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Preface

The integral equation method is an elegant mathematical way of transforming ellip-
tic partial differential equations (PDEs) into boundary integral equations (BIEs).
The focus of this book is the systematic development of efficient numerical methods
for the solution of these boundary integral equations and therefore of the underlying
differential equations.

The integral equation method has a long history that is closely linked to math-
ematicians such as I. Fredholm, D. Hilbert, E. Nyström, J. Hadamard, J. Plemelj,
J. Radon and many others. Here is a list of some of the original works on the subject:
[46, 96, 101, 126, 164, 165, 173, 175–177, 181, 182, 188, 214, 229].

With the introduction of variational methods for partial differential equations at
the beginning of the twentieth century, integral equations lost some of their impor-
tance for the area of analysis. This was due to the difficulty of formulating precise
results on existence and uniqueness by means of classical integral equations.

Since the middle of the twentieth century the need for numerical methods for
partial differential methods began to grow. This was reflected also in the rapidly
increasing interest in integral equation methods. Some advantages of this approach
for certain classes of problems compared to domain methods (difference methods
and finite elements) are given in the following:

1. The treatment of equations on spatial domains with a complex geometry is sim-
pler with respect to mesh generation – this is the subdivision of the domain
into small geometric elements – for boundary integral equations than for domain
methods, since only a surface mesh of the domain has to be generated as opposed
to an entire volume mesh.

2. The numerical treatment of problems on unbounded domains is especially simple
with integral equation methods, while the treatment by means of domain meth-
ods requires the generation of a mesh on an unbounded domain, which is rather
problematic.

3. For some parameter dependent problems, for example, from the area of electro-
magnetism at high frequencies, numerical methods for integral equations remain
more stable for extreme parameters than for domain discretizations.
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4. The large linear systems of equations that appear in almost every discretization
method have a better condition number than the systems of equations for domain
discretizations. Basic iterative methods thus converge more rapidly.

5. The drawbacks of the integral equation method, such as the numerical integra-
tions that are necessary to generate and solve the systems of equations, are being
resolved with numerical methods that have been under constant development
since about 1980.

The Nyström or quadrature formula methods and the collocation method are clas-
sical numerical solution methods for integral equations. One of the first textbooks
on this topic was written by K.E. Atkinson [7] with an extended new edition [8].
These methods are suited to the solution of boundary integral equations of the sec-
ond kind. These are integral equations with operators of the form I C K , where I

denotes the identity and K an integral operator. They can be implemented on com-
puters relatively easily, although they do have two significant drawbacks: (a) the
Nyström and collocation methods cannot be applied to all boundary integral equa-
tions that appear in connection with elliptic boundary value problems and (b) the
convergence and stability of the methods can only be shown for very restrictive
conditions imposed on the underlying differential equation and the smoothness of
the physical domain.

Since about 1980–1990 the Galerkin methods for the discretization of boundary
integral equations have been gaining importance for practical problems. From a the-
oretical point of view this method is superior to the alternatives such as the Nyström
and collocation methods: stability, consistency and convergence of the Galerkin
method can be shown for a very general class of boundary integral equation. The
approach is based on a variational formulation of boundary integral equations as
opposed to the pointwise, classical approach. This approach is explained in detail
in, for example, [72, 74, 80, 167, 171, 238] or in the monographs [137, 162, 170].

The breakthrough for the Galerkin methods for practical, three-dimensional
problems was achieved through the development of numerical methods for the
approximation of integrals in order to determine the system matrix and through
the development of fast algorithms to represent the non-local (boundary integral)
operators.

The focus of this book is the systematic development of numerical methods to
determine the Galerkin solution of boundary integral equations. All necessary tools
from the area of analysis are presented, most of which are proven and derived; some,
however, are only cited so that this book does not become too expansive. This book
can be used as the basis for a lecture course of four hours a week on the numerics
of boundary integral equations, consisting of an intensive short course on functional
analysis and with a focus on the numerical methods. Some of the subsections bridge
the gap between the textbook and current areas of research or should be seen as
complements to the material. They are marked by a star (?). The applications from
the area of electromagnetism (Maxwell and wave equations, Helmholtz equation for
high frequencies), for which integral equation methods are currently being devel-
oped intensively, serve as examples. The methods that are dealt with in this book
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form the basis with which to treat such problems. We will, however, not elaborate
on the concrete applications.

So as not to go into too much detail we refrained from representing methods to
couple finite elements with boundary elements and domain decomposition methods
(see [49, 54, 71, 73, 135, 149]).

First and foremost the aim of this book is to represent and mathematically analyze
efficient methods. Its purpose is not the treatment of concrete applications from the
area of engineering. For this the books [13, 23, 32] may serve as an introduction.

Other textbooks and monographs from the area of numerical analysis for integral
equations include [23, 60, 117, 216].

This book is the translation of the German version [204] and extended by chap-
ters on p-parametric surface approximation and a posteriori error estimates – thanks
are due to E. Louw for the translation of the German version. In addition we have
corrected some misprints and incorporated additional material at various places.

The authors would like to thank their colleagues Profs. W. Hackbusch, R. Hipt-
mair and W. Wendland for the numerous discussions concerning the topics of this
book, their co-workers L. Banjai, N. Krzebek, M. Rech, N. Stahn, R. Warnke for
their support during the reading and correction of the manuscript. We also owe
thanks to the Springer-Verlag for their understanding and unproblematic
cooperation.

Zürich Stefan Sauter
July 2010 Christoph Schwab
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7.2.2 Expansion with Variable Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431

7.3 Error Analysis for the Cluster Method.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .433
7.3.1 Local Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .433

7.3.1.1 Local Error Estimates
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Chapter 1
Introduction

Many physical processes can be described by systems of linear and non-linear differ-
ential and integral equations. Only in very few special cases can such equations be
solved analytically, which is why numerical methods have to be developed for their
solution. In light of the complexity of the problems that appear in practice, it is unre-
alistic to expect to find a numerical method that offers a black-box type of numerical
method that is suitable for all these problems. A more reasonable approach is to
develop special numerical methods for specific classes of problems in order to take
advantage of the characteristic properties of these classes. These numerical methods
should then be decomposed into isolated and elementary partial problems. It would
then be possible to employ or develop efficient methods for these subproblems.

The fundamental aim of this book is to systematically develop the boundary ele-
ment methods for integral equations. These methods are developed for boundary
integral equations that result when elliptic boundary value problems on spatial
domains are transformed to integral equations on the boundary of the physical
domain. In this introductory chapter we will briefly describe the structure and
contents of this book.

1.1 The Concept of the Boundary Element Method

The boundary element method is a method for the solution of integral equations. In
this book we will restrict ourselves to integral equations for the solution of elliptic
boundary value problems. In order to offer a comprehensive description we will
introduce basic terminology and theorems from the theory of partial differential
equations and the integral equation method in Chaps. 2 and 3.

1.1.1 Basic Terminology

We consider the following problem. Our aim is to determine a physical quantity u
that depends on the spatial variable x 2 Rd . Here d denotes the spatial dimension.

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2 1,
c� Springer-Verlag Berlin Heidelberg 2011
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2 1 Introduction

We call equations for u that contain partial derivatives

@i u D @u

@xi

(1 � i � d ) or partial derivatives of u of higher order partial differential equations.
Classical differential operators that contain partial derivatives of a function are the
gradient, divergence and Laplace operator. For this let u be a differentiable, scalar
function. Then the gradient of u is given by

grad u WD ru WD .@1u; @2u; : : : ; @d u/| :

The divergence of a differentiable vector field w is defined by

div w WD r � w D
dX

iD1

@i wi :

If u is twice differentiable the Laplace operator can be defined:

�u D
dX

iD1

@2
i u:

It is easy to verify that

�u D div grad u:

For a differentiable vector field u W R3 ! R3 the curl operator is given by

curl u WD r � u WD .@2u3 � @3u2; @3u1 � @1u3; @1u2 � @2u1/| :

Definition 1.1.1. A subset � � Rd is a domain if it is open and connected.

The domain � is called a normal domain if the Gaussian integral theorem holds.
Sufficient conditions can be found in, for example, [246], [128, Chap. 4], [142].

Theorem 1.1.2 (Gauss’ Integral Theorem). Let � � Rd be a normal domain
with boundary @�, let n W @� ! Rd denote the exterior normal field and let
U � � denote an open subset of Rd . Then for every continuously differentiable
vector field v W U ! Rd :

Z

�

div v .x/ dx D
Z

@�

hv .x/ ; n .x/i dsx:
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1.1.2 A Physical Example

We consider the following physical problem. Find the fields E, D in the domain R3

which are characterized by the Maxwell equations:

curl E D 0; (1.1)

div D D �; (1.2)

D D "E; (1.3)

where " denotes the electrostatic permeability and � the electric charge density. In a
vacuum we have, for example:

" D "0 D 10�9

36�
Farad/meter.

The quantity E W R3 ! R3 denotes the unknown electrostatic field and DW
R3 ! R3 the electrostatic induction. Equation (1.1) implies that there exists a
potential ˆ W R3!R such that

E D � grad ˆ: (1.4)

If we insert this into (1.3) we obtain

D D �" grad ˆ:

Combining this with (1.2) yields a scalar equation for the potential ˆ:

� div ." grad ˆ/ D � (1.5)

in R3.
We now consider a conductor that is described by a bounded domain �� � R3.

The complement or exterior domain is denoted by �C D R3n��. We assume
that the electrical permeability in �� is given by a positive constant "� and, in the
exterior �C, is given by a further positive constant "C. In the interior �� we obtain
the Poisson equation

� �ˆ D �

"�
in �� (1.6)

and owing to � � 0 in the exterior of the conductor we obtain in �C the Laplace
equation, i.e., the homogeneous Poisson equation:

� �ˆ D 0: (1.7)

Remark 1.1.3. If the electrical permeability " is only piecewise smooth but discon-
tinuous the assumptions in the definition of the divergence operator [see (1.5)] are
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generally not fulfilled. If we only consider the equation in the subdomains �� and
�C, in which " is smooth, applying the div-operator is not a problem.

Through the potential approach (1.4) we have reduced the stationary Maxwell
equations to a scalar differential equation. Since derivatives of second order do occur
but none of higher order, we are dealing with a scalar differential equation of second
order.

In order to find unique solutions for differential equations, we still need to pre-
scribe suitable boundary conditions. For example, for d D 2 the real and imaginary
part of any holomorphic function satisfy (1.7).

Example 1.1.4. For d D 2 the functions u � 1, u D x, u D y, u D x2 � y2, u D
2xy, : : : satisfy the Laplace equation. The functions can also be seen as functions in
Rd with d > 2 (constant in all further variables). They then also satisfy the Laplace
equation.

We assume that the boundary � of �� can be oriented and is sufficiently smooth
such that a continuous normal field n W � ! R3 can be defined. We assume that
n .x/ points in the direction of the exterior �C. Using physical arguments (see
[138]) that are formulated in a mathematical manner in Sect. 3.3, we find that the
tangential component of the E-field and the normal component of the D-field are
continuous across the boundary. We will prove in Chap. 3 that under suitable condi-
tion the E and D-fields can be extended continuously (to one side) to functions EC,
DC W �C ! R3 and E�, D� W �� ! R3. Therefore the normal components of D
for x 2 � can be defined by

DCn .x/ D ˝
n .x/ ; DC .x/

˛
; D�n .x/ D hn .x/ ; D� .x/i

and the tangential components by

ECt .x/ D n .x/ � EC .x/ ; E�t .x/ D n .x/ � E� .x/ :

The transmission conditions are given by

ECt .x/ D E�t .x/ ; DCn .x/ D D�n .x/ 8x 2 �:

We now insert the potential approach (1.4) into these conditions. Note, however,
that the approach (1.4) only determines the potential uniquely up to a constant. It
can be chosen such that the transmission conditions for the potential ˆ are given by

ˆC .x/ D ˆ� .x/ (1.8)

"C
@ˆC

@n
.x/ D "�

@ˆ�

@n
.x/ (1.9)

for all x 2 � . The quantity " @ˆ
@n is called the potential flux. Conditions (1.8) and (1.9)

imply that the potential and the potential flux are continuous across the boundary � .
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In summary, we have derived the equations:

��ˆ� D �
"�

in ��
��ˆC D 0 in �C

ˆC D ˆ� and "C @ˆC

@n D "� @ˆ�

@n on �

(1.10)

for the electrostatic potential. These equations do not necessarily have a unique
solution.

Example 1.1.5. Let �� be the ball in R3 with radius 1 around the origin. In (1.10)
we choose � D �12 kxk as the right-hand side. By introducing three-dimensional
polar coordinates we can show that all functions of the form

ˆ� .x/ D 1

"�

�
kxk3 C 3 C "Ca

kxk C a
�
"� � "C

� C b"� � 4

�

ˆC .x/ D a

kxk C b

satisfy (1.10). If we impose the condition that ˆ be regular at the origin we obtain
a D �3="C and we obtain the single-parameter family of solutions:

ˆ� .x/ D kxk3�1
"�

� 3
"C

C b;

ˆC .x/ D � 3
"Ckxk C b:

(1.11)

In order to guarantee the unique solvability of partial differential equations on
unbounded spatial domains we still need to prescribe suitable decay conditions
at infinity. For the Laplace equation and spatial dimension d D 3 these can be
written as ˇ̌

ˆC .x/
ˇ̌ � C kxk�1

��grad ˆC .x/
�� � C kxk�2

�
for kxk ! 1: (1.12)

In the case of the solution of Example 1.1.5 we obtain b D 0 as well as the unique
solution

ˆ .x/ D

8
<̂

:̂

kxk3�1
"�

� 3
"C

kxk < 1;

� 3
"Ckxk kxk > 1:

Differential equations that are posed on all of R3 are called full space problems.
One also often considers differential equations on bounded domains � � R3. For
example, if one is only interested in the electrical field inside the conductor �� the
differential equation (1.6) is only considered in the domain ��. In place of the trans-
mission conditions (1.8) and (1.9) one now has to deal with boundary conditions
that can be obtained through physical measurements. If the potential is measured
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on � we speak of Dirichlet or essential boundary conditions. The associated interior
problem reads

��ˆ� D �="� in ��;

ˆ� D gD on �:
(1.13)

If the fluxes are measured on � we speak of Neumann or natural boundary condi-
tions. The interior problem reads

��ˆ� D �="� in ��;

"�@ˆ�=@n D gN on �:
(1.14)

In the case of Neumann boundary conditions the right-hand side �=" has to sat-
isfy suitable compatibility conditions. These can be obtained by integrating the
Poisson equation (1.6) over �� and by then applying Gauss’ integral theorem
(Theorem 1.1.2) to grad ˆ

Z

��

� .x/

"�
dx D �

Z

��

�ˆ .x/ dx D
Z

@��

@ˆ

@n
.x/ dsx:

It follows that the compatibility condition

Z

��

� .x/

"�
dx D

Z

�

@ˆ

@n
.x/ dsx;

which links the right-hand side in (1.6) with the given Neumann data gN , is neces-
sary for the solvability of the Neumann boundary value problem.

The exterior problems can be formulated in the same way. The Dirichlet exterior
problem consists in solving the problem

��ˆC D �="C in �C;

ˆC D gD on �
(1.15)

and the Neumann exterior problem reads

��ˆC D �="C in �C;

"CˆC

@n D gN on �:
(1.16)

As with the full space problem, suitable decay conditions have to be imposed at
infinity to guarantee the unique solvability. For spatial dimensions d D 3 these read

ju .x/j � O .1= kxk/ ; for kxk ! 1;

kru .x/k D O
�
kxk�2

	
for kxk ! 1:

(1.17)
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1.1.3 Fundamental Solutions

It is our aim to transform the boundary value problems from the previous section into
an integral equation on the boundary � WD @�� and only then solve it numerically.
To transform a partial differential equation into an integral equation one needs the
fundamental solution of the underlying differential operator. We again consider the
Poisson equation:

� �ˆ D �

"
(1.18)

in R3. The function

N .x/ D
Z

R3

G .x � y/
� .y/

"
dy (1.19)

with the kernel function

G .z/ D 1

4� kzk (1.20)

is called the Newton potential and the function G from (1.20) is called the funda-
mental solution or the singularity function for the Laplace operator (for d D 3). The
Newton potential exists for all functions � 2 C 0

�
R3

�
with compact support and

solves the Poisson equation. For a proof we refer to [115, Chap. 17, Theorem 2].
The fundamental solution satisfies the Laplace equation in R3n f0g:

�G D 0 in R3n f0g : (1.21)

More specifically, we have, in the sense of distributions, the equality �G D ı0

on R3 with the delta distribution ı0 at the point zero. These and further properties
of the fundamental solution and of the Newton potential are discussed in Chap. 3.

1.1.4 Potentials and Boundary Integral Operators

The boundary element method can be applied especially efficiently to homoge-
neous boundary value problems. If the equation is inhomogeneous the problem can
transformed into a homogeneous problem by using the Newton potential. Since eval-
uating the Newton potential at one point x requires an integration over � (or �˙),
the method becomes very expensive if � has a large or, in the most extreme case,
unbounded support. For this reason we will generally assume that the inhomoge-
neous part � has compact support: supp � �� R3. It can be shown under these
conditions that the Newton potential always satisfies the decay conditions (1.17)
(see Chap. 3).

The Newton potential solves the Poisson equation. In general this potential will
not satisfy the boundary conditions or the jump conditions. It only represents a spe-
cial solution of the problem with which the Poisson equation can be transformed
into the Laplace equation. All solutions of the Poisson equation can be written as
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the sum of a special solution and a solution of the homogeneous problem

ˆ D N C ˆ0: (1.22)

We will first consider the exterior problem with Dirichlet boundary conditions (1.15)
and decay conditions (1.17). Evaluating N at one point x requires an integration over
the unbounded exterior domain �C.

The principle of superposition implies that ˆ0 is the solution of the Laplace
equation

�ˆ0 D 0; in �C;

ˆ0 D QgD on �;

ju .x/j ! 0

kru .x/k D O
�
kxk�2

	
)

for kxk ! 1
(1.23)

with the modified boundary conditions QgD D gD � N j� . With the help of the
fundamental solution we can define an approach for x 2 R3n� which reads

ˆ0 .x/ D
Z

�

G .x � y/ � .y/ d�y: (1.24)

The function � W � ! C has not yet been determined and is called density. For
continuous densities � 2 C 0 .�/ the integral in (1.24) exists as a Riemann integral.
The right-hand side of (1.24) defines the single layer potential S .�/ of the density � .
Since x 2 R3n� and y 2 � the differentiation and integration commute and with
(1.21) we obtain:

�S .�/ D 0

in R3n� . We will show in Chap. 3 that S .�/ satisfies the decay conditions (1.23)
for every � 2 C 0 .�/. The problem (1.23) has thus been solved [and with it so has
the initial problem (1.15)] if the density � can be determined in such a way that the
boundary conditions ˆ0 j�D QgD are satisfied. It will be shown in Theorem 3.1.16
that the single layer potential S .�/ can be continuously extended across the surface
� by

V .�/ .x/ D
Z

�

G .x � y/ � .y/ d�y; for x 2 �: (1.25)

Thereby, the integral for � 2 C 0 .�/ in (1.25) exists as an improper Riemann
integral. The boundary integral equation to determine the density � then reads:

V .�/ D QgD ; on �; (1.26)

or explicitly:

Z

�

� .y/

4� kx � ykd�y D QgD .x/ ; for all x 2 � .
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Note that this integral equation represents a boundary integral equation, as we have
x; y 2 � and the functions � and QgD are mappings from � to C. Integral equa-
tions where the unknown function only appears under the integral are called integral
equations of the first kind. The idea is based on the fact that the approach (1.25) sat-
isfies the differential equation in �C for all densities. This approach for the solution
of a differential equation is called the potential approach method or the indirect
formulation.

As a generalization of this approach we note that every derivative of the form

k .x; y/ D
X

�;�

c�;� .y/ @�
x @�

y G .x � y/

satisfies the Laplace equation �xk .x; y/ D 0 for x 2 �C and y 2 � and therefore
also the potential formed with k.

We will introduce the double layer potential for the interior problem with Dirich-
let conditions. Once again the Poisson problem can be transformed into the Laplace
equation by using the Newton potential:

�ˆ0 D 0 in ��;

ˆ0 D QgD on �

with QgD D gD � N j� . We set

k .x; y/ D ˝
n .y/ ; ryG .x � y/

˛ D �hn .y/ ; y � xi
4� ky � xk3

(1.27)

and with this we form the double layer potential

D .�/ .x/ WD
Z

�

k .x; y/ � .y/ d�y for all x 2 R3n�:

Again, for x 2 R3n� and y 2 � the differentiation and integration commute and we
obtain �D .�/ D 0 in ��. If the unknown density � W � ! C can be chosen such
that

lim
x!x0

D .�/ .x/ D QgD .x0/ ; for all x0 2 � (1.28)

then ˆ D N C D .�/ solves the interior problem (1.13). We will show in Chap. 3
that D .�/ can be extended continuously from the interior to the boundary. The
extension has the following representation for sufficiently smooth boundaries:

� 1

2
� .x/ C K .�/ .x/ x 2 � (1.29)

with the boundary integral operator [k as in (1.27)]
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K .�/ .x/ WD
Z

�

k .x; y/ � .y/ d�y; for all x 2 �: (1.30)

If we insert the representation (1.30) into (1.29) and then into (1.28) we obtain the
boundary integral equation

� 1

2
� .x/ C K .�/ .x/ D QgD .x/ ; for all x 2 � (1.31)

in order to determine the unknown density � W � ! C. The integral equation (1.31)
is defined on � (x; y 2 � and �; QgD W � ! C) and, thus, is again a boundary
integral equation. Since the unknown function � appears in the integrand as well as
outside of the integrand, (1.31) is called a boundary integral equation of the second
kind.

If the surface is sufficiently smooth the integral in (1.30) exists as an improper
Riemann integral.

In Chap. 3, we will present further possibilities of transforming even more
general elliptic differential equations with more general boundary conditions into
boundary integral equations.

1.2 Numerical Analysis of Boundary Integral Equations

In Chaps. 4–6, we will deal with the numerics of boundary integral equations. Pri-
marily, we will consider Galerkin boundary element methods for the discretization.
Alternatives, such as collocation methods, are considered in examples.

1.2.1 Galerkin Method

In Chap. 4 we will consider the Galerkin boundary element method in its original
form.

The basis of the Galerkin method is a finite-dimensional subspace S of the
function space H which contains the continuous solution of the boundary integral
equation. As an example we consider the boundary integral equation (1.26) for the
single layer potential. The construction of the boundary element space S is based
on a decomposition of the boundary � of � into non-overlapping panels which
defines the surface mesh G of � . For a panel 	 2 G, b� W � ! f0; 1g denotes the
characteristic function on 	 . The space S is the span of the basis functions .b� /�2G

S WD span fb� W 	 2 Gg : (1.32)
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The dimension of S is denoted by N WD dim S . Every function � 2 S is uniquely
determined by the coefficient vector .�� /�2G 2 RN with respect to the basis
representation � D P

�2G �� b� .
Usually one cannot expect the boundary integral equation (1.26) to have a solu-

tion in S . Since every function in S is determined by N degrees of freedom,
in general only N conditions can be imposed to determine the coefficient vector
.�� /�2G .

For the Galerkin method (1.26) is multiplied by the basis functions b� and then
integrated over the boundary � . The equations to determine the Galerkin solution
then read: Find �S 2 S such that

a .�S ; b� / WD
Z

�

V .�S / b�ds D
Z

�

QgDb�ds DW F .b� / 8	 2 G: (1.33)

It will be shown in Chap. 4 under which conditions the results on existence and
uniqueness for the continuous boundary integral equations can be transferred to the
Galerkin equations.

Questions concerning convergence and convergence rates are just as important
for the evaluation of the method. We will show that under suitable conditions for
a sufficiently fine surface mesh G the Galerkin solution converges quasi-optimally:
There exists a constant C which is independent of the right-hand side such that

k� � �S kE � C dist .�; S/ with dist .�; S/ WD inf
�2S

k� � �kE (1.34)

holds. The quantity dist .�; S/ depends only on the regularity of the solution � , the
chosen norm k�kE and the boundary element space S .

The quasi-optimality of the Galerkin method, i.e., the error estimate (1.34), is
proven under suitable conditions in Chap. 4.

In order to estimate the quantity dist .�; S/, the regularity of the continuous solu-
tion � has to be analyzed. Depending on the smoothness of the boundary � and the
right-hand side QgD it can shown that the solution � 2 H lies in a smoother space
W � H .

We use the dimension N of the boundary element space as a parameter to
describe the rate of convergence. We would like to estimate the quantity dist .�; S/

depending on N . The regularity of the solution combined with the approximation
property of the boundary element space leads to the error estimate

dist .�; S/ � CN�˛ k�kW ;

where ˛ > 0 denotes the rate of convergence, which depends on W and S . In
summary, we obtain

k� � �S kE � CN�˛ k�kW : (1.35)
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1.2.2 Efficient Methods for the Solution of the Galerkin
Equations

The Galerkin solution is entirely defined by (1.33). However, these equations do
not offer a clear idea of how to solve them efficiently. Since on the computer it is
not possible to work with continuous (boundary element) functions but only real
numbers, we transform (1.33) into a linear system of equations for the coefficient
vector .�� /�2G . If we insert the ansatz

�S D
X

�2G
�� b� (1.36)

into (1.33) and use the linearity of the operator V we obtain

X

t2G
�t

Z

�

V .bt / b�ds D
Z

�

QgDb�ds 8	 2 G:

We define the system matrix V WD .V�;t /�;t2G by V�;t WD R
�

V .bt / b� ds for 	 ,
t 2 G and the vector g WD .g� /�2G by g� WD R

�
QgDb�ds for all 	 2 G and obtain a

linear system of equations for the coefficient vector .�� /�2G

V� D g: (1.37)

The Galerkin solution �S results from the vector � through (1.36). In order to
evaluate the Galerkin solution efficiently, it is thus necessary to develop quadrature
methods, specifically designed for each problem, to determine the entries of the
system matrix as well as fast methods to solve the system of equations.

1.2.2.1 Quadrature Methods

In the case of the basis functions b� from (1.32) the matrix entries for V are defined
by the integrals

V�;t WD
Z

��t

1

4� kx � ykdsxdsy: (1.38)

For 	 D t these integrals are singular for x D y and special quadrature methods have
to be developed to approximate them. These consist of a combination of regularizing
coordinate transformations and Gaussian quadrature formulas. We will illustrate the
idea of coordinate transformations by using the simple example of the integration of
an integrand with characteristic singular behavior over the triangle with the vertices
.0; 0/|, .1; 0/|, .1; 1/|
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I WD
Z 1

0

Z x1

0

f .x1; x2/q
x2

1 C x2
2

dx2dx1:

The transformation .
1; 
1/ D .�1; �1�2/ maps the .�1; �2/-coordinates of the unit
square .0; 1/2 to the triangle O	 . From this and with the determinant of the Jacobian
det J .�1; �2/ D �1 we obtain the representation

I D
Z 1

0

Z 1

0

�1

f .�1; �1�2/
q

�2
1 C �2

1�2
2

d�2d�1 D
Z 1

0

Z 1

0

f .�1; �1�2/
q

1 C �2
2

d�2d�1:

The integrand in the last integral is smooth for smooth functions f and the integral
can be approximated by using Gaussian quadrature.

In Chap. 5 we will generalize these Duffy coordinates (see [83]) to pairs 	 � t of
panels.

The approximation of the entries of the system matrix by means of quadrature
methods leads to a perturbed linear system of equations

eV Q� D g (1.39)

as well as a perturbed Galerkin solution Q�S D P
�2G Q��b� . The consistency and

stability analysis of this perturbation allows us to choose the order of the quadrature
such that the order of convergence ˛ in (1.35) of the unperturbed Galerkin solution
is maintained. In the second part of Chap. 5 this influence will be analyzed.

1.2.2.2 Solving the Linear System of Equations

In Chap. 6 we will study efficient methods for the solution of the linear system of
equations (1.39). We will also analyze their convergence.

For a large dimension N D dim S of the boundary element space, methods such
as the LR decomposition cannot be considered as their complexity grows in cubic
proportion to the dimension N . Instead, iterative methods are used. The convergence
of classical iterative methods is determined by the condition of the matrix V. The
integral equations under consideration can be divided into three types:

1. Equations with non-symmetric system matrices and a bounded condition number.
2. Equations with symmetric, positive definite system matrices and a condition

number that grows as N 1=2 in proportion to the dimension N of the boundary
element space. The underlying boundary integral operator is smoothing, i.e., the
order of differentiability of the image of the function is one order higher than that
of the function itself.

3. As in (2) but the boundary integral operator has differentiating properties, i.e.,
the order of differentiability of the image of a function is one order lower than
that of the function itself.
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For systems of equations of type 1 minimal residual methods – these are vari-
ants of the cg-method for non-symmetric matrices – can be used. The number
of iterations necessary to reach a prescribed error tolerance is independent of the
dimension N .

For systems of equations of type 2 and 3 the cg-method can be used. We will
show in both cases that the number of iterations to reach a prescribed error tolerance
grows as N 1=4 in proportion to the dimension of the system of equations.

Since the equations of type 3 have a differentiating effect they are closely related
to Finite Element discretizations of elliptic boundary value problems. The multi-grid
methods that are used in connection with these discretizations can be generalized for
boundary integral equations of type 3. We will prove in Chap. 6 that the number of
multi-grid iterations needed to reach a prescribed tolerance is independent of N .

1.2.2.3 Cluster Method

The complexity for the solution of the linear system of equations (1.37) with an
iterative method is the product of the number of iterations and the complexity
per iteration. If the iterative methods from Chap. 6 are used we face the follow-
ing dilemma. The number of iterations is essentially independent of the dimension
of the system of equations; however, the complexity per iteration grows quadrati-
cally with respect to N . This is due to the fact that the system matrix for integral
operators is generally dense [see (1.38)].

In Chap. 7 we study the cluster method, with which a matrix-vector multi-
plication can be approximated and the complexity of which is proportional to
O .N log	 N / for � 	 4 to 6. Closely related to the cluster method is the fast multi-
pole method (FMM) which was originally developed for N -body particle problems
(see [111, 193]). We will briefly discuss this method in Chap. 7 as well.

We will explain the idea of the cluster method by using a simple model problem.
For this purpose we assume that the kernel function is degenerate, i.e.,

k .x; y/ D
mX

iD1

ˆi .x/ ‰i .y/ (1.40)

for suitable functions .ˆi /
m
iD1 and .‰i /

m
iD1 with m 
 N . Then the coefficients of

the system matrix of the associated boundary integral operator are given by

V�;t WD
Z

�

Z

�

k .x; y/ b� .x/ bt .y/ dsxdsy

D
mX

iD1

�Z

�

ˆi .x/ b� .x/ dsx

� �Z

�

‰i .y/ bt .y/ dsy

�
:

Although this matrix is also dense in general, it can however be stored by using
O.N / quantities and it can be multiplied by a vector with a complexity of O .N /
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arithmetic operations. For this we define the coefficients

Li;� WD
Z

�

ˆi .x/ b� .x/ dsx and Ri;� WD
Z

�

‰i .y/ b� .y/ dsy

8	 2 G 81 � i � m:

Since the support of the basis functions b� only consists of the panel 	 , the integra-
tion over � can be reduced to the panel 	 . If the functions ˆi and ‰i are sufficiently
smooth the assumption that every one of the numbers Li;� , Ri;� can be evaluated
with a complexity of O .1/ arithmetic operations, independent of N , is justified.
The overall complexity for the computation of all quantities is then given by O .N /.

One matrix-vector multiplication � D V� can then be evaluated as follows:

1. Determine the auxiliary quantities 
i WD P
�2G Ri;��� for 1 � i � m with an

arithmetic complexity of O .N / operations.
2. Determine � as given by �� WD Pm

iD1 
i Li;� for all 	 2 G. Complexity: O .N /

arithmetic operations.

In the context of iterative methods to solve linear systems of equations it is often
sufficient to have a subroutine at your disposal that evaluates a matrix-vector mul-
tiplication. Furthermore, only O .N / matrix entries have to be stored (for example,
the diagonal elements for the Jacobi method). We have thus shown that for degen-
erate kernel functions it is sufficient to compute O .N / real numbers in order to
evaluate one matrix-vector multiplication with a complexity of O .N /.

We would like to emphasize at this point that the kernel functions for integral
equations are generally not degenerate, but the approach (1.40) has to be general-
ized. The matrix-vector multiplication is, in the general case, only approximated
and the influence of this additional perturbation on the Galerkin solution will also
be analyzed in Chap. 7.

1.2.2.4 Surface Approximation

In practical applications, the description of the “true” physical surface might be
very complicated or even not available as an exact analytic function and has to
be approximated by using, e.g., pointwise measurements of the surface or some
geometric modelling software. In this introduction, we illustrate the concept by the
example of the first kind integral equation for the single layer potential on a smooth
surface � in R3.

The construction of an approximate surface starts with definition of an interpolat-
ing polyhedron �affine with surface �affine. Let Gaffine D ˚

	 affine
1 ; : : : 	 affine

N



denote a

surface mesh of �affine consisting of plane triangles with straight edges 	 affine
i which

interpolate the exact surface � in their vertices. The affine pullback of 	 affine 2 Gaffine

to the two-dimensional reference triangle O	 with vertices .0; 0/|, .1; 0/|, .1; 1/| is
denoted by �affine

� W O	 ! 	 affine. Let P W U ! � denote the orthogonal projec-
tion of a sufficiently small neighborhood U � R3 of � . A surface mesh for � is
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then defined by G D ˚
P

�
	 affine

� W 	 affine 2 Gaffine


. The pullbacks of 	 2 G to the

reference element is given by �� WD P ı �affine
� .

In principle, the Galerkin boundary element method can be applied directly to the
surface mesh by defining the boundary element spaces with respect to G. However,
the mapping P is in general complicated and non-linear or even available only by
pointwise measurements and hence must be approximated and realized by numerical
approximation.

The p-parametric surface approximation is defined by replacing the mapping ��

by an (componentwise) interpolating polynomial ��;p of degree p and approximat-
ing the panels 	 2 Gaffine by ��;p . O	/. (Note that for the definition of the interpolating
polynomial ��;p only the evaluation of P at the interpolation points are required and
not its functional representation.) This leads to the mesh Gp WD ˚

��;p . O	/ W 	 2 G


and the approximate surface
�p WD S

�2Gp

	:

The corresponding piecewise constant boundary element space is Sp WD span
fb� W 	 2 Gpg, where b� W �p ! R is the characteristic function for 	 2 Gp. The
Galerkin method with piecewise constant boundary elements and p-parametric sur-
face approximation for the single layer equation (1.26) is given by: Find �

p
S 2 Sp

such that

Z

�p��p

�
p
S .y/ b� .x/

4� kx � yk dsydsx D
Z

�p

g
p
Db�ds 8	 2 Gp: (1.41)

Here, g
p
D is some extension of QgD in (1.26) to �p, e.g., by polynomial interpo-

lation. From the numerical point of view, the problem is substantially simplified
because the parametrization of �p is explicitly given by polynomials instead of the
complicated projection P .

In order to compare the solution �
p
S with the continuous solution � for the error

analysis we have to lift �
p
S to the original surface � . For sufficiently small mesh

width h WD max fdiam 	 W 	 2 Gg, we assume that the restriction P W �p ! � is
bijective and set �p D .P j�p /�1. Let L�p

S WD �p ı �p denote the Galerkin solution
which is lifted to the surface � so that the error � � L�p

S W � ! C is well defined. For
the error analysis it is convenient to rewrite (1.41) equivalently as a problem on the
true surface � . For this, let LSp WD ˚

�
p
S ı �p W �

p
S 2 Sp



denote the lifted boundary

element space. Then L�p
S 2 LSp is the solution of

a
p
S

� L�p
S ; b L�

� WD
Z

���

L�p
S .y/ b L� .x/

4� k�p .x/ � �p .y/k�p .y/ �p .x/ dsydsx

D
Z

�

Lgp
Db L��pds D F

p
S .b L� / 8L	 2 G; (1.42)

where Lgp
D WD g

p
D ı�p and �p W � ! R reflects the change of metric. For any 	 2 G

it is defined by
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�pj� WD g�;p ı ��1
�

g� ı ��1
�

with g� D
q

det
�
.D�� /| D��

�
and

g�;p D
r

det
��

D��;p

�|
D��;p

	
:

For the error estimates, one has to compare the bilinear forms and right-hand sides
in (1.33) and (1.42) and estimate the quantities ıI and ıII in

ˇ̌
a .u; v/ � a

p
S .u; v/

ˇ̌ � ıI kukH kvkH 8u; v 2 LSp;ˇ̌
F .u/ � F

p
S .u/

ˇ̌ � ıII kukH 8u 2 LSp:

To keep this outline short, we assume that the error related to the right-hand side van-
ishes, i.e., ıII D 0. The estimate of ıI can be derived from stability and consistency
estimates of the form
ˇ̌
ˇ̌ 1

kx � yk � 1

k�p .x/ � �p .y/k
ˇ̌
ˇ̌ � C

kx � ykhpC1;
1

k�p .x/ � �p .y/k � C

kx � yk ;

j�p .y/ � 1j � C hpC1; j�p .y/j � C:
(1.43)

These estimates and similar estimates for more general kernel functions and also for
only piecewise smooth surfaces will be derived in Chap. 8. It will also been shown
that (1.43) implies ıI � C hpC1 and in the case of full regularity of the solution �

we get ��� � L�p
S

��
H

� C


�
h3=2 C hpC1

	
:

This allows us to conclude that, for the boundary integral equation for the single
layer potential on a smooth surface discretized by piecewise constant boundary ele-
ments, the approximation of � by an interpolating polyhedron, i.e., p D 1, suffices
in order to preserve the convergence rates of the original Galerkin discretization.

1.2.2.5 A Posteriori Error Estimation

The a priori error analysis of Galerkin boundary element methods shows the asymp-
totic convergence rate of the Galerkin solution by combining (a) the discrete stability
of the variational formulation, e.g., in the form of an ellipticity estimate with (b) the
regularity analysis of the continuous solution, e.g., by analyzing the smoothness of
the solution in dependence of the smoothness of the given data, and (c) approxi-
mation properties of the boundary element functions for functions which belong to
the regularity class of the exact solution. These estimates can be applied to large
(infinite-dimensional) problem classes – however they might be very pessimistic
for the concrete problem under consideration. In practical applications, the typical
question is to “compute a numerical solution to a prescribed accuracy with minimal
cost”. However, the exact discretization error is not available in general because it
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requires the knowledge of the exact solution. Hence the only way to guarantee a
prescribed accuracy of the numerical solution is to estimate the error theoretically
by quantities which are computable. Since the upper bounds in a priori estimates, in
general, are by far too pessimistic and various constants appearing therein cannot be
estimated in a sharp, problem-dependent way, the condition: “refine the boundary
element space until the upper bound becomes smaller than the given error toler-
ance” is not practicable because it exceeds the capacities of modern computers as a
consequence of these pessimistic estimates.

The a posteriori error analysis allows us to estimate the error by some quanti-
ties (denoted as error indicators and error estimators) whose computation uses the
computed numerical solution and hence is adapted to the concrete problem under
consideration. The advantage is two-fold: (a) the estimates are sharp and can be
used to guarantee a prescribed accuracy requirement and (b) the local error indica-
tors provide information concerning the local error distribution and can be used to
enrich the boundary element space in an adaptive solution process.

In order to explain the principal idea we consider again the Galerkin dis-
cretization (1.33) of the single layer potential. For the error eS WD � � �S we
obtain

k� � �S kH D ��V �1V .� � �S /
��

H
� CV kV .� � �S /kH 0

DCV k QgD � V�S kH 0

:

(1.44)
Here H is the infinite-dimensional space in which the continuous problem is for-
mulated and V W H ! H 0 is the boundary integral operator associated to the single
layer potential. H 0 is the dual space of H and

CV WD ��V �1
��

H H 0

is the continuity constant of the inverse operator V �1. Note that (1.44) contains
the right-hand side QgD as in (1.26) and the numerically computed solution �S but
not the exact solution. For the operator V the norm in the space H 0 is given for
w 2 H 0 by

kwkH 0;� WD
q

kwk2
L2.�/

C jwj2H 0;� W

D
(

kwk2
L2.�/

C
Z

�

Z

�

jw .x/ � w .y/j2
kx � yk3

dsxdsy

) 1=2

which is denoted as the Sobolev norm of fractional order 1=2. The goal is to estimate
the k�kH 0;�-norm of the residual r D QgD � V�S [cf. (1.44)] and use this as a bound
for the discretization error. To get local insights on the error distribution, it will also
be important to estimate krkH 0;� by a sum of local error indicators. For this, let I
denote the set of counting indices of the basis functions bi , i 2 I, for the boundary
element space S and let

!i WD supp bi
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denote their support. Then we will show that

Ceff

sX

i2I
�2

i � k� � �S kH � Crel

sX

i2I
�2

i ; where �i WD jr jH 0;!i
: (1.45)

A posteriori error estimators which satisfy the upper estimate in (1.45) are called
reliable and if the lower estimate is satisfied they are called efficient. These estimates
require the localization of the integral

R
���

in the definition of the fractional order
Sobolev norm to a sum of integrals over

R
!i�!i

. It is relatively simple (but technical)
to prove that

jvj2H 0;� �
X

i2I
jvj2H 0;!i

C C
X

�2G
h�1

� kvk2
L2.�/ :

Hence it remains to estimate

h�1
� kvk2

L2.�/ � C kvk2
H 0;!�

, where !� WD S

t2G:Nt\N�¤;
t : (1.46)

Unfortunately, this estimate cannot hold for all functions v 2 H 0 as can be eas-
ily seen by considering the function v D 1. However, for functions which satisfy
a certain orthogonality relation with respect to the boundary element space, esti-
mate (1.46) can be proved. Furthermore, we will prove that the residual r satisfies
this orthogonality relation and hence the reliability of the error estimator can be
concluded.

Notation 1.2.1. Throughout the book C and c denote generic positive constants
which may vary from inequality to inequality.



Chapter 2
Elliptic Differential Equations

Integral equations occur in many physical applications. We encounter some of the
most important ones when we try to solve elliptic differential equations. These can
be transformed into integral equations and can then be solved numerically by means
of the boundary element method. The subject of this chapter is the formulation and
analysis of scalar, elliptic boundary value problems.

2.1 Elementary Functional Analysis

In this chapter we will present a few fundamental results from functional analysis
that we will need at a later stage. It is not intended as an introduction to functional
analysis; instead we will refer to other textbooks or we will give schematic proofs if
we think this might help the reader’s understanding of the subject. The presentation
is based on the book [115, Chap. 6]. A detailed introduction to linear functional
analysis can be found in, e.g., [3, 62, 98, 195, 243].

2.1.1 Banach and Hilbert Spaces

2.1.1.1 Normed Spaces

We denote by X a normed, linear space over the coefficient field K 2 fR;Cg. A
norm k � k W X ! Œ0;1/ is a mapping with the properties

8x 2 X W kxk D 0 H) x D 0; (2.1a)

8� 2 K W k�xk D j�j kxk; (2.1b)

8x; y 2 X W kx C yk � kxk C kyk: (2.1c)

We will use the notation k�kX if the space X is not clear from the context. We call
the pair .X; k � k/ a normed space.

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2 2,
c� Springer-Verlag Berlin Heidelberg 2011
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With k � kX we have defined a topology on X : a subset A � X is open if there
exists a constant " > 0 for all x 2 A such that the ball fy 2 X W kx�ykX < "g � A.
For a sequence .xn/n � X we write xn ! x if

x D lim
n!1 xn ” lim

n!1 kx � xnkX D 0:

Remark 2.1.1. Every norm k � k W X ! Œ0;1/ is continuous since we have from
(2.1c) the reverse triangle inequality

8x; y 2 X W jkxk � kykj � kx � yk: (2.2)

We can define several different norms on X . Two norms k � k1, k � k2 on X are
equivalent if and only if

9C > 0 W C�1 kxk1 � kxk2 � C kxk1 8x 2 X: (2.3)

Equivalent norms induce the same topology on X .

2.1.1.2 Linear Operators

Let X and Y be normed spaces with the respective norms k � kX and k � kY . A linear
mapping T W X ! Y is called an operator. An operator T W X ! Y is called
bounded if

kT kY X WD sup
˚kT xkY =kxkX W 0 6D x 2 X

�
<1: (2.4)

Here kT kY X is the operator norm. The set of all bounded linear operators T W
X ! Y is denoted by L.X; Y / and together with

.T1 C T2/x WD T1x C T2x; .�T1/x D T1.�x/; � 2 K; (2.5)

constitutes a normed, linear space .L.X; Y /, k � kY X /. If X D Y we write L.X/
instead of L.X;X/. L.X/ is an algebra if we set

8T1; T2 2 L.X;X/ W .T1T2/x WD T1.T2x/:

For a normed space X , IX 2 L.X/ denotes the identity on X . A mapping T �1 2
L.Y;X/ is the inverse of the mapping T 2 L.X; Y / if we have T T �1 D IY and
T �1T D IX .

Exercise 2.1.2. (a) Show that for all x 2 X and T 2 L.X; Y / we have

kT xkY � kT kY XkxkX : (2.6)
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(b) Show that for T1 2 L.Y;Z/, T2 2 L.X; Y / we have T1T2 2 L.X;Z/ and

kT1T2kZ X � kT1kZ Y kT2kY X : (2.7)

Definition 2.1.3. The sequence .Tn/n � L.X; Y / converges to T if

Tn ! T ”kT � TnkY X ! 0 for n!1:

It converges pointwise to T if

8x 2 X W kTnx � T xkY ! 0 for n!1:

2.1.1.3 Banach Spaces

The sequence fxng � X is called Cauchy sequence if supfkxn � xmkX W
n;m � kg ! 0 for k !1. X is called complete if all Cauchy sequences converge
to an x 2 X . A complete, normed, linear space is called a Banach space.

Proposition 2.1.4. Let X be a normed space and Y a Banach space. ThenL.X; Y /
is a Banach space.

Proposition 2.1.5. Let X be a Banach space and Z � X a closed subspace. The
quotient space X=Z consists of the classes Qx WD fx C z W z 2 Zg for all x 2 X .
The quotient space X=Z with the norm k Qxk WD inffkx C zkX W z 2 Zg is a Banach
space.

We call the set A � X dense in X if we have for the closure A D X . More
specifically, this means that for all x 2 X there exists a sequence .xn/n � A with
xn ! x. If .X; k�kX / is normed but not complete, then the Banach space .eX; k�k QX /
is the completion of X if X is dense in eX , eX is complete and we have kxk QX DkxkX for all x 2 X .

The Banach space X is called separable if there exists a countable, dense subset
A D fan W n 2 Ng � X .

The completion eX is unique up to isomorphism. The continuous extension of a
linear operator T 2 L.X; Y / from a dense subset X0 � X to X is also uniquely
determined. The following proposition explains this in more detail.

Proposition 2.1.6. Let X0 be a dense subset of .X; k � kX /. An operator T0 2
L.X0; Y / with

kT0kY X0
D supfkT0xkY =kxkX W 0 6D x 2 X0g <1

has a unique extension T 2 L.X; Y / that satisfies the following conditions:

1. For all x 2 X0 we have T x D T0x:

2. For all sequences .xn/n � X0 with xn ! x 2 X we have T x D limn!1 T0xn:

3. kT kY X D kT0kY X0
.
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The following theorem and corollary are both a result of the open mapping
theorem (see [243, Theorem 6.6]).

Theorem 2.1.7. Let X; Y be Banach spaces, let T 2 L.X; Y / be injective .T x D
Ty H) x D y/ and surjective (for all y 2 Y there exists an x 2 X with T x D y).
Then the mapping T �1 2 L.Y;X/ exists.

Corollary 2.1.8. Let X; Y be Banach spaces and let T 2 L.X; Y / be injective.
Then the following conditions are equivalent:

(a) Y0 WD fT x W x 2 Xg with k � kY is a closed subspace of Y .
(b) T �1 exists on Y0 and T �1 2 L.Y0; X/.

2.1.1.4 Embeddings

Let X; Y be Banach spaces with X � Y . The injection (or embedding) I W X ! Y

is defined by Ix D x for all x 2 X and clearly is linear. If I is bounded, that is,

8x 2 X W kxkY � CkxkX ; (2.8)

we have I 2 L.X; Y /. If X is also dense in Y , we call X densely and continuously
embedded in Y .

2.1.1.5 Hilbert Spaces

Let X be a vector space. A mapping .�; �/ W X �X ! K is called an inner product
on X if

.x; x/ > 0 8x 2 Xn f0g; (2.9a)

.�x C y; z/ D �.x; z/C .y; z/ 8� 2 K; x; y; z 2 X; (2.9b)

.x; y/ D .y; x/ 8x; y 2 X: (2.9c)

A Banach space .X; k�kX / is called a Hilbert space if there exists an inner product
on X such that kxkX D .x; x/1=2 for all x 2 X .

Furthermore, from (2.9) we have the Cauchy–Schwarz inequality

j.x; y/j � kxk kyk 8x; y 2 X: (2.10)

Two vectors x; y 2 X are orthogonal if .x; y/ D 0. We denote this by x ? y. For
A � X , A? WD fx 2 X j 8a 2 A W .x; a/ D 0g is a closed subspace of X .

Proposition 2.1.9. Let X be a Hilbert space and U � X a closed subspace. Then
we have X D U ˚ U?, i.e.,
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8x 2 X W x D uC v; u 2 U; v 2 U?; kxk2 D kuk2 C kvk2:

A system of orthonormal vectors
�
vj

�
j2I in a Hilbert spaceX is an orthonormal

basis of X if, for every x 2 X , the Fourier expansion

x D
X

j2I

�
x; vj

�
vj

converges.

Theorem 2.1.10. For every Hilbert space, there exists an orthonormal basis.

A proof can be found, e.g., in [131, Theorem 65.1], [141].

2.1.2 Dual Spaces

2.1.2.1 Dual Space of a Normed, Linear Space

Let X be a normed, linear space over K 2 fR;Cg. The dual space X 0 of X is the
space of all bounded, linear mappings (functionals)

X 0 D L.X;K/:

X 0 is a Banach space with norm

kx0kX 0 WD kx0kK X D sup
˚ˇˇx0.x/

ˇ
ˇ =kxkX W x 2 Xn f0g

�
: (2.11)

For x0.x/ one can also write

hx; x0iX�X 0 D hx0; xiX 0�X D x0.x/; (2.12)

where h�; �iX�X 0 , h�; �iX 0�X are called dual forms or duality pairings.

Lemma 2.1.11. Let X � Y be continuously embedded. Then Y 0 � X 0 is continu-
ously embedded.

Proof. Since X � Y , any y0 2 Y 0 is defined on X . We therefore have Y 0 � X 0.
Since X � Y , we have, due to (2.8),

ky0kY 0 D sup
x2Y nf0g

˚jy0.x/j=kxkY
� � C�1 sup

x2Xnf0g
˚jy0.x/j=kxkX

� D C�1 ky0kX 0

and therefore ky0kX 0 � Cky0kY 0 . This proves that the embedding Y 0 � X 0 is
continuous. �
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The bidual space X 00 of X is defined as

X 00 D L.X 0;K/:

In general we have the strict inclusion X � X 00. However, in many cases X is
isomorphic to X 00, i.e., every x00 2 X 00 can be identified with an x 2 X . We
write X Š X 00. In this case we call X reflexive. In particular, all Hilbert spaces
are reflexive.

2.1.2.2 Dual Operator

One of the most general principles in functional analysis is the extension of contin-
uous linear operators which are defined on some subspace of a Banach space to the
whole Banach space. We will need here the version of the Hahn–Banach extension
theorem in Banach spaces.

Theorem 2.1.12. Let X be a Banach space, M a subspace of X and f0 a con-
tinuous linear functional defined on M . Then there exists a continuous linear
functional f defined onX such that (i) f is an extension of f0 and (ii) kf0kC M D
kf kC X .

The proof can be found, e.g., in [243, Chap. IV, Sect. 5].

Corollary 2.1.13. Let X be a Banach space and x0 2 Xn f0g. Then there exists a
continuous linear functional f0 on X such that

f0 .x0/ D kx0kX and kf0kX 0 D 1:

Proof. Let M WD span fx0g and define f0 WM ! R by

f0 .˛x0/ WD ˛ kx0kX 8˛ 2 C:

Then f is linear onM and jf0 .˛x0/j D j˛ kx0kX j D k˛x0kX , i.e., kf0kC M D1.
Theorem 2.1.12 implies that there is a continuous linear functional f defined on X
such that

f .x/ D f0 .x/ 8x 2 M and kf kC X D kf0kC M D 1:

�

Proposition 2.1.14. Let X; Y be Banach spaces and let T 2 L.X; Y /. For y0 2 Y 0,

hT x; y0iY�Y 0 D hx; x0iX�X 0 8x 2 X (2.13)

defines a unique x0 2 X 0. The mapping y0 ! x0 is linear and defines the dual oper-
ator T 0 W Y 0 ! X 0 as given by T 0y0 D x0. Furthermore, we have T 0 2 L.Y 0; X 0/
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and
kT 0kX 0 Y 0 D kT kY X : (2.14)

Proof. The relation given in (2.13) can be written as y0.T x/ D x0.x/ or x0 D y0 ıT .
It follows from y0 2 L.Y;K/ and T 2 L.X; Y / that x0 2 L.X;K/ (Exercise 2.1.2).

From the defining relation hT x; y0iY�Y 0 D hx; T 0y0iX�X 0 we obtain

�
�T 0y0

�
�

X 0
D sup

x2Xnf0g
jhT 0y0; xiX 0�X j
kxkX

D sup
x2Xnf0g

jhT x; y0iY�Y 0 j
kxkX

� ��y0��
Y 0

sup
x2Xnf0g

kT xkY

kxkX

D ��y0��
Y 0
kT kY X :

Hence kT 0kX 0 Y 0 � kT kY X . The reverse inequality is proved next. Corol-
lary 2.1.13 implies that for any x0 2 Xn f0g there exists a functional f0 2 Y 0
such that kf0kY 0 D 1 and f0 .T x0/ D hT x0; f0iY�Y 0 D kT x0kY . Thus f 00 WD
T 0f0 2 X 0 satisfies ˝

x0; f
0

0

˛
X�X 0

D kT x0kY
and so

kT x0kY D
˝
x0; T

0f0

˛
X�X 0

� ��T 0��
X 0 Y 0

kx0kX kf0kY 0 D ��T 0��
X 0 Y 0

kx0kX :

Note that this estimate trivially holds for x0 D 0. We conclude that kT kY X �
kT 0kX 0 Y 0 and (2.14) follows.

�

Conclusion 2.1.15. For two operators S 2 L.X; Y /, T 2 L.Y;Z/ we have:

(i) .TS/0 D S 0T 0.
(ii) S is surjective H) S 0 2 L.Y 0; X 0/ is injective.

Definition 2.1.16. LetX be a Banach space over K2 fR;Cg. A function f WX ! Y

is conjugate linear if

f .˛uC ˇv/ D N̨f .u/C Ňf .v/ 8u; v 2 X and ˛; ˇ 2 K:

2.1.2.3 Adjoint Operator

Let X be a Hilbert space over K 2 fR;Cg. For all y 2 X ,

fy.�/ WD .�; y/X W X ! K

is continuous and linear. Thus we have fy.�/ 2 X 0 and kfykX 0 D kykX . The
converse is a result of Riesz’ theorem.
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Theorem 2.1.17 (Riesz Representation Theorem). Let X be a Hilbert space. For
all f 2 X 0 there exists a unique yf 2 X such that

kf kX 0 D kyf kX and f .x/ D .x; yf /X 8x 2 X:

Conclusion 2.1.18. Let X be a Hilbert space. We use the same notation as in
Theorem 2.1.17:

(a) There exists a bounded, invertible conjugate linear mapping JX W X ! X 0 with
JXy D fy ; J

�1
X f D yf . The mapping JX is an isometry: kJXkX 0 X D

kJ�1
X kX X 0 D 1.

(b) X 0 is a Hilbert space with inner product .x0; y0/X 0 WD .J�1
X x0; J�1

X y0/X .

(c) kx0kX 0 in (2.11) is equal to .x0; x0/1=2
X 0 .

(d) X Š X 00 with x.x0/ WD x0.x/ and we identify X with X 00. In particular, we
have JX 0 D J�1

X , JX D .JX /
0, T 00 D T for T 2 L.X; Y / if Y D Y 00 and if

both are Hilbert spaces.
(e) If K D R, the spaces X and X 0 can be identified with each other by means of

the isomorphism JX . Then we have X WD X 0 H) JX D I .
(f) Let K D C. According to Theorem 2.1.10 we may choose a basis .vi /i2I in X

and define the complex conjugation by

Cx WD x WD
X

j2I

�
x; vj

�
X

vj (2.15)

which satisfies C�1 D C and C;C�1 are conjugate linear isometries. Hence
NJX WD JXC is an isometric isomorphism and we may identify any Hilbert space

with its dual by means of NJX .

Definition 2.1.19. Let X; Y be Hilbert spaces and T 2 L.X; Y /. The adjoint
operator of T is given by T � WD J�1

X T 0JY 2 L.Y;X/.
We have

kT kY X D kT �kX Y and .T x; y/Y D .x; T �y/X 8x 2 X; y 2 Y:
(2.16)

Definition 2.1.20.

(a) T 2 L.X/ is self adjoint if T D T �.
(b) T 2 L.X/ is a projection if T 2 D T .

Proposition 2.1.21. Let X0 � X be a closed subspace of the Hilbert space X . For
x 2 X there exists a unique x0.x/ 2 X0 with

kx � x0kX D minfkx � ykX W y 2 X0g: (2.17)

The mapping x ! x0 DW Px is an orthogonal projection.
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Proof. Existence and uniqueness: The decomposition x D x0 C x?, x0 2 X0,
x? 2 X?0 is unique. We will show that y D x0 minimizes the right-hand side in
(2.17). If we take x? ? .x0 � z/ into consideration, we have for every z 2 X0

kx � zk2X D kx � x0 C x0 � zk2X D kx � x0k2X � 2Re .x � x0; x0 � z/X C kx0 � zk2X
D kx � x0k2X C kx0 � zk2X � kx � x0k2X : (2.18)

This means that x0 minimizes as required. The inequality in (2.18) only becomes an
equality for x0 D z, which gives us the uniqueness.

Projection property: For x 2 X0 the first part of the proof implies Px D x and
therefore P 2 D P .

Orthogonality: Let P � 2 L.X/ be the adjoint operator of P . For x; y 2 X with
x0 WD Px and y0 D Py we have P D P �, since

�
x; P �y

�
X
D .Px; y/X D .x0; y/X D .x0; y0 C y?/X
D .x0; y0/X D .x0 C x?; y0/X D .x; Py/X :

The assertion follows from the fact that, for all y 2 X0, we have

.x � Px; y/X D .x � Px;Py/X D
�
P �x � P �Px; y�

X

D �Px � P 2x; y
�

X
D .Px � Px; y/X D 0:

�

2.1.2.4 Gelfand Triple

In this section V and U will always denote Hilbert spaces with a continuous and
dense embedding V � U .

Proposition 2.1.22. We have

U 0 � V 0 is continuously and densely embedded. (2.20)

Proof. The continuity of the embedding U 0 � V 0 follows from Lemma 2.1.11.
The fact that the embedding is dense follows from the auxiliary result: .U 0/? D f0g
in V 0. In order to prove this we choose a v0 2 V 0n f0g and set u WD J�1

V v0 2 V � U .
The function u0 WD JU u 2 U 0 � V 0 satisfies u0.x/ D .x; u/U for all x 2 U . By
choosing x WD u D J�1

V v0 we obtain

.v0; u0/V 0 D .J�1
V v0; J�1

V u0/V D .u; J�1
V u0/V D u0.u/ D .u; u/U > 0:

Therefore for all 0 6D v0 2 V 0 there exists a u0 2 U 0 with .u0; v0/V 0 6D 0. From this
we have .U 0/? D f0g � V 0 and therefore U 0 is dense in V 0. �
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We identify U and U 0 (cf. Conclusion 2.1.18e,f) and obtain the Gelfand triple

V � U � V 0 .V � U continuous and dense/: (2.21)

Proposition 2.1.23. In the Gelfand triple (2.21), V and U are also continuously
and densely embedded in V 0.
Remark 2.1.24. (a) In (2.21) one could also choose V D V 0, which would result

in U 0 � V 0 D V � U . For U ¤ V it is not possible to set U D U 0 and V D
V 0 simultaneously, as, for x; y 2 U , we would have x.y/ D hy; xiU�U 0 D
.y; x/U D .y; x/V , which is a contradiction for U ¤ V .

(b) SinceU D U 0, .x; y/U can also be interpreted as hx; yiU�U 0 . For x 2 V � U ,
we have y.x/ D hx; yiV�V 0 D .x; y/U for all y 2 U � V 0. Since U � V 0
is dense and continuous, .�; �/U can be extended continuously to V � V 0 as the
dual form h�; �iV�V 0 .

2.1.2.5 Weak Convergence

The Bolzano–Weierstrass theorem states that in K 2 fR;Cg every bounded
sequence has at least one accumulation point. This statement only holds in a weaker
form when considering infinite-dimensional function spaces. First we will need to
define the concept of weak convergence.

Definition 2.1.25. LetB be a Banach space and letB 0 be its dual space. A sequence
.u`/`2N in B converges weakly to an element u 2 B if

lim
`!1

kf .u/� f .u`/kB0 D 0 8f 2 B 0:

Theorem 2.1.26. Let the Banach spaceB be reflexive and let .u`/`2N be a bounded
sequence in B:

sup
`2N0

ku`kB � C <1:

Then there exists a subsequence
�
u`j

�
j2N

that converges weakly to a u 2 B .

The proof can be found in, e.g., [141, V, Sect. 7, Theorem 7], [131, Theo-
rem 60.6]. In order to distinguish the weak convergence of a sequence .u`/`2N to
an element u from the usual (strong) convergence, we use the notation

u` * u:

2.1.3 Compact Operators

Definition 2.1.27. The subset U � X of the Banach space X is called precom-
pact if every sequence .xn/n2N � U has a convergent subsequence

�
xni

�
i2N . It is

compact if, furthermore, x D limi!1 xni
2 U .
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Definition 2.1.28. Let X; Y be Banach spaces. T 2 L.X; Y / is called compact if
fT x W x 2 X; kxkX � 1g is precompact in Y .

We will often consider operators that consist of several other operators.

Lemma 2.1.29. Let X; Y;Z be Banach spaces, let T1 2 L.X; Y /, T2 2 L.Y;Z/
and let at least one of the operators Ti be compact. Then T D T2T1 2 L.X;Z/ is
also compact.

Lemma 2.1.30. T 2 L.X; Y / compactH) T 0 2 L.Y 0; X 0/ compact.

Definition 2.1.31. Let Y be a Banach space and X � Y a subspace that is con-
tinuously embedded. The embedding is compact if the injection I 2 L.X; Y / is
compact. We denote this by X �� Y .

Conclusion 2.1.32. X �� Y if every sequence .xi /i2N � X with kxikX � 1 has
a subsequence that converges in Y .

Lemma 2.1.33. Let V � U � V 0 be a Gelfand triple and let the embedding V ��
U be compact. For T 2 L.V 0; V / the restrictions T 2 L.V 0; V 0/, T 2 L.U;U /,
T 2 L.V; V /, T 2 L.V 0; U / and T 2 L.U; V / are all compact.

Proof. According to the assumptions the embedding I 2 L.V;U / is compact, and
therefore so is I 2 L.U; V 0/ (see Lemma 2.1.30). T 2 L.U; V / is the composition
of the (compact) embedding I 2 L.U; V 0/ with T 2 L.V 0; V / and thus it is also
compact (see Lemma 2.1.29). �

Remark 2.1.34. For dim.X/ <1 or dim.Y / <1, T 2 L.X; Y / is compact.

The following lemma will be needed later for existence theorems when dealing
with variational problems.

Lemma 2.1.35. Let X � Y � Z be Banach spaces with continuous embeddings
and let X �� Y . Then for all " > 0 there exists a constant C" > 0 with

8x 2 X W kxkY � " kxkX C C" kxkZ :

2.1.4 Fredholm–Riesz–Schauder Theory

Let X be a Banach space and let T 2 L.X/ be a compact operator. In the following
theorem we will establish the connection between the spectrum

�.T / WD f� 2 C W .T � �I/�1 … L.X/g (2.22)

and the eigenvalues of T .
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Theorem 2.1.36. (i) For all � 2 Cnf0g we have one of the alternatives
(a) .T � �I/�1 2 L.X/ or (b) � is an eigenvalue of T .
The following alternatives are equivalent: (a0) The equation

T x � �x D y

has a unique solution x 2 X for all y 2 X . (b0) There exists a finite-dimensional
eigenspace

E.�; T / D fv 2 X j T v D �vg
80 6D x 2 E.�; T / W T x D �x:

(ii) �.T / consists of all eigenvalues of T and it includes � D 0 if T �1 … L.X;X/.
There are at most countably many eigenvalues f�j g and the only possible
accumulation point is zero.

(iii) � 2 �.T /” � 2 �.T 0/: .2:23/

(iv) We have
dim.E.�; T // D dim.E.�; T 0// <1: (2.24)

(v) For � 2 �.T /nf0g the equation

.T � �I/x D y

has at least one solution if and only if the compatibility condition

hy; x0iX�X 0 D 0 8x0 2 E.�; T 0/ (2.25)

is satisfied.

The following corollary is a result of Theorem 2.1.36 and will play a significant
role in later applications.

Corollary 2.1.37. Let X be a Banach space and let T 2 L.X/ be a compact
operator. Then we have the following equivalence:

I C T is injective ” I C T is an isomorphism.

2.1.5 Bilinear and Sesquilinear Forms

LetH1;H2 be Hilbert spaces with norms k � kH1
, k � kH2

over K. A mapping a.�; �/ W
H1 �H2 ! K is called a sesquilinear form if
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8u1; u2 2 H1; v1; v2 2 H2; � 2 K W a.u1 C �u2; v1/ D a.u1; v1/C �a.u2; v1/;

a.u1; v1 C �v2/ D a.u1; v1/C �a.u1; v2/:
(2.26)

For a sesquilinear form a W H � H ! C the adjoint sesquilinear form a� W H �
H ! C is defined by

a� .u; v/ D a .v; u/ 8u; v 2 H: (2.27)

It is called Hermitian if a D a�.
If K D R we speak of a bilinear form. The bilinear form a W H � H ! R is

called symmetric if
a .u; v/ D a .v; u/ 8u; v 2 H:

A sesquilinear form a .�; �/ W H1 �H2 ! K is continuous (or bounded) if there
exists a constant C <1 with

ja.u; v/j � CkukH1
kvkH2

; (2.28)

for all u 2 H1, v 2 H2. The smallest C in (2.28) is the norm of a.�; �/ and we write

kak WD sup
u2H1nf0g

sup
v2H2nf0g

ja.u; v/j
kukH1

kvkH2

: (2.29)

We can identify sesquilinear forms with linear operators.

Lemma 2.1.38. Let H1, H2 be Hilbert spaces over KW
(a) For every sesquilinear form a.�; �/: H1 � H2 ! C there exists a unique A 2

L.H1;H
0
2/ such1 that

a.u; v/ D hAu; viH 0

2
�H2

8u 2 H1; v 2 H2: (2.30)

It satisfies
kAkH 0

2
 H1

� kak: (2.31)

(b) Let S1; S2 be dense in H1;H2 and let the sesquilinear form a.�; �/ be defined
on S1 � S2. We assume that (2.28) holds for all u1 2 S1, v1 2 S2. Then a.�; �/
can be uniquely and continuously extended on H1 � H2 and (2.28) holds on
H1 �H2 with the same constant C D kak.

1 More precisely, A 2 L �H1;H
�

2

�
, where the anti-dual space H�

2 contains all bounded conjugate
linear forms onH2. A linear operator is defined by

˝eAu; v
˛
H 0

2�H2
D a .u; v/ for all u 2 H1, v 2 H2.

[Recall that complex conjugation in Hilbert spaces is well defined; see (2.15).] Note thatA D C 0eA,
where C 0 is the dual operator for the complex conjugation operator C as in (2.15). If no confusion
is possible, we do not distinguish in the notation the dual space from the anti-dual space and always
write H 0

2 .
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Proof. (a) For u 2 H1, 'u.v/ WD a.u; v/ defines a linear functional 'u.�/ 2 H 02
with k'ukH 0

2
� CkukH1

. We set Au WD 'u for all u 2 H1. We then have
kAukH 0

2
� CkukH1

and as a consequence (2.31). It also follows that

hAu; viH 0

2
�H2
D h'u; viH 0

2
�H2
D 'u.v/ D a.u; v/:

Conversely, let A 2 L.H1;H
0
2/. Then a.u; v/ WD hAu; viH 0

2
�H2

is a sesquilin-
ear form with

jhAu; viH 0

2
�H2
j � kAukH 0

2
kvkH2

� kAkH 0

2
 H1
kukH1

kvkH2
:

(b) According to Proposition 2.1.6, for the above argument we only need to con-
sider the definition of A on dense subspaces S1 � H1, S2 � H2 to extend the
form a.u; v/ to H1 �H2. hAu; viH 0

2
�H2

then denotes the extension. �

The operator A from Lemma 2.1.38 is called the associated operator of a .�; �/.
Remark 2.1.39. The results from Lemma 2.1.38 can be analogously transferred to
bilinear forms a W H1 �H2 ! R.

Let H be a Hilbert space and let A 2 L.H;H 0/. Then A 2 L.H;H 0/ is
defined by ˝

Au; v
˛
H 0�H

WD hAu; viH 0�H ;

where complex conjugation in Hilbert spaces is introduced in (2.15). An operator
A 2 L.H;H 0/ is said to be Hermitian if A D A0. In the case that K D R we use
the term “symmetric”.

Remark 2.1.40. Let H be a Hilbert space and a W H � H ! C a sesquilinear
form with associated operator A. The statements (i) and (ii) are equivalent:

(i) a .�; �/ is Hermitian.
(ii) eA is Hermitian, where

˝eAu; v
˛
H 0�H

WD hAu; viH 0�H D a .u; v/ 8u; v 2 H: (2.32)

Proof. By using the definition of eA, A0, and the complex conjugation in Hilbert
spaces we obtain

a� .u; v/ D a .v; u/ D ˝eAv; u
˛
H 0�H

D ˝eA0u; v˛
H 0�H

D
D
eA0u; v

E

H 0�H
:

On the other hand, we have

a .u; v/ D ˝eAu; v
˛
H 0�H

:
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Hence the equivalence is proved:

a D a� ” eA D eA0:
�

Exercise 2.1.41. If A is associated with the form a.�; �/ then C 0A0C is associ-
ated with the form a�, where C 0 is the dual operator for the complex conjugation
in Hilbert spaces. Similarly, if eA is associated with a .�; �/ as in (2.32), then eA0
corresponds to a�.

A sesquilinear or bilinear form b.�; �/ W H1�H2 ! C is compact if the associated
operator T 2 L.H1;H

0
2/ with hT u; viH 0

2
�H2
WD b.u; v/ is compact.

Example 2.1.42. Let H1 D H2 D Rn with inner product .x; y/ D Pn
iD1 xi yi .

Then every matrix A 2 Rn�n induces a bilinear form according to the relation
a.x; y/ D .Ax; y/ W Rn � Rn ! R. The form is symmetric if and only if A is
symmetric, i.e., if Aij D Aj i , 1 � i; j � n.

Example 2.1.43. We call a matrix A 2 Rn�n positive definite if it is symmetric and
if we have

.Ax; x/ > 0 8x 2 Rnn f0g :
For positive definite matrices, a .x; y/ WD .Ax; y/ defines an inner product on Rn.

2.1.6 Existence Theorems

Differential and integral equations can often be formulated as variational problems.
In this section we will define abstract variational problems and prove the existence
and uniqueness of solutions under suitable conditions. As standard references and
additional material we refer, e.g., to [9, Chap. 5], [151, 166, 174].

For this let H1;H2 be Hilbert spaces, let a.�; �/: H1 �H2 ! K be a continuous
sesquilinear form and ` W H2 ! K a continuous, linear functional. We consider the
abstract problem: Find u 2 H1 with

a.u; v/ D `.v/ 8v 2 H2: (2.33)

The form a.�; �/ satisfies the inf–sup condition if

inf
u2H1nf0g

sup
v2H2nf0g

ja .u; v/j
kukH1

kvkH2

� � > 0; (2.34a)

8v 2 H2n f0g W sup
u2H1nf0g

ja .u; v/j > 0: (2.34b)
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Theorem 2.1.44. The following statements are equivalent:

(a) For every ` 2 .H2/
0 the abstract problem (2.33) has a unique solution u 2 H1

and we have

kukH1
� 1

�
k`kH 0

2
: (2.35)

(b) The sesquilinear form a .�; �/ satisfies the inf-sup condition (2.34).

Proof. (b) H) (a):
For the proof we will proceed in several steps:

(i) We choose an arbitrary u 2 H1. Then the functional �u 2 H 02, which is
given by �u WD a.u; �/, is continuous and linear on H2. This follows from
the continuity of a.�; �/ W H1 �H2 ! K since

j�u.v/j D ja.u; v/j � kak kukH1
kvkH2

D C.a; u/ kvkH2
:

Let A be the associated operator of a .�; �/. The mapping u! �u can therefore
be written as �u D Au. The operator A W H1 ! H 02 is continuous and linear,
since

kAukH 0

2
D sup

v2H2nf0g
j�u.v/j
kvkH2

� kak kukH1
<1:

(ii) We will show that the image of H1 under A is closed in H 02. We have for all
u 2 H1

kAukH 0

2
D sup

v2H2nf0g
j�u.v/j
kvkH2

D sup
v2H2nf0g

ja.u; v/j
kvkH2

.2.34a/� � kukH1
:

Now, let .un/n � H1 be such that .Aun/n is a Cauchy sequence in H2. Then
.un/n is a Cauchy sequence in H1, since

kAum �AunkH 0

2
D kA.un � um/ kH 0

2
� � kun � umkH1

:

Therefore the image of H1 under A is closed in H 02.
(iii) We claim that A .H1/ D H 02. If this were not true, we would have

A .H1/ D A .H1/
k�k

H 0

2 6D H 02;
and the image of H1 under A would be a closed proper subset of H 02. Then,
according to the Hahn–Banach theorem (see, e.g., [141], [3, Theorem 4.1]),
there exists a v0 2 H 002 n f0g with v0 .r/ D 0 for all r 2 A .H1/.
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As H2 is reflexive, it follows that v0 2 H2 Š H 002 and therefore with r D
Au, we have the equation

0 D v0 .r/ D r .v0/ D .Au/ .v0/ D a.u; v0/ 8u 2 H1:

This is a contradiction to (2.34b). Therefore we have A .H1/ D H 02 and then
A W H1 ! H 02 is surjective. This means that (2.33) has a unique solution for
all ` 2 H 02.

(iv) We will show the a priori estimate. For every ` 2 H 02 the equation Au D ` has
a unique solution u0 D A�1` and we have

ja.u0; v/j D j`.v/j � k`kH 0

2
kvkH2

8v 2 H2:

It follows that

k`kH 0

2
D sup

v2H2nf0g
ja.u0; v/j
kvkH2

D ku0kH1
sup

v2H2nf0g
ja.u0; v/j

ku0kH1
kvkH2

� ku0kH1
inf

u2H1nf0g
sup

v2H2nf0g
ja.u; v/j

kukH1
kvkH2

� � ku0kH1
:

(a) H) (b):
If A�1 2 L.H 02;H1/ exists, A 2 L.H1;H

0
2/ is bijective and the associated

form a.u; v/ D hAu; viH 0

2
�H2

satisfies (2.34b). Now, we will show (2.34a): Since
A 2 L.H1;H

0
2/ is bijective, with (2.35) we have

inf
u2H1nf0g

sup
v2H2nf0g

hAu; viH 0

2
�H2

kukH1
kvkH2

D inf
w2H 0

2
nf0g

sup
v2H2nf0g

hw; viH 0

2
�H2

kA�1wkH1
kvkH2

� inf
w2H 0

2
nf0g

sup
v2H2nf0g

hw; viH 0

2
�H2

��1kwkH 0

2
kvkH2

DW �:

According to Conclusion 2.1.18 (a) there exists an isometry JH2
W H2 ! H 02. We

therefore have

� D � inf
Mw2H2nf0g

sup
v2H2nf0g

hJH2
Mw; viH 0

2
�H2

kJH2
MwkH 0

2
kvkH2

D � inf
Mw2H2nf0g

1

k MwkH2

sup
v2H2nf0g

hJH2
Mw; viH 0

2
�H2

kvkH2

D � inf
Mw2H2nf0g

1

k MwkH2

kJH2
MwkH 0

2
D �:

�
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Remark 2.1.45. The adjoint conditions

inf
v2H2nf0g

sup
u2H1nf0g

ja .u; v/j
kukH1

kvkH2

� � 0 > 0 (2.36a)

8u 2 H1n f0g W sup
v2H2nf0g

ja .u; v/j > 0 (2.36b)

are equivalent to (2.34).

Proof. (see [115, Lemma 6.5.3]).

1. (2.34) H) (2.36).
From Condition (2.34a) we clearly have (2.36b). In the following we will
show (2.36a). Let A W H1 ! H 02 be the associated operator of a .�; �/. From
Theorem 2.1.44 we have

�
�A�1

�
�

H1 H 0

2

� 1=�: (2.37)

Proposition 2.1.14 gives us
�
��.A0/�1

�
��

H2 H 0

1

� 1=� . We denote the left-hand

side of (2.36a) by I . We then have

I D inf
v2H2nf0g

sup
u2H1nf0g

ˇ
ˇ
ˇhAu; viH 0

2
�H2

ˇ
ˇ
ˇ

kukH1
kvkH2

D inf
v2H2nf0g

sup
u2H1nf0g

ˇ
ˇ
ˇhu; A0viH1�H 0

1

ˇ
ˇ
ˇ

kukH1
kvkH2

D inf
v02H 0

1
nf0g
k �A0��1

v0k�1
H2

sup
u2H1nf0g

ˇ̌
ˇhu; v0iH1�H 0

1

ˇ̌
ˇ

kukH1

D inf
v02H 0

1
nf0g
k �A0��1

v0k�1
H2

�
�v0
�
�

H 0

1

D 1

supv02H 0

1
nf0g

�
�
�.A0/�1 v0

�
�
�

H2

= kv0kH 0

1

D
�
�
�
�
A0
��1

�
�
�
�1

H2 H 0

1

� �:

This is the same as (2.36a) with � 0 D � > 0.
2. (2.36) H) (2.34).

The proof of the converse is analogous to the first part. �

Remark 2.1.46. (i) Let A 2 L.H1;H
0
2/ be the operator that is associated with the

form a.�; �/ (see Lemma 2.1.38). Let (2.34) hold. Then A�1 2 L.H 02;H1/ exists
and

kA�1kH1 H 0

2
� ��1: (2.38)

(ii) Conversely, if A�1 2 L.H 02;H1/ exists and (2.38) holds, then we have (2.34).

Proof. Part (i) follows from (2.37) and Part (ii) from Theorem 2.1.44. �
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Remark 2.1.47. The following statement is equivalent to the inf-sup condition
(2.34a): There exists a constant � > 0 with

8u 2 H1n f0g W sup
v2H2nf0g

ja.u; v/j
kvkH2

� �kukH1
: (2.39)

Since a.u; v/ D hAu; viH 0

2
�H1

(see Lemma 2.1.38), (2.39) is also equivalent to

8u 2 H1n f0g W kAukH 0

2
� �kukH1

: (2.40)

Remark 2.1.48. In order to prove the inf-sup condition (2.34a) we will use the
following method: Let u 2 H1 be arbitrary and given. If we can find a vu 2 H2 with
the following properties:

kvukH2
� C1kukH1

; ja.u; vu/j � C2kuk2H1
; (2.41)

where C1; C2 are independent of u and vu, then we have (2.34a) with � D C2=C1.

Proof. Let u 2 H1 and vu 2 H2 such that (2.41) holds. Then

inf
u2H1nf0g

sup
v2H2nf0g

ja .u; v/j
kukH1

kvkH2

� inf
u2H1nf0g

ja .u; vu/j
kukH1

kvukH2

� inf
u2H1nf0g

C2kuk2H1

kukH1
C1kukH1

D C2

C1

> 0:

Remark 2.1.49. Theorem 2.1.44 also holds for reflexive Banach spaces H1;H2.

Now let
H1 D H2 D H

and let a W H � H ! C be a sesquilinear form. In this case, the associated
variational problem reads: For a given ` 2 H 0 find u 2 H with

a.u; v/ D `.v/ 8v 2 H: (2.42)

The sesquilinear form a.�; �/ is called H -elliptic if there exists a constant � > 0 and
a � 2 C with j� j D 1 such that

8u 2 H W Re .�a.u; u// � �kuk2H : (2.43)

Remark 2.1.50. 1. Let a W H�H ! K be a continuous andH -elliptic sesquilinear
form. Then � in (2.43) can be chosen in such a way that we have Re � ¤ 0.

2. Let H be a real Hilbert space and a .�; �/ a (real) bilinear form. Then, in (2.43),
we can choose � 2 f�1; 1g.
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3. The H -ellipticity implies

8u 2 H W ja.u; u/j � �kuk2H : (2.44)

Proof. of 1: If, for � , we have in (2.43) Re � ¤ 0, nothing needs to be shown.
Therefore in the following we assume that Re � D 0 and choose Q� 2 Cn f�g with
j Q� j D 1, so that we have

Cc j� � Q� j � �=2 and � ¤ �Q�

with the continuity constant Cc of a .�; �/. It then follows that

Re . Q�a .u; u// D Re .�a .u; u//C Re ..� � Q�/ a .u; u// :

The continuity of a .�; �/ gives us

Re ..� � Q�/ a .u; u// � Cc j� � Q� j kuk2H � �=2 kuk2H ;

from which we have the assertion with �  �=2:

Re . Q�a .u; u// � � kuk2H � Cc j� � Q� j kuk2H � �=2 kuk2H :

of 2: Let � be as in (2.43). The assumptions give us that

8u 2 H W � kuk2H � Re .�a .u; u// D .Re �/ a .u; u/ : (2.45)

From this we have Re � ¤ 0. For Re � > 0, (2.45) gives us the estimate a .u; u/ � 0
for all u 2 H . It follows that .Re �/ a .u; u/ � a .u; u/ and � D 1 satisfies (2.43).
The case Re � < 0 can be proven analogously with � D �1.

of 3: We have � kuk2H � Re .�a .u; u// � j�a .u; u/j D ja .u; u/j : �

Lemma 2.1.51 (Lax–Milgram). Let H be a Hilbert space. Let the sesquilinear
form a W H �H ! C beH -elliptic. Then (2.34) holds and the variational problem
(2.42) has a unique solution u 2 H for all ` 2 H 0 with

kukH � 1

�
k`kH 0 : (2.46)

Proof. We will show (2.34a) as in Remark 2.1.48: for u 2 H we choose vu D u 2 H .
Then, due to kvukH D kukH and (2.44), we have the inequality

ja.u; vu/j D ja.u; u/j � �kuk2H :

From this we have (2.34a). We can prove the inequality (2.34b) in a similar way.
Thus, let 0 6D v 2 H . Then
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sup
u2H

ja.u; v/j � ja.v; v/j � �kvk2H > 0:

The statement follows from Theorem 2.1.44. �

Remark 2.1.52. The Lax–Milgram lemma still holds if we replace Condition (2.43)
by Condition (2.44) (see [137, Theorem 5.2.3]).

Note that in (2.43) we do not impose any conditions on the symmetry of a.�; �/.
If a.�; �/ is symmetric the solution of (2.42) can be characterized as a minimum.

Proposition 2.1.53. Let the form a W H�H ! K be symmetric andH -elliptic with
� D 1 in (2.43) [see Remark 2.1.50(2)]. Then for all ` 2 H 0 the unique solution
of problem (2.42) is also a solution of the problem of finding a minimizer of the
quadratic functional

….v/ D 1
2
a.v; v/� `.v/: (2.47)

If, on the other hand, u 2 V minimizes ….�/ then u solves (2.42).

Proof. Let u be the solution of (2.42) and v 2 Hn f0g. Then

2….uC v/ D a.uC v; uC v/� 2`.uC v/

D a.u; u/C 2a.u; v/C a.v; v/ � 2`.u/� 2`.v/
D 2….u/C a.v; v/C 2.a.u; v/� `.v//
D 2….u/C a.v; v/ � 2….u/C � kvk2V � 2….u/;

and therefore u solves Problem (2.47).
Now, let u be the solution of (2.47). Then

8v 2 V W 0 D d
d"
.….uC "v//j"D0

D d
d"

�
1
2
a.uC "v; uC �v/ � `.uC "v/�

ˇ
ˇ
ˇ
"D0

D d
d"

�
1
2
a.u; u/C "a.u; v/C 1

2
"2a.v; v/� `.u/� "`.v/�

ˇ̌
ˇ
"D0

D a.u; v/� `.v/

and thus u solves (2.42). �
In some of the applications that we are going to study later on, we will often

encounter sesquilinear forms a.�; �/ that do not satisfy (2.43) but only a weaker
condition, the H -coercivity.

Definition 2.1.54. Let the Hilbert spaces U;H constitute a Gelfand triple H �
U � H 0 with the continuous and dense embeddingH � U . The sesquilinear form
a.�; �/:H �H ! C is said to beH -coercive if there exist constants � > 0, CU 2 R
and � 2 C with j� j D 1 such that
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8u 2 H W Re .�a .u; u// � � kuk2H � CU kuk2U : (2.48)

Remark 2.1.55. The elliptic and coercive forms that we are going to study in this
book will always satisfy the inequalities (2.43) or (2.48) with � D 1. However, in
other applications, for example from the area of electromagnetism, there are forms
that have an imaginary principal part and therefore do not allow setting � D 1 (see
[40, 44]).

Remark 2.1.50(1), (3) can be applied toH -coercive sesquilinear forms appropri-
ately.

Remark 2.1.56. 1. Let a W H � H ! K be a continuous and H -coercive
sesquilinear form. Then � in (2.48) can be chosen so that Re � > 0.

2. The H -coercivity implies that

8u 2 H W ja.u; u/j � �kuk2H � CU kuk2U : (2.49)

H -coercive forms a.�; �/ remain H -coercive when perturbed by the addition of
suitable forms b.�; �/ which are either “small”with respect to the form a.�; �/ or
compact.

Lemma 2.1.57. Let the Hilbert spaces U;H constitute a Gelfand triple H � U �
H 0 with a dense and continuous embedding H � U . Let the sesquilinear form
a.�; �/ W H �H ! C be H -coercive and let b W H �H ! C be continuous. Then
the form a.�; �/ C b.�; �/ is again H -coercive if one of the following conditions is
satisfied:

(i) For all " > 0 there exists a constant C."/ > 0 with

8u 2 H W jb.u; u/j � "kuk2H C C."/ kuk2U : (2.50)

(ii) X , Y are Hilbert spaces with continuous embeddingsH � X � U ,H � Y �
U . One of the embeddingsH � X , H � Y is compact. Furthermore,

8u; v 2 H W jb.u; v/j � Cb kukX kvkY : (2.51)

(iii) The embeddingsH � X � U;H � Y � U are continuous and (2.51) holds,
as well as:

For all " > 0 there exists a constant C ."/ > 0 such that for all u 2 H
kukY � " kukH C C."/ kukU or kukX � " kukH C C."/ kukU :

(2.52)

Proof. We will show (a): (i) implies the coercivity of a .�; �/Cb .�; �/, (b): (ii)) (iii)
and (c): (iii))(i):
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(a) In (2.50) we set " D �=2 with � from (2.48). Then for all u 2 H

Re .�fa.u; u/C b.u; u/g/ D Re .�a.u; u//C Re .�b.u; u//

� � kuk2H � CU kuk2U � �
2
kuk2H � C."/kuk2U

D �
2
kuk2H � .CU C C."// kuk2U ;

which is (2.48) for a.�; �/C b.�; �/.
(b) As an example, we consider the case H �� X � U . Lemma 2.1.35 implies

8" > 0 9C."/ > 0 W 8u 2 H W kukX � "kukH C C."/ kukU ; (2.53)

from which we have (2.52).
(c) The embedding H � Y is continuous and therefore there exists a constant

CY <1 with
8u 2 H W kukY � CY kukH :

As an example, we assume that the right-hand inequality in (2.52) is satisfied.
Then, by (2.51), we have for all " > 0 the inequality

8u 2 H W jb.u; u/j � Cb kukX kukY
� CbCY

�
" kuk2H C C."/ kukU kukH

�

� CbCY

�
2"kuk2H C .C."//2

4"
kuk2U

�

D "0 kuk2H C C 0."/ kuk2U
and thus we have (2.50). �

Remark 2.1.58. Lemma 2.1.57 still holds if Condition (2.48) is replaced by the
Gårding inequality: There exists a compact operator T W H ! H 0 such that

8u 2 H W ja .u; u/C .T u; u/H 0�H j � � kuk2H :

For a proof of this remark, we refer to [137, Remark 5.3.2]. The following special
case of Lemma 2.1.57 is particularly important when dealing with boundary integral
equations.

Corollary 2.1.59. We assume that U;H;H 0 form a Gelfand triple H � U � H 0
with a compact embeddingH �� U . Let a.�; �/ beH -coercive and let either b.�; �/:
H � U ! C or b.�; �/: U � H ! C be continuous. Then a.�; �/ C b.�; �/ is
H -coercive.

The following theorem is an application of the Fredholm–Riesz–Schauder theory
to H -coercive sesquilinear forms a W H �H ! C.
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Theorem 2.1.60. Let H � U � H 0 be a Gelfand triple with a compact and dense
embedding H �� U . Let the sesquilinear form a.�; �/ W H � H ! C that is
associated with the operator A 2 L.H;H 0/ be H -coercive.

Let I denote the embedding: I W H ! H 0. Then we have for all � 2 C either

.A� �I/�1 2 L.H 0;H/ and .A0 � �I/�1 2 L.H 0;H/ (2.54)

or
� is an eigenvalue of A: (2.55)

Should (2.54) hold, then the variational problems: Find x; x� 2 H such that

a.x; y/ � �.x; y/U D hf; yiH 0�H and a.y; x�/� �.x�; y/U
D hf; yiH 0�H 8y 2 H (2.56)

have a unique solution for all f 2 H 0. Should, however, (2.55) hold, then the
eigenspaces

f0g 6D E.�/ D ker.A� �I/; f0g 6D E 0.�/ D ker.A0 � �I/

are finite-dimensional and we have for all y 2 H

x 2 E.�/ W a.x; y/ D �.x; y/U ; (2.57)

x� 2 E 0.�/ W a.y; x�/ D �.x�; y/U : (2.58)

The spectrum �.A/ of A consists of at most countably many eigenvalues f�ig and
the only possible accumulation point is at infinity. Furthermore, we have

� 2 �.A/” � 2 �.A0/:

For � 2 �.A/ the variational problem

x 2 H W a.x; y/ � �.x; y/U D hf; yiH 0�H 8y 2 H (2.59)

has at least one solution if and only if f ? E 0.�/, i.e., if and only if f 2 H 0 satisfies
the compatibility condition

8x� 2 E 0.�/ W hf; x�iH 0�H D 0: (2.60)

Proof. The statements follow from Theorem 2.1.36. Here we check the assumptions.
If H �� U then we also have H �� H 0 and the embedding I W H ! H 0

is compact. Due to Remark 2.1.56(1) we can assume that Re � ¤ 0 and set eC WD
CU =Re� .
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The sesquilinear form a .�; �/CeC k�k2U isH -elliptic since, by (2.48), we have for
all u 2 H

Re
�
�fa.u; u/C eC kuk2H g

�
D Re .�a .u; u//C CU kuk2U � � kuk2H

with � > 0. According to Lemma 2.1.51, .A C eCI/�1 2 L.H 0;H/ exists.
Lemma 2.1.29 states that K WD .AC eCI/�1I W H ! H is compact, and therefore
Theorem 2.1.36 can be applied to the operatorK � �I . With

K � �I D ��.I � ��1K/ D ��.AC eCI/�1.AC eCI � 1

�
I/

D ��.AC eCI/�1.A � �I/

and � D ��1 � eC we obtain Theorem 2.1.60 for

A� �I D � 1
�
.AC eCI/.K � �I/

as a consequence of the statements of Theorem 2.1.36 forK � �I .
�

The combination of Corollary 2.1.59 and Theorem 2.1.60 gives us the following
existence theorem, which is often used in the variational formulation of integral
equations.

Corollary 2.1.61. We assume that U;H;H 0 form a Gelfand triple H � U � H 0
with compact embedding H �� U . Let a.�; �/ and b.�; �/: H � H ! C be
continuous sesquilinear forms, let a.�; �/ be H -coercive and assume that b.�; �/
satisfies

8u; v 2 H W jb.u; v/j � Cb kukU kvkH or jb.u; v/j � Cb kukH kvkU :

Furthermore, let the form c.�; �/ WD a.�; �/C b.�; �/ be injective:

8v 2 H W c.u; v/ D 0 H) u D 0: (2.61)

Then for every f 2 H 0 the variational problem

u 2 H W a.u; v/C b.u; v/ D hf; viH 0�H 8v 2 H (2.62)

has a unique solution u.

Proof. According to Corollary 2.1.59, c.�; �/ is H -coercive and satisfies (2.48).
According to (2.61), � D 0 is not an eigenvalue of a.�; �/C b.�; �/ and so Problem
(2.62) has a unique solution, as stated by Theorem 2.1.60. �



46 2 Elliptic Differential Equations

2.1.7 Interpolation Spaces�

When dealing with the variational formulation of boundary integral equations as
well as the error analysis of boundary element methods, it is very useful to study
function spaces that describe the differentiability of a function. In classical analysis
differentiation is only defined for integer orders. However, by using “interpolation
spaces” it is possible to formulate properties concerning the smoothness of func-
tions for non-integer orders of differentiability. There are different, not necessarily
equivalent interpolation methods. Here we will only introduce the “real interpola-
tion method”. For a detailed discussion on interpolation spaces as well as proofs we
refer to [22] and [155].

Let X0; X1 be two Banach spaces with continuous embedding X1 ,! X0 (this
property is not strictly necessary; however, in the cases that are of interest to us it is
always given). For u 2 X0 and all t > 0 we define the “K-functional” as

K.t; u/ WD inf
v2X1

.ku � vkX0
C t kvkX1

/: (2.63)

Clearly, we have for u 2 X1

K.t; u/ � t kukX1
; K.t; u/ � kukX0

:

For 0 � � � 1 and 1 � p <1 we define the norm

kukŒX0;X1��;p
WD
0

@
1Z

0

t��p K.t; u/p
dt

t

1

A

1=p

: (2.64a)

For p D 1 we define

kukŒX0;X1��;1
WD sup

0<t<1
t�� K.t; u/: (2.64b)

Then the set

ŒX0; X1	�;p D X�;p WD
˚
u 2 X0 W kukŒX0;X1��;p

<1�

is a Banach space with norm (2.64).
LetXi ; Yi , i D 0; 1, be two pairs of Banach spaces as given above, withXi � Yi .

We then have

X�;p � Y�;p; X1 � X�;p � X0; X�;p � X�;1

� This section should be read as a complement to the core material of this book.
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and X�;1 � X�;p for all 1 � p � 1. The spaces X�;p form a scale:

X�2;p � X�1;p for 1 � p � 1, �1 � �2:

Proposition 2.1.62. LetXi ; Yi be two pairs of Banach spaces and let T2L.Yi ; Xi /,
i D 0; 1. Then we have

T 2 L.Y�;p ; X�;p/ for 0 � � � 1; 1 � p � 1 (2.65)

and
kT kX�;p Y�;p

� kT k1��
X0 Y0

kT k�X1 Y1
: (2.66)

Another important result is the “re-iteration theorem”. It states that one cannot
obtain “new” interpolation spaces by repeated interpolation.

Proposition 2.1.63. We have for all 0 � �0 < �1 � 1, 1 � p0; p1; q � 1 and
0 < � < 1:

�
ŒX0; X1	�0;p0

; ŒX0; X1	�1;p1

	
�;q
D ŒX0; X1	.1��/�0C��1;q:

The dual spaces of interpolation spaces are isomorphic to the interpolation spaces
of the respective dual spaces. The following proposition will clarify the details.

Proposition 2.1.64. Let X1 be dense in X0. Then we have for all 0 < � < 1,
1 � p <1, 1

p
C 1

p0
D 1,

ŒX0; X1	
0
�;p D ŒX 01; X 00	1��;p0 D ŒX 00; X 01	�;p0 :

For functions from X1, the square of the norm of the interpolation space
ŒX0; X1	�;p can be estimated by the product of the norms in X0 and X1. We only
need this result in the case p D 2.

Proposition 2.1.65. There exists a constant c > 0 such that for all u 2 X1 the
inequality

kukŒX0;X1��;2
� c kuk1��

X0
kuk�X1

is satisfied.

We refer to [230], [22] and [155] for proofs of these statements as well as further
reading.

2.2 Geometric Tools

2.2.1 Function Spaces

Boundary integral equations are formulated on the surfaces of domains in Rd . In
order to define the relevant function spaces on the boundaries one has to char-
acterize the smoothness of the boundaries. For this one needs Hölder continuous
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parametrizations that have to be introduced first. Let k 2 N0 and let 
 � Rd be
a domain. The space of all k times continuously differentiable functions on 
 is
denoted by

C k
�


� WD ff W 
! C W f is k times continuously differentiable

and @˛f can be extended as a continuous function on 

for all 0 � j˛j � kg:

Here ˛ 2 Nd
0 is a multi-index and we use the following conventions. For� 2 Nd

0

we set

�Š WD
dY

iD1

�i Š; j�j1 WD j�j WD
dX

iD1

�i ; j�j1 WD max
1�i�d

j�i j ;

8v D .vi /
d
iD1 2 Cd :v� WD

dY

iD1

v�i

i ; @�f .x/ WD @�
x f .x/ WD @j�jf .x/

@
�1
x1
@

�2
x2
: : : @

�d
xd

:

(2.67)
On the vector space C k

�


�

we can define the following norms

k'kC 0.�/ WD sup
x2�

fj' .x/jg ; k'kC k.�/ WD max
0�j˛j�k

n
k@˛'kC 0.�/

o
:

A function ' 2 C 0
�


�

is Hölder continuous of order � 2 	0; 1	 in 
, if

j'jC 0;�.�/ WD sup
x;y2�

j' .x/� ' .y/j
kx � yk�

<1:

The set of all Hölder continuous functions is given byC 0;�
�


�
. The spaceC k;�

�


�

contains all functions on 
 with @˛' 2 C 0;�
�


�

for all j˛j � k. On C k;�
�


�

a
norm is given by

k'kC k;�.�/ WD k'kC k.�/ C max
j˛jDk

j@˛'jC 0;�.�/ :

Remark 2.2.1. For all k 2 N0 and 0 < � � 1, C k;�
�


�

is a Banach space.

Exercise 2.2.2. Let � 2 Œ0; 1	. Determine the maximum � 2 	0; 1	 so that the
function f W .�1; 1/! R, f .x/ D jxj� lies in the space C 0;� .Œ�1; 1	/.

The space of all infinitely differentiable functions is given by

C1
�


� WD

\

k2N0

C k
�


�
:
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All the functions we have considered so far are scalar, i.e., they map points from
a domain 
 to C. The definitions can, however, be generalized for vector-valued
functionsˆ D .ˆi /

d
iD1 W 
1 ! 
2 on domains
1; 
2 � Rd . We set

Ck;�
�

1; 
2

� WD
n
ˆ W 
1 ! 
2 j 81 � i � d W ˆi 2 C k;�

�

1

�o
: (2.68)

If the condition ˆi 2 C k;�
�

1

�
in (2.68) is replaced by ˆi 2 C k

�

1

�
we

obtain the space Ck
�

1; 
2

�
. For 
1 D 
2 we use the notation Ck;�

�

1

� WD
Ck;�

�

1; 
2

�
and similarly Ck

�

1

� WD Ck
�

1; 
2

�
.

Definition 2.2.3. Let 
1, 
2 � Rd be two domains and let k 2 N0 [ f1g. A
mappingˆ W 
1 ! 
2 is a C k-diffeomorphism if it satisfies the conditions (a)–(c):

(a) ˆ 2 Ck
�

1; 
2

�
.

(b) The inverse mappingˆ�1 W 
2 ! 
1 exists and satisfies

ˆ�1 2 Ck
�

2; 
1

�
:

(c) There exists a constant 0 < c <1 such that the JacobianDˆ D
�

@ˆi

@xj

�

1�i;j�d

satisfies the inequality

8x 2 
1 W 0 < c � jdet .Dˆ .x//j � 1=c: (2.69)

Remark 2.2.4 , follows from the inverse mapping theorem (see, e.g., [245,
Sect. 8.6], [95, Chap. 8]).

Remark 2.2.4. If 
 � Rd is bounded, (a) and (b) imply (c).
If k � 1 and ˆ is surjective, (a) and (c) imply (b).

Definition 2.2.5. A function ˆ W 
1 ! 
2 is bi-Lipschitz continuous if in
Definition 2.2.3 we have C0;1

�

i ; 
j

�
instead of Ck

�

i ; 
j

�
and

0 < c � sup
x;y2�1

x¤y

jˆ.x/�ˆ.y/j
kx � yk � 1=c (2.70)

instead of (2.69).

The space of all Lebesgue measurable functions that are bounded almost every-
where on 
 is denoted by L1 .
/. The term “almost everywhere” always refers to
everywhere except on sets with Lebesgue measure 0.



50 2 Elliptic Differential Equations

Proposition 2.2.6. Let 
 � Rd be bounded and let ' 2 C 0;1
�


�
, d � 2. Then we

have:

(a) For all ' 2 C 0;1
�


�
, the partial derivatives .@'=@xi /

d
iD1 exist almost every-

where in 
, they are measurable and bounded almost everywhere, i.e., @˛' 2
L1 .
/ for all j˛j D 1.

(b) We have the more general property for k 2 N0

' 2 C k;1
�


�) @˛' 2 L1 .
/ 8 j˛j � k C 1:

2.2.2 Smoothness of Domains

In order to describe the smoothness of domains one uses local as well as global cri-
teria. Lipschitz domains represent a reasonably general class of domains for whose
boundaries integral equations can be defined. Lipschitz domains are given by the
existence of an atlas which consists of bi-Lipschitz continuous charts. In Chap. 4 we
examine Galerkin boundary element methods in order to numerically solve integral
equations, for which it is necessary to decompose the surface into curved triangles
and rectangles. To be able to do this the surface needs to locally satisfy a greater
degree of smoothness.

In general, we assume that 
 � Rd is a domain with compact boundary � D
@
. For r > 0, Br denotes the open ball in Rd with radius r around the origin.
We set

BCr WD f� 2 Br W �d > 0g ; B�r WD f� 2 Br W �d < 0g ;
B0

r WD f� 2 Br W �d D 0g : (2.71)

Definition 2.2.7. A domain 
 � Rd is a Lipschitz domain
�

 2 C 0;1

�
if there

exists a finite cover U of open subsets in Rd such that the associated bijective
mappings2

˚

U W B2 ! U

�
U2U have the following properties:

1. 
U 2 C 0;1
�
B2; U

�
; 
�1

U 2 C 0;1
�
U ;B2

�
.

2. 
U

�
B0

2

� D U \ � .
3. 
U

�
BC2

� D U \
.
4. 
U

�
B�2

� D U \Rdn
.

Let k 2 N[f1g. A domain
 is a C k-domain if Property 1 can be replaced by


U 2 C k
�
B2; U

�
; 
�1

U 2 C k
�
U ;B2

�
:

Remark 2.2.8. Properties 2–4 in Definition 2.2.7 express the fact that 
 is locally
situated on one side of the boundary @
.

2 The choice of the radius r D 2 for the ballK2 is arbitrary but will slightly reduce the technicalities
in the definition of boundary element meshes because the master element then is contained inK2.
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In order to describe the local smoothness of the surface we use surface meshes.
For this, let q 2 N ,

bSq WD
˚
� 2 Rq W 0 < �1 < �2 < : : : �q�1 < �q < 1

�

be the unit simplex and
bQq WD .0; 1/q

be the unit cube. In the following these domains will be called reference ele-
ments and will be abbreviated by O�q . If there is no confusion with respect to the
dimension q we will simply write O� .

Definition 2.2.9. Let 
 � Rd (for d D 2; 3) be a bounded domain with bound-
ary �:

1. A subset � � � is called a boundary element or panel of smoothness k 2 N0 [
f1g – in short a C k-element – if there exists a C k-diffeomorphism 
� W O� ! �

which can be extended to a C k-diffeomorphism
?
� W O�? ! �?. Here O�? � Rd�1

signifies a neighborhood of O� and � � �?.
2. A set G is called a surface mesh (of smoothness k 2 N0) if:

(a) All � 2 G panels are of smoothness k.
(b) The elements of G are open and disjoint.
(c) � DS�2G � .

3. A surface mesh G does not have any hanging nodes if the intersection � \ t of
all non-identical elements �; t 2 G is either the empty set, a common point or –
if d D 3 – a common edge.

Definition 2.2.10. A bounded domain 
 � Rd , d D 2; 3, is piecewise smooth
with the index k 2 N[f1g, in short 
 2 C k

pw, if:

1. There exists a surface mesh G of smoothness k.
2. 
 is a Lipschitz domain, where the mapping 
U from Definition 2.2.7 can be

chosen in such a way that 
U j� D 
� .

Similarly, the boundary � D @
 of a bounded C k
pw-domain 
 � Rd , d D 2; 3,

is also called piecewise smooth with the index k 2 N[f1g and is denoted by
� 2 C k

pw.

The definition of C k
pw-domains that we have presented here has been chosen in

such a way that we will not need to introduce a new notation for the discretization.

Exercise 2.2.11. Show that polygonal domains (domains whose boundaries are
described by polygonal curves) are Lipschitz domains.

Show that the bounded (cusp-) domain
 � R2 which is bounded by the bound-
ary segments f0g � Œ0; 1	, Œ0; 1=2	� f1g, f.t; ts/ W 0 � t � 1=2g, f1=2g � Œ2�s; 1	 is
not a Lipschitz domain for all s 2 .0; 1/ (see Fig. 2.1).

A surface mesh allows us to define piecewise smooth functions on surfaces.
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Fig. 2.1 Cusp domain as in
Exercise 2.2.11

Definition 2.2.12. Let k 2 N0[f1g and� 2 C k
pw. A function f W � ! C is called

k times piecewise differentiable if there exists a surface mesh G of smoothness k
with

f ı 
� 2 C k
�
O�
�

8� 2 G:

The set of all k times piecewise differentiable mappings on � is denoted byC k
pw .�/.

2.2.3 Normal Vector

Let 
 � Rd with d D 2; 3 be a bounded domain of the type C 1
pw and let G be

the surface mesh from Definition 2.2.9 of smoothness k � 1. The sphere in Rd is
denoted by Sd�1. For x 2 � 2 G we define a normal vector n .x/ 2 Sd�1 by

Qn .x/ WD

8
<̂

:̂

�

0� .�/

�?
d D 2

.@
� .�/ =@�1/ � .@
� .�/ =@�2/ d D 3

9
>=

>;

with � D 
�1
� .x/ and v? D

 
v2

�v1

!

;

n .x/ WD Qn .x/ = kQn .x/k : (2.72)

In general, we assume that the orientation of the charts 
� is chosen in such a way
that the normal vector points towards the unbounded space outside of 
:

Remark 2.2.13. 1. For domains of type C 1
pw the set

(

x 2 � W x …
[

�2G
�

)

has zero surface measure. Therefore (2.72) defines an outer normal field on �
almost everywhere.

2. For domains of type C 1 there exists a normal vector for all x 2 � .

Lemma 2.2.14. Let � be a C 2-element. Then there exists a constant 0 < Cn < 1
such that
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jhn .y/ ; y � xij � Cn ky � xk2 :
Proof. Let 
� W O� ! � be the C 2-diffeomorphism given in Definition 2.2.9. For two
points x; y 2 � we set

Ox WD 
�1
� .x/ and Oy WD 
�1

� .y/ :

The mean value theorem guarantees the existence of a point � on the line ŒOx; Oy	 such
that

hn .y/ ; y � xi D hn .y/ ; 
� .Oy/ � 
� .Ox/i D hn .y/ ; .J� .�// .Oy � Ox/i ;

where J� WD D
� 2 Rd�.d�1/ is the Jacobian. Since n .y/ is perpendicular to the
column vectors of J� .Oy/, we have

hn .y/ ; y � xi D hn .y/ ; .J� .�/�J� .Oy// .Oy� Ox/i :

The assumptions we made concerning the smoothness of � imply that the matrix J�

is continuously differentiable (componentwise). This, however, proves the assertion
since

jhn .y/ ; .J� .�/�J� .Oy// .Oy � Ox/ij � C1 k� � Oyk
3X

iD1

2X

jD1

jni .y/j j Oy � Oxjj

� C2 kn .y/k
��
�1

� .y/ � 
�1
� .x/

��2 � C3 ky � xk2 :

�

2.2.4 Boundary Integrals

Let � be a C 1-panel with the parametrization 
� W O� ! � and let f W � ! C be a
measurable function. Then the surface integral of f over � can be written as

Z

�

f .x/ dsx D
Z

O�
Of .Ox/

p
g .Ox/d Ox with Of WD f ı 
� : (2.73)

Here g signifies the Gram determinant, which is defined as follows. The Jacobian
of the parametrization 
� is denoted by J� WD D
� D . @	i

@ Oxj
/ 1�i�d
1�j�d�1

. The Gram

matrix is given by

G .Ox/ WD J|
� .Ox/ J� .Ox/ 2 R.d�1/�.d�1/:

The surface element
p
g .Ox/ in (2.73) is the square root of the determinant of the

Gram matrix
g .Ox/ WD detG .Ox/ :
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More generally, for piecewise smooth boundaries � 2 C 1
pw and measurable func-

tions f W � ! C we have

Z




f .x/ dsx WD
X

�2G

Z

O�
Of� .Ox/

p
g� .Ox/d Ox

where Of� WD f ı 
� and
p
g� is the surface element of the parametrization 
� .

For a measurable subset � of a surface � we denote the surface measure by
j� j WD R

�
1dsx. For measurable subsets ! � Rd we use the same notation and set

j!j WD R!
1dx.

2.3 Sobolev Spaces on Domains 


Results concerning existence and uniqueness can be formulated for elliptic bound-
ary value problems by using Sobolev spaces on domains. We will briefly review
some of the properties of the function space L2 .
/, after which we will introduce
Sobolev spaces. The relevant proofs can be found in [242], for example.

We consider an open subset 
 � Rd . L2 .
/ denotes all Lebesgue measurable
functions f W 
! C that satisfy

R
� jf j2 dx <1. We do not distinguish between

two functions u; v if they differ on a set of zero measure.

Theorem 2.3.1. L2 .
/ is a Hilbert space with inner product

.u; v/0;� WD .u; v/L2.�/ WD
Z

�

u .x/ v .x/dx

and norm kuk0;� WD kukL2.�/ WD .u; u/1=2
0;�.

If there is no cause for confusion we will simply write .u; v/0 and kuk0 instead
of .u; v/0;� and kuk0;�.

It is not possible to define classical derivatives (e.g., pointwise as the limit of
difference quotients) for functions from L2 .
/. In order to define a generalized
derivative we use the fact that every function from L2 .
/ can be approximated by
smooth functions. For a continuous function u 2 C 0 .
/,

supp .u/ WD fx 2 
 W u .x/ ¤ 0g (2.74)

denotes the support of the function u. The space of all infinitely differentiable
functions on 
 is denoted by C1 .
/ and we set

C10 .
/ WD fu 2 C1 .
/ W supp .u/ �� 
g :
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The space of all functions from C1 .
/ with compact support is defined as

C1comp .
/ WD C10
�
Rd
�ˇˇ
ˇ
�
WD
n

uj� W u 2 C10
�
Rd
�o
: (2.75)

Remark 2.3.2. It should be noted that the support of a function u 2 C1comp .
/ is

compact in Rd but in general is not compact in 
. Therefore we have C1comp .
/ ¤
C10 .
/ for domains ; ¤ 
 ¤ Rd .

Lemma 2.3.3. The spaces C1 .
/ \L2 .
/ and C10 .
/ are dense in L2 .
/.

Definition 2.3.4. A function u 2 L2 .
/ has a weak derivative g WD @˛
wu 2 L2 .
/

if the property

.v; g/0;� D .�1/j˛j .@˛v; u/0;� ; 8v 2 C10 .
/

is satisfied.

We denote the weak derivative by @w.

Remark 2.3.5. If u has a weak derivative @˛
wu 2 L2 .
/ and the classical deriva-

tive @˛u exists on ! � 
 then these two derivatives coincide on ! (almost
everywhere). For this reason, in the following we will omit the index w in @˛

w.

Definition 2.3.6. Let 
 � Rd be a bounded domain. For ` D 0; 1; 2; : : : the
Sobolev space H ` .
/ is given by

H ` .
/ WD ˚' 2 L2 .
/ W @˛' 2 L2 .
/ for all j˛j � `� : (2.76)

On the space H ` .
/ we define the inner product

.';  /` WD
X

j˛j�`

.@˛'; @˛ /0 D
X

j˛j�`

Z

�

@˛'@˛ dx (2.77)

and the norm
k'k` WD .'; '/1=2

`
: (2.78)

The space H ` .
/ is sometimes denoted byW `;2 .
/. We will also need the space

W `;1 .
/ WD f' 2 L1 .
/ W @˛' 2 L1 .
/ for all j˛j � `g

which is equipped with the norm

8' 2 W `;1 .
/ k'kW `;1.�/ WD max
j˛j�`
k@˛'kL1.�/ :

If in (2.77) we only sum over those multi-indices with j˛j D ` we can define a
seminorm on H ` .
/ by
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j'j2` WD
X

j˛jD`

Z

�

j@˛'j2 dx: (2.79)

Sobolev spaces can also be defined for non-integer exponents. For ` 2 R, b`c
denotes the greatest integer for which b`c � `. For a non-integer ` � 0, i.e., ` D
b`c C � with � 2 .0; 1/, we define

.';  /` WD
X

j˛j�b`c
.@˛'; @˛ /0 (2.80)

C
X

j˛j�b`c

Z

���

.@˛' .x/� @˛' .y// .@˛ .x/� @˛ .y//

kx � ykdC2�
dxdy

and
k'k` WD .'; '/1=2

`
: (2.81)

For a non-integer ` the Sobolev space H ` .
/ is defined as the closure of

fu 2 C1 .
/ W kuk` <1g (2.82)

with respect to the norm k�k` from (2.81).

Proposition 2.3.7. The space H ` .
/ is a separable Hilbert space, i.e., H ` .
/

has a countable basis (see Sect. 2.1.1.3). We can define an inner product by (2.77),
(2.80) and a norm by (2.78), (2.81).

The fact that certain smooth function spaces are dense in H ` .
/ becomes very
helpful with respect to techniques used in proofs concerning Sobolev spaces.

