωc, γext
0 u(x) = g(x) for x ∈ Γ (7.42)
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together with the far field boundary condition

|u(x) − u0| = O
(

1
|x|

)
as |x| → ∞. (7.43)

where u0 ∈ R is some given number.
First we consider Green’s first formula for the exterior domain. For y0 ∈ Ω

and R ≥ 2 diam(Ω) let BR(y0) be a ball with center y0, which circumscribes
Ω. Using the representation formula (6.1) for x ∈ BR(y0)\Ω this gives

u(x) = −
∫
Γ

U∗(x, y)γext
1 u(y)dsy +

∫
Γ

γext
1,y U∗(x, y)γext

0 u(y)dsy

+
∫

∂BR(y0)

U∗(x, y)γint
1 u(y)dsy −

∫
∂BR(y0)

γint
1,y U∗(x, y)γint

0 u(y)dsy.

Inserting the far field boundary condition (7.43) and taking the limit R → ∞
this results in the representation formula for x ∈ Ωc,

u(x) = u0 −
∫
Γ

U∗(x, y)γext
1 u(y)dsy +

∫
Γ

γext
1,y U∗(x, y)γext

0 u(y)dsy.

To find the unknown Cauchy data again we can formulate different boundary
integral equations. The application of the exterior trace operator gives

γext
0 u(x) = u0 − (V γext

1 u)(x) + σ(x)γext
0 u(x) + (Kγext

0 u)(x) for x ∈ Γ,

while the application of the exterior conormal derivative yields

γext
1 u(x) = [1 − σ(x)]γext

1 u(x) − (K ′γext
1 u)(x) − (Dγext

0 u)(x) for x ∈ Γ.

As in (6.22) we obtain a system of boundary integral equations,(
γext
0 u

γext
1 u

)
=

(
σI + K −V

−D [1 − σ]I − K ′

)(
γext
0 u

γext
1 u

)
+

(
u0

0

)
.

Using the boundary integral equations of this system, the exterior Calderon
projection, we can formulate different boundary integral equations to handle
exterior boundary value problems with different boundary conditions. In par-
ticular for the exterior Dirichlet boundary value problem (7.42) and (7.43) we
can find the yet unknown Neumann datum γext

1 u ∈ H−1/2(Γ ) as the unique
solution of the boundary integral equation

(V γext
1 u)(x) = −[1 − σ(x)]gD(x) + (KgD)(x) + u0 for x ∈ Γ. (7.44)

Note that the unique solvability of the boundary integral equation (7.44)
follows as for interior boundary value problems from the mapping properties
of the single layer potential V : H−1/2(Γ ) → H1/2(Γ ).
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7.6 Helmholtz Equation

Finally we consider boundary value problems for the Helmholtz equation, i.e.
the interior Dirichlet boundary value problem

−∆u(x) − k2u(x) = 0 for x ∈ Ω, γint
0 u(x) = g(x) for x ∈ Γ (7.45)

where the solution is given by the representation formula

u(x) =
∫
Γ

U∗
k (x, y)γint

1 u(y)dsy −
∫
Γ

γint
1,y U∗

k (x, y)g(y)dsy for x ∈ Ω.

The unknown Neumann datum t = γint
1 u ∈ H−1/2(Γ ) solves the boundary

integral equation

(Vkt)(x) = (
1
2
I + Kk)g(x) for x ∈ Γ. (7.46)

Since the single layer potential Vk : H−1/2(Γ ) → H1/2(Γ ) is coercive, see
Theorem 6.40, we can apply Theorem 3.15 to investigate the solvability of the
boundary integral equation (7.46).

Lemma 7.5. If k2 = λ is an eigenvalue of the Dirichlet eigenvalue problem
of the Laplace equation,

−∆uλ(x) = λuλ(x) for x ∈ Ω, γint
0 uλ(x) = 0 for x ∈ Γ, (7.47)

then the single layer potential Vk : H−1/2(Γ ) → H1/2(Γ ) is not injective, i.e.

(Vkγint
1 uλ)(x) = 0 for x ∈ Γ.

Moreover,

(
1
2
I − K ′

k)γint
1 uλ(x) = 0 for x ∈ Γ.

Proof. The assertion immediately follows from the direct boundary integral
equations

(Vkγint
i uλ)(x) = (

1
2
I + Kk)γint

0 uλ(x) = 0 for x ∈ Γ

and
(
1
2
I − K ′

k)γint
i uλ(x) = (Dkγint

0 uλ)(x) = 0 . ��

Hence we conclude, that if k2 is not an eigenvalue of the Dirichlet eigen-
value problem of the Laplace equation, the Helmholtz single layer potential
Vk : H−1/2(Γ ) → H1/2(Γ ) is coercive and injective, i.e. the boundary integral
equation (7.46) admits a unique solution, see Theorem 3.15.
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Next we consider the exterior Dirichlet boundary value problem

−∆u(x) − k2u(x) = 0 for x ∈ Ωc, γext
0 u(x) = g(x) for x ∈ Γ (7.48)

where, in addition, we have to require the Sommerfeld radiation condition∣∣∣∣( x

|x| ,∇u(x)
)
− iku(x)

∣∣∣∣ = O
(

1
|x|2
)

as |x| → ∞

Note that the exterior Dirichlet boundary value problem is uniquely solv-
able due to the Sommerfeld radiation condition. The solution is given by the
representation formula

u(x) = −
∫
Γ

U∗
k (x, y)γext

1 u(y)dsy +
∫
Γ

γext
1,y U∗

k (x, y)g(y)dsy for x ∈ Ωc.

To find the unknown Neumann datum t = γext
1 u ∈ H−1/2(Γ ) we consider the

direct boundary integral equation

(Vkt)(x) = (−1
2
I + Kk)g(x) for x ∈ Γ. (7.49)

Since the single layer potential Vk of the exterior Dirichlet boundary value
problem coincides with the single layer potential of the interior problem, Vk is
not invertible when k2 = λ is an eigenvalue of the Dirichlet eigenvalue problem
(7.47). However, due to

〈(−1
2
g, γint

1 )uλ〉Γ = −〈g, (
1
2
I − K ′

−k)γint
1 uλ〉Γ = 0

we conclude
(−1

2
I + Kk)g ∈ Im Vk.

In fact, the boundary integral equation (7.49) of the direct approach is solvable
but not unique.

Instead of a direct approach, we may also consider an indirect single layer
potential approach

u(x) =
∫
Γ

U∗
k (x, y)w(y)dsy for x ∈ Ωc

which leads to the boundary integral equation to find w ∈ H−1/2(Γ ) such
that

(Vkw)(x) = g(x) for x ∈ Γ. (7.50)

As before, we have unique solvability of the boundary integral equation (7.50)
only for those wave numbers k2 which are not eigenvalues of the interior
Dirichlet eigenvalue problem (7.47).
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When using an indirect double layer potential ansatz

u(x) =
∫
Γ

γext
1,y U∗

k (x, y)v(y)dsy for x ∈ Ωc

the unknown density function v ∈ H1/2(Γ ) solves the boundary integral
equation

(
1
2
I + Kk)v(x) = g(x) for x ∈ Γ. (7.51)

Lemma 7.6. If k2 = µ is an eigenvalue of the interior Neumann eigenvalue
problem of the Laplace equation,

−∆uµ(x) = µuµ(x) for x ∈ Ω, γint
1 uµ(x) = 0 for x ∈ Γ, (7.52)

then
(
1
2
I + Kk)γint

0 uµ(x) = 0 for x ∈ Γ.

Proof. The assertion immediately follows from the direct boundary integral
equation

(
1
2
I + Kk)γint

0 uµ(x) = (Vkγint
1 uµ)(x) = 0 for x ∈ Γ. ��

The boundary integral equation (7.51) is therefore uniquely solvable if k2 is
not an eigenvalue of the Neumann eigenvalue problem (7.52).

Although the exterior Dirichlet boundary value problem for the Helmholtz
equation is uniquely solvable, the related boundary integral equations may
not be solvable, in particular, when k2 is either an eigenvalue of the interior
Dirichlet eigenvalue problem (7.47), or of the interior Neumann eigenvalue
problem (7.52). Since k2 can not be an eigenvalue of both the interior Dirichlet
and the interior Neumann boundary value problem, one may combine both the
indirect single and double layer potential formulations to derive a boundary
integral equation which is uniquely solvable for all wave numbers. This leads
to the well known Brakhage–Werner formulation [23]

u(x) =
∫
Γ

γext
1,y U∗

k (x, y)w(y)dsy − iη

∫
Γ

U∗
k (x, y)w(y)dsy for x ∈ Ωc

where η ∈ R+ is some real parameter. This leads to a boundary integral
equation to find w ∈ L2(Γ ) such that

(
1
2
I + Kk)w(x) − iη(Vkw)(x) = g(x) for x ∈ Γ. (7.53)

Instead of considering the boundary integral equation (7.53) in L2(Γ ), one
may formulate some modified boundary integral equations to be considered
in the energy space H−1/2(Γ ), i.e. find w ∈ H−1/2(Γ ) such that
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Vk + iη

(
1
2
I + Kk

)
D̃−1

(
1
2
I + K ′

−k

)]
w(x) = g(x) for x ∈ Γ (7.54)

where D̃ is the modified hypersingular integral operator of the Laplace equa-
tion as defined in (7.24). The modified boundary integral equation (7.54)
admits a unique solution for all wave number k for general Lipschitz domains
[54], for other regularizations, see [33, 34].

7.7 Exercises

7.1 Consider the mixed boundary value problem

−∆u(x) = 0 for x ∈ Ω\Ω0, Ω0 ⊂ Ω,

γint
0 u(x) = g(x) for x ∈ Γ = ∂Ω,

γint
1 u(x) = 0 for x ∈ Γ0 = ∂Ω0.

Derive the symmetric formulation of boundary integral equations to find the
complete Cauchy data. Discuss the solvability of the resulting variational
problem.

7.2 Discuss boundary integral formulations to solve the exterior Neumann
boundary value problem

−∆u(x) − k2u(x) = 0 for x ∈ Ωc, γext
1 u(x) = g(x) for x ∈ Γ

and ∣∣∣∣( x

|x| ,∇u(x)
)
− iku(x)

∣∣∣∣ = O
(

1
|x|2
)

as |x| → ∞.
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Approximation Methods

In this chapter we describe and analyze approximation methods to solve the
variational problems for operator equations as formulated in Chapter 3. This
is done by introducing conforming finite dimensional trial spaces leading to
linear systems of algebraic equations.

8.1 Galerkin–Bubnov Methods

Let A : X → X ′ be a bounded and X–elliptic linear operator satisfying

〈Av, v〉 ≥ cA
1 ‖v‖2

X , ‖Av‖X′ ≤ cA
2 ‖v‖X for all v ∈ X.

For a given f ∈ X ′ we want to find the solution u ∈ X of the variational
problem (3.4),

〈Au, v〉 = 〈f, v〉 for all v ∈ X. (8.1)

Due to the Lax–Milgram theorem 3.4 there exists a unique solution of the
variational problem (8.1) satisfying

‖u‖X ≤ 1
cA
1

‖f‖X′ .

For M ∈ N we consider a sequence

XM := span{ϕk}M
k=1 ⊂ X

of conforming trial spaces. The approximate solution

uM :=
M∑

k=1

ukϕk ∈ XM (8.2)

is defined as the solution of the Galerkin–Bubnov variational problem
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〈AuM , vM 〉 = 〈f, vM 〉 for all vM ∈ XM . (8.3)

Note that we have used the same trial and test functions for the Galerkin–
Bubnov method.

It remains to investigate the unique solvability of the variational problem
(8.3), the stability of the approximate solutions uM ∈ XM as well as their
convergence for M → ∞ to the unique solution u ∈ X of the variational
problem (8.1). Due to XM ⊂ X we can choose v = vM ∈ XM in the variational
formulation (8.1). Subtracting the Galerkin–Bubnov problem (8.3) from the
continuous variational formulation (8.1) this gives the Galerkin orthogonality

〈A(u − uM ), vM 〉 = 0 for all vM ∈ XM . (8.4)

Inserting the approximate solution (8.2) into the Galerkin–Bubnov formu-
lation (8.3) we obtain, by using the linearity of the operator A, the finite
dimensional variational problem

M∑
k=1

uk〈Aϕk, ϕ	〉 = 〈f, ϕ	〉 for � = 1, . . . , M.

With
AM [�, k] := 〈Aϕk, ϕ	〉, f	 := 〈f, ϕ	〉

for k, � = 1, . . . , M this is equivalent to the linear system of algebraic equations

AMu = f (8.5)

to find the coefficient vector u ∈ R
M . For any arbitrary vector v ∈ R

M we
can define a function

vM =
M∑

k=1

vkϕk ∈ XM

and vice versa. For arbitrary given vectors u, v ∈ R
M we then have

(AMu, v) =
M∑

k=1

M∑
	=1

AM [�, k]ukv	 =
M∑

k=1

M∑
	=1

〈Aϕk, ϕ	〉ukv	

= 〈A
M∑

k=1

ukϕk,

M∑
	=1

v	ϕ	〉 = 〈AuM , vM 〉.

Hence, all properties of the operator A : X → X ′ are inherited by the stiffness
matrix AM ∈ R

M×M . In particular, the matrix AM is symmetric and posi-
tive definite, since the operator A is self–adjoint and X–elliptic, respectively.
Indeed,

(AMv, v) = 〈AvM , vM 〉 ≥ cA
1 ‖vM‖2

X
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for all v ∈ R
M ↔ vM ∈ XM implies that AM is positive definite. Therefore,

the X–ellipticity of the operator A implies the unique solvability of the varia-
tional problem (8.1) as well as the unique solvability of the Galerkin–Bubnov
formulation (8.3) and hence, of the equivalent linear system (8.5).

Theorem 8.1 (Cea’s Lemma). Let A : X → X ′ be a bounded and X–
elliptic linear operator. For the unique solution uM ∈ XM of the variational
problem (8.3) there holds the stability estimate

‖uM‖X ≤ 1
cA
1

‖f‖X′ (8.6)

as well as the error estimate

‖u − uM‖X ≤ cA
2

cA
1

inf
vM∈XM

‖u − vM‖X . (8.7)

Proof. The unique solvability of the variational problem (8.3) was already
discussed before. For the approximate solution uM ∈ XM of (8.3) we conclude
from the X–ellipticity of A

cA
1 ‖uM‖2

X ≤ 〈AuM , uM 〉 = 〈f, uM 〉 ≤ ‖f‖X′‖uM‖X

and therefore we obtain the stability estimate (8.6). By using the X–ellipticity
and the boundedness of the linear operator A, and by using the Galerkin
orthogonality (8.4) we get for any arbitrary vM ∈ XM

cA
1 ‖u − uM‖2

X ≤ 〈A(u − uM ), u − uM 〉

= 〈A(u − uM ), u − vM 〉 + 〈A(u − uM ), vM − uM 〉

= 〈A(u − uM ), u − vM 〉

≤ cA
2 ‖u − uM‖X‖u − vM‖X

and therefore the error estimate (8.7). ��
The convergence of the approximate solution uM → u ∈ X as M → ∞

then follows from the approximation property of the trial space XM ,

lim
M→∞

inf
vM∈XM

‖v − vM‖X = 0 for all v ∈ X. (8.8)

The sequence of conforming trial spaces {XM}M∈N ⊂ X has to be constructed
in such a way that the approximation property (8.8) can be ensured. In Chap-
ter 9 we will consider the construction of local polynomial basis functions for
finite elements, while in Chapter 10 we will do the same for boundary el-
ements. Assuming additional regularity of the solution, we then prove also
corresponding approximation properties.
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8.2 Approximation of the Linear Form

In different applications the right hand side f ∈ X ′ is given as f = Bg where
g ∈ Y is prescribed, and B : Y → X ′ is a bounded linear operator satisfying

‖Bg‖X′ ≤ cB
2 ‖g‖Y for all g ∈ Y.

Hence we have to find u ∈ X as the solution of the variational problem

〈Au, v〉 = 〈Bg, v〉 for all v ∈ X. (8.9)

The approximate solution uM ∈ XM is then given as in (8.3) as the unique
solution of the variational problem

〈AuM , vM 〉 = 〈Bg, vM 〉 for all vM ∈ XM . (8.10)

The generation of the linear system (8.5) then requires the computation of

f	 = 〈Bg, ϕ	〉 = 〈g,B′ϕ	〉 for � = 1, . . . , M,

i.e. we have to evaluate the application of the operator B : Y → X ′ or of
the adjoint operator B′ : X → Y ′. In what follows we will replace the given
function g by an approximation

gN =
N∑

i=1

giψi ∈ YN = span{ψi}N
i=1 ⊂ Y.

Then we have to find an approximate solution ũM ∈ XM of the perturbed
variational problem

〈AũM , vM 〉 = 〈BgN , vM 〉 for all vM ∈ XM . (8.11)

This is equivalent to the linear system

AM ũ = BNg (8.12)

with matrices defined by

AM [�, k] = 〈Aϕk, ϕ	〉, BN [�, i] = 〈Bψi, ϕ	〉

for i = 1, . . . , N and k, � = 1, . . . , M , as well as with the vector g describing
the approximation gN . The matrix BN can hereby be computed independently
of the given approximate function gN . From the X–ellipticity of the opera-
tor A we find the positive definiteness of the matrix AM , and therefore the
unique solvability of the linear system (8.12) and therefore of the equivalent
variational problem (8.11). Obviously, we have to recognize the error which is
introduced by the approximation of the given data in the linear form of the
right hand side.



8.3 Approximation of the Operator 191

Theorem 8.2 (Strang Lemma). Let A : X → X ′ be a bounded linear
and X–elliptic operator. Let u ∈ X be the unique solution of the continuous
variational problem (8.9), and let uM ∈ XM be the unique solution of the
Galerkin variational problem (8.10). For the unique solution ũM ∈ XM of the
perturbed variational problem (8.11) there holds the error estimate

‖u − ũM‖X ≤ 1
cA
1

{
cA
2 inf

vM∈XM

‖u − vM‖X + cB
2 ‖g − gN‖Y

}
.

Proof. When subtracting the perturbed variational problem (8.11) from the
Galerkin variational problem (8.10) this gives

〈A(uM − ũM ), vM 〉 = 〈B(g − gN ), vM 〉 for all vM ∈ XM .

In particular for the test function vM := uM − ũM ∈ XM we obtain from the
X–ellipticity of A and using the boundedness of B

cA
1 ‖uM − ũM‖2

X ≤ 〈A(uM − ũM ), uM − ũM 〉

= 〈B(g − gN ), uM − ũM 〉

≤ ‖B(g − gN )‖X′‖uM − ũM‖X

≤ cB
2 ‖g − gN‖Y ‖uM − ũM‖X .

Hence we get the estimate

‖uM − ũM‖X ≤ cB
2

cA
1

‖g − gN‖Y .

Applying the triangle inequality

‖u − ũM‖X ≤ ‖u − uM‖X + ‖uM − ũM‖X

we finally obtain the assertion from Theorem 8.1 (Cea’s Lemma). ��

8.3 Approximation of the Operator

Besides an approximation of the given right hand side we also have to con-
sider an approximation of the given operator, e.g. when applying numerical
integration schemes. Instead of the Galerkin variational problem (8.3) we then
have to find the solution ũM ∈ XM of the perturbed variational problem

〈ÃũM , vM 〉 = 〈f, vM 〉 for all vM ∈ XM . (8.13)

In (8.13) Ã : X → X ′ is a bounded linear operator satisfying

‖Ãv‖X′ ≤ c̃A
2 ‖v‖X for all v ∈ X. (8.14)



192 8 Approximation Methods

Subtracting the perturbed variational problem (8.13) from the Galerkin vari-
ational problem (8.3) we find

〈AuM − ÃũM , vM 〉 = 0 for all vM ∈ XM . (8.15)

To ensure the unique solvability of the perturbed variational problem (8.13) we
have to assume the discrete stability of the approximate operator Ã. From this
we then also obtain an error estimate for the approximate solution ũM ∈ XM

of (8.13).

Theorem 8.3 (Strang Lemma). Assume that the approximate operator
Ã : X → X ′ is XM–elliptic, i.e.

〈ÃvM , vM 〉 ≥ c̃A
1 ‖vM‖2

X for all vM ∈ XM . (8.16)

Then there exists a unique solution ũM ∈ XM of the perturbed variational
problem (8.13) satisfying the error estimate

‖u− ũM‖M ≤
[
1 +

1
c̃A
1

(cA
2 + c̃A

2 )
]

cA
2

cA
1

inf
vM∈XM

‖u−vM‖X +
1
c̃A
1

‖(A− Ã)u‖X′ .

(8.17)

Proof. The unique solvability of the variational problem (8.13) is a direct
consequence of the XM–ellipticity of the approximate operator Ã, since the
associated stiffness matrix ÃM is positive definite.

Let uM ∈ XM be the unique solution of the variational problem (8.3).
Using again the assumption that Ã is XM–elliptic, and using the orthogonality
relation (8.15) we obtain

c̃A
1 ‖uM − ũM‖2

X ≤ 〈Ã(uM − ũM ), uM − ũM 〉

= 〈(Ã − A)uM , uM − ũM 〉

≤ ‖(Ã − A)uM‖X′‖uM − ũM‖X

and therefore
‖uM − ũM‖X ≤ 1

c̃A
1

‖(A − Ã)uM‖X∗ .

Since both operators A, Ã : X → X ′ are bounded, this gives

‖(A − Ã)uM‖X′ ≤ ‖(A − Ã)u‖X′ + ‖(A − Ã)(u − uM )‖X′

≤ ‖(A − Ã)u‖X′ + [cA
2 + c̃A

2 ] ‖u − uM‖X .

Applying the triangle inequality we obtain
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‖u − ũM‖X ≤ ‖u − uM‖X + ‖uM − ũM‖X

≤ ‖u − uM‖X +
1
c̃A
1

‖(A − Ã)uM‖X′

≤ ‖u − uM‖X +
1
c̃A
1

‖(A − Ã)u‖X′ +
1
c̃A
1

[cA
2 + c̃A

2 ] ‖u − uM‖X

and the assertion finally follows from Theorem 8.1 (Cea’s Lemma). ��

8.4 Galerkin–Petrov Methods

Let B : X → Π ′ be a bounded linear operator, and let us assume that the
stability condition

cS ‖v‖X ≤ sup
0 �=q∈Π

〈Bv, q〉
‖q‖Π

for all v ∈ (ker B)⊥ ⊂ X (8.18)

is satisfied. Then, for a given g ∈ ImX(B) there exists a unique solution
u ∈ (ker B)⊥ of the operator equation Bu = g (cf. Theorem 3.7) satisfying

〈Bu, q〉 = 〈g, q〉 for all q ∈ Π.

For M ∈ N we introduce two sequences of conforming trial spaces

XM = span{ϕk}M
k=1 ⊂ (ker B)⊥, ΠM = span{ψk}M

k=1 ⊂ Π.

Using (8.2) we can define an approximate solution uM ∈ XM as the solution
of the Galerkin–Petrov variational problem

〈BuM , qM 〉 = 〈g, qM 〉 for all qM ∈ ΠM . (8.19)

In contrast to the Galerkin–Bubnov variational problem (8.3) we now have
two different test and trial spaces.

Due to ΠM ⊂ Π we have the Galerkin orthogonality

〈B(u − uM ), qM 〉 = 0 for all qM ∈ ΠM .

The variational problem (8.19) is equivalent to the linear system BMuM = g
with the matrix BM defined by

BM [�, k] = 〈Bϕk, ψ	〉
for k, � = 1, . . . , M and with the right hand side g given by

g	 = 〈g, ψ	〉
for � = 1, . . . , M . As in the continuous case we obtain the unique solvability
of the linear system when assuming a discrete stability condition,

c̃S ‖vM‖X ≤ sup
0 �=qM∈ΠM

〈BvM , qM 〉
‖qM‖Π

for all vM ∈ XM . (8.20)
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Theorem 8.4. Let u ∈ (kerB)⊥ be the unique solution of the operator equa-
tion Bu = g, and let uM ∈ XM be the unique solution of the variational prob-
lem (8.19). We further assume the discrete stability condition (8.20). Then
there holds the error estimate

‖u − uM‖X ≤
(

1 +
cB
2

c̃B

)
inf

vM∈XM

‖u − vM‖X .

Proof. For an arbitrary v ∈ (ker B)⊥ ⊂ X there exists a uniquely determined
vM = PMv ∈ XM as the unique solution of the variational problem

〈BvM , qM 〉 = 〈Bv, qM 〉 for all qM ∈ ΠM .

For the solution vM ∈ XM we obtain from the discrete stability condition

c̃S ‖vM‖X ≤ sup
0 �=qM∈ΠM

〈BvM , qM 〉
‖qM‖Π

= sup
0 �=qM∈ΠM

〈Bv, qM 〉
‖qM‖Π

≤ cB
2 ‖v‖X .

For any v ∈ (ker B)⊥ we therefore obtain a unique vM = PMv ∈ ΠM satisfying

‖PMv‖X ≤ cB
2

c̃S
‖v‖X .

In particular, for the unique solution uM ∈ XM of the variational problem
(8.19) we obtain uM = PMu. On the other hand we have vM = PMvM for all
vM ∈ XM . Hence we have for an arbitrary vM ∈ XM

‖u − uM‖X = ‖u − vM + vM − uM‖X = ‖u − vM − PM (u − vM )‖X

≤ ‖u − vM‖X + ‖PM (u − vM )‖X ≤
(

1 +
cB
2

c̃S

)
‖u − vM‖X

and therefore the assertion. ��
The convergence of the approximate solution uM → u ∈ X as M → ∞

then follows as for a Galerkin–Bubnov method from an approximation prop-
erty of the trial space XM .

It remains to establish the discrete stability condition (8.20). A possible
criterion is the following result due to Fortin [58].

Lemma 8.5 (Criterium of Fortin). Let B : X → Π ′ be a bounded linear
operator, and let the continuous stability condition (8.18) be satisfied. If there
exist a bounded projection operator RM : Π → ΠM satisfying

〈BvM , q − RMq〉 = 0 for all vM ∈ XM

and
‖RMq‖Π ≤ cR ‖q‖Π for all q ∈ Π,

then there holds the discrete stability condition (8.20) with c̃S = cS/cR.
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Proof. Using the stability condition (8.18) we have for qN ∈ ΠN ⊂ Π

cS ‖vM‖X ≤ sup
0 �=q∈Π

〈BvM , q〉
‖q‖Π

= sup
0 �=q∈Π

〈BvM , RMq〉
‖q‖Π

≤ cR sup
0 �=q∈Π

〈BvM , RMq〉
‖RMq‖Π

≤ cR sup
0 �=qM∈ΠM

〈BvM , qM 〉
‖qM‖Π

,

and therefore the discrete stability condition (8.20). ��

8.5 Mixed Formulations

Now we consider the approximate solution of the saddle point problem (3.22)
to find (u, p) ∈ X × Π such that

〈Au, v〉 + 〈Bv, p〉 = 〈f, v〉
〈Bu, q〉 = 〈g, q〉

(8.21)

is satisfied for all (v, q) ∈ X × Π.
We assume that A : X → X ′ and B : X → Π ′ are bounded linear oper-

ators, and that A is X–elliptic. For example, the last assumption is satisfied
when considering the Stokes system and the modified variational formula-
tion (4.22) and (4.23) for a Dirichlet boundary value problem with Lagrange
multipliers. We further assume the stability condition (8.18). Hence, all as-
sumptions of Theorem 3.11 and of Theorem 3.13 are satisfied, and there exists
a unique solution (u, p) ∈ X × Π of the saddle point problem (8.21).

For N,M ∈ N we define two sequences of conforming trial spaces

XM = span{ϕk}M
k=1 ⊂ X, ΠN = span{ψi}N

i=1 ⊂ Π.

Then the Galerkin variational formulation of the saddle point problem (8.21)
is to find (uM , pN ) ∈ XM × ΠN such that

〈AuM , vM 〉 + 〈BvM , pN 〉 = 〈f, vM 〉
〈BuM , qN 〉 = 〈g, qN 〉

(8.22)

is satisfied for all (vM , qN ) ∈ XM × ΠN . With the matrices AM and BN

defined by
AM [�, k] = 〈Aϕk, ϕ	〉, BN [j, k] = 〈Bϕk, ψj〉

for k, � = 1, . . . , M , j = 1, . . . , N , and with the vectors f and g given by

f	 = 〈f, ϕ	〉, gj = 〈g, ψj〉

for � = 1, . . . , M , j = 1, . . . , N , the variational formulation (8.22) is equivalent
to the linear system
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AM B�

N

BN 0

)(
u

p

)
=

(
f

g

)
. (8.23)

We first consider the unique solvability of the linear system (8.23) from an
algebraic point of view. The dimension of the system matrix K in (8.23) is
N + M . With

rangAM ≤ M, rangBN ≤ min{M,N}

we find
rangK ≤ M + min{M,N} .

In particular for M < N we obtain

rangK ≤ 2M < M + N = dimK.

i.e. the linear system (8.23) is in general not solvable. Hence we have to define
the trial spaces XM and ΠN with care. The necessary condition M ≥ N
shows, that the trial space XM has to be rich enough compared with the trial
space ΠN .

To investigate the unique solvability of the Galerkin variational problem
(8.22) we will make use of Theorem 3.13. When considering the conform-
ing trial space XM ⊂ X we obtain from the X–ellipticity of A the positive
definiteness of the matrix AM , i.e.

(AMv, v) = 〈AvM , vM 〉 ≥ cA
1 ‖vM‖2

X > 0

for all 0 �= v ∈ R
M ↔ vM ∈ XM . The matrix AM is therefore invertible

and the linear system (8.23) can be transformed into the Schur complement
system

BNA−1
M B�

Np = BNA−1
M f − g . (8.24)

It remains to investigate the unique solvability of the linear system (8.24).
For this we assume the discrete stability or Babus̆ka–Brezzi–Ladyshenskaya
(BBL) condition

c̃S ‖qN‖Π ≤ sup
0 �=vM∈XM

〈BvM , qN 〉
‖vM‖X

for all qN ∈ ΠN . (8.25)

It is worth to remark, that the discrete stability condition (8.25) is in general
not an immediate consequence of the continuous stability condition (3.25).

Lemma 8.6. Let A : X → X ′ and B : X → Π ′ be bounded linear operators,
and let A be X–elliptic. For the conforming trial spaces XM ⊂ X and ΠN ⊂ Π
we assume the discrete stability condition (8.25). The symmetric Schur com-
plement matrix SN := BNA−1

M B�
N of the Schur complement system (8.24) is

then positive definite, i.e.

(SNq, q) ≥ cSN
1 ‖qN‖2

Π

for all 0 �= q ∈ ΠN ↔ qN ∈ ΠN .
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Proof. For an arbitrary but fixed q ∈ R
N we define ū := A−1

M B�
Nq, i.e. for the

associated functions qN ∈ ΠN and ūM ∈ XM we have

〈AūM , vM 〉 = 〈BvM , qN 〉 for all vM ∈ XM .

Using the X–ellipticity of A we then obtain

cA
1 ‖ūM‖2

X ≤ 〈AūM , ūM 〉 = 〈BūM , qN 〉 = (BN ū, q) = (BNA−1
M B�

Nq, q).

On the other hand, the discrete stability condition (8.25) gives

cS ‖qN‖Π ≤ sup
0 �=vM∈RM

〈BvM , qN 〉
‖vM‖X

= sup
0 �=vM∈RM

〈AūM , vM 〉
‖vM‖X

≤ cA
2 ‖ūM‖X

and with

‖qN‖2
Π ≤

(
cA
2

cS

)2

‖ūM‖2
X ≤ 1

cA
1

(
cA
2

cS

)2

(BNA−1
M B�

Nq, q)

we finally get the assertion. ��
Hence we have the unique solvability of the Schur complement system

(8.24) and therefore of the linear system (8.23). Moreover, we also have the
following stability estimate.

Theorem 8.7. Let A : X → X ′ and B : X → Π ′ be bounded and linear
operators, and let A be X–elliptic. For the conforming trial spaces XM ⊂ X
and ΠN ⊂ Π we assume the discrete stability condition (8.25). For the unique
solution (uM , pN ) ∈ XM ×ΠN of the saddle point problem (8.22) we then have
the stability estimates

‖pN‖Π ≤ 1
cSN
1

cB
2

cA
1

‖f‖X′ +
1

cSN
1

‖g‖Π′ (8.26)

and

‖uM‖X ≤
(

1 +
cB
2

cSN
1

cB
2

cA
1

)
‖f‖X′ +

1
cSN
1

cB
2

cA
1

‖g‖Π′ . (8.27)

Proof. Let (u, p) ∈ R
M ×R

N ↔ (uM , pN ) ∈ XM ×ΠN be the unique solution
of the linear system (8.23) and of the saddle point problem (8.22), respectively.
Using Lemma 8.6 we have

cSN
1 ‖pN‖2

Π ≤ (SNp, p) = (BNA−1
M B�

Np, p) = (BNA−1
M f − g, p)

= 〈BūM − g, pN 〉 ≤
[
cB
2 ‖ūM‖X + ‖g‖Π′

]
‖pN‖Π

and therefore
‖pN‖Π ≤ 1

cSN
1

[
cB
2 ‖ūM‖X + ‖g‖Π′

]
.
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Hereby, ū = A−1
M f ∈ R

M ↔ ūM ∈ XM is the unique solution of the variational
problem

〈AūM , vM 〉 = 〈f, vM 〉 for all vM ∈ XM .

From the X–ellipticity of A we then find

‖ūM‖X ≤ 1
cA
1

‖f‖X′ .

Moreover,

cA
1 ‖uM‖2

X ≤ 〈AuM , uM 〉
= 〈f, uM 〉 − 〈BuM , pN 〉 ≤

[
‖f‖X′ + cB

2 ‖pN‖Π

]
‖uM‖X

and therefore
‖uM‖X ≤ 1

cA
1

[
‖f‖X′ + cB

2 ‖pN‖Π

]
.

With (8.26) we then obtain (8.27) ��.
Using the stability estimates (8.26) and (8.27) we also obtain an error

estimate for the approximate solution (uM , pN ) ∈ XM × ΠN .

Theorem 8.8. Let all assumptions of Theorem 8.7 be valid. For the unique
approximate solution (uM , pN ) ∈ XM ×ΠN of the saddle point problem (8.22)
there holds the error estimate

‖u − uM‖X + ‖p − pN‖Π ≤ c

{
inf

vM∈XM

‖u − vM‖X + inf
qN∈ΠN

‖p − qN‖Π

}
.

Proof. When taking the difference of the continuous saddle point formulation
(8.21) with the Galerkin variational problem (8.22) for the conforming trial
spaces XM × ΠN ⊂ X × Π we obtain the Galerkin orthogonalities

〈A(u − uM ), vM 〉 + 〈BvM , p − pN 〉 = 0
〈B(u − uM ), qN 〉 = 0

for all (vM , qN ) ∈ XM × ΠN . For arbitrary (ūM , p̄N ) ∈ XM × ΠN we then
obtain

〈A(ūM − uM ), vM 〉 + 〈BvM , p̄N − pN 〉 = 〈A(ūM − u) + 〈B′(p̄N − p), vM 〉
〈B(ūM − uM ), qN 〉 = 〈B(ūM − u), qN 〉

for all (vM , qN ) ∈ XM × ΠN . Using Theorem 8.7 we find the unique solution
(ūM − uM , p̄N − pM ) ∈ XM × ΠN , and we obtain the stability estimates

‖p̄N − pN‖Π ≤ c1‖A(ūM − u) + B′(p̄N − p)‖X′ + c2‖B(ūM − u)‖Π′ ,

‖ūM − uM‖X ≤ c3‖A(ūM − u) + B′(p̄N − p)‖X′ + c4‖B(ūM − u)‖Π′

for arbitrary (ūM , p̄N ) ∈ XM × ΠN . Due to the mapping properties of the
bounded operators A, B and B′ we get with the triangle inequality
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‖p − pN‖Π ≤ ‖p − p̄N‖Π + ‖p̄N + pN‖Π

≤ (1 + c1c
B
2 ) ‖p − p̄N‖Π + (c1c

A
2 + c2c

B
2 ) ‖u − ūM‖X

for arbitrary (ūM , p̄N ) ∈ XM × ΠN . The estimate for ‖u − uM‖X follows in
the same way. ��

It remains to validate the discrete stability condition (8.25). As in Lemma
8.5 we can use the criterion of Fortin to establish (8.25).

Lemma 8.9 (Criteria of Fortin). Let B : X → Π ′ be a bounded linear
operator, and let the continuous stability condition (3.25) be satisfied. If there
exists a bounded projection operator PM : X → XM satisfying

〈B(v − PMv), qN 〉 = 0 for all qN ∈ ΠN

and
‖PMv‖X ≤ cP ‖v‖X for all v ∈ X,

then there holds the discrete stability condition (8.25) with c̃S = cS/cP .

8.6 Coercive Operators

We finally consider an approximate solution of the operator equation Au = f
when A : X → X ′ is assumed to be coercive, i.e. there exists a compact
operator C : X → X ′ such that G̊arding’s inequality (3.32) is satisfied,

〈(A + C)v, v〉 ≥ cA
1 ‖v‖2

X for all v ∈ X.

For a sequence XM ⊂ X of finite dimensional trial spaces we consider the
Galerkin variational problem to find uM ∈ XM such that

〈AuM , vM 〉 = 〈f, vM 〉 (8.28)

is satisfied for all vM ∈ XM . Note that the variational problem (8.28) for-
mally coincides with the Galerkin–Bubnov formulation (8.3). However, since
we now consider the more general case of a coercive operator instead of an el-
liptic operator, the numerical analysis to establish suitable stability and error
estimates is different.

Theorem 8.10 (Cea’s Lemma). Let A : X → XM be a bounded linear
coercive operator and let the stability condition

cS ‖wM‖X ≤ sup
vM∈XM ,‖vM‖X>0

〈AwM , vM 〉
‖vM‖X

(8.29)

be satisfied for all wM ∈ XM . Then there exists a unique solution uM ∈ XM

of the Galerkin variational problem (8.28) satisfying the stability estimate
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‖uM‖X ≤ 1
cS

‖f‖X′ (8.30)

and the error estimate

‖u − uM‖X ≤
(
1 +

cA
2

cS

)
inf

vM∈XM

‖u − vM‖X . (8.31)

Proof. We consider the homogeneous linear system AM w̄ = 0 to find an ap-
proximate solution w̄M ∈ XM of the homogeneous variational problem

〈Aw̄M , vM 〉 = 0 for all vM ∈ XM .

Using the stability condition (8.29) we then obtain

cS ‖w̄M‖X ≤ sup
vM∈XM ,‖vM‖X>0

〈Aw̄M , vM 〉
‖vM‖X

= 0

and therefore w̄M = 0 ↔ w̄ = 0. This ensures the unique solvability of the
linear system AMu = f and therefore of the variational problem (8.28).

Let u ∈ R
M ↔ uM ∈ XM be the unique solution of the Galerkin varia-

tional problem (8.28). Again, applying the stability condition (8.29) this gives

cS ‖uM‖X ≤ sup
vM∈XM ,‖vM‖X>0

〈AuM , vM 〉
‖vM‖X

= sup
vM∈XM ,‖vM‖X>0

〈f, vM 〉
‖vM‖X

≤ ‖f‖X′

and therefore the stability estimate (8.30).
For an arbitrary w ∈ X we define an approximate solution wM ∈ XM of

the Galerkin variational formulation

〈AwM , vM 〉 = 〈Aw, vM 〉 for all vM ∈ XM .

This defines the projection operator GM : X → XM by wM = GMw satisfying

‖GMw‖X = ‖wM‖X ≤ 1
cS

‖Aw‖X′ ≤ cA
2

cS
‖w‖X .

In particular, we have uM = GMu for the solution of the Galerkin variational
formulation (8.28). Since GM is a projection, GMvM = vM for all vM ∈ XM ,
we then find

‖u − uM‖X = ‖u − vM + GMvM − uM‖X

≤ ‖u − vM‖X + ‖GM (u − vM )‖X ≤
(
1 +

cA
2

cS

)
‖u − vM‖X

for all vM ∈ XM . From this, the error estimate (8.31) follows. ��
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It remains to validate the discrete stability condition (8.29). Note, that for
an X–elliptic operator A we then obtain

cA
1 ‖wM‖X ≤ 〈AwM , wM 〉

‖wM‖X
≤ sup

vM∈XM ,‖vM‖X>0

〈AwM , vM 〉
‖vM‖X

for all wM ∈ XM , i.e. (8.29). In what follows we consider the case of an
coercive operator A.

Theorem 8.11. Let A : X → X ′ be a bounded linear operator which is as-
sumed to be coercive and injective. Let XM ⊂ X be a dense sequence of con-
forming trial spaces. Then there exists an index M0 ∈ N such that the discrete
stability condition (8.29) is satisfied for M ≥ M0.

Proof. Let wM ∈ XM be arbitrary but fixed. Since A : X → X ′ is assumed to
be coercive, there is a compact operator C : X → X ′ such that the bounded
operator D = A + C : X → X ′ is X–elliptic. Hence we can set v̄ = D−1CwM

as the unique solution v̄ ∈ X of the variational problem

〈Dv̄, v〉 = 〈CwM , v〉 for all v ∈ X.

Moreover we can define an approximate solution v̄M ∈ XM as the unique
solution of the Galerkin variational problem

〈Dv̄M , vM 〉 = 〈CwM , vM 〉 for all vM ∈ XM .

Hence we have the Galerkin orthogonality

〈D(v̄ − v̄M ), vM 〉 = 0 for all vM ∈ XM .

Applying Cea’s lemma (cf. Theorem 8.1) for the X–elliptic operator D we
also find the stability estimate

‖v̄M‖X ≤ 1
cD
1

‖CwM‖X′ ≤ cC
2

cD
1

‖wM‖X

and therefore

‖wM − v̄M‖X ≤ ‖wM‖X + ‖vM‖X ≤
(
1 +

cC
2

cD
1

)
‖wM‖X

as well as the error estimate

‖v̄ − v̄M‖X ≤ cD
2

cD
1

inf
vM∈XM

‖v̄ − vM‖X .

Hence, the approximation property (8.8) of the trial space gives the conver-
gence v̄M ∈ v̄ in X for M → ∞.

Considering as test function vM = wM − v̄M we obtain
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〈AwM , wM − v̄M 〉 = 〈AwM , wM − v̄〉 + 〈AwM , v̄ − v̄M 〉
= 〈AwM , wM − D−1CwM 〉 + 〈AwM , v̄ − v̄M 〉.