Definition 2.3.8. H `
0 .
/ is the closure of the space C10 .
/ with respect to the

k�k` norm.

Proposition 2.3.9. We have

H 0 .
/ D H 0
0 .
/ D L2 .
/ ; H `

�
Rd
�
D H `

0

�
Rd
�
:

Proposition 2.3.10. Let 
 � Rd be open and let ` � 0. Then the space H ` .
/ \
C1 .
/ is dense in H ` .
/.

The proofs of Proposition 2.3.9 and 2.3.10 can be found in [242, Theorems 3.3–
3.6, Conclusion 3.1], for example.

The Sobolev spaces H `.
/ of non-integer order ` D b`c C � can also be
characterized by interpolation. We have

Proposition 2.3.11. Let k 2 N0 and 0 < � < 1. For a bounded domain 
 with a
Lipschitz boundary we have

H kC�.
/ D ŒH k.
/;H kC1.
/	�;2: (2.83)

A proof can be found in, e.g., [230] or [155].
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2.4 Sobolev Spaces on Surfaces �

In order to define boundary integral equations one needs Sobolev spaces on bound-
aries � WD @
 of domains. These are defined with the help of Sobolev spaces on
Euclidean (parameter-) domains by means of “lifting”.

2.4.1 Definition of Sobolev Spaces on �

Let 
 � Rd be a bounded Lipschitz domain. We can define coordinates on the
boundary � WD @
 with the help of a surface mesh G. For this we use the notation
from Definition 2.2.7 and introduce the following restrictions


U;0 W B0
2 ! U0 WD U \ �; 
U;0 WD 
U jB0

2
:

Now we can define a coordinate system a D
�
U0; 


�1
U;0

�

U2U as well as a subordi-

nate partition of unity fˇU W � ! RgU2U by

1 D
X

U2U
ˇU on � , supp .ˇU / � U0, ˇU ı 
U;0 2 C 0;1

0

�
B0

2

�
:

Functions ' W � ! C can be localized with the help of this partition. The function

'U D 'ˇU W � ! C satisfies supp .'U / � U0:

If 
 is a C k-domain with k � 1 we can carry out the localization in an analogous
way, in which case the functions 
U;0 are C k-diffeomorphisms. The smoothness of
a function on the surface � is characterized by the smoothness of the pullback of
the localized function to the parameter domain. In this light, we define

c'U WD 'U ı 
U;0 W B0
2 ! C; U 2 U :

Therefore it is obvious that the maximal smoothness of the domain 
 is an upper
bound for the order of differentiability of the Sobolev spaces on � . More specifi-
cally, for C 0;1 or C k-domains, only Sobolev spaces H ` .�/ with a maximal order
of differentiability `, invariant under the choice of the coordinate system, that satisfy

` � 1 for Lipschitz domains
;
` � k for C k-domains


(2.84)

can be defined. We use the previously introduced notation for the following defini-
tion.
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Definition 2.4.1. Let 
 � Rd be a bounded C 0;1 or C k-domain with k � 1. We
assume that (2.84) is satisfied for ` 2 R�0. The spaceH ` .�/ contains all functions
' W � ! C that satisfy c'U 2 H `

0

�
B0

2

�
for all U 2 U .

In the same way as in (2.80), we can define a norm on H ` .�/ for ' 2 H ` .�/

by setting � WD ` � b`c and

k'k2`;� WD

8
ˆ̂
ˆ̂̂
<

ˆ̂̂
ˆ̂
:

X

j˛j�`

k'˛k2L2.�/ if ` 2 N0;

X

j˛j�b`c

k'˛k2L2.�/ C
X

j˛j�b`c

Z

���

j'˛ .x/ � '˛ .y/j2
kx � ykd�1C2�

dsxdsy if ` 2 RnN0;

;

(2.85)
where the functions '˛ W � ! C are given by

'˛ .x/ WD
X

U2U
@˛

� .c'U / .�/ with x D 
U;0 .�/ (2.86)

and @˛
�

denotes the differentiation with respect to the variable �.

Formally, the Sobolev space H ` .�/ depends on the chosen coordinates. Should
it be necessary, we will write H `

a .�/ instead of H ` .�/. It can, however, be shown
that H ` .�/ is defined invariantly on � under the condition that there is a suitable
relation between the order of differentiation ` and the smoothness of the boundary.

Proposition 2.4.2. Let 
 be a bounded Lipschitz domain or a C k-domain with
k � 1. We assume that the index of differentiation ` satisfies (2.84). Let a1; a2 be
two coordinate systems on � . Then the spacesH `

a1
.�/ andH `

a2
.�/ are equivalent,

i.e., they contain the same set of functions, and the norms are equivalent.

The proof of this proposition can be found in [242, Theorem 4.2].
Sobolev spaces H `.�/ of non-integer order can also be characterized by inter-

polation. We have the following theorem, which is analogous to Proposition 2.3.11:

Proposition 2.4.3. Let 
 � Rd be a bounded Lipschitz or C k-domain with k � 1
and � WD @
: Furthermore, let ` 2 N0 be such that `C1 satisfies Condition (2.84).
Then for 0 < � < 1

H `C� .�/ D
�
H ` .�/ ;H `C1 .�/

�

�;2
: (2.87)

More generally, if `1; `2 satisfy (2.84) then

H `.�/ D
�
H `1.�/; H `2.�/

�

�;2
(2.88)

for ` D �`1 C .1 � �/`2 with 0 � � � 1.
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We have introduced Sobolev spaces with non-negative differentiation indices for
domains
 and their boundaries � . The dual spaces of these Sobolev spaces contain
all the continuous linear functionals defined thereon. Let X be either a domain
 or
a surface � . Then the following notation is used for the dual space:

H�` .X/ WD
�
H `

0 .X/
�0
; ` � 0: (2.89)

Note that in the case of closed surfaces (X D �) the boundary ofX is the empty set
and thereforeH `

0 .X/ D H ` .X/.
All the results for H `

0 .X/ concerning density can be directly transferred to the
dual spaces. Due to the Riesz representation theorem (Theorem 2.1.17) for every
F 2 H�` .X/ there exists an element f 2 H `

0 .X/ with

F .v/ D .v; f /H `.�/ 8v 2 H `
0 .X/ :

If a spaceU is dense inH `
0 .X/, then for every functionalF 2 H�` .X/ there exists

a sequence of elements .fi /i2N0
in U such that

lim
i!1 .�; fi /H `.�/ D F:

2.4.2 Sobolev Spaces on �0 � �

In order to formulate integral equations on domains with “cracks” we need Sobolev
spaces on open manifolds with boundary conditions. In the following we will briefly
discuss the most important definitions and properties and refer to [162, Sect. 3], for
example, for a more detailed discussion.

Let �0 � � be a measurable subset of the boundary with j�0j > 0. The Sobolev
space eH s .�0/, s 2 Œ0; 1	, is defined by

eH s .�0/ WD
˚
u 2 H s .�/ W supp .u/ � �0

�
: (2.90)

The norm on eH s .�0/ is given by

kuk QH s.
0/
WD ��u?

�
�

H s.
/
; (2.91)

where u? denotes the extension of u on � by zero.

Exercise 2.4.4. Let � D .�1; 2/ and �0 D .0; 1/. Show that the characteristic
function

u .x/ WD


1 x 2 �0;

0 otherwise

is in eH s .�0/ for s < 1=2 but not for s � 1=2.



60 2 Elliptic Differential Equations

The spaces with a negative index are again defined as dual spaces: eH�s .�0/ WD
.H s .�0//

0 for s 2 Œ0; 1	. Conversely, we have: H�s .�0/ D
�eH s .�0/

�0
for s 2

Œ0; 1	. Note that for closed surfaces � the spacesH s.�/ and eH s.�/ are isomorphic.

2.5 Embedding Theorems

The spaces H ` .
/, H ` .�/ are nested for a continuous scale of indices `.

Theorem 2.5.1. There holds

H `1 .
/ � H `2 .
/

H `1 .�/ � H `2 .�/

�
`1 � `2 � 0: (2.92)

In the case of a surface we require that Condition (2.84) is satisfied with ` D `1.

The Sobolev spaces with a positive differentiation index ` together with L2 .
/

and their dual spaces form a Gelfand triple.

Proposition 2.5.2. For ` > 0 the triples

H ` .
/ � L2 .
/ �
�
H ` .
/

�0

H `
0 .
/ � L2 .
/ � .H `

0 .
//
0

H ` .�/ � L2 .�/ �
�
H ` .�/

�0

are Gelfand triples, whereby we again require that Condition (2.84) be satisfied in
the case of a surface. The inner product .�; �/L2.�/ can therefore be continuously

extended to dual pairings onH ` .
/� �H ` .
/
�0

,
�
H ` .
/

�0 �H ` .
/, H `
0 .
/��

H `
0 .
/

�0
and

�
H `

0 .
/
�0 �H `

0 .
/. Analogously, the inner product .�; �/L2.
/ can

be continuously extended to dual pairings onH ` .�/� �H ` .�/
�0

and
�
H ` .�/

�0 �
H ` .�/.

Notation 2.5.3. Assuming the same conditions as in Proposition 2.5.2 we again
denote the extensions by .�; �/L2.�/ and .�; �/L2.
/, in case the relevant function
spaces can be determined from the arguments. If the domain 
 is clear from the
context, we simply write .�; �/0.

It is interesting to know under which conditions every function (equivalence
class) ' 2 H ` .
/ has a continuous representative. This question is answered by
the Sobolev embedding theorem.

Theorem 2.5.4 (Sobolev Embedding Theorem). Let 
 � Rd be a bounded Lip-
schitz domain. Then for ` > d=2:
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H ` .
/ � C 0
�


�
:

For bounded C k-domains 
, k > `; functions (equivalence classes) ' 2 H ` .
/

have anm times continuously differentiable representative for integerm < `�d=2:

H ` .
/ � Cm
�


�

with a continuous embedding:

k'kC m.�/ � C k'kH `.�/ ; 8' 2 H ` .
/ :

In order to determine whether a function from H `2 .
/ can be approximated
with respect to a (weaker) norm k�k`1;�, i.e., `1 < `2, the compactness (see
Definition 2.1.31) of the embedding I W H `1 .
/! H `2 .
/ will be crucial.

Theorem 2.5.5 (Rellich). Let 
 � Rd be a bounded Lipschitz domain. Then
the first of the embeddings in (2.92) for `1 > `2 is compact. To guarantee the
compactness of the second embedding, Condition (2.84) also has to be satisfied.

The proof can be found in, e.g., [3, 242].
In some proofs, results are first proven for dense subspaces of Sobolev spaces.

They are then applied to the Sobolev spaces by considering Cauchy sequences and
their limits. Keeping this in mind we will use Rellich’s embedding theorem (see,
e.g., [3, Sect. 5.9(4), A 5.4], [242]).

Theorem 2.5.6. Let 
 � Rd be a bounded domain with a Lipschitz boundary.
Then the embedding H 1 .
/ ,! L2 .
/ is compact, i.e., there exists for every
bounded sequence inH 1 .
/ a subsequence that converges with respect to the norm
in L2 .
/.

The Poincaré inequalities are useful consequences of these compact embeddings.

Theorem 2.5.7. Let 
 � Rd be bounded and ` D 1; 2; : : : : Then for all ' 2
H `

0 .
/

k'k2`;� � C .1C diam
/2`
X

j˛jD`

Z

�

j@˛'j2 dx: (2.93)

The inequality in (2.93) is also referred to as the Friedrichs inequality.

Corollary 2.5.8. Let �D be a subset of the boundary � with a positive .d � 1/-
dimensional surface measure. Theorem 2.5.7 remains valid if the space H `

0 .
/ is

replaced by the space
˚
' 2 C1 �
� W ' D 0 on �D

�k�k`;�

.

For ' 2 H ` .
/, this assertion is only true in the modified form (2.94).
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Theorem 2.5.9. Let 
 � Rd be a Lipschitz domain. Then for all ' 2 H ` .
/

k'k2`;� � C
8
<

:

X

j˛jD`

Z

�

j@˛'j2 dxC
X

j˛j<`

ˇ
ˇ̌
ˇ

Z

�

@˛'dx

ˇ
ˇ̌
ˇ

2

9
=

;
: (2.94)

The inequalities (2.93) and (2.94) are called the first and second Poincaré
inequalities and are proven in [166, Theorems 1.1 and 1.5].

Corollary 2.5.10. Let 
 � Rd be a Lipschitz domain. Then there exists a constant
c� > 0 such that for all ' 2 H 1 .
/

inf
z2R
k' � zk1;� � c� j'j1;� :

Proof. Choose ˛ WD R
�
'dx= j
j and define '˛ WD ' � ˛. It then follows from

(2.94) that

inf
z2R
k' � zk1;� � k'˛k1;� � C

�
j'˛j1;� C

ˇ̌
ˇ
ˇ

Z

�

'˛dx

ˇ̌
ˇ
ˇ



D C j'j1;� :

�
For convex, polygonal domains
 � R2, the constant C is known explicitly.

Theorem 2.5.11. Let
 � R2 be a convex and polygonal domain. For any function
w 2 H 1 .
/ with

R
�

wdx D 0, there holds the estimate

kwkL2.�/ �
1

�
.diam
/ jwjH 1.�/ :

For the proof we refer to [180].
Theorem 2.5.11 can be generalized to neighborhoods of convex sets.

Corollary 2.5.12. Let 
 � 
? � R2 denote two convex and polygonal domains.
For u 2 H 1.
?/, let …� .u/ WD

R
�

udx= j
j. Then

ku �…� .u/kL2.�?/ �
 

1C
s
j
?j
j
j

!
diam
?

�
jujH 1.�?/ :

Proof. For u 2 H 1 .
?/, let …�? .u/ WD R
�? udx= j
�? j. The projection property

of …� leads to
u �…�u D .I �…�/ .u �…�?u/ ;

where I is the identity. Hence

ju �…�ujL2.�?/ �
 

1C sup
v2L2.�?/nf0g

k…�vkL2.�?/

kvkL2.�?/

!

ku �…�?ukL2.�?/ :

(2.95)
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The supremum can be estimated by using the Cauchy–Schwarz inequality for the
L2-scalar product

k…�vk2L2.�?/
D
Z

�?

�
1

j
j
Z

�

vdx

2

dy �
Z

�?

1

j
j kvk
2
L2.�/

dy

D j

?j
j
j kvk

2
L2.�/

� j

?j
j
j kvk

2
L2.�?/

:

Applying Theorem 2.5.11 to the right-hand side in (2.95) results in

ju �…�ujL2.�?/ �
 

1C
s
j
?j
j
j

!
diam
?

�
jujH 1.�?/ :

�

2.6 Trace Operators

The trace (restriction) of a function u 2 H ` .
/ on the boundary @
 can be given
a reasonable definition if the differentiation index of the Sobolev space and the reg-
ularity of the surfaces are both sufficiently large. The main result is summarized in
Theorems 2.6.8 and 2.6.9. The Sobolev norm of the trace of a sufficiently smooth
function u W 
! C can be estimated by the Sobolev norm of u in a local neighbor-
hood of @
. Therefore traces can also be defined for functions that are only locally
inH ` .
/. The relevant space is calledH `

loc .
/. For later applications we will also
introduce the associated dual space H s

comp .
/. Although norms cannot be defined
on these spaces, a metric and therefore a topology can be defined. We refer to [243]
and [85, pp. 48, 114 ff] for details. However, for our applications we only need the
results given in Theorem 2.6.7, which provides us with criteria with which we can
prove the continuity of mappings from and to these spaces.

Definition 2.6.1. Let 
 be a (possibly unbounded) domain. The space H `
loc .
/

contains all continuous, linear functionals (distributions) on C1comp .
/, in short u 2
C1comp .
/

0, with the property that 'u 2 H ` .
/ for all ' 2 C1comp .
/.

Remark 2.6.2. (a) The definition of the spaceH `
loc .
/ does not contain any restric-

tions with respect to the growth of the function towards infinity. For example,
every polynomial as well as the exponential function are in H `

loc .R/ for an
arbitrary ` � 0.

(b) By choosing ' 	 1 we see that for bounded domains
, H `
loc .
/ and H ` .
/

coincide (see Remark 2.3.2).
(c) Let 
� � Rd be a bounded domain with boundary � WD @
� and 
C WD

Rdn
�. Then the growth of functions fromH `
loc

�

C

�
is not restricted towards
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infinity. However, it is restricted in every bounded neighborhood of �: For u 2
H `

loc

�

C

�
we have ujU 2 H ` .U / for every bounded subdomain U � 
C.

(d) In some literature, in the definition of H `
loc .
/ the condition ' 2 C1comp .
/ is

sometimes replaced by ' 2 C10 .
/. In this case, using the conditions in (c),
the growth of the functions in a local neighborhood of � is also not restricted.

In order to define the dual space of H `
loc .
/, we need to extend the definition of

the support of a function [see (2.74)] to Sobolev functions.

Definition 2.6.3. Let ` � 0. The restriction of a function u 2 H ` .
/ to an open
subset U � 
 is the zero function ujU D 0 if

.u;w/H `.�/ D 0

for all w 2 C1 .
/ with supp w � U .
For ` < 0 the condition .u;w/H `.�/ D 0 has to be replaced by u .w/ D 0.

Definition 2.6.4. Let u 2 H ` .
/. The support supp .u/ is the largest, relatively
closed set V � 
 for which u is the zero function on 
nV .

Definition 2.6.5. Let ` 2 R and 
 � Rd be open. The space H `
comp .
/ is given

by

H `
comp .
/ WD

[

K

n
u 2 H `

loc .
/ W supp .u/ � K
o
;

where the union is taken over all relatively compact subsets K � 
.

Remark 2.6.6. Note that for bounded domains, H `
comp .
/ coincides with H ` .
/

andH `
loc .
/.

Theorem 2.6.7. (a) For every s 2 R the bilinear form h�; �i W C1 .
/ �
C1comp .
/! K:

hu; vi D
Z

�

uvdx (2.96)

can be extended to a dual pairing h�; �i W H s
loc .
/ �H�s

comp .
/! K.

(b) Let E be a normed space. A linear mappingA W H s
comp .
/! E is continuous

if and only if the restriction A W ˚u 2 H s
loc .
/ W supp .u/ � K� ! E is con-

tinuous for all compact sets K � 
. A linear mapping A W H s
loc .
/ ! E is

continuous if and only if there exist ' 2 C1comp .
/ and a constant C <1 such
that

kAukE � C k'ukH s.�/ 8u 2 H s
loc .
/ :

(c) A linear mapping A W E ! H s
loc .
/ is continuous if and only if for all ' 2

C1comp .
/ there exists a C <1 such that

k' .Au/kH s.�/ � C kukE 8u 2 E:
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(d) A linear mappingA W H s
comp .
/! H t

loc .
/ is continuous if and only if for all
compact sets K � 
 and all ' 2 C1comp .
/ there exists a C <1 such that

k' .Au/kH t .�/ � C kukH s.�/ 8u 2 H s
comp .
/ W supp .u/ � K:

(e) A linear mapping A W H s
loc .
/ ! H t

loc .
/ is compact if and only if for all
cut-off functions '; 2 C1comp .
/ the restriction u ! 'A . u/ W H s .
/ !
H t .
/ is compact.

Theorem 2.6.8. Let 
� be a bounded Lipschitz domain with boundary � and

C WD Rdn
�.

(a) For 1=2 < ` < 3=2 there exists a continuous, linear trace operator �0 W
H `

loc

�
Rd
�! H `�1=2 .�/ with

�0' D ' j
 for all ' 2 C 0
�
Rd
�
:

(b) For s 2 fC;�g there exist one-sided, continuous, linear trace operators � s
0 W

H `
loc .


s/! H `�1=2 .�/ with

� s
0' D ' j
 for all ' 2 C 0

�

s
�

and
�C0 u D ��0 u D �0u almost everywhere

for all u 2 H `
loc

�
Rd
�
.

This result can be generalized for smoother domains.

Theorem 2.6.9. Let 
� � Rd be a bounded C k-domain, k 2 N[f1g and

C WD Rdn
�. Let the differentiation index ` satisfy the condition 1=2 <

` � k. Then the trace operator from Theorem 2.6.8 is a continuous operator
�0 W H `

loc

�
Rd
�! H `�1=2 .�/ which satisfies the property

�0' D ' j
 8' 2 C10
�
Rd
�
:

The proof is based on a localization of the statement with the help of a C k or
C 0;1-atlas of � and a subordinate partition of unity. In doing so, the trace theorem
can be reduced to a trace theorem in the half-space and can then be proven by
characterizing Sobolev norms in terms of Fourier transforms (see [162] and [72]).
A direct result is the fact that the trace of a function is solely determined by its local
behavior in a neighborhood of � .

Remark 2.6.10. With the same conditions as in Theorem 2.6.8 we have for all v 2
H `

loc

�
Rd
�
, 1=2 < ` < 3=2, and all cut-off functions 
 2 C10

�
Rd
�

that satisfy

 	 1 in a neighborhood of �
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�0 .
v/ D �0 .v/ :

For vC 2 H `
loc

�

C

�
and v� 2 H `

loc .

�/ we have

�C0
�

vC

� D �C0
�
vC
�

and ��0 .
v�/ D ��0 .v�/ :

The trace theorem answers the question under which conditions functions from a
Sobolev spaceH ` .
/ can be restricted to surfaces� . It turns out that this is possible
for sufficiently smooth surfaces. Furthermore, the differentiability is reduced by half
an order.

There are a number of applications in which the inverse of this question plays
a significant role. Can functions from H `�1=2 .�/, that are given on surfaces, be
extended to H ` .
/?

Theorem 2.6.11. Let 
� be a bounded Lipschitz domain with surface � and

C WD Rdn
�. Then for 1=2 < ` < 3=2 there exists a linear, continuous extension
operator Z W H `�1=2 .�/ ! H `

comp

�
Rd
�

with .�0 ıZ/ .'/ D ' on H `�1=2 .�/.
For 
 2 ˚
�; 
C� the composition

Z� WD R�Z W H `�1=2 .�/! H `
comp .
/

is continuous. Here, R� denotes the restriction of a function in H `
comp

�
Rd
�

to 
.

The proof is given in, e.g., [242, Theorem 8.8].

Notation 2.6.12. Alternatively, Z�C is denoted by ZC and Z�� by Z�.

2.7 Green’s Formulas and Normal Derivatives

Classically, elliptic boundary value problems consist of a differential equation for
the unknown function on the domain 
 and associated boundary conditions. We
formulate the Laplace problem with Dirichlet boundary conditions as a prototype
for a linear elliptic differential equation: Let f 2 C 0

�


�

and gD 2 C 0 .�/ be
given. Find u 2 C 2 .
/ \ C 0

�


�

such that

��u D f in 
; u D gD on �: (2.97)

In general, for equations of second order, either the trace or the normal derivative
of the unknown function is given on the boundary.

In this section we will define the conormal derivative to the general linear, elliptic
differential operator with constant coefficients. This operator has the form

Lu WD � div .A grad u/C 2 hb; grad ui C cu; (2.98)
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where we generally suppose that A 2 Rd�d is positive definite, b 2 Rd and c 2 R.
The smallest eigenvalue of A is denoted by amin and the largest by amax. We always
assume that we have

0 < amin � amax <1: (2.99)

The Laplace problem (2.97) results if we choose A D I, b D 0 and c D 0.
In order to define the conormal derivative we will multiply the operator L in

(2.98) by suitable functions and integrate by parts over 
. The equations that
result from this are called Green’s formulas and also form part of this chapter. Let
L1 .�/ WD .L1 .�//d .

Theorem 2.7.1 (Rademacher). Let 
 be a bounded Lipschitz domain with bound-
ary � . Then there exists an outer normal vector almost everywhere on � which
satisfies n 2 L1 .�/.

A proof of this theorem can be found in, e.g., [241, 11A, p. 272]. Next we will
introduce some conventions which will be used frequently.

Convention 2.7.2. Let 
� be a bounded Lipschitz domain with boundary � and
let 
C WD Rdn
�. We assume that each of these domains is connected and, fur-
thermore, that the orientation of the normal field n W � ! Sd�1 is chosen in the
direction of 
C. In the following 
 denotes one of the domains 
�, 
C, and the
algebraic sign function �� is given by

�� WD


1 for 
 D 
�;
�1 for 
 D 
C:

Therefore ��n is the outer normal relative to 
.

The principal part of the operator L in (2.98) is given by div .A grad �/. Gauss’
theorem deals with integration by parts of integrands in “divergence form”.

Theorem 2.7.3 (Gauss’ Theorem). Let 
 2 ˚
�; 
C�. For all F 2 H 1
�

;Rd

�

we have Z

�

.div F/ dx D
Z




h��n;Fidsx:

The proof can be found in, e.g., [162, Theorem 3.34, Lemma 4.1]. A direct result
of Gauss’ theorem is the first of Green’s formulas.

Theorem 2.7.4. Let A 2 Rd�d be symmetric and positive definite. Then we have
for all u 2 H 2 .
/ and v 2 H 1 .
/ Green’s first formula

Z

�

div .A grad u/ vdx D �
Z

�

hA grad u; grad vidxC ��

Z




hAn; grad ui vdsx:

(2.100)
For v 2 H 2 .
/ one obtains Green’s second formula
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Z

�

div .A grad u/ vdx�
Z

�

u div .A grad v/ dx

D ��

�Z




hAn; grad ui vdsx �
Z




u hAn; grad vidsx



:

(2.101)

A proof can be found in, e.g., [162, Chap. 4].
For u; v 2 H 1 .
/ we can define the sesquilinear form

B .u; v/ WD
Z

�

�˝
A grad u; grad v

˛C 2 hb; grad ui vC cuv
�
dx (2.102)

and for u 2 H 2 .
/ we can define the conormal derivative

�1u WD hAn; �0 grad ui : (2.103)

A direct consequence of (2.100) is the representation

Z

�

.Lu/ vdx D B .u; v/� ��

Z




.�1u/ .�0v/dsx (2.104)

for all u 2 H 2 .
/ and v 2 H 1 .
/.
The formal adjoint operator of L is given by

L�v WD � div .A grad v/� 2 hb; grad vi C cv: (2.105)

The term “formal adjoint” refers to the property (whose proof is achieved by means
of integration by parts)

.Lu; v/L2.Rd/ D
�
u; L�v

�
L2.Rd/

for all u; v 2 C1 �Rd
�

which have the property that one of the two functions u; v
has compact support. In general, this relation does not hold for bounded domains.
Through integration by parts we have the following representation

Z

�

u.L�v/dx D B .u; v/� ��

Z




.�0u/ .e�1v/dsx (2.106)

for all u 2 H 1 .
/ and v 2 H 2 .
/ with the modified conormal derivative

e�1v WD hn�0;A grad vC 2bvi D �1vC 2 hb;ni �0v: (2.107)

Remark 2.7.5. The boundary differential operators �1 and e�1 are continuous map-
pings from H 2 .
/ to H 1=2 .�/.
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The formulas (2.104) and (2.106) are called Green’s first formulas for the opera-
tor L. The domain of the conormal derivatives �1 and e�1 can, for s � 1, be extended
to the space

H s
L .
/ WD

n
u 2 H s

loc .
/ W Lu 2 L2
comp .
/

o
(2.108)

by using the relations (2.104) and (2.106).

Definition 2.7.6. Let 
 2 ˚

�; 
C

�
be as in Convention 2.7.2 and let Z� be

the extension operator from Theorem 2.6.11. Then the (weak) conormal derivative
�1 W H 1

L .
/! H�1=2 .�/ is characterized by

.�1u;  /L2.
/ D ��

�
B .u; Z� / � .Lu; Z� /L2.�/

� 8 2 H 1=2 .�/ :

(2.109)
The modified (weak) conormal derivative e�1 W H 1

L .
/! H�1=2 .�/ is given by

. ; e�1v/L2.
/ D ��

�
B .Z� ; v/ �

�
Z� ;L

�v
�

L2.�/

�
8 2 H 1=2 .�/ :

Theorem 2.7.7. Let 
 2 ˚

�; 
C

�
be as in Convention 2.7.2. The conormal

derivative �1 W H 1
L .
/! H�1=2 .�/ is continuous. Let u 2 H 1

L .
/, v 2 H 1
loc .
/

and let one of the two functions u; v have compact support, then

.�1u; �0v/L2.
/ D ��

˚
B .u; v/� .Lu; v/L2.�/

�
: (2.110)

For u 2 H 2 .
/, �1u coincides with the conormal derivative from (2.103) almost
everywhere on � .

The modified conormal operator e�1 W H 1
L .
/ ! H�1=2 .�/ is continuous. Let

v 2 H 1
L .
/, u 2 H 1

loc .�/ and let one of the two functions u; v have compact
support. Then

.�0u; e�1v/L2.
/ D ��

n
B .u; v/� �u; L�v�

L2.�/

o
: (2.111)

For v 2 H 2 .
/, e�1 coincides with the modified conormal operator defined in
(2.107) almost everywhere on � .

A proof of this theorem can be found in [162, Lemma 4.3].
Theorem 2.7.7 implies that the definitions of �1 and e�1 are independent of the

choice of the trace extensionZ�. In order to see this we consider another continuous
trace extension eZ� W H 1=2 .�/! H 1

comp .
/. For u 2 H 1
L .
/ we define g WD �1u

as in (2.109) and we define Qg by replacing Z� in (2.109) by eZ�. Then

. Qg; /L2.
/ D ��

�
B
�

u;eZ� 
�
�
�
Lu;eZ� 

�

L2.�/



8 2 H 1=2 .�/ :
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For  2 H 1=2 .�/ we define v WD Z� and Qv WD eZ� and note that �0v D
�0 Qv D  (see Theorem 2.6.11). In (2.110) we set �1u D g, �0v D  and v D Z� .
From this we subtract (2.110) while setting �1u D eG, �0

eV D  and eV D eZ� 

and thus we obtain

�� .g � Qg; /L2.
/ D B
�

u;
�
Z� �eZ�

�
 
�
�
�
Lu;

�
Z� �eZ�

�
 
�

.2.110)D ��

�
g; �0

�
Z� �eZ�

�
 
�

L2.
/
D 0:

Since  2 H 1=2 .�/ was arbitrary, we have as a consequence g D Qg. The
corresponding result for e�1 can be proven analogously.

Corollary 2.7.8. Let u 2 H 1
L .
/. Then, for every cut-off function 
 2 C10

�
Rd
�

that satisfies 
 	 1 in a neighborhood of � , the equation �1 .
u/ D �1u holds.

Proof. Let U be a neighborhood of � with 
 	 1 on U . We choose a second cut-off
function 
2 that satisfies supp
2 � U and 
2 	 1 in another neighborhood U2

of � . We define eZ� WD 
2Z� and �1u in (2.109) by using eZ� instead of Z�. (The
definition of �1u is independent of the choice of the trace extension, as was shown

above.) By using 
 	 1 on supp
�
eZ�'

�
we obtain for all ' 2 H 1=2 .�/

.�1u; '/L2.
/ D ��



B
�

u;eZ�'
�
�
�
Lu;eZ�'

�

L2.�/

�

D ��



B
�

u;eZ�'

�
�
�
L
u;eZ�'

�

L2.�/

�
D .�1 .
u/ ; '/L2.
/ :

�

Remark 2.7.9. The definition of the conormal derivative depends only on the prin-
cipal part of the operator L from (2.98), since the sum of the terms of lower order
on the right-hand side in (2.110) equals zero [see (2.102)].

Remark 2.7.10. In order to distinguish whether �1 is applied to functions in
C or


�, we write �C1 , ��1 or f�C1 , f��1 . Analogously, the notations BC .�; �/ and B� .�; �/
indicate whether the sesquilinear form B is defined with respect to 
C or
�.

Remark 2.7.11. By combining the formulas (2.110), (2.111) for the two functions
u; v 2 H 1

L .
/, one of which has compact support, we obtain Green’s second
formula

.Lu; v/L2.�/�
�
u; L�v

�
L2.�/

D ��

˚
.�0u; e�1v/L2.
/ � .�1u; �0v/L2.
/

�
: (2.112)

Green’s third formula appears in connection with transmission problems. Here
the goal is to find a function u whose restrictions uC WD uj�C and u� WD uj��

satisfy the equations
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LuC D f C in 
C

Lu� D f � in 
�:

Apart from this, the behavior of the traces of uC and u� has to be prescribed on the
boundary� . In the remainder of this section we will derive a Green’s representation
formula which is relevant to the study of this question.

For u 2 L2
�
Rd
�

we first introduce the abbreviations uC WD uj�C and u� WD
uj�� in order to define the space

H 1
L

�
Rdn�

�
WD
n
u 2 L2

�
Rd
�
j uC 2 H 1

L

�

C

� ^ u� 2 H 1
L .


�/
o
; (2.113)

where the spacesH 1
L .


�/, H 1
L

�

C

�
are given as in (2.108).

Remark 2.7.12. In general, for a function u 2 H 1
L

�
Rdn��, we do not have Lu 2

L2
�
Rd
�
. An easy counter-example is obtained by setting u� 	 1 and uC 	 0.

For u 2 H 1
L

�
Rdn�� the function L˙u 2 L2

�
Rd
�

is defined as

L˙u WD


Lu� in 
�
LuC in 
C : (2.114)

For a given f 2 L2
comp

�
Rd
�

we now consider functions u 2 H 1
L

�
Rdn�� that

satisfy
L˙u D f in Rdn�: (2.115)

For u 2 H 1
L

�
Rdn�� the applicationLu can be defined as a functional (distribution)

on C10
�
Rd
�

.Lu; v/L2.Rd / WD
�
u; L�v

�
L2.Rd / 8v 2 C10

�
Rd
�
: (2.116)

We use u 2 L2
�
Rd
�
, L�v 2 C10

�
Rd
�
, (2.111) and (2.110) to maintain the separa-

tion

.Lu; v/L2.Rd / D
X

s2fC;�g

�
u; L�v

�
L2.
s/

D
X

s2fC;�g

�
Bs .u; v/ � �
s

�
�s0u; e�s1v

�

L2.�/




(2.117)

D .L
˙

u; v/L2.Rd / C
X

s2fC;�g

�
s

��
�s1u; � s0v

�
L2.�/

�
�
�s0u; e�s1v

�

L2.�/




(2.118)

on the right-hand side in (2.116). The traces and conormal derivatives of u are,
in general, discontinuous across the boundary � . As an abbreviation we use the
following notation
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Œu	 WD �C0 u � ��0 u and Œ�1u	 WD �C1 u � ��1 u: (2.119)

The smoothness of v 2 C10
�
Rd
�

implies Œe�1v	 D Œv	 D 0 and therefore (2.118)
implies the equation

.Lu; v/L2.Rd / D .f; v/L2.Rd/ C .Œu	 ; e�1v/L2.
/ � .Œ�1u	 ; �0v/L2.
/ (2.120)

for all u 2 H 1
L

�
Rdn�� and v 2 C10

�
Rd
�
.

By using the dual mappings of e�1 and �0, (2.120) can be expressed with-
out the use of test functions. Theorem 2.6.8 implies that the trace mapping �0 W
H 1

loc

�
Rd
�! H 1=2 .�/ is continuous and that the dual mapping � 00 W H�1=2 .�/!

H�1
comp

�
Rd
�

is characterized by

.w; �0v/L2.
/ D
�
� 00w; v

�
L2.Rd/ 8v 2 H 1

loc

�
Rd
�
;w 2 H�1=2 .�/ : (2.121)

For functions v 2 C1 �Rd
�

the modified conormal derivative can be written as

e�1v D hn�0;A grad vC 2bvi

and we have e�1v 2 L1 .�/. As a consequence, e�1
0 can be defined on .L1 .�//0 D

L1 .�/ by

.w; e�1v/L2.
/ D
�
e�1
0w; v

�
L2.Rd / 8w 2 L1 .�/ ; v 2 C1

�
Rd
�

and therefore e�1
0w describes a functional on C1

�
Rd
�
. With this result and (2.120)

we obtain the third of Green’s formulas

Lu D f C e�1
0 .Œu	/ � � 00 .Œ�1u	/ (2.122)

for u 2 H 1
L

�
Rdn�� as a functional on C10

�
Rd
�
.

The derivation of (2.122) can be done in complete analogy for u 2 H 1
L

�
Rd
�

with compact support and v 2 C1 �Rd
�
.

Proposition 2.7.13. If u 2 H 1
L

�
Rdn�� has compact support, (2.122) still holds

when considered as a functional on C1
�
Rd
�
.

2.8 Solution Operator

Let 
 be a bounded Lipschitz domain with L as in (2.98). Then the modified
differential operatoreL can be defined by

eL WD LC �; (2.123)
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where � � 0will be determined at a later stage.B .�; �/ denotes the sesquilinear form
from (2.102) and eB D B C � .�; �/L2.�/. For given boundary values ' 2 H 1=2 .�/

we consider the homogeneous Dirichlet problem: Find u 2 H 1 .
/ with �0u D '

and
eB .u; v/ D 0 8v 2 H 1

0 .
/ : (2.124)

Proposition 2.8.1. Every solution of (2.124) that satisfies u 2 H 1
L .
/ solves the

homogeneous equation
eLu D 0 in 
: (2.125)

Solutions of (2.125) are called eL-harmonic.
Proof. From Lu 2 L2

comp .
/ and u 2 L2
loc .
/ D L2 .
/ (see Remark 2.6.2.b) we

haveeLu D LuC�u 2 L2
comp .
/ and therefore u 2 H 1

QL .
/. By using (2.110) with

L eL and �0v 	 0 for all v 2 H 1
0 .
/ we obtain the assertion. �

By using the trace extension Z� from Definition 2.6.11 the problem (2.124)
can be transformed into an inhomogeneous Dirichlet problem with homogeneous
boundary conditions. We set u1 WD Z�' and u0 D u � u1. We apply this approach
in (2.124) and thus obtain the equation that determines u0: Find u0 2 H 1

0 .
/ with

eB .u0; v/ D �eB .u1; v/ 8v 2 H 1
0 .
/ : (2.126)

We will show in Lemma 2.10.1 that

ReB .u; u/ � c kuk2H 1.�/ � C kuk2L2.�/

holds with constants c > 0,C 2 R that do not depend on u 2 H 1
0 .
/. The choice of

� > C therefore implies that the modified sesquilinear formeB is elliptic inH 1
0 .
/.

We will also prove the continuity in Lemma 2.10.1. According to the Lax–Milgram
lemma (Lemma 2.1.51) problem (2.126) has a unique solution u0, which satisfies
the inequality

ku0kH 1.�/ � C ku1kH 1.�/ :

By using the continuity of the extension operator (see Theorem 2.6.11) one can
deduce that

kukH 1.�/ � ku0kH 1.�/ C ku1kH 1.�/ � .1C C/ kZ�'kH 1.�/ � eC k'kH 1=2.
/ :

With these results, the existence of a continuous solution operator T W H 1=2 .�/!
H 1 .
/ that maps the Dirichlet data ' 2 H 1=2 .�/ to the solution u of problem
(2.124) has been shown. It satisfies

kT kH 1.�/ H 1=2.
/ � eC .

Since eLT u 	 0 the mapping T W H 1=2 .�/ ! H 1
L .
/ is also continuous. It

follows from the mapping properties of T that the operator �1T is well defined.
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This operator maps the trace of an eL-harmonic function to its conormal derivative
and is called Steklov–Poincaré operator. The mapping properties of �1 and T imply
that

�1T W H 1=2 .�/! H�1=2 .�/ :

This result can be generalized to a larger scale of orders of differentiation.

Theorem 2.8.2. Let 
 be a bounded Lipschitz domain. Then for �1=2 � s � 1=2,
both the Steklov–Poincaré operator

�1T W H 1=2Cs .�/! H�1=2Cs .�/

and, for �1=2 < s < 1=2, the solution operator T

T W H 1=2Cs .�/! H 1Cs .
/

are continuous.

A proof of the first assertion can be found in [166, Chap. 5, Theorem 1.3,
Lemma 1.4] (see also [72, Lemma 3.7] or [162, Theorem 4.25]). The second
assertion is proven in [72, Lemma 4.2].

The solution operator allows us to show that the conormal operator is also
continuous for a scale of Sobolev spaces.

Theorem 2.8.3. We use the notations from Convention 2.7.2. The conormal trace
operators

��1 W H sC1
L .
�/! H s�1=2 .�/ ;

�C1 W H sC1
L

�

C

�! H s�1=2 .�/

are continuous for �1=2 < s < 1=2.

Proof. Due to Remark 2.7.9 we only need to consider the caseLuD� div .A grad u/.
We begin by considering the interior problem. For u 2 H 1

L .

�/ and ' 2

H 1=2 .�/ we set v WD T '. We then use Remark 2.7.11 in which we replace L
by eL. With eL� D eL, eLT ' D 0 and f��1 D ��1 we get

�
��1 u; '

�
L2.
/

D ��0u; ��1 T '
�

L2.
/
� �eLu; T '

�
L2.��/

: (2.127)

By using the dual operators T 0 and .�1T /
0 we obtain the representation

��1 D
�
��1 T

�0
�0 � T 0eL:

To obtain the first assertion we combine �0 W H 1Cs
loc .
�/ ! H 1=2Cs .�/ with

.�1T /
0 W H 1=2Cs .�/ ! H s�1=2 .�/. For the second term we use eL W H 1Cs

L .
�/
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! L2 .
�/, L2 .
�/ � �H 1�s .
�/
�0

for all �1=2 < s < 1=2 with a continuous

and dense embedding and finally T 0 W �H 1�s .
�/
�0 ! H�1=2Cs .�/.

The continuity of �C1 for the exterior problem is proven by localization (see The-
orem 2.6.7b). Let 
1 2 C1comp

�

C

�
be an arbitrary cut-off function that is equal to 1

in a neighborhood of � . We need to show the following:

���C1 .
1w/
��

H s�1=2.
/
� C k
1wk

H
sC1
L .�C/ 8w 2 H sC1

L

�

C

�
: (2.128)

We choose a sufficiently large, open ball BR with

supp
1 [
� � BR:

Let 
2 2 C10
�
Rd
�

be another cut-off function with supp
2 � BR and 
2 	 1 on
supp
1.

We set 
CR WD BR \
C and define the solution operator T with respect to the
Lipschitz domain
CR with prescribed boundary conditions ' 2 H 1=2 .�/ and zero
boundary conditions on @BR.

As before, we choose ' 2 H 1=2 .�/ and in this case set v WD 
2T '. For an
arbitrary w 2 H 1

L

�

C

�
we define u WD 
1w and observe that u; v 2 H 1

L

�

C

�
.

It should be noted that, taking Remark 2.7.11 into consideration, the traces of
u and v are zero on the outer boundary @BR . Furthermore, we have

�
u;eL�v

�
L2.�C/ D

�

1w;eL.
2T '/

�
L2.�C/ D

�

1w;eL .
2T '/

�
L2.�C\supp 	1/

D �
1w;eLT '
�

L2.�C\supp 	1/
D 0:

and

�eLu; v
�
L2.
C/ D

�eLu; T '
�
L2.
C

\supp
1/
D �eLu; T '

�
L2
�



C

R

� D �T 0eLu; '
�
L2.�/

:

By Remark 2.7.11 we then obtain

�
�C1 u; �0v

�
L2.
/

D ��0u; �C1 .
2T '/
�

L2.
/
C �T 0eLu; '

�
L2.
/

:

By using �C1 
2T ' D �C1 T ' (see Corollary 2.7.8) we obtain the representation

�C1 u D T 0eLuC ��C1 T
�0
�0u

as a functional on H 1=2 .�/. In the same way as was done for the interior problem
we can now deduce the estimate (2.128) for u D 
1w. �

In order to prove the mapping properties of boundary integral operators we
will need dense subspaces of the Sobolev spaces H s .�/. The relevant results are
summarized in the following lemma.
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Lemma 2.8.4. We assume the same conditions as in Theorem 2.6.8:

(a) The trace mapping �0 maps C10
�
Rd
�

to a dense subspace of H 1=2 .�/.
(b) The trace mapping .�0; �1/ maps C10

�
Rd
�

to a dense subspace of H 1=2 .�/�
H�1=2 .�/.

The proof can be found in, e.g., [72, Lemma 3.5].

2.9 Elliptic Boundary Value Problems

We introduced boundary value problems for the Laplace operator in Chap. 1. In this
section we will treat the boundary value problems related to the operator

Lu D � div .A grad u/C 2 hb; grad ui C cu

[see (2.98)]. In general, we will assume that the space is of dimension d D 3.
The trace and conormal operators �0, �1 on the boundary � of a bounded Lips-
chitz domain 
� � R3 were introduced in Theorem 2.6.8 and (2.103) as well as
Definition 2.7.6.

For sufficiently smooth functions u 2 C 0
�


�

and v 2 C 1
�


�

these can be
written as

�0u D uj
 and �1v D hAn; .grad v/j
i :

2.9.1 Classical Formulation of Elliptic Boundary Value Problems

First we will present the classical (or strong) formulation of elliptic boundary value
problems, after which we will introduce the relevant variational formulations. We
will use the notation from Convention 2.7.2.

2.9.1.1 Interior Dirichlet Problem (IDP)

For a given f 2 C 0 .
�/ and gD 2 C 0 .�/ find u 2 C 2 .
�/ \ C 0
�

�

�
such

that
Lu D f in 
�;

u D gD on �:
(2.129)

2.9.1.2 Interior Neumann Problem (INP)

For a given f 2 C 0 .
�/ and gN 2 C 0 .�/ find u 2 C 2 .
�/ \ C 1
�

�

�
such

that
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Lu D f in 
�;
�1u D gN on �:

(2.130)

2.9.1.3 Interior Mixed Boundary Value Problem (IMP)

Let � be partitioned into relatively open, non-empty subsets �D and �N , i.e.,

� D �D [ �N ; �D \ �N D ;;

where we assume that the surface measure j�Dj > 0. For a given right-hand side
f 2 C 0 .
�/ and boundary data gD 2 C 0 .�D/ and gN 2 C 0 .�N /, find u 2
C 2 .
�/ \ C 0

�

�

�\ C 1 .
� [ �N / such that

Lu D f in 
�;
u D gD on �D;

�1u D gN on �N :

(2.131)

2.9.1.4 Exterior Dirichlet Problem (EDP)

In order to formulate the exterior boundary value problem one needs to prescribe the
boundary conditions on � as well as the behavior of the solution at infinity. For the
strong formulation we will only present these decay or radiation conditions, which
depend on the coefficients of the differential operator L, for the case c � 0 [see
(2.98)] and for the Helmholtz equation.

Let c � 0 for the coefficient c in L. Then the decay conditions are given by

ju .x/j � C kxk�1 for kxk ! 1: (2.132)

We consider the Helmholtz operatorLu D ��u� k2u and a positive wave number
k > 0. For these we impose Sommerfeld’s radiation conditions

ju .x/j � C kxk�1

ˇ̌
ˇ
ˇ
@u

@r
� iku

ˇ̌
ˇ
ˇ � C kxk�2

9
>>=

>>;
for kxk ! 1: (2.133)

Here @u=@r D hx= kxk ;rui denotes the radial derivative.
The radiation condition (2.133) describes outgoing waves. Time-harmonic

incoming waves can be described analogously. In this case in (2.133) k is simply
replaced by �k.

For a given f 2 C 0
�

C

�
and gD 2 C 0 .�/ find u 2 C 2

�

C

�\ C 0
�

C [ ��

such that
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Lu D f in 
C;
u D gD on �;

u satisfies



.2.132/
.2.133/

if c � 0;
for the Helmholtz problem.

(2.134)

2.9.1.5 Exterior Neumann Problem (ENP)

For a given f 2 C 0
�

C

�
and gN 2 C 0 .�/ find u 2 C 2

�

C

� \ C 1
�

C [ ��

such that
Lu D f in 
C;
�1u D gN on �;

u satisfies



.2.132/
.2.133/

if c � 0;
for the Helmholtz problem.

(2.135)

2.9.1.6 Exterior Mixed Boundary Value Problem (EMP)

Let � be partitioned into relatively open, disjoint, non-empty subsets �D and �N ,
i.e.,

� D �D [ �N and j�N j > 0; j�D j > 0:
For a given right-hand side f 2 C 0

�

C

�
and boundary data gD 2 C 0 .�D/ and

gN 2 C 0 .�N / find u 2 C 2
�

C

� \ C 0
�

C [ �D

� \ C 1
�

C [ �N

�
such that

Lu D f in 
C;
u D gD on �D;

�1u D gN on �N ;

u satisfies



.2.132/
.2.133/

if c � 0;
for the Helmholtz problem.

(2.136)

2.9.1.7 Transmission Problem (TP)

Finally, we want to formulate the transmission problem. The differential equation is
considered in both the interior and the exterior domain and appropriate transmission
conditions are imposed on the common boundary � D @
C D @
�. The differ-
ential operators in the interior and exterior domain need not be the same, which is
why we denote the differential operator in the interior domain by L� and for the
exterior domain
C by LC. The relevant coefficients for s 2 f�;Cg are denoted by
As , bs , cs .

For a given right-hand side f D �
f �; f C

�
with f s 2 C 0 .
s/ for s 2 f�;Cg

and transmission data gD 2 C 0 .�D/, gN 2 C 0 .�N /, the aim is to find u D�
u�; uC

�
with us 2 C 2 .
s/ \ C 1 .
s [ �/ for s 2 f�;Cg such that
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Lsus D f s in 
s for s 2 f�;Cg
Œu	 D gD on �;
Œ�1u	 D gN on �;

uC satisfies



.2.132/
.2.133/

if c � 0;
for the Helmholtz problem.

(2.137)

2.9.2 Variational Formulation of Elliptic Boundary
Value Problems

One of the decisive disadvantages of the strong formulation of boundary value prob-
lems is that questions concerning existence and uniqueness cannot be answered in
a satisfactory way. We can overcome these difficulties by choosing a variational
formulation in appropriate function spaces instead. In order to do this we multiply
the differential equation by a test function and then integrate over 
. If we then
use integration by parts, the boundary conditions can directly be incorporated in
the variational formulation. The solution of the variational problem is called a weak
solution. In contrast to the strong formulation, the solutions are either sought or
given in Sobolev spaces. We will show in Sect. 2.9.3 that if the solution to the vari-
ational problem is sufficiently smooth, it coincides with the classical solution. We
briefly review the formal definition of the sesquilinear form B from (2.102), which
will appear in the variational formulation

B .u; v/ D
Z

�

�˝
A grad u; grad v

˛C 2 hb; grad ui vC cuv
�
dx:

For some of the boundary value problems that are to follow, the coefficients A, b
and c will have to satisfy additional conditions.

2.9.2.1 Interior Dirichlet Problem (IDP)

First we suppose that the function u in (2.129) is sufficiently smooth. More specif-
ically, this means that u 2 H 1

L .

�/ and therefore f 2 L2 .
�/. We multiply

(2.129) by the functions v 2 C10 .
�/ and integrate over 
�. The conditions we
imposed on u and v allow us to apply Green’s formula (2.110)

B .u; v/� .�1u; �0v/L2.
/ D .f; v/L2.��/ :

If we set �0v D 0 we obtain

B .u; v/ D .f; v/L2.�/ 8v 2 H 1
0 .


�/ : (2.138)
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Since
F .v/ D .f; v/L2.��/ (2.139)

the right-hand side in (2.138) defines a functional on H 1
0 .


�/. Equation (2.138) is
also valid for functions u; v 2 H 1 .
�/. This leads us to the

Variational formulation of the interior Dirichlet problem (2.129): For a given
F 2 H�1 .
�/ and gD 2 H 1=2 .�/ find u 2 H 1 .
�/ with ��0 u D gD on � such
that

B .u; v/ D F .v/ 8v 2 H 1
0 .


�/ : (2.140)

Solutions of (2.140) that are not in C 2 .
�/ are called weak solutions. Con-
versely, solutions that are in u 2 C 2 .
�/ \ H 1

0 .

�/ are called strong solutions.

By using the trace extension Z� (see Remark 2.6.12) the problem can be formu-
lated as a homogeneous Dirichlet problem. We set u1 WD Z�gD and suppose that
u D u0 C u1. Then the unknown function u0 is the solution to the problem: Find
u0 2 H 1

0 .

�/ such that

B .u0; v/ D F .v/� B .u1; v/ 8v 2 H 1
0 .


�/ : (2.141)

2.9.2.2 Interior Neumann Problem (INP)

In the case of Neumann boundary conditions it is not the trace but the conor-
mal derivative of the solution that is given. Therefore we use the function space
H 1 .
�/. We then multiply by a test function and apply Green’s formulas which
gives us

B .u; v/ D F .v/ (2.142)

for all v 2 H 1 .
�/. In general, F is a given functional from
�
H 1 .
�/

�0
. If the

boundary data in (2.130) is given, with f 2 �H 1 .
�/
�0

and gN 2 H�1=2 .�/, the
associated functional is given by

F .v/ WD .f; v/L2.��/ C .gN ; �0v/L2.
/ : (2.143)

2.9.2.3 Interior Mixed Boundary Value Problem (IMP)

In the case of the mixed boundary value problem, the trace of the solution is given on
the Dirichlet boundary �D � � with j�Dj > 0. This fact is the motivation behind
the definition of the Sobolev space

H 1
D .


�/ WD ˚v 2 H 1 .
�/ W v D 0 on �D in the sense of traces
�
:

Again we multiply the differential equation by test functions v from H 1
D .


�/ and
integrate over
�. By applying Green’s formula (2.110) we obtain
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B .u; v/ D .f; v/L2.��/ C .�1u; �0v/L2.
/ :

Since v vanishes on �D and �1u D gN on �N , we obtain

.�1u; �0v/L2.
/ D .gN ; �0v/L2.
N / :

The variational formulation for the interior mixed boundary value problem reads:
Find u 2 H 1 .
/ with �0u D gD on �D such that

B .u; v/ D F .v/ 8v 2 H 1
D .


�/ : (2.144)

For given data f 2 �H 1
D .
/

�0
and gN 2 H�1=2 .�N /, F is defined by

F .v/ WD .f; v/L2.��/ C .gN ; �0v/L2.
N / : (2.145)

By using an arbitrary trace extension u1 2 H 1 .
�/, i.e., �0u1 D gD on �D , we
can apply the approach u D u0C u1. The function u0 is the solution of the equation
with homogeneous Dirichlet boundary conditions: Find u0 2 H 1

D .

�/ with

B .u0; v/ D F .v/� B .u1; v/ 8v 2 H 1
D .


�/ : (2.146)

2.9.2.4 Function Spaces for Exterior Problems

We now move on to exterior problems. In principle we approach the problem in the
same way as for interior problems. However, now we have to consider the decay
conditions, which have to be formulated within the definition of the function spaces
in a suitable way. We achieve this by introducing suitable weight functions in the
definition of the Sobolev spaces. These characterize the behavior of the functions at
infinity and depend on the differential operatorL under consideration. The notation
H 1

�
L;
C

�
makes this dependency evident. The applied weight function should,

on the one hand, guarantee the existence and uniqueness of the solution of the vari-
ational problem. On the other hand it should also imply that the weak solution
also solves the strong formulation of the boundary value problem, possibly after
imposing certain conditions on the smoothness. In the following we will specify the
relevant function spaces for the general differential operator with a positive reaction
component (c > 0) and for the Laplace and Helmholtz operators. The variational
formulation requires different trial and test spaces for the Helmholtz problem. The
trial space will always be denoted by H 1 .L;
/ and the test space by H 1

T .L;
/.

General Differential Operator with c > 0

If, in the general differential operator L from (2.98) the component c > 0, then the
weighted and non-weighted Sobolev spaces coincide:
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H 1
�
L;
C

� WD H 1
�

C

�
and H 1

0

�
L;
C

� WD H 1
0

�

C

�
:

We define the norm appropriately k�kH 1.L;�C/ WD .�; �/1=2

H 1.L;�C/
with the usual

inner product

.u; v/H 1.L;�C/ WD
Z

�C

.hru;rvi C uNv/ dx: (2.147)

The trial and test spaces coincide: k�kH 1
T .L;�C/ WD k�kH 1.L;�C/, H

1
T

�
L;
C

� WD
H 1

�
L;
C

�
and H 1

T;0

�
L;
C

� WD H 1
0

�
L;
C

�
.

Laplace Operator

The differential equation for the Laplace operator L D �� leads to the Poisson
equation

��u D f in 
C:

For sufficiently smooth functions u; v 2 C1comp

�

C

�
[see (2.75)] we can define the

inner product

.u; v/H 1.L;�C/ WD
Z

�C

�
hru;rviC uv

1C kxk2


dx (2.148)

as well as the norm kukH 1.L;�C/ WD .u; u/1=2

H 1.L;�C/
. For L D �� the weighted

Sobolev spaces H 1
�
L;
C

�
and H 1

0

�
L;
C

�
are given by the closures of the

spaces C1comp

�

C

�
and C10

�

C

�
respectively, with respect to the norm

k�kH 1.L;�C/ in (2.148).
The trial and test spaces coincide for the Laplace problem: k�kH 1

T .L;�C/ WD
k�kH 1.L;�C/, H

1
T

�
L;
C

� WD H 1
�
L;
C

�
andH 1

T;0

�
L;
C

� WD H 1
0

�
L;
C

�
.

Remark 2.9.1. SinceH 1
�

C

� � H 1
�
L;
C

�
in the case of the Laplace operator,

one could also formulate the exterior boundary value problem in H 1
�

C

�
. How-

ever, as functions that satisfy the classical decay conditions (2.132) in general are
not in H 1

�

C

�
, the solutions of the variational problem would be “unphysical”.

In contrast, the space H 1
�
L;
C

�
allows for solutions with a physically correct

behaviorO
�
kxk�1

�
for kxk ! 1.

For aminc > kbk2 [see (2.99)] the physically relevant solutions show exponential
decay for kxk ! 1 (see Lemma 3.1.9) and so the Sobolev space H 1

�

C

�
can be

used for the formulation of the relevant variational problem.

Remark 2.9.2. For every bounded, open domain ! � 
C the spaces H 1 .L; !/

and H 1 .!/ coincide as sets and the norms are equivalent. We have the same
assertion for the spacesH 1

0 .L; !/ and H 1
0 .!/:
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Helmholtz Equation

The Helmholtz equation is given by

Lku WD ��u � k2u D f in 
C:

Let � .r/ WD 1 C r2 and Q� WD ��1. For sufficiently smooth functions u; v 2
C1comp

�

C

�
the inner product can be defined as

.u; v/�;H 1.L;�C/ WD
Z

�C

 
hru;rvi C uv

� .kxk/ C
�
@u

@r
� iku


�
@v

@r
� ikv


!

dx

(2.149)
(see [154, 170]). The norm is given by kukH 1.L;�C/ WD .u; u/1=2

�;H 1.L;�C/
. The

weighted Sobolev spaces H 1
�
L;
C

�
and H 1

0

�
L;
C

�
are the closures of the

spaces C1comp

�

C

�
and C10

�

C

�
respectively, with respect to the norm

k�kH 1.L;�C/ :

The associated test spaces H 1
T

�
L;
C

�
and H 1

T;0

�
L;
C

�
are the closures

of the spaces C1comp

�

C

�
and C10

�

C

�
respectively, with respect to the norm

kukH 1
T .L;�C/ WD .u; u/1=2

H 1
T .L;�C/

WD .u; u/1=2

Q�;H 1.L;�C/
.

Remark 2.9.3. We have introduced the weighted Sobolev spaces

H1
�
L;
C

�
WD C1

comp

�

C

�k�k
H1.L;
C/ and H1

0

�
L;
C

�
WD C1

0

�

C

�k�k
H1.L;
C/

H1
T

�
L;
C

�
WD C1

comp

�

C

�k�k
H1T .L;
C/ and H1

T;0

�
L;
C

�
WD C1

0

�

C

�k�k
H1T .L;
C/

for the general differential operator L from (2.98) with c > 0, as well as for the
Laplace and Helmholtz operators. The norms are the square roots of the inner
products from:

	 Equation (2.147) for the general differential operator L from (2.98) with c > 0
	 Equation (2.148) for the Laplace operator
	 Equation (2.149) for the Helmholtz operator

2.9.2.5 Exterior Dirichlet Problem (EDP)

Let L again be the general differential operator from (2.98) with c > 0 or the
Laplace or Helmholtz operator and letH 1

�
L;
C

�
,H 1

T

�
L;
C

�
andH 1

0

�
L;
C

�
,

H 1
T;0

�
L;
C

�
be as in Remark 2.9.3.

We obtain the variational formulation of the exterior Dirichlet problem by mul-
tiplying the differential equation in the strong formulation (2.134) by test functions
v 2 C10

�

C

�
. We can apply Green’s formula (Theorem 2.7.7) under the condition

that u 2 H 1
L

�

C

�
and we then have



84 2 Elliptic Differential Equations

B .u; v/ D
Z

�C

f vdx:

The sesquilinear form B can be extended to H 1
�
L;
C

� � H 1
T;0

�
L;
C

�
. The

variational formulation of the exterior Dirichlet problem then reads: Let F 2�
H 1

T;0

�
L;
C

��0
and gD 2 H 1=2 .�/ be given. Find u 2 H 1

�
L;
C

�
with

u D gD on � such that

B .u; v/ D F .v/ 8v 2 H 1
T;0 .L;
/ : (2.150)

If we consider the strong formulation (2.134) the functional F is defined as

F .v/ WD .f; v/L2.�C/ : (2.151)

Here we assume that f is sufficiently smooth, so that the right-hand side in (2.151)
exists for all v 2 H 1

0

�
L;
C

�
.

We can also transform this problem into one with homogeneous boundary con-
ditions by applying a trace extension. We do this by choosing a function u1 2
H 1 .L;
/ with u1 D gD and by then applying the approach u D u0 C u1. The
unknown function u0 is then the solution of the homogeneous Dirichlet problem:
Find u0 2 H 1

0

�
L;
C

�
such that

B .u0; v/ D F .v/� B .u1; v/ 8v 2 H 1
T;0

�
L;
C

�
: (2.152)

2.9.2.6 Exterior Neumann Problem (ENP)

Let L again be the general differential operator from (2.98) with c > 0 or the
Laplace or Helmholtz operator and letH 1

�
L;
C

�
,H 1

T

�
L;
C

�
andH 1

0

�
L;
C

�
,

H 1
T;0

�
L;
C

�
be as in Remark 2.9.3.

In this case we multiply the differential equation in the strong formulation (2.135)
by test functions from C1comp

�

C

�
and then apply Green’s second formula from

Theorem 2.7.7. We then have

B .u; v/ D
Z

�C

f vdxC
Z




gN vdsx;

where �1u has already been replaced by the Neumann data gN . The sesquilinear
form B can be extended to H 1

�
L;
C

� � H 1
T

�
L;
C

�
. The variational problem

then becomes: For a given F 2 �H 1
T

�
L;
C

��0
find u 2 H 1

�
L;
C

�
such that

B .u; v/ D F .v/ 8v 2 H 1
T

�
L;
C

�
: (2.153)
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Combined with sufficiently smooth data gN and an f [see (2.135)] which is known,
the functional F is given by

F .v/ WD
Z

�C

f vdxC
Z




gN vdsx: (2.154)

2.9.2.7 Exterior Mixed Boundary Value Problem (EMP)

Let L again be the general differential operator from (2.98) with c > 0 or the
Laplace or Helmholtz operator and letH 1

�
L;
C

�
,H 1

T

�
L;
C

�
andH 1

0

�
L;
C

�
,

H 1
T;0

�
L;
C

�
be as in Remark 2.9.3.

Let � be decomposed into �D and �N as in (2.136). The relevant function space
is given by

H 1
D

�
L;
C

� WD ˚u 2 H 1
�
L;
C

� W u D 0 on �D in the sense of traces
�
:

The variational formulation of the exterior mixed boundary value problem then

reads: For F 2
�
H 1

T;D

�
L;
C

��0
find u 2 H 1

�
L;
C

�
with u D gD on �D

such that
B .u; v/ D F .v/ 8v 2 H 1

T;D

�
L;
C

�
: (2.155)

For the strong formulation the functional F is given by

F .v/ WD
Z

�C

f vdxC
Z


N

gN vdsx 8v 2 H 1
T;D

�
L;
C

�
: (2.156)

By means of a trace extension u0 2 H 1
�
L;
C

�
that satisfies u0 D gD on �D , this

problem can again be transformed into a homogeneous boundary value problem,
although we will not go into detail here.

2.9.2.8 Transmission Problem (TP)

For s 2 f�;Cg the differential operator Ls refers to the domain 
s (see
Sect. 2.9.1.7). Let LC be the general differential operator from (2.98) with cC > 0

or the Laplace or Helmholtz operator and let H 1
�
LC; 
C

�
, H 1

T

�
LC; 
C

�
and

H 1
0

�
LC; 
C

�
, H 1

T;0

�
LC; 
C

�
be as in Remark 2.9.3.

In order to derive the variational formulation we multiply (2.137) by functions
v 2 C10

�
Rd
�

and integrate over 
� [
C. The conditions for u and v allow us to
apply Green’s formula (2.110)

B� .u; v/C BC .u; v/ D .f; v/L2.Rd / � .gN ; �0v/L2.
/ : (2.157)
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The sesquilinear form is well defined for functions u D �
u�; uC

�
, v D �

v�; vC
� 2

H 1 .
�/ �H 1
�
L;
C

�
that satisfy Œv	 D 0. We define the closed subspace W �

H 1 .
�/ �H 1
T

�
L;
C

�
and the associated test space eW as

W WD ˚u D �u�; uC� 2 H 1 .
�/ �H 1
�
L;
C

� W Œu	 D 0� ;
eW WD ˚v D �v�; vC� 2 H 1

T .

�/ �H 1

T

�
L;
C

� W Œv	 D 0� : (2.158)

The norm onW is given by kukW WD
n
ku�k2H 1.��/

C ��uC
��2

H 1.L;�C/

o1=2

and the

norm kuk QW is defined analogously.
Then the variational formulation of the transmission problem (2.137) reads: Let

F 2 eW 0 and gD 2 H 1=2 .�/ be given. Find u 2 H 1 .
�/ � H 1
�
L;
C

�
with

Œu	 D gD such that

B� .u; v/C BC .u; v/ D F .v/ 8v 2 eW : (2.159)

For the strong formulation (2.137) the functionalF is defined by the right-hand side
of (2.157) for sufficiently smooth f and g.

2.9.3 Equivalence of Strong and Weak Formulation

The variational formulation was derived from the strong formulation by multiplying
it by test functions, integrating and then integrating by parts.

In this section we will discuss whether the solution of the variational problem is
also a solution of the strong formulation of the boundary value problem. To do this
we have to integrate back by parts in the variational formulation. However, the con-
ditions in Theorem 2.7.7 require that u 2 H 1

L .
/. In general, a weak solution does
not satisfy these conditions. If the weak solution is to solve the strong formulation
an additional regularity condition u 2 H 1

L .
/ has to be fulfilled.

2.9.3.1 Interior Problems

Let u be the solution of one of the interior problems: IDP (2.140) with right-hand
side (2.139), INP (2.142) with right-hand side (2.143) or IMP (2.144) with right-
hand side (2.145). In the derivation we make the following assumption.

Assumption 2.9.4. For the variational problem we have:

(a) 
� is a Lipschitz domain.
(b) The weak solution satisfies u 2 H 1

L .

�/ and in the case of a Neumann problem

�1u 2 L2 .�/.
(c) The functional on the right-hand side is defined by (2.139), (2.143) or (2.145)

with f 2 L2 .
�/ and gN 2 L2 .�/.
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The condition u 2 H 1
L .


�/ allows us to apply Theorem 2.7.7, which in turn
allows us to undo the integration by parts. Therefore the weak solution u satisfies

.Lu � f; v/L2.��/ D 0 8v 2 V;

with

V WD
8
<

:

H 1
0 .


�/ for (2.140),
H 1 .
�/ for (2.142),
H 1

D .

�/ for (2.144).

Assumptions 2.9.4.a and b imply thatLu�f 2 L2 .
�/. SinceH 1
0 .


�/ is densely
embedded intoL2 .
�/ (see Proposition 2.5.2) the embeddingV � L2 .
�/ is also
dense. Therefore there exists a sequence .vn/n � V � L2 .
�/ with vn ! Lu� f
in L2 .
�/ that satisfies

0 D lim
n!1 .Lu � f; vn/L2.��/ D

�
Lu � f; lim

n!1 vn

�

L2.��/
D kLu � f k2L2.��/ :

With this we have shown that if the weak solution u satisfies the additional con-
ditions u 2 H 1

L .

�/ and f 2 L2 .
�/ it also satisfies the differential equation

Lu D f almost everywhere.
For the IDP and the IMP the Dirichlet boundary conditions �0u D gD on �D are

required explicitly. Here we will only consider the INP, the proof for the IMP can
be done in the same way.

From Lu D f in L2 .
�/, (2.142) and Theorem 2.7.7 we have

0 D B .u; v/� .f; v/L2.��/ � .gN ; �0v/L2.
/

D .Lu � f; v/L2.��/ C .�1u � gN ; �0v/L2.
/

D .�1u � gN ; �0v/L2.
/

for all v 2 H 1 .
�/. Lemma 2.8.4 implies that the image of H 1 .
�/ under �0 is
dense in H 1=2 .�/ and therefore is also dense in L2 .�/. It follows that

.�1u � gN ;w/L2.
/ D 0 8w 2 L2 .�/ :

With Assumptions 2.9.4(b) and 2.9.4.c we have �1u D gN in L2 .�/.

2.9.3.2 Exterior Problems

In principle, the argument for exterior problems is the same as for interior problems.
However, Assumption 2.9.4 does not guarantee that the conditions of Theorem 2.7.7
are satisfied. In general, neither the weak solution nor the test function v 2
H 1

T

�
L;
C

�
has compact support. We will however show that under suitable condi-

tions Green’s second formula remains valid for functions that do not have compact
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support. For this we consider the following abstract situation, which has been chosen
to fit Remark 2.9.3.

Assumption 2.9.5. V WD C1comp .

C/
k�kV

and VT WD C1comp .

C/
k�kVT are the

closures of the sets of smooth functions with compact support with respect to the
norms k�kV and k�kVT

respectively, so that:

(a) V , VT are complete and satisfy V; VT � H 1
loc

�

C

�
.

(b) B W V � VT ! C is continuous.

Theorem 2.9.6. Let Assumption 2.9.5 hold for the spaces V; VT . Then Green’s
second formula is applicable for all u 2 V \H 1

L

�

C

�
and v 2 VT .

Proof. (a) Since VT � H 1
loc

�

C

�
there exists a continuous trace operator �0 W VT W

H 1=2 .�/ (see Theorem 2.6.8).

(b) For all u 2 V \H 1
L

�

C

�
and v 2 C1comp

�

C

�
we have, with Theorem 2.7.7,

Green’s second formula

.Lu; v/L2.�C/ � B .u; v/ D .�1u; �0v/L2.
/ :

The mapping .Lu; �/L2.�/ W VT ! C is continuous, since we assume that Lu
has compact support and that VT � H 1

loc

�

C

�
. Due to Assumption 2.9.5.b, the

sesquilinear form B W V � VT ! C is continuous. If, for an arbitrary v 2 VT ,
we choose a Cauchy sequence .vn/n � C1comp that converges towards v with
respect to the VT -norm we have

lim
n!1

n
.Lu; vn/L2.�C/ � B .u; vn/

o
D .Lu; v/L2.�C/ � B .u; v/ : (2.160)

On the other hand, according to Theorem 2.7.7, �1u defines a continuous
functional onH 1=2 .�/. Therefore because of (a) we have

lim
n!1 .�1u; �0vn/L2.
/ D .�1u; �0v/L2.
/ ;

which with (2.160) proves the statement. �

In order to apply this result to the exterior problem we use the function spaces
that were defined in Remark 2.9.3. We set V WD H 1

�
L;
C

�
, VT WD H 1

T

�
L;
C

�

and check the conditions from Assumption 2.9.5.

Continuity:

In Lemma 2.10.1 and Theorem 2.10.10 we will show the continuity of the sesquilin-
ear form B on H 1

�

C

�
and on H 1

���;
C�. The continuity for the Helmholtz
problem is investigated in Corollary 2.10.3.
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Embedding:

The embedding from Assumption 2.9.5.a follows for all considered differential
operators, as the weight functions only influence the behavior of the functions
f 2 W at infinity.

Therefore Assumption 2.9.5 is also satisfied and Green’s second formula is appli-
cable for u 2 H 1

L .
/ \ H 1 .L;
/ and v 2 H 1
T .L;
/. The way in which we

treated the interior problems, in this case deriving the strong formulation from the
weak formulation, can be repeated identically for the exterior problems.

Decay Condition:

In the following chapters, the solutions of the boundary value problems that have
been discussed above will be represented by means of a surface integral, from which
the decay conditions for the Laplace operator, Helmholtz operator and the general
elliptic operator with c > 0 can be deduced immediately [see (3.22) and (3.23)].
The Sommerfeld radiation conditions for the solution of the Helmholtz problem are
discussed with the help of the integral representation in Exercise 3.1.15.

2.10 Existence and Uniqueness

In the previous section we formulated interior and exterior elliptic boundary value
problems as variational problems. We will now give the most important results on
existence and uniqueness. Since the focus of this book is on integral equations
for elliptic boundary value problems, we will not elaborate the analysis of elliptic
differential equations. Instead we will refer to the appropriate textbooks. First we
will prove the continuity and coercivity of the sesquilinear form B for the interior
problem.

Lemma 2.10.1. Let 
 2 ˚
�; 
C�. The sesquilinear form B .�; �/ as in (2.102) is
continuous and there exist positive constants C1, C2 such that

ReB .u; u/ � C1 kuk2H 1.�/
� C2 kuk2L2.�/

8u 2 H 1 .
/ :

Therefore B is coercive on H 1 .
/ for 
 D 
�.

Proof. Let amax (amin) be the largest (smallest) eigenvalue of the matrix A. Then,
with the notation (2.79), we have for all u; v 2 H 1 .
/

jB .u; v/j �
Z

�

.amax kruk krvk C 2 kbk kruk jvj C jcj juj jvj/ dx
� amax jujH 1.�/ jvjH 1.�/ C 2 kbk jujH 1.�/ kvkL2.�/

C jcj kukL2.�/ kvkL2.�/

� 3max famax; 2 kbk ; jcjg kukH 1.�/ kvkH 1.�/:
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For the proof of the coercivity we use for arbitrary ı; " > 0

ReB .u; u/ � amin juj2H 1.�/
� kbk

�
ı juj2H 1.�/

C ı�1 kuk2L2.�/

�
C c kuk2L2.�/

� .amin � ı kbk/ juj2H 1.�/
C" kuk2L2.�/

C �c � kbk ı�1 � "� kuk2L2.�/
:

We now choose 0 < " < amin and set ı WD .amin � "/ = kbk if kbk ¤ 0 and
ı WD C1 otherwise. We then have

ReB .u; u/ � " kuk2H 1.�/
C �c � kbk ı�1 � "� kuk2L2.�/

: (2.161)

If 
 D 
� the compact embedding L2 .
/ ,! H 1 .
/ (see Theorem 2.5.5)
implies the coercivity. �

In Corollary 2.10.2 the quotient space H 1 .
�/ =K appears. Its equivalence
classes consist of functions in H 1 .
�/ that only differ by a constant. A norm on
this space is given by

kukH 1.��/=K WD inf
c2R
ku � ckH 1.��/ : (2.162)

Corollary 2.10.2. (a) The result from Lemma 2.10.1 also holds for every subspace
of H 1 .
�/.

(b) The sesquilinear form is elliptic on H 1 .
�/ if we have aminc > kbk2.
(c) For b D 0 and c D 0, the sesquilinear form B� is elliptic onH 1

0 .

�/.

(d) For b D 0 and c D 0, the sesquilinear form B� is elliptic onH 1 .
�/ =K.
(e) The inequality (2.161) also holds for the exterior problem, i.e., 
 D 
C and

B D BC. Therefore, for aminc > kbk2, the sesquilinear form BC is elliptic on
H 1

�

C

�
and, consequently, on every subspace.

Proof. Statements (a), (b) and (e) follow directly from the proof of the previous
lemma.

(c): Here we use Theorem 2.5.7 and obtain

ReB .u; u/ � amin juj2H 1.��/
� C kuk2H 1.��/

8u 2 H 1
0 .


�/ :

Statement (d) follows from the second Poincaré inequality (Corollary 2.5.10)

kuk2H 1.��/=K � C juj2H 1.��/ � C=amin ReB .u; u/ 8u 2 H 1 .
�/ =K.

�

Corollary 2.10.3. The sesquilinear form of the exterior Helmholtz problem is con-
tinuous.

Proof. If we use the explicit representation of the sesquilinear form of the Helmholtz
equation and apply the Cauchy–Schwarz inequality, we obtain for all u 2 H 1
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�
L;
C

�
and v 2 H 1

T

�
L;
C

�
the continuity

B .u; v/ D
Z

�C

�hru;rNvi � k2uNv� dx � jujH 1.�C/ jvjH 1.�C/

C k2
��
�u��1=2

��
�

L2.�C/

��
�v�1=2

��
�

L2.�C/

� �1C k2
� kukH 1.L;�C/ kvkH 1

T .L;�C/ :

�

By combining Lemma 2.10.1 and Corollary 2.10.2 with the results from
Sect. 2.1.6 one obtains the existence and uniqueness of the solution for the boundary
value problems from Sect. 2.9.2.

2.10.1 Interior Problems

We first prove the results on existence and uniqueness for interior problems.

2.10.1.1 Interior Dirichlet Problem

The following theorem will demonstrate that the Fredholm alternative always holds
for the Dirichlet interior problem. Furthermore, if the coefficients of the differential
operator satisfy suitable conditions, the Lax–Milgram lemma guarantees the exis-
tence and uniqueness of the solution.

Theorem 2.10.4. We consider the IDP [see (2.140)] and assume that the func-
tional F is defined as in (2.139) and that we have gD 2 H 1=2 .�/ for the boundary
data:

1. The Fredholm alternative is applicable: Either, for every right-hand side F 2
H 1

0 .

�/0 and boundary data gD 2 H 1=2 .�/, the problem (2.140) has a unique

solution u 2 H 1
0 .


�/ that depends continuously on the right-hand side, i.e.,

kukH 1.��/ � C
�
kF kH 1

0
.��/0 C kgDkH 1=2.
/

�

or zero is an eigenvalue of the operator associated with B that corresponds to a
finite-dimensional eigenspace.

2. The condition aminc > kbk2 implies that the first case will always apply in the
above-mentioned alternative.

3. Statement (2) remains true if the condition aminc > kbk2 is replaced by c D
kbk D 0.
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Proof. For 1: We use the approach u D u0 C u1 with the trace extension u1 WD
Z�gD . The right-hand side in (2.141) defines a continuous functional on H 1

0 .
/:

jF .v/ � B .u1; v/j �
�kF kH �1.��/ C C1 ku1kH 1.��/

� kvkH 1.��/

� �kF kH �1.��/ C C2 kgDkH 1=2.
/

� kvkH 1.��/ ;

so that the Fredholm alternative (see Theorem 2.1.60) is applicable for (2.141). The
assertion for the problem (2.140) then follows from kukH 1.��/ � ku0kH 1.��/ C
C kgDkH 1=2.
/.

For 2,3: The proof is done in the same way as in the first part. Here we combine
Corollary 2.10.2.(b),(c) with Lemma 2.1.51. �

2.10.1.2 Interior Neumann Problem

In the following theorem we will formulate results on existence and uniqueness for
the interior Neumann problem.

Theorem 2.10.5. We consider the INP (2.142), (2.143) and assume that f 2�
H 1 .
�/

�0
, gN 2 H�1=2 .�/:

1. The Fredholm alternative is applicable: Either, for every right-hand side F 2�
H 1 .
�/

�0
the problem (2.142) has a unique solution u 2 H 1 .
�/ that

depends continuously on the right-hand side [see (2.89)], i.e.,

kukH 1.��/ � C kF kH 1.��/0 � C
�
kf k.H 1.��//

0 C kgN kH �1=2.
/

�

or zero is an eigenvalue of the operator associated with B that corresponds to a
finite-dimensional eigenspace.

2. The condition aminc > kbk2 implies that the first case will always apply in the
above-mentioned alternative.

3. Let c D kbk D 0. Then there exists a solution u 2 H 1 .
�/ if and only if f and
g satisfy the relation

hf; 1iL2.��/ C hgN ; 1iL2.
/ D 0: (2.163)

The solution is unique up to a constant function. Therefore, if we restrict the
solution space to H 1 .
�/ =K, there exists, for all f 2 �H 1 .
�/

�0
and gN 2

H�1=2 .�/ that satisfy (2.163), a unique solution in H 1 .
�/ =K that depends
continuously on the data.

Proof. The proofs of (1) and (2) are similar to the proof of Theorem 2.10.4. The
proof of (3) can be found in, e.g., [162, Theorem 8.19]. �
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2.10.1.3 Interior Mixed Boundary Value Problem

We now move on to existence and uniqueness results for the interior mixed boundary
value problem [see (2.9.2.3)].

Theorem 2.10.6. The results from Theorem 2.10.4 also hold for the interior mixed
boundary value problem. Here � has to be replaced by �D and H 1

0 .

�/ by

H 1
D .


�/.

Proof. The proof of this statement is analogous to the proof of Theorem 2.10.4. To
prove the third statement we use Corollary 2.5.8. �

2.10.2 Exterior Problems

Results on existence and uniqueness for exterior problems require the use of the
weighted Sobolev spaces H 1

�
L;
C

�
that were introduced in the previous section

(see Remark 2.9.3).

2.10.2.1 General Elliptic Operator with aminc > kbk2

If we combine Corollary 2.10.2.e with the Lax–Milgram lemma we get existence
and uniqueness for the exterior boundary value problems under the condition that
aminc > kbk2. Note that in this case we haveH 1

�
L;
C

� D H 1
T

�
L;
C

�
which is

why we can omit the “
” notation.

Theorem 2.10.7. Let aminc > kbk2.

(a) EDP (2.150). For all F 2 H�1
�

C

�
and gD 2 H 1=2 .�/ there exists a unique

solution u 2 H 1
�

C

�
that depends continuously on the data, i.e.,

kukH 1.�C/ � C
�
kF kH �1.�C/ C kgDkH 1=2.
/

�
:

(b) ENP (2.153). For all F 2 �
H 1

�

C

��0
there exists a unique solution u 2

H 1
�

C

�
that depends continuously on the data, i.e.,

kukH 1.�C/ � C kF k.H 1.�C//
0 :

(c) EMP (2.155). For all F 2 �H 1
D

�

C

��0
and gD 2 H 1=2 .�D/ there exists a

unique solution u 2 H 1
D

�

C

�
that depends continuously on the data

kukH 1.�C/ � C
�
kF k.H 1

D.�C//
0 C kgDkH 1=2.
D/

�
:
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(d) TP (2.159). Let W be as in (2.158). For all F 2 W 0 and gD 2 H 1=2 .�/ there
exists a unique solution u 2 W that depends continuously on the data

kukW � C
�kF kW 0 C kgDkH 1=2.
/

�
:

Proof. The proofs for the interior problem can be directly transferred to this partic-
ular case. �

2.10.2.2 Laplace Operator

The proof of existence and uniqueness results for the Laplace operator is more elab-
orate than for the differential operator from Sect. 2.10.2.1 because of the use of the
weighted Sobolev spaces.

We begin with a few auxiliary results on the function spaces H 1
���;
C� and

H 1
0

���;
C� (see [80, Chap. XI, Part B]). For the Laplace operator the inner prod-
uct and the norm on H 1

���;
C� and H 1
0

���;
C� are defined by (2.148). We
will first show that the norms [see (2.148), (2.79)] k�kH 1.�
;�C/ and j�jH 1.�C/ are

equivalent on H 1
0

���;
C� for exterior problems. For the proof we again denote
the ball with radius a > 0 around the origin by Ba WD

˚
x 2 R3 W kxk < a� and the

exterior complement of Ba by BCa WD RdnBa.

Proposition 2.10.8. For a > 0, the norms j�j
H 1

�
B

C

a

� and k�k
H 1

�
�
;B

C

a

� are

equivalent on H 1
0

���;BCa
�
.

Proof. As C10
�
BCa

�
is dense in H 1

0

���;BCa
�

it suffices to show the equivalence
for smooth functions.

(i) The inequality juj
H 1

�
B

C

a

� � kuk
H 1

�
�
;B

C

a

� is obvious.

(ii) We will now show that kuk
H 1

�
�
;B

C

a

� � C juj
H 1

�
B

C

a

�. Obviously, we only

need to show that

Z

B
C

a

ju .x/j2
1C kxk2 dx � C juj2

H 1
�
B

C

a

� :

We introduce spherical coordinates x D r� with � D x= kxk 2 S2, where S2

denotes the unit sphere in R3. We then have

Z

B
C

a

ju .x/j2
1C kxk2 dx �

Z 1

a

Z

S2

ju .r�/j2
1C r2

r2d�dr:

For functions f .r/ that vanish for sufficiently large r and satisfy f .a/ D 0,
we have, with the help of integration by parts:
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Z 1

a

jf .r/j2 dr D �
Z 1

a

2r Re
�
f .r/ @rf .r/

�
dr (2.164)

� 2
�Z 1

a

jf .r/j2 dr

1=2 �Z 1

a

j@rf .r/j2 r2dr


1=2

,

i.e., Z 1

a

jf .r/j2 dr � 4
Z 1

a

j@rf .r/j2 r2dr:

Since u has compact support, we can choose f .r/ D u .r�/ in (2.164). We
obtain the required inequality by integrating over S2:

Z

S2

Z 1

a

ju .r�/j2
1C r2

r2drd� �
Z

S2

Z 1

a

ju .r�/j2 drd�

� 4
Z

S2

Z 1

a

j@ru .r�/j2 r2drd�

D 4
Z

B
C

a

ˇ̌
ˇ
ˇ

�
x
kxk ;ru .x/

�ˇ̌
ˇ
ˇ

2

dx � 4 juj2
H 1

�
B

C

a

� :

�

Note that the equivalence constant is independent of a.

Remark 2.10.9. The spaces H 1
0

���;
C� and H 1
���;
C� are complete by

definition. They become Hilbert spaces once we define the inner product from
(2.148) on them.

From Proposition 2.10.8 we directly have an inequality of Poincaré type for
H 1

���;
C�.
Theorem 2.10.10. j�jH 1.�C/ defines a norm onH 1

���;
C� andH 1
0

���;
C�
that is equivalent to the k�kH 1.�
;�C/ norm.

Proof. Since H 1
0

���;
C� � H 1
���;
C� we only need to prove the statement

for H 1
���;
C�.

(i) We obviously have jujH 1.�C/ � kukH 1.�
;�C/.

(ii) We prove kukH 1.�
;�C/ � C jujH 1.�C/ indirectly. We assume that there

exists a sequence .un/n2N in H 1
���;
C� such that

junjH 1.�C/ � n�1; kunkH 1.�
;�C/ D 1: (2.165)

For sufficiently large a > 0 we have 
 � Ba. We choose a cut-off function
�; 2 C1 �
C� (see Fig. 2.2) with
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f

Fig. 2.2 Cutoff functions � and  for the proof of Theorem 2.10.10

�; � 0; � C  D 1 in 
C; � .x/ D 0 for all kxk � 2a and

 .x/ D 0 for all kxk < a:

We obviously have un D �un C  un. By differentiating the products  v and
�v for v 2 H 1

���;
C� we obtain

j vj
H 1

�
B

C

a

� � jvj
H 1

�
B

C

a

� C c kvkL2.B2a\�C/ ;

j�vjH 1.�C/ � jvjH 1.B2a\�C/ C C kvkL2.B2a\�C/ :
(2.166)

For every a > 0, H 1
�
B2a \
C

�
is compactly embedded in L2

�
B2a \
C

�

(see Theorem 2.5.5). Therefore there exists a subsequence
�
unj

�
j2N

(see
Theorem 2.5.6) that satisfies

unj
! u in L2

�
B2a \
C

�
:

From (2.165) and (2.166),
�
 unj

�
and

�
�unj

�
are Cauchy sequences in H 1

�
BCa

�
andH 1

�

C

�
. Since  unj

2 H 1
0

�
BCa

�
, Proposition 2.10.8 is applicable

and implies convergence in the H 1
���;BCa

�
-norm as well. Since �unj

has
compact support the norms in H 1

�
BCa

�
and H 1

���;BCa
�

are equivalent and
hence

�unj
! w1 with respect to k�kH 1.�
;�C/ ;

 unj
! w2 with respect to j�j

H 1
�
B

C

a

� :

Therefore unj
D .� C  / unj

converges to some w 2 H 1
���;
C�. Assump-

tion (2.165) implies that rw D 0 and therefore that w is constant. Finally, from
w 2 H 1

���;
C� we have w 	 0, which is a contradiction to (2.165). �

Exterior Dirichlet Problem

We now come to the theorem on existence and uniqueness for the exterior Dirichlet
problem.

Theorem 2.10.11. We consider the (EDP) [see (2.150)]. Let F be defined as in
(2.151). Then, for every f 2 �H 1

0

���;
C��0 and gD 2 H 1=2 .�/, the exterior
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Dirichlet problem has a unique solution u 2 H 1
0

���;
C� that satisfies the
inequality

kukH 1.�
;�C/ � kF k.H 1
0 .�
;�C//

0 C C kgDkH 1=2.
/ :

Proof. We choose a > 0 with 
 � Ba. By using the trace extension operator (see
Theorem 2.6.11) Za WD ZBa

W H 1=2 .�/! H 1
0 .Ba/ the Dirichlet data gD can be

extended:

kZagDkH 1.�
;�C/ � C1 kZagDkH 1.Ba/ � C2 kgDkH 1=2.
/: (2.167)

We use the approach u D u0 CZagD in (2.150) and thus obtain an equation of the
form (2.152) with u1 D ZagD for u0 2 H 1

0

���;
C�.
As in the proof of Theorem 2.10.4, part 1, it can be shown that the right-

hand side in (2.152) defines a continuous linear functional on H 1
0

���;
C�.
Theorem 2.10.10 implies that the sesquilinear form B is elliptic on H 1

���;
C�
(and therefore also on H 1

0

���;
C�). Thus

B .v; v/ D
Z

�C

krvk2 dx � C kvk2
H 1.�
;�C/ 8v 2 H 1

���;
C� :
(2.168)

The continuity of B follows from Theorem 2.10.10. The Lax–Milgram
Lemma 2.1.51 becomes applicable and as a consequence the problem (2.152) has a
unique solution u0 2 H 1

0

���;
C� with

ku0kH 1.�
;�C/ � kF k.H 1
0 .�
;�C//

0 C C kZagDkH 1.Ba/

� kF k.H 1
0 .�
;�C//

0 C C .
/ kgDkH 1=2.
/ :

�

Exterior Neumann Problem

We now consider the exterior Neumann problem for the Laplace operator.

Theorem 2.10.12. For every F 2 �
H 1

���;
C��0 there exists a unique solu-
tion u 2 H 1

���;
C� of the exterior Neumann problem (2.153) that depends
continuously on F :

kukH 1.�
;�C/ � C kF k.H 1.�
;�C//
0 :

Proof. We combine Corollary 2.10.2.(e) and (2.168) with the Lax–Milgram
lemma 2.1.51 and thus obtain the statement. �
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Exterior Mixed Boundary Value Problem

Results concerning existence and uniqueness can be found for the EMP analogously
[see (2.155)].

Theorem 2.10.13. The results from Theorem 2.10.11 hold for the exterior mixed
boundary value problem. Here � has to be replaced by �D and H 1

0

�
L;
C

�
by

H 1
D

�
L;
C

�
.

Transmission Problem

We finally turn our attention to the transmission problem (2.157).

Theorem 2.10.14. We consider the TP (2.159) with W as in (2.158). For every
F 2 W 0 and gD 2 H 1=2 .�/ there exists a unique solution u 2 H 1 .
�/ �
H 1

���;
C� of the transmission problem (2.159). It depends continuously on F
and gD:

kukW � C kF kW 0 C kgDkH 1=2.
/ :

Proof. We use the approach u D u0 C u1 with u1j�C D 0 and u1j�� WD �Z�gD .
Then we have u1 2 H 1 .
�/ � H 1

���;
C� and Œu1	 D gD . Then u0 is the
solution of the problem: Find u0 2 W such that

B��[�C .u0; v/ WD B� .u0; v/C BC .u0; v/ D F .v/� B� .u1; v/ 8v 2 W:
(2.169)

The continuity of B��[�C and the right-hand side in (2.169) follow from
Lemma 2.10.1.

For the Lax–Milgram lemma we still need to show the ellipticity of B��[�C .
For an arbitrary function v 2 W we set v� WD vj�� and vC WD vj�C . Since

u0 2 W � H 1 .
�/�H 1
���;
C�, the ellipticity of BC onH 1

���;
C� gives
us [see (2.168)]

BC
�
vC; vC

� � C0

��vC
��2

H 1.�
;�C/ : (2.170)

For v� we set g WD ��0 v� and w� WD Z�g with the trace extension Z� W
H 1=2 .�/ ! H 1 .
�/ from Theorem 2.6.11. Then we have v� � w� 2 H 1

0 .

�/

and due to the Friedrichs inequality (see Theorem 2.5.7)

kv�k2H 1.��/
� 2 kv� � w�k2

H 1.��/
C 2 kw�k2H 1.��/

� 2C jv� � w�j2H 1.��/
C 2 kw�k2

H 1.��/

� 4C jv�j2H 1.��/
C .2C 4C / kw�k2H 1.��/

D C1B� .v�; v�/C C2 kw�k2
H 1.��/

:
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The continuity of the trace extension and the trace operator as well as the condition
Œv	 D 0 give us

kw�kH 1.��/ D kZ�gkH 1.��/ � C3 kgkH 1=2.
/ D C3 k��0 v�kH 1=2.
/

D C3

���C0 vC
��

H 1=2.
/
� C4

��vC
��

H 1.�
;�C/ :

From this we obtain

kv�k2H 1.��/ � C1B� .v�; v�/C C2C
2
4

�
�vC

�
�2

H 1.�
;�C/ :

If we combine this result with (2.170) we obtain the assertion

kvk2W D kv�k2H 1.��/ C
�
�vC

�
�2

H 1.�
;�C/ � C1B� .v�; v�/

C �1C C2C
2
4

�
C�1

0 BC
�
vC; vC

�
: (2.171)

�

In the case of the general elliptic operator L from (2.98), especially when
L ¤ �� and aminc < kbk2, proving the results on existence and uniqueness
becomes far more complicated.

2.10.2.3 Helmholtz Equation

The Helmholtz equation in the interior space

Lku D ��u � k2u D f in 
� (2.172)

with Dirichlet or Neumann boundary conditions ��0 u D gD 2 H 1=2.�/ or ��1 u D
gN 2 H�1=2.�/ and with the sesquilinear form B�.u; v/ D

R
�� .hru;rvi�

k2uv
�
dx has, according to Theorem 2.10.4.1 and Theorem 2.10.5.1, a unique

solution if and only if k2 is not an eigenvalue of the IDP or INP.
For the Helmholtz equation in the exterior space

Lku WD ��u � k2u D 0 in 
C (2.173)

we are looking for solutions that satisfy the Sommerfeld radiation conditions
(2.133).

Theorem 2.10.15. The variational problem (2.150) that is associated with the EDP
from (2.173), has a unique solution u 2 H 1.Lk ; 


C/ for every gD 2 H 1=2.�/.
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For a proof we refer to, e.g., [154,170]. Note that the additional term .@r u� iku;
@r v � ikv/L2 in the sesquilinear form (2.149) represents the analogy to the Som-
merfeld radiation condition. We have a corresponding result for the Neumann
problem:

Theorem 2.10.16. The variational problem (2.153) that is associated with the ENP
from (2.172) has a unique solution in H 1.Lk ; 


C/ for every gN 2 H�1=2.�/.



Chapter 3
Elliptic Boundary Integral Equations

Homogeneous, linear elliptic boundary value problems with constant coefficients
can be transformed into boundary integral equations by using the integral equation
method. In this chapter we will introduce the relevant boundary integral operators
and we will derive the most important mapping properties and representations. We
will also present the boundary integral equations for the boundary value problems
from the previous chapter. Finally, we will prove the appropriate results on existence
and uniqueness for these boundary integral equations.

3.1 Boundary Integral Operators

We consider the differential operator L from (2.98)

Lu D � div .A grad u/C 2 hb; grad ui C cu: (3.1)

Our goal is to solve the homogeneous differential equation

Lu D 0 in � (3.2)

for this operator with appropriate boundary conditions. Solutions of these differen-
tial equations can be formulated with the help of potentials that are closely linked to
the fundamental solution of the operatorL, which in turn can be formulated explic-
itly. In general, we assume that the coefficients of L satisfy A 2 Rd�d positive
definite, b 2 Rd and c 2 R. With the help of the matrix A we can define an inner
product and a norm on Rd

hx; yiA D x|A�1y and kxkA D hx; xi1=2A :

We set # WD c C kbk2A and � D p# for # � 0 and � D �ipj#j otherwise. The
fundamental solution G .x � y/ then has the following form

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2 3,
c� Springer-Verlag Berlin Heidelberg 2011
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G .z/ D

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

ehb;ziA

2�
p

det A
log

1

kzkA
for d D 2 and � D 0;

ehb;ziA

4
p

det A
iH

.1/
0 .i� kzkA/ for d D 2 and � ¤ 0;

1

4�
p

det A

ehb;ziA��kzkA

kzkA
for d D 3:

(3.3)

The function G is singular for z D 0 and analytic for z ¤ 0. By choosing A D I,
b D 0 and c D 0 we obtain the Laplace operator L D �� and the fundamental
solution to the Laplace operator.

With the help of the fundamental solution we can introduce the single layer
and double layer potentials for v 2 L1 .�/. We recall the notation �0 for the
trace operator (see Theorem 2.6.8), �1 for the conormal derivative (see (2.103) or
Definition 2.7.6) and e�1 for the modified conormal derivative (see (2.107) or Defini-
tion 2.7.6). In order to explicitly state whether the trace is applied from the interior
or exterior domain, we use the indices “�” for the interior and “C” for the exterior
domain.

Single Layer Potential:

.Sv/ .x/ WD
Z

�

G .x � y/ v .y/ dsy x 2 Rdn�: (3.4)

Double Layer Potential:

.Dv/ .x/ WD
Z

�

e�1;yG .x � y/ v .y/ dsy x 2 Rdn�; (3.5)

where the subscript y in e�1;y indicates that the modified conormal derivative e�1 is
applied with respect to the y-variable. Since the fundamental solution G .x � y/ is
regular for x ¤ y, the single and double layer potentials are both well defined.

Theorem 3.1.1. Let v 2 L1 .�/.
(a) We have

.LSv/ .x/ D .LDv/ .x/ D 0 for all x 2 Rdn�:

(b) The functions Sv andDv are infinitely differentiable in Rdn� .

Proof. For (a): We set kS .x; y/ WD G .x � y/ and kD .x; y/ WD e�1;yG .x � y/. Let
x0 2 R3n� . Then there exists a compact neighborhood U0 of x that is entirely
contained in � 2 ˚��; �C� and therefore has a positive distance to � . The restric-
tions kS ; kD W U0 � � ! C are then bounded and are differentiable for almost
every y 2 � on U0. For all x 2 U0, kS and kD are integrable over � . The
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theorem on dominated convergence then implies that differentiation and integra-
tion may be interchanged. Lx denotes the application of L with respect to the x
variable. This gives us the assertion from LxG .x � y/ D Lx

�
e�1;yG .x � y/

� D
e�1;yLxG .x � y/ D 0.

For (b): The statement then follows from repeated application of the arguments
given in (a) by means of induction. �

In order to solve problem (3.2) we can therefore consider the ansatz Sv or Dv.
As a result of Theorem 3.1.1, for every boundary density v, this ansatz satisfies the
homogeneous differential equation (3.2). Therefore the problem is reduced to the
question of whether the boundary density v can be determined in such a way that
the boundary traces of these potentials satisfy the boundary conditions.

Formally, the boundary integral operators V ,K ,K 0,W can be defined by means
of the introduced conormal operators �0, �C

1 , ��
1 . For � 2 f�;Cg we set

V v WD �0Sv; K� WD ��0D ;

K 0
� WD ��1 S ; W u WD ��1 .Du/ :

(3.6)

The index C or � indicates that the trace operators �0 .w/ and �1 .w/ are applied
to the restrictions wj�C and wj�� respectively. We will show (see Theorem 3.3.1)
that we have �C

0 Sv D ��
0 Sv and �C

1 Du D ��
1 Du, which is why we have already

omitted the indices˙ in the definition of V and W .

3.1.1 Newton Potential

Before we turn our attention to the mapping properties of the above-mentioned
potentials and boundary integral operators, we will consider the converse problem.
If the Dirichlet and Neumann data of a function u that satisfies Lu D f are known,
it can be formulated in terms of the boundary data and f explicitly. The associated
formula is called Green’s representation formula. The derivation of this formula
uses the mapping properties of the Newton potential, which in turn are proven by
means of a Fourier analysis. Here we will restrict ourselves to an overview of the
required properties, and for proofs we refer to [133, 184] and [162, Theorem 6.1].

For a given f 2 L2comp

�
Rd
�

we consider the functions u 2 H 1
L

�
Rdn�� [see

(2.113)] with
L˙u D f in Rdn� (3.7)

[see (2.114)]. The Newton potential

Nf .x/ WD
Z

Rd

G .x� y/ f .y/ dy 8x 2 Rd (3.8)

will play a significant role in the representation of the solutions of this equa-
tion. We will first need a few mapping properties of the Newton potential. For
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functions f 2 C1
0

�
Rd
�
, Nf is defined as an improper integral: N W C1

0

�
Rd
�!

C1 �
Rd
�
. We use Fubini’s theorem to obtain a representation of the dual operator.

The extension of the inner product .�; �/L2.Rd/ to L2loc

�
Rd
� � L2comp

�
Rd
�

is again

denoted by .�; �/L2.Rd/. For f; g 2 C1
0

�
Rd
�

we then have

.Nf; g/L2.Rd / D
Z

Rd

�Z

Rd

G .x � y/ f .y/ dy
�
g .x/ dx

D
Z

Rd

f .y/
�Z

Rd

G .x � y/ g .y/ dy
�
dx;

and thus we obtain the representation

�N 0g
�
.y/ D

Z

Rd

G .x � y/ g .x/ dx 8y 2 Rd : (3.9)

The mapping property N 0 W C1
0

�
Rd
� ! C1 �

Rd
�

of the dual Newton potential
can be shown in the same way. The domain of the Newton potential can be extended
to functionals f 2 �

C1 �
Rd
��0

by means of the dual mapping. The functional

Nf 2 �C1
0

�
Rd
��0

is characterized by

.Nf; v/L2.Rd/ D
�
f;N 0v

�
L2.Rd / 8v 2 C1

0

�
Rd
�
:

The Newton potential can also be defined for functions in Sobolev spaces (see [216,
Sect. 6.1]).

Theorem 3.1.2. For the Newton potential, the mapping

N W H s
comp

�
Rd
�
! H sC2

loc

�
Rd
�

is continuous for all s 2 R.

Remark 3.1.3. Problems in acoustics and electromagnetism can often be described
by the Helmholtz equation with the operator

Lku D ��u � k2u; k 2 R:

The associated fundamental solution [see (3.3)] for d D 3 is given by

Gk .z/ D eikkzk

4� kzk ;

and the associated Newton potential is denoted by Nk . Then N0 is the Newton
potential (Coulomb potential) for the Laplace operator. The expansion
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Gk .z/ D GI
k .z/CGII

k .z/CGIII
k .z/ WD

1

4� kzk C
ik

4�
CO.k2 kzk/

shows that the kernelGk�G0 is continuous at kzk D 0 and has bounded derivatives
that are discontinuous in z D 0. With the help of the calculus of pseudo-differential
operators we obtain the mapping property

Nk �N0 W H s
comp

�
R3
�! H sC4

loc

�
R3
� 8s 2 R

by reasoning as follows. From [137, Definition 7.1.1 and (7.1.2)], we conclude that
GIII
k

has a pseudohomogeneous expansion of degree 1 so that, according to [137,
Theorem 7.1.1], the associated volume potential N III

k
u D R

R3 G
III
k
.� � y/ u .y/ dy

belongs to L�4
cl

�
R3
�
, i.e., to the classical symbol class as defined, e.g., in [137,

Definition 6.1.6]. From [137, Definition 6.1.12], we conclude that N III
k
W

H s
comp

�
R3
� ! H sC4

loc

�
R3
�

is continuous for all s 2 R. For the volume poten-
tial associated to GII

k
.z/ this mapping property follows trivially because the kernel

function is constant.

The formal adjoint operatorL� W C1 �
Rd
�! C1 �

Rd
�

from (2.105) satisfies

.Lu; v/L2.Rd / D
�
u; L�v

�
L2.Rd/ 8u 2 C1

0

�
Rd
�
8v 2 C1

�
Rd
�
:

Thus the domain of L can be extended to
�
C1 �

Rd
��0

as well as
�
C1
0

�
Rd
��0

:

.Lf; g/L2.Rd / WD
�
f;L�g

�
L2.Rd / 8f 2

�
C1

�
Rd
��0 8g 2 C1

�
Rd
�
;

.Lf; g/L2.Rd / WD
�
f;L�g

�
L2.Rd / 8f 2

�
C1
0

�
Rd
��0 8g 2 C1

0

�
Rd
�
:

The following theorem shows that the Newton potential constitutes a right and
left inverse of the operator L.

Theorem 3.1.4. For all functionals u 2 �C1 �
Rd
��0

we have

LNu D u D NLu in
�
C1
0

�
Rd
��0

:

The explicit representations (3.4) and (3.5) of the operators S and D are only
suited to locally integrable functions v 2 L1 .�/. The domain of the single and
double layer potential can be substantially enlarged.

Definition 3.1.5. The single layer potential S and the double layer potential D are
given by

S WD N� 0
0; D WD N e�10:

Theorem 3.1.6 deals with the connection between the abstract Definition 3.1.5
and the explicit representations (3.4) and (3.5). The jumps Œu	, Œ�1u	 of a function
u 2 H 1

L

�
Rdn�� across � were introduced in (2.119).
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Theorem 3.1.6. (a) For functions u 2 H 1
L

�
Rdn�� with compact support and f D

L˙u [see (3.7)] we have Green’s representation formula

u D Nf � S .Œ�1u	/CD .Œu	/ (3.10)

as a functional on C1
0

�
Rd
�
.

(b) The operators S D N� 0
0 and D D N e�10 have the representations (3.4) and

(3.5) for u 2 L1 .�/ on Rdn� .

Proof. Functions u 2 H 1
L

�
Rdn�� with compact support can be interpreted as

functionals on C1 �
Rd
�

according to

U WD .u; �/L2.Rd / :

Applying Theorem 3.1.4, we then have

.LNu; v/L2.Rd/ WD
�
u;N 0L0v

�
L2.Rd/ D U

�N 0L0v
� D .LNU / .v/

D U .v/ D .u; v/L2.Rd/

for all v 2 C1 �
Rd
�

and subsequently the equality LNu D u in the sense of a
functional on C1 �

Rd
�
. NLu D u can be shown analogously.

The operator N can then be applied to Green’s third formula (2.122). With
Theorem 3.1.4 we then obtain the representation

u D Nf �N� 0
0 .Œ�1u	/CN e�10 .Œu	/ :

For u 2 C1 �
Rd
�

we have Œ�1u	 2 L1 .�/. Under these conditions we will show
that for x 2 Rdn� we have the representation (3.4) for N� 0

0. In the following, let S
andD be defined by the right-hand sides in (3.4) and (3.5). The representation (3.9)
gives us, along with Fubini’s theorem, for all v 2 L1 .�/ and w 2 C1

0

�
Rd
�

�N� 0
0v;w

�
L2.Rd / D

�
v; �0N 0w

�
L2.�/

D
Z

�

v .y/
�Z

Rd

G .x � y/w .x/ dx
�
dsy

D
Z

Rd

w .x/
�Z

�

v .y/G .x � y/ dsy

�
dx D .Sv;w/L2.Rd/ .

Let x 2 �C and U � �C be an arbitrary, compact neighborhood of x. Then SvjU 2
C1 .U/ (see Theorem 3.1.1). Since the restriction of C1

0

�
Rd
�

on U is dense in
L2 .U/, we have the equality N� 0

0 D S in x. The assertion for x 2 �� can be
shown analogously.

In order to prove the representation (3.5) for N e�10 for x 2 Rdn� , we again
first consider the case x 2 �C and a compact neighborhood U � �C of x. Let

 2 C1

0

�
Rd
�

be a test function with supp
 � �C and 
 � 1 onU . For v 2 L1 .�/
and w 2 C1

0

�
Rd
�

we obtain
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�N e�10v; 
w
�
L2.Rd/ D

�
v; e�1N 0
w

�
L2.�/

D
Z

�

v .y/

 

e�1;y

�Z

supp�
G .x � y/ 
w .x/ dx

�!

dsy:

Since the distance between .supp
/ and � is positive, the kernel functionG .x � y/
is smooth and the differentiation and integration can be interchanged. Fubini’s
theorem then gives us

�N e�10v; 
w
�
L2.Rd/ D

Z

supp�

w .x/

�Z

�

v .y/
�
e�1;yG .x � y/

�
dsy

�
dx

D .Dv; 
w/L2.Rd / :

We obtain the equality N e�10v D Dv on �C because the restriction 
C1
0

�
Rd
�

on
U coincides with the restriction C1

0

�
Rd
�ˇ̌

U , which is itself dense in L2 .U/. �

We will generalize Theorem 3.1.1 by proving that L˙Sv � 0 for all v 2
H�1=2 .�/.

Proposition 3.1.7. Let �1=2 < s < 1=2 and v 2 H�1=2Cs .�/. Then LSv � 0 on
Rdn� .

Proof. We use Definition 3.1.5 and obtain

LSv D LN� 0
0v:

The mapping properties of the trace operator �0 W H 1Cs
loc

�
Rd
�! H 1=2Cs .�/ imply

the continuity of the dual operator

� 0
0 W H�1=2�s .�/! H�1�s

comp

�
Rd
�
D
�
H 1Cs

loc

�
Rd
��0 �

�
C1 �

Rd
��0

:

Therefore Theorem 3.1.4 becomes applicable and we obtain

LSv D � 0
0v (3.11)

in the sense of a functional on C1 �
Rd
�
. Let  2 C1 �

Rdn�� with supp �
Rdn� . Without loss of generality we assume that supp � �C. From this we have
�0 � 0 and �

� 0
0v;  

�
L2.Rd n�/ D .v; �0 /L2.�/ D 0

and as a consequenceLS � 0 on Rdn� . �
Green’s representation formula (3.10) was shown for functions u with compact

support. We will prove a modified form of Green’s representation formula for func-
tions that satisfy the characteristic physical decay condition but do not have compact
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support. We will restrict ourselves to functions that satisfy Lu D 0 in R3n� . In the
following section we will anticipate a result and use the mapping properties of the
potentials S and D from Theorem 3.1.16:

S W H�1=2 .�/! H 1
loc .�/ and D W H 1=2 .�/! H 1

L

�
Rdn�

�
are continuous.

(3.12)

First, we will choose a sufficiently large a> 0 with ���Ba. Let u2H 1
L�

Rdn�� with Lu � 0 in Rdn f�g. For the boundary of the intersection of the
domains �a WD �C \ Ba we have @�a D � [ �a with �a WD @Ba. Let the
normals on � again point in the direction of �C and those on �a in the direc-
tion of BC

a WD RdnBa. The function ua WD u in Ba and ua � 0 in BC
a satisfies

ua 2 H 1
L

�
Rdn@�a

�
and has compact support. Therefore we can apply Green’s

representation formula (3.10), which gives us

u D �S Œ�1u	CD Œu	C v in Ban�;

0 D �S Œ�1u	CD Œu	C v in BC
a

(3.13)

with
v WD Sa

�
.�1u/j�a

� �Da
�
.�0u/j�a

�
in Ba [ BC

a : (3.14)

Here, in (3.14), Sa and Da denote the single and the double layer potentials for �a,
while S andD in (3.13) denote those for � . We define

w .x/ WD
	

v .x/ in Ba;
v .x/C u .x/ in BC

a :
(3.15)

Combining the first equation in (3.13) with the first equation in (3.15) gives us

w D uC S Œ�1u	 �D Œu	 in Ban�: (3.16)

The mapping properties of S and D [see (3.12)], the boundedness of Ba and
Proposition 3.1.7 imply that

wjBa
D vjBa

2 H 1 .Ba/ and Lw � 0 in Ba: (3.17)

Combining the second equation in (3.13) and (3.15) gives us, together with (3.16),

w D uC S Œ�1u	 �D Œu	 in Rdn@�a: (3.18)

It follows from (3.18) together with the mapping properties of S andD that wj�C 2
H 1

loc

�
�C� andLw D 0 in�C. With (3.17) this gives us w 2 H 1

loc

�
Rd
�

andLw D 0
in Rd . These ideas are summarized in the following theorem.
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Theorem 3.1.8. Let u 2 H 1
L

�
Rdn�� with Lu � 0 in �� [�C. Then

u D �S Œ�1u	CD Œ�0u	C w in �� [�C (3.19)

with an L-harmonic function w 2 H 1
loc

�
Rd
�
.

Theorem 3.1.8 generalizes Green’s representation formula so that it applies to
functions that have unbounded support. However, the spaceH 1

loc

�
�C� also contains

functions with an unphysical behavior for kxk ! 1. Ideally, for kxk ! 1 the
required behavior of u at infinity should imply w � 0. For such functions u Green’s
representation formula remains valid unchanged. We will carry out these ideas and
use the Laplace and Helmholtz operators as examples. We will also consider the
operator L under the condition that the coefficients satisfy aminc > kbk2. Here amin

again denotes the smallest eigenvalue of the matrix A [see (2.99)].

Lemma 3.1.9. Let d D 3 and aminc > kbk2. Then, for all ' 2 H�1=2 .�/ and
 2 H 1=2 .�/, there exist positive constants C1; C2 such that

jS' .x/j C jD .x/j C kr .S'/ .x/k C kr .D'/ .x/k � C1e�C2kxk

for all x 2 R3 with kxk � a. Here a > 0 is chosen so that � �� Ba and

inf
.x;y/2��@Ba

kx � yk � 1: (3.20)

Proof. It follows from aminc > kbk2 that we have for the exponent of the fundamen-
tal solution in (3.3)

hb; ziA � � kzkA � kbkA kzkA � kzkA

q
c C kbk2A � �� kzk

with

� WD
�q

c C kbk2A � kbkA

�
=
p
amax > 0:

From this we have for the fundamental solution under consideration

jG .z/j � C2e��kzk= kzk :

This gives us the estimate

jG .x � y/j � C2e��kx�yk D C2e�.kxk�kx�yk/e��kxk � C2
�

max
y2� e

�kyk
�
e��kxk

DW C3e��kxk

for all x 2 R3nBa and y 2 � . Now let ' 2 H�1=2 .�/ and kxk � a. Then
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jS' .x/j �
Z

�

jG .x � y/j j' .y/j dsy � C3e��kxk
Z

�

j' .y/jdsy

� C3 k1kH1=2.�/ e
��kxk k'kH�1=2.�/ D C4e��kxk k'kH�1=2.�/ :

The result concerning the double layer potential and the gradients of the potentials
can be proven analogously. �

The following lemma shows that L-harmonic functions on R3 are always poly-
nomials for the coefficients under consideration.

Lemma 3.1.10. Let d D 3 and aminc > kbk2 or c D kbk D 0. Then every w 2
H 1

loc

�
R3
�

with Lw � 0 on R3 is a polynomial. If c D kbk D 0 the statement
remains valid for the space H 1

�
L;R3

�
.

The assertion of this lemma follows from [80, Chap. XI, Part B, Sect. 2, Theo-
rem 1].

Theorem 3.1.11. Let d D 3 and aminc > kbk2. Let the function u 2 H 1
�
R3n��

satisfy Lu D 0 in �� [ �C. Then the representation formula (3.19) holds with
w � 0.

Proof. The mapping properties of S;D imply S Œ�1u	 ;D Œu	 2 H 1
loc

�
R3n��.

Lemma 3.1.9 gives us the stronger statement S Œ�1u	,D Œu	 2 H 1
�
R3n��. Accord-

ing to the conditions, the left-hand side in (3.19) is in H 1
�
R3n�� and therefore

the right-hand side is also in H 1
�
R3n��. Since the only polynomial for which

w 2 H 1
�
R3
�

is the zero polynomial, we have w � 0. �

Theorem 3.1.12. Let d D 3 and L D ��. Let the function u 2 H 1 .��/ �
H 1

���;�C� satisfy �u D 0 in �C [��. Then the representation formula holds
with w D 0.

Proof. Choose a as in (3.20). For kbk D c D 0, the fundamental solution and its
derivatives satisfy the inequalities

jG .z/j � C1 kzk�1
krG .z/k � C1 kzk�2



8z 2 R3n f0g :

It follows for all y 2 � and kxk � a with C� WD maxy2� .1C kyk/ that the
following inequalities hold

jG .x � y/j � C1 kx � yk�1 � C1C� kxk�1
krxG .x � y/k � C1C 2� kxk�2 ;ˇ

ˇ@G .x � y/ =@ny
ˇ
ˇ � C1 kx � yk�2 � C1C 2� kxk�2 ; (3.21)

�
�rx@G .x � y/ =@ny

�
� � C2 kx � yk�3 � C2C 3� kxk�3 :

From this one deduces, as in the proof of Lemma 3.1.9, that for all ' 2 H�1=2 .�/
and kxk � a
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jS' .x/j �
Z

�

jG .x � y/j j' .y/j dsy � C1C� 1

kxk
Z

�

j' .y/j dsy

� C3 kxk�1 k'kH�1=2.�/ : (3.22)

In a similar way one can prove for all ' 2 H�1=2 .�/,  2 H 1=2 .�/ and kxk � a
the inequalities

kr .S'/ .x/k � C4 kxk�2 k'kH�1=2.�/ ;

jD .x/j � C5 kxk�2 k kH1=2.�/ ;

kr .D / .x/k � C6 kxk�3 k kH1=2.�/ :

(3.23)

Note that the constants C1; : : : C6 are independent of a. Theorem 3.1.16 implies
[see (3.12)] that S';D 2 H 1

loc

�
R3n��. From the boundedness of�� and�a WD

�C \ Ba one deduces

S'jBan� ; D jBan� 2 H 1 .Ban�/ :

Let BC
a WD R3nBa. If one combines the inequalities (3.22), (3.23) with the

definition of the H 1
�
L;BC

a

�
-norm, it follows that (see Exercise 3.1.14)

S'j
B

C
a
2 H 1

�
L;BC

a

�
and D j

B
C
a
2 H 1

�
L;BC

a

�
:

Finally, by the equivalence of the norms in H 1 .�a/ and H 1 .L;�a/ on the
bounded domain�a one obtains the property

S';D 2 H 1 .��/ �H 1
�
L;�C� : (3.24)

The condition u 2 H 1 .��/�H 1
�
L;�C� combined with (3.24), Theorem 3.1.8

and Lemma 3.1.10 gives us that the L-harmonic function w is a polynomial with
w 2 H 1 .��/ �H 1

�
L;�C�. Hence w � 0. �

Theorem 3.1.13. Let d D 3 and Lu WD ��u � k2u with a positive wave number1

k > 0. Let the space H 1 .L;�/ be defined as in Remark 2.9.3. Let the function
u 2 H 1 .��/ �H 1

�
L;�C� satisfy Lu D 0 in �C [��. Then the representation

formula holds with w D 0.

Proof. The statement follows from [80, Chap. XI, Part B, Sect. 3], as no plain wave
eihk;xi with kkk D k is contained in H 1

�
L;�C�. �

Exercise 3.1.14. Let ' 2 H�1=2 .�/ and  2 H 1=2 .�/. Show that the single and
double layer potentials for the Laplace problem satisfy

S' 2 H 1
�
L;BC

a

�
and D 2 H 1

�
L;BC

a

�
:

Exercise 3.1.15. Let ' 2 H�1=2 .�/ and  2 H 1=2 .�/, and let S be the single
andD the double layer potential for the Helmholtz problem. Show that S' andD 
then satisfy the Sommerfeld radiation conditions (2.133).

1 The wave number is a scalar quantity which characterizes the oscillatory behavior of time periodic
waves. It is proportional to the reciprocal of the wave length.
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3.1.2 Mapping Properties of the Boundary Integral Operators

In this section we will derive the mapping properties of the potentials and the bound-
ary integral operators. The definitions of S , D, V , K˙, K 0̇ , W can be found in
Definition 3.1.5 and (3.6).

Theorem 3.1.16. Let � � R3 be a bounded Lipschitz domain with boundary
� WD @�. The operators S , D, V , KC, K�, K 0C, K 0� and W are continuous for
jsj < 1=2:

(i) S W H�1=2Cs .�/! H 1Cs
loc

�
R3
�
:

(ii) D W H 1=2Cs .�/! H 1Cs
L

�
R3n�� :

(iii) V W H�1=2Cs .�/! H 1=2Cs .�/ :
(iv) � 2 f�;Cg W K� W H 1=2Cs .�/! H 1=2Cs .�/ :
(v) � 2 f�;Cg W K 0

� W H�1=2Cs .�/! H�1=2Cs .�/ :
(vi) W W H 1=2Cs .�/! H�1=2Cs .�/.

Proof. By Definition 3.1.5, finding the mapping properties of S reduces to finding
the mapping properties of N and � 0

0. The trace theorem implies the continuity of
�0 W H 1�s

loc

�
R3
�! H 1=2�s .�/ for jsj < 1=2. This in turn implies the continuity of

the dual operator � 0
0 W H s�1=2 .�/! H�1Cs

comp

�
R3
�
. Combined with Theorem 3.1.2

this gives us
S W H s�1=2 .�/! H 1Cs

loc

�
R3
�
:

The mapping properties of the operator V follow directly from the mapping proper-
ties of the trace operator �0 W H 1Cs

loc

�
R3
�! H sC1=2 .�/.

We now consider the double layer potential. This case can be reduced to the
previous case by representing the double layer potential in terms of the single layer
potential. We use the solution operator T from Sect. 2.8 for the interior problem and
define, for given boundary data v 2 H 1=2Cs .�/, the function u 2 H 1

L

�
R3n�� by

u WD
	
T v in ��;
0 in �C:

Note that we have for the jumps of u and �1u across �

Œu	 D uC � u� D �v and Œ�1u	 D �C
1 u � ��

1 u D ���
1 u:

We define f 2 L2comp

�
R3
�

by

f WD L˙u D
	 ��T v in ��;

0 in �C:

Green’s formula (3.10) can be applied, as u has compact support, which gives us the
relation

u D Nf C S��
1 u �Dv:
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If we solve for Dv we obtain

Dv D N
���T v

0

�
C S ���

1 T
�

v �
�
T v
0

�
; (3.25)

where .v�; vC/| is an abbreviation for v�
� C vC
C with the characteristic func-
tions 
�, 
C for the domains ��, �C. The mapping properties of S , N and ��

1 T

(see Theorem 2.8.2) imply that

H 1=2Cs .�/

���T
0

�

! L2comp

�
R3
� N! H 2

loc

�
R3
�
;

H 1=2Cs .�/
��

1
T�! H�1=2Cs .�/ S! H 1Cs

loc

�
R3
�
;

H 1=2Cs .�/

�
T
0

�

! H 1Cs �R3n�� :

Combined this gives us D W H 1=2Cs .�/ ! H 1Cs
loc

�
R3n��. By Proposition 3.1.7

one obtains S W H�1=2Cs .�/ ! H 1Cs
L

�
R3n��. Let eL be as in (2.123). From

eLT � 0 in �� it follows that .T; 0/| W H 1=2Cs .�/ ! H 1Cs
L

�
R3n��, which

proves that D W H 1=2Cs .�/! H 1Cs
L

�
R3n��.

The continuity of the operators K˙, K 0̇ , W follows from the continuity of
the trace operators �0̇ W H 1Cs

loc

�
�˙� ! H sC1=2 .�/ and �1̇ W H 1Cs

L

�
�˙� !

H s�1=2 .�/ (see Theorem 2.6.8 and Theorem 2.8.3) combined with the mapping
properties of S and D. �

Corollary 3.1.17. From the proof of the mapping properties for the double layer
potential D and Proposition 3.1.7 we have LDv D 0 in R3n� for all v 2
H 1=2Cs .�/ and �1=2 < s < 1=2.

We close this section with a remark on the optimality of the interval jsj < 1=2 in
Theorem 3.1.16.

Remark 3.1.18. (a) The restriction jsj < 1=2 in Theorem 3.1.16 is a result of the
representation S D N� 0

0 of the single layer operator, used in the previous proof,
as well as the range of the trace operator �0 for Lipschitz domains (see Theo-
rem 2.6.8). In general, this interval cannot be enlarged for Lipschitz domains,
which means that the interval jsj < 1=2 cannot be determined more accurately
with the method chosen for the proof (see [72, 162]).

(b) The continuity of the operators in Theorem 3.1.16 can also be shown for s D
˙1=2 for the Laplace operator. The proof requires methods from the area of
harmonic analysis and goes beyond the scope of this book. It can, however, be
found in, e.g., [143, 231].

(c) If the Lipschitz boundary � is globally smooth, � 2 C1, the trace operator
�0 W H `

loc

�
Rd
� ! H `�1=2 .�/ is continuous on the entire range ` > 1=2 and

Theorem 3.1.16 is then valid for all s > �1=2 (see [170, Chap. 4]).
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(d) If the Lipschitz boundary � D @� is piecewise smooth, more specifically, if
there exists a finite number of disjoint, relatively open surface patches �j � �
with 1 � j � q that are smooth, �j � C1, and that satisfy � D

q[

jD1
�j ,

then the upper bound of the interval on which the trace operator in Theo-
rem 2.6.8 is continuous can be extended beyond the interval of indices given (see
[39, 79]). From this we have the mapping properties in Theorem 3.1.16 for all
�1=2 < s � s0 with an s0 > 1=2.

3.2 Regularity of the Solutions of the Boundary
Integral Equations

The derivation of a priori convergence rates for discretizations of the boundary inte-
gral equations is based on regularity properties of the continuous solutions. More
specifically, this means that the solution of the associated integral equation should
not only exist in the energy space (s D 0 in Theorem 3.1.16) but should also be
sufficiently smooth. The regularity theory for boundary integral equations follows
from the regularity of the solutions of the associated partial differential equations.
Both of these questions go beyond the scope of this book and we will only present
the relevant results. Appropriate proofs can be found in, e.g., [72, Theorem 3], [162,
Theorems 7.16, 7.17], [79, 113, 145].

For the formulation of regularity results we distinguish between the following
cases: a globally smooth surface, a piecewise smooth Lipschitz polyhedron and a
general Lipschitz surface.

Definition 3.2.1. A domain � � R3 is a Lipschitz polyhedron if � 2 C 0;1

and there exist finitely many disjoint, relatively open surface patches �j � � ,

1 � j � q that are smooth, �j 2 C1, and satisfy � D
q[

jD1
�j .

Theorem 3.2.2. Let � � R3 be a bounded domain with a globally smooth
boundary � D @� 2 C1:

(a) Let ' 2 H�1=2 .�/ and V' D f 2 H 1=2Cs .�/ for an arbitrary s � 0. Then
' 2 H�1=2Cs .�/ and

k'kH�1=2Cs.�/ � C
�kf kH1=2Cs.�/ C k'kH�1=2.�/

�
:

(b) Let ' 2 H�1=2 .�/ and K 0C' D f 2 H�1=2Cs .�/ for an arbitrary s � 0.
Then ' 2 H�1=2Cs .�/ and

k'kH�1=2Cs.�/ � C
�kf kH�1=2Cs.�/ C k'kH�1=2.�/

�
:

The analogous result holds for the operatorK 0�.
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(c) Let  2 H 1=2 .�/ and KC D f 2 H 1=2Cs .�/ for an arbitrary s � 0. Then
 2 H 1=2Cs .�/ and

k kH1=2Cs.�/ � C
�kf kH1=2Cs.�/ C k kH1=2.�/

�
:

The analogous result holds for the operatorK�.
(d) Let  2 H 1=2 .�/ andW D f 2 H�1=2Cs .�/ for an arbitrary s � 0. Then

 2 H 1=2Cs .�/ and

k kH1=2Cs.�/ � C
�kf kH�1=2Cs.�/ C k kH1=2.�/

�
:

The constants C in the above-mentioned inequalities depend on s.

In the following theorem we consider surfaces of Lipschitz domains and bounded
Lipschitz polyhedra.

Theorem 3.2.3. (a) Let � be the surface of a bounded Lipschitz polyhedron � �
R3. Then there exists some s0 D s0 .�/ > 1=2 such that the regularity and the
a priori estimates from Theorem 3.2.2 hold for all 0 � s < s0.

(b) For general Lipschitz domains this statement only holds for s0 D 1=2.

3.3 Jump Relations of the Potentials and Explicit
Representation Formulas

In this section we will first derive the jump properties of the potentials and their
conormal derivatives on an abstract level, after which we will give an explicit
representation. The approach we have chosen here avoids the calculus of pseudo-
differential operators, which is used in [144], for example, for the derivation of
one-sided jump relations.

3.3.1 Jump Properties of the Potentials

The single and double layer potentials have characteristic jump properties on the
surface � .

Theorem 3.3.1. Let� be a bounded Lipschitz domain with boundary� D @�. The
single and double layer potentials satisfy for all ' 2 H�1=2 .�/ and  2 H 1=2 .�/

the jump relations

ŒS'	 D 0; ŒD 	 D  in H 1=2 .�/ ;

Œ�1S'	 D �'; Œ�1D 	 D 0 in H�1=2 .�/ :
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Proof. The first jump relation ŒS'	 D 0 is a direct result of Theorem 2.6.8 and the
mapping properties of S (see Theorem 3.1.16).

To deal with the jump of the normal of S , we let ' 2 H�1=2 .�/ and set u D S'.
Theorem 3.1.16 combined with Proposition 3.1.7 imply that u 2 H 1

L

�
Rdn�� and

Lu D 0 in Rdn� . By using Green’s second formula (2.112) with v 2 C1
0

�
Rd
�

we
obtain, for � 2 ˚��; �C�,

� �u; L0v
�
L2.�/

D ��
˚
.�0u; e�1v/L2.�/ � .�1u; �0v/L2.�/

�
:

If we add both equations (for � D �� and � D �C) while using Œv	 D Œe�1v	 D 0
and u 2 L2loc

�
Rd
�

we obtain

� �u; L0v
�
L2.Rd/ D � .Œu	 ; e�1v/L2.�/ C .Œ�1u	 ; �0v/L2.�/ :

We have already shown that Œu	 D ŒS'	 D 0 and thus obtain

.Œ�1u	 ; �0v/L2.�/ D �
�
u; L0v

�
L2.Rd / : (3.26)

Combining (2.116) with the definition of S (Definition 3.1.5) and Theorem 3.1.4
we obtain

�
u; L0v

�
L2.Rd/ D .Lu; v/L2.Rd / D .LS'; v/L2.Rd / D

�
LN� 0

0'; v
�
L2.Rd/

D �� 0
0'; v

�
L2.Rd/ D .'; �0v/L2.�/ (3.27)

and combined with (3.26)

.Œ�1S'	 ; �0v/L2.�/ D � .'; �0v/L2.�/ :

The assertion follows, as �0C1
0

�
Rd
�

is dense in H 1=2 .�/ (see Lemma 2.8.4).
To deal with the jump properties of D, we start in the same way as for the single

layer potential with an arbitrary function ' 2 H 1=2 .�/ and set u D D'. As before,
this time by using Corollary 3.1.17, Green’s second formula gives

� �u; L0v
�
L2.Rd / D � .Œu	 ; e�1v/L2.�/ C .Œ�1u	 ; �0v/L2.�/

for all v 2 C1
0

�
Rd
�
. With the definition of D (Definition 3.1.5) we obtain

�
u; L0v

�
L2.Rd / D .Lu; v/L2.Rd / D .LD'; v/L2.Rd/ D

�
LN e�10'; v

�
L2.Rd/

D �e�10'; v
�
L2.Rd / D .'; e�1v/L2.�/

and therefore
.Œ�1D'	 ; �0v/L2.�/ D .ŒD'	� '; e�1v/L2.�/ : (3.28)
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Since �0C
1
0

�
Rd
� � e�1C1

0

�
Rd
�

is dense in H 1=2 .�/ � H�1=2 .�/ (see
Lemma 2.8.4) each of the two sides in (3.28) has to be equal to zero. This, how-
ever, gives us exactly the two stated jump relations for the double layer potentials.

�

3.3.2 Explicit Representation of the Boundary Integral
Operator V

Theorem 3.3.1 demonstrates that the one-sided limits of the potentials and their
conormal derivatives in general define different functions on � . For the numerical
solution of boundary integral equations it is essential that the integral operators can
be evaluated on the surface � . For this, the representations of the integral operators
as one-sided traces of potentials, i.e., as one-sided limits, prove to be unsuitable. We
have seen for the single and double layer potentials that for sufficiently smooth data
v the explicit representation (3.4) and the abstract definition 3.1.5 coincide.

The functions that we use for the discretization are always bounded, i.e., in
L1 .�/. Under this condition the integral operators have an explicit representation
on piecewise smooth surfaces. In order to determine the limits of the potentials we
need estimates of the fundamental solution G [see (3.3)] and its derivatives. These
depend on the coefficients A, b and c in the definition of the differential operator L
[see (3.1)] as given in (3.3). With regard to (3.3) we introduce the function

g W Rd ! C; g .z/ WD exp .hb; ziA � � kzkA/

with � as in (3.3). The behavior of this function depends on the coefficients A, b
and c.

Lemma 3.3.2. Let amin again be the smallest and amax the largest eigenvalue of A:

1. c > 0. Then for all z 2 Rd

jg .z/j � e��kzkA with � WD cp
c C 2 kbkA

:

2. c D 0. For all z 2 Rd we have

jg .z/j � 1:

3. c < 0 and b D 0: Then we have

jg .z/j D 1 8z 2 Rd :

4. c < 0 and b ¤ 0. Then the function g diverges exponentially in the direction of
b; more precisely, for all ˛ > 0 we have

jg .˛b/j � e˛minfjcj=2;kbk2
Ag:
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Proof. For case 1. we have

� D
q
kbk2A C c D kbkA C

c

kbkA C
q
kbk2A C c

� kbkA C
cp

c C 2 kbkA

and thus

hb; ziA � � kzkA � kbkA kzkA � .kbkA C �/ kzkA D �� kzkA < 0:

Case 2: For c D 0 it follows from the Cauchy–Schwarz inequality that

g .z/ D ehb;ziA�kbkAkzkA � e0 D 1:

Case 3: For c < 0 and b D 0 we have

jg .z/j D
ˇ̌
ˇe�ipjcjkzkA

ˇ̌
ˇ D 1:

Case 4: First let �kbk2A < c < 0. We choose z D ˛b with ˛ 2 R>0. In the same
way as before one can show that

� D
q
kbk2A C c D kbkA C

c

kbkA C
q
kbk2A C c

� kbkA C
c

2 kbkA
:

From this, with z D ˛b, it follows that

g .z/ D g .˛b/ D e˛kbkA.kbkA��/ � e˛jcj=2;

and the function diverges exponentially for ˛!1.

Now let c � �kbk2A < 0. In this case we have � D �i
q
jcj � kbk2A and

therefore for all z 2 Rd

jg .z/j D
ˇ
ˇ
ˇehb;zi

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇe˛kbk2

A

ˇ
ˇ
ˇ :

�

Fundamental solutions, the coefficients of which correspond to case 4 in Corol-
lary 3.3.2, induce potentials with exponential growth in certain directions for
kxk ! 1. From a physical point of view, these potentials are not very important
and will no longer be examined.

Lemma 3.3.3. Let b D 0 or c � 0.

(a) For all 0 < " < 1 and R > 0 there exists a constant C < 1 such that for all
y 2 � and all x 2 BR .y/ we have
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jG .x � y/j � C

kx � ykd�2C" : (3.29)

(b) Under the additional assumption “� 2 C 2 in a local neighborhood of y” we
have

ˇ
ˇ
e�1;yG .x � y/

ˇ
ˇC ˇˇ�1;yG .y � x/

ˇ
ˇ � C

 ˇ̌˝
ny; x � y

˛ˇ̌

kx � ykd
C 1

kx � ykd�2C"

!

for all y 2 � and x 2 Uy whereUy denotes an arbitrary, bounded neighborhood
of y.

Remark 3.3.4. For d � 3 we can choose " D 0 in Lemma 3.3.3. In two spa-
tial dimensions the kernel function has a logarithmic singularity and " D 0 is not
admissible.

Proof of Lemma 3.3.3: We will only prove the assertion for d D 3 and refer to [102]
for the general case.
Corollary 3.3.2 implies the uniform boundedness

ˇ̌
ehb;ziA��kzkA

ˇ̌

p
det A

� C 8z 2 Rd

for the considered values of the coefficients. From this follows (3.29).
We will now study the derivatives of the fundamental solution. We have

rzG .z/ D � 1

4�
p

det A

A�1z

kzkdA
C R1 .z/ : (3.30)

The remainder can be estimated by

kR1 .z/k � C

kzkd�2C"

with a suitable " 2 	0; 1Œ. The definition of the modified conormal derivative (2.107)
leads us to the decomposition

e�1;yG .x � y/ D �1;yG .x � y/C 2 hn;biG .x � y/ ; (3.31)

and because of (3.29) it suffices to consider the first summand. Using (3.30) this
gives us

ˇ̌
�1;yG .x � y/

ˇ̌ � C
 ˇ̌˝

ny; x � y
˛ˇ̌

kx � ykd
C 1

kx � ykd�2C"

!

:

�
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We use the representation of the single layer potential from (3.4), and for ' 2
L1 .�/ we define the extension of S on Rd by

.S'/ .x/ WD
Z

�

G .x � y/ ' .y/ dsy 8x 2 Rd : (3.32)

Theorem 3.3.5. Let � be the surface of a bounded Lipschitz domain � � Rd . For
any ' 2 L1 .�/, the integral in (3.32) exists as an improper integral and defines a
continuous function S' on Rd .

Proof. The continuity of S' in Rdn� has already been determined in Theo-
rem 3.1.1.

We use the notation from Definition 2.2.7. Let x 2 � and Ux be a d -dimensional
neighborhood of x for which there exists a bi-Lipschitz continuous mapping

 W B2 ! Ux. Here B2 again denotes the d -dimensional ball with radius 2 around
the origin, and B02 is defined as in (2.71). Without loss of generality we assume that

 .0/ D x. The integral in (3.32) is split into

R
�nUx
C R

�\Ux
and, for the first part of

the integral, the continuity in x follows as in the proof of Theorem 3.1.1.

In local coordinates the second part of the integral gives us

S2 .x/ WD
Z

�\Ux

G .x � y/ ' .y/ dsy D
Z

B0
2

G .
 .0/� 
 .Oy// O' .Oy/ d Oy

with O' .Oy/ WD g .Oy/ .' ı 
/ .Oy/ 2 L1 �
B02
�

and the surface element g .Oy/ (see 2.2.4).
The Lipschitz continuity of the surface implies the existence of a constant C1 > 1

that depends only on � , with

C�1
1 kOx � Oyk � k
 .Ox/ � 
 .Oy/k � C1 kOx � Oyk 8Ox; Oy 2 B2:

Combined with (3.29) we obtain the following estimate for an arbitrary 0 < " < 1

jG .
 .0/� 
 .Oy//j � C2

kOykd�2C" (3.33)

for all Oy 2 B02n f0g, where C2 depends only on C1, d , " and A. This proves that

S2 .x/ � C2
Z

B0
2

j O' .Oy/j
kOykd�2C" d Oy:

The regularity of the parameterization combined with ' 2 L1 .�/ result in the
existence of a constantM <1 such that

sup
Oy2B0

2

j O' .Oy/j �M:



3.3 Jump Relations and Representation Formulas 121

With this we have

S2 .x/ � C2M
Z

B0
2

1

kOykd�2C" d Oy:

The integrand on the right-hand side defines an integrable upper bound (see Exer-
cise 3.3.6) so that the right-hand side in (3.32) exists as an improper integral.

In order to prove the continuity of S2 in x we consider a sequence of points
.xn/n2N in Ux that converges to x. The associated sequence .Oxn/n2N in B2 con-
verges to zero. Without loss of generality we assume that .Oxn/n2N � B1. Let
� 2 C1

0

�
Rd
�

be a cut-off function with 0 � � � 1 and

� � 1 on B02 and � � 0 on RdnB3:

We have to show that

lim
n!1

Z

Rd�1

� .Oy/
kOxn � Oykd�2C" d Oy D

Z

Rd�1

� .Oy/
kOykd�2C" d Oy:

The integrand on the right-hand side defines the function f . The integral on the
left-hand side can be written as

Z

Rd�1

� .OyC Oxn/
kOykd�2C" d Oy DW

Z

Rd�1

fn .Oy/ d Oy:

Note the inclusion [

n2N

supp� .� C Oxn/ � B4:

If we use the fact that fn is integrable, converges to f almost everywhere and is
bounded above by the integrable function

g .Oy/ WD
(
kOyk�.d�2C"/ if Oy 2 B4
0 otherwise

we can apply Lebesgue’s theorem of dominated convergence and thus prove the
statement. �

Exercise 3.3.6. Let B1 be the .d � 1/-dimensional unit ball and 0 < " < 1. Show
that Z

B1

1

kOykd�2C" d Oy

exists as an improper integral. Hint: Use polar coordinates.
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3.3.3 Explicit Representation of the Boundary Integral
Operators K and K 0

We will now turn our attention to the one-sided traces of the double layer potential.
The derivation of explicit representations of the traces �C

0 D, ��
0 D, �C

1 S , ��
1 S is,

technically speaking, more complex than for the boundary integral operator V . We
will limit this discussion to the essential arguments and refer to [102] for details.

Explicit representations have a great significance, especially for the numerical
solution of the integral equations. For the numerical treatment, the boundary � is
always assumed to be piecewise smooth and usually one uses piecewise smooth
functions for the discretization. Keeping this in mind, it is therefore only neces-
sary to derive the explicit representation formulas under these conditions. These
assumptions will greatly reduce the technical difficulties in the following section.
For a more general discussion we refer to [162, Chap. 7].

Assumption 3.3.7. The surface � belongs to the class C 2pw (see Definition 2.2.10).

This assumption on the smoothness implies that the conormal derivative of the
fundamental solution G is improperly integrable.

Lemma 3.3.8. Let � 2 C 2pw and ' 2 L1 .�/:

(a) The function ' .y/e�1;yG .x � y/ is improperly integrable on � with respect to y.
(b) If � is smooth in x 2 � then the function ' .y/ �1;xG .x � y/ is improperly

integrable with respect to y.

Proof. Lemma 3.3.3 implies the existence of an " 2 	0; 1Œ with

ˇ̌
e�1;yG .x � y/

ˇ̌ � C
 ˇ
ˇ˝ny; x � y

˛ˇˇ

kx � ykd
C 1

kx � ykd�2C"

!

:

It suffices to consider a local neighborhoodUx � Rd of x to determine whether the
function is integrable or not. If we choose a sufficiently small Ux there exist parts
�i � � , 1 � i � q, with �i 2 C 2 and

Ux \ � D
q[

iD1
.Ux \ �i / :

On each of these parts �i we have (see Lemma 2.2.14)

jhn .y/ ; x � yij � C kx � yk2 ;

and therefore

ˇ
ˇ' .y/e�1;yG .x � y/

ˇ
ˇ � CM kx � yk�.d�2C"/ with M WD sup

z2�
j' .z/j :
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Hence, as was shown in the proof of Theorem 3.3.5, we have found an improperly
integrable upper bound.

In case (b) we need the smoothness of � in x to be able to define the conormal
derivative �1;x pointwise. In this case we can use Lemma 3.3.3 in the same way as
above to find an improperly integrable upper bound. �

This lemma shows that

.K'/ .x/ WD
Z

�

e�1;yG .x � y/ ' .y/ dsy x 2 �;

.K 0'/ .x/ WD
Z

�

�1;xG .x � y/ ' .y/ dsy � smooth in x 2 �:
(3.34)

are well defined under the condition that ' 2 L1 .�/.

Corollary 3.3.9. Let � 2 C 2pw. The mappings K and K 0 from (3.34) map L1 .�/

to L1 .�/ continuously. The continuous embedding L1 .�/ � L2 .�/ results in
the continuity of the operators

K W L1 .�/! L1 .�/ ; K W L1 .�/! L2 .�/ ;

K 0 W L1 .�/! L1 .�/ ; K 0 W L1 .�/! L2 .�/ :

Proof. Let ' 2 L1 .�/. As in the proof of Lemma 3.3.8 one can deduce that

jK' .x/j � k'kL1.�/

Z

�

1

kx � ykd�2C" dsy (3.35)

for all x 2 � . From the proof of Theorem 3.3.5 we have the boundedness of the
integral Z

�

1

kx � ykd�2C" dsy � C

with a constant that does not depend on x.
The operator K 0 can be estimated in the same way in all smooth points x 2 �

by the right-hand side in (3.35). Since the set of all non-smooth points has zero
measure, the mapping properties from the assertion result in this case as well. �

The existence ofK' andK 0' on the surface of � does not in any way mean that
these functions are limits of the potential D' as a transition from �˙ on � . In the
following these one-sided limits will be put into relation with one another.

The utilized geometric construction is illustrated in Fig. 3.1. Let S .x; r/ be the
surface of the d -dimensional sphere around x 2 Rd with radius r > 0. We set
H .x; r/ WD S .x; r/ \��. The functional J W Rd ! Œ0; 1	 is related to the
principal part of the differential operator L [see (2.98)] and is defined by

J .x/ WD lim
r!0

r

!d
p

det A

Z

H.x;r/

1

kx � ykdA
dsy: (3.36)
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Fig. 3.1 Intersection
H.x; r/ D S.x; r/\�� and
corresponding choice of the
orientation of the normal
vector with respect to the
local coordinate system

d

1

Here !d denotes the surface measure of the unit sphere in Rd , i.e., !2 D 2� ,
!3 D 4� , etc. Before we present the properties of J we will need a preparatory
lemma.

Lemma 3.3.10. For all nonsingular matrices B 2 Rd�d we have

Z

Sd�1

1

kBxkd
dsx D !d

jdet Bj : (3.37)

Proof. We define the function ' W R! R by r ! r2 exp
��r2�. On the one hand

we have

jdet Bj
Z

Rd

' .kxk/
kBxkd dx D jdet Bj

Z 1

0

Z

Sd�1

' .r/ rd�1

rd kBykd dsydr

D jdet Bj
Z

Sd�1

1

kBykd
dsy

Z 1

0

' .r/

r
dr D 1

2
jdet Bj

Z

Sd�1

1

kBykd
dsy

and on the other

jdet Bj
Z

Rd

' .kxk/
kBxkd dx D

Z

Rd

'
���B�1x

�
��

kxkd dx D
Z

Sd�1

Z 1

0

'
�
r
�
�B�1y

�
��

krykd r1�d drdsy

D
Z

Sd�1

Z 1

0

'
�
r
�
�B�1y

�
��

r
drdsy D !d

2
;

which proves the assertion. �
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From this lemma we have the estimate

0 � r

!d
p

det A

Z

H.x;r/

1

kx � ykdA
dsy

� r

!d
p

det A

Z

S.x;r/

1

kx � ykdA
dsy D 1

!d
p

det A

Z

S.0;1/

1

kykdA
dsy D 1: (3.38)

We will show in Lemma 3.3.11 that the limit in the definition of J .x/ exists and
that we therefore have J .x/ 2 Œ0; 1	.

The conormal derivative of the principal part of the double layer potential,
applied to the unit function, coincides with the functional J up to a sign. The
principal part of the fundamental solution is defined by

G0 .z/ WD

8
ˆ̂<

ˆ̂
:

1

2�
p

det A
log

1

kzkA
for d D 2;

1

.d � 2/!d
p

det A

1

kzkd�2
A

for d � 3
(3.39)

and the principal part of the double layer potential is defined by

.D0v/ .x/ WD
Z

�

�1;yG0 .x � y/ v .y/ dsy x 2 Rdn�: (3.40)

Lemma 3.3.11. The functional J has the representation

J .x/ D �
Z

�

�1;yG0 .x � y/ dsy; (3.41)

while for �1 in (3.41) one can choose �C
1 as well as ��

1 .

Proof. (Schematic proof) The proof for x 2 Rdn� follows from Green’s formulas
by a suitable choice of the functions u and v. We refer to [102] for the details and
restrict ourselves to the more interesting case x 2 � .

The normal field to H .x; r/ is chosen according to

n .�/ WD 1

r
.� � x/ 8� 2 H .x; r/

and thus �1 is defined on H .x; r/ by �1 .�/ WD hAn; �0 grad �i. Let e�� WD
��nBr .x/. By applying Gauss’ theorem (for sufficiently small r > 0) to e�� and
by using the equality L0G0 .x � �/ D 0 in e��, we obtain

Z

�nBr .x/
�1;yG0 .x � y/ dsy D

Z

H.x;r/
�1;yG0 .x � y/ dsy:

The theorem of dominated convergence implies that we can let r ! 0, i.e.,
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Z

�

�1;yG0 .x � y/ dsy D lim
r!0

Z

H.x;r/
�1;yG0 .x � y/ dsy

D � lim
r!0

r

!d
p

det A

Z

H.x;r/

1

ky � xkdA
dsy D �J .x/ :

�

Corollary 3.3.12. We have

J .x/ D
8
<

:

0 x 2 �C;
1 x 2 ��;
1
2

x 2 � and � is smooth in x:

Let
�
xC
n

�
n2N

and
�
x�
n

�
n2N

be sequences of points in �C and �� respectively that
converge to a point x 2 � . Then we have for � 2 f�;Cg the relation

lim
n!1J

�
x�n
� D �

Z

�

�1;yG0 .x � y/ dsy �
�
�1 � 1
2
C J .x/

�
: (3.42)

Proof. For x 2 �C and a sufficiently small r > 0 we have H .x; r/ D ; and
the integral in (3.36) equals zero. For x 2 �� and a sufficiently small r > 0 we
have H .x; r/ D S .x; r/ and the result follows from (3.38). We now need to con-
sider the remaining case x 2 � and � smooth at x. Since the integral in (3.36) is
invariant under rotation and translation of the coordinate system, we can choose
a Cartesian coordinate system .�i /

d
iD1 with origin x and the first d � 1 coordi-

nates in the tangent plane at x 2 � . The component �d points towards ��. Let
T .0; r/ WD f� 2 S .0; r/ W �d > 0g be the upper half sphere and

R1 .0; r/ WD T .0; r/ nH .0; r/ ; R2 .0; r/ WD H .0; r/ nT .0; r/ :

The smoothness of the surface at x implies that

jR1 .0; r/j C jR2 .0; r/j � Crd :

From this we have

r

!d
p

det A

Z

H.x;r/

1

kx � ykdA
dsy D r

!d
p

det A

Z

H.0;r/

1

k�kdA
ds	

D r

!d
p

det A

Z

T .0;r/

1

k�kdA
ds	 (3.43)

C r

!d
p

det A

Z

R2.0;r/

1

k�kdA
ds	 � r

!d
p

det A

Z

R1.0;r/

1

k�kdA
ds	 :
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It follows from the symmetry of Sd�1 that the integral (3.37) over the half sphere
T .0; 1/ is equal to !d=.2 det B/. As in the proof of (3.38) it follows that the first
term in the right-hand side of (3.43) is equal to 1=2. The other terms tend towards
zero for r ! 0 since

r

!d
p

det A

( ˇˇ
ˇ̌
ˇ

Z

R2.0;r/

1

k�kdA
ds	

ˇ
ˇ
ˇ̌
ˇ
C
ˇ
ˇ
ˇ̌
ˇ

Z

R1.0;r/

1

k�kdA
ds	

ˇ
ˇ
ˇ̌
ˇ

)

� Cr:

One obtains the second equality, i.e., (3.42), by using Lemma 3.3.11. �
Lemma 3.3.8 implies that the double layer potential is defined as an improper

integral on the surface of � . The one-sided limits K˙ and K 0
˙ also exist, as given

in (3.6). The relation between these three functions on � is given in the following
result.

Theorem 3.3.13. Let � 2 C 2pw and let
�
xC
n

�
n2N

and
�
x�
n

�
n2N

be sequences of
points in �C and �� respectively that converge to x 2 � . Let the density
' 2 L1 .�/ be continuous at x. Then we have for the double layer potential and
� 2 f�;Cg the jump relations

lim
n!1 .D'/

�
x�n
� D

Z

�

' .y/e�1;yG .x� y/ dsyC
�
�1 � 1
2
C J .x/

�
' .x/ : (3.44)

Proof. Let � 2 f�;Cg. We first consider the statement for the principal part G0 of
the fundamental solution G [see (3.39)] and the associated double layer potential
D0 [see (3.40)].

For x 2 � and � 2 Rd we define

 0 .�/ WD
Z

�

.' .y/� ' .x// �1;yG0 .� � y/ dsy

and for � … � obtain the representation

.D0'/ .�/ D �' .x/ J .�/C  0 .�/ : (3.45)

Next, we replaceD and G in (3.44) byD0 andG0 with, consequently, e�1 D �1. By
Corollary 3.3.12 and (3.45) the resulting right and left-hand sides of (3.44) have the
representations

 0 .x/C' .x/
�Z

�

�1;yG0 .x � y/ dsy C �1�1
2
CJ .x/

�
D 0 .x/�' .x/ lim

n!1J
�
x�n
�

and
�' .x/ lim

n!1J
�
x�n
�C lim

n!1 0
�
x�n
�

respectively. Therefore it suffices to show that limn!1 0
�
x�n
�!  0 .x/.



128 3 Elliptic Boundary Integral Equations

For the difference function we obtain the estimate

ˇ
ˇ 0 .x/�  0

�
x�n
�ˇˇ � 1

!d
p

det A

Z

�

k
�
x�n ; x; y

�
dsy

with

k .�; x; y/ WD
ˇ
ˇ
ˇ
ˇ̌
hn .y/ ; x � yi
kx � ykdA

� hn .y/ ; � � yi
k� � ykdA

ˇ
ˇ
ˇ
ˇ̌ j' .y/� ' .x/j :

The limit x�n ! xn is determined by the behavior of the kernel function k for � ! x.
For this, the integral over � is split into an integral over �nBı .x/ and � \ Bı .x/
with a sufficiently small ı > 0. For � ! x and y 2 �nBı .x/ we clearly have
lim	!x k .�; x; y/ D 0 and thus

lim
	!x

Z

�nBı.x/
k .�; x; y/ dsy D 0:

The domain of integration�\Bı .x/ is further split into smooth parts. The following
construction is illustrated in Fig. 3.2. For this let 
 be a panel with x 2 
 and a
smooth extension 
? (see Definition 2.2.9). For the discussion on convergence we
may assume without loss of generality that all x�n are contained in Bı .x/ and that
for every � 2 fx�n W n 2 Ng there exists an orthogonal element �? 2 
? such that

� � �? D � k� � �?kn .�?/ : (3.46)

The proof is given once the

Auxiliary Assumption:

I .�/ WD
Z


\Bı.x/
k .�; x; y/ dsy ! 0 for � ! x

has been proven.

Fig. 3.2 Point � which
converges towards x 2 � .
The angle condition implies
that the angle ˇ is bounded
from below away from 0. The
intersection of the concentric
circles Kb=i with 
 defines
the subsets 
i

1

1

b

b/2b/3
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Case a: We will first consider sequences that satisfy an angle condition, i.e., there
exists some ˛ 2 	0; 1Œ with

k� � �?k � ˛ k� � xk 8� 2 fx�n W n 2 Ng : (3.47)

For sufficiently large n 2 N there exists some m D m.n/ 2 N with

b

4m
� kx�n � xk � b

2m
; (3.48)

where b > 0 is the smallest number such that 
 � Bb .x/. In the next step 
\Bı .x/
is decomposed into m parts


m WD 
 \ B b
m
.x/ ;


i WD 
 \
�
B b

i
.x/ nB b

iC1
.x/
�

1 � i � m � 1: (3.49)

We then have


 \ Bı .x/ D
m[

iD1

i ; j
mj � Cm1�d ; j
i j � C i�d for 1 � i < m � 1:

(3.50)
The integrals over these parts are denoted by

Ti WD
Z


i

k
�
x�n ; x; y

�
dsy;

while we use the convention that integrals over sets of zero measure and over empty
sets are equal to zero. Finally, we require the parameter

� .ˇ/ WD sup fj' .�/� ' .x/j W k� � xk � ˇg ; (3.51)

which converges to zero for ˇ ! 0 because of the continuity of ' in x. It follows
that

I .�/ �
mX

iD1
Ti :

We begin by estimating the kernel function on 
m and use Lemma 2.2.14, (3.51) and
the equivalence of the norms k�k ; k�kA to obtain

k .�; x; y/ � C�
�
b

m

� ˇˇ
ˇ
ˇ̌

1

kx � ykd�2
A

ˇ
ˇ
ˇ
ˇ̌C

ˇ
ˇ
ˇ
ˇ̌

1

k��ykd�1
A

ˇ
ˇ
ˇ
ˇ̌

!

: (3.52)

We estimate the denominator of the second summand
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k� � yk2A � c k� � yk2 � c
�
k� � �?k2 � 2 jh� � �?; �? � yij C k�? � yk2

�
:

(3.53)
The middle summand in (3.53) can be estimated by using Lemma 2.2.14 and (3.46),
so that

jh���?; �?�yijD k���?k jhn .�?/ ; �?�yij�C k��xk k�?�yk2�Cı k�?�yk2 :

Therefore, for ı � .4C /�1, we have shown that

k��yk2A�c k��yk2�c
2

�
k���?k2Ck�?�yk2

� (3.47)� c

2
˛2 k� � xk2 � c

2

�
b˛

m

�2
:

Finally, we obtain the inequality

k .�; x; y/ � eC�
�
b

m

� ˇˇ
ˇ
ˇ̌

1

kx � ykd�2
A

ˇ
ˇ
ˇ
ˇ̌C

�m
˛

�d�1
!

:

This means that

Tm D
Z


m

k
�
x�n ; x; y

�
dsy � eC�

�
b

m

�(Z

�

1

kx � ykd�2
A

dsy C j
mj
�m
˛

�d�1
)

:

As has already been shown in Theorem 3.3.5, the integral in the above inequal-
ity is bounded. Since Cm1�d forms an upper bound for the surface j
mj, from
� .b=m/! 0 it follows that Tm ! 0 form!1.

For the remaining terms Ti , 1 � i � m � 1, we use the decomposition

hn .y/ ; x � yi
kx � ykdA

� hn .y/ ; � � yi
k� � ykdA

D hn .y/ ; x � �i
k� � ykdA

C
�

1

kx � ykA
� 1

k� � ykA

� dX

kD1

hn .y/ ; x � yi
kx � ykd�k

A k� � ykk�1
A

DW S1 C S2:

The second summand can be estimated by the reverse triangle inequality

jS2j � jk� � ykA � kx � ykAj
kx � ykA k� � ykA

dX

kD1

kx � yk
kx� ykd�k

A k� � ykk�1
A

� C
dX

kD1

kx � �kA

kx � ykd�k
A k� � ykkA

;

so that on 
i
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jS1 C S2j � kx � �kk� � ykdA
C eC

dX

kD1

kx � �kA

kx � ykd�k
A k� � ykkA

DW S .i/

is proven. If we apply the inequalities (3.48)–(3.50) and

1

k� � ykk
� 1

jkx � yk � k� � xkjk
� 1
�

b
iC1 � b

2m

�k �
�
i C 1
b

�k
1

�
1 � iC1

2m

�k

�
�
2
i C 1
b

�k

to 
i we obtain

S .i/ � C .i C 1/
d

m

with a constant C that depends only on A, b and d . From this we have, with (3.50),

mX

iD1
Ti � C

m

mX

iD1
�

�
b

i

�
.i C 1/d
id

�
bC
m

mX

iD1
�

�
b

i

�
: (3.54)

Since � .b=i/ is a null sequence the right-hand side in (3.54) converges to zero for
m!1. Because of (3.48) we also have m!1 from x�n ! x.

Case b: The proof of the auxiliary assumption for sequences that do not satisfy
an angle condition of the form (3.47) requires a more complicated decomposition
of the surface element 
 and will not be carried out here. Instead we refer to [102,
Theorem 18] for details.

The proof for the general double layer potential is based on the fact that the
singularity of the difference function

�1;y .G0 .x � y/�G .x � y// (3.55)

is reduced and therefore that the operator which is associated with the difference
kernel (3.55) can be continuously extended to Rd . Again we will not elaborate and
refer to [117, Lemma 8.1.5] and [102, Theorem 41]. �

We have already mentioned that the explicit representation of the boundary inte-
gral operators is essential for their numerical solution. In Chap. 4 we will focus on
discretization methods, for which the boundary integral operators have to be applied
to bounded, piecewise smooth functions. The resulting functions will always be
interpreted as L2-functions, the values of which are always determined up to a set
of zero measure. Under these conditions Theorem 3.3.13 can be simplified. We will
use the notation from Definitions 2.2.9 and 2.2.12.

Corollary 3.3.14. Let � 2 C 2pw and ' 2 C 1pw .�/. Then (3.44) can be simplified for
� 2 f�;Cg as an equality
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��0D' D �
1

2
' CK' (3.56)

in L2 .�/ with K as given in (3.34).

Proof. Let ' 2 C 1pw .�/ be arbitrary. Corollary 3.3.9 implies the continuity of
the operators K W C 1pw .�/ ! L2 .�/ and K 0 W C 1pw .�/ ! L2 .�/. From this
we have K' 2 L2 .�/. As the set of non-smooth points x 2 � has zero mea-
sure, these have no effect on the equality in L2 .�/ and the assertion follows from
Theorem 3.3.13. �

In the next theorem we will present the conormal trace of the single layer
potential.

Theorem 3.3.15. Let � 2 C 2pw and ' 2 C 1pw .�/. Then we have for � 2 f�;Cg

��1 S' D �
�
�
1

2
' �K 0'

�
a.e. on � (3.57)

with K 0 as given in (3.34).

The jump relation (3.57) is first proven at smooth surface points x, similarly to
Theorem 3.3.13. Furthermore, the difference n .y/ � n .x/ has to be estimated in
a neighborhood of x. Details can be found in [102, Theorem 21] and will not be
presented here.

3.3.4 Explicit Representation of the Boundary Integral
Operator W

We will now turn our attention to the operator W . We have already shown in
Theorem 3.3.1 that Œ�1D	 D 0 holds. This statement, however, does not contain
any explicit representation of the boundary integral operator W . We will note in
advance that the integral over the function �1;xe�1;yG .x � y/ ' .y/ in general does
not exist as an improper integral over � � � and therefore the differentiation can-
not be interchanged with the integration (see Remark 4.1.35). There do, however,
exist different representations of the trace �1D as an improper integral. Here we
choose the representation by means of integration by parts, which possesses favor-
able stability properties with respect to numerical discretization and is due to [159],
[171] and [136]. Alternatively, one can also define the integral for the function
�1;xe�1;yG .x � y/ ' .y/ by means of a generalized form of integration (Cauchy prin-
cipal value, part-fini integral). We will deal with the Cauchy principal value in
Sect. 5.1.2. For an approach via hypersingular or part-fini integrals we refer to [201]
and [211].

In this section we will use elementary properties of Fourier analysis that are
proven in, e.g., [243].
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For ' 2 H 1=2 .�/ the double layer potential D' is defined by (3.5) or Defini-
tion 3.1.5. We set

X WD
n
D' W ' 2 H 1=2 .�/

o

and recall the relations

Œu	 D '; Œ�1u	 D 0 and L.uj��[�C/ D 0 on �� [�C (3.58)

for all u D D' 2 X and L as in (3.1). We set L2
�
R3
� WD �

L2
�
R3
��3

. As the
matrix A is positive definite, another positive definite matrix A1=2 can be uniquely
defined by A1=2A1=2 D A. The function u is, in general, discontinuous across � so
that the gradient ru cannot be defined in the classical sense, but instead has to be
interpreted as a distribution. The “function part” g 2 L2

�
R3
�

of A1=2ru is defined
by

gj�� WD A1=2r uj�� � 2 f�;Cg (3.59)

on �� [�C.

Lemma 3.3.16. Let g be as in (3.59) and let the coefficients in L be denoted, as in
(3.1), by A, b and c. Then

div
�

A1=2g
�
� 2

D
A�1=2b; g

E
� cu D 0

in the sense of distributions on C1
0

�
R3
�
.

Proof. The jump relations (3.58), the definition of the weak derivative and integra-
tion by parts on the subdomains��, �C together give us for all w 2 C1

0

�
R3
�

div
�

A1=2g
�
.w/ D �

Z

R3

D
A1=2g;rw

E
dx D �

Z

��[�C

D
A1=2g;rw

E
dx

D
Z

��[�C

div
�

A1=2g
�

wdxC
Z

�

Œ�1u	wds

D
Z

��[�C

�
.�Lu/C 2

D
A�1=2b; g

E
C cu

�
wdx:

�
In the following lemma we will be using the surface distribution ı� , which is

defined by

vı� .w/ WD
Z

�

hv;wi .x/ dsx (3.60)

for sufficiently smooth test functions v;w.

Lemma 3.3.17. Let u D D' 2 X and g be as in (3.59). Then

A1=2ru � g D 'A1=2nı�

in the sense of distributions on C1
0

�
R3
�
.
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Proof. For w 2 C1
0

�
R3
�

we have

�
A1=2ru

�
.w/ D �

Z

R3

u div
�

A1=2w
�
dx D

Z

��[�C

D
A1=2ru;w

E
dx

C
Z

�

'
D
A1=2n;w

E
ds D

Z

��[�C

hg;widxC 'A1=2nı� .w/ :

�
Therefore we have derived the system of equations

div
�
A1=2g

� � 2 ˝A�1=2b; g
˛� cu D 0

A1=2ru � g D 'A1=2nı�
(3.61)

for the functions u; g.

Case 1: c ¤ 0.

Elimination of u in the first equation gives us, with the abbreviation r| WD div,

Lg WD 1

c

�
A1=2rr|A1=2g � 2A1=2rb|A�1=2g

�
� g D 'A1=2nı� : (3.62)

We set
† WD �cGI � curlA;�2b curlA;0 .GI/ (3.63)

with
curlA;v w WD

�
A1=2r C A�1=2v

�
� w

and the fundamental solution G from (3.3). The application of the differential
operator curlA;v to a matrix is defined columnwise:

†w D �cGw� curlA;�2b curlA;0 .Gw/ :

Lemma 3.3.18. Let c ¤ 0. The function † in (3.63) is a fundamental solution of
the operator L in (3.62), i.e.,

L† D ıI: (3.64)

Proof. The Fourier transform of equation (3.64) combined with the substitutions
� WD A1=2� and Qb WD A�1=2b gives us

�
�1
c
��| � 2i

c
� Qb| � I

�
O† D I: (3.65)

If we insert the Fourier transform of †

O† D �cI

k�k2 C 2i Qb|� C c �
�
i� � 2 Qb� �

�
i� � I

k�k2 C 2i Qb|� C c
�

(3.66)

into (3.65) and use the statement of Exercise 3.3.19 we obtain the assertion. �
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Exercise 3.3.19. Show that the function O† in (3.66) satisfies (3.65).

By means of a fundamental solution †, the solution of (3.62) can be written as a
convolution

g D † ?
�
'A1=2nı�

�
: (3.67)

Case 2: c D 0:
We eliminate the function u from the second equation in (3.61) by applying the

operator curlA;0 and by then using curlA;0
�
A1=2 grad u

� D 0. This gives us

� curlA;0 g D curlA;0
�
'A1=2nı�

�
: (3.68)

Applying the operator A1=2r to the first equation (3.61) (with c D 0) and using the
relation

A1=2r
�

div A1=2g
�
D div .Ar/ gC curlA;0 curlA;0 g

gives us the equation

div .Ar/ gC curlA;0 curlA;0 g � 2A1=2r
D
A�1=2b; g

E
D 0: (3.69)

Elementary tensor algebra then results in the two relations:

curlA;0 curlA;0 g D curlA;�2b curlA;0 gC2�A�1=2b
�� curlA;0 g

2
�
A�1=2b

�� curlA;0 g � 2A1=2r ˝A�1=2b; g
˛ D �2 hb;ri g:

(3.70)

By combining (3.68)–(3.70) we obtain

div .Ar/ g � 2 hb;ri g D curlA;�2b curlA;0 .'nı�/ :

The solution of this equation is

g D � .GI/ ? curlA;�2b curlA;0 .'nı�/ :

As differential operators commute with convolutions, we have

g D � curlA;�2b curlA;0 .GI/ ? .'nı�/ :

This means that the representations (3.63) and (3.67) remain valid for c D 0 as well.
Elementary properties of convolutions (see, e.g., [243, Chap. VI.3]) combined

with (3.60) yield
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g .x/ D
�
'A1=2nı� ? †

�
.x/ D

Z

�

' .y/
D
A1=2ny; † .x � y/ �

E
dsy: (3.71)

Since in (3.58) we set u D D' 2 X for an arbitrary ' 2 H 1=2 .�/. We use
the relation (3.59) between g and A1=2ru and note the continuity of

˝
A1=2nx; g .x/

˛

over � [see (3.58)]. Then we have for all  2 H 1=2 .�/

Z

�

.�1u/  ds D
Z

�

hAn;rui ds D
Z

�

D
A1=2nx; g .x/

E
 .x/ dsx (3.72)

D
Z

�

Z

�

' .y/ .x/
D
A1=2ny; † .x � y/A1=2nx

E
dsydsx: (3.73)

The definition of the function† in (3.63) is somewhat unwieldy. We will therefore
simplify the integrand in (3.73) somewhat in the next step. The first summand of †
in (3.63) is the motivation behind the definition of the integral

I1 WD �c
Z

�

Z

�

G .x � y/ ' .y/ .x/
D
A1=2ny;A1=2nx

E
dsydsx: (3.74)

Hence the right-hand side in (3.73) is equal to I1 C I2 with

I2 WD
Z

�

D
� curlA;�2b curlA;0GI ?

�
'A1=2nı�

�
;  A1=2n

E
ds:

Since differentiation and convolutions commute, we have

I2 D �
Z

�

D
curlA;�2bGI ?

�
curlA;0

�
'A1=2nı�

��
;  A1=2n

E
ds

D �
�

curlA;�2bGI ?
�

curlA;0
�
'A1=2nı�

��� �
 A1=2nı�

�
:

Lemma 3.3.20. The integral I2 has the representation

I2 D
D
GI ?

�
curlA;0

�
'A1=2nı�

��
; curlA;2b

�
 A1=2nı�

�E
:

Proof. Let v 2 R3, q WD GI?
�
curlA;0

�
'A1=2nı�

��
and w WD  A1=2nı� . It follows

from Parseval’s equation that

.curlA;v .q/;w/L2.R3/ D
1

.2�/3

�
4curlA;v .q/;bw

�

L2.R3/

D 1

.2�/3

Z

R3

D�
A1=2i� C A�1=2v

�
� q .�/ ; Ow .�/

E
d�;

where h�; �i is defined without complex conjugation. Elementary tensor algebra
gives us
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.curlA;v .q/ ;w/L2.R3/ D
1

.2�/3

Z

R3

D
q .�/ ;

�
A1=2i� �A�1=2v

� � Ow .�/
E
d�

D .q; curlA;�v .w//L2.R3/ ;

from which we have the assertion. �

Finally, we will apply curlA;v to the distribution  A1=2nı� . For this we define,
for � 2 H 1=2 .�/, the boundary differential operator

curl�;A;v � WD
�

A1=2 grad�? C �A�1=2v
�
� A1=2n; (3.75)

where �? WD Z�� 2 H 1 .��/ denotes the trace extension of � in �� (see
Remark 2.6.12).

Lemma 3.3.21. Let � 2 H 1=2 .�/. Then

curlA;v
�
�A1=2nı�

�
D .curl�;A;v �/ ı�

in the sense of distributions on C1
0

�
R3
�
.

Proof. Let w 2 C1
0

�
R3
�
. Then

�
curlA;v

�
�A1=2nı�

��
.w/ D

Z

�

D
�A1=2n; curlA;�v w

E
ds

D
Z

�

D
n; �A1=2 curlA;�v w

E
ds: (3.76)

Let �? WD Z��. One can easily verify that div
�
A1=2 curlA;0 .�/

� D 0. Thus with
Gauss’ theorem we obtain

Z

�

D
n;A1=2 curlA;0 .�w/

E
ds D

Z

��

div
�

A1=2 curlA;0
�
�?w

��
dx D 0: (3.77)

On the other hand, elementary tensor algebra gives us

A1=2 curlA;0
�
�?w

� D A1=2
��

A1=2 grad�?
�
�wC �? curlA;0 w

�
: (3.78)

By combining (3.76)–(3.78) we obtain
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curlA;v
�
�A1=2nı�

�
.w/ D

Z

�

D
n; �A1=2 curlA;0 w

E
�
D
A1=2n; �

�
A�1=2v

�
�w

E
ds

D �
Z

�

D
A1=2n;

�
A1=2 grad�?

�
� w

E

C
D
A1=2n; �

�
A�1=2v

�
� w

E
ds

D
Z

�

D�
A1=2 grad�? C �A�1=2v

�
� A1=2n;w

E
ds:

�

We have thus derived the following representation of I2

I2 D �
Z

���
G .x � y/ hcurl�;A;0 ' .x/ ; curl�;A;2b  .y/idsxdsy:

If we combine the previous representations we obtain the proof of the following
theorem.

Theorem 3.3.22. Let '; 2 H 1=2 .�/ and u D D'. Then

bW .';  / WD
Z

���
G .x � y/

˝
curl�;A;0  .x/ ; curl�;A;2b ' .y/

˛
dsxdsy

Cc
Z

���
G .x � y/  .x/ ' .y/

D
A1=2n .x/ ;A1=2n .y/

E
dsxdsy

D �
Z

�

.�1u/ ds:

Remark 3.3.23. As �1u D �1D' D �W', we have the representation

bW .';  / D .W'; /L2.�/ 8'; 2 H 1=2 .�/ :

Corollary 3.3.24. For the Laplace operator “��”, the bilinear form bW is explic-
itly given by

bW .';  / WD
Z

���
hcurl� ' .y/ ; curl�  .x/i

4� kx � yk dsxdsy;

where
curl� � WD grad�? � n and �? WD Z��.

For the Helmholtz operator “�� � k2”, we obtain

bW .';  / WD
Z

���
eikkx�yk

4� kx � yk
˚˝

curl� ' .y/ ; curl�  .x/
˛

� k2 hn .x/ ;n .y/i' .y/ .x/�dsxdsy:
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The implementation of the Galerkin discretization of boundary integral equa-
tions requires the transformation of the operator .�0 gradZ�u/ in (3.75) to two-
dimensional parameter domains. The following remark provides us with the relevant
transformation formula (see [170, Chap. 2]).

Exercise 3.3.25. Let 
 � � be a panel which is transformed back to a two-
dimensional parameter domain O
 � R2 by means of a C1-diffeomorphism 

 W
O
 ! 
 . Let Ou W O
 ! K be a sufficiently smooth function and let u W 
 ! K be
defined by lifting, i.e., u WD Ou ı 
�1


 . Then we have

.�0 gradZ�u/ ı 

 D J
G�1


brOu; (3.79)

where br denotes the gradient with respect to the parameter variables, J
 W O
 !
R3�2 denotes the Jacobian of the transformation 

 and G
 WD J|


 J
 2 R2�2 is the
Gram matrix.

3.4 Integral Equations for Elliptic Boundary
Value Problems

In Sect. 2.9 we formulated elliptic boundary value problems as variational problems.
These problems can be transformed into integral equations, which are derived in this
chapter.

We will present two methods with which one can formulate elliptic boundary
value problems as boundary integral equations. The indirect method uses an ansatz
consisting of potentials. The unknown density functions are then determined by the
given boundary data. The direct method uses an ansatz where the given boundary
data is inserted into Green’s representation formula, which in turn is solved for the
unknown boundary data. Formulating elliptic boundary value problems as integral
equations is very advantageous from a numerical point of view if the right-hand side
in the differential equation equals zero. Therefore we will always assume, unless
explicitly stated otherwise, that the right-hand sides f in (2.129)–(2.137) are all
equal to zero. All formulations can be modified by adding Newton potentials Nf
should the source term f not be equal to zero.

The sesquilinear forms associated with the operators V , KC, K�, K 0C, K 0�, W
[see (3.6)] are, for � 2 f�;Cg, given by

bV W H�1=2 .�/ �H�1=2 .�/! C bV .';  / WD .V'; /L2.�/

b�K W H 1=2 .�/ �H�1=2 .�/! C b�K .';  / WD � 12 .';  /L2.�/ C bK .';  /
b�K0 W H�1=2 .�/ �H 1=2 .�/! C b�K0 .';w/ WD �� 12 .';  /L2.�/ C bK0 .';  /

bW W H 1=2 .�/ �H 1=2 .�/! C bW .';  / WD .W'; /L2.�/
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with
bK .';  / WD .K'; /L2.�/ and bK0 .';  / WD .K 0'; /L2.�/

[see (3.34)], where .�; �/L2.�/ again denotes the extension of the L2 .�/ inner
product to H 1=2 .�/ � H�1=2 .�/ or H�1=2 .�/ � H 1=2 .�/. If the sesquilinear
form – as in the case of b�K , b�

K0 – contains one summand which is of the form
˙1=2 .u; '/L2.�/ it is called an integral operator of the second kind. Otherwise, it is
called – in the case bV and bW – an operator of the first kind. The associated integral
equations are appropriately called equations of the first and the second kind.

3.4.1 The Indirect Method

For functions ' 2 H�1=2 .�/ and  2 H 1=2 .�/ we can define the potentials

u� WD S' on ��; w� WD D on ��;
uC WD S' on �C; wC WD D on �C: (3.80)

The principle of the indirect method consists in first determining the unknown den-
sity function ' as a solution of a boundary integral equation by means of the given
boundary conditions. Then we can insert it into the associated potentials, which
gives us the solution of the boundary value problem. The following proposition
recalls the properties of the potentials u˙ and w˙.

Proposition 3.4.1. The functions u˙, w˙ from (3.80) satisfy

1: u� 2 H 1 .��/ and Lu� D 0 in ��;
2: uC 2 H 1

loc

�
�C� and LuC D 0 in �C;

3: w� 2 H 1 .��/ and Lw� D 0 in ��;
4: wC 2 H 1

loc

�
�C� and LwC D 0 in �C:

We will formulate the integral equations for the boundary value problems given
in Sect. 2.9. The formulation as an integral equation is by no means unique. The
single layer potential can just as well be used as the double layer potential.

3.4.1.1 Interior Problems

IDP:

Single Layer Potential: Let gD 2 H 1=2 .�/ be given. Find ' 2 H�1=2 .�/ such
that

bV .'; �/ D .gD ; �/L2.�/ 8� 2 H�1=2 .�/ :

Double Layer Potential: Let gD 2 H 1=2 .�/ be given. Find  2 H 1=2 .�/ such
that
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� 1
2
. ; �/L2.�/ C bK . ; �/ D .gD ; �/L2.�/ 8� 2 H�1=2 .�/ : (3.81)

INP:

Single Layer Potential: Let gN 2 H�1=2 .�/ be given. Find ' 2 H�1=2 .�/
such that

1

2
.'; �/L2.�/ C bK0 .'; �/ D .gN ; �/L2.�/ 8� 2 H 1=2 .�/ :

Double Layer Potential: Let gN 2 H�1=2 .�/ be given. Find  2 H 1=2 .�/

such that
bW . ; �/ D � .gN ; �/L2.�/ 8� 2 H 1=2 .�/ :

IDNP:

In order to formulate integral equations for mixed boundary value problems, we
need to use Sobolev spaces on the Dirichlet and Neumann parts of the boundary � .
Here we will only introduce the relevant function spaces and summarize the required
theorems. For a detailed analysis we refer to [162, p. 231 ff].

Let �0 � � be a measurable subset of the boundary with j�0j > 0. The Sobolev
space eH s .�0/, s 2 Œ0; 1	 was defined in (2.90) as

eH s .�0/ D
˚
u 2 H s .�/ W supp .u/ � �0

�
: (3.82)

The norm on eH s .�0/ is defined by

kukH s.�0/
WD ��u?

��
H s.�/

; (3.83)

where u? denotes the extension of u on � by zero.
The spaces with negative indices are again defined as dual spaces: eH�s .�0/ WD

.H s .�0//
0 for s 2 Œ0; 1	. Conversely, we have: H�s .�0/ D

�eH s .�0/
�0

for s 2
Œ0; 1	.

For the mixed boundary value problem our aim is to find the Dirichlet data on
�N where the Neumann data is given and vice-versa on �D . This requires the local-
ization of the boundary integral operators on �N and �D in the range as well as the
domain. For functions '; on � with supp .'/ � �D and supp . / � �N we set

VDD' WD .V'/j�D
; K 0

ND' WD .K 0'/j�N
;

KDN WD .K /j�D
; WNN WD .W /j�N

;

where the operatorsK ,K 0 are given by
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K D �1
2
I C �C

0 D D
1

2
I C ��

0 D

K 0 D 1

2
I C �C

1 S D �
1

2
I C ��

1 S

and the two equalities on the right-hand side follow from (3.56) and (3.57). For suf-
ficiently smooth '; they have the representation (3.34). The mapping properties
of these operators are given in the following theorem.

Theorem 3.4.2. We have

VDD W eH�1=2 .�D/! H 1=2 .�D/ ; K
0
ND W eH�1=2 .�D/! H�1=2 .�N / ;

KDN W eH 1=2 .�N /! H 1=2 .�D/ ; WNN W eH 1=2 .�N /! H�1=2 .�N / :

For ' 2 eH�1=2 .�D/ and 2 eH 1=2 .�N / we use, in�� , � 2 f�;Cg, the ansatz

u� D S' �D in �� :

If we then form the traces we obtain

��0 u� D V' �
�
�1

2
I CK

�
 ;

��1 u� D
�
��1
2
I CK 0

�
' CW :

If we consider the first integral equation on �D and the second on �N and if we
apply the given data

�
��0 u�

�ˇ̌
�D
D gD and

�
��1 u�

�ˇ̌
�N
D gN , we obtain a system

of integral equations for ' 2 eH�1=2 .�D/ and  2 eH 1=2 .�N /

gD D VDD' �
�
�1

2
IDN CKDN

�
 on �D; (3.84)

gN D
�
��1
2
IND CK 0

ND

�
' CWNN on �N : (3.85)

If we then combine the operators in (3.84) and (3.85) to form a 2 � 2-system of
operators we formally obtain for .';  / 2 eH�1=2 .�D/ � eH 1=2 .�N / the equation

�
VDD � �� 1

2
IDN CKDN

�
���1

2
IND CK 0

ND

�
WNN


�
'

 

�
D
�
gD
gN

�
(3.86)

in H 1=2 .�D/ �H�1=2 .�N /. If we multiply (from the right-hand side) by .�; �/ 2
eH�1=2 .�D/ � eH 1=2 .�N / and integrate over �D and �N we obtain
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bVDD
.'; �/ � bKDN

. ; �/C bK0
ND

.'; �/C bWNN
. ; �/

D .gD ; �/L2.�D/
C .gN ; �/L2.�N /

; (3.87)

where each sesquilinear form is defined by localization analogously

bVDD
W eH�1=2 .�D/ � eH�1=2 .�D/! C bVDD

.'; �/ WD .VDD'; �/L2.�D/

bKDN
W eH�1=2 .�D/ � eH 1=2 .�N /! C bKDN

. ; �/ WD .KDN ; �/L2.�D/

bK0
ND
W eH 1=2 .�N / � eH�1=2 .�D/! C bK0

ND
.'; �/ WD �K 0

ND ; �
�
L2.�N /

bWNN
W eH 1=2 .�N / � eH 1=2 .�N /! C bWNN

. ; �/ WD .WNN ; �/L2.�N /
:

Note that the contribution of the identity operators IDN and IND in (3.86) vanishes,
as �N and �D have a disjoint interior. We obtain a more compact representation if
we use the left-hand side of (3.87) to define the sesquilinear form bmixed on H � H,
with

H WD eH�1=2 .�D/ � eH 1=2 .�N / : (3.88)

The direct method for the interior mixed problem as an integral equation then
reads:

In (2.144) and (2.145) let f � 0 and .gD ; gN / 2 H 1=2 .�D/ �H�1=2 .�N / be
given. Find .';  / 2 H such that

bmixed

  
'

 

!

;

 
�

�

!!

D .gD ; �/L2.�D/
C.gN ; �/L2.�N /

8 .�; �/ 2 H: (3.89)

Remark 3.4.3. Mixed boundary value problems are usually only continuous and
regular for a small range of Sobolev indices. The operator on the left-hand side
of (3.86) maps eH�1=2Cs .�D/ � eH 1=2Cs .�N / to H 1=2Cs .�D/ � H�1=2Cs .�N /
continuously for all jsj < s0 .�/ < 1=2. We have:

(a) s0 D 1=4 for general Lipschitz domains.
(b) 1=4 < s0 � 1=2 for Lipschitz polyhedra (see Definition 3.2.1) and also for

globally smooth domains.

The range of regularity for the mixed boundary value problem is smaller com-
pared to the range of regularity for the pure Dirichlet and Neumann problems (see
Theorem 3.2.2 and 3.2.3). Essentially, these theorems can be applied to the present
case; however, the range of regularity is given by jsj < s0 where s0 is defined as in
(a) and (b).
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3.4.1.2 Exterior Problems

EDP:

Single Layer Potential: Let gD 2 H 1=2 .�/ be given. Find ' 2 H�1=2 .�/ such
that

bV .'; �/ D .gD ; �/L2.�/ 8� 2 H�1=2 .�/ :

Double Layer Potential: Let gD 2 H 1=2 .�/ be given. Find  2 H 1=2 .�/ such
that

1

2
. ; �/L2.�/ C bK . ; �/ D .gD ; �/L2.�/ 8� 2 H�1=2 .�/ :

ENP:

Single Layer Potential: Let gN 2 H�1=2 .�/ be given. Find ' 2 H�1=2 .�/
such that

�1
2
.'; �/L2.�/ C bK0 .'; �/ D .gN ; �/L2.�/ 8� 2 H 1=2 .�/ :

Double Layer Potential: Let gN 2 H�1=2 .�/ be given. Find  2 H 1=2 .�/

such that
bW . ; �/ D � .gN ; �/L2.�/ 8� 2 H 1=2 .�/ :

EDNP:

In (2.155) and (2.156) let f � 0 and .gD ; gN / 2 H 1=2 .�D/ �H�1=2 .�N / be
given. Then the associated formulation by integral equations for the indirect method
reads: Find .';  / 2 H such that

bmixed

  
'

 

!

;

 
�

�

!!

D .gD ; �/L2.�D/
C.gN ; �/L2.�N /

8 .�; �/ 2 H: (3.90)

3.4.1.3 Transmission Problem

For ' 2 H�1=2 .�/ and  2 H 1=2 .�/ we use the ansatz

u D S' CD in �� [�C

and note that Lu D 0 in �� [�C. The jump relations from Theorem 3.3.1 give us
the two relations

gD D ŒD 	 D  ; gN D Œ�1S'	 D �':

This means that we can formulate the solution to the TP explicitly:
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u D �SgN CDgD in �� [�C:

With this we have given formulations by integral equations for all boundary
value problems for the indirect method. Once the unknown density functions have
been determined they have to be inserted into the associated single or double layer
potentials, which results in a function u that satisfies the boundary conditions and
the equation Lu D 0 in the appropriate domain. We will discuss existence and
uniqueness theorems for these integral equations in Sect. 3.5.

3.4.2 The Direct Method

The direct method is based on Green’s formulas (Theorem 3.1.6). In general, we
will again assume that the differential equation is homogeneous, i.e., that we always
have f � 0 in�. In the event that f ¤ 0 we can use the Newton potential to revert
to the case f D 0 [see (1.22) and Theorem 3.1.6].

3.4.2.1 Interior Problems

We shall again begin with interior problems. The extension of a function u 2
H 1
L .�

�/ to �C by zero will again be denoted by u and satisfies u 2 H 1
L

�
Rd
�
.

Thereby, Green’s representation formula (3.10) becomes applicable and gives us

u D S ���
1 u
��D �

��
0 u
�

in ��: (3.91)

This means that the function u in �� is determined as soon as the boundary values
��
0 u or, as is necessary, the values of the conormal derivative ��

1 u are known. By
applying ��

0 or ��
1 to (3.91) we obtain two boundary integral equations, i.e., a rela-

tion between the Dirichlet and Neumann data. We set uD WD ��
0 u and uN WD ��

1 u
and obtain

uD D V uN �
�
K � 1

2
I

�
uD

uN D
�
K 0 C 1

2
I

�
uN CW uD:

(3.92)

By means of these two equations, the interior problem can be transformed into one
boundary integral equation of the first kind and another of the second kind.

IDP:

Equation of the first kind: Let gD 2 H 1=2 .�/ be given. Find uN 2 H�1=2 .�/
such that

bV .uN ; '/ D 1

2
.gD ; '/L2.�/ C bK .gD ; '/ 8' 2 H�1=2 .�/ :
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Equation of the second kind: Let gD 2 H 1=2 .�/ be given. Find uN 2 H�1=2 .�/
such that

1

2
.uN ; '/L2.�/ � bK0 .uN ; '/ D bW .gD ; '/ 8' 2 H 1=2 .�/ :

INP:

Equation of the first kind: Let gN 2 H�1=2 .�/ be given. Find uD 2 H 1=2 .�/

such that

bW .uD ; '/ D 1

2
.gN ; '/L2.�/ � bK0 .gN ; '/ 8' 2 H 1=2 .�/ :

Equation of the second kind: Let gN 2 H�1=2 .�/ be given. Find uD 2
H 1=2 .�/ such that

1

2
.uD; '/L2.�/ C bK .uD; '/ D bV .gN;'/ 8' 2 H�1=2 .�/ :

IDNP:

For the mixed boundary value problem we use the first equation in (3.92) on �D
and the second equation on �N . In so doing, we obtain the 2�2 system of boundary
integral equations

�
VDD �KDN
K 0
ND WNN


�
uN
uD

�
D
� �VDN 1

2
I CKDD

1
2
I �K 0

NN �WND

�

gN
gD

�
:

If we then multiply by .';  / 2 H and integrate over the respective surface parts
�D and �N we obtain the variational formulation: Find .uN ; uD/ 2 H [cf. (3.88)]
such that

bmixed

  
uN
uD

!

;

 
'

 

!!

D 1

2

˚
.gD ; '/L2.�D/

C .gN ;  /L2.�N /

�

C brhsmixed

  
gN

gD

!

;

 
'

 

!!

for all .';  / 2 H with

brhsmixed

  
gN

gD

!

;

 
'

 

!!

WD �bVDN
.gN ; '/C bKDD

.gD ; '/� bK0
NN

.gN ;  /

�bWND
.gD ;  / : (3.93)
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Remark 3.4.3, which concerns the mapping and regularity properties of the
integral operators of the indirect method as applied to the mixed boundary value
problem, also holds for the direct method.

3.4.2.2 Exterior Problems

Green’s representation formula as given in (3.19) was proven for exterior problems
with an additive, L-harmonic extra term. However, with Theorems 3.1.11, 3.1.12
and 3.1.13, we know that, for the Laplace and Helmholtz problems as well as for
the positive definite case aminc > kbk2, this extra term vanishes and that Green’s
representation formula holds unchanged. In this section we will assume that there
exists a subspace V � H 1

loc

�
Rdn�� such that, for all u 2 V with Lu D 0 in

�C [��, the representation

u D �S Œ�1u	CD Œ�0u	 in �� [�C (3.94)

and the trace theorems for �0 and �1 in V all remain valid unchanged. We set u� � 0
on �� and only consider (3.94) in the exterior space

uC D �S�C
1 uC CD�C

0 uC in �C:

If we form the traces we obtain the equations

uD D �V uN C
�
KuD C 1

2
uD
�
; in H 1=2 .�/ ;

uN D �
�
K 0uN � 1

2
uN
� �W uD; in H�1=2 .�/ :

(3.95)

In the following we will use these results to derive the boundary integral equations,
achieving this by using the known, and solving for the unknown, boundary data.

EDP:

Equation of the first kind: Let gD 2 H 1=2 .�/ be given. Find uN 2 H�1=2 .�/
such that

bV .uN ; '/ D �1
2
.gD ; '/L2.�/ C bK .gD ; '/ 8' 2 H�1=2 .�/ :

Equation of the second kind: Let gD 2 H 1=2 .�/ be given. Find uN 2 H�1=2 .�/
such that

1

2
.uN ;  /L2.�/ C bK0 .uN ;  / D �bW .gD ;  / 8 2 H 1=2 .�/ :
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ENP:

Equation of the second kind: Let gN 2 H�1=2 .�/ be given. Find uD 2
H 1=2 .�/ such that

bW .uD;  / D �1
2
.gN ;  /L2.�/ � bK0 .gN ;  / 8 2 H 1=2 .�/ :

Equation of the second kind: Let gN 2 H�1=2 .�/ be given. Find uD 2
H 1=2 .�/ such that

1

2
.uD; '/L2.�/ � bK .uD; '/ D �bV .gN ; '/ 8' 2 H�1=2 .�/ : (3.96)

EDNP:

Let gN 2 H�1=2 .�N / and gD 2 H 1=2 .�N / be given. Find uD 2 eH 1=2 .�N /

and uN 2 eH�1=2 .�D/ such that

bmixed

  
uN
uD

!

;

 
'

 

!!

D �1
2

˚
.gD ; '/L2.�D/

C .gN ;  /L2.�N /

�

Cbrhsmixed

  
gN

gD

!

;

 
'

 

!!

for all .';  / 2 H, where bmixed and brhsmixed are defined as in (3.90) and (3.93).

3.4.3 Comparison Between Direct and Indirect Method

It is either the integral operatorsV ,W ,˙ICK and˙ICK 0 or their localizations on
the boundary parts �D and �N that appear in the direct and indirect formulations.
This raises the question which of the two formulations is more suited to concrete
applications. In the following we will discuss some of the merits and drawbacks of
the direct and indirect formulations:

1. The right-hand side of the integral equation for the direct formulation is defined
by an integral operator [see, e.g., (3.96)]. In contrast, in order to generate the
right-hand side of the indirect formulation one simply needs to evaluate the
L2 .�/ inner product of the boundary data and the test functions.

2. When one solves the direct formulation one obtains the Dirichlet and Neumann
boundary data explicitly. However, solving the indirect formulation only pro-
duces an abstract auxiliary function that subsequently has to be evaluated by
means of potentials.

3. The solution of the underlying differential equation in the interior is defined as
a representation formula in both cases. For the indirect formulation an integral
over the boundary � has to be evaluated for every point of the domain [see, e.g.,
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(3.4)], while the direct formulation requires the evaluation of two integrals over
� [see, e.g., Theorem 3.1.6 (with f D 0)].

4. For non-smooth surfaces the solutions of the integral equations contain charac-
teristic singularities at the vertices and edges of the surfaces, [237]. With the
direct method the solutions are exactly the Cauchy data of the underlying bound-
ary value problem. Therefore the singularities of the solutions of the boundary
integral equations with the direct method are exactly the Cauchy data of the
singularities of the solutions of the boundary value problem. With the indirect
method, however, the solutions of the boundary integral equations are jumps of
the Cauchy data of the interior as well as the exterior problem. On non-smooth
surfaces the solutions of the boundary integral equations, obtained by the indirect
method, contain traces of the singularities of solutions of the interior and exterior
problem, which may in turn reduce the regularity considerably: If�� is a convex
polyhedron the solutions of the Dirichlet problem for the Laplace equation are in
H 2.��/ within ��. However, the solutions of the associated exterior problem
are, in general, only in H s

loc.�
C/ with s < 2 because of the reentering vertices

and edges within �C.

These comparisons only give us a rough indication as to which of the two for-
mulations is more suited to practical applications. Note that, in principle, solving
the integral equations has the same complexity for both formulations, since in both
cases the same operators appear. We will consider two typical applications:

1. If the purpose is simply to determine the unknown boundary data then the direct
formulation is more suitable than the indirect formulation.

2. For applications in which the solution of the underlying differential equation has
to be evaluated in many points of the domain, the indirect formulation is more
suitable.

3.5 Unique Solvability of the Boundary Integral Equations

In this section we will show the coercivity of the integral operators V and W under
suitable conditions. Combined with the injectivity of the boundary integral opera-
tor we can then deduce the unique solvability of the variational boundary integral
equation of the first kind.

3.5.1 Existence and Uniqueness for Closed Surfaces
and Dirichlet or Neumann Boundary Conditions

First we will consider closed surfaces � D @�� and the case that either Dirichlet
or Neumann boundary conditions are prescribed on all of � .

We begin with the ellipticity of V and W in the case of the Laplace operator.
For this, we will need to generalize Green’s formula (2.110) for functions with
unbounded support.
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Lemma 3.5.1. Let aminc > kbk2 or d D 3 and L D ��. For all '; 2
H�1=2 .�/ with u WD .S'/j�C , v WD .S /j�C we have

�
�C
1 u; �0v

�
L2.�/

D �B�C .u; v/ : (3.97)

Proof. We will first consider the caseL D �� and d D 3. Let a > 0with�� � Ka
and

inf
.x;y/2��@Ba

kx � yk � 1:

We apply Green’s formula (2.110) for the bounded domain �a WD �C \ Ba and
obtain

.�1u; �0v/L2.�/ C .�1u; �0v/L2.�a/
D �B�a

.u; v/ (3.98)

with �a D @Ba . The normal vectors on � point, as usual, in the direction of �C
and those on �a in the direction of�a. With this we have

ˇ
ˇ
ˇ̌
Z

�a

@u

@n
vdsy

ˇ
ˇ
ˇ̌ � k'kH�1=2.�/ k kH�1=2.�/

Z

�a

kG .x � �/kH1=2.�/

�
��
�
@

@n
G .x � �/

�
��
�
H1=2.�/

dsx:

It follows from (3.21) for x 2 �a that

kG .x � �/kH1=2.�/ � C kG .x � �/kH1.�/ � Ca�1

and �
�
�
�
@

@n
G .x � �/

�
�
�
�
H1=2.�/

� C
�
�
�
�
@

@n
G .x � �/

�
�
�
�
H1.�/

� Ca�2:

With j�aj � Ca2 we obtain

ˇ
ˇ
ˇ̌
Z

�a

@u

@n
vdsy

ˇ
ˇ
ˇ̌ � Ca�1 k'kH�1=2.�/ k kH�1=2.�/ :

Therefore, in (3.98), we can let a!1 where the second term on the left-hand side
goes to zero. This proves the assertion for L D ��.

Now let aminc > kbk2. Lemma 3.1.9 shows that, in this case, the potentials
exhibit an exponential decay so that the same arguments as in the previous case can
be used to prove the statement. �

Exercise 3.5.2. Let aminc > kbk2 or d D 3 andL D ��. For all '; 2 H 1=2 .�/

with u WD .D'/j�C , v WD .D /j�C we have

�
�C
1 u; �0v

�
L2.�/

D �B�C .u; v/ :
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Theorem 3.5.3. Let d D 3 and L D ��. Then the associated sesquilinear forms
bV W H�1=2 .�/ � H�1=2 .�/ ! C and bW W H 1=2 .�/ =K � H 1=2 .�/ =K are
elliptic:

bV .'; '/ � cV k'k2H�1=2.�/
8' 2 H�1=2 .�/ ;

bW . ; / � cW k k2H1=2.�/=K 8' 2 H 1=2 .�/ =K:

Proof. We begin with the sesquilinear form bV . For ' 2 H�1=2 .�/ we set u D S'.
It follows from (3.24) that u 2 H 1

�
L;Rd

�
. The jump relations give us

Œ�1u	 D �' in H�1=2 .�/ and Œu	 D 0 in H 1=2 .�/ : (3.99)

Green’s representation formulas (2.110) and (3.97) give us, because of Lu � 0 in
�� [�C, �

��
1 u; ��

0 u
�
L2.�/

D B� .u; u/ ;�
�C
1 u; �C

0 u
�
L2.�/

D �BC .u; u/ :

By subtracting the first equation from the second and by using Œu	 D 0 we obtain,
with B��[�C WD B� C BC,

.Œ�1u	 ; �0u/L2.�/ D �B��[�C .u; u/ :

Combining (3.99) with theH 1
�
L;Rd

�
-ellipticity ofB��[�C [see (2.171)] gives us

bV .'; '/ D .'; V'/L2.�/ D .'; �0u/L2.�/ D B��[�C .u; u/ � c kuk2
H1.L;Rd / :

(3.100)
By Definition 2.7.6 and the fact thatLu � 0 on��[�C, we have for the one-sided
conormal derivatives (where � 2 f�;Cg)

k��1 ukH�1=2.�/ D sup
 2H1=2.�/nf0g

ˇ
ˇ̌�
��1 u;  

�
L2.�/

ˇ
ˇ̌

k kH1=2.�/

D sup
 2H1=2.�/nf0g

jB� .u; Z�� /j
k kH1=2.�/

� C sup
 2H1=2.�/nf0g

kukH1.L;�� / kZ�� kH1.L;�� /

k kH1=2.�/

:

Since Z�� 2 H 1
comp .�

� / there exists a ball Ba with supp .Z�� / � Ba. With
this and by the equivalence of the norms in H 1 .Ba/ and H 1 .L;Ba/ we obtain

kZ�� kH1.L;�� / � kZ�� kH1.Ba\�� / � C k kH1=2.�/ :

From this and with (3.100) we have the ellipticity

k'k2
H�1=2.�/

D kŒ�1u	k2
H�1=2.�/

� k��
1 uk2

H�1=2.�/
C ���C

1 u
�
�2
H�1=2.�/

� C kuk2
H1.L;Rd / �

C

c
bV .'; '/ :
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Next we will prove the ellipticity of the sesquilinear form bW on H 1=2 .�/ =K.
For  2 H 1=2 .�/ =K we define u WD D . From (3.24) we have u 2 H 1 .��/ �
H 1

�
L;�C�. The jump relations give us

Œu	 D  ; Œ�1u	 D 0: (3.101)

Green’s representation formulas (2.110) and (3.97) give us, by taking into consider-
ation that Lu � 0 on �� [�C,

�
��
1 u; ��

0 u
�
L2.�/

D B� .u; u/
�
�C
1 u; �C

0 u
�
L2.�/

D �BC .u; u/ :

If we subtract the first equation from the second and use Œ�1u	 D 0 we obtain

.�1u; Œu	/L2.�/ D � .B� .u; u/C BC .u; u// : (3.102)

The right-hand side in (3.102) defines, as in (2.169), the sesquilinear formB��[�C .
By combining  D Œu	 with (3.6) we obtain with (3.102)

bW . ; / D . ;W  /L2.�/ D .Œu	 ;��1u/L2.�/ D B��[�C .u; u/ : (3.103)

The continuity and the second Poincaré inequality (Corollary 2.5.10 and
Theorem 2.10.10) give us

k k2
H1=2.�/=K D inf

c2R
kŒu	 � ck2

H1=2.�/

�
��
���C

0 u
�
��
H1=2.�/

C inf
c2R
k��

0 .u � c/kH1=2.�/

�2

� 2C
�
kuk2

H1.L;�C/ C inf
c2R
ku � ck2H1.��/

�

� 2C
�
juj2

H1.L;�C/Cjuj2H1.��/

�
� eCB��[�C .u; u/DeCbW . ; / :

�
We now turn our attention to the ellipticity of the boundary integral operators V

and W for the general elliptic differential equation.

Theorem 3.5.4. Let aminc > kbk2. Then the associated sesquilinear forms bV :
H�1=2 .�/ �H�1=2 .�/! C and bW W H 1=2 .�/ �H 1=2 .�/ are elliptic.

Proof. The proof is analogous to the proof of the previous theorem. We begin with
the sesquilinear form bV . For ' 2 H�1=2 .�/ we set u D S'. It follows from
Theorem 3.1.16 and Lemma 3.1.9 that u 2 H 1

�
Rd
�
. As before, the jump relations

and Green’s representation formulas (2.110) and (3.97) give us

.Œ�1u	 ; �0u/L2.�/ D �B��[�C .u; u/ :



3.5 Unique Solvability of the Boundary Integral Equations 153

It follows with the H 1
�
Rd
�
-ellipticity of B��[�C and the continuity of the trace

operator that

bV .'; '/ D .'; V'/L2.�/ D .'; �0u/L2.�/ D B��[�C .u; u/

� c kuk2
H1.L;Rd / � c k'k2H�1=2.�/

:

The proof of the ellipticity of bW in H 1=2 .�/ is similar to, yet simpler than, the
proof of Theorem 3.5.3. This is due to the fact that, since the interior Neumann prob-
lem is uniquely solvable in the case aminc > kbk2, we need not consider quotient
spaces. �

We have now shown that the integral operators V and W are elliptic in suitable
Sobolev spaces for elliptic boundary value problems with L D �� or aminc >

kbk2. Thus the unique solvability is a direct consequence of the Lax–Milgram
lemma.

Considering the general elliptic operator L in (2.98), we can prove a Gårding
inequality for the integral operators V andW and therefore the Riesz–Schauder the-
ory from Sect. 2.1.4 becomes applicable. The details can be found in the following
Proposition.

Proposition 3.5.5. Let G be the fundamental solution [see (3.3)] defined in combi-
nation with the operator L from (2.98) and let V and W be the boundary integral
operators defined thereby. These satisfy a Gårding inequality in H�1=2 .�/ and
H 1=2 .�/. More specifically, there exist compact operators TV W H�1=2 .�/ !
H 1=2 .�/ and TW W H 1=2 .�/! H�1=2 .�/ such that

..V C TV / u; u/L2.�/ � cV kuk2H�1=2.�/
for all u 2 H�1=2 .�/ ; (3.104)

..W C TW / v; v/L2.�/ � cW kvk2H1=2.�/
for all v 2 H 1=2 .�/ :

The proof can be found in [72]. The Gårding inequality does not yet provide
us with the existence of solutions; we still need to determine the injectivity of V
and W .

3.5.2 Existence and Uniqueness for the Mixed
Boundary Value Problem�

Let �� � R3 again be a bounded Lipschitz domain with boundary � and let
�D ; �N � � be relatively open boundary pieces with �D \ �N D ; and

� D �D [ �N : (3.105)

� This section should be read as a complement to the core material of this book.
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For simplicity’s sake, we assume that �D and �N are simply connected and we
recall the definition (3.82) of the relevant function spaces H s .�0/, eH s .�0/ on
�0 � � .

We consider the mixed boundary value problem for the Laplace operator:

�u D 0 in �, u D gD on �D , @u=@n D gN on �N (3.106)

for given boundary data gD 2 H 1=2.�D/, gN 2 H�1=2.�N / and we refer to
Sect. 2.9.2.3 for the associated variational formulation.

A (weak) solution u 2 H 1.��;��/ can be written in terms of its Cauchy data
' D uj� and � D @u=@nj� according to

u.x/ D .S�/.x/� .D'/.x/; x 2 �� (3.107)

(see Theorem 3.1.12).
In order to determine u, we need to determine the missing Cauchy data .uj�N

;

.@u=@n/ j�D
/, which can be obtained as a solution of the integral equation (3.89).

In this section we study the ellipticity of the sesquilinear form bmixed W H �
H! K from (3.89) with H D eH�1=2 .�D/ � eH 1=2 .�N /. We restrict ourselves to
the Laplace problem.

For .'; �/ D . ; �/ 2 H we have

bmixed

��
'

�

�
;

�
'

�

��
D .VDD'; '/L2.�D/

C .WNN �; �/L2.�N /
:

The following lemma deals with the ellipticity of the single layer operator as well
as the normal derivative of the double layer operator.

Lemma 3.5.6. Let � � R3 be a bounded Lipschitz domain and let �D ; �N be
a partition of the boundary � into simply connected pieces with positive surface
measure that satisfy (3.105). Then there exists a constant �.�D; �N / > 0 such that

8' 2 eH�1=2 .�D/ W .VDD'; '/L2.�D/
� cV k'k2QH�1=2.�D/

8� 2 eH 1=2.�N / W .WNN�; �/L2.�N /
� � k�k2QH1=2.�N /

:

Proof. For the first estimate we use ' 2 eH�1=2.�D/ H) '? 2 H�1=2.�/ with
the zero extension '? of ' on � . It follows from (3.83) that k'k QH�1=2.�D/

D
k'?kH�1=2.�/ and the ellipticity of V on � (see Theorem 3.5.3) gives us

.VDD'; '/L2.�D/
D �V'?; '?�

L2.�/
� cV k'?k2H�1=2.�/

D cV k'k2QH�1=2.�D/
:

(3.108)
The estimate for the operatorW follows from

� 2 eH 1=2.�N / H) �? 2 H 1=2.�/; k�k QH1=2.�N /
D k�?kH1=2.�/ :
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From this and from the ellipticity of the hypersingular operator W on � (see
Theorem 3.5.3) it follows that

.WNN �; �/L2.�N /
D �

W�?; �?
�
L2.�/

� cW k�?k2H1=2.�/=K

D cW min
c2R
k�? � ck2

H1=2.�/
: (3.109)

We recall the definition of the H 1=2.�/-norm

k'k2
H1=2.�/

D k'k2
L2.�/

C j'j2
H1=2.�/

;

j'j2
H1=2.�/

D
Z

�

Z

�

j'.x/� '.y/j2
kx � yk3 dsydsx: (3.110)

Therefore we have jcjH1=2.�/ D 0 and thus

k�?k2
H1=2.�/=K

D j�?j2
H1=2.�/

Cmin
c2R
k�? � ck2

L2.�/
:

The minimum is attained for the mean value c WD j�j�1 R
�
�?ds D j�j�1 R

�N
�ds.

This leads to jcj2 � j�j�2j�N jk�k2L2.�N /
and

min
˛2R
k�? � ˛k2

L2.�/
D k�k2

L2.�N /
C kck2

L2.�/
� 2

Z

�N

�c ds

D k�k2
L2.�N /

C j�jjcj2 � 2c
Z

�N

� ds

D k�k2
L2.�N /

C 1

j�j
�Z

�N

�ds

�2
� 2

j�j
�Z

�N

�ds

�2

D k�k2
L2.�N /

� 1

j�j
�Z

�N

�ds

�2
� k�k2L2.�N /

�
1 � j�N jj�j

�
:

Therefore we have the following estimate for all � 2 eH 1=2.�N /:

k�?k2
H1=2.�/=K

�
�
1 � j�N j

j�j
� �
k�?k2

L2.�/
C j�?j2

H1=2.�/

�

D
�
1 � j�N j

j�j
�
k�?k2

H1=2.�/
D
�
1 � j�N j

j�j
�
k�k2QH1=2.�N /

:

(3.111)
This proves part 2 of the assertion. �

From (3.108) and (3.109) we have the ellipticity of bmixed:

Corollary 3.5.7. For j�N j < j�j there exists a constant c > 0 such that for all
.'; �/ 2 eH�1=2.�D/ � eH 1=2.�N / we have
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bmixed

��
'

�

�
;

�
'

�

��
� c

�
k'k2QH�1=2.�D/

C k�k2QH1=2.�N /

�
: (3.112)

Theorem 3.5.8. The systems of boundary integral equations (3.89) and (3.86) asso-
ciated with the mixed boundary value problem have a unique solution .'; �/ 2 H
for all gD 2 H 1=2.�D/ and gN 2 H�1=2.�N /.

The variational problem (2.144), (2.145) associated with the mixed boundary
value problem (3.106) also has a unique solution u 2 H 1

D .�
�/. This solution can

be written as in (3.107).

Proof. The unique solvability of the boundary integral equations follows from the
H-ellipticity of the bilinear form bmixed and the Lax–Milgram lemma.

The unique solvability of the variational problem (2.144), (2.145) associated with
the mixed boundary value problem (3.106) follows from Theorem 2.10.6.

The representation formula was proven in Theorem 3.1.12. �

3.5.3 Screen Problems�

The boundary value problems that we have considered so far always lead to integral
equations on closed surfaces. The computation of electric fields and potentials or of
stress fields near cracks often requires the solution of screen problems. Here fields
are induced by thin charged plates or screens. Screens are modelled as hypersurfaces
�0 � R3 which, in general, are not closed surfaces, i.e., @�0 ¤ ;. The potential
equation is formulated on the exterior R3n�0 and the boundary integral equations
reduce the problem to the screen �0.

The energy spaces for integral equations on boundary pieces were given by
eH�1=2.�D/ and eH 1=2.�N /. These spaces allow us to consider boundary integral
equations on open surface pieces � as well.

Therefore, in this subsection we assume that an open surface piece �0 is given,
which can be extended to a closed Lipschitz surface � in R3 so that

� D �0 [ �c0 , (3.113)

where �c0 D �n�0. In order to avoid technical difficulties we assume, as in the
previous subsection, that both �0 and �c0 be simply connected.

Dirichlet Screen Problem: Find, for a given gD 2 H 1=2.�0/, the function u 2
H 1

loc.R
3n�0/ such that

�uD 0 in R3n�0; u D gD on �0, ju .x/j D O
�
kxk�1

�
for kxk ! 1:

(3.114)
Neumann Screen Problem: Find, for a given gN 2 H�1=2.�0/, the function

u 2 H 1
loc.R

3n�0/ such that

� This section should be read as a complement to the core material of this book.
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�uD 0 in R3n�0; @u=@n D gN on �0 ju .x/j D O
�
kxk�1

�
for kxk ! 1:

(3.115)
By using the ansatz via potentials, these screen problems can be transformed into
boundary integral equations and we again formulate these as variational problems.

Dirichlet Screen Problem: Find, for a given gD 2 H 1=2.�0/, the function ' 2
eH�1=2.�0/ such that

.V'; �/L2.�0/
D .gD ; �/L2.�0/

8� 2 eH�1=2.�0/: (3.116)

Neumann Screen Problem: Find, for a given gN 2 H�1=2.�0/, the function � 2
eH 1=2.�0/ such that

.W�; �/L2.�0/
D .gN ; �/ 8� 2 eH 1=2.�0/ : (3.117)

Here we identify, as usual, the inner product .�; �/L2.�0/
with its extension on

H 1=2 .�0/ � eH�1=2 .�0/ or on H�1=2 .�0/ � eH 1=2 .�0/.

Theorem 3.5.9. The operators V WeH�1=2.�0/! H 1=2.�0/ andW W eH 1=2.�0/!
H�1=2.�0/ are continuous and positive, that is, there exist cV and cW > 0 such that

8' 2 eH�1=2.�0/ W .V'; '/L2.�0/
� cV k'k2QH�1=2.�0/

; (3.118)

8� 2 eH 1
2 .�0/ W .W�; �/L2.�0/

� cW k�k2QH1=2.�0/
: (3.119)

Theorem 3.5.9 is a direct consequence of Lemma 3.5.6 with �0 D �D or �0 D
�N , while cV ; cW depend on �0.

3.6 Calderón Projector�

The direct method results in boundary integral equations for the unknown boundary
data of the boundary value problem. In this section we will again turn our attention
to the identities (3.92) and (3.95) and derive some useful conclusions.

For � 2 f�;Cg we define the space Y� by

Y� WD
˚
u 2 H 1

L .�
� / W Lu D 0 in ��

�
:

On Y� � YC Green’s representation formula is, in general, only valid in the form
(3.19) with an extra additive term.

� This section should be read as a complement to the core material of this book.
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For the operatorL in (3.1) with aminc > kbk2 we have shown in Theorem 3.1.11
that the extra term in Green’s representation formula disappears for functions from
Y� � YC.

This also holds for the Laplace operator �� (see Theorem 3.1.12) on the
subspace

˚
u 2 H 1 .��/ W �u D 0� � ˚u 2 H 1

���;�C� W �u D 0�

and for the Helmholtz operator Lk WD �� � k2 (see Theorem 3.1.13) on the
subspace

˚
u 2 H 1 .��/ W Lku D 0� � ˚u 2 H 1

�
Lk ; �

C� W Lku D 0�

[see (2.149)].

Assumption 3.6.1. For the given differential operatorL we can choose a subspace
X� � XC � Y� � YC such that the extra term in (3.19) vanishes and Green’s
representation formula holds in the form

u D �S Œ�1u	CD Œ�0u	 in �� [�C

for all u 2 X��XC, where u 2 X��XC is an abbreviation for .u�; uC/ 2 X��XC
with the convention uj�� D u� , � 2 f�;Cg.

The direct boundary integral equations are based on the identities (3.92) and
(3.95) between the Dirichlet data uD 2 H

1
2 .�/ and the Neumann data uN 2

H� 1
2 .�/. For all u 2 X� � XC, we have with .uD; uN / D

�
��
0 u; ��

1 u
�

in the
inner domain��:
 
��
0 u

��
1 u

!

D
 

uD

uN

!

D
 
1
2
I �K V

W 1
2
I CK 0

! 
uD

uN

!

DW P�
�

uD
uN

�
; (3.120)

and with .uD; uN / D
�
�C
0 u; �C

1 u
�

in the outer domain�C:

 
�C
0 u

�C
1 u

!

D
 

uD

uN

!

D
 
1
2
I CK �V
�W 1

2
I �K 0

! 
uD

uN

!

DW PC
�

uD
uN

�
: (3.121)

This is the motivation behind the definition of the Calderón operator A on the
boundary � by

A D 1
2
.P� � PC/ D

 �K V

W K 0

!

: (3.122)

Therefore the compact form of (3.120) and (3.121) reads
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��0 u

��1 u

!

D � ��A� 1
2
I
�
 
��0 u

��1 u

!

� 2 f�;Cg : (3.123)

For � 2 f�;Cg we then have

P� D �
�
�A � 1

2
I

�
:

Proposition 3.6.2. The operators P� have the following properties:

(i) P� can be continuously extended to H 1=2.�/ � H�1=2.�/ ! H 1=2.�/ �
H�1=2.�/.

(ii) P� is a projection of H 1=2.�/ � H�1=2.�/ ! H �
Cauchy.�/ where the space

H �
Cauchy.�/ is defined as

H �
Cauchy.�/ WD f.��0 u; ��1 u/ W u 2 X�g : (3.124)

(iii) We have

PC C P� D I and PCP� D P�PC on H 1=2.�/ �H�1=2.�/:

Proof. Statement (i) is a direct result of the mapping properties of the boundary
integral operator in the Calderón operator A.

We prove (ii): Let ' 2 H�1=2.�/;  2 H 1=2.�/ be arbitrary and given. Then
the potential u D S' � D 2 Y� � YC and therefore satisfies the homogeneous
differential equation.

We use the notation u� D uj�� . If we apply the trace operators ��0 ; �
�
1 to u� we

obtain

��0 u� D ��0 S' � ��0D D V' �
�
�1

2
CK

�
 

and

��1 u� D ��1 S' � ��1D D
�
��1
2
I CK 0

�
' CW ;

so that we have

P�

�
'

 

�
D
�
��0 u
��1 u

�
2 H �

Cauchy.�/:

We obtain statement (iii) via the relations

PCP� D .A� 1
2
I /.�A � 1

2
I / D .�A� 1

2
I /.A � 1

2
I / D P�PC:

�

Definition 3.6.3. For � 2 f�;Cg, P� are the Calderón projectors for the elliptic
system .L; �0; �1/ in �� .
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Let �0X WD ��
0 X� C �C

0 XC and �1X WD ��
1 X� C �C

1 XC. (Note that for all
standard cases we have �0X D H 1=2 .�/ and �1X D H�1=2 .�/.)

Proposition 3.6.4. We have the Calderón identities

KV D VK 0 on �1X; WK D K 0W on �0X (3.125a)

and
VW D 1

4
I �K2 on �0X; W V D 1

4
I �K 02 on �1X: (3.125b)

Proof. The identity .P� /2 D P� on H �
Cauchy .�/ can be written componentwise

0

@
�K CK2 C V W C 1

4 I � .�V CKV � VK0/

� .�W CWK �K0W / � �
�K0 �K02 �W V � 1

4 I
�

1

A D
0

@
�K C 1

2 I � .�V /

� .�W / � �
�K0� 1

2 I
�

1

A :

By comparing the coefficients we obtain (3.125). �

Remark 3.6.5. The Calderón identities (3.125) have different implications.

(a) Relation (3.125a) implies that V and W symmetrize the operators K and K 0
respectively, more specifically, we have .KV /0 D KV and .WK/0 D WK .

(b) The operators V and W have the order 1 and �1 respectively. We have from
(3.125b) that applying the operators successively, i.e., V W and W V , defines
operators of order zero. This property can be used advantageously to precondi-
tion the linear system of equations that results from the Galerkin discretization
of the boundary integral operators V and W (see Chap. 6, [217], [218] and
[67]).

3.7 Poincaré–Steklov Operator�

We consider the Dirichlet interior problem [see (2.140)]: For a given gD 2 H 1=2

.�/, find u 2 H 1 .��/ with ��
0 u D gD on � such that

B .u; v/ D 0 8v 2 H 1
0 .�

�/ : (3.126)

In this section we assume that the Dirichlet problem has a unique solution.

Assumption 3.7.1. Problem (3.126) has, for all gD 2 H 1=2 .�D/, a unique solu-
tion that depends continuously on gD:

kukH1.��/ � C kgDkH1=2.�/ :

� This section should be read as a complement to the core material of this book.
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We will study necessary and sufficient conditions for the coefficients of the
differential operator L to satisfy Assumption 3.7.1 in Sect. 2.10.

The mapping gD ! ��
1 u, which assigns Neumann data to a solution of

the Dirichlet problem in ��, defines the Dirichlet-to-Neumann mapping. The
associated Poincaré–Steklov operator is given by

PSgD WD ��
1 u: (3.127)

For u 2 X� (see Assumption 3.6.1) this mapping can also be written as

PS
�
��
0 u
� D ��

1 u:

Clearly, PS W H 1
2 .�/ ! H� 1

2 .�/ is continuous. With (3.120) and (3.125) we can
write PS explicitly as

PS D V �1 �1
2
I CK� D W C � 1

2
I CK 0� V �1 � 1

2
I CK�: (3.128)

The operator PS coincides with the composition �1 ı T , where T denotes the
solution operator from Sect. 2.8 (for the choice � D 0) and whose existence is
guaranteed by Assumption 3.7.1.

We will now consider the Neumann interior problem [see (2.142), (2.143)]. For
a given gN 2 H�1=2 .�/ find u 2 H 1 .��/ such that

B .u; v/ D .gN ; �0v/L2.�/ 8v 2 H 1 .��/ : (3.129)

In this case we also assume the existence of a unique solution.

Assumption 3.7.2. Problem (3.129) has, for all gN 2 H�1=2 .�/, a unique solu-
tion that depends continuously on gN :

kukH1.��/ � C kgN kH�1=2.�/ :

We will discuss necessary and sufficient conditions for the coefficients of the
differential operator L to satisfy Assumption 3.7.2 in Sect. 2.10. In case that the
existence of a unique solution on H 1 .��/ is not ensured (Example: L D ��), we
may consider suitable subspaces of H 1 .��/ and H�1=2 .�/ in order to satisfy the
assumption.

The Neumann-to-Dirichlet mapping SP W H�1=2 .�/ ! H 1=2 .�/ for u 2 X�
is defined by

SP .�
�
1 u/ D ��

0 u (3.130)

and is called Steklov–Poincaré operator. Assuming that W W H 1=2 .�/ ! H�1=2
.�/ is bijective, we obtain the explicit representation

SP D W �1 � 1
2
I �K 0� D V C �1

2
I �K� W �1 �1

2
I �K 0� : (3.131)
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Remark 3.7.3. The conditions placed on W can be reduced. Let

R WD
	
1

2
' �K 0' W ' 2 H�1=2 .�/



and U WD

n
' 2 H 1=2 .�/ W W' 2 R

o
:

Then, under the assumption that W W U ! R is bijective, (3.131) still holds.

Proposition 3.7.4. The operators PS ; SP in (3.127), (3.130) are continuous. If the
underlying differential operator is self-adjoint, then PS and SP are Hermitian:
PS D P 0

S and SP D S 0
P .

Proof. Follows from the representations (3.128) and (3.131). �

Remark 3.7.5. Let Assumptions 3.7.1 and 3.7.2 be satisfied.
The operators PS W H 1=2 .�/ ! H�1=2 .�/ and SP W H�1=2 .�/ ! H 1=2 .�/

are invertible and satisfy

PSSP D I onH�1=2 .�/ ; SPPS D I on H 1=2 .�/ :

3.8 Invertibility of Boundary Integral Operators
of the Second Kind�

In Sect. 3.4 we have derived integral equations of the second kind in order to
solve boundary value problems. The relevant boundary integral operators 1

2
I ˙K ,

1
2
I ˙ K 0 have order 0 and, in general, are not self-adjoint. Therefore it seems

logical to choose the function space L2.�/ for a variational formulation. How-
ever, the Calderón identities (3.125) and the mapping properties of K;K 0 (see
Theorem 3.1.16) demonstrate that the function spaces H˙1=2.�/ provide a more
natural choice for such a formulation. For the existence of solutions on non-smooth
boundaries � this choice becomes essential.

Assumption 3.8.1. The single layer operator V W H�1=2.�/ ! H 1=2.�/ is
Hermitian, continuous and positive: there exists some cV > 0 such that

.�; V�/L2.�/ � cV k�k2H�1=2.�/
8� 2 H�1=2.�/: (3.132)

Combined with the boundedness of V the expression

k�kV WD .�; V�/1=2L2.�/
(3.133)

� This section should be read as a complement to the core material of this book.
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therefore constitutes a norm onH�1=2.�/ and is equivalent to theH�1=2.�/-norm.
In the same way V �1: H 1=2.�/ ! H�1=2.�/ is continuous, Hermitian and we
have

k'k2
V �1 WD

�
'; V �1'

�
L2.�/

� 1

cV
k'k2

H1=2.�/
8' 2 H 1=2.�/: (3.134)

Therefore k'kV�1 defines a norm that is equivalent to k�kH1=2.�/. We can formulate
analogous definitions for the hypersingular operator W , which, for example for the
Laplace problem, is only positive on quotient spaces.

Definition 3.8.2. For the homogeneous Neumann problem

Lu D 0 in ��; �1u D 0 on @�� (3.135)

the space of the traces of the solutions is given by

N D f�0u W u 2 H 1 .��/ solves (3.135)g.

Remark 3.8.3. (a) The Riesz–Schauder theory (see Sect. 2.1.4) implies that N �
H 1=2.�/ is finite-dimensional.

(b) If the operator associated with the boundary value problem (3.135) is injective
we have N D f0g.

(c) For L D ��, �1 D @
@n

we have N D spanf1g.
Remark 3.8.4. For � 2 f�;Cg the quotient spaces H �1=2.�/=N are given by the
classes

fug WD fuC v W v 2 spanN g ; u 2 H �1=2 .�/ :

These can be identified with the representatives u0 D u0 .u/ WD uC v, where v D
v .u/ is chosen so that

8v 2 N W .u0; v/L2.�/ D 0:
ThusH �1=2.�/=N is isomorphic to

H
�1=2
N .�/ WD fu0 .u/ W u 2 H �1=2 .�/g; (3.136)

and the quotient norm H �1=2.�/=N is equivalent to the H �1=2 .�/-norm on
H
�1=2
N .�/.

Assumption 3.8.5. There exists a constant cW > 0 such that

.';W'/L2.�/ � cW k'k2H1=2.�/
8' 2 H 1=2

N .�/ : (3.137)

In Theorem 3.5.3 we have shown that Assumptions 3.8.1 and 3.8.5 are satisfied
for the integral operators V and W associated with L D ��.
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Exercise 3.8.6. Prove that

8' 2 N W W' D �1
2
I CK�' D 0 :

Hint: In Sect. 3.9.2 the same statement is proven for the Helmholtz operator.

Theorem 3.8.7. Assuming that Assumptions 3.8.1 and 3.8.5 hold, we have for the
product of the constants in (3.132) and (3.137) the estimate cV cW � 1=4 and for
� 2 f�;Cg

.1 � cK/kukV�1 � ����K C 1
2
I
�

u
��
V�1 � cKkukV�1 8u 2 H 1=2

N .�/ .
(3.138)

with

0 < cK D 1
2
C
q
1
4
� cV cW < 1 :

Proof. The Calderón identity (3.123) combined with (3.128) gives us

�
�� 1
2
I CK� u

�
�2
V�1 D

�
V �1 �1

2
I CK� u;

�
1
2
I CK� u

�
L2.�/

D ��1
2
I CK 0�V �1 �1

2
I CK� u; u

�
L2.�/

D .PSu; u/L2.�/ � .W u; u/L2.�/:

By Assumption 3.8.1, V �1 W H 1=2 .�/ ! H�1=2 .�/ has a square root: More
precisely, there exist a complete orthonormal system .ei /i2N in L2 .�/ and positive
numbers .�i /i2N with V �1ei D �iei for all i 2 N . Thus the square root V �1=2 of
V �1 can be defined for all u 2 H 1=2 .�/ as

V �1=2u D
X

i2N

�
1=2
i .u; ei /L2.�/ ei

and satisfies
�
V �1u; u

�
L2.�/

D �
V �1=2u; V �1=2u

�
L2.�/

(see, e.g., [162, Theo-
rem 2.37, Corollary 2.38]).