For the first summand we further get

〈AwM , wM − D−1CwM 〉 = 〈AwM , D−1(D − C)wM 〉
= 〈AwM , D−1AwM 〉
≥ cD

1 ‖AwM‖2
X′ ≥ cD

1 cA ‖wM‖2
X

since A : X → X ′ has a bounded inverse. On the other hand, using the
Galerkin orthogonality we get

|〈AwM , v̄ − v̄M 〉| = |〈DwM , v̄ − v̄M 〉 − 〈CwM , v̄ − v̄M 〉|
= |〈wM , D(v̄ − v̄M )〉 − 〈wM , C(v̄ − v̄M )〉|
= |〈wM , C(v̄ − v̄M )〉| ≤ ‖wM‖X‖C(v̄ − v̄M )‖X′

Since C : X → X ′ is a compact operator, there exists a subsequence {v̄M}M∈N

satisfying

lim
M→∞

‖C(v̄ − v̄M )‖X′

‖v̄‖X
= 0.

Hence there exists an index M0 ∈ N such that

〈AwM , wM − v̄M 〉 ≥ 1
2

cD
1 cA ‖wM‖2

X

≥ 1
2

cD
1 cA

(
1 +

cD
2

cD
1

)−1

‖wM‖X‖wM − v̄M‖X

is satisfied for all M ≥ M0 which implies the stability condition (8.29). ��

8.7 Exercises

8.1 Let X be a Hilbert space and let a(·, ·) : X × X → R be a symmetric
and positive definite bilinear form. For the approximation of the minimization
problem

F (u) = min
v∈X

F (v), F (v) =
1
2
a(v, v) − 〈f, v〉

we introduce a finite–dimensional trial space

XM = span{ϕk}M
k=1 ⊂ X.

Derive the variational problem to find the approximate solution uM ∈ XM .
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Finite Elements

For the approximate solution of variational formulations as described in
Chapter 4 we introduce appropriate finite–dimensional trial spaces, and prove
certain approximation properties in Sobolev spaces. For simplicity we just
consider lowest order polynomial basis functions. For an introduction of more
general finite elements we refer, for example, to [31, 41, 85].

9.1 Reference Elements

Let Ω ⊂ R
d (d = 1, 2, 3) be a bounded domain with a polygonal (d = 2)

or with a polyhedral (d = 3) boundary. We consider a sequence {TN}N∈N of
decompositions (meshes)

Ω = T N =
N⋃

	=1

τ 	 (9.1)

with finite elements τ	. In the simplest case we have an interval (d = 1), a
triangle (d = 2), or a tetrahedron (d = 3). Further we denote by {xk}M

k=1 the
set of all nodes of the decomposition TN , see Fig. 9.1 for a finite element τ	

and the corresponding nodes xk. In addition, for d = 2, 3 we have by {kj}K
j=1

the set of all edges.
By I(k) we denote the index set of all elements τ	 where xk ∈ τ 	 is a node,

I(k) := {� ∈ N : xk ∈ τ 	} for k = 1, . . . , M.

Moreover,
J(�) := {k ∈ N : xk ∈ τ 	} for � = 1, . . . , N

is the index set of all nodes xk with xk ∈ τ 	. Note that dimJ(�) = d + 1 in
the case of the finite elements τ	 considered here. Finally,

K(j) := {� ∈ N : kj ∈ τ 	} for j = 1, . . . , K
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Fig. 9.1. Finite element τ� and related nodes xk.

is the index set of all elements τ	 with the edge kj .
The decomposition (9.1) is called admissible, if two neighboring elements

join either a node (d = 1, 2, 3), an edge (d = 2, 3), or a triangle (d = 3),
see Fig. 9.2. In particular, we avoid hanging nodes as in the inadmissible
decomposition of Fig. 9.2.
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Fig. 9.2. Admissible and inadmissible triangulations (d = 2).

In what follows we only consider admissible decompositions of the computa-
tional domain Ω. For a finite element τ	

∆	 :=
∫
τ�

dx (9.2)

is the volume, while
h	 := ∆

1/d
	

is the local mesh size. Moreover,

d	 := sup
x,y∈τ�

|x − y|

is the diameter of the finite element τ	, which coincides with the longest edge
of the element τ	. Obviously, for d = 1 we have

∆	 = h	 = d	.
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Finally, r	 is the radius of the largest circle (d = 2) or sphere (d = 3) which can
be inscribed in the finite element τ	. A finite element τ	 of the decomposition
(9.1) is called shape regular, if the diameter d	 of the finite element τ	 is
bounded uniformly by the radius r	, i.e.

d	 ≤ cF r	 for � = 1, . . . , N

where the constant cF does not depend on TN . For the two–dimensional case
d = 2 we then have

πr2
	 ≤ ∆	 = h2

	 ≤ d2
	 ≤ c2

F r2
	 ,

and therefore the equivalence relations
√

π r	 ≤ h	 ≤ d	 ≤ cF r	.

Correspondingly, for d = 3 we have

4
3
πr3

	 ≤ ∆	 = h3
	 ≤ d3

	 ≤ c3
F r3

	

and therefore
3

√
4
3
π r	 ≤ h	 ≤ d	 ≤ cF r	.

The global mesh size h is defined by

h = hmax := max
	=1,...,N

h	

while
hmin := min

	=1,...,N
h	

is the minimal local mesh size. The family of decompositions TN is called
globally quasi–uniform, if

hmax

hmin
≤ cG

is bounded by a global constant cG ≥ 1 which is independent of N ∈ N. The
family TN is called locally quasi–uniform, if

h	

hj
≤ cL for � = 1, . . . , N

holds for all neighboring finite elements τj and τ	. Here, two finite elements τ	

and τj are called neighboring, if the average τ 	 ∩ τ j consists either of a node,
an edge, or a triangle.

In the one–dimensional case d = 1 each finite element τ	 can be described
via a local parametrization, in particular for x ∈ τ	 and �1, �2 ∈ J(�) we have

x = x	1 + ξ (x	2 − x	1) = x	1 + ξ h	 for ξ ∈ (0, 1).
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Here, the element
τ := (0, 1) (9.3)

is called reference element. If we consider a function v(x) for x ∈ τ	 we can
write

v(x) = v(x	1 + ξ h	) =: ṽ	(ξ) for ξ ∈ τ,

in particular we can identify a function v(x) for x ∈ τ	 with a function in the
reference element, ṽ	(ξ) for ξ ∈ τ . It follows that

‖v‖2
L2(τ�)

=
∫
τ�

|v(x)|2dx =
∫
τ

|ṽ	(ξ)|2 h	 dξ = h	 ‖ṽ	‖2
L2(τ).

For the first derivative we have, by applying the chain rule,

d

dξ
ṽ	(ξ) = h	

d

dx
v(x) for x ∈ τ	, ξ ∈ τ

and therefore
d

dx
v(x) =

1
h	

d

dξ
ṽ	(ξ) for x ∈ τ	, ξ ∈ τ.

For m ∈ N the recursive application of this result gives

dm

dxm
v(x) = h−m

	

dm

dξm
ṽ	(ξ) for x ∈ τ	, ξ ∈ τ.

Hence we obtain for the local norms of v and ṽ	∣∣∣∣∣∣∣∣ dm

dxm
v

∣∣∣∣∣∣∣∣2
L2(τ�)

= h1−2m
	

∣∣∣∣∣∣∣∣ dm

dξm
ṽ	

∣∣∣∣∣∣∣∣2
L2(τ)

for m ∈ N0 . (9.4)

In the two–dimensional case d = 2 the reference element τ is given by the
triangle

τ =
{
ξ ∈ R

2 : 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1 − ξ1

}
. (9.5)

Then we find the local parametrization for x ∈ τ	 as

x = x	1 +
2∑

i=1

ξi(x	i+1 − x	1) = x	1 + J	ξ for ξ ∈ τ

with the Jacobian

J	 =

(
x	2,1 − x	1,1 x	3,1 − x	1,1

x	2,2 − x	1,2 x	3,2 − x	1,2

)
.

To compute the area (volume) of the finite element τ	 we obtain
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Fig. 9.3. Finite element τ� and reference element τ (d = 2).

∆	 =
∫
τ�

dsx =
∫
τ

|det J	| dξ = |det J	|
1∫

0

1−ξ1∫
0

dξ2dξ1 =
1
2
|det J	|

and therefore
|detJ	| = 2∆	. (9.6)

If we consider a function v(x) for x ∈ τ	 we can write

v(x) = v(x	1 + J	ξ) = ṽ	(ξ) for ξ ∈ τ.

Then, by applying the chain rule we get

∇ξ ṽ	(ξ) = J�
	 ∇xv(x)

and therefore
∇xv(x) = J−�

	 ∇ξ ṽ	(ξ).

As for the one–dimensional case d = 1 we can show the following norm equiv-
alence estimates:

Lemma 9.1. For d = 2 and m ∈ N0 there hold the norm equivalence inequal-
ities

1
cm

(2∆	)1−m ‖∇m
ξ ṽ	‖2

L2(τ) ≤ ‖∇m
x v‖2

L2(τ�)
≤ cm(2∆	)1−m ‖∇m

ξ ṽ	‖2
L2(τ)

(9.7)
where

cm =
(

c2
F

π

)m

.

Proof. For m = 0 the assertion follows directly from
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‖v‖2
L2(τ�)

=
∫
τ�

|v(x)|2dx =
∫
τ

|ṽ	(ξ)|2|detJ	| dξ = 2∆	 ‖ṽ	‖2
L2(τ).

Now we consider the case m = 1. Then,

‖∇xv‖2
L2(τ�)

=
∫
τ�

|∇xv(x)|2dx =
∫
τ

|J−�
	 ∇ξ ṽ(ξ)|2 |detJ	| dξ

= 2∆	

∫
τ

(J−1
	 J−�

	 ∇ξ ṽ(ξ),∇ξ ṽ(ξ)) dξ

≤ 2∆	 λmax (J−1
	 J−�

	 )
∫
τ

|∇ξ ṽ(ξ)|2dξ

= 2∆	 λmax (J−1
	 J−�

	 ) ‖∇ξ ṽ‖2
L2(τ)

as well as
‖∇xv‖2

L2(τ�)
≥ 2∆	 λmin (J−1

	 J−�
	 ) ‖∇ξ ṽ‖2

L2(τ).

It is therefore sufficient to estimate the eigenvalues of the matrix J�
	 J	. With

a := |x	2 − x	1 |, b := |x	3 − x	1 |, α =<)(x	3 − x	1 , x	2 − x	1)

we have

J�
	 J	 =

(
a2 a b cos α

a b cos α b2

)
,

and the eigenvalues of J�
	 J	 are

λ1/2 =
1
2

[
a2 + b2 ±

√
(a2 − b2)2 + 4a2b2 cos2 α

]
.

Obviously, for the maximal eigenvalue λ1 we have the inclusion

1
2
(a2 + b2) ≤ λ1 ≤ a2 + b2

while for the product of the eigenvalues λ1/2 we have with (9.6)

λ1 λ2 = det(J�
	 J	) = |det J	|2 = 4∆2

	 .

The minimal eigenvalue λ2 admits the lower estimate

λ2 =
4∆2

	

λ1
≥ 4∆2

	

a2 + b2

and therefore we conclude

4∆2
	

a2 + b2
≤ λmin (J�

	 J	) ≤ λmax (J�
	 J	) ≤ a2 + b2.
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Moreover,

a2 + b2 ≤ 2 d2
	 ≤ 2 c2

F r2
	 ≤ 2c2

F

π
∆	.

Hence we have

2π

c2
F

∆	 ≤ λmin (J�
	 J	) ≤ λmax (J�

	 J	) ≤ 2c2
F

π
∆	

and the eigenvalues of the inverse matrix J−1
	 J−�

	 can be estimated as

π

c2
F

(2∆	)−1 ≤ λmin (J−1
	 J−�

	 ) ≤ λmax (J−1
	 J−�

	 ) ≤ c2
F

π
(2∆	)−1.

Hence we conclude the norm equivalence inequalities for m = 1. For m > 1,
the assertion follows by recursive applications of the above estimates. ��

In the three–dimensional case d = 3 the reference element τ is given by
the tetrahedron

τ =
{
ξ ∈ R

3 : 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1 − ξ1, 0 ≤ ξ3 ≤ 1 − ξ1 − ξ2

}
. (9.8)

For x ∈ τ	 we then have the local parametrization

x = x	1 +
3∑

i=1

ξi(x	i+1 − x	1) = x	1 + J	ξ for ξ ∈ τ

with the Jacobian

J	 =

⎛⎜⎝x	2,1 − x	1,1 x	3,1 − x	1,1 x	4,1 − x	1,1

x	2,2 − x	1,2 x	3,2 − x	1,2 x	4,2 − x	1,2

x	2,3 − x	1,3 x	3,3 − x	1,3 x	4,3 − x	1,3

⎞⎟⎠ .

For the volume of the finite element τ	 we find

∆	 =
∫
τ�

dsx =
∫
τ

|det J	| dξ

= |det J	|
1∫

0

1−ξ1∫
0

1−ξ1−ξ2∫
0

dξ3dξ2dξ1 =
1
6
|det J	| (9.9)

and therefore
|det J	| = 6∆	. (9.10)

As for the two–dimensional case we can write a function v(x) for x ∈ τ	 as

v(x) = v(x	1 + J	ξ) = ṽ	(ξ) for ξ ∈ τ.

Again, the application of the chain rule gives

∇ξ ṽ	(ξ) = J�
	 ∇xv(x), ∇xv(x) = J−�

	 ∇ξ ṽ	(ξ)

and in analogy to Lemma 9.1 we have:
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Lemma 9.2. For d = 3 and m ∈ N0 there hold the norm equivalence inequal-
ities

c1 ∆	 h−2m
	 ‖∇m

ξ ṽ	‖2
L2(τ) ≤ ‖∇m

x v‖2
L2(τ�)

≤ c2 ∆	 h−2m
	 ‖∇m

ξ ṽ	‖2
L2(τ)

with positive constants c1 and c2 which may depend on m and on cF .

Proof. For m = 0 a direct computation gives

‖v(x)‖2
L2(τ�)

=
∫
τ�

|v(x)|2dx =
∫
τ

|ṽ	(ξ)|2|det J	| dξ = 6∆	 ‖ṽ	‖2
L2(τ).

For m = 1 we first obtain, as in the proof of Lemma 9.1, the equivalence
inequalities

6∆	 λmin (J−1
	 J−�

	 ) ‖∇ξ ṽ	‖2
L2(τ) ≤ ‖∇xv‖2

L2(τ�)

≤ 6∆	 λmax (J−1
	 J−�

	 ) ‖∇ξ ṽ	‖2
L2(τ).

Hence we have to estimate the eigenvalues of the symmetric and positive
definite matrix

J�
	 J	 =

⎛⎜⎝ a2 ab cos α ac cos β

ab cos α b2 bc cos γ

ac cos β bc cos γ c2

⎞⎟⎠
where

a := |x	2 − x	1 |, b := |x	3 − x	1 |, c := |x	4 − x	1 |
and

α := <)(x	2 − x	1 , x	3 − x	1),
β := <)(x	2 − x	1 , x	4 − x	1),
γ := <)(x	3 − x	1 , x	4 − x	1).

From 0 < λi for i = 1, 2, 3 and

λ1 + λ2 + λ3 = a2 + b2 + c2

we can estimate the maximal eigenvalue by

λmax (J�
	 J	) ≤ a2 + b2 + c2 .

The product of all eigenvalues can be written by using (9.10) as

λ1λ2λ3 = det(J�
	 J	) = |det J	|2 = 36∆2

	

and hence we obtain an estimate for the minimal eigenvalue

λmin (J�
	 J	) ≥ 36∆2

	

[λmax (J�
	 J	)]2

≥ 36∆2
	

[a2 + b2 + c2]2
.
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Altogether we therefore have

36∆2
	

[a2 + b2 + c2]2
≤ λmin (J�

	 J	) ≤ λmax (J�
	 J	) ≤ a2 + b2 + c2.

Since the finite element τ	 is assumed to be shape regular, we can estimate
the length of all edges by

a2 + b2 + c2 ≤ 3d2
	 ≤ 3c2

F r2
	 ≤ 3 3

√
9

16π2
c2
F h2

	

and hence we obtain

4
c4
F

3

√
256π4

81
h2

	 ≤ λmin (J�
	 J	) ≤ λmax (J�

	 J	) ≤ 3 3

√
9

16π2
c2
F h2

	 .

The assertion now follows as in the proof of Lemma 9.1. ��
By using the norm equivalence estimates (9.4) for d = 1 as well as Lemma

9.1 for d = 2 and Lemma 9.2 for d = 3 we can formulate the following result:

Theorem 9.3. Let τ	 ⊂ R
d be a finite element of a shape regular and admis-

sible decomposition TN . If v is sufficiently smooth we then have for m ∈ N0

c1 ∆	 h−2m
	 ‖∇m

ξ ṽ	‖2
L2(τ) ≤ ‖∇m

x v‖2
L2(τ�)

≤ c2 ∆	 h−2m
	 ‖∇m

ξ ṽ	‖2
L2(τ)

with positive constants c1 and c2 which may depend on m and on cF .

9.2 Form Functions

With respect to the decomposition TN as defined in (9.1) we now introduce
trial spaces of piecewise polynomial functions. The related basis functions,
which are associated to global degrees of freedom, are defined locally by using
suitable form functions which are formulated with respect to an element τ	.

We consider a reference element τ which is either an interval (9.3) for
d = 1, a triangle (9.5) for d = 2, or a tetrahedron (9.8) for d = 3.

The simplest form functions are the constant functions

ψ0
1(ξ) = 1 for ξ ∈ τ.

If we consider a function vh(x) which is constant for x ∈ τ	 we then have the
representation

vh(x) = vh(x	1 + J	ξ) = v	 ψ0
1(ξ) for x ∈ τ	, ξ ∈ τ, (9.11)

where v	 is the associated coefficient describing the value of vh on τ	. Moreover,
we have

‖vh‖2
L2(τ�)

= ∆	 v2
	 . (9.12)
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If we consider a function vh(x) which is linear for x ∈ τ	, then this function is
uniquely determined by the values ṽk at the nodes of the reference element τ ,

ṽh(ξ) =
d+1∑
k=1

ṽkψ1
k(ξ) for ξ ∈ τ. (9.13)

Here, the linear form functions are given for d = 1

ψ1
1(ξ) := 1 − ξ, ψ1

2(ξ) := ξ,

for d = 2

ψ1
1(ξ) := 1 − ξ1 − ξ2, ψ1

2(ξ) := ξ1, ψ1
3(ξ) := ξ2,

and for d = 3

ψ1
1(ξ) := 1 − ξ1 − ξ2 − ξ3, ψ1

2(ξ) := ξ1, ψ1
3(ξ) := ξ2, ψ1

4(ξ) := ξ3.

Let τ	 be an arbitrary finite element with nodes x	k
, �k ∈ J(�). If vh is a linear

function on τ	, then we can write

vh(x) = vh(x	1 + J	ξ) =
d+1∑
k=1

v	k
ψ1

k(ξ) for x ∈ τ	, ξ ∈ τ. (9.14)

As in (9.12) we can estimate the L2 norm ‖vh‖L2(τ�) by the Euclidean norm
of the nodal values.

Lemma 9.4. Let vh be a linear function as given in (9.14). Then,

∆	

(d + 1)(d + 2)

d+1∑
k=1

v2
	k

≤ ‖vh‖2
L2(τ�)

≤ ∆	

d + 1

d+1∑
k=1

v2
	k

.

Proof. We can compute the local L2 norm of the linear function vh as

‖vh‖2
L2(τ�)

= 〈vh, vh〉L2(τ�) =
d+1∑
i=1

d+1∑
j=1

vivj

∫
τ

ψi(ξ)ψj(ξ)|detJ	|dξ = (G	v
	, v	)

where
G	 =

∆	

(d + 1)(d + 2)
(Id+1 + ed+1 e�d+1)

is the local mass matrix and ed+1 = 1 ∈ R
d+1. From the eigenvalues of the

matrix Id+1 + ed+1e
�
d+1,

λ1 = d + 2, λ2 = · · · = λd+1 = 1,

the assertion follows. ��
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Corollary 9.5. Let vh be a linear function as given in (9.14). Then,

∆	

(d + 1)(d + 2)
‖vh‖2

L∞(τ�)
≤ ‖vh‖2

L2(τ�)
≤ ∆	 ‖vh‖2

L∞(τ�)
.

Proof. Obviously, the maximal value of vh and therefore the maximum norm
‖vh‖L∞(τ�) is equal some nodal value vk∗ = vh(xk∗). The assertion then follows
from Lemma 9.4. ��

In many applications it is essential to bound the norm of the gradient of
a piecewise polynomial function by the norm of this function itself.

Lemma 9.6. Let vh be a linear function as given in (9.14). Then there holds
the local inverse inequality

‖∇xvh‖L2(τ�) ≤ cI h−1
	 ‖vh‖L2(τ�) (9.15)

where cI is some positive constant.

Proof. The application of Theorem 9.3 gives first

‖∇xvh‖2
L2(τ�)

≤ c2 ∆	 h−2
	 ‖∇ξ ṽ	‖2

L2(τ).

To compute the gradient of the linear function

ṽ	(ξ) =
d+1∑
k=1

v	k
ψ1

k(ξ)

we obtain for d = 1
∇ξ ṽ	 = v	2 − v	1

and therefore

‖∇ξ ṽ	‖2
L2(τ) = (v	2 − v	1)

2 ≤ 2 [v2
	1 + v2

	2 ] ≤ 4 ‖vh‖2
L∞(τ�)

.

In the two–dimensional case d = 2 the gradient is

∇ξ ṽ	 =
(

v	2 − v	1

v	3 − v	1

)
and therefore we obtain

‖∇ξ ṽ	‖2
L2(τ) =

1
2
[
(v	2 − v	1)

2 + (v	3 − v	1)
2
]

≤ 1
2
[
2v2

	2 + 2v2
	3 + 4v2

	1

]
≤ 4 ‖vh‖2

L∞(τ�)
.

Finally, for d = 3 we have

∇ξ ṽ	 =

⎛⎝ v	2 − v	1

v	3 − v	1

v	4 − v	1

⎞⎠
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and thus

‖∇ξ ṽ	‖2
L2(τ) =

1
6
[
(v	2 − v	1)

2 + (v	3 − v	1)
2 + (v	4 − v	1)

2
]

≤ 1
6
[
2v2

	2 + 2v2
	3 + 2v2

	4 + 6v2
	1

]
≤ 2 ‖vh‖2

L∞(τ�)
.

Altogether we therefore have

‖∇xvh‖2
L2(τ�)

≤ 4 c2 ∆	 h−2
	 ‖vh‖2

L∞(τ�)

and the inverse inequality now follows from Corollary 9.5. ��
Form functions of locally higher polynomial degree can be defined hierar-

chically based on piecewise linear form functions. We define quadratic form
functions for d = 1 by

ψ2
1(ξ) = 1 − ξ, ψ2

2(ξ) = ξ, ψ2
3(ξ) = 4ξ(1 − ξ) ,

for d = 2 by

ψ2
1(ξ) = 1 − ξ1 − ξ2, ψ2

2(ξ) = ξ1, ψ2
3(ξ) = ξ2,

ψ2
4(ξ) = 4ξ1(1 − ξ1 − ξ2), ψ2

5(ξ) = 4ξ1ξ2, ψ2
6(ξ) = 4ξ2(1 − ξ1 − ξ2),

and for d = 3 by

ψ2
1(ξ) = 1 − ξ1 − ξ2 − ξ3, ψ2

5(ξ) = 4ξ1(1 − ξ1 − ξ2 − ξ3),
ψ2

2(ξ) = ξ1, ψ2
6(ξ) = 4ξ1ξ2,

ψ2
3(ξ) = ξ2, ψ2

7(ξ) = 4ξ2(1 − ξ1 − ξ2 − ξ3),
ψ2

4(ξ) = ξ3, ψ2
8(ξ) = 4ξ3(1 − ξ1 − ξ2 − ξ3),

ψ2
9(ξ) = 4ξ3ξ1,

ψ2
10(ξ) = 4ξ2ξ3.

Note that linear form functions are associated to degrees of freedom at the
nodes xk ∈ τ 	, while the quadratic form functions are associated to the edge
mid points x∗

kj
. If the function vh is quadratic on τ	 then we can write

vh(x) = vh(x	1 + J	ξ) =

1
2 (d+1)(d+2)∑

k=1

v	k
ψ2

k(ξ) for x ∈ τ	, ξ ∈ τ. (9.16)

As in the proof of Lemma 9.4 we have

‖vh‖2
L2(τ�)

=

1
2 (d+1)(d+2)∑

i,j=1

vivj

∫
τ

ψ2
i (ξ)ψ2

j (ξ)|detJ	|dξ = (G	v
	, v	) .

In particular for d = 1 the local mass matrix is
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G	 = ∆	

⎛⎝1/3 1/6 1/3
1/6 1/3 1/3
1/3 1/3 8/15

⎞⎠
where the eigenvalues of G	 are

λ1 =
∆	

6
, λ2/3 = ∆	

[
31
60

±
√

89
20

]
.

By using a similar approach in the two–dimensional case d = 2 as well as in
the three–dimensional case d = 3 we can prove equivalence estimates which
correspond to the results of Lemma 9.4,

c1 ∆	

1
2 (d+1)(d+2)∑

k=1

v2
	k

≤ ‖vh‖2
L2(τ�)

≤ c2 ∆	

1
2 (d+1)(d+2)∑

k=1

v2
	k

(9.17)

where vh is a quadratic function as defined in (9.16). Moreover, as for lin-
ear functions also the inverse inequality (9.15) remains valid for quadratic
functions.

Finally we will discuss bubble functions ϕB
	 and their associated form

functions ψB which are needed, for example, for a stable discretization of the
Stokes problem. The basis functions ϕB

	 are polynomial in the finite element
τ	, and zero on the element boundary ∂τ	. Hence we can extend them by zero
outside of the finite element τ	. Later we will make use of an inverse inequality
for the induced trial space SB

h (TN ) which is spanned by the bubble functions.
For d = 1 we have the form function

ψB(ξ) = ξ(1 − ξ) for ξ ∈ τ

and for the associated basis function ϕB
	 it follows that

‖ϕB
	 ‖2

L2(τ�)
= ∆	

1∫
0

[ξ(1 − ξ)]2dξ =
1
30

h	 .

Moreover,

‖∇xϕB
	 ‖2

L2(τ�)
= h−1

	

1∫
0

[
d

dξ
[ξ(1 − ξ)]

]2
dξ =

1
3
h−1

	 .

Hence we conclude for the one–dimensional bubble function the local inverse
inequality

‖∇xϕB
	 ‖L2(τ�) =

√
10 h−1

	 ‖ϕB
	 ‖L2(τ�).

In the two–dimensional case the form function ψB reads



216 9 Finite Elements

ψB = ξ1ξ2(1 − ξ1 − ξ2) for ξ ∈ τ

and for the associated basis function ϕB
	 it follows that

‖ϕB
	 ‖2

L2(τ�)
= 2∆	

∫
τ

[ξ1ξ2(1 − ξ1 − ξ2)]2dξ =
1

2520
∆	.

Then, by using Lemma 9.1 we conclude

‖∇xϕB
	 ‖2

L2(τ�)
≤ c ‖∇ξψB‖2

L2(τ) = c

∫
τ

∣∣∣∣( ξ2(1 − ξ2 − 2ξ1)
ξ1(1 − ξ1 − 2ξ2)

)∣∣∣∣2 dξ =
c

90

and therefore we obtain the local inverse inequality

‖∇xϕB
	 ‖L2(τ�) ≤ c̃ h−1

	 ‖ϕB
	 ‖L2(τ�). (9.18)

In the three–dimensional case d = 3 we finally have

ψ(ξ) = ξ1ξ2ξ3(1 − ξ1 − ξ2 − ξ3)

and therefore

‖vB
	 ‖L2(τ�) = 6∆	

∫
τ

[ψB(ξ)]2dξ =
1

415800
∆	

as well as

‖∇xvB
	 ‖2

L2(τ�)
≤ c∆	 h−2

	 ‖∇ξψB‖2
L2(τ) =

c

15120
∆	 h−2

	 ,

in particular we conclude the local inverse inequality (9.18) also for d = 3.

9.3 Trial Spaces

The standard trial space to construct an approximate solution of boundary
value problems with second order partial differential equations is the space
S1

h(TN ) of piecewise linear and globally continuous functions. When consider-
ing an admissible decomposition (9.1) those functions are uniquely determined
by the nodal function values vk = vh(xk) which are given at the nodes xk of
the decomposition. Therefore, in the finite element τ	 we then have a local
representation by using local form functions. The dimension dimS1

h(TN ) = M
of the global trial space S1

h(TN ) is obviously equal to the number of nodes in
the decomposition. A basis of the trial space S1

h(TN ) is given by, see Fig. 9.4,

ϕ1
k(x) :=

⎧⎪⎨⎪⎩
1 for x = xk,

0 for x = x	 �= xk,

linear elsewhere.
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Fig. 9.4. Linear basis functions for d = 1, 2.

If vh ∈ S1
h(TN ) is piecewise linear, then we can write

vh(x) =
M∑

k=1

vkϕ1
k(x).

Lemma 9.7. For vh ∈ S1
h(TN ) there hold the spectral equivalence inequalities

1
(d + 1)(d + 2)

M∑
k=1

⎛⎝ ∑
	∈I(k)

∆	

⎞⎠ v2
k ≤ ‖vh‖2

L2(TN ) ≤
1

d + 1

M∑
k=1

⎛⎝ ∑
	∈I(k)

∆	

⎞⎠ v2
k .

Proof. By using Lemma 9.4 we have with

‖vh‖2
L2(TN ) =

N∑
	=1

‖vh‖2
L2(τ�)

≤
N∑

	=1

∆	

d + 1

d+1∑
k=1

v2
	k

=
1

d + 1

M∑
k=1

⎛⎝ ∑
	∈I(k)

∆	

⎞⎠ v2
k

the upper estimate. The lower estimate follows in the same way. ��

Lemma 9.8. For a piecewise linear function vh ∈ S1
h(TN ) there holds the

inverse inequality

‖∇xvh‖2
L2(TN ) ≤ cI

N∑
	=1

h−2
	 ‖vh‖2

L2(τ�)
.

If the decomposition TN is globally quasi–uniform, then we have

‖∇xvh‖L2(TN ) ≤ c h−1 ‖vh‖L2(TN ). (9.19)

Proof. Both estimates follow immediately from Lemma 9.6. ��
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To prove some approximation properties of the trial space S1
h(TN ) we will

use error estimates of certain interpolation and projection operators. For a
globally continuous function v ∈ C(TN ) we define the interpolation in the
space of piecewise linear functions,

Ihv(x) :=
M∑

k=1

v(xk)ϕk(x) ∈ S1
h(TN ). (9.20)

Lemma 9.9. Let v|τ�
∈ H2(τ	)be given. Then there holds the local error esti-

mate
‖v − Ihv‖L2(τ�) ≤ c h2

	 |v|H2(τ�).

Proof. For the error of the piecewise linear interpolation we first have, by
using the norm equivalence inequalities of Theorem 9.3,

‖v − Ihv‖L2(τ�) ≤ c∆	 ‖ṽ	 − Iτ ṽ	‖L2(τ),

where Iτ is the linear interpolation operator with respect to the reference
element τ . Then,

‖Iτ ṽ	‖L2(τ) ≤ meas (τ) ‖ṽ	‖L∞(τ)

and the use of the Sobolev imbedding theorem (Theorem 2.5) gives

‖ṽ	‖L∞(τ) ≤ c ‖ṽ	‖H2(τ) .

Therefore we conclude that the linear operator

Iτ : H2(τ) → L2(τ)

is bounded. For an arbitrary but fixed w ∈ L2(τ) we define the linear func-
tional

f(u) :=
∫
τ

[(I − Iτ )u(ξ)]w(ξ)dξ .

If u ∈ H2(τ) is given, then we have

|f(u)| =

∣∣∣∣∣∣
∫
τ

[(I − Iτ )u(ξ)]w(ξ)dξ

∣∣∣∣∣∣
≤ ‖(I − Iτ )u‖L2(τ)‖w‖L2(τ) ≤ c ‖u‖H2(τ)‖w‖L2(τ) .

For any linear function q ∈ P1(τ) we have Iτq = q and therefore f(q) = 0 for
all q ∈ P1(τ). Thus, all assumptions of the Bramble–Hilbert lemma (Theorem
2.8) are satisfied implying

|f(u)| ≤ c̃ ‖w‖L2(τ)|u|H2(τ) .

When choosing u := ṽ	 and w := (I − Iτ )ṽ	 we obtain
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‖(I − Iτ )ṽ	‖2
L2(τ) =

∫
τ

[(I − I	)ṽ	(ξ)]2dξ =
∫
τ

[(I − I	)ṽ	]w(ξ)dξ = |f(ṽ	)|

≤ c̃ ‖w‖L2(τ)|ṽ	|H2(τ) ≤ c̃ ‖(I − Iτ )ṽ	‖L2(τ)|ṽ	|H2(τ)

and hence the estimate

‖(I − Iτ )ṽ	‖L2(τ) ≤ c̃ |ṽ	|H2(τ)

follows. Altogether we therefore have

‖v − Ihv‖L2(τ) ≤ c∆	 |ṽ	|H2(τ) ≤ ĉ h2
	 |v|H2(τ�)

by applying the norm equivalence theorem (Theorem 9.3). ��
As a direct consequence of the above we conclude the global error estimate

‖v − Ihv‖2
L2(TN ) ≤ c

N∑
	=1

h4
	 |v|2H2(τ�)

. (9.21)

In the same way we obtain also the error estimate

‖v − Ihv‖2
H1(TN ) ≤ c

N∑
	=1

h2
	 |v|2H2(τ�)

. (9.22)

The application of the interpolation operator requires the global continuity of
the given function to be interpolated. To weaken this strong assumption we
now consider projection operators which are defined via variational problems.
For a given u ∈ L2(TN ) we define the L2 projection Qhu ∈ S1

h(TN ) as the
unique solution of the variational problem

〈Qhu, vh〉L2(TN ) = 〈u, vh〉L2(TN ) for all vh ∈ S1
h(TN ). (9.23)

When choosing vh = Qhu as a test function we obtain the stability estimate

‖Qhu‖L2(TN ) ≤ ‖u‖L2(TN ) for all u ∈ L2(TN ), (9.24)

and by using the Galerkin orthogonality

〈u − Qhu, vh〉L2(TN ) = 0 for all vh ∈ S1
h(TN ) (9.25)

we conclude

‖u − Qhu‖2
L2(TN ) = 〈u − Qhu, u − Qhu〉L2(TN )

= 〈u − Qhu, u〉L2(TN )

≤ ‖u − Qhu‖L2(TN )‖u‖L2(TN )

and therefore
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‖u − Qhu‖L2(TN ) ≤ ‖u‖L2(TN ) for all u ∈ L2(TN ). (9.26)

On the other hand, again by using the Galerkin orthogonality (9.25) we have

‖u − Qhu‖2
L2(TN ) = 〈u − Qhu, u − Qhu〉L2(TN )

= 〈u − Qhu, u − Ihu〉L2(TN )

≤ ‖u − Qhu‖L2(TN )‖u − Ihu‖L2(TN )

and therefore the error estimate

‖u − Qhu‖2
L2(TN ) ≤ ‖u − Ihu‖2

L2(TN ) ≤ c

N∑
	=1

h4
	 |v|2H2(τ�)

(9.27)

as well as
‖u − Qhu‖L2(TN ) ≤ c h2 ‖v‖H2(TN ).

By interpolating this estimate with the error estimate (9.26) this yields the
error estimate

‖u − Qhu‖L2(TN ) ≤ c h ‖v‖H1(TN ). (9.28)

By Q1
h : H1(TN ) → S1

h(TN ) we denote the H1 projection which is defined as
the unique solution of the variational problem

〈Q1
hu, vh〉H1(TN ) = 〈u, vh〉H1(TN ) for all vh ∈ S1

h(TN ). (9.29)

As above we find the stability estimate

‖Q1
hu‖H1(TN ) ≤ ‖u‖H1(TN ) for all u ∈ H1(TN ) (9.30)

and the error estimate

‖u − Q1
hu‖H1(TN ) ≤ ‖u‖H1(TN ) (9.31)

as well as

‖u − Q1
hu‖2

H1(TN ) ≤ ‖u − Ihu‖2
H1(TN ) ≤ c

N∑
	=1

h2
	 |u|2H2(τ�)

. (9.32)

Hence we obtain the approximate property of the trial space S1
h(TN ) of piece-

wise linear and continuous functions.

Theorem 9.10. Let u ∈ Hs(TN ) with s ∈ [σ, 2] and σ = 0, 1. Then there
holds the approximation property

inf
vh∈S1

h(TN )
‖u − vh‖Hσ(TN ) ≤ c hs−σ |u|Hs(TN ). (9.33)
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Proof. For σ = 0 and s = 2 the assertion is a direct consequence of the error
estimate (9.27). For s = 0 the approximation property is just the error esti-
mate (9.26). For s ∈ (0, 2) we then apply the interpolation theorem (Theorem
2.18). For σ = 1 we use the error estimates (9.32) and (9.31) to obtain the
result in the same way. ��

In what follows we will investigate further properties of the H1 projection
Q1

h which are needed later on.

Lemma 9.11. For s ∈ (0, 1] let w ∈ H1
0 (TN ) be the uniquely determined

solution of the variational problem

〈w, v〉H1(TN ) = 〈u − Q1
hu, v〉H1−s(TN ) for all v ∈ H1(TN ). (9.34)

If we assume w ∈ H1+s(TN ) satisfying

‖w‖H1+s(TN ) ≤ c ‖u − Q1
hu‖H1−s(TN ),

then there holds the error estimate

‖u − Q1
hu‖H1−s(TN ) ≤ c hs ‖u − Q1

hu‖H1(TN ) . (9.35)

Proof. Using the assumptions we conclude

‖u − Q1
hu‖2

H1−s(TN ) = 〈u − Q1
hu, u − Q1

hu〉H1−s(TN )

= 〈w, u − Q1
hu〉H1(TN )

= 〈w − Q1
hw, u − Q1

hu〉H1(TN )

≤ ‖w − Q1
hw‖H1(TN )‖u − Q1

hu‖H1(TN )

≤ c hs |w|H1+s(TN ) ‖u − Q1
hu‖H1(TN )

≤ c̃ hs ‖u − Q1
hu‖H1−s(TN )‖u − Q1

hu‖H1(TN )

from which the error estimate follows. ��

Remark 9.12. In Lemma 9.11, the best possible value of s ∈ (0, 1] depends on
the regularity of the decomposition TN . If, for example, TN is convex, then
we obtain s = 1 [66]. In the case of a corner domain, see, for example, [49].

Note that due to S1
h(TN ) ⊂ H1+s(TN ) for s ∈ (0, 1

2 ) the H1 projection Q1
hu is

well defined also for functions u ∈ H1−s(TN ) and s ∈ (0, 1
2 ). As in the proof

of Lemma 9.11 we then can conclude the stability estimate

‖Q1
hu‖H1−s(TN ) ≤ c ‖u‖H1−s(TN ) for all u ∈ H1−s(TN ). (9.36)

Using the error estimates of Lemma 9.11 for s = 1 we can show the stability
of the L2 projection in H1(TN ).
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Lemma 9.13. Let the assumptions of Lemma 9.11 be satisfied for s = 1.
Then, the L2 projection Qh : H1(TN ) → S1

h(TN ) ⊂ H1(TN ) is bounded, i.e.

‖Qhv‖H1(TN ) ≤ c ‖v‖H1(TN ) for all v ∈ H1(TN ).

Proof. Let Q1
h : H1(TN ) → S1

h(TN ) ⊂ H1(TN ) be the H1 projection as defined
in (9.29). By using the triangle inequality, the stability estimate (9.30), the
global inverse inequality (9.19), and the projection property Qhvh = vh for
all vh ∈ S1

h(TN ) we obtain

‖Qhv‖H1(TN ) ≤ ‖Q1
hv‖H1(TN ) + ‖Qhv − Q1

hv‖H1(TN )

≤ ‖v‖H1(TN ) + cI h−1 ‖Qhv − Q1
hv‖L2(TN )

= ‖v‖H1(TN ) + cI h−1 ‖Qh(u − Q1
hu)‖L2(TN ).

By applying the stability estimate (9.24) for Qh we further conclude

‖Qhv‖H1(TN ) ≤ ‖v‖H1(TN ) + cI h−1 ‖v − Q1
hv‖L2(TN ).

Now the stability estimate follows from the error estimate (9.35) for Q1
h and

from the stability estimate (9.30). ��

Remark 9.14. The L2 projection Qh : H1(TN ) → S1
h(TN ) ⊂ H1(TN ) is also

bounded when the decomposition TN is locally adaptive refined, if the ratio
of local mesh sizes of neighboring elements does not vary too strongly [27].

In what follows we will always assume that the L2 projection is stable in
H1(TN ). Then, by using an interpolation argument, it follows that the error
estimate

‖u − Qhu‖Hs(TN ) ≤ c h1−s ‖u‖H1(TN ) for all u ∈ H1(TN ) (9.37)

is valid.
Based on the trial space of piecewise linear and globally continuous func-

tions we can introduce trial spaces of locally higher polynomial degrees.
In the one–dimensional case d = 1 we can define quadratic basis functions

locally by
ϕ2

	(x) = 4ξ(1 − ξ) for x = x	1 + ξ h	 ∈ τ	.

An arbitrary function vh ∈ S2
h(TN ) then can be written as

vh(x) =
M∑

k=1

vkϕ1
k(x) +

N∑
	=1

vM+	ϕ
2
	(x).

Therefore we have dim S2
h(TN ) = M + N . For both the two–dimensional case

d = 2 and the three–dimensional case d = 3 we have to ensure the continuity
of the quadratic basis functions ϕ2

	 . Since the quadratic form functions are
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defined locally with respect to the edges of the reference element, the support
of a global quadratic basis function consists of those finite elements which
share the corresponding edge. Denote by K the number of all edges of the
decomposition (9.1), then we can write for d = 2, 3 the global representation

vh(x) =
M∑

k=1

vkϕ1
k(x) +

K∑
j=1

vM+jϕ
2
j (x)

as well as the local representation

vh(x) =

1
2 (d+1)(d+2)∑

i=1

v	i
ψ2

i (ξ) for x = x	1 + J	ξ, ξ ∈ τ.

Here, �1, . . . , �d+1 denote, as before, the indices of the associated global nodes,
while �d+2, . . . , � 1

2 (d+1)(d+2) are the indices of the associated global edges, see
also Fig. 9.3 for d = 2.

Lemma 9.15. For vh ∈ S2
h(TN ) there hold the spectral equivalence inequalities

c1

dimS2
h(TN )∑

k=1

dkv2
k ≤ ‖vh‖2

L2(TN ) ≤ c2

dimS2
h(TN )∑

k=1

dkv2
k

with

dk :=

⎧⎨⎩
∑

	∈I(k)

∆	 for k = 1, . . . , M,

∆k−M for k = M + 1, . . . , M + N

in the one–dimensional case d = 1, and

dk :=

⎧⎪⎪⎨⎪⎪⎩
∑

	∈I(k)

∆	 for k = 1, . . . , M,

∑
	∈K(k−M)

∆	 for k = M + 1, . . . , M + K

when d = 2, 3.