Hence we have

.PSu; u/L2.�/ D
�
V �1 VPSu; u

�
L2.�/

D
�
V �1=2 VPSu; V �1=2u

�

L2.�/

� kV � 1
2 VPSukL2.�/kV � 1

2 ukL2.�/

D kVPSukV�1 kukV�1

D ��� 1
2
I CK� u

��
V�1 kukV�1 :

For u 2 H 1=2
N .�/ we have by Assumption 3.8.5 with (3.134)

.W u; u/L2.�/ � cW kuk2H1=2.�/
� cW cV

�
V �1u; u

�
L2.�/

D cV cW kuk2V�1 :
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It follows for all u 2 H 1=2
N .�/ that

�
�� 1
2
I CK� u

�
�2
V�1 �

�
��1
2
I CK� u

�
�
V�1 kukV�1 � cV cW kuk2V�1 :

This inequality has the form

a2 � ab � cV cW b2:

The case 0 D b D kukV�1 implies that u D 0 and 0 D ��� 1
2
I CK� u

�
�
V�1 D a and

therefore is trivial. For b ¤ 0 the inequality is equivalent to

a2b�2 � ab�1 C cV cW � 0” 1 � cK � a

b
� cK ^ cV cW � 1=4;

from which we have (3.138) with “C”.
We prove the “�” estimate. With the inequality for “C” it follows for u 2

H
1=2
N .�/ that

kukV�1 D ���12I CK C 1
2
I �K� u

�
�
V�1

� ��� 1
2
I �K� u

�
�
V�1 C

�
��1
2
I CK� u

�
�
V�1

.1� cK/kukV�1 � ��� 12I �K
�

u
�
�
V�1 :

The proof for the upper bound uses (3.128):

�
�� 1
2
I �K� u

�
�2
V�1 D kuk2V�1 C

�
�� 1
2
I CK� u

�
�2
V�1 � 2

�
V �1 �1

2
I CK� u; u

�
L2.�/

D kuk2
V�1 C

�
�� 1
2
I CK� u

�
�2
V�1 � 2 .PSu; u/L2.�/

D kuk2
V�1 �

�
��1
2
I CK� u

�
�2
V�1 � 2 .W u; u/L2.�/

� �1 � .1 � cK/2 � 2cV cW
� kuk2

V�1

D c2K kuk2V�1 :

�

If the operator that is associated with the boundary value problem (3.135) is
injective Theorem 3.8.7 implies that the equation of the second kind

�
1
2
I �K�' D �gD in H 1=2.�/ (3.139)

has a unique solution for the interior Dirichlet problem

Lu D 0 in ��; �0u D gD inH 1=2 .�/ (3.140)

by the double layer ansatz with the indirect method.
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Exercise 3.8.8. Show that for the solution ' of the equation of the second kind
(3.139) we have the representation

' D � �1
2
I �K��1 gD D �

1X

�D0

�
1
2
I CK�� gD ; (3.141)

and that the Neumann series converges in H 1=2.�/.

Analogously, we have for the Neumann problem

Lu D 0 in ��; ��
1 u D gN in H�1=2

N .�/ ; (3.142)

the integral equation of the second kind

�
1
2
I CK 0�  D gN in H�1=2.�/ (3.143)

by means of the single layer ansatz of the indirect method. Formally, the solution is
given by the Neumann series

 D �1
2
I CK 0��1 gN D

1X

�D0

�
1
2
I �K 0�� gN : (3.144)

The Neumann series (3.144) converges in the k � kV -norm. It also converges in
H�1=2.�/ because the k � kV and the k � kH�1=2.�/ norms are equivalent, as the
following result, which is analogous to Theorem 3.8.7, shows.

Theorem 3.8.9. With cK 2 .0; 1/ in (3.138) we have for � 2 f�;Cg

.1 � cK/kukV �
�
���K 0 � 1

2
I
�

u
�
�
V
� cKkukV 8u 2 H�1=2

N .�/: (3.145)

Proof. It follows from the boundedness of 1
2
I �K 0 W H�1=2

N .�/! H
�1=2
N .�/ and

(3.138) that for � 2 f�;Cg we have

�
���K 0 � 1

2
I
�

u
�
�2
V
D ���K 0 � 1

2
I
�

u; V
�
�K 0 � 1

2
I
�

u
�
L2.�/

D �V ��K 0 � 1
2
I
�

u; V �1 ��K � 1
2
I
�
V u
�
L2.�/

D ���K � 1
2
I
�
V u; V �1 ��K � 1

2
I
�
V u
�
L2.�/

D ����K � 1
2
I
�
V u
�
�2
V�1

� c2K kV uk2
V�1 D c2Kkuk2V :

The left-hand inequality is proven in the same way. �
The Neumann series (3.141) and (3.144) for the representation of solutions of

the integral equations (3.139) and (3.143) motivate the representation by series for



3.8 Invertibility of Boundary Integral Operators of the Second Kind 167

discretized integral equations as well. (Note that in order to evaluate (3.141) and
(3.144) one only has to apply the matrices of the discretized boundary integral oper-
ators.) However, since there already exist efficient, iterative methods for the solving
of (discretized) equations of the second kind (see Chap. 6), we do not advise the use
of Neumann series for the numerical solution of integral equations.

The algorithmic realization of equations of the second kind inH˙1=2 .�/ is tech-
nically involved, as the discretization is based on theH˙1=2 inner-product. We will
therefore provide criteria in the remainder of this section, which permit the formu-
lation of equations of the second kind in L2 .�/. As an example we consider the
abstract equation of the second kind:

Let g 2 H 1=2 .�/ be given. Find ' 2 H 1=2 .�/ such that

� 1
2
.'; �/L2.�/ C bK .'; �/ D .g; �/L2.�/ 8� 2 H�1=2 .�/ : (3.146)

Here .�; �/L2.�/ again denotes the continuous extension of the L2 .�/ inner-product
to the dual pairing h�; �iH1=2.�/�H�1=2.�/. The equation

��
0 D' D g (3.147)

in H 1=2 .�/ is equivalent to (3.146), with double layer potential D, where we have
used the relation ��

0 D D �12I C K [see (3.56)]. According to the Riesz repre-
sentation theorem, every functional � 2 H�1=2 .�/ has a unique representative
 2 H 1=2 .�/ such that

hv; �iH1=2.�/�H�1=2.�/ D .v;  /H1=2.�/ 8v 2 H 1=2 .�/ :

With this, (3.146) can be equivalently formulated as follows:
Find ' 2 H 1=2 .�/ such that

�
��
0 D'; 

�
H1=2.�/

D .g;  /H1=2.�/ 8 2 H 1=2 .�/ : (3.148)

The existence and uniqueness of the solution ' and the continuous dependency on
the data g is guaranteed by the assumption: ��

0 D W H 1=2 .�/ ! H 1=2 .�/ is an
isomorphism.

The numerical implementation of the H 1=2 .�/ inner-product is technically
involved. Thus we will discuss in the following under which additional conditions
the H 1=2 .�/ inner-product in (3.148) can be replaced by the L2 .�/ inner-product
(see, for example, [86, Corollaries A.2 and A.5] and [160]).

Assumption 3.8.10. The operator ��
0 D W H s .�/ ! H s .�/ is an isomorphism

for s 2 f0; 1=2g.
The following remark shows that Assumption 3.8.10 is satisfied for the Laplace

operator.



168 3 Elliptic Boundary Integral Equations

Remark 3.8.11. In the case of the Laplace operator, in [86, Corollaries A.2
and A.5] a Gårding inequality is shown for the operator ��

0 D on H 1=2 .�/.
Furthermore, ��

0 D satisfies Assumption 3.8.10.

The properties that have been described in the previous remark could be directly
transferred to the numerical discretization if the operator ��

0 D were seen as an
operator in H 1=2 .�/. However, this is usually avoided because of the increase in
complexity for the discretization of the non-local H 1=2 .�/ inner-product. Instead,
��
0 D is interpreted as an operator in L2 .�/. Assumption 3.8.10 allows us to for-

mulate the integral equation in L2 .�/ as well: Let g 2 L2 .�/ be given. Find
Q' 2 L2 .�/ such that

�
��
0 D Q'; 

�
L2.�/

D .g;  /L2.�/ ; 8 2 L2 .�/ : (3.149)

Here .�; �/L2.�/ denotes the usual inner product in L2 .�/ (and not the extension
to dual pairings). Assumption 3.8.10 guarantees the existence of a solution in
L2 .�/. Under the additional condition that g 2 H 1=2 .�/, the solution satisfies
Q' 2 H 1=2 .�/. Since ��

0 D W H 1=2 .�/ ! H 1=2 .�/ is, according to the our
assumptions, an isomorphism, it follows that Q' D '.

Remark 3.8.12. (a) Let Assumption 3.8.10 be satisfied and let g 2 H 1=2 .�/. Then
the solutions from (3.148) and (3.149) coincide.

(b) The statement “��
0 D W L2 .�/ ! L2 .�/ is an isomorphism” cannot, in gen-

eral, be transferred to the numerical discretization of (3.149). In general, the
operator ��

0 D does not satisfy any Gårding inequality in L2 .�/ and the sta-
bility of the discretization has to be analyzed with special methods for concrete
situations.

3.9 Boundary Integral Equations for the Helmholtz Equation

3.9.1 Helmholtz Equation

Thus far, we have always assumed aminc > kbk2 for the solvability of the bound-
ary integral equations or we have considered the Laplace problem. In this section
we will discuss physical applications from the areas of time-harmonic acoustics
and electromagnetism that are given by the Helmholtz equation with positive wave
number k > 0

Lku WD ��u � k2u D f: (3.150)

In terms of the spatial dimension we will assume d D 3. As usual, these equa-
tions require suitable boundary conditions. For the exterior problem we impose the
Sommerfeld radiation conditions [see (2.133)]
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ju .x/j � C kxk�1
ˇ
ˇ
ˇ
ˇ
@u

@r
� iku

ˇ
ˇ
ˇ
ˇ � C kxk�2

9
>>=

>>;
for kxk ! 1: (3.151)

Here @u=@r D hx= kxk;rui denotes the radial derivative.
As the coefficients of the Helmholtz operator Lk do not satisfy with the above-

mentioned conditions, special methods have to be developed for the analysis.
The fundamental solution for the operator Lk is given by [see (3.3)]

Gk.z/ D eikkzk

4� kzk : (3.152)

In Exercise 3.1.15 it had to be shown that the single and double layer potentials for
the Helmholtz equation

.Sk'/.x/ D
Z

y2�
Gk.x�y/ '.y/dsy; .Dk /.x/ D

Z

y2�
�1;yGk.x�y/  .y/dsy

(3.153)
satisfy the Sommerfeld radiation conditions (3.151).

For a given gD 2 H 1=2.�/ the exterior Dirichlet problem (EDP) for the
Helmholtz equation reads [see (2.134)]:

Lku D 0 in �C; �C
0 u D gD on �;

u satisfies the Sommerfeld radiation conditions.
(3.154)

For given data gN 2 H�1=2.�/ the exterior Neumann problem (ENP) for the
Helmholtz equation [see (2.135)] is given by

Lku D 0 in �C; �C
1 u D gN on �;

u satisfies the Sommerfeld radiation conditions:
(3.155)

3.9.2 Integral Equations and Resonances

In this section we will give necessary and sufficient conditions for the existence of a
unique solution of the integral equations for the interior problems of the Helmholtz
equation. For the exterior problem the radiation conditions guarantee that the EDP
and ENP for the Helmholtz equation has a unique solution for every k. Some of
the integral equations that appear during the boundary reduction of the interior and
exterior problems are identical. It follows that, although the boundary value problem
has a unique solution, the integral operators of the exterior problem are not invertible
in the natural Sobolev spaces on � for every wave number.
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It follows from Theorem 3.1.1, Proposition 3.1.7 and Exercise 3.1.15 that for
' 2 H�1=2.�/ the single layer potential u D Sk' satisfies the homogeneous dif-
ferential equation Lk Sk' D 0 in �C [ �� as well as the Sommerfeld radiation
condition (3.151). According to Theorem 3.3.1 we have ŒSk'	 D 0 and the single
layer operator

Vk' D �C
0 Sk' D ��

0 Sk' W H�1=2.�/! H 1=2.�/

is well defined. For the IDP

Lk' D 0 in ��; ��
0 u D gD 2 H 1=2.�/

we obtain the integral equation of the first kind: Find ' 2 H�1=2.�/ such that

.Vk'; /L2.�/ D .gD ;  /L2.�/ 8 2 H�1=2.�/: (3.156)

In the following theorem we will discuss the invertibility of the operator Vk .

Theorem 3.9.1. The single layer operator Vk for the Helmholtz problem is invert-
ible on H�1=2.�/ if and only if k2 is not an eigenvalue of the IDP for the
operator ��:

��u D k2u in ��, ��
0 u D 0 H) u D 0 in ��:

The null space of Vk is given by

span
˚
��
1 v W ��v D k2v in �� ^ ��

0 v D 0 on �
�
:

Proof. Let v be an eigenfunction of the IDP for the Laplace operator with eigen-
value k2, i.e., ��v D k2v in ��, ��

0 v D 0. The single layer potential Sk��
0 v is

identical to zero on R3. We denote the zero extension of v to all of R3 by w. Then
we have Œ�0w	 D 0 and Œ�1w	 D ���

1 v. Therefore the representation formula (3.10)
for the Helmholtz operator is applicable and gives us v D �Sk Œ�1w	 D Sk�

�
1 v in

��. As v is an eigenfunction of the IDP for the Laplace operator with eigenvalue
k2, we have Lkv D 0 in �� and ��

0 v D 0 and so we have

0 D ��
0 v D ��

0

�
Sk�

�
1 v
� D Vk��

1 v:

Hence ��
1 v is in the zero space of Vk .

Assume k2 is not an eigenvalue of the IDP for the Laplace operator in �� and
let w ¤ 0 be in the kernel of Vk . Then the single layer potential v D Skw satisfies
the equation Lkv D 0 in �� and from w 2 Kern .Vk/ we have ��

0 v D 0. From this
we obtain Lkv D ��v � k2v D 0 in ��, ��

0 v D 0. Since k2 is not an eigenvalue
of the IDP for the Laplace operator in ��, it follows that v D 0 in �� and with
w D ���

1 v D 0 we arrive at a contradiction.
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Corollary 3.9.2. Although the EDP (3.154) has a unique solution for all k � 0, the
first kind integral equation (3.156) for the EDP that results from the direct method
does not have a solution for all gD 2 H 1=2.�/ if k2 is an eigenvalue of the IDP for
the operator ��.

We have a similar result for equations of the second kind. If we use the single
layer potential ansatz u D Sk' for the ENP we obtain the problem: For given data
gN 2 H�1=2 .�/ find ' 2 H�1=2.�/ such that

� 1
2
.'; �/L2.�/ C .K 0

k'; �/L2.�/ D .gN ; �/L2.�/ 8� 2 H 1=2.�/: (3.157)

Theorem 3.9.3. For every eigenvalue k2 of the IDP for the operator �� in ��,
�1
2
I CK 0

k
is not injective.

Proof. The proof is similar to the proof of Theorem 3.9.1. Let 0 6D w 2 H 1
0 .�

�/
be an eigenfunction of the IDP for �� in �� and let w� be the zero extension of
this eigenfunction to �C. Then w� solves the homogeneous equation Lkw� D 0 in
�C [�� and the radiation condition (3.151) holds. Therefore 0 D Sk.�

�
1 w/ is in

�C [see (3.1.13), (3.19)]. It follows that

�
�1
2
I CK 0

k

�
.��
1 w/ D 0: (3.158)

�

Corollary 3.9.4. The ENP (3.155) cannot be solved for all gN 2 H�1=2.�/ by the
integral equation (3.157) if k2 is an eigenvalue of the IDP.

We have an analogous result for the integral operators 1
2
I CKk and Wk .

Exercise 3.9.5. Let k2 be an eigenvalue of the INP for the Laplace equation and let
0 6D w 2 H 1.��/ be an associated eigenfunction. Then we have

�
� 1
2
I CKk

�
.��
1 w/ D 0; Wk.�

�
0 w/ D 0; (3.159)

and the integral operators in the boundary integral equations

�1
2
I CKk

�
' D gD ; Wk' D gN ; (3.160)

for the EDP and ENP of the Helmholtz equation (both of which have a unique
solution) are not invertible in this case.

Remark 3.9.6. Note that the statements from Theorems 3.9.1 and 3.9.3, Corollar-
ies 3.9.2 and 3.9.4 and of Exercise 3.9.5 remain valid unchanged for the operators
V�k , K�k , K 0

�k and W�k , as the associated eigenvalue equation ��u D k2u in
�� does not depend on the sign of k.
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These observations raise the following dilemma: The solutions of the exterior
problems (3.154) and (3.155) are uniquely determined for all k; however, the (stan-
dard) boundary integral equations (3.156) and (3.157) cannot be solved for the
resonant frequencies of the interior problems for arbitrary boundary data gD 2
H 1=2.�/, gN 2 H�1=2.�/. In Sect. 3.9.4 we will introduce modified boundary
integral equations which avoid this difficulty.

3.9.3 Existence of Solutions of the Exterior Problem

In this section we will provide a proof of existence for the solutions of the Helmholtz
exterior problem. In the classical point of view the boundary integral operators for
the Helmholtz operator are seen as a compact perturbation of the operators for the
Laplace operator. The disadvantage of this approach is the fact that the boundary
integral equations do not have a solution for certain critical wave numbers, even
though the associated boundary value problem has a unique solution.

One stabilized formulation without critical frequencies is due to Panich and will
be introduced in Sect. 3.9.4.

The easiest situation occurs when the boundary � is smooth. In this case
Kk W H 1=2.�/ ! H 1=2.�/ is compact, since the associated kernel function is
then weakly singular, as the following exercise demonstrates.

Exercise 3.9.7. Let � 2 C 2. Then there exists some C.�/ > 0 such that

jGk .x � y/j C ˇˇ�1;yGk .x � y/
ˇ
ˇ � C .�/

kx � yk 8x; y 2 �; x ¤ y: (3.161)

(Hint: Use Lemma 2.2.14.)

If K is compact the integral equation (3.139) becomes a Fredholm equation of
the second kind in H 1=2.�/. Furthermore, the injectivity of the integral operator
in (3.139) implies the existence of a unique solution ' 2 H 1=2.�/, according to
Theorem 2.1.36, provided that k2 does not lie in the spectrum of the INP for the
Laplace equation.

If we decomposeWk into a definite operator and a compact perturbation we may
apply Theorem 2.1.36 to the integral equation of the first kind, Wk' D gN , which
arises during the indirect boundary reduction of the ENP. The following lemma
provides the details.

Lemma 3.9.8. Let � be a Lipschitz boundary in R3 and let k 2 R. Then the
following operators are compact:

Vk � V0 W H�1=2.�/! H 1=2.�/

K�;k �K�;0 W H 1=2.�/! H 1=2.�/; � 2 fC;�g
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K 0
�;k
�K 0

�;0 W H�1=2.�/! H�1=2.�/; � 2 fC;�g
Wk �W0 W H 1=2.�/! H�1=2.�/:

Proof. We consider the Newton potential for the Helmholtz operator .Nk'/.x/ DR
R3 Gk.x � y/ '.y/dsy. Then Nk � N0 is the potential for the kernel function

Gk.z/�G0.z/ D eikkzk�1
4�kzk and

Nk �N0 W H `
comp.R

3/! H `C4
loc .R3/ 8` 2 R

is continuous (see Remark 3.1.3). We use the representation Vk � V0 D
�0.Nk �N0/� 0

0 [see (3.1.6)]. The continuity of �0 W H 1
loc.R

3/! H 1=2.�/ implies
the continuity of � 0

0 W H�1=2.�/ ! H�1
comp.R

3/. From this we have the compact-

ness of Vk � V0 W H�1=2 .�/ ! H 1=2 .�/ by considering the composition of the
following mappings

H�1=2.�/ �!
� 0

0

H�1
comp.R

3/ �!
Nk�N0

H 3
loc.R

3/ ,!
c
H 1

loc.R
3/ �!

�0

H 1=2.�/:

Here the compactness of the embedding H 3
loc.R

3/ ,!
c

H 1
loc.R

3/ follows directly

from the compact embedding H 3 .�/ ,!
c
H 1 .�/ for every compact domain �

(see Theorem 2.6.7). We have K�;k �K�;0 D ��0 .Nk � N0/.��1 /0 for � 2 f�;Cg
(see Definition 3.1.5).

In order to analyze the mapping properties of K�;k � K�;0, we use the same
approach as in the proof of Theorem 3.1.16. We apply the solution operator T from
Sect. 2.8 for the interior problem (with L  Lk and �  k2) and define the
function u 2 H 1

L

�
R3
�

for given boundary data v 2 H 1=2 .�/ by

u WD
	
T v in ��;
0 in �C:

We define fk 2 L2comp

�
R3
�

by

fk WD .Lk/˙ u D
	 �k2T v in ��;

0 in �C:

Green’s formula (3.10) may be applied thanks to the compact support of u and gives
us the relation

u D Nkfk C Sk��
1 u �Dkv;

u D N0f0 C S0��
1 u �D0v:
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We clearly have f0 D 0 and by subtracting one equation from the other we obtain

.Dk �D0/ v D Nkfk C .Sk � S0/ ��
1 T v: (3.162)

In the following we will use the same notation as in the proof of Theorem 3.1.16.
The mapping properties of Sk � S0, Nk and ��

1 T (see Theorem 2.8.2) imply

H 1=2 .�/

��k2T
0

�

! L2comp

�
R3
� Nk! H 2

loc

�
R3
�
,!
c
H 1

loc.R
3/;

H 1=2 .�/
��

1
T�! H�1=2 .�/

Sk�S0! H 3
loc

�
R3
�
,!
c
H 1

loc.R
3/:

By combining these results we obtain the compactness of the mapping Dk �D0 W
H 1=2 .�/ ! H 1

loc

�
R3
�
. The continuity of the trace operators �0̇ W H 1

loc

�
�˙� !

H 1=2 .�/ therefore gives us the compactness of the difference mapping
K�;k �K�;0 W H 1=2 .�/! H 1=2 .�/.

The right-hand side in (3.162) can be decomposed into Nkfk C Sk�
�
1 T v 2

H 1
Lk

�
R3n�� and S0��

1 T v 2 H 1
L0

�
R3n��. Hence ��1 W H 1

L .�
� / ! H�1=2 .�/

can be applied to every one of these summands, which yields the compactness of
Wk �W0 D ��1D W H 1=2 .�/! H�1=2 .�/. �

We now use Lemma 3.9.8 to show existence for the EDP for the Helmholtz
equation.

Theorem 3.9.9. For every gD 2 H 1=2.�/ the EDP (3.154) has a unique solution.

Proof. We transform the EDP with the representation formula u.x/ D
SkuN �DkgD and the direct method to the equivalent boundary integral equation:
Find uN 2 H�1=2.�/ such that

.VkuN ; �/L2.�/ D
�
.�1
2
I CKk/gD ; �

�

L2.�/

8� 2 H�1=2.�/: (3.163)

According to Lemma 3.9.8 there exists a constant C > 0 with

.Vk'; '/L2.�/ � Ck'k2H�1=2.�/
� c.'; '/ 8' 2 H�1=2.�/

and a compact form c.�; �/ on H�1=2.�/ (given by the sesquilinear form associated
with Vk � V0). The Fredholm alternative is applicable to (3.163) and the injectivity
of Vk implies that (3.163) has a unique solution. According to Theorem 3.9.1, Vk
is injective on H�1=2.�/ if and only if k2 is not an eigenvalue of the IDP for the
operator ��. Then (3.163) has a unique solution uN 2 H�1=2.�/ for all gD 2
H 1=2.�D/.

If k2 is an eigenvalue of the IDP for the operator �� then, according to the
Fredholm alternative, the integral equation (3.163) can be solved if and only if the
right-hand side vanishes on the kernel of the adjoint operator of Vk .
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The adjoint operator of Vk is given by V �
k
.x/ D R

�
e�ikkx�yk

4�kx�yk u .y/ dsy . By
virtue of Remark 3.9.6, the kernel of V �

k
is spanned by ��

1 v with

��v � k2v D 0 in ��; ��
0 v D 0 on �: (3.164)

Let v be a solution of (3.164). Then, with Green’s second formula [see (2.112)], we
have for this v in ��:
�
��
1 v; .�1

2
I CKk/gD

�

L2.�/

D ���
1 v; ��

0 .DkgD/
�
L2.�/

D ���
0 v; ��

1 .DkgD/
�
L2.�/

� .Lkv;DkgD/L2.��/

C .v; LkDkgD/L2.��/ :

All terms on the right-hand side vanish, which is why, according to the Fredholm
alternative, the integral equation (3.163) has a solution. The solutions are unique up
to elements from the kernel of Vk , i.e., up to ��

1 v for eigenfunctions v of the IDP for
the operator �� with eigenvalue k2.

We have shown that the integral equation (3.163) has a solution uN for every k
and every gD 2 H 1=2 .�/. By means of SkuN � DkgD we have therefore shown
the existence of a solution of the EDP. �

We can show the existence of solutions for the ENP for all wave numbers with
similar methods.

3.9.4 Modified Integral Equations

Finding a stable numerical solution of the boundary integral equations for the
Helmholtz equation is substantially complicated by the problem of resonant fre-
quencies. Therefore we are interested in modified integral equations that have
unique solutions for all wave numbers.

There are several approaches to transform the exterior problems (3.154) and
(3.155) into modified integral equations that have unique solutions for all wave
numbers. We will present two.

The classical approach is due to Brakhage and Werner [28] and it consists of
using a combined single and double layer ansatz. For globally smooth surfaces it
can be shown that the resulting boundary integral equations have unique solutions
for all wave numbers. We consider the EDP (3.154) and use the indirect method.
Let � 2 R with

�Re k > 0: (3.165)

In �C we set
u D Dk' � i�Sk': (3.166)
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This ansatz satisfies Lku D 0 in�C as well as the Sommerfeld radiation conditions
(3.151). The jump relations give us the boundary integral equation

gD D �C
0 u D

�
1

2
I CKk

�
' � i�Vk'; (3.167)

an integral equation of the second kind for the unknown '. Assuming that � is
globally smooth it can be shown, as, for example, in [147, Theorems 3.33, 3.34],
that the integral operator 1

2
I CKk � i�Vk is bijective for all wave numbers k. The

proof is similar to the proof of Theorem 3.9.1, where, instead of the null space of
the IDP, we have the null space of the interior problem

��u � k2u D 0 in ��, ��
1 uC i���

0 u D 0;

in which for all � ¤ 0 the term k2 is not an eigenvalue.
The proof of the bijectivity uses the global smoothness of the boundary, which,

according to Exercise 3.9.7, implies the weak singularity of the kernels of Kk and
K 0
k

. Therefore the integral operator in (3.167) is a Fredholm integral operator of the
second kind and is thus boundedly invertible for all wave numbers k.

With the Brakhage-Werner regularization (3.167), the question whether 1
2
I C

Kk�i� Vk is also bijective for piecewise smooth or general Lipschitz boundaries� ,
remains unanswered. In this case the ansatz (3.166) becomes problematic, since the
domains of Dk and Sk do not coincide on non-smooth boundaries.

This problem is solved by an approach due to Panich [179], which guarantees
the existence of a unique solution for all wave numbers for Lipschitz boundaries as
well. We assume that there exists an isomorphism

R W H�1=2Cs .�/! H 1=2Cs .�/ 8jsj � 1=2 (3.168)

on general Lipschitz boundaries � that is Hermitian for s D 0.
For the solution of the EDP with Lipschitz boundary we use the ansatz by means

of potentials

u.x/ D Dk' C i� Sk R�1' 8' 2 H 1=2.�/: (3.169)

Then we have Lku D 0 in�C and (3.151) for all ' 2 H 1=2.�/. The unknown data
is the solution of the boundary integral equation

gD D �C
0 u D Bk' WD

�
1

2
I CKk

�
' C i� Vk R�1' in H 1=2.�/: (3.170)

Furthermore, we have for the potential u in (3.169)

Œ�0u	 D ' and Œ�1u	 D �i�R�1': (3.171)
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If we eliminate the density ' in (3.171) we obtain that u in (3.169) is a solution of
the interior problem

Lku D 0 in ��; i���
0 uCR.��

1 u/ D i�gD CR�C
1 u: (3.172)

Proposition 3.9.10. For � ¤ 0 the integral operator Bk in (3.170) is injective for
all k.

Proof. Let 0 6D ' 2 H 1=2.�/ be a solution of Bk' D 0. Then u WD Dk' C
i� Sk R

�1' is a solution of the EDP (3.154) in �C with gD D 0. The fact that
the EDP has a unique solution implies that u D 0 in �C. From this we have
that ���

0 u D Œ�0u	 D ' and ���
1 u D Œ�1u	 D �i�R�1'. Green’s formula in

�� yields

kruk2
L2.��/

� k2 kuk2
L2.��/

D .��
1 u; ��

0 u/L2.�/ D �.i�R�1'; '/L2.�/:

Since R is Hermitian, it follows for 0 ¤ � 2 R that the right-hand side of this
identity is purely imaginary, from which we have .R�1'; '/L2.�/ D 0. By virtue of
(3.168) we then have ' D 0, i.e., we have the injectivity of Bk . �

The existence of a unique solution of the integral equation (3.170) for all wave
numbers follows from the injectivity and a Gårding inequality for Bk in H 1=2.�/

that is uniform in k.

Remark 3.9.11. The choice of R is not unique. In [45], the definition of R is based
on the strongly smoothing integral operator

R
�
e�kx�yk' .y/ dsy. It is also explicitly

analyzed in how far the Galerkin discretization depends on the wave number k.
In [132] the inverse of the Laplace–Beltrami operator for the stabilization of the
integral equation is proposed.

For further readings we refer, e.g., to [55, 56, 70].

3.10 Bibliographical Remarks on Variational BIEs

In this and the preceding chapter, we presented elements of variational formulations
of boundary integral equations on Lipschitz domains � � R3. We also established
the well-posedness of these variational boundary integral equations by proving coer-
civity of the boundary integral operators in scales of Sobolev spaces on the boundary
� D @�.

The use of integral equation methods to analyze the existence and unique solv-
ability of elliptic boundary value problems is not recent: it dates back to the
nineteenth century in the work of Fredholm, Radon, Neumann. Ideas from the anal-
ysis of integral equations entered also in an essential fashion into the development
of functional analysis at the beginning of the 20th century. However, in these works
the boundary integral operators were analyzed as mappings between Hölder spaces.
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In our presentation, we paid particular attention to the proof of coercivity in suit-
able function spaces of Sobolev type on the surface � . A key step in the approach
presented here consists in establishing Gårding inequalities in function spaces on �
by “transfer of coercivity” from the elliptic problem in� to spaces of traces and nor-
mal derivatives on � . This avenue to formulating and to studying well-posedness
of BIEs is relatively recent: it originates in work of J.C. Nédélec and Planchard
[171] and, independently, of G.C. Hsiao and W.L. Wendland in [136]. A particularly
lucid exposition of the approach for boundary value problems of linear, scalar, sec-
ond order strongly elliptic differential operators in or exterior to bounded Lipschitz
domains� is [72] due to M. Costabel.

The formal approach has, however, a much wider scope than scalar, second order
elliptic problems: it has been extended to quite general classes of boundary value
problems for systems of partial differential equations which are elliptic in the sense
of Agmon, Douglis and Nirenberg in smooth domains as was shown by M. Costabel
and W. Wendland in [74]. This result covers in particular the Lamé–Navier sys-
tem of linearized elasticity in Lipschitz domains� where the analogs of the screen
problems of Sect. 3.5.3 are the first kind boundary integral equation reformulations
of elastic fracture mechanics. Their well-posedness was first established by E.P.
Stephan in [219]. These formulations have the appeal that they require only dis-
cretizations of the fracture, and not of the ambient, possibly infinitely large, linearly
elastic medium. We note in passing that the formulation and the analysis of prob-
lems from both elastostatics as well as elastodynamic problems interior or exterior
to bounded domains � � R3 in function spaces of Hölder type is quite mature and
classical by now, see, e.g. [23,150] and the references there. For specific variational
formulations of these boundary value problems for vector-valued functions we refer
to Chap. 2 of [137]. Importantly, all concepts presented in Chap. 3 of the present
monograph for scalar, second order elliptic problems carry over to problems of
elastostatics verbatim.

Also due to M. Costabel is the application of the variational formalism to the
derivation of coercive coupled variational boundary integral formulations. There,
a variational formulation of a (possibly nonlinear) elliptic boundary value problem
in a bounded domain is coupled to a linear elliptic exterior problem by means of a
one-sided boundary reduction in the exterior domain. This results, in effect, in varia-
tional formulations of elliptic PDEs with nonlocal and, possibly, nonlinear boundary
integral operators in their variational form. These coupled formulations constitute a
nonlocal exact artificial boundary condition for the artificial reduction of boundary
value problems on unbounded domains to a bounded, truncated domain.

Once again, strong ellipticity of coupled variational formulations on the bound-
ary can be established, as was first explained by M. Costabel in [73]. The variational
approach for deriving well-posed, i.e. strongly elliptic, coupled formulations of
boundary value and transmission problems has subsequently found many applica-
tions, in particular in contact problems in elasticity (see, e.g. [61, 158] for a formu-
lation, and for asymptotic convergence estimates for some Galerkin discretizations
of such coupled formulations).
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In problems of linearized elasticity, this leads once again to boundary integral
variational inequalities on the (a priori unknown) contact surface. Again, the bound-
ary integral operators appearing in these inequalities are shown to be strongly elliptic
by the variational method; also here, the function spaces eH˙1=2.�0/ enter in an
essential fashion.

A particularly interesting feature of boundary integral reformulations of bound-
ary value problems of homogeneous, isotropic three-dimensional, linearized elas-
ticity is the fact that the fundamental solution and the mapping properties of all
boundary integral operators remain unchanged in the incompressible limit, i.e. in
the passage from the Lamé–Navier equations to the Stokes equations. This is in
stark contrast to the variational formulations of the domain problems, where in the
incompressible limit the function spaces must change, due to the appearance of
the “incompressibility constraint” divu D 0 in �. This constraint is accounted for
exactly by the fundamental solution (which, in this case, is a matrix-valued inte-
gral operator with kernels derived from the so-called Kelvin fundamental tensor.
As a consequence, variational boundary integral formulations for linearized, three-
dimensional elastostatics do not suffer from the so-called locking effect which is a
well-known problem for domain based Finite Element discretizations of the PDE.

A further important class of elliptic problems for which the use of bound-
ary integral equations is fertile for efficient numerical treatment is computational
electromagnetism. This class of problems has not been discussed in the present
monograph since, unlike the above-mentioned problems, on nonsmooth domains
(such as Lipschitz domains �), the Maxwell system does not fit straightforwardly
into the variational framework of Chaps. 2 and 3. One approach to overcoming this
consists in reformulation of the governing equations in terms of vector potentials;
indeed, in this setting, the governing Maxwell equations can be, at least on smooth
domains �, recast into elliptic systems which allow for a strongly elliptic bilinear
form (see, e.g. [170] and the references there).

For time-harmonic electromagnetic wave propagation problems, a basic problem
in computational electromagnetism is the numerical solution of the time-harmonic
Maxwell governing equations subject either to “electric” or to “magnetic” bound-
ary conditions (taking formally the place of Dirichlet and Neumann boundary
conditions, but being different from these) in the exterior of a bounded Lipschitz
polyhedron � � R3. Degenerate domains like screens, or wires, are again of par-
ticular interest in connection with electromagnetic fields in antenna design. Here,
a direct approach towards variational boundary integral equations on nonsmooth
domains has been developed in recent years. It was initiated by electrical engineers,
starting from the so-called Stratton–Chu representation formula for electromagnetic
fields as potentials of so-called surface currents. The principal issues, definitions and
mathematical results in well-posed variational formulations of BIEs on Lipschitz
polyhedra is recapitulated in the survey [41] and the references there. In particu-
lar, the variational functional framework of the associated BIEs (such as, e.g., the
so-called “Electric Field Integral Equation (EFIE)”), is quite distinct from that pre-
sented in Chaps. 2 and 3 of the present volume. The structure of the trace spaces
on Lipschitz surfaces were only recently characterized in [39]. Likewise, coercive
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variational formulations of the variational BIEs have been obtained by boundary
reduction from corresponding statements of the domain problems in [40]. Many
features of the BIEs of electromagnetics are reminiscent of the (simpler) Helmholtz
equation which was described in Sect. 3.9 of the present volume: in particular the
occurrence of resonance frequencies at which the homogeneous, interior boundary
value problems admit nontrivial solutions causes instabilities of the boundary inte-
gral equations; these can be overcome by the use of the so-called “combined field
integral equation (CFIE)”, see for example [42, 43] for details. The numerical anal-
ysis of the BIEs obtained by the direct boundary reduction is complicated in that
the function spaces which are natural for the BIE have an infinite dimensional null
space; accordingly, the standard convergence framework of Galerkin BEM which
we presented in the present chapter does not apply anymore. This problem was
overcome first by S. Christiansen in [64] and later extended to the case of screen
like conductors in [37].

The above references underline the wide applicability of the variational approach
to the systematic derivation of stable boundary integral equation formulations, in
particular on nonsmooth domains �. Still, the variational approach is historically
rather recent, and relies on transfer of strong ellipticity of a related partial differen-
tial equation together with the existence of a fundamental solution of the differential
operator.

We mention several other approaches for proving stability of boundary integral
operators which do not draw upon the variational approach. Most if not all of these
approaches require, however, surfaces � which are considerably more regular than
Lipschitz which was sufficient for the variational approach.

One of the earliest approaches is the proof of bounded invertibility of the double
layer potential for the Laplacian by means of showing convergence of the so-called
Neumann series representation of the inverse in classes of Hölder continuous func-
tions on � . We refer to [160] and the references there for more on this topic. In
particular, the bounded invertibility of the boundary integral operators for elasticity
in classes of Hölder continuous functions has been investigated in [150].

A second, general approach to the analysis of boundary integral operators is by
interpreting them as particular instances of pseudodifferential operators. In this
way, powerful tools from the theory of these operators can be brought to bear.
This requires, however, boundaries � which are smooth, closed manifolds in R3.
Still, in this case strong ellipticity in the form of coercivity of the boundary integral
operators can be established directly, i.e. without resorting to ellipticity of a par-
tial differential operator in the domain � bounded by � . This is done by proving a
Gårding inequality for the principal part of the boundary integral operator A. The
principal part of the operatorA at a point x 2 � coincides with the restriction of this
operator on the tangent bundle to � at x. A key result from the theory of pseudod-
ifferential operators on manifolds states that the Gårding inequality for A follows
from the positivity of the real part of the principal symbol of the boundary integral
operator A. For many boundary integral operators, the principal symbol is easily
calculated. The verification of its positivity is then elementary. The mathematical
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details of this direct approach to strong ellipticity of boundary integral operators are
nicely laid out in the recent monograph of G.C. Hsiao and W.L. Wendland [137].

So far, all boundary integral equations considered were posed on bounded sur-
faces � � R3. There are several cases of practical interest where the surfaces � are
unbounded. We mention only acoustic or electromagnetic scattering on a halfspace
or the integral equations which arise in the modelling of water waves. We refer to the
recent papers [58,59,186] for more on the formulation and the bounded invertibility
of integral operators on noncompact boundaries � .

Another area of active current research is the uniformly bounded invertibility
of parametric boundary integral operators. This pertains in particular to acoustic
and electromagnetic scattering problems at high frequencies where the parameter
is the (nondimensional) wave number. In our considerations, the boundary integral
equations for Helmholtz problems were always considered at fixed wave number �;
however, all constants in the stability estimates for the boundary integral operators
which are obtained by the abstract error analysis depend on the wave number � in
an unspecific way. In recent years, considerable progress was made in establish-
ing stability bounds which are explicit in the wave number � for boundary integral
operators for acoustics and electromagnetics (i.e. for the Helmholtz and Maxwell
equations) (see, e.g., [15, 45, 55, 56, 146, 156]).



Chapter 4
Boundary Element Methods

In Chap. 3 we transformed strongly elliptic boundary value problems of second
order in domains� � R3 into boundary integral equations. These integral equations
were formulated as variational problems on a Hilbert space H :

Find u 2 H W b .u; v/ D F .v/ 8v 2 H; (4.1)

which, in the simplest cases, was chosen as one of the Sobolev spacesH s .�/, s D
�1=2; 0; 1=2. The functional F 2 H 0 denotes the given right-hand side, which, in
the case of the direct method (see Sect. 3.4.2), may again contain integral operators.
The sesquilinear form b .�; �/ has the abstract form

b .u; v/ D .Bu; v/L2.�/

with the integral operator

.Bu/ .x/ D �1 .x/ u .x/C �2 .x/
Z
�

k .x; y; y� x/ u .y/ dsy x 2 � a.e. (4.2)

Convention 4.0.1. The inner product .�; �/L2.�/ is again identified with the contin-
uous extension on H�s .�/ �H s .�/.

The coefficients �1, �2 are bounded. For �1 D 0, a.e., one speaks of an integral
operator of the first kind, otherwise of the second kind. In some applications the
kernel function is not improperly integrable, and the integral is defined by means of
a suitable regularization (see Theorem 3.3.22).

The sesquilinear form in (4.1) associated with the boundary integral operator in
(4.2) satisfies a Gårding inequality: There exist a � > 0 and a compact operator
T W H ! H 0 such that

8u 2 H W jb .u; u/C hT u; uiH 0�H j � � kuk2H : (4.3)

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2 4,
c� Springer-Verlag Berlin Heidelberg 2011

183



184 4 Boundary Element Methods

The variational formulation (4.1) of the integral equations forms the basis of
the numerical solution thereof, by means of finite element methods on the boundary
� D @�, the so-called boundary element methods. They are abbreviated by “BEM”.

Note: Readers who are familiar with the concept of finite element methods
will recognize it here. One essential conceptual difference between the BEM and
the finite element method is the fact that, in the BEM, the resulting finite ele-
ment meshes usually consist of curved elements and therefore, in general, no affine
parametrization over a reference element can be found.

Primarily, we consider the Galerkin BEM, which is the most natural method for
the variational formulation (4.1) of the boundary integral equation. In Sect. 4.1 we
will describe the Galerkin BEM for the boundary value problems of the Laplace
equation with Dirichlet, Neumann and mixed boundary conditions, all of which
lead to boundary integral equations of the first kind with positive definite bilinear
forms. We obtain quasi-optimal approximations and prove asymptotic convergence
rates for the Galerkin BEM. In Sect. 4.2 we will then study Galerkin methods in
an abstract form for operators that are only positive with a compact perturbation.
We will also present a general framework for the convergence analysis of Galerkin
methods. In Sect. 4.3 we will finally prove the approximation properties of the
boundary element spaces.

4.1 Boundary Elements for the Potential Equation in R3

We will first introduce the Galerkin BEM for integral equations of the classi-
cal potential problem in R3 and derive relevant error estimates for the simplest
boundary elements.

4.1.1 Model Problem 1: Dirichlet Problem

Let �� � R3 be a bounded polyhedral domain, the boundary � D @�� of which
consists of finitely many, disjoint, plane faces �j , j D 1; : : : ; J : � D SJ

jD1 �j .

In the exterior�C D R3n�� we consider the Dirichlet problem

�u D 0 in �C; (4.4a)

u D gD on �; (4.4b)

ju.x/j D O.kxk�1/ for kxk ! 1: (4.4c)

In Chap. 2 (Theorem 3.5.3) we have shown the unique solvability of Problem
(4.4).
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Proposition 4.1.1. For all gD 2 H 1=2.�/ Problem (4.4) has a unique solution
u 2 H 1.L;�C/ with L D ��.

Proof. Theorem 2.10.11 implies the unique solvability of the variational formulation
associated with (4.4) in H 1

�
L;�C

�
with L D ��. In Sect. 2.9.3 we have shown

that the solution also solves (4.4a) and (4.4b) almost everywhere.
Decay Condition: Theorem 3.5.3 provides us with the unique solvability of the

boundary integral equation that results from (4.4) (with the single layer ansatz)
in H�1=2 .�/. The associated single layer potential is in H 1

�
L;�C

�
(see Exer-

cise 3.1.14) and, thus, is the unique solution.
Finally, in (3.22) we have shown that the single layer potential satisfies the decay

condition (4.4c). �

We will now reduce (4.4) to a boundary integral equation of the first kind. We
ensure that (4.4a), (4.4c) are satisfied by means of the single layer ansatz (see
Chap. 3)

u.x/ D .S'/.x/ D
Z
�

'.y/
4� kx � yk dsy; x 2 �C: (4.5)

The unknown density ' from (4.5) is the solution of the boundary integral
equation

V' D gD on � (4.6)

with the single layer operator

.V'/.x/ WD
Z
�

'.y/
4� kx � yk dsy x 2 �: (4.7)

(4.6) defines a boundary integral equation of the first kind. The Galerkin boundary
element method is based on the variational formulation of the integral equation.
Instead of imposing (4.6) for all x 2 � , we multiply (4.6) by a “test function” and
integrate over � . This gives us: Find ' 2 H�1=2.�/ such that

Z
�

.V'/� dsx D
Z
�

�Z
�

'.y/
4� kx � yk dsy

�
�.x/dsx

D
Z
�

gD.x/ �.x/ dsx 8� 2 H�1=2 .�/ : (4.8)

For the Laplace operator we only consider vector spaces over the field R and not
over C, so that in (4.8) there is no complex conjugation.

The “integrals” in (4.8) should be interpreted as duality pairings in H
1
2 .�/ �

H� 1
2 .�/ in the following way. For ' 2 H�1=2.�/ we have V' 2 H 1=2.�/ and, by

Convention 4.0.1, we can write (4.8) as

Find ' 2 H�1=2.�/ W .V'; �/L2.�/ D .gD ; �/L2.�/ 8� 2 H�1=2.�/: (4.9)
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The left-hand side in (4.9) defines a bilinear form b.�; �/ on the Hilbert space
H D H�1=2.�/ with

b.'; �/ WD .V'; �/L2.�/; (4.10)

and the right-hand side defines a linear functional on H�1=2 .�/ W

F.�/ WD .gD ; �/L2.�/: (4.11)

Keeping the duality of H�1=2 .�/ and H 1=2 .�/ in mind, it follows from

jF.�/j �
 

sup
	2H�1=2.�/nf0g

j .gD;	/L2.�/ j
k	kH�1=2.�/

!
k�kH�1=2.�/ D kgDkH1=2.�/k�kH�1=2.�/

that F is continuous on H�1=2 .�/.
For sufficiently smooth functions '; � in (4.10) we have, by virtue of Fubini’s

theorem,

b.'; �/ D
Z
�

Z
�

�.x/'.y/
4� kx � yk dsy dsx D b .�; '/ (4.12)

and therefore the form b.�; �/ is symmetric. Furthermore, it is also H�1=2-elliptic
(see Theorem 3.5.3). According to the Lax–Milgram lemma (see Sect. 2.1.6), Prob-
lem (4.9) has a unique solution ' 2 H�1=2.�/ for all gD 2 H 1=2.�/. In the
representational formula (4.5) this ' gives us the unique solution u of the exterior
problem (4.4).

The discretization of the boundary integral equation consists in the approxima-
tion of the unknown density function ' in (4.6) by means of a function Q' which
is defined by finitely many coefficients .˛i /

N
iD1 in the basis representation. In the

Galerkin boundary element method, this is achieved by restricting '; � in the vari-
ational form (4.9) to finite-dimensional subspaces, the boundary element spaces,
which we will now construct.

4.1.2 Surface Meshes

Almost all boundary elements are based on a surface mesh G of the boundary � .
A surface mesh is the finite union of curved triangles and quadrilaterals on the
boundary � , which satisfy suitable compatibility conditions. A general element of
G is called a “panel”.

For the definition we introduce the reference elements

Unit triangle: bS2 WD ˚.
1; 
2/ 2 R2 W 0 < 
2 < 
1 < 1
�

Unit square: bQ2 WD .0; 1/2:
(4.13)

Our generic notation for the reference element is O� .
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Definition 4.1.2. A surface mesh G of the boundary � is a decomposition of �
into finitely relatively open, disjoint elements � � � that satisfy the following
conditions:

(a) G is a covering of � W
� D

[
�2G �:

(b) Every element � 2 G is the image of a reference element O� under a regular
reference mapping �� . Then �� is called regular if the Jacobian J� D D��
satisfies the condition

0 < �min � inf
O�2O�

inf
v2R2

kvkD1

D
J�
� O
� v; J�

� O
� v
E
� sup
O�2O�

sup
v2R2

kvkD1

D
J�
� O
� v; J�

� O
� v
E

� �max <1:

(c) For a plane triangle � 2 G with straight edges and vertices P0, P1 and P2, the
regular mapping �� is affine:

��

� O
� D P0 C O
1 .P1 � P0/C O
2 .P2 � P1/ : (4.14)

For a plane quadrilateral � 2 G with straight edges and vertices P0, P1, P2 and
P3 (the numbering is counterclockwise) the mapping is bilinear:

��

� O
� D P0 C O
1 .P1 � P0/C O
2 .P3 � P0/C O
1 O
2 .P2 � P3 C P0 � P1/ :
(4.15)

Figure 4.1 illustrates Definition 4.1.2 for a triangular and a quadrilateral element.

affine

affineaffine

Fig. 4.1 Schematic illustration of the reference mappings; triangular panel (left), parallelogram
(right)
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Exercise 4.1.3. Show the following:

(a) The affine mapping�� in (4.14) is regular if and only if P0, P1, P2 are vertices of
a non-degenerate (plane) triangle � , i.e., they are not colinear. Find an estimate
for the constants �min, �max from Definition 4.1.2(b) in terms of the interior
angles of � .

(c) Let P0;P1;P2;P3 be the vertices of a plane quadrilateral � with straight edges.
The mapping �� from (4.15) is regular if all interior angles are smaller than �
and larger than 0.

In some cases we will impose a compatibility condition for the intersection of
two panels.

Definition 4.1.4. A surface mesh G of � is called regular if:

(a) The intersection of two different elements �; � 0 2 G is either empty, a common
vertex or a common side.

(b) The parametrizations of the panel edges of neighboring panels coincide: For
every pair of different elements �; � 0 2 G with common edge e D � \ � 0 we
have

�� j Oe D �� 0 ı ��;� 0 j Oe ;
where Oe WD ��1� .e/ and ��;� 0 W O� ! O� is a suitable affine bijection.

Remark 4.1.5. Throughout this section we assume that the boundary � is Lipschitz
and admits a regular surface mesh in the sense of Definitions 4.1.2 and 4.1.4. This
is a true restriction since not every Lipschitz surface admits a regular surface mesh.

For later error estimates we will introduce a few geometric parameters, which
represent a measure for the distortion of the panels as well as bounds for their
diameters.

Assumption 4.1.6. There exist open subsets U; V � R3 and a diffeomorphism�� W
U ! V with the following properties:

(a) � � U .
(b) For every � 2 G, there exists a regular reference mapping �� W O� ! � of the

form
�� D �� ı �affine

� W O� ! �;

where �affine
� W R2 ! R3 is a regular, affine mapping.

Example 4.1.7.

1. Let � be a piecewise smooth surface that has a bi-Lipschitz continuous para-
metrization over the polyhedral surface O�: �� W O� ! � . Let Gaffine WD˚
� affine
i W 1 � i � N � be a regular surface mesh of O� with the associated ref-

erence mappings �affine
�affine W O� ! � affine. Then G WD ˚

��
�
� affine

� W � affine 2 Gaffine
�

defines a regular surface mesh of � which satisfies Assumption 4.1.6.
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2. For the unit sphere � WD ˚x 2 R3 W kxk D 1� one can choose the inscribed dou-
ble pyramid with vertices .˙1; 0; 0/|, .0;˙1; 0/|, .0; 0;˙1/| as a polyhedral
surface O�, while �� W O� ! � is defined by �� .x/ WD x= kxk. By means of �� ,
regular surface meshes on � can then be generated through lifting of regular
surface meshes of the polyhedral surface O� .

In order to construct a sequence of refined surface meshes for � , in many cases
the procedure is as follows.

Remark 4.1.8. Let � be the surface of a bounded Lipschitz domain � � R3. In
the first step we construct a polyhedron O� along a bi-Lipschitz continuous map-
ping �� W O� ! � (see Example 4.1.7). Let Gaffine

0 be a (very coarse) surface
mesh of O� . Then G0 WD

˚
� D ��

�
� affine

� W � affine 2 Gaffine
0

�
defines a coarse sur-

face mesh of � . We can obtain a sequence
�Gaffine
`

�
`

of finer surface meshes if,
during each refinement, we decompose every panel in Gaffine

0 into new panels by
means of a fixed refinement method. For triangular elements, for example, we
interconnect the midpoints of the sides and for quadrilateral elements we connect
both pairs of opposite midpoints. This gives us a sequence of surface meshes by
G` WD

˚
� D ��

�
� affine

� W � affine 2 Gaffine
`

�
.

Convention 4.1.9. If � and � affine appear in the same context the relation between
the two is given by � D ��

�
� affine

�
.

The following definition is illustrated in Fig. 4.2.

Definition 4.1.10. Let Assumption 4.1.6 be satisfied. The constants caffine > 0

(Caffine > 0) are the maximal (minimal) constants in

caffine kx� yk�k�� .x/� �� .y/k �Caffine kx � yk 8x; y 2 � affine;8� affine 2Gaffine

and describe the distortion of curved panels � compared to their affine pullbacks
� affine.

The diameter of a panel � 2 G is given by

h� WD sup
x;y2�
kx � yk

and the inner width 
� by the incircle diameter of � affine.

Fig. 4.2 Diameter of a panel and incircle diameter; triangular panel (left), parallelogram (right)
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The mesh width hG of a surface mesh G is given by

hG WD maxfh� W � 2 Gg: (4.16)

We write h instead of hG if the mesh G is clear from the context.

Remark 4.1.11. For plane panels � , 
� is the incircle diameter of � .
The diameters of � and � affine satisfy

C�1affineh� � sup
x;y2�affine

kx � yk D h�affine � c�1affineh� :

Definition 4.1.12. The shape-regularity constant �G is given by

�G WD max
�2G

h�


�
: (4.17)

For some theorems we will assume, apart from the shape-regularity, that the
diameters of all triangles are of the same order of magnitude.

Definition 4.1.13. The constant qG that describes the quasi-uniformity is given by

qG WD hG=min fh� W � 2 Gg :
Remark 4.1.14. In order to study the convergence of boundary element methods,
we will consider sequences .G`/`2N of surface meshes whose mesh width h` WD hG`

tends to zero. It is essential that the constant for the shape-regularity �` WD �G`

remains uniformly bounded above:

sup
`2N

�` � � <1: (4.18)

In a similar way the constants of quasi-uniformity q` WD qG`
have to be bounded

above in some theorems:
sup
`2N

q` � q <1: (4.19)

We call a mesh family .G`/`2N with the property (4.18) shape-regular and with the
property (4.19) quasi-uniform.

Exercise 4.1.15. Show the following:

(a) If the surface mesh G0 is regular and if finer surface meshes .G`/` are con-
structed according to the method described in Remark 4.1.8 then all surface
meshes .G`/` are regular.

(b) The constants concerning shape-regularity and quasi-uniformity are, under the
conditions in Part (a), uniformly bounded with respect to `.
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4.1.3 Discontinuous Boundary Elements

The boundary element method defines an approximation of the unknown density '
in the boundary integral equation (4.6) which is described by finitely many parame-
ters. This can, for example, be achieved by (piecewise) polynomials on the elements
� of a mesh G.

Example 4.1.16. (Piecewise Constant Boundary Elements)
Let � D @� be piecewise smooth and let G be a – not necessarily regular –

surface mesh on � . Then S0G denotes all piecewise constant functions on the mesh G

S0G WD f 2 L1 .�/ j 8� 2 G W  j� is constantg : (4.20)

Since  2 L1 .�/, we only need to define  in the interior of an element, as the
boundary @� , i.e., the set of edges and vertices of the panel, is a set of zero measure.

Every function  2 S0G is defined by its values  � on the elements � 2 G and can
be written in the form

 .x/ D
X
�2G

 �b� .x/ (4.21)

with the characteristic function b� W � ! R of � 2 G:

b� .x/ WD
(
1 x 2 �;
0 otherwise:

(4.22)

In particular, S0G is a vector space of dimension N D #f� W � 2 Gg with basis
fb� W � 2 Gg.

In many cases the piecewise constant approximation of the unknown density
converges too slowly and, instead, one uses polynomials of degree p � 1. In the
same way as in Example 4.1.16 this leads to the boundary element spaces SpG . For
their definition we need polynomials of total degree p on the reference element as
well as the convention for multi-indices from (2.67)

P�p D span
˚

� W 	 2 N2

0 ^ j	j � p
�
: (4.23)

For p D 1 and p D 2, P�p contains all polynomials of the form

a00 C a10
1 C a01
2 8a00; a10; a01 2 R for p D 1;

a00 C a10
1 C a01
2 C a20
21 C a11
1
2 C a02
22 8a00; a10; a01; a20; a11; a02 2 R for p D 2:

Definition 4.1.17. Let � D @� be piecewise smooth and let G be a surface mesh
of � . Then, for p 2 N0,

S
p
G WD

n
 W � ! K j 8� 2 G W  ı �� 2 P�p

o
: (4.24)

We simply write Sp or only S if the reference to the surface mesh G is obvious.
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Remark 4.1.18. Note that in (4.24) the functions  2 Sp do not constitute poly-
nomials on the surface � . Only once they have been “transported back” to the
reference element O� by means of the element mapping �� (see Fig. 4.1) is this the
case. The parametrizations �� of the elements � 2 G in Definition 4.1.2 (b,c)
are thus part of the set SpG . A change in parametrization �� will lead (with the
same mesh G) to a different SpG . Therefore for a mesh G we summarize the element
mappings �� in the mapping vector

� WD f�� W � 2 Gg (4.25)

and instead of (4.24) we write SpG;�.

Remark 4.1.19. Note that (4.24) also holds for meshes G with quadrilateral ele-
ments, i.e., with reference element O� D .0; 1/2. Since Sp does not require continuity
across element boundaries, the space of polynomials P�p in (4.23) can also be
applied to quadrilateral meshes.

For the realization of the boundary element spaces we need a basis for P�p , which

we denote by bN .i;j /. O
1; O
2/ and which satisfies

P�p D span
nbN .i;j / W 0 � i; j � p; i C j � p

o
: (4.26)

For example, bN .i;j / .
1; 
2/ WD O
i1 O
j2 , 0 � i C j � p as in (4.23), would be
admissible basis functions.

Remark 4.1.20. (Nesting of Spaces)
We have P�p � P�q for all p � q. Therefore we can always choose a basis in P�q

which contains the basis functions from P�p as a subset. The basis functions bN .i;j /

in (4.23) have this property.

Once we have determined a basis bN .i;j /. O
/ on O� , every  2 SpG;� on a panel
� 2 G can be written as

 j� D
X

0�iCj�p
˛i;j

�bN .i;j / ı ��1�
�

and
N �
.i;j / WD bN .i;j / ı ��1� 0 � i C j � p

spans the restriction f j� W  2 Sp .�;G; �/g. In order to give a basis of SpG;�
suitable indices, we define

�p WD
˚
	 2 N2

0 W j	j � p
�
:

Thus we have
S
p
G;� D span

˚
b.�;�/.x/ W .	; �/ 2 �p � G� ; (4.27)
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where the global basis functions bI .x/ with the multi-index I D .	; �/ denote the
zero extension of the element functionN �

� to �: For

I D .	; �/ 2 �p � G DW I .G; p/ DW I (4.28)

we explicitly have

bI .x/ WD
(
N �
�.x/; x 2 �;

0 otherwise:
(4.29)

Hence, every  can be written as a combination of the basis function bI .x/:

 .x/ D
X
I2I

 I bI .x/; x 2 �; � 2 G: (4.30)

Let jGj be the number of elements in the mesh G. The dimension of SpG;� or the
number of degrees of freedom is then given by

N D jGj .p C 1/.p C 2/=2 D dim.SpG;�/: (4.31)

Every function in 2SpG;� is then uniquely characterized by the vector . I /I2I.G;p/
� RN Š RI.G;p/ as in (4.30).

4.1.4 Galerkin Boundary Element Method

The simplest boundary element method for Problem (4.6) consists in approximating
the unknown density ' in (4.9) by a piecewise constant function 'S 2 S0.�;G/.
Convention 4.1.21. The boundary element functions depend on the boundary ele-
ment space Sp .�;G; �/; in particular, they depend on � , the surface mesh G and
the polynomial degree p. We will, whenever possible, use the abbreviated notation
'S instead of 'Sp

G;�
.

Inserting (4.30) into (4.6) or into the variational formulation (4.8) leads to a con-
tradiction: since, in general, we have 'S 6D ', (4.6) and (4.8) cannot be satisfied with
' D 'S , which is why the statements have to be weakened. As 'S is determined
by N parameters

�
'SI
�
I2I [see (4.29)–(4.31)], we are looking for N conditions to

determine 'SI . In the Galerkin boundary element method we only let the test func-
tion � run through a basis of SpG in the variational formulation of the boundary
integral equation (4.9). The Galerkin approximation of the integral equation (4.9)
then reads:



194 4 Boundary Element Methods

Find 'S 2 SpG;� such that

b.'S ; �S / D F.�S / 8�S 2 SpG;�; (4.32)

with b.�; �/ and F.�/ from (4.10) and (4.11) respectively.

Remark 4.1.22. (i) The Galerkin discretization (4.32) of (4.8) is achieved by res-
tricting the trial and test functions '; � to the subspace SpG;� � H�1=2.�/ in
the variational formulation (4.8).

(ii) The boundary element solution 'S in (4.32) is independent of the basis chosen
for the subspace.

The computation of the approximation 'S requires that we choose a concrete
basis for the subspace. Therefore, [see (4.29)–(4.31)] for a fixed p 2 N0, we choose
the basis

.bI W I 2 I .G; p// (4.33)

for SpG;�. Then (4.32) is equivalent to the linear system of equations:

Find ' 2 RN such that
B' D F: (4.34)

Here the system matrix B D .BI;J /I;J2I.G;p/ and the right-hand side F D
.FJ /J2I.G;p/ 2 RN with I D .	; �/ and J D .�; t/ are given by

BI;J WD b.bI ; bJ / (4.35)

D
Z
�

Z
�

bJ .x/ bI .y/
4� kx� yk dsy dsx D

Z
t

Z
�

N t
� .x/N

�
�.y/

4� kx � yk dsy dsx

FJ WD F.bJ / D
Z
�

gD.x/bJ .x/ dsx D
Z
t

gD.x/N t
� .x/ dsx: (4.36)

Remark 4.1.23. The matrix B in (4.34) is dense because of (4.35), which means
that all entriesBI;J are, in general, not equal to zero. Furthermore, the twofold sur-
face integral in (4.35) can very often not be computed exactly, even for polyhedrons,
and requires numerical integration methods for its approximation. The influence of
this additional approximation will be discussed in Chap. 5. In this chapter we will
always assume that the matrix B can be determined exactly.

Proposition 4.1.24. The system matrix B in (4.34) is symmetric and positive defi-
nite.

Proof. From the symmetry of b.'; �/ D b.�; '/ we immediately have

BI;J D b.bI ; bJ / D b.bJ ; bI / D BJ;I ;

and subsequently B D B|. Now let ' 2 RN be arbitrary. Then we have
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'|B' D
X

I;J2I.G;p/
'J'IBI;J D

X
I;J

'J'Ib.bI ; bJ / D b
 X

I

'IbI ;
X
J

'J bJ

!

D b.'S ; 'S / � �k'Sk2H�1=2.�/
> 0

if and only if 'S 6D 0. Since fbI W I 2 Ig is a basis of Sp, we have 'S 6D 0 if and
only if ' 6D 0 2 RN . Therefore B is positive definite. �

Thus the discrete problem (4.32) or (4.34) has a unique solution 'S 2 SpG .
The following proposition supplies us with an estimate for the error ' � 'S .

Proposition 4.1.25. Let ' be the exact solution of (4.9). The Galerkin solution 'S
of (4.32) converges quasi-optimally

k' � 'SkH�1=2.�/ �
kbk
�

min
	S2Sp

k' � �SkH�1=2.�/: (4.37)

The error satisfies the Galerkin orthogonality

b.' � 'S ; �S / D 0 8�S 2 Sp : (4.38)

Proof. We will first prove the statement in (4.38). If we only consider (4.10) for test
functions from Sp we can subtract (4.32) and obtain

b.' � 'S ; �S / D b.'; �S /� b.'S ; �S / D F.�S /� F.�S / D 0 8�S 2 Sp:

Next we prove (4.37). For the error eS D ' � 'S we have by the ellipticity and
the continuity of the boundary integral operator V and (4.38)

�k' � 'Sk2H�1=2.�/
� b.eS ; eS / D b.eS ; ' � 'S/
D b.eS ; '/ � b.eS ; 'S / D b.eS ; '/ � b.eS ; �S / D b.eS ; ' � �S/
� kbkkeSkH�1=2.�/k' � �SkH�1=2.�/

for all �S 2 Sp .
If we cancel keSkH�1=2.�/ and minimize over �S 2 Sp we obtain the assertion

(4.37). �
The inequality in (4.37) shows that the Galerkin error k' � 'SkH�1=2.�/ coin-

cides with the error of the best approximation of ' in Sp up to a multiplicative
constant. This is where the term quasi-optimality for the a priori error estimate
(4.37) originates.

Remark 4.1.26 (Collocation). We obtained the Galerkin discretization (4.32) from
(4.8) by restricting the trial and test functions '; � to the subspace Sp � S .
Alternatively, one can insert 'S into (4.6) and impose the equation
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.V'S/.xJ / D gD.xJ / J 2 I .G; p/ (4.39)

only in N collocation points fxJ W J 2 Ig. The solvability of (4.39) depends
strongly on the choice of collocation points fxJ W J 2 Ig. Equation (4.39) is also
equivalent to a linear system of equations, where the entries of the system matrix
Bcol l are defined by

Bcol lI;J WD
Z
�

bJ .y/
4� kxI � ykdsy: (4.40)

Note that Bcol l is again dense, but not symmetric.
The collocation method (4.39) is widespread in the field of engineering, because

the computation of the matrix entries (4.40) only requires the evaluation of one
integral over the surface � , instead of, as with the Galerkin method, a twofold inte-
gration over � . However, the stability and convergence of collocation methods on
polyhedral surfaces is still an open question, especially with integral equations of
the first kind. For integral operators of zero order or equations of the second kind
we only have stability results in some special cases. For a detailed discussion on
collocation methods we refer to, e.g., [6, 8, 87, 187, 207, 215] and the references
contained therein.

We now return to the Galerkin method.

Remark 4.1.27 (Stability of the Galerkin Projection). The Galerkin method
(4.32) defines a mapping

…
p
S W H�1=2.�/! S

p
G;� W …

p
S' WD 'S ;

which is called the Galerkin projection. Clearly, …p
S is linear and because of the

ellipticity of the boundary integral operator V we have

�k…p
S'k2H�1=2.�/

D �k'Sk2H�1=2.�/
� b.'S ; 'S / D b.'; 'S/

� kbkk'kH�1=2.�/k…p
S'kH�1=2.�/;

from which we have, after canceling, the boundedness of the Galerkin projection
…
p
S W H�

1
2 .�/! H� 1

2 .�/ independent of the mesh G:

k…p
S'kH�1=2.�/ �

kbk
�
k'kH�1=2.�/: (4.41)

The quasi-optimality (4.37) and the boundedness of the Galerkin projection
combined with the following corollary give us the convergence of the Galerkin
BEM.

Corollary 4.1.28. Let .G`/`2N be a sequence of meshes on � with a mesh width
h` D hG`

and let h` ! 0 for ` ! 1. Then the sequence .'`/`2N of boundary
element solutions (4.32) in S` D SpG`

converges to ' for every fixed p 2 N0.
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Proof. Since S0
`
� Sp

`
for all p 2 N0, we will only consider the case p D 0. S0

`
are

step functions on meshes whose mesh width converges to zero. The density follows
from the construction of the Lebesgue spaces

[
`2N

S0
`

k�k
L2.�/ D L2 .�/

and from Proposition 2.5.2 we have the dense embeddingL2 .�/ � H�1=2.�/.
For ' 2 H�1=2 .�/ and an arbitrary " > 0 we can therefore choose a Q' from

L2 .�/ and an ` 2 N , combined so that Q'` 2 S0` , such that

k' � Q'kH�1=2.�/ � "=2 and k Q' � Q'`kL2.�/ � "=2:

From this we have

k' � Q'`kH�1=2.�/ � k' � Q'kH�1=2.�/ C k Q' � Q'`kH�1=2.�/ �
"

2
C "

2
� ":

The quasi-optimality of the Galerkin method gives us

k' � '`kH�1=2.�/ �
kbk
�
k' � Q'`kH�1=2.�/ � "

kbk
�
:

As " > 0 is arbitrary, we have the assertion for `!1. �

4.1.5 Convergence Rate of Discontinuous Boundary Elements

We have seen in Proposition 4.1.25 that the approximations 'S 2 S from the
Galerkin boundary element method approximate the exact solution ' of the equa-
tion of the first kind (4.9) quasi-optimally: the error ' � 'S , which is measured in
the “natural”H�1=2.�/-norm, is – up to a multiplicative constant – just as large as

min
˚k' �  SkH�1=2.�/ W  S 2 S

�
(4.42)

which is the error of the best approximation in the space S . The convergence rate of
the BEM indicates how fast the error converges to zero in relation to an increase in
the degrees of freedomN . Here we will only prove the convergence rate for p D 0,
while the general case will be treated in Sect. 4.3. We begin with the second Poincaré
inequality on the reference element O� .

Convention 4.1.29. Variables on the reference element are always marked by a
“ˆ”. If the variables x 2 � and Ox 2 O� appear in the same context this should
always be understood in terms of the relation x D �� .Ox/. Derivatives with respect
to variables in the reference element are also marked by a “ˆ”. We will write, for
example, br as an abbreviation for rOx . Should the functions u W � ! K and Ou W O� !
K appear in the same context, they are connected by the relation u ı �� D Ou.
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Proposition 4.1.30. Let O� � R2 be the reference element, O' 2 H 1. O�/ and O'0 WD
1
j O� j
R
O� O' d Ox. Then there exists some Oc > 0 such that

k O' � O'0kL2. O�/ � Ockbr O'kL2. O�/; (4.43)

where Oc depends only on O� .

Proof. The assertion follows directly from the proof of Corollary 2.5.10. �
In the following we will derive error estimates for a simplified situation. We will

discuss the general case in Sect. 4.3. Here we let � be a plane manifold in R3 with
a polygonal boundary. As integrals are invariant under rotation and translation, we
assume without loss of generality that

� is a two-dimensional polygonal domain, (4.44)

i.e., we restrict ourselves to the two-dimensional approximation problem in the
plane.

Furthermore, let G D f�i W 1 � i � N g be a surface mesh on � of shape-regular
triangles with straight edges and with mesh width h > 0. Then the triangles � 2 G
are affinely equivalent to the reference element O� via the transformation (4.14):

� 3 x D �� .Ox/ D P0 C JOx; Ox 2 O�; (4.45)

where J is the matrix with the columns P1 � P0 and P2 � P1 (see Fig. 4.1). With
(4.45) and the chain rule

@

@x˛
D @

@ Ox1
@ Ox1
@x˛
C @

@ Ox2
@ Ox2
@x˛

˛ D 1; 2;

the relation
r D �J�1�| br; dx D .det J/ d Ox D 2 j� j d Ox (4.46)

follows. This leads to the transformation formula for Sobolev norms

kbr O'k2
L2. O�/ D

Z
O�
jbr O'j2 d Ox D jO� jj� j

Z
�

.r'/>JJ>.r'/dx

� jO� jj� j��
Z
�

kr'k2 dx; (4.47)

where �� denotes the largest eigenvalue of JJ| 2 R2�2. Furthermore, we have for
the left-hand side of (4.43)

k O' � O'0k2L2. O�/ D
jO� j
j� j k' � '0k

2
L2.�/

(4.48)



4.1 Boundary Elements for the Potential Equation in R3 199

with '0 WD 1
j� j
R
�
'dx. If we combine (4.48) with (4.43) and (4.47) we obtain

k' � '0k2L2.�/ D
j� j
j O� j k O' � O'0k

2
L2.O�/
� Oc2 j� jj O� j k

br O'k2
L2.O�/
� Oc2�� kr'k2L2.�/ 8� 2 G:

(4.49)
Exercise 4.1.32 shows that

�� � kP1 � P0k2 C kP2 � P1k2 � 2h2� : (4.50)

From this we have
k' � '0kL2.�/ �

p
2 Och� j'jH1.�/: (4.51)

Squaring and then summing over all � 2 G leads to the following error estimate.

Proposition 4.1.31. Let (4.44) hold. Let G be a surface mesh of � . Let ' 2 L2.�/
with 'j� 2 H 1.�/ for all � 2 G. Then we have the error estimate

min
 2S0

G
k' �  kL2.�/ �

p
2 Oc
 X
�2G

h2� j'j2H1.�/

!1=2
: (4.52)

For ' 2 H 1.�/ the error estimate can be simplified to

min
 2S0

G
k' �  kL2.�/ �

p
2 OchG j'jH1.�/: (4.53)

Exercise 4.1.32. Let � be a plane triangle with straight edges in R2 with vertices
P0, P1, P2. Let the matrix J and the eigenvalue �� be defined as in (4.45) and (4.47)
respectively. Show that

�� � kP1 � P0k2 C kP2 � P1k2 :

From the approximation property we will now derive an error estimate for the
Galerkin solution.

Theorem 4.1.33. Let � be the surface of a polyhedron. Let the surface mesh G
consist of triangles with straight edges.

For the solution ' of the integral equation of the first kind (4.6) we assume that
for an 0 � s � 1 we have

' 2 H s.�/: (4.54)

Then the Galerkin approximation 'S 2 S0G satisfies the error estimate

k' � 'SkH�1=2.�/ � C hsC1=2k'kH s.�/: (4.55)

Proof. The conditions of the theorem allow us to apply Proposition 4.1.31. With
(4.37) we obtain for the Galerkin solution 'S the error estimate
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k' � 'SkH�1=2.�/ D k' �…0
S 'kH�1=2.�/ �

kbk
�

min
 S2S0

G
k' �  SkH�1=2.�/:

The definition of the H�1=2 .�/-norm gives us

k' �  SkH�1=2.�/ D sup
	2H1=2.�/nf0g

.' �  S ; �/L2.�/

k�kH1=2.�/

: (4.56)

We will first consider the case ' 2 H 1.�/ and choose  S elementwise as the mean
value of '

P' WD  S with  S j� WD
1

j� j
Z
�

' dx; � 2 G;

i.e., P is the L2-orthogonal projection onto S0G . Hence it follows from Proposi-
tion 4.1.31 that

k SkL2.�/�k'kL2.�/; k' �  SkL2.�/� 2k'kL2.�/; k' �  SkL2.�/� chk'kH1.�/:

(4.57)

If in Proposition 2.1.62 we choose T D I � P we have T W L2 .�/ ! L2 .�/

and T W H 1 .�/! L2 .�/. For the norms we have, by (4.57), the estimates

kT kL2.�/ L2.�/ � 2 and kT kL2.�/ H1.�/ � ch:

Proposition 2.1.62 implies that T W H s .�/! L2 .�/ for all 0 � s � 1 and that

kT kL2.�/ H s.�/ � chs :

This is equivalent to the error estimate

k' �  SkL2.�/ � c hsk'kH s.�/: (4.58)

In order to derive an error estimate for the H�1=2 .�/-norm, we use (4.56) and note
that the equality

j .' �  S ; �/L2.�/ j D j .' �  S ; � � �S /L2.�/ j

holds for an arbitrary �S 2 S0G . By using ' 2 H s.�/, � 2 H 1=2.�/ and (4.58) and
by choosing �S elementwise as the integral mean value of �, we obtain the estimate

ˇ̌
.' �  S ; �/L2.�/

ˇ̌ D ˇ̌.' �  S ; � � �S /L2.�/

ˇ̌ � k' �  SkL2.�/ k� � �SkL2.�/

� chsk'kH s.�/h
1=2k�kH1=2.�/:

�
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The error estimate (4.55) shows that the convergence rate hsC1=2 of the BEM
depends on the regularity of the solution '. In Sect. 3.2 we stated the regularity –
the maximal s > 0 such that ' 2 H�1=2Cs .�/ – without knowing the exact solu-
tion ' explicitly. Ideally, ' is smooth on the entire surface .s D 1) or at least
on every panel. The convergence rate would then be bounded by the polynomial
order p of the boundary elements, due to the fact that the following generalization
of Theorem 4.1.33 holds.

Corollary 4.1.34. Let the exact solution of (4.9) satisfy ' 2 H s.�/ for an s � 0.
Then the boundary element solution 'S 2 SpG satisfies the error estimate

k' � 'SkH�1=2.�/ � ch1=2Cmin.s;pC1/
G k'kH s.�/; (4.59)

for a surface mesh G of the boundary � , which consists of triangles with straight
edges. Here the constant c depends on p and the shape-regularity of the surface
mesh.

The proof of Corollary 4.1.34 will be completed in Sect. 4.3.4 (see Remark
4.3.21).

4.1.6 Model Problem 2: Neumann Problem

Let �� � R3 be a bounded interior domain with boundary � and �C WD R3n��.
For gN 2 H�1=2.�/ we consider the Neumann problem

�u D 0 in �C; (4.60)

�1u D gN on �; (4.61)

ju .x/j � C kxk�1 for kxk ! 1: (4.62)

The exterior problem (4.60)–(4.62) has a unique solution u, which can be
represented as a double layer potential

u.x/ D 1

4�

Z
�

'.y/
@

@ny

1

kx � yk dsy; x 2 �C: (4.63)

Thanks to the jump relations (see Corollary 3.3.12)

1

4�

Z
�

@

@ny

1

kx � yk dsy D

8̂
<̂
ˆ̂:

�1 x 2 ��;
�1
2

x 2 � and � is smooth in x

0 x 2 �C
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u.x/ in (4.63) does not change if a constant is added to '. If we put (4.63) into the
boundary condition (4.61) we obtain the equation

�W' D @

@nx

�
1

4�

Z
�

'.y/
@

@ny

1

kx � yk dsy

�
D gN .x/; x 2 �: (4.64)

The following remark shows that the derivative @=@nx and the integral do not
commute.

Remark 4.1.35. The normal derivative @=@nx, applied to the kernel in (4.64), yields

@2

@nx@ny

1

kx � yk D
˝
nx;ny

˛
kx � yk3 � 3

hnx; x � yi ˝ny; x � y
˛

kx � yk5 :

Therefore the kernel of the associated hypersingular integral operator is not inte-
grable.

There are three possibilities of representing the integral operator W' on the
surface: (a) by extending the definition of an integral to strongly singular kernel
functions (see [201, 211]), (b) by integration by parts (see Sect. 3.3.4) and (c) by
introducing suitable differences of test and trial functions (see [117, Sect. 8.3]). In
this section we will consider option (b). The notation and theorems from Sect. 3.3.4
can be simplified for the Laplace problem, so that they read

curl� ' WD �0 .gradZ�'/ � n;

b.'; �/ D
Z
�

Z
�

hcurl� ' .y/; curl� � .x/i
4� kx � yk dsydsx;

where Z� W H 1=2 .�/ ! H 1 .��/ is an arbitrary extension operator (see Theo-
rem 2.6.11 and Exercise 3.3.25).

The variational formulation of the boundary integral equation is given by (see
Theorem 3.3.22): Find ' 2 H 1=2.�/=K such that

b.'; �/ D � .gN ; �/L2.�/ 8� 2 H 1=2.�/=K: (4.65)

In Theorem 3.5.3 we have already shown that the density ' in (4.63) is the unique
solution of the boundary integral equation (4.65). The proof was based on the fact
that the bilinear form b .�; �/ is symmetric, continuous andH 1=2 .�/ =K-elliptic.

4.1.7 Continuous Boundary Elements

The Galerkin method is based on the concept of replacing the infinite-dimensional
Hilbert space by a finite-dimensional subspace. The bilinear form that is asso-
ciated with the hypersingular integral operator is defined on the Sobolev space
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H 1=2 .�/ =K. As the discontinuous boundary element functions from Example
4.1.16 and Definition 4.1.17 are not contained in H 1=2 .�/ =K (see Exercise 2.4.4),
we will introduce continuous boundary element spaces for the Neumann problem.

We again start with a mesh G on the boundary � . In order to define continuous
boundary elements, we assume (see Definition 4.1.4):

The surface mesh G is regular. (4.66)

This means that the intersection � \ � 0 of two different panels is either empty, a
vertex or an entire edge. Furthermore, the boundary elements are either triangles
or quadrilaterals and are images of the reference triangle or quadrilateral O� respec-
tively (see Fig. 4.1). Note that the boundary edges of the panels “have the same
parametrization on both sides” in the case of continuous boundary elements (see
Definition 4.1.4).

We assume that the boundary � is piecewise smooth (see Definition 2.2.10 and
Fig. 4.1) so that the reference mappings �� W O� ! � can be chosen as smooth dif-
feomorphisms. As in the case for discontinuous boundary elements, the continuous
boundary elements are also piecewise polynomials on the surface � . When using
discontinuous elements, a boundary element function 'S is locally a polynomial of
degree p in each element � 2 G:

8� 2 GW 'S ı �� 2 P�p . O�/:

With continuous elements we have for � 2 G:

'S ı �� 2 P �p WD
8<
:

P�p if � is a triangular element,

P �
p if � is a quadrilateral element,

(4.67)

where for p � 1 the polynomial space P�p is defined as in (4.23) and

P �
p WD spanf O
i1 O
j2 W 0 � i; j � pg:

Now we come to the definition of continuous boundary element functions of
degree p � 1.

Definition 4.1.36. Let � be a piecewise smooth surface, G a regular surface mesh
of � and � D f�� W � 2 Gg the mapping vector. Then the space of continuous
boundary elements of degree p � 1 is given by

S
p;0
G;� WD f' 2 C 0.�/ j 8� 2 G W 'j� ı �� 2 P �pg:

In order to make the distinction between continuous and discontinuous boundary
elements of degreep we will from now on denote discontinuous elements by Sp;�1G;� .
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Just like the space Sp;�1 of discontinuous boundary elements, the space Sp;0 is
also finite-dimensional. In the following we will introduce a basis f'I W I 2 Ig of
Sp;0. In contrast to Sp;�1, the support of the basis functions in general consists of
more than one panel and the basis functions are defined piecewise on those panels.
We begin with the simplest case, p D 1.

Example 4.1.37. (Linear and Bilinear, Continuous Boundary Elements)
The shape functions bN.Ox/, Ox D . Ox1; Ox2/ on the reference element O� are:

� In the case of the unit triangle with vertices P0 D .0; 0/|, P1 D .1; 0/|, P2 D
.1; 1/| [see (4.13)], given by

bN 0.Ox/ D 1 � Ox1; (4.68)

bN 1.Ox/ D Ox1 � Ox2;
bN 2.Ox/ D Ox2

and
� In the case of the unit square with vertices P0 D .0; 0/|, P1 D .1; 0/|, P2 D
.1; 1/|, P3 D .0; 1/|, given by

bN 0.Ox/ D .1 � Ox1/.1 � Ox2/; (4.69)

bN 1.Ox/ D Ox1.1 � Ox2/;
bN 2.Ox/ D .1 � Ox1/ Ox2;
bN 3.Ox/ D Ox1 Ox2:

We notice that the shape function bN i is equal to 1 at the vertex Pi of the reference
element 1 and vanishes at all other vertices (see Fig. 4.3).

It holds P�1 . O�/ D spanfbN i W i D 0; 1; 2g and P �
1 .b�/ D spanfbN i W i D 0; : : : 3g.

For the definition of the boundary element spaces of polynomial degree p we
have to distinguish between quadrilateral elements and triangular elements. For the
reference element O� 2 G and p 2 N0 we define the index set

Fig. 4.3 Reference elements
O� D S2 (left) and O� D Q2

(right) and nodal points for
P O�
1

1 1

2

2
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Fig. 4.4 Nodal points OP.2/i;j
for the reference triangle (left)
and for the unit square (right)

2,1

1,0 1,0

1,1 0,1 2,1

1,2

1,1

� O�p WD
	 ˚
.i; j / 2 N2

0 W 0 � j � i � p
�

in the case of the unit triangle,˚
.i; j / 2 N2

0 W 0 � i; j � p
�

in the case of the unit square.
(4.70)

We will omit the index O� in � O�p if the reference element is clear from the context.

Example 4.1.38 (Boundary elements of degree p > 1). The trial spaces P�p , P �
p

in (4.67) are spanned by the functions bN .p/

.i;j /
2 P O�p which will be defined next. The

nodal points for the reference element O� are given by

bP .p/.i;j / WD
�
i

p
;
j

p

�|
; 8 .i; j / 2 � O�p (4.71)

(see Fig. 4.4).
For .i; j / 2 � O�p the shape function bN .p/

.i;j /
is characterized by

bN .p/

.i;j /
2 P O�p and bN .p/

.i;j /
.bP .p/.k;`// D

	
1 .k; `/ D .i; j / ;
0 .k; `/ 2 � O�pn f.i; j /g

(see Theorem 4.1.39).

Theorem 4.1.39. Let k 2 N . Then every q 2 P O�
k

is uniquely determined by its

values in †k WD
n
.i=k; j=k/ W .i; j / 2 � O�

k

o
.

The set †k is called unisolvent for the polynomial space P O�
k

because of this
property.

Proof. A simple calculation shows that

dim P O�k D ]†k:

Therefore it suffices to prove either one of the following statements (a) or (b):

(a) For every vector .bz/z2†k
there exists a q 2 P O�

k
such that q .z/ D bz for all

z 2 †k:
(b) If q 2 P O�

k
and q .z/ D 0 for all z 2 †k then q 	 0.
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Case 1: O� D .0; 1/2: For 	 2 � O�
k

we define the function bN� by

bN� .x/ WD Q2
jD1

Qk
ijD0
ij¤�j

kxj � ij
	j � ij :

Then bN� 2 P O�
k

with bN� .	=k/ D 1 and bN�

�
i1
k
; i2
k

�
D 0 for all .i1; i2/ 2 � O�kn f	g.

Now let
�
b�
�
�2
 O�

k

be arbitrary. Then the polynomial q 2 P O�
k

q .x/ D
X
�2
 O�p

b�bN� .x/

satisfies property (a).
Case 2: O� is the reference triangle. As in Example 4.1.37 we set

O�1 .x/ WD 1 � Ox1; O�2 .x/ WD Ox1 � Ox2; O�3 .x/ WD Ox2:

Clearly, these functions are in P O�1 and have the Lagrange property

81 � i; j � 3 W O�i
�
Aj
� D ıi;j with A1 D .0; 0/| , A2 D .1; 0/| , A3 D .1; 1/| :

1. k D 1W For a given .bi /
3
iD1 2 R3, q 2 P1W

q .x/ D
3X
iD1

bi O�i .x/

clearly has the property (a).
2. k D 2W For 1 � i < j � 3, A.i;j / WD

�
Ai C Aj

�
=2 denote the midpoints of the

edges of O� . We define

bN i WD O�i
�
2 O�i � 1

�
1 � i � 3;

bN .i;j / WD 4 O�i�j 1 � i < j � 3:

Then we clearly have bN k , bN .i;j / 2 P O�2 and

bN i

�
Aj
� D ıi;j bN i

�
A.k;`/

� D 0 8i; k; `;
bN .i;j / .Ak/ D 0 bN .i;j /

�
A.k;`/

� D ıi;kıj;` 8i; j; k; `:
For a given fbz W z 2 †2g D

˚
bi ; b.k;`/

�
, the polynomial q 2 P O�2 defined by

q .x/ WD
3X
iD1

bibN i .x/C
X

1�k<`�3
b.k;`/bN .k;`/ .x/

has the property (a).
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3. k D 3W This case will be treated in Exercise 4.1.40.
4. k � 4W Let q 2 P�

k
with q .z/ D 0 for all z 2 †k . Then q vanishes on all edges

of O� . Therefore there exists a  2 P�
k�3 such that

q D O�1 O�2 O�3 and 8z 2 †k \ O� W  .z/ D 0:

(Note that O� is open.) The problem can thus be reduced to

�
 2 P�k�3

�
^ .8z 2 †k \ O� W  .z/ D 0/ H)  	 0: (4.72)

Property (b) follows by induction over k as follows.

Let O� 0 be the triangle with vertices A D �
2
kC1 ;

1
kC1

�|
, B D

�
k
kC1 ;

1
kC1

�|
, C D�

k
kC1 ;

k�1
kC1

�|
. Then we have †k \ O� DW †0k �b� 0. The transformation

T W O� ! O� 0 W T 
 D AC
�
1� 3

k C 1
�



is affine and therefore Q D  ı T 2 P�
k�3. Furthermore, we have T �1†0

k
D

†k�3. Hence (4.72) is equivalent to

� Q 2 P�k�3
�
^ �8z 2 †k�3 W Q .z/ D 0

� H) Q 	 0:

This, however, is statement (b) for k  k � 3. Since the induction hypothesis
for k D 1; 2; 3 is given by steps 1–3 in the proof, the assertion follows by virtue
of the equivalence of the two statements (a) and (b). �

Exercise 4.1.40. Let O� be the unit triangle. For P O�3 construct a Lagrange basis for
the set of mesh points †3 (see Theorem 4.1.39).

In combination with the polynomial space P O�p on O� we define an interpolation

operator bIp for the set of nodal points †p D
�bP .p/.i;j /

�
.i;j /2
p

for continuous

functions ' 2 C 0
�
O�
�

by

bIp' WD X
.i;j /2
 O�p

'
�bP .p/.i;j /

� bN .p/

.i;j /
: (4.73)

The Sobolev embedding theorem (Theorem 2.5.4) proves the continuity of the

embedding H t . O�/ ,! C 0
�
O�
�

thanks to O� � R2 for t > 1 and therefore bIp is

defined on H t . O�/, thus
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Fig. 4.5 Quadratic triangular and quadrilateral elements which share a common edge. The com-
patibility of the parametrizations ensures that the midpoints (cross marks) of the pullbacks of the
common edge in the reference elements are mapped to the same surface points

bIp W H t . O�/! P O�p and continuous:



bIp





C0. O�/ H t .O�/ <1:

One obtains the set of nodal points on the surface by lifting the set of nodes on
the reference element by means of the element parametrization

I WD
n
��

�bP .i;j /
�
W 8� 2 G, 8 .i; j / 2 � O�p

o
: (4.74)

Clearly, in a mesh G on � there will be nodal points that lie in more than one
element, more precisely, that lie in their closures. As an example, consider Fig. 4.5
with two panels that have a common edge.

If the parameter representation �� ; �� 0 of the panels �; � 0 2 G is not compatible,
the edge midpoint “�” on the common edge will be mapped to different points
in O� , b� 0, depending on whether it is associated with � or � 0. Thus, regular element
mappings (see Definition 4.1.4) must parametrize edges e D �\� 0 “identically from
both sides”. In the following we will always assume in the definition of continuous
boundary elements Sp;0G;� that G and � are regular.

Example 4.1.41 (p-Parametric Boundary Elements). Let G be a regular mesh on
� and let q � 1 be given and fixed. Then we can approximate a regular, generally
non-linear, parametrization �� W O� �! � 2 G by means of a p-parametric element
mapping

e�� .Ox/ WD X
.i;j /2
 O�q

P.q/
.i;j /

.�/bN .q/

.i;j /
.Ox/; Ox 2 O�; (4.75)

where P.q/
.i;j /

.�/ WD ��
�bP .q/.i;j /

�
denotes the lifted nodes of the reference element.
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Remark 4.1.42. In practical applications the construction (4.75) is used for p D 1
and p D 2 with the shape functions bN .p/

.i;j /
for the set of points bP .p/.i;j / in (4.71). In

every case the approximation panel Q� WDe�� . O�/ interpolates the exact panel � at the
points P.p/

.i;j /
. It is known from interpolation theory (see Sect. 7.1.3.1) that, for the

quality of the approximation, the choice of interpolation points becomes essential
for high orders of approximation such as p � 3. For p � 3 the images of the
Gauss–Lobatto points for the unit square represent a better choice for the set of
nodes P.p/

.i;j /
. Similar sets of points are known for the unit triangle (see [16, 130]).

In the following we will always assume that the � describe the surface � exactly.
The influence of the approximation of the domain on the accuracy of the boundary
element solution is discussed in Chap. 8.

We define the space of the continuous, piecewise polynomial boundary elements
of degree p � 1 by a basis bI . For this, let I be, as in (4.74), the set of all nodal
points in the mesh G. The basis function bP for the nodal point P 2 I is characterized
by the conditions

bP 2 Sp;0G and bP.P0/ WD
(
1 for P0 D P;

0 for P0 6D P; P0 2 I:
(4.76)

For a nodal point P 2 I we define a local neighborhood of triangles by �P WDSf� W � 2 G; P 2 �g. Then we have

supp.bP/ D �P: (4.77)

In order to derive a local representation of the basis functions by element shape
functions, we need a relation between global indices P 2 I and local indices .i; j / 2
� O�p. For � 2 G and I D .i; j / 2 � O�p we define a mapping ind W G � � O�p ! I by

ind .�; I / WD ��
�bP .i;j /

�
2 I. (4.78)

With this we have, for � 2 G, I D .i; j / 2 � O�p and P D ind .�; I / 2 I, the relation

bPj� D N �
.i;j / WD bN I ı ��1� : (4.79)

In the following we will show that the functions in Sp;0G;� are Lipschitz continuous
and are thus contained in H 1 .�/. In order to compare the Euclidian distance with
the surface distance, we introduce the geodesic distance

dist� .x; y/ WD inf
˚
length

�
�x;y

� W �x;y is a path in � that connects x and y
�

and the constant g�
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g� WD sup
x;y2�

	
dist� .x; y/
kx � yk

�
: (4.80)

Remark 4.1.43. The functions 'S 2 Sp;0G;� are Lipschitz continuous

j'S .x/� 'S .y/j � C kx � yk 8x; y 2 �;

where C depends on � , G, � and g� .

Proof. The continuity of 'S 2 Sp;0G;� follows directly from the definition so that we
only need to prove the Lipschitz continuity. Let x; y 2 � and let �x;y be a connecting
path with minimal length on � . Let

�
�j
�q
jD0 � G be a minimal subset of G with the

property:

x 2 �0, y 2 �q , �x;y �
q[
jD1

�j

81 � j � q W �j�1 \ �j is a common edge ej and ej \ �x;y ¤ ;.

We fix the points Mj on ej \ �x;y, 1 � j � q and set M0 D x and MqC1 D y.

Without loss of generality we assume that all
�
Mj

�qC1
jD0 are distinct; otherwise we

simply eliminate points that appear in the sequence more than once. Then, by the
continuity of 'S , we have

'S .y/� 'S .x/ D 'S
�
MqC1

� � 'S .M0/ D
qX
jD0

�
'S
�
MjC1

� � 'S �Mj

��
:

The points MjC1, Mj are in the panel �j . Since 'S j� is the composition of a
polynomial with a diffeomorphism, these restrictions are Lipschitz continuous. With

c� WD sup
x;y2�

j'S .x/� 'S .y/j
kx � yk

we have

ˇ̌
'S
�
MjC1

� � 'S �Mj

�ˇ̌ � c� 

MjC1 �Mj



 � c�L ��Mj ;Mj C1

�
;

where L
�
�Mj ;Mj C1

�
denotes the length of the shortest connecting path in � that

connects Mj with MjC1. Finally, with (4.80) we have

j'S .y/� 'S .x/j �
�

max
1�j�q c�j

�
L
�
�x;y

� � g�
�

max
1�j�q c�j

�
kx � yk ;

which is the Lipschitz continuity of 'S . �
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4.1.8 Galerkin BEM with Continuous Boundary Elements

The inclusion Sp;0G;� � H 1=2 .�/ of the continuous boundary elements permits the
Galerkin discretization of the hypersingular boundary integral equation:
Find 'S 2 Sp;0G =K such that

b.'S ; �S / D .gN ; �S /L2.�/ 8�S 2 Sp;0G =K: (4.81)

The ellipticity (Theorem 3.5.3) implies the existence of a unique solution of Prob-
lem (4.81). The system matrix of the hypersingular integral equation has similar
properties to the matrix of the single layer potential (see Proposition 4.1.24).

Proposition 4.1.44. The system matrix W of the bilinear form b W Sp;0G =R �
S
p;0
G =R! R in (4.65) is symmetric and positive definite. The entries WI;J , I; J 2

I have the explicit form

WI;J D
Z
�

Z
�

hcurl� bI .x/; curl� bJ .y/i
4� kx � yk dsydsx D WJ;I : (4.82)

The integrals in (4.82) are, according to Remark 4.1.43, weakly singular and
therefore the matrix entries are well defined. We can write the actual generation
of the matrix by means of integrals over single panels, with the help of the index
allocation (4.78). In the following we will give an algorithmic description in the
form of a pseudo programming language.

procedure generate system matrix;
for all �; t 2 G do begin

for all I D .i; i 0/ 2 � O�p, J D .j; j 0/ 2 � pOt do begin

W
I;J
�;t WD

Z
�

Z
t

G .x�y/
D
curl�

�bN .i;i 0/ı��1� .x/
�
; curl�

�bN .j;j 0/ ı ��1t .y/
�E
dsydsxI

K WD ind .�; I / I L WD ind .t; J / I WK;L WD WK;L CW I;J
�;t I

(4.83)
end;end;

Exercise 4.1.45. Let �; t 2 G be panels with reference elements O� , Ot and refer-
ence mappings �� , �t . The Jacobian of the transformation is denoted by J� WDhO@1�� ; O@2��

i
and we set br? WD �O@2;�O@1

�
. For sufficiently smooth functions

u W � ! R prove the relation

g� curl� u ı �� D J�br? Ou;
where g� WD

q
det

�
J|
� J�

�
and Ou WD u ı �� .
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For the local system matrix W I;J
�;t in (4.83) we have the representation

Z
O�

Z
Ot

D�
J�br?bN .i;i 0/

�
.Ox/ ;

�
Jtbr?bN .j;j 0/

�
.Oy/
E

4� k�� .Ox/� �t .Oy/k d Oyd Ox:

(Hint: Use Exercise 3.3.25.)

In the same way as in Proposition 4.1.25 we obtain a quasi-optimal estimate for
the Galerkin error for continuous boundary elements on a regular mesh G.

Proposition 4.1.46. The Galerkin approximation 'S 2 Sp;0G of the solution ' of
the hypersingular boundary integral equation converges quasi-optimally:

k' � 'SkH1=2.�/=K �
kbk
�

min
 S2Sp;0

G

k' �  SkH1=2.�/=K: (4.84)

The Galerkin projection ….p/
G W H 1=2.�/=K! S

p;0
G =K, given by ….p/

G ' D 'S , is
stable:

k….p/
G kH1=2.�/=K H1=2.�/=K � kbk=�; (4.85)

where the norm of the bilinear form b.�; �/ is given by

kbk WD sup
'2H1=2.�/nf0g

sup
	2H1=2.�/nf0g

b.'; �/

k'kH1=2.�/=Kk�kH1=2.�/=K

[see (2.29)].

Thanks to the stability result (4.85), the search for convergence rates of the
Galerkin BEM is again reduced to the study of the approximation properties of
the spaces Sp;0G .

4.1.9 Convergence Rates with Continuous Boundary Elements

In order to find convergence rates for the boundary element approximation 'S in
(4.81) of the hypersingular equation (4.65), we need approximation properties of
the continuous boundary element spaces, which we will now specify. For this, let
the boundary � be bounded and piecewise smooth in the sense of Definition 2.2.10.

Remark 4.1.47. The partitioning of � which is employed in Definition 2.2.10 of
piecewise smoothness is denoted here by C D f�i W 1 � i � qg instead of G in
order to distinguish the notation from the boundary element mesh G and its panels
� 2 G (cf. Definition 4.1.2). In this light, the cardinality q of C depends only on
� and is, in particular, independent of the discretization parameters. However, we
always assume that the boundary element mesh is compatible with C in the sense
that, for any � 2 G, there exists a �i 2 C with � � �i .
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We will prove the approximation property and the convergence rates for the
Galerkin solution under the assumption that the exact solution belongs to the space
H t

pw .�/ which we will define next.

Definition 4.1.48. Let � be piecewise smooth with partitioning CWD f�i W1� i � qg:
(a) For t > 1, the space H t

pw .�/ contains all functions  2 H 1 .�/ which satisfy

8�i 2 C W  j�i
2 H t .�i /

and is furnished with the graph norm

k kH t
pw.�/

WD
0
@X
�i2C
k k2H t .�i /

1
A
1=2

: (4.86)

(b) For 0 � t � 1, the space H t
pw .�/ equals H t .�/ and the norm k�kH t

pw.�/
is the

usual H t .�/-norm.

Some properties of the H t
pw .�/- and the H t .�/-norms are stated in the next

lemma.

Lemma 4.1.49. (a) Let t � 1. For any  2 H t .�/, we have

k kH t
pw.�/

� k kH t .�/ :

(b) Let s � 0. Let � denote a finite index set and let fvi W i 2 �g be a set of functions
in H s .�/. If the supports !i WD supp vi satisfy

ˇ̌
!i \ !j

ˇ̌ D 0 8i; j 2 � with i ¤ j ,

then 





X
i2


vi







2

H s.�/

� 5

2

X
i2

kvik2H s.�/ :

Proof. Part a: Let t 2 N0. Then

k k2H t .�/ D
X
�i2C
k k2

H t .�i /
D k k2

H t
pw.�/

:

For t 2 R�0nN0, let t D btc C � with � 2 �0; 1Œ. We employ (2.85) to obtain

k k2H t .�/ D
X
j˛j�btc

j ˛ j2L2.�/
C

X
j˛j�btc

Z
���
j ˛ .x/�  ˛ .y/j2
kx � yk2C2�

dsxdsy
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�
X
�i2C

8<
:
X
j˛j�btc

k ˛k2L2.�i /
C

X
j˛j�btc

Z
�i��i

j ˛ .x/�  ˛ .y/j2
kx � yk2C2� dsxdsy

9=
;

D
X
�i2C
k k2H t .�i /

:

Part b: The proof of Part b is as in [91, Satz 3.26]. First, we will consider the
case s 2 �0; 1Œ. We write

v D
X
i2


vi ; Di WD supp vi ; D WD
[
i2

Di D supp v

and introduce the shorthand

Z
� 0

Z
� 00

Œw�2s WD
Z
� 0

Z
� 00

jw .x/� w .y/j2
kx � yk2C2s dsxdsy

for any measurable subsets � 0; � 00 � � and w 2 H s .�/.
For any i 2 �, we get

Z
�

Z
�

Œvi �
2
s D

Z
Di

Z
Di

Œvi �
2
s C 2

Z
Di

Z
�nDi

Œvi �
2
s C

Z
�nDi

Z
�nDi

Œvi �
2
s

„ ƒ‚ …
D0

D
Z
Di

Z
Di

Œvi �
2
s C 2

Z
Di

jvi .x/j2
Z
�nDi

kx � yk�2�2s dsydsx: (4.87)

On the other hand,

Z
�

Z
�

Œv�2s D
Z
D

Z
�

Œv�2s C
Z
�nD

Z
D

Œv�2s C
Z
�nD

Z
�nD

Œv�2s
„ ƒ‚ …

D0

D
X
i2


Z
Di

Z
Di

Œv�2s„ƒ‚…
DŒvi �

2
s

C
X
i2


Z
Di

Z
�nDi

Œv�2s C
Z
D

Z
�nD

Œv�2s (4.88)

and

Z
Di

Z
�nDi

Œv�2s D
Z
Di

Z
�nDi

jv .x/� v .y/j2
kx � yk2C2s dsxdsy

� 2
Z
�nDi

jv .x/j2
�Z

Di

1

kx � yk2C2s dsy

�

„ ƒ‚ …
DWJi

dsx



4.1 Boundary Elements for the Potential Equation in R3 215

C 2

Z
Di

jv .y/j2„ ƒ‚ …
Djvi .y/j2

Z
�nDi

1

kx � yk2C2s dsxdsy

(4.87)D
Z
�

Z
�

Œvi �
2
s �

Z
Di

Z
Di

Œvi �
2
s C 2Ji :

Inserting this into (4.88) results in

Z
�

Z
�

Œv�2s �
X
i2


�Z
�

Z
�

Œvi �
2
s C 2Ji

�
C
Z
D

Z
�nD

Œv�2s : (4.89)

Next, we will investigate the sum over the quantities Ji . Let �i denote the
characteristic function for �nDi . Then

X
i2

Ji D

X
i2


Z
�nDi

jv .x/j2
�Z

Di

1

kx � yk2C2s dsy

�
dsx

D
X
i2


Z
�

�i .x/ jv .x/j2
�Z

Di

1

kx � yk2C2s dsy

�
dsx

D
Z
�

jv .x/j2
 X
i2

�i .x/

Z
Di

1

kx� yk2C2s dsy

!

„ ƒ‚ …
DWf .x/

dsx: (4.90)

Let j 2 � and let x be an interior point of Dj , i.e., x 2 ıDj . For any i 2 �, we have

�i .x/ WD
	
1 if x 2 �nDi
0 if x 2 Di

�
D �1 � ıi;j � :

For x 2 ıDj we have

f .x/ D
X
i2
nfj g

Z
Di

1

kx � yk2C2s dsy D
Z
DnDj

1

kx � yk2C2s dsy:

Inserting this into (4.90) results in

2
X
i2

Ji D

X
j2


2

Z
Dj

jv .x/j2„ ƒ‚ …
jvj .x/j2

 Z
DnDj

1

kx � yk2C2s dsy

!
dsx

(4.87)�
X
j2


Z
�

Z
�

�
vj

2
s
: (4.91)
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It remains to estimate the second term in (4.89). We have

Z
D

Z
�nD

Œv�2s D
Z
D

jv .x/j2
�Z

�nD
1

kx � yk2C2s dsy

�
dsx

D
X
i2


Z
Di

jv .x/j2„ ƒ‚ …
Djvi .x/j2

�Z
�nD

1

kx � yk2C2s dsy

�
dsx

�
X
i2


Z
Di

jvi .x/j2
�Z

�nDi

1

kx � yk2C2s dsy

�
dsx

(4.87)� 1

2

X
i2


Z
�

Z
�

Œvi �
2
s : (4.92)

The combination of (4.89), (4.91), and (4.92) leads to

Z
�

Z
�

Œv�2s �
5

2

X
i2


Z
�

Z
�

Œvi �
2
s :

Because the L2 .�/-norm is additive we obtain







X
i2


vi







2

H s.�/

D kvk2L2.�/
C
Z
�

Z
�

Œv�2s �
X
i2

kvik2L2.�/

C 5

2

X
i2


Z
�

Z
�

Œvi �
2
s

� 5

2

X
i2

kvik2H s.�/ :

The proof for s 2 R>1nN can be carried out in the same way. Note that the
expression Œv�s has to be replaced by Œv˛�s, where v˛ is defined as in (2.86). �

Proposition 4.1.50. Let � be piecewise smooth and let G be a surface mesh of �:

(a) Let1 ' 2 H t
pw.�/ for some t > 1. Then there exists a continuous interpolation

I
p
G ' 2 Sp;0G with

k' � IpG 'kH s.�/ � C hminft;pC1g�s
G k'kH t

pw.�/
; s 2 f0; 1g ; (4.93)

where the constant C depends only on p and on the constant �G from Defini-
tion 4.1.12, which describes the shape-regularity of the mesh.

(b) Let 0 � s � t � 1. Then there exists a continuous operator QG W H t .�/ !
S
p;0
G such that, for every ' 2 H t .�/, we have

1 In Sect. 4.3.3, we will prove the continuous embedding Ht
pw.�/ ,! C0 .�/ for t > 1 and

piecewise smooth Lipschitz surfaces.
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k' �QG'kH s.�/ � Cht�sG k'kH t .�/ :

The operatorQG is stable for 0 � s � 1

kQGkH s.�/ H s.�/ � C:

The proof of Proposition 4.1.50 is postponed to Sect. 4.3.5.
With Proposition 4.1.50 we can now derive quantitative error estimates from the

quasi-optimality (4.84) of the Galerkin solution 'S .

Theorem 4.1.51. Let � be a piecewise smooth Lipschitz surface. Furthermore, let
G be a regular surface mesh on � . Let ' 2 H t

pw.�/ with t � 1=2. Then we have for

the Galerkin approximation 'S 2 Sp;0G of (4.65) the error estimate

k' � 'SkH1=2.�/=K � Chmin.t;pC1/�1=2 k'kH t
pw.�/

; (4.94)

where the constant C depends only on p and, via the constant �G from Defini-
tion 4.1.12, on the shape-regularity of the mesh.

Proof.
Case 1: t D 1=2.
For ' 2 H 1=2.�/=K it follows from (4.84) that by choosing  S D 0 we obtain
the boundedness of the error k' � 'SkH1=2.�/=K by .kbk =�/ k'kH1=2.�/=K. This
yields (4.94) for t D 1=2.

Case 2: t > 1.
Now let ' 2 H t

pw.�/ with t > 1. Let T pG W H t
pw .�/! S

p;0
G be defined by

T
p
G WD

	
QG if t D 1;
I
p
G if t > 1:

Proposition 4.1.50 implies that T pG is continuous. The estimate

k' � 'SkH1=2.�/=K �
kbk
�
k' � T pG 'kH1=2.�/=K �

kbk
�
k' � T pG 'kH1=2.�/

follows from the quasi-optimality (4.84), and we have used k'kH1=2.�/=K D
min
c2R
k' � ckH1=2.�/ � k'kH1=2.�/.

If we apply Proposition 2.1.65 with X0 D L2 .�/, X1 D H 1 .�/ and � D 1=2

we obtain the interpolation inequality

k'k2
H1=2.�/

� k'kL2.�/ k'kH1.�/ :

With this and with Proposition 4.1.50 it follows for t � 1 that
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k' � T pG 'k2H1=2.�/
� C k' � T pG 'kL2.�/k' � T pG 'kH1.�/

� C h2min.t;pC1/�1k'k2H t
pw.�/

(4.95)

and therefore we have (4.94) for t > 1.

Case 3: 1=2 < t � 1:
In this case we prove (4.94) by interpolation. We have for the operator I �QG the
estimate [cf. Proposition 4.1.50(b)]

kI �QGkH1=2.�/ H1=2.�/ � C; kI �QGkH1=2.�/ H1.�/ � C h1=2:

As in the proof of Theorem 4.1.33, the estimate

k.I �QG/'kH1=2.�/ � Cht�
1
2 k'kH t .�/:

follows for 1=2 � t � 1 by interpolation of the linear operator I �QG : H t .�/!
H

1
2 .�/ (see Proposition 2.1.62). �

4.1.10 Model Problem 3: Mixed Boundary Value Problem	

We consider the mixed boundary value problem for the Laplace operator:

�u D 0 in ��, u D gD on �D , @u=@n D gN on �N (4.96)

for given boundary data gD 2 H 1=2.�D/, gN 2 H�1=2.�2/. For the associated
variational formulation we refer to Sect. 2.9.2.3. The approach that allows the dis-
cretization of mixed boundary value problems by means of the Galerkin boundary
element method is due to [220, 239]. For the treatment of problems with more
general transmission conditions we refer to [233].

The problem can be reduced to an integral equation for the pair of densities
.'; �/ 2 H D eH�1=2 .�D/� eH 1=2 .�N /. The solution of (4.96) can be represented
with the help of Green’s representation formula

u .x/ D .S�/.x/� .D'/.x/; x 2 ��:

The variational formulation of the boundary integral equation reads [see (3.89)]:
Find .'; �/ 2 H such that

bmixed

  
'

�

!
;

 
�

�

!!
D .gD ; �/L2.�D/

C .gN ; �/L2.�N /
8 .�; �/ 2 H

(4.97)

� This section should be read as a complement to the core material of this book.
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with

bmixed

  
'

�

!
;

 
�

�

!!
D .VDD'; �/L2.�D/

� .KDN�; �/L2.�D/
C �K 0ND'; ��L2.�N /

C .WNN �; �/L2.�N /
:

The boundary element discretization is achieved by a combination of different
boundary element spaces on the pieces �D ; �N . For this let GD , GN be surface
meshes of �D; �N , while we assume that GN is regular (see Definition 4.1.4). We
use discontinuous boundary elements of order p1 � 0 on �D . The inclusion

S
p1;�1
GD

� eH�1=2.�D/; (4.98)

results, because the zero extension  ? of every function  2 Sp1;�1
GD

satisfies the

inclusion  ? 2 L2.�/ � H�1=2.�/ and thus we have  2 eH�1=2 .�D/.
For the approximation of � 2 eH 1=2.�N / we define for p2 � 1

S
p2;0
GN ;0

D
n
� 2 Sp2;0

GN
W �j@�N

D 0
o

(4.99)

and therefore the boundary values of the functions � 2 Sp2;0
GN ;0

vanish on @�N .

Remark 4.1.52. The zero extension �? of functions � 2 S
p;0
GN ;0

satisfies �? 2
S
p;0
G � H 1=2.�/, where we have set G WD GD [ GN .

With these spaces we can finally formulate the boundary element discretization
of (4.97). In the following we will summarize the polynomial orders p1 � 0 and
p2 � 1 in the vector p D .p1; p2/.

Find .'S ; �S / 2 Sp WD Sp1;�1
GD

� Sp2;0
GN ;0

such that

bmixed

��
'S
�S

�
;

�
�S
�S

��
D .gD ; �S /L2.�D/

C.gN ; �S /L2.�N /
8.�S ; �S / 2 Sp:

(4.100)
The norm for functions .'; �/ 2 H is given by k.'; �/kH WD k'k QH�1=2.�D/

C
k�k QH1=2.�N /

. Once more the unique solvability of the boundary element dis-
cretization of the integral equation follows from the H-ellipticity (3.112) of the
bilinear form bmixed , and from the Galerkin orthogonality of the error, we have
the quasi-optimality.

Theorem 4.1.53. Let .'; �/ 2 H be the exact solution of (4.97). The discretization
(4.100) has a unique solution .'S ; �S / 2 Sp, p D .p1; p2/, which converges quasi-
optimally:

k.'; �/ � .'S ; �S /kH � C1 min
.	;
/2Sp

k.'; �/ � .�; �/kH : (4.101a)
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If the exact solution satisfies .'; �/ 2 H s
pw .�D/ �H t

pw .�N / for s; t � 0 we have
the quantitative estimate

k.'; �/ � .'S ; �S /kH � C2
�
hminfs;p1C1gC 1

2 k'kH s
pw.�D/

Chminft;p2C1g� 1
2 k�kH t

pw.�N /

�
: (4.101b)

Here the constant C2 depends only on C1 in (4.101a), the shape-regularity (see
Definition 4.1.12) of the surface meshes GD , GN and the polynomial degrees p1
and p2.

Proof. For the proof we only need to show the approximation property on the bound-
ary pieces �D and �N . Here we use (4.59) on �D and (4.93) on �N for a sufficiently
large t > 1. Hence the interpolation IpG ' in (4.93) is well defined and we have
'j@�N

D I
p
G '
ˇ̌
@�N
D 0. Therefore the zero extension of the difference function

satisfies
�
' � IpG '

�? 2 H 1=2.�/ and from (4.93) with s D 0; 1 we have:

k �' � IpG '�? kL2.�/ D k' � IpG 'kL2.�N /
� Chmin.t;pC1/k'kH t

pw.�N /;

k �' � IpG '�? kH1.�/ D k' � IpG 'kH1.�N /
� Chmin.t;pC1/�1k'kH t

pw.�N /
:

(4.102)
Then, by interpolation as in the proof of Theorem 4.1.51 and by the boundedness of
the Galerkin projection (see Remark 4.1.27), (4.101b) follows. �

4.1.11 Model Problem 4: Screen Problems	

In this section we will discuss the Galerkin boundary element method for the screen
problem from Sect. 3.5.3, which is due to [219].

Hence we again assume that an open manifold�0 is given, which can be extended
to a closed Lipschitz surface � in R3 in such a way that we have for �c0 D �n�0

� D �0 [ �c0 :

In order to avoid technical difficulties, we require that �0 and �c0 be simply con-
nected. We have already introduced the integral equations for the Dirichlet and
Neumann screen problems in Sect. 3.5.3:

Dirichlet Screen Problem: For a given gD 2 H 1=2.�0/ find ' 2 eH�1=2.�0/ such
that

.V'; �/L2.�0/
D .gD ; �/L2.�0/

8� 2 eH�1=2.�0/: (4.103)

� This section should be read as a complement to the core material of this book.
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Neumann Screen Problem: For a given gN 2 H�1=2.�0/ find � 2 eH 1=2.�0/ such
that

.W�; �/L2.�0/
D .gN ; �/L2.�0/

8� 2 eH 1=2.�0/: (4.104)

The Galerkin BEM for (4.103) and (4.104) are based on a regular mesh G of
�0 and a boundary element space of polynomial degree p1 � 0 for the Dirichlet
problem (4.103) and p2 � 1 for the Neumann problem (4.104).
Dirichlet Screen Problem: For a given gD 2 H 1=2.�0/ find 'S 2 Sp1;�1

G such that

.V S ; �S /L2.�0/
D .gD ; �S /L2.�0/

8�S 2 Sp1;�1
G : (4.105)

Neumann Screen Problem: For a given gN 2 H�1=2.�0/ find �S 2 Sp2;0
G;0 such that

.W�S ; �S /L2.�0/
D .g; �/L2.�0/

8� 2 Sp2;0
G;0 : (4.106)

Note that in Sp2;0
0 the boundary data of �S on @�0 is set to zero (see Remark 4.1.52).

With the ellipticity from Theorem 3.5.9 we immediately have the quasi-optimality
of the discretization.

Theorem 4.1.54. Equations (3.116), (3.117) as well as (4.105), (4.106) have a
unique solution and the Galerkin solutions converge quasi-optimally:

k �  Sk QH�1=2.�0/
� C min

	S2Sp1;�1

G

k � �Sk QH�1=2.�0/
; (4.107a)

k� � �Sk QH1=2.�0/
� C min


S2Sp2;0

G;0

k� � �Sk QH1=2.�0/
: (4.107b)

If the exact solution of the Dirichlet problem (3.116) is contained in H s
pw .�0/ for

an s � 0 we have

k �  Sk QH�
1
2 .�0/

� C1 hmin.s;p1C1/C 1
2 k kH s

pw.�0/: (4.108a)

If the exact solution of the Neumann problem is contained inH t
pw .�0/ for a t > 1=2

we have

k� � �Sk QH1=2.�0/
� C2 hmin.t;p2C1/� 1

2 k�kH t
pw.�0/: (4.108b)

Here the constants C1; C2 depend only on the respective constant C in (4.107), the
shape-regularity (see Definition 4.1.12) of the mesh and the polynomial degrees p1
and p2.

Remark 4.1.55. In general, the exact solutions of the screen problems have edge
singularities and therefore they do not have a very high order of regularity s or
t in (4.108). Therefore the convergence rates of the Galerkin solutions in (4.108)
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are low, even for higher order discretizations. This problem can be overcome by an
anisotropic mesh refinement near @�0. For details we refer to [221].

4.2 Convergence of Abstract Galerkin Methods

All boundary integral operators in Chap. 4.1 were elliptic, which allowed the use
of the Lax–Milgram lemma to prove existence and uniqueness. As we have already
seen with the Helmholtz problem, however, in certain practical cases we encounter
indefinite boundary integral operators. Here we will show for very general subspaces
and especially for non-symmetric and non-elliptic sesquilinear forms, under which
circumstances the Galerkin solution uS 2 S exists and the error converges quasi-
optimally. An early study on this subject can be found in [223]. For a study on the
convergence of general boundary element methods we refer to [215].

4.2.1 Abstract Variational Problem

We would first like to recall the abstract framework from Sect. 2.1.6 and, again, refer,
e.g., to [9, Chap. 5], [151, 166, 174] as standard references and additional material.

Let H1;H2 be Hilbert spaces and a.�; �/ W H1 � H2 ! C a continuous
sesquilinear form:

kak D sup
u2H1nf0g

sup
v2H2nf0g

ja.u; v/j
kukH1

kvkH2

<1; (4.109)

and let the (continuous) inf–sup conditions hold: There exists a constant � > 0 such
that

inf
u2H1nf0g

sup
v2H2nf0g

ja.u; v/j
kukH1

kvkH2

� � > 0; (4.110a)

and we have
8v 2 H2n f0g W sup

u2H1

ja.u; v/j > 0: (4.110b)

Then for every functional F 2 H 02 the problem

Find u 2 H1 W a.u; v/ D F.v/ 8v 2 H2 (4.111)

has a unique solution, which satisfies

kukH1
� 1

�
kF kH 0

2
: (4.112)
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4.2.2 Galerkin Approximation

We require the following construction of approximating subspaces for the definition
of the Galerkin method, which we use to solve (4.111).

For i D 1; 2, let
�
S i
`

�
`2N

be given sequences of finite-dimensional, nested
subspaces of Hi whose union is dense in Hi

8` � 0 W S i` � S i`C1; dimS i` <1 and
[

`2N
S i
`

k�kHi D Hi ; i D 1; 2
(4.113)

and whose respective dimensions satisfy the conditions

N` WD dimS1
`
D dimS2

`
<1; 8` 2 N W N` < N`C1;

N` !1 for `!1: (4.114)

Since the dimensions of S1
`

and S2
`

are equal, it follows that the system matrix for
the boundary element method is square.

The density implies the approximation property

8ui 2 Hi W lim
`!1

minfkui � vkHi
W v 2 S i`g D 0: (4.115)

Every ui in Hi can thus be approximated by a sequence vi
`
2 S i

`
. In Sect. 4.1 we

have already encountered the spaces Sp;0G and Sp;�1G , and one obtains a sequence of
boundary element spaces by, for example, successively refining an initially coarse
mesh G0.

With the subspaces
�
S i
`

�
`2N
� Hi the Galerkin discretization of (4.111) is given

by: Find u` 2 S1` such that

a.u`; v`/ D F.v`/ 8v` 2 S2` : (4.116)

A solution of (4.116) is called a Galerkin solution. The existence and uniqueness
of the Galerkin solution is proven in the following theorem.

Theorem 4.2.1. (i) For every functional F 2 H 02, (4.116) has a unique solution
u` 2 S1` if the discrete inf–sup condition

inf
u2S1

`
nf0g

sup
v2S2

`
nf0g

ja.u; v/j
kukH1

kvkH2

� �` (4.117)

holds with a stability constant �` > 0 and if

8v 2 S2` n f0g W sup
u2S1

`

ja.u; v/j > 0 (4.118)

is satisfied.
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(ii) For all ` let (4.118) and (4.117) be satisfied with �` > 0. Then the sequence
.u`/` � H1 of Galerkin solutions satisfies the error estimate

ku � u`kH1
�
�
1C kak

�`

�
min
v2S1

`

ku � vkH1
: (4.119)

Proof. Statement (i) follows from Theorem 2.1.44.
For (ii): The difference between (4.116) and (4.111) with S2

`
� H2 yields the

Galerkin orthogonality of the error:

a.u � u`; v/ D 0 8v 2 S2` : (4.120)

Owing to the discrete inf–sup condition (4.117) we have

�` ku`kH1
� sup

v2S2
`
nf0g

ja.u`; v/j
kvkH2

D sup
v2S2

`
nf0g

jF .v/ j
kvkH2

� sup
v2H2nf0g

jF .v/ j
kvkH2

D sup
v2H2nf0g

ja.u; v/j
kvkH2

� kak kukH1
:

This means that the statement Q`u WD u` defines a linear mappingQ` W H1 ! S1
`

with kQ`kH1 H1
� kak=�`. For all w 2 S1

`
� H1 it follows from (4.117) and

(4.120) that we have the estimate

kw �Q`wkH1
� 1

�`
sup

v2S2
`
nf0g

ja.w �Q`w; v/j
kvkH2

D 0;

from which we have the projection property:

8w 2 S1` W Q`w D w:

It then follows for all w 2 S1
`
� H1, that

ku � u`kH1
� ku � wkH1

C kw �Q`ukH1

D ku � wkH1
C kQ`.u � w/kH1

�
�
1C kak

�`

�
ku � wkH1

:

Since w 2 S1
`

was arbitrary, we have proven (4.119). �

Remark 4.2.2. (i) The Galerkin method (4.116) is called uniformly stable if there
exists a constant � > 0 that is independent of ` such that �` � � > 0. In this
case (4.119) implies the quasi-optimal convergence of the Galerkin solution.
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(ii) The subspaces S1
`

and S2
`

contain different functions: S1
`

serves to approximate
the solution and guarantees the consistency, while S2

`
guarantees the stability,

because of the discrete inf–sup condition [which is equivalent to (4.117)]

8u 2 S1` W sup
v2S2

`
nf0g

ja.u; v/j
kvkH2

� �` kukH1
: (4.121)

Remark 4.2.3. In Sect. 4.1 we have seen that for the integral equations for the
Laplace problem we can always choose S1

`
D S2

`
. The same property holds for

the integral equation formulation of the Helmholtz equation.

Remark 4.2.4. Equations (4.117) and (4.118) are equivalent to the conditions

inf
v2S2

`
nf0g

sup
u2S1

`
nf0g

ja.u; v/j
kukH1

kvkH2

� �	` (4.122)

with �	
`
> 0 and

8u 2 S1` n f0g W sup
v2S2

`

ja.u; v/j > 0: (4.123)

Remark 4.2.5. For H1 D H2 D H and S1
`
D S2

`
D S`, (4.117) implies the

condition (4.122) with �	
`
D �` and vice-versa.

The Galerkin method (4.116) is equivalent to a linear system of equations. To see

this we need to choose bases
�
bij

�N`

jD1 of S i
`
, i D 1; 2:

S1` D spanfb1j W j D 1; : : : ; N`g; S2` D spanfb2j W j D 1; : : : ; N`g:

Therefore every u 2 S1
`

and v 2 S2
`

has a unique basis representation

u D
NX̀
jD1

uj b
1
j ; v` D

NX̀
jD1

vj b
2
j : (4.124)

If we insert (4.124) into (4.116) we obtain:

8v 2 S2` W a.u; v/� F.v/ D 0 H)

8v D �vj �N`

jD1 2 CN` W
NX̀
jD1

vj

0
@
8<
:
NX̀
kD1

uk a.b
1
k; b

2
j /

9=
; � F.b2j /

1
A D 0 H)

K`u D F`; (4.125)

where the matrix K` and the vectors u, F` are given by u D �uj �N`

jD1 and
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.K`/j;k WD a.b1
k
; b2j /

.F`/j WD F.b2j /

)
1 � j; k � N`:

The linear system of equations in (4.125) is the basis representation of (4.116). In
engineering literature the system matrix K` is also called the stiffness matrix of the
Galerkin method (4.116) and the vector F` on the right-hand side is called the load
vector.

Proposition 4.2.6. The stiffness matrix K` in (4.125) is non-singular if and only if
we have (4.121) with �` > 0.

Proof. Let K` be singular. Then there exists a vector u D �
uj
�N`

jD1 2 CN`n f0g
with K`u D 0. Since

�
b1j

�N`

jD1 is a basis of S1
`

we have for the associated function

u D PN`

jD1 uj b1j 6D 0. It follows from (4.125) that a.u`; v`/ D 0 for all v` 2 S2` .
This is a contradiction to (4.121) with �` > 0.

The inverse statement is proven in the same way. �

4.2.3 Compact Perturbations

Boundary integral operators often appear in the form

.AC T /u D F (4.126)

with a principal part A 2 L.H;H 0/ for which the associated sesquilinear form
a .�; �/ W H �H ! C satisfies the inf–sup conditions

inf
u2Hnf0g

sup
v2Hnf0g

ja.u; v/j
kukH kvkH � � > 0; (4.127)

8v 2 Hn f0g W sup
u2H
ja.u; v/j > 0 (4.128)

and a compact operator T 2 L.H;H 0/. Let t W H � H ! C be the sesquilinear
form that is associated with T . The variational formulation:
Find u 2 H such that

a.u; v/C t.u; v/ D F.v/ 8v 2 H (4.129)

is equivalent to (4.126).
The discretization of the variational problem (4.129) is based on a dense sequence

of finite-dimensional subspaces .S`/`2N in H :
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For a given F 2 H 0 find u` 2 S` such that

a.u`; v`/C t.u`; v`/ D F.v`/ 8v` 2 S`: (4.130)

The following theorem states that the inf–sup condition for the principal part of the
sesquilinear form together with the injectivity of the operator A C T ensure well
posedness of the continuous problem. Furthermore, the discrete inf–sup conditions
for a dense sequence of subspaces imply (a) the well-posedness of the discrete prob-
lem, (b) the unique solvability of the continuous problem, and (c) the convergence
of the Galerkin solutions to the continuous solution.

Theorem 4.2.7. Let (4.127) and (4.128) hold, let T 2 L.H;H 0/ be compact and
AC T injective,

.AC T /u D 0 H) u D 0: (4.131)

Then problem (4.126) has a unique solution u 2 H for every F 2 H 0.
Furthermore, let .S`/` be a dense sequence of finite-dimensional subspaces inH

and t.�; �/ the sesquilinear form associated with the compact operator T . We assume
that there exist an `0 > 0 and a � > 0 such that for all ` � `0 the discrete inf–sup
conditions

inf
u`2S`nf0g

sup
v`2S`nf0g

ja.u`; v`/C t.u`; v`/j
ku`kH kv`kH � � (4.132a)

and

inf
v`2S`nf0g

sup
u`2S`nf0g

ja.u`; v`/C t.u`; v`/j
ku`kH kv`kH � � (4.132b)

are satisfied uniformly with respect to `. Then we have:

(i) For all F 2 H 0 and all ` � `0 the Galerkin equations (4.130) have a unique
solution u`.

(ii) The Galerkin solutions u` converge for `!1 to the unique solution u 2 H of
the problem (4.126) and satisfy the quasi-optimal error estimate

ku � u`kH � C minfku � v`kH W v` 2 S`g; ` � `0
with a constant C > 0 which is independent of `.

Proof. As a .�; �/ satisfies the inf–sup conditions, the associated operatorA W H!H 0
is an isomorphism with kAkH 0 H � ��1 [see (2.38)]. Hence (4.126) is equivalent
to the Fredholm equation

�
I C A�1T � u D A�1f

with the compact operator A�1T W H ! H (see Lemma 2.1.29). By (4.131), �1
is not an eigenvalue of A�1T and, from the Fredholm alternative (Theorem 2.1.36),
I C A�1T is an isomorphism



I C A�1T 


H H � C . This yields the unique

solvability of (4.126) and the continuous dependence on the data.
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of (i): Theorem 2.1.44 implies both (i) and the fact that the Galerkin solution
depends continuously on the data:

ku`kH �
1

�
kF kH 0 : (4.133)

of (ii): Let
b.u; v/ WD a.u; v/C t.u; v/:

Because of (4.133) the sequence .u`/` of Galerkin solutions is uniformly bounded
inH . Theorem 2.1.26 thus guarantees the existence of a subsequence u`i

* u 2 H
that converges weakly in H (in the following we will again denote this sequence by
u`). We will now show that, with this limit u, b.u; v/ D F.v/ for all v 2 H . For an
arbitrary v 2 H , P`v 2 S` denotes the orthogonal projection:

8w` 2 S` W .v � P`v;w`/H D 0:

Then we have

jb.u; v/� F.v/j � jb.u; v/� b.u`; v/j„ ƒ‚ …
T1

C jb.u`; v/� b.u`; P`v/j„ ƒ‚ …
T2

Cjb.u`; P`v/� F.P`v/j„ ƒ‚ …
T3

C jF.P`v/� F.v/j„ ƒ‚ …
T4

:

For a fixed v 2 H
b .�; v/ W H ! C

defines a continuous functional in H 0. The definition of weak convergence then
yields the convergence of T1 to 0 for `!1.

Since
[
`

S` is dense inH , according to the conditions, we consequently have the

consistency of the discretization sequence

ku � P`ukH D inf
v`2S`

ku � v`kH
`!1! 0: (4.134)

Thus we have for T4

jT4j D jF .v � P`v/j � kF kH 0 kv � P`vkH
`!1! 0:

Since .u`/` is uniformly bounded, we have

jT2j � .kAkH 0 H C kT kH 0 H / ku`kH kv � P`vkH ;
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and the consistency again implies that T2 ! 0 for `!1. Finally, we have T3 D 0
since b.u`; v`/ D F.v`/ for all v` 2 S`. Therefore u is a solution of (4.126). By
(4.131), u is unique.

We have thus shown the unique solvability of Problem (4.126) in H .
By (4.132), b.�; �/ satisfies the conditions of Theorem 4.2.1 for ` � `0, from

which we obtain the quasi-optimality.
�

Remark 4.2.8. Theorem 4.2.7 only holds if the discrete inf–sup conditions (4.132)
are satisfied. In general, the discrete inf–sup conditions do not follow from the den-
sity of .S`/` in H combined with (4.127) and (4.128). Instead, they have to be
verified for each specific problem.

In applications concerning boundary integral equations we often encounter the
following special case of Theorem 4.2.7.

Theorem 4.2.9. Let H be a Hilbert space and .S`/` a dense sequence of finite-
dimensional subspaces in H . We assume that for the sesquilinear forms a .�; �/ and
t .�; �/ of the variational problem (4.129) we have

(i) a.�; �/ satisfies the ellipticity condition (2.44), i.e., there exists a constant ˛ > 0
such that

8u 2 H W ja.u; u/j � ˛kuk2H : (4.135)

(ii) The operator T 2 L.H;H 0/ that is associated with the sesquilinear form
t.�; �/ W H �H ! C is compact.

(iii) We assume that, for F D 0, (4.129) only has the trivial solution:

8v 2 Hn f0g W a.u; v/C t.u; v/ D 0 H) u D 0: (4.136)

Then the variational problem (4.129) has a unique solution u 2 H for every
F 2 H 0.

There exists a constant `0 > 0 such that for all ` � `0 the Galerkin equations
(4.130) have a unique solution u` 2 S`. The sequence .u`/` of the Galerkin solutions
converges to u and, for ` � `0, satisfies the quasi-optimal error estimate

ku � u`kH � C min
v`2S`

ku � v`kH (4.137)

with a constant C which is independent of `.

Proof. TheH -ellipticity of a .�; �/ implies the inf-sup condition (4.127), (4.128), and
therefore the unique solvability of (4.129) follows from Theorem 4.2.7.

Now we will turn our attention to the Galerkin equations and prove the inf-sup
condition for a sufficiently large `.

We set b .�; �/ D a .�; �/C t .�; �/ and define the associated operatorsB W H ! H 0
and B` W S` ! S 0

`
by
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8 u; v 2 H W hBu; viH 0�H WD b .u; v/ and

8 u`; v` 2 S` W hB`u`; v`iS 0

`
�S`
WD b .u`; v`/ :

The norm of B`u` 2 S 0` is given by

kB`u`kS 0

`
D sup

v`2S`nf0g
jb .u`; v`/j
kv`kH

and the discrete inf-sup condition (4.132a) is equivalent to

8u` 2 S` with ku`kH D 1 we have: 9`0 > 0 s.t. kB`u`kS 0

`
� � 8` � `0:

We will prove this statement by contradiction by using the conditions given in the
theorem. For this we assume:

9 .w`/`2N with w` 2 S` and kw`kH D 1 such that: kB`w`kS 0

`
!0 for `!1:

(4.138)
As .w`/` is bounded in H there exists, according to Theorem 2.1.26, a weakly
convergent subsequence (which we again denote by .w`/`) such that w` * w 2 H .

For all v 2 H , b .�; v/ defines a continuous, linear functional on H and so we
have

8v 2 H W b .w`; v/! b .w; v/ for `!1.

It follows that

kBwkH 0 D sup
v2Hnf0g

jb .w; v/j
kvkH

D sup
v2Hnf0g

lim
`!1

jb .w`; v/j
kvkH

: (4.139)

In the following we will estimate the numerator on the right-hand side and for this
purpose we use the decomposition

b .w`; v/ D b .w`; v`/C b .w`; v � v`/ (4.140)

with the H -orthogonal projection v` D P`v 2 S`. From assumption (4.138) we
have

jb .w`; v`/j � kB`w`kS 0

`
kv`kH � kB`w`kS 0

`
kvkH

`!1! 0:

The fact that the spaces S` are dense in H yields for the second term in (4.140)

jb .w`; v � v`/j � kbk kw`kH kv � v`kH � kbk kv � v`kH
`!1! 0:

Hence for all v 2 H we have the convergence lim`!1 b .w`; v/ D 0 and from
(4.139) we have Bw D 0, which, combined with the injectivity of (4.136), finally
gives us w D 0.
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We will now show the strong convergence w` ! w and begin with the estimate

˛ kw � w`k2H � ja .w � w`;w � w`/j D ja .w � w`;w/ � a .w;w`/C a .w`;w`/j :
(4.141)

Since T is compact, there exists a subsequence (which we again denote by .w`/`2N)
such that Tw` ! Tw in H 0. This can be written in the form

sup
v2HkvkHD1

jt .w`; v/ � t .w; v/j DW ı` `!1! 0;

from which we deduce by using kw`kH D 1 that

jt .w`;w`/� t .w;w`/j � ı` kw`kH D ı`
`!1! 0:

This result, combined with assumption (4.138), yields

0
`!1 jb .w`;w`/j D ja .w`;w`/C t .w`;w`/j � ja .w`;w`/C t .w;w`/j C ı`;

in other words:

a .w`;w`/ D �t .w;w`/C Qı` with lim
`!1

Qı` D 0: (4.142)

If we insert this into (4.141) we obtain

˛ kw � w`k2H �
ˇ̌
ˇa .w � w`;w/ � b .w;w`/C Qı`

ˇ̌
ˇ :

The first two terms on the right-hand side are equal to zero because of w D 0. We
also determined lim`!0 Qı` D 0 in (4.142) so that we have proven w` ! w D 0.
This, however, is a contradiction to the assumption that kw`kH D 1.

Condition (4.132b) can be proven similarly.
The solvability of the Galerkin equation for ` � `0 and the error estimate (4.137)

then follow from Theorem 4.2.7. �

4.2.4 Consistent Perturbations: Strang’s Lemma

In this section we will consider variational formulations of boundary integral equa-
tions of abstract form:
Find u 2 H such that

b.u; v/ D F.v/ 8v 2 H (4.143)

with F 2 H 0.



232 4 Boundary Element Methods

In general we assume that the sesquilinear form b.�; �/ is continuous and injective
and that it satisfies a Gårding inequality.

Continuity:
8u; v 2 H W jb .u; v/j � Cb kukH kvkH : (4.144)

Gårding Inequality:

8u 2 H W jb .u; u/C .T u; u/H 0�H j � ˛ kuk2H (4.145)

with ˛ > 0 and a compact operator T 2 L.H;H 0/.
Injectivity:

8v 2 Hn f0g W b.u; v/ D 0 H) u D 0: (4.146)

Conditions (4.144)–(4.146) yield the prerequisites (i)–(iii) from Theorem 4.2.9 with
t .�; �/ WD � hT �; �iH 0�H and a WD b � t . From Theorem 4.2.9 we derive the
unique solvability of (4.143) as well as the stability (and thus the quasi-optimal
convergence) of the Galerkin method as follows. For a dense sequence of finite-
dimensional boundary element spaces .S`/` in H there exists some `0 > 0 such
that for all ` � `0 the discrete inf–sup conditions

inf
u2S`nf0g

sup
v2S`nf0g

jb.u; v/j
kukH kvkH � � > 0

inf
v2S`nf0g

sup
u2S`nf0g

jb.u; v/j
kukH kvkH � � > 0

(4.147)

hold, while � > 0 is independent of `. The Galerkin equations

Find u` 2 S` W b.u`; v/ D F.v/ 8v 2 S` (4.148)

are, by Theorem 4.2.7, uniquely solvable for ` � `0 and we have

ku � u`kH � C min
v2S`

ku � vkH : (4.149)

In practical implementations of the Galerkin boundary element method in the form
of a computer program it is usually not possible to realize the exact sesquilinear
form b .�; �/. Instead, one usually uses an approximative sesquilinear form b`.�; �/.
Reasons for this are:

(a) The approximation of the system matrix by means of numerical integration
(b) The use of compressed, approximative representations of the Galerkin equations

with cluster or wavelet methods,
(c) The approximation of the exact boundary � by means of, for example a

polyhedral surface.
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The perturbation of the sesquilinear form b.�; �/ as well as the functional F leads
to the perturbed Galerkin method:

Find Qu` 2 S` such that

b`.Qu`; v/ D F`.v/ 8v 2 S`: (4.150)

For the algorithmic realization of boundary element methods, one of the essential
aims is to define the approximations (4.150) in such a way that the solutions Qu`
exist, converge quasi-optimally and – in comparison with the computation of the
exact Galerkin solution – can be calculated reasonably rapidly and with little use of
computational memory. A sufficient condition in this respect is that the difference
b`.�; �/�b.�; �/ is “sufficiently small”. We will specify this statement in the following.

For the Galerkin discretization we will generally assume in the following that
we have chosen a dense sequence .S`/` � H of subspaces of dimension N` WD
dimS` <1 which satisfies (4.114).

Let sesquilinear forms b` W S` � S` ! C be defined for all ` 2 N . These are
uniformly continuous if there exists a constant eC b which is independent of ` such
that

jb` .u`; v`/j � eC b ku`kH kv`kH 8u`; v` 2 S`: (4.151)

The forms b` satisfy the stability condition if there exists a null sequence .c`/`2N
such that

jb.u`; v`/� b`.u`; v`/j � c`ku`kH kv`kH 8u`; v` 2 S`: (4.152)

The stability condition will imply the existence of a unique solution of the perturbed
Galerkin equations for a sufficiently large ` (see Theorem 4.2.11).

For the error estimate of the perturbed Galerkin solution we may measure
the function u` on the right-hand side in (4.152) in a stronger norm (see Theo-
rem 4.2.11). In this context k�kU W S` ! R�0 defines a stronger norm on S` if there
exists a constant C > 0 independent of ` such that

kukH � C kukU 8u 2 S`:

The perturbed sesquilinear forms b` W S` � S` ! C satisfy the consistency con-
dition with respect to a stronger norm k�kU if there exists a zero sequence .ı`/`2N
such that

jb.u`; v`/ � b`.u`; v`/j � ı`ku`kU kv`kH 8u`; v` 2 S`: (4.153)

Remark 4.2.10. (a) The stability condition and the continuity of b .�; �/ imply the
uniform continuity of the sesquilinear form b` .�; �/.
(b) The consistency condition follows from the stability condition with ı` D Cc`.
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(c) In many practical applications the use of the stronger norm k�kU in (4.153)
permits the use of a zero sequence .ı`/` which converges more rapidly than in
(4.152). The convergence rate of the perturbed Galerkin solution is influenced
by .ı`/` and not by .c`/`.

Theorem 4.2.11. Let the sesquilinear form b.�; �/: H � H ! C be continu-
ous, injective and let it satisfy a Gårding inequality [see (4.144)–(4.146)]. Let the
stability condition (4.152) be satisfied by the approximations b`.

Then the perturbed Galerkin method (4.150) is stable. That is, there exist Q� > 0,
`0 > 0 such that for all ` � `0 the discrete inf–sup conditions

inf
u`2S`nf0g

sup
v`2S`nf0g

jb`.u`; v`/j
ku`kH kv`kH � Q�;

inf
v`2S`nf0g

sup
u`2S`nf0g

jb`.u`; v`/j
ku`kH kv`kH � Q�

(4.154)

hold. The perturbed Galerkin equations (4.150) have a unique solution for ` � `0.
If in addition the approximative sesquilinear forms are uniformly continuous and

satisfy the consistency condition (4.153) the solutions Qu` satisfy the error estimate

ku � Qu`kH � C
(

min
w`2S`

.ku � w`kH C ı`kw`kU /C sup
v`2S`nf0g

jF.v`/� F`.v`/j
kv`kH

)
:

(4.155)

Proof. According to the assumptions, the exact sesquilinear form b.�; �/ satisfies the
inf–sup conditions (4.147) as well as the stability condition (4.149). We will verify
(4.154). For this let 0 6D u` 2 S` � H be arbitrary. Then we have

sup
v`2S`nf0g

jb`.u`; v`/j
kv`kH � sup

v`2S`nf0g

� jb.u`; v`/j
kv`kH � jb.u`; v`/� b`.u`; v`/jkv`kH

�

� �ku`kH � sup
v`2S`

jb.u`; v`/ � b`.u`; v`/j
kv`kH

� .� � c`/ ku`kH : (4.156)

If we choose `0 > 0 so that c` < � for all ` � `0 we have verified the first condition
in (4.154). The second condition can be verified in a similar way.

Combined with (4.154), it follows from Theorem 4.2.1(i) that the perturbed
Galerkin equations (4.150) have a unique solution for ` � `0.

Next, we will prove the error estimate (4.155). Let u` 2 S` be the exact Galerkin
solution from (4.148). For ` � `0 we have, according to (4.156), the following
estimate for the perturbed Galerkin solution Qu` 2 S`
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ku� Qu`kH � ku� u`kH Cku` � Qu`kH
� ku� u`kH C .� � c`/�1 sup

v`2S`nf0g

jb`.u` � Qu`; v`/j
kv`kH

D ku� u`kH C .� � c`/�1 sup
v`2S`nf0g

jb`.u`; v`/� F`.v`/j
kv`kH

� ku� u`kH C .� � c`/�1 sup
v`2S`nf0g

jb`.u`; v`/� b.u`; v`/j C jF.v`/� F`.v`/j
kv`kH :

We consider the difference term jb`.u`; v`/ � b.u`; v`/j and obtain, by using the
continuity of b` and b as well as the consistency condition, for an arbitrary w` 2 S`

jb`.u`; v`/� b.u`; v`/j � jb` .u` � w`; v`/j C jb` .w`; v`/� b .w`; v`/j
C jb .w` � u`; v`/j

� eC b ku` � w`kH kv`kH C ı` kw`kU kv`kH
CCb kw` � u`kH kv`kH :

From this we have

sup
v`2S`nf0g

jb`.u`; v`/ � b.u`; v`/j
kv`kH � C min

w`2S`

.ku � w`kH C ı` kw`kU / :

With c` < � and the consistency condition (4.153) we finally obtain

ku � Qu`kH � C min
w`2S`

	
ku � w`kH C 1

� � c` .ku � w`kH C ı`kw`kU (4.157)

C sup
v`2S`nf0g

jF.v`/� F`.v`/j
kv`kH

!)
:

�

Remark 4.2.12. In connection with the boundary integral operator V for the single
layer potential we haveH D H�1=2 .�/. Since all the boundary element spaces we
have considered so far are contained in L2 .�/, we can choose k�kU D k�kL2.�/ as
a stronger norm on S`. The term kw`kL2.�/ on the right-hand side in (4.155) can be
easily estimated if the boundary integral operator is L2-regular, more specifically if
V �1 W H 1 .�/ ! L2 .�/ is continuous. Let u 2 L2 .�/ be the exact solution and
w` WD …`u the L2-orthogonal projection of u onto the boundary element space S`.
Then we have kw`kL2.�/ � kukL2.�/ � C kF kH1.�/ and, thus for a sufficiently
large ` � `0 W

ku � Qu`kH�1=2.�/ � C
(
ku �…`ukH�1=2.�/ C ı`kF kH1.�/

C sup
v`2S`nf0g

jF.v`/ � F`.v`/j
kv`kH�1=2.�/

)
:
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From this we can deduce how the null sequence .ı`/` and the consistency of the
approximation affect the right-hand side in the error estimate.

The error ku�…`ukH�1=2.�/ can be traced back to the approximation proper-
ties of S`. The choice w` D …`u yields, for an arbitrary v` 2 S`

ku �…`ukH�1=2.�/ D sup
v2H1=2.�/nf0g

ˇ̌
.u �…`u; v/L2.�/

ˇ̌
kvkH1=2.�/

D sup
v2H1=2.�/nf0g

ˇ̌
.u �…`u; v� v`/L2.�/

ˇ̌
kvkH1=2.�/

:

Now we take the infimum over all v` 2 S` and obtain

ku �…`ukH�1=2.�/ �
 

sup
v2H1=2nf0g

inf
v`2S`nf0g

kv � v`kL2.�/

kvkH1=2.�/

!

�
�

inf
w`2S`

ku � w`kL2.�/

�
: (4.158)

4.2.5 Aubin–Nitsche Duality Technique

Boundary integral equations were derived with the help of the integral equation
method (direct and indirect method) for elliptic boundary value problems. In many
cases our goal thus is to find the solution of the original boundary value problem
by solving the boundary integral equation. The numerical solution of the boundary
integral equation then only represents a part of the entire process. (Note, however,
that with the direct method the boundary element method yields a quasi-optimal
approximation of the unknown Cauchy data.) More importantly, the aim is to find
the solution u of the original elliptic differential equation in the domain �. This
solution can, as we will show here, be extracted from the Galerkin solution of the
boundary integral equations with an increased convergence rate, a fact which stems
from the representation formula.

Example 4.2.13 (Dirichlet Problem in the Interior, �). Let��R3 be a bounded
Lipschitz domain with boundary � and given Dirichlet data gD 2 H 1=2.�/. Find
u 2 H 1.�/ such that

�u D 0 in �; uj� D gD : (4.159)

The fundamental solution for the Laplace operator is given byG .z/ WD .4� kzk/�1.
The single layer potential u.x/ D R

�
G .x � y/ �.y/dsy, x 2 �, leads to the

boundary integral equation: Find � 2 H�1=2.�/ such that
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.V�; �/L2.�/ D .gD ; �/L2.�/ 8� 2 H�1=2.�/; (4.160)

where .�; �/L2.�/ again denotes the continuous extension of the L2 inner-product to
the dual pairing h�; �iH1=2.�/�H�1=2.�/.

For a subspace S` � H�1=2.�/ the Galerkin approximation �` 2 S` is defined
by: Find �` 2 S` such that

.V�`; �/L2.�/ D .gD ; �/L2.�/ 8� 2 S`: (4.161)

Equation (4.161) has a unique solution which satisfies the quasi-optimal error
estimate

k� � �`kH�1=2.�/ � C min
˚k� � vkH�1=2.�/; v 2 S`

�
: (4.162)

We obtain the approximation of the solution u.x/ of the boundary value problem
(4.159) by

u`.x/ WD
Z
�

G .x � y/ �`.y/ dsy; x 2 �: (4.163)

In this section we will derive error estimates for the pointwise error ju.x/� u`.x/j.

4.2.5.1 Errors in Functionals of the Solution

The Aubin–Nitsche technique allows us to estimate errors in the linear functionals
of the Galerkin solution. We will first introduce this method for abstract problems as
discussed in Sect. 4.2.1. The abstract variational problem reads: For a given F.�/ 2
H 0 find a function u 2 H such that

b.u; v/ D F.v/ 8v 2 H: (4.164)

Let .S`/` � H be a family of dense subspaces that satisfy the discrete inf–sup
conditions (4.117), (4.118). Then the Galerkin discretization of (4.164), i.e., find
u` 2 S` such that

b.u`; v`/ D F.v`/ 8v` 2 S`; (4.165)

has a unique solution. The error e` D u � u` satisfies the Galerkin orthogonality

b.u � u`; v`/ D 0 8v` 2 S` (4.166)

as well as the quasi-optimal error estimate

ku � u`kH � C

�`
minfku� '`kH W '` 2 S`g: (4.167)

The Aubin–Nitsche argument estimates the error in functionals of the solution.
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Theorem 4.2.14. Let G 2 H 0 be a continuous, linear functional on the set of
solutions H of Problem (4.164) which satisfies the assumptions (4.109), (4.110).
Let u` 2 S` be the Galerkin approximation from (4.165) of the solution u. Fur-
thermore, let the discrete inf–sup conditions (4.117), (4.118) be uniformly satisfied:
�` � � > 0:

Then we have the error estimate

jG.u/�G.u`/j � C ku � '`kH kwG �  `kH (4.168)

for an arbitrary '` 2 S`,  ` 2 S`, where wG is the solution of the dual problem:

Find wG 2 H W b.w;wG/ D G.w/ 8w 2 H: (4.169)

Proof. From the continuous inf-sup conditions (4.110) Remark 2.1.45 gives us the
inf-sup conditions for the adjoint problem, from which we have the existence of a
unique solution.

Remark 4.2.4 shows that the discrete inf-sup conditions for b .�; �/ induce the
discrete inf-sup conditions for the adjoint form b	.u; v/ D b.v; u/. Therefore the
adjoint problem (4.169) has a unique solution wG 2 H for every G.�/ 2 H 0. By
virtue of S` � H and (4.169), (4.166) it follows that

jG.u/�G.u`/j D jG.u� u`/j D jb.u� u`;wG/j
D jb.u� u`;wG � v`/j 8v` 2 S`:

The continuity (4.109) of the form b.�; �/ and the error estimate (4.119) together
yield (4.168). �

The error estimate (4.168) states that linear functionals G.u/ of the solution may
under certain circumstances converge more rapidly than the energy error ku�u`kH .
The convergence rate is superior to the rate in the energy norm by a factor inffkwG�
 `kH :  ` 2 S`g. The following example, for which G.�/ represents an evaluation
of the representation formula (4.163) in the domain point x 2 �, makes this fact
evident.

Example 4.2.15. With the terminology used in Example 4.2.13, for the error ju.x/�
u`.x/j we have the estimate

ju.x/� u`.x/j � C min
˚k� � '`kH�1=2.�/ W '` 2 S`

�
�min

˚kve �  `kH�1=2.�/ W  ` 2 S`
� (4.170)

with the solution ve 2 H�1=2.�/ of the dual problem:

Find ve 2 H� 1
2 .�/ such that

.V ve ; �/L2.�/ D .G.x � �/; �/L2.�/ 8� 2 H�1=2.�/: (4.171)
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With Corollary 4.1.34 we deduce the convergence rate for S` D Sp;�1G`

ju.x/� u`.x/j � C hmin.s;pC1/C1
2Cmin.t;pC1/C 1

2

`
k�kH s.�/kvekH t .�/ (4.172)

for s; t > �1
2

if k�kH s.�/ and kvekH t are bounded. If we have maximal regularity,
i.e., s D t D p C 1, the result is a doubling of the convergence rate of the Galerkin
method. For example, for piecewise constant boundary elements p D 0 and (4.172)
with s D t D 1 we obtain the estimate

ju.x/� u`.x/j � C h3`k�kH1.�/kvekH1.�/ (4.173)

and, thus, third order convergence for all x 2 �. Note that the constant C tends to
infinity for dist .x; �/! 0.

Remark 4.2.16 (Regularity). Inequality (4.172) only gives a high convergence
rate if the solutions �; ve are sufficiently regular. For the boundary integral operator
V on smooth surfaces � , the property gD 2 H 1=2Cs.�/ with s � 0 is sufficient
so that � 2 H�1=2Cs.�/, and the property G.x � �/ 2 H 1=2Ct .�/ with t � 0 is
sufficient so that ve 2 H�1=2Ct .�/ (see Sect. 3.2). Then we have the estimates

k�kH�1=2Cs .�/�C.s/kgDkH1=2Cs.�/; kvekH�1=2Ct .�/ � C.t/kG.x; �/kH1=2Ct .�/;

(4.174)
with a constant C.�/ which is independent of gD andG. Because of the smoothness
of the fundamental solution G.x� �/ for x 2 �, y 2 � we have G.x� �/ 2 C1.�/.
On smooth surfaces this implies the estimate (4.174) for all t � 0. With this (4.172)
becomes

ju.x/� u`.x/j � C1.p/ C2.x/ h2.pC1/C1`
; (4.175)

where we have C2.x/ D kvekHpC1.�/ � C.p/kG.x � �/kHpC2.�/.

Note that especially for elements of higher order, C2.x/ can become very large
for x near � . Formula (4.163) should therefore only be used for points x in the
domain that are sufficiently far away from � . For points x which are very close
to the boundary or even lie on � , a bootstrapping algorithm has been developed to
extract the potentials and arbitrary Cauchy data and their derivatives near and up to
the boundary (see [213]).

If a quantity which has been computed or postprocessed by using the Galerkin
method converges with an order that is higher than the order of the Galerkin error
in the energy norm one speaks of superconvergence. Similar to the superconver-
gence (4.168) of functionals G.�/ of the Galerkin solution u`, one can also study the
convergence of u` in norms below the energy norm.

Now let H D H s.�/ be the Hilbert space for the boundary integral operator
B W H s.�/! H�s.�/ of order 2s and let b.�; �/ be theH s .�/-elliptic and injective
sesquilinear form associated with B:

b.u; v/ D .Bu; v/L2.�/ W H s.�/ �H s.�/! C:
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Here the continuous extension of the L2 .�/ inner-product for the dual pairing
h�; �iH s.�/�H�s.�/ is again denoted by .�; �/L2.�/. Furthermore, let .S`/` be a dense
sequence of subspaces in H s.�/and let the discrete inf–sup conditions (4.117),
(4.118) hold. Then we have for t > 0

ku � u`kH s�t .�/ D sup
v2H�sCt .�/nf0g

.v; u � u`/L2.�/

kvkH�sCt .�/

:

Let wv be a solution of the adjoint problem: Find wv 2 H s .�/ such that

b.w;wv/ D .v;w/L2.�/ 8w 2 H s .�/ : (4.176)

Then with the Galerkin orthogonality (4.166) we have (transferred to the adjoint
problem)

ku � u`kH s�t .�/ D sup
v2H�sCt .�/nf0g

b .u � u`;wv/

kvkH�sCt .�/

D sup
v2H�sCt .�/nf0g

b .u � u`;wv � w`/

kvkH�sCt .�/

� C ku � u`kH s.�/ sup
v2H�sCt .�/nf0g

kwv � w`kH s.�/

kvkH�sCt .�/

:

Since w` 2 S` was arbitrary, we obtain

ku � u`kH s�t .�/ � Cku � u`kH s.�/ sup
v2H�sCt .�/nf0g

inf
w`2S`

kwv � w`kH s.�/

kvkH�sCt .�/

:

(4.177)
For t > 0 higher convergence rates are therefore possible for u` than in the H s-
norm, assuming that the adjoint problem (4.176) has the regularity

v 2 H�sCt .�/ H) wv 2 H sCt .�/ ; 80 � t � t : (4.178)

In order to obtain quantitative error estimates with respect to the mesh width h` we
again consider a dense sequence of boundary element spaces .S`/` of order p on
regular meshes G` of mesh width h`. Then the approximation property

inf
w`2S`

kwv � w`kH s.�/ � C hmin.pC1;sCt/�s
`

kwvkH sCt .�/

holds. These ideas are summarized in the following theorem.

Theorem 4.2.17. Let the sesquilinear form b .�; �/ of problem (4.164) satisfy the
conditions (4.109), (4.110). Let the exact solution satisfy u 2 H r .�/ with r � s.
We assume that the adjoint problem (4.176) has the regularity (4.178) with t � 0.
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Furthermore, let .S`/` be a dense sequence of boundary element spaces of order p
in H s .�/ on regular meshes G` of mesh width h`.

Then we have for the Galerkin solution u` 2 S` and 0 � t � t the error estimate

ku � u`kH s�t .�/ � C hmin.pC1;r/Cmin.pC1/;sCt/�2s
`

kukHr .�/: (4.179)

In particular, in the case of maximal regularity, i.e., for r � pC1, t � pC1�s, it
thus follows that we have a doubling of the convergence rate of the Galerkin method:

ku � u`kH2s�p�1 � C h2.pC1/�2skukHpC1.�/:

4.2.5.2 Perturbations

The efficient numerical realization of the Galerkin BEM (4.165) involves, for exam-
ple, perturbations of the sesquilinear form b.�; �/ by quadrature, surface and cluster
approximation of the operator or the functional G.�/, used for the evaluation of the
representation formula at a point x 2 �. Instead of (4.165) one implements a per-
turbed boundary element method:
Find Qu` 2 S` such that

b`.Qu`; v/ D F`.v/ 8v 2 S` (4.180)

and instead of G.u`/ one implements an approximation G`.Qu`/. Here we will study
the error

G.u/�G`.Qu`/ (4.181)

of a linear functional of the solution, for example of the representation formula
(see Example 4.2.13). According to Theorem 4.2.11, (4.180) has a unique solu-
tion for a sufficiently large ` if the exact form b.�; �/ satisfies the discrete inf–sup
conditions

inf
u`2S`nf0g

sup
v`2S`nf0g

jb.u`; v`/j
ku`kH kv`kH � � > 0;

inf
v`2S`nf0g

sup
u`2S`nf0g

jb.u`; v`/j
ku`kH kv`kH � � > 0

(4.182)

on S`�S` and if the perturbed form b`.�; �/ is uniformly continuous [see (4.151)] and
at the same time satisfies the stability and consistency conditions (4.152), (4.153).
Then for a sufficiently large ` we have the error estimate

ku � Qu`kH � C
(

min
w`2S`

.ku � w`kH C ı`kw`kU /C sup
v`2S`nf0g

jF.v`/� F`.v`/j
kv`kH

)
:

(4.183)
The perturbations of the right-hand side F and of the functional G define the

quantities
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f` WD sup
v`2S`nf0g

jF` .v`/� F .v`/j
kv`kH

and g` WD sup
v`2S`nf0g

jG` .v`/�G .v`/j
kv`kH

:

(4.184)
Note that in many practical applications the perturbationsF` and G` are not defined
on H but only on S`. We assume that .f`/` and .g`/` are null sequences and, thus,
that there exist constants CF and CG such that

kGkH 0 DW CG <1 and kF kH 0 C f` � CF 8` 2 N:

Theorem 4.2.18. Let the form b.�; �/ satisfy (4.182) and let the perturbed form
b`.�; �/ satisfy the conditions (4.151)–(4.153). Then, for a sufficiently large `, the
error (4.181) has the estimate

jG.u/�G`.Qu`/j � Cku � u`kH min
 `2S`

kwG �  `kH C
CG

�
c` kQu` � ukH C

CG

�
f`

C CG
�

min
'`2S`

.c` ku � '`kH C ı` k'`kU /C
CF

�
g`: (4.185)

Proof. By the definition (4.170) of wG and the orthogonality of the Galerkin error
we have

jG.u/�G.Qu`/j D jb.u� Qu`;wG/j
D jb.u� u`;wG �  `/j C jb.u` � Qu`;wG/j

(4.186)

for an arbitrary  ` 2 S`. Furthermore, let wG
`
2 S` be the solution of the Galerkin

equations
b.w`;w

G
` / D b.w`;wG/ D G.w`/ 8w` 2 S`:

Then, taking the Galerkin orthogonality into consideration, we have

jb.u` � Qu`;wG/j D jb.u` � Qu`;wG
` /j D jb.u`;wG

` /� b.Qu`;wG
` /j

� jF.wG
` / � b`.Qu`;wG

` /j C j.b` � b/.Qu`;wG
` /j

D jF.wG
` / � F`.wG

` /j C j.b � b`/.Qu`;wG
` /j:

We consider the difference b � b` and with the stability and consistency conditions
we obtain for an arbitrary '` 2 S` the estimate

ˇ̌
ˇ.b � b`/.Qu`;wG

` /
ˇ̌
ˇ �

ˇ̌
ˇ.b � b`/ .Qu` � '`;wG

` //
ˇ̌
ˇC

ˇ̌
ˇb
�
'`;w

G
`

�
� b`

�
'`;w

G
`

�ˇ̌
ˇ

� c` kQu` � '`kH



wG

`





H
C ı` k'`kU




wG
`





H
: (4.187)
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With this result and with (4.186) we obtain

jG.u/�G`.Qu`/j � jG.u/�G.Qu`/j C jG.Qu`/�G`.Qu`/j

� jb.u � u`;wG �  `/j C j.F � F`/.wG
`
/j

Cj.b � b`/.Qu`;wG
`
/j C j.G �G`/.Qu`/j

� Cku � u`kH kwG �  `kH C f`



wG

`





H

C



wG

`





H
.c` kQu` � '`kH C ı` k'`kU /C g` kQu`kH :

(4.188)

According to Theorem 4.2.11, for a sufficiently large ` the sequence .Qu`/` of the
perturbed Galerkin solutions is stable and with `0 from Theorem 4.2.11 we have

kQu`kH � 1

�
.kF kH 0 C f`/ � CF

�
8` � `0: (4.189)

We use the discrete inf–sup conditions (4.182) to find a bound for the term



wG

`





H

:

�kwG
` kH � sup

w`2S`nf0g
jb.w`;wG

`
/j

kw`kH D sup
w`2S`nf0g

jG.w`/j
kw`kH � kGkH

0 D CG

for ` � `0. This yields

jG.u/�G`.Qu`/j � Cku � u`kH kwG �  `kH C CG

�
f`

C CG
�
.c` kQu` � '`kH C ı` k'`kU /C

CF

�
g`:

The triangle inequality kQu` � '`kH � kQu` � ukH C ku � '`kH finally yields the
assertion. �

The inequality (4.185) can be used to bound the size of the perturbations c`, ı`,
f` and g` in such a way that the functional G` .Qu`/ converges with the same rate as
the functional G .u`/ for the original Galerkin method.

To illustrate this we consider H D H s .�/ and a discretization with piece-
wise polynomials of order p. Then the optimal convergence rate of the unperturbed
Galerkin method is given by ku � u`kH � ChpC1�s`

.

Inequality (4.183) shows that the two conditions ı` � Ch
pC1�s
`

and f` �
Ch

pC1�s
`

imposed on the size of the perturbations guarantee that ku � Qu`kH �
Ch

pC1�s
`

converges with the same rate as the unperturbed Galerkin method. The

optimal convergence rate for the dual problem is also



wG � wG

`





H
� ChpC1�s

`
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and it is our aim to control the size of the perturbation in such a way that the
functional G` .Qu`/ converges at the rate Ch2pC2�2s

`
.

For this to hold, the perturbed sesquilinear forms, the right-hand sides and
functionals in (4.152), (4.153) and (4.184) all have to satisfy the estimates

c` � ChpC1�s`
; ı` � Ch2pC2�2s`

; f` � Ch2pC2�2s`
; g` � Ch2pC2�2s`

:

In the following theorem we will determine a bound for the effect of perturbations
b � b` and F � F` on negative norms of the Galerkin error.

Theorem 4.2.19. Let the assumptions from Theorem 4.2.18 hold for H D H s.�/,
b W H s .�/�H s .�/! C. Furthermore, let the adjoint problem (4.176) satisfy the
regularity assumption (4.178) for a t > 0. Then for a sufficiently large ` we have
the error estimate

ku � Qu`kH s�t .�/ � C
˚
d`;s;sCt ku � u`kH s.�/ C c` ku � Qu`kH s.�/

Cf` C inf
'`2S`

�
c` ku � '`kH s.�/ C ı` k'`kU

��
(4.190)

for 0 � t � t with

d`;s;sCt WD sup
w2H sCt .�/nf0g

 
inf

 `2S`

kw�  `kH s.�/

kwkH sCt .�/

!
:

Proof. Let v 2 H�sCt .�/ be arbitrary and let wv be the solution of the adjoint
problem (4.176) with the right-hand side v. We then have

.v; u � Qu`/L2.�/ D b .u � Qu`;wv/

D b .u � u`;wv/C b .u` � Qu`;wv/„ ƒ‚ …
.	/

: (4.191)

We consider .
/. Let w`v 2 S` be the Galerkin approximation of w`v :

b
�

v`;w
`
v

�
D .wv; v`/L2.�/ 8v` 2 S`:

With v` D u`�Qu` 2 S` it follows from the Galerkin orthogonalityb
�
v`;wv � w`v

� D
0 that we have the relation

.
/ D b .u` � Qu`;wv/ D b
�

u` � Qu`;w`v
�

D .b � b`/
�

u` � Qu`;w`v
�
C b`

�
u` � Qu`;w`v

�



4.2 Convergence of Abstract Galerkin Methods 245

D .b � b`/
�

u` � Qu`;w`v
�
C b`

�
u`;w

`
v

�
� F`.w`v/

D .b � b`/
�

u` � Qu`;w`v
�
C .b` � b/

�
u`;w

`
v

�
C b

�
u`;w

`
v

�
� F`.w`v/

D .b � b`/
�
�Qu`;w`v

�
C F.w`v/ � F`.w`v/:

With this we will estimate (4.191) by using (4.166) as follows. For every  ` 2 S`
we have

j .v; u� Qu`/L2.�/ j � jb .u � u`;wv �  `/ j

C
ˇ̌
ˇ.b � b`/

�
Qu`;w`v

�ˇ̌
ˇC

ˇ̌
ˇF.w`v/� F`.w`v/

ˇ̌
ˇ : (4.192)

As in (4.187), we use the consistency condition to prove for an arbitrary '` 2 S`
the estimate

ˇ̌
ˇ.b � b`/.Qu`;w`v/

ˇ̌
ˇ � �c` kQu` � '`kH s.�/ C ı` k'`kU

� 


w`v





H s.�/

; (4.193)

where k�kU again denotes a stronger norm thanH s .�/.
The regularity assumption (4.178) and the stability of the Galerkin approxima-

tions
�
w`v
�
`

of the adjoint problem yield for all 0 � t < t and all v 2 H�sCt .�/ the
estimate

kw`vkH s.�/ � C kwvkH s.�/ � C kvkH�s .�/ � C kvkH�sCt .�/: (4.194)

Therefore it follows from (4.192) and (4.193) with (4.184) that

ku � Qu`kH s�t .�/ D sup
v2H�sCt .�/nf0g

j .v; u � Qu`/L2.�/ j
kvkH�sCt .�/

� C ku � u`kH s.�/ sup
v2H�sCt .�/nf0g

 
inf

 `2S`

kwv �  `kH s.�/

kvkH�sCt .�/

!

C C inf
'`2S`

�
c` kQu` � '`kH s.�/ C ı` k'`kU

�C Cf`:

The regularity assumption imposed upon the adjoint problem yields the estimate
kvkH�sCt .�/ � C�1 kw�kH sCt .�/. Hence we have

sup
v2H�sCt .�/nf0g

 
inf

 `2S`

kwv �  `kH s.�/

kvkH�sCt .�/

!

� C sup
w2H sCt .�/nf0g

 
inf

 `2S`

kw �  `kH s.�/

kwkH sCt .�/

!
D Cd`;s;sCt :
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Note that d`;s;t represents an approximation property of the space S`. Combining
these results we have proved that

ku � Qu`kH s�t .�/ � C
˚
d`;s;sCt ku � u`kH s.�/ C c` ku � Qu`kH s.�/

Cf` C inf
'`2S`

�
c` ku � '`kH s.�/ C ı` k'`kU

��
:

�
With the help of inequality (4.190) we can determine sufficient conditions on the

admissible magnitude of the perturbations c`, ı`, f` and g` so that the Galerkin error
ku � Qu`kH s�t .�/ converges with the same rate as the unperturbed Galerkin solution.

In order to illustrate this, we consider a discretization with piecewise polyno-
mials of order p and assume that the continuous solution satisfies u 2 HpC1 .�/.
Then the optimal convergence rate of the unperturbed Galerkin method is given by
ku � u`kH s�t .�/ � ChpC1�sCmin.pC1�s/;t/

`
kukHpC1.�/.

Inequality (4.183) shows that the two conditions ı` � Ch
pC1�s
`

and f` �
Ch

pC1�s
`

imposed on the size of the perturbations guarantee that ku � Qu`kH s.�/ �
Ch

pC1�s
`

converges with the same rate as the unperturbed Galerkin method (with
respect to the H s-norm). The optimal convergence rate of the term d`;s;sCt is

d`;s;sCt � Ch
minfpC1�s;tg
`

and it is our goal to control the size of the per-
turbations in such a way that the term ku � Qu`kH s�t .�/ converges at the rate

Ch
pC1�sCmin.pC1�s/;t/
`

. This leads to the following condition for the quantities
c`, ı`, f`

C
�
h

minfpC1�s;tgCpC1�s
`

C c`hpC1�s C f` C c`hpC1�s C ı`
�

� ChpC1�sCmin.pC1�s/;t/
`

:

For this the perturbed sesquilinear form, right-hand sides and functionals in
(4.152), (4.153) and (4.184) have to satisfy the estimates

c`�ChminfpC1�s;tg
`

; ı`�ChminfpC1�s;tgCpC1�s
`

; f`�ChminfpC1�s;tgCpC1�s
`

:

4.3 Proof of the Approximation Property

In Sects. 4.1–4.2.5 we have seen that the Galerkin boundary element method pro-
duces approximative solutions of boundary integral equations which converge quasi-
optimally. Here we will present the proofs of the convergence rates (4.59) and (4.93)
of discontinuous and continuous boundary elements on surface meshes G with mesh
width h > 0.

In general we will assume that Assumption 4.1.6 holds, i.e., that the panel
parametrizations can be decomposed into a regular, affine mapping �affine

� and
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a diffeomorphism �� , independent of � , since �� D �� ı �affine
� . For �affine

� there
exist b� 2 R3 and B� 2 R3�2 such that

�affine
� .Ox/ D B� OxC b� :

The Gram matrix of this mapping is denoted by G� WD B|
�B� 2 R2�2. It is

symmetric and positive definite.

Note: The proof of the approximation property has the same structure as the
proofs for the finite element methods (see, for example, [27,33,68,115]) and is also
based on concepts such as the pullback to the reference element, the shape-regularity
and the Bramble–Hilbert lemma.

4.3.1 Approximation Properties on Plane Panels

We use the same notation as in Sect. 4.1.2. Let O� be a polyhedral surface with plane
sides and let Gaffine be a surface mesh of O� which consists of plane triangles or
parallelograms. The panels � 2 Gaffine are images of the reference elementb� under
a regular, affine transformation �affine

� W O� ! � .
As in (4.23), for the reference element O� and p � 0 we denote the space of

all polynomials of total degree p by P�p . O�/, while � O�p denotes the index set for the
associated unisolvent set of nodal points [see (4.70) and Theorem 4.1.39].

In preparation for Proposition 4.3.3 we will first prove a norm equivalence.

Lemma 4.3.1. Let k 2 N�1. Then

Œu�kC1 WD jujkC1 C
X

.i;j /2
 O�p

ˇ̌
ˇ̌u
�
i

p
;
j

p

�ˇ̌
ˇ̌ (4.195)

defines a norm onH kC1 . O�/ which is equivalent to k�kkC1.

Proof. The continuity of the embedding H kC1 . O�/ ,! C
�
O�
�

follows from the

Sobolev Embedding Theorem (see Theorem 2.5.4), and thus Œ��kC1 is well defined.
Therefore there exists a constant c1 2 R>0 such that

Œu�kC1 � c1 kukkC1 8u 2 H kC1 . O�/ :

Therefore it remains to show that there exists a constant c2 2 R>0 such that

kukkC1 � c2 Œu�kC1 8u 2 H kC1 . O�/ :

We prove this indirectly and for this purpose we assume that there exists a sequence
.un/n2N � H kC1 . O�/ such that
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8n 2 N W kunkkC1 D 1 and lim
n!1 Œun�kC1 D 0: (4.196)

We deduce from Theorem 2.5.6 by induction over k that there exists a subsequence�
unj

�
j2N

that converges to some u 2 H k . O�/:

lim
j!1



unj
� u




k
D 0:

The second assumption in (4.196) yields

lim
j!1

ˇ̌
unj
� u

ˇ̌
kC1 D 0:

Hence u 2 H kC1 . O�/ with jujkC1 D 0 and we have

lim
j!1



unj
� u




kC1 D 0:

Since jujkC1 D 0, we have u 2 Pk and the Sobolev Embedding Theorem implies
the convergence in the nodal points

u .z/ D lim
j!1 unj

.z/ 8z D
�
i

p
;
j

p

�
; .i; j / 2 � O�p:

Theorem 4.1.39 therefore yields a contradiction to the first assumption in (4.196).
�

Lemma 4.3.2 (Bramble–Hilbert Lemma). Let k 2 N0. Then

inf
p2Pk

ku � pkkC1 � c2 jujkC1

for all u 2 H kC1 . O�/, with c2 from the proof of Lemma 4.3.1.

Proof. For k D 0 the statement follows from the Poincaré inequality (see Corol-
lary 2.5.10).

In the following let k � 1 and u 2 H kC1 . O�/. Thanks to the Sobolev Embedding
Theorem the point evaluation of u is well defined. Let .bz/z2†k

be the vector that

contains the values of u at the nodal points: bz D u .z/ for all z 2 †k . Let p 2 P O�
k

be the, according to Theorem 4.1.39, unique polynomial with bz D p .z/ for all
z 2 †k . Then, by Lemma 4.3.1,

inf
q2Pk

ku � qkkC1 � ku � pkkC1 � c2 Œu � p�kC1 D c2 jujkC1 :

�
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Proposition 4.3.3. Let b… W HpC1. O�/ ! H s. O�/ be linear and continuous for 0 �
s � p C 1 such that

8q 2 P�p . O�/ W b…q D q: (4.197)

Then there exists a constant c D c.b…/ so that

8v 2 HpC1. O�/ W kv � b…vkH s. O�/ � Oc jvjHpC1. O�/: (4.198)

Proof. Let v 2 HpC1. O�/. Then by (4.197) for all q 2 P�p . O�/ we have

v � b…v D vC q � b….vC q/
kv � b…vkH s. O�/ � Oc kvC qkHpC1. O�/

Oc WD kI � b…kH s. O�/ HpC1. O�/;

where I denotes the identity. Since q 2 P�p . O�/ was arbitrary, with Lemma 4.3.2 we
deduce

8v 2 HpC1. O�/ W kv �…vk
H s.b�/ � Oc inf

q2P�
p . O�/
kvC qkHpC1. O�/ D Oc jvjHpC1.b�/:

�
The estimate of the approximation error is proven by a transformation to the

reference element.
First we will need some transformation formulas for Sobolev norms. Let � � R2

be a plane panel as before (triangle or parallelogram) with an affine parametrization
�affine
� W O� ! � . Tangential vectors on � are defined by bi WD @�affine

� =@ Oxi for
i D 1; 2. The (constant) normal vector n� is oriented in such a way that .b1;b2;n� /
forms a right system. For " > 0 we set I" D .�"; "/ and define a neighborhood
U" � R3 of � by

U" WD
˚
z 2 R3 W 9 .x; ˛/ 2 � � I" W z D xC ˛n�

�
: (4.199)

A function u 2 H kC1 .�/ can be extended as a constant on U":

u? .xC ˛n� / D u .x/ 8 .x; ˛/ 2 � � I":

The surface gradient rSu is defined by

rSu D ru?
ˇ̌
�
; (4.200)

which gives us

juj2H1.�/ D
Z
�

hrSu;rSui :

The pullback of the function u to the reference element is denoted by Ou WD uı�affine
� .
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Lemma 4.3.4. We have

kuk2L2.�/
D j� jj O� j

Z
O�
jOuj2

juj2H1.�/
D j� jj O� j

Z
O�

DbrOu;G�1� brOuE ;

where br denotes the two-dimensional gradient in the coordinates of the reference
element.

Proof. The transformation formula for surface integrals yields the first equation

Z
�

juj2 D j� jj O� j
Z
O�
jOuj2 :

We define � W R3 ! R3 for Ox 2 O� and x3 2 R by

� .Ox; Ox3/ WD �affine
� .Ox/C Ox3n� D B� OxC Ox3n� C b�

and we set bU " WD ��1 .U"/. With this we can define the function Ou? W bU " ! K by

Ou? WD u? ı �

and it satisfies Ou?j O� D Ou in the sense of traces. The chain rule then yields

.rSu/ ı �affine
� D �ru?

� ı �affine
� D �J�1� �| rOu?: (4.201)

with the Jacobian J� D ŒB� ;n� � of the transformation �. From this we have

.rSu/ ı �affine
� D �

J�1�
�| brOu?

ˇ̌
ˇO� :

Elementary properties of the vector product give us

J�1�
�
J�1�

�| D
�

G�1� 0

0 1

�

and from this it follows that



.rSu/ ı �affine
�



2 D DbrOu;G�1� brOuE on O� :

Combined with the transformation formula for surface integrals we obtain the
assertion. �



4.3 Proof of the Approximation Property 251

Lemma 4.3.5. We have

kG�k � 2h2� ; kG�1� k �
2

�2

�
h�


�

�4
h�2� : (4.202)

Proof. The Jacobian B� of the affine transformation �affine
� has the column vectors

b1, b2. The maximal eigenvalue of the symmetric, positive definite matrix G� can
be bounded by the row sum norm

kG�k � max
iD1;2

n
kbik2 C hb1;b2i

o
� 2h2� ;

since bi are edge vectors of � (see Definition 4.1.2). For the inverse matrix we have

G�1� D
1

det G�

� kb2k2 � hb1;b2i
� hb1;b2i kb1k2

�
D
� j O� j
j� j
�2 � kb2k2 � hb1;b2i
� hb1;b2i kb1k2

�
:

From this we have for the largest eigenvalue



G�1�


 �

� j O� j
�
2�

�2
2h2� �

2

�2

�
h�


�

�4
h�2� :

�
Lemma 4.3.4 can be generalized for derivatives of higher order.

Lemma 4.3.6. Let � 2 Gaffine be the affine image of the reference element O�

� D �affine
� . O�/ with �affine

� .Ox/ D B� OxC b� :

Then
v 2 H k.�/”Ov WD v ı �affine

� 2 H k. O�/; (4.203)

which gives us for all 0 � ` � k

jvjH`.�/ � C1h1�`� jOvjH`. O�/; (4.204a)

jOvjH`. O�/ � C2h`�1� jvjH`.�/ (4.204b)

with constants C1, C2 that depend only on k and the constant �G , which describes
the shape-regularity (see Definition 4.1.12).

Proof. The equivalence (4.203) follows from the chain rule, as the transformation
is affine and therefore all derivatives of �affine

� are bounded. We will only prove the
first inequality, the second can be treated in the same way.

Since C1 .�/\H ` .�/ is dense inH ` .�/ (see Proposition 2.3.10), it suffices to
prove the statement for smooth functions.
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Let v?, Ov, U", bU ", Ov?, �, J� be as in the proof of Lemma 4.3.4. In the following
˛ will always denote a three-dimensional multi-index ˛ 2 N3

0 and O@ denotes the
derivative in the coordinates of the reference element. Then we have

jvj2
H`.�/

D
X
j˛jD`

Z
�

ˇ̌
@˛v?

ˇ̌2 D j� jjb� j
X
j˛jD`

Z
O�

ˇ̌�
@˛v?

� ı �ˇ̌2 :

The chain rule then yields

��
@˛v?

� ı �� D ��J�1� �| br?�˛ Ov?;

where br? denotes the three-dimensional gradient (while, in the following, the two-
dimensional gradient will be denoted by br, as before). For the (transposed) inverse
of the Jacobian of � we have

�
J�1�

�| D ŒA� ;n� � with

A� WD Œa1; a2� 2 R3�2; a1 WD jO� jj� j .b2 � n� / ; a2 WD jO� jj� j .n� � b1/ :

Since O@3 Ov? D 0 we obtain

��
@˛v?

� ı ��ˇ̌O� D
�

A�br
�˛ Ov:

We use the convention

X
��˛

: : : WD
˛1X

�1D0

˛2X
�2D0

˛3X
�3D0

: : : ;
�
˛
�

� D �˛1

�1

��
˛2

�2

��
˛3

�3

�
and a� D

3Y
iD1

a�i

i :

for the multi-indices 	; ˛ 2 N3
0 . With this we have

�
Abr�˛ Ov DX

��˛

�
˛
�

�
a�1 a˛��2

O@�1 O@˛��2 Ov:

In order to estimate the absolute value, we use

ˇ̌
ai;j

ˇ̌ � kaik � h�

�
2�
� �2G
�
h�1�

and obtain with j˛j D `
ˇ̌
ˇ
�

Abr�˛ Ov .Ox/
ˇ̌
ˇ2 � Ch�2`�

X
��˛

ˇ̌
ˇO@�1 O@˛��2 Ov .Ox/

ˇ̌
ˇ2 (4.205)
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with a constant C , which depends only on ` and the constant �G . By integrating
over O� we obtain



@˛v?


2
L2.�/

D j� jj O� j




�

Abr�˛ Ov



2
L2. O�/ � Ch

2�2`
� jOvj2H`.O�/ :

If we sum over all ˛ with j˛j D ` we obtain the assertion. �
The following corollary is a consequence of (4.205).

Corollary 4.3.7. Let � 2 Gaffine be the affine image of the reference element O�

� D �affine
� . O�/ with �affine

� .Ox/ D B� OxC b� :

Then
v 2 C k.�/”Ov WD v ı �affine

� 2 C k. O�/;
which gives us for all 0 � ` � k

jvjC`.�/ � C1h�`� jOvjC`. O�/; (4.206a)

jOvjC`. O�/ � C2h`� jvjC`.�/ (4.206b)

with constants C1, C2 that depend only on k and the constant �G , which describes
the shape-regularity (see Definition 4.1.12).

Theorem 4.3.8. Let � 2 Gaffine be the affine image of the reference element � D
�affine
� . O�/. Let the interpolation operator b… W H s. O�/ ! H t . O�/ be continuous for
0 � t � s � k C 1 and let

8q 2 P O�k W b…q D q (4.207)

hold. Then the operator… W H s.�/! H t .�/, which is defined by:

…v WD
�b…Ov� ı ��affine

�

��1
with Ov WD v ı �affine

� ; (4.208)

satisfies the error estimate

8v 2 H kC1.�/ W jv �…vjH t .�/ � Chs�t� jvjH s.�/ (4.209)

for 0 � t � s � k C 1. The constant C depends only on k and the shape-
regularity of the surface mesh, more specifically, it depends on the constant �G in
Definition 4.1.12.

Proof. According to Proposition 4.3.3, on the reference element O� we have




Ov � b…Ov




H t . O�/ � OcjOvjH s. O�/:
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We transport this estimate from O� to � D �affine
� . O�/. With Lemma 4.3.6 we obtain

the error estimate for s D k C 1
jv �…vjH t .�/ � Ch1�t�

ˇ̌
ˇOv � b…Ov

ˇ̌
ˇ
H t . O�/ � Ch

1�t
� jOvjHkC1. O�/ � ChkC1�t� jvjHkC1.�/:

For s < k C 1, (4.209) follows from the continuity of b… W H s . O�/ ! H t .b�/ by
means of interpolation (see proof of Theorem 4.1.33). �
Remark 4.3.9. The interpolation operatorbI k from (4.73) satisfies the prerequisites
of Proposition 4.3.3 with p  k � 1 by virtue of the Sobolev Embedding Theorem.

For k D 0, b… can be defined as a mean value:

�b…v
�
.x/ D 1

j O� j
Z
O�

v 8x 2 O�:

4.3.2 Approximation on Curved Panels	

In this section we will prove the approximation properties for curved panels that
satisfy the following geometric assumptions (see Assumption 4.1.6 and Fig. 4.6).

For x 2 � 2 G, n� .x/ 2 S2 denotes unit normal vector to � at the point x. The
orientation is chosen as explained in Sect. 2.2.3 with respect to the chart �� .

Assumption 4.3.10. For every � 2 G with the associated reference mapping �� W
O� ! �:

� There exists a regular, affine mapping �affine
� W R3 ! R3 of the form

�affine
� .Ox; x3/ D

�
a 0
0 1

�� Ox
Ox3
�
C
�

b�
0

�

with a 2 R2�2, .Ox; Ox3/ 2 R2 �R, b� 2 R2 and det a > 0.

Fig. 4.6 Left: curved surface panel � and three-dimensional neighborhood U� . Middle: flat surface
panel � affine with neighborhood U affine

� . Right: reference element O� 
 R2

� This section should be read as a complement to the core material of this book.
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� There exists a C1-diffeomorphism � W U ! V that is independent of G, with
open sets U; V � R3 that satisfy

� affine
" � U; � affine

" WD ˚�affine
� .Ox; 0/ W Ox 2b�� � .�"; "/;

�" � V; �" WD fxC ˛n� .x/ W x 2 � , ˛ 2 .�"; "/g

for an " > 0 such that
�� .Ox/ D � ı �affine

� .Ox; 0/ :
� For every function u 2 H k .�/ with a constant extension

u? .xC ˛n� .x// D u .x/ (4.210)

we have
@
�
u? ı � ı �affine

�

�
=@ Ox3 D 0: (4.211)

A situation of this kind was introduced in Example 4.1.7 (also see [170, Chap. 2]).
First we will prove a transformation formula for composite functions.

Lemma 4.3.11. Let � W U ! V be a C1-diffeomorphism and let U; V � R3 be
open sets. For a function u 2 H k .V / we set Qu D u ı �. Then Qu 2 H k .U / and for
all ˛ 2 N3

0 , 1 � j˛j � k, we have

.@˛ Qu/ ı ��1 D
j˛jX
jˇ jD1

cˇ@
ˇu (4.212)

with coefficients cˇ that are real linear combinations of products of the form

jˇ jY
rD1

@�r�nr
: (4.213)

The relevant indices for 1 � r � jˇj satisfy the relations 1 � nr � 3, 	r 2 N3
0 andPjˇ j

rD1 j	r j D j˛j.
Proof. For the equivalence u 2 H k .V / ” Qu 2 H k .U / it suffices to prove
(4.212) for smooth functions. We will prove Formula (4.212) by induction. Let ek
be the k-th canonical unit vector in R3.

Initial case: For j˛j D 1 we obtain explicitly

.@˛ Qu/ ı ��1 D
X
jˇ jD1

cˇ@
ˇu; where for ˇ D ek we have cˇ D @˛�k :

Hypothesis: Let the statement hold for j˛j � i � 1.
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Conclusion: Let j˛j D i , choose k D 1; 2, or 3, and let Q̨ D ˛ � ek 2 N3
0 . Thus

we obtain

.@˛ Qu/ ı ��1 D @k
�
@ Q̨ Qu

�
ı ��1 D

0
@@k

i�1X
jˇ jD1

cˇ

�
@ˇu

�
ı �
1
A ı ��1

D
i�1X
jˇ jD1

�
@kcˇ

�
@ˇuC

i�1X
jˇ jD1

3X
jD1

�
cˇ@k�j

� �
@j @

ˇu
�
:

This proves the assertion if we show that @kcˇ and cˇ
�
@k�j

�
are of the form

(4.213). With the Leibniz product rule we obtain

@k

jˇ jY
rD1

@�r�nr
D
jˇ jX
jD1

.@k@
�j / �nj

jˇ jY
rD1
r¤j

@�r�nr

and the expression on the right-hand side is a linear combination of terms of the
form

jˇ jY
rD1

@ Q�r�nr

with
Pjˇ j
rD1 j Q	r j D i . The assertion follows analogously for the product cˇ

�
@k�j

�
.

�

Corollary 4.3.12. 1. Let the conditions of Lemma 4.3.11 be satisfied. Then

C�11 kQukL2.U / � kukL2.V / � C2 kQukL2.U /

and

jQuj2
Hk.U /

� C1
kX
iD1
juj2
H i .V /

and juj2
Hk.V /

� C2
kX
iD1
jQuj2
H i .U /

:

The constants C1; C2 depend only on k and the derivatives of �, ��1 up to the
order max f1; kg.

2. Let Assumption 4.3.10 and the conditions of Lemma 4.3.11 be satisfied with � 
�. For � 2 G, � affine WD ��1 .�/ and u 2 H k .�/, Qu .Ox/ WD u ı � .Ox; 0/ we have

C�13 kQuk2L2.�affine/ � kuk2L2.�/
� C4 kQuk2L2.�affine/
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and

jQuj2
Hk.�affine/ � C3

kX
iD1
juj2
H i .�/

and juj2
Hk.�/

� C4
kX
iD1
jQuj2
H i.�affine/ :

The constants C3; C4 again depend only on k and the derivatives of �, ��1 up to
the order k.

Proof. Statement 1 follows from the transformation formula (4.212).
For the second statement we define a constant extension of u in the direction of

the normal as a function u?, according to (4.210), and note that the normal derivative
of u? vanishes, i.e., we have ju?jHk.�"/

D jujHk .�/.
From (4.211) we have ju? ı �jHk.�affine

" / D jQujHk.�affine/ and, thus, we have the
assertion in Part 1. �

At the next step we will apply Lemma 4.3.11 to the composite reference mapping
and study how far this depends on the panel diameter h� .

Lemma 4.3.13. Let Assumption 4.3.10 and the conditions of Lemma 4.3.11 hold
with � �. For � 2 G and u 2 H k .�/, � � V , Ou WD u ı �� we have

v 2 H k.�/”Ov WD v ı �� 2 H k. O�/ (4.214)

and

juj2
Hk.�/

� C1h2�2k�

kX
iD1
jOuj2H i .O�/ ; (4.215a)

jOuj2Hk. O�/ � C2h2k�2�

kX
iD1
juj2
H i .�/

: (4.215b)

The constants C1, C2 depend only on k, the constant �G of the shape-regularity (see
Definition 4.1.12) and the derivatives �, ��1 up to the order k.

Proof. It follows from Corollary 4.3.12 that

juj2Hk .�/
� C

kX
iD1
jQuj2
H i.�affine/ :

We can therefore apply the transformation formulas from Lemma 4.3.6, which gives
us the estimates
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juj2
Hk.�/

� C1h2�
kX
iD1

h�2i jQuj2
H i.�affine/ � C2h2�2k�

kX
iD1
jOuj2H i . O�/ ;

jOuj2Hk.O�/ � C3h2k�2� jQuj2
Hk.�affine/ � C4h2k�2�

kX
iD1
juj2
H i .�/

:

�
With this we obtain the analogy of Theorem 4.3.8 for curved panels.

Theorem 4.3.14. Let Assumption 4.3.10 and the conditions from Lemma 4.3.11
hold with �  �. Let � 2 G be the image of the reference element O� as given
by � D � ı �affine

� . O�/. Let the interpolation operator b… W H s. O�/ ! H t . O�/ satisfy
the conditions from Theorem 4.3.8 for 0 � t � s � k C 1.

Then we have for the operator… W H s.�/! H t .�/, which is defined by

…v WD
�b…Ov� ı ��1� with Ov WD v ı �� ;

the error estimate for 0 � t � s � k C 1

8v 2 H kC1.�/ W jv �…vjH t .�/ � Chs�t� kvkH s.�/ : (4.216)

The constant C depends only on k, the shape-regularity of the surface mesh via the
constant �G in Definition 4.1.12 and the derivatives of �, ��1 up to the order k.

Theorem 4.3.8 and Theorem 4.3.14 contain the central, local approximation
properties that are combined in Sects. 4.3.4 and 4.3.5 to form error estimates for
boundary elements. The easiest way of constructing a global approximation for
continuous boundary elements and sufficiently smooth functions is by means of
interpolation. For this the functions u 2 H s

pw .�/ need to be continuous. In the
following section we will show that this is the case for s > 1.

4.3.3 Continuity of Functions in Hs
pw.�/ for s > 1

In order to avoid technical difficulties, we will generally assume in this section that
we are dealing with the geometric situation from Example 4.1.7(1).

Assumption 4.3.15. � is a piecewise smooth Lipschitz surface that can be para-
metrized bi-Lipschitz continuously over a polyhedral surface O�: �� W O� ! � .

Then the Sobolev spaces H s.�/ on � are defined invariantly for jsj � 1, which
means that they do not depend on the chosen parametrization of � (see Proposi-
tion 2.4.2). For a higher differentiation index s > 1,H s

pw .�/ is defined as in (4.86).
These spaces form a scale with
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L2.�/ D H 0
pw.�/ � H s

pw.�/ � H t
pw.�/; 0 < s < t: (4.217)

Lemma 4.3.16. For s > 1 every u 2 H s
pw.�/ is continuous on � , i.e., H s

pw.�/ �
C 0.�/.

Proof. � is the bi-Lipschitz continuous image of a polyhedral surface: � D ��
� O��

and therefore it suffices to prove the statement for polyhedral surfaces. Let O�j , 1 �
j � J , be the plane, relatively closed polygonal faces of the polyhedron.

Let u 2 H s
pw

� O�� for s > 1. The Sobolev Embedding Theorem implies that

u 2 C 0
� O�j� for all 1 � j � J and, thus, it suffices to prove the continuity across

the common edges of the surface pieces O�j . For this we consider two pieces O�i and
O�j with a common edge bE . Then there exists an (open) polygonal domain U � R2

and a bi-Lipschitz continuous mapping � W U ! O�i [ O�j with the properties

U 1 WD ��1
� O�i

�
; U 2 WD ��1

� O�j
�
; and �jUk

is affine for k D 1; 2:
U1, U2 are disjoint and U D U1 [ U2:
e WD ��1

�bE� D U1 \ U2:
We only need to show that w WD u ı � is continuous over e. Clearly, we have
wk WD w ı �k 2 H s .Uk/, k D 1; 2, and w 2 H 1 .U /. If we combine this result
with the statements from Theorem 2.6.8 and Remark 2.6.10 we obtain the assertion.

�

4.3.4 Approximation Properties of Sp;�1G

We will now prove the error estimate (4.59) for the following two geometric
situations.

Assumption 4.3.17 (Polyhedral Surface). � is the surface of a polyhedron. The
mesh G on � consists of plane panels with straight edges with mesh width h > 0:

Assumption 4.3.18 (Curved Surface). Assumption 4.3.10 holds and the condi-
tions from Lemma 4.3.11 are satisfied with � �.

Theorem 4.3.19. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. Let
s � 0. Then there exists an operator Ip;�1G W H s

pw .�/! S
p;�1
G such that




u � Ip;�1G u




L2.�/

� C hmin.pC1;s/ kukH s.�/ : (4.218)

For a polyhedral surface the constantC depends only on p and the shape-regularity
of the mesh G via the constant �G from Definition 4.1.12. In the case of a curved
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surface it also depends on the derivatives of the global transformations �, ��1 up
to the order k.

Proof. Let b…p

O� W H s . O�/! P�p be the L2-projection:

�b…p

O� u; q
�
L2.O�/ D .u; q/L2

�b�� 8q 2 P�p : (4.219)

We lift this projection to the panels � 2 G by means of

�
…p
� u�

�
.x/ WD

�b…p

O� Ou�
�
ı ��1� .x/ 8x 2 �;

where u� WD uj� and Ou� WD u� ı �� . The operator Ip;�1G then consists of the
panelwise composition of …p

� :

I
p;�1
G u

ˇ̌
ˇ
�
WD …p

� u 8� 2 G:

Obviously, this defines a mapping fromH s
pw .�/ to Sp;�1G . The operator b…p

O� satisfies
the prerequisites of Theorem 4.3.8, because we have for the orthogonal projection:

1.



b…p

O� Ov




0
� kOvk0 8Ov 2 L2 . O�/ :

Since b…p

O� Ov is a polynomial in a finite-dimensional space P�p , all norms are equiv-
alent and there exists a constant Cp > 0 such that for all 0 � t � s � p C 1 we
have




b…p

O� Ov




s
� Cp




b…p

O� Ov




0
� Cp kOvk0 � Cp kOvkt 8Ov 2 H s . O�/ :

2. It follows immediately from the characterization (4.219) that

b…q D q 8q 2 P�p :

Therefore we can apply (4.209) or (4.216) with t D 0 and obtain the error
estimate ˇ̌

ˇv � Ip;�1G v
ˇ̌
ˇ
L2.�/

� Chs� kvkH s.�/ (4.220)

for all v 2 H s .�/ with 0 � s � p C 1. If we then square and sum over all � 2 G
we obtain the assertion. �

Theorem 4.3.19 gives us error estimates in negative norms by means of the
same duality argument as in the proof of Theorem 4.1.33. This is the subject of
the following theorem.

Theorem 4.3.20. Let the assumption from Theorem 4.3.19 be satisfied. Then we
have for the interpolation Ip;�1G and 0 � t � s � p C 1 and all u 2 H s

pw .�/ the
estimate

ku � Ip;�1G ukH�t .�/ � ChsCtkukH s.�/: (4.221)
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Proof. The continuous extension of the L2 inner-product to H�tpw .�/ �H t
pw .�/ is

again denoted by .�; �/0. Since Ip;�1G consists locally of L2-orthogonal projections,

we have for an arbitrary 'G 2 Sp;�1G




u � Ip;�1G u




H�t .�/

D sup
'2H t .�/nf0g

ˇ̌
ˇ
�

u � Ip;�1G u; '
�
0

ˇ̌
ˇ

k'kH t .�/

D sup
'2H t .�/nf0g

ˇ̌
ˇ
�

u � Ip;�1G u; ' � 'G
�
0

ˇ̌
ˇ

k'kH t .�/

(4.222)

(see proof of Theorem 4.1.33). If we choose 'G D Ip;�1G ' 2 Sp;�1G , (4.221) follows
by means of a twofold application of (4.218). �

Remark 4.3.21. Corollary 4.1.34 follows from (4.221) with t D 1
2

.

4.3.5 Approximation Properties of Sp;0G

Here we will prove approximation properties of continuous boundary elements that
have already been introduced in Proposition 4.1.50.

Theorem 4.3.22. Let Assumption 4.3.17 or Assumption 4.3.18 hold:

(a) Then there exists an interpolation operator Ip;0G W H s
pw.�/! S

p;0
G such that




u � Ip;0G u




H t .�/

� Chs�t kukH s
pw.�/

(4.223)

for t D 0; 1, 1 < s � p C 1 and all u 2 H s
pw .�/. For a polyhedral surface

the constant C depends only on p and on the shape-regularity of the mesh G
via the constant �G from Definition 4.1.12. In the case of a curved surface it
also depends on the derivatives of the global transformations �, ��1 up to the
order k.

(b) Let u 2 H s .�/ for some 1 < s � p C 1. Then, for any 0 � t � 1, we have




u � Ip;0G u




H t .�/

� Chs�t kukH s.�/ :

Proof. Part a: Lemma 4.3.16 implies that u 2 H s
pw.�/ � C 0 .�/ for s > 1. We

define Ip;0G u on � 2 G by

�
I
p;0
G u�

�
.x/ WD

�bIp Ou�
�
ı ��1� .x/ 8x 2 � (4.224)
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with u� WD uj� , Ou� WD u� ı �� and the interpolation operator bIp from (4.73) for
the set of nodal points †p from Theorem 4.1.39. By Theorem 4.1.39 this operator
is well defined and satisfies

�bIp Ou�
�
.z/ D Ou� .z/ 8z 2 †p;

bIpq D q 8q 2 P O�p:

By Lemma 4.3.1 we have on the reference element




bIp Ou�




H t .O�/ �




bIp Ou�




HpC1.O�/ � c2

 ˇ̌
ˇbIp Ou�

ˇ̌
ˇ
HpC1.O�/ C

X
z2†p

ˇ̌
ˇ
�bIp Ou�

�
.z/
ˇ̌
ˇ
!

D c2
X

z2†p

jOu .z/j

� c2 kOukC0. O�/ � Cc2 kOukH s.O�/ :

Therefore Theorem 4.3.8 or Theorem 4.3.14 is applicable and for 1 < s � p C 1
and t 2 f0; 1g we obtain the estimate

8u 2 H s.�/ W
ˇ̌
ˇu� � Ip;0G u�

ˇ̌
ˇ
H t .�/

� Chs�t� ku�kH s.�/ : (4.225)

If we square (4.225) and sum over all � 2 Gaffine we obtain (4.223).
Part b: By using Lemma 4.1.49 we derive from Part a the estimate




u � Ip;0G u




H t .�/

� Chs�t kukH s.�/ (4.226)

for t 2 f0; 1g. We apply Proposition 2.1.62 with T D I �Ip;0G , Y0 D Y1 D H s .�/,
X0 D L2 .�/, X1 D H 1 .�/, and � D t 2 .0; 1/ to interpolate the inequality
(4.226). The result is

kT kH t .�/ H s.�/ � kT k1�tL2.�/ H s.�/ kT ktH1.�/ H s.�/

� �ChsG�1�t �Chs�1G
�t D Chs�tG

and this implies the assertion of Part b. �

Next we investigate the approximation property for functions in H s
pw .�/ for

0 � s � 1. Recall that H s
pw .�/ D H s .�/ in this case. In general, functions in

H s .�/ are not continuous and the application of the pointwise interpolation Ip;0G is
not defined. We will introduce the Clément interpolation operator QG W L1 .�/!
S
1;0
G for the approximation of functions in H s .�/ if 0 � s � 1 (cf. [69]). To avoid

technicalities, we consider only the case that all panels are (possibly curved) sur-
face triangles. Let I denote the set of panel vertices with corresponding continuous,
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piecewise linear nodal basis .bz/z2I . For z 2 I and � 2 G, we introduce local
meshes Gz and G� by

Gz WD f� 2 G j � � supp bzg , G� WD
˚
t 2 G j t \ � ¤ ;� :

The corresponding surface patches on � are denoted by

!z WD
[
�2Gz

� , !� WD
[
t2G�

t :

For functions f 2 L1 .�/ and z 2 I, the functional �z W L1 .�/! C is defined by

�z .f / WD 1

j!zj
Z
!z

f .y/ dsy:

Remark 4.3.23. For z 2 I, we set hz WD max�2Gz h� . There exists a constant C0
which depends only on the shape-regularity constant �G such that

hz � C0h� 8� 2 Gz:

Definition 4.3.24 (Clément interpolation). The Clément interpolation operator
QG W L1 .�/! S

1;0
G is given by

QGf WD
X
z2I

�z .f / bz:

The proof of the stability and the approximation property of the Clément inter-
polation employs local pullbacks to two-dimensional polygonal parameter domains
and then follows the classical convergence proof in the two-dimensional parameter
plane. The next assumption is illustrated in Fig. 4.7.

Assumption 4.3.25. (a) For any z 2 I, there is a two-dimensional convex and
polygonal parameter domain e!z � R2 along with a bi-Lipschitz continuous
mapping �z W e!z ! !z which satisfies: For any � 2 Gz, the pullback Q� WD

Fig. 4.7 Pullback of a surface patch to a two-dimensional parameter domain
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��1z .�/ is a plane panel with straight edges. The pullback Q� can be transformed
to the reference element O� by a regular, affine mapping which is denoted by
�affine.

(b) The reference mapping (see Definition 4.1.2) is denoted by �� W O� ! � , where
the reference element is always the unit triangle O� D bS2 because we only
consider triangular panels. For curved panels, Assumption 4.3.18 holds so that

�� D � ı �affine
�

where �affine
� is affine and � W U ! V is independent of G.

(c) For any � 2 G, the image �affine
� . O�/ is the plane triangle with straight edges

which has the same vertices as � , i.e., �affine
� is the componentwise affine

interpolation of �� .

Notation 4.3.26. If � , Q� , O� , �� , �affine
� , etc., appear in the same context their

relationships are always as in Assumption 4.3.25.

Let gz 2 L1 .e!z/ denote the surface element

gz .x/ WD
q

det
�
J|

z .x/ Jz .x/
� 8x 2 e!z a.e.,

where Jz denotes the Jacobian of �z. Let the constants �;‚ be defined by



g�1z




L1.e!z/

DW � je!zj
j!zj and kgzkL1. Q!z/

DW ‚ j!zj
je!zj : (4.227)

Lemma 4.3.27. Let Assumption 4.3.17 or Assumption 4.3.18 hold:

(a) Then, � , respectively ‚, in (4.227) can be bounded from below, respectively
from above, by constants which depend only on the shape-regularity of the mesh,
the ratios

c1 WD max
z2I max

�2Gz

	 j!zj
j� j

�
and C1 WD max

z2I max
�2Gz

	 j Q!zj
j Q� j

�
; (4.228)

and, for curved panels, on the global mapping � (cf. Assumption 4.3.10).
(b) There exists a constant C2 so that, for i 2 f1; 2g and any Qx 2 Q� � e!z, we have



@i ˚��� � �affine
�

� ı �affine .Qx/�

 � C2 diam Q�
2 j Q� j h

2
� : (4.229)

Proof. Proof of part a. Let � 2 Gz and Q� WD ��1z .�/. The restriction �z;� WD �zjQ�
can be written as

�z;� D �� ı �affine;

where �� W O� ! � is the reference mapping as in Definition 4.1.2 and O� is the unit
triangle as in (4.13). Further, �affine W Q� ! O� is some affine map. For x 2 � , let
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Ox WD ��1� .x/ and Qx WD ��affine
��1

.Ox/. Then

Jz;� .Qx/ D J� .Ox/ Jaffine .Qx/ ; (4.230)

where Jz;� , J� , Jaffine are the Jacobi matrices of �z;� , �� , �affine, and

gz .Qx/ D
q

det
�
J|

affine .Qx/G� .Ox/ Jaffine .Qx/
�

with G� .Ox/ WD J|
� .Ox/ J� .Ox/ :

We introduce Gaffine WD J|
affineJaffine and employ the multiplication theorem for

determinants to obtain

gz .Qx/ D jdet Jaffinej
p

det G� .Ox/ D
p

det G� .Ox/
2 j Q� j : (4.231)

If � is a plane triangle with straight edges then

p
det G� .Ox/ D 2 j� j :

For curved panels, we have �� D � ı �affine
� (cf. Assumption 4.3.10) and obtain by

arguing as in (4.231)

c�2
ˇ̌
� affine

ˇ̌ � pdet G� .Ox/ � C�2
ˇ̌
� affine

ˇ̌
with � affine WD �affine

� . O�/ ;

where the constants 0 < c� � C� depend only on �, i.e., are independent of the
discretization parameters. From this we derive, by using the bi-Lipschitz continuity
of � and the shape-regularity of the surface mesh, the estimate

2cc� j� j � 2c�h2� �
p

det G� .Ox/ � 2C�h2� � 2CC� j� j ;

where c; C depend only on the shape-regularity constant �G . Thus

cc�

c1

j!zj
je!zj � cc�

j� j
j Q� j � jgz .Qx/j � CC� j� jj Q� j � CC�C1

j!zj
je!zj :

Proof of part b. The statement is trivial for plane triangles with straight edges
because the left-hand side in (4.229) is zero.

Let z 2 I and assume that � 2 Gz is a curved panel. For any Qx 2 Q� � e!z, we
have



@i ˚��� � �affine
�

� ı �affine .Qx/�

 �
2X
jD1



@j ��� � �affine
�

�
.Ox/

 ˇ̌@i�affine

j .Qx/ˇ̌ ;
(4.232)

where Ox D �affine .Qx/ 2 O� .
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Let cTp�� denote the p-th order Taylor expansion of �� about the barycenter bM
of O� and let �affine

� D bI1�� be the affine interpolation at the vertices of O� . Then

����affine
� D

�
�� � bT1��

�
C
�bT1�� � �affine

�

�
D
�
�� � bT1��

�
CbI1

�bT1�� � ��
�
:

For k D 0; 1, this splitting leads to the estimate



�� � �affine
�




Ck. O�/ �

�
1C




bI1




Ck. O�/ Ck. O�/

�


�� � bT1��




Ck. O�/

:

Standard error estimates for two-dimensional Taylor expansions result in




�� � bT1��




C0. O�/

� 1

2
max
0�j�2




@j1@2�j2 ��





C0. O�/

:

Because @j bT1�� D bT0 �@j�� � we obtain




@j�� � @j bT1��




C0. O�/

D



@j�� � bT0@j��





C0. O�/

� max
0�i�1



@i1@1�i2 @j��



C0. O�/ :

Thus



�� � �affine
�




Ck. O�/ �

�
1C




bI1




Ck. O�/ Ck. O�/

�
max
0�j�2




@j1@2�j2 ��





C0. O�/

:

(4.233)

Next, we will estimate the first factor in (4.233). For any w 2 C 0
�
O�
�

, we have




bI1w




C0. O�/

D max
Ox is a vertex of O�

jw .Ox/j � kwk
C0.O�/ :

We denote the vertices of O� by bP 1 D .0; 0/, bP 2 D .1; 0/, bP 3 D .1; 1/ and the
values of a continuous function w at bP j by wj , 1 � j � 3. It is easy to see that




@1bI1w




C0. O�/

D jw2 � w1j � jw2 � w1j


bP 2 � bP 1



 � sup

Ox;Oy2O�
jw .Ox/ � w .Oy/j
kOx � Oyk � kwk

C1. O�/

and, similarly, we obtain the stability of the derivative @2. Hence we have proved
that the first factor in (4.233) is bounded from above by 2.

To estimate the second derivative of �� in (4.233) we write the mapping �affine
� in

the form
�affine
� .Ox/ D B� OxC b�

with the (constant) Jacobi matrix B� 2 R3�2 and b� 2 R3. The columns of B� are
denoted by a1; a2 2 R3. As in the proof of Lemma 4.3.6, we use
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@�
�
� ı �affine

�

� D X
ˇ2N3

0jˇ jD�1

X
�2N3

0j�jD�2

	Š

ˇŠ�Š
aˇ1 a�2

�
@ˇC��

�
ı �affine

� :

Next, we employ
ˇ̌
.B� /i;j

ˇ̌ � h� and obtain for any 	 2 N2
0 with j	j D 2

sup
Ox2O�

ˇ̌
@�
�
� ı �affine

�

�
.Ox/ˇ̌ � C3h2� ;

where C3 depends only on the derivatives of � which, by Assumption 4.3.10, are
independent of G. Thus we have proved that



�� � �affine
�




Ck. O�/ � 2C3h2� (4.234)

and it remains to estimate the last factor in (4.232). Because �affine is affine, it is
straightforward to show that J�1affine 2 R2�2 [cf. (4.230)] has column vectors B � A
and C � B, where A, B, C denote the vertices of Q� . Hence

Jaffine D 1

2 j Q� j
�
.C � B/2 � .C � B/1
� .B � A/2 .B �A/1

�
:

Consequently ˇ̌
@i�

affine
j

ˇ̌ � diam Q�
2 j Q� j : (4.235)

�
As a measure for the distortion of the local patches !z by the pullback, we

introduce the constant Cd by

Cd WD max
z2I

n
je!zj�1=2 diam e!z

o
: (4.236)

Theorem 4.3.28. Let Assumption 4.3.25 be satisfied.
There exist two constants c1, c2 depending only on the shape-regularity constant

�G [cf. (4.17)], the constants Cd and C1 [as in (4.228)], and, for curved panels, on
the global chart � so that

kv �QGvkL2.�/ � c1h� kvkH1.!� /
and kQGvkH1.�/ � Qc1 kvkH1.!� /

(4.237a)
for all v 2 H 1 .�/ and all triangles � 2 G. Also,

kv �QGvkH� .�/ � c2hs��G kvkH s.�/ and kQGkH s.�/ H s.�/ � Qc2
(4.237b)

for any 0 � � � s � 1 and v 2 H s .�/.
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Proof. We present the proof in eight steps (a)–(h).

(a) For z 2 I, let �z W e!z ! !z be the mapping as in Assumption 4.3.25. For
' 2 H 1 .!z/, the pullback to e!z is denoted by Q' WD ' ı �z. The Lipschitz
continuity of �z implies that Q' 2 H 1 .e!z/.

We consider �z .'/ 2 C as a constant function and obtain

k' � �z .'/k2L2.!z/
D
Z
Q!z

gz .Qx/ j Q' .Qx/ � �z .'/j2 d Qx: (4.238)

Case 1: First, we consider the case of flat panels with straight edges. Note that, for
any t 2 Gz and Qt WD ��1z .t/, we have gzjQt D jt j =

ˇ̌eT ˇ̌.
Let � 2 Gz. Then for any Qx 2 Q� D ��1z .�/

Q' .Qx/ � �z' D Q' .Qx/� 1

j!zj
Z
!z

' D Q' .Qx/� 1

j!zj
Z
Q!z

gz Q'

D Q' .Qx/� 1

j!zj
X
t2Gz

Z
Qt
gz Q' D Q' .Qx/� 1

j!zj
X
t2Gz

jt jˇ̌eT ˇ̌
Z
Qt
Q' (4.239)

D
X
t2Gz

jt j
j!zj . Q' .Qx/� �Qt Q'/

with �Qt Q' WD 1

jQtj
R
Qt Q'. Applying the L2-norm to both sides yields

k Q' � �z'kL2.Q�/ �
X
t2Gz

jt j
j!zj k Q' � �Qt Q'kL2.Q�/ : (4.240)

Because eT � e!z are both convex we may apply Corollary 2.5.12 to obtain

k Q' � �Qt Q'kL2.Q�/ � k Q' � �Qt Q'kL2.e!z/ �
 
1C

s
je!zjˇ̌Qt ˇ̌

!
diam e!z

�
j Q'jH1. Q!z/

�
�
1C

p
C1

� diam e!z

�
j Q'jH1. Q!z/

; (4.241)

where C1 is as in (4.228). Inserting this into (4.240) yields

k Q' � �z'kL2.Q�/ �
�
1C

p
C1

� diam e!z

�
j Q'jH1. Q!z/

:

We sum over all Q� � e!z and apply a Cauchy–Schwarz inequality to derive the
estimate

k Q' � �z'kL2. Q!z/
�
p

cardGz

�
1C

p
C1

� diam e!z

�
j Q'jH1. Q!z/

;
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where the number of panels .cardGz/ is bounded by a constant which depends only
on the shape-regularity of the surface mesh.

The combination with (4.238) leads to

k' � �z .'/kL2.!z/
�
q
kgzkL1. Q!z/

k Q' � �z'kL2. Q!z/

(4.227)� C4
p
j!zjdiam e!zpje!zj

j Q'jH1. Q!z/

� C4Cdhz j Q'jH1. Q!z/

with C4 WD
p
‚ cardGz

�
1CpC1

�
=� . From Lemma 4.3.6 resp. Lemma 4.3.13 we

obtain
j Q'j2H1. Q!z/

D
X
Q�
e!z

j Q'j2H1.Q�/ � C5
X
�2Gz

j'j2H1.�/
(4.242)

and, finally, for any � � !z

k'��z .'/kL2.!z/
�eC 6hz j'jH1.!z/

�C0eC 6h� j'jH1.!z/
with eC 6 D CdC4

p
C5:

(4.243)
Case 2: Next, we consider the general case of curved panels. As in (4.239) we derive

Q' � �z' D
X
t2Gz

jt j
j!zj

 
Q' � 1ˇ̌eT ˇ̌

Z
Qt

ˇ̌eT ˇ̌
jt j gz Q'

!

D
X
t2Gz

jt j
j!zj

(
. Q' � �Qt Q'/C

1ˇ̌eT ˇ̌
Z
Qt
dt Q'

)
(4.244)

with dt WD 1 � jeT jjt j gzjQt . The first difference in (4.244) can be estimated as in the
case of flat panels while, for the second one, we will derive an estimate of dt . We
use the notation as in Assumption 4.3.25 and employ the splitting

dt D
 
1 �

ˇ̌
t affine

ˇ̌
jt j

!
C 1

2 jt j
�
2
ˇ̌
t affine

ˇ̌� 2 ˇ̌eT ˇ̌ .gzjQt /
�
; (4.245)

where t affine D �affine
t . O�/ is the plane triangle with straight edges which interpolates

� at its vertices.
We start by estimating the second term in (4.245). We employ the representation

(4.231) for Gram’s determinant to obtain

2
ˇ̌eT ˇ̌ .gzjQt / D gt ;

where gt is Gram’s determinant of the reference map �t W O� ! t , i.e.
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gt D k@1�t � @2�tk :

The area 2
ˇ̌
t affine

ˇ̌
can be expressed by

2
ˇ̌
t affine

ˇ̌ D 

@1�affine
t � @2�affine

t



 DW gaffine
t (4.246)

Hence

ˇ̌
2
ˇ̌
t affine

ˇ̌� 2 ˇ̌eT ˇ̌ .gzjQt /
ˇ̌D ˇ̌gaffine

t � gt
ˇ̌D ˇ̌

@1�affine

t � @2�affine
t



�k@1�t � @2�tkˇ̌
(4.247)

� 

@1�affine
t � @2�affine

t � .@1�t � @2�t /




� 

@1 ��t � �affine
t

� � @2�t


C 

@1�affine

t � @2
�
�t � �affine

t

�

 :
We employ (4.234) to obtain

ˇ̌
2
ˇ̌
t affine

ˇ̌ � 2 ˇ̌eT ˇ̌ .gzjQt /
ˇ̌ � 2C3h2t

�
k@2�tkL1

�b�� C


@1�affine

t




L1.O�/

�
:

The estimate


@1�affine

t




L1. O�/ � ht is obvious because t affine interpolates t in its

vertices. For the other term, we use

k@2�tkL1. O�/ D







3X
jD1

�
@j� ı �affine

t

�
@2
�
�affine
t

�
j








L1. O�/

� Cht ;

whereC depends only on the global chart � but not on the discretization parameters.
In summary we have proved that

ˇ̌ˇ̌
t affine

ˇ̌ � ˇ̌eT ˇ̌ .gzjQt /
ˇ̌

jt j � C3Cht

c
;

where c depends only on the shape-regularity of the mesh and the global chart �.
The first term of the sum in (4.245) can be estimated by using (4.247)

ˇ̌
ˇ̌
ˇ1 �

ˇ̌
t affine

ˇ̌
jt j

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
jt j � ˇ̌t affine

ˇ̌
jt j

ˇ̌
ˇ̌
ˇ � jt j�1

Z
O�

ˇ̌
gt � gaffine

t

ˇ̌
dx

� C3Ch
3
t

jt j � C3Cht

c
:

This finishes the estimate of dt
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jdt j � 2C3C
c
ht :

Inserting this into (4.244) and proceeding as in the case of flat panels yields

k Q' � �z'kL2.Q�/ �
X
t2Gz

jt j
j!zj k Q' � �Qt Q'kL2.Q�/ C

X
t2Gz

jt j
j!zj2

C3C

c
ht

s
j Q� jˇ̌eT ˇ̌ k Q'kL2. QT /

(4.241)�
�
1C

p
C1

� diam e!z

�
j Q'jH1. Q!z/

C 2C3C
p
C1

c
hz k Q'kL2. Q!z/

:

We sum over all Q� � e!z and apply a Cauchy–Schwarz inequality to derive the
estimate

k Q' � �z'kL2. Q!z/
�
p

cardGz

( �
1C

p
C1

� diam e!z

�
j Q'jH1. Q!z/

C 2
C3C
p
C1

c
hz k Q'kL2. Q!z/

)
:

From Lemma 4.3.6 resp. Lemma 4.3.13 we obtain the scaling relations

j Q'j2H1. Q!z/
�C5 j'j2H1.!z/

and Qc5 je!zj
j!zj k'k

2
L2.!z/

�k Q'k2L2. Q!z/
�eC 5 je!zj

j!zj k'k
2
L2.!z/

and, finally, for any � � !z

k' � �z'kL2.!z/
� bC 6hz k'kH1.!z/

� C0bC 6h� k'kH1.!z/
; (4.248)

where bC 6 depends on C1, Cd, C5, Qc5, eC 5, and cardGz. Let C6 WD max
neC 6;bC 6

o
[cf. (4.243)].

(b) Let � 2 G. The set of vertices of � is denoted by I� . Then

X
x2I�

bx D 1 on �:

By using Step a, we derive

k' �QG'kL2.�/ D







X
z2I�

bz .' � �z .'//








L2.�/

�
X
z2I�

kbz .' � �z .'//kL2.�/

�
X
z2I�

k' � �z .'/kL2.�/ �
X
z2I�

k' � �z .'/kL2.!z/
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� C0C6h�
X
z2I�

k'kH1.!z/

� p3C0C6h�
sX

z2I�

k'k2H1.!z/
(4.249)

� p3C0C6h�
sX
t2!�

X
z2I� Wt
!z

k'k2H1.t/

� C7h� k'kH1.!� /
(4.250)

with C7 WD 3C0C6.
(c) By summing over all panels we obtain

k' �QG'k2L2.�/
D
X
�2G
k' �QG'k2L2.�/

� C 27 h2G
X
�2G
k'k2H1.!� /

D C 27 h2G
X
t2G

X
�2GWt
!�

k'k2H1.t/ � C 28 h2G k'k2H1.�/ ;

where C8 D C7C 1=2]
and

C] WD max
t2G card f� 2 G W t � !� g

depends only on the shape-regularity constant.

(d) For the L2 .�/-stability we repeat the first steps of (4.249) to obtain

kQG'kL2.�/ �
X
z2I�

k�z .'/kL2.!z/
:

The Cauchy-Schwarz inequality yields

j�z .'/j � j!zj�1=2 k'kL2.!z/

and as in (4.250) we derive

kQG'kL2.�/ �
X
z2I�

k'kL2.!z/
� p3 k'kL2.!� /

: (4.251)

A summation as in Step c results in theL2 .�/-stability of the Clément interpolation
operator

kQG'kL2.�/ �
p
3C] k'kL2.�/ : (4.252)



4.3 Proof of the Approximation Property 273

(e) From Step c and Step d we conclude that

k' �QG'kL2.�/ � C9 k'kL2.�/ and k' �QG'kL2.�/ � C8hG k'kH1.�/

hold with C9 WD 1 C p
3C]. Hence the approximation result for the intermedi-

ate Sobolev spaces H s .�/, s 2 �0; 1Œ, follows by interpolation as in the proof of
Theorem 4.1.33.

(f) For the local H 1-stability we proceed as in Step d, respectively as in (4.249).
Recall the definition of the surface gradient as in (4.200) and (4.201) to derive

jQG'jH1.�/ D







X
z2I�

�z .'/rSbz








L2.�/

D







X
z2I�

�
�z .'/ � �z0

.'/
�rSbz








L2.�/

(4.253)

for any fixed z0 2 I� . Let N'� WD 1
j!� j

R
!�
'. Then �z . N'� / D �z0

. N'� / D N'� and

ˇ̌
�z .'/ � �z0

.'/
ˇ̌ � j�z .'/ � �z . N'� /j C

ˇ̌
�z0

. N'� /� �z0
.'/
ˇ̌

�
ˇ̌
ˇ̌ 1
j!zj

Z
!z

.' � N'� /
ˇ̌
ˇ̌C

ˇ̌
ˇ̌
ˇ
1ˇ̌
!z0

ˇ̌
Z
!z0

. N'� � '/
ˇ̌
ˇ̌
ˇ

� k' � N'�kL2.!z/

j!zj1=2
C
k' � N'�kL2.!z0/ˇ̌

!z0

ˇ̌1=2 :

In a similar fashion to (4.243) and (4.248) one derives forD 2 ˚!z; !z0

�

k' � N'�kL2.D/ � k' � N'�kL2.!� /
� eC 7 .diam!� / k'kH1.!� /

:

Hence ˇ̌
�z .'/ � �z0

.'/
ˇ̌ � C10 k'kH1.!� /

; (4.254)

whereC10 depends only on the shape-regularity constant and the global parametriza-
tion �.

In Theorem 4.4.2 (with ` D 1 and m D 0), we will prove the inverse inequality
and, thus, obtain the estimate

krSbzkL2.�/ � Ch�1� kbzkL2.�/ � Ch�1� j� j1=2 � C11; (4.255)

where C11 depends only on the shape-regularity of the mesh and the global
parametrization �.

By inserting (4.254) and (4.255) into (4.253) we derive

jQG'jH1.�/ � 3C10C11 k'kH1.!� /
:
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The combination with (4.251) leads to the local stability with respect to the k�kH1.�/-
norm and a summation over all panels as in Step c results in the globalH 1-stability

kQG'kH1.�/ � C12 k'kH1.�/ :

(g) Applying Proposition 2.1.62 with X0 D Y0 D L2 .�/ and X1 D Y1 D H 1 .�/

we obtain by interpolation of (4.252)

kQGkH s.�/ H s.�/ � kQGk1�sL2.�/ L2.�/
kQGksH1.�/ H1.�/

� C13

with C13 WD
�
3C]

� 1�s
2 cs12.

(h) Part e and g imply that

k' �QG'kL2.�/�C8hsGk'kH s.�/ and k'�QG'kH s.�/ � .1C C13/k'kH s.�/ :

We apply Proposition 2.1.62 with T D I �QG , Y0 D Y1 D H s .�/, X0 D L2 .�/,
X1 D H s .�/, and � D �=s 2 Œ0; 1� to interpolate these two inequalities. The
result is

kT kH� .�/ H s.�/ � kT k1��L2.�/ H s.�/ kT k�H s.�/ H s.�/ �
�
C8h

s
G
�1��

.1C C13/�
D C14hs��G

with C14 WD C 1��=s8 .1C C13/�=s and this implies the first estimate in (4.237b). �

In Sect. 9 we will need an estimate of the surface metric on !z compared with
the two-dimensional Euclidean metric on e!z. Since!z may consist of several panels,
the local Assumptions 4.3.17 and 4.3.18 have to be supplemented by the following,
more global Assumption 4.3.29 which states that � has to satisfy a cone-type con-
dition and that the minimal angle of the surface mesh has to be bounded below by a
positive constant (see Fig. 4.8).

Assumption 4.3.29. 1. For all � 2 G, x 2 �n� and y 2 � , there exist c > 0 and an
x0 2 � such that

kx � x0k D dist .x; �/ and kx � yk2 � c
�
kx � x0k2 C kx0 � yk2

�
:

Fig. 4.8 Illustration of the cone and the angle condition for the surface mesh
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2. For all �; t 2 G whose intersection consists of at most one point, there exists a
point p of t such that

kx � yk � c .kx � pk C kp� yk/ 8x 2 �;8y 2 t:

3. For all �; t 2 G with exactly one common edge � \ t D E and for all x 2 � , y 2 t
there exists a point p 2 E such that

ky � xk � c .ky � pk C kp� xk/ :

Lemma 4.3.30. Let Assumption 4.3.29 be satisfied and let Assumption 4.3.17 or
Assumption 4.3.18 hold. Then

c kQx � Qyk � diam e!z

hz
k�z .Qx/ � �z .Qy/k � C kQx � Qyk 8Qx; Qy 2 e!z;

where C depends only on the global chart � but is independent of the surface mesh.

Proof. (a) Let � 2 Gz be a surface triangle with vertices A, B, C. First, we will prove
the statement for Qx, Qy 2 Q� D ��1z .�/.