Proof. First we will use the local spectral equivalence inequalities (9.17). For
d = 1 we have1

‖vh‖2
L2(TN ) =

N∑
	=1

‖vh‖2
L2(τ�)

�
N∑

	=1

∆	

3∑
i=1

v2
	i

=
M∑

k=1

⎛⎝ ∑
	∈I(k)

∆	

⎞⎠ v2
k +

N∑
	=1

∆	v
2
M+	.

1 The equivalence A � B means that there are positive constants c1 and c2 such
that c1A ≤ B ≤ c2A.
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In the same way we have for d = 2, 3

N∑
	=1

‖vh‖2
L2(τ�)

�
N∑

	=1

∆	

3∑
k=1

v2
	k

=
M∑

k=1

⎛⎝ ∑
	∈I(k)

∆	

⎞⎠ v2
k +

K∑
j=1

⎛⎝ ∑
	∈K(j)

∆	

⎞⎠ v2
M+j . ��

By Ih : C(TN ) → S2
h(TN ) we denote the interpolation operator into the

trial space of locally quadratic functions. The interpolation nodes are hereby
all M nodes of the decomposition (9.1) and all N element midpoints in the
one–dimensional case d = 1 and all K edge midpoints in the cases d = 2, 3.
Note that the interpolation operator Ih is exact for locally quadratic functions.
Analogous to Lemma 9.9 as well as to the global error estimates (9.21) and
(9.22) we can prove the following error estimates, when assuming u ∈ H3(TN ),

‖u − Ihu‖L2(TN ) ≤ c

N∑
	=1

h6
	 |u|2H3(τ�)

,

and

‖u − Ihu‖H1(TN ) ≤ c

N∑
	=1

h4
	 |u|2H3(τ�)

.

As in the case of piecewise linear basis functions we can show a global ap-
proximation property.

Theorem 9.16. Let u ∈ Hs(TN ) with s ∈ [σ, 3] and σ = 0, 1. Then there
holds

inf
vh∈S2

h(TN )
‖u − vh‖Hσ(TN ) ≤ c hs−σ |u|Hs(TN ).

By SB
h (TN ) = span{ϕB

	 }N
	=1 we denote the global trial space of local bubble

functions. For an arbitrary given vh ∈ SB
h (TN ) we can write

vh(x) =
N∑

	=1

vB
	 ϕB

	 (x).

If the decomposition TN is globally quasi–uniform we can derive, by using the
local inverse inequality (9.18), the global inverse inequality

‖∇vh‖L2(TN ) ≤ cI h−1 ‖vh‖L2(TN ) for all vh ∈ SB
h (TN ). (9.38)

For a given u ∈ L2(TN ) we denote by QB
h : L2(TN ) → SB

h (TN ) the projection
into the trial space SB

h (TN ) which is the unique solution of the variational
problem ∫

τ�

QB
h v(x)dx =

∫
τ�

v(x)dx for all � = 1, . . . , N. (9.39)
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Lemma 9.17. For v ∈ L2(TN ) let QB
h v ∈ SB

h (TN ) be the projection as defined
in (9.39). Then there holds the stability estimate

‖QB
h v‖L2(TN ) ≤

√
2 ‖v‖L2(TN ).

Proof. From (9.39) we find for the coefficients of vh ∈ SB
h (TN )

v	 =
cd

∆	

∫
τ�

v(x)dx, cd =

⎧⎨⎩
6 for d = 1,
60 for d = 2,
840 for d = 3.

Hence we have

‖QB
h v‖L2(τ�) = |v	|2 ‖ϕB

	 ‖2
L2(τ�)

=
c2
d

∆2
	

∆	

cB
d

⎡⎣∫
τ�

v(x)dx

⎤⎦2

with

cB
d =

⎧⎨⎩
30 for d = 1,

2520 for d = 2,
415800 for d = 3.

By using c2
d/cB

d < 2 for d = 1, 2, 3 and by applying the Cauchy–Schwarz
inequality we therefore obtain

‖QB
h v‖L2(τ�) ≤ 2

∆	

⎡⎣∫
τ�

v(x)dx

⎤⎦2

≤ 2
∆	

∫
τ�

dx

∫
τ�

[v(x)]2dx = 2 ‖v‖2
L2(τ�)

.

Taking the sum over all elements this gives the desired stability estimate. ��

9.4 Quasi Interpolation Operators

For a given function v ∈ H1(TN ) we have considered the piecewise linear
interpolation (9.20). By using Lemma 9.9 there holds for v ∈ H2(TN ) the
local error estimate

‖v − Ihv‖L2(τ�) ≤ c h2
	 |v|H2(τ�)

where we have to assume the continuity of the function to be interpolated.
In particular, the interpolation operator Ih is not defined for a general
v ∈ H1(TN ) and d = 2, 3, and therefore Ih is not a continuous operator
in H1(TN ).

On the other hand, the L2 projection

Qh : L2(TN ) → S1
h(TN ) ⊂ L2(TN )
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as defined in (9.23) is bounded (see (9.24)), and there holds the global error
estimate (9.27),

‖u − Qhu‖L2(TN ) ≤ c h2 |u|H2(TN ).

As already stated in Remark 9.14, the L2 projection

Qh : H1(TN ) → S1
h(TN ) ⊂ H1(TN )

is bounded, but it is not possible to derive a local error estimate. Hence we
aim to construct a bounded projection operator

Ph : H1(TN ) → S1
h(TN ) ⊂ H1(TN ),

which admits a local error estimate. This can be done by using quasi interpo-
lation operators [42].

For any node xk of the locally uniform decomposition TN we define

ωk :=
⋃

	∈I(k)

τ 	

to be the convex support of the associated piecewise linear basis function
ϕ1

k ∈ S1
h(TN ). By ĥk we denote the averaged mesh size of ωk which is equiv-

alent to the local mesh sizes h	 of all finite elements τ	 with � ∈ I(k) when
the decomposition is assumed to be locally quasi–uniform. Then we introduce
Qk

h : L2(ωk) → S1
h(ωk) as the local L2 projection which is defined by the

variational formulation

〈Qk
hu, vh〉L2(ωk) = 〈u, vh〉L2(ωk) for all vh ∈ S1

h(ωk),

and by using (9.27) there holds the error estimate

‖u − Qk
hu‖L2(ωk) ≤ c ĥk |u|H1(ωk)

As in (9.24) we can prove the stability estimate

‖Qk
hu‖L2(ωk) ≤ ‖u‖L2(ωk) for all u ∈ L2(ωk)

and by applying Lemma 9.13 there holds

‖Qk
hu‖H1(ωk) ≤ c ‖u‖H1(ωk) for all u ∈ H1(ωk).

By using the local projection operators we can define the quasi interpolation
operator or Clement operator

(Phu)(x) =
M∑

k=1

(Qk
hu)(xk)ϕ1

k(x).

It is easy to check that Phvh = vh ∈ S1
h(TN ).
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Theorem 9.18. [27, 42, 139] For u ∈ H1(TN ) there holds the local error
estimate

‖u − Phu‖L2(τ�) ≤ c
∑

k∈J(	)

ĥk |u|H1(ωk) for all � = 1, . . . , N, (9.40)

and the global stability estimate

‖Phu‖H1(TN ) ≤ c ‖u‖H1(TN ). (9.41)

Proof. Let τ	 be an arbitrary but fixed finite element and let k̃ ∈ J(�) be an
arbitrary fixed index. For x ∈ τ	 we can write

(Ph)(x) = (Qk̃
hu)(x) +

∑
k∈J(	),k �=k̃

[(Qk
hu)(xk) − (Qk̃

h)(xk)]ϕ1
k(x).

By using Lemma 9.4 we have

‖ϕk‖L2(τ�) ≤ ∆	

d + 1
,

and therefore

‖u−Phu‖L2(τ�) ≤ c1 ĥk̃ |u|H1(ωk̃)+c2 h
d/2
	

∑
k∈J(	),k �=k̃

|(Qk
hu)(xk)−(Qk̃

hu)(xk)| .

For an arbitrary vh ∈ S1
h(TN ) we conclude from Corollary 9.5

‖vh‖L∞(τ�) ≤ c h
−d/2
	 ‖vh‖L2(τ�).

Therefore,

|(Qk
hu)(xk) − (Qk̃

hu)(xk)| ≤ ‖Qk
hu − Qk̃

hu‖L∞(τ�)

≤ c h
−d/2
	 ‖Qk

hu − Qk̃
hu‖L2(τ�)

≤ c h
−d/2
	

{
‖Qk

hu − u‖L2(τ�) + ‖u − Qk̃
h‖L2(τ�)

}
≤ c h

−d/2
	

{
hk |u|H1(ωk) + hk̃ |u|H1(ωk̃)

}
,

from which the error estimate (9.40) follows. The stability estimate (9.41) can
be shown in the same way. ��

9.5 Exercises

9.1 For an admissible decomposition of a bounded domain Ω ⊂ R
2 into

triangular finite elements τ	 and for piecewise linear continuous basis functions
ϕk the mass matrix Mh is defined by



228 9 Finite Elements

Mh[j, k] =
∫
Ω

ϕk(x)ϕj(x)dx, j, k = 1, . . . , M.

Find a diagonal matrix Dh and positive constants c1 and c2 such that the
spectral equivalence inequalities

c1 (Dhu, u) ≤ (Mhu, u) ≤ c2 (Dhu, u)

are satisfied for all u ∈ R
M .

9.2 For the two–dimensional reference element τ ⊂ R
2 the local quadratic

shape functions are given by

ψ2
1(ξ) = 1 − ξ1 − ξ2, ψ2

2(ξ) = ξ1, ψ2
3(ξ) = ξ2,

ψ2
4(ξ) = 4ξ1(1 − ξ1 − ξ2), ψ2

5(ξ) = 4ξ1ξ2, ψ2
6(ξ) = 4ξ2(1 − ξ1 − ξ2).

Compute the local mass matrix M	 as well as the minimal and maximal
eigenvalues of M	.
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Boundary Elements

For the approximate solution of the boundary integral equations as considered
in Chapter 7 we introduce suitable finite–dimensional trial spaces. These are
based on appropriate parametrizations of the boundary Γ = ∂Ω and on the
use of finite elements in the parameter domain. In particular we can think of
boundary elements as finite elements on the boundary.

10.1 Reference Elements

Let Γ = ∂Ω be a piecewise smooth Lipschitz boundary with Γ =
⋃J

j=1 Γ j

where any boundary part Γj allows a local parametrization Γj = χj(Q) with
respect to some parameter domain Q ⊂ R

d−1. We assume that

cχ
1 ≤ |detχj(ξ)| ≤ cχ

2 for all ξ ∈ Q, j = 1, . . . , J. (10.1)

Further we consider a sequence {ΓN}N∈N of decompositions (meshes)

ΓN =
N⋃

	=1

τ 	 (10.2)

with boundary elements τ	. We assume that for each boundary element τ	

there exists a unique index j with τ	 ⊂ Γj . A decomposition of the boundary
part Γj into boundary elements τ	 implies a decomposition of the parameter
domain Q into finite elements qj

	 with τ	 = χj(q
j
	 ). In the simplest case the

boundary elements τ	 are intervals in the two–dimensional case d = 2 or
triangles in the three–dimensional case d = 3, see Fig. 10.1.

Example 10.1. The boundary of the two–dimensional L shaped domain as de-
picted in Fig. 10.1 can be described by using the following parametrization
for ξ ∈ Q = (0, 1):
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Fig. 10.1. Boundary discretization with 32 and 56 boundary elements.

χ1(ξ) =

⎛⎝ ξ

4
0

⎞⎠ , χ2(ξ) =

⎛⎜⎝
1
4
ξ

4

⎞⎟⎠ , χ3(ξ) =

⎛⎜⎝
1 − 2ξ

4
1
4

⎞⎟⎠ ,

χ4(ξ) =

⎛⎜⎝ −1
4

1 − 2ξ

4

⎞⎟⎠ , χ5(ξ) =

⎛⎜⎝
ξ − 1

4

−1
4

⎞⎟⎠ , χ6(ξ) =

⎛⎝ 0

ξ − 1
4

⎞⎠ .

For j = 1, 2, 5, 6 the parameter domain Q = (0, 1) is decomposed into 4 equal
sized elements qj

	 while for j = 3, 4 we have 8 elements qj
	 to be used.

By {xk}M
k=1 we denote the set of all nodes of the boundary decomposition

ΓN . The index set I(k) describes all boundary elements τ	 where xk is a node,
while J(�) is the index set of all nodes xk describing the boundary element
τ	. In the three–dimensional case d = 3 the boundary decomposition (10.2) is
called admissible, if two neighboring boundary elements share either a node
or an edge, see also Fig. 9.2. Analogous to (9.2) we compute by

∆	 :=
∫
τ�

dsx

the volume and by
h	 := ∆

1/(d−1)
	

the local mesh size of the boundary element τ	. Then,

h := max
	=1,...,N

h	
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is the global mesh size of the boundary decomposition (10.2). Moreover,

d	 := sup
x,y∈τ�

|x − y|

is the diameter of the boundary element τ	. Finally,

hmin := min
	=1,...,N

h	.

is the minimal mesh size. The family of boundary decompositions (10.2) is
called globally quasi–uniform if

hmax

hmin
≤ cG

is satisfied with a global constant cG ≥ 1 which is independent of N ∈ N. The
family {ΓN}N∈N is called locally quasi–uniform if

h	

hj
≤ cL for � = 1, . . . , N

is satisfied for all neighboring elements τj of τ	, i.e. τ	 and τj share either a
node or an edge.

In the two–dimensional case d = 2 a boundary element τ	 with nodes x	1

and x	2 can be described via the parametrization

x(ξ) = x	1 + ξ(x	2 − x	1) for ξ ∈ τ = (0, 1)

where τ = (0, 1) is the reference element, and we have

d	 = h	 = ∆	 =
∫
τ�

dsx =

1∫
0

√
[x′

1(ξ)]2 + [x′
2(ξ)]2dξ = |x	2 − x	1 | .

In the three–dimensional case d = 3 we consider plane triangular boundary
elements τ	 with nodes x	1 , x	2 and x	3 . The parametrization of τ	 with respect
to the reference element

τ :=
{
ξ ∈ R

2 : 0 < ξ1 < 1, 0 < ξ2 < 1 − ξ1

}
then reads

x(ξ) = x	1 + ξ1(x	2 − x	1) + ξ2(x	3 − x	1) for ξ ∈ τ.

For the computation of the boundary element volume we obtain

∆	 =
∫
τ�

dsx =
∫
τ

√
EG − F 2dξ =

1
2

√
EG − F 2
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where

E =
3∑

i=1

[
∂

∂ξ1
xi(ξ)

]2
= |x	2 − x	1 |2,

G =
3∑

i=1

[
∂

∂ξ2
xi(ξ)

]2
= |x	3 − x	1 |2,

F =
3∑

i=1

∂

∂ξ1
xi(ξ)

∂

∂ξ2
xi(ξ) = (x	2 − x	1 , x	3 − x	1) .

In the three–dimensional case d = 3 we assume that all boundary elements τ	

are shape regular, i.e. there exists a constant cB independent of the boundary
decomposition such that

d	 ≤ cB h	 for � = 1, . . . , N. (10.3)

By using

J	 =

⎛⎝x	2,1 − x	1,1 x	3,1 − x	1,1

x	2,2 − x	1,2 x	3,2 − x	1,2

x	2,3 − x	1,3 x	3,3 − x	1,3

⎞⎠
we can write a function v(x) for x ∈ τ	 as

v(x) = v(x	1 + J	ξ) =: ṽ	(ξ) for ξ ∈ τ.

Vice versa, for a function ṽ(ξ) which is given for ξ ∈ τ we can define a function
v	(x) for x ∈ τ	,

v	(x) := v(x	1 + J	ξ) = ṽ(ξ) for ξ ∈ τ.

In the two–dimensional case d = 2 we have

‖v‖2
L2(τ�)

=
∫
τ�

|v(x)|2dsx =
∫
τ

|ṽ	(ξ)|2h	dξ = ∆	 ‖ṽ	‖2
L2(τ)

and for the three–dimensional case d = 3 it follows that

‖v‖2
L2(τ�)

=
∫
τ�

|v(x)|2dsx = 2∆	

∫
τ

|ṽ	(ξ)|2dξ = 2∆	 ‖ṽ	‖2
L2(τ).

To define Sobolev spaces Hs(Γ ) for s ≥ 1 we have to use a parametrization
Γj = χj(Q), see Section 2.5. In particular,

|v|2H1(τ�)
:=
∫
qj

�

|∇ξv(χj(ξ))|2dξ

and
∆	 =

∫
τ�

dsx =
∫
qj

�

det|χj(ξ)| dξ.
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10.2 Trial Spaces

With respect to the boundary decomposition (10.2) we now define trial spaces
of local polynomials. In particular we will consider the trial space S0

h(Γ ) of
piecewise constant functions and the trial space S1

h(Γ ) of piecewise linear
continuous functions. By considering appropriate interpolation and projection
operators we will prove certain approximation properties of these trial spaces.

Let
S0

h(Γ ) := span{ϕ0
k}N

k=1

be the space of functions which are piecewise constant with respect to the
boundary decomposition (10.2). The basis functions ϕ0

k are given by

ϕ0
k(x) =

{
1 for x ∈ τk,

0 elsewhere.

If u ∈ L2(Γ ) is a given function, the L2 projection Qhu ∈ S0
h(Γ ) is defined as

the unique solution of the variational problem

〈Qhu, vh〉L2(Γ ) = 〈u, vh〉L2(Γ ) for all vh ∈ S0
h(Γ ). (10.4)

This is equivalent to finding the coefficient vector u ∈ R
N as the solution of

N∑
k=1

uk〈ϕ0
k, ϕ0

	〉L2(Γ ) = 〈u, ϕ0
	〉L2(Γ ) for � = 1, . . . , N.

Due to

〈ϕ0
k, ϕ0

	〉L2(Γ ) =
∫
Γ

ϕ0
k(x)ϕ0

	(x)dsx =

{
∆k for k = �,

0 for k �= �

we obtain
uk =

1
∆k

∫
τk

u(x)dsx for k = 1, . . . , N.

Theorem 10.2. Let u ∈ Hs(Γ ) be given for some s ∈ [0, 1], and let
Qhu ∈ S0

h(Γ ) be the L2 projection as defined by (10.4). Then there hold the
error estimates

‖u − Qhu‖2
L2(Γ ) ≤ c

N∑
k=1

h2s
k |u|2Hs(τk) (10.5)

and
‖u − Qhu‖L2(Γ ) ≤ c hs |u|Hs(Γ ). (10.6)
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Proof. By using the Galerkin orthogonality

〈u − Qhu, vh〉L2(Γ ) = 0 for all vh ∈ S0
h(Γ )

we obtain

‖u − Qhu‖2
L2(Γ ) = 〈u − Qhu, u − Qhu〉L2(Γ )

= 〈u − Qhu, u〉L2(Γ ) ≤ ‖u − Qhu‖L2(Γ )‖u‖L2(Γ )

and therefore
‖u − Qhu‖L2(Γ ) ≤ ‖u‖L2(Γ )

which is the error estimate for s = 0.
We now consider s ∈ (0, 1). For x ∈ τk we have Qhu(x) = uk and therefore

u(x) − Qhu(x) =
1

∆k

∫
τk

[u(x) − u(y)]dsy for x ∈ τk.

By taking the square and applying the Cauchy–Schwarz inequality we con-
clude

|u(x) − Qhu(x)|2 =
1

∆2
k

⎛⎝ ∫
τk

[u(x) − u(y)]dsy

⎞⎠2

=
1

∆2
k

⎛⎝ ∫
τk

[u(x) − u(y)]

|x − y| d−1
2 +s

|x − y| d−1
2 +sdsy

⎞⎠2

≤ 1
∆2

k

∫
τk

[u(x) − u(y)]2

|x − y|d−1+2s
dsy

∫
τk

|x − y|d−1+2sdsy

≤ dd−1+2s
k

1
∆k

∫
τk

|u(x) − u(y)|2
|x − y|d−1+2s

dsy.

By using the shape regularity (10.3) and ∆k = hd−1
k we can replace the

diameter dk and the area ∆k by the local mesh size hk,

|u(x) − Qhu(x)|2 ≤ cd−1+2s
B h2s

k

∫
τk

[u(x) − u(y)]2

|x − y|d−1+2s
dsy.

When integrating with respect to x ∈ τk this gives

‖u − Qhu‖2
L2(τk) ≤ cd−1+2s

B h2s
k |u|2Hs(τk),

and by taking the sum over all boundary elements we obtain the error estimate
for s ∈ (0, 1).
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To prove the error estimate for s = 1 we first consider

u(x) − Qhu(x) =
1

∆k

∫
τk

[u(x) − u(y)]dsy for x ∈ τk.

By using the local parametrization τk = χj(q
j
k) we further get

u(x) − Qhu(x) =
1

∆k

∫
qj

k

[u(χj(ξ)) − u(χj(η))]|detχj(η)| dη. (10.7)

In the two–dimensional case d = 2 we have

u(x) − Qhu(x) =
1

∆k

∫
qj

k

ξ∫
η

d

dt
u(χj(t))dt |detχj(η)| dη

and therefore

|u(x) − Qhu(x)| ≤ 1
∆k

∫
qj

k

∫
qj

k

∣∣∣∣ ddt
u(χj(t))|dt

∣∣∣∣ detχj(η)| dη

=
1

∆k

∫
qj

k

|detχj(η)| dη

∫
qj

k

|∇ξu(χj(ξ))|dξ

=
∫
qj

k

|∇ξu(χj(ξ))|dξ.

By taking the square and applying the Cauchy–Schwarz inequality we find by
considering (10.1)

|u(x) − Qhu(x)|2 =

∣∣∣∣∣∣∣
∫
qj

k

|∇ξu(χj(ξ))|dξ

∣∣∣∣∣∣∣
2

≤
∫
qj

k

dξ

∫
qj

k

|∇ξu(χj(ξ))|2dξ

≤ 1
cχ
1

∫
qj

k

|detχj(ξ)|dξ |u|2H1(τk) =
1
cχ
1

∆k |u|2H1(τk).

When integrating with respect to x ∈ τk and using ∆k = hk for d = 2 this
gives ∫

τk

[u(x) − Qhu(x)]2dsx ≤ 1
cχ
1

h2
k |u|2H1(τk),

and by taking the sum over all boundary elements τk we finally obtain the
error estimate for s = 1 and d = 2.
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In the three–dimensional case d = 3 we have from the representation (10.7)

u(x) − Qhu(x) =
1

∆k

∫
qj

k

[u(χj(ξ)) − u(χj(η))]|detχj(η)| dη

=
1

∆k

∫
qj

k

1∫
0

d

dt
u(χj(η + t(ξ − η)))dt |detχj(η)| dη

=
1

∆k

∫
qj

k

1∫
0

(ξ − η) · ∇ηu(χj(η + t(ξ − η)))dt |detχj(η)| dη.

Taking the square

|u(x)−Qhu(x)|2 ≤ 1
∆2

k

⎛⎜⎝∫
qj

k

1∫
0

(ξ − η) · ∇ηu(χj(η + t(ξ − η)))dt |detχj(η)| dη

⎞⎟⎠
2

and by applying the Cauchy–Schwarz inequality this gives

|u(x) − Qhu(x)|2 ≤ 1
∆2

k

∫
qj

k

∣∣∣∣∣∣
1∫

0

∇ηu(χj(η + t(ξ − η)))dt

∣∣∣∣∣∣
2

dη

∫
qj

k

|ξ − η|2|detχj(η)|2dη

≤ c

∫
qj

k

∣∣∣∣∣∣
1∫

0

∇ηu(χj(η + t(ξ − η)))dt

∣∣∣∣∣∣
2

dη.

When integrating over τk we obtain

∫
τk

[u(x) − Qhu(x)]2dsx ≤ c

∫
qj

k

∫
qj

k

∣∣∣∣∣∣
1∫

0

∇ηu(χj(η + t(ξ − η)))dt

∣∣∣∣∣∣
2

dη dξ

≤ c

∫
qj

k

∫
qj

k

1∫
0

|∇ηu(χj(η + t(ξ − η)))|2 dt dη dξ

≤ c∆k

∫
qj

k

|∇ηu(χj(η)|2 dξ = c∆k |u|2H1(τk)



10.2 Trial Spaces 237

and with ∆k = h2
k for d = 3 we find

‖u − Qhu‖2
L2(τk) ≤ c h2

k |u|2H1(τk).

By taking the sum over all boundary elements we finally get the error estimate
for s = 1 and d = 3, ��

Corollary 10.3. Let u ∈ Hs(Γ ) be given for some s ∈ [0, 1]. For σ ∈ [−1, 0)
then there hold the error estimates

‖u − Qhu‖2
Hσ(Γ ) ≤ c h−2σ

N∑
k=1

h2s
k |u|2Hs(τk)

and
‖u − Qhu‖Hσ(Γ ) ≤ c hs−σ |u|Hs(Γ ). (10.8)

Proof. For σ ∈ [−1, 0) we have by duality, by using the definition (10.4) of
the L2 projection, and by applying the Cauchy–Schwarz inequality

‖u − Qhu‖Hσ(Γ ) = sup
0 �=v∈H−σ(Γ )

|〈u − Qhu, v〉L2(Γ )|
‖v‖H−σ(Γ )

= sup
0 �=v∈H−σ(Γ )

|〈u − Qhu, v − Qhv〉L2(Γ )|
‖v‖H−σ(Γ )

≤ ‖u − Qhu‖L2(Γ ) sup
0 �=v∈H−σ(Γ )

‖v − Qhv‖L2(Γ )

‖v‖H−σ(Γ )

.

By using the error estimate (10.5) for ‖u−Qhu‖L2(Γ ) and the estimate (10.6)
for ‖v − Qhv‖L2(Γ ) the assertion follows. ��

Altogether we can formulate the approximation property of the trial space
S0

h(Γ ) of piecewise constant functions.

Theorem 10.4. Let σ ∈ [−1, 0]. For u ∈ Hs(Γ ) with some s ∈ [σ, 1] there
holds the approximation property of S0

h(Γ )

inf
vh∈S0

h(Γ )
‖u − vh‖Hσ(Γ ) ≤ c hs−σ |u|Hs(Γ ). (10.9)

Proof. For σ ∈ [−1, 0] and s ∈ [0, 1] the approximation property is just the
statement of Theorem 10.2 and Corollary 10.3. It remains to prove the ap-
proximation property for σ ∈ [−1, 0) and s ∈ [σ, 0).

For a given u ∈ Hσ(Γ ) let Qσ
hu ∈ S0

h(Γ ) ⊂ Hσ(Γ ) ⊂ L2(Γ ) be the Hσ(Γ )
projection which is defined as the unique solution of the variational problem

〈Qσ
hu, vh〉Hσ(Γ ) = 〈u, vh〉Hσ(Γ ) for all vh ∈ S0

h(Γ ).

As for the L2 projection there holds the error estimate for s = σ,
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‖u − Qσ
hu‖Hσ(Γ ) ≤ ‖u‖Hσ(Γ ).

Therefore, I − Qσ
h : Hσ(Γ ) → Hσ(Γ ) is a bounded operator with norm

‖I − Qσ
h‖Hσ(Γ )→Hσ(Γ ) ≤ 1.

On the other hand, by using (10.8) and s = 0 we have

‖u − Qσ
hu‖Hσ(Γ ) ≤ ‖u − Qhu‖Hσ(Γ ) ≤ c h−σ ‖u‖L2(Γ ).

Thus, I − Qσ
h : L2(Γ ) → Hσ(Γ ) is bounded with norm

‖I − Qσ
h‖L2(Γ )→Hσ(Γ ) ≤ c h−σ.

By applying the interpolation theorem (Theorem 2.18 and Remark 2.23) we
conclude that the operator I − Qσ

h : Hs(Γ ) → Hσ(Γ ) is bounded for all
s ∈ [σ, 0], and for the related operator norm it follows that

‖I − Qσ
h‖Hs(Γ )→Hσ(Γ )

≤
(
‖I − Qσ

h‖Hσ(Γ )→Hσ(Γ )

) s−0
σ−0
(
‖I − Qσ

h‖L2(Γ )→Hσ(Γ )

) s−σ
−σ

≤ (c h−σ)
s−σ
−σ = c(s, σ)hs−σ.

This gives the approximation property for σ ∈ [−1, 0) and s ∈ [σ, 0). ��
Now we consider the case where Γj ⊂ Γ is an open boundary part of

Γ = ∂Ω, and S0
h(Γj) is the associated trial space of piecewise constant basis

functions. As in (10.6) there holds the error estimate

‖u − Qhu‖L2(Γj) ≤ c hs |u|Hs(Γj)

for the L2 projection Qh : L2(Γj) → S0
h(Γj) which is defined accordingly.

Analogous to Corollary 10.3 for σ ∈ [−1, 0) we find the error estimate

‖u − Qhu‖
H̃σ(Γj)

≤ c hs−σ |u|Hs(Γj).

Hence we have the approximation property

inf
vh∈S0

h(Γj)
‖u − vh‖H̃σ(Γj)

≤ c hs−τ |u|Hs(Γj) (10.10)

for u ∈ Hs(Γj) and −1 ≤ σ ≤ 0 ≤ s ≤ 1.
In addition to the trial space S0

h(Γ ) of piecewise constant basis functions
ϕ0

k we next consider the trial space S1
h(Γ ) of piecewise linear and globally

continuous basis functions ϕ1
i . If the boundary decomposition (10.2) is ad-

missible, a function vh ∈ S1
h(Γ ) is determined by the nodal values which are

described at the M nodes xk. Hence, a basis of S1
h(Γ ) is given by

ϕ1
i (x) =

⎧⎨⎩
1 for x = xi,
0 for x = xj �= xi,
linear elsewhere.
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If a piecewise linear function vh is considered in the boundary element τ	, this
function is uniquely determined by the nodal values vh(xk) for k ∈ J(�). By
using the parametrization τ	 = χj(q

j
	 ) we can write

vh(x) = vh(χj(ξ)) = ṽj
	 (ξ) for ξ ∈ qj

	 ⊂ Q ⊂ R
d−1.

Hence we can identify a boundary element τ	 ⊂ Γ where Γ = ∂Ω and Ω ⊂ R
d

with a finite element qj
	 in the parameter domain Q ⊂ R

d−1. Thus we can
transfer all local error estimates of piecewise linear basis functions, which
were already proved in Chapter 9, to the finite element qj

	 and therefore to
the boundary element τ	.

Lemma 10.5. For a function vh which is linear on τ	 there holds

∆	

d(d + 1)

d∑
k=1

v2
	k

≤ ‖vh‖2
L2(τ�)

≤ ∆	

d

d∑
k=1

v2
	k

.

Proof. By mapping the boundary element τ	 to the reference element τ we
obtain

‖vh‖2
L2(τ�)

= 〈vh, vh〉L2(τ�)

=
d∑

i=1

d∑
j=1

vivj

∫
τ

ϕ1
i (ξ)ϕ

1
j (ξ)|detJ	|dξ = (G	v

	, v	)

where
G	 =

∆	

d(d + 1)
(Id + ede

�
d )

is the local mass matrix and ed = 1 ∈ R
d. The eigenvalues of the matrix

Id + ede
�
d are given by

λ1 = d + 1, λ2 = · · · = λd = 1

and therefore the assertion follows. ��

Corollary 10.6. For a function vh which is linear on τ	 there holds

∆	

d(d + 1)
‖vh‖2

L∞(τ�)
≤ ‖vh‖2

L2(τ�)
≤ ∆	 ‖vh‖2

L∞(τ�)
.

Proof. Since the maximum of |vh| and therefore the ‖vh‖L∞(τ�) norm is equal
to some nodal value |vh(xk∗)| = |vk∗ | for some xk∗ , the assertion follows
immediately from Lemma 10.5. ��

Lemma 10.7. For a function vh which is linear on τ	 there holds the local
inverse inequality

|vh|H1(τ�) ≤ cI h−1
	 ‖vh‖L2(τ�).
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Proof. First we have

|vh|2H1(τ�)
=
∫
qj

�

|∇ξvh(χj(ξ))|2|detχj(ξ)|dξ ≤ ∆	 ‖∇ξvh(χj(·))‖2
L∞(qj

� )
.

By mapping the finite element qj
	 to the associated reference element we obtain

‖∇ξvh(χj(·))‖2
L∞(qj

� )
≤ c h−2

	 ‖vh(χj(·))‖2
L∞(qj

� )
= c h−2

	 ‖vh‖2
L∞(τ�)

,

and the inverse inequality follows from Corollary 10.6. ��
Hence we also conclude the global inverse inequality

|vh|2H1(Γ ) =
N∑

	=1

|vh|2H1(τ�)
≤ c

N∑
	=1

h−2
	 ‖vh‖2

L2(τ�)

and, for a globally quasi–uniform boundary decomposition,

|vh|H1(Γ ) ≤ c h−1 ‖vh‖L2(Γ ).

In particular for h < 1 we obtain

‖vh‖H1(Γ ) ≤ c h−1 ‖vh‖L2(Γ ),

and an interpolation argument gives

‖vh‖Hs(Γ ) ≤ c h−s ‖vh‖L2(Γ ) for s ∈ [0, 1].

Analogous to the error estimates (9.21) and (9.22) we can estimate the interpo-
lation error of the piecewise linear interpolation operator Ih : H2(Γ ) → S1

h(Γ )
as follows.

Lemma 10.8. Let v ∈ H2(Γ ) be given. Assume that Γ = ∂Ω is sufficiently
smooth where Ω ⊂ R

d. Let Ihv be the piecewise linear interpolation satisfying
Ihv(xk) = v(xk) at all nodes xk of the admissible boundary decomposition
(10.2). Then there hold the error estimates

‖v − Ihv‖2
L2(Γ ) ≤ c

N∑
	=1

h4
	 |v|2H2(τ�)

≤ c h4 |v|2H2(Γ )

and

‖v − Ihv‖2
H1(Γ ) ≤ c

N∑
	=1

h2
	 |v|2H2(τ�)

≤ c h2 |v|2H2(Γ ).

By applying the interpolation theorem (Theorem 2.18, Remark 2.23) we can
conclude the error estimate

‖v − Ihv‖Hσ(Γ ) ≤ c h2−σ |v|H2(Γ ) for σ ∈ [0, 1].
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The piecewise linear interpolation requires, as in the case of finite elements, the
global continuity of the function to be interpolated. The function v ∈ Hs(Γ )
is continuous for s ∈ (d−1

2 , 2] and the following error estimate holds,

‖v − Ihv‖Hσ(Γ ) ≤ c hs−σ |v|Hs(Γ ), 0 ≤ σ ≤ min{1, s}. (10.11)

To prove more general error estimates we now consider projection operators
which are defined by some variational problems. If u ∈ L2(Γ ) is given the L2

projection Qhu ∈ S1
h(Γ ) is defined as the unique solution of the variational

problem
〈Qhu, vh〉L2(Γ ) = 〈u, vh〉L2(Γ ) for all vh ∈ S1

h(Γ ),

and there holds the error estimate

‖u − Qhu‖L2(Γ ) ≤ ‖u‖L2(Γ ).

On the other hand, by using Lemma 10.8 we also have the error estimate

‖u − Qhu‖L2(Γ ) ≤ ‖u − Ihu‖L2(Γ ) ≤ c

N∑
	=1

h4
	 |u|2H2(Γ ) ≤ c h2 |u|2H2(Γ )

and by applying the interpolation theorem (Theorem 2.18, Remark 2.23) we
conclude the error estimate

‖u − Qhu‖L2(Γ ) ≤ c hs |u|Hs(Γ ) for u ∈ Hs(Γ ), s ∈ [0, 2]. (10.12)

Accordingly, for u ∈ Hσ(Γ ) and σ ∈ (0, 1] we define the Hσ projection
Qσ

h : Hσ(Γ ) → S1
h(Γ ) as the unique solution of the variational problem

〈Qσ
hu, vh〉Hσ(Γ ) = 〈u, vh〉Hσ(Γ ) for all vh ∈ S1

h(Γ )

satisfying the error estimate

‖u − Qσ
hu‖Hσ(Γ ) ≤ c hs−σ |u|Hs(Γ ) for u ∈ Hs(Γ ), s ∈ [σ, 2]. (10.13)

Theorem 10.9. Let Γ = ∂Ω be sufficiently smooth. For σ ∈ [0, 1] and for
some s ∈ [σ, 2] we assume u ∈ Hs(Γ ). Then there holds the approximation
property of S1

h(Γ ),

inf
vh∈S1

h(Γ )
‖u − vh‖Hσ(Γ ) ≤ c hs−σ |u|Hs(Γ ). (10.14)

Proof. For σ = 0 and σ ∈ (0, 1] as well as for s ∈ [σ, 2] the approximation
property is just the error estimate (10.12) and (10.13), respectively. ��
As in Lemma 9.13 the L2 projection Qh : H1/2(Γ ) → S1

h(Γ ) ⊂ H1/2(Γ )
defines a bounded operator satisfying

‖Qhv‖H1/2(Γ ) ≤ c ‖v‖H1/2(Γ ) for all v ∈ H1/2(Γ ). (10.15)
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Note that if the boundary decomposition is locally adaptive, to ensure (10.15)
we have to assume that the local mesh sizes of neighboring boundary elements
do no vary too strongly [137].

It remains to prove the inverse inequality of the trial space S0
h(Γ ) of piece-

wise constant basis functions. For this we first define the global trial space
SB

h (Γ ) of local bubble functions ϕB
	 which are defined on τ	. With respect to

the reference element τ ⊂ R
d−1 the associated form functions are given by

ψB(ξ) =
{

ξ(1 − ξ) for d = 2,
ξ1ξ2(1 − ξ1 − ξ2) for d = 3.

If the boundary decomposition is globally quasi–uniform there holds as in
(9.38) a global inverse inequality

‖vh‖H1(Γ ) ≤ cI h−1 ‖vh‖L2(Γ ) for all vh ∈ SB
h (Γ ).

By using an interpolation argument we then conclude

‖vh‖H1/2(Γ ) ≤ cI h−1/2 ‖vh‖L2(Γ ) for all vh ∈ SB
h (Γ ). (10.16)

For a given u ∈ L2(Γ ) we define the projection operator QB
h : L2(Γ ) → SB

h (Γ )
as the unique solution of the variational problem∫

Γ

(QB
h u)(x)wh(x)dsx =

∫
Γ

u(x)wh(x)dsx for all wh ∈ S0
h(Γ ). (10.17)

When considering piecewise constant test functions this is equivalent to∫
τ�

(QB
h u)(x)dsx =

∫
τ�

u(x)dsx for all � = 1, . . . , N.

As in Lemma 9.17 we can prove the stability estimate

‖QB
h u‖L2(Γ ) ≤

√
2 ‖u‖L2(Γ ) for all u ∈ L2(Γ ). (10.18)

Hence we can formulate an inverse inequality of the trial space S0
h(Γ ) of

piecewise constant basis functions.

Lemma 10.10. Assume that the boundary decomposition (10.2) is globally
quasi–uniform. Then there holds the global inverse inequality

‖wh‖L2(Γ ) ≤ cI h−1/2 ‖wh‖H−1/2(Γ ) for all wh ∈ S0
h(Γ ).

Proof. For wh ∈ S0
h(Γ ) we have by using (10.17)

‖wh‖L2(Γ ) = sup
0 �=v∈L2(Γ )

〈wh, v〉L2(Γ )

‖v‖L2(Γ )
= sup

0 �=v∈L2(Γ )

〈wh, QB
h v〉L2(Γ )

‖v‖L2(Γ )

≤ ‖wh‖H−1/2(Γ ) sup
0 �=v∈L2(Γ )

‖QB
h v‖H1/2(Γ )

‖v‖L2(Γ )
.

By applying the inverse inequality (10.16) as well as the stability estimate
(10.18) we finally obtain the assertion. ��
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Finite Element Methods

For the approximate solution of the variational problems as described in Chap-
ter 4 we will use the finite–dimensional trial spaces which were constructed in
Chapter 9. Here we will just consider finite elements of lowest order, in partic-
ular we will use piecewise linear and continuous basis functions. The stability
and error analysis is imbedded in the general theory as given in Chapter 8.
Some numerical examples illustrate the theoretical results.

11.1 Dirichlet Boundary Value Problem

For the Poisson equation we consider the Dirichlet boundary value problem
(1.10) and (1.11),

−∆u(x) = f(x) for x ∈ Ω, γint
0 u(x) = g(x) for x ∈ Γ = ∂Ω. (11.1)

Let ug ∈ H1(Ω) be some bounded extension of the given Dirichlet datum
g ∈ H1/2(Γ ). Then the variational problem is to find u0 := u − ug ∈ H1

0 (Ω)
such that∫

Ω

∇u0(x)∇v(x)dx =
∫
Ω

f(x)v(x)dx −
∫
Ω

∇ug(x)∇v(x)dx (11.2)

is satisfied for all v ∈ H1
0 (Ω). By using Theorem 4.3 we can state the unique

solvability of the above variational formulation.
Let

Xh := S1
h(Ω) ∩ H1

0 (Ω) = span{ϕ1
i }M̃

i=1

be the conformal trial space of piecewise linear and globally continuous basis
functions ϕ1

k which are zero on the boundary ∂Ω. Note that the trial space is
defined with respect to some admissible decomposition Ω = ∪N

	=1τ 	 of Ω into
finite elements τ	. Then the Galerkin variational problem of (11.2) is to find
u0,h ∈ Xh such that
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Ω

∇u0,h(x)∇vh(x)dx =
∫
Ω

f(x)vh(x)dx −
∫
Ω

∇ug(x)∇vh(x)dx (11.3)

is satisfied for all vh ∈ Xh. By applying Theorem 8.1 (Cea’s Lemma) there ex-
ists a unique solution u0,h of the Galerkin variational problem (11.3) satisfying
the error estimate (8.7),

‖u0 − u0,h‖H1(Ω) ≤ cA
2

cA
1

inf
vh∈Xh

‖u0 − vh‖H1(Ω) .

If the solution u of the Dirichlet boundary value problem (11.1) satisfies
u ∈ Hs(Ω) for some s ∈ [1, 2], then we obtain by applying the trace the-
orem g = γint

0 u ∈ Hs−1/2(Γ ), i.e. the extension ug of the given Dirichlet
datum g can be chosen such that ug ∈ Hs(Ω) is satisfied. Therefore we have
u0 = u−ug ∈ Hs(Ω) and from the approximation property (9.33) we conclude
the error estimate

‖u0 − u0,h‖H1(Ω) ≤ c hs−1 |u|Hs(Ω) for u ∈ Hs(Ω), s ∈ [1, 2]. (11.4)

When assuming certain smoothness properties of the domain Ω we can prove,
by using some duality arguments, error estimates which are valid in L2(Ω).

Theorem 11.1 (Aubin–Nitsche Trick). Suppose that Ω is convex or the
boundary Γ = ∂Ω is smooth. For given f ∈ L2(Ω) and g = γint

0 ug with
ug ∈ H2(Ω) let u0 ∈ H1

0 (Ω) be the unique solution of the variational problem∫
Ω

∇u0(x)∇v(x)dx =
∫
Ω

f(x)v(x)dx −
∫
Ω

∇ug(x)∇v(x)dx

to be satisfied for all v ∈ H1
0 (Ω). Assume that

‖u0‖H2(Ω) ≤ c
{
‖f‖L2(Ω) + ‖ug‖H2(Ω)

}
.

The approximate solution u0,h ∈ Xh of the Galerkin variational problem (11.3)
then satisfies the error estimate

‖u0 − u0,h‖L2(Ω) ≤ c h2
[
‖f‖L2(Ω) + ‖ug‖H2(Ω)

]
.

Proof. By assumption we have u0 ∈ H2(Ω), and for the approximate solution
u0,h ∈ Xh we get by using (11.4) the error estimate

‖u0 − u0,h‖H1(Ω) ≤ c h |u0|H2(Ω) ≤ c h
[
‖f‖L2(Ω) + ‖ug‖H2(Ω)

]
. (11.5)

Let w ∈ H1
0 (Ω) be the unique solution of the variational problem∫

Ω

∇w(x)∇v(x)dx =
∫
Ω

[u0(x) − u0,h(x)]v(x)dx
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to be satisfied for all v ∈ H1
0 (Ω). Due to the assumptions made on Ω we

conclude w ∈ H2(Ω), and

‖w‖H2(Ω) ≤ c ‖u0 − u0,h‖L2(Ω).

Due to u0 − u0,h ∈ H1
0 (Ω) and by using the Galerkin orthogonality∫

Ω

∇[u0(x) − u0,h(x)]∇vh(x)dx = 0 for all vh ∈ Xh

we get

‖u0 − u0,h‖2
L2(Ω) =

∫
Ω

[u0(x) − u0,h(x)][u0(x) − u0,h(x)]dx

=
∫
Ω

∇w(x)∇[u0(x) − u0,h(x)]dx

=
∫
Ω

∇[w(x) − Q1
hw(x)]∇[u0(x) − u0,h(x)]dx

≤ ‖w − Q1
hw‖H1(Ω)‖u0 − u0,h‖H1(Ω)

where Q1
h : H1

0 (Ω) → Xh ⊂ H1
0 (Ω) is the H1

0 (Ω) projection which is defined
similar to (9.29). For w ∈ H2(Ω) we obtain from the approximation property
(9.32) of the trial space Xh the error estimate

‖w − Q1
hw‖H1(Ω) ≤ c h ‖w‖H2(Ω) ≤ c h ‖u0 − u0,h‖L2(Ω).

Altogether we have

‖u0 − u0,h‖L2(Ω) ≤ c h ‖u0 − u0,h‖H1(Ω),

and by using (11.5) the assertion follows. ��
To realize the Galerkin variational formulation (11.3) we need to know the

bounded extension ug ∈ H2(Ω) of the given Dirichlet datum g. Formally, for
ug ∈ H2(Ω) we denote by Ihug ∈ S1

h(Ω) the piecewise linear interpolation
which can be written as

Ihug(x) =
M∑
i=1

ug(xi)ϕ1
i (x) .

Instead of the exact Galerkin variational formulation (11.3) we now consider
a perturbed variational problem to find ũ0,h ∈ Xh such that∫

Ω

∇ũ0,h(x)∇vh(x)dx =
∫
Ω

f(x)vh(x)dx −
∫
Ω

∇Ihug(x)∇vh(x)dx (11.6)
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is satisfied for all vh ∈ Xh. For the unique solution ũ0,h ∈ Xh we have, by
using Theorem 8.2 (Strang Lemma), the error estimate

‖u0 − ũ0,h‖H1(Ω) ≤ cA
2

cA
1

[
inf

vh∈Xh

‖u0 − vh‖H1(Ω) + ‖ug − Ihug‖H1(Ω)

]
.

If we assume u ∈ Hs(Ω) for some s ∈ [1, 2] and ug ∈ H2(Ω), then by using
the approximation property of the trial space Xh as well as the interpolation
estimate (9.22) we get

‖u0 − ũ0,h‖H1(Ω) ≤ c1 hs−1 |u0|Hs(Ω) + c2 h |ug|H2(Ω)

≤ c hs−1
[
|u0|Hs(Ω) + ‖g‖H3/2(Γ )

]
.

The piecewise linear interpolation Ihug can be written, by considering the
interior nodes {xi}M̃

i=1, xi ∈ Ω and the boundary nodes {xi}M
i=M̃+1

, xi ∈ Γ ,
as

Ihug(x) =
M̃∑
i=1

ug(xi)ϕ1
i (x) +

M∑
i=M̃+1

g(xi)ϕ1
i (x).

Hence the perturbed Galerkin variaitional formulation (11.6) is equivalent to
finding

ū0,h(x) := ũ0,h(x) +
M̃∑
i=1

Ihug(xi)ϕ1
i (x) =:

M̃∑
i=1

ūiϕ
1
i (x) ∈ Xh

as the unique solution of the variational problem∫
Ω

∇ū0,h(x)∇vh(x)dx =
∫
Ω

f(x)vh(x)dx −
M∑

i=M̃+1

g(xi)
∫
Ω

∇ϕ1
i (x)∇vh(x)dx

(11.7)
to be satisfied for all vh ∈ Xh. The resulting approximate solution of the
Dirichlet boundary value problem is then given by

uh(x) :=
M̃∑
i=1

ūkϕ1
i (x) +

M∑
i=M̃+1

g(xi)ϕ1
i (x) ∈ S1

h(Ω). (11.8)

Theorem 11.2. Let u ∈ Hs(Ω) for some s ∈ [1, 2] be the unique solution of
the Dirichlet boundary value problem (11.1). Let ug ∈ H2(Ω) be an appropri-
ate chosen extension of the given Dirichlet datum g. Let uh be the approximate
solution of (11.1) which is defined by (11.8). Then there holds the error esti-
mate

‖u − uh‖H1(Ω) ≤ c hs−1
[
|u0|Hs(Ω) + ‖ug‖H2(Ω)

]
(11.9)
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Proof. By using the triangle inequality we have

‖u − uh‖H1(Ω) = ‖u0 + ug − (ũ0,h + Ihug)‖H1(Ω)

≤ ‖u0 − ũ0,h‖H1(Ω) + ‖ug − Ihug‖H1(Ω).

Therefore, the assertion follows from Theorem 8.2, by estimating the interpo-
lation error, and by applying the inverse trace theorem. ��

If the solution u ∈ H2(Ω) is sufficiently regular, we therefore obtain the
error estimate

‖u − uh‖H1(Ω) ≤ c h |u|H2(Ω). (11.10)

As in Theorem 11.1 (Aubin–Nitsche Trick) we can also prove an estimate for
the error ‖u0 − ũ0,h‖L2(Ω).

Lemma 11.3. Let all assumptions of Theorem 11.1 be valid, in particular we
assume u ∈ H2(Ω) to be the unique solution of the Dirichlet boundary value
problem (11.1). Then there holds the error estimate

‖u0 − ũ0,h‖L2(Ω) ≤ c h2
[
|u0|H2(Ω) + |ug|H2(Ω)

]
. (11.11)

Proof. Let w ∈ H1
0 (Ω) be the unique solution of the variational problem∫

Ω

∇w(x)∇v(x)dx =
∫
Ω

[u0(x) − ũ0,h(x)]v(x)dx

to be satisfied for all v ∈ H1
0 (Ω). For u0 − ũ0,h ∈ L2(Ω) and due to the

assumptions made on Ω we conclude w ∈ H2(Ω), and therefore we have

‖w‖H2(Ω) ≤ c ‖u0 − ũ0,h‖L2(Ω).

By subtracting the perturbed variational problem (11.6) from the variational
problem (11.2) this gives∫

Ω

∇[u0(x) − ũ0,h(x)]∇vh(x)dx =
∫
Ω

∇[Ihug(x) − ug(x)]∇vh(x)dx

for all vh ∈ Xh. Hence we have

‖u0 − ũ0,h‖2
L2(Ω) =

∫
Ω

[u0(x) − ũ0,h(x)][u0(x) − ũ0,h(x)]dx

=
∫
Ω

∇w(x)∇[u0(x) − ũ0,h(x)]dx

=
∫
Ω

∇[w(x) − Q1
hw(x)]∇[u0(x) − ũ0,h(x)]dx

+
∫
Ω

∇Q1
hw(x)∇[Ihug(x) − ug(x)]dx.



248 11 Finite Element Methods

The first term can be estimated as in the proof of Theorem 11.1,∫
Ω

∇[w(x) − Q1
hw(x)]∇[u0(x) − ũ0,h(x)]dx

≤ c h ‖u0 − ũ0,h‖L2(Ω)‖u0 − ũ0,h‖H1(Ω).

For the second term we first have∫
Ω

∇Q1
hw(x)∇[Ihug(x) − ug(x)]dx

=
∫
Ω

∇[Q1
hw(x) − w(x)]∇[Ihug(x) − ug(x)]dx

+
∫
Ω

∇w(x)∇[Ihug(x) − ug(x)]dx.

The resulting first term can further be estimated by∣∣∣∣∣∣
∫
Ω

∇[Q1
hw(x) − w(x)]∇[Ihug(x) − ug(x)]dx

∣∣∣∣∣∣
≤ cA

2 ‖w − Q1
hw‖H1(Ω)‖ug − Ihug‖H1(Ω)

≤ c h ‖w‖H2(Ω)‖ug − Ihug‖H1(Ω)

≤ c h ‖u0 − ũ0,h‖L2(Ω)‖ug − Ihug‖H1(Ω).

For the remaining second term we have, by applying integration by parts, for
w ∈ H1

0 (Ω) ∩ H2(Ω),∣∣∣∣∣∣
∫
Ω

∇w(x)∇[Ihug(x) − ug(x)]dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣−
∫
Ω

∆w(x)[Ihug(x) − ug(x)]dx

∣∣∣∣∣∣
≤ ‖w‖H2(Ω)‖ug − Ihug‖L2(Ω)

≤ c ‖u0 − ũ0,h‖L2(Ω)‖ug − Ihug‖L2(Ω).

Altogether we have

‖u0 − ũ0,h‖L2(Ω)

≤ c1 h
[
‖u0 − ũ0,h‖H1(Ω) + ‖ug − Ihug‖H1(Ω)

]
+ ‖ug − Ihug‖L2(Ω).

For u0, ug ∈ H2(Ω) the assertion now follows from the error estimates
for ‖u0 − ũ0,h‖H1(Ω) as well as from the interpolation error estimates for
‖ug − Ihug‖L2(Ω) and ‖ug − Ihug‖H1(Ω). ��
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The Galerkin variational problem (11.7) to find the coefficients ūi for
i = 1, . . . , M̃ is equivalent to an algebraic system of linear equations Ahū = f
with the stiffness matrix Ah defined by

Ah[j, i] =
∫
Ω

∇ϕ1
i (x)∇ϕ1

j (x)dx

for i, j = 1, . . . , M̃ , and with the right hand side vector f given by

fj =
∫
Ω

f(x)ϕ1
j (x)dx −

M∑
i=M̃+1

g(xi)
∫
Ω

∇ϕ1
i (x)∇ϕ1

j (x)dx

for j = 1, . . . , M̃ . The stiffness matrix Ah is symmetric and due to

(Ahv, v) =
∫
Ω

∇vh(x)∇vh(x)dx ≥ cA
1 ‖vh‖2

H1(Ω)

for all v ∈ R
M̃ ↔ vh ∈ Xh ⊂ H1

0 (Ω) positive definite. In particular we have
the following result:

Lemma 11.4. For all v ∈ R
M̃ ↔ vh ∈ Xh ⊂ H1

0 (Ω) there hold the spectral
equivalence inequalities

c1 hd
min ‖v‖2

2 ≤ (Ahv, v) ≤ c2 hd−2
max ‖v‖2

2 (11.12)

Proof. For v ∈ R
M̃ ↔ vh ∈ Xh ⊂ H1

0 (Ω) it follows by localization and by
applying the local inverse inequality (9.15)

(Ahv, v) =
M̃∑
i=1

M̃∑
j=1

Ah[j, i]vivj =
M̃∑
i=1

M̃∑
j=1

a(ϕ1
i , ϕ

1
j )vivj

= a(
M̃∑
i=1

viϕ
1
i ,

M̃∑
j=1

vjϕ
1
j ) = a(vh, vh)

=
∫
Ω

|∇vh(x)|2dx =
N∑

	=1

∫
τ�

|∇vh(x)|2dx

=
N∑

	=1

‖∇vh‖2
L2(τ�)

≤ cI

N∑
	=1

h−2
	 ‖vh‖2

L2(τ�)

≤ c

N∑
	=1

h−2
	 ∆	

∑
k∈J(	)

v2
k = c

M̃∑
k=1

⎛⎝ ∑
	∈I(k)

hd−2
	

⎞⎠ v2
k
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and therefore the upper estimate. On the other hand, by using the H1
0 (Ω)

ellipticity of the bilinear form a(·, ·) and by changing to the L2(Ω) norm we
get

(Ahv, v) = a(vh, vh) ≥ cA
1 ‖vh‖2

H1(Ω) ≥ cA
1 ‖vh‖2

L2(Ω)

= cA
1

N∑
	=1

‖vh‖2
L2(τ�)

≥ c

N∑
	=1

∆	

∑
k∈J(	)

v2
k = c

M̃∑
k=1

⎛⎝ ∑
	∈I(k)

hd
	

⎞⎠ v2
k

and therefore the lower estimate. ��
Note that the constants in the spectral equivalence inequalities (11.12) are

sharp, i.e. the constants can not be improved. Hence we have for the spectral
condition number of the stiffness matrix Ah in the case of a globally quasi–
uniform mesh

κ2(Ah) ≤ c h−2 , (11.13)

in particular the spectral condition number increases when the mesh is re-
fined. As an example we consider a Dirichlet boundary value problem where
the domain is given by the square Ω = (0, 0.5)2. The initial mesh consists of
four finite elements with five nodes, which are recursively refined by decom-
posing each finite element into four congruent elements, see Fig. 11.1 for the
refinement levels L = 0 and L = 3.
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Fig. 11.1. Initial mesh (L = 0) and refined mesh L = 3.

The minimal and maximal eigenvalues and the resulting spectral condition
numbers of the associated finite element stiffness matrices are given in Table
11.1. Note that when choosing d = 2 and h = O(N−2) the results of Lemma
11.4 are confirmed. Thus, when using a conjugate gradient scheme to solve
the linear equation systems Ahu = f with the symmetric and positive def-
inite system matrices Ah we need to have an appropriate preconditioner to
bound the number of necessary iteration steps to reach a prescribed accuracy
independent of the system size. Note that preconditioned iterative schemes
are considered later in Chapter 13.
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L N λmin (Ah) λmax (Ah) κ2(Ah)

2 64 5.86 –1 7.41 12.66
3 256 1.52 –1 7.85 51.55
4 1024 3.84 –2 7.96 207.17
5 4096 9.63 –3 7.99 829.69
6 16384 2.41 –3 8.00 3319.76
7 65536 6.02 –4 8.00 13280.04
8 262144 1.52 –4 8.00 52592.92

Theory: O(h2) O(1) O(h−2)

Table 11.1. Spectral condition numbers of the stiffness matrices Ah.

Next we will discuss the computation of the load vector f and the realization
of a matrix by vector multiplication with the stiffness matrix Ah as needed in
the application of an iterative solution scheme. For j = 1, . . . , M̃ we have by
localization and parametrization, see Chapter 9,

f̃j =
∫
Ω

f(x)ϕ1
j (x)dx =

∑
	∈I(j)

∫
τ�

f(x)ϕ1
j (x)dx

=
∑
	∈τj

|det J	|
∫
τ

f(x	1 + J	ξ)ψ1
	j

(ξ)dξ

where �j is the local index of the global node xj with respect to the finite
element τ	. Hence we can reduce the computation of the global load vector
f̃ to the computation of local load vectors f̃

	
. In particular, for each finite

element τ	 we need to compute

f̃	,ι = |det J	|
∫
τ

f(x	1 + J	ξ)ψ1
ι (ξ)dξ for ι = 1, . . . , d + 1.

For ι = 1, . . . , d+1 we denote by �ι the corresponding global node index, then
the global load vector f̃ is computed by assembling all local load vectors f̃

	
,

i.e.
f̃	ι

:= f̃	ι
+ f̃	,ι.

If u ∈ R
M̃ ↔ uh ∈ Xh is given, the result v = Ahu of a matrix by vector

multiplication with the global stiffness matrix Ah can be written as

vj =
M̃∑
i=1

Ah[j, i]ui = a(uh, ϕ1
j ) =

∑
	∈I(j)

∫
τ�

∇uh(x)∇ϕ1
j (x)dx

=
∑

	∈I(j)

∑
i∈J(	)

ui

∫
τ�

∇ϕ1
i (x)∇ϕ1

j (x)dx, j = 1, . . . , M̃ .
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Therefore it is sufficient to compute the local stiffness matrices A	
h which are

defined by

A	
h[ι′, ι] = |det J	|

∫
τ

J−�
	 ∇ξψ

1
ι (ξ)J−�

	 ∇ξψ
1
ι′(ξ)dξ

for ι, ι′ = 1, . . . , d+1. Hence we can reduce the matrix by vector multiplication
with the global stiffness matrix Ah to a localization of the global degrees of
freedom u ∈ R

M̃ to local degrees of freedom u	 ∈ R
d+1 where u	,ι = u	ι

, a
multiplication with the local stiffness matrices v	 = A	

hu	, and the assembling
of the global vector v from the local results v	, i.e.

v	ι
:= v	ι

+ v	,ι.

The incorporation of given Dirichlet boundary conditions to compute the
global load vector f can be done in the same way. Hence, for a matrix by
vector multiplication with the global stiffness matrix Ah we only need to
store the local stiffness matrices A	

h with an effort of O(N) essential opera-
tions. For alternative approaches to describe the sparse stiffness matrix Ah,
see, for example, [85].

To check the theoretic error estimates (11.9) and (11.11) we now consider
the Dirichlet boundary value problem (11.1) where Ω = (0, 0.5)2 and f = 0
are given, and where the Dirichlet boundary data are prescribed such that

u(x) = −1
2

log |x − x∗|, x∗ = (−0.1,−0.1)� (11.14)

is the exact solution. In Table 11.2 we give the errors of the approximate
Galerkin solutions uh for a sequence of uniformly refined meshes, where L is
the refinement level, N is the number of finite elements, M is the total number
of nodes, and DoF is the number of degrees of freedom which coincides with
the number of interior nodes.

L N M DoF |u − uh|H1(Ω) eoc ‖u − uh‖L2(Ω) eoc

2 64 41 25 1.370 –1 2.460 –3
3 256 145 113 6.954 –2 0.98 5.717 –4 2.11
4 1024 545 481 3.494 –2 0.99 1.408 –4 2.02
5 4096 2113 1985 1.749 –2 1.00 3.511 –5 2.00
6 16384 8321 8065 8.748 –3 1.00 8.771 –6 2.00
7 65536 33025 32513 4.374 –3 1.00 2.192 –6 2.00
8 262144 131585 130561 2.187 –3 1.00 5.481 –7 2.00
9 1048576 525313 523265 1.094 –3 1.00 1.370 –7 2.00

Theory: 1 2

Table 11.2. Errors and estimated order of convergence, Dirichlet problem.
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Since the solution (11.14) of the Dirichlet boundary value problem is infinitely
often differentiable, we can apply Theorem 11.2 and Lemma 11.3 for s = 2.
Hence we obtain one as order of convergence when measuring the error in the
energy norm |u−uh|H1(Ω). Moreover, when applying the Aubin–Nitsche trick
we get two as order of convergence when measuring the error in the L2 norm
‖u − uh‖L2(Ω). By eoc we denote the estimated order of convergence which
can be computed from

eoc :=
log ‖u − uh�

‖ − log ‖u − uh�+1‖
log h	 − log h	+1

.

Note that the theoretical error estimates are well confirmed by the numerical
results as documented in Table 11.2.

11.2 Neumann Boundary Value Problem

We now consider the Neumann boundary value problem (1.10) and (1.12) for
the Poisson equation,

−∆u(x) = f(x) for x ∈ Ω, γint
1 u(x) = g(x) for x ∈ Γ = ∂Ω (11.15)

where we have to assume the solvability condition (1.17)∫
Ω

f(x) dx +
∫
Γ

g(x) dsx = 0. (11.16)

For a finite element discretization we consider the modified variational prob-
lem (4.31) which admits, due to Section 4.1.3, a unique solution u ∈ H1(Ω)
such that∫
Ω

∇u(x)∇v(x)dx+
∫
Ω

u(x)dx

∫
Ω

v(x)dx =
∫
Ω

f(x)v(x)dx+
∫
Γ

g(x)γint
0 v(x)dsx

(11.17)
is satisfied for all v ∈ H1(Ω). From the solvability condition (11.16) we
then conclude the scaling condition u ∈ H1

∗ (Ω), i.e. u ∈ H1(Ω) satisfying
〈u, 1〉L2(Ω) = 0.

Let
Xh := S1

h(Ω) = span{ϕ1
k}M

k=1 ⊂ H1(Ω)

be the conforming trial space of piecewise linear and globally continuous basis
functions ϕ1

k with respect to an admissible finite element mesh Ω = ∪N
	=1τ 	.

Note that the basis functions {ϕ1
k}M

k=1 build a partition of unity, i.e.

M∑
k=1

ϕ1
k(x) = 1 for all x ∈ Ω. (11.18)
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The Galerkin variational formulation of (11.17) is to find uh ∈ Xh such that∫
Ω

∇uh(x)∇vh(x)dx +
∫
Ω

uh(x)dx

∫
Ω

vh(x)dx (11.19)

=
∫
Ω

f(x)vh(x)dx +
∫
Γ

g(x)vh(x)dsx

is satisfied for all vh ∈ Xh. By applying Theorem 8.1 (Cea’s Lemma) we
conclude that there exists a unique solution uh of the variational problem
(11.19) satisfying the error estimate (8.7),

‖u − uh‖H1(Ω) ≤ ĉA
1

cA
2

inf
vh∈Xh

‖u − vh‖H1(Ω) .

If the solution u of the Neumann boundary value problem (11.15) satisfies
u ∈ Hs(Ω) for some s ∈ [1, 2], then we conclude, by using the approximation
property (9.33) the error estimate

‖u − uh‖H1(Ω) ≤ c hs−1 |u|Hs(Ω) for u ∈ Hs(Ω), s ∈ [1, 2].

Due to (11.18) we can choose vh ≡ 1 as a test function of the Galerkin
variational formulation (11.19). From the solvability condition (11.16) we then
obtain ∫

Ω

uh(x)dx

∫
Ω

dx = 0

and therefore uh ∈ H1
∗ (Ω), i.e. the scaling condition is automatically satisfied

for the Galerkin solution uh ∈ Xh.
The Galerkin variational problem (11.19) to find the coefficient vector

u ∈ R
M is equivalent to the solution of the linear system of algebraic equations[

Ah + a a�]u = f

where the stiffness matrix Ah defined by

Ah[j, i] =
∫
Ω

∇ϕ1
i (x)∇ϕ1

j (x)dx

for i, j = 1, . . . , M , and with the load vector given by

fj :=
∫
Ω

f(x)ϕ1
j (x)dx +

∫
Γ

g(x)ϕ1
j (x)dsx

for j = 1, . . . , M . In addition, a ∈ R
M is defined by

ai =
∫
Ω

ϕ1
i (x) dx
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for i = 1, . . . , M . Note that the modified stiffness matrix Ah + a a� is sym-
metric and positive definite. Moreover, the spectral equivalence inequalities
(11.12) remain valid. Hence, when using the conjugate gradient scheme to
solve the linear system iteratively we have to use again an appropriate precon-
ditioner. Both the computation of the load vector f as well as an application
of the matrix by vector product with the stiffness matrix Ah can be realized
as for the Dirichlet boundary value problem.

The approximate solution of boundary value problems with mixed bound-
ary conditions as well as with Robin boundary conditions can be formulated
and analyzed as for the Dirichlet or Neumann boundary value problem. Here,
we will not discuss this in detail. The same is true for the approximate solution
of boundary value problems in linear elasticity. However, when considering the
Neumann boundary value problem we have to modify both the solvability con-
ditions as well as the definition of the modified variational problem due to the
rigid body motions.

11.3 Finite Element Methods with Lagrange Multipliers

For an alternative approximation of the Dirichlet boundary value problem
(11.1) we consider the modified saddle point problem (4.22) and (4.23) to find
(u, λ) ∈ H1(Ω) × H−1/2(Γ ) such that∫

Γ

γint
0 u(x)dsx

∫
Γ

γint
0 v(x)dsx +

∫
Ω

∇u(x)∇v(x)dx −
∫
Γ

γint
0 v(x)λ(x)dsx

= 〈f, v〉Ω +
∫
Γ

g(x)dsx

∫
Γ

γint
0 v(x)dsx (11.20)

∫
Γ

γint
0 u(x)µ(x)dsx +

∫
Γ

λ(x)dsx

∫
Γ

µ(x)dsx

= 〈g, µ〉Γ −
∫
Ω

f(x)dx

∫
Γ

µ(x)dsx

is satisfied for all (v, µ) ∈ H1(Ω) × H−1/2(Γ ).
Assume that there is given an admissible finite element mesh Ω = ∪NΩ

	=1τ 	

of the polygonal or polyhedral bounded domain Ω ⊂ R
d. The restriction of

the finite element mesh in Ω defines a boundary element mesh Γ = ∪NΓ

	=1Γ 	

on Γ = ∂Ω. Let

Xh(Ω) := S1
h(Ω) = span{ϕ1

i }M
i=1 ⊂ H1(Ω)

be the conforming finite element space of piecewise linear and globally contin-
uous basis functions ϕ1

i . The restriction of Xh(Ω) onto Γ = ∂Ω then defines
a boundary element space
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Xh(Γ ) := S1
h(Γ ) = span{φ1

k}MΓ
i=1 ⊂ H1/2(Γ )

of piecewise linear and continuous basis functions φ1
k. We denote by MΩ the

number of all interior nodes xi ∈ Ω, and we have M = MΩ + MΓ as well as

Xh(Ω) = span{ϕ1
i }MΩ

i=1 ∪ span{ϕ1
i }M

i=MΩ+1 .

In particular,
φ1

i = γint
0 ϕ1

MΩ+i for i = 1, . . . , MΓ .

Moreover, let
ΠH := span{ψk}N

k=1 ⊂ H−1/2(Γ )

denote a suitable trial space to approximate the Lagrange multiplier λ.
The Galerkin discretization of the saddle point problem (11.20) is to find

(uh, λH) ∈ Xh × ΠH such that∫
Γ

γint
0 uh(x)dsx

∫
Γ

γint
0 vh(x)dsx +

∫
Ω

∇uh(x)∇vh(x)dx −
∫
Γ

γint
0 vh(x)λH(x)dsx

= 〈f, vh〉Ω +
∫
Γ

g(x)dsx

∫
Γ

γint
0 vh(x)dsx (11.21)

∫
Γ

γint
0 uh(x)µH(x)dsx +

∫
Γ

λH(x)dsx

∫
Γ

µH(x)dsx

= 〈g, µH〉Γ −
∫
Ω

f(x)dx

∫
Γ

µH(x)dsx

is satisfied for all (vh, µH) ∈ Xh × ΠH . With

Ah[j, i] :=
∫
Ω

∇ϕ1
i (x)∇ϕ1

j (x)dx,

Bh[�, i] :=
∫
Γ

ψ	(x)γint
0 ϕ1

i (x)dsx,

ai :=
∫
Γ

γint
0 ϕ1

i (x)dsx,

b	 :=
∫
Γ

ψ	(x)dsx

for i, j = 1, . . . , M and � = 1, . . . , N , as well as with

fj :=
∫
Ω

f(x)ϕ1
j (x)dx +

∫
Γ

g(x)dsx

∫
Γ

γint
0 ϕ1

j (x)dsx,

g	 :=
∫
Γ

g(x)ψ	(x)dsx −
∫
Ω

f(x)dx

∫
Γ

ψ	(x)dsx
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for j = 1, . . . , M and � = 1, . . . , N we conclude that the approximate saddle
point problem (11.21) is equivalent to a linear system of algebraic equations,(

a a� + Ah −B�
h

Bh b b�

)(
u

λ

)
=

(
f

g

)
. (11.22)

Obviously,

Bh[�, i] =
{

0 for i = 1, . . . , MΩ ,
B̄h[�, i − MΩ ] for i = MΩ + 1, . . . , M

with
B̄h[�, i] =

∫
Γ

ψ	(x)φ1
i (x)dsx

for i = 1, . . . , MΓ and � = 1, . . . , N .
The matrix a a� + Ah is by construction symmetric and positive definite

and therefore invertible. In particular, the first equation in (11.22) can be
solved for u to obtain

u =
[
a a� + Ah

]−1 [
f + B�

h λ
]

.

Inserting this into the second equation of (11.22) we end up with the Schur
complement system[

Bh

[
a a� + Ah

]−1
B�

h + b b�
]
λ = g − Bh

[
a a� + Ah

]−1
f. (11.23)

The unique solvability of the Schur complement system (11.23) and therefore
of the linear system (11.22), and hence of the discrete saddle point problem
(11.21), now follows from Lemma 8.6 where we have to ensure the discrete
stability condition (8.25), i.e.

c̃S ‖µH‖H−1/2(Γ ) ≤ sup
0 �=vh∈Xh(Ω)

〈µH , γint
0 vh〉Γ

‖vh‖H1(Ω)
for all µH ∈ ΠH . (11.24)

This stability condition is first considered for the boundary element trial
spaces ΠH and Xh(Γ ).

Theorem 11.5. The mesh size h of the trial space Xh(Γ ) is assumed to be
sufficiently small compared to the mesh size H of ΠH , i.e. h ≤ c0H. For the
trial space ΠH we assume a global inverse inequality. Then there holds the
stability condition

c̄S ‖µH‖H−1/2(Γ ) ≤ sup
0 �=wh∈Xh(Γ )

〈µH , wh〉Γ
‖wh‖H1/2(Γ )

for all µH ∈ ΠH . (11.25)
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Proof. Let µH ∈ ΠH ⊂ H−1/2(Γ ) be arbitrary but fixed. By using the Riesz
representation theorem (Theorem 3.3) there exists a unique JµH ∈ H1/2(Γ )
satisfying

〈JµH , w〉H1/2(Γ ) = 〈µH , w〉Γ for all w ∈ H1/2(Γ )

and ‖JµH‖H1/2(Γ ) = ‖µH‖H−1/2(Γ ). Let Q
1/2
h JµH ∈ Xh(Γ ) be the unique

solution of the variational problem

〈Q1/2
h JµH , wh〉H1/2(Γ ) = 〈µH , wh〉Γ for all wh ∈ Xh(Γ ).

Then there holds the error estimate

‖(I − Q
1/2
h )JµH‖H1/2(Γ ) ≤ inf

wh∈Xh(Γ )
‖JµH − wh‖H1/2(Γ ).

Due to µH ∈ L2(Γ ) we obtain, by using duality and the definition of JµH ,

‖JµH‖H1(Γ ) = sup
0 �=v∈L2(Γ )

〈JµH , v〉H1/2(Γ )

‖v‖L2(Γ )
= sup

0 �=v∈L2(Γ )

〈µH , v〉Γ
‖v‖L2(Γ )

≤ ‖µH‖L2(Γ )

and therefore JµH ∈ H1(Γ ). From the approximation property of the trial
space Xh(Γ ), see the error estimate (10.13), we then obtain

‖(I − Q
1/2
h )JµH‖H1/2(Γ ) ≤ cA h1/2 ‖JµH‖H1(Γ ) ≤ cA h1/2 ‖µH‖L2(Γ ).

By applying the inverse inequality in the trial space ΠH this gives

‖(I − Q
1/2
h )JµH‖H1/2(Γ ) ≤ cAcI

(
h

H

)1/2

‖µH‖H−1/2(Γ ).

Assume that the constant c0 is chosen such that h ≤ c0H and

‖(I − Q
1/2
h )JµH‖H1/2(Γ ) ≤ 1

2
‖µH‖H−1/2(Γ )

is satisfied. Then we have

‖µH‖H−1/2(Γ ) = ‖JµH‖H1/2(Γ )

≤ ‖Q1/2
h JµH‖H1/2(Γ ) + ‖JµH − Q

1/2
h JµH‖H1/2(Γ )

≤ ‖Q1/2
h JµH‖H1/2(Γ ) +

1
2
‖µH‖H−1/2(Γ )

and therefore
‖Q1/2

h JµH‖H1/2(Γ ) ≥ 1
2
‖µH‖H−1/2(Γ ).

By using the definition of Q
1/2
h JµH we get
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〈µH , Q
1/2
h JµH〉Γ = 〈Q1/2

h JµH , Q
1/2
h JµH〉H1/2(Γ )

= ‖Q1/2
h JµH‖2

H1/2(Γ )

≥ 1
2
‖Q1/2

h JµH‖H1/2(Γ )‖µH‖H−1/2(Γ )

from which the stability estimate (11.25) follows. ��

Remark 11.6. To establish the stability condition (11.25) one may also use
Fortin’s criterion (Lemma 8.9). Then we have to prove the boundedness of
the projection operator Q̃h : H1/2(Γ ) → Xh(Γ ) ⊂ H1/2(Γ ) which is defined
via the variational formulation

〈Q̃hu, µH〉Γ = 〈u, µH〉Γ for all µH ∈ ΠH .

If we assume a global inverse inequality in the trial space Xh(Γ ), then we can
prove the H1/2(Γ )–boundedness of Q̃h by using the error estimates of I − Q̃h

and I − Q
1/2
h in L2(Γ ) as well as the stability of Q

1/2
h in H1/2(Γ ). For the

case of trial spaces which are defined with respect to some adaptive boundary
element mesh where we can not assume an inverse inequality globally, we refer
to [137, 138].

By using the inverse trace theorem (Theorem 2.22) the stability condition
(11.25) implies

c̄S ‖µH‖H−1/2(Γ ) ≤ cIT sup
0 �=wh∈Xh(Γ )

〈µH , wh〉Γ
‖Ewh‖H1(Ω)

for all µH ∈ ΠH .

Finally, let Rh : H1(Ω) → Xh(Ω) ⊂ H1(Ω) be some quasi interpolation
operator [133] satisfying

‖Rhv‖H1(Ω) ≤ cR ‖v‖H1(Ω)

and where Dirichlet boundary conditions are preserved. Then we obtain

c̄S ‖µH‖H−1/2(Γ ) ≤ cIT cR sup
0 �=wh∈Xh(Γ )

〈µH , wh〉Γ
‖RhEwh‖H1(Ω)

for all µH ∈ ΠH ,

and by choosing vh = RhEwh ∈ Xh(Ω) we conclude the stability condition
(11.24). This gives us the unique solvability of the Schur complement system
(11.23) and therefore of the linear system (11.22). The application of Theorem
8.8 yields, when assuming u ∈ H2(Ω) and λ ∈ H1

pw(Γ ), the error estimate

‖u−uh‖2
H1(Ω)+‖λ−λH‖2

H−1/2(Γ ) ≤ c1 h2 |u|2H2(Ω)+c2 H3 ‖λ‖2
H1

pw(Γ ). (11.26)

To ensure the discrete stability condition (11.25) we need to assume h ≤ c0H
where the constant c0 < 1 is sufficiently small.
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We now consider the numerical example of Section 11.1 with h = 1
2H. For

L = 3 the finite element mesh of Ω and the associated boundary element mesh
are depicted in Fig. 11.2. In Table 11.3 the computed errors of the approximate
solutions (uh, λH) ∈ S1

h(Ω) × S0
H(Γ ) are given. The numerical results for the

approximate solution uh of the primal variable u confirm the theoretical error
estimate (11.26).
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Fig. 11.2. Finite and boundary element meshes of Ω (L = 3).

L NΩ NΓ ‖u − uh‖H1(Ω) eoc ‖λ − λh‖L2(Γ ) eoc

1 16 4 5.051 –1 1.198 ±0
2 64 8 2.248 –1 1.17 9.350 –1 0.36
3 256 16 9.897 –2 1.18 5.662 –1 0.72
4 1024 32 4.133 –2 1.26 2.970 –1 0.93
5 4096 64 1.851 –2 1.16 1.457 –1 1.03
6 16384 128 8.889 –3 1.06 7.093 –2 1.04
7 65536 256 4.393 –3 1.02 3.482 –2 1.03
8 262144 512 2.190 –3 1.00 1.723 –2 1.01
9 1048576 1024 1.094 –3 1.00 8.569 –3 1.01

Theory: 1 0.5

Table 11.3. Results for a Finite Element Method with Lagrange multipliers.

To describe the error of the approximation λH of the Lagrange multiplier λ
we use the L2 norm which is easier to compute.

Lemma 11.7. For the trial space S0
H(Γ ) we assume a global inverse inequality

to be valid. If u ∈ H2(Ω) and λ ∈ H1
pw(Γ ) are satisfied, then there holds the

error estimate
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‖λ − λH‖2
L2(Γ ) ≤ c1 h2 H−1 |u|2H2(Ω) + c2 H2 ‖λ‖2

H1
pw(Γ ).

Proof. For λ ∈ H1
pw(Γ ) we define QHλ ∈ S0

H(Γ ) to be the L2 projection as
defined in (10.4). By using the triangle inequality and the inverse inequality
we obtain

‖λ − λH‖2
L2(Γ ) ≤ 2 ‖λ − QHλ‖2

L2(Γ ) + 2 ‖QHλ − λH‖2
L2(Γ )

≤ 2 ‖λ − QHλ‖2
L2(Γ ) + 2 c2

I H−1‖QHλ − λH‖2
H−1/2(Γ )

≤ 2 ‖λ − QHλ‖2
L2(Γ ) + 4 c2

I H−1
[
‖QHλ − λ‖2

H−1/2(Γ ) + ‖λ − λH‖2
H−1/2(Γ )

]
.

The error estimate now follows from Theorem 10.2, Corollary 10.3, and by
using the error estimate (11.26). ��

When choosing h = 1
2H we conclude by applying Lemma 11.7 the error

estimate

‖λ − λH‖2
L2(Γ ) ≤ 1

4
c1 H |u|2H2(Ω) + c2 H2 ‖λ‖2

H1
pw(Γ )

and therefore an asymptotic order of convergence which is 0.5 when measur-
ing the error in the L2 norm. However, the numerical results in Table 11.3
indicate a higher order of convergence which is equal to 1. This preasymptotic
behavior may be explained by different orders of magnitude in the constants
1
4c1‖u‖2

H1(Ω) and c2‖t‖2
H1

pw(Γ ).

11.4 Exercises

11.1 Consider the Dirichlet boundary value problem

−u′′(x) = f(x) for x ∈ (0, 1), u(0) = u(1) = 0.

Compute the finite element stiffness matrix when using piecewise linear basis
functions with respect to a uniform decomposition of the interval (0, 1).

11.2 Show that the eigenvectors of the finite element stiffness matrix as de-
rived in Exercise 11.1 are given by the nodal interpolation of the eigenfunctions
as obtained in Exercise 1.6. Compute the associated eigenvalues and discuss
the behavior of the resulting spectral condition number.

11.3 Derive a two–dimensional Gaussian quadrature formula which integrates
cubic polynomials over the reference triangle

τ = {x ∈ R
2 : x1 ∈ (0, 1), x2 ∈ (0, 1 − x1)}

exactly.
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Iterative Solution Methods

The Galerkin discretization of variational problems as described in Chapter 8
leads to large linear systems of algebraic equations. In the case of an elliptic
and self adjoint partial differential operator the system matrix is symmetric
and positive definite. Therefore we may use the method of conjugate gradients
to solve the resulting system iteratively. Instead, the Galerkin discretization of
a saddle point problem, e.g. when considering a mixed finite element scheme
or the symmetric formulation of boundary integral equations, leads to a linear
system where the system matrix is positive definite but block skew symmetric.
By applying an appropriate transformation this system can be solved again
by using a conjugate gradient method. Since we are interested in iterative
solution algorithms where the convergence behavior is independent of the
problem size, i.e. which is robust with respect to the mesh size, we need to
use appropriate preconditioning strategies. For this we describe and analyze
first a quite general approach which is based on the use of operators of the
opposite order, and give later two examples for both finite and boundary
element methods. For a more detailed theory of general iterative methods we
refer to [4, 11, 70, 143].

13.1 The Method of Conjugate Gradients

We need to compute the solution vectors u ∈ R
M of a sequence of linear

systems of algebraic equations (8.5), AMu = f , where the system matrix
AM ∈ R

M×M is symmetric and positive definite, and where M ∈ N is the
dimension of the trial space to be used for the discretization of the underlying
elliptic variational problem (8.1).

To derive the method of conjugate gradients we start with a system of
conjugate or AM–orthogonal vectors {pk}M−1

k=0 satisfying

(AMpk, p	) = 0 for k, � = 0, . . . , M − 1, k �= �.
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Since the system matrix AM is supposed to be positive definite, we have

(AMpk, pk) > 0 for k = 0, 1, . . . , M − 1.

For an arbitrary given initial guess u0 ∈ R
M we can write the unique solution

u ∈ R
M of the linear system AMu = f as a linear combination of conjugate

vectors as

u = u0 −
M−1∑
	=0

α	p
	.

Hence we have

AMu = AMu0 −
M−1∑
	=0

α	AMp	 = f,

and from the AM–orthogonality of the basis vectors p	 we can compute the
yet unknown coefficients from

α	 =
(AMu0 − f, p	)

(AMp	, p	)
for � = 0, 1, . . . , M − 1.

For some k = 0, 1, . . . , M we may define an approximate solution

uk := u0 −
k−1∑
	=0

α	p
	 ∈ R

M

of the linear system AMu = f . Obviously, uM = u is just the exact solution.
By construction we have

uk+1 := uk − αkpk for k = 0, 1, . . . , M − 1,

and from the AM–orthogonality of the vectors {p	}M−1
	=0 we obtain

αk =
(AMu0 − f, pk)

(AMpk, pk)
=

(
AMu0 −

k−1∑
	=0

α	AMp	 − f, pk

)
(AMpk, pk)

=
(AMuk − f, pk)

(AMpk, pk)
.

If we denote by
rk := AMuk − f

the residual of the approximate solution uk we finally have

αk =
(rk, pk)

(AMpk, pk)
. (13.1)

On the other hand, for k = 0, 1, . . . , M − 1 we can compute the residual rk+1

recursively by
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rk+1 = AMuk+1 − f = AM (uk − αkpk) − f = rk − αkAMpk .

The above approach is based on the use of AM–orthogonal vectors {p	}M1
	=0.

Such a vector system can be constructed by applying the Gram–Schmidt
orthogonalization algorithm which is applied to some given system {w	}M−1

	=0

of vectors which are linear independent, see Algorithm 13.1.