Let � affine WD �affine
� . O�/ be the plane triangle with straight edges which interpo-

lates � in its vertices. Note that �
�
� affine

� D � . Hence

� .x/� � .y/ D J� .w/ .x � y/ 8x; y 2 � affine

where J� 2 R3�3 is the Jacobi matrix of the global chart � and w is some point in
xy. Note that the largest and the smallest eigenvalues �max and �min of the positive
definite Gram matrix G� depend only on the global chart � and are, in particular,
independent of the discretization parameters. Thus

p
�min kx � yk � k� .x/� � .y/k �

p
�max kx � yk 8x; y 2 � affine:

Let Gaffine
� 2 R2�2 denote the (constant) Gram matrix of �affine

� . From Lemma 4.3.5
we conclude that



�affine
� .Ox/ � �affine

� .Oy/

 D ˝Gaffine
� .Ox � Oy/ ; .Ox � Oy/˛1=2 � p2h� kOx � Oyk

for all Ox; Oy 2 O� . Because the matrix Gaffine
� is symmetric and positive definite, its

minimal eigenvalue �affine
min can be expressed by

�affine
min D




�Gaffine
�

��1


�1 :
We employ Lemma 4.3.5 to obtain



�affine
� .Ox/ � �affine

� .Oy/

 � ch� kOx � Oyk
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for all Ox; Oy 2 O� , where C depends only on the shape-regularity of the mesh. Thus
we have proved that

c
p
�minh� kOx � Oyk � k�� .Ox/ � � .Oy/k �

p
2�maxh� kOx � Oyk

for all Ox; Oy 2 O� . Finally, we replace Ox and Oy by �affine .Qx/ and �affine .Qy/. From (4.235)
we derive the estimate for the largest eigenvalue �max

	 of the Gram matrix G	 of
�affine q

�max
	

(4.235)� p
2

diam Q�
2 j Q� j � C diam�1 Q�;

where C depends only on the shape-regularity constant and the global chart �.
For the smallest eigenvalue we use

G�1	 D
� kQe1k2 hQe1; Qe2i
hQe1; Qe2i kQe2k2

�
;

where eA;eB;eC denote the vertices of Q� and Qe1 D eB �eA, e2 D eC �eB. Thus



G�1	


 � 2 diam Q�

and the minimal eigenvalue �min
	 satisfies

q
�min
	 D



G�1	


�1=2 � 1p

2 diam Q� :

The combination of these estimates leads to

c
h�

diam Q� kQx � Qyk � k�z .Qx/� �z .Qy/k � C h�

diam Q� kQx � Qyk 8Qx; Qy 2 Q�:
(4.256)

(b) We assume that Gz contains more than one panel and consider the case that x
and y belong to different panels �; t 2 Gz. Note that

c
hz

diam e!z
� h�

diam Q� � C
hz

diam e!z
8� 2 Gz;

where c and C depend only on the global chart � and the shape-regularity
constant. Assumption 4.3.29 implies that one of the following two cases is
satisfied:

(i) The panels � and t share exactly one common edge � \ t D E . Then there
exists a point p 2 E such that

ky � xk � c .ky � pk C kp � xk/ :
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The combination of (4.256) and a triangle inequality leads to

ky � xk � Qc hz

diam e!z
.kQy � Qpk C kQp � Qxk/ � Qc hz

diam e!z
kQy � Qxk

with Qp WD ��1z .p/. For the upper estimate we use QxQy � e!z since e!z is
convex. Let .epi /qiD0 be the minimal number of points lying on QxQy such that

Qp0 D Qx; Qpq D y; and 81 � i � q W Qpi�1 Qpi is contained in some Q� � e!z:

Let pi D �z . Qpi /, 1 � i < q. Then the upper estimate follows from

ky � xk�
qX
iD1
kpi � pi�1k�C hz

diam e!z

qX
iD1
kQpi � Qpi�1k D C hz

diam e!z
kQy � Qxk :

(ii) � and t share exactly one common point fzg D � \ t . Then

kx � yk � c .kx � zk C kz � yk/

and the rest of the proof is just a repetition of the arguments as in Case i. �

Lemma 4.3.31. Let Assumption 4.3.17 or Assumption 4.3.18 be satisfied. For � 2
Gz, let �z;� WD �zjQ� , where Q� WD ��1z .�/. Then, for any 	 2 N2

0 with k WD j	j,

k@��z;�kL1.Q�/ � C
�

hz

diam e!z

�k
;

where C depends only on k, C1 as in (4.228), Cd as in (4.236), and the global
chart �.

Proof. Recall that �z;� D � ı �affine, where �affine D �affine
� ı �affine is affine. As in the

proof of Lemma 4.3.6, we use

@�
�
� ı �affine� D X

ˇ2N2
0jˇ jD�1

X
�2N2

0j�jD�2

	Š

ˇŠ�Š
aˇ1 a�2

�
@ˇC��

�
ı �affine;

where a1, a2 are the column vectors of the Jacobi matrix of �affine, that is,

.ai /j D @j �affine
i D

2X
kD1

@k�
affine
�;i @j �

affine
j :



278 4 Boundary Element Methods

We have
ˇ̌
ˇ@k�affine

�;i

ˇ̌
ˇ � h� and from (4.235) we conclude that

ˇ̌
ˇ@i�affine

j

ˇ̌
ˇ �

diam Q�= .2 j Q� j/. This leads to
ˇ̌
.ai /j

ˇ̌ � h� diam Q�= j Q� j. Thus

ˇ̌
@�
�
� ı �affine

�ˇ̌ � C
�
h� diam Q�
j Q� j

�k
� C

�
C1Cd

hz

diam e!z

�k
;

where C depends only on k and the global chart �. �

4.4 Inverse Estimates

The spaces H s.�/ form a scale:

H s.�/ � H t .�/; for t � s (4.257)

with a continuous embedding: there exists some C.s; t/ > 0 such that

kukH t .�/ � C.s; t/ kukH s.�/ ; 8u 2 H s.�/: (4.258)

Note that the range of s and t may be bounded by the smoothness of the surface (see
Sect. 2.4). In general, the inverse of this inequality is false.

Exercise 4.4.1. Find a sequence of functions .un/n2N 2 C1 .Œ0; 1�/ which contra-
dicts the inverse of (4.258) for s D 0 and t D 1, i.e., which satisfies

lim
n!1 kunkH1.Œ0;1�/ = kunkL2.Œ0;1�/ D 1:

However, for boundary element functions there is a valid inverse of (4.258), a
so-called inverse inequality, where the constant C depends on the dimension of the
boundary element space. In the following we will assume that the maximal mesh
width h is bounded above by a global constant h0. For example, we can choose
h0 D diam� or otherwise h0 D 1 for sufficiently fine surface meshes. Recall the
definition of P �

k
as in (4.67):

Theorem 4.4.2. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. We have
for 0 � m � `, all � 2 G and all v 2 P �

k
:

kvkH`.�/ � Chm�`� kvkHm.�/ :

The constant C depends only on h0, `, k and, for a polyhedral surface, on the
shape-regularity of the mesh G via the constant �G from Definition 4.1.12. In the case
of a curved surface it also depends on the derivatives of the global transformations
�, ��1 up to the order k.
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Proof. Owing to the h-independent equivalence of the norms kvkH`.�/ and
kQvkH`.�affine/ from Corollary 4.3.12, it suffices to consider the case of a plane
polyhedral surface.
Case 1: m D 0. Since P �

k
is finite-dimensional, all norms on P �

k
are equivalent:

There exists a positive constant C` such that for 0 � j � `

kOvkHj . O�/ � C` kOvkL2.O�/ 8Ov 2 P O�k :

With Lemma 4.3.6 or Lemma 4.3.13 it follows for all v 2 P �
k

that

jvjHj .�/ � C1h1�j� jOvjHj . O�/ � C`C1h1�j� kOvkL2. O�/ � C`C1C2h�j� kvkL2.�/ :

For the k�kH` -norm, by summing the squares of the seminorm we obtain

kvkH`.�/ � Ch�`� kvkL2.�/ ; (4.259)

where C depends on `, k and the upper bound of the mesh width h0.
Case 2: 0 < m � `. For ` �m � n � ` and j˛j D n we write @˛v D @ˇ@˛�ˇ with
jˇj D ` �m and ˇ � ˛ componentwise. Then with Case 1 we have

k@˛vkL2.�/ �
ˇ̌
ˇ@˛�ˇ v

ˇ̌
ˇ
H`�m.�/

� Chm�`�




@˛�ˇ v




L2.�/

� Chm�`� jvjHn�`Cm.�/ :

Since j˛j D n was arbitrary, this result and n � `Cm � m together yield

jvjHn.�/ � Chm�`� jvjHn�`Cm.�/ � Chm�`� kvkHm.�/ (4.260)

for an arbitrary ` � m � n � `. (Note that the constant C in (4.260) depends on
n;m; and `. However, n and m are from the finite set f0; 1; : : : ; `g and – by taking
the maximum over n and m – results in a constant C which does not depend on
n and m but on ` instead.) Inequality (4.259) for `  ` � m as well as Estimate
(4.260) finally yield the assertion

kvk2
H`.�/

D kvk2
H`�m.�/

C
mX

nD`�mC1
jvj2Hn.�/

� C
8<
:h2.m�`/� kvk2L2.�/

C
mX

nD`�mC1
h2.m�`/� kvk2Hm.�/

9=
;

� Ch2.m�`/� kvk2Hm.�/ :

�
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The global version of Theorem 4.4.2 requires the quasi-uniformity of the surface
mesh G.

Theorem 4.4.3. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. Then we
have for all t; s 2 f0; 1g, t � s, the estimate

8v 2 Sp;0G W kvkH s.�/ � Cht�skvkH t .�/: (4.261)

The constant C depends only on h0, p and, for a polyhedral surface, on the shape-
regularity and quasi-uniformity of the mesh G via the constants �G and qG from
Definitions 4.1.12 and 4.1.13. In the case of a curved surface it also depends on the
derivatives of the global transformations �, ��1 up to the order k.

Proof. From Theorem 4.4.2 we have

kvk2H s.�/ D
X
�2G
kvk2H s.�/ � C

X
�2G

h2.t�s/� kvk2H t .�/ � C
�

min
�2G h�

�2.t�s/
kvk2H t .�/

�
�
Cq

2.s�t/
G

�
h2.t�s/ kvk2H t .�/ :

�
Theorem 4.4.3 can be generalized in various ways. In the following we will cite

results from [75].

Remark 4.4.4. (a) Theorem 4.4.3 holds for all t; s 2 R with 0 � t � s � 1 or
�1 � t � 0 ^ s D 0 (see [75, Theorems 4.1, 4.6]).

(b) Theorem 4.4.3 is valid for the space Sp;�1G for all t; s 2 R with t D 0 ^ 0 �
s < 1=2 or �1 � t � 0 ^ s D 0 (see [75, Theorems 4.2, 4.6]).

We will also require estimates between different Lp-norms and discrete `p-
norms for boundary element functions and, thus, we again start with a local result.
Here we will always consider the situation where a Lagrange basis is chosen for P O�

k

on O� . †
 D
nbPi W i 2 � O�k

o
denotes the set of nodal points onb� . The Lagrange basis�bN i

�
i2
 O�

k

of P O�
k

satisfies

bN i

�bPj
�
D ıi;j 8i; j 2 � O�k :

A vector of coefficients w WD .wi /i2
 O�
k

is put into relation with the associated

polynomial Ow 2 P O�
k

on the reference element by means of

Ow WD bPw WD
X
i2
 O�

k

wibN i :
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We define the “lifted” function

w WD P�w WD
X
i2
 O�

k

wiNi with Ni D bN i ı ��1�

analogously.

Theorem 4.4.5. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. For all
� 2 G and all w WD .wi /i2
 O�

k

we have

Qch� kwk`2 � kP�wkL2.�/ � eCh� kwk`2 :

The constants Qc and eC depend on the parameters qualitatively in the same way as
does C in Theorem 4.4.3.

Proof. From Lemma 4.3.6 or Lemma 4.3.13 we have

ch� k OwkL2
�b�� � kwkL2.�/ � Ch� k OwkL2

�b�� with Ow WD w ı �� :

Since all norms are equivalent on P O�
k

, we have

ck k OwkHkC1. O�/ � k OwkL2. O�/ � Ck k OwkHkC1
�b�� :

The equivalence of the H kC1 . O�/-norm and the Œ��kC1-norm follows from Lemma
4.3.1. Since Ow 2 P O�

k
,

Œ Ow�kC1 D j OwjHkC1.O�/C
X

z2†k

j Ow .z/j D
X

z2†k

j Ow .z/j D
X
i2
 O�p
jwi j D kwk`1 : (4.262)

Since ]†k is finite, there exist positive constants c; C depending only on the
cardinality of †k , i.e., on k, such that

c kwk`2 � kwk`1 � C kwk`2 :

Combining all these results, we have thus proved that

Qch� kwk`2 � kwkL2.�/ � eCh� kwk`2 :

�

Corollary 4.4.6. Let the conditions from Theorem 4.4.5 be satisfied. Then

Och� kwkL1.�/ � kwkL2.�/ � bCh� kwkL1.�/
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for all w 2 P �
k

. The constants Oc;bC qualitatively depend on the parameters in the
same way as do Qc;eC in Theorem 4.4.3.

Proof. If we combine Theorem 4.4.5 with the norm equivalence on finite-
dimensional spaces for w D .wi /i2
 O�p and w D P�w it follows that

kwkL2.�/ � Ch� kwk`2 � bCh� kwk`1 � bCh� kwkL1.�/ :

Conversely, with the notation from the proof of Theorem 4.4.5 we have

kwkL1.�/ D k OwkL1.O�/ � C k OwkHkC1.O�/ � C 0 Œ Ow�kC1 (4.262)D C 0 kwk`1

� C 00 kwk`1 � C 000 kwk`2 :

Note that the constants in this estimate depend on the cardinality of †k , i.e., on k.
From Theorem 4.4.5 we thus have the lower bound. �

The global version of Theorem 4.4.5 shows an equivalence between boundary
element functions and the associated coefficient vector. Let .bi /

N
iD1 be the Lagrange

basis of the boundary element space S . We define the operator P W RN ! S for
w D .wi /NiD1 by

Pw D
NX
iD1

wibi :

Theorem 4.4.7. Let Assumption 4.3.17 or Assumption 4.3.18 hold. Then for all
w 2 RN

Lch kwk`2 � kPwkL2.�/ � LCh kwk`2 :

The constants Lc; LC qualitatively depend on the parameters in the same way as Qc;eC
do in Theorem 4.4.5.

Proof. Let w 2 RN be the coefficient vector of the boundary element function
w D Pw. For � 2 G we can associate a global index ind .m; �/ 2 f1; 2; : : : ; N g
on � with every local degree of freedom m 2 � O�

k
. We set w� WD .w�;m/m2
 O�

k

WD�
wind.m;�/

�
m2
 O�

k

. With Theorem 4.4.5 we obtain

kPwk2L2.�/ D
X
�2G
kP�wk2L2.�/ � Ch2

X
�2G
kw�k2`2 :

The constant

M WD max
i2f1;2;:::;N g

]
n
.m; �/ 2 � O�p � G W i D ind .m; �/

o
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depends only on the polynomial degree k and on the shape-regularity of the surface
mesh. It thus follows that

kPwk2L2.�/
� CMh2 kwk2`2 :

The lower bound can be found in a similar way. �

Corollary 4.4.8. Let either Assumption 4.3.17 or Assumption 4.3.18 hold and let
.bi /i2I denote the nodal basis for the boundary element space S . Then

kbikL1.�/ � MC1: (4.263)

The constant MC1 depends only on the shape-regularity of the mesh and the polyno-
mial degree of S .

If S D Sk;0G for some k � 1 then

jbi jW 1;1.�/ WD krSbikL1.�/ � MC2h�1� for any � � supp bi : (4.264)

The full W 1;1 .�/-norm is given by k�kW 1;1.�/ WD max
˚k�kL1.�/ ; j�jW 1;1.�/

�
and hence

kbikW 1;1.�/ � MC3h�1� for any � � suppbi : (4.265)

Proof. Let ei 2 RI denote the vector with .ei /i D 1 and .ei /j D 0 otherwise, i.e.,
bi D P ei , Let � � supp bi . The combination of Corollary 4.4.6 and Theorem 4.4.5
leads to

kbikL1.�/ � . Och� /�1 kbikL2.�/ � eC= Oc:
Because bi j� D 0 for all � 2 Gi with � 6� suppbi we have proved (4.263).

For the proof of the second estimate we observe that – as in the proof of Theo-
rem 4.4.3 – it suffices to consider plane panels with straight edges. Hence rSbi is a
polynomial on every panel � so that

Och� krSbikL1.�/

Cor. 4.4.6� krSbikL2.�/

Theo. 4.4.2� Ch�1� kbikL2.�/

Theo. 4.4.5� CeC keik`2 D CeC
from which the assertion follows. �

We can also analyze how far the constants in the norm equivalences depend on
the mesh width h in the case of the `p and Lp .�/-norms with 1 � p � 1. Here
we will only require the cases p D 2 and p D 1 and refer to [75] for the more
general case.
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4.5 Condition of the System Matrices

One of the first applications of the inverse inequalities is the estimation of the
condition of the system matrices of the integral operators.

Lemma 4.5.1. Let Assumption 4.3.17 or Assumption 4.3.18 hold. Let K be the sys-
tem matrix associated with the Galerkin discretization of the single layer operator
V for the Laplace problem. Then we have

cond2.K/ � Ch�1:

The constant C depends only on the polynomial degree p and the shape-regularity
and the quasi-uniformity of the surface mesh G, more specifically on the constants
�G and qG from Definitions 4.1.12 and 4.1.13. In the case of curved surfaces it also
depends on the derivatives of the global transformations �, ��1 up to the order k.

Proof. Since K is symmetric and positive definite, we have

cond2.K/ D �max.K/
�min.K/

:

In the following we will thus estimate the eigenvalues of K. It follows from the
continuity and the H�1=2-ellipticity of the bilinear form .V �; �/0 W H�1=2 .�/ �
H�1=2 .�/! K that there exist two positive constants � and Cc such that

� kuk2H�1=2.�/
� .V u; u/0 � Cc kuk2H�1=2.�/

8u 2 H�1=2 .�/ :

From this it follows with Theorem 4.4.7 that

�max .K/ D max
wD.wi /i2RN nf0g

hKw;wi
kwk2 � Ch2 max

w2Snf0g
.V w;w/0
kwk2L2.�/

� Ch2Cc max
w2Snf0g

kwk2
H�1=2.�/

kwk2L2.�/

� Ch2Cc:

By Theorem 4.4.7 and Remark 4.4.4 we have for the smallest eigenvalue

�min .K/ D min
wD.wi /i2RN nf0g

hKw;wi
kwk2 � Ch2 min

w2Snf0g
.V w;w/0
kwk2L2.�/

� Ch2� min
w2Snf0g

kwk2
H�1=2.�/

kwk2L2.�/

� C 0h2�h:

Thus
�max .K/ =�min .K/ � Ch�1

and the lemma follows. �
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Exercise 4.5.2. Show that the system matrix K associated with the hypersingular
operator also satisfies the estimate

cond2 .K/ � Ch�1

under the conditions of Lemma 4.5.1.

Remark 4.5.3. For the condition of the mass matrix M WD
��
bi ; bj

�
L2.�/

�N
i;jD1

we have
cond2 .M/ � C:

Proof. Since
hw;Mwi D .Pw; Pw/L2.�/

we can apply Theorem 4.4.7:

Lc2h2 � min
w2RN nf0g

hMw;wi
kwk2 � max

w2RN nf0g
hMw;wi
kwk2 � LC 2h2;

from which we have the estimate of the condition with C D LC 2= Lc2. �

Estimating the condition of system matrices for equations of the second kind is
more problematic, as the stability of the Galerkin discretization for these equations
is in many cases still an open question. If we assume that the h-independent stability
of the discrete operators is given, the condition of the system matrices for equations
of the second kind can be determined in terms of an h-independent constant in the
same way as before.

4.6 Bibliographical Remarks and Further Results

In the present chapter, we introduced spaces of piecewise polynomial functions
on the boundary manifold � , and established approximation properties of these
spaces, as the meshwidth h tends to zero, in several function spaces of Sobolev
type on � . These boundary element spaces are, in a sense, Finite Element spaces
on the boundary surface � . We also presented a general framework for the conver-
gence analysis of Galerkin boundary element methods, in particular necessary and
sufficient conditions for the quasi-optimality of the Galerkin solutions to hold.

For reasons of space, our presentation does not cover the most general cases.
For example, the surface meshes upon which the boundary element spaces are built
did not allow for local mesh refinement or, more importantly, for anisotropic local
refinements for example in the vicinity of edges (see, e.g., [75, 87, 234]).

Most of our results do extend to so-called graded, anisotropic meshes (cf. [104,
107, 108]). In addition, besides mesh refinement, analogs of spectral methods or
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even a combination of mesh refinement and order increase, the so-called hp-Version
BEM; is conceivable (cf. [222] and the references therein).

Further, for particular classes of boundary integral equations, special choices of
subspaces may yield large gains in accuracy versus number of degrees of freedom.
Let us mention, for example, the case of high frequency acoustic scattering. Here,
the stability of the boundary integral operators depends, of course, on the problem’s
wave number but, in addition, also the solutions contain high-frequency compo-
nents which are smooth, but highly oscillatory at large wave numbers, and therefore
poorly captured by standard boundary element spaces, unless the fine scale of the
unknown functions on the boundary is resolved by sufficient mesh refinement. This
strategy may lead, however, to prohibitively large numbers of degrees of freedom.
A better approach may be to augment the standard boundary element spaces by
explicitly known, dominant asymptotic components of the unknown solution. In
high frequency acoustics and electromagnetics, in particular for BIEs obtained from
the direct method (where the unknowns are Cauchy data of the domain unknowns),
strong results on the asymptotic structure of the solution are available from geo-
metrical optics. These can be used to build boundary element spaces with no or
a reduced preasymptotic convergence regime at high wave numbers. We refer e.g.
to [5, 57, 153] for recent work on wave number independent Galerkin BEM for
acoustics problems.

In this chapter, and throughout this book, we focused on Galerkin BEM. We do
emphasize, however, that the alternative collocation BEM do constitute a powerful
competition; for collocation BEM on polyhedra, however, the theory of stability and
quasi-optimality is much less mature that in the Galerkin case. Still, since colloca-
tion methods do not require the numerical evaluation of double surface integrals,
they offer a substantial gain in accuracy versus CPU time.

For this reason, in recent years substantial work has been devoted to collocation
based BIEs for high frequency acoustic and electromagnetic scattering. We mention
in particular the work of O. Bruno et al. (e.g. [34,35,161]) which is a collocation type
boundary element method which combines incorporation of high frequency asymp-
totics with a degenerate coordinate transformation of the surface in the presence of
edges or vertices and a Nyström type collocation procedure. The mathematical error
analysis of this method is in progress.

The a priori asymptotic error bounds for Galerkin BEM developed in Sect. 4.2
show that Galerkin BEM exhibit superconvergence in negative Sobolev norms on
� . This allows us, in particular, to deduce corresponding results for postprocessed
Galerkin approximations which can be obtained as smooth functionals of the solu-
tion. Importantly, the insertion of the Galerkin solution into the representation
formula is such a postprocessing operation. Therefore superconvergent pointwise
approximations of the solution to the underlying boundary value problem at interior
points of the domain result usually from Galerkin boundary element approxi-
mations. Note that our analysis in Sect. 4.2 reveals the crucial role of Galerkin
orthogonality of the discretization in the derivation of superconvergence estimates
in negative order norms (indeed, for other discretization schemes such as colloca-
tion or Nyström methods, such superconvergence results either do not hold or only
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with a much smaller gain in asymptotic convergence order). We finally note that
the superconvergence error bounds for the solution at points x in the interior of
both the domain � or its complement deteriorate as x approaches � . Nevertheless,
this deterioration can be remedied and postprocessing procedures can be designed
to recover superconvergent solution values and normal and tangential derivatives
(required, for example, in shape optimization or uncertainty quantification) of arbi-
trary order from the Galerkin solution such that the superconvergence bounds are
uniform in the distance of x to the boundary � . For the details, we refer to [213].



Chapter 5
Generating the Matrix Coefficients

In order to implement the Galerkin method for boundary integral equations, the
approximation of the coefficients of the system matrix and the right-hand side
becomes a primary task. The integrals are of the form

Z
�

bi .x/ bj .x/ dsx;

Z
�

bi .x/ r .x/ dsx (5.1)

and
Z

�

bi .x/
Z

�

k .x; y; y� x/ bj .y/ dsydsx;

Z
�

bi .x/
Z

�

k .x; y; y� x/ r .y/ dsydsx;

(5.2)
where bi denotes the basis functions of the boundary element space and r is a
given function (right-hand side). Note that the basis functions are real and therefore
complex conjugation becomes obsolete.

The aim of this chapter is to develop and analyze problem-specific integration
techniques in order to approximate these integrals. Note that the integrals in (5.1)
do not contain any singularities, assuming that the right-hand side r is sufficiently
smooth on every panel. Furthermore, the number of non-zero integrals in (5.1) is
proportional to the dimension of the boundary element space (and not the square of
the dimension) because the basis functions are only locally defined.

First we will define a class of functions, the kernel functions, and derive their
characteristic properties (in local coordinates). All the kernel functions that we have
dealt with so far are part of this class as are kernels that appear in connection with
linear elasticity. Subsequently, we will introduce suitable variable transformations
that render the singular integrands analytic. This, in turn permits the numerical
approximation of the integral by means of standard quadrature methods. These
coordinate transforms are applicable to any integral operator arising in the bound-
ary reduction of strongly elliptic partial differential equations in R3 (see [137]).
They will not depend on the explicit form of the kernel function. This implies that
the numerical integration in the computer program can be realized in an abstract
manner.

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2 5,
c� Springer-Verlag Berlin Heidelberg 2011
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We will conclude this chapter with an error analysis. First we will analyze the
local quadrature error depending on the order of the quadrature, after which we will
estimate the effect this has on the entire discretization.

If not explicitly stated otherwise we will restrict ourselves to the case d D 3 and
two-dimensional surfaces � in the entire chapter.

Remark 5.0.1. In certain special cases (plane, right-angled panels, kernel func-
tions for the Laplace operator) the integrals in (5.1) and (5.2) can be evaluated
exactly (see [157]). However, we prefer the ansatz via numerical quadrature, as this
allows for a much larger class of integral operators and is also easier to implement.

Note: Readers who are more interested in the quadrature formulas and in the
required number of quadrature nodes than in the analysis and derivation will find a
compact summary of these in Sect. 5.2.4 and Theorem 5.3.30.

5.1 Kernel Functions and Strongly Singular Integrals

The properties of an integral operator of the form

.Ku/ .x/ WD
Z

�

k .x; y; y� x/ u .y/ dsy

are characterized by the properties of the kernel function k and the smoothness of
the surface.

5.1.1 Geometric Conditions

In this section we will summarize a set of conditions imposed on the surface and
the boundary element mesh. Most of the applications satisfy either these conditions
or some weakening of them. The relevant cases in which the conditions can be
weakened will be duly noted.

As before we use the notation G WD f�1; : : : ; �ng for the boundary element
mesh and �� W b� ! � for the parametrization over the reference element (unit
square/triangle).

Assumption 5.1.1. The surface mesh G is regular in the sense of Definition 4.1.4.

We assume that the functions �� , �t are analytic. The details can be found in the
following definition. The differential operator hv;rim that appears in the definition
is defined for a vector v 2 R2 by

hv;rim f WD
mX

kD0

 
m

k

!
vk

1vm�k
2 @k

1@
m�k
2 f: (5.3)
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Definition 5.1.2. Let � 2 G. The parametrization �� W O� ! � is analytic if there
exists an open, complex neighborhood O�? � C �C of O� in which �� can be
extended analytically, i.e., for all z D .z1; z2/ 2 O�? there exists a neighborhood
U .z/ � O�? such that

�� .w/ D
1X

iD0

hw � z;rii �� .z/
i Š

8w 2 U .z/ :

The extension is again denoted by �� .

Assumption 5.1.3. For all � 2 G the parametrizations �� Wb� ! � are analytic.

The integrals (5.2) over � � � will be split into a sum of integrals over � � t ,
where �; t 2 G. The quadrature error will depend on the angles between adjacent
panels and the distortion between the surface and the Euclidean metric. We will
employ Assumption 4.3.29 and the constants therein to quantify this influence. The
discretization parameter for the boundary element method is the diameter h of the
largest panel of a surface mesh. The error estimates from Chap. 4 describe quantita-
tively at what rate the error goes to zero as h! 0. Therefore it is essential for local
quadrature error analysis that the behavior of the parametrization with respect to the
panel diameter is properly understood. In order to describe this behavior we define
the quantities e1; e2; � W O� ! R as follows:

e1 .Ox/ WD k@1�� .Ox/k; e2 .Ox/ WD k@2�� .Ox/k ;
cos � .Ox/ WD h@1�� .Ox/ ; @2�� .Ox/i

k@1�� .Ox/k k@2�� .Ox/k : (5.4)

For plane triangular elements, e1, e2, cos � and the ratio e1=e2 can be easily
estimated by geometric terms related to the triangle.

Example 5.1.4. Let � � R3 be a plane triangle with vertices A, B, C and interior
angles ˛; ˇ; � . The reference triangle is denoted by bS and has the vertices .0; 0/|,
.1; 0/|, .1; 1/|. Then the mapping �� W bS ! � is given by

�� .Ox/ D ACmOx

with the 3 � 2-matrix
m WD ŒB� A;C � B� :

We have

e1 D kB �Ak ; e2 D kC � Bk ; cos � WD hB� A;C � Bi
kB �Ak kC � Bk :

In terms of the smallest interior angle of the triangle �

�0 .�/ WD min f˛; ˇ; �g (5.5)
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we obtain the estimates

�0 � � � � � �0 and sin �0 � kB �Ak
kC � Bk D

sin �

sin ˛
� 1

sin �0

:

This means that for triangulations that only consist of plane triangles, the quantities
e1=e2 and cos � depend only on the minimal interior angle but not on the refinement
of the triangulation.

Example 5.1.5. Let � be a surface and G0 a triangulation with (curved) triangles
whose diameter is of order 1. We can construct a refinement of G0 as follows. For
every t 2 G0 we generate a plane triangulation bGt of the reference element Ot , which

is then mapped by �t onto � , i.e., Gt WD
n
�t . Q�/ W Q� 2 bGt

o
. The refinement of G0 is

given by

G WD
n
�t . Q�/ W 8Q� 2 bGt , 8t 2 G0

o

(see Fig. 5.1). For a triangle � 2 G with � � t 2 G0 the vertices and interior
angles of the triangle Q� WD ��1

t .�/ are denoted by A;B;C and ˛; ˇ; � . Then the
parametrization of � is given by

�� .Ox/ WD �t .ACmOx/

with the 2 � 2-matrix m D ŒB� A;C � B�. It follows that

e1 .Ox/ D hB � A;Gt .Ox/ .B �A/i1=2
; e2 .Ox/ D hC � B;Gt .Ox/ .C � B/i1=2

cos � .Ox/ D hB � A;Gt .Ox/ .C � B/i
e1 .Ox/ e2 .Ox/

Fig. 5.1 Refinement of the reference element induces a refinement of the surface mesh
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with the Gram matrix

Gt .Ox/ WD .D�t .ACmOx//| .D�t .ACmOx//

and the Jacobian D�t . Clearly, the smallest and largest eigenvalues of this matrix
can be bounded below and above by 	min and 	max respectively, while these are
defined by

0 < 	min WD inf
t2G0

inf
Ox2Ot

inf
�2R2nf0g

h
;Gt .Ox/ 
i
k
k2

� sup
t2G0

sup
Ox2Ot

sup
�2R2nf0g

h
;Gt .Ox/ 
i
k
k2

DW 	max <1:

Note that 	min; 	max depend only on the coarsest triangulation G0 and, in particular,
are independent of the refinement of G. Hence it follows that

	min sin �0

	max
� e1=e2 � 	max

	min sin �0

with [see (5.5)]

�0 WD inf
n
�0 . Q�/ W 8Q� 2 bGt , 8t 2 G0

o
:

For the term cos � .Ox/ we obtain

cos � .Ox/ D h Qm1;Gt .Ox/ Qm2i
h Qm1;Gt .Ox/ Qm1i1=2 h Qm2;Gt .Ox/ Qm2i1=2

with Qm1 D .B �A/ = kB �Ak and Qm2 D .C � B/ = kC � Bk. With the function �0

from (5.5) we have
jh Qm1; Qm2ij � cos �0 . Q�/ < 1:

We define the compact set D WD f.
; �/ 2 S2 � S2 W h
; �i � cos �0 . Q�/g. Since
Gt .Ox/ is positive definite, the Cholesky decomposition of Gt .Ox/ exists, i.e., there
is an upper triangular matrix R D Rt .Ox/ with Gt .Ox/ D R|R. This results in the
estimate

jcos � .Ox/j � max
.�;�/2D

jhR
;R�ij
hR
;R
i1=2 hR�;R�i1=2

� 1: (5.6)

The equality on the right-hand side only holds for linearly dependent vectors R
 D
cR�, i.e., 
 D c� with c 2 R. These, however, do not lie in D and it follows that
the quotient in (5.6) will always be strictly smaller than one. SinceD is compact, it
follows that

jcos � .Ox/j � ˇ̌cos �? .Ox/ˇ̌ < 1
with 0 < �? .Ox/ < � . This estimate is valid for every Ox 2 bS and from the compact-

ness of bS we again deduce the existence of a �? (0 < �? < �) depending only on
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�0 . Q�/, �t and 	min, 	max, such that

sup
Ox2bS
jcos � .Ox/j � ˇ̌cos �?

ˇ̌
< 1:

5.1.2 Cauchy-Singular Integrals

We have shown in Sect. 3.3 that all kernel functions G .x � y/, �1;xG .x � y/ and
Q�1;yG .x � y/ with G from (3.3) are improperly integrable. For other kernel func-
tions (Example: Elasticity) this is not the case. As all quadrature methods in this
chapter can also be applied to Cauchy-singular kernel functions without being mod-
ified, we will extend the class of kernel functions. The spatial dimension is denoted
by d D 2; 3.

Definition 5.1.6. The kernel function k is Cauchy-singular if the Cauchy principal
value

p:v:
Z

�

k .x; y; y� x/ f .y/ dsy WD lim
"!0

Z
�nB".x/

k .x; y; y� x/ f .y/ dsy 8x 2 �

exists for all functionsf 2 L1 .�/ that are Hölder-continuous with exponent	 > 0
in a local neighborhood of x.

Remark 5.1.7 is a direct consequence of the definition of improper integrals.

Remark 5.1.7. For weakly singular kernels k the Cauchy principal value coincides
with the improper integral.

Example 5.1.8. Let d D 2 and � D .�1; 2/. The kernel function k W � � � ! R,
k .x; y/ D 1= .x � y/ is Cauchy-singular for x 2 � , but not for x 2 f�1; 2g. We
have

p:v:
Z

�

f .y/

x � y dy D p:v:
Z

�

f .y/ � f .x/
x � y dy C f .x/ p:v:

Z
�

1

x � y dy:

Let f be Hölder-continuous with exponent 	 > 0. Then j.f .y/ � f .x//=.x � y/j
� C jx � yj��1 represents an improper upper bound of the first integrand. The
second integration yields for x 2 � and a sufficiently small "

p:v:
Z

�

1

x � y dy D lim
"!0

�Z x�"

�1

1

x � y dy C
Z 2

xC"

1

x � y dy
�

(5.7)

D lim
"!0

.log " � log .1C x/C log .2� x/ � log "/ D log
2 � x
1C x :

This proves the representation

p:v:
Z

�

f .y/

x � y dy D
Z

�

f .y/ � f .x/
x � y dy C f .x/ log

2 � x
1C x : (5.8)



5.1 Kernel Functions and Strongly Singular Integrals 295

If x is a boundary vertex the integral diverges, since in (5.7) there is only one
.log "/ term. Note that the function p:v:

R
�
f .y/ = .� � y/ dy W � ! R in (5.8)

has logarithmic endpoint singularities for x D �1; 2.

Exercise 5.1.9. Let � D .�1; 1/� .�1; 1/. Show that the function k W � � � ! R,
k .x; y/ WD .x1 � y1/ = kx � yk3, is Cauchy-singular on � � � but not on � � � .

Efficient numerical quadrature methods are defined on a reference domain and
are then transferred to other domains via pullbacks. For this it is necessary to decom-
pose the twofold integration over � into a sum of integrals over pairs of panels and
then to transform the integration over a pair of panels into a twofold integral over a
reference element. Both steps can be complicated for kernel functions with strong
singularities and are derived in the following. The conditions imposed on the kernel
function and the associated integral operator will be specified in the following. The
general boundary element space on � for a surface mesh G is again denoted by S .

Assumption 5.1.10. The kernel function k is Cauchy-singular. The associated inte-
gral operator

.Ku/ .x/ WD p:v:
Z

�

k .x; y; y� x/ u .y/ dsy

is a continuous operator K W H� .�/ ! H�� .�/ for some � 2 f�1=2; 0; 1=2g
and a continuous mappingK W S ! L2 .�/.

The boundary element space S is embedded in L2 .�/ and L1 .�/.

Remark 5.1.11. The condition K W S ! L2 .�/ allows the decomposition of the
outer integral

.Ku; v/L2.�/ D
X
�2G

.Ku; v/L2.�/ 8u 2 S; 8v 2 L2 .�/ ; (5.9)

where here .�; �/L2.�/ and .�; �/L2.�/ denote the usual L2 inner-product and not the
continuous extension to dual pairings.

Remark 5.1.12. The integral operators (V;K;K 0) for the single and double layer
potentials from Chap. 3 satisfy Assumption 5.1.10 with � D �1=2; 0; 0. For � D
�1=2, this follows from Theorem 3.1.16 and the continuous embeddings S ,!
H�1=2 .�/ and H 1=2 .�/ ,! L2 .�/. For � D 0, this follows from Corollary 3.3.9
and the continuous embedding S ,! L1 .�/.

For the hypersingular operator we use the representation from Theorem 3.3.22
as well as the property curl�;A;0 '; curl�;A;2b  2 L1 .�/ for all '; 2 Sp;0 (see
Definition 4.1.36). Combining this with previous results we obtain

bW . ; '/ D .V curl�;A;2b  ; curl�;A;0 '/L2.�/ C c
�eV  ; '�

L2.�/

D
X
�2G

n
.V curl�;A;2b ; curl�;A;0 '/L2.�/ C

�eV  ; '�
L2.�/

o
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with the integral operator V for the single layer potential and

�eV  � .x/ WD c
Z

�

G .x � y/  .y/
D
A1=2n .x/ ;A1=2n .y/

E
dsxdsy 8x 2 � a.e.

The fact that the integral operator can be localized is, for Cauchy-singular ker-
nel functions, a consequence of the locality of the Cauchy principal value. The
restriction of the integration to one panel � 2 G leads to the definition

.K� u/ .x/ WD p:v:
Z

�

k .x; y; x� y/ u .y/ dsy: (5.10)

Lemma 5.1.13. Let Assumption 5.1.10 hold. Let u 2 L1 .�/ and uj� 2 C 1 .�/ for
all � 2 G. Then we have:

(a) For every x 2 t 2 G, (5.10) is finite.
(b) For x … � the Cauchy principal value coincides with the Riemann integral .
(c)

.Ku/ .x/ D
X
�2G

.K� u/ .x/ 8x 2 t 2 G: (5.11)

Let x 2 � 2 G and u 2 L1 .�/ with uj� 2 C 1 .�/. We can find an "0 > 0 with
� \ B" .x/ D � \ B" .x/ for all 0 < " � "0. Since u is differentiable in � \ B" .x/,
the Cauchy principal value p:v:

R
�\B".x/ k .x; y; x� y/ u .y/ dsy exists. The local

definition of the principal value property and the boundedness of the integrand on
�nB"0

.x/ together yield that

p:v:
Z

�

k .x; y; x� y/ u .y/ dsy

exists for x … � as a Riemann integral and for x 2 � as a Cauchy principal value.
Summing over all � 2 G gives us the representation

.Ku/ .x/ D
X
�2G

p:v:
Z

�

k .x; y; x� y/ u .y/ dsy: (5.12)

�
In Sect. 5.3 we will discuss efficient numerical integration methods for the

approximation of integrals of the type
R

��t
k .x; y; y� x/ u .y/ v .x/ dsydsx.

Lemma 5.1.13 and Assumption 5.1.10 show that this decomposition is unproblem-
atic for Cauchy-singular integrals.

Corollary 5.1.14. Let the assumptions from Lemma 5.1.13 hold. Then we have for
all v 2 L2 .�/

.Ku; v/L2.�/ D
X

�;t2G
.Kt u; v/L2.�/
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with

.Kt u; v/L2.�/ D

8̂
ˆ̂<
ˆ̂̂:

Z
��t

v .x/ k .x; y; y � x/ u .y/ dsydsx � ¤ t;
Z

�

v .x/ p:v:
Z

�

k .x; y; y� x/ u .y/ dsydsx � D t:

5.1.3 Explicit Conditions on Cauchy-Singular Kernel Functions

In this subsection we will formulate explicit conditions that describe the analytic
properties of the kernel functions (Assumption 5.1.15) and guarantee the existence
of the Cauchy principal value (Assumption 5.1.19).

Assumption 5.1.15. The kernel function has the representation

k .x; y; z/ WD kzk�s
bX

iD0


i .x; y/Ai

�
kzk ; z

kzk
�
; 8x; y 2 �; z D y � x; x ¤ y

(5.13)
with s 2 Z and b 2 N . The functions 
i .x; y/ and Ai .r; 
/ satisfy the conditions:

1. For 0 � i � b, Ai is analytic on .0; �0/�U0 where U0 is a neighborhood of the
unit sphere S2 and �0 > 0.

2. kzk�s Ab

�
kzk ; z

kzk
�

is improperly integrable in every two-dimensional, bounded

neighborhood of the origin.
3. The coefficient functions 
i are contained in L1 .� � �/ and are uniformly,

continuously differentiable on smooth parts �j � �k of � � � . The order of
differentiation depends on the smoothness of the surface pieces �j � �k . If these
are analytic then the coefficients are also analytic.

We note that practically all kernel functions that are derived by integral equation
methods from either scalar elliptic boundary value problems (in R3) or systems
thereof have the form (5.13). For a detailed analysis of fundamental solutions of
partial differential equations we refer to [97, 139]. The assumption b 2 N in (5.13)
guarantees that at most finitely many terms exist that are not improperly integrable.
It should be noted that the representation (5.13) is by no means unique.

Example 5.1.16. The fundamental solution G from (3.3) is of the form (5.13) with
s D 1, b D 0, 
0 � 1 and

A0 W R�0 � S2 ! C; A0 .r; 
/ D 1

4�
p

det A

er.hb;�iA��k�kA/

k
kA
:

The kernel function of the classical double layer potential also belongs to the
introduced class of kernels.
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Example 5.1.17. The kernel of the double layer potential is given by

e�1;yG .x � y/ D �1;yG .x � y/C 2 hn;biG .x � y/ :

We use (3.30) and obtain

rzG .z/ D � 1

4�
p

det A

A�1z

kzk3A
C R .z/ with kR .z/k � C kzk�1 :

It follows that

k .x; y; z/ D kzk�s
bX

iD0


i .x; y/Ai

�
kzk ; z

kzk
�

with s D 2, b D 6,

8i D 0; 1; 2 W 
i .x; y/ D 
iC3 .x; y/ D niC1 .y/;

8i D 0; 1; 2 W Ai .r; 
/ D �
i=
�
4�
p

det A k
k3
A

�
; AiC3 .r; 
/ D r2 .AR .r
//iC1

and 
6 .x; y/ D 2 hn .y/ ;bi, A6 .r; 
/ D r2G .r
/.
The representation can be simplified for the Laplace operator and the parameters

can be chosen as s D 2, b D 3, 
3 D A3 � 0,

8i D 0; 1; 2 W 
i .x; y/ D niC1 .y/; Ai .r; 
/ WD �
i= .4�/:

Exercise 5.1.18. LetG be the fundamental solution from (3.3). Show that the kernel
functions

�1;xG .x � y/ ; �1;x Q�1;yG .x � y/

belong to the introduced class of kernels.

It is shown in [139] that, for kernel functions of elliptic differential operators of
second order in R3, the order of singularity s in (5.13) is an integer and satisfies
s � 3. The case s D 3 occurs for the kernel function �1;x Q�1;yG .x � y/ with G
from (3.3). We have, however, shown in (3.3.22) that the (hypersingular) kernel
function can be regularized by means of integration by parts. Similar regularization
techniques also exist for the integral operators of elasticity (see [127, 169]).

Kernel functions that satisfy Assumption 5.1.15 do not necessarily have a Cauchy
principal value. We have to require that the order of singularity s satisfies s � 2

and if s D 2 it also has to satisfy an antisymmetry condition (see also the parity
condition, e.g., in [137, (7.1.74) and Definition 7.1.3]).

Assumption 5.1.19. The kernel function satisfies Assumption 5.1.15 with s � 2. In
the case s D 2 let there exist a decomposition
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Ai

�
kzk ; z

kzk
�
D Ai;0

�
z
kzk

�
C kzkAi;1

�
kzk ; z

kzk
�

(5.14)

for 0 � i � b with functions Ai;0 .
/ W S2 ! K and Ai;1 .r; 
/ W R�0 � S2 ! K
that have the same analytic properties as Ai and satisfy

Ai;0 .
/ D �Ai;0 .�
/

for all 
 2 S2.

Kernel functions that satisfy Assumption 5.1.19 are called antisymmetric.

Remark 5.1.20. Improperly integrable kernel functions satisfy Assumption 5.1.19
with Ai;0 � 0.

5.1.4 Kernel Functions in Local Coordinates

In order to investigate the kernel function in local coordinates, it suffices to analyze
an arbitrary term in the sum (5.13). Therefore we assume that the kernel function is
given by

k .x; y; z/ WD kzk�s 
 .x; y/A
�
kzk ; z

kzk
�

and satisfies Assumption 5.1.19. We set

Ok .Ox; Oy/ WD k .�� .Ox/ ; �t .Oy/ ; �t .Oy/ � �� .Ox// ; 8 .Ox; Oy/ 2 O� � Ot W Ox ¤ Oy (5.15)

and, for the analysis of the behavior of Ok in local coordinates, we distinguish
between three cases:

(I) � , t touch each other in at most one point.
(II) The intersection � \ t is a common edge.

(III) The panels are identical � D t .
With regular surface meshes one of the above-mentioned cases always applies

for two panels �; t 2 G. Should there be any hanging nodes the situation can be
reduced to one of the three above-mentioned cases by appropriate decomposition.

Case I: For � \ t D ; the kernel function is regular and the analytic properties on
the reference domains follow from the analytic properties of the transformations ��

and �t . We therefore assume in the following that � \ t D p. In local coordinates
we obtain for the difference variable z D y � x the representation

z D �t .Oy/� �� .Ox/ : (5.16)
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Without loss of generality we assume that �� .0/ D �t .0/ D p. Clearly, we have
z D 0 if and only if Ox D Oy D .0; 0/|. Thus, in the case under consideration Ok is
analytic outside of kOxk C kOyk � " with an arbitrary " > 0 and it suffices to analyze
the singular behavior of Ok in an arbitrarily small neighborhood of 0. If we replace
�� and �t in (5.16) by their respective Taylor expansions about 0 we obtain

z D
1X

mD1

hOy;rim �t .0/� hOx;rim �� .0/

mŠ
: (5.17)

We interpret .Ox; Oy/ as a vector in R4 and introduce four-dimensional polar coordi-
nates

.Ox; Oy/ D r
 (5.18)

with 
 D .Ox; Oy/ = k.Ox; Oy/k 2 S3. If we insert this into (5.17) we obtain

z D r
1X

mD0

rmlm .
/ DW ra1 .r; 
/ (5.19)

with

lm.
/ WD h
34;rimC1�t .0/� h
12;rimC1�� .0/

.mC 1/Š and 
ij WD
�

i ; 
j

�
; 1�i; j � 4.

The function a1 is analytic in .0; �1/ � U1 where U1 is a neighborhood of the unit
sphere S3 and �1 > 0. By Assumption 4.3.29 and the bi-Lipschitz continuity of �t ,
�� there exist c; Qc; Oc > 0 such that

r ka1 .r; 
/k D kra1 .r; 
/k D kzk D ky � xk � c .ky � pk C kp� xk/
� c .k�t .Oy/ � �t .0/k C k�� .Ox/� �� .0/k/ � Qc .kOyk C kOxk/ � Ocr

and therefore a1 does not have any zeros in .0; �2/�U2 whereU2 is a neighborhood
of S3 and �2 > 0. It follows from this that a2;s .r; 
/ WD ka1 .r; 
/ks is analytic for
all s 2 R.

Therefore the quotient z= kzk D a1 .r; 
/ a2;�1 .r; 
/ is also analytic in .0; �2/ �
U2. By combining these representations we obtain

kzk�s A

�
kzk ; z

kzk
�
D r�sa3;s .r; 
/ (5.20a)

where a3;s .r; 
/ is analytic in .0; �3/�U3 with �3 > 0 and a neighborhoodU3 of S3.

Case II: The intersection E WD � \ t is a common edge. Without loss of generality
we assume that the parametrizations �� , �t satisfy the relation

��

�
�1

0

� D �t

�
�1

0

� 8
1 2 Œ0; 1� :
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Hence the difference
z D y � x D �t .Oy/� �� .Ox/

is zero if and only if the three-dimensional relative coordinates

Oz WD .Oz1; Oz2; Oz3/
| WD

0
@ Oy1 � Ox1

Oy2

Ox2

1
A

are equal to zero. In these coordinates the difference z has the form

z D �t

�Oz1C Ox1Oz2

� � ��

� Ox1Oz3

�
:

We introduce three-dimensional polar coordinates Oz D r
 with r WD kOzk and 
 D
Oz=kOzk 2 S2 and expand z with respect to Oz about zero

z D �t

�Oz1C Ox1

Oz2

� � ��

� Ox1

Oz3

� D
1X

mD1

rm

D�
�1

�2

�
;r
Em
�t

� Ox1

0

�� .
3@2/
m ��

� Ox1

0

�
mŠ

(5.21)

D r
1X

mD0

rmlm . Ox1; 
/ DW rb . Ox1; r; 
/

with

lm . Ox1; 
/ WD
D�

�1

�2

�
;r
EmC1

�t

� Ox1

0

� � .
3@2/
mC1 ��

� Ox1

0

�
.mC 1/Š :

By Assumption 4.3.29 there exists a point on the common edge p D �t .�; 0/ 2 E
with

rb . Ox1; r; 
/ D ky � xk � c .ky � pk C kp � xk/
D c

�����t

� Oy1

Oy2

� � �t

�
�
0

����C
�����

� Ox1

Ox2

� � �t

�
�
0

����
�

� c
�
. Oy1 � �/2 C Oy2

2 C . Ox1 � �/2 C Ox2
2

�1=2

� c
 
. Oy1 � Ox1/

2

2
C Oy2

2 C Ox2
2

!1=2

� c

2
kOzk D c

2
r:

Therefore b . Ox1; r; 
/ does not have any zeros in .0; �4/ � U4 where U4 is a neigh-
borhood of S2 and �4 > 0. From this we have that b2;s . Ox1; r; 
/ WD kb . Ox1; r; 
/ks
is analytic for all s 2 R.
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As in Case I we deduce the representation

kzk�s A

�
kzk ; z

kzk
�
D r�sb3;s .x1; r; 
/ (5.20b)

with a function b3;s that is analytic in I5 � .0; �5/ � U5 with neighborhoods I5 and
U5 of Œ0; 1� and S2 respectively and �5 > 0.

Case III: The panels �; t are identical. Since �� is bijective, the difference

z D y � x D �� .Oy/� �� .Ox/

vanishes if and only if the two-dimensional relative coordinates

Oz WD
� Oy1 � Ox1

Oy2 � Ox2

�

are equal to zero. If we expand the difference z about Oz D 0 we obtain

z D �� .OzC Ox/� �� .Ox/ D
1X

mD1

� hOz;rim ��

mŠ

�
.Ox/ :

We introduce two-dimensional polar coordinates Oz D r
 with 
 D Oz= kOzk and obtain

z D r
1X

mD0

rmlm .Ox; 
/ DW rd .Ox; r; 
/ (5.22)

with

lm .Ox; 
/ D
 
h
;rimC1 ��

.mC 1/Š

!
.Ox/ :

We deduce from the bi-Lipschitz continuity of �� that

r kd .Ox; r; 
/k D kzk D k�� .Oy/ � �� .Ox/k � c kOy � Oxk D c kOzk D cr;

and therefore d .Ox; r; 
/ does not have any zeros in I6 � .0; �6/ � U6 with neigh-
borhoods I6 and U6 of O� and S1 respectively and �6 > 0. From this we have that
d2;s .x1; r; 
/ WD kb .x1; r; 
/ks is analytic for all s 2 R.

As in Case I we deduce the representation

k .x; y; z/ D kzk�s A

�
kzk ; z

kzk
�
D r�sd3;s .Ox; r; 
/ ( 5.20c)

with a function d3;s that is analytic in I7 � .0; �7/� U7 with neighborhoods I7 and
U7 of O� and S1 respectively and �7 > 0.
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For Cauchy-singular kernel functions that satisfy Assumption 5.1.19 we can
further improve this result. We use the decomposition from Assumption 5.1.19

A

�
kzk ; z

kzk
�
D A0

�
z
kzk

�
C kzkA1

�
kzk ; z

kzk
�

with an antisymmetric A0. By choosing A D A0, s D 2 and 
 � 1 or A .r; 
/ D
rA1 .r; 
/ in ( 5.20c) we obtain

kzk�2

�
A0

�
z
kzk

�
C kzkA1

�
kzk ; z

kzk
��
D r�2d3;2 .Ox; r; 
/Cr�1d3;1 .Ox; r; 
/ :

Exercise 5.1.21. From the antisymmetry of A0 deduce the existence of a function
Qd3;2 that is analytic in I8 � .0; �8/ � U8 with neighborhoods I8 of O� , U8 of S1 and
�8 > 0, and satisfies

d3;2 .Ox; r; 
/ D d3;2 .Ox; 
/C r Qd3;2 .Ox; r; 
/ ; d3;2 .Ox; 
/ D �d3;2 .Ox;�
/

with d3;2 .Ox; 
/ WD d3;2 .Ox; 0; 
/.
Theorem 5.1.22. Let the kernel function satisfy Assumption 5.1.19:

(a) Then there exist functions Qd3;2, Qd3;1 that are analytic in I � .0; �/ � U , and
there exist neighborhoods I of O� , U of S1 and � > 0 such that

k .x; y; z/ D r�2 Qd3;2 .Ox; 
/C r�1 Qd3;1 .Ox; r; 
/ and Qd3;2 .Ox; 
/ D � Qd3;2 .Ox;�
/

with x D �� .Ox/, y D �� .OxCr
/, z D y � x.
(b) Let Obi , Obj be the basis functions on the reference elements. The integrand Obi .Ox/
Obj .Oy/ Ok .Ox; Oy/ g� .Ox/ g� .Oy/ [see (5.15)] has the representation

r�2 Od3;2 .Ox; 
/C r�1 Od3;1 .Ox; r; 
/

with functions Od3;2, Od3;1 that have the same analytic and antisymmetric prop-
erties.

(c) There exists a function f that has the same analytic properties as Qd3;2, Qd3;1

from (a) and satisfies

Ok .Ox; Ox � Oz/C Ok .Ox � Oz; Ox/ D r�1f .Ox; r; 
/ : (5.23)

Proof. The fact that 
 is analytic in both variables combined with the fact that �� is
analytic passes on this property to
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 .�� .Ox/ ; �� .Oy// DW Q
 .Ox; Oy/ D Q
 .Ox; OxC Oz/ D Q
 .Ox; Ox/C
D
Oz;�!
 1 .Ox; Oz/

E

D Q
 .Ox; Ox/C r
D

;�!
 1 .Ox; r
/

E
DW Q
 .Ox; Ox/C r Q
1 .Ox; r; 
/

with analytic functions Q
1 and a (vector-valued) �!
 1. Similar arguments can be
applied to the surface element g� as well as the basis functions Obi and Obj and, thus,
give us the statements of (a) and (b).

For c: If we substitute Ox � Oz  Oy in the second summand of (5.23), apply the
already derived representations and use the fact that Qd3;1 is smooth with respect
to the first variable, we obtain with Oz D r
 for Ok .Ox; Ox � Oz/ C Ok .Oy; OyC Oz/ the
representation

r�2 Qd3;2 .Ox;�
/C r�1 Qd3;1 .Ox; r;�
/C r�2 Qd3;2 .Oy; 
/C r�1 Qd3;1 .Oy; r; 
/
D r�2

� Qd3;2 .Ox;�
/C Qd3;2 .Ox � Oz; 
/
�
Cr�1

� Qd3;1 .Ox; r;�
/C Qd3;1 .Ox � Oz; r; 
/
�

DW r�2
� Qd3;2 .Ox;�
/C Qd3;2 .Ox; 
/C r

D

;
�!
f .Ox; r; 
/

E�
C r�1f0 .Ox; r; 
/

DW r�1f .Ox; r; 
/ :

�

5.2 Relative Coordinates

The numerical integration is defined on a pair of reference panels and is transferred
by means of a transformation to an integration over pairs of panels � � t . In general
we will assume that the conditions from Sect. 5.1.1 hold. We distinguish between
four cases:

1. Identical panels
2. Panels with exactly one common edge
3. Panels with exactly one common vertex
4. Panels with positive distance

Relative coordinates for one-dimensional curves and interval partitionings are
due to [134]. In [211] general kernel functions in local coordinates were analyzed
and, based on these results, it was shown in [212] that when using simplex coordi-
nates the determinant of the transformation removes the singularity in the integrand,
which becomes analytic in a neighborhood of the original singularity.

Relative coordinates for triangular elements were introduced in [197] and [125].
Combining this with the pullback to the reference element was developed in [235].
Erichsen and Sauter [88] contains a compact summary of the required quadrature
orders, depending on the underlying operator, the order of approximation and the
norm in which the error is measured.
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5.2.1 Identical Panels

In order to generate the matrix coefficients the sesquilinear form is evaluated for
pairs bi , bj of basis functions. In the case of identical panels we consider the integral

Z
�

bi .x/ p:v:
Z

�

k .x; y; y� x/ bj .y/ dsydsx: (5.24)

For x 2 � and a sufficiently small "0 > 0 we have B" .x/\� � � for all 0 < " � "0

and the boundedness of the kernel function on � � .�nB" .x// allows the definition
of the integral

I" WD
Z

�

Z
�nB".x/

k1 .x; y; y� x/ dsydsx

with
k1 .x; y; z/ WD bi .x/ k .x; y; z/ bj .y/:

Let �� W O� ! � be the transformation of the reference element to � . We set

k2 .Ox; Oy/ WD k1 .�� .Ox/ ; �� .Oy/ ; �� .Oy/ � �� .Ox// g� .Ox/ g� .Oy/ : (5.25)

eB" .Ox/ WD ��1
� .� \ B" .�� .Ox/// denotes the pullback of the "-neighborhood of x

(see Fig. 5.2). Note that eB" .Ox/ in general does not by any means represent a circular
disc in the parameter domain. We will however show that the limit " ! 0 remains
the same if eB" .x/ is replaced by the disc B" .x/.

Theorem 5.2.1. Let the kernel function satisfy the assumption (5.1.19). Let � 2 G
be parametrized by �� 2 C 1C� . O�/ with 	 > 0. Then

lim
"!0

Z
O�

Z
O�n QB".Qx/

k2 .Ox; Oy/ d Oyd Ox D lim
"!0

Z
O�

Z
O�nB".Ox/

k2 .Ox; Oy/ d Oyd Ox:

Fig. 5.2 Intersection of the " ball with the surface and deformed intersection in the parameter
domain
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Proof. We introduce polar coordinates .r; '/ about Ox WD ��1
� .x/. The parametriza-

tion of the boundary @eB" .Ox/ implicitly defines the function � W Œ0; "0� � Œ��; �Œ!
R�0 by �����

�
OxC � ."; '/ �cos '

sin '

�� � x
��� D ":

If we expand with respect to " (see Exercise 5.2.2) and by using the implicit function
theorem we obtain � 2 C 1C� .Œ0; "0� � Œ��; �Œ/ and

�.0; '/D 0; � ."; '/ D "�".0; '/CO
�
"1C	

�
and, �" .0; '/ D

���D�� .Ox/ �cos'
sin '

�����1

:

(5.26)
This leads to the decomposition

Z
O�

Z
O�neB".Qx/

: : : D
Z

O�

Z
O�nB".Ox/

: : :C
Z

O�

Z 	

�	

Z "


.";'/

: : : : (5.27)

We will show that the second integral on the right-hand side converges to zero for
" ! 0. The angular integration is split into Œ��; 0Œ and Œ0; �Œ and ' is substituted
in the first interval by ' D Q' � � . For the second integral in (5.27) this yields the
representation

Z
O�

Z 	

0

�Z "


.";'/

k2

�
Ox; OxCr�cos '

sin '

��
rdrC

Z "


.";'�	/

k2

�
Ox; OxC r�cos.'�	/

sin.'�	/

��
rdr

�
d'd Ox:
(5.28)

The expansion (5.26) implies that

� ."; ' � �/ D "�" .0; ' � �/CO
�
"1C�

�
D "�" .0; '/CO

�
"1C�

�

D � ."; '/CO
�
"1C�

�
;

which for the integral in (5.28) yields the representation

Z
O�

Z 	

0

Z "


.";'/

�
k2

�
Ox; OxC r�cos '

sin '

��Ck2

�
Ox; Ox � r�cos.'/

sin.'/

���
rdrd'd Ox

C
Z

O�

Z 	

0

Z 
.";'/


.";'�	/

k2

�
Ox; Ox � r�cos.'/

sin.'/

��
rdrd'd Ox: (5.29)

The kernel function in polar coordinates can be estimated as

ˇ̌
ˇrk2

�
Ox; Ox � r�cos '

sin '

��ˇ̌ˇ � Cr�1:

Since j� ."; '/ � � ."; ' � �/j D O
�
"1C�

�
the second integral in (5.29) converges

to zero and we therefore only consider the first integral. The antisymmetry of the
kernel function in local coordinates (see Theorem 5.1.22) implies
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r
�
k2

�
Ox; OxC r�cos '

sin '

��Ck2

�
Ox; Ox � r�cos.'/

sin.'/

��� D O .1/
and therefore the first integral in (5.29) also converges to zero. �

Exercise 5.2.2. Prove the expansion (5.26).

This proves that (5.24) coincides with the limit of the integral

eI " WD
Z 1

0

Z Ox1

0

Z 1

0

Z Oy1

0„ ƒ‚ …
kOy�Oxk�"

k2 .Ox; Oy/ d Oyd Ox

for "! 0. It is our aim to represent the limit lim"!0
eI " as an integral over a fixed,

"-independent integration domain with an analytic integrand. To achieve this we first
introduce relative coordinates .Ox; Oz/ D .Ox; Oy � Ox/ that shift the singular behavior of
the kernel function into Oz D 0. For now, letb� be the unit triangle. The results for the
unit square will be summarized in Sect. 5.2.4.

Then we have

eI " D
Z 1

0

Z Ox1

0

Z 1� Ox1

� Ox1

Z Oz1C Ox1� Ox2

� Ox2„ ƒ‚ …
kOzk�"

k2 .Ox; OzC Ox/ d Ozd Ox: (5.30)

The following two examples serve to illustrate the characteristic behavior of the
integrand as well as the strategy for its numerical treatment (see Fig. 5.3).

Example 5.2.3. Let k W .�1; 2/ � .�1; 2/! R be given by k .x; y/ D .y � x/�1.
For smooth functions u; v our aim is to evaluate the integral

I" D
Z 2

�1

v .x/
Z 2

�1
jx�yj�"

k .x; y/ u .y/ dydx:

Fig. 5.3 Relative coordinates for .x; y/ 2 .�1; 2/� .�1; 2/
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In this case relative coordinates z D y � x yield

I" D
Z 2

�1

v .x/

0
B@
Z 2�x

�1�x
jzj�"

u .zC x/
z

d z

1
CA dx: (5.31)

For simplicity’s sake we set u .z/ � 1 (in general u would have to be expanded
about z D 0). The inner integration can be evaluated explicitly and yields (for
" < min f2 � x; 1C xg)

lim
"!0

Z 2�x

�1�x
jzj�"

1

z
d z D ln

2 � x
1C x :

This example shows that the result of the inner integration has characteristic (log-
arithmic) singularities on the boundaries of the panel related to the outer integration
and that it therefore is not sufficient to only develop special integration methods for
the inner integration. Standard quadrature methods can thus only be used with a sig-
nificant loss in accuracy. In the case of two-dimensional surfaces it can be shown for
Cauchy-singular kernel functions that the result of the inner z-integration behaves
as 	 log .dist .x; @�//. The strength of the singular behavior generally depends on
the order of singularity of the kernel function and significantly complicates the use
of weighted integration formulas. We will show in the following that the integrand
can be regularized by simply changing the ordering of the integration variables.

Example 5.2.4. Taking the auxiliary condition jzj � " into consideration yields the
decomposition of the integration domain in (5.31) as given by

2[
iD1

D"
i WD

	 �1 � x � 2 � "
" � z � 2 � x



[
	 �1C " � x � 2
�1 � x � z � �"



:

Changing the ordering of the integration variables in the subdomainsD"
1;2 yields

D"
1 [D"

2 D
	

" � z � 3
�1 � x � 2 � z



[
	 �3 � z � �"
�1 � z � x � 2



;

and we obtain

lim
"!0

I" D lim
"!0

0
BBBB@
Z 3

"

1

z

Z 2�z

�1

v .x/ dx
„ ƒ‚ …

DWh.1/.z/

d zC
Z �"

�3

1

z

Z 2

�1�z
v .x/ dx

„ ƒ‚ …
h.2/.z/

d z

1
CCCCA (5.32)

D lim
"!0

�Z 3

"

1

z
h.1/ .z/ d zC

Z �"

�3

1

z
h.2/ .z/ d z

�
:
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The substitution z �z in the second integral gives us

lim
"!0

I" D lim
"!0

Z 3

"

h.1/ .z/ � h.2/ .�z/

z
d z:

By virtue of
ˇ̌
h.2/ .z/ � h.1/ .�z/

ˇ̌ � C z the integrand is bounded and the Cauchy
principal value coincides with the Riemann integral

lim
"!0

I" D
Z 3

0

h.1/ .z/ � h.2/ .�z/

z
d z:

The integrand has a removable singularity for z D 0.

We will apply the one-dimension concept developed in this example to the
general situation (5.30) and first change the order of integration.

The integration domain is decomposed as

8̂
<̂
ˆ̂:

�1 � Oz1 � 0
�1 � Oz2 � Oz1

�Oz2 � Ox1 � 1
�Oz2 � Ox2 � Ox1

9>>=
>>;
[

8̂
<̂
ˆ̂:

�1 � Oz1 � 0
Oz1 � Oz2 � 0
�Oz1 � Ox1 � 1

�Oz2 � Ox2 � Ox1 C Oz1 � Oz2

9>>=
>>;
[

8̂
<̂
ˆ̂:

�1 � Oz1 � 0
0 � Oz2 � 1C Oz1

Oz2 � Oz1 � Ox1 � 1
0 � Ox2 � Ox1 C Oz1 � Oz2

9>>=
>>;

[

8̂
<̂
ˆ̂:

0 � Oz1 � 1
�1C Oz1 � Oz2 � 0
�Oz2 � Ox1 � 1 � Oz1

�Oz2 � Ox2 � Ox1

9>>=
>>;
[

8̂
<̂
ˆ̂:

0 � Oz1 � 1
0 � Oz2 � Oz1

0 � Ox1 � 1 � Oz1

0 � Ox2 � Ox1

9>>=
>>;
[

8̂
<̂
ˆ̂:

0 � Oz1 � 1
Oz1 � Oz2 � 1

Oz2 � Oz1 � Ox1 � 1 � Oz1

0 � Ox2 � Oz1 � Oz2 C Ox1

9>>=
>>;

with the auxiliary condition kOzk � " into subdomains Di , 1 � i � 6. Note
that the Oz-variables describe the outer integration as in (5.32). As in the proof of
Theorem 5.2.1 we use the antisymmetry of the principal part of the kernel function
to regularize the integrand by means of mirroring. The subdomainsD1;D2;D4 are
mirrored onto the subdomainsD6;D5;D3 by means of the substitution Oznew D �Oz
(see Fig. 5.4). The Ox-variables in the other integrand are transformed by the substi-
tution Oxnew D Ox� Oznew. More specifically, on the integration domainDi we use the
linear transformations

 
x.1/

new

z.1/
new

!
D
�

x
�z

�  
x.2/

new

z.2/
new

!
D
�

x
�z

�  
x.3/

new

z.3/
new

!
D
�

xC z
z

�
 

x.4/
new

z.4/
new

!
D
�

x
�z

�  
x.4/

new

z.4/
new

!
D
�

xC z
z

�  
x.6/

new

z.6/
new

!
D
�

xC z
z

�
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Fig. 5.4 Subdomains Di ,
1 � i � 6, with
corresponding directions for
reflection

and again denote the new coordinates by .x; z/. This gives us

eI " D
Z 1

0

Z 1

Oz1„ ƒ‚ …
kOzk�"

 Z 1

Oz2

Z Ox1

Oz2

k2 .Ox; Ox � Oz/C k2 .Ox � Oz; Ox/ d Ox
!
d Oz

C
Z 1

0

Z Oz1

0„ ƒ‚ …
kOzk�"

 Z 1

Oz1

Z Ox1�Oz1COz2

Oz2

k2 .Ox; Ox � Oz/C k2 .Ox � Oz; Ox/ d Ox
!
d Oz

C
Z 0

�1

Z 1COz1

0„ ƒ‚ …
kOzk�"

 Z 1COz1

Oz2

Z Ox1

Oz2

k2 .Ox; Ox � Oz/C k2 .Ox � Oz; Ox/ d Ox
!
d Oz:

Owing to the smoothness of k with respect to the first argument and, in the case of
Cauchy-singular kernels, the antisymmetry of the kernel function [see (5.23)] for
kOzk ! 0, the integrands behave as

k2 .Ox; Ox � Oz/C k2 .Ox � Oz; Ox/ D O
�
kOzk�1

�

and are therefore improperly integrable. We set kC
2 .Ox; Oz/ WD k2 .Ox; Ox � Oz/ C

k2 .Ox � Oz; Ox/. The limit "! 0 then yields

I D lim
"!0

eI " D
Z 1

0

Z 1

Oz1

 Z 1

Oz2

Z Ox1

Oz2

kC
2 .Ox; Oz/ d Ox

!
d Oz (5.33)

C
Z 1

0

Z Oz1

0

 Z 1

Oz1

Z Ox1�Oz1COz2

Oz2

kC
2 .Ox; Oz/ d Ox

!
d Oz

C
Z 0

�1

Z 1COz1

0

 Z 1COz1

Oz2

Z Ox1

Oz2

kC
2 .Ox; Oz/ d Ox

!
d Oz:
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In the next step these three integrals are transformed onto the four-dimensional
reference domain

D WD f0 � w1 � 1; 0 � w2 � w1; 0 � w3 � w2; 0 � w4 � w3g :

The associated linear mappings Ti W D ! Di , .Ox; Oz/ WD Ti w are given for i D
1; 2; 3 by the matrices mi :

m1 WD

2
664
1 0 0 0

1 �1 1 0
0 0 0 1

0 0 1 0

3
775 ; m2 WD

2
664
1 0 0 0

0 1 �1 1
0 0 1 0

0 0 0 1

3
775 ; m3 WD

2
664
1 0 0 �1
0 1 0 �1
0 0 0 �1
0 0 1 �1

3
775 :

We have det .mi / D 1 for all 1 � i � 3. From this we have for the integral (5.33)

I D
3X

iD1

Z 1

0

Z w1

0

Z w2

0

Z w3

0

kC
2 .mi w/ dw:

The simplex coordinates .
; �1; �2; �3/ transform the unit cube .0; 1/4 onto D:

.w1;w2;w3;w4/
| D .
; 
�1; 
�1�2; 
�1�2�3/

| :

Note that the determinant of the Jacobian of this transformation is equal to 
3�2
1�2

and that we finally obtain the representation

I D
3X

iD1

Z 1

0

Z 1

0

Z 1

0

Z 1

0


3�2
1�2k

C
2

�

mi .1; �1; �1�2; �1�2�3/

|� d�1d�2d�3d
:

(5.34)
It is proved in Theorem 5.2.5 that the integrand in this representation is ana-

lytic. The integral can therefore be efficiently approximated by means of Gaussian
quadrature with respect to each coordinate.

Theorem 5.2.5. The integrand in (5.34) can be analytically extended with respect
to all variables in a complex neighborhood of Œ0; 1�4.

Remark 5.2.6. The size of the complex neighborhood of Œ0; 1�4 in which the inte-
grand in (5.34) can be extended, is estimated in Sect. 5.3.2.3.

Notation 5.2.7. A function u W � �R�0�S1 has the property (A) if � > 0 and there
exist neighborhoods �? of � and U of S1 such that u can be extended to a function
u? W �? �R�0 � U which is analytic on �? � Œ0; �� � U .

Proof of Theorem 5.2.5: We set Obi WD .bi ı �� / g� and use r D kOzk and 
 D Oz= kOzk.
The fact that the basis functions and the surface element g� are analytic in local
coordinates gives us the representation
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rkC
2 .Ox; Oz/ D r

� Obi .Ox/ Obj .Ox � Oz/ Ok .Ox; Ox � Oz/C Obi .Ox � Oz/ Obj .Ox/ Ok .Ox � Oz; Ox/
�

D Obi .Ox/ Obj .Ox/ r
� Ok .Ox; Ox � Oz/C Ok .Ox � Oz; Ox/�C r2R .Ox; r; 
/

with

R WD Obi .Ox/
�
Dr
Obj

�
.Ox; r; 
/ Ok .Ox; Ox � r
/C Obj .Ox/

�
Dr
Obi

�
.Ox; r; 
/ Ok .Ox � r
; Ox/

and

.Dr u/ .Ox; r; 
/ WD
8<
:

u .Ox � r
/ � u .Ox/
r

if r > 0;

� h
;ru .Ox/i if r D 0.

Clearly, the functions Dr
Obj , Dr

Obi have the property (A). From Theorem 5.1.22(c)
we thus also have the property (A) for the function rkC

2 in .Ox; r; 
/-coordinates.
The integrand in (5.34) is therefore analytic with respect to every variable if we
can show that the transformation from .
; �/-coordinates to .Ox; r; 
/ is analytic. The
coordinate systems satisfy the relation

. Ox1; Ox2; r cos'; r sin'/| D .Ox; Oz/ D 
mi .1; �1; �1�2; �1�2�3/
| :

For mi , 1 � i � 3, we obtain the transformations

. Ox1; Ox2; r; '/| D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

�

; 
 .1� �1 C �1�2/ ; 
�1�2

q
1C �23; arccot �3

�|

i D 1

�

; 
�1 .1� �2 C �2�3/ ; 
�1�2

q
1C �23; arctan �3

�|

i D 2

�

 .1� �3/ ; 
�1 .1� �2�3/ ; 
�1�2

q
�23 C .1� �3/

2
; arctan

1� �3

�3

�|

i D 3

(5.35)

that are clearly analytic with respect to all variables in .0; 1/. For the determi-
nant of the Jacobian in (5.34) we have in .Ox; r; '/-coordinates 
3�2

1�2 D r �
.entire function in Ox; '/ and, thus, Property (A) is transferred from rkC

2

�
Ox; r�cos '

sin '

��
to the integrands in (5.34). �

5.2.2 Common Edge

We consider two panels �; t 2 G with exactly one common edge E D � \ t . In
Lemma 5.1.13 it was shown that the integral

I��t WD
Z

��t

bi .x/ bj .y/ k .x; y; y� x/ dsydsx
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exists in this case as an improper Riemann integral. Let the parametrizations �� W
O� ! � and �t Wbt ! t be chosen in such a way that

��

�
s
0

� D �t

�
s
0

� 8s 2 Œ0; 1� :

The integrand is given in local coordinates by

k3 .Ox; Oy/ WD Obi .Ox/ Obj .Oy/ k .�� .Ox/ ; �t .Oy/ ; �t .Oy/� �� .Ox// g� .Ox/ gt .Oy/ ; (5.36)

i.e.,

I��t D
Z

O�

Z
Ot
k3 .Ox; Oy/ d Oyd Ox:

We will again first consider the case that O� D Ot is the unit triangle. As before we
introduce relative coordinates

Oz D . Oy1 � Ox1; Oy2; Ox2/
| ;

in order to fix the location of the singularities of the integrand in Oz D 0. Then

I��t D
Z 1

0

Z 1� Ox1

� Ox1

Z Oz1C Ox1

0

Z Ox1

0

k3 . Ox1; Oz3; Oz1 C Ox1; Oz2/ d Ozd Ox1: (5.37)

In general the result of the Oz-integration, considered as a function of Ox1, has end-
point singularities in .0; 1/. We change the order of integration for the purpose
of regularization. The integration domain in (5.37) can be decomposed into five
disjoint, four-dimensional polyhedra

I��t D
5X

iD1

Z
Di

: : : d Ox1d Oz

with

5[
iD1

Di WD

8̂
<̂
ˆ̂:

�1 � Oz1 � 0
0 � Oz2 � 1C Oz1

0 � Oz3 � Oz2 � Oz1

Oz2 � Oz1 � Ox1 � 1

9>>=
>>;
[

8̂
<̂
ˆ̂:

�1 � Oz1 � 0
0 � Oz2 � 1C Oz1

Oz2 � Oz1 � Oz3 � 1
Oz3 � Ox1 � 1

9>>=
>>;
[

8̂
<̂
ˆ̂:

0 � Oz1 � 1
0 � Oz2 � Oz1

0 � Oz3 � 1 � Oz1

Oz3 � Ox1 � 1 � Oz1

9>>=
>>;

[

8̂
<̂
ˆ̂:

0 � Oz1 � 1
Oz1 � Oz2 � 1

0 � Oz3 � Oz2 � Oz1

Oz2 � Oz1 � Ox1 � 1 � Oz1

9>>=
>>;
[

8̂
<̂
ˆ̂:

0 � Oz1 � 1
Oz1 � Oz2 � 1

Oz2 � Oz1 � Oz3 � 1 � Oz1

Oz3 � Ox1 � 1 � Oz1

9>>=
>>;
:

The integration domainsDi , 1 � i � 5, are transformed onto the four-dimensional
unit cube as in the case of identical panels. For 1 � i � 5 the transformations
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Ti W .0; 1/4 ! Di , . Ox1; Oz/ WD Ti .
; �/, have the form

T1

�



�

�
D 


0
BB@

1

��1�2

�1 .1 � �2/

�1�3

1
CCA ; T2

�



�

�
D 


0
BB@

1

��1�2�3

�1�2 .1 � �3/

�1

1
CCA ;

T3

�



�

�
D 


0
BB@
1 � �1�2

�1�2

�1�2�3

�1 .1 � �2/

1
CCA ; T4

�



�

�
D 


0
BB@
1 � �1�2�3

�1�2�3

�1

�1�2 .1 � �3/

1
CCA

T5

�



�

�
D 


0
BB@
.1 � �1�2�3/

�1�2�3

�1�2

�1 .1 � �2�3/

1
CCA :

We have for the absolute value of the Jacobian determinant of Ti

jdetTi j D
	

3�2

1 for i D 1;

3�2

1�2 for 2 � i � 5:

Therefore for the integral I��t we have derived the representation

I��t D
Z

.0;1/4

˚

3�2

1k3 .
; 
�1�3; 
 .1 � �1�2/ ; 
�1 .1 � �2// (5.38)

C
3�2
1�2 Œk3 .
; 
�1; 
 .1 � �1�2�3/ ; 
�1�2 .1 � �3//

Ck3 .
 .1 � �1�2/ ; 
 .�1 .1 � �2// ; 
; 
�1�2�3/

Ck3 .
 .1 � �1�2�3/ ; 
�1�2 .1 � �3/ ; 
; 
�1/

Ck3 .
 .1 � �1�2�3/ ;
�1 .1 � �2�3/ ; 
; 
�1�2/�gd�d
:

The following theorem proves that the integrand is analytic with respect to every
variable.

Theorem 5.2.8. The integrand in (5.38) can be extended analytically with respect
to every variable in a complex neighborhood of Œ0; 1�4.

Proof. Using the same arguments as in the proof of Theorem 5.2.5 we only need to
show that the transformation from the .
; �/-coordinates to the .x1; r; 
/-coordinates
is analytic. The coordinate systems satisfy the relation

. Ox1; r cos' sin �; r sin ' sin �; r cos �/ D Ti .
; �/ :

For i D 1 we can explicitly determine the transformation
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0
BB@
Ox1

r

'

�

1
CCA D

0
BBBBB@





�1

q
�2

2 C .1� �2/
2 C �2

3

arctan �2�1
�2

arccos �3q
�2

2
C.1��2/2C�2

3

1
CCCCCA
;

which is analytic with respect to every variable 
; �1,�2; �3. For i D 2; 3; 4; 5 the
coordinate transformations can also be given explicitly, which also supplies their
analyticity. Here we will refrain from a detailed analysis of the case 2 � i � 5. �

5.2.3 Common Vertex

We consider two panels �; t 2 G with exactly one common point p D � \ t . It was
shown in Lemma 5.1.13 that the integral

I��t WD
Z

��t

bi .x/ bj .y/ k .x; y; y� x/ dsydsx

exists in this case as a Riemann integral. Let the parametrizations �� W O� ! � and
�t Wbt ! t be chosen such that

�� .0/ D �t .0/ D p:

As in the case of the common edge the integrand in local coordinates is given by

k3 .Ox; Oy/ D Obi .Ox/ Obj .Oy/ k .�� .Ox/ ; �t .Oy/ ; �t .Oy/ � �� .Ox// g� .Ox/ gt .Oy/ :

We introduce four-dimensional relative coordinates

Oz D . Ox1; Ox2; Oy1; Oy2/
| ;

in order to fix the location of the singularities of the integrand in Oz D 0.
First, let O� D Ot again be the unit triangle. Then

I��t D
Z 1

0

Z Oz1

0

Z 1

0

Z Oz3

0

k3 .Oz/ d Oz:

In order to again be able to remove the singularity by means of a suitable multilinear
transformation, the integration domain has to be decomposed into

D1 [D2 WD

8̂
<̂
ˆ̂:

0 � Oz1 � 1
0 � Oz2 � Oz1

0 � Oz3 � Oz1

0 � Oz4 � Oz3

9>>=
>>;
[

8̂
<̂
ˆ̂:

0 � Oz3 � 1
0 � Oz4 � Oz3

0 � Oz1 � Oz3

0 � Oz2 � Oz1

9>>=
>>;
:
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For i D 1; 2 the transformations Ti W .0; 1/4 ! Di , Oz D Ti .
; �/ are given by

T1 .
; �/ WD 
 .1; �1; �2; �2�3/
|

T2 .
; �/ WD 
 .�2; �2�3; 1; �1/
| :

The absolute value of the Jacobian determinant is in both cases equal to 
3�2. Thus
we have derived the representation

I��t D
Z

.0;1/4

3�2 fk3 .
; 
�1; 
�2; 
�2�3/C k3 .
�2; 
�2�3; 
; 
�1/gd
d�:

(5.39)
The following theorem shows that the integrand in (5.39) is analytic with respect to
every variable.

Theorem 5.2.9. The integrand in (5.39) can be extended analytically with respect
to every variable in a complex neighborhood of Œ0; 1�4.

Proof. As before, it suffices to show that the transformation from the .
; �/-
coordinates to four-dimensional polar coordinates is analytic. We recommend the
explicit derivation of the transformation formulas as an exercise for the interested
reader. �

5.2.4 Overview: Regularizing Coordinate Transformations

In this subsection we will formulate the regularizing coordinate transformations for
all occurring cases in a compact form. We assume that the kernel function satisfies
the assumption 5.1.19. For �; t 2 G, �� W O� ! � and �t W Ot ! t denote the (analytic)
parametrizations over the reference elements. In the case of identical panels we
assume �� D �t , in the case of a common edge we assume �� .s; 0/ D �t .s; 0/ and
in the case of a common point we assume �� .0/ D �t .0/. The integrand in local
coordinates defines

k3 .Ox; Oy/ D Obi .Ox/ Obj .Oy/ k .�� .Ox/ ; �t .Oy/ ; �t .Oy/� �� .Ox// g� .Ox/ gt .Oy/ ;

and we set

I��t WD
Z

O�
p:v:

Z
Ot
k3 .Ox; Oy/ d Oyd Ox:

The unit square is denoted by bQ and the unit triangle bybS .
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I. Identical Panels

I.1 Case O� D Ot D bS

I��t D
Z

.0;1/4

3�2

1�2

8̂
<̂
ˆ̂:
k3

0
BB@


0
BB@

1

1 � �1 C �1�2

1 � �1�2�3

1 � �1

1
CCA

1
CCAC k3

0
BB@


0
BB@

1 � �1�2�3

1 � �1

1

1 � �1 C �1�2

1
CCA

1
CCA

C k3

0
BB@


0
BB@

1

�1 .1 � �2 C �2�3/

1 � �1�2

�1 .1 � �2/

1
CCA

1
CCAC k3

0
BB@


0
BB@

1 � �1�2

�1 .1 � �2/

1

�1 .1 � �2 C �2�3/

1
CCA

1
CCA

C k3

0
BB@


0
BB@
1 � �1�2�3

�1 .1 � �2�3/

1

�1 .1 � �2/

1
CCA

1
CCAC k3

0
BB@


0
BB@

1

�1 .1 � �2/

1 � �1�2�3

�1 .1 � �2�3/

1
CCA

1
CCA

9>>=
>>;
d�1d�2d�3d
:

I.2 Case O� D Ot D bQ

I��t D
Z
.0;1/

4

 .1� 
/ .1� 
�1/

8̂
<̂
ˆ̂:
k3

0
BB@

.1� 
/ �3
.1� 
�1/ �2

 C .1� 
/ �3


�1 C .1� 
�1/ �2

1
CCAC k3

0
BB@

.1� 
�1/ �2
.1� 
/ �3


�1 C .1� 
�1/ �2

 C .1� 
/ �3

1
CCA

Ck3

0
BB@

.1� 
/ �3

�1 C .1� 
�1/ �2

 C .1� 
/ �3
.1� 
�1/ �2

1
CCAC k3

0
BB@

.1� 
�1/ �2

 C .1� 
/ �3


�1 C .1� 
�1/ �2
.1� 
/ �3

1
CCAC k3

0
BB@


 C .1� 
/ �3
.1� 
�1/ �2
.1� 
/ �3


�1 C .1� 
�1/ �2

1
CCA

Ck3

0
BB@

�1 C .1� 
�1/ �2

.1� 
/ �3
.1� 
�1/ �2

 C .1� 
/ �3

1
CCAC k3

0
BB@


 C .1� 
/ �3

�1 C .1� 
�1/ �2

.1� 
/ �3
.1� 
�1/ �2

1
CCAC k3

0
BB@

�1 C .1� 
�1/ �2

 C .1� 
/ �3
.1� 
�1/ �2
.1� 
/ �3

1
CCA

9>>=
>>;
d�d
:

II. Common Edge

II.1 Case O� D Ot D bS

I��t D
Z

.0;1/4

3�2

1k3

0
BB@





�1�3


 .1 � �1�2/


�1 .1 � �2/

1
CCAC 
3�2

1�2

8̂
<̂
ˆ̂:
k3

0
BB@





�1


 .1 � �1�2�3/


�1�2 .1 � �3/

1
CCA

Ck3

0
BB@

 .1 � �1�2/


�1 .1 � �2/





�1�2�3

1
CCAC k3

0
BB@

 .1 � �1�2�3/


�1�2 .1 � �3/





�1

1
CCAC k3

0
BB@

 .1 � �1�2�3/


�1 .1 � �2�3/





�1�2

1
CCA

9>>=
>>;
d�d
:
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II.2 Case O� D bQ; Ot D bS

I��t D
Z

.0;1/4

2 .1 � 
/

8̂
<̂
ˆ̂:
k3

0
BB@


 .1 � �3/C �3


�2


 .1 � �1 � �3/C �3


 .1 � �1/

1
CCAC k3

0
BB@

.1 � 
/ �3


�2


 .1 � �3/C �3


�1

1
CCA

Ck3

0
BB@

.1 � �1 � �3/C �3


�2


 .1 � �3/C �3




1
CCA

9>>=
>>;
C 
2�1.1�
�1/

8̂
<̂
ˆ̂:
k3

0
BB@


�1 .1 � �3/C �3





�1 .1 � �2 � �3/C�3


�1 .1 � �2/

1
CCA

Ck3

0
BB@

.1 � 
�1/ �3





�1 C .1 � 
�1/ �3


�1�2

1
CCAC k3

0
BB@

�1 .1 � �2 � �3/C �3





�1 .1 � �3/C �3


�1

1
CCA

9>>=
>>;
d�d
:

II.3 Case O� D bS; Ot D bQ

I��t D
Z

.0;1/4

2 .1 � 
/

8̂
<̂
ˆ̂:
k3

0
BB@

 .1 � �1 � �3/C �3


 .1 � �1/


 .1 � �3/C �3


�2

1
CCAC k3

0
BB@

 .1 � �3/C �3


�1

.1 � 
/ �3


�2

1
CCA

Ck3

0
BB@


 .1 � �3/C �3





 .1 � �1 � �3/C �3


�2

1
CCA

9>>=
>>;
C
2�1 .1�
�1/

8̂
<̂
ˆ̂:
k3

0
BB@

�1 .1 � �2 � �3/C�3


�1 .1 � �2/


�1 .1 � �3/C �3




1
CCA

Ck3

0
BB@

�1 C .1 � 
�1/ �3


�1�2

.1 � 
�1/ �3




1
CCAC k3

0
BB@


�1 .1 � �3/C �3


�1


�1 .1 � �2 � �3/C �3




1
CCA

9>>=
>>;
d�d
:

II.4 Case O� D Ot D bQ

I��t D
Z

.0;1/4

2 .1 � 
/

8̂
<̂
ˆ̂:
k3

0
BB@
.1 � 
/ �3 C 



�2

.1 � 
/ �3


�1

1
CCAC k3

0
BB@

.1 � 
/ �3


�2


 C .1 � 
/ �3


�1

1
CCA

9>>=
>>;
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C 
2 .1� 
�1/

8̂
<̂
ˆ̂:
k3

0
BB@
.1 � 
�1/ �3 C 
�1


�2

.1 � 
�1/ �3




1
CCAC k3

0
BB@
.1 � 
�1/ �3 C 
�1




.1 � 
�1/ �3


�2

1
CCA

C k3

0
BB@

.1 � 
�1/ �3


�2

.1 � 
�1/ �3 C 
�1




1
CCAC k3

0
BB@

.1� 
�1/ �3




.1 � 
�1/ �3 C 
�1


�2

1
CCA

9>>=
>>;
d�d
:

III. Common Vertex

III.1 Case O� D Ot D bS
I��t D

Z
.0;1/4


3�2 fk3 .
; 
�1; 
�2; 
�2�3/C k3 .
�2; 
�2�3; 
; 
�1/g d�d
:

III.2 Case O� D bQ; Ot D bS

I��t D
Z

.0;1/4

3�2

8̂
<̂
ˆ̂:
k3

0
BB@
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�2


�2�3

1
CCAC k3

0
BB@
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�2�3

1
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9>>=
>>;
C 
3k3

0
BB@

�1


�2





�3

1
CCAd�d
:

III.3 Case O� D bS; Ot D bQ

I��t D
Z

.0;1/4

3�2

8̂
<̂
ˆ̂:
k3

0
BB@


�2


�2�3





�1

1
CCAC k3

0
BB@


�2


�2�3


�1




1
CCA

9>>=
>>;
C 
3k3

0
BB@





�3


�1


�2

1
CCAd�d
:

III.4 Case O� D Ot D bQ

I��t D
Z

.0;1/4

3

8̂
<̂
ˆ̂:
k3

0
BB@





�1


�2


�3

1
CCAC k3

0
BB@

�1





�2


�3

1
CCAC k3

0
BB@

�1


�2





�3

1
CCAC k3

0
BB@

�1


�2


�3




1
CCA

9>>=
>>;
d�d
:
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5.2.5 Evaluating the Right-Hand Side
and the Integral-Free Term

In the following we will briefly deal with the approximation of the integrals
Z

�

bi .x/ bj .x/ dsx;

Z
�

bi .x/ r .x/ dsx (5.40)

[see (5.1)]. Let O� be the reference element, �� the parametrization and Obi WD bi j� ı
�� , Or� WD r j� ı �� . Then

Z
�

bi .x/ bj .x/ dsx D
X
�2G

Z
O�
Obi .Ox/ Obj .Ox/ g� .Ox/ d Ox:

For the unit triangle we transform the integral over O� onto the unit square by means
of Ox D .
; 
�/ and obtain

Z
O�
Obi .Ox/ Obj .Ox/ g� .Ox/ d Ox D

Z 1

0

Z 1

0


 Obi

�
�

��

� Obj

�
�

��

�
g�

�
�

��

�
d
d�: (5.41)

The integrand on the right-hand integral is analytic, since the basis functions in 
; �-
coordinates are polynomials and, thus, analytic. We have already shown in Sect. 5.1,
proof of Theorem 5.1.22, that the surface element g� .
; 
�/ is analytic.

In the same way we have under the condition r 2 L2 .�/ the representation
Z

�

bi .x/ r .x/ dsx D
X
�2G

Z
O�
Obi .Ox/ Or� .Ox/ g� .Ox/ d Ox

for the integral in (5.40) with

Z
O�
Obi .Ox/ Or� .Ox/ g� .Ox/ d Ox D

Z 1

0

Z 1

0


 Obi

�
�

��

� Or�� �
��

�
g�

�
�

��

�
d
d�: (5.42)

If Or� .
; 
�/ can be analytically extended to a neighborhood of the unit square then,
using the same arguments as before, the integrand on the right-hand integral is ana-
lytic. However, in practical applications there are also cases in which the right-hand
side is not so smooth or even has singularities. In this case one should use adaptive
numerical quadrature methods that are able to suitably resolve the singular behavior
of the function Or� . Since such methods depend very much on the actual function
Or� under consideration, we will refrain from a general description of these methods
and refer to [225] for an introduction to the problem.

Remark 5.2.10. If the reference element is the unit square the transformation Ox D
.
; 
�/ becomes superfluous. The results concerning analytic properties for the local
integrand can be appropriately applied.

If the direct method is used to formulate the boundary value problem as an
integral equation the right-hand side r is usually defined by an integral operator
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r D 	2f CK2f;

and therefore integrals of the form

Z
�

bi .x/ r .x/ dsx D
Z

�

	2 .x/ bi .x/ f .x/ dsx

C
Z

�

bi .x/
Z

�

k2 .x; y; x� y/ f .y/ dsydsx (5.43)

have to be evaluated. However, both integrals are of the type (5.40) and (5.2) and
can thus be regularized and approximated by the same techniques, assuming that the
functionf is piecewise analytic. Otherwise adaptive methods have to be employed
that take into account the singular behavior of f .

5.3 Numerical Integration

We have shown that the coefficients of the system matrix and the right-hand side
can be formulated as integrals over Œ0; 1�4 with an analytic integrand. Such inte-
grals can be efficiently approximated by means of Gaussian quadrature methods
(see [225]). In this section we will present the appropriate Tensor-Gauss quadrature
for the approximation of these integrals. We will also estimate the minimal number
of quadrature points per spatial dimension in order to reach a given approximation
tolerance. We will later see that the quadrature order for some integrals has to be
chosen proportional to jloghj, i.e., the quadrature order goes to infinity for h! 0.
Therefore the error estimates have to depend explicitly on not only the mesh width
h but also the quadrature order.

The integrals in (5.1) are approximated with quadrature methods of fixed order
and so allow the use of simple quadrature methods.

Remark 5.3.1. If the continuous integral operators lead to symmetric bilinear
forms or Hermitian sesquilinear forms then the (exact) system matrices K of the
Galerkin discretization are, respectively, symmetric or Hermitian. Hence it suffices
to approximate and save the upper triangular part of the matrix K by numeri-
cal quadrature. Since the symmetry of system matrices is often an essential factor
for the convergence of iterative solution methods, this method also automatically
guarantees the symmetry of perturbed system matrices.

5.3.1 Numerical Quadrature Methods

In this subsection we will present simple quadrature methods for squares and
triangles, as well as Gaussian quadrature methods of arbitrary order.
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5.3.1.1 Simple Quadrature Methods

For � 2 G, O� denotes the reference element and �� W O� ! � the local parametriza-
tion. The integration of a continuous function v 2 C 0 .�/ is transported back to the
reference element as

I� .v/ WD
Z

�

v .x/ dx D
Z

O�
Ov .Ox/ g� .Ox/ d Ox:

Here g� .Ox/ denotes the surface element and Ov WD vj� ı�� . The numerical quadrature

on the reference element is given by a mappingQ W C 0
�
O�
�
! K of the form

Q.v/ WD
nX

iD1

!i;nv .
i;n/

with weights !i;n 2 R and nodes 
i;n 2 O� . The associated quadrature error E� W
C 0 .�/! K on the surface panel is given by

E� .v/ WD I� .v/ �Q.Ovg� / : (5.44)

The space of all polynomials of maximal degreem 2 N was introduced in (4.23)
and denoted by P �

m . In this section we will use the abbreviation Pm D P �
m .

Definition 5.3.2. The numerical quadrature has the degree of exactness m 2 N0

if the quadrature method on the reference element is exact for all polynomials of
maximal degreem, i.e.,

E O� .v/ D 0 8v 2 Pm:

The numerical quadrature is stable if

nX
iD1

!i;n D jO� j and
nX

iD1

j!i;nj � CQ

nX
iD1

!i;n:

Example 5.3.3. Let O� be the unit triangle with vertices .0; 0/|, .1; 0/|, .1; 1/|. Then

Q.v/ D v .2=3; 1=3/

2

defines a quadrature formula with exactness degree 1 and CQ D 1.
A quadrature formula with exactness degree 2 and CQ D 1 is given by

Q.v/ D v .1=2; 0/C v .1; 1=2/C v .1=2; 1=2/

6
:

Example 5.3.4. Let O� be the unit square. Then

Q.v/ D v .1=2; 1=2/
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defines a quadrature formula with exactness degree 1 and CQ D 1. Also

Q.v/ D 1

4

2X
i;j D1

v
�

i ; 
j

�

with 
1 D
�
1 � 1=p3

�
=2 and 
2 D

�
1C 1=p3

�
=2 defines a quadrature formula

with exactness degree 3 and CQ D 1.

Further quadrature formulas for the unit triangle and square can be found in
[226].

5.3.1.2 Tensor-Gauss Quadrature

For a continuous function f W Œ0; 1�! C we set

I .f / D
Z 1

0

fdx:

Let .
i;n; !i;n/
n
iD1 be the nodes and weights of the Gaussian quadrature of order n

with the weight function 1 on the interval Œ0; 1� (see [225]). The associated Gaussian
quadrature is given by

Qn .f / D
nX

iD1

!i;nf .
i;n/ :

The quadrature error is denoted by En .f / WD I .f /�Qn .f / and satisfies

En .p/ D 0 8p 2 P2n�1:

For a function f W Œ0; 1�4 ! C we set I .f / D R
.0;1/4 f .x/ dx and for n D

.ni /
4
iD1 2 N4 we define the Tensor-Gauss quadrature of order n by

Qn Œf � D
n1X

iD1

n2X
j D1

n3X
kD1

n4X
`D1

!i;n1
!j;n2

!k;n3
!`;n4

f
�

i;n1

; 
j;n2
; 
k;n3

; 
`;n4

�
:

(5.45)
Since all the derived integral representations from the previous section are of the
form I .f / with an analytic integrand f W Œ0; 1�4 ! C, the Tensor-Gauss quadra-
ture can be used for their approximation. As the numerical integration takes up a
significant part of the total computation time used for the numerical solution of
boundary integral equations, it is very important that a minimal quadrature order
n WD .ni /

4
iD1 be found to achieve a prescribed tolerance " > 0. The condition on n

reads
jEn .f /j WD jI .f / �Qn .f /j � " kf k : (5.46)
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The nodes and weights of the Gaussian formulas up to a high order can be pre-
computed, for example, with the program GAULEG described in [185, Sect. 4.5].
The output of the procedure “gauleg(a; b; x;w; n)” consists of the arrays x.1 W n/;
w.1 W n/ of the nodes and weights of the n-point Gaussian formula Qn on the
interval Œa; b�.

5.3.2 Local Quadrature Error Estimates

We begin with quadrature error estimates for stable quadrature methods with an
exactness degree m. We will prove the convergence for h� ! 0 and a fixed degree
of exactness. These can be used for the approximation of the integrals in (5.1).

The integrands in the regularized integral representations (see Sect. 5.2.4) are all
analytic. However, they do have poles close to (more specifically: in a complex
neighborhood of) the integration domain. In practical applications the occurring
kernel functions and their derivatives in local coordinates often have a very com-
plicated form, so that the quadrature error estimates, which often contain high order
derivatives of the integrand, are not suitable. We therefore use derivative free error
representations for analytic integrands for the estimation of the local quadrature
error. These are explicit with respect to the order.

5.3.2.1 Local Error Estimates for Simple Quadrature Methods

We will analyze the question whether the parametrization �t can be analytically
extended, which will form the basis for this discussion. We will restrict ourselves to
triangular meshes. The analysis for squares can be performed in a similar way. In
order to explicitly analyze the scaling of the size of the triangles we need to impose
suitable conditions on the parametrization.

Assumption 5.3.5. For every � 2 G the parametrization �� can be represented as
the composition of an affine mapping

�affine
� W R2 ! R2; �affine

� .Ox/ WD A� Cm� Ox

and a mapping � W U ! � with �affine
� . O�/ � U ,

�� D � ı �affine
� :

The image Q� WD �affine
� . O�/ is a plane triangle in R2. The mapping � can be extended

analytically in a complex neighborhood U ? with Q� � U � U ? � C � C and, in
particular, independent of the triangulation G.

There exists a positive constant CK with the property: For all �; t 2 G with
� \ t ¤ ; we have

h�=ht � CK with h� WD diam �; ht WD diam t: (5.47)
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Remark 5.3.6. The mapping � W U ! � can be considered as a chart in an atlas
A for � . The choice of the chart from A depends on the panel � 2 G through
� � � .U /. The chart � itself, however, is independent of � .

Remark 5.3.7. From Condition (5.47) we have the existence of a constant c1 > 0

that depends only on � so that

c1h� � hQ� � c�1
1 h� (5.48)

for the plane panels Q� WD �affine
� ı ��1

� .�/ and Qt WD �affine
t ı ��1

t .t/. Furthermore, it
follows that

hQ�=hQt � c�2
1 h�=ht � eCK

with eCK D c�2
1 CK (see Remark 4.1.11).

The scaling and deforming behavior of the affine mapping �affine
� will be char-

acterized in the following by suitable geometric parameters. The vertices of the
image triangle Q� D �affine

� . O�/ are denoted by A� , B� , C� and have a counter-
clockwise orientation. We call the associated interior angles ˛� ; ˇ� ; �� . Then m� D
ŒB� �A� ;C� � B� �. We set

�� WD min f˛� ; ˇ� ; ��g : (5.49)

Proposition 5.3.8. Let m� be as in Assumption 5.3.5 and let 	max (	min) be the
largest (smallest) eigenvalue of m|

� m� . Then

ch2
Q� � 	min � 	max � 2h2

Q� and ch2
Q� � gaffine

� WD
q

det
�
m|

� m�

� � Ch2
Q�

with constants c; C > 0 that depend only on �� .

Proof. We set e1 WD kB� � A�k and e2 D kC� � B�k and note that ei � hQ� ,
1 � i � 2. The upper bound for the singular values of m� results from

jhm� 
;m� 
ij D 
2
1e

2
1 C 2
1
2 hB� � A� ;C� � B� i C 
2

2e
2
2

� .j
1j e1 C j
2j e2/
2 � 2h2

Q� k
k2 :

Elementary geometric relations on Q� and the binomial formula yield

hm�
;m� 
i
e1e2

D 
2
1

e1

e2

� 2
1
2 cosˇ C 
2
2

e2

e1

� .1 � cosˇ/

�

2

1

e1

e2

C 
2
2

e2

e1

�
� 2 sin2 ˇ

2
min

	
e1

e2

;
e2

e1



k
k2 :
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The estimate for the eigenvalues finally follows from

sin2 ˇ

2
� sin2 ��

2
and min

	
e1

e2

;
e2

e1



D min

	
sin �

sin ˛
;

sin ˛

sin �



� sin �� :

The estimate for gaffine
� is a result of the representation gaffine

� D e1e2 jsinˇj. �
We consider stable quadrature methods with a degree of exactness m. The

stability implies that for all f 2 C 0
�
O�
�

jQ.f /j D
ˇ̌
ˇ̌
ˇ

nX
iD1

!i;nf .
i;n/

ˇ̌
ˇ̌
ˇ � max

1�i�n
jf .
i;n/j

nX
iD1

j!i;nj � CQ kf kC 0. O�/ :

If we apply this estimate to the product g� Ov we obtain

jQ.g� Ov/j � CQ kg� OvkC 0. O�/ � CQ kg�kC 0. O�/ kOvkC 0. O�/ :

Lemma 5.3.9. Let Assumption 5.3.5 be satisfied, i.e., �� D � ı �affine
� . Then

kg�kC 0. O�/ � Ch2
� ;

where C depends only on the global parametrization and the quantity �� from
(5.49).

Proof. The multiplication theorem for determinants yields

g� .Ox/ D
q

det
�
.D�� /

| .D�� /
� D jdet m� j

q
det
�
G� ı �affine

� .Ox/�
D jdet m� j

�
g


� ı �affine
�

�
.Ox/ (5.50)

with the Gram matrix

G� . Ow/ WD .D� . Ow//| D�. Ow/ 2 R2�2;

which depends only on the global chart � and g

� WD

p
det G� . From this we have

kg�kC 0. O�/ � C
 jdet m� j � Ch2
� ;

whereC depends only on the global parametrization and the quantity �� from (5.49).
�

Corollary 5.3.10. Let Assumption 5.3.5 be satisfied. Then the stability estimate

jE� .v/j � Ch2
� kvkC 0.�/ 8v 2 C 0 .�/

holds for the error E� from (5.44).
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Proof. The triangle inequality combined with Lemma 5.3.9 yields

jE� .v/j D
ˇ̌
ˇ̌
Z

�

v .x/ dx �Q.Ovg� /

ˇ̌
ˇ̌ � j� j kvkC 0.�/ C

ˇ̌
ˇ̌
ˇ

nX
iD1

!i;n .Ovg� / .
i;n/

ˇ̌
ˇ̌
ˇ

� C1h
2
� kvkC 0.�/ C CQC2h

2
� kOvkC 0. O�/ D

�
C1 C CQC2

�
h2

� kvkC 0.�/ :

�
We now turn to the main error estimate for stable quadrature methods with an

exactness degreem.

Theorem 5.3.11. Let Assumption 5.3.5 be satisfied, i.e., �� D � ı �affine
� . Let the

quadrature method be stable and let it have the degree of exactness m.
Then there exists a constantC , which depends onCQ,m, the global parametriza-

tion � and �� from (5.49), such that for all functions v 2 HmC

.�/ with mC D
max f2;mC 1g the quadrature error satisfies the estimate

jE� .v/j � ChmC2
� kvk

H mC
.�/
:

Proof. Let Ov WD v ı �� and observe that due to the degree of exactness we have

E� .v/ D E O� .Ovg� / D E O� .Ovg� � p/ 8p 2 Pm:

Assumption 5.3.5 and the Sobolev embedding theorem imply Ovg� 2 C 0 . O�/.
First let m � 1. We choose p WD

�bIm .Ovg� /
�
ı ��1

� with the interpolation bIm

from (4.73) and obtain

jE O� .Ovg� � p/j
Corollary 5.3.10� C

���Ovg��bIm .Ovg� /
���

C 0.O�/
�C

���Ovg� �bIm .Ovg� /
���

H mC1
�b��

Lemma 4.3.1� C
ˇ̌
ˇOvg� �bIm .Ovg� /

ˇ̌
ˇ
H mC1.O�/

� C jOvg� jH mC1.O�/ :

The Leibniz rule for products yields

jOvg� j2H mC1. O�/D
X

j˛jDmC1

k@˛ .Ovg� /k2
L2

�b��D
X

j˛jDmC1

�����
X
��˛

 
˛

�

!
.@� Ov/ .@˛��g� /

�����
L2.O�/

� Cm

mC1X
rD0

jOvjH r .O�/ jg� jC mC1�r .O�/

(4.204b), (4.215b)� Cm kvkH mC1.�/

mC1X
rD0

hr�1
� jg� jC mC1�r .O�/ ;

where
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˛

�

!
WD
 
˛1

�1

! 
˛2

�2

!
and

X
��˛

: : : WD
X

�1�˛1
�2�˛2

: : : :

As in formula (5.50) we have

g� D jdet m� j g

� ı �affine

�

and Corollary 4.3.7 leads to

jg� jC mC1�r . O�/ � ChmC3�r
� ;

where the constant C depends only on m, �, and the shape-regularity of the panel.
Thus

jOvg� j2H mC1.O�/ � ChmC2
� kvkH mC1.�/

and, all in all we have proved that

jE� .v/j � ChmC2
� kvkH mC1.�/ :

For m D 0 we replace the interpolation ofbIm .Ovg� / by the integral mean of Ovg�

and apply Poincaré’s inequality (cf. Corollary 2.5.12). �

Corollary 5.3.12. Let the assumptions from Theorem 5.3.11 be satisfied and let r 2
CmC

.�/ and v 2 S with local polynomial degree p. Then

jE� .vr/j � ChmC2
� kvkH p.�/ krkC mC

.�/
: (5.51a)

For two boundary element functions u; v 2 S we have

jE� .uv/j � ChmC1
� kukH p.�/ kvkH p.�/ : (5.51b)

Proof. By Theorem 5.3.11 it suffices to prove kvrk
H mC

.�/
� C kvkH p.�/ �

krk
C mC

.�/
. We set Qv D v ı ��1, Qr D r ı ��1 and Q� WD ��1 .�/ � R2. Note that the

mapping ��1 is independent of the mesh G. It follows from Corollary 4.3.12 that

kvrk2
H mC

.�/
� C

mCX
j D1

jQvQr j2
H j .Q�/

:

The Leibniz rule for products yields

D˛ .Qv Qr/ D
X
��˛

�
˛
�

�
.D� Qv/ .D˛�� Qr/ :
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With j D j˛j we then have the estimate

kD˛ .Qv Qr/kL2.Q�/ � C kQvkH j .Q�/ kQrkC j .Q�/ :

Since Qv is a polynomial of maximal degree p, we have kQvkH k.Q�/ D 0 for k > p and
hence

kQvkH k .Q�/ D kQvkH p.Q�/ :

All in all, we have shown that

kQvQrk
H mC

.Q�/
� C kQvkH p.Q�/ kQrkC mC

.Q�/
:

Finally, the transformation to the surface element (see Corollary 4.3.12) yields the
first assertion.

For the product of boundary element functions we obtain by (5.51a) and by using
Corollary 4.4.6 the estimate

jE� .uv/j � ChmC2
� kukH p.�/ kQvkC mC

.Q�/
D ChmC2

� kukH p.�/ kQvkC p.Q�/

� ChmC1
� kukH p.�/ kvkH p.�/ :

�

5.3.2.2 Derivative Free Quadrature Error Estimates
for Analytic Integrands

In this section we will present the classical, derivative free quadrature error estimates
for analytic integrands, which are due to Davis [81, (4.6.1.11)]. Let E


a;b
� C be the

closed ellipse with the focal points at z D a; b, semimajor axis Na > .b � a/ =2
and semiminor axis Nb > 0 (see Fig. 5.5). The sum of the half-axes is denoted by

–1.5

–1.5 –1 –0.5

–1

–0.5

0.5

0.5 1 1.5

1

1.5

Fig. 5.5 Ellipses E��1;1 with foci at �1, 1 and semi-axis sum � 2 f1:1; 1:2; 1:5; 3g
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� D NaC Nb. For a D 0 and b D 1we abbreviate E

0;1 by E
. A classical derivative free

error estimate of Gaussian quadrature for analytic integrands can be found in [81].
For f W Œ0; 1� ! C, Qn denotes the Gaussian quadrature with n nodes, scaled

to Œ0; 1�, I .f / denotes the integral of f over Œ0; 1� and En denotes the associated
error.

Theorem 5.3.13. Let f W Œ0; 1�! C be analytic with the analytic extension f ? on
an ellipse E
 � C, � > 1=2.

Then
jI �Qnj � C .2�/�2n max

z2@E�

ˇ̌
f ? .z/

ˇ̌
:

This one-dimensional error estimate can be easily transferred to the error of the
Tensor-Gauss quadrature.

Definition 5.3.14. For 1 � i � d and �1 < ai < bi < 1 let ! WDNd
iD1 Œai ; bi � � Rd . A continuous function f W ! ! C is called component-

wise analytic if there exists a .�i /
d
iD1 2 Rd with �i > .bi � ai / =2, 1 � i � d such

that for all 1 � i � d and all x 2 ! the function

fi;x W Œai ; bi �! C; fi;x .t/ WD f .x1; : : : ; xi�1; t; xiC1; : : : xd /

can be extended to an analytic function fi;x W E
i

ai ;bi
! C.

Theorem 5.3.15. Let f W Œ0; 1�d ! C be componentwise analytic and let .�i /
d
iD1

be as in Definition 5.3.14. Then the error for the Gaussian quadrature with ni nodes
per coordinate direction, 1 � i � d , satisfies the estimate

jEnf j �
dX

iD1

max
x2Œ0;1�d

jEnifi;xj �
dX

iD1

Ci .2�i /
�2ni max

x2Œ0;1�d
max

z2@E�i

jfi;x .z/j :

The constants Ci , 1 � i � d , are as in Theorem 5.3.13.

Proof. It suffices to consider the case d D 2, as the statement for d D 1 has
already been treated in Theorem 5.3.13 and the result for d > 2 follows by means
of induction. We use a classical tensor product argument. Let g W Œ0; 1� ! C,
f W Œ0; 1�2 ! C be analytic and .�i /

2
iD1 as in Definition 5.3.14. We set

I1g WD
R 1

0
g .t/ dt; .I2f / .t/ WD

R 1

0
f .t; s/ ds;

Q
n1

1 g WD
Pn1

j D1 !j;ng
�

j;n

�
;
�
Q

n2

2 f
�
.t/ WDPn2

j D1 !j;n2
f
�
t; 
j;n2

�
:

This yields the error

Enf D �I1I2 �Qn1

1 Q
n2

2

�
f D �I1I2 � I1Q

n2

2 C I1Q
n2

2 �Qn1

1 Q
n2

2

�
f

D I1

�
E

n2

2 f
�C En1

1

�
Q

n2

2 f
�
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with Eni

i WD Ii �Qni

i . For i D 1; 2 the integral Ii W C 0 .Œ0; 1�/! C is continuous,
i.e.,

jI1gj � max
t2Œ0;1�

jg .t/j ; j.I2f / .t/j � max
s2Œ0;1�

jf .t; s/j :

The weights of the Gaussian quadrature are positive and add up to the length of the
interval

Pn
j D1 !j;n D 1 (see [225]). It follows that

j.I �Qn/ f j � max
t2Œ0;1�

ˇ̌
E

n2

2 f .t; �/ˇ̌C
n2X

j D1

!j;n2

ˇ̌
E

n1

1 f
��; 
j;n2

�ˇ̌

� max
t2Œ0;1�

ˇ̌
E

n2

2 f .t; �/ˇ̌C max
t2Œ0;1�

ˇ̌
E

n1

1 f .�; t/ˇ̌ :

�

5.3.2.3 Estimates of the Analyticity Ellipses of the Regularized Integrands

In this subsection we will estimate the size of the analyticity domains of the regu-
larized integrands from Sect. 5.2.4 as well as those that have been extended on these
domains. We again distinguish between four cases: identical panels, panels with a
common edge, with a common point and with a positive distance to each other. The
estimates of the integrands on the analyticity ellipses are always derived accord-
ing to the same concept: First the integrals are transformed onto the unit triangle
or square. By means of suitable expansions in local coordinates the singularity is
determined in the transformed, complex coordinates. More specifically, the size of
the ellipses on which the integrands can be extended analytically is estimated. Then
other properties of the integrands on the ellipses are estimated, such as the Gram
determinant, basis functions and kernel functions. We also explicitly determine the
dependency on the panel diameter h� ; ht so that the constants in the estimates gen-
erally depend only on the polynomial degree p of the boundary element space and
the shape-regularity of the mesh.