Initialize for k = 0:
p0 := w0

Compute for k = 0, 1, . . . , M − 2:

pk+1 := wk+1 −
k∑

�=0

βk�p
�, βk� =

(AMwk+1, p�)

(Ap�, p�)

Algorithm 13.1: Gram–Schmidt orthogonalization.

By construction we have for k = 0, 1, . . . , M − 1

span {p	}k
	=0 = span {w	}k

	=0 .

It remains to define the initial vector system {w	}M−1
	=0 . One possibility is to

choose the unit basis vectors wk := ek = (δk+1,	)M
	=1 [59]. Alternatively we

may find the basis vector wk+1 from the properties of the already constructed
vector systems {p	}k

	=0 and {r	}k
	=0.

Lemma 13.1. For k = 0, 1, . . . , M − 2 we have

(rk+1, p	) = 0 for � = 0, 1, . . . , k.

Proof. For � = k = 1, . . . , M − 1 we have by using (13.1) to define the coeffi-
cients αk and by using the recursion of the residual rk+1 the orthogonality

(rk+1, pk) = (rk, pk) − αk(AMpk, pk) = 0 .

For � = k − 1 we then obtain

(rk+1, pk−1) = (rk, pk−1) − αk(AMpk, pk−1) = 0

by applying the AM–orthogonality of pk and pk−1. Now the assertion follows
by induction. ��

From the orthogonality relation between the residual rk+1 and the search
directions p	 we can immediately conclude a orthogonality of the residual rk+1

with the initial vectors w	.

Corollary 13.2. For k = 0, 1, . . . , M − 2 we have

(rk+1, w	) = 0 for � = 0, 1, . . . , k.
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Proof. By construction of the search directions p	 from the Gram–Schmidt
orthogonalization we first have the representation

w	 = p	 +
	−1∑
j=0

β	−1,jp
j .

Hence we obtain

(rk+1, w	) = (rk+1, p	) +
	−1∑
j=0

β	−1,j(rk+1, pj),

and the orthogonality relation follows from Lemma 13.1. ��
Hence we have that all vectors

w0, w1, . . . , wk, rk+1

are orthogonal to each other, and therefore linear independent. Since we need
only to know the search directions p0, . . . , pk and therefore the initial vec-
tors w0, . . . , wk to construct the approximate solution uk+1 and therefore the
residual rk+1, we can define the new initial vector as

wk+1 := rk+1 for k = 0, . . . , M − 2

where w0 := r0. By Corollary 13.2 we then have the orthogonality

(rk+1, r	) = 0 for � = 0, . . . , k; k = 0, . . . , M − 2.

Moreover, for the numerator of the coefficient αk we obtain

(rk, pk) = (rk, rk) +
k−1∑
	=0

βk−1,	(rk, p	) = (rk, rk),

and therefore, instead of (13.1),

αk =
(rk, rk)

(AMpk, pk)
for k = 0, . . . , M − 1.

In what follows we can assume

α	 > 0 for � = 0, . . . , k.

Otherwise we would have

(r	+1, r	+1) = (r	 − α	Ap	, r	+1) = (r	, r	+1) = 0

implying r	+1 = 0 and therefore u	+1 = u would be the exact solution of the
linear system AMu = f .
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From the recursion of the residual r	+1 we then obtain

AMp	 =
1
α	

(
r	 − r	+1

)
for � = 0, . . . , k.

Now, by using wk+1 = rk+1 and by using the symmetry of the system matrix
AM = A�

M we can compute the nominator of the coefficient βk	 as

(AMwk+1, p	) = (rk+1, AMp	) =
1
α	

(rk+1, r	 − r	+1)

=

⎧⎪⎨⎪⎩
0 for � < k,

− (rk+1, rk+1)
αk

for � = k.

The recursion of the Gram–Schmidt orthogonalization algorithm now reduces
to

pk+1 = rk+1 − βkkpk where βkk = − 1
αk

(rk+1, rk+1)
(AMpk, pk)

.

On the other hand we have

αk(AMpk, pk) = (rk−rk+1, pk) = (rk, pk) = (rk, rk−βk−1,k−1p
k−1) = (rk, rk)

and therefore

pk+1 = rk+1 + βkpk where βk =
(rk+1, rk+1)

(rk, rk)
.

Summarizing the above we obtain the iterative method of conjugate gradients
[78] as described in Algorithm 13.2.

For an arbitrary initial guess u0 compute

r0 := AMu0 − f, p0 := r0, 
0 := (r0, r0).

For k = 0, 1, 2, . . . , M − 2:

sk := AMpk, σk := (sk, pk), αk := 
k/σk;

uk+1 := uk − αkpk, rk+1 := rk − αksk;


k+1 := (rk+1, rk+1) .

Stop, if 
k+1 ≤ ε
0 is satisfied for some given accuracy ε.
Otherwise, compute the new search direction

βk := 
k+1/
k, pk+1 := rk+1 + βkpk .

Algorithm 13.2: Method of conjugate gradients.
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If the matrix AM is symmetric and positive definite we may define

‖ · ‖AM
:=
√

(AM ·, ·)

to be an equivalent norm in R
M . Moreover,

κ2(AM ) := ‖AM‖2‖A−1
M ‖2 =

λmax (AM )
λmin (AM )

is the spectral condition number of the positive definite and symmetric ma-
trix AM where ‖ · ‖2 is the matrix norm which is induced by the Euclidean
inner product. Then one can prove the following estimate for the approximate
solution uk, see for example [70, 143].

Theorem 13.3. Let AM = A�
M > 0 be symmetric and positive definite, and

let u ∈ R
M be the unique solution of the linear system AMu = f . Then the

method of conjugate gradients as described in Algorithm 13.2 is convergent for
any initial guess u0 ∈ R

M , and there holds the error estimate

‖uk − u‖A ≤ 2qk

1 + q2k
‖u0 − u‖A where q :=

√
κ2(AM ) + 1√
κ2(AM ) − 1

.

To ensure a certain given relative accuracy ε ∈ (0, 1) we find the number
kε ∈ N of required iteration steps from

‖uk − u‖A

‖u0 − u‖A
≤ 2qk

1 + q2k
≤ ε

and therefore

kε >
ln[1 −

√
1 − ε2] − ln ε

ln q
.

The number kε obviously depends on q and therefore on the spectral condi-
tion number κ2(AM ) of AM . When considering the discretization of elliptic
variational problems by using either finite or boundary elements the spectral
condition number κ2(AM ) depends on the dimension M ∈ N of the used finite
dimensional trial space, or on the underlying mesh size h.

In the case of a finite element discretization we have for the spectral con-
dition number, by using the estimate (11.13),

κ2(AFEM
h ) = O(h−2), i.e. κ2(AFEM

h/2 ) ≈ 4κ2(AFEM
h )

when considering a globally quasi–uniform mesh refinement strategy. Asymp-
totically, this gives

ln qh/2 = ln

√
κ2(AFEM

h/2 ) + 1√
κ2(AFEM

h/2 ) − 1
≈ ln

2
√

κ2(AFEM
h ) + 1

2
√

κ2(AFEM
h ) − 1

≈ 1
2

ln

√
κ2(AFEM

h ) + 1√
κ2(AFEM

h ) − 1
=

1
2

ln qh .
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Therefore, in the case of an uniform refinement step, i.e. halving the mesh
size h, the number of required iterations is doubled to reach the same relative
accuracy ε. As an example we choose ε = 10−10. In Table 13.1 we give the
number of iterations of the conjugate gradient method to obtain the results
which were already presented in Table 11.2.

FEM BEM

L N κ2(Ah) Iter N κ2(Vh) Iter

2 64 12.66 13 16 24.14 8
3 256 51.55 38 32 47.86 18
4 1024 207.17 79 64 95.64 28
5 4096 829.69 157 128 191.01 39
6 16384 3319.76 309 256 381.32 52
7 65536 13280.04 607 512 760.73 69
8 262144 52592.92 1191 1024 1516.02 91

Theory: O(h−2) O(h−1) O(h−1) O(h−1/2)

Table 13.1. Number of CG iteration steps when ε = 10−10.

When considering a comparable discretization by using boundary elements as
already discussed in Table 12.2 we obtain for the spectral condition number
of the system matrix

κ2(ABEM
h ) = O(h−1) i.e. κ2(ABEM

h/2 ) ≈ 2κ2(ABEM
h ).

The number of required iterations to reach a certain relative accuracy ε then
grows with a factor of

√
2, see Table 13.1.

Hence there is a serious need to construct iterative algorithms which are
almost robust with respect to all discretization parameters, i.e. with respect
to the mesh size h. In general this can be done by introducing the concept of
preconditioning the linear system AMu = f .

Let CA ∈ R
M×M be a symmetric and positive definite matrix which can

be factorized as

CA = JDCA
J�, DCA

= diag(λk(CA)), λk(CA) > 0

where J ∈ R
M×M contains all eigenvectors of CA which are assumed to be

orthonormal. Hence we can define

C
1/2
A = JD

1/2
CA

J�, DCA
= diag(

√
λk(CA))

satisfying
CA = C

1/2
A C

1/2
A , C

−1/2
A := (C1/2

A )−1.

Instead of the linear system AMu = f we now consider the equivalent system
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Ãũ := C
−1/2
A AMC

−1/2
A C

1/2
A u = C

−1/2
A f =: f̃

where the transformed system matrix

Ã := C
−1/2
A AMC

−1/2
A

is again symmetric and positive definite. Hence we can apply the method
of conjugate gradients as described in Algorithm 13.2 to compute the trans-
formed solution vector ũ = C

1/2
A u. Inserting all the transformations we finally

obtain the preconditioned method of conjugate gradients, see Algorithm 13.3.

For an arbitrary initial guess x0 compute

r0 := AMx0 − f, v0 := C−1
A r0, p0 := v0, 
0 := (v0, r0).

For k = 0, 1, 2, . . . , M − 2:

sk := AMpk, σk := (sk, pk), αk := 
k/σk;

xk+1 := xk − αkpk, rk+1 := rk − αksk;

vk+1 := C−1
A rk+1, 
k+1 := (vk+1, rk+1) .

Stop, if 
k+1 ≤ ε
0 is satisfied for some given accuracy ε.
Otherwise compute the new search direction

βk := 
k+1/
k, pk+1 := vk+1 + βkpk .

Algorithm 13.3: Preconditioned method of conjugate gradients.

The Algorithm 13.3 of the preconditioned method of conjugate gradients re-
quires one matrix by vector product per iteration step, sk = AMpk, and one
application of the inverse preconditioning matrix, vk+1 = C−1

A rk+1. From
Theorem 13.3 we obtain an error estimate for the approximate solution ũk,

‖ũk − ũ‖Ã ≤ 2q̃

1 + q̃2k
‖ũ0 − ũ‖Ã where q̃ =

√
κ2(Ã) + 1√
κ2(Ã) − 1

.

Note that for z̃ = C
1/2
A z we have

‖z̃‖2
Ã

= (ÃC
1/2
A z, C

1/2
A z) = (AMz, z) = ‖z‖2

AM
.

Hence, for the approximate solution uk = C
−1/2
A ũk we find the error estimate

‖uk − u‖AM
≤ 2q̃

1 + q̃2k
‖u0 − u‖AM

.
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To bound the extremal eigenvalues of the transformed system matrix Ã we
get from the Rayleigh quotient

λmin (Ã) = min
z̃∈RM

(Ãz̃, z̃)
(z̃, z̃)

≤ max
z̃∈RM

(Ãz̃, z̃)
(z̃, z̃)

= λmax (Ã).

When inserting the transformations Ã = C
−1/2
A AMC

−1/2
A and z̃ = C

1/2
A z this

gives

λmin (Ã) = min
z∈RM

(AMz, z)
(CAz, z)

≤ max
z∈RM

(AMz, z)
(CAz, z)

= λmax (Ã).

Hence we have to assume that the preconditioning matrix CA satisfies the
spectral equivalence inequalities

cA
1 (CAz, z) ≤ (AMz, z) ≤ cA

2 (CAz, z) for z ∈ R
M (13.2)

independent of M . Then we can bound the spectral condition number of the
transformed system matrix as

κ2(C
−1/2
A AC

−1/2
A ) = κ2(C−1

A AM ) ≤ cA
2

cA
1

.

If the spectral condition number κ2(C−1
A AM ) of the preconditioned system

matrix can be bounded independent of the dimension M , i.e. independent of
the mesh size h, then there is a fixed number kε of required iterations to reach
a certain given relative accuracy ε.

13.2 A General Preconditioning Strategy

We need to construct a matrix CA as a preconditioner for a given matrix
AM such that the spectral equivalence inequalities (13.2) are satisfied, and an
efficient realization of the preconditioning vk = C−1

A rk is possible. Here we
consider the case where the matrix AM represents a Galerkin discretization
of a bounded, X–elliptic, and self–adjoint operator A : X → X ′ satisfying

〈Av, v〉 ≥ cA
1 ‖v‖2

X , ‖Av‖X′ ≤ cA
2 ‖v‖X for v ∈ X. (13.3)

In particular, the matrix AM is given by

AM [�, k] = 〈Aϕk, ϕ	〉 for k, � = 1, . . . , M

where XM := span{ϕk}M
k=1 ⊂ X is some conforming trial space.

Let B : X ′ → X be some bounded, X ′–elliptic, and self–adjoint operator,
i.e. for f ∈ X ′ we assume

〈Bf, f〉 ≥ cB
1 ‖f‖2

X′ , ‖Bf‖X ≤ cB
2 ‖f‖X′ .
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By applying Theorem 3.4 there exists the inverse operator B−1 : X → X ′. In
particular, by using (3.13) and Lemma 3.5 we have

‖B−1v‖X′ ≤ 1
cB
1

‖v‖X , 〈B−1v, v〉 ≥ 1
cB
2

‖v‖2
X for v ∈ X. (13.4)

From the assumptions (13.3) and (13.4) we immediately conclude:

Corollary 13.4. For v ∈ X there hold the spectral equivalence inequalities

cA
1 cB

1 〈B−1v, v〉 ≤ 〈Av, v〉 ≤ cA
2 cB

2 〈B−1v, v〉.

Then, by defining the preconditioning matrix

CA[�, k] = 〈B−1ϕk, ϕ	〉 for k, � = 1, . . . , M (13.5)

we obtain from Corollary 13.4 by using the isomorphism

v ∈ R
M ↔ vM =

M∑
k=1

vkϕk ∈ XM ⊂ X

the required spectral equivalence inequalities

cA
1 cB

1 (CAv, v) ≤ (AMv, v) ≤ cA
2 cB

2 (CAv, v) for v ∈ R
M . (13.6)

Although the constants in (13.6) only express the continuous mapping prop-
erties of the operators A and B, and therefore they are independent of the
discretization to be used, the above approach seems on a first glance useless,
since in general only the operator B is given explicitly. Moreover, neither can
the preconditioning matrix CA be computed nor can the inverse C−1

A be ap-
plied efficiently. Hence we introduce a conforming trial space in the dual space
X ′,

X ′
M := span{ψk}M

k=1 ⊂ X ′,

and define

BM [�, k] = 〈Bψk, ψ	〉, MM [�, k] = 〈ϕk, ψ	〉 for k, � = 1, . . . , M.

Note that the Galerkin matrix BM is symmetric and positive definite, and
therefore invertible. Therefore we can define an approximation of the precon-
ditioning matrix CA by

C̃A := M�
MB−1

M MM . (13.7)

We need to prove that the approximated preconditioning matrix C̃A is spec-
trally equivalent to CA, and therefore to AM .

Lemma 13.5. Let CA be the Galerkin matrix of B−1 as defined in (13.5),
and let C̃A be the approximation as given in (13.7). Then there holds

(C̃Av, v) ≤ (CAv, v) for v ∈ R
M .
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Proof. Let v ∈ R
M ↔ vM ∈ XM ⊂ X be arbitrary but fixed. Then,

w = B−1vM ∈ X ′ is the unique solution of the variational problem

〈Bw, z〉 = 〈vM , z〉 for z ∈ X ′.

Note that
(CAv, v) = 〈B−1vM , vM 〉 = 〈w, vM 〉 = 〈Bw,w〉. (13.8)

In the same way we define w = B−1
M MMv ↔ wM ∈ X ′

M as the unique solution
of the Galerkin variational problem

〈BwM , zM 〉 = 〈vM , zM 〉 for zM ∈ X ′
M ,

Again,

(C̃Av, v) = (B−1
M MMv,MMv) = (w,MMv) = 〈wM , vM 〉 = 〈BwM , wM 〉.

(13.9)
Moreover we have the Galerkin orthogonality

〈B(w − wM ), zM 〉 = 0 for zM ∈ X ′
M .

By using the X ′–ellipticity of B we now have

0 ≤ cB
1 ‖w − wM‖2

X′ ≤ 〈B(w − wM ), w − wM 〉
= 〈B(w − wM ), w〉 = 〈Bw,w〉 − 〈BwM , wM 〉

and therefore
〈BwM , wM 〉 ≤ 〈Bw,w〉.

By using (13.8) and (13.9) this finally gives the assertion. ��
Note that Lemma 13.5 holds for any arbitrary conforming trial spaces

XM ⊂ X and X ′
M ⊂ X ′. However, to prove the reverse estimate we need to

assume a certain stability condition of the trial space X ′
M ⊂ X ′.

Lemma 13.6. In addition to the assumptions of Lemma 13.5 we assume the
stability condition

cS ‖vM‖X ≤ sup
0 �=zM∈X′

M

〈vM , zM 〉
‖zM‖X′

for all vM ∈ XM . (13.10)

Then, (
cS

cB
1

cB
2

)2

(CAv, v) ≤ (C̃Av, v) for all v ∈ R
M .

Proof. Let v ∈ R
M ↔ vM ∈ XM be arbitrary but fixed. From the properties

(13.4) we then obtain

(CAv, v) = 〈B−1vM , vM 〉 ≤ ‖B−1vM‖X′‖vM‖X ≤ 1
cB
1

‖vM‖2
X .
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As in the proof of Lemma 13.5 let w = B−1
M MMv ↔ wM ∈ X ′

M . Then, by
using the stability assumption (13.10),

cS ‖vM‖X ≤ sup
0 �=zM∈X′

M

〈vM , zM 〉
‖zM‖X′

= sup
0 �=zM∈X′

M

〈BwM , zM 〉
‖zM‖X′

≤ cB
2 ‖wM‖X′ ,

and hence

(CAv, v) ≤ 1
cB
1

(
cB
2

cS

)2

‖wM‖2
X′ ≤

(
1
cS

cB
2

cB
1

)2

〈BwM , wM 〉.

By using (13.9) this gives the assertion. ��
Together with (13.6) we now conclude the spectral equivalence inequalities

of C̃A and AM .

Corollary 13.7. Let all assumptions of Lemma 13.6 be satisfied, in partic-
ular we assume the stability condition (13.10). Then there hold the spectral
equivalence inequalities

cA
1 cB

1 (C̃Av, v) ≤ (AMv, v) ≤ cA
2 cB

2

(
1
cS

cB
2

cB
1

)2

(C̃Av, v) for all v ∈ R
M .

Due to dim XM = dimX ′
M the discrete stability condition (13.10) also ensures

the invertibility of the matrix MM . Hence for the inverse of the approximated
preconditioning matrix C̃A we obtain

C̃−1
A = M−1

M BMM−�
M ,

in particular we need to invert sparse matrices MM and M�
M , and in addition

we have to perform one matrix by vector multiplication with BM .

13.2.1 An Application in Boundary Element Methods

The general approach of preconditioning as described in Section 13.2 is now
applied to construct some preconditioners to be used in boundary element
methods. By considering the single layer potential V : H−1/2(Γ ) → H1/2(Γ )
and the hypersingular boundary integral operator D : H1/2(Γ ) → H−1/2(Γ )
there is given a suitable pair of boundary integral operators of opposite order
[104, 105, 144]. However, the hypersingular boundary integral operator D is
only semi–elliptic, hence we have to use appropriate factor spaces H

±1/2
∗ (Γ )

as already considered in Section 6.6.1.

Lemma 13.8. For the single layer potential V and for the hypersingular
boundary integral operator D there hold the spectral equivalence inequalities

cV
1 cD

1 〈V −1ṽ, ṽ〉Γ ≤ 〈Dṽ, ṽ〉Γ ≤ 1
4
〈V −1ṽ, ṽ〉Γ

for all ṽ ∈ H
1/2
∗ (Γ ) = {v ∈ H1/2(Γ ) : 〈v, weq〉Γ = 0}.
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Proof. The single layer potential V : H
−1/2
∗ (Γ ) → H

1/2
∗ (Γ ) defines an iso-

morphism. Hence, for an arbitrary given ṽ ∈ H
1/2
∗ (Γ ) there exists a unique

w̃ ∈ H
−1/2
∗ (Γ ) such that ṽ = V w̃. By using the symmetry relations (6.25)

and (6.26) of all boundary integral operators we obtain the upper estimate,

〈Dṽ, ṽ〉Γ = 〈DV w̃, V w̃〉Γ

= 〈(1
2
I − K ′)(

1
2
I + K ′)w̃, V w̃〉Γ

= 〈(1
2
I + K ′)w̃, (

1
2
I − K)V w̃〉Γ

= 〈(1
2
I + K ′)w̃, V (

1
2
I − K ′)w̃〉Γ

=
1
4
〈V w̃, w̃〉Γ − 〈V K ′w̃,K ′w̃〉Γ

≤ 1
4
〈V w̃, w̃〉Γ =

1
4
〈V −1ṽ, ṽ〉Γ .

From the H−1/2(Γ )–ellipticity of the single layer potential V (see Theorem
6.22 in the three–dimensional case d = 3, and Theorem 6.23 in the two–
dimensional case d = 2) we conclude, by using the estimate (3.13), the bound-
edness of the inverse single layer potential,

〈V −1v, v〉Γ ≤ 1
cV
1

‖v‖2
H1/2(Γ ) for all v ∈ H1/2(Γ ).

By using the H
1/2
∗ (Γ )–ellipticity of the hypersingular boundary integral op-

erator D (see Theorem 6.24) we then obtain the lower estimate

〈Dṽ, ṽ〉Γ ≥ c̃D
1 ‖ṽ‖2

H1/2(Γ ) ≥ cD
1 cV

1 〈V −1ṽ, ṽ〉Γ

for all ṽ ∈ H
1/2
∗ (Γ ). ��

By the bilinear form

〈D̃u, v〉Γ := 〈Du, v〉Γ + α 〈u,weq〉Γ 〈v, weq〉Γ
for u, v ∈ H1/2(Γ ) we may define the modified hypersingular boundary inte-
gral operator D̃ : H1/2(Γ ) → H−1/2(Γ ) where α ∈ R+ is some parameter to
be chosen appropriately, and weq = V −11 ∈ H−1/2(Γ ) is the natural density.

Theorem 13.9. For the single layer potential V and for the modified hy-
persingular boundary integral operator D̃ there hold the spectral equivalence
inequalities

γ1 〈V −1v, v〉Γ ≤ 〈D̃v, v〉Γ ≤ γ2 〈V −1v, v〉Γ (13.11)

for all v ∈ H1/2(Γ ) where

γ1 := min
{
cV
1 cD

1 , α〈1, weq〉Γ
}

, γ2 := max
{

1
4
, α〈1, weq〉Γ

}
.
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Proof. For any v ∈ H1/2(Γ ) we consider the orthogonal decomposition

v = ṽ + γ, γ :=
〈v, weq〉Γ
〈1, weq〉Γ

, ṽ ∈ H
1/2
∗ (Γ ).

The bilinear form of the inverse single layer potential can then be written as

〈V −1v, v〉Γ = 〈V −1ṽ, ṽ〉Γ +
[〈v, weq〉Γ ]2

〈1, weq〉Γ
.

By using Lemma 13.8 we now obtain

〈D̃v, v〉Γ = 〈Dṽ, ṽ〉Γ + α [〈v, weq〉Γ ]2

≤ 1
4
〈V −1ṽ, ṽ〉Γ + α 〈1, weq〉Γ

[〈v, weq〉Γ ]2

〈1, weq〉Γ

≤ max
{

1
4
, α〈1, weq〉Γ

}
〈V −1v, v〉Γ .

The lower estimate follows in the same way. ��
From the previous theorem we can find an optimal choice of the positive

parameter α ∈ R+.

Corollary 13.10. When choosing

α :=
1

4〈1, weq〉Γ

we obtain the spectral equivalence inequalities

cV
1 cD

1 〈V −1v, v〉Γ ≤ 〈D̃v, v〉Γ ≤ 1
4
〈V −1v, v〉Γ

for all v ∈ H1/2(Γ ).

By using Corollary 13.10 we now can define a preconditioner for the linear
system (12.15) of the Dirichlet boundary value problem, and for the sys-
tem (12.27) of the Neumann boundary value problem. The system matrix in
(12.27) is D̃h := Dh + α aa� where

Dh[j, i] = 〈Dϕ1
i , ϕ

1
j 〉Γ , aj = 〈ϕ1

j , weq〉Γ

for i, j = 1, . . . , M and ϕ1
i ∈ S1

h(Γ ) are piecewise linear continuous basis
functions. In addition we define

V̄h[j, i] = 〈V ϕ1
i , ϕ

1
j 〉Γ , M̄h[j, i] = 〈ϕ1

i , ϕ
1
j 〉Γ

for i, j = 1, . . . , M .
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Lemma 13.11. Let the L2 projection Qh : H1/2(Γ ) → S1
h(Γ ) ⊂ H1/2(Γ ) be

bounded. Then there holds the stability condition

1
cQ

‖vh‖H1/2(Γ ) ≤ sup
0 �=wh∈S1

h(Γ )

〈vh, wh〉Γ
‖wh‖H−1/2(Γ )

for all vh ∈ S1
h(Γ ).

Proof. The L2 projection Qh : H1/2(Γ ) → S1
h(Γ ) ⊂ H1/2(Γ ) is bounded, i.e.

‖Qhv‖H1/2(Γ ) ≤ cQ ‖v‖H1/2(Γ ) for all v ∈ H1/2(Γ ).

For any w ∈ H−1/2(Γ ) the L2 projection Qhw ∈ S1
h(Γ ) is defined as the

unique solution of the variational problem

〈Qhw, vh〉L2(Γ ) = 〈w, vh〉Γ for all vh ∈ S1
h(Γ ).

Then,

‖Qhw‖H−1/2(Γ ) = sup
0 �=v∈H1/2(Γ )

〈Qhw, v〉Γ
‖v‖H1/2(Γ )

= sup
0 �=v∈H1/2(Γ )

〈Qhw,Qhv〉L2(Γ )

‖v‖H1/2(Γ )

= sup
0 �=v∈H1/2(Γ )

〈w,Qhv〉Γ
‖v‖H1/2(Γ )

≤ ‖w‖H−1/2(Γ ) sup
0 �=v∈H1/2(Γ )

‖Qhv‖H1/2(Γ )

‖v‖H1/2(Γ )

≤ cQ ‖w‖H−1/2(Γ ),

which implies the boundedness of Qh : H−1/2(Γ ) → S1
h(Γ ) ⊂ H−1/2(Γ ). Now

the stability estimate follows by applying Lemma 8.5. ��
By using Lemma 13.11 all assumptions of Lemma 13.6 are satisfied, i.e.

CD̃ := M̄hV̄ −1
h M̄h

defines a preconditioning matrix which is spectrally equivalent to D̃h. In par-
ticular there hold the spectral equivalence inequalities

cV
1 cD

1 (CD̃v, v) ≤ (D̃hv, v) ≤ 1
4

(
cQ

cV
2

cV
1

)2

(CD̃v, v) for all v ∈ R
M .

In Table 13.2 the extremal eigenvalues and the resulting spectral condition
numbers of the preconditioned system matrix C−1

D̃
D̃h are listed for the L–

shaped domain as given in Fig. 10.1. For comparison we also give the corre-
sponding values in the case of a simple diagonal preconditioning which show
a linear dependency on the inverse mesh parameter h−1.

By applying Corollary 13.10 we can use the Galerkin discretization of
the modified hypersingular boundary integral operator D̃ as a preconditioner
for the discrete single layer potential Vh in (12.15). However, when using
piecewise constant basis functions to discretize the single layer potential, for
the Galerkin discretization of the hypersingular boundary integral operator
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CD̃ = diag D̃h CD̃ = M̄hV̄ −1
h M̄h

L N λmin λmax κ(C−1

D̃
D̃h) λmin λmax κ(C−1

D̃
D̃h)

0 28 9.05 –3 2.88 –2 3.18 1.02 –1 2.56 –1 2.50
1 112 4.07 –3 2.82 –2 6.94 9.24 –2 2.66 –1 2.88
2 448 1.98 –3 2.87 –2 14.47 8.96 –2 2.82 –1 3.14
3 1792 9.84 –3 2.90 –2 29.52 8.86 –2 2.89 –1 3.26
4 7168 4.91 –3 2.91 –2 59.35 8.80 –2 2.92 –1 3.31
5 28672 2.46 –4 2.92 –2 118.72 8.79 –2 2.92 –1 3.32
6 114688 1.23 –4 2.92 –2 237.66 8.78 –2 2.92 –1 3.33

Theory: O(h−1) O(1)

Table 13.2. Extremal eigenvalues and spectral condition number (BEM).

D requires the use of globally continuous basis functions. Moreover, as an
assumption of Lemma 13.6 we need to guarantee a related stability condition,
too. One possibility is to use locally quadratic basis functions [144]. For the
analysis of boundary integral preconditioners in the case of open curves, see
[104].

13.2.2 A Multilevel Preconditioner in Finite Element Methods

For u, v ∈ H1(Ω) we consider the bilinear form

a(u, v) =
∫
Γ

γint
0 u(x)dsx

∫
Γ

γint
0 v(x)dsx +

∫
Ω

∇u(x)∇v(x)dx

which induces a bounded and H1(Ω)–elliptic operator A : H1(Ω) → H̃−1(Ω).
This bilinear form is either related to the stabilized variational formulation
(4.31) of the Neumann boundary value problem, or to the variational formu-
lation of the Robin boundary value problem, or to the modified saddle point
formulation (4.22) when using Lagrange multipliers.

Let us assume that there is given a sequence {TNj
}j∈N0 of globally quasi–

uniform decompositions of a bounded domain Ω ⊂ R
d where the global mesh

size hj of a decomposition TNj
satisfies

c1 2−j ≤ hj ≤ c2 2−j (13.12)

for all j = 0, 1, 2, . . . with some global constants c1 and c2. In particular, this
condition is satisfied when applying a globally uniform refinement strategy to
a given uniform coarse decomposition TN0 .

For each decomposition TNj
the associated trial space of piecewise linear

continuous basis functions is given by

Vj := S1
hj

(Ω) = span{ϕj
k}

Mj

k=1 ⊂ H1(Ω), j ∈ N0.
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By construction we have

V0 ⊂ V1 ⊂ · · · ⊂ VL = Xh = S1
hL

(Ω) ⊂ VL+1 ⊂ · · · ⊂ H1(Ω)

where Xh = S1
h(Ω) ⊂ H1(Ω) is the trial space to be used for the Galerkin

discretization of the operator A : H1(Ω) → H̃−1(Ω) which is induced by the
bilinear form a(·, ·), i.e.

AhL
[�, k] = a(ϕL

k , ϕL
	 ) for k, � = 1, . . . , ML.

It remains to construct a preconditioning matrix C̃A which is spectrally
equivalent to Ah. For this we need to have a preconditioning operator
B : H̃−1(Ω) → H1(Ω) which satisfies the spectral equivalence inequalities

cB
1 ‖f‖2

H−1(Ω) ≤ 〈Bf, f〉Ω ≤ cB
2 ‖f‖2

H−1(Ω) (13.13)

for all f ∈ H̃−1(Ω) with some positive constants cB
1 and cB

2 . Such an op-
erator can be constructed when using an appropriately weighted multilevel
representation of L2 projection operators, see [28, 162].

For any trial space Vj ⊂ H1(Ω) let Qj : L2(Ω) → Vj be the L2 projection
operator as defined in (9.23), i.e. Qju ∈ Vj is the unique solution of the
variational problem

〈Qju, vj〉L2(Ω) = 〈u, vj〉L2(Ω) for all vj ∈ Vj .

Note that there holds the error estimate (9.28),

‖(I − Qj)u‖L2(Ω) ≤ c hj |u|H1(Ω) for all u ∈ H1(Ω). (13.14)

In addition we assume an inverse inequality (9.19) to hold uniformly for all
trial spaces Vj , i.e.,

‖vj‖H1(Ω) ≤ cI h−1
j ‖vj‖L2(Ω) for all vj ∈ Vj . (13.15)

Finally, for j = −1 we define Q−1 := 0.

Lemma 13.12. For the sequence {Qj}j∈N0 of L2 projection operators Qj we
have the following properties:

1. QkQj = Qmin{k,j},
2. (Qk − Qk−1)(Qj − Qj−1) = 0 for k �= j,
3. (Qj − Qj−1)2 = Qj − Qj−1.
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Proof. For uj ∈ Vj we have Qjvj = vj ∈ Vj and therefore QjQjv = Qjv for
all v ∈ L2(Ω). In the case j < k we find Vj ⊂ Vk. Then, Qjv ∈ Vj ⊂ Vk and
thus QkQjv = Qjv. Finally, for j > k we obtain

〈Qjv, vj〉L2(Ω) = 〈v, vj〉L2(Ω) for all vj ∈ Vj

and therefore

〈QkQjv, vk〉L2(Ω) = 〈Qjv, vk〉L2(Ω) = 〈v, vk〉L2(Ω) = 〈Qkv, vk〉L2(Ω)

is satisfied for all vk ∈ Vk ⊂ Vj . This concludes the proof of 1. To show 2. we
assume j < k and therefore j ≤ k − 1. Then, by using 1. we obtain

(Qk − Qk−1)(Qj − Qj−1) = QkQj − Qk−1Qj − QkQj−1 + Qk−1Qj−1

= Qj − Qj − Qj−1 + Qj−1 = 0.

By using 1. we finally get

(Qj − Qj−1)2 = QjQj − QjQj−1 − Qj−1Qj + Qj−1Qj−1

= Qj − Qj−1 − Qj−1 + Qj−1 = Qj − Qj−1. ��

By considering a weighted linear combination of L2 projection operators Qk

we define the multilevel operator

B1 :=
∞∑

k=0

h−2
k (Qk − Qk−1) (13.16)

which induces an equivalent norm in the Sobolev space H1(Ω).

Theorem 13.13. For the multilevel operator B1 as defined in (13.16) there
hold the spectral equivalence inequalities

cB
1 ‖v‖2

H1(Ω) ≤ 〈B1v, v〉L2(Ω) ≤ cB
2 ‖v‖2

H1(Ω)

for all v ∈ H1(Ω).

The proof of Theorem 13.13 is based on several results. First we consider a
consequence of Lemma 13.12:

Corollary 13.14. For v ∈ H1(Ω) we have the representation

〈B1v, v〉L2(Ω) =
∞∑

k=0

h−2
k ‖(Qk − Qk−1)v‖2

L2(Ω).
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Proof. By the definition of B1 and by using Lemma 13.12, 3., we have

〈B1v, v〉L2(Ω) =
∞∑

k=0

h−2
k 〈(Qk − Qk−1)v, v〉L2(Ω)

=
∞∑

k=0

h−2
k 〈(Qk − Qk−1)2v, v〉L2(Ω)

=
∞∑

k=0

h−2
k 〈(Qk − Qk−1)v, (Qk − Qk−1)v〉L2(Ω)

=
∞∑

k=0

h−2
k ‖(Qk − Qk−1)v‖2

L2(Ω). ��

From the inverse inequalities of the trial spaces Vk and by using the error
estimates of the L2 projection operators Qk we further obtain from Corollary
13.14:

Lemma 13.15. For all v ∈ H1(Ω) there hold the spectral equivalence inequal-
ities

c1

∞∑
k=0

‖(Qk−Qk−1)v‖2
H1(Ω) ≤ 〈B1v, v〉L2(Ω) ≤ c2

∞∑
k=0

‖(Qk−Qk−1)v‖2
H1(Ω) .

Proof. By using Lemma 13.12, 3., the triangle inequality, the error estimate
(13.14), and assumption (13.12) we have

〈B1v, v〉L2(Ω) =
∞∑

k=0

h−2
k ‖(Qk − Qk−1)v‖2

L2(Ω)

=
∞∑

k=0

h−2
k ‖(Qk − Qk−1)(Qk − Qk−1)v‖2

L2(Ω)

≤ 2
∞∑

k=0

h−2
k

{
‖(Qk − I)(Qk − Qk−1)v‖2

L2(Ω)

+ ‖(I − Qk−1)(Qk − Qk−1)v‖2
L2(Ω)

}
≤ 2c

∞∑
k=0

h−2
k

{
h2

k ‖(Qk − Qk−1)v‖2
H1(Ω) + h2

k−1 ‖(Qk − Qk−1)v‖2
H1(Ω)

}
≤ c2

∞∑
k=0

‖(Qk − Qk−1)v‖2
H1(Ω)

and therefore the upper estimate. To prove the lower estimate we get from
the global inverse inequality (13.15) for (Qk − Qk−1)v ∈ Vk−1, and by using
assumption (13.12),
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∞∑
k=0

‖(Qk − Qk−1)v‖2
H1(Ω) ≤ c2

I

∞∑
k=0

h−2
k−1 ‖(Qk − Qk−1)v‖2

L2(Ω)

≤ c

∞∑
k=0

h−2
k ‖(Qk − Qk−1)v‖2

L2(Ω)

= c 〈B1v, v〉L2(Ω). ��

The statement of Theorem 13.13 now follows from Lemma 13.15 and from the
following spectral equivalence inequalities.

Lemma 13.16. For all v ∈ H1(Ω) there hold the spectral equivalence inequal-
ities

c̄1 ‖v‖2
H1(Ω) ≤

∞∑
k=0

‖(Qk − Qk−1)v‖2
H1(Ω) ≤ c̄2 ‖v‖2

H1(Ω).

To prove Lemma 13.16 we first need a tool to estimate some matrix norms.

Lemma 13.17 (Schur Lemma). For a countable index set I we consider
the matrix A = (A[�, k])k,	∈I and the vector u = (uk)k∈I . For an arbitrary
α ∈ R we then have

‖Au‖2
2 ≤

[
sup
	∈I

∑
k∈I

|A[�, k]| 2α(k−	)

][
sup
k∈I

∑
	∈I

|A[�, k]| 2α(	−k)

]
‖u‖2

2.

Proof. Let v = Au. For an arbitrary � ∈ I we first have

|v	| =

∣∣∣∣∣∑
k∈I

A[�, k]uk

∣∣∣∣∣ ≤ ∑
k∈I

|A[�, k]| · |uk|

=
∑
k∈I

√
|A[�, k]| 2α(k−	)/2

√
|A[�, k]| 2α(	−k)/2 |uk|.

By applying the Cauchy–Schwarz inequality this gives

|v	|2 ≤
[∑

k∈I

|A[�, k]| 2α(k−	)

][∑
k∈I

|A[�, k]| 2α(	−k) u2
k

]
.

Hence we have
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∑
	∈I

|v	|2 ≤
∑
	∈I

[∑
k∈I

|A[�, k]| 2α(k−	)

][∑
k∈I

|A[�, k]| 2α(	−k) u2
k

]

≤ sup
	∈I

[∑
k∈I

|A[�, k]| 2α(k−	)

]∑
	∈I

[∑
k∈I

|A[�, k]| 2α(	−k) u2
k

]

= sup
	∈I

[∑
k∈I

|A[�, k]| 2α(k−	)

]∑
k∈I

[∑
	∈I

|A[�, k]| 2α(	−k)

]
u2

k

≤ sup
	∈I

[∑
k∈I

|A[�, k]| 2α(k−	)

]
sup
k∈I

[∑
	∈I

|A[�, k]| 2α(	−k)

]∑
k∈I

u2
k

which concludes the proof. ��
As a consequence of Lemma 13.17 we immediately obtain the norm esti-

mate

‖A‖2 ≤
[
sup
	∈I

∑
k∈I

|A[�, k]| 2α(k−	)

]1/2 [
sup
k∈I

∑
	∈I

|A[�, k]| 2α(	−k)

]1/2

(13.17)

where α ∈ R is arbitrary. In particular for a symmetric matrix A and when
considering α = 0 the estimate

‖A‖2 ≤ sup
	∈I

∑
k∈I

|A[�, k]| (13.18)

follows. To prove the lower estimate in the spectral equivalence inequalities of
Lemma 13.16 we need to have a strengthened Cauchy–Schwarz inequality.

Lemma 13.18 (Strengthened Cauchy–Schwarz Inequality). Let as-
sumption (13.12) be satisfied. Then there exists a q < 1 such that∣∣〈(Qi − Qi−1)v, (Qj − Qj−1)v〉H1(Ω)

∣∣
≤ c q|i−j| ‖(Qi − Qi−1)v‖H1(Ω)‖(Qj − Qj−1)v‖H1(Ω)

holds for all v ∈ H1(Ω).

Proof. Without loss of generality we may assume j < i. For vj ∈ Vj we have
for the H1 projection Q1

jvj = vj ∈ Vj and therefore

〈(Qi − Qi−1)v, (Qj − Qj−1)v〉H1(Ω) = 〈(Qi − Qi−1)v,Q1
j (Qj − Qj−1)v〉H1(Ω)

= 〈Q1
j (Qi − Qi−1)v, (Qj − Qj−1)v〉H1(Ω)

≤ ‖Q1
j (Qi − Qi−1)v‖H1(Ω)‖(Qj − Qj−1)v‖H1(Ω).

Due to Vj = S1
hj

(Ω) ⊂ H1+σ(Ω) the H1 projection as given in (9.29) is well
defined for u ∈ H1−σ(Ω) and for σ ∈ (0, 1

2 ). Dependent on the regularity
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of the computational domain Ω there exists an index s ∈ (0, σ] such that
Q1

j : H1−s(Ω) → Vj ⊂ H1−s(Ω) is bounded, see Lemma 9.11. By using
the inverse inequality in Vj and by using the error estimate (9.37) of the L2

projection Qj we then have

‖Q1
j (Qi − Qi−1)v‖H1(Ω) ≤ cI h−s

j ‖(Qi − Qi−1)v‖H1−s(Ω)

= cI h−s
j ‖(Qi − Qi−1)(Qi − Qi−1)v‖H1−s(Ω)

≤ cI h−s
j

[
‖(Qi − I)(Qi − Qi−1)v‖H1−s(Ω)

+‖(I − Qi−1)(Qi − Qi−1)v‖H1−s(Ω)

]
≤ c h−s

j

[
hs

i + hs
i−1

]
‖(Qi − Qi−1)v‖H1(Ω)

≤ c̃ 2s(j−i) ‖(Qi − Qi−1)v‖H1(Ω).

With q := 2−s we obtain the strengthened Cauchy–Schwarz inequality. ��
Proof of Lemma 13.16: Let Q1

j : H1(Ω) → S1
hj

(Ω) ⊂ H1(Ω) be the H1

projection as defined by the variational problem (9.29), in particular for a
given u ∈ H1(Ω) the projection Q1

ju ∈ Vj is the unique solution of

〈Q1
ju, vj〉H1(Ω) = 〈u, vj〉H1(Ω) for all vj ∈ Vj .

Then, dependent on the regularity of the computational domain Ω, and by
applying Lemma 9.11, there exists an index s ∈ (0, 1], such that the following
error estimate holds,

‖(I − Q1
h)u‖H1−s(Ω) ≤ c hs ‖u‖H1(Ω).

As in Lemma 13.12 we also have

(Q1
j − Q1

j−1)(Q
1
j − Q1

j−1) = Q1
j − Q1

j−1 .

Therefore, for v ∈ H1(Ω) we obtain the representation

v =
∞∑

i=0

(Q1
i − Q1

i−1)v =
∞∑

i=0

vi where vi := (Q1
i − Q1

i−1)v.

For i < k we therefore have vi = (Q1
i − Q1

i−1)v ∈ Vi−1 ⊂ Vk−1, and thus
(Qk − Qk−1)vi = 0. Hence, by interchanging the order of summation,
∞∑

k=0

‖(Qk − Qk−1)v‖2
H1(Ω) =

∞∑
k=0

∞∑
i,j=0

〈(Qk − Qk−1)vi, (Qk − Qk−1)vj〉H1(Ω)

=
∞∑

i,j=0

min{i,j}∑
k=0

〈(Qk − Qk−1)vi, (Qk − Qk−1)vj〉H1(Ω)

≤
∞∑

i,j=0

min{i,j}∑
k=0

‖(Qk − Qk−1)vi‖H1(Ω)‖(Qk − Qk−1)vj‖H1(Ω).
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By using the global inverse inequality (13.15), the stability of the L2 projection
(see Remark 9.14), and applying some interpolation argument, we obtain from
assumption (13.12) for the already fixed parameter s ∈ (0, 1] the estimate

‖(Qk − Qk−1)vi‖H1(Ω) ≤ c h−s
k ‖(Qk − Qk−1)vi‖H1−s(Ω)

≤ c h−s
k ‖vi‖H1−s(Ω).

Moreover,

‖vi‖H1−s(Ω) = ‖(Q1
i − Q1

i−1)v‖H1−s(Ω)

= ‖(Q1
i − Q1

i−1)(Q
1
i − Q1

i−1)v‖H1−s(Ω)

≤ ‖(Q1
i − I)vi‖H1−s(Ω) + ‖(I − Q1

i−1)vi‖H1−s(Ω)

≤ c hs
i ‖vi‖H1(Ω).

Hence we obtain

∞∑
k=0

‖(Qk − Qk−1)v‖2
H1(Ω) ≤ c

∞∑
i,j=0

min{i,j}∑
k=0

h−2s
k hs

i hs
j ‖vi‖H1(Ω)‖vj‖H1(Ω).

By using assumption (13.12) we further have

h−2s
k ≤ c

(
2−k
)−2s

= c
(
2min{i,j}−k

)−2s

22s min{i,j}.

Then, for the already fixed parameter s ∈ (0, 1] it follows that

min{i,j}∑
k=0

h−2s
k ≤ c 22s min{i,j}

min{i,j}∑
k=0

(
2−2s

)min{i,j}−k ≤ c̃ 22s min{i,j} .

By using assumption (13.12) this gives

∞∑
k=0

‖(Qk − Qk−1)v‖2
H1(Ω) ≤ c

∞∑
i,j=0

22s min{i,j} 2−s(i+j) ‖vi‖H1(Ω)‖vj‖H1(Ω)

= c
∞∑

i,j=0

2−s|i−j| ‖vi‖H1(Ω)‖vj‖H1(Ω).

If we define a symmetric matrix A by its entries A[j, i] = 2−s|i−j|, we then get

∞∑
k=0

‖(Qk − Qk−1)v‖2
H1(Ω) ≤ c ‖A‖2

∞∑
i=0

‖vi‖2
H1(Ω).

By using the estimate (13.18) of the Schur lemma we obtain
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‖A‖2 ≤ sup
j∈N0

∞∑
i=0

2−s|i−j| .

For q := 2−s < 1 and for some j ∈ N0 this norm is bounded by

∞∑
i=0

q|i−j| =
j−1∑
i=0

qj−i +
∞∑

i=j

qi−j =
j∑

i=1

qi +
∞∑

i=0

qi ≤ 2
∞∑

i=0

qi =
2

1 − q
,

and therefore it follows that
∞∑

k=0

‖(Qk − Qk−1)v‖2
H1(Ω) ≤ c̄

∞∑
i=0

‖vi‖2
H1(Ω) .

Finally,

∞∑
i=0

‖vi‖2
H1(Ω) =

∞∑
i=0

〈(Q1
i − Q1

i−1)v, (Q1
i − Q1

i−1)v〉H1(Ω)

=
∞∑

i=0

〈(Q1
i − Q1

i−1)(Q
1
i − Q1

i−1)v, v〉H1(Ω)

=
∞∑

i=0

〈(Q1
i − Q1

i−1)v, v〉H1(Ω) = 〈v, v〉H1(Ω) = ‖v‖2
H1(Ω),

which gives the upper estimate.
To prove the lower estimate we use the strengenthed Cauchy–Schwarz

inequality (Lemma 13.18) for some q < 1 to obtain

||v||2H1(Ω) =
∞∑

i,j=0

〈(Qi − Qi−1)v, (Qj − Qj−1)v〉H1(Ω)

≤
∞∑

i,j=0

q|i−j| ‖(Qi − Qi−1)v‖H1(Ω)‖(Qj − Qj−1)v‖H1(Ω).

Now the assertion follows as above by applying the Schur lemma. ��

Remark 13.19. For s ∈ [0, 3
2 ) we may define the more general multilevel oper-

ator

Bs :=
∞∑

k=0

h−2s
k (Qk − Qk−1)

which satisfies, as in the special case s = 1, the spectral equivalence inequali-
ties

c1 ‖v‖2
Hs(Ω) ≤ 〈Bsv, v〉L2(Ω) ≤ c2 ‖v‖2

Hs(Ω) for all v ∈ Hs(Ω).
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Although the following considerations are only done for the special case s = 1,
these investigations can be extended to the more general case s ∈ [0, 3

2 ), too.
By using Theorem 13.13 the multilevel operator B1 : H1(Ω) → H̃−1(Ω)

is bounded and H1(Ω)–elliptic. The inverse operator (B1)−1 : H̃−1(Ω) →
H1(Ω) is then bounded and H̃−1(Ω)–elliptic, in particular the spectral equiv-
alence inequalities (13.13) are valid. For the inverse operator (B1)−1 again a
multilevel representation can be given.

Lemma 13.20. The inverse operator (B1)−1 allows the representation

B−1 := (B1)−1 =
∞∑

k=0

h2
k(Qk − Qk−1).

Proof. The assertion follows directly from

B−1B1 =
∞∑

k=0

∞∑
j=0

h−2
k h2

j (Qk − Qk−1)(Qj − Qj−1)

=
∞∑

k=0

(Qk − Qk−1) = I. ��

Remark 13.21. If we define the L2 projection operators Qj : L2(Ω) → S0
hj

(Ω)

onto the space of piecewise constant basis functions ϕ0,j
k , then the related

multilevel operator Bs satisfies the spectral equivalence inequalities

c1 ‖v‖2
Hs(Ω) ≤ 〈Bsv, v〉L2(Ω) ≤ c2 ‖v‖2

Hs(Ω) for all v ∈ Hs(Ω)

where s ∈ (− 1
2 , 1

2 ).

By using corollary 13.7 we can now establish the spectral equivalence of the
system matrix AhL

with the discrete preconditioning matrix

C̃A = M̄hL
B−1

hL
M̄hL

where

BhL
[�, k] = 〈B−1ϕL

k , ϕL
	 〉L2(Ω), M̄hL

[�, k] = 〈ϕL
k , ϕL

	 〉L2(Ω)

for all ϕL
k , ϕL

	 ∈ VL = S1
hL

(Ω).
It remains to describe the application v = C̃−1

A r inside the algorithm of
the preconditioned method of conjugate gradients, see Algorithm 13.3. There
we have to compute

v := C̃−1
A r = M−1

hL
BhL

M−1
hL

r,
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or,
u := M−1

hL
r, w := BhL

u, v := M−1
hL

w.

By using the isomorphism u ∈ R
ML ↔ uhL

∈ VL we obtain for the components
of w = BhL

u

w	 :=
ML∑
k=1

BhL
[�, k]uk =

ML∑
k=1

〈B−1ϕL
k , ϕL

	 〉L2(Ω)uk = 〈B−1uhL
, ϕL

	 〉L2(Ω).

Hence, for uhL
∈ VL we need to evaluate

zhL
:= B−1uhL

=
∞∑

k=0

h2
k (Qk − Qk−1)uhL

=
L∑

k=0

h2
k (Qk − Qk−1)uhL

∈ VL

which is a finite sum due to QkuhL
= uhL

for k ≥ L. For the components of
w = BhL

u we then obtain

w	 = 〈B−1uhL
, ϕL

	 〉L2(Ω) = 〈zhL
, ϕL

	 〉L2(Ω) =
ML∑
k=1

zk〈ϕL
k , ϕL

	 〉L2(Ω).

This is equivalent to
w = MhL

z,

and therefore there is no need to invert the inverse mass matrix MhL
when

computing the preconditioned residual,

v = M−1
hL

w = M−1
hL

MhL
z = z .

It remains to compute the coefficients of z ∈ R
ML ↔ zhL

∈ VL. For this we
have the representation

zhL
=

L∑
k=0

h2
k (Qk − Qk−1)uhL

= h2
LQLuhL

+
L−1∑
k=0

(h2
k − h2

k+1)QkuhL

= h2
L ūhL

+
L−1∑
k=0

(h2
k − h2

k+1)ūhk

where

ūhk
= QkuhL

=
Mk∑
	=1

ūk
	 ϕk

	 ∈ Vk

is the L2 projection of uhL
into the trial space Vk, k = 0, 1, . . . , L. Due to
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c h2
k ≤ h2

k − h2
k+1 ≤ h2

k

we can define

z̄hL
:=

L∑
k=0

h2
k ūhk

to be spectrally equivalent to C̃−1
A . The evaluation of z̄hL

can be done recur-
sively. Starting from z̄h0 = h2

0ūh0 ∈ V0 we have

z̄hk
:= z̄hk−1 + h2

kūhk
=

Mk−1∑
	=1

z̄k−1
	 ϕk−1

	 +
Mk∑
	=1

h2
kūk

	 ϕk
	 .

Due to the inclusion Vk−1 ⊂ Vk we can write each basis function ϕk−1
	 ∈ Vk−1

as a linear combination of basis functions ϕk
j ∈ Vk,

ϕk−1
	 =

Mk∑
j=1

rk
	,jϕ

k
j for all � = 1, . . . , Mk−1.

Hence we can write

Mk−1∑
	=1

z̄k−1
	 ϕk−1

	 =
Mk−1∑
	=1

z̄k−1
	

Mk∑
j=1

rk
	,jϕ

k
j =

Mk∑
j=1

Mk−1∑
	=1

z̄k−1
	 rk

	,jϕ
k
j .

By introducing the matrices

Rk−1,k[j, �] = rk
	,j for j = 1, . . . , Mk, � = 1, . . . , Mk−1

we obtain for the coefficient vector

z̄k := Rk−1,kz̄k−1 + h2
kūk.

When considering a uniform mesh refinement strategy the coefficients rk
	,j are

given by the nodal interpolation of the basis functions ϕk−1
	 ∈ Vk−1 at the

nodes xj of the decomposition TNk
, see Fig. 13.1.

By using the matrices

Rk := RL−1,L . . . Rk,k+1 for k = 0, . . . , L − 1, RL := I

we obtain by induction

z̄L =
L∑

k=0

h2
kRkūk .

It remains to compute the L2 projections ūhk
= QkuhL

as the unique solutions
of the variational problems

〈ūhk
, ϕk

	 〉L2(Ω) = 〈uhL
, ϕk

	 〉L2(Ω) for all ϕk
	 ∈ Vk.
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Fig. 13.1. Basis functions ϕk−1
� and coefficients rk

�,j (d = 2).

This is equivalent to a linear system of algebraic equations,

Mhk
ūk = fk

where
Mhk

[�, j] = 〈ϕk
j , ϕk

	 〉L2(Ω), fk
	 = 〈uhL

, ϕk
	 〉L2(Ω).

In particular for k = L we have

fL = MhL
u = MhL

M−1
hL

r = r

and therefore
ūL = M−1

hL
r .

Due to

fk−1
	 = 〈uhL

, ϕk−1
	 〉L2(Ω) =

Mk∑
j=1

rk
	,j〈uhL

, ϕk
j 〉L2(Ω) =

M∑
j=1

rk
	,jf

k
j

we get
fk−1 = R�

k−1,kfk = R�
k−1r.

By recursion we therefore have

ūk = M−1
hk

R�
k r,

and the application of the preconditioner reads

v =
L∑

k=0

h2
kRkM−1

hk
R�

k r .

Taking into account the spectral equivalence of the mass matrices with the
diagonal matrices hd

k I, see Lemma 9.7, we then obtain for the application of
the multilevel preconditioner

v =
L∑

k=0

h2−d
k RkR�

k r. (13.19)
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The realization of the multilevel preconditioner (13.19) therefore requires the
restriction of a residual vector r which is given on the computational level
L, and a weighted summation of prolongated coarse grid vectors. Thus, an
application of the multilevel preconditioner requires O(M) operations only.

CA = I CA = M̄hLB−1
hL

M̄hL

L M λmin λmax κ(C−1
A Ah) λmin λmax κ(C−1

A Ah)

1 13 2.88 –1 6.65 23.13 16.34 130.33 7.98
2 41 8.79 –2 7.54 85.71 16.69 160.04 9.59
3 145 2.42 –2 7.87 324.90 16.32 179.78 11.02
4 545 6.34 –3 7.96 1255.75 15.47 193.36 12.50
5 2113 1.62 –3 7.99 4925.47 15.48 202.94 13.11
6 8321 4.10 –4 8.00 19496.15 15.58 209.85 13.47
7 33025 ≈80000 15.76 214.87 13.63
8 131585 ≈320000 15.87 218.78 13.79
9 525313 ≈1280000 15.96 221.65 13.89

Theory: O(h−2) O(1)

Table 13.3. Extremal eigenvalues and spectral condition number (FEM).

In Table 13.3 we give the extremal eigenvalue and the resulting spec-
tral condition numbers of the preconditioned finite element stiffness matrix
C−1

A [a a�+AhL
]. This preconditioner is also needed for an efficient solve of the

linear system (11.22), as it will be considered in the next section. The results
for the non–preconditioned system (CA = I) confirm the statement of Lemma
11.4, while the boundedness of the spectral condition of the preconditioned
systems coincides with the results of this section.

13.3 Solution Methods for Saddle Point Problems

The boundary element discretization of the symmetric formulation of bound-
ary integral equations to solve mixed boundary value problems, as well as
the finite element discretization of saddle point problems, both lead to linear
systems of algebraic equations of the form(

A −B

B� D

)(
u1

u2

)
=

(
f

1

f
2

)
(13.20)

where the block A ∈ R
M1×M1 is symmetric and positive definite, and

where D ∈ R
M2×M2 is symmetric but positive semi–definite. Accordingly,

B ∈ R
M1×M2 . Since the matrix A is assumed to be positive definite, we can

solve the first equation in (13.20) for u1 to obtain



320 13 Iterative Solution Methods

u1 = A−1Bu2 + A−1f
1
.

Inserting this into the second equation of (13.20) this results in the Schur
complement system[

D + B�A−1B
]
u2 = f

2
− B�A−1f

1
(13.21)

where
S = D + B�A−1B ∈ R

M2×M2 . (13.22)

is the Schur complement. From the symmetry properties of the block matrices
A, B and D we conclude the symmetry of S, while, at this point, we assume
the positive definiteness of S.

We assume that for the symmetric and positive definite matrices A and
S = D + B�A−1B there are given some positive definite and symmetric
preconditioning matrices CA and CS satisfying the spectral equivalence in-
equalities

cA
1 (CAx1, x1) ≤ (Ax1, x1) ≤ cA

2 (CAx1, x1) (13.23)

for all x1 ∈ R
M1 as well as

cS
1 (CSx2, x2) ≤ (Sx2, x2) ≤ cS

2 (CSx2, x2) (13.24)

for all x2 ∈ R
M2 . Hence, to solve the Schur complement system (13.21) we

can apply the CS preconditioned method of conjugate gradients (Algorithm
13.3). There, the matrix by vector multiplication sk = Spk for the Schur
complement (13.22) reads

sk := Dpk + B�A−1Bpk = Dpk + B�wk,

where wk is the unique solution of the linear system

Awk = Bpk.

This system can be solved either by a direct method, for example by the
Cholesky approach, or again by using a CA preconditioned method of con-
jugate gradients (Algorithm 13.3). Depending on the application under con-
sideration the Schur complement approach can be disadvantageous. Then, an
iterative solution strategy for the system (13.20) should be used. Possible iter-
ative solution methods for general non–symmetric linear systems of the form
(13.20) are the method of the generalized minimal residual (GMRES, [120]),
or the stabilized method of biorthogonal search directions (BiCGStab, [155]).

Here, following [26], we will describe a transformation of the block–skew
symmetric but positive definite system (13.20) leading to a symmetric and
positive definite system for which a preconditioned conjugate gradient ap-
proach can be used.
For the preconditioning matrix CA we need to assume that the spectral equiv-
alence inequalities (13.23) hold where
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cA
1 > 1 (13.25)

is satisfied. This can always be guaranteed by using an appropriate scaling,
i.e. for a given preconditioning matrix CA we need to compute the minimal
eigenvalue of the preconditioned system C−1

A A. From the assumption (13.25)
we find that the matrix A − CA is positive definite,

((A − CA)x1, x1) ≥ (cA
1 − 1) (CAx1, x1) for all x1 ∈ R

M1 ,

and hence invertible. Thus, also the matrix

AC−1
A − I = (A − CA)C−1

A

is invertible, and

T =

(
AC−1

A − I 0

−B�C−1
A I

)
defines a invertible matrix. By multiplying the linear system (13.20) with the
transformation matrix T this gives(

AC−1
A − I 0

−B�C−1
A I

)(
A −B

B� D

)(
u1

u2

)
=

(
AC−1

A − I 0
−B�C−1

A I

)(
f

1

f
2

)
(13.26)

where the system matrix

M =

(
AC−1

A − I 0
−B�C−1

A I

)(
A −B

B� D

)

=

(
AC−1

A A − A (I − AC−1
A )B

B�(I − C−1
A A) D + B�C−1

A B

)
(13.27)

is symmetric. From the spectral equivalence inequalities of the transformed
system matrix M with the preconditioning matrix

CM :=

(
A − CA 0

0 CS

)
(13.28)

then the positive definiteness of M follows. Hence we can use a preconditioned
conjugate gradient scheme to solve the transformed linear system (13.26).

Theorem 13.22. For the preconditioning matrix CM as defined in (13.28)
there hold the spectral equivalence inequalities

cM
1 (CMx, x) ≤ (Mx, x) ≤ cM

2 (CMx, x) for all x ∈ R
M1+M2

where



322 13 Iterative Solution Methods

cM
1 =

1
2
cA
2 [1 + cS

1 ] −
√

1
4
[cA

2 (1 + cS
1 )]2 − cS

1 cA
2 ,

cM
2 =

1
2
cA
2 [1 + cS

2 ] +

√
1
4
[cA

2 (1 + cS
2 )]2 − cS

2 cA
2 .

Proof. We need to estimate the extremal eigenvalues of the preconditioned
system matrix C−1

M M , in particular we have to consider the eigenvalue prob-
lem(

AC−1
A A − A (I − AC−1

A )B
B�(I − C−1

A A) D + B�C−1
A B

)(
x1

x2

)
= λ

(
A − CA 0

0 CS

)(
x1

x2

)
.

Let λi be an eigenvalue with associated eigenvectors xi
1 and xi

2. From the first
equation,

(AC−1
A A − A)xi

1 + (I − AC−1
A )Bxi

2 = λi(A − CA)xi
1,

we find by some simple manipulations

−Bxi
2 = (λiCA − A)xi

1 .

For λi ∈ [1, cA
2 ] nothing is to be shown. Hence we only consider λi �∈ [1, cA

2 ]
were λiCA − A is invertible. Thus,

xi
1 = −(λiCA − A)−1Bxi

2.

Inserting this result into the second equation of the eigenvalue problem,

B�(I − C−1
A A)xi

1 + [D + B�C−1
A B]xi

2 = λiCSxi
2,

this gives

−B�C−1
A (CA − A)(λiCA − A)−1Bxi

2 + [D + B�C−1
A B]xi

2 = λiCSxi
2 .

Due to

−C−1
A (CA − A)(λiCA − A)−1 = −C−1

A [λiCA − A + (1 − λi)CA](λiCA − A)−1

= (λi − 1)(λiCA − A)−1 − C−1
A

this is equivalent to

(λi − 1)B�(λiCA − A)−1Bxi
2 + Dxi

2 = λiCSxi
2 .

When λi > cA
2 is satisfied we have that λiCA−A is positive definite. By using

the spectral equivalence inequalities (13.23) we then obtain

λi − cA
2

cA
2

(Ax1, x1) ≤ ((λiCA − A)x1, x1)
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for all x1 ∈ R
M1 , and therefore

((λiCA − A)−1x1, x1) ≤ cA
2

λi − cA
2

(A−1x1, x1) for all x1 ∈ R
n1 .

From the spectral equivalence inequalities (13.24) we conclude

λi

cS
2

(Sxi
2, x

i
2) ≤ λi(CSxi

2, x
i
2)

= (Dxi
2, x

i
2) + (λi − 1)((λiCA − A)−1Bxi

2, Bxi
2)

≤ (Dxi
2, x

i
2) + (λi − 1)

cA
2

λi − cA
2

(A−1Bxi
2, Bxi

2)

≤ cA
2

λi − 1
λi − cA

2

(Sxi
2, x

i
2)

and therefore
λi

cS
2

≤ cA
2

λi − 1
λi − cA

2

,

i.e.
λ2

i − cA
2 [1 + cS

2 ]λi + cS
2 cA

2 ≤ 0 .

From this we obtain
λ− ≤ λi ≤ λ+

where

λ± =
1
2
cA
2 [1 + cS

2 ] ±
√

1
4
[cA

2 (1 + cS
2 )]2 − cA

2 cS
2 .

Altogether we therefore have

cA
2 < λi ≤ 1

2
cA
2 [1 + cS

2 ] +

√
1
4
[cA

2 (1 + cS
2 )]2 − cA

2 cS
2 = cM

2 .

It remains to consider the case λi < 1 where A−λiCA is positive definite. By
using the spectral equivalence inequalities (13.23) we get

((A − λiCA)x1, x1) ≤ cA
2 − λi

cA
2

(Ax1, x1)

and therefore

((A − λiCA)−1x1, x1) ≥ cA
2

cA
2 − λi

(A−1x1, x1)

for all x1 ∈ R
M1 . Again, by using the spectral equivalence inequalities (13.24)

we conclude
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λi

cS
1

(Sxi
2, x

i
2) ≥ λi(CSxi

2, x
i
2)

= (Dxi
2, x

i
2) + (1 − λi)((A − λiCA)−1Bxi

2, Bxi
2)

≥ (Dxi
2, x

i
2) + (1 − λi)

cA
2

cA
2 − λi

(A−1Bxi
2, Bxi

2)

≥ (1 − λi)
cA
2

cA
2 − λi

(Sxi
2, x

i
2)

and therefore
cA
2

1 − λi

cA
2 − λi

≤ λi

cS
1

.

This is equivalent to

λ2
i − cA

2 [cS
1 + 1]λi + cS

1 cA
2 ≤ 0,

i.e.
λ− ≤ λi ≤ λ+

where

λ± =
1
2
cA
2 [1 + cS

1 ] ±
√

1
4
[cA

2 (1 + cS
1 )]2 − cS

1 cA
2 .

Summarizing we have

1 > λi ≥ 1
2
cA
2 [1 + cS

1 ] −
√

1
4
[cA

2 (1 + cS
1 )]2 − cS

1 cA
2 = cM

1 .

This completes the proof. ��
For the solution of the transformed linear system (13.26) Algorithm

13.3 of the preconditioned conjugate gradient approach can be applied. On
a first glance the multiplication with the inverse preconditioning matrix
vk+1 = C−1

M rk+1, in particular the evaluation of vk+1
1 = (A−CA)−1rk+1 seems

to be difficult. However, from the recursion of the residual,
rk+1 = rk − αkMpk, we find the representation

rk+1
1 := rk

1 − αk(AC−1
A − I)(Apk

1
− Bpk

2
).

Hence we can write the preconditioned residual vk
1 recursively as

vk+1
1 := vk

1 − αkC−1
A (Apk

1
− Bpk

2
).

In particular for k = 0 we have

v0
1 := C−1

A

[
Ax0

1 − Bx0
2 − f

1

]
.

The resulting preconditioned iterative scheme is summarized in Algorithm
13.4.
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For an arbitrary initial guess u0 ∈ R
M1+M2 compute the residual

r̄0
1 := Au0

1 − Bu0
2 − f

1
, r̄0

2 := B�u0
1 + Du0

2 − f
2
.

Compute the transformed residual

w0
1 := C−1

A r̄0
1, r0

1 := Aw0
1 − r̄0

1, r0
2 := r̄0

2 − B�w0
1.

Initialize the method of conjugate gradients:

v0
1 := w0

1, v0
2 := C−1

S r0
2, p0 := v0, 
0 := (v0, r0).

For k = 0, 1, 2, . . . , n − 1:

Realize the matrix by vector multiplication

s̃k
1 := Apk

1
− Bpk

2
, s̃k

2 := B�pk

1
+ Dpk

2
.

Compute the transformation

wk
1 := C−1

A s̃k
1 , sk

1 := Awk
1 − s̃k

1 , sk
2 := s̃k

2 − B�wk
1 .

Compute the new iterates

σk := (sk, pk), αk := 
k/σk;

uk+1 := uk − αkpk, rk+1 := rk − αksk;

vk+1
1 := vk

1 − αkwk+1
1 , vk+1

2 := C−1
S rk+1

2 , 
k+1 := (vk+1, rk+1) .

Stop, if 
k+1 ≤ ε
0 is satisfied for some given accuracy ε.
Otherwise compute the new search direction

βk := 
k+1/
k, pk+1 := vk+1 + βkpk .

Algorithm 13.4: Conjugate gradient method with Bramble/Pasciak transformation.

L N M Schur CG BP CG

2 16 11 11 16
3 32 23 13 19
4 64 47 14 21
5 128 95 14 21
6 256 191 15 23
7 512 383 16 23
8 1024 767 16 23
9 2048 1535 16 24

Table 13.4. Comparison of Schur CG and Bramble/Pasciak CG.

As an example we consider the solution of the linear system (12.43) which
results from a Galerkin boundary element approximation, see Section 12.3,(

Vh − 1
2Mh − Kh

1
2M�

h + K�
h Dh

)(
w

û

)
=

(
0
f

)
. (13.29)

The associated Schur complement system reads
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Shû =
[
Dh + (

1
2
M�

h + K�
h )V −1

h (
1
2
Mh + Kh)

]
û = f . (13.30)

As preconditioner for the Schur complement matrix Sh we can apply the
preconditioning strategy as described in section 13.2.1. But in this case the
spectral equivalence inequalities (13.11) of the hypersingular boundary in-
tegral operator D : H̃1/2(ΓN ) → H−1/2(Γ ) and of the inverse single layer
potential V : H̃−1/2(ΓN ) → H1/2(ΓN ) are not satisfied due to the differ-
ent function spaces to be used. But for finite dimensional conformal trial
spaces S1

h(ΓN ) ⊂ H̃1/2(ΓN ) one can prove related estimates [104], i.e. for all
vh ∈ S1

h(ΓN ) there hold the spectral equivalence inequalities

γ1 〈V −1vh, vh〉Γ ≤ 〈Dvh, vh〉Γ ≤ γ2 [1 + log |h|]2 〈V −1vh, vh〉Γ .

When using the preconditioning matrix CD = M̄hV̄ −1
h M̄h we then obtain the

estimate for the spectral condition number,

κ2(C−1
D Dh) ≤ c [1 + log |h|]2.

As described in section 13.2.1 we can also define a preconditioning matrix CV

for the discrete single layer potential Vh which is based on the modified hyper-
singular boundary integral operator D̂ : H1/2(Γ ) → H−1/2(Γ ), see [144]. In
Table 13.4 we give the number of iterations of the preconditioned conjugate
gradient approach for the solution of the Schur complement system (13.30),
and of the conjugate gradient approach with the Bramble/Pasciak transfor-
mation to solve the system (13.29). As relative accuracy we have considered
ε = 10−8, and the scaling of the preconditioning matrix CV of the discrete sin-
gle layer potential was chosen such that the spectral equivalence inequalities
(13.23) are satisfied with cA

1 = 1.2.
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Fast Boundary Element Methods

Boundary element methods as described in Chapter 12 result in dense stiff-
ness matrices. In particular, both the storage requirements and the numerical
amount of work to compute all entries of a boundary element stiffness matrix
is quadratic in the number of degrees of freedom. Hence there is a serious
need to derive and to describe fast boundary element methods which exhibit
an almost linear, up to some polylogarithmic factors, behavior in the num-
ber of degrees of freedom. Here we constrict our considerations to the case
of a two–dimensional model problem, for the three–dimensional case, see, for
example, [117].

As a model problem we consider the Dirichlet boundary value problem

−∆u(x) = 0 for x ∈ Ω ⊂ R
2, γint

0 u(x) = g(x) for x ∈ Γ = ∂Ω

where we assume diam Ω < 1 to ensure the invertibility of the single layer
potential V . When using an indirect single layer potential (7.4) the solution
of the above problem is given by

u(x̃) = − 1
2π

∫
Γ

log |x̃ − y|w(y)dsy for x̃ ∈ Ω.

The yet unknown density w ∈ H−1/2(Γ ) is then given as the unique solution
of the boundary integral equation (7.12),

(V w)(x) = − 1
2π

∫
Γ

log |x − y|w(y)dsy = g(x) for x ∈ Γ.

Let S0
h(Γ ) = span{ϕ0

k}N
k=1 be the trial space of piecewise constant basis func-

tions ϕ0
k which are defined with respect to a globally quasi–uniform boundary

mesh {τk}N
k=1 with a global mesh size h. Then we can find an approxi-

mate solution wh ∈ S0
h(Γ ) as the unique solution of the Galerkin variational

problem
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〈V wh, τh〉Γ = 〈g, τh〉Γ for all τh ∈ S0
h(Γ ). (14.1)

This variational problem is equivalent to a linear system Vhw = f of algebraic
equations where the stiffness matrix Vh is defined as

Vh[�, k] = 〈V ϕ0
k, ϕ0

	〉Γ = − 1
2π

∫
τ�

∫
τk

log |x − y|dsydsx (14.2)

for all k, � = 1, . . . , N . Note that for the approximate solution wh ∈ S0
h(Γ )

there holds the error estimate

‖w − wh‖H−1/2(Γ ) ≤ c h3/2 |w|H1
pw(Γ ). (14.3)

when assuming w ∈ H1
pw(Γ ). Due to the nonlocal definition of the fundamen-

tal solution the stiffness matrix Vh is dense, i.e. to describe the symmetric
matrix Vh we need to store 1

2N(N +1) matrix entries. Moreover, a realization
of a matrix by vector product within the use of a preconditioned conjugate
gradient scheme (Algorithm 13.3) requires N2 multiplications. Hence we have
a quadratic amount of work in both storage of the matrix and in a matrix by
vector product with respect to the number N of degrees of freedom. In con-
trast to standard boundary element methods we are interested in the design
of fast boundary element methods where the numerical amount of work will
be of the order O(N(log2 N)α) where we have to ensure an error estimate as
given in (14.3) for a standard boundary element method.

In this chapter we will consider two different approaches to derive fast
boundary element methods. The use of wavelets [46, 47, 94, 127] leads to dense
stiffness matrices Vh, but since most of the matrix entries can be neglected this
results in a sparse approximation Ṽh of the stiffness matrix. A second approach
is based on a hierarchical clustering of boundary elements [14, 62, 65, 73, 122]
which defines a block partitioning of the stiffness matrix Vh. If two clusters
are well separated the related block can be approximated by some low rank
matrices.

14.1 Hierarchical Cluster Methods

Since the fundamental solution U∗(x, y) = − 1
2π log |x − y| is only a function

of the distance |x − y|, all matrix entries Vh[�, k] of the discrete single layer
potential Vh as defined in (14.2) only depend on the distance, on the size, and
on the shape of the boundary elements τk and τ	. Hence we can cluster all
boundary elements when taking into account their size and the distances to
each other. The ratio of the cluster size and the distance between two clusters
will then serve as an admissibility criterion to define an approximation of the
fundamental solution. A larger distance between two clusters then also allows
to consider larger clusters of boundary elements. For this we will consider
an appropriate hierarchy of clusters. The interaction between two boundary
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elements τk and τ	 to compute the matrix entry Vh[�, k] is then replaced by
the interaction between the associated clusters.

For a given globally quasi–uniform boundary decomposition Γ =
⋃N

	=1 τ	

we first have to construct a suitable cluster hierarchy. Due to the general
assumption diamΩ < 1 we may assume Ω ⊂ (0, 1)2. Hence, all boundary ele-
ments τ	 are contained in the surrounding square box Ω0

1 = (0, 1)2. Applying
a recursive decomposition of Ωλ−1

j into four congruent boxes Ωλ
i as depicted

in Fig. 14.1 this first defines a hierarchy of boxes Ωλ
i , and from this we easily

find a hierarchical clustering of the boundary elements τ	. The number λ of
recursive refinement steps is called the level of the hierarchy.

Ω0
1

Ω1
1 Ω1

2

Ω1
3 Ω1

4

Ω2
1 Ω2

2 Ω2
5 Ω2

6

Ω2
3 Ω2

4 Ω2
7 Ω2

8

Ω2
9 Ω2

10 Ω2
13 Ω2

14

Ω2
11 Ω2

12 Ω2
15 Ω2

16

Fig. 14.1. Hierarchy of boxes Ωλ
j for λ = 0, 1, 2.

For λ = 1, . . . , L we therefore have the representation

Ω
λ−1

j =
4j⋃

i=4(j−1)+1

Ω
λ

i , j = 1, . . . , 4(λ−1) (14.4)

where the length dλ
j of an edge of the box Ωλ

j is given by

dλ
j = 2−λ, j = 1, . . . , 4λ.

The refinement strategy (14.4) is applied recursively until the edge length dL
j

of a box ΩL
j on the finest level L is proportional to the mesh size h of the

globally quasi–uniform boundary mesh {τ	}N
	=1, i.e.

dL
j = 2−L ≤ cL h

induces a maximal number of boundary elements τ	 which are contained in
the box ΩL

j . Then we find for the maximal level of the cluster tree

L ≥ cL ln(1/h)
ln 2

.

Since the boundary decomposition is assumed to be globally quasi–uniform,
this implies that the surface measure |Γ | is proportional to Nh and therefore
we obtain



330 14 Fast Boundary Element Methods

L = O(ln N) . (14.5)

To describe the clustering of the boundary elements {τ	}N
	=1 we may consider

the clustering of the associated element midpoints x̂	 ∈ τ	 for � = 1, . . . , N .
For j = 1, . . . , 4L we first collect all boundary elements τ	 where the midpoint
x̂	 is in the box ΩL

j in a cluster ωL
j ,

ωL
j :=

⋃
x̂�∈ΩL

j

τ 	.

The hierarchy (14.4) of boxes Ωλ
j now transfers directly to a hierarchy of the

related clusters ωλ
j , see Fig. 14.2,

ωλ−1
j :=

4j⋃
i=4(j−1)+1

ωλ
i for j = 1, . . . , 4(λ−1), λ = L, . . . , 1. (14.6)

τ1 · · · · · · τ�1

�
�

�
�

�
�

�
�

ωL
1 ωL

2 ωL
3 ωL

4

�
�

�
�







������
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1 ωL−1

2 ωL−1
3 ωL−1
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�
�

�
�







������

ωL−2
1

···
···
··
ω1

1 ω1
2 ω1

3 ω1
4

ω0
1

�
�

�
�







������

Fig. 14.2. Cluster tree ωλ
j .

For each cluster ωλ
j we define

Iλ
j :=

{
� ∈ N : τ	 ⊂ ωλ

j

}
as the index set of all associated boundary elements τ	 where

Pλ
j : I0

1 = {1, 2, . . . , N} → Iλ
j

describes the assignment of the boundary elements {τ	}N
	=1 to the associated

cluster ωλ
j . Finally,

Nλ
j := dimωλ

j
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denotes the number of boundary elements τ	 inside the cluster ωλ
j . By con-

struction we have for each λ = 0, 1, 2, . . . , L

4λ∑
j=1

Nλ
j = N . (14.7)

By
diam ωλ

j := sup
x,y∈ωλ

j

|x − y|

we denote the diameter of the cluster ωλ
j , and by

dist(ωκ
i , ωλ

j ) := inf
(x,y)∈ωκ

i ×ωλ
j

|x − y|

we define the distance between the clusters ωκ
i and ωλ

j . A pair of clusters ωκ
i

and ωλ
j is called admissible, if

dist(ωκ
i , ωλ

j ) ≥ η max
{
diam ωκ

i ,diam ωλ
j

}
(14.8)

is satisfied where η > 1 is a prescribed parameter. For simplicity we only
consider admissible clusters ωκ

i and ωλ
j which are defined for the same level

κ = λ. If there are given two admissible clusters ωλ
i and ωλ

j , then also all
subsets ωλ+1

i′ ⊂ ωλ
i and ωλ+1

j′ ⊂ ωλ
j are admissible. Therefore, a pair of clusters

ωλ
i and ωλ

j is called maximally admissible if there exist inadmissible clusters
ωλ−1

i′ and ωλ−1
j′ where ωλ

i ⊂ ωλ−1
i′ and ωλ

j ⊂ ωλ−1
j′ are satisfied.

For the stiffness matrix Vh as defined in (14.2) the hierarchical clustering
(14.6) allows the representation

Vh =
L∑

λ=0

4λ∑
j=1

4λ∑
i=1︸ ︷︷ ︸

ωλ
i ,ωλ

j maximally admissible

(Pλ
j )�V λ,ij

h Pλ
i +

4L∑
j=1

4L∑
i=1︸ ︷︷ ︸

ωL
i ,ωL

j inadmissible

(PL
j )�V L,ij

h PL
i (14.9)

where the block matrices V λ,ij
h ∈ R

Nλ
j ×Nλ

i , are defined by

V λ,ij
h [�, k] = − 1

2π

∫
τ�

∫
τk

log |x − y|dsydsx for τk ∈ ωλ
i , τ	 ∈ ωλ

j , (14.10)

see also Fig. 14.3. The sum is to be taken over all inadmissible clusters ωL
i and

ωL
j includes in particular the interaction of a cluster with itself and with all

neighboring clusters. Hence we denote this part as the near field of the stiffness
matrix Vh while the remainder, i.e. the sum over all maximally admissible
clusters is called the far field. A box ΩL

i has maximal 8 direct neighbors
ΩL

j , the associated cluster ωL
i therefore has a certain number of inadmissible
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Fig. 14.3. Hierarchical partitioning of the stiffness matrix Vh.

clusters ωL
j where the number only depends on the parameter η > 1. All other

clusters are thus admissible and therefore they are included in the far field.
The near field part therefore contains only O(η24L) = O(η2N) summands.

While the block matrices of the near field part can be evaluated directly as
in a standard boundary element method, the block matrices of the far field
part can be approximated by using low rank matrices which allow for a more
efficient application. The resulting matrices are called hierarchical matrices,
or H matrices. [72].

14.2 Approximation of the Stiffness Matrix

For a maximally admissible pair of clusters ωλ
i and ωλ

j we have to compute
all entries of the block matrix V λ,ij

h ,

V λ,ij
h [�, k] =

∫
τ�

∫
τk

U∗(x, y)dsydsx for τk ∈ ωλ
i , τ	 ∈ ωλ

j .

The basic idea for the derivation of fast boundary element methods is an
approximate splitting of the fundamental solution U∗(x, y) = − 1

2π log |x − y|
into functions which only depend on the integration point y ∈ ωλ

i , and on the
observation point x ∈ ωλ

j ,
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U∗
� (x, y) =

�∑
m=0

fλ,j
m (x)gλ,i

m (y) for (x, y) ∈ ωλ
j × ωλ

i . (14.11)

We assume that there is given an error estimate

|U∗(x, y) − U∗
� (x, y)| ≤ c(η, �) for (x, y) ∈ ωλ

j × ωλ
i , (14.12)

where c(η, �) is a constant which only depends on the admissibility parameter
η and on the approximation order �. By using the decomposition (14.11) we
can approximate the entries of the block matrix V λ,ij

h by computing

Ṽ λ,ij
h [�, k] :=

∫
τ�

∫
τk

U∗
� (x, y)dsydsx for τk ∈ ωλ

i , τ	 ∈ ωλ
j . (14.13)

From the error estimate (14.12) we then obtain

|V λ,ij
h [�, k] − Ṽ λ,ij

h [�, k]| ≤ c(η, �)∆k∆	 for τk ∈ ωλ
i , τ	 ∈ ωλ

j . (14.14)

Inserting the series expansion (14.11) into (14.13) this gives

Ṽ λ,ij
h [�, k] =

�∑
m=0

∫
τ�

fλ,j
m (x)dsx

∫
τk

gλ,i
m (y)dsy for all τk ∈ ωλ

i , τ	 ∈ ωλ
j .

Hence, for all boundary elements τk ∈ ωλ
i and τ	 ∈ ωλ

j we need to compute
vectors defined by the entries

aλ,j
m,	 :=

∫
τ�

fλ,j
m (x)dsx, bλ,i

m,k :=
∫
τk

gλ,i
m (y)dsy,

where � = 1, . . . , Nλ
j , k = 1, . . . , Nλ

i and m = 0, . . . , �. The numerical amount
of work to store and to apply the approximate block matrix

Ṽ λ,ij
h =

�∑
m=0

aλ,j
m (bλ,i

m )�,

which is a matrix of rank � + 1, is therefore

(� + 1)(Nλ
i + Nλ

j ).