Case 1: Identical Panels

We first consider the case O� D Ot D bS and use the representation I.1 from Sect. 5.2.4.
In view of the definition of k3 [see (5.36)] we analyze the analyticity domains of the
basis functions, the surface elements and the kernel functions separately. We begin
with the kernel function in local coordinates. We again assume that the panel � can
be written as the composition of a global chart � and an affine mapping �affine

� W
R2 ! R2: �� D � ı �affine

� . Let the affine part again be of the type �affine
� .Ox/ D

A� Cm� Ox.
For the parametrizations under consideration the difference variable z D y � x

has the following representation in two-dimensional polar coordinates [see (5.22)]
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z D �� .OzC Ox/� �� .Ox/ D h� r

1X
mD0

.h�r/
m lm

�
�affine

� .Ox/ ; 
�

DW .h� r/ d
�
�affine

� .Ox/ ; h� r; h
�1
� m� 


�

with

lm . Ow; 
/ WD
 ˝
h�1

� m� 
;r
˛mC1

�

.mC 1/Š

!
. Ow/

and a function d that depends only on the global chart � but not on the triangulation
�� . In the same way as in (5.20c) we deduce the representation

k .x; y; z/ D .h�r/
�s d3;s

�
�affine

� .Ox/ ; h� r; h
�1
� m� 


�
(5.52)

with a function d3;s that depends only on the global chart � and the kernel func-
tion k.

The basis functions Obi , Obj on the reference element are polynomials of degree p
and have the representation in polar coordinates

Bi;j .Ox; r; 
/ WD Obi .Ox/ Obj .OxC r
/ ;

which is independent of the triangulation G. With this we have for the integrand
k2 .Ox; OxC r
/ from (5.25) the representation [see (5.50)]

rk2 .Ox; OxC r
/ D r .det m� /
2 Bi;j .Ox; r; 
/ g


� . Ow/ g

� .Ov/ .h� r/

�s �
d3;s

� Ow; h�r; h
�1
� m�


�
; (5.53)

where Ow WD �affine
� .Ox/ and Ov WD �affine

� .OxC r
/. The functionsBi;j , g

� , d3;2 depend

only on the global chart �, the polynomial degreep and the coefficients of the kernel
function k and, in particular, they are independent of the triangulation. They can be
extended to suitable complex neighborhoods of the parameter domains, the size of
which also does not depend on the triangulation.

The numerical quadrature was not formulated in polar coordinates but with
respect to the .
; �/-coordinates, which are mapped to .Ox; r; '/-coordinates by
means of the transformation from (5.35). The transformation with the index i in
(5.35) corresponds to the summand i in (5.34) and it is denoted by Ti :

.Ox; r; '/ D Ti .
; �/: (5.54)

As these transformations are again analytic and independent of the triangulation, we
obtain the analyticity with respect to the coordinates .
; �/ 2 Œ0; 1�4.

We use the following notation to describe these neighborhoods. For � > 0 and
i 2 f1; 2; 3; 4g we set
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�!E .i/

 WD .0; 1/ � .0; 1/ � : : : � .0; 1/„ ƒ‚ …

.i�1/ times

� E
 � .0; 1/ � .0; 1/ � : : : � .0; 1/„ ƒ‚ …
.4�i/ times

:

Lemma 5.3.16. Let the kernel function k satisfy Assumption 5.1.19 with s 2 Z�2.
Let � WD min f1; sg. There exist constants �1 > 0 and �2 > 1=2 that depend only
on �� from (5.49), the global chart �, the coefficients of the kernel function and the
polynomial degree p such that the integrand from Sect. 5.2.4 (I.1)

k4 W .0; 1/4 ! C k4 .
; �/ D 
3�2
1�2

3X
iD1

k3

 
Ox; OxC r

 
cos'

sin '

!!
(5.55)

can be analytically extended to
�!E .1/


1=h�
[S4

j D2

�!E .j /

2

after substituting as in (5.54).
We have the estimates

sup
.�;�/2�!E .1/

�1=h�

jk4 .
; �/j � Ch1�2p
� ;

sup
.�;�/2�!E .i/

�2

jk4 .
; �/j � Ch4��
�

for 2 � i � 4.

Proof. We only need to analyze each summand in (5.55) separately and in the
following we will abbreviate Ti to T .

We will first consider weakly singular kernel functions with s � 1. The size of
the analyticity ellipses can be determined from the representation (5.53) and from

��h�1
� m�


�� � j
1j kB� � A�k
h�

C j
2j kC� � B�k
h�

� c�1
1

p
2 k
k

[with c1 from (5.48)]. In order to estimate the integrands on the analyticity ellipses
we consider the functions in (5.53) separately. To estimate the functions Bi;j in
.
; �/-coordinates, we consider the transformations that appear in Sect. 5.2.4, I.1,
and obtain

Bi;j ıT .
; �/ D Obi .
ƒ1 .�// Obj .
ƒ2 .�//

with functionsƒ1,ƒ2, that are affine with respect to every variable. Since Obi and Obj

are polynomials of degree p, we deduce that

sup
.�;�/2�!E .1/

�1=h�

ˇ̌
Bi;jıT .
; �/

ˇ̌�Ch�2p
� and sup

.�;�/2�!E .i/
�2

ˇ̌
Bi;j ıT .
; �/

ˇ̌�C; 2 � i � 4;
(5.56)

with a constant C that depends only on the polynomial degree p.
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We now consider the roots of the Gram determinants g� .Ox/, g� .Oy/ and define for
i D 1; 2

U
1;i WD
n
A� C 
m�ƒi .�/ W .
; �/ 2 �!E .1/


1=h�

o
:

Depending on �� and the global chart � we can choose �1 > 0 sufficiently small so
that we have

U
1;i � U ?;

where U ? � C �C is the domain onto which � can be extended analytically. From
this we have for i D 1; 2

sup
.�;�/2�!E .1/

�1=h�

ˇ̌
g


� ı �affine
� .
ƒi .�//

ˇ̌ � sup
Ow2U ?.�/

jg

� . Ow/j � C;

where C depends only on the global chart �. In the same way we can show that

sup
.�;�/2�!E .j /

�2

ˇ̌
g


� ı �affine
� .
ƒi .�//

ˇ̌ � C; i D 1; 2; j D 2; 3; 4:

We consider the singular term .h�r/
�s in (5.53) together with the factors 
3�2

1�2.
In .
; �/-coordinates we have


3�2
1�2

.h�r/
s D


3�2
1�2�

h�
�1�2

p
ƒ4 .�3/

�s D

2�1

hs
�ƒ

s=2
4 .�3/

.
�1�2/
1�s

with a polynomialƒ4 which satisfies ƒ4 .�3/ > 0 for all �3 2 Œ0; 1�. It follows that

sup
.�;�/2�!E .1/

�1=h�


2�1

hs
�ƒ

s=2
4 .�3/

.
�1�2/
1�s � Ch�3

� ;

sup
.�;�/2�!E .i/

�2


2�1

hs
�ƒ

s=2
4 .�3/

.
�1�2/
1�s � Ch�s

�

for i D 2; 3; 4. Finally, we need to estimate the factor d3;s

� Ow; h�r; h
�1
� m�


�
in

.
; �/-coordinates. We obtain the estimate

sup
.�;�/2�!E .1/

�1=h�

ˇ̌
ˇ̌d3;s

�
�affine

� .Ox/ ; h� r; h
�1
� m�

�cos '
sin '

��ˇ̌ˇ
.Ox;r;'/DT .�;�/

ˇ̌
ˇ̌ � C;

sup
.�;�/2�!E .i/

�2

ˇ̌
ˇ̌d3;s

�
�affine

� .Ox/ ; h� r; h
�1
� m�

�cos '
sin '

��ˇ̌ˇ
.Ox;r;'/DT .�;�/

ˇ̌
ˇ̌ � C
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for i D 2; 3; 4 with the same arguments as for g� . With .det m� /
2 � Ch4

� we have
proved that

sup
.�;�/2�!E .1/

�1=h�

jk4 .
; �/j � Ch1�2p
� and sup

.�;�/2�!E .i/
�2

jk4 .
; �/j � Ch4�s
� ; i D 2; 3; 4:

We now consider Cauchy-singular kernel functions that satisfy Assumption
5.1.19 with s D 2. The integrand from Sect. 5.2.4, I.1, is a sum of pairs of kernel
functions of the type k2 .Ox; Ox � Oz/ C k2 .Ox � Oz; Ox/. We can therefore apply Theo-
rem 5.1.22(c) and show that the above-mentioned arguments can be applied to the
terms k2 .Ox; Ox � Oz/ C k2 .Ox � Oz; Ox/. Thus we can also prove the statement for the
kernel function from Assumption 5.1.19. �

Proposition 5.3.17. The statements from Lemma 5.3.16 can be directly transferred
to identical squares, as the variable transformations given in Sect. 5.2.4, I.2, are of
the same type as for triangles.

Case 2: Panels with a Common Edge

We apply the same ansatz that we developed for identical panels to panels with
exactly one common edge. We first consider the case of two triangles �; t 2 G
with �� .
; 0/ D �t .
; 0/ for all 
 2 .0; 1/ and use the representation II.1 from
Sect. 5.2.4. We again assume that the local charts �� and �t can be written as a
composition of global charts �1, �2 and affine transformations

�� D �1 ı �affine
� ; �t D �2 ı �affine

t :

For the parametrization in three-dimensional polar coordinates Oz D r
, r D
kOzk, 
 D Oz= kOzk [see (5.21)] under consideration, the three-dimensional difference
variable Oz D . Oy1 � Ox1; Oy2; Ox2/

| has the representation

z D �t

�Oz1C Ox1Oz2

� � ��

� Ox1Oz3

� D ht r

1X
mD0

.ht r/
m lm

�
�affine

t

� Ox1

0

�
; �affine

�

� Ox1

0

�
; 

�

DW .htr/ b
�
�affine

t

� Ox1

0

�
; �affine

�

� Ox1

0

�
; ht r; h

�1
t mt

�
�1

�2

�
; h�1

t 
3 .C� � B� /
�

with

lm .Ov; Ow; 
/ WD
D
h�1

t mt

�
�1

�2

�
;r
EmC1

�2 .Ov/�
˝
h�1

t 
3 .C� � B� / ;r
˛mC1

�1 . Ow/
.mC 1/Š

and a function b that depends only on the global charts �1; �2 but not on the
triangulation. In the same way as in (5.20b) we deduce the representation

k .x; y; z/ D .htr/
�s b3;s

�
�affine

t

� Ox1

0

�
; �affine

�

� Ox1

0

�
; ht r; h

�1
t mt

�
�1

�2

�
; h�1

t 
3 .C� � B� /
�
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with a function b3;s that depends only on the global charts �1;2 and the kernel
function k.

The numerical integration is not carried out in . Ox1; r; 
/-coordinates but in sim-
plex coordinates .
; �/. The associated transformation is denoted by Tj , . Ox1; r; 
/ D
Tj .
; �/, where the index j refers to the single summands in the representation
from Sect. 5.2.4(II.1–II.4). It will be omitted in the following. The transformations
are analytic with respect to every variable. It is easy to verify that the 3: � 5.
components of T are independent of 
, which is why we introduce the abbreviation


i D TiC2 .�/ 1 � i � 3:

The size of the analyticity ellipses of the local integrands is estimated in the
following lemma.

Lemma 5.3.18. Let the kernel function satisfy Assumption 5.1.19 with s 2 Z�2.
Let the function k5 W .0; 1/4 ! C denote one of the integrands from Sect. 5.2.4,
II.1–II.4. Then there exist constants �1 > 0 and �2 > 1=2 that depend only on
�� ; �t ; CK; c1 from (5.49), (5.47), (5.48), the global charts �1;2, the coefficients of
the kernel function and the polynomial degree p so that k5 can be analytically

extended to
�!E .1/


1=ht
[S4

j D2

�!E .j /

2

. The estimates

sup
.�;�/2�!E .1/

�1=ht

jk5 .
; �/j � Ch1�2p
t ;

sup
.�;�/2�!E .i/

�2

jk5 .
; �/j � Ch4�s
t

hold for i D 2; 3; 4.

Proof. The components of the integrand are each analyzed separately and we begin
with the kernel function in local coordinates.

The analysis of the surface elements and basis functions is done in the same way
as in the case for the identical panels and leads to

g� .Ox/ gt .Oy/ D jdet m� j jdet mt j
�
g1 ı �affine

�

�
.Ox/ �g2 ı �affine

t

�
.Oy/

with the surface elements g1;2 for the global charts �1;2.
The coordinate transformations in the case of a common edge (see Sect. 5.2.4)

can be written as

Ox D ƒ1 .
; �/ ; Oy D ƒ2 .
; �/ ; r D 
�`
1

p
ƒ3 .�/ (5.57)

with functions ƒi , i D 1; 2 that are affine with respect to every variable and a
quadratic polynomialƒ3 with ƒ3 .�/ > 0 for all � 2 Œ0; 1�3. The power ` in (5.57)
is equal to one for the transformations in Sect. 5.2.4, II.1 and zero for the transfor-
mations II.2–II.4. Note that the mappings ƒi , 1 � i � 3, are independent of the
triangulation and the surface parametrization.
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The determinant of the Jacobian of the transformation .
; �/ ! .Ox; Oy/ from
Sect. 5.2.4 is of the form

det
�
D
�Ox

Oy
��
.
; �/ D 
2�`0

1 p .
; �/ ; (5.58)

with a polynomial p of maximal degree 1 with respect to 
 and maximal degree 2
with respect to the �-variables. For the power `0 we have

`0 WD
	
2 for the transformation II.1
0 for the transformations II.2-4

Using this, we can deduce a representation for the integrand k3 .Ox; Oy/ in (5.36).
Thus, with Ow WD �affine

� .Ox/, Ov WD �affine
t .Oy/ and the substitutions (5.57), we obtain

k3 .Ox; Oy/ D jdet m� j jdet mt j g1 . Ow/ g2 .Ov/ Obi .Ox/ Obj .Oy/
� .ht r/

�s b3;s

�
�affine

t

� Ox1

0

�
; �affine

�

� Ox1

0

�
; ht r; h

�1
t mt

�
T1.�/
T2.�/

�
; h�1

t T3 .�/

� .C� � B� /
�
: (5.59)

The product of r�s with the determinant of the Jacobian is, since s 2 Z�2,

.ht r/
�s 
2�`0

1 p .
; �/ D h�s
t 
2�s Qp .
; �/ (5.60)

a polynomial and therefore analytic. More specifically, Qp is a polynomial with
maximal degree 1 with respect to 
 and maximal degree 4 � s with respect to
the �-variables. The size of the analyticity ellipses can be determined from the
representation above, while using kC� � B�k =ht � c�1

1 CK [see (5.47), (5.48)].
In order to estimate the integrands on the analyticity ellipses we consider the

functions in (5.59), (5.60) separately. Since Obi and Obj are polynomials of degree p
we deduce that

sup
.�;�/2�!E .1/

�1=h�

ˇ̌
ˇ Obi .ƒ1 .
; �// Obj .ƒ2 .
; �//

ˇ̌
ˇ � Ch�2p

t

sup
.�;�/2�!E .`/

�2

ˇ̌
ˇ Obi .ƒ1 .
; �// Obj .ƒ2 .
; �//

ˇ̌
ˇ � C; 2 � ` � 4;

(5.61)

with a constant C that depends only on the polynomial degree p.
We now turn our attention to the surface elements g1, g2 (for the global charts

�1; �2) and define

U
1;� WD
n
A� Cm�ƒ1 .
; �/ W .
; �/ 2 �!E .1/


1=ht

o
;

U
1;t WD
n
At Cmtƒ2 .
; �/ W .
; �/ 2 �!E .1/


1=ht

o
:
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At the same time note that ht 	 h� [see (5.47)]. Depending on �� and the global
chart �1 we can choose a sufficiently small �1 > 0 such that

U
1;� � U ?
1 ; U
1;t � U ?

2 ;

where U ?
i � C �C, i D 1; 2, denotes the domain on which �i can be analytically

extended. From this we have

sup
.�;�/2�!E .1/

�1=ht

ˇ̌
g1 ı �affine

� .ƒ1 .
; �//
ˇ̌ � sup

Ow2U ?.�/

jg1 . Ow/j � C;

where C depends only on the global chart �1. Analogously, we deduce that

sup
.�;�/2�!E .i/

�2

ˇ̌
g1 ı �affine

� .ƒ1 .
; �//
ˇ̌ � C; i D 2; 3; 4;

and the corresponding estimates for g2.
We consider the singular term .h�r/

�s in (5.59) in combination with the deter-
minant of the Jacobian (5.58), (5.60) and obtain

sup
.�;�/2�!E .1/

�1=h�

.h� r/
�s 
2�`0

1 p .
; �/ � Ch�3
t

sup
.�;�/2�!E .i/

�2

.h� r/
�s 
2�`0

1 p .
; �/ � Ch�s
� ; i D 2; 3; 4:

Finally, we need to estimate the factor b3;s .�/ from (5.59) in .
; �/-coordinates. With
the same arguments as for g� we obtain the estimates

sup
.
;�/2

�!E .1/
�1=ht

ˇ̌
ˇ̌b3;s

�
�affine
t

�
Ox1
0

�
; �affine

�

�
Ox1
0

�
; ht r; h

�1
t mt

�T1.�/
T2.�/

�
; h�1

t T3 .�/ .C� � B� /
�ˇ̌
ˇ̌ � C;

sup
.
;�/2

�!E .i/
�2

ˇ̌
ˇ̌b3;s

�
�affine
t

�
Ox1
0

�
; �affine

�

�
Ox1
0

�
; ht r; h

�1
t mt

�T1.�/
T2.�/

�
; h�1

t T3 .�/ .C� � B� /
�ˇ̌
ˇ̌ � C:

With jdet m� j jdet mt j � Ch4
t we have proved that

sup
.�;�/2�!E .1/

�1=ht

jk5 .
; �/j � Ch1�2p
t and sup

.�;�/2�!E .i/
�2

jk5 .
; �/j � Ch4�s
�

for i D 2; 3; 4. �

Case 3: Panels with a Common Vertex

We first consider the case of two triangles �; t 2 G with �� .0; 0/ D �t .0; 0/ and use
the representation from Sect. 5.2.4, III. We assume that the local charts �� and �t
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can be written as a composition of global charts �1, �2 with affine transformations

�� D �1 ı �affine
� ; �t D �2 ı �affine

t :

For the parametrization under consideration the four-dimensional difference
variable Oz D . Oy1; Oy2; Ox1; Ox2/

| has the representation in four-dimensional polar
coordinates Oz D r
, r D kOzk, 
 D Oz= kOzk [see (5.18)]

z D �t

�Oz1Oz2

� � ��

�Oz3Oz4

� D ht r

1X
mD0

.ht r/
m lm

�
�affine

t

�
0
0

�
; �affine

�

�
0
0

�
; 

�

DW .ht r/ b
�
�affine

t

�
0
0

�
; �affine

�

�
0
0

�
; ht r; h

�1
t mt

�
�1

�2

�
; h�1

t m�

�
�3

�4

��

with

lm .Ov; Ow; 
/ WD
D
h�1

t mt

�
�1

�2

�
;r
EmC1

�2 .Ov/�
D
h�1

t m�

�
�3

�4

�
;r
EmC1

�1 . Ow/
.mC 1/Š

and a function b that depends only on the global charts �1; �2 but not on the
triangulation. Similarly to (5.20a) we deduce the representation

k .x; y; z/ D .ht r/
�s a3;s

�
�affine

t

�
0
0

�
; �affine

�

�
0
0

�
; ht r; h

�1
t mt

�
�1

�2

�
; h�1

t m�

�
�3

�4

��
(5.62)

with a function a3;s that depends only on the global charts �1;2 and the kernel
function k.

The transformation from simplex coordinates to polar coordinates is again
denoted by T , i.e., .r; 
/ D T .
; �/, and it is analytic with respect to every vari-
able. It is easily verified that the 2:� 5. components depend on T , not on 
, and we
therefore introduce the abbreviation


i D TiC1 .�/ 1 � i � 4:

The size of the analyticity ellipses of the local integrand is estimated in the following
lemma.

Lemma 5.3.19. Let the kernel function satisfy Assumption 5.1.19 with s 2 Z�2.
Let the function k6 W .0; 1/4 ! C denote one of the integrands from Sect. 5.2.4,
III.1–III.4. Then there exist constants �1 > 0 and �2 > 1=2 that depend only
on �� ; �t ; CK; c1 from (5.49), (5.47), (5.48), the global charts �1;2, the coefficients
of the kernel function and the polynomial degree p so that k6 can be analytically

extended to
�!E .1/


1=ht
[S4

iD2

�!E .i/

2

. The estimates
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sup
.�;�/2�!E .1/

�1=ht

jk6 .
; �/j � Ch1�2p
t ;

sup
.�;�/2�!E .i/

�2

jk6 .
; �/j � Ch4�s
t

(5.63)

hold for 2 � i � 4.

Proof. The proof of this lemma can be accomplished with the same arguments and
analogous estimates as for the case of the common edge. �

Case 4: Panels with a Positive Distance

We will now turn our attention to the case of two panels �; t 2 G at a positive
distance apart. Let

d�;t WD dist .�; t/ WD inf
.x;y/2��t

kx � yk > 0: (5.64)

In local coordinates the integrand is again denoted by

k3 .Ox; Oy/ D g� .Ox/ gt .Oy/ Obi .Ox/ Obj .Oy/ k .�� .Ox/ ; �t .Oy/ ; �t .Oy/ � �� .Ox// (5.65)

and is analytic with respect to every coordinate. We again assume that the paramet-
rizations �� , �t can be represented by means of global charts �1, �2 that do not
depend on the surface mesh and by affine mappings �affine

� , �affine
t

�� D �1 ı �affine
� ; �t D �2 ı �affine

t :

Lemma 5.3.20. Let the kernel function satisfy Assumption 5.1.19. Let (5.64) and
O� Dbt D bQ hold for �; t 2 G.

Then there exists a positive constant � > 1=2 that depends only on �� ; �t from
(5.49), the global charts �1;2, the coefficients of the kernel function and the poly-

nomial degree p so that k3 can be analytically extended to
�S2

iD1

�!E .i/

Q
.�;t/

�
[�S4

j D3

�!E .j /

Q
.t;�/

�
with Q� .�; t/ WD �max fd�;t=h� ; 1g. We have the estimates

sup
.Ox;Oy/2�!E .i/

Q�.�;t/

jk3 .Ox; Oy/j � Ch2
�h

2
t

�
d�;t

h�

�p

d�s
�;t i D 1; 2;

sup
.Ox;Oy/2�!E .j /

Q�.t;�/

jk3 .Ox; Oy/j � Ch2
�h

2
t

�
d�;t

ht

�p

d�s
�;t j D 3; 4:

(5.66)

Proof. We first consider the statement for the variable Ox1.

The scaling of the affine mapping �affine
� combined with the distance condition

(5.64) yield the existence of a constant � > 0 such that
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U
1;� WD
n
A� C Ox1 .B� � A� /C Ox2 .C� � B� / W .Ox; Oy/ 2 �!E .1/


d�;t =h�

o

is contained in U ?
1 . Here U ?

1 � C �C denotes the domain to which �1 can be
extended analytically. We have a corresponding result for the remaining variables.
As before, for i D 1; 2 and j D 3; 4, we deduce the estimates

sup
.Ox;Oy/2�!E .i/

�=h�

jk3 .Ox; Oy/j � Ch2
�h

2
t

�
d�;t

h�

�p

d�s
�;t ;

sup
.Ox;Oy/2�!E .j /

�=h�

jk3 .Ox; Oy/j � Ch2
�h

2
t

�
d�;t

ht

�p

d�s
�;t :

�

Proposition 5.3.21. If either O� or Ot is the unit triangle we precede �affine
� or �affine

t

by the mapping .�1; �2/ ! .�1; �1�2/ (with Jacobian determinant �1), which maps
the unit square to the unit triangle. The above-mentioned analysis can be repeated
for the composite mapping and one obtains results that are analogous to those in
Lemma 5.3.20.

Remark 5.3.22. The constants in the quadrature error estimates from this section
depend on the shape-regularity of the triangles and the polynomial order. In [203]
and [202] numerical quadrature for degenerate (non-shape-regular) panels is intro-
duced and analyzed, which are used for the adaptive hp-version of the boundary
element method (see [222]).

5.3.2.4 Quadrature Orders for Regularized Kernel Functions

The estimate for the analyticity domains for the regularized integrands allows the
use of derivative free error estimates from Sect. 5.3.2.2.

The Singular Case

Let k? W .0; 1/4 ! C denote one of the integrands from Sect. 5.2.4.I–III. The num-
ber of nodes with respect to the 
-integration is denoted by n1 and with respect to
the �i -integrations, 1 � i � 3, by n2. We set n D .n1; n2; n2; n2/, and p again
denotes the polynomial degree of the boundary element space.

Theorem 5.3.23. The approximations of the integrals I–III by means of Tensor-
Gauss quadrature converge exponentially with respect to the number of nodes:

jEnk?j � Ch1�2p
� .�1h� /

2n1 C Ch4�s
� .2�2/

�2n2

with �1 > 0 and �2 > 1=2.
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Proof. Note that for two triangles �; t 2 G with � \ t ¤ ; we have ch� � ht �
Ch� [see (5.47)]. By combining Lemma 5.3.16, Proposition 5.3.17, Lemma 5.3.18,
Lemma 5.3.19 and Theorem 5.3.15 we obtain the assertion. �
The Regular Case

Let �; t 2 G with a positive distance d�;t [see (5.64)] and for O� D Ot D bQ let the
function k3 be as in (5.65). If either O� or Ot is the unit triangle we first apply the
mapping .�1; �2/! .�1; �1�2/ as in Proposition 5.3.21 and the resulting function is
again denoted by k3. The polynomial degree of the boundary element space is again
denoted by p.

Theorem 5.3.24. The approximation of the integral
R

.0;1/4 k3 .Ox; Oy/ d Oxd Oy by means
of Tensor-Gauss quadrature converges exponentially with respect to the number of
nodes

jEnk3j � C .h�ht /
2 d�s

�;t

��
d�;t

h�

�p

.2 Q� .�; t//�2n3 C
�
d�;t

ht

�p

.2 Q� .t; �//�2n4

�

with Q� .�; t/ D �max fd�;t=h� ; 1g and � > 1=2.

Proof. The statement follows from Lemma 5.3.20, Proposition 5.3.21 and Theo-
rem 5.3.15. �

5.3.3 The Influence of Quadrature on the Discretization Error

In Chap. 4 we introduced the Galerkin boundary element method for the abstract
variational problem: Find u 2 H such that

a .u; v/ D F .v/ 8v 2 H (5.67)

with

a .u; v/ D
Z

�

	1 .x/ u .x/ v .x/ dsx C
Z

�

p:v:
Z

�

k .x; y; y� x/ u .y/ v .x/ dsxdsy:

(5.68)
The boundary element space is given by the abstract notation S � H and the local
nodal basis is denoted by .bi /

N
iD1. With this we can define the linear system of

equations
Au D F

with

Ai;j D a
�
bj ; bi

�
1 � i; j � N and Fi D F .bi / 1 � i � N:

The coefficient vector u is associated with the Galerkin solution by uSDPN
iD1 uibi .

The approximation of the matrix entries and also the right-hand side by means of
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numerical quadrature leads to a “perturbed” linear system of equations

eA Qu D eF ;
which in turn can be written as a variational problem: Find QuS 2 S such that

Qa .QuS ; v/ D eF .v/ ; 8v 2 S:

The error u � QuS was abstractly analyzed in Sect. 4.2.4. In this subsection we will
apply these results to the perturbation by numerical quadrature and derive a relation
between the convergence rate of the Galerkin discretization and the local quadrature
order.

First we will need some notation. The quadrature method for the approximation
of the integrals

I
i;j
��t WD

Z
�

p:v:
Z

t

k .x; y; y� x/ bi .x/ bj .y/ dsydsx (5.69)

is denoted by Qi;j
��t . The associated error is given by

E
i;j
��t WD I i;j

��t �Qi;j
��t :

We use the convention that for boundary element functions u; v the coefficient vector
is always denoted by u; v 2 CN in the basis representation.

For boundary element functions u; v 2 S we set

I��t .u; v/ WD
NX

i;j D1

ui Nvj I
i;j
��t (5.70)

and, similarly, define Q��t .u; v/, E��t .u; v/. Note that the sum in (5.70) can be
reduced to a sum over i; j with jsupp bi \ � j > 0 ^ ˇ̌supp bj \ t

ˇ̌
> 0. This

motivates the definition of the index set I� by

I� WD fi W jsuppbi \ � j > 0g : (5.71)

Finally, we set

Emax
��t WD max

.i;j /2I� �It

ˇ̌
ˇE i;j

��t

ˇ̌
ˇ : (5.72)

Assumption 5.3.25(a), (b) is satisfied for all boundary element spaces from
Chap. 4.

Assumption 5.3.25. (a) There exists a constant P > 0 such that

max f]I� W � 2 Gg � P:
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(b) There exist constants 	min, 	max that depend only on the polynomial degree p
such that the spectrum � . Om/ of the matrix

Om WD
�Z

O�
Obi .Ox/ Obj .Ox/ d Ox

�
i;j 2I O�

satisfies the estimate

0 < 	min � 	 � 	max <1 8	 2 � . Om/ :

As
� Obi

�
i2I O�

is a basis in Pp and .�; �/L2.O�/ defines an inner product on Pp, Om is

positive definite and the existence of the constants 	min, 	max is guaranteed. How-
ever, note that these can go to either zero or infinity as the polynomial degree p
increases.

Example 5.3.26. Let O� be the unit triangle. For:

� p D 0 we have Om D �1
2

�
and 	min D 	max D 1=2.

� p D 1 we have

Om D
 Z 1

0

Z Ox1

0

Obi .Ox/ bj .Ox/ d Ox
!3

i;j D1

D
2
4

1
12

1
24

1
24

1
24

1
12

1
24

1
24

1
24

1
12

3
5

and 	min D 1=24, 	max D 1=6:
Let O� be the unit square. For:

� p D 0 we have Om D .1/ and 	min D 	max D 1.
� p D 1 we have

Om D
�Z 1

0

Z 1

0

Obi .Ox/ bj .Ox/ d Ox
�4

i;j D1

D

2
664

1
9

1
18

1
36

1
18

1
18

1
9

1
18

1
36

1
36

1
18

1
9

1
18

1
18

1
36

1
18

1
9

3
775

and 	min D 1=36, 	max D 1=4.

Lemma 5.3.27. Let Assumptions 5.3.5 and 5.3.25 be satisfied. Then

jE��t .u; v/j � Ch�1
� h�1

t jEmax
��t j kukL2.�/ kvkL2.t/

for all u; v 2 S , where C depends only on 	min, 	max, �0 .�/, �0 .t/ [see (5.5)] and
P from Assumption 5.3.25.
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Proof. We use the Cauchy–Schwarz inequality and obtain

jE��t .u; v/j D
ˇ̌
ˇ̌
ˇ̌

X
.i;j /2I� �It

ui NvjE
i;j
��t

ˇ̌
ˇ̌
ˇ̌ � jEmax

��t j
X
i2I�

jui j
X
j 2It

ˇ̌
vj

ˇ̌

� jEmax
��t jP

sX
i2I�

jui j2
sX

j 2It

ˇ̌
vj

ˇ̌2
:

Furthermore, with Ou WD uj� ı �� and gmax
� WD maxOx2O� jg� .Ox/j we have the

representation

Z
�

juj2 dx D
Z

O�
.g� .Ox// jOu .Ox/j2 d Ox � gmax

�

Z
O�
jOu .Ox/j2 d Ox:

With u� D .ui /i2I�
and the matrix Om from Assumption 5.3.25 we obtain

Z
�

juj2 dx � gmax
� u|

� Om Nu� � gmax
� 	max

X
i2I�

jui j2 .

In a similar way, we can show that

Z
�

juj2 dx � gmin
� 	min

X
i2I�

jui j2 :

From this we have for the error E��t the estimate

jE��t .u; v/j � jEmax
��t j

Pq
gmin

� gmin
t 	min

kukL2.�/ kvkL2.t/ :

Assumption 5.3.5 combined with Proposition 5.3.8 implies, as in (5.50) and in the
proof of Lemma 5.3.16, the estimate

ch2
� � gmin

� � Ch2
� ;

from which we have the assertion. �
The following corollary is a by-product of the previous proof.

Corollary 5.3.28. Under the conditions set out in Lemma 5.3.27 we have

c kukL2.�/ � h kuk � C kukL2.�/ 8u 2 S;

where u denotes the coefficient vector of the boundary element function u in basis
representation and k�k is the Euclidean vector norm in RN . The constants c; C
depend only on 	min, 	max, �0 .�/, �0 .t/ [see (5.5)] and P from Assumption 5.3.25.
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We will now deduce the total error from the local error estimates. We consider
the variational problem: Find u 2 S such that

Z
�

	1 .x/ u .x/ v .x/ dsx C
Z

�

v .x/
�
p:v:

Z
�

k .x; y; y� x/ u .y/ dsy

�
dsx

D
Z

�

r .x/ v .x/ dsx (5.73)

for all v 2 S .
The integrals Z

�

bi .x/
Z

�

k .x; y; y� x/ bj .y/ dsydsx

are regularized (see Sect. 5.2.4) and then approximated by means of the Tensor-
Gauss quadrature method. The integrals

Z
�

	1 .x/ bi .x/ bj .x/ dsx

are approximated by stable quadrature methods with an exactness degree m1 and
the integrals Z

�

bi .x/ r .x/ dsx

by stable quadrature methods with an exactness degreem2.
LeteA be the Galerkin matrix determined by numerical quadrature and Qa .u; v/ WD˝eAu; v
˛

the associated, perturbed sesquilinear form. Let eF be the right-hand side
determined by numerical quadrature. We set

Emax WD max
�;t2G h

�1
� h�1

t Emax
��t :

Theorem 5.3.29. Let Assumptions 5.3.5, 5.3.25 and the conditions from Corol-
lary 5.3.12 be satisfied. Let the sesquilinear form a W H� .�/ � H� .�/ ! C
in (5.68) be continuous, injective and coercive for some � 2 ˚�1

2
; 0; 1

2

�
, and let p

denote the polynomial degree of the boundary element space S .
Then

ja .u; v/� Qa .u; v/j � Chm1C1C2��2p kukH �.�/ kvkH �.�/

CEmax .]G/ kukL2.�/ kvkL2.�/

for all u; v 2 S . The constant C does not depend on h but, in general, it does
depend on 	min, 	max, �0 .�/, �0 .t/ [see (5.5)], P from Assumption 5.3.25 and the
quasi-uniformity of the mesh (see Definition 4.1.13).
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Proof. Let E� be as in (5.44) and E��t as in (5.70). We define d�e as the smallest
integer that satisfies d�e � �. We observe that every introduced boundary element
space satisfies S � H d�e .�/.

The quadrature error in the sesquilinear form in (5.73) can be estimated by the
inverse inequality (see Theorem 4.4.2) according to

ja .u; v/� Qa .u; v/j �
X
�2G
jE� .u; v/j C

X
�;t2G
jE��t .u; v/j

� C
X
�2G

hm1C1
� kukH p.�/ kvkH p.�/ C

X
�;t2G

h�1
� h�1

t Emax
��t kukL2.�/ kvkL2.t/

� Chm1C1C2d�e�2p
X
�2G
kukH d�e.�/ kvkH d�e.�/ C Emax

X
�2G
kukL2.�/

X
t2G
kvkL2.t/

� Chm1C1C2d�e�2p kukH d�e.�/ kvkH d�e.�/ C Emax .]G/ kukL2.�/ kvkL2.�/

� Chm1C1C2��2p kukH �.�/ kvkH �.�/ C Emax .]G/ kukL2.�/ kvkL2.�/ :

�
With respect to Theorems 4.2.11 and 4.2.18 we can now determine the necessary

quadrature orders. For a prescribed consistency tolerance ja .u; v/� Qa .u; v/j � ı

the local quadrature order can be determined by Theorem 5.3.29 and, by means of
Theorems 5.3.23 and 5.3.24, the number of Gaussian points per coordinate direction
can be determined.

We will carry out this process for characteristic examples. It is our goal to choose
the number of quadrature points in such a way that the order of convergence of the
original Galerkin method is maintained for the Galerkin method that is perturbed
by the quadrature. For this we assume that the Galerkin method converges with an
optimal order of convergence, i.e., the exact solution is sufficiently regular. In this
discussion we will restrict ourselves to shape-regular, quasi-uniform meshes (see
Definitions 4.1.12 and 4.1.13). For the general case we refer to [105, 106].

We assume that the sesquilinear form a W H� .�/ � H� .�/ ! C in (5.68)
is continuous, injective and coercive with a � 2 ˚�1

2
; 0; 1

2

�
. The local polynomial

degree of the boundary element spaces is denoted by p 2 N0. If the surface is
sufficiently smooth and the solution of Problem (5.67) is sufficiently regular the
error estimate for the Galerkin error (see Sect. 4.3)

ku � uSkH �.�/ � ChpC1�� kukH pC1.�/ (5.74)

holds. In order to also obtain this order of convergence for the perturbed problem,
we choose the tolerance ı in Theorem 4.2.11 as ı D ChpC1��. From the estimate
in Theorem 5.3.29 and with the inverse estimate we obtain for all u; v 2 S

ja .u; v/�Qa .u; v/j � C
�
hm1�2pC2�C1kukH�.�/CEmax.]G/h Q�kukL2.�/

�
kvkH�.�/ ;

ja .u; v/ � Qa .u; v/j � C
�
hm1�2pC2�C1 CEmax .]G/ h2 Q�

�
kukH�.�/ kvkH�.�/ ;
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with Q� WD min f�; 0g. If the local quadrature error and the local degree of exactness
m1 satisfy the estimates

ˇ̌
ˇE i;j

��t

ˇ̌
ˇ � ChpC5��� Q� 8�; t 2 G; 8 .i; j / 2 I .�/ � I .t/ ;

m1 � 3 .p � �/
(5.75)

we deduce with ]G � Ch�2 that

ja .u; v/� Qa .u; v/j � ChpC1�� kukH maxf�;0g.�/ kvkH �.�/ ;

ja .u; v/� Qa .u; v/j � C �hpC1�� C hpC1��C Q�� kukH �.�/ kvkH �.�/ :
(5.76)

Since pC1�� > 0 and pC1��C Q� � min f1; 1� �g � 1=2 the terms hpC1��

and hpC1��C Q� converge to zero for h! 0, and therefore the Galerkin method with
quadrature is stable and consistent for h � h0.

Theorem 5.3.30. Let the mesh G be quasi-uniform with h � h0 < 1 and let
the assumptions from Theorem 5.3.29 hold. The order of singularity of the ker-
nel function is denoted by s as in Assumption 5.1.19. Let the quadrature orders
be chosen as

n1 � 3p C 4 � � � Q�
2

; n2 � .p C 1C s � � � Q�/ jloghj
2 log .2�2/

(5.77)

in the singular case and as

n3 D n4 �
log

�
h�2p�1C�C Q�dp�s

�;t

�
2 log .2���;t /

(5.78)

with ��;t WD max fdist .�; t/ =h; 1g in the regular case. We assume that the exactness
degrees for the approximation of the integrals in (5.1) satisfy

m1 � 3 .p � �/ and m2 � 2 .p � �/ : (5.79)

Then the Galerkin method with quadrature is stable [see (4.152)].
If the exact solution u is contained in H t .�/ for a t 2 Œmax f0; �g ; p C 1�

and the right-hand side in (5.73) satisfies r 2 Cm2C1 .�/ the solution QuS of the
perturbed problem satisfies the error estimate

ku � QuSkH �.�/ � Cht�� kukH t .�/ :

Before we prove this theorem we will make a remark concerning its conse-
quences.
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Remark 5.3.31. The estimates (5.77), (5.78) show that the quadrature orders n2; n3;

n4 should grow logarithmically with h ! 0 for singular integrals and for the
nearly-singular integrals with dist .�; t/ 	 O .h/. In the far field, i.e., for ��;t 	 h�1

and d�;t 	 1, the quadrature orders are independent of the step size h.
Theorem 5.3.30 is explicit with respect to the step size h. The quantities � and �2

usually depend on the polynomial degree p, which is, however, always fixed for the
discretizations under consideration.

Proof of Theorem 5.3.30. Let k? W .0; 1/4 ! C denote one of the integrands from
Sect. 5.2.4.I–III. If we insert (5.77) in the estimates from Theorem 5.3.23 we obtain

jEnk?j � C1h
5Cp��� Q�
�

with a constant C1 that depends only on the constants C; �1 from Theorem 5.3.23
as well as p;�; Q�.

If we combine the estimate (5.78) with the estimate from Theorem 5.3.24, by
virtue of h � 1 and 1 � ��;t D max fd�;t=h; 1g we obtain

jEnk3j � C2h
pC5��� Q�;

with a constant C2 that depends on the same parameters as C1.
Since the choice of m1 in (5.79) is the same as in (5.75), we have the estimates

(5.76) and, thus, the stability and consistency of the sesquilinear form.
The consistency estimate for the approximation of the right-hand sideR

�
v .x/ r .x/ dx still needs to be shown. We then have with Em

� from (5.44),
Corollary 5.3.12 and the inverse inequality

ˇ̌
F .v/� eF .v/ˇ̌ DX

�2G
jEm2

� .rv/j � C
X
�2G

hm2C2
� kvkH p.�/ krkC m2C1.�/

� Chm2C2�pC� .]G/1=2 kvkH �.�/ krkC m2C1.�/

� ChpC1�� kvkH �.�/ krkC m2C1.�/ :

We deduce from Theorem 4.2.11 with �C WD max f�; 0g that

ku � QuSkH �.�/ � C
n

min
w`2S`

�
ku � w`kH �.�/ C hpC1��kw`kH �C .�/

�

C hpC1�� krkC m2C1.�/

o
: (5.80)

Let w` be the best approximation of the solution u with respect to the H�C .�/-
norm. It satisfies kw`kH �C .�/ � kukH �C .�/ and it follows from Theorem 4.2.17
that ku � w`kH �.�/ � Cht�� kukH t .�/. The condition u 2 H t for a t 2 Œ�C; pC1�
guarantees the existence of kukH �C .�/. �

The error estimates that we have developed thus far can not be directly applied to
hypersingular kernel functions that have been regularized by means of integration
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by parts (see Theorem 3.3.22). The sesquilinear form contains an additive term of
the form Z

���

G .x � y/ hDu .x/ ;Dv .y/i dsxdsy;

where D denotes a tangential derivative of first order which satisfies

kDukL2.�/ � C kukH 1.�/ :

These integrals can be regularized with the transformations that were developed
in Sect. 5.2 and can then be approximated by Tensor-Gauss quadrature methods.
However, the error estimates have to be slightly modified. We will summarize these
modifications:

(a) The size of the analyticity ellipses remains qualitatively unchanged in the sin-
gular case. In order to estimate the integrand in relative coordinates, the basis
functionsBi;j WD

˝
Dbi ;Dbj

˛
have to be estimated on the analyticity ellipses. In

general, the operatorD also contains derivatives of order zero so that the poly-
nomial degree of the basis functions is not necessarily reduced by one order after
applying D. Therefore the estimates (5.56), (5.61), (5.63) and (5.66) remain
valid unchanged. Note that for the order of singularity of the kernel functions
we have s D 1 in the representation through integration by parts.

(b) It follows from the arguments above that the error estimates from
Theorem 5.3.23 and Theorem 5.3.24 (with s D 1) remain valid.

(c) The hypersingular integral equation in Theorem 3.3.22 is an equation of first
kind so that we have 	1 D 0 in (5.68).

(d) For the error analysis we set

I
i;j
��t WD

Z
��t

k .x; y; y� x/
˝
Dbi .x/ ;Dbj .y/

˛
dsxdsy;

and we denote the associated quadrature method by Qi;j
��t and the quadrature

error by E i;j
��t . The error Emax is now defined by the new quantities I i;j

��t , Q
i;j
��t

as in (5.72). Under the same conditions as in Theorem 5.3.29 we have

ja .u; v/� Qa .u; v/j � Emax .]G/ kukL2.�/ kvkL2.�/

� Emax .]G/ kukH 1=2.�/ kvkH 1=2.�/ :

(e) The formulas for the quadrature orders in Theorem 5.3.30 are applied with s D 1
and the results are carried over as is appropriate.
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5.3.4 Overview of the Quadrature Orders for the Galerkin
Method with Quadrature

5.3.4.1 Integral Equations of Negative Order

We first consider the boundary integral operator V W H�1=2 .�/ ! H 1=2 .�/ for
the single layer potential. The following table summarizes the number of quadrature
nodes and the degree of exactness for various polynomial degrees. Note that there
is no integral of the form (5.1). The quadrature order for regular integrals depends
on h and ��;t D max fd�;t=h; 1g, i.e., n3 D n4 D nreg .h; ��;t /. The case nreg .h; 1/

corresponds to the almost singular case, i.e., dist .�; t/ 	 h and the case nreg
�
h; h�1

�
corresponds to far field integrals, i.e., dist .�; t/ D O .1/.

n1 n2 nreg .h; ��;t / nreg .h; 1/ nreg
�
h; h�1

�
m2

p D 0 3 d3C1 jloghje
&ˇ̌

log
�
h�2d�1

�;t

�ˇ̌
2 log .2���;t /

' ˙
C2

3
2
jloghj� 1 1

p D 1 4 d4C1 jloghje
& ˇ̌

log
�
h�4

�ˇ̌
2 log .2���;t /

'
dC22 jloghje 2 3

The constants C1; C2 are independent of p, h and dist .�; t/.

5.3.4.2 Equations of Order Zero

We now consider the boundary integral operator for the double layer potential or
for the adjoint double layer potential. We consider the mapping as an operator K W
L2 .�/! L2 .�/. If we apply the formulas from Theorem 5.3.30 to an operator of
order zero, we obtain the following expressions for the number of quadrature nodes
or for the required exactness degrees. Note that in this case we encounter an integral
of the type 5.1.

n1 n2 nreg .h; ��;t / nreg .h; 1/ nreg
�
h;Ch�1

�
m1 m2

p D 0 2 d3C3 jloghje
&ˇ̌

log
�
h�1d�2

�;t

�ˇ̌
2 log .2���;t /

' ˙
3
2
C4 jloghj� 1 0 0

p D 1 4 d4C3 jloghje
&ˇ̌

log
�
h�3d�1

�;t

�ˇ̌
2 log .2���;t /

'
d2C4 jloghje 2 3 2
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5.3.4.3 Equations of Positive Order

We now consider the boundary integral operator W W H 1=2 .�/ ! H�1=2 .�/

of order 1. The following table gives us the required number of quadrature nodes
and exactness degrees. Note that there is no term

R
�
	1uvdx, i.e., m1 need not be

considered. The minimal polynomial degree is p D 1 and here we consider the
ansatz by means of integration by parts.

n1 n2 nreg .h; ��;t / nreg .h; 1/ nreg
�
h;Ch�1

�
m2

p D 1 4 d2C5 jloghje



5 jloghj
4 log .2���;t /

�
dC6 jloghje 2 1

Remark 5.3.32. Our analysis of the quadrature in the far field can be refined by
using the higher regularity of the boundary element functions. More precisely, we
often have S � H�Cs .�/ with an s > 0, where H� .�/ denotes the energy space
[see (5.74)]. Details can be found in [200] and [140].

5.4 Additional Results and Quadrature Techniques

In the work of O. Bruno et al. (e.g. [34, 35, 161]) on frequency robust boundary
integral equation based solvers for electromagnetic and acoustic scattering, a key
component is the use of frequency dependent numerical integration to deal effi-
ciently with the highly oscillatory integrand functions (the oscillations stemming
from the Helmholtz kernel and its derivatives but also on special, oscillatory non-
polynomial shape functions which resolve the high frequency components of the
solution). This requires the use of stationary phase asymptotics for the efficient
numerical evaluation of the oscillatory surface integrals. We refer to, e.g., [36] for
details and applications. An alternative is the use of frequency adapted quadrature
methods, such as Filon’s quadrature rule which has been used by [163].



Chapter 6
Solution of Linear Systems of Equations

The Galerkin boundary element method transforms the boundary integral equation
to the linear system of equations

Ku D f; (6.1)

where K is the system matrix of the integral operator and f is the load vector. In
this chapter we study the efficient solution of (6.1). If the dimension of the linear
system of equations is very large, i.e., N D dim K � 104 � 106, direct methods
such as Gauss elimination become impractical, as their complexity grows propor-
tionally to N 3. Instead, one should use iterative methods to solve the system. As
will be explained in Chap. 7, iterative methods for the solution of linear systems of
equations do not require that the matrix K be known explicitly. Their complex-
ity is dominated by the cost of a matrix-vector multiplication multiplied by the
number of iteration steps for the computation of a sufficiently accurate solution
of the linear system. The cluster method, which is discussed in Chap. 7, provides an
approximative matrix-vector multiplication with a complexity of O .N log N /. This
is achieved with the help of an alternative representation of the Galerkin discretiza-
tion. As opposed to this, the evaluation of Ku with a dense matrix K in the usual
basis representation has a complexity of O

�
N 2
�
.

Since (6.1) already contains the discretization error, an exact solution u D K�1f
is not necessary. It suffices to solve (6.1) approximately with a precision which is
of the same size as the discretization error. Therefore in this chapter we discuss
the most important iterative methods for the solution of (6.1): the cg method by
Hestenes and Stiefel (see [129]) for a symmetric (Hermitian in the complex case) K,
as well as certain steepest descent methods that are of the same type as the minimal
residual methods for a non-symmetric (non-Hermitian in the complex case) K. The
convergence rate of classical iterative methods is determined by the condition of the
matrix K. Equations of the second kind are usually well-conditioned, in which case
the convergence rate of iterative methods is independent of the dimension of the
matrix. The condition of the matrix K for equations of the first kind usually grows
at a rate of h�1 with a decreasing mesh width h (see Lemma 4.5.1). This means that
the number of iterations necessary in order to reach a prescribed stopping condition
grows as the dimension increases. If the dimension of the matrix K becomes so
large that the computing time for the iterative solver dominates the overall solution

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2 6,
c� Springer-Verlag Berlin Heidelberg 2011
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process, preconditioning methods should be used to improve the condition of the
transformed system. We will discuss an example of this situation in Sect. 6.5.

6.1 cg Method

First we recall the definition of positive definite matrices. Let K 2 fR; Cg. The
Euclidean inner product on KN is defined by

hu; vi D
NX

iD1

ui vi ;

where ˛ ! ˛ denotes complex conjugation. For a matrix A 2 KN �N the adjoint

matrix is defined by AH WD
�

Aj;i

�N

i;j D1
. A is Hermitian if A D AH. A is positive

definite if
hAu; ui > 0 8u 2 KN n f0g :

The cg (“conjugate-gradient”) method by Hestenes and Stiefel for the solution
of (6.1) with positive definite matrices K is based on the derivation of (6.1) by
minimizing a quadratic functional, i.e., computing u? 2 KN so that

J
�
u?
� D min

n
J .u/ W u 2 KN

o
with J .u/ WD 1

2
hK u; ui � Re hf; ui : (6.2)

For u 2 KN , r.u/ WD f � Ku denotes the residual of u.

6.1.1 cg Basic Algorithm

The cg algorithm constructs a sequence .ui /i2N of vectors ui 2 KN that converges
to the exact solution of (6.1). We begin with the cg algorithm in its most basic
version.

Algorithm 6.1.1.
Initialization:

u0 2 KN given

r0 WD f � Ku0

s0 2 KN

p0 WD s0 2 KN

(6.3)
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Iterations: For i D 0; 1; 2; : : : evaluate

˛iC1 2 K ;

uiC1 WD ui C ˛iC1 pi ;

riC1 WD ri � ˛iC1 Kpi ;

siC1 2 KN ;

ˇiC1 2 K ;

piC1 WD siC1 C ˇiC1 pi 2 KN :

(6.4)

We still need to determine ˛i , ˇi , si . For this we note that for the derivative of J

in the direction of a vector z 2 KN at the point ui we have

hJ 0.ui /; zi D Re hKui � f; zi D � Re hri ; zi : (6.5)

Therefore ui 2 KN minimizes J.�/ on an affine subspace Z � KN if and only if
Re hri ; zi D 0 for all z 2 Z.

In the following Z will be spanned by the directions of descent pj for j < i . We
define ˛iC1 by

˛iC1 WD hri ; pi i
hKpi ; pi i ; if hKpi ; pi i 6D 0 : (6.6)

We have hr0; p0i D hr0; s0i and from (6.4) we have hri ; pi�1i D 0 for i � 1,
from which we deduce by using (6.4) that

hri ; pi i D hri ; si C ˇi pi�1i D hri ; si i; i � 1: (6.7)

With (6.6) this yields

˛iC1 D hri ; si i
hKpi ; pi i : (6.8)

We determine ˇiC1 in Algorithm 6.1.1. We have

˛iC1hriC2; pi i D ˛iC1hriC1 � ˛iC2 KpiC1; pi i D ˛iC2hpiC1; �˛iC1Kpii
D ˛iC2hsiC1 C ˇiC1 pi ; riC1 � ri i :

We have already seen that the new residual riC2 is perpendicular to the direction
piC1. It is now our aim to determine ˇiC1 in such a way that riC2 is also perpen-
dicular to pi . We will show in Proposition 6.1.3 that riC2 is then perpendicular to
all pj , j � i C 1.
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For hri ; si i 6D 0 we thus set ˛iC2 hsiC1 C ˇiC1 pi ; riC1 � rii D 0 and obtain
[using (6.7)]

ˇiC1 WD hsiC1; riC1 � rii
hsi ; ri i : (6.9)

One possible choice of si which ensures that hri ; si i 6D 0 for ri 6D 0 is

si D ri ; i D 0; 1; 2; : : : : (6.10)

Algorithm 6.1.1 combined with (6.8)–(6.10) defines the so-called Polak–Ribière
version of the cg method [183].

6.1.2 Preconditioning Methods

We will see that the convergence rate of the cg method depends on the condition of
the matrix K. If it is large the computational complexity of the iterative solver may
start to dominate the entire discretization. A remedy for this is the use of precondi-
tioning, which we will consider on an abstract level in this section. For every regular
matrix C 2 KN �N the solution of the preconditioned system

CKu D Cf (6.11)

solves (6.1). By choosing C in a suitable way, we aim to decrease the condition of
the system matrix CK in (6.11) considerably compared to the condition of K. Note
that we obtain Algorithm 6.1.1 if we choose C D I. In this section we will present
the cg algorithm for the preconditioned system (6.11).

Let C W KN ! KN be positive definite. As an alternative to si D ri in (6.10) we
may choose

si D Cri : (6.12)

Then we have hri ; siC1i D hri ; CriC1i D hCri ; riC1i D hsi ; riC1i. We have seen in
Sect. 6.1.1 that the given choices for ˛iC1 [see (6.8)] and ˇiC1 [see (6.9)] determine
the relation hpi ; riC1i D hpi�1; riC1i D 0. From this and with (6.3) we have

for i D 0 hsi ; riC1i D hp0; r1i D 0 ;

for i � 1 hsi ; riC1i D hpi � ˇi pi�1; riC1i D 0 : (6.13)

Inserting this into (6.9) we obtain

ˇiC1 D hsiC1; riC1i
hsi ; rii : (6.14)

Algorithm 6.1.1, (6.8), (6.12) and (6.14) give us the Fletcher–Reeves version of the
cg method (see [94]).
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Remark 6.1.2. 1. The Hestenes–Stiefel version of the cg method uses

ˇiC1 WD hriC1 � ri ; siC1i
hri � ri�1; si i ; i � 1 : (6.15)

In view of (6.13), this variant is equivalent to the Fletcher–Reeves version. How-
ever, for problems in nonlinear optimization the resulting methods, in general,
are different.

2. The directions si in (6.12) are opposite to the gradients of J.�/ in the inner prod-
uct h�; �iC WD h�; C�i and thus correct the previous directions of descent. More
precisely, we have

hrJ .ui / ; si iC D Re hKui � f; Csi i D � Re hri ; Csi i D � ksi k2 < 0:

3. The Fletcher–Reeves and Polak–Ribière versions have their origins in the exten-
sion of the cg method to non-linear problems.

6.1.3 Orthogonality Relations

For i � 0 we define the Krylov space of order i by

Ki WD fp.CK/s 0 W p 2 Pi .K/g ; (6.16)

where Pi .K/ denotes polynomials of degree � i with coefficients in K.

Proposition 6.1.3. As long as the cg method does not terminate because of zero
division we have

8i � 0 W spanfp 0; : : : ; p i g D spanfs 0; : : : ; si g ; (6.17a)

80 � j < i W ˝
ri ; pj

˛ D 0 and
˝
Kpi ; pj

˛ D 0 ; (6.17b)

8i � 0 W spanfp 0; : : : ; pi g D Ki : (6.17c)

Proof. (a) is trivial. We will prove (b). We have hr 1; p 0i D 0. We assume that (b)
holds for an i � 1, more precisely, we assume that hri ; pj i D 0 for j < i and
hKpi�1; pj i D 0 for j < i � 1. As we have already seen in Sect. 6.1.1, we have
hriC1; pi i D 0 and hriC1; pi�1i D 0. For j < i � 1 we obtain

hriC1; pj i D hri � ˛iC1 Kpi ; pj i
D �˛iC1hK.si C ˇi pi�1/; pj i
D �˛iC1hsi ; Kpj i
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D ˛iC1.˛j C1/�1
˝
si ; rj C1 � rj

˛

D ˛iC1.˛j C1/�1hri ; sj C1 � sj i
(6.4)D ˛iC1.˛j C1/�1hri ; pj C1 � �

1 C ˇj C1

�
pj C ˇj pj �1i

(induction assumption)D 0 ;
and for j < i : hKpi ; pj i D � 1

˛iC1
hriC1 � ri ; pj i D 0.

We prove (c) by recursion. We have s 0 D p 0 and thus K0 D span fs 0g D
span fp 0g. Now let Ki D span fp 0; : : : ; pi g for i � 1 be already proven. For vectors
a 2 KN and subspaces V � KN we use the notation aCV D span f˛a C v W ˛2K;

v 2 V g in this proof. Then with ˇiC1 pi 2 span fp 0; : : : ; pi g D Ki and (6.12) we
have the equality

span fp0; : : : ; piC1g D span fp0; : : : ; pi g C piC1

D Ki C .siC1 C ˇiC1pi /

D Ki C CriC1:

Since Cri D si 2 span fp 0; : : : ; pi g it follows from (a) that

span fp 0; : : : ; piC1g D Ki C C.ri � ˛iC1 K pi /

D Ki C CK pi :

It then follows that span fp 0; : : : ; piC1g D Ki C CK pi � KiC1. We then obtain
the equality by considering the dimensions. �

6.1.4 Convergence Rate of the cg Method

In case there are no rounding errors, Proposition 6.1.3 implies that the cg method
terminates at the latest after N steps with the solution u� of Ku D f. A far more
important property of the cg method lies in the fact that it already offers very good
approximations of u� after only i 	 N steps, as we will show in this section.

Let u � D K�1f be the solution of (6.2). Then we have

J.u/ D 1

2

�ku � u�k2
K � ku�k2

K

�
; (6.18)

where kuk2
K WD hu; Kui D hKu; ui denotes the energy norm for K. Since J 0.uiC1/ D

� RehriC1; �i vanishes on Ki D spanfp 0; : : : ; pi g, J.�/ assumes its minimum over
u 0 C Ki in uiC1. Therefore we have for all real polynomials p 2 Pi :

kuiC1 � u�kK � kp.CK/ s 0 C u 0 � u�kK : (6.19)



6.1 cg Method 359

Since s 0 D CK.u � � u 0/ it follows for all p 2 PiC1 with p.0/ D 1 that we have
the estimate

kuiC1 � u�kK � kp.CK/ .u 0 � u�/kK : (6.20)

Exercise 6.1.4. Show for positive definite matrices K; C and for an arbitrary poly-
nomial p with real coefficients that

kp .CK/ wkK � kwkK max fjp.�/j W � 2 �g 8w 2 KN ;

where � denotes the spectrum of the matrix CK.

One of the consequences of (6.20) is an estimate of the error after i iterations.

Proposition 6.1.5. For all i � 0 and all real polynomials p 2 Pi with p.0/ D 1

we have

kui � u�kK � max fjp.�/j W � 2 �g ku0 � u�kK : (6.21)

We obtain a convergence estimate from (6.21). However, we first need a prepara-
tory lemma.

Lemma 6.1.6. Let 0 < a < b. The problem

minfmaxfjp.�/j W � 2 Œa; b�g W p 2 Pi ^ p.0/ D 1g (6.22)

has a unique solution

p.z/ D
Ti

�
bCa�2z

b�a

�

Ti

�
bCa
b�a

� ;

where Tk.x/ is the Čebyšev polynomial of order k on .�1; 1/ which satisfies
jTk.x/j � 1 for jxj � 1 and Tk.1/ D 1.

If we combine this result with (6.21) we obtain the statement concerning conver-
gence.

Theorem 6.1.7. Let

�.CK/ � Œa; b�; � WD b=a � 1 :

Then for all u 0 2 KN and i � 1

kui � u�kK � 1

Ti

�
�C1
��1

�ku0 � u�kK � 2

�p
� � 1p
� C 1

�i

ku0 � u�kK : (6.23)
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Proof. Proposition 6.1.5 and Lemma 6.1.6 give us the first inequality. Furthermore,
we have Ti .x/ D cos.i arccos x/ or

Ti .x/ D 1

2

�
.x C

p
x2 � 1/i C .x �

p
x2 � 1/i

�
; (6.24)

while there are only even powers of
p

x2 � 1 and thus (6.24) is defined for all
x 2 R. We then have

Ti .x/ � 1

2

�
x C

p
x2 � 1

�i

for x � 1

and from

.x C
p

x2 � 1/j
xD �C1

��1
>1

D
p

� C 1p
� � 1

we obtain the assertion. �

6.1.5 Generalizations�

We will briefly discuss generalizations of Theorem 6.1.7. Firstly, the restriction to
finite-dimensional spaces KN is not important. The cg method can just as well be
defined for infinite-dimensional Hilbert spaces, in which case (6.23) still remains
valid if X; Y are Hilbert spaces over K, h�; �iY �X W Y 
 X ! K is a sesquilinear
form and A 2 L.X; Y / satisfies

8u; v 2 X W hAu; viY �X D hAv; uiY �X : (6.25)

If Y D X and A; C 2 L.X; Y / with CA D I C K and a compact K W X ! X

we can again determine a convergence rate from (6.21). In this respect we note that
the spectrum �.K/ of K is discrete and only has an accumulation point at zero [see
Theorem 2.1.36(ii)]. Now let " > 0 be given and let q.z/ be a polynomial such that
q.0/ D 1 and

q .�/ D 0 8� 2 � .I C K/ I j� � 1j > ": (6.26)

Since there are only finitely many � 2 �.I CK/ that satisfy the condition j��1j > "

for every " > 0, q in (6.26) exists. With r.z/ D .1 � z/j and pj .z/ D q.z/r.z/ we
have pj .0/ D 1, degree of pj D jC degree of q and

maxfjpj .z/j W z 2 �.I C K/g � "j maxfjq.z/j W z 2 �.I C K/g :

� This section should be read as a complement to the core material of this book.
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In the following ui again denotes the i -th iterate of the cg method. For all i �
degree q from (6.21) we deduce the estimate

kui � u�kK � maxfjq.z/j W z 2 �.I C K/g".i�degreeq/ku0 � u�kK :

Proposition 6.1.8. Let X be a Hilbert space over K and CA D I C K with a
compact K W X ! X . Let ui be the i -th iterate of the cg method.

Then for all " > 0 there exists a constant C."/ such that for all i we have

kui � u�kK � C "i ku0 � u�kK : (6.27)

6.2 Descent Methods for Non-symmetric Systems

We consider
Ku D f (6.28)

in RN with a non-symmetric K. The symmetric or skew symmetric parts of K are
given by

M D 1

2
.K C KT/; R D 1

2
.K � KT/ : (6.29)

We then have K D M C R. For an arbitrary matrix X let �min.X/ and �max.X/ be
the eigenvalues with the smallest and largest absolute values respectively and let
�.X/ WD j�max.X/j be the spectral radius of X. �.X/ denotes the spectrum of X.
For a non-singular X the condition number with respect to the Euclidean norm k�k
is given by �.X/ D kXkkX�1k.

6.2.1 Descent Methods

The general form of descent methods for the solution of (6.28) is described in
Algorithm 6.2.1. Here we will restrict ourselves to the case K D R.

Algorithm 6.2.1 (Descent Method).

u 0 2 RN (Initial Vector) (6.30a)

r 0 D f � Ku 0 (6.30b)

˛i WD hri ; Kpii
hKpi ; Kpii

(6.30c)

uiC1 WD ui C ˛i pi (6.30d)

riC1 WD ri � ˛i Kpi (6.30e)

Compute piC1 : (6.30f)
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The choice (6.30c) minimizes the residual

kriC1k D kf � K.ui C ˛pi /k ;

with respect to ˛ and therefore we have kriC1k � kri k in every step. We still need
to determine the algorithm that provides us with pi . We set

piC1 WD riC1 C
iX

j D0

ˇ
.i/
j pj (6.31a)

ˇ
.i/
j WD � hK riC1; Kpj i = hKpj ; Kpj i : (6.31b)

The vector piC1 from (6.30) and (6.31) minimizes E.w/ WD kf � Kwk over the
affine space u 0 C spanfp 0; : : : ; pi g. (6.30) and (6.31) together define a generalized
conjugate residual method. Ignoring round-off errors it produces the solution of
(6.28) in at most N steps, just like the cg method.

Storing all the pj in (6.31a) requires too much memory for large N . Therefore
we replace (6.31a) by

piC1 D riC1 C
iX

j Di�kC1

ˇ
.i/
j pj (6.32)

for a k � 0 with ˇ
.i/
j as in (6.31b). Note that for k D 0 we have

piC1 D riC1 : (6.33)

In this case (6.30) is also called the “minimal residual method” (MR) or otherwise
Orthomin.k/.

6.2.2 Convergence Rate of MR and Orthomin.k/

Lemma 6.2.2. The vectors .ui /, .ri / and .pi / for the MR or Orthomin .k/ satisfy

hKpi ; Kpj i D 0 j D i � k; : : : ; i � 1; i � k ; (6.34a)

hri ; Kpj i D 0 j D i � k � 1; : : : ; i � 1; i � k C 1 ; (6.34b)

hri ; Kpi i D hri ; Kri i : (6.34c)

Proof. (6.34a) follows from (6.31), (6.32) by induction over i . We recommend the
proof as an exercise.
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The relation in (6.34b) follows by induction over i . Thus we let (6.34b) hold for
all i � I . Then with (6.30e) we have

hriC1; Kpj i D hri ; Kpj i � ˛i hKpi ; Kpj i :

For i � k � j < i � I all terms on the right-hand side vanish, according to
the induction hypothesis and (6.34a). For j D i D I the right-hand side vanishes
because of the definition (6.30c) of ˛i . This shows that (6.34b) also holds in the case
i D I C 1. For (6.34c) we multiply (6.31a) and (6.32) by K and then form the inner
product with ri : it follows that

hri ; Kpi i D hri ; Kri i C
i�1X

j Di�k

ˇ
.i�1/
j hri ; Kpj i D hri ; Krii ;

because of (6.34b). �

Theorem 6.2.3. Let the symmetric part M of K be positive semidefinite.The sequence
.ri / of the residuals of MR or Orthomin .k/ satisfies

kri k �
�

1 � �min.M/2

�max.KTK/

� i
2

kr0k: (6.35)

We need a preparatory lemma for the proof.

Lemma 6.2.4. For .pi / and .ri / of MR or Orthomin.k/

.Kpi ; Kpi / � .Kri ; Kri / : (6.36)

The proof uses (6.31a), (6.32) and (6.34a) and we recommend it to the reader as
an exercise.

Proof of Theorem 6.2.3. From (6.30e) we have

kriC1k2 D hri ; ri i � 2˛i hri ; Kpi i C ˛2
i hKpi ; Kpi i

D kri k2 � 2
hri ; Kpii2

hKpi ; Kpii
C hri ; Kpii2

hKpi ; Kpii

D kri k2 � hri ; Kpi i2

hKpi ; Kpi i
:

With this it follows from (6.34c) and (6.36) that
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kriC1k2

krik2
D 1 � hri ; Kpi i

hri ; ri i
hri ; Kpi i

hKpi ; Kpi i

� 1 � hri ; Kri i
hri ; rii

hri ; Kri i
hKri ; Kri i :

Since hv; Rvi D 0 for all v 2 RN with R from (6.29) we have

hri ; Krii
hri ; rii D hri ; Mrii

hri ; ri i � �min.M/:

From this and from

hri ; Krii
hKri ; Krii D hri ; ri i

hri ; KT Kri ; i
hri ; Krii
hri ; ri i � �min.M/

�max.KTK/

we have the assertion (6.35). �

6.3 Iterative Solvers for Equations of Negative Order

In this section we discuss the iterative solution of the integral equation for the single
layer operator V , i.e., an operator of the first kind and negative order.

Numerical approximations of the entries of the system matrix and the right-hand
side (see Chap. 5) or the cluster method (see Chap. 7) both lead to a perturbed system
of Galerkin equations

eK QuS D Qf: (6.37)

The size of the perturbations should be chosen in such a way that if the system of
equations is solved exactly the associated boundary element solution QuS 2 S should
converge optimally. As we have already seen in Chap. 4, Lemma 4.5.1, the condition
number

�.K/ D �max.K/=�min.K/

of the exact Galerkin matrix K for a boundary integral operator of the first kind with
order ˙1 on a quasi-uniform mesh G on � with mesh width h behaves as

�.K/ � Ch�1 � CN1=2 : (6.38)

If the approximation eK in (6.37) satisfies suitable stability conditions (6.38) also
holds for eK , as the following exercise will show.

Exercise 6.3.1. Let K be the exact Galerkin matrix of a boundary element method
for an elliptic boundary integral equation of the first kind and of order �1 on a
shape-regular, quasi-uniform mesh G with mesh width h. Furthermore, let eK be a
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stable, consistent, symmetric approximation of K, more precisely, we assume that
the perturbed Galerkin solution QuS 2 S from (6.37) converges at an optimal rate.
Show that the condition number of the perturbed matrix eK satisfies

�.eK/ D �max.eK/=�min.eK/ � Ch�1 D CN1=2 (6.39)

for a sufficiently small mesh width h � h0.

The previous exercise, together with the symmetry of the approximation eK and
the convergence estimate (6.23) in Theorem 6.1.7 for the cg method, all combine
to give us estimates for the error of the approximation Quj

S after j steps of the cg
method.

For this let Quj
S be the j -th iterate of the cg method applied to (6.37) and let

Quj
S 2 S D S

p;�1
G be the associated boundary element solution. The connection

between the Euclidean vector norm kQuj
S � QuS k of the error in the j -th iterate and

the error kQuj
S � QuSkH �1=2.�/ in the boundary element solution is established by

normalizing the basis functions of S as follows. Since the basis .bI /I2I of S
p;�1
G

is constructed separately for every panel � , it can easily be made orthonormal with
respect to the L2.�/ inner-product. In this case we have

QuS D
X

I2I
. QuS /I bI 2 S H) kQuSkL2.�/ D kQuS k; (6.40)

where k�k again denotes the Euclidean norm.

Proposition 6.3.2. Let eK be a stable, consistent and symmetric approximation of
the Galerkin matrix K of the boundary integral equation of the first kind for the

single layer potential. Furthermore, let
�

Quj
S

�1
j D0

be the sequence of the iterated

vectors of the cg method with the initial vector Qu0
S D 0 and the approximate solu-

tions Quj
S 2 S associated with Quj

S . Let the basis of S be L2-orthonormal and let the
inverse inequality from Theorem 4.4.3 hold. Then the error estimate

kQuS � Quj
SkH �1=2.�/ � C.1 � h1=2/j h�1=2 kf kH 1=2.�/ (6.41)

holds.

Proof. We apply the convergence estimate (6.23) with the unit matrix C D I, which
is the cg method without preconditioning, and with the matrix eK. According to
Exercise 6.3.1 it follows for a sufficiently small h � h0 that

�.eK/ � C h�1 � CN 1=2 :

With this, Theorem 6.1.7 gives us the estimate
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�
��QuS � Quj

S

�
��

H �1=2.�/
� C

�
��QuS � Quj

S

�
��

L2.�/
D C

�
�� QuS � Quj

S

�
�� (6.42)

� C
�
1 � h1=2

�j kQuSk � C
�
1 � h1=2

�j
h�1=2 kQuSkH �1=2.�/ :

The stability of the perturbation and of the Galerkin method combined with the
ellipticity of the integral equation together yield

kQuSkH �1=2.�/ � C1kuSkH �1=2.�/ � C2kukH �1=2.�/ � C3kf kH 1=2.�/;

which gives us the assertion. �

Remark 6.3.3. The factor h�1=2 in (6.41) can eventually be omitted if the Galerkin
projection is stable in L2 so that kQuSk in (6.42) can be estimated in terms of the
right-hand side f (with constants independent of h) under appropriate regularity
assumptions.

In order to obtain the order of convergence for the approximation Quj
S , we need

to set the error bound (6.41) in the same way as for the discretization error of the
unperturbed Galerkin method. In the H �1=2.�/-norm the Galerkin method con-
verges with an order of O.hpC3=2/ if the exact solution u has maximal regularity,
more precisely, if we have u 2 H pC1.�/. This means that we terminate the cg
method after j0 steps, where j0 is chosen so that the following condition holds

�
1 � h1=2

�j0

h�1=2 < C hpC3=2: (6.43)

Proposition 6.3.4. For a sufficiently small h � h0 the cg method without precon-
ditioning yields an approximation Quj0

S 2 S of the Galerkin solution uS 2 S that
converges with an optimal order after

j0 � C j log hj h�1=2 � CN 1=4 log N (6.44)

steps.

We note that a cg step requires a matrix-vector multiplication u 7�! eKu. For
dense matrices the evaluation thereof has a complexity of O

�
N 2
�
. In this case the

total complexity of the entire solution process is proportional to N 9=4 log N . For a
large dimension N � 104 � 106 this behavior leads to unacceptable computational
costs, even for modern supercomputers.

In Chap. 7 we will introduce the cluster method for a fast matrix-vector multi-
plication, which only needs O.N.log N /a/ arithmetic operations with a � 0. This
gives us an almost linear total complexity of O.N 5=4.log N /aC1/ for the cg method
without preconditioning.

Exercise 6.3.5. In Proposition 6.3.4 we assume that the approximation eK of the
matrix K is symmetric. Study the case in which eK is a stable, consistent and
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non-symmetric approximation of a positive definite matrix K and in which an MR
or Orthomin.k/ method is used for the iterative solution of (6.37).

In many cases the complexity of the cg method and its non-symmetric variants is
reasonable so that preconditioning is not necessary.

If, however, the dimension of the linear system of equations is very large, i.e.,
N � 105, preconditioning methods can be applied to reduce the condition number.
For example, we can achieve a condition number of O .jlog hj/ if we precondition
using the Haar-Multiwavelet basis of the subspace S [178,205]. Wavelet discretiza-
tions of integral equations are discussed in [190, 191, 208, 236]. In [227], [228]
and [206] a wavelet construction is described which is also suited to very complex
surfaces.

6.4 Iterative Solvers for Equations of Positive Order

Integral equations of positive order are similar to differential equations. Multi-
grid methods belong to the most efficient solution methods for finite element
discretizations. They can also be applied to integral equations without too many
modifications. In this chapter we will give an introduction to multi-grid methods that
have been adapted to integral equations. For a detailed discussion we refer to [114]
and [116].

6.4.1 Integral Equations of Positive Order

In this section we will introduce multi-grid methods for the efficient solution of
integral equations of positive order. We consider an integral operator of the form

.Ku/ .x/ D
Z

�

k .x; y/ u .y/ dsy 8x 2 �:

� denotes the surface of a three-dimensional domain and G denotes a surface mesh
of � .

Assumption 6.4.1. The operator K W H 1=2 .�/ ! H �1=2 .�/ is continuous with
the continuity constant Cc and elliptic on a closed subspace V � H 1=2 .�/:

b .v; v/ WD .v; Kv/L2.�/ � 	ell kvk2
H 1=2.�/

8v 2 V: (6.45)

For integral equations of positive order the kernel function is usually hypersin-
gular and the integral is defined by means of a suitable regularization.
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For a right-hand side f 2 V 0 we are looking for a function u 2 V such that

b .u; v/ D f .v/ 8v 2 V: (6.46)

The Galerkin or collocation discretization transforms the integral equation into a
coefficient matrix K 2 CN �N and into the right-hand side f 2 CN . The coefficient
vector u in the basis representation of the boundary element solution u 2 S is the
solution of the linear system of equations

Ku D f: (6.47)

Since it is difficult to define point evaluations for integral equations with a hyper-
singular kernel function, we will restrict ourselves to Galerkin discretizations. The
conformity S � V � H 1=2 .�/ implies the Lipschitz continuity of the bound-
ary element function. Some proofs require inverse inequalities and we denote the
minimal constant in

kukH 1=2.�/ � C h�1=2 kukL2.�/ 8u 2 S (6.48)

by Cinv. It depends on the regularity of the mesh G [see Chap. 4, Theorem 4.4.3 and
Remark 4.4.4(a)]. The minimal and maximal constant C and c in

jsupp bi j � C h2 and jsupp bi j � ch2 (6.49)

are denoted by Csupp and csupp respectively.
We will now provide an estimate for the diagonal elements of the matrix K for

later applications.

Lemma 6.4.2. There exist positive constants cd and Cd such that

cdhi � jKi;i j � Cdhi 81 � i � N (6.50)

with hi WD max fh� W � 2 G ^ � � supp big. Here the constants cd, Cd depend only
on � , the minimal angle of the surface mesh, the constants from local inverse
inequalities and the coefficients of the kernel function.

Proof. The continuity and ellipticity (cf. Assumption 6.4.1) implies that

	ell kbik2
H 1=2.�/

� Ki;i � Cc kbik2
H 1=2.�/

:

From Remark 4.4.4a with s D 1=2 and t D 0 we deduce that

kbikH 1=2.�/ � C h�1=2 kbi kL2.�/

Th. 4.4.5� C h1=2:
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The lower estimate is proved in two steps. Recall that .bi / is a Lagrange basis.
Owing to the h-independent equivalence of the norms kvkH `.�/ and kQvkH `.�affine/
from Corollary 4.3.12, it suffices to consider the case of a plane polyhedral surface.

Step a: Estimate with respect to the H 1-seminorm.
For a basis function bi we select some � 2 G with � � supp bi and denote the

reference map by 
� W O� ! � . Let bN � D bi j� ı 
� denote the local shape function
for some � 2 � O�

p [cf. Example 4.1.37 and (4.70)]. Then we obtain

jbi j2H 1.�/
� jbi j2H 1.�/

D
Z

O�
g� .Ox/

D
G�1

� rbN � .Ox/ ; rbN � .Ox/
E
d Ox

Lemma 4.3.6� ch2
�

Z

O�

D
G�1

� rbN � .Ox/ ; rbN � .Ox/
E
d Ox (6.51)

with the inverse of Gram’s matrix G�1
� WD J�1

�

�
J�1

�

�|
and the Jacobian J� of 
� .

Note that the minimal eigenvalue of G�1
� is the reciprocal of the maximal eigenvalue

of G� so that from Lemma 4.3.5 and (6.51) we derive

jbi jH 1.�/ � c
ˇ̌
ˇbN �

ˇ̌
ˇ
H 1.O�/

:

There exists some Oz 2 O� such that
�
�
�rbN � .Oz/

�
�
� D sup

Ox2O�

�
�
�rbN � .Ox/

�
�
� � 1:

The smoothness of bN � implies that there exist some Ot � O� and some constants
˛; ˇ 2 �0; 1Œ which depend only on the polynomial degree p such that

8Ox 2 Ot ˛
�
�rN� .Oz/

�
� �

�
�
�rbN � .Ox/

�
�
� and

ˇ
ˇOtˇˇ � ˇ jb� j :

Thus

jbi jH 1.�/ � c
ˇ
ˇ
ˇbN �

ˇ
ˇ
ˇ
H 1.O�/

� c
ˇ
ˇ
ˇbN �

ˇ
ˇ
ˇ
H 1.Ot/

� c˛
�
�rN� .Oz/

�
�
qˇ
ˇOtˇˇ � c˛

p
ˇ j O� j:

Step b: H 1=2-estimate.
From Remark 4.4.4a with s D 1 and t D 1=2 we deduce the second inequality in

c˛
p

ˇ j O� j � jbi jH 1.�/ � C h
�1=2
i kbikH 1=2.�/ :

�
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6.4.2 Iterative Methods

In this subsection we will summarize some of the properties of iterative methods.
For a more elaborate treatment we recommend [116]. The proofs that we do not
provide here can be found in [116].

Since the large dimension of the matrix K does not allow the use of direct solution
methods (complexity O

�
N 3
�
), we should use iterative methods to solve (6.47). In

the following we will consider linear iterative methods of the type:

u.iC1/ WD u.i/ � W
�

Ku.i/ � f
�

: (6.52)

Clearly, the iteration process is defined entirely by the choice of the matrix W and
the initial vector u.0/.

Some of the common iterative methods include the Jacobi method, the Gauss–
Seidel method and the SOR method (Successive OverRelaxation method). They are
based on the decomposition

K D D � L � R (6.53)

with the diagonal matrix D WD diag K, the strictly lower triangular matrix L and the
strictly upper triangular matrix R.

Example 6.4.3. The Jacobi method is defined by W D D�1. Componentwise the
iterative procedure reads

u.iC1/
j WD u.i/

j � 1

Kj;j

 
NX

kD1

Kj;ku.i/

k
� fj

!

1 � j � N:

In many applications the method has to be damped by a parameter ! > 0. The
damped Jacobi method is defined by W D !D�1.

Example 6.4.4. The Gauss–Seidel method is characterized by the choice W D
.L � D/�1. Note that for this method the triangular matrix L � D does not have
to be inverted. One only needs to solve a system of equations with a triangular
matrix. Componentwise this reads

u.iC1/
j D u.i/

j � 1

Kj;j

0

@
j �1X

kD1

Kj;ku.iC1/

k
C

NX

kDj

Kj;ku.i/

k
� fj

1

A 1 � j � N:

(6.54)
One obtains the damped version by introducing a positive factor ! so that W WD
! .L � D/�1.

Example 6.4.5. The SOR method is obtained by introducing a parameter ! > 0 in
(6.54) which yields
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u.iC1/
j D u.i/

j � !

Kj;j

0

@
j �1X

kD1

Kj;ku.iC1/

k
C

NX

kDj

Kj;ku.i/

k
� fj

1

A 1 � j � N:

In the following we will summarize the basic convergence results for iterative
methods of the form (6.52). We begin with the definition of convergence.

Definition 6.4.6. An iterative method of the form (6.52) is called convergent if for
all f 2 CN there exists a limit u of the iteration that does not depend on the initial
value u.0/ 2 CN .

The convergence of a linear iterative method can be similarly defined by means
of the spectral radius of the iteration matrix.

Definition 6.4.7. The spectral radius of a matrix A 2 CN �N is given by

� .A/ WD max fj�j W � is an eigenvalue of Ag :

The iteration matrix of a linear iterative method of the form (6.52) is given by

T WD I � WK:

Remark 6.4.8. A linear iterative method of the form (6.52) with a regular matrix K
has the representation

u.iC1/ D Tu.i/ C .I � T/ K�1f:

Theorem 6.4.9. The iterative method (6.52) converges if and only if � .T/ < 1. The
limit of the iteration is the solution of the linear system of equations.

Proof. Theorem 3.2.7 and Corollary 3.2.8 from [116]. �
In order to assess an iterative method for a special application, quantitative con-

vergence results play a decisive role. For a vector norm k�k on CN the associated
matrix norm is also denoted by k�k.

kAk WD sup
v2CN nf0g

kAvk
kvk :

Theorem 6.4.10. Let k�k be an associated matrix norm. A sufficient condition for
the convergence of an iteration (6.52) with an iteration matrix T is given by the
estimate kTk < 1. The error e.i/ WD u.i/ � u satisfies the estimate

��
�e.iC1/

��
� � kTk

��
�e.i/

��
� ,

��
�e.i/

��
� � kTki

��
�e.0/

��
� :

Proof. Theorem 3.2.10 in [116]. �
The condition kTk < 1 is only sufficient for the convergence of the iterative

method.
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Remark 6.4.11. (a) Let k�k be an associated matrix norm. Then for every matrix
A 2 RN �N we have the estimate

� .A/ � kAk :

(b) For every matrix A and every " > 0 there exists an associated matrix norm
k�k D k�kA;" with

kAk � � .A/ C ":

Proof. Part a: Let w be an eigenvector associated with the eigenvalue � of A with
the largest absolute value. Then

kAk D sup
v2CN nf0g

kAvk
kvk � kAwk

kwk D j�j D � .A/ :

The proof of Part b uses the Jordan canonical form of the matrix A and can be
found in, e.g., [224, Theorem 6.9.2]. �

The remark shows that for a convergent iterative method there always exists an
associated matrix norm which satisfies the conditions from Theorem 6.4.10. For
linear systems of equations with a positive definite coefficient matrix A 2 CN �N ,
choosing the norm

kxkA WD hx; Axi1=2 with hy; Axi WD
NX

i;j D1

yi Ai;j xj

is often a good option to prove that kTkA < 1.
As an example, we study the convergence behavior of the Jacobi method in

dependence on the condition number of the matrix. For a detailed discussion on
iterative methods we refer to [116, 225].

Theorem 6.4.12 (Jacobi Method). Let K in (6.47) be positive definite. The largest
(smallest) eigenvalue of eK WD D�1=2KD�1=2 is denoted by ƒ (�). The optimal
damping parameter for the Jacobi method is given by !opt WD 2= .ƒ C �/ and the
norm of the associated iteration matrix satisfies

� .T/ D kTkK D kTkA D � � 1

� C 1
(6.55)

with the condition number � of eK.

The following theorem will elaborate on the condition � of eK.

Theorem 6.4.13. Let Assumptions 5.3.5, 5.3.25 and let (6.50) be satisfied. Let the
Galerkin matrix in (6.47) be positive definite. Then the iteration matrix of the
damped Jacobi method with an optimal damping parameter satisfies
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� .T/ � 1 � ch;

where the positive constant c depends on Cinv [see (6.48))], 	ell [see (6.45)], Cc, cd,
Cd (see Lemma 6.4.2) and the constants from Corollary 5.3.28.

Proof. We begin by estimating the largest and smallest eigenvalues of K (see
Chap. 4, proof of Lemma 4.5.1 and Exercise 4.5.2).

For a coefficient vector u 2 CN , u denotes the associated boundary element func-
tion. Since K is positive definite, we have for the largest and smallest eigenvalues
of K

�max D sup
u2CN nf0g

hu; Kui
hu; ui and �min D inf

u2CN nf0g
hu; Kui
hu; ui

respectively. The estimate for the largest eigenvalue stems from the continuity of K ,
the inverse inequality (6.48) and Corollary 5.3.28. Thus

hu; Kui D .u; Ku/L2.�/ � kukH 1=2.�/ kKukH �1=2.�/ � Cc kuk2
H 1=2.�/

� C 2
invCch

�1 kuk2
L2.�/

� C h kuk2 for �max � C h. (6.56)

The lower bound for the smallest eigenvalue

�min � ch2

can be obtained from the ellipticity of K by

hu; Kui D .u; Ku/L2.�/ � 	ell kuk2
H 1=2.�/

� 	ell kuk2
L2.�/ � ch2 kuk2 :

For v 2 CN we set u D D�1=2v and obtain the estimates

Q�max � C and Q�min � ch

for the largest and smallest eigenvalues Q�max, Q�min of eK from the inequalities

˝
v; eKv

˛ D hu; Kui � C h kuk2 D C h
�
��D�1=2v

�
��

2 � eC kvk2 ; (6.57)

˝
v; eKv

˛ D hu; Kui � ch2 kuk2 D ch2
�
�
�D�1=2v

�
�
�

2 � Qch kvk2

by using Lemma 6.4.2.
This proves the estimate � � C h�1 for the condition number of eK . If we insert

this into (6.55) we obtain the assertion. �

Corollary 6.4.14. Under the conditions of Theorem 6.4.13 the spectrum of the
Galerkin discretization of K in (6.47) satisfies

� .K/ � 	
ch2; C h




with positive constants c and C .
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The cg method from Sect. 6.1 is an example of a non-linear iterative method.
If the continuous boundary integral operator is symmetric and elliptic the Galerkin
discretization leads to a positive definite system matrix and the cg method becomes
applicable.

Theorem 6.4.15. Let the conditions from Theorem 6.4.13 be satisfied. The i -th
iteration in the cg method (without preconditioning) is denoted by u.i/. Then the
iteration error e.i/ WD u.i/ � u satisfies the estimate

�
�
�e.i/

�
�
�

K
� 2

�
1 � C

p
h
�i ��
�e.0/

�
�
�

K
:

Proof. We apply Theorem 6.1.7. From Corollary 6.4.14 we have for � D �max=�min

the estimate � � C h�1. For the estimate (6.23) we use

p
� � 1p
� C 1

� 1 � C
p

h

and thus obtain the assertion. �

Remark 6.4.16. Theorem 6.4.15 implies that the number of iterations necessary to
solve the linear system of equations grows as the dimension of K increases.

Under similar conditions to those in Proposition 6.3.4 we obtain an asymptotic
complexity of O .]I t 
 ]M VM / for the solution of the linear system of equations
(6.47), where ]I t WD �

N 1=4 log N
�

denotes the number of iterations and ]M VM

the complexity of a matrix-vector multiplication. For the cluster method we have
]M VM � CN loga N with a � 0.

Remark 6.4.16 shows that the complexity for the solution of the linear system
of equations has a growth which is faster than linear-logarithmic. For very large
problems (N � 105 � 106) the computational costs for the solution of the linear
system of equations will dominate the total costs. In the following subsection we
will introduce a method which can solve the linear system of equations (6.47) at a
linear-logarithmic rate.

6.4.3 Multi-grid Methods�

Multi-grid methods are well suited to solve linear systems of equations that result
from the discretization of differential operators or integral operators of positive
order. In this subsection we will introduce multi-grid methods for the problem (6.47)

� This section should be read as a complement to the core material of this book.
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and refer to the monograph [114] and the textbook [116] for a detailed treatment.
Here we will only give a brief presentation, which is adapted to boundary integral
equations of positive order.

6.4.3.1 Motivation

The elliptic integral operator K W H 1=2 .�/ ! H �1=2 .�/ acts on a function
u ! Ku as a differentiation. Multi-grid methods can be applied to general, elliptic
problems of positive order. The basic idea behind multi-grid methods can best be
explained by using an elliptic differential operator which has been discretized by
finite differences. Transferring this method to elliptic boundary integral equations
of positive order does not require any modification and is presented afterwards.

We consider the Poisson model problem on the unit interval I D .0; 1/. Find a
function u such that

�u00 D f in I;

u .0/ D u .1/ D 0:
(6.58)

For the discretization we use an equidistant mesh ‚ WD fih W 1 � i � N g with
h WD 1= .N C 1/. It is our aim to determine an approximation of the solution at the
mesh points x 2 ‚. This mesh function is denoted by u 2 RN . In order to deter-
mine a system of equations for u, the second derivative is replaced by the difference
approximation

�u00 .x/ � �u .x � h/ C 2u .x/ � u .x C h/

h2
:

If we use this at every mesh point x 2 ‚ and then take the zero boundary conditions
into consideration we obtain the linear system of equations

Lu D f (6.59)

with a tridiagonal coefficient matrix L and the vector f 2 RN

L WD h�2

2

6
6
6
6
66
6
4

2 �1 0 : : : 0

�1
: : :

: : :
: : :

:::

0
: : : 0

:::
: : : �1

0 : : : 0 �1 2

3

7
7
7
7
77
7
5

; fi WD f

�
i

h

�
81 � i � N:

The solution u is the required approximative solution at the mesh points ih, 1 � i �
N . For this problem the eigensystem can be given explicitly.
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Proposition 6.4.17. The eigenvalues and eigenvectors
�
�.k/; ˛.k/

�
, 1 � k � N , of

the matrix L are given by

˛.k/ WD
p

2h .sin .kjh
//N
j D1 �.k/ WD 4h�2 sin2 k
h

2
:

The damped Jacobi iteration applied to (6.59) can be written in the form

u.iC1/ D u.i/ � !h2

2

�
Lu.i/ � f

�

and we limit the damping parameter to

! 2 �0; 1Œ : (6.60)

The iteration matrix is then given by

TJac
! WD I � !h2

2
L

and the eigenvectors coincide with those of the matrix L. The eigenvalues read

ƒ.k/ WD 1 � 2! sin2 k
h

2
: (6.61)

Lemma 6.4.18. Let (6.60) hold. Then the spectral radius of the iteration matrix
TJac

! satisfies

�
�
TJac

!

� D 1 � 2! sin2 
h

2
D 1 � 1

2

2h2! C O

�
h4
�

:

Proof. It is easy to see that ƒ.k/ in (6.61) assumes its maximal value for k D 1. �

This lemma explains the slow convergence of the Jacobi method for the linear
system of equations (6.59). The iteration error satisfies the recursion

e.iC1/ D TJac
! e.i/: (6.62)

We expand the vector e.i/ with respect to the eigenvectors
�
˛.k/

�N
kD1

e.i/ D
NX

kD1

c
.i/

k
˛.k/

and insert this into the representation (6.62) and thus obtain
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e.iC1/ D
NX

kD1

c
.iC1/

k
˛.k/ with c

.iC1/

k
WD c

.i/

k
ƒ.k/ and ƒ.k/ as in (6.61).

As the index k increases, the oscillations of the eigenfunctions ˛.k/ grow. The fol-
lowing lemma shows that the parts of the error e.i/ that have high oscillations are
reduced by a fixed factor with every Jacobi iteration.

Lemma 6.4.19. Let the damping parameter satisfy ! D 1=2. For k � N C1
2

we
have ˇ

ˇ
ˇƒ.k/

ˇ
ˇ
ˇ � 1=2

and the associated coefficients c
.iC1/

k
of the error e.iC1/ in the eigenvector repre-

sentation satisfy ˇ
ˇ
ˇc.iC1/

k

ˇ
ˇ
ˇ � 1=2

ˇ
ˇ
ˇc.i/

k

ˇ
ˇ
ˇ :

Proof. Choosing ! D 1=2 gives us

ƒ.k/ D 1 � sin2 k


2 .N C 1/
;

and the right-hand side, considered as a function of k, 1 � k � N , is monotonically
decreasing. For k � N C1

2
we thus have

ƒ.k/ � 1 � sin2 


4
D 1

2
;

and the assertion follows from this. �
The slow convergence of the Jacobi method can thus be explained by the slow

reduction of the low frequency parts of the error. On the other hand, the error e.i/

is already smooth after very few iteration steps, as opposed to the solution u. The
error satisfies the equation

Le.i/ D Lu.i/ � Lu D Lu.i/ � f DW d: (6.63)

The right-hand side is the negative residual of the iteration u.i/ and in connection
with multi-grid methods it is called the defect. The vector d can be easily computed
by using the previous iteration and (6.63) represents the equation for the error e.i/.
If one were to solve (6.63) for e.i/ one would have solved the original system of
equations u D u.i/ � e.i/. Since (6.63) is of the same type as (6.59), the iterative
solution, e.g., with the Jacobi method, would have the same complexity as the solu-
tion of (6.59). The essential difference between (6.59) and (6.63) lies in the differing
smoothness of the solutions u and e.i/. We expect that the solution of (6.63) will be
smooth after very few Jacobi steps, as opposed to the solution u.

The basic idea of a two-grid method consists in approximating the solution e.i/

from (6.63) by means of a coarser discretization. For this let Lcoarse be the discretiza-
tion of the problem (6.58) on a coarser mesh ‚coarse WD fihcoarse W 1 � i � Ncoarseg
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with hcoarse D .Ncoarse C 1/�1 and Ncoarse � N=2. A coefficient vector v 2 RN

is transported to the coarse mesh by means of a restriction R W RN ! RNcoarse

and a vector w 2 RNcoarse is prolonged to the finer mesh by means of a prolon-
gation P W RNcoarse ! RN . Both mappings R, P will be concretely introduced in
Definition 6.4.21.

Formally one obtains the approximation Qe.i/ of (6.63) in three steps, as follows:

1. Restriction of the defect in (6.63):

dcoarse WD Rd

2. Solving the equation for the coarse mesh

ecoarse WD L�1
coarsedcoarse

3. Transfer to the fine mesh
Qe.i/ WD Pecoarse

The new iteration is then obtained by the correction u.iC1/ D u.i/ � Qe.i/.
The multi-grid method is obtained by again applying the two-grid method to the

equation
Lcoarseecoarse D dcoarse

and then iterating this process for increasingly coarse meshes.
The multi-grid method described in this subsection can be applied to general,

elliptic differential and integral equations of positive order. It is based on the
property that classical iterative methods rapidly reduce the high-frequency parts
of the error. The more large-scale parts can then be approximated by coarser
discretizations. It is because of this reason that the iterative method within the
multi-grid algorithm is also called the smoothing method.

In the next subsection we will apply this concept to integral equations of positive
order and at the same time define the multi-grid method.

6.4.3.2 Multi-grid Method for Integral Equations of Positive Order

We have already explained in the motivation for this subsection that the efficiency of
multi-grid methods is based on a hierarchy of discretizations. Therefore we assume
that a sequence of surface meshes .G`/

`max
`D0

is given and that the linear system of
equations has to be solved on the level `max. In the simplest case such meshes can
be obtained by refining a coarse mesh.

Example 6.4.20. Let � be the surface of a polyhedron and let G0 be a (coarse) tri-
angulation of � . A family of fine triangulations .G`/

`max
`D0

is obtained by recursively
connecting the midpoints of the sides of every triangle � 2 G`�1 and thus subdivid-
ing � into four congruent triangles (see Remark 4.1.8). The mesh points of the mesh

‚` are denoted by
�
xi;`

�N`

iD1
.
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On an abstract level we assume that the surface mesh G is the finest mesh of a
mesh family .G`/

`max
`D0

, i.e., G D G`max , with a strictly decreasing mesh width h`. The
Galerkin discretization of the integral equation (6.46) with boundary elements on
the meshes G`, 0 � ` � `max leads to a family of linear systems of equations

K`u` D f` 0 � ` � `max: (6.64)

It is our goal to efficiently solve the equation on a fine mesh

K`max u`max D f`max : (6.65)

To combine simple iterative methods with a coarse grid correction we need to
define transfer operators from coarse to fine meshes and vice-versa. For 0 � ` �
`max we introduce the notation X` WD CN` for the space of mesh functions.

The canonical choice for the prolongation P`;`�1 W X`�1 ! X` can be obtained
by interpreting a coefficient vector u 2 X`�1 as a boundary element function. For
this we assume that the boundary element spaces S` are nested

S0 � S1 � : : : � S`max � H s .�/ : (6.66)

The boundary element basis for S` is denoted by
�
bi;`

�N`

iD1
.

Every coefficient vector u 2 X`�1 is uniquely associated with a boundary
element function u 2 S`�1 by

u D P`�1u WD
N`�1X

iD1

ui bi;`�1; (6.67)

which, owing to (6.66), also satisfies u 2 S`. In S` it again has a unique basis
representation

u D
NX̀

iD1

˛i bi;` (6.68)

and the operation S` 3 u ! ˛ 2 X` defines the operator R` W S` ! X`. The
composite mapping X`�1 3 u ! u ! ˛ 2 X` defines the prolongation P`;`�1 W
X`�1 ! X`.

Definition 6.4.21. Let (6.66) hold. Let the operators P` W X` ! S` and R` W S` !
X` be given by (6.67) and (6.68). The canonical prolongation P`;`�1 W X`�1 ! X`

is the composite mapping

P`;`�1 D R`P`�1:

The restriction R`�1;` W X` ! X`�1 is the adjoint of P`;`�1 and it is character-
ized by

˝
R`�1;`v; u

˛ D ˝
v; P`;`�1u

˛ 8v 2 X`; u 2 X`�1:
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Remark 6.4.22. The canonical prolongation P`;`�1 is represented by a rectangular
matrix of the dimension N` 
 N`�1. For the restriction we have R`�1;` D P|

`;`�1
.

Example 6.4.23. The mesh hierarchy described in Example 6.4.20 has the follow-
ing property: For every mesh point x 2 ‚` we either have x 2 ‚`�1 or there exist
two coarse mesh points y; z 2 ‚`�1 that are connected by a panel edge and satisfy
x D .y C z/ =2. In the case of continuous, piecewise linear boundary elements we
then have for the prolongation

�
P`;`�1

�
i;j

D bj;`�1

�
xi;`

� D
8
<

:

1 if xi;` D yj;`�1
1
2

if xi;`; yj;`�1 form a panel edge in G`,
0 otherwise.

We have now defined all the components of the two-grid method and can
describe it in an algorithmic form. The application of one step of a simple itera-
tive method, for example, the Jacobi iteration, to a mesh function u` defines the
mapping S` .u`; f`/, where f` denotes the right-hand side of the associated system
of equations K`u` D f`. In the following algorithm we will apply this smoothing
iteration � times. The required number of smoothing iterations is estimated in The-
orem 6.4.37 according to � � N� with N� D O .1/. In many applications � D 2; 3

proves to be a suitable choice.

Algorithm 6.4.24 (Two-Grid Method). The iteration step of the two-grid method
for the solution of (6.65) is called by TGM

�
u`max ; f`max

�
and is defined as follows.

procedure TGM.u`; f`/ I
begin

for i WD 1 to � do u` WD S` .u`; f`/ I
d`�1 WD R`�1;` .K`u` � f`/ I
c`�1 WD K�1

`�1
d`�1I

u` WD u` � P`;`�1c`�1I
(6.69)

end;

Remark 6.4.25. The two-grid method defines a linear iterative method with the
iteration matrix

TTGM WD �
I` � P`;`�1K�1

`�1R`�1;`K`

� �
TOGM

��
;

where TOGM denotes the iteration matrix of the simple iterative method (smooth-
ing method). For the damped Jacobi method we have, for example, TOGM WD
I` � !D�1

`
K`.

For practical applications the two-grid method can not yet be recommended, as
on the level ` � 1 there is still one system of linear equations that has to be solved
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per iteration. The idea of the multi-grid method is to again replace the linear system
of equations

K`�1c`�1 D d`�1

by a two-grid method and to repeat this procedure until we reach the coarsest level
` D 0. The method includes a control parameter 	 2 f1; 2g which will be explained
at a later stage.

Algorithm 6.4.26 (Multi-grid Method). An iteration of the multi-grid method for
the solution of (6.65) is called by MGM

�
`max; u`max ; f`max

�
and is defined as follows.

procedure MGM.`; u`; f`/ I
begin

if ` D 0 then u0 WD K�1
0 f0

else begin

for i WD 1 to � do u` WD S` .u`; f`/ I
d`�1 WD R`�1;` .K`u` � f`/ I
c`�1 WD 0I
for i WD 1 to 	 do MGM .` � 1; c`�1; d`�1/ I
u` WD u` � P`;`�1c`�1I

(6.70)

end;
end;

Remark 6.4.27. It is easy to verify that the recursion in the multi-grid algorithm
reaches the level ` D 0 after `max steps and then terminates, which means that the
algorithm is well defined.

Figure 6.1 illustrates the succession of the single recursion steps of a multi-grid
iteration for the cases 	 D 1; 2. The names V-cycle (	 D 1) and W-cycle (	 D 2)
stem from the shape of the mesh transitions in Fig. 6.1.

6.4.3.3 Nested Iterations

The multi-grid iteration starts on the finest mesh, descends to the coarsest mesh level
and then prolongs the corrections over the different levels up to the finest level. In
practical applications the following situation often occurs. The finest discretization
level `max is not known a priori. We start with very coarse discretizations and the
associated Galerkin solutions are computed thereon. It is then decided whether the
current mesh needs to be refined to improve the precision. Thus the object is to
solve a sequence of linear systems of equations on the levels ` D 0; 1; 2; : : :. This
situation can be used to the advantage of the multi-grid iteration by prolonging the
previously computed solution u` to the refined mesh G`C1 where it in turn defines
a suitable initial value for the multi-grid iteration on the level ` C 1. This procedure
is called nested iteration and can be described in an algorithmic form as follows.
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Fig. 6.1 Schematic representation of a multi-grid iteration with a V-cycle (top) for 	 D 1 and
` D 5 and with a W-cycle (bottom) for 	 D 2 and ` D 4

Algorithm 6.4.28 (Nested Iteration). The nested iteration calls the multi-grid pro-
cedure MGM, starting with the coarsest level. Let u0 WD K�1

0 f0 be the solution of
the equation for the coarse mesh.

procedure Nested Iteration;
for ` WD 1 to `max do
begin

u` WD P`;`�1u`�1I
for i WD 1 to m` do MGM .u`; f`/ I

end;

In connection with the convergence analysis for nested iterations we will prove
that m` D m D O .1/ can be chosen independently of `. It turns out in practical
applications that the algorithm already converges for m D 1; 2.

6.4.3.4 Convergence Analysis for Multi-grid Methods

The proof of convergence for the multi-grid method is subdivided into an analysis
of the smoothing property and an analysis of the coarse grid correction. For the sake
of clarity we will first consider the convergence of the two-grid method.

Convergence of the Two-Grid Method

In Sect. 6.4.3.1 we called a mesh function smooth if coefficients in the expansion
with respect to the eigenvectors of the system matrix have small absolute value
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for the eigenvectors of high frequency. Since we are considering integral operators
of positive order, the smoothness can also be described by the measure

�
�K`T�

`
e
�
�,

where e denotes the current iteration error and S.�/

`
denotes the �-fold application of

the smoothing iteration. Here and in the following k�k denotes the Euclidean norm.

Definition 6.4.29 (Smoothing Property). A smoothing iteration with iteration
matrix T`, ` � 0, satisfies the smoothing property with the exponent s 2 R if
there exist functions � .�/ and N� .h/ that are independent of ` such that:

1.
�
�K`T�

`

�
� � � .�/ h�s

`
80 � � � N� .h`/, ` � 1.

2. lim
�!1 � .�/ D 0.

3. lim
h!0

N� .h/ D 1 or N� .h/ D 1.

Theorem 6.4.30. Let the conditions from Theorem 6.4.13 be satisfied for the matri-
ces K`, 0 � ` � `max, from (6.64). Then there exist 0 < ! < ! < 1 independent
of the refinement of the discretization such that the smoothing property holds for the
damped Jacobi method for all ! 2 Œ!; !� with exponent s D �1 and N� .h/ D 1.

Proof. For the sake of simplicity we will omit the index ` in the proof. We have

KT� D K
�
I � !D�1K

�� D 1

!
D1=2X .I � X/� D1=2 (6.71)

with the positive definite matrix X D !D�1=2KD�1=2. From (6.57) we have

�
�

D�1=2KD�1=2
�

� Œ0; C �

with a constant C which is independent of the refinement of the discretization. If
we choose ! 2 	

c; C �1



with 0 < c < C �1 the spectrum of X is contained in the
interval Œ0; 1�. It is shown in Lemma 6.4.31 that this yields

�
�X .I � X/�

�
� � �0 .v/

with �0 .�/ from (6.72). Lemma 6.4.2 implies that

�
�
�D1=2

�
�
�

2 � C h;

from which we have the assertion by using the Cauchy–Schwarz inequality. �

Lemma 6.4.31. (a) Let X be a positive definite matrix for which I � X is also
positive definite. Then ��X .I � X/�

�� � �0 .�/

for all � � 0, where the function �0 .�/ is defined by

�0 .�/ WD ��= .� C 1/�C1 : (6.72)
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(b) The asymptotic behavior of �0 .�/ as � ! 1 is given by

�0 .�/ D 1

e�
C O

�
��2

�
:

Proof. It is well known from linear algebra (see [116, Theorem 2.8.1]) that for every
matrix A 2 CN �N there exist a unitary matrix Q and an upper triangular matrix U
such that

A D QUQH :

By means of induction one can show that for a polynomial p the representation

p .A/ D Q p .U/ QH

is valid. It follows from the theorem on determinant multiplication that the charac-
teristic polynomials of p .A/ and p .U/ coincide. Since the product of two upper
triangular matrices is again an upper triangular matrix, it follows by induction that
p .U/ is an upper triangular matrix with the diagonal elements .p .U//i;i D p .Ui;i/.
As fUi;i W 1 � i � N g is the spectrum � .A/ of A we have proved that

� .p .A// D p .� .A// WD fp .�/ W � 2 � .A/g :

Since X is positive definite, so is B WD X .I � X/� and with p .�/ D � .1 � �/�

we thus have

�
�X .I � X/�

�
� D max f� W � 2 � .B/g D max fp .�/ W � 2 � .X/g

� max fp .�/ W � 2 Œ0; 1�g :

Simple analysis provides the maximum �0 D .� C 1/�1 as well as the equality

p .�0/ D 1

1 C �

�
1 � 1

1 C �

��

D �0 .�/ :

Part (b) follows by analyzing �0. �

The iteration matrix of the two-grid method has the representation (see Remark
6.4.25)

TT GM WD �
K�1

` � P`;`�1K�1
`�1R`�1;`

�
K`T�

` (6.73)

and can be estimated in the Euclidean norm as
�
�
�TT GM

�
�
� � �

�K�1
` � P`;`�1K�1

`�1R`�1;`

�
�
�
�K`T�

`

�
� : (6.74)

We have already estimated the second factor on the right-hand side in connec-
tion with the smoothing property in Theorem 6.4.30. The first factor compares the
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Galerkin solution on different mesh levels and is therefore called the approximation
property.

Definition 6.4.32 (Approximation Property). The two-grid method has the appro-
ximation property with the exponent s 2 R if

�
�K�1

` � P`;`�1K�1
`�1R`�1;`

�
� � C hs

` (6.75)

with a constant C which is independent of `, `max and h`.

In order to prove the approximation property for the two-grid method we need
the following assumption.

Assumption 6.4.33. There exists a constant CG > 0 such that for all right-hand
sides f 2 L2 .�/ the Galerkin solution u` 2 S` of (6.46) for the mesh G` satisfies
the estimate

ku � u`kL2.�/ � CGh` kf kL2.�/ ;

where u denotes the continuous solution of (6.46).

Lemma 6.4.34. Let Assumption 6.4.1 be satisfied and let the inverse operator

K�1 W L2 .�/ ! H 1 .�/

be continuous. Let the mesh family G` be quasi-uniform and let the boundary ele-
ment space S

.1/

`
satisfy S

.1/

`
� S`, where S

.1/

`
denotes the continuous, piecewise

linear boundary element space. Let the conditions from Theorem 4.2.17 be satisfied.
Then Assumption 6.4.33 holds.

Proof. For f 2 L2 .�/ the continuous solution satisfies u 2 H 1 .�/. With Proposi-
tion 4.1.46 and the quasi-optimality of the Galerkin discretization we have

ku � u`kH 1=2.�/ � C inf
v2S`

ku � vkH 1=2.�/ � C inf
v2S

.1/

`

ku � vkH 1=2.�/ :

The approximation property (see Proposition 4.1.50) and the regularity of the
integral operator K yield

inf
v2S

.1/

`

ku � vkH 1=2.�/ � C h
1=2

`
kukH 1.�/ � C h

1=2

`
kf kL2.�/ :

The estimate
ku � u`kL2.�/ � C h` kf kL2.�/

follows by the Aubin–Nitsche duality argument (see Theorem 4.2.17). �
In order to prove the approximation property, first for the two-grid and then

for the multi-grid method, we need a weak condition on the relation between
consecutive mesh widths.



386 6 Solution of Linear Systems of Equations

Assumption 6.4.35. The mesh widths h`, 0 � ` � `max, satisfy

c1 < h`=h`�1 � C1 (6.76)

with constants c1; C1 that do not depend on `.

Theorem 6.4.36. Let Assumptions 5.3.5, 5.3.25, 6.4.33 and 6.4.35 be satisfied. Let
the Galerkin matrix in (6.47) be positive definite.

Then the two-grid method has the approximation property with exponent s D �1,
where the positive constant C in (6.75) does not depend on the mesh width h` but
does depend on the shape-regularity of the mesh.

Proof. Let f` 2 CN` be arbitrary. We set A` WD K�1
`

�P`;`�1K�1
`�1

R`�1;` and prove
that kA`f`k � C h�1

`
kf`k :

(a) In the first step we construct a continuous function f` 2 S` with the property
that f` is the right-hand side of the Galerkin discretization. We use the ansatz

f` D
NX̀

iD1

ˇ`;i b`;i

and from the condition
�
f`; b`;i

�
L2.�/

D .f`/i , 1 � i � N`, we determine the
coefficient vector ˇ` as the solution of the linear system of equations

NX̀

j D1

ˇ`;j

�
b`;j ; b`;i

�
L2.�/

D .f`/i 1 � i � N`:

By using the matrix M` WD
��

b`;j ; b`;i

�
L2.�/

�N`

i;j D1
we obtain the compact repre-

sentation

ˇ` D M�1
` f`: (6.77)

(b) In the second step the vectors u` WD K�1
`

f` and u`;`�1 WD P`;`�1K�1
`�1

R`�1;`f`

are interpreted as Galerkin solutions of auxiliary problems.
The vector u` is the coefficient vector of the Galerkin solution of problem (6.46):

Find u` 2 S` such that

b .u`; v/ D .f`; v/L2.�/ 8v 2 S`:

We now consider u`;`�1 and set f`�1 WD R`�1;`f`. The corresponding right-hand
side f`�1 is defined by

f`�1 D
N`�1X

iD1

ˇ`�1;ib`�1;i
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with

ˇ`�1 WD M�1
`�1f`�1.

Therefore the vector u`�1 WD K�1
`�1

f`�1 is the coefficient vector of the Galerkin
solution: Find u`�1 2 S`�1 such that

b .u`�1; v/ D .f`�1; v/L2.�/ 8v 2 S`�1:

Then we have u`;`�1 WD P`;`�1u`�1.

(c) Splitting the term A`f`.