As in (14.9) we can now define an approximation Ṽh of the global stiffness
matrix Vh,

Ṽh =
L∑

λ=0

4λ∑
j=1

4λ∑
i=1︸ ︷︷ ︸

ωλ
i ,ωλ

j maximally admissible

(Pλ
j )�Ṽ λ,ij

h Pλ
i +

4L∑
j=1

4L∑
i=1︸ ︷︷ ︸

ωL
i ,ωL

j inadmissible

(PL
j )�V L,ij

h PL
i . (14.15)



334 14 Fast Boundary Element Methods

Due to (14.7) the total amount of work to store and to apply the approximate
stiffness matrix Ṽh is proportional to, by taking into account the near field
part,

(� + 1)(η + 1)2(L + 1)N + η2N. (14.16)

Instead of the original linear system Vhw = f we now have to solve the per-
turbed system Ṽhw̃ = f with an associated approximate solution w̃h ∈ S0

h(Γ ).
The stability and error analysis of the perturbed problem is based on the
Strang lemma (Theorem 8.3). Hence we need to prove the positive definiteness
of the approximate stiffness matrix Ṽh, which will follow from an estimate of
the approximation error Vh − Ṽh.

Lemma 14.1. For a pair of maximally admissible clusters ωλ
i and ωλ

j the
error estimate (14.12) is assumed. Let Ṽh be the approximate stiffness matrix
as defined in (14.15). Then there holds the error estimate

|((Vh − Ṽh)w, v)| ≤ c(η, �) |Γ | ‖wh‖L2(Γ )‖vh‖L2(Γ )

for all w, v ∈ R
N ↔ wh, vh ∈ S0

h(Γ ).

Proof. By using the error estimate (14.14) we first have

|((Vh − Ṽh)w, v)| ≤
L∑

λ=0

4λ∑
j=1

4λ∑
i=1︸ ︷︷ ︸

ωλ
i ,ωλ

j maximally admissible

∑
τk∈ωλ

i

∑
τ�∈ωλ

j

|V λ,ij
h [�, k] − Ṽ λ,ij

h [�, k]| |wk| |v	|

≤ c(η, �)
L∑

λ=0

4λ∑
j=1

4λ∑
i=1︸ ︷︷ ︸

ωλ
i ,ωλ

j maximally admissible

∑
τk∈ωλ

i

∑
τ�∈ωλ

j

∆k |wk|∆	 |v	| .

Due to the assumption of the maximal admissibility of clusters ωλ
i and ωλ

j

each pair of boundary elements τk and τ	 appears maximal only once. Hence
we have

|((Vh − Ṽh)u, v)| ≤ c(η, �)
N∑

k=1

N∑
	=1

∆k |wk|∆	 |v	| .

By applying the Hölder inequality we finally obtain

N∑
k=1

∆k |wk| ≤
(

N∑
k=1

∆k

)1/2( N∑
k=1

∆k w2
k

)1/2

= |Γ |1/2 ‖wh‖L2(Γ )

from which the assertion follows. ��
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By using the error estimate of Lemma 14.1, by applying the inverse inequality
in S0

h(Γ ), and by an appropriate choice of the parameter η for the definition of
the near field and of the approximation order � we now can prove the positive
definiteness of the approximate stiffness matrix Ṽh.

Theorem 14.2. Let all assumptions of Lemma 14.1 be satisfied. For an ap-
propriate choice of the parameter η and � the approximate stiffness matrix Ṽh

is positive definite, i.e.

(Ṽhw,w) ≥ 1
2
cV
1 ‖wh‖2

H−1/2(Γ ) for all wh ∈ S0
h(Γ ).

Proof. By using Lemma 14.1, the H−1/2(Γ )–ellipticity of the single layer po-
tential V , and the inverse inequality in S0

h(Γ ) we obtain

(Ṽhw,w) = (Vhw,w) + ((Ṽh − Vh)w,w)

≥ 〈V wh, wh〉Γ − |((Vh − Ṽh)w,w)|
≥ cV

1 ‖wh‖2
H−1/2(Γ ) − c(η, �) |Γ | ‖wh‖2

L2(Γ )

≥
[
cV
1 − c(η, �) |Γ | c2

I h−1
]
‖wh‖2

H−1/2(Γ )

≥ 1
2
cV
1 ‖wh‖2

H−1/2(Γ ),

if

c(η, �) ≤ cV
1

2|Γ |c2
I

h (14.17)

is satisfied. ��
In the same way as in the proof of Theorem 14.2 the boundedness of the

approximate single layer potential Ṽh follows. Due to the positive definiteness
of the approximate stiffness matrix Ṽh we then obtain the unique solvability
of the perturbed linear system Ṽhw̃ = f . Moreover, as in Theorem 8.3 we
can also estimate the error ‖w − w̃h‖H−1/2(Γ ) of the computed approximate
solution w̃h ∈ S0

h(Γ ).

Theorem 14.3. Let the parameter η and � be chosen such that the approxi-
mate stiffness matrix Ṽh as defined in (14.15) is positive definite. The uniquely
determined solution w̃ ∈ R

N ↔ w̃h ∈ S0
h(Γ ) of the perturbed linear system

Ṽhw̃ = f then satisfies the error estimate

‖w − w̃h‖H−1/2(Γ ) ≤ ‖w − wh‖H−1/2(Γ ) + c̃(η, �)h−1/2 ‖w‖L2(Γ ).

Proof. Let w, w̃ ∈ R
N be the uniquely determined solutions of the linear sys-

tems Vhw = f and Ṽhw̃ = f , respectively. Then there holds the orthogonality
relation

(Vhw − Ṽhw̃, v) = 0 for all v ∈ R
N .
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Since the approximated stiffness matrix Ṽh is positive definite, we obtain, by
using Lemma 14.1

1
2
cV
1 ‖wh − w̃h‖2

H−1/2(Γ ) ≤ (Ṽh(w − w̃), w − w̃)

= ((Ṽh − Vh)w,w − w̃)

≤ c(η, �) ‖wh‖L2(Γ )‖wh − w̃h‖L2(Γ ).

Applying Lemma 12.2 this gives the stability estimate

‖wh‖L2(Γ ) ≤ ‖w‖L2(Γ ) + ‖w − wh‖L2(Γ ) ≤ c ‖w‖L2(Γ ).

Then, using the inverse inequality in S0
h(Γ ) we conclude

‖wh − w̃h‖H−1/2(Γ ) ≤ c̃(η, �)h−1/2 ‖w‖L2(Γ ).

The assigned error estimate now follows from the triangle inequality. ��
From the error estimate (14.3) we conclude, when assuming w ∈ H1

pw(Γ ),

‖w − w̃h‖H−1/2(Γ ) ≤ c1 h3/2 |w|H1
pw(Γ ) + c̃(η, �)h−1/2 ‖w‖L2(Γ ).

To ensure an asymptotically optimal order of convergence we therefore need
to satisfy the condition

c̃(η, �) ≤ c2 h2. (14.18)

In this case, the error estimate

‖w − w̃h‖H−1/2(Γ ) ≤ c1 h3/2 |w|H1
pw(Γ ) + c2 h3/2 ‖w‖L2(Γ )

is asymptotically of the same order of convergence as the corresponding error
estimate (14.3) of a standard Galerkin boundary element method. A com-
parison with the condition (14.17) which was needed to ensure the positive
definiteness of the approximate stiffness matrix Ṽh shows, that asymptotically
condition (14.17) follows from (14.18).

It remains to find suitable representations (14.11) of the fundamental so-
lution U∗(x, y) = − 1

2π log |x − y| satisfying the error estimate (14.12). Then,
the condition (14.18) also implies a suitable choice of the parameters η and �.

14.2.1 Taylor Series Representations

A first possibility to derive a representation (14.11) is to consider a Taylor
expansion of the fundamental solution U∗(x, y) with respect to the integration
variable y ∈ ωλ

i [73]. First we consider the Taylor expansion of a scalar function
f(t). For p ∈ N we have

f(1) = f(0) +
p∑

n=1

1
n!

dn

dtn
f(t)|t=0 +

1
p!

1∫
0

(1 − s)p dp+1

dsp+1
f(s)ds.
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Let yλ
i be the center of the cluster ωλ

i . For an arbitrary y ∈ ωλ
i and t ∈ [0, 1]

let
f(t) := U∗(x, yλ

i + t(y − yλ
i )).

Then we have

d

dt
f(t) =

2∑
j=1

(yj − yλ
i,j)

∂

∂zj
U∗(x, z)|z=yλ

i +t(y−yλ
i ),

and by applying this recursively, we obtain for 1 ≤ n ≤ p

dn

dtn
f(t) =

∑
|α|=n

n!
α!

(y − yλ
i )αDα

z U∗(x, z)|z=yλ
i +t(y−yλ

i ).

Thus, the Taylor expansion of the fundamental solution U∗(x, y) with respect
to the cluster center yλ

i gives the representation

U∗(x, y) = U∗
� (x, y) + Rp(x, y)

where

U∗
� (x, y) = U∗(x, yλ

i ) +
p∑

n=1

∑
|α|=n

1
α!

(y − yλ
i )αDα

z U∗(x, z)|z=yλ
i

(14.19)

defines an approximation of the fundamental solution. By setting

fλ,j
0 (x) := U∗(x, yλ

i ), gλ,i
0 (y) := 1

and
fλ,j

n,α(x) := Dα
z U∗(x, z)|z=yλ

i
, gλ,i

n,α(y) :=
1
α!

(y − yλ
i )α

for n = 1, . . . , p and |α| = n, we then obtain the representation (14.11). For
any n ∈ [1, p] there exist n + 1 multi–indices α ∈ N

2
0 satisfying |α| = n. Then,

the number � of terms in the series representation (14.11) is

� = 1 +
p∑

n=1

(n + 1) =
1
2
(p + 1)(p + 2).

To derive the error estimate (14.12) we have to consider the remainder

Rp(y, yλ
i ) =

1
p!

1∫
0

(1 − s)p
∑

|α|=p+1

(y − yλ
i )αDα

z U∗(x, z)|z=yλ
i +s(y−yλ

i )ds.

For this we first need to estimate certain derivatives of the fundamental solu-
tion U∗(x, y).
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Lemma 14.4. Let ωλ
i and ωλ

j be a pair of maximally admissible clusters. For
|α| = p ∈ N there holds the estimate

∣∣Dα
y U∗(x, y)

∣∣ ≤ 1
2π

3p−1(p − 1)!
|x − y|p for all (x, y) ∈ ωλ

j × ωλ
i .

Proof. For the derivatives of the function f(x, y) = log |x − y| we first have

∂

∂yi
f(x, y) =

yi − xi

|x − y|2 for i = 1, 2.

For the second order derivatives we further obtain

∂2

∂y2
i

f(x, y) =
1

|x − y|2 − 2
(yi − xi)2

|x − y|4 for i = 1, 2,

and
∂2

∂y1∂y2
f(x, y) = −2

(y1 − x1)(y2 − x2)
|x − y|4 .

In general we find for |α| = � ∈ N a representation of the form

Dα
y f(x, y) =

∑
|β|≤�

a�
β

(y − x)β

|x − y||β|+�
(14.20)

where a�
β are some coefficients to be characterized. Hence we conclude

∣∣Dα
y f(x, y)

∣∣ ≤ ∑
|β|≤�

∣∣∣a�
β

∣∣∣ 1
|x − y|� =

c�

|x − y|� .

A comparison with the first and second order derivatives of f(x, y) gives c1 = 1
and c2 = 3. Now, a general estimate of the constant c� for � ≥ 2 follows by
induction. From (14.20) we obtain for i = 1, 2 and j �= i

∂

∂yi
Dα

y f(x, y) =
∑
|β|≤�

a�
β

∂

∂yi

(y − x)β

|x − y||β|+�

=
∑
|β|≤�

a�
β

[
βi

(yi − xi)βi−1(yj − xj)βj

|x − y||β|+�

−(|β| + �)
(yi − xi)βi+1(yj − xj)βj

|x − y||β|+�+2

]
.

By using

|yi − xi| ≤ |x − y|, βi ≤ |β| ≤ �, βi + βj ≤ |β| for i �= j

we then obtain
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∂yi
Dα

y f(x, y)
∣∣∣∣ ≤ 3�

|x − y|�+1

∑
|β|≤�

∣∣∣a�
β

∣∣∣ =
3�c�

|x − y|�+1
=

c�+1

|x − y|�+1

and therefore
c�+1 = 3�c� = 3� �! .

In particular for � = p this gives the assertion. ��
By using Lemma 14.4 we now can derive an estimate of the remainder

Rp(x, y) of the Taylor series approximation (14.19).

Lemma 14.5. Let ωλ
i and ωλ

j be a pair of maximally admissible clusters. For
the approximation U∗

� (x, y) of the fundamental solution U∗(x, y) as defined in
(14.19) there holds the error estimate∣∣U∗(x, y) − U∗

� (x, y)
∣∣ ≤ 3p

(
1
η

)p+1

for all (x, y) ∈ ωλ
j × ωλ

i .

Proof. By applying Lemma 14.4 for (x, y) ∈ ωλ
j ×ωλ

i and by using the admis-
sibility condition (14.8) we obtain∣∣U∗(x, y) − U∗

� (x, y)
∣∣ = ∣∣Rp(y, yλ

i )
∣∣

≤ 1
p!

|y − yλ
i |p+1 max

ȳ∈ωλ
i

∑
|α|=p+1

|Dα
z U∗(x, z)z=ȳ|

1∫
0

(1 − s)pds

=
1

(p + 1)!
|y − yλ

i |p+1 max
ȳ∈ωλ

i

∑
|α|=p+1

3pp!
|x − ȳ|p+1

≤ 3p [diamωλ
i ]p+1

[dist(ωλ
i , ωλ

j )]p+1
≤ 3p

(
1
η

)p+1

. ��

The decomposition (14.19) of the fundamental solution defines via (14.15) an
approximated stiffness matrix Ṽh. To ensure the asymptotically optimal error
estimate (14.3) the related condition (14.18) reads

3p

(
1
η

)p+1

≤ c h2 .

If we choose a fixed admissibility parameter η > 3, then due to h = O(1/N)
we therefore obtain the estimate

1
3

(
3
η

)p+1

≤ c̃
1

N2

from which we finally conclude

p = O(log2 N) .

The total amount of work (14.16) to store Ṽh and to realize a matrix by vector
product with the approximated stiffness matrix Ṽh is then proportional to

N (log2 N)3 .
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14.2.2 Series Representations of the Fundamental Solution

Instead of a Taylor expansion of the fundamental solution U∗(x, y) one may
derive alternative series expansions which are valid in the far field for (x, y) ∈
ωλ

j ×ωλ
i where ωλ

i and ωλ
j is a pair of admissible clusters. In particular, these

series expansions are the starting point to derive the Fast Multipole Method
[64, 65] which combines the series expansions on different levels. However, the
resulting hierarchical algorithms will not discussed here, see, e.g. [48, 62, 109,
110].

Let yλ
i be the center of the cluster ωλ

i . By considering the fundamental
solution in the complex plane we have

− 1
2π

log |x − y| = − 1
2π

log |(x − yλ
i ) − (y − yλ

i )| = Re
(
− 1

2π
log(z − z0)

)
where

z := (x1 − yλ
i,1) + i(x2 − yλ

i,2) = |x − yλ
i | eiϕ(x−yλ

i ),

z0 := (y1 − yλ
i,1) + i(y2 − yλ

i,2) = |y − yλ
i | eiϕ(y−yλ

i ).

Since the clusters ωλ
i and ωλ

j are assumed to be admissible, it follows that

|z0|
|z| =

|y − yλ
i |

|x − yλ
i |

≤ diam ωλ
i

dist(ωλ
i , ωλ

j )
≤ 1

η
< 1 .

Hence we can apply the series representation of the logarithm,

− 1
2π

log(z − z0) = − 1
2π

log z − 1
2π

log
(
1 − z0

z

)
= − 1

2π
log z +

1
2π

∞∑
n=1

1
n

(z0

z

)n

,

and for p ∈ N we can define an approximation

U∗
� (x, y) := Re

(
− 1

2π
log z +

1
2π

p∑
n=1

1
n

(z0

z

)n
)

(14.21)

of the fundamental solution U∗(x, y). By using(z0

z

)n

= zn
0 z−n =

|y − yλ
i |n

|x − yλ
i |n

einϕ(y−yλ
i )e−inϕ(x−yλ

i )

we then obtain the representation

U∗
� (x, y) = − 1

2π
log |x − yλ

i |

+
1
2π

p∑
n=1

1
n
|y − yλ

i |n cos nϕ(y − yλ
i )

cos nϕ(x − yλ
i )

|x − yλ
i |n

+
1
2π

p∑
n=1

1
n
|y − yλ

i |n sin nϕ(y − yλ
i )

sin nϕ(x − yλ
i )

|x − yλ
i |n

.
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By introducing
fλ,j
0 (x) := U∗(x, yλ

i ), gλ,i
0 (y) := 1

and

fλ,j
2n−1(x) :=

1
2π

cos nϕ(x − yλ
i )

|x − yλ
i |n

, gλ,i
2n−1(y) :=

1
n
|y − yλ

i |n cos nϕ(y − yλ
i ),

as well as

fλ,j
2n (x) :=

1
2π

sin nϕ(x − yλ
i )

|x − yλ
i |n

, gλ,i
2n (y) :=

1
n
|y − yλ

i |n sin nϕ(y − yλ
i )

for n = 1, . . . , p we finally obtain the representation (14.11) where � = 2p+1.

Lemma 14.6. Let ωλ
i and ωλ

j be a pair of admissible clusters. For the approx-
imation U�(x, y) of the fundamental solution U∗(x, y) as defined in (14.21)
there holds the error estimate

|U∗(x, y) − U∗
� (x, y)| ≤ 1

2π

1
p + 1

1
η − 1

(
1
η

)p

for all (x, y) ∈ ωλ
j × ωλ

i .

Proof. By using the series expansion

− 1
2π

log(z − z0) = − 1
2π

log z +
1
2π

∞∑
n=1

1
n

(z0

z

)n

we conclude from the admissibility condition (14.8)

|U∗(x, y) − U∗
� (x, y)| =

∣∣∣∣∣Re

(
1
2π

∞∑
n=p+1

1
n

(z0

z

)n
)∣∣∣∣∣

≤ 1
2π

∞∑
n=p+1

1
n

(
1
η

)n

≤ 1
2π

1
p + 1

(
1
η

)p+1 ∞∑
n=0

(
1
η

)n

. ��

To ensure the asymptotically optimal error estimate (14.3) the related condi-
tion (14.18) now reads

1
2π

1
p + 1

1
η − 1

(
1
η

)p

≤ c h2 .

If we choose a fixed admissibility parameter η > 1 this finally gives

p = O(log2 N) .
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The total amount of work (14.16) to store Ṽh and to realize a matrix by vector
multiplication with the approximated stiffness matrix Ṽh is then proportional
to

N (log2 N)2 .

Note that both the approximation (14.19) based on the Taylor expansion
as well as the series expansion (14.21) define nonsymmetric approximations
U∗

� (x, y) of the fundamental solution U∗(x, y), and therefore this results in
a nonsymmetric approximated stiffness matrix Ṽh. Hence we aim to derive a
symmetric approximation U∗

� (x, y). For this we first consider the representa-
tion (14.21),

U∗
� (x, y) = Re

(
− 1

2π
log z +

1
2π

p∑
n=1

1
n

(z0

z

)n
)

where
z = |x − yλ

i |eiϕ(x−yλ
i ), z0 = |y − yλ

i |eiϕ(y−yλ
i ).

For the center yλ
j of the cluster ωλ

j we consider z = w − z1 where

w := |yλ
j − yλ

i |eiϕ(yλ
j −yλ

i ), z1 := |yλ
j − x|eiϕ(yλ

j −x).

By using the admissibility condition (14.8) we have

|z1|
|w| =

|yλ
j − x|

|yλ
j − yλ

i |
≤

diam ωλ
j

dist(ωλ
i , ωλ

j )
≤ 1

η
< 1,

and therefore we can write

− 1
2π

log z = − 1
2π

log w +
1
2π

∞∑
n=1

1
n

(z1

w

)n

.

Lemma 14.7. Let w, z1 ∈ C satisfying |z1| < |w|. For n ∈ N then there holds

1
(w − z1)n

=
∞∑

m=0

(
m + n − 1

n − 1

)
zm
1

wm+n
.

Proof. For |z1| < |w| we first have

1
w − z1

=
1
w

1

1 − z1

w

=
1
w

∞∑
m=0

(z1

w

)m

and therefore the assertion in the case n = 1. For n > 1 we have
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1
(w − z1)n

=
1

(n − 1)!
dn−1

dzn−1
1

1
w − z1

=
1

(n − 1)!
dn−1

dzn−1
1

[
1
w

∞∑
m=0

(z1

w

)m
]

=
1

(n − 1)!
1
w

∞∑
m=n−1

m!
(m − n + 1)!

zm−n+1
1

wm

=
1

(n − 1)!
1
w

∞∑
m=0

(m + n − 1)!
m!

zm
1

wm+n−1

=
∞∑

m=0

(
m + n − 1

n − 1

)
zm
1

wm+n
. ��

By using (14.21), z = w − z1, and by applying Lemma 14.7 for p ∈ N we can
define a symmetric approximation of the fundamental solution U∗(x, y) as

Ũ∗
� (x, y) = Re

(
− 1

2π
log w +

1
2π

p∑
m=1

1
m

(z1

w

)m

+
1
2π

p∑
n=1

1
n

(z0

w

)n

(14.22)

+
1
2π

p∑
n=1

p∑
m=1

1
n

(
m + n − 1

n − 1

)
zn
0 zm

1

wm+n

)
.

Lemma 14.8. Let ωλ
i and ωλ

j be a pair of admissible clusters. For the approx-
imation Ũ∗

� (x, y) of the fundamental solution U∗(x, y) as defined in (14.22)
there holds the error estimate∣∣∣U∗(x, y) − Ũ∗

� (x, y)
∣∣∣ ≤ 1

2π

1
p + 1

1
η − 1

[
2 +

1
η − 1

](
1
η

)p

for all (x, y) ∈ ωλ
j × ωλ

i .

Proof. By applying the triangle inequality and Lemma 14.6 we have∣∣∣U∗(x, y) − Ũ∗
� (x, y)

∣∣∣ ≤ ∣∣U∗(x, y) − U∗
� (x, y)

∣∣+ ∣∣∣U∗
� (x, y) − Ũ∗

� (x, y)
∣∣∣

≤ 1
2π

1
p + 1

η

η − 1

(
1
η

)p+1

+

∣∣∣∣∣Re

(
1
2π

∞∑
m=p+1

1
m

(z1

w

)m

+
1
2π

p∑
n=1

∞∑
m=p+1

1
n

(
m − n − 1

n − 1

)
zn
0 zm

1

wm+n

)∣∣∣∣∣
≤ 1

π

1
p + 1

η

η − 1

(
1
η

)p+1

+
1
2π

p∑
n=1

∞∑
m=p+1

1
n

(
m − n − 1

n − 1

)(
1
η

)m+n

where we have used the admissibility condition (14.8). With
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1
n

(
m − n − 1

n − 1

)
=

1
n

(m − n − 1)!
(n − 1)!m!

=
1
m

(m − n − 1)!
n!(m − 1)!

≤ 1
m

we obtain for the remaining term

1
2π

p∑
n=1

∞∑
m=p+1

1
n

(
m − n − 1

n − 1

)(
1
η

)m+n

≤ 1
2π

p∑
n=1

∞∑
m=p+1

1
m

(
1
η

)m+n

≤ 1
2π

1
p + 1

η

(η − 1)2

(
1
η

)p+1

which concludes the proof. ��

14.2.3 Adaptive Cross Approximation

All approximations U∗
� (x, y) of the fundamental solution U∗(x, y) as described

before require either the knowledge of a suitable series expansion, or the com-
putation of higher order derivatives of the fundamental solution. Hence we
want to define approximations which only require the evaluation of the fun-
damental solution in appropriate interpolation nodes. One possibility is to
consider the Tschebyscheff interpolation of the fundamental solution. Here
we describe an alternative interpolation algorithm which was first given by
Tyrtyshnikov in [151], see also [12, 13].

Let ωλ
i and ωλ

j be a pair of admissible clusters. To define an approximation
of the fundamental solution U∗(x, y) for arguments (x, y) ∈ ωλ

j × ωλ
i we con-

sider two sequences of functions sk(x, y) and rk(x, y). In particular, rk(x, y)
describes the residual of the associated approximation sk(x, y). To initialize
this construction we first define

s0(x, y) := 0, r0(x, y) := U∗(x, y).

For k = 1, 2, . . . , � let (xk, yk) ∈ ωλ
j ×ωλ

i be a pair of interpolation nodes with
a nonzero residual, i.e. αk := rk−1(xk, yk) �= 0. Then we define the recursion
as

sk(x, y) := sk−1(x, y) +
1
αk

rk−1(x, yk)rk−1(xk, y), (14.23)

rk(x, y) := rk−1(x, y) − 1
αk

rk−1(x, yk)rk−1(xk, y). (14.24)

For � ∈ N0 and for (x, y) ∈ ωλ
j × ωλ

i we finally define the approximation

U∗
� (x, y) = s�(x, y) =

�∑
k=1

rk−1(x, yk)rk−1(xk, y)
rk−1(xk, yk)

(14.25)

of the fundamental solution U∗(x, y) with respect to an admissible pair of
clusters (ωλ

j , ωλ
i ). The recursion as defined in (14.23) and (14.24) admits the

following properties.
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Lemma 14.9. For 0 ≤ k ≤ � and for all (x, y) ∈ ωλ
j × ωλ

i there holds

U∗(x, y) = sk(x, y) + rk(x, y). (14.26)

Moreover, there holds the interpolation property

rk(x, yi) = 0 for all 1 ≤ i ≤ k (14.27)

as well as
rk(xj , y) = 0 for all 1 ≤ j ≤ k. (14.28)

Proof. By taking the sum of the recursions (14.23) and (14.24) we first have

rk(x, y) + sk(x, y) = rk−1(x, y) + sk−1(x, y)

for all k = 1, . . . , p, and therefore

rk(x, y) + sk(x, y) = r0(x, y) + s0(x, y) = U∗(x, y).

The interpolation properties follow by induction with respect to j, k. For k = 1
we have

r1(x, y1) = r0(x, y1) −
1

r0(x1, y1)
r0(x, y1)r0(x1, y1) = 0.

Hence we have rk(x, yi) = 0 for k = 1, 2, . . . , p and i = 1, . . . , k. Then we
conclude

rk+1(x, yi) = rk(x, yi) −
1

αk+1
rk(x, yk+1)rk(xk+1, yi) = 0,

i.e. rk+1(x, yi) = 0 for all i = 1, . . . , k. By using (14.24) we finally obtain

rk+1(x, yk+1) = rk(x, yk+1) −
1

rk(xk+1, yk+1)
rk(x, yk+1)rk(xk+1, yk+1) = 0.

The other interpolation property follows in the same way. ��
When inserting in (14.27) x = xj for j = 1, . . . , k this gives

rk(xj , yi) = 0 for all i, j = 1, . . . , k,

and due to (14.26) we conclude

sk(xj , yi) = U∗(xj , yi) for all i, j = 1, . . . , k; k = 1, . . . , �.

This means that the approximations sk(x, y) interpolate the fundamental so-
lution U∗(x, y) at the interpolation nodes (xj , yi) for i, j = 1, . . . , k.

To analyze the approximations U∗
� (x, y) as defined via (14.23) and (14.24)

we consider a sequence of matrices

Mk[j, i] = U∗(xj , yi) for i, j = 1, . . . , k; k = 1, . . . , � (14.29)

where we compute the determinants as follows.
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Lemma 14.10. Let Mk, k = 1, . . . , �, be the sequence of matrices as defined
in (14.29). Then there holds

detMk = r0(x1, y1) · · · rk−1(xk, yk) =
k∏

i=1

ri−1(xi, yi) =
k∏

i=1

αi . (14.30)

Proof. To prove (14.30) we consider an induction with respect to k = 1, . . . , �.
For k = 1 we first have

det M1 = M1[1, 1] = U∗(x1, y1) = r0(x1, y1) = α1.

Assume that (14.30) holds for Mk. The matrix Mk+1 allows the representation

Mk+1 =

⎛⎜⎜⎜⎝
U∗(x1, y1) · · · U∗(x1, yk) U∗(x1, yk+1)

...
...

...
U∗(xk, y1) · · · U∗(xk, yk) U∗(xk, yk+1)

U∗(xk+1, y1) · · · U∗(xk+1, yk) U∗(xk+1, yk+1)

⎞⎟⎟⎟⎠ .

For any (x, yi) ∈ ωλ
j × ωλ

i we have by the recursion (14.24)

r0(x, yi) = U∗(x, yi),

r1(x, yi) = r0(x, yi) −
r0(x, y1)r0(x1, yi)

r0(x1, y1)

= U∗(x, yi) −
r0(x1, yi)
r0(x1, y1)

U∗(x, y1)

and therefore

r1(x, yi) = U∗(x, yi) − α1
1(yi)U∗(x, y1), α1

1(yi) :=
r0(x1, yi)
r0(x1, y1)

.

By induction, this representation can be generalized to all residuals rk(x, yi)
for all k = 1, . . . , � and for all (x, yi) ∈ ωλ

j ×ωλ
i . Note that all residuals satisfy

rk(x, yi) = U∗(x, yi) −
k∑

j=1

αk
j (y)U∗(x, yj) (14.31)

By using the recursion (14.24) and inserting twice the assumption of the
induction this gives
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rk+1(x, yi) = rk(x, yi) −
rk(x, yk+1)rk(xk+1, yi)

rk(xk+1, yk+1)

= U∗(x, yi) −
k∑

j=1

αk
j (y)U∗(x, yj)

− rk(xk+1, yi)
rk(xk+1, yk+1)

⎡⎣U∗(x, yk+1) −
k∑

j=1

αk
j (y)U∗(x, yj)

⎤⎦
= U∗(x, yi) −

k+1∑
j=1

αk+1
j (y)U∗(x, yj) .

By
M̃k+1[j, i] := Mk+1[j, i] for i = 1, . . . , k, j = 1, . . . , k + 1

and

M̃k+1[j, k + 1] = Mk+1[j, k + 1] −
k∑

	=1

αk
	 (y)Mk+1[j, �] for j = 1, . . . , k + 1

we define a transformed matrix M̃k+1 satisfying det M̃k+1 = det Mk+1. Insert-
ing the definition of Mk+1[j, ·] this gives for j = 1, . . . , k + 1, due to (14.31),

M̃k+1[j, k + 1] = U∗(xj , yk+1) −
k∑

	=1

αk
	 (y)U∗(xj , y	) = rk(xj , yk+1).

Note that, see Lemma 14.9,

rk(xj , yk+1) = 0 for all j = 1, . . . , k,

In particular, the determinant of the matrix Mk+1 remains unchanged when a
row Mk[j, ·] multiplied by αk

j is subtracted from the last row of Mk. By using
(14.31) we then conclude

M̃k+1 =

⎛⎜⎜⎜⎝
U∗(x1, y1) · · · U∗(x1, yk) 0

...
...

...
U∗(xk, y1) · · · U∗(xk, yk) 0

U∗(xk+1, y1) · · · U∗(xk+1, yk) rk(xk+1, yk+1)

⎞⎟⎟⎟⎠ .

The computation of det M̃k+1 via an expansion with respect to the last column
of M̃k+1 now gives

det Mk+1 = det M̃k+1 = rk(xk+1, yk+1) det Mk

which concludes the induction. ��
By using the matrices Mk now we can represent the approximations

sk(x, y) as follows.
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Lemma 14.11. For k = 1, . . . , � the approximations sk(x, y) allow the repre-
sentations

sk(x, y) = (U∗(x, yi))
�
i=1,...,k M−1

k (U∗(xi, y))i=1,...,k .

Proof. By using the recursion (14.23) the approximation sk(x, y) is defined as

sk(x, y) =
k∑

i=1

1
αi

ri−1(x, yi)ri−1(xi, y) .

From (14.31) we find for the residual ri−1(x, yi) the representation

ri−1(x, yi) = U∗(x, yi) −
i−1∑
	=1

αi−1
	 (y)U∗(x, y	).

Analogously we also have

ri−1(xi, y) = U∗(xi, y) −
i−1∑
	=1

βi−1
	 (x)U∗(x	, y).

Hence there exists a matrix Ak ∈ R
k×k satisfying

sk(x, y) = (U∗(x, y	))�	=1,...,kAkU∗(x	, y)	=1,...,k .

In particular for (x, y) = (xj , yi) we have rk(xj , yi) = 0 and therefore

U∗(xj , yi) = sk(xj , yi) = (U∗(xj , y	))�	=1,...,kAkU∗(x	, yi)	=1,...,k

for i, j = 1, . . . , k. This is equivalent to

Mk = MkAkMk

and since Mk is invertible this gives Ak = M−1
k . ��

To estimate the residual r�(x, y) of the approximation U∗
� (x, y) as defined

in (14.25) we will consider a relation of the above approach with an inter-
polation by using Lagrange polynomials. For p ∈ N0 let Pp(R2) denote the
space of polynomials yα of degree |α| ≤ p where y ∈ R

2. We assume that the
number of interpolation nodes (xk, yk) to define (14.25) corresponds with the
dimension of Pp(R2), i.e.

� := dimPp(R2) =
1
2
p(p + 1).

For k �= � let yk �= y	, then the Lagrange polynomials Lk ∈ Pp(R2) are well
defined for k = 1, . . . , �, and we have

Lk(y	) = δk	 for k, � = 1, . . . , �.
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The Lagrange interpolation of the fundamental solution U∗(x, y) is then given
as

U∗
L,�(x, y) =

�∑
k=1

U∗(x, yk)Lk(y) = (U∗(x, yk))�k=1,...,� (Lk(y))k=1,...,�

where the associated residual is

E�(x, y) := U∗(x, y) − (U∗(x, yk))�k=1,...,� (Lk(y))k=1,...,� .

Let

M�,	(x) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U∗(x1, y1) · · · · · · U∗(x1, y�)
...

...
U∗(x	−1, y1) · · · · · · U∗(x	−1, y�)
U∗(x, y1) · · · · · · U∗(x, y�)
U∗(x	+1, y1) · · · · · · U∗(x	+1, y�)
...

...
U∗(x�, y1) · · · · · · U∗(x�, y�)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Lemma 14.12. For (x, y) ∈ ωλ
j × ωκ

i let r�(x, y) be the residual of the ap-
proximation U∗

� (x, y). Then there holds

r�(x, y) = E�(x, y) −
�∑

k=1

detM�,k(x)
detM�

E�(xk, y).

Proof. By using Lemma 14.9 and the matrix representation of s�(x, y), see
Lemma 14.11, we first have

r�(x, y) = U∗(x, y) − s�(x, y)

= U∗(x, y) − (U∗(x, yk))�k=1,� M−1
� (U∗(xk, y))k=1,�

= U∗(x, y) − (U∗(x, yk))�k=1,� (Lk(y))k=1,�

− (U∗(x, yk))�k=1,� M−1
�

[
(U∗(xk, y))k=1,� − M� (Lk(y))k=1,�

]
.

Due to

(U∗(xk, y))k=1,� − M� (Lk(y))k=1,� =

(
U∗(xk, y) −

�∑
	=1

U∗(xk, y	)L	(y)

)
k=1,�

= (E�(xk, y))k=1,�

we then conclude

r�(x, y) = E�(x, y) − (U∗(x, yk))�k=1,� M−1
� (E�(xk, y))k=1,�

= E�(x, y) −
(
M−�

� (U∗(x, y	))	=1,�

)�
(E�(xk, y))k=1,� .
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Let e	 ∈ R
� be the unit vectors satisfying e	

i = δi	. Then,

M�
� ei = (U∗(xi, yk))k=1,�

and thus
ei = M−�

� (U∗(xi, yk))k=1,� .

Hence we conclude

M−�
� M�

�,	(x) =

= M−�
�

(
(U∗(xi, yk))k=1,�;i=1,	−1, (U

∗(x, yk))k=1,�, (U
∗(xi, yk))k=1,�;i=	+1,�

)
=
(
e1, . . . , e	−1,M−�

� (U∗(x, yk))k=1,� , e	+1, . . . , e�
)

,

and with(
M−�

� (U∗(x, y	)	=1,�

)
k

= det
(
M−�

� M�
�,k(x)

)
=

det M�,k(x)
det M�

we finally get the assertion. ��

Corollary 14.13. Let the interpolation nodes (xk, yk) ∈ ωλ
j × ωλ

i be chosen
such that

|detM�,	(x)| ≤ |detM�| (14.32)

is satisfied for all � = 1, . . . , � and for all x ∈ ωλ
j . The residual r�(x, y) then

satisfies the estimate

|r�(x, y)| ≤ (1 + �) sup
x∈ωλ

j

|E�(x, y)| .

The criteria (14.32) to define the interpolation nodes (xk, yk) ∈ ωλ
j ∈ ωλ

i seems
not be very suitable for a practical realization. Hence we finally consider an
alternative choice.

Lemma 14.14. For k = 1, . . . , � let the nodal pairs (xk, yk) ∈ ωλ
j ∈ ωλ

i be
chosen such that

|rk−1(xk, yk)| ≥ |rk−1(x, yk)| for all x ∈ ωλ
j (14.33)

is satisfied. Then there holds

sup
x∈ωλ

j

|detMk,	(x)|
|detMk|

≤ 2k−	 .

Proof. As in the proof of Lemma 14.10 we have for detMk,	(x) and 1 ≤ � < k
the recursion

det Mk,	(x) = rk−1(xk, yk)det Mk−1,	(x) − rk−1(x, yk)det Mk−1,	(xk),
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or,
det M1,1(x) = r0(x, y1), det Mk,k(x) = rk−1(x, yk)det Mk−1

for k = 2, 3, . . . , �, as well as

det Mk = rk−1(xk, yk) detMk−1 .

Hence we have for 1 ≤ � < k by using the assumption (14.33)

detMk,	(x)
det Mk

=
det Mk−1,	(x)

det Mk−1
− rk−1(x, yk)

rk−1(xk, yk)
det Mk−1,	(x)

det Mk−1

and therefore

sup
x∈ωλ

j

|det Mk,	(x)|
|det Mk|

≤ 2 sup
x∈ωλ

j

|det Mk−1,	(x)|
|det Mk−1|

,

or, ∣∣∣∣det Mk,k(x)
det Mk

∣∣∣∣ =
∣∣∣∣ rk−1(x, yk)
rk−1(xk, yk)

∣∣∣∣ ≤ 1 . ��

By using Lemma 14.14 we obtain from Lemma 14.12 an upper bound of
the residual r�(x, y) by the Lagrange interpolation error E�(x, y).

Corollary 14.15. For k = 1, . . . , � let the nodal pairs (xk, yk) ∈ ωλ
j × ωλ

i be
chosen such that assumption (14.33) is satisfied. Then there holds

|r�(x, y)| ≤ 2� sup
x∈ωλ

j

|E�(x, y)| .

Contrary to the one–dimensional Lagrange interpolation the interpolation
in more space dimensions is quite difficult. In particular the uniqueness of the
interpolation polynomial depends on the choice of the interpolation nodes.
Moreover, there is no explicit representation of the remainder E�(x, y) known.
Hence we skip a more detailed discussion at this point. By using results of
[121] one can derive similar error estimates as in Lemma 14.6, see [13].

The adaptive cross approximation algorithm to approximate a scalar func-
tion as described in this subsection can be generalized in a straightforward
way to define low rank approximations of a matrix, see, e.g. [12, 14], and [117]
for a more detailed discussion.

14.3 Wavelets

In this subsection we introduce wavelets as hierarchical basis functions to
be used in the Galerkin discretization of the single layer potential V . As in
standard boundary element methods this leads to a dense stiffness matrix,
but by neglecting small matrix entries one can define a sparse approximation.
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This reduces both the amount of storage, and amount to realize a matrix by
vector multiplication.

Without loss of generality we assume that the Lipschitz boundary Γ = ∂Ω
of a bounded domain Ω ⊂ R

2 is given via a parametrization Γ = χ(Q) with
respect to a parameter domain Q = [0, 1] where we assume that the Jacobian
|χ̇(ξ)| is constant for all ξ ∈ Q. Moreover, we extend the parametrization
Γ = χ([0, 1]) periodically onto R. Hence we can assume the estimates

cχ
1 |ξ − η| ≤ |χ(ξ) − χ(η)| ≤ cχ

2 |ξ − η| for all ξ, η ∈ R (14.34)

with some positive constants cχ
1 and cχ

2 . In the case of a piecewise smooth
Lipschitz boundary Γ all following considerations have to be transfered to the
non–periodic parametrizations describing the parts Γj satisfying |χ̇j | = cj .

For j ∈ N we consider a decomposition of the parameter domain Q = [0, 1]
into Nj = 2j finite elements qj

	 of mesh size |qj
	 | = 2−j , � = 1, . . . , Nj ,

Qj =
2j⋃

	=1

qj
	 , qj

	 := ((� − 1)2−j , � 2−j) for � = 1, . . . , 2j .

A decomposition Qj implies an associated trial space of piecewise constant
functions,

Vj := S0
j (Q) = span{ϕ̃j

	}
Nj

	=1 ⊂ L2(Q), dimVj = Nj = 2j ,

where the basis functions are given as

ϕ̃j
	(x) =

{
1 for ξ ∈ qj

	 ,

0 elsewhere.

By construction we have the nested inclusions

V0 ⊂ V1 ⊂ · · · ⊂ VL = S0
L(Q) ⊂ VL+1 ⊂ · · · ⊂ L2(Q).

For any j > 0 we now construct subspaces Wj as L2(Q)–orthogonal comple-
ments of Vj−1 in Vj , i.e.

W0 := V0, Wj :=
{

ϕ̃j
	 ∈ Vj : 〈ϕ̃j

	 , ϕ̃
j−1
i 〉L2(Q) = 0 for all ϕ̃j−1

i ∈ Vj−1

}
where

dimW0 = 1, dimWj = dimVj − dimVj−1 = 2j−1 for j > 0.

Hence we obtain a multilevel decomposition of the trial space VL = S0
L(Q) as

VL = W0 ⊕W1 ⊕ · · · ⊕WL.

Due to W0 = V0 we have
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W0 = span{ψ̃0
1} where ψ̃0

1(ξ) = 1 for ξ ∈ Q = [0, 1], ‖ψ̃0
1‖L2(Q) = 1.

It remains to construct a basis of

Wj = span{ψ̃j
	}2j−1

	=1 for j = 1, . . . , L.

By using dimW1 = 1 we have to determine one basis function only. By setting

ψ̃1
1(ξ) = a1 ϕ̃1

1(ξ) + a2 ϕ̃1
2(ξ) for ξ ∈ Q = [0, 1]

we obtain from the orthogonality condition

0 =
∫
Q

ψ̃0
1(ξ)ψ̃1

1(ξ)dξ =
1
2
(a1 + a2)

and therefore a2 = −a1. Hence we can define the basis function as

ψ̃1
1(ξ) =

{
1 for ξ ∈ q1

1 = (0, 1
2 ),

−1 for ξ ∈ q1
2 = (1

2 , 1),
‖ψ̃1

1‖L2(Q) = 1.

By applying this recursively we obtain the following representation of the basis
functions,

ψ̂j
	 (ξ) =

⎧⎪⎪⎨⎪⎪⎩
1 for ξ ∈ ((2� − 2)2−j , (2� − 1)2−j),

−1 for ξ ∈ ((2� − 1)2−j , 2� 2−j),

0 elsewhere

where � = 1, . . . , 2j−1, j = 2, 3, . . .. Moreover, we have

‖ψ̂j
	‖2

L2(Q) =
∣∣∣supp ψ̂j

	

∣∣∣ = 21−j for j ≥ 1.

Hence we can define normalized basis functions as

ψ̃j
	 (ξ) = 2(j−1)/2 ψ̂j

	 (ξ) for � = 1, . . . , 2j−1, j ≥ 1. (14.35)

Due to the orthogonality relation∫
Q

ψ̃j
	 (ξ)ψ̃

0
1(ξ)dξ = 0 for all � = 1, . . . , 2j−1, j ≥ 1

we also obtain the moment condition∫
Q

ψ̃j
	 (ξ)dξ = 0 for all � = 1, . . . , 2j−1, j ≥ 1 (14.36)

which holds for piecewise constant wavelets ψ̃j
	 . The basis functions (14.35)

as constructed above are also denoted as Haar wavelets, see Fig. 14.4.
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Fig. 14.4. Piecewise constant wavelets for j = 0, 1, 2.

Via the parametrization Γ = χ(Q) we can also define boundary elements
τ j
	 = χ(qj

	 ) of the mesh size

hj
	 =

∫
τj

�

dsx =
∫
qj

�

|χ̇(ξ)|dξ = |χ̇| 2−j .

The global mesh size of the boundary element mesh ΓNj
=
⋃Nj

	=1 τ j
	 is then

given as hj = |χ̇| 2−j . Moreover, we can lift both the piecewise constant basis
functions ϕ̃j

	 ∈ Vj as well as the wavelets ψ̃j
	 ∈ Wj on the boundary Γ = ∂Ω,

for x = χ(ξ) ∈ Γ we have

ϕj
	(x) := ϕ̃j

	(ξ), ψj
	 (x) := ψ̃j

	 (ξ) for ξ ∈ Q = [0, 1].

For j > 0 these basis functions define the trial spaces

Vj = span{ϕj
	}2j

	=1, Wj = span{ψj
	}

max{1,2j−1}
	=1 ,

and for L ∈ N we have
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VL = S0
hL

(Γ ) = span{ϕL
	 }NL

	=1 = span{ψj
	}	=1,...,max{1,2j−1},j=1,...,L,

i.e. any function whL
∈ VL can be described as

whL
=

L∑
i=0

max{1,2i−1}∑
k=1

wi
kψi

k ∈ VL. (14.37)

Due to

〈ψi
k, ψj

	 〉L2(Ω) =
∫
Γ

ψi
k(x)ψj

	 (x)dsx

= |χ̇|
∫
Q

ψ̃i
k(ξ)ψ̃j

	 (ξ)dξ =

{
|χ̇| for i = j, k = �,

0 elsewhere

the orthogonality of the trial spaces Wi
k in the parameter domain is transfered

to the trial spaces W i
k which are defined with respect to the boundary element

mesh.
By using Remark 13.21 we can derive spectrally equivalent norm represen-

tations by means of the multilevel representation (14.37) of a given function
whL

∈ VL.

Lemma 14.16. Let whL
∈ VL be given as in (14.37). Then,

‖whL
‖2

L,s =
L∑

i=0

22si

max{1,2i−1}∑
k=1

∣∣wi
k

∣∣2 .

defines an equivalent norm in Hs(Γ ) for all s ∈ (− 1
2 , 1

2 ).

Proof. Since whL
∈ VL = S0

hL
(Γ ) is a piecewise constant function, and by

using Remark 13.21, the bilinear form of the multilevel operator Bs,

〈BswhL
, whL

〉L2(Γ ) =
L∑

i=0

h−2s
i ‖(Qi − Qi−1)whL

‖2
L2(Γ ),

defines an equivalent norm in Hs(Γ ), s ∈ (− 1
2 , 1

2 ). Thereby, the L2 projection
QiwhL

∈ Vi = S0
hi

(Γ ) is the unique solution of the variational problem

〈QiwhL
, vhi

〉L2(Γ ) = 〈whL
, vhi

〉L2(Γ ) for all vhi
∈ Vi.

By using the orthogonality of basis functions we conclude for the L2 projection
the representation

QiwhL
=

1
|χ̇|

i∑
j=0

max{1,2j−1}∑
	=1

〈whL
, ψj

	 〉L2(Γ )ψ
j
	 =

i∑
j=0

max{1,2j−1}∑
	=1

wj
	ψ

j
	 .
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When taking the difference of two succeeding L2 projections this gives

(Qi − Qi−1)whL
=

max{1,2i−1}∑
k=1

wi
kψi

k

and therefore

〈BswhL
, whL

〉L2(Γ ) =
L∑

i=0

h−2s
i

∥∥∥∥∥∥
max{1,2i−1}∑

k=1

wi
kψi

k

∥∥∥∥∥∥
2

L2(Γ )

= |χ̇|
L∑

i=0

h−2s
i

max{1,2i−1}∑
k=1

∣∣wi
k

∣∣2 .

By inserting the mesh sizes hi = |χ̇| 2−i this concludes the proof. ��
By using the representation (14.37) the variational problem (14.1) is equiv-

alent to

L∑
i=0

max{1,2i−1}∑
k=1

wi
k〈V ψi

k, ψj
	 〉Γ = 〈g, ψj

	 〉Γ for all ψj
	 ∈ VL. (14.38)

Hence we have to compute the entries of the stiffness matrix

V L[(�, j), (k, i)] = − 1
2π

∫
Γ

ψj
	 (x)

∫
Γ

log |x − y|ψi
k(y)dsydsx

for i = 1, . . . ,max{1, 2	−1}, j = 1, . . . ,max{1, 2k−1} and k, � = 0, . . . , L. Now
we can estimate the matrix entries V L[(�, j), (k, i)] when assuming a certain
relation of the supports of the basis functions ψi

k and ψj
	 . For this we first

define the support of ψi
k as

Si
k := supp

(
ψi

k

)
⊂ Γ,

and
dij

k	 := dist
(
Si

k, Sj
	

)
= min

(x,y)∈Si
k×Sj

�

|x − y|

describes the distance between the supports of the basis functions ψi
k and ψj

	 ,
respectively.

Lemma 14.17. Assume that for i, j ≥ 2 the condition dij
k	 > 0 is satisfied.

Then there holds the estimate

|V L[(�, j), (k, i)]| ≤ |χ̇|4
2π

2−3(i+j)/2
(
dij

k	

)−2

.
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Proof. By inserting the parametrization Γ = χ(Q) and by using the nor-
malized basis functions (14.35) the entries of the stiffness matrix V L can be
computed as

V L[(�, j), (k, i)] = − 1
2π

∫
Γ

ψj
	 (x)

∫
Γ

log |x − y|ψi
k(y)dsydsx

= − 1
2π

∫
Q

ψ̃j
	 (ξ)

∫
Q

log |χ(η) − χ(ξ)| ψ̃i
k(η) |χ̇(η)| dη |χ̇(ξ)| dξ

= −|χ̇|2
2π

2(i−1)/22(j−1)/2

∫
Q

ψ̂j
	 (ξ)

∫
Q

log |χ(η) − χ(ξ)| ψ̂i
k(η) dη dξ.

With the substitutions

η = η(s) = (2k − 2)2−i + s 21−i, ξ = ξ(t) = (2� − 2)2−j + t 21−j

for s, t ∈ Q = [0, 1] this is equivalent to

V L[(�, j), (k, i)] = −|χ̇|2
π

2−(i+j)/2

∫
Q

ψ̂1
1(ξ(t))

∫
Q

k(s, t)ψ̂1
1(η(s)) ds dt

where the kernel function is given by

k(s, t) = log |χ(η(s)) − χ(ξ(t))| .

Due to the moment condition (14.36) we can replace the kernel function k(s, t)
by r(s, t) := k(s, t) − P1(s) − P2(t) where P1(s) and P2(t) correspond to
the first terms of the Taylor expansion of k(s, t), i.e. r(s, t) corresponds to
the remainder of the Taylor expansion. The Taylor expansion of the kernel
function k(s, t) with respect to s0 = 1

2 gives

k(s, t) = k

(
1
2
, t

)
+
(

s − 1
2

)[
∂

∂s
k(s, t)

]
s=s̄

with a suitable s̄ ∈ Q. Applying another Taylor expansion with respect to
t0 = 1

2 we obtain[
∂

∂s
k(s, t)

]
s=s̄

=
[

∂

∂s
k

(
s,

1
2

)]
s=s̄

+
(

t − 1
2

)[
∂2

∂s∂t
k(s, t)

]
(s,t)=(s̄,t̄)

where t̄ ∈ Q. Hence we have

k(s, t) − k

(
1
2
, t

)
−
(

s − 1
2

)[
∂

∂s
k

(
s,

1
2

)]
s=s̄

=
(

s − 1
2

)(
t − 1

2

)[
∂2

∂s∂t
k(s, t)

]
(s,t)=(s̄,t̄)

.
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Due to the moment condition (14.36) we conclude∫
Q

ψ̂1
1(ξ(t))

(
s − 1

2

)[
∂

∂s
k

(
s,

1
2

)]
s=s̄

dt =
∫
Q

ψ̂1
1(η(s))k

(
1
2
, t

)
ds = 0 .

Hence we obtain

V L[(�, j), (k, i)] = −|χ̇|2
π

2−(i+j)/2

∫
Q

ψ̂1
1(ξ(t))

∫
Q

k(s, t)ψ̂1
1(η(s)) ds dt

= −|χ̇|2
π

2−(i+j)/2

∫
Q

ψ̂1
1(ξ(t))

∫
Q

(
s − 1

2

)(
t − 1

2

)
·

·
[

∂2

∂s∂t
k(s, t)

]
(s,t)=(s̄,t̄)

ψ̂1
1(η(s)) ds dt

and therefore∣∣V L[(�, j), (k, i)]
∣∣ ≤ |χ̇|2

π
2−(i+j)/2 1

16
max

(s,t)∈Q×Q

∣∣∣∣ ∂2

∂s∂t
k(s, t)

∣∣∣∣ .

By applying the chain rule we further have

∂2

∂s∂t
k(s, t) = 21−i21−j ∂2

∂η∂ξ
log |χ(η) − χ(ξ)| .

Moreover,

∂

∂η
log |χ(η) − χ(ξ)| =

2∑
i=1

∂

∂yi
log |y − x(ξ)||y=χ(η)

∂

∂η
χj(η),

as well as

∂2

∂η∂ξ
log |χ(η)−χ(ξ)| =

2∑
i,j=1

∂2

∂yi∂xj
log |y−x||y=χ(η),x=χ(ξ)

∂

∂η
χi(η)

∂

∂ξ
χi(ξ) .

Applying the Cauchy–Schwarz inequality twice this gives

∣∣∣∣ ∂2

∂η∂ξ
log |χ(η) − χ(ξ)|

∣∣∣∣ ≤ |χ̇|2
⎛⎝ 2∑

i,j=1

[
∂2

∂yi∂xj
log |y − x||y=χ(η),x=χ(ξ)

]2⎞⎠1/2

.

By using

∂2

∂xi∂yi
log |x − y| = − 1

|x − y|2 + 2
(xi − yi)2

|x − y|4 ,

∂2

∂x1∂y2
log |x − y| = 2

(x1 − y1)(x2 − y2)
|x − y|4
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we finally obtain

max
(s,t)∈Q×Q

∣∣∣∣ ∂2

∂s∂t
k(s, t)

∣∣∣∣ ≤ 22−(i+j) |χ̇|2 max
(x,y)∈Si

k×Sj
�

2
|x − y|2 . ��

The estimate of Lemma 14.17 describes the decay of the matrix entries
V L[(�, j), (k, i)] when considering wavelets ψi

k and ψj
	 with supports Si

k and Sj
	

which are far to each other. By defining an appropriate compression parameter
we therefore can characterize matrix entries V L[(�, j), (k, i)] which can be
neglected when computing the stiffness matrix V L. For real valued parameter
α, κ ≥ 1 we first define a symmetric parameter matrix by

τij := α 2κL−i−j .

This enables the definition of a symmetric approximation Ṽ L of the stiffness
matrix V L by

Ṽ L[(�, j), (k, i)] :=

{
V L[(�, j), (k, i)] if dij

k	 ≤ τij ,

0 elsewhere.
(14.39)

For the following considerations, in particular to estimate the number of
nonzero elements of the matrix Ṽ L as well as for the related stability and
error analysis we define for fixed i, j ≥ 2 block matrices

V L
ij :=

(
V L[(�, j), (k, i)]

)
k=1,...,2i−1,	=1,...,2j−1 ,

and the corresponding approximation Ṽ L
ij , respectively.

Lemma 14.18. The number of nonzero elements of the approximated stiff-
ness matrix Ṽ L as defined in (14.39) is O(Nκ(log2 N)2).

Proof. For i = 0, 1 and j = 0, 1 the number of nonzero elements is 4(N − 1).
For i, j ≥ 2 we estimate the number of nonzero elements of the approximate
block matrix Ṽ L

ij as follows.
By using the parametrization Γ = χ(Q) we can identify the basis functions

ψi
k and ψj

	 with basis functions ψ̃i
k and ψ̃j

	 which are defined in the parameter
domain Q. For the support of the basis functions ψ̃i

k and ψ̃j
	 we then obtain

S̃i
k = ((2(k − 1)2−i, 2k 2−i), S̃j

	 = (2(� − 1)2−j , 2� 2−j).

For an arbitrary but fixed � = 1, . . . , 2j−1 we first determine all basis functions
ψ̃i

k where the supports S̃i
k and S̃j

	 do not overlap, i.e.

2k 2−i ≤ 2(� − 1)2−j , 2� 2−j ≤ 2(k − 1)2−i .

Then it follows that
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1 ≤ k ≤ (� − 1)2i−j , 1 + � 2i−j ≤ k ≤ 2i−1 .

Next we choose from the above those basis functions ψ̃k
i which in addition

satisfy the distance condition

dij
k	 ≤ τij = α 2κL−i−j .

Due to assumption (14.34) we have dij
k	 ≤ cχ

2 dist(S̃i
k, S̃j

	 ). By requesting

cχ
2 dist(S̃i

k, S̃j
	 ) ≤ α 2κL−i−j

we can find an upper bound for the number of related basis functions. By
using

0 < dist(S̃i
k, S̃j

	 ) = 2(k − 1)2−i − 2� 2−j ≤ α

cχ
2

2κL−i−j

for S̃j
	 � η < ξ ∈ S̃i

k we obtain the estimate

k ≤ 1 + �2i−j +
α

2cχ
2

2κL−j

and therefore

1 + � 2i−j ≤ k ≤ min
{

2i−1, 1 + �2i−j +
α

2cχ
2

2κL−j

}
.

Hence we can estimate the number of related nonzero elements as
α

2cχ
2

2κL−j .

This results follows analogously in the case S̃i
k � ξ < η ∈ S̃j

	 . Thus, for a fixed
� = 1, . . . , 2j−1 there exist maximal

α

cχ
2

2κL−j

nonzero elements. The number of nonzero elements of the approximate block
matrix Ṽ L

ij is therefore bounded by

2j−1 α

cχ
2

2κL−j =
α

2cχ
2

2κL.

By taking the sum over all block matrices Ṽ L
ij where k, � = 2, . . . , L we can es-

timate, by taking into account the special situation for i, j = 0, 1, the number
of nonzero elements of Ṽ L by

4(N − 1) + (L − 1)2
α

2cχ
2

2κL.

A similar estimate follows when considering basis functions with overlapping
supports. When inserting N = 2L or L = log2 N this concludes the proof. ��

To estimate the approximation error ‖V L− Ṽ L‖ of the stiffness matrix V L

we first consider the approximation errors ‖V L
ij − Ṽ L

ij ‖ of the block matrices
V L

ij .
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Lemma 14.19. For i, j = 2, . . . , L let V L
ij be the exact Galerkin stiffness ma-

trix of the single layer potential V with respect to the trial spaces Wi and Wj.
Let Ṽ L

ij be the approximation as defined in (14.39). Then there hold the error
estimates

‖V L
ij − Ṽ L

ij ‖∞ ≤ c1 2−(i+j)/2 2−j (τij)−1,

‖V L
ij − Ṽ L

ij ‖1 ≤ c2 2−(i+j)/2 2−i (τij)−1.

Proof. By using Lemma 14.17 we first have

‖V L
ij − Ṽ L

ij ‖∞ = max
	=1,...,2j−1

2i−1∑
k=1

∣∣∣V L[(�, j), (k, i)] − Ṽ L[(�, j), (k, i)]
∣∣∣

= max
	=1,...,2j−1

2i−1∑
k = 1

dij
k�>τij

∣∣V L[(�, j), (k, i)]
∣∣

≤ c 2−3(i+j)/2 max
	=1,...,2j−1

2i−1∑
k = 1

dij
k�>τij

(dij
k	)

−2.

Since we assume (14.34) to be satisfied for the parametrization of the boundary
Γ we then conclude

‖V L
ij − Ṽ L

ij ‖∞ ≤ c̃ 2−3(i+j)/2 max
	=1,...,2j−1

2i−1∑
k = 1

cχ
1 dist(S̃i

k,S̃j
� )>τij

(dist(S̃i
k, S̃j

	 ))−2.

For an arbitrary but fixed � = 1, . . . , 2j−1 the sum can be further estimated
by

2i−1∑
k = 1

cχ
1 dist(S̃i

k,S̃j
� )>τij

(dist(S̃i
k, S̃j

	 ))−2 ≤ 2
∑

k>1+ α
2c

χ
1

2κL−j+	2i−j

(
2(k − 1)2−i − 2�2−j

)−2

= 22i−1
∑

n> α
2c

χ
1

2κL−j

1
n2

.

Let n1 ∈ N be the smallest number satisfying n1 ≥ α
2cχ

1
2κL−j . Then we have

∞∑
n=n1

1
n2

=
1
n2

1

+
∞∑

n=n1+1

1
n2

≤ 1
n2

1

+

∞∫
x=n1

1
x2

dx =
1
n2

1

+
1
n1

≤ 2
n1

≤ 4cχ
1

α
2j−κL
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which gives immediately the first estimate. The second estimate follows in the
same way. ��

By applying Lemma 13.17 (Schur Lemma) we can now estimate the error
of the approximation Ṽ L.

Theorem 14.20. For wh, vh ∈ VL = S0
hL

(Γ ) ↔ w, v ∈ R
N there holds the

error estimate∣∣∣((V L − Ṽ L)w, v)
∣∣∣ ≤ c γ(hL, σ1, σ2) ‖wh‖Hσ1 (Γ )‖vh‖Hσ2 (Γ )

where

γ(hL, σ1, σ2) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
hκ+σ1+σ2

L for σ1, σ2 ∈ (− 1
2 , 0),

hκ
L | ln hL| for σ1 = σ2 = 0,

hκ
L for σ1, σ2 ∈ (0, 1

2 ),
hκ+σ2

L for σ1 ∈ (0, 1
2 ), σ2 ∈ (− 1

2 , 0).

Proof. First we note that for i = 0, 1 and j = 0, 1 there is no approximation
of the matrix entries of V L. Then, by using the Cauchy–Schwarz inequality
and Lemma 14.16 we obtain∣∣∣((V L − Ṽ L)w, v)

∣∣∣
=

∣∣∣∣∣∣
L∑

i=2

L∑
j=2

2i−1∑
k=1

2j−1∑
	=1

wi
kvj

	

[
V L[(�, j) − (k, i)] − Ṽ L[(�, j), (k, i)]

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
L∑

i=2

L∑
j=2

2i−1∑
k=1

2j−1∑
	=1

2σ1iwi
k2σ2jvj

	2
−σ1i−σ2j ·

·
[
V L[(�, j) − (k, i)] − Ṽ L[(�, j), (k, i)]

]∣∣∣∣∣
≤ ‖A‖2

⎛⎝ L∑
i=2

2i−1∑
k=1

22σ1i
∣∣wi

k

∣∣2⎞⎠1/2⎛⎝ L∑
j=2

2j−1∑
	=1

22σ2j
∣∣∣vj

	

∣∣∣2
⎞⎠1/2

≤ ‖A‖2‖wh‖L,σ1‖vh‖L,σ2

≤ ‖A‖2‖wh‖Hσ1 (Γ )‖vh‖Hσ2 (Γ )

where the matrix A is defined by

A[(�, j), (k, i)] = 2−σ1i−σ2j
[
V L[(�, j) − (k, i)] − Ṽ L[(�, j), (k, i)]

]
.

By using (13.17) we now can estimate the spectral norm ‖A‖2 for an arbitrary
s as
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‖A‖2
2 ≤ sup

j = 2, . . . , L
	=1,...,2j−1

L∑
i=2

2i−1∑
k=1

|A[(�, j), (k, i)]|2s(i−j) ·

· sup
i = 2, . . . , L
k=1,...,2i−1

L∑
j=2

2j−1∑
	=1

|A[(�, j), (k, i)]|2s(j−i).

By using Lemma 14.19 we can bound the first term by

A1 = sup
j = 2, . . . , L
	=1,...,2j−1

L∑
i=2

2i−1∑
k=1

∣∣∣V L[(�, j), (k, i)] − Ṽ L[(�, j), (k, i)]
∣∣∣ 2s(i−j)2−σ1i−σ2j

= sup
j=2,...,L

L∑
i=2

2s(i−j)2−σ1i−σ2j sup
	=1,...,2j−1

2i−1∑
k=1

∣∣∣V L[(�, j), (k, i)]−Ṽ L[(�, j), (k, i)]
∣∣∣

= sup
j=2,...,L

L∑
i=2

2s(i−j)2−σ1i−σ2j ‖V L
ij − Ṽ L

ij ‖∞

≤ c sup
j=2,...,L

L∑
i=2

2s(i−j) 2−σ1i−σ2j 2−(i+j)/2 2−j (τij)
−1

= c sup
j=2,...,L

L∑
i=2

2s(i−j) 2−σ1i−σ2j 2−(i+j)/2 2−j 1

α
2i+j−κL

= c̃ 2−κL sup
j=2,...,L

2j(−s− 1
2−1+1−σ2)

L∑
i=2

2i(s− 1
2+1−σ1)

= c̃ 2−κL sup
j=2,...,L

2−σ2j
L∑

i=2

2−σ1i

where s = − 1
2 . Note that

L∑
i=2

2−σ1i ≤ c

⎧⎪⎨⎪⎩
2−σ1L for σ1 ∈ (− 1

2 , 0),
L for σ1 = 0,
1 for σ1 ∈ (0, 1

2 )

and

sup
j=2,...,L

2−σ2j ≤ c

{
2−σ2L for σ2 ∈ (− 1

2 , 0),
1 for σ2 ∈ [0, 1

2 ).

To estimate the second term we proceed in an analogous way, and inserting
hL = 2−L finally gives the announced error estimate. ��

By using Theorem 8.3 (Strang Lemma) and Theorem 14.20 we can now
derive the stability and error analysis of the approximated stiffness matrix Ṽ L.
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For this we first need to establish the positive definiteness of the approximated
stiffness matrix Ṽ L.

Theorem 14.21. For κ > 1 and for a sufficient small global boundary ele-
ment mesh size hL the approximated stiffness matrix Ṽ L is positive definite,
i.e.

(Ṽ Lw,w) ≥ 1
2

cV
1 ‖whL

‖2
H−1/2(Γ )

is satisfied for all whL
∈ VL ↔ w ∈ R

N .

Proof. For σ ∈ (− 1
2 , 0) we have by using Theorem 14.20, the H−1/2(Γ )–

ellipticity of the single layer potential V , and by applying the inverse inequality
in VL

(Ṽ Lw,w) = (V Lw,w) + ((Ṽ L − V L)w,w)

≥ 〈V whL
, whL

〉Γ − |((Ṽ L − V L)w,w)|
≥ cV

1 ‖whL
‖2

H−1/2(Γ ) − c hκ+2σ
L ‖whL

‖2
Hσ(Γ )

≥ cV
1 ‖whL

‖2
H−1/2(Γ ) − c hκ+2σ

L cI h−1−2σ
L ‖whL

‖2
H−1/2(Γ )

=
[
cV
1 − c̃ hκ−1

L

]
‖wh‖2

H−1/2(Γ ).

Now, if c̃hκ−1
L ≤ 1

2cV
1 is satisfied the assertion follows. ��

Instead of the linear system V Lw = f which corresponds to the variational
problem (14.38) we now have to solve the perturbed linear system Ṽ Lw̃ = f̃
where w̃ ∈ R

N ↔ w̃hL
∈ VL defines the associated approximate solution.

Theorem 14.22. Let w ∈ H1
pw(Γ ) be the unique solution of the boundary

integral equation V w = g. For the approximate solution w̃hL
∈ VL ↔ w̃ ∈ R

N

of the perturbed linear system Ṽ Lw̃ = f there holds the error estimate

‖w − w̃hL
‖H−1/2(Γ ) ≤ c1 h

3/2
L ‖w‖H1

pw(Γ ) + c2 h
κ−1/2
L ‖w‖H1/2(Γ ).

Proof. The solutions w, w̃ ∈ R
N of the linear systems V Lw = f and Ṽ Lw̃ = f

satisfy the orthogonality relation

(V Lw − Ṽ Lw̃, v) = 0 for all v ∈ R
N .

By using the positive definiteness of the approximated stiffness matrix Ṽ L we
then obtain

1
2
cV
1 ‖whL

− w̃hL
‖2

H−1/2(Γ ) ≤ (Ṽ L(w − w̃), w − w̃)

= ((Ṽ L − V L)w,w − w̃).

By applying Theorem 14.20 we conclude for σ1 ∈ (0, 1
2 ) and σ2 ∈ (− 1

2 , 0)
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1
2
cV
1 ‖whL

− w̃hL
‖H−1/2(Γ ) ≤ c hκ+σ2

L ‖whL
‖Hσ1 (Γ )‖whL

− w̃hL
‖Hσ2 (Γ ).

Further we have as in Lemma 12.2

‖whL
‖Hσ1 (Γ ) ≤ ‖w‖Hσ1 (Γ ) + ‖w−whL

‖Hσ1 (Γ ) ≤ c ‖w‖Hσ1 (Γ ) ≤ c ‖w‖H1/2(Γ ).

On the other hand, by using the inverse inequality this gives

‖whL
− w̃hL

‖Hσ2 (Γ ) ≤ cI h
− 1

2−σ2

L ‖whL
− w̃hL

‖H−1/2(Γ ).

Hence we have

1
2
cV
1 ‖whL

− w̃hL
‖H−1/2(Γ ) ≤ c h

κ−1/2
L ‖w‖H1/2(Γ ).

Now the assertion follows from applying the triangle inequality

‖w − w̃hL
‖H−1/2(Γ ) ≤ ‖w − whL

‖H−1/2(Γ ) + ‖whL
− w̃hL

‖H−1/2(Γ )

and by using the error estimate (14.3). ��

Remark 14.23. The error estimate of Theorem 14.22 is not optimal with re-
spect to the regularity of the solution w ∈ H1

pw(Γ ). Since Lemma 14.16 is
only valid for s ∈ (− 1

2 , 1
2 ) the higher regularity w ∈ H1

pw(Γ ) is not recognized
in the error estimate. Formally, this yields the error estimate

‖w − w̃hL
‖H−1/2(Γ ) ≤ c

[
h

3/2
L + hκ

L

]
‖w‖H1

pw(Γ ).

When summarizing the results of Lemma 14.18 on the numerical amount
of work and the error estimate of Remark 14.23 we have to notice that it is not
possible to choose the compression parameter κ ≥ 1 in (14.39) in an optimal
way. In particular for κ = 3

2 we obtain in Remark 14.23 the same asymptotic
accuracy as in the error estimate (14.3) of the standard Galerkin boundary
element method, but the number of nonzero elements of the stiffness matrix
Ṽ L is O(N3/2

L (log2 N)2) and therefore not optimal. On the other hand, by
choosing κ = 1 we would obtain O(NL(log2 N)2) nonzero elements, but for a
sufficient regular solution w ∈ H1

pw(Γ ) we will lose accuracy. The theoretical
background of this behavior is given in the proof of Lemma 14.17. There, the
moment condition (14.36) is used for piecewise constant wavelets, i.e. they are
orthogonal on constant functions. To obtain a higher order of approximation
we therefore have to require higher order moment conditions, e.g. orthogonal-
ity with respect to linear functions. This can be ensured when using piecewise
linear wavelets [76] but their construction is a quite challenging task.
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14.4 Exercises

14.1 Consider the finite element stiffness matrix of Exercise 11.1 for h = 1/9,

Kh = 9

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Write Kh as a hierarchical matrix and compute the inverse K−1
h as a hierar-

chical matrix.

14.2. The solution of the Dirichlet boundary value problem

−u′′(x) = f(x) for x ∈ (0, 1), u(0) = u(1) = 0

is given by

u(x) = (Nf)(x) =

1∫
0

G(x, y)f(y)dy for x ∈ (0, 1)

where G(x, y) is the associated Green function, cf. Exercise 5.2. Discuss the
Galerkin discretization of Nf when using piecewise linear continuous basis
functions with respect to a uniform decomposition of (0, 1).
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Domain Decomposition Methods

Domain decomposition methods are a modern numerical tool to handle par-
tial differential equations with jumping coefficients, and to couple different
discretization methods such as finite and boundary element methods [43].
Moreover, domain decomposition methods allow the derivation and paral-
lelization of efficient solution strategies [95] in a natural setting. For a more
detailed study of domain decomposition methods we refer, for example, to
[18, 68, 114, 139, 149].

As a model problem we consider the potential equation

−div [α(x)∇u(x)] = 0 for x ∈ Ω,

γint
0 u(x) = g(x) for x ∈ Γ = ∂Ω

(15.1)

where Ω ⊂ R
d is a bounded Lipschitz domain for which a non–overlapping

domain decomposition is given, see Fig. 15.1,

Ω =
p⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i �= j. (15.2)

The subdomains Ωi are assumed to be Lipschitz with boundaries Γi = ∂Ωi.
By

ΓS :=
p⋃

i=1

Γi

we denote the skeleton of the domain decomposition.
We assume that in (15.1) the coefficient α(x) is piecewise constant, i.e.

α(x) = αi for x ∈ Ωi, i = 1, . . . , p. (15.3)

For an approximate solution of the boundary value problem (15.1) we will use
a boundary element method within the subdomains Ω1, . . . , Ωq while for the
remaining subdomains Ωq+1, . . . , Ωp a finite element method will be applied.
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ΓS

Ω1 Ω2

Ω3 Ω4

Fig. 15.1. Domain decomposition with four subdomains.

By using the results of Chapter 4 the variational formulation of the Dirich-
let boundary value problem (15.1) is to find u ∈ H1(Ω) with γint

0 u = g such
that ∫

Ω

α(x)∇u(x)∇v(x)dx = 0 (15.4)

is satisfied for all v ∈ H1
0 (Ω).

Due to the non–overlapping domain decomposition (15.2) and by using
assumption (15.3) the variational formulation (15.4) is equivalent to

p∑
i=1

αi

∫
Ωi

∇u(x)∇v(x)dx = 0 for all v ∈ H1
0 (Ω).

The application of Green’s first formula (1.5) with respect to the subdomains
Ωi for i = 1, . . . , q ≤ p results in a variational problem to find u ∈ H1(Ω)
with γint

0 u = g such that

q∑
i=1

αi

∫
∂Ωi

γint
1,i u(x)γint

0,i v(x)dsx +
p∑

i=q+1

αi

∫
Ωi

∇u(x)∇v(x)dx = 0 (15.5)

is satisfied for all v ∈ H1
0 (Ω).

The Cauchy data γint
0,i u and γint

1,i u of the solution u are solutions of the
boundary integral equations (6.22) on Γi = ∂Ωi, i = 1, . . . , q, i.e.(

γint
0,i u

γint
1,i u

)
=

(
1
2I − Ki Vi

Di
1
2I + K ′

i

)(
γint
0,i u

γint
1,i u

)
. (15.6)

Inserting the second equation of (15.6) into the variational formulation (15.5)
this results in the variational problem to find u ∈ H1(Ω) with γint

0 u = g and
γint
1,i u ∈ H−1/2(Γi) for i = 1, . . . , q such that
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q∑
i=1

αi〈Diγ
int
0,i u + (

1
2
I + K ′

i)γ
int
1,i u, γint

0,i v〉Γi
+

p∑
i=q+1

αi

∫
Ωi

∇u(x)∇v(x)dx = 0

αi

[
〈Viγ

int
1,i u − (

1
2
I + Ki)γint

0,i u, τi〉Γi

]
= 0

is satisfied for all v ∈ H1
0 (Ω) andτi ∈ H−1/2(Γi), i = 1, . . . , q.

By introducing the bilinear form

a(u, γint
1,1 u, . . . , γint

1,q u; v, τ1, . . . , τq)

:=
q∑

i=1

αi〈Diγ
int
0,i u + (

1
2
I + K ′

i)γ
int
1,i u, γint

0,i v〉Γi

+
q∑

i=1

αi

[
〈Viγ

int
1,i u − (

1
2
I + Ki)γint

0,i u, τi〉Γi

]

+
p∑

i=q+1

αi

∫
Ωi

∇u(x)∇v(x)dx

we finally obtain a variational formulation to find u ∈ H1(Ω) with γint
0 u = g

and γint
1,i u ∈ H−1/2(Γi), i = 1, . . . , q, such that

a(u, γint
1

u; v, τ) = 0 (15.7)

is satisfied for all v ∈ H1
0 (Ω) and τi ∈ H−1/2(Γi), i = 1, . . . , q.

Theorem 15.1. There exists a unique solution of the variational problem
(15.7).

Proof. It is sufficient to prove all assumptions of Theorem 3.8. For this we
define

X := H1
0 (Ω) × H−1/2(Γ1) × · · · × H−1/2(Γq)

where the norm is given by

‖(u, t)‖2
X :=

q∑
i=1

[
‖γint

0,i u‖2
H1/2(Γi)

+ ‖ti‖2
H−1/2(Γi)

]
+

p∑
i=q+1

‖u‖2
H1(Ωi)

.

The boundedness of the bilinear form a(·, ·) follows from the boundedness of
all local boundary integral operators, and from the boundedness of the local
Dirichlet forms.

For arbitrary (v, τ) ∈ X we have
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a(v, τ ; v, τ) =
q∑

i=1

αi

[
〈Viτi, τi〉Γi

+ 〈Diγ
int
0,i v, γint

0,i v〉Γi

]
+

p∑
i=q+1

αi ‖∇v‖2
L2(Ωi)

≥ min
i=1,p

{
αic

V
1,i, αic

D
1,i, αi

}{ q∑
i=1

[
‖τi‖2

H−1/2(Γi)
|γint

0,i u|2H1/2(Γi)

]

+
p∑

i=q+1

‖∇v‖2
L2(Ωi)

⎫⎬⎭ .

Due to v ∈ H1
0 (Ω) we therefore conclude the X–ellipticity of the bilinear form

a(·, ·) and thus the unique solvability of the variational problem (15.7). ��
Let

Xh := S1
h(Ω) × S0

h(Γ1) × · · · × S0
h(Γq) ⊂ X

be a conforming trial space of piecewise linear basis functions to approximate
the potential u ∈ H1

0 (Ω) and of piecewise constant basis functions to approx-
imate the local Neumann data γint

1,i u ∈ H−1/2(Γi), i = 1, . . . , q. All degrees of
freedom of the trial space S1

h(Ω) ⊂ H1
0 (Ω) are depicted in Fig. 15.2.
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Fig. 15.2. Degrees of freedom of the trial space S1
h(Ω) ⊂ H1

0 (Ω).

The global trial space S1
h(Ω) ⊂ H1

0 (Ω) is decomposed into local trial spaces

S1
h(Ωi) := S1

h(Ω)|Ωi
∩ H1

0 (Ωi) = span{ϕ1
i,k}Mi

k=1, i = q + 1, . . . , p,

and into a global one

S1
h(ΓS) = span{ϕ1

S,k}MS

k=1,
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which is defined with respect to the skeleton ΓS . All global degrees of freedom
are characterized in Fig. 15.2 by • while all local degrees of freedom correspond
to . From the decomposition

S1
h(Ω) = S1

h(ΓS) ∪
p⋃

i=q+1

S1
h(Ωi)

it follows that a function uh ∈ S1
h(Ω) ∩ H1

0 (Ω) allows the representation

uh(x) =
MS∑
k=1

uS,kϕ1
S,k(x) +

p∑
i=q+1

Mi∑
k=1

ui,kϕ1
i,k(x).

Accordingly, the coefficient vector u ∈ R
M can be written as

u =

⎛⎜⎜⎜⎝
uS

uq+1
...

up

⎞⎟⎟⎟⎠ =
(

uS

uL

)
.

Finally we introduce the trial space

S0
h(Γi) = span{ϕ0

i,k}Ni

k=1 ⊂ H−1/2(Γi), i = 1, . . . , q,

of piecewise constant basis functions.
Let ug ∈ H1(Ω) be a bounded extension of the given Dirichlet datum

g ∈ H1/2(Γ ). Then the Galerkin variational formulation of (15.7) is to find
u0,h ∈ S1

h(Ω) ∩ H1
0 (Ω) and ti,h ∈ S0

h(Γi), i = 1, . . . , q, such that

a(u0,h + ug, th; vh, τh) = 0 (15.8)

is satisfied for all vh ∈ S1
h(Ω) ∩ H1

0 (Ω) and τi,h ∈ S0
h(Γi), i = 1, . . . , q.

By applying Theorem 8.1 (Cea’s Lemma) the Galerkin variational formu-
lation (15.8) has a unique solution which satisfies the a priori error estimate

‖(u0 − u0,h, γint
1

u − th)‖X ≤ c inf
(vh,τh)∈Xh

‖(u0 − vh, γint
1

u − τh)‖X .

Hence, convergence for h → 0 will follow from the approximation properties
of the trial spaces S1

h(Ω) and S0
h(Γi).

The Galerkin variational formulation (15.8) is equivalent to an algebraic
system of linear equations,⎛⎜⎝ Vh − 1

2Mh − Kh

1
2M�

h + K�
h Dh + ASS ALS

ASL ALL

⎞⎟⎠
⎛⎜⎝ t

uS

uL

⎞⎟⎠ =

⎛⎜⎝ f
B

f
S

f
L

⎞⎟⎠ (15.9)
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where the global stiffness matrices are given by

Dh[�, k] =
q∑

i=1

αi〈Diγ
int
0,i ϕ1

S,k, γint
0,i ϕ1

S,	〉Γi
,

ASS [�, k] =
p∑

i=q+1

αi

∫
Ωi

∇ϕ1
S,k(x)∇1

S,	(x)dx

for k, � = 1, . . . , MS , and where the local stiffness matrices are

Vh = diagVh,i, ALL = diagAh,i (15.10)

with
Vh,i = αi〈Viϕ

0
i,k, ϕ0

i,	〉Γi
for k, � = 1, . . . , Ni, i = 1, . . . , q,

and

Ah,i = αi

∫
Ωi

∇ϕ1
i,k(x)∇ϕ1

i,	(x)dx for k, � = 1, . . . , Mi, i = q + 1, . . . , p.

In addition, for k = 1, . . . , MS and i = 1, . . . , q we have the block matrices

Mh,i[�, k] = αi〈γint
0,i ϕ1

S,k, ϕ0
i,	〉Γi

,

Kh,i[�, k] = αi〈Kiγ
int
0,i ϕ1

S,k, ϕ0
i,	〉Γi

for � = 1, . . . , N1, while for i = q + 1, . . . , p

ASL,i[�, k] = αi

∫
Ωi

∇ϕ1
S,k(x)∇ϕ1

i,	(x)dx

for � = 1, . . . , Mi and ALS = A�
SL.

The global stiffness matrix of the linear system (15.9) results from an
assembling of local stiffness matrices, which stem either from a local boundary
element or from a local finite element discretization. The vector of the right
hand side in (15.9) correspondingly results from an evaluation of a(ug, 0; ·, ·),

fB,i,	 = αi〈(
1
2

+ Ki)γint
0,i ug, ψi,	〉Γi

, � = 1, . . . , Ni, i = 1, . . . , q,

fS,	 = −
q∑

i=1

αi〈Diγ
int
0,i ug, γ

int
0,i ϕ1

S,	〉Γi

−
p∑

i=q+1

αi

∫
Ωi

∇ug(x)∇ϕ1
S,	(x)dx, � = 1, . . . , MS ,

fL,i,	 = −αi

∫
Ωi

∇ug(x)∇ϕ1
i,	(x)dx, � = 1, . . . , Mi, i = q + 1, . . . , p.
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The linear system (15.9) corresponds to the general system (13.20), hence we
can apply all iterative methods of Chapter 13.3 to solve (15.9). In particular,
when eliminating the local degrees of freedom t and uL we obtain the Schur
complement system[

Dh + (
1
2
M�

h + K�
h )V −1

h (
1
2
Mh + Kh) + ASS − ALSA−1

LLASL

]
uS = f

(15.11)
where the modified right hand side is given by

f := f
S
− (

1
2
M�

h + K�
h )V −1

h f
B
− ALSA−1

LLf
L

.

Due to (15.10) the inversion of the local stiffness matrices Vh and ALL can
be done in parallel. This corresponds to the solution of local Dirichlet bound-
ary value problems. In general we have to use local preconditioners for the
local stiffness matrices Vh,i and Ah,i. For the solution of the global Schur
complement system (15.11) where the system matrix Sh is symmetric and
positive definite, we can use a preconditioned conjugate gradient scheme. The
definition of an appropriate preconditioning matrix is then based on spectral
equivalence inequalities of the corresponding Schur complement matrices,

SBEM
h := Dh + (

1
2
M�

h + K�
h )V −1

h (
1
2
Mh + Kh),

and
SFEM

h := ASS − ASLA−1
LLALS ,

and with the Galerkin discretization Dh of the hypersingular boundary inte-
gral operator, see, e.g., [36, 139].
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Helmholtz operator, 15
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Poisson ratio, 5
preconditioning, 297, 299
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scaling condition, 67, 80
Schur complement system, 196, 257,

283, 320, 373
Schur Lemma, 310
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BEM stiffness matrix, 278
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discrete, 193, 196, 257, 301, 305
Stokes problem, 81

Steklov–Poincaré operator, 148, 284
stiffness matrix, 249, 268, 277
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strain tensor, 5
Strang lemma, 191, 192
stress function of Airy, 97
stress tensor, 5
support of a function, 19
surface curl, 133
symmetric approximation, 284
symmetric formulation, 179, 281

theorem
closed range theorem, 48
equivalence theorem of Sobolev, 26
imbedding theorem, 25
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inverse trace theorem, 38
Lax–Milgram lemma, 46
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uniform elliptic operator, 1
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