By Definition 6.4.21 we obtain

A`f` D u` � u`;`�1 D R`u` � P`;`�1R`�1u`�1:

If we use P`;`�1 D R`P`�1 and P`�1R`�1 D I`�1 on S`�1 we obtain

u` � u`;`�1 D R` .u` � u`�1/ :

(d) By using Corollary 5.3.28 we have for the norms of R`, P`

cP h` kuk � kP`ukL2.�/ � CP h` kuk ;

C �1
P h�1

`
kukL2.�/ � kR`uk � c�1

P h�1
`

kukL2.�/

(6.78)

for all u 2 S` and u 2 CN . Hence we have proved that

�
�u` � u`;`�1

�
� � C h�1

` ku` � u`�1kL2.�/ : (6.79)

If we insert the continuous solution u of (6.46) with f D f` into the right-hand side
of (6.79) we obtain

�
�u` � u`;`�1

�
� � C h�1

`

�ku` � ukL2.�/ C ku � u`�1kL2.�/

�
: (6.80)

(e) Estimating the differences u` � u and u � u`�1

Assumption 6.4.33 yields

ku` � ukL2.�/ � C h` kf`kL2.�/ :

and
ku`�1 � ukL2.�/ � C h`�1 kf`�1kL2.�/ :
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(f) Estimating the functions f`, f`�1

In the following the norms kf`kL2.�/ and kf`�1kL2.�/ are expressed in terms of
the vector f`. We have

kf`kL2.�/ � C h` kˇ`k (6.81)

and similarly
kf`�1kL2.�/ � C h`�1 kˇ`�1k : (6.82)

We first estimate the norm of ˇ`. We have

kˇ`k D �
�M�1

` f`

�
� � ��1

min kf`k

with the smallest eigenvalue �min of the positive definite matrix M`. We can estimate
this value by

�min D inf
v2CN` nf0g

hv; M`vi
hv; vi D inf

v2CN` nf0g

.P`v; P`v/L2.�/

hv; vi D inf
v2CN` nf0g

kP`vk2
L2.�/

kvk2
� ch2

`:

(6.83)
With (6.81) it follows that

kf`k � C h�1
` kf`k :

We now turn our attention to (6.82). The definitions of ˇ`�1 and f`�1 combined with
(6.83) and (6.76) yield

kˇ`�1k D ��M�1
`�1f`�1

�� � ch�2
` kf`�1k D ch�2

`

��R`�1;`f`

�� � ch�2
`

��R`�1;`

�� kf`k:

We still need to estimate the norm of the operator R`�1;`. With (6.78) we have

�
�R`�1;`

�
� D

�
�
�P|

`;`�1

�
�
� D �

�P`;`�1

�
� � kR`k kP`�1k � C; (6.84)

so that in all we have proved that

kf`k � C h�1
` kf`k and kf`�1kL2.�/ � C h�1

`�1 kf`k :

(g) Estimating the operator A`

The approximation property follows from

kA`f`k D �
�u` � u`;`�1

�
� (6.80)� C h�1

`

�ku` � ukL2.�/ C ku � u`�1kL2.�/

�
(6.85)

(e)� C h�1
`

�
h` kf`kL2.�/ C h`�1 kf`�1kL2.�/

�

(f)� C h�1
` kf`k :

�
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Theorem 6.4.37. Let the conditions from Theorems 6.4.30 and 6.4.36 be satisfied.
Then there exist 0 < ! < ! < 1 and N� > 0 independent of the refinement of the
discretization so that the norm of the two-grid method converges with respect to the
Euclidean norm with � � N� smoothing steps of the Jacobi method. The damping
parameter ! 2 Œ!; !� is independent of the mesh width h and the discretization
level `. For the iteration matrix the estimate

�
�
�TT GM

`

�
�
� < 1

holds.

Proof. Combine the decomposition (6.74) with Theorems 6.4.30 and 6.4.36. �

W-Cycle Convergence

In the next step we will prove the convergence of the multi-grid method. The conver-
gence proofs for the W and V-cycles are very different. We begin with the simpler
W-cycle multi-grid algorithm. The proof makes use of the fact that the multi-grid
method (W-cycle) can be regarded as a small perturbation of the two-grid algorithm.
We require an additional condition which will be stated next.

Assumption 6.4.38. The iteration matrix T` of the smoothing iteration satisfies

��T�
`

�� � Cit

for all ` � 1 and 0 < � � N� D min`�1 N� .h`/ with N� from Definition 6.4.29.

This assumption is satisfied for the Jacobi method.

Lemma 6.4.39. Let the conditions from Theorem 6.4.13 be satisfied for the matrices
K`, 0 � ` � `max, from (6.64) and let 0 < ! < ! be as in Theorem 6.4.30. Then
the damped Jacobi method satisfies Assumption 6.4.38 for all ! 2 Œ!; !�.

Proof. For the Jacobi method we have

T�
` WD �

I` � !D�1
` K`

�� D D�1=2

`
.I` � X`/� D1=2

`
(6.86)

with X` from (6.71).
For diagonal matrices D` we have

�
��D�1=2

`

�
��
�
��D1=2

`

�
�� � C:

As was already shown in the proof of Theorem 6.4.30, the matrix in the brack-
ets on the right-hand side of (6.86) satisfies kI` � X`k � 1. The Cauchy–Schwarz
inequality then yields the assertion. �



390 6 Solution of Linear Systems of Equations

Lemma 6.4.40. Let Assumptions 5.3.5, 5.3.25, 6.4.35 and 6.4.38 be satisfied. Let
T` denote the iteration matrix for the smoothing method and CTGM the norm of the
iteration matrix of the two-grid method. Then

�
�K�1

`�1R`�1;`K`T�
`

�
� � c .Cit C CTGM/

Proof. We use the decomposition

P`;`�1K�1
`�1R`�1;`K`T�

` D T�
` � �

K�1
` � P`;`�1K�1

`�1R`�1;`

�
K`T�

` :

By Assumption 6.4.38, the first summand on the right-hand side satisfies the esti-
mate

�
�T�

`

�
� � Cit and the second summand is the iteration matrix of the two-grid

method. It then follows that

�
�P`;`�1K�1

`�1R`�1;`K`T�
`

�
� � Cit C CTGM:

Corollary 5.3.28 [see (6.78)] and Assumption 6.4.35 yield

�
�P`;`�1v

�
� D kR`P`�1vk � c1h�1

` kP`�1vkL2.�/ � c2h�1
` h`�1 kvk � c3 kvk

from which we have the assertion. �
In the next theorem we derive a recursive representation for the iteration matrix

of the multi-grid method.

Theorem 6.4.41. Let T` be the iteration matrix for the smoothing method and let
TT GM

`
be the iteration matrix for the two-grid method with respect to the levels

`, ` � 1. The iteration matrix TMGM
`

of the multi-grid method can be recursively
represented as

TMGM
0 D 0; TMGM

1 D TT GM
1 ;

TMGM
` D TT GM

` C P`;`�1

�
TMGM

`�1

��

K�1
`�1R`�1;`K`T�

` :

Proof. The proof is achieved by induction over the levels ` D 0; 1; : : :. For ` D 0, 1

the statement is clear, since the solution is exact on the level ` D 0 and since on the
level ` D 1 the multi-grid method and the two-grid method are identical.

In order to identify the iteration matrix TCGC
`

of the coarse grid correction, we
use (6.70) and set f` D 0. Then

d`�1 D R`�1;`K`u`:

If we denote the first iterate c`�1 D 0 in (6.70) by c.0/

`�1
and the iterate belonging to

the index i in (6.70) by c.i/

`�1
we obtain

c.i/

`�1
D TMGM

`�1 c.i�1/

`�1
C NMGM

`�1 d`�1
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with the matrix NMGM
`�1

WD �
I`�1 � TMGM

`�1

�
K�1

`�1
(see Remark 6.4.8). Since

c.0/

`�1
D 0 it follows that

c
.	/
`�1 D

 
	�1X

iD0

�
TMGM

`�1

�i
!

NMGM
`�1 d`�1 D

 
	�1X

iD0

�
TMGM

`�1

�i
!
�
I`�1 � TMGM

`�1

�
K�1

`�1d`�1

D
�

I`�1 � �
TMGM

`�1

�	�
K�1

`�1R`�1;`K`u`:

The iteration matrix of the coarse grid correction (6.70) is then given by

TCGC
` D I` � P`;`�1

�
I`�1 �

�
TMGM

`�1

���
K�1

`�1R`�1;`K`

D �
K�1

` � P`;`�1K�1
`�1R`�1;`

�
K` C P`;`�1

�
TMGM

`�1

��

K�1
`�1R`�1;`K`:

(6.87)

Combined with the preceding smoothing step T�
`

and with (6.73) we obtain the
assertion

TMGM
` D TT GM

` C P`;`�1

�
TMGM

`�1

��

K�1
`�1R`�1;`K`T�

` :

�
As an abbreviation we set �` WD �

�TMGM
`

�
�. In the following we will derive a

recursive estimate for �`.

Lemma 6.4.42. Let Assumptions 5.3.5, 5.3.25, 6.4.35 and 6.4.38 be satisfied. For
the numbers �` the recursive estimate

�0 D 0 and for 1 � ` � `max W �` �
��
�TT GM

`

��
�C C �

�

`�1

holds, where C depends only on
��TT GM

`

��, cP , CP from (6.78), c1; C1 from (6.76)
and Cit from (6.4.38).

Proof. The recursive representation of the iteration matrix of the multi-grid method
from Theorem 6.4.41 can be estimated by using the triangle and Cauchy–Schwarz
inequalities as follows:

�0 D 0; �1 D
�
�
�TT GM

`

�
�
� ;

�` �
��
�TT GM

`

��
�C �

�

`�1

�
�P`;`�1

�
�
�
�K�1

`�1R`�1;`K`T�
`

�
� :

Lemma 6.4.40 and P`;`�1 D R`P`�1 with (6.78) then yield

�` �
�
�
�TT GM

`

�
�
�C C?�

�

`�1
(6.88)
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with a constant C? which depends only on
��TT GM

`

��, cP , CP from (6.78), c1; C1

from (6.76) and Cit from (6.4.38). �

Theorem 6.4.43. Let the conditions from Lemma 6.4.42 be satisfied.
Then there exists a constant N� > 0 such that the iteration matrix for the multi-grid

method with W-cycle and � � N� smoothing steps satisfies the estimate

�
�
�TMGM

`

�
�
� � C < 1

with a constant C which is independent of ` and the mesh width h`.

Proof. The W-cycle is defined by choosing 	 D 2 in Algorithm 6.4.26. Without loss
of generality we assume in (6.88) that

C? > 1: (6.89)

We define an auxiliary sequence .x`/
`max
`D0

by x0 WD 0 and for ` D 1; 2; : : : ; `max

by x` WD 1 C �x2
`�1

with � D CTGMC?. We clearly have �` � CTGMx` for all

0 � ` � `max and .x`/
`max
`D0

is strictly increasing. In the case � � 1=4 the auxiliary
sequence is bounded (for example, by 2) and the limit x? is given by

x? D 1 C p
1 � 4�

2�
:

Combining these results we have shown that under the condition CTGMC? � 1=4

the norm of the iteration matrix of the multi-grid method (W-cycle) satisfies the
estimate [see (6.89)]

�` � CTGM
1 C p

1 � 4�

2�
D 1 C p

1 � 4CTGMC?

2C?

� C �1
? < 1:

By (6.72) the minimal number of smoothing steps can always be chosen such that
the associated two-grid method satisfies CTGMC? � 1=4. �

V-Cycle Convergence

The above argument cannot be applied to the V-cycle. Since the multi-grid iteration
with the V-cycle requires far less computational time than the W-cycle, we will also
present the more complicated convergence analysis associated with it.

The essential differences compared to the W-cycle convergence consist in restrict-
ing the method to symmetric smoothers and using convergence results with respect
to the energy norm k�kK`

instead of the Euclidean norm. We will specify these
assumptions in the following.
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Assumption 6.4.44. The matrices K` are positive definite. For the restriction we
have R`�1;` D P|

`;`�1
for all `.

In the next step the multi-grid (and two-grid) method is generalized to form a
symmetric method.

Definition 6.4.45. Let K be positive definite and let a smoothing method S`

�
u.i/; f

�

of the form (6.52) be given. The adjoint smoothing method SH
�
u.i/; f

�
is given by

u.iC1/ WD u.i/ � WH
�

Ku.i/ � f
�

:

Definition 6.4.46. The symmetric multi-grid (and two-grid) method results by
adding � post-smoothing steps with the adjoint smoothing iteration. The following
lines

for i WD 1 to � do u` WD SH
` .u`; f`/ I

have to be added to the end of the program in (6.70) [and (6.69)].

For the V-cycle we assume that the coarse mesh matrices are defined by the
Galerkin product

K`�1 WD R`�1;`K`P`;`�1: (6.90)

Remark 6.4.47. By Assumption 6.4.44 we have for the Galerkin product

K`�1 D P|
`;`�1

K`P`;`�1:

Assumption 6.4.48. The smoothing method is Hermitian: WH
`

D W` for all 0 �
` � `max.

For positive definite system matrices K` the matrices W�1
`

�K` are also positive
definite.

Assuming these conditions, the iteration matrix for the symmetric two-grid
method is given by

TT GM
` WD T�

`

�
K�1

` � P`;`�1K�1
`�1P|

`;`�1

�
K`T�

` :

Lemma 6.4.49. Let Assumptions 5.3.5 and 5.3.25 be satisfied. Let the Galerkin
matrix in (6.47) be positive definite. Then, for a sufficiently small parameter domain
0 < ! < !, the Jacobi method satisfies Assumption 6.4.48 for all damping
parameters ! 2 Œ!; !�.

Proof. For the damped Jacobi method we have W�1
`

D !�1D`. For positive
definite system matrices, W` is therefore also Hermitian and the first part from
Assumption 6.4.48 is satisfied.
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From Lemma 6.4.2 we have

�
�W�1

`

�
� � c!�1h`

and, by (6.56), the system matrix K` satisfies the estimate

kK`k � C h`:

It then follows that the smallest eigenvalue �min of W�1
`

� K` satisfies

�min � �
c!�1 � C

�
h`:

Therefore W�1
`

� K` is positive definite for all damping parameters 0 < ! < c=C .
�

The V-cycle convergence is proved in terms of the energy norm k�kK`
. For this

we need the approximation property of multi-grid methods in terms of the energy
norm.

Assumption 6.4.50. For all 1 � ` � `max we have

��
�W�1=2

`

�
K�1

` � P`;`�1K�1
`�1R`�1;`

�
W�1=2

`

��
� � CA

with a constant CA which is independent of `, `max and the mesh width h`.

Lemma 6.4.51. Let the conditions from Theorem 6.4.36 hold. Then Assumption
6.4.50 is satisfied for the Jacobi method.

Proof. We combine the statement

�
�K�1

` � P`;`�1K�1
`�1R`�1;`

�
� � C1h�1

`

from Theorem 6.4.36 with Lemma 6.4.2

�
�
�W�1=2

`

�
�
�
�
�
�W�1=2

`

�
�
� � !�2

�
�
�D1=2

`

�
�
�

2 � C2!�2h`

and obtain
�
��W�1=2

`

�
K�1

` � P`;`�1K�1
`�1R`�1;`

�
W�1=2

`

�
�� � C1C2!�2:

�

We have now gathered all the necessary conditions for the convergence of the
V-cycle multi-grid method and have used the damped Jacobi method as a smoothing
iteration to check its validity. The iteration matrix for the multi-grid method with
V-cycle is denoted by TV

`
.
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Theorem 6.4.52. Let Assumptions 6.4.44, 6.4.48, 6.4.50 and (6.90) be satisfied.
Then the symmetric multi-grid method as a V-cycle converges in the energy norm at
the following rate

�
�

TV
`

�
D
�
�
�TV

`

�
�
�

K`

� CA

CA C 2�
< 1: (6.91)

Proof. (see [116, Theorem 10.7.15]). The recursion from Theorem 6.4.41 can be
simplified for the V-cycle (	 D 1) to

TV
0 D 0; 8` � 1 W TV

` D TT GM
` C T�

` P`;`�1TV
`�1K�1

`�1R`�1;`K`T�
` : (6.92)

To make use of the symmetric structure of the V-cycle, we insert the transformations

LTT GM
`

WD K1=2

`
TT GM

`
K�1=2

`
; LT.�/

`
WD K1=2

`
T�

`
K�1=2

`
;

LP`;`�1 WD K1=2

`
P`;`�1K�1=2

`�1
; LR`�1;` D K�1=2

`�1
R`�1;`K1=2

`
;

into (6.92) and use (6.73) to obtain the representation

LTV
` WD K1=2

`
TV

` K�1=2

`
D LTT GM

` C LT.�/

`
LP`;`�1

LTV
`�1

LR`�1;`
LT.�/

`

D LT.�/

`

�
I` � LP`;`�1

�
I` � LTV

`�1

� LR`�1;`

� LT.�/

`
(6.93)

D LT.�/

`

�
Q` C LP`;`�1

LTV
`�1

LR`�1;`

� LT.�/

`
(6.94)

with
Q` WD I` � LP`;`�1

LR`�1;`: (6.95)

It follows from Assumption 6.4.44, 6.4.48 and (6.90) that Q2
`

D Q` D QH
`

. There-
fore the mapping Q` is an orthogonal projection (see Exercise 6.4.53) and is thus
positive semidefinite. By induction and with (6.94) the property “ LTV

0 is positive
semidefinite” is transferred to LTV

`
for all ` � 0.

Then the Euclidean norm of LTV
`

is given by the largest eigenvalue of LTV
`

and we
have the equivalence of the two statements (6.96), (6.97)

�
�
�TV

`

�
�
�

K`

D
�
�
� LTV

`

�
�
� � �` (6.96)

�
� LTV

`

�
� Œ0; �`� : (6.97)

We assume by induction that �
� LTV

`�1

�
� Œ0; �`�1� with �`�1 D CA= .CA C 2�/.

Since LTV
0 D 0, this assumption is clearly satisfied for ` D 0.

The spectral radius � .�/ (see Definition 6.4.7) coincides with the largest eigen-
value for positive semidefinite matrices. From (6.93) and Exercise 6.4.53 we obtain
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�
� LTV

`

�
� �

� LT.�/

`

�
I` � .1 � �`�1/ LP`;`�1

LR`�1;`

� LT.�/

`

�

D �
� LT.�/

`
..1 � �`�1/ Q` C �`�1I`/ LT.�/

`

�
: (6.98)

It follows from the approximation property (see Assumption 6.4.50) that

�
�
K�1

` � P`;`�1K�1
`�1R`�1;`

� � CA� .W`/

(see Exercise 6.4.53.c). The eigenvalue inequality (see Exercise 6.4.53.d) is inserted
into the transformation K1=2

`
.�/ K1=2

`
, which yields the following spectral estimate

for Q`

0 � � .Q`/ D �
�

I` � K1=2

`
P`;`�1K�1

`�1R`�1;`K1=2

`

�

� CA�
� LX`

�
with LX` WD K1=2

`
W`K1=2

`
:

The projection property of Q` implies the alternative estimate � .Q`/ � Œ0; 1�.
Therefore we have for all ˛ 2 Œ0; 1�

0 � � .Q`/ � ˛CA�
� LX`

�
C .1 � ˛/ :

This inequality, substituted in (6.98), yields

�
� LTV

`

�
� �

� LT.�/

`

�
.1 � �`�1/

�
˛CA LX` C .1 � ˛/ I`

�
C �`�1I`

� LT.�/

`

�
: (6.99)

We set ˇ WD .1 � �`�1/ .1 � ˛/ C �`�1 and note that for all ˛ 2 Œ0; 1� we have the
inclusion ˇ 2 Œ�`�1; 1�. By using this relation to express ˛ in terms of ˇ we obtain
the estimate for (6.99)

�
� LTV

`

�
� �

� LT.�/

`

�
.1 � ˇ/ CA LX` C ˇI`

� LT.�/

`

�
8�`�1 � ˇ � 1: (6.100)

The matrix LT.�/

`
has the representation

LT.�/

`
D K1=2

`
T�

` K�1=2

`
D
�

I` � K1=2

`
W`K1=2

`

�� D
�

I` � LX`

��

:

Therefore the matrix on the right-hand side of (6.100) in the argument of � is the
polynomial

f .�; ˇ/ WD .1 � �/2� ..1 � ˇ/ CA� C ˇ/

with � D LX`. Therefore the expression

m .ˇ/ WD max ff .�; ˇ/ W 0 � � � 1g
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is an upper bound for the spectral radius. We choose ˇ D �`�1 D CA= .CA C 2�/.
An analysis of the function f .�; �`�1/ shows that it is strictly decreasing with
respect to the first argument within the parameter domain under consideration. It
follows that

�
� LTV

`

�
� f .0; �`�1/ D �`�1

and by induction we have �` D CA= .CA C 2�/. The fact that (6.96) and (6.97) are
equivalent finally yields the stated estimate in (6.91).

The left-hand equality in (6.91) follows from the similarity of the matrices TV
`

and LTV
`

as given by

��
�TV

`

��
�

K`

D
��
�K1=2

`
TV

` K�1=2

`

��
� D

��
� LTV

`

��
� D �

� LTV
`

�
D �

�
TV

`

�
:

�

Exercise 6.4.53.
Prove the following:

(a) Let Assumptions 6.4.44, 6.4.48 and (6.90) be satisfied. Let the matrices K` be
positive definite for all `. Then Q` from (6.95) is an orthogonal projection.

(b) Let A, B be two positive definite matrices. Then

� .A C B/ � � .A/ C � .B/ :

(c) For positive definite matrices A, B the spectral inequality

� .B/ � C�
�
A�1

�

follows from
��
�A1=2BA1=2

��
� � C .

(d) Let A, B, C be positive definite. Then � .A/ � � .B/ yields the inequality

�
�

C1=2AC1=2
�

� �
�

C1=2BC1=2
�

:

Convergence of the Nested Iteration

In this subsection we will present the convergence analysis for the nested iteration
(Algorithm 6.4.28). To do this we begin with suitable assumptions concerning the
prolongation and the multi-grid method which is called in every iteration.

Assumption 6.4.54. Let u`, u`�1 be solutions of (6.64) for successive mesh levels
and let P`;`�1 be the prolongation in Algorithm 6.4.28. Then

�
�u` � P`;`�1u`�1

�
� � C1h�1

` kf`k and
�
�P`;`�1

�
� � C2:
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Assumption 6.4.55. The multi-grid method which is called in Algorithm 6.4.28 has
a mesh-independent convergence rate:

�
�
�TMGM

`

�
�
� � � < 1 8` � 1:

Remark 6.4.56. The first estimate from Assumption 6.4.54 follows from (6.85) if
the conditions of Theorem 6.4.36 are given:

�
�u` � P`;`�1u`�1

�
� � C h�1

` kf`k :

The second estimate follows with (6.84) if the conditions of Theorem 6.4.36 are
given.

Assumption 6.4.55 corresponds to the statements from Theorems 6.4.43 and 6.4.52.
We will only consider the convergence analysis for the L2 and Euclidean norm. We
remind the reader that the V-cycle convergence was only proved in the energy norm.
The convergence of the nested iteration in the energy norm can be derived similarly
and is recommended as an exercise.

Let f be the continuous right-hand side in (6.46). Then the right-hand side f` in
(6.64) can be estimated by using

j.f`/i j WD ˇ
ˇ.f; b`;i /L2.�/

ˇ
ˇ � kf kL2.supp b`;i / kb`;ikL2.supp b`;i / � C h` kf kL2.supp b`;i /

and the finite intersection of the supports. The estimate is given by

kf`k � C3h` kf kL2.�/ < 1: (6.101)

The convergence of the nested iteration can be shown under these conditions. If
a vector a 2 RN` and a function a 2 S` appear in the same context their relation is
given by a D PN`

iD1 ai b`;i .

Theorem 6.4.57. Let Assumptions 6.4.54, 6.4.55 hold and let (6.78 ), (6.101) be
satisfied. Let the iteration number m` D m in Algorithm 6.4.28 satisfy

C2c�1
P �m < 1

with cP from (6.78). Then the nested iteration yields approximations Qu` of the exact
solution u` of (6.64) which satisfy the error estimate

ku` � Qu`kL2.�/ � g .�m/ C1CP h` kf kL2.�/ (6.102)

with

g .x/ WD C3x

1 � C2c�1
P x

if the initial value Qu0 satisfies inequality (6.102).
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Proof. According to the conditions, we have (6.102) for ` D 0. We make the recur-
sive assumption that (6.102) is satisfied for the levels � ` � 1. The initial error
u0

`
� u` with u0

`
WD P`;`�1 Qu`�1 can be estimated by

��u0
` � u`

�� � ��P`;`�1u`�1 � u`

��C ��P`;`�1 .u`�1 � Qu`�1/
��

� ��P`;`�1u`�1 � u`

��C ��P`;`�1

�� ku`�1 � Qu`�1k
� C1h�1

` kf`k C C2 ku`�1 � Qu`�1k
� C1C3 kf kL2.�/ C C2c�1

P h�1
`�1 ku`�1 � Qu`�1kL2.�/

� C1

�
C3 C C2c�1

P g .�m/
� kf kL2.�/ :

Estimate (6.78) implies for the associated boundary element functions that

�
�u0

` � u`

�
�

L2.�/
� C1CP

�
C3 C C2c�1

P g .�m/
�

h` kf kL2.�/ :

After m iterations the initial error u0
`

� u` on the level ` is reduced as described by
the multi-grid convergence properties

kum
` � u`kL2.�/ � �m

�
�u0

` � u`

�
�

L2.�/
� ˚

�m
�
C3 C C2c�1

P g .�m/
��

C1CP h` kf kL2.�/:

The definition of g implies that f: : :g D g .�m/ and from this we have the assertion.
�

Exercise 6.4.58. Prove the convergence of the nested iteration for the multi-grid
method with V-cycle under suitable conditions.

6.5 Multi-grid Methods for Equations of Negative
Order�

The efficiency of multi-grid methods consists in the combination of the smoothing
properties of the operator and the smoothing method as well as the approximation
property of the coarse grid correction. The smoothing property is closely connected
with the mapping properties of the operator K W H s .�/ ! H �s .�/ with s > 0.
For operators of negative order (example: single layer potential) the operator and
the associated simple iterative method are no longer smoothing. High-frequency
eigenfunctions correspond to small eigenvalues and vice-versa.

� This section should be regarded as a complement to the actual focus of the book.
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In this subsection we present an approach with which the mapping properties of
the integral operators of negative order are reversed. This in turn allows the applica-
tion of multi-grid methods. This approach is due to Bramble, Leyk and Pasciak (see
[29, 30]).

As a model problem we consider the Galerkin discretization of the boundary
integral equation for the single layer potential V W H �1=2 .�/ ! H 1=2 .�/. Let
f 2 H 1=2 .�/ be given and let the bilinear form b W H �1=2 .�/ 
 H �1=2 .�/ ! R
be defined as

b .u; v/ WD .V u; v/L2.�/ D
Z

���

v .x/ u .y/

4
 kx � ykdsydsx: (6.103)

S � H �1=2 .�/ denotes the boundary element space and the Galerkin solution is
characterized by

8v 2 S W b .u; v/ D f .v/ :

The basis representation u D PN
iD1 uibi transfers the problem to the linear system

of equations
Vu D f (6.104)

and our aim is its efficient solution. For simplicity we assume here that V is symmet-
ric and positive definite (see Proposition 4.1.24). Perturbations, for example, due to
numerical quadrature, can be treated as in Exercise 6.3.1 or 6.3.5.

Definition 6.5.1. The surface gradient of a function u 2 H 1 .�/ is given by

r�u WD 	0rZu

with the trace extension Z from Theorem 2.6.11 and the trace operator 	0 from
Theorem 2.6.8.

With this the bilinear form w W H 1 .�/ 
 H 1 .�/ ! R can be defined by

w .u; v/ D
Z

�

.hr�u; r�vi C uv/ dx 8u; v 2 H 1 .�/ : (6.105)

In order to avoid technical difficulties we assume that the boundary element space
satisfies the inclusion

S � H 1 .�/ : (6.106)

The Galerkin discretization of the bilinear form w yields the sparse matrix

Wj;i WD w
�
bi ; bj

� 81 � i; j � N:

Proposition 6.5.2. The bilinear form w in (6.105) is H 1 .�/-elliptic.

Proof. The statement follows directly from w .u; u/ D kuk2
H 1.�/. �
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A direct consequence is the fact that the matrix W is positive definite. The oper-
ator W W H 1 .�/ ! H �1 .�/ can be associated with the bilinear form as given
by

hW u; viH �1.�/�H 1.�/ D w .u; v/ 8u; v 2 H 1 .�/ :

The connection between the continuous operators W and V and the matrices W and
V will be studied in the following.

First let P and R be as in Definition 6.4.21, while the index ` is omitted here.
The mapping T W H �1 .�/ ! RN is defined by

Tf D �
.f; bi /L2.�/

�N
iD1

8f 2 H �1 .�/ :

Finally, the mass or Gram matrix is given as in (6.77) by

Mj;i WD �
bi ; bj

�
L2.�/

1 � i; j � N:

Therefore the L2-orthogonal projection Q W H s .�/ ! S for s 2 Œ0; 1� has the
representation Q D P M�1T .

Proposition 6.5.3. Let u 2 S and let u D �
uj

�N
j D1

be the associated coefficient
vector. Then �

WM�1Vu
�

i
D .WQV u; bi/L2.�/ :

Proof. The assertion follows from

.WQV u; bi /L2.�/ D �
WP M�1T V u; bi

�
L2.�/ D

�
WP M�1

�
.V u; bk/L2.�/

�N
kD1

; bi

�

L2.�/

D
 

W

NX

mD1

�
M�1Vu

�
m bm; bi

!

L2.�/

D
NX

mD1

�
M�1Vu

�
m Wi;m D �

WM�1Vu
�
i :

�
The matrix-matrix multiplication WM�1V corresponds to the Galerkin dis-

cretization of the composition WQV . This composition approximates the operator
W V . For smooth surfaces, � 2 C 1, it is possible to show the mapping prop-
erties W V W H s .�/ ! H s�1 .�/ and the continuous invertibility .W V /�1 W
H s�1 .�/ ! H s .�/ (see [29]).

Since the matrix WM�1V is the product of positive definite matrices, it is regular
and the eigenvalues are real and positive. Therefore the solution of the linear system
of equations

WM�1Vu D WM�1f (6.107)

solves (6.104). Since WM�1V can be considered as the discretization of the contin-
uous, regular operator W V of order C1, the multi-grid method from Sect. 6.4.3 can
be directly used for the solution of (6.107). It is essential for the efficiency of the
method that W be sparse so that a matrix-vector multiplication with a complexity of
O .N / can be implemented. For the convergence analysis we refer to [29–31].
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6.6 Further Remarks and Results on Iterative Solvers of BIEs

From the convergence bounds for the basic algorithms for the iterative numeri-
cal solution of the large, densely populated linear systems of equations, it is clear
that preconditioning is an important issue. This is particularly so on complicated
geometries, and for parameter dependent boundary integral operators which arise
in acoustic and electromagnetic scattering. In particular, in Galerkin BEM for BIEs
arising in electromagnetic scattering, the large, nontrivial null space of the electric
field boundary integral equation stalls most “black-box” iterative solvers.

Here, construction of a wave number dependent preconditioner is essential and
highly nontrivial. One approach towards such preconditioners is the use of the
Calderón projector for electromagnetic scattering. This was proposed and analyzed
in [65–67]. The preconditioners thus obtained are based on suitable discretizations
of, in the Calderón projector, conjugate boundary integral operators and require
therefore the discretization of these additional boundary integral operators.

The question of how to preserve the Calderón identities under discretization
was answered recently, in the case of electromagnetic scattering, with tools from
algebraic geometry in [4, 38].



Chapter 7
Cluster Methods

Partial differential equations can be directly discretized by means of difference
methods or finite element methods (domain methods). For this, a mesh has to be
generated over the d -dimensional domain �, which is a difficult task for compli-
cated geometries and exterior domains – if the domain is unbounded the generation
of a mesh with finitely many mesh cells is impossible, leading to further compli-
cations. In comparison, the generation of a .d � 1/-dimensional surface mesh for
the boundary element method is a much simpler task. The latter method has the
additional advantage that the degrees of freedom only occur on the surface and the
dimension of the system of equations is decidedly smaller than for domain meth-
ods. If, for example, we generate a mesh of the unit cube in R3 with a uniform
Cartesian mesh and use the number of mesh points N as degrees of freedom then
only O

�
N 2=3

�
of these actually lie on the surface, which means that in the BEM the

dimension of the system matrix is significantly reduced (in proportion to the number
of degrees of freedom). On the other hand, difference methods and finite elements
lead to sparse system matrices. This means that the memory requirements only grow
linearly as a function of the number of unknowns. At first glance this seems to be
a disadvantage of the matrix representation of boundary integral operators, where
the system matrices are dense. Storing these would repeal the advantage gained by
reducing the dimension of the computational domain through the boundary element
method. In the example considered above, one would need O .N / memory units to
store the system matrix for the domain discretization and O

�
N 4=3

�
flops for the

boundary element method. The cluster methods use an alternative (approximative)
representation of the discrete integral operator and allows the storage of the opera-
tor with O .N log� N / memory units, where N denotes the number of degrees of
freedom on the surface and � � 4 � 6 depends on the problem.

Direct elimination methods such as the Gauss or Cholesky decompositions are
not suited to higher-dimensional problems as their complexity grows cubically with
respect to the dimension. Iterative methods prove to be much more efficient. The
cluster representation of the integral operator allows matrix-vector multiplications,
which are the elementary operations in iterative methods for linear systems of equa-
tions, to be performed in O .N log� N / arithmetic operations. The representation
does, however, not permit the use of direct elimination methods, as the matrix
elements are usually not evaluated. The cluster method was first developed for

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2 7,
c� Springer-Verlag Berlin Heidelberg 2011
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collocation methods and is due to W. Hackbusch and Z.P. Nowak (see [123, 124]).
The extension to Galerkin methods was introduced in [125, 197]. Closely related
to the panel clustering method is the multipole method which has been developed
independently (see [193]).

We will first introduce and describe the cluster method on an abstract level. Then
we will present the algorithmic description of the method. We will conclude this
chapter with an analysis of the error in the Galerkin solution introduced by the panel
clustering approximation and of the overall complexity of the algorithm.

Note: According to the reader’s specific interests, there are different ways of
reading this chapter. Here are a few guidelines.

For readers that are interested in the concrete, algorithmic realization of the clus-
ter method we recommend studying the Sects. 7.1.1, 7.1.2, 7.1.3.1, 7.1.4.4 and 7.2.1
in detail. The required orders of expansion can be found in Table (7.73).

If the main point of interest is the abstract error analysis of the Galerkin method
perturbed by the cluster method we recommend Sects. 7.1.1, 7.1.3.3, the introduc-
tion to Sect. 7.1.4 and Sect. 7.3.2.

Readers that are interested in the derivation of local error estimates for the
Čebyšev interpolation should focus on Sects. 7.1.3.1 and 7.3.1.1.

Finally, understanding the complexity estimates in Sect. 7.4 requires a certain
knowledge of Sects. 7.1.2, 7.1.3.3 and 7.1.4.4.

7.1 The Cluster Algorithm

7.1.1 Conditions on the Integral Operator

We will first define the cluster method for Galerkin discretizations. In Sect. 7.5 we
will present the necessary modifications for collocation methods.

Let G be a given boundary element mesh on a surface � and let K be an abstract
boundary integral operator of the form

K Œu� .x/ WD
Z

�

k .x; y/ u .y/ dsy for all x 2 �: (7.1)

The following assumption describes the class of kernel functions that will be
considered in this section.

Assumption 7.1.1. The kernel function k W � �� ! C is the directional derivative
of a global kernel function G W Rd � Rd ! C that is smooth for x ¤ y:

k .x; y/ D DxDyG .x; y/ ; (7.2)

with the differential operators Dx, Dy of order 0 or 1.
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The cluster method will be formulated for this class of integral operators. We will
impose further conditions on the global kernel function G once we deal with results
on convergence and complexity.

Example 7.1.2. For the kernel function of the single layer potential, G is given by
the fundamental solution (3.3) and k .x; y/ WD G .x � y/.

For the kernel function of the double layer potential we have
k .x; y/ D Q�1;yG .x � y/ with Q�1 D hn�0; A grad � C 2b�i [see (2.107)].

For the kernel function of the adjoint double layer potential we have
k .x; y/ D �1;xG .x � y/ with �1 D hn�0; A grad �i.

The kernel function of the hypersingular operator (without integration by parts,
see Sect. 3.3.4) satisfies k .x; y/ D �1;x Q�1;yG .x � y/.

7.1.2 Cluster Tree and Admissible Covering

The cluster method is based on an approximation of the kernel function on � � � .
More precisely, first the global kernel function G W Rd � Rd ! C is approximated
in suitable domains, from which the approximation of the actual kernel function
is constructed. Our approach consists in using the cluster algorithm to represent
and evaluate the Galerkin discretization of boundary integral equations in a mem-
ory efficient way. We begin by clustering the degrees of freedom of the Galerkin
discretization (as opposed to directly clustering the panels). The advantage of this
approach lies in the fact that the algorithmic realization is simpler than the alter-
native approach, i.e., defining the clusters as the union of panels. This factor is
especially relevant to the realization of data structures. The set of degrees of freedom
is denoted by I [see, for example, (4.28)].

Definition 7.1.3. A cluster is the union of one or more indices from I.

The efficiency of the cluster method is based on the organization of the index set
in a hierarchical cluster tree.

Definition 7.1.4. The nodes of the cluster tree T are clusters. The set of all nodes
is denoted by T and satisfies:

1. I is a node of T .
2. The set of leaves Leaves .T / � T of T corresponds to the degrees of freedom

i 2 I and is given by

Leaves .T / WD ffig W i 2 Ig :

3. For every node � from T n Leaves .T / there exists a minimal set † .�/ of nodes
in T n f�g that satisfies

� D
[

Q�2†.�/

Q�: (7.3)
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The set † .�/ is called the sons of � . The father father . Q�/ of a cluster Q� 2 T n fIg
is that cluster � D father . Q�/ 2 T with Q� 2 † .�/.
The edges of the cluster tree T are those pairs of nodes .�; s/ 2 T �T that satisfy
either � 2 † .s/ or s 2 † .�/.

If the cluster tree T is clear from the context we will write “Leaves” instead of
“Leaves .T /”.

We emphasize that the clustering concept is not restricted to boundary element
methods but is an abstract concept for organizing large sets as hierarchical trees (see
[118, 119]). The following example illustrates the clustering of a set of panels.

Example 7.1.5. Let `max 2 N be chosen and fixed. We set N D 2`max and h D
.N � 1/�1. The mesh points xi WD .i � 1/ h, 1 � i � N , form the set I. A mesh
of the interval .0; 1/ is given by the panels �i D .xi�1; xi /, 2 � i � N . The set of
nodes T of the cluster tree consists of the clusters

�i;` WD
�

i � 1

2`
N C 1;

i � 1

2`
N C 2; : : : ;

i

2`
N

�
; 80 � ` � `max; 1 � i � 2`:

The set of sons of a node �i;` 2 T n Leaves is given by

†
�
�i;`

� D ˚
�2i�1;`C1; �2i;`C1

�
:

For `max D 3 the cluster tree is illustrated in the following figure.

f1; 2; 3; 4; 5; 6; 7; 8g
. &

f1; 2; 3; 4g f5; 6; 7; 8g
. # # &

f1; 2g f3; 4g f5; 6g f7; 8g
. # . # # & # &

f1g f2g f3g f4g f5g f6g f7g f8g

In the next step each cluster � 2 T is assigned a geometric cluster and a diam-
eter. The basis functions of the boundary element space are again denoted by bi ,
i 2 I.

Definition 7.1.6. Every cluster � 2 T is associated with a geometric cluster ����:

�� WD
[

i2�

supp bi :

The cluster box Q� of a cluster � 2 T is the minimal axiparallel cuboid which
contains �� . The cluster center Mc is the center of mass of the cluster box.
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The cluster diameter is given by

diam � D sup
x;y2Q�

kx � yk :

In the original version (see [124]) of the cluster method the size of a cluster was
determined by using the minimal ball that contains �� . Using cuboids, the sides of
which are parallel to the coordinate axes (which we will henceforth call axiparallel
cuboids), is advantageous from an algorithmic point of view and we have chosen
that approach here.

Note that neither the cluster tree nor its generation from the set I is unique. In the
following we will present a construction which only requires the index set I and the
associated surface pieces �fig as its input. With the notation from Definition 7.1.6,
QI denotes the minimal axiparallel cuboid that contains � . For an arbitrary cuboid
Q we define the set of sons by

† .Q/ W set of the 8 congruent subcuboids
that result by bisecting the edges of Q.

(7.4)

Remark 7.1.7. For a set ! � R3, Box .!/ denotes the minimal axiparallel cuboid
that contains !. Note that Box .�/ can easily be determined for panels � 2 G as is
Box .Box .!1/ [ Box .!2// if Box .!i /, i D 1; 2, is known.

The cluster tree is generated “in steps”. The statements

` WD 0I L WD II T WD II E WD ;I generate cluster tree.L/I
generates the cluster tree, where the subroutine generate cluster tree is defined as
follows.

Algorithm 7.1.8 (Cluster Tree).
Comment: Generating the tree structure:

procedure generate cluster tree.L/ I
begin

for all � 2 L do begin
initialize † .�/ WD ;I
generate (temporarily) the set † .Q� / I
for all Q 2 † .Q� / do begin

initialize a (temporary) node s WD ;;
for all i 2 � do if Mfig 2 Q do s WD s [ fig I
if s ¤ ; and s ¤ � then † .�/ WD † .�/ [ fsg I

end;
L WD † .�/ [ Ln f�g I T WD T [ † .�/ I

end;
if L ¤ ; then generate cluster tree.L/ I

end;
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Comment: Generating the cluster boxes.
Comment: Initialization:

for all i 2 I do Qfig WD ;;
for all � 2 G and all .bi W supp bi \ � ¤ ;/ do Qfig WD Box

�
Qfig [ Box .�/

� I
Comment: For the remaining clusters:

Ttemp WD T n LeavesI for all c 2 Ttemp do generate clusterbox
�
c; Ttemp,Qc

� I
Comment: The procedure generate clusterbox is defined as follows:

procedure generate clusterbox
�
c; Ttemp,Qc

� I
begin

for all Qc 2 † .c/ do begin
if Q Qc has not yet been generated then generate clusterbox

� Qc; Ttemp; Q Qc
� I

Qc WD Box .Qc [ Q Qc/ I
end;

Ttemp WD Ttempn fcg I
end;

Comment: Computation of the cluster diameter:

for all c 2 T do diam c WD diam QcI

Remark 7.1.9. The construction ensures that a cluster c is either a leaf, i.e., c D
fig for some i 2 I, or has a non-empty set of sons that are all different from � .

Remark 7.1.10. The subdivision of a cluster is controlled by the geometric subdi-
vision of the associated axiparallel box. Alternatively, the subdivision can also be
controlled by the cardinality of the sons. Here the index set � is divided in such a
way that the cardinality of the sons is as large as possible. However, for the purpose
of error estimates the geometric subdivision is more advantageous.

A pair of clusters .�; s/ 2 T � T is uniquely associated with a submatrix by
K.�;s/ WD .Ki;j /i2�

j 2s
. The idea of the cluster method consists in finding an approxi-

mate representation of such submatrices with significantly reduced memory
requirements. This entails a reduced complexity for arithmetic operations such as
multiplying a matrix block by a vector. The approximation can be applied to sub-
matrices K.�;s/ for which the cluster pair .�; s/ is sufficiently well separated. The
details are given in the following definition.

Definition 7.1.11. (a) The distance between two clusters �; s 2 T is given by

dist .�; s/ WD inf
.x;y/2Q� �Qs

kx � yk : (7.5)

(b) For 	 2 R>0 two clusters �; s 2 T are called admissible if

	 dist .�; s/ � max fdiam �; diam sg :
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The admissibility condition allows the matrix, or rather the index set I � I,
to be decomposed into admissible cluster pairs and non-admissible pairs of single
indices. On the admissible cluster pairs the associated submatrices are replaced by
the cluster method representation and on the non-admissible index pairs the associ-
ated matrix elements are computed and stored in the conventional manner. The set
of admissible cluster pairs in this decomposition is denoted by P far and the set of
non-admissible index pairs by P near. The union P far [P near yields the decomposi-
tion P . It is essential for the efficiency that this (non-unique) decomposition consist
of as few elements as possible. For the algorithmic realization we need a structure
of descendants and predecessors on the set of cluster pairs. For .�; s/ 2 T � T we
define

† .�; s/ WD

8
ˆ̂
<

ˆ̂
:

† .�/ � † .s/ .�; s/ 2 .T n Leaves/ � .T n Leaves/ ;

† .�/ � fsg .�; s/ 2 .T n Leaves/ � Leaves;
f�g � † .s/ .�; s/ 2 Leaves � .T n Leaves/ ;

; .�; s/ 2 Leaves � Leaves :

The program line

P near WD P far WD ;; divide
�
I � I; P near; P far

� I
generates this decomposition, where the recursive subroutine divide is defined as
follows.

Algorithm 7.1.12.

procedure divide
�
.c; s/ ; P near; P far

� I
begin

if .c; s/ is admissible then P far WD P far [ f.c; s/g
else if .c; s/ 2 Leaves � Leaves then P near WD P near [ f.c; s/g
else for all . Qc; Qs/ 2 P .�; s/ do divide

�
. Qc; Qs/ ; P near; P far

� I
end;

The data structures for the algorithmic realization of the cluster method should
be chosen in such a way that, for every degree of freedom, the set of the associated
near-field degrees of freedom and, for every cluster, the set of associated far-field
clusters are stored. For i 2 I and c 2 T we define

P near .fig/ WD ffj g 2 Leaves W .fig ; fj g/ 2 P nearg ; (7.6)

P far .c/ WD
n
� 2 T W .c; �/ 2 P far

o
: (7.7)

7.1.3 Approximation of the Kernel Function

The kernel function is approximated on admissible pairs of geometric clusters. In
the first step the global kernel function G is approximated on three-dimensional
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domains and then the approximation of the kernel function k is defined as the
directional derivative of this expansion. Here we consider the approximation by
interpolation in detail and briefly summarize possible alternatives.

7.1.3.1 Čebyšev Interpolation

Interpolation is well suited for the kernel approximation because of its easy algo-
rithmic implementation and because of the fact that it can be applied to a large class
of kernel functions.

In this section we will introduce the Čebyšev interpolation algorithmically. The
error analysis can be found in Sect. 7.3. For a detailed introduction to Lagrange
interpolation we refer to [225] and [99].

The space of all three-dimensional polynomials of maximal degree m in every
component is denoted by Qm

Qm WD
8
<

:

mX

i;j;kD0

˛i;j;kxi
1x

j
2 xk

3 W ai;j;k 2 C

9
=

;
: (7.8)

Let D � R3 and let f 2 C 0 .D/ be a continuous function. The interpolation
problem reads: For a given set of nodes Z D ˚


.i/ W 1 � i � q
� � D find a function

p 2 Qm�1 such that
p .
/ D f .
/ 8
 2 Z : (7.9)

This problem does not have a solution in general. On axiparallel cuboids and Carte-
sian interpolation nodes the solution of the interpolation problem can, however, be
easily formulated. To do this we introduce, for m 2 N0, the sets

Jm WD ˚
� 2 N3 j 81 � i � 3 W 1 � �i � m

�
: (7.10)

Convention 7.1.13. For a D .ai /
3
iD1, b D .bi /

3
iD1 2 R3 we will always assume

in the following that bi > ai , 1 � i � 3, and consider axiparallel cuboids of the
form Qa;b WD Œa1; b1� � Œa2; b2� � Œa3; b3�. The associated coordinate intervals are

denoted by Q
.i/
a;b D Œai ; bi �, 1 � i � 3.

Definition 7.1.14 (Tensorized Lagrange basis). Let I WD Œa; b� be a real interval
with b > a. Let

˚

.1/; 
.2/; : : : ; 
.m/

� � I be a set of points with

a D 
.1/ < 
.2/ < : : : < 
.m�1/ < 
.m/ D b:

For i D 1; 2; : : : ; m the Lagrange polynomial L.i;m/ W I ! R for the interpolation
node 
.i/ is given by
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L.i;m/ .x/ WD
mY

j D1
j ¤i

x � 
.j /


.i/ � 
.j /
:

Let Convention 7.1.13 hold. Let the mesh Z D Z1 � Z2 � Z3 with Zj D˚

.1;j /; 
.2;j /; : : : ; 
.m;j /

�
, 1 � j � 3, be given. For � 2 Jm we set 
.�/ WD

�

.�i ;i/

�3
iD1

2 Z . With this the tensorized Lagrange basis is given by

L.�;m/ .x/ WD L.�1;m/ .x1/ L.�2;m/ .x2/ L.�3;m/ .x3/ :

The nodes 
.j / and the associated Lagrange functions generally depend on the
interval I and the order m. The index m in 
.i;m/ and L.�;m/ will always be omitted
in the following, assuming that it is clear from the context.

The Lagrange basis functions L.�/ are polynomials of maximal degree m � 1 in
every component and have the property

L.�/ .x/ D
�

1 for x D 
.�/;

0 for x 2Zn f
�g :

Let a and b be as in Convention 7.1.13 and let the mesh Z on the cuboid Qa;b be
as in Definition 7.1.14. Then the solution of the interpolation problem (7.9) can be
given explicitly as

pm .x/ D
X

�2Jm

f
�

.�/

�
L.�/ .x/ : (7.11)

The choice of the Čebyšev nodes as interpolation nodes has stability advantages
compared to the equidistant division of the intervals. The following classical error
representation illustrates to what extend the interpolation error depends on the
choice of interpolation nodes.

Theorem 7.1.15. Let b > a, I D Œa; b� and f 2 C m .I /. For a set of interpolation
nodes Z D �


.i/
�m

iD1
we set pm WD Pm

iD1 f
�

.i/

�
L.i/. Then for all x 2 I there

exists some �x 2 I such that

f .x/ � pm .x/ D f .m/ .�x/

mŠ

Qm
iD1

�
x � 
.i/

�
: (7.12)

Choosing the Čebyšev nodes minimizes the product
Qm

iD1

�
x � 
.i/

�
in the

error term. We will first introduce the Čebyšev nodes for the interval Œ�1; 1� and
summarize some of the properties of the Čebyšev polynomials.

The Čebyšev polynomials can be recursively defined by T0 .x/ WD 1, T1 .x/ WD x

and for k D 2; 3; : : : by

TkC1 .x/ WD 2xTk .x/ � Tk�1 .x/ : (7.13)
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We obtain, for example,

T2 .x/ D 2x2 � 1; T3 .x/ D 4x3 � 3x; T4 .x/ D 8x4 � 8x2 C 1:

Their roots are real, pairwise different and lie in the interval Œ�1; 1�. More precisely,
for the Čebyšev polynomial Tn, n � 1, they have the form


.i;n/ WD cos
2i � 1

2n

 1 � i � n:

Definition 7.1.16 (Čebyšev Interpolation on Œ�1; 1�). The Čebyšev interpolation
of a continuous function f 2 C 0 .Œ�1; 1�/ is given by

….m/ Œf � WD
mX

iD1

f
�

.i/

�
L.i/

with respect to the nodes
�

.i/

�m
iD1

.

For � 2 N3
0 and x D .xi /

3
iD1 the tensorized Čebyšev polynomials are given by

T� .x/ WD T�1
.x1/ T�2

.x2/ T�3
.x3/ : (7.14)

For the three-dimensional unit cube Q D I � I � I with I D Œ�1; 1� the
interpolation nodes are given by the tensorized one-dimensional Čebyšev nodes


.�/ WD
�



.�i /
i

�3

iD1
� 2 Jm:

Definition 7.1.17 (Čebyšev Interpolation on Q). The Čebyšev interpolation of a
continuous function f 2 C 0 .Q/ is given by

�!
….m/ Œf � WD

X

�2Jm

f
�

.�/

�
L.�/:

For an axiparallel cuboid Qa;b we define the Čebyšev interpolation by means of
the affine transformation � W Q ! Qa;b given by

� .Ox/ WD
	

ai C .bi � ai /
xi C 1

2


3

iD1

:

The transformed Čebyšev nodes form the set

‚
.m/
a;b WD

n
�
�

.�/

�
W � 2 Jm

o
:
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Definition 7.1.18 (Čebyšev Interpolation on Qa;b). The Čebyšev interpolation of
a continuous function f 2 Qa;b is given by

�!
…

.m/
a;b Œf � WD

X

�.�/2‚
.m/
a;b

f
�

.�/

�
L.�/;

where the Lagrange functions correspond to the set ‚
.m/
a;b .

The approximation of the kernel function starts with the approximation of the
global kernel function on a pair of axiparallel cuboids Qa;b � Qc;d.

Definition 7.1.19 (Čebyšev Interpolation on Qa;b � Qc;d). For f 2 C 0.Qa;b �
Qc;d/ the tensorized Čebyšev interpolation is given by

�!
…

.m/

Œa;b�;Œc;d�
Œf � .x; y/ WD

X

�.�/2‚
.m/
a;b

X

�.�/2‚
.m/
c;d

f
�

.�/; �.	/

�
L.�/ .x/ L.	/ .y/ :

In Assumption 7.1.1 we restricted ourselves to kernel functions that were either
the global kernel function or a derivative thereof. We define the approximation of
the kernel function by applying the derivatives in (7.2) to the global kernel function.

Definition 7.1.20 (Čebyšev Approximation of the Kernel Function). Let b D
.�; s/ 2 P far be a pair of admissible clusters and let �� , �s be the associated
geometric clusters. The cluster boxes are denoted by Q� DW Qa;b and Qs DW Qc;d.
Let the kernel function have the representation

k .x; y/ D DxDyG .x; y/

and let it satisfy Assumption 7.1.1. Then the Čebyšev approximation km W �� �
�s ! C of the kernel function is given by

kb WD DxDy
�!
…

.m/

Œa;b�;Œc;d�
G:

The representation of the kernel approximation in separated coordinates plays
the key role for the efficiency of the cluster method. For b D .�; s/ 2 P far we
obtain the abstract representation of the kernel approximation

k
.m/

b
.x; y/ D

X

�;	2
m

��;	 .b/ ˆ.�/
� .x/ ‰.	/

s .y/ (7.15)

with

�m WD Jm; ��;	 .b/ WD G
�

.�/; �.	/

�
; ˆ.�/

� .x/ WD DxL.�/ .x/ ;

‰.	/
s .y/ WD DyL.	/ .y/ : (7.16)
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Definition 7.1.21. Let b 2 P far . An approximation kb of the kernel function is
semi-separable if the x and y dependence is factored as in (7.15).

7.1.3.2 Multipole Expansion

The multipole expansion was originally developed for the Laplace problem. In con-
trast to the six-dimensional expansion for the Čebyšev interpolation, the multipole
expansion is four-dimensional and thus more efficient. However, the expansion
has to be developed for each kernel function separately in contrast to the more
general interpolation-based approach for the panel-clustering method. So far, multi-
pole expansions are developed for the Laplace problem, linear elasticity, and the
Helmholtz problem. In the following we will give the expansion of the bound-
ary integral operator for the single layer potential of the Laplace problem, more
specifically, for the kernel function of the Coulomb potential in R3

k .x; y/ WD kx � yk�1 ;

which is the fundamental solution of the Laplace operator up to a factor .4
/�1. It
can be shown that the multipole expansion and the Taylor expansion are identical if
the Cartesian coordinates are replaced by spherical coordinates. For a detailed study
we refer to [77, 78, 110, 111, 193, 194].

Definition 7.1.22. Let b D .�; s/ 2 P far be an admissible block and let Q� , Qs

be the associated axiparallel cuboid. The kernel expansion for the block b is about
the point Mb WD M� � Ms with the centers of mass M� , Ms of Q� , Qs (see
Definition 7.1.6).

The multipole expansion (cf. [111]) uses the spherical harmonics Y m
`

and the
associated Legendre functions P m

`
as expansion functions. For `; m 2 N0 with

m � ` we have (cf. [1, 8.6.6])

P m
` .x/ WD .�1/m

�
1 � x2

�m=2
	

d

dx


m

P` .x/

with the Legendre polynomials

P` .x/ WD 1

2``Š

	
d

dx


` �
x2 � 1

�`
; ` 2 N0:

For ` 2 N0 and m 2 Z with jmj � ` the spherical harmonics have the representation

Y m
` .x/ WD c`;mP

jmj
`

.cos �/ eim� x 2 S2
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with

c`;m WD
s

.2` C 1/ .` � jmj/Š
4
 .` C jmj/Š ;

where .�; �/ 2 Œ0; 
� � Œ0; 2
Œ denote the spherical coordinates of the point x on
the unit sphere S2. For an admissible block b D .�; s/ 2 P far we define expansion
coefficients

��;	 .b/ WD 1

C
�2C	2

�1C	1
kMs � M�k�1C	1C1

Y
�2C	2

�1C	1

	
Ms � M�

kMs � M� k



with

C m
` WD i jmj

p
.` � m/Š .` C m/Š

and expansion functions in (7.15) given by

ˆ.�/
� .x/ WD ‰.�/

� .x/ WD C �2
�1

kx � M� k�1 Y ��2
�1

	
x � M�

kx � M� k



:

The kernel approximation on �� � �s of the order m D mb is thus given by

kb .x; y/ D
X

.�;	/2
m

��;	 .b/ ˆ.�/
� .x/ ‰.	/

s .y/

with

�m WD

8
ˆ̂<

ˆ̂
:

.�; �/ 2 Z2 � Z2 W

0

B
B
@

0 � �1 < m

��1 � �2 � �1

0 � �1 < m � �1

��1 � �2 � �1

1

C
C
A

9
>>=

>>;
: (7.17)

7.1.3.3 Abstract Cluster Approximation

The Čebyšev interpolation and the multipole expansion are two examples for
approximating the kernel function by a semi-separable expansion. For special ker-
nel functions other expansions may be more suitable. The following assumption
summarizes the abstract conditions for the approximation by the cluster method.

Assumption 7.1.23. There exist an admissibility condition on the set of all cluster
pairs and constants 0 < � < 1, 0 < C < 1 and s 2 R with the following property:
For all admissible blocks b D .c; �/ 2 P far there exists a family of semi-separable

approximations
n
k

.m/
b W �c � �� ! C

o

m2N
of the form

k
.m/

b
.x; y/ D

X

.	;�/2
m

�	;� .b/ ˆ.�/
c .x/ ‰.	/

� .y/ (7.18)
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with
ˇ
ˇ
ˇk .x; y/ � k

.m/

b
.x; y/

ˇ
ˇ
ˇ � C�m dist�s .c; �/ 8 .x; y/ 2 �c � �� : (7.19)

Furthermore, there exist constants d1; d2 2 N and 0 < C < 1 such that the index
sets �m have the property �m � Zd1 �Zd2 for all m 2 N and such that the one-sided
restrictions

Lm WD
n
� j 9� 2 Zd2 W .�; �/ 2 �m

o
and Rm WD

n
� j 9� 2 Zd1 W .�; �/ 2 �m

o

(7.20)

satisfy the conditions

]Lm � C .m C 1/d1 and ]Rm � C .m C 1/d2 ;

j�j < C .m C 1/ for all � 2 Lm [ Rm;

Lm � LM

Rm � RM

�
for all 0 � m � M:

Remark 7.1.24. The functions ˆ
.�/
c , ‰

.	/
� and the coefficients ��;	 .b/ in the expan-

sion (7.18) usually depend on the order of expansion m.

Exercise 7.1.25. Show that the index set �m from (7.16) and (7.17) satisfies the
conditions from Assumption 7.1.23 imposed on the index sets Lm and Rm.

7.1.4 The Matrix-Vector Multiplication in the Cluster Format

The representation of the integral operator by the cluster method can now be for-
mulated with the help of the near and far-fields P near and P far and the abstract
approximations kb .x; y/. In the following note that the boundary elements � 2 G
are images of the open reference element O� .

The Figs. 7.1 and 7.2 illustrate the memory organization for the cluster method
and the algorithm for the matrix-vector multiplication.

For a boundary element function u 2 S we denote the coefficient vector in the
basis representation by u 2 RI , where again the set of degrees of freedom I is used
to index the basis functions:

u D
X

i2I
ui bi :

The decomposition of the index set I�I in P near [P far induces the representation

.Ku; v/L2.�/ D
X

.fig;fj g/2P near

vi uj

Z

�

bi .x/

Z

�

k .x; y/ bj .y/ dsydsx

C
X

bD.c;�/2P far

X

.i;j /2.c;�/

vi uj

Z

�c���

bi .x/ k .x; y/ bj .y/ dsxdsy
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Fig. 7.1 Memory scheme for the cluster algorithm. The near-field matrix Knear and expansion
coefficients ��;� .b/ are stored in the block structure P , the shift coefficients �L

�;�;� , �R
�;�;� in the

cluster tree structure and the basis expansion coefficients L
.�/

fig
, R

.�/

fig
in the vector structure

with �c as in Definition 7.1.6. If we replace the kernel function on the block �c ���

by the abstract cluster approximation we obtain the cluster approximation of the
integral operator.

Definition 7.1.26 (Cluster Method Approximation of the Bilinear Form). Let an
order of expansion m 2 N0 and a family of local kernel approximations be given
as in Assumption 7.1.23. Then the cluster approximation of the sesquilinear form
.Ku; v/L2.�/ is given by

.KP C u; v/L2.�/ WD hKnearu; vi C
X

bD.c;�/2P far

X

.	;�/2
m

��;	 .b/ L.	/
c .v/ R.�/

� .u/

(7.21)
with the sparse near-field matrix

.Knear/i;j D
� R

� bi .x/
R

� k .x; y/ bj .y/ dsydsx if .fig ; fj g/ 2 P near;

0 otherwise
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Fig. 7.2 Computation scheme for the cluster method: upward recursion, cluster–cluster interaction
and downward recursion

and the far-field coefficients

L.	/
c .v/ WD

X

i2c

vi

Z

�c

bi .x/ ˆ.	/
c .x/ dsx and

R.�/
� .u/ WD

X

i2�

ui

Z

��

bi .x/ ‰.�/
� .x/ dsx (7.22)

for all c; � 2 T and � 2 Lm, � 2 Rm.

Note that the integrals in (7.22) can be reduced to integrals over �c \ supp bi and
�� \ supp bi , which means that they are each the sum of a small number (bounded
independent of the mesh width) of integrals over single panels.

In the following we will deal with the efficient evaluation of the representation
(7.21) by means of the cluster hierarchy.

The explicit choice of the order of expansion m depends on the precision required
from the cluster approximation. The cluster pairs .c; �/ 2 P far correspond to the
non-local character of the integral operators. In order to achieve an efficient algo-
rithm, the coupling between the clusters is broken up wherever possible so as to
be able to perform the computations separately on the single clusters. This will be



7.1 The Cluster Algorithm 419

done by a one-sided restriction of the index sets and by inheritance of block sizes
on clusters.

It is essential for the efficient realization of the cluster algorithm that the function
oriented representation (7.21) be translated into an algebraic coefficient repre-
sentation. We begin with the near-field and recall the definition of the index set
[see (7.6)]

P near .fig/ D ffj g 2 Leaves W .fig ; fj g/ 2 P nearg :

Remark 7.1.27. For the elements of the near-field matrix we have

Knear
i;j D 0 8i 2 I, 8 fj g … P near .fig/ :

The matrix Knear
i;j is sparse, which here means that per line i we only need to

store the coefficients for the indices fj g 2 P near .fig/. We can then implement a
matrix-vector multiplication with the near-field matrix as given by

X

j 2I
Knear

i;j uj D
X

fj g2P near.fig/

Knear
i;j uj : (7.23)

For the far-field, first, the index set �m is separated [see (7.20)]: we define

Rm .�/ WD f� 2 Rm W .�; �/ 2 �mg 8� 2 Lm:

Then we have
�m D f.�; �/ j � 2 Lm and � 2 Rm .�/g : (7.24)

By means of the one-sided restrictions P far .c/ [see (7.7)] we obtain for the second
summand in (7.21) the representation (see Exercise 7.1.28)

X

c2T

X

	2Lm

L.	/
c .v/ B.	/

c .u/ (7.25)

with
B.	/

c .u/ WD
X

�2P far .c/

X

�2Rm.	/

�	;� .b/ R.�/
� .u/ : (7.26)

Exercise 7.1.28. Prove the representations (7.25) and (7.26).

The sum in (7.26) corresponds to the evaluation of the cluster–cluster coupling:
The indices � on one cluster c are coupled with the indices � on another cluster �

via the expansion coefficients �	;� .b/.
We still need to define the efficient evaluation of the sum in (7.25) and the far-

field coefficients. For both tasks we use the hierarchical structure of the cluster tree
to evaluate recursively the approximation by the cluster method.
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7.1.4.1 Computation the Far-Field Coefficients

For the recursive calculation of the far-field coefficients by means of the cluster
tree it does not suffice that the index set I is organized hierarchically in the cluster
tree. We also require the expansion functions ˆ

.	/
c and ‰

.�/
c to have a hierarchical

structure formalized in the abstract Assumption 7.1.30 below.
We would like to motivate the abstract Assumption 7.1.30 by a concrete example.

If the monomials (centered in the cluster centers Mc) are used as a basis of the
expansion system, i.e.,

ˆ.	/
c .x/ WD .x � Mc/	 =�Š for all c 2 T and � 2 Lm;

we have for the restrictions to the sons

ˆ.	/
c j� Qc

D
X

�2Lm

�	;�;Qcˆ
.�/

Qc for all c 2 T , Qc 2 † .c/ and all � 2 Lm (7.27)

with the coefficients

�	;�;Qc WD
8
<

:

.MQc � Mc/	��

.� � �/Š
� � �;

0 otherwise.
(7.28)

Exercise 7.1.29. Prove the representation (7.27).

The hierarchy of the approximation system is abstractly formulated in Assump-
tion 7.1.30.

Assumption 7.1.30. For all c, � 2 T , all sons Qc 2 † .c/, Q� 2 † .�/ and expansion

functions
n
ˆ

.	/
c

o

	2Lm

and
n
‰

.	/
�

o

	2Rm

, the refinement relations

ˆ.	/
c j� Qc

D
X

�2Lm

�L
	;�;Qcˆ

.�/

Qc and ‰.	/
� j� Q�

D
X

�2Rm

�R
	;�;Q�‰

.�/

Q� (7.29)

hold with suitable shift coefficients �L
	;�;Qc, �R

	;�;Q� 2 C.

The computation of the far-field coefficients R
.	/
� .u/ begins with the comput-

ing and storing of the basis far-field coefficients for every index (leaf) i 2 I. The
definition of the far-field coefficients implies that

R
.	/

fj g .bi / D
8
<

:

Z

supp bj

bi .x/ ‰
.	/

fig .x/ dsx if i D j;

0 otherwise,
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and we define the basis far-field coefficients by

R
.	/

fig WD R
.	/

fig .bi / 8i 2 I; 8� 2 Rm:

By using these coefficients we obtain a recursion for the calculation of the
coefficients R

.	/
� .u/:

1. For all leaves i 2 I compute

R
.	/

fig .u/ D ui R
.	/

fig : (7.30)

2. For all clusters � 2 T n Leaves recursively calculate from the leaves to the roots

R.	/
� .u/ D

X

Q�2†.�/

X

�2Rm

�R
	;�;Q�R

.�/

Q� .u/ for all � 2 Rm: (7.31)

The representation (7.30) follows directly from the linearity of the functional
R

.	/
� and from the representation (7.22). For the representation (7.31) we used the

additivity of the integral, more specifically, we used the decomposition

R.	/
� .u/ D

X

i2�

ui

Z

��

bi .x/ ‰.	/
� .x/ dsx

D
X

Q�2†.�/

X

i2Q�
ui

Z

� Q�

bi .x/ ‰.	/
� .x/ dsx

D
X

�2Rm

X

Q�2†.�/

X

i2Q�
�R

	;�;Q�ui

Z

� Q�

bi .x/ ‰
.�/

Q� .x/ dsx

D
X

Q�2†.�/

X

�2Rm

�R
	;�;Q�R

.�/

Q� .u/;

which in turn uses the geometric hierarchy (7.3) of the cluster tree and the refinement
relation (7.29).

7.1.4.2 Cluster–Cluster Interaction

In order to compute the coefficients B
.	/
c .u/ we use the representation (7.26). The

algorithmic evaluation of the sum is then a recursive procedure.

7.1.4.3 Evaluating the Cluster Approximation of a Matrix-Vector
Multiplication

The evaluation of the sum (7.25) can be described as a transposition of the upwards
recursion [see (7.31)]. The cluster parts B

.	/
c .u/ that were already computed in
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(7.26) are distributed to the sons. For this we consider the local situation of a cluster
c 2 T n Leaves with sons † .c/. The sum in (7.25) includes all clusters from T .
Therefore the sum over fcg [ † .c/ appears as a partial sum

X

	2Lm

L.	/
c .bi / B.	/

c .u/ C
X

Qc2†.c/

X

�2Lm

L
.�/

Qc .bi / B
.�/

Qc .u/ : (7.32)

If we replace L
.	/
c .bi / in the first term by the refinement relation (7.29) [see (7.31)]

L.	/
c .bi / D

X

Qc2†.c/

X

�2Lm

�L
	;�;QcL

.�/

Qc .bi /

we obtain the representation (7.33) for (7.32)

X

Qc2†.c/

X

�2Lm

L
.�/

Qc .bi /

8
<

:
B

.�/

Qc .u/ C
X

	2Lm

�L
	;�;QcB.	/

c .u/

9
=

;
: (7.33)

The recursion for the evaluation of the sum (7.25) is based on an update of the
multipliers B

.	/
c .u/ in (7.25) as given by the brackets f: : :g in (7.33). The modified

multipliers are recursively calculated from the root to the leaves and then only have
to be multiplied by the basis far-field coefficients. These only have to be calculated
once and can then be stored. For all i 2 I these are defined by

L
.	/

fig WD
Z

�fig

ˆ
.	/

figbids 8� 2 Lm: (7.34)

With these coefficients, the recursion for the evaluation of the matrix-vector multi-
plication can be formulated by means of the known quantities:

1. For c D I: For all � 2 Lm we define

eB.�/
c .u/ WD B.�/

c .u/ : (7.35)

2. For all clusters c 2 T n fIg, calculate recursively from the roots to the leaves:

eB.�/

Qc .u/ WD B
.�/

Qc .u/ C
X

	2Lm

�L
	;�;QceB

.	/
c .u/ 8Qc 2 † .c/ ; 8� 2 Lm:

(7.36)
3. The cluster approximation of the component .Ku/i is then given by

e.Ku/i D .Knearu/i C
X

�2Lm

L
.�/

fig eB
.�/

fig .u/ : (7.37)
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7.1.4.4 Algorithmic Description of the Cluster Method

As an overview, we will summarize all steps of the cluster method in this subsection.

Algorithm 7.1.31 (Cluster Method). We assume that a surface mesh G of � and a
kernel function k W � � � ! C are given. Furthermore, an admissibility condition
with an associated expansion system ˆ

.	/
c , ‰

.	/
c has to be given. This is done in the

form of a rule for calculating the expansion coefficients �	;� .b/ in (7.18) as well
as the shift coefficients �L

	;�;Qc and �R
	;�;Qc in (7.29). The chosen order of expansion is

denoted by m.

(I) Preparatory Phase

1. Generate the cluster tree T from G according to Algorithm 7.1.8.
2. Generate the near and far-field P near and P far according to the procedure

divide (see Algorithm 7.1.12).
3. Compute and store the shift coefficients �L

	;�;Qc and �R
	;�;Q� for all clusters c; �2T .

4. Compute and store the expansion coefficients �	;� .b/ for all blocks b 2 P far .
5. For all i 2 I and � 2 Lm, � 2 Rm evaluate the integrals

L
.�/

fig WD
Z

supp bi

bi .x/ ˆ
.�/

fig .x/ dsx R
.	/

fig WD
Z

supp bi

bi .x/ ‰
.	/

fig .x/ dsx

and store them.
6. For all i 2 I, fj g 2 P near .fig/ evaluate the integrals

.Knear/i;j WD
Z

supp bi

bi .x/

Z

supp bj

k .x; y/ bj .y/ dsydsx

and store the near-field matrix in a compressed form (see Remark 7.1.27).

(II) Matrix-Vector Multiplication

1. Upwards Recursion:

The computation of the coefficients eR.	/
c WD R

.	/
c .u/ for all c 2 T is done with

the program line

Ttemp WD T ; upward pass
	

Ttemp; I;
�
eR.	/

c

�

	2Rm



I

where the recursive procedure upward pass is defined as follows.

procedure upward pass
	

Ttemp; c;
�
eR.	/

c

�

	2Rm



;

begin

if c 2 Leaves then begin
�
eR.	/

c

�

	2Rm

WD
�
R

.	/
c

�

	2Rm

ITtempWDTtempn fcg;end
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else for all Qc 2 † .c/ do begin

if
�
eR.Q	/

Qc
�

Q	2Rm

is not yet computed then begin

upward pass
	

Ttemp; Qc;
�
eR.Q	/

Qc
�

Q	2Rm



I Ttemp WD Ttempn f Qcg I

end;
for all � 2 Rm do eR.	/

c WD P
Q	2Rm

�R
	;Q	;QceR

.Q	/

Qc I
end;

end;

2. Evaluation of the Cluster–Cluster Coupling:

For the cluster–cluster coupling we use the sum representation in (7.26). The
algorithmic representation is straightforward.

3. Downwards Recursion:

The evaluation of the matrix-vector multiplication is based on the recursion
(7.36) and is achieved with the program line

Ttemp WD T I for all c 2 Ttemp do downward pass
	

Ttemp; c;
�
eB.�/

c

�

�2Lm



I

where the recursive procedure downward pass is defined as follows. The father

F .c/ (see Definition 7.1.4) of a cluster c 2 T n fIg is characterized by c 2
† .F .c//.

procedure downward pass
	

Ttemp; c;
�
eB.�/

c

�

�2Lm



;

begin

if c D I then begin
�
eB.�/

c

�

�2Lm

WD
�
B

.�/
c

�

�2Lm

I Ttemp WD Ttempn fcg;end

else
if
�
eB. Q�/

F .c/

�

Q�2Lm

is not yet computed then begin

downward pass
	

Ttemp; F .c/ ;
�
eB. Q�/

F .c/

�

Q�2Lm



;

Ttemp WD Ttempn fF .c/g;
end;

for all � 2 Lm do eB.�/
c WD B

.�/
c CP

Q�2Lm
�L

Q�;�;c
eB. Q�/

F .c/
;

end;
end;

4. Approximation of the Matrix-Vector Multiplication:

The evaluation of v WD fKu is computed according to

vi WD
X

fj g2P near.fig/

.Knear/i;j uj C
X

�2Lm

L
.�/

fig eB
.�/

fig : (7.38)
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7.2 Realization of the Subalgorithms

The abstract formulation of the cluster algorithm 7.1.31 will now be concretely for-
mulated for the class of kernel functions from Assumption 7.1.1. We will consider
the algorithmic realization of the Čebyšev interpolation in detail. This method is
suitable for the cluster approximation of a large class of kernel functions. It is also
easy to implement, as we do not use any analytic properties of the specific ker-
nel functions. Therefore, in order to modify the approximation for a specific kernel
function, only the global kernel function has to be provided as a subroutine in the
computer program. If in Assumption 7.1.1 the kernel function k .x; y/ is defined as
the derivative of the global kernel function G .x; y/, the expansion functions of the
global kernel functions also have to be replaced by their derivatives.

The expansion is based on the Čebyšev interpolation of the kernel function on
pairs of axiparallel cubes Q1 � Q2 2 R3 � R3 and thus is six-dimensional.

For some kernel functions certain specific expansions may be more efficient.
For example, the multipole expansion of the fundamental solution of the Laplace
problem is only four-dimensional. Four-dimensional expansions can also be derived
for the fundamental solution of the Helmholtz equation. For details we refer to [77,
78, 111, 194].

7.2.1 Algorithmic Realization of the Čebyšev Approximation

The essential steps for the algorithmic realization of the cluster approximation
by means of Čebyšev interpolation consist in the computation of the expansion
coefficients, the basis far-field coefficients and the shift coefficients.

Computation of the Expansion Coefficients

The efficient and stable evaluation of the Čebyšev interpolation is first defined for
the one-dimensional case. Let �� be a real interval, f 2 C 0 .�� / and let

�

.i;m/

�m
iD1

be the Čebyšev interpolation nodes scaled to �� . The index m is omitted if the order
of expansion is clear from the context. We use the Lagrange representation of the
interpolation polynomial

fm .x/ WD
mX

iD1

fi L
.i/ .x/ (7.39)

with fi WD f
�

.i/

�
and L.i/ as in Definition 7.1.14. The Lagrange functions L.i/

and coefficients fi depend on the interval �� and we write L.�;i/, f�;i to make this
dependency evident.

In the next step this algorithm is generalized so that it applies to the global kernel
function G W Qc � Q� ! C with b WD .c; �/ 2 P far . We set Qc DW �1 � �2 � �3
and Q� WD �1 � �2 � �3 with bounded intervals �k � R and �k � R, k D 1; 2; 3.
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This leads to

G .x; y/ � Gm .x; y/ D
X

�;	2Jm

��;	 .b/ L.c;�/ .x/ L.�;	/ .y/ (7.40)

with Jm as in (7.10), the expansion coefficients ��;	 .b/ WD G
�

.c;�/; 
.�;	/

�
and

L.c;�/ .x/ WD L.
1;�1/ .x1/ L.
2;�2/ .x2/ L.
3;�3/ .x3/ :

We assume that the kernel function k .x; y/ of the boundary integral equation is
the global kernel function or a suitable derivative of it:

k .x; y/ D D1D2G .x; y/

with derivatives D1 (with respect to x) and D2 (with respect to y) of order at most 1.
We obtain the approximation of the kernel function by applying D1, D2 to the
Čebyšev interpolation of the global kernel function. From an algorithmic point of
view the question arises how to compute the coefficients in the derivative of the
Lagrange representation. As an approximation we use [see (7.40)]

D1D2G .x; y/ � D1D2Gm .x; y/ D
X

�;	2Jm

��;	 .b/ D1L.c;�/ .x/ D2L.�;	/ .y/ :

This means that the expansion coefficients of the kernel function coincide with those
of the global kernel function. Therefore the expansion functions are the derivatives
of the original expansion functions.

Computation of the Shift Coefficients

By integrating the expansion coefficients D1L.�;	/, D2L.�;	/ over �� we define the
far-field coefficients for the algorithms upward and downward pass (see Algo-
rithm 7.1.31). We need the basis expansion coefficients R

.	/
� .bi /, L

.�/
c .bi / for the

initialization of the recursion. We need the shift coefficients �L
�;	;c and �R

�;	;c to
evaluate the recursion step.

We begin with the algorithm to compute the shift coefficients and thus begin
with the one-dimensional expansion functions L.c;i/ (see Definition 7.1.14) on an
interval �c . Let Qc 2 † .c/ be a son of c in the cluster tree. The Čebyšev nodes with
respect to Qc are denoted by

�

.Qc;j /

�m
j D1

. Then we have on �Qc

L.c;i/
ˇ
ˇ
ˇ
� Qc

D
iX

j D1

ai;j;QcL.Qc;j / with ai;j;Qc WD L.c;i/
�

. Qc;j /

�
:
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In the following we will present an algorithm to compute the one-dimensional
shift coefficients. We use the representation

L.c;i/
�

. Qc;j /

�
D

mY

kD1
k¤i


.Qc;j / � 
.c;k/


.c;i/ � 
.c;k/

and for 1 � j � m define the numbers

!j WD
mY

kD1

�

. Qc;j / � 
.c;k/

�
and ˇj WD

mY

kD1
k¤j

�

.c;j / � 
.c;k/

�
: (7.41)

The shift coefficients L.c;i/
�

.Qc;j /

�
can be computed with these quantities as

given by

ai;j;Qc D L.c;i/
�

. Qc;j /

�
D
8
<

:

!j�

.Qc;j / � 
.c;i/

�
ˇi

if 
. Qc;j / ¤ 
.c;i/;

1 otherwise.
(7.42)

We will now consider the multi-dimensional case. Let c be a cluster and�
L.c;�/

�
�2Jm

the set of the associated Lagrange functions. Let Qc 2 † .c/ be a son
of c in the cluster tree with a minimal axiparallel box QQc D �1 � �2 � �3. Owing to
the uniqueness of the interpolation the restriction of the expansion functions L.c;�/

to the geometric cluster �Qc has the representation

L.c;�/
ˇ
ˇ
ˇ
� Qc

D
X

	2Jm

��;	;QcL.Qc;	/

with the shift coefficients

��;	;Qc WD a�1;	1;
1a�2;	2;
2;a�3;	3;
3;: (7.43)

By virtue of the linearity of the differentiation we have

D2L.c;�/
ˇ
ˇ̌
� Qc

D
X

	2Jm

��;	;QcD2L. Qc;	/

with the same shift coefficients as for the original functions L.c;�/. This yields the
definition

�L
�;	;Qc WD �R

�;	;Qc WD ��;	;Qc: (7.44)
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Computing the Basis Far-Field Coefficients

In the next step we will present a method to compute the basis far-field coefficients.
For this we have to evaluate integrals of the form

Z

�

bi .x/ D1L.c;	/ .x/ dsx and
Z

�

bi .x/ D2L.�;	/ .x/ dsx: (7.45)

If the expansion functions are polynomial on every panel � and the mesh G con-
sists of plane panels, the integrals can be evaluated exactly (cf. [112, 117, 157]).
We can then derive recursion formulas by means of integration by parts. However,
we recommend using Gaussian quadrature because of its increased stability, simple
implementation and flexibility, which also allows for the efficient approximation of
general (analytic) expansion functions and curved panels � . Note that for plane tri-
angles and polynomial expansion functions Gaussian quadrature already yields the
exact integral value with relatively few interpolation nodes.

Example 7.2.1. Let � be a plane triangle with vertices A, B, C 2 R3. Let the expan-
sion function ˆ

.	/
� .x/ be a polynomial of degree �i with respect to the variables xi

and let the basis function bi be of degree p. Then we have

Z

�

bi .x/ ˆ.	/
� .x/ dsx D

Z 1

0

Z �1

0

q .
/ d
1d
2 D
Z 1

0

Z 1

0

t1q .t1; t1t2/ dt1dt2

(7.46)
with

q .
/ D 2 j� j OBi .
/
�
ˆ.	/

� ı ��

�
.
/ and �� .
/ D A C ŒB � A; C � B� 
;

where the basis function OBi .
/ on the reference element is a polynomial of degree
p. Therefore q is a polynomial of total degree j�j C p and the integrand in the
integral on the right-hand side of (7.46) is a polynomial of degree j�j C p C 1 in t1
and j�j C p in t2. Let n be the smallest integer such that

2n � 1 � j�j C p C 1 (7.47)

and let
�
!k;n; 
k;n

�n
kD1

be the scaled weights and interpolation nodes on the interval
.0; 1/ of the associated Gaussian quadrature formula. If we apply the tensor version
of this Gaussian quadrature on the right-hand side of (7.46) we obtain

Z

�

bi .x/ ˆ.	/
� .x/ dsx D 2 j� j

nX

k;`D1

!k;n!`;n
k;n
OBi

�

k;n; 
k;n
`;n

�
ˆ.	/

�

�

k;`;n

�

(7.48)
with the transformed Gaussian points 
k;`;n WD ��

�

k;n; 
k;n
`;n

�
.
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Remark 7.2.2. For a curved triangle the transformation �� Wb� ! � is non-linear.
In this case the integrand in (7.45) on the reference element is, in general, not
a polynomial. Gaussian quadrature should again be used for the approximation.
The quadrature order n with respect to each coordinate direction should be chosen
according to (7.47).

Computing the basis far-field coefficients requires an efficient method to evaluate
the expansion functions D1L.c;�/ and D2L.�;	/ at the quadrature points.

If either D1 or D2 represents the identity, Lc;� is evaluated according to the
recursion (7.42).

In the following let D1 WD hw .x/ ; ri for a vector w .x/ D .wk .x//3
kD1 2 C3.

The minimal axiparallel cuboid for a cluster c is denoted by Qc D �1 � �2 � �3. Then
we have

D1L.c;�/ .x/ D hw .x/ ; ri L.c;�/ .x/

D
3X

kD1

wk .x/

0

B
B
@

3Y

`D1
`¤k

L.
`;�`/ .x`/

1

C
C
A @kL.
k ;�k/ .xk/ : (7.49)

Therefore we need an efficient algorithm to evaluate the derivative of the one-

dimensional Lagrange functions
��

L.i/
�0

.�/
�m

iD1
. We distinguish between two

cases:

1. Let � … ˚
.i/ W 1 � i � m
�
. Then for 1 � i � m we have

�
L.i/

�0
.�/ D L.i/ .�/

mX

j D1
j ¤i

1

� � 
.j /
:

2. Let � D 
.k/ for a 1 � k � m. Then for 1 � i � m we have

�
L.i/

�0
.�/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

L.k/ .�/

mX

j D1
j ¤k

1

� � 
.j /
i D k;

eL.i/ .�/
1


.i/ � 
.k/
i ¤ k;

(7.50)

where

eL.i/ .�/ WD
mY

j D1
j ¤i;k

� � 
.j /


.i/ � 
.j /
: (7.51)

denotes the Lagrange polynomial for the interpolation node 
.i/, i ¤ k, of order
m � 2 for the reduced set of interpolation nodes

˚

.i/ W 1 � i � m

� n ˚
.k/
�
.
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In the following we will present the algorithm to evaluate (7.49). Let c 2 T and
let Qc D �1 � �2 � �3 be the associated cluster box. The Čebyšev nodes in Qc are

denoted by 
.�/ D
�



.�k/

k

�3

kD1
, � 2 Jm.

Algorithm 7.2.3. The subroutine evaluate D Lc .�/ generates the evaluation of
the Lagrange polynomials

�
D1L.c;	/

�
	2Jm

at a point � D .�i /
3
iD1.

procedure evaluate DLc .�/ I
begin

for k WD 1 to 3 do begin

!k WD
mY

iD1

�
�k � 


.i/

k

�
I

for j WD 1 to m do begin

ˇ
.j /

k
WD

mY

iD1
i¤j

�



.j /

k
� 


.i/

k

�
;

L
.j /

k
WD

8
<̂

:̂

!k�
�k � 


.j /

k

�
ˇ

.j /

k

if �k ¤ 

.j /

k
;

1 otherwise
end;

if �k …
n



.i/

k
W 1 � i � m

o
then

for j WD 1 to m do begin

�
.j /

k
WD

mX

iD1
i¤j

1

� � 

.i/

k

I .DL/
.j /

k
WD L

.j /

k
�

.j /

k
I

end;
else begin

choose i with �k D 

.i/

k
;

�
.i/

k
WD

mX

j D1
j ¤i

1

�k � 

.j /

k

I .DL/
.i/

k
WD L

.i/

k
�

.i/

k
I

for j 2 f1; : : : ; mg n fig do .DL/
.j /

k
WD eL.j /

k
=
�



.j /

k
� 


.i/

k

�
I

(see Remark 7.2.4)
end;

end;
for all � 2 Jm do

D1Lc;� .�/ D
3X

kD1

wk .�/ .DL/
.�k/

k

3Y

`D1
`¤k

L
�`

`
I

end;
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Remark 7.2.4. (a) Evaluating the quantitieseLk;j defined in (7.51) is realized from
an algorithmic point of view in the same way as for the Lagrange polynomials.
For the sake of clarity this step was not explicitly formulated in Algorithm 7.2.3.

(b) The query �k …
n



.i/

k
W 1 � i � m

o
in Algorithm 7.2.3 is numerically unstable

because of roundoff errors. If �k coincides with an interpolation node 

.i/

k
up to

machine accuracy, the second, numerically more stable case in (7.50) should
be chosen.

7.2.2 Expansion with Variable Order

By imposing moderate conditions on the surface mesh and the integral operator it
can be shown that the complexity of the cluster method is proportional to .]P /�m
,
where m denotes the order of expansion, � � 4 � 7 and ]P denotes the number of
blocks in the decomposition P . It is shown in Sect. 7.3 that the order of expansion
m should be chosen proportional to log N to maintain the order of convergence of
the overall discretization. For the number of blocks in P the estimate ]P � CN

can be shown for shape-regular and quasi-uniform surface meshes. This yields the

asymptotic complexity bound O
�
N log
 N

�
for the cluster method on trees with

O .N / leaves for some � > 0, as N ! 1. The logarithmic terms do have a negative
impact on the computational complexity for large, practical applications and are
also the reason that the breakeven point (compared to the standard matrix-oriented
representation) is quite large and, typically, lies between N 	 103 to 2�104. In this
section we will explain briefly how this logarithmic term can be avoided without
any additional algorithmic cost for certain classes of boundary integral operators.
A detailed description of the cluster method with variable order can be found in
[26, 199].

First we will combine clusters with the same level within a cluster tree to a cluster
level by T0 WD fIg and recursively for ` > 0 by

T` WD fc 2 T W father .c/ 2 T`�1g : (7.52)

The maximal cluster level is denoted by `max. The level of a cluster c 2 T` is defined
by level .c/ WD `.

The following assumptions serve to simplify the representation and can be
generalized.

Assumption 7.2.5. (i) The cluster tree is balanced: 8� 2 Leaves W � 2 T`max .
(ii) All blocks b D .c; �/ 2 P consist of clusters of the same level: c; � 2 T` for
a 0 � ` � `max.

The level hierarchy of the clusters is inherited by the blocks b D .c; �/ 2 P as
given by

level .b/ WD level .c/ ; (7.53)
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and the sets P` contain all the blocks of the level `. The cluster method with variable
expansion order takes advantage of the fact that a high expansion order is only
necessary on large blocks b 2 P` (with a small index `). These levels, however,
only contain few blocks. Conversely, it can be shown under suitable conditions on
the boundary integral operator that on small blocks b 2 P` (i.e., ` close to `max) an
expansion order m D O .1/ is sufficient for the approximation and that the required
precision is achieved through the small size of the blocks. For example, we have for
the number of small blocks ]P`max 	 CN .

For the parameters ˛; ˇ � 0 we define the distribution function for the expansion
order m` on the blocks b 2 P` by

m` WD d˛ .`max � `/ C ˇe ; (7.54)

where dxe denotes the smallest integer y such that y � x.
The formal changes to the cluster algorithm with variable order are marginal

compared to the original version. We summarize them below. We use the algorithmic
description from Sect. 7.1.4.4 to indicate the changes:

1. In the procedures generate cluster tree and divide every cluster and block is
recursively assigned its appropriate level.

2. The definition of the shift coefficients �L
	;Q	;Qc and �R

�; Q�;Q� for Qc; Q� 2 T` remains
unchanged. However, the index sets are reduced: � 2 Lm`�1

, Q� 2 Lm`
,

� 2 Rm`�1
, Q� 2 Rm`

. We have a similar result for the expansion coefficients
��;	 .b/, which, for b 2 P far \ P`, only have to be computed and stored for the
indices .�; �/ 2 �m`

.

3. The basis far-field coefficients L
.�/

fig ; R
.	/

fig have to be computed for the indices
� 2 Lmdˇe

[see (7.54)] and � 2 Rmdˇe
.

4. In the procedure upward pass, for c 2 T` the expressions � 2 Rm have to be
replaced by � 2 Rm`

and the expressions Q� 2 Rm by Q� 2 Rm`C1
.

In the evaluation of the cluster–cluster coupling the expansion order m has to be
replaced by m` for b 2 P`.
In the procedure downward pass, for all c 2 T` the expressions � 2 Lm have
to be replaced by � 2 Lm`

and the expressions Q� 2 Lm by Q� 2 Lm`�1
.

In (7.38), m has to be replaced by mdˇe.

Remark 7.2.6. Modification (2) implies that the expansion functions ˆ	
c , ‰	

c on T`,
` < `max, are approximated by means of the expansion functions on T`max .

We will illustrate the reduction in complexity by using a uniform mesh with

N D 4`max ; ]P` WD 4`:

The number of all expansion coefficients �	;� .b/ is a measure for the complexity
of the method. For the cluster method with variable order it grows linearly with the
dimension of the problem
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`maxX

`D0

]P` � .m`/
� D

`maxX

`D0

4` d˛ .`max � `/ C ˇe�

� N

`maxX

`D0

4�` .˛` C ˇ/� � .˛ C ˇ/� N

1X

`D0

4�``� DW C� .˛ C ˇ/� N:

Proposition 7.2.7. The cluster method with variable expansion order (7.54)
requires a storage capacity of O .N / real numbers. The evaluation of a matrix-
vector multiplication requires O .N / arithmetic operations.

A detailed study of this approach can be found in [26, 199].

7.3 Error Analysis for the Cluster Method

The error of the cluster method approximation originates when the kernel function is
replaced by the kernel expansion on an admissible pair of clusters. In this section we
will estimate this local error and analyze its influence on the overall discretization.
The global error estimate will be based on the abstract assumption given in 7.1.23.
We will show in the next section that the Čebyšev interpolation satisfies this assump-
tion in particular for the global kernel function G .x; y/ of the differential operator
L as well as for the kernel functions that are derived from it.

7.3.1 Local Error Estimates

In this section we will analyze the error for the approximation of general kernel
functions by Čebyšev interpolation. Error estimates for the Taylor and multipole
expansions for the Laplace and Helmholtz problem can be found in, for example,
[110, 111, 122, 125, 194, 199].

7.3.1.1 Local Error Estimates for the Čebyšev Interpolation

We begin with error estimates for the three-dimensional Čebyšev interpolation of a
function f W Œ�1; 1�3 ! C and transfer this to general axiparallel cuboids by means
of an affine pullback. Error estimates with respect to the L1-norm for functions
f W Q1 � Q2 ! C on axiparallel cuboids Q1, Q2 can be obtained by means of
a tensor argument. Since, in general, the kernel function is defined as the derivative
of the global kernel function, we will also derive error estimates with respect to the
W 1;1-norm at the end of this section.

First we will summarize some of the properties of Čebyšev polynomials. We
refer to [192] for the proofs. The one-dimensional Čebyšev polynomials are again
denoted by Tm [see (7.13)] and their n-th derivative by T

.n/
m . For the tensorized
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Čebyšev polynomials we use the multi-index � 2 N3
0 and write T� .x/ D Q3

iD1

T�i
.xi / [see (7.14)].

Corollary 7.3.1. (a) For all x 2 Œ�1; 1� and n; m 2 N0

ˇ
ˇ
ˇT .n/

m .x/
ˇ
ˇ
ˇ � � .n/

m with � .n/
m WD

n�1Y

iD0

m2 � i2

2i C 1
: (7.55)

(b) For all x 2 Œ�1; 1�3

ˇ
ˇ
ˇT� .x/ � �!

….m/
�
T�

�
.x/
ˇ
ˇ
ˇ D 0 8� 2 N3

0 W max
1�i�3

�i � m � 1;

ˇ
ˇ
ˇT� .x/ � �!

….m/
�
T�

�
.x/
ˇ
ˇ
ˇ � 2 8� 2 N3

0 W max
1�i�3

�i > m � 1:

Proof. Part (a) follows from [192, Theorem 2.24].
For (b) The first part of the statement is trivial, owing to the uniqueness of the

Čebyšev interpolation polynomial. First we prove the second statement for the one-
dimensional case. The univariate Čebyšev interpolation can alternatively be written
in the form

….m/ .f / D
m�1X

kD�mC1

fkTk .x/ with fk WD 1

m

mX

iD1

f
�

.i;m/

�
Tk

�

.i;m/

�
:

By using the orthogonality of the Čebyšev polynomials with respect to the set of
interpolation nodes

2

m

mX

iD1

T`

�

.i;m/

�
Tk

�

.i;m/

�
D

8
<̂

:̂

2 .�1/s if `= .2m/ D s 2 Z and k D 0;

.�1/s if k ¤ 0 and jkC`j
2m D s 2 Z or jk�`j

2m D s 2 Z;

0 otherwise.

for jkj < m and ` 2 Z (see [192, p. 49]) we obtain

….m/T` D �`;mT�`;m
(7.56)

with

�`;m WD .�1/
`�` mod.2m/

2m 	`;m WD ` mod .2m/ if ` mod .2m/ < m;

�`;m WD � .�1/
`�` mod.2m/

2m 	`;m WD 2m � ` mod .2m/ if ` mod .2m/ > m;

�`;m WD 0 	`;m WD ` mod .2m/ if ` mod .2m/ D m:
(7.57)

This and part (a) imply that
ˇ
ˇ….m/ .T`/ .x/

ˇ
ˇ � 1 for all x 2 Œ�1; 1�.
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The second part of the corollary follows from the triangle inequality and by
applying the one-dimensional argument to every factor of the tensor T� .x/ D
T�1

.x1/ T�2
.x2/ T�3

.x3/.
�

Remark 7.3.2. The first coefficients �
.n/
m in (7.55) are given by

� .0/
m D 1; � .1/

m D m2; � .2/
m D m2

�
m2 � 1

�

3
; � .3/

m D m2
�
m2 � 1

� �
m2 � 4

�

15

and are monotonically increasing for m D 0; 1; 2; : : : and a fixed n.

Since the complexity of the cluster method strongly depends on the required
polynomial degree m it is important to derive as accurately as possible an error esti-
mate for the interpolation error. The error representation (7.12) is not suitable for
this. In the same way as we did for numerical quadrature, we will apply the interpo-
lation to functions that can be analytically extended to complex neighborhoods of
the coordinate intervals under consideration.

In the following we will recall the classical derivative free interpolation error esti-
mates for analytic functions, which are due to Davis [81, (4.6.1.11)]. Let E�

a;b
� C

again be the closed ellipse with focal points at a and b, a < b, with the semimajor
axis Na > .b � a/ =2 and the semiminor axis Nb > 0 (see Sect. 5.3.2.2). The sum
of the semi-axes is denoted by � D Na C Nb. For the three-dimensional version we
consider an axiparallel cuboid Qa;b as in Convention 7.1.13. The ellipses E�i

ai ;bi
,

1 � i � 3, now refer to the coordinate intervals Q
.i/
a;b and, once tensorized, yield the

domain
�!E �

a;b WD N3
iD1 E

�i

ai ;bi
. For the cuboid Qa;b we define the index � 2 f1; 2; 3g

by 2��

b��a�
D argminiD1;2;3

n
2�i

bi �ai

o
and denote

�min WD �
 and L WD .b
 � a
/ =2: (7.58)

In the case b D .1; 1; 1/| DW 1 and a D �1 we omit the indices a; b for the
quantities E and Q.

A classical error estimate for Čebyšev interpolation of analytic functions can be
found in [81].

Lemma 7.3.3. Let d D 3, Q D Œ�1; 1�d and let a function f 2 C 0 .Q/ be given

that can be extended to an analytic function f ? on
�!E � with �i > 1, 1 � i � 3.

Then for the Čebyšev interpolation pm D �!
….m/ Œf � the error estimate

kf � pmkC 0.Q/ �
p

d2d=2C1��m
min

�
1 � ��2

min

��d=2
M� .f /

holds with
M� .f / WD max

z2�!E �

ˇ
ˇf ? .z/

ˇ
ˇ :
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Proof. We will only sketch the proof, by using the interpolation error estimates for
analytic functions taken from [81]. For this we introduce the inner product

.f; g/� WD
Z

�!E �
a;b

f .z/ g .z/
Qd

iD1

qˇ
ˇ1 � z2

i

ˇ
ˇ
dz

and the Hilbert space

L2
��!E �

a;b

�
WD
n
f W f is analytic in

�!E �
a;b and kf k� WD .f; f /1=2

� < 1
o

:

The fact that this is indeed a Hilbert space is proved in [81, Chap. 9.2, Sect. III] (it is,

in fact, a separable, closed subspace of the Lebesgue space L2
��!E �

a;b

�
). This space

has two properties that are essential for our application: (a) Evaluation at points on

L2
��!E �

a;b

�
is well defined and the associated operator is continuous. More precisely,

there exists a constant C such that

sup
z2�!E �

a;b

jf .z/j � C kf k� 8f 2 L2
��!E �

a;b

�
:

This estimate is essential for the application under consideration, as the interpolation

is based on point evaluations. (b) L2
��!E �

a;b

�
is a Hilbert space and thus permits the

application of strong tools from functional analysis of Hilbert spaces.
In the following let a D �1 and b D 1.
The scaled Čebyšev polynomials

eT � .z/ WD c�T� .z/ with c� WD
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d=2 dY

iD1

�
�

2�i

i C �
�2�i

i

��1=2 8� 2 N3
0

(7.59)

define a complete orthonormal system for L2
��!E �

a;b

�
with respect to the inner

product .�; �/� (see [81]). For an arbitrary, bounded functional E on L2
��!E �

a;b

�
we

have
jE .f /j � kEk� kf k� ; (7.60)

where kEk� denotes the operator norm, which satisfies

kEk� D sup
f 2L2

��!E �
a;b

�
nf0g

jE .f /j
kf k�

D
vu
u
t

X

�2Nd
0

ˇ̌
E
�eT �

�ˇ̌2
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owing to the orthonormality of
�eT �

�
�2Nd

0

. Let E be the error of the Čebyšev

interpolation at a point x 2 Q, i.e.,

E .f / D f .x/ � �!
….m/ Œf � .x/ :

From E .p/ D 0 for all p 2 Qm�1 and Corollary 7.3.1 we have
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min d

X

�2Nd
0

�
�2j�j
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d

��2m
min d

�
1 � ��2

min

��d
:

In view of (7.60) we still need to estimate the norm kf k�. We have

kf k2
� D

Z

�!E �
a;b

f .z/ f .z/
Qd

iD1

qˇ
ˇ1 � z2

i

ˇ
ˇ
dz �

 

sup
z2�!E �

jf .z/j
!2

k1k2
� :

It follows from 
d=2eT 0 D 1 and the orthonormality of the system eT � that

kf k2
� � 
d M 2

� .f / : (7.61)

�
Transferring this error estimate to general, axiparallel cuboids can be achieved

by means of an affine transformation. For this let a; b and let Qa;b be as in
Convention 7.1.13 and Q D Œ�1; 1�3. The transformation

� W Q ! Qa;bI � .Ox/ D
	

ai C .bi � ai /
xi C 1

2


3

iD1
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is affine. The Čebyšev interpolation nodes on Qa;b can be obtained by transforming
the one-dimensional interpolation nodes 
.i/ to Œai ; bi �

8� 2 Jm W 
.�/ WD �
�

.�1/; 
.�2/; 
.�3/

�
; ‚

.m/
a;b WD

n

.�/ W � 2 Jm

o
:

Then the Čebyšev interpolant on Qa;b is given by

�!
…

.m/
a;b .f / D

X

�2Jm

f
�

.�/

�
L.�/;

where the Lagrange functions L.�/ refer to the set of interpolation nodes ‚
.m/
a;b .

Theorem 7.3.4. Let d D 3 and Qa;b be as in Convention 7.1.13. We assume that

the function f 2 C 0 .Qa;b/ can be extended to an analytic function f ? on
�!E �

a;b

with �i > .bi � ai / =2, 1 � i � 3. Then the Čebyšev interpolant pm D �!
….m/ Œf �

satisfies the error estimate

kf � pmkC 0.Q/ �
p

d2d=2C1

	
L

�min


m
 

1 �
	

L

�min


2
!�d=2

M� .f /

with
M� .f / WD max

z2�!E �
a;b

ˇ
ˇf ? .z/

ˇ
ˇ

and �min, L as in (7.58).

Proof. Let f 2 C mC1 .Qa;b/ and let the affine transformation � W Q ! Qa;b with
Q D .�1; 1/d be defined as before. We set Of D f ı � and denote the Čebyšev

interpolant of Of on Q by Opm. Then we have
�!
…

.m/
a;b Œf � D Opm ı ��1 and obtain

f � �!
…

.m/
a;b Œf � D

� Of � Opm

�
ı ��1:

The transformed ellipse
�!E O� WD ��1�!E �

a;b satisfies O� D .2�i = .bi � ai //
3
iD1, and we

set
O�min WD min f2�i= .bi � ai / W 1 � i � 3g :

Now we can apply the error estimate from the previous theorem and obtain





f � �!

…a;b Œf �






C 0.Qa;b/
D




 Of � Opm







C 0.Q/
� 2d=2C1

p
d O��m

min

�
1 � O��2

min

��d=2
M O�

� Of
�

� 2d=2C1
p

d

	
L

�min


m
 

1 �
	

L

�min


2
!�d=2

M� .f / :

�
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Remark 7.3.5. Since �min > L, it follows from the estimate above that the Čebyšev
interpolation converges exponentially with respect to the order m.

The approximation of the kernel function of the boundary integral operator is
based on the (local) approximation of the global kernel function G W Qa;b � Qc;d !
C, where Qa;b; Qc;d � R3 denote axiparallel cuboids as in Convention 7.1.13. The
Čebyšev interpolant of G of order m is defined by

�!
…

.m/

Œa;b�;Œc;d�
ŒG� .x; y/ WD

X

�;	2Jm

G
�

.�/; 
.	/

�
L.�/ .x/ L.	/ .y/

8 .x; y/ 2 Œa; b� � Œc; d� :

In the following we will transfer the statement from Theorem 7.3.4 to this situa-
tion. Let 9�

.1/
min, L.1/ (or �

.2/
min, L.2/) be the constants from (7.58) for the cuboid Qa;b

(or Qc;d). We fix .�min; L/ 2
n�

�
.1/
min; L.1/

�
;
�
�

.2/
min; L.2/

�o
by

�min=L D min
n
�

.1/
min=L.1/; �

.2/
min=L.2/

o
:

Theorem 7.3.6. Let Qa;b, Qc;d be axiparallel cuboids as in Convention 7.1.13. We

assume that the function f 2 C 0 .Qa;b � Qc;d/ can be extended on
�!E �1

a;b � �!E �2

c;d

with .�1/i > .bi � ai / =2 and .�2/i > .di � ci / =2, 1 � i � 3. Then the Čebyšev

interpolant pm D �!
…

.m/

Œa;b�;Œc;d�
Œf � satisfies the error estimate

kf � pmkC 0.Qa;b�Qc;d/ � C
.0/

�min=L

	
L

�min


m

M�1��2
.f /

with
M�1��2

.f / WD max
.v;w/2�!E �1

a;b��!E �2
c;d

ˇ
ˇf ? .v; w/

ˇ
ˇ

and
C .0/

� WD
p

d2dC3=2
�
1 � ��2

��d
:

Proof. First let b W D d W D 1 and a W D c W D �1. We adapt the arguments from
Lemma 7.3.3 to the tensorized case. To this end, we introduce the inner product

.f; g/�1��2
WD
Z

�!E �1

Z

�!E �2

f .v; w/ g .v; w/
Qd

iD1

qˇ
ˇ1 � v2

i

ˇ
ˇQd

iD1

qˇ
ˇ1 � w2

i

ˇ
ˇ
dwdv

for analytic functions f; g 2 �!E �1 � �!E �2 as well as the Hilbert space

L2
��!E �1 � �!E �2

�
WD
n
f W f is analytic in

�!E �1 � �!E �2 and

kf k�1��2
WD .f; f /1=2

�1��2
< 1

o
:
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The statements from the proof of Lemma 7.3.3 can be applied to L2
��!E �1 � �!E �2

�

analogously.
The polynomials eT �;	 .v; w/ WD c�T� .v/ c	T	 .w/ with c� from (7.59) con-

stitute for �; � 2 N3
0 a complete orthonormal system for L2

��!E �1 � �!E �2

�
with

respect to the inner product .�; �/�1��2
. Let E be the error of Čebyšev interpolation

at a point .x; y/ 2 Q � Q, i.e.,

E .f / D f .x; y/ � �!
…

.m/

Œ�1;1�;Œ�1;1�
Œf � .x; y/ :

It follows from E .p/ D 0 for all p 2 Qm�1 � Qm�1 and the second estimate in
Corollary 7.3.1(b) that

ˇ
ˇE
�
T�;	

�ˇˇ D
ˇ
ˇ
ˇT�;	 .x; y/ � �!

…
.m/

Œ�1;1�;Œ�1;1�

�
T�;	

�
.x; y/

ˇ
ˇ
ˇ

� ˇ̌
T� .x/

ˇ̌ jT	 .y/j C
ˇ
ˇ̌�!
….m/

�
T�

�
.x/
ˇ
ˇ̌
ˇ
ˇ̌�!
….m/ .T	/ .y/

ˇ
ˇ̌ � 2

and thus
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The norm kf k�1��2
is estimated in the same way as in (7.61). Thus,

kf k2
�1��2

� 
2d M 2
�1��2

.f / :

The results for the general axiparallel cuboids follow by an affine transformation.
�

The kernel function of the boundary integral operator under consideration is
either the global kernel function or a directional derivative thereof. In the latter case
we define the approximation of the kernel function by the directional derivative of
the approximation of the global kernel function. The corresponding error estimate
can be found in the following two theorems.

Theorem 7.3.7. Let Qa;b, Qc;d be axiparallel cuboids as in Convention 7.1.13. Let

f 2 C 1 .Qa;b � Qc;d/ and D 2
n

@
@xi

; @
@yi

W 1 � i � d
o
. We assume that the func-

tion Df can be analytically extended to
�!E �1

a;b � �!E �2

c;d with .�1/i > .bi � ai / =2

and .�2/i > .di � ci / =2, 1 � i � 3. Then the Čebyšev interpolant pm D�!
…

.m/

Œa;b�;Œc;d�
Œf �, m � 2, satisfies the error estimate

kD .f � pm/kC 0.Qa;b�Qc;d/ � C
.1/

�min=L

	
�min=L C 1

2�min=L


m�1

M�1��2
.Df / :

(7.62)
with

C .1/
� WD

q
dc�2dC3=2

	
�2

�2 � 1


d�1=2

and c� from (7.63).

Corollary 7.3.8. The constant C
.1/
�min tends to zero for �min ! 1 at the rate

.log �min/�2 while for �min ! 1 it grows as .�min � 1/�d�2.

For the proof of Theorem 7.3.7 we need a lemma.

Lemma 7.3.9. For m 2 N0 and � > 1

1X

kDm

��2kk4 � eC �

	
� C 1

2�


2m

with

eC � WD
0

@ 2

e ln
�

�C1
2

�

1

A

4

4�2

.3� C 1/ .� � 1/
(7.63)

Proof. An elementary analysis yields

k4

�
�C1

2

�2k
�
0

@ 2
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2

�
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A

4
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From this we obtain

1X

kDm

��2kk4 �
0

@ 2

e ln
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�C1
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�
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A

4 1X

kDm

	
� C 1

2�


2k

D eC �

	
� C 1

2�


2m

:

�

Proof of Theorem 7.3.7. We first consider the non-tensorized, one-dimensional case
d D 1 and f W C 1 .Œ�1; 1� ; C/. We set g WD f 0 with the analytic extension g? W
E� ! C. The approximation of g can be represented by gm WD �

….m/g.�1/
�0

with
g.�1/ .x/ WD R x

�1
g .s/ ds. The error functional E is defined in this case by

E .g/ WD .g � gm/ .x; y/ :

The norm kEk� again has to be computed and we use the previously developed
method. The definition of gm implies that E .p/ D 0 for all p 2 Pm�2.

To estimate
ˇ
ˇE
�eT k

�ˇˇ we need to find an upper bound for
�
….m/T

.�1/

k

�0
and use

(see [192, Exercise 1.1.4])

T
.�1/

k
D ˇ1CkTkC1 C ˇ1�kTk�1 C ˛k with ˇs WD

�
1= .2s/ s ¤ 0

0 otherwise

and a constant ˛k . With (7.56) and �`;m and 	`;m from (7.57) we obtain

….m/T
.�1/

k
D �kC1;mˇ1CkT�kC1;m

C �k�1;mˇ1�kT�k�1;m
C ˛k

and by differentiation

�
….m/T

.�1/

k

�0 D �kC1;mˇ1CkT 0
�kC1;m

C �k�1;mˇ1�kT 0
�k�1;m

:

Corollary 7.3.1 implies for all x 2 Œ�1; 1� and �
.1/

k
as in (7.55) that

ˇ
ˇT 0

k .x/
ˇ
ˇ � k2:

In all we have shown that
ˇ
ˇ̌
ˇ
�
….m/T

.�1/

k

�0
.x/

ˇ
ˇ̌
ˇ � ˇ1Ck	2

kC1;m C jˇ1�k j 	2
k�1;m � .m � 1/2 :

The norm of E can therefore be estimated in the same way as in the proof of
Theorem 7.3.3. With Lemma 7.3.9 we obtain
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:

Now let b W D d W D 1 and a W D c W D �1. Without loss of generality we choose
D D @

@x1
. Let E be the derivative D of the error of the Čebyšev interpolant at one

point .x; y/ 2 Q � Q

E .f / D Df .x; y/ � D
�!
…

.m/

Œ�1;1�;Œ�1;1�

h
f .�1/

i
.x; y/ ;

where f .�1/ is an antiderivative of f with respect to the first variable. Let Q�
m�1

be the set of all polynomials p 2 Qm�1 with .x1p/ 2 Qm�1. It follows from
E .p/ D 0 for all p 2 Q�

m�1 � Qm�1 combined with the previous results for
�1 � m � 1 that we have the estimate

ˇ
ˇE
�
T�;	

�ˇˇ D
ˇ
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ˇ
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�
T .�1/

�

�
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ˇ̌
ˇ
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….m/ .T	/ .y/

ˇ̌
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For �1 < m � 1 we use
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� ….m/T
.�1/
�1

�0 D 0 and also obtain
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1 .1 C 1/ D 2�2
1:

We denote the Kronecker symbol by ı.q;i/;.r;j / and for � 2 Nd
0 we set �C D �Ce1

with e1 D .1; 0; 0; : : : ; 0/|. Then we have
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:

The norm kDf k�1��2
is estimated in the same way as in (7.61). Thus

kf k2
�1��2

� 
2d M 2
�1��2

.Df / :

In all we have shown that

kD .f � pm/kC 0.Q�1;1�Q�1;1/ � eC �min

	
�min C 1

2�min


m�1

M�1��2
.Df / :

The result for general axiparallel cuboids can again be achieved by an affine
transformation. We again first consider the one-dimensional, non-tensorized case
that g W Œa; b� ! C and note that

gm .� . Ox// WD
	

d

dx
….m/g.�1/



.� . Ox// D

	
d

d Ox …
.m/

Œ�1;1�
Og.�1/



. Ox/ DW Ogm . Ox/

with Og WD g ı �. It follows that

kg � gmkL1.a;b/ D k Og � OgmkL1.�1;1/ :

Now we can apply the error estimates for the unit interval.
From the previous results we deduce for the tensorized case

kD .f � pm/kC 0.Qa;b�Qc;d/ � eC �min=L

	
�min=L C 1

2�min=L


m�1

M O�1� O�2

�
bDf

�
:

The assertion finally follows by means of a transform to the original coordinates

M O�1� O�2

�
bDf

�
D M�1��2

.Df / :

�



7.3 Error Analysis for the Cluster Method 445

In the following theorem we consider the error of the approximation of the
second derivative of the global kernel function.

Theorem 7.3.10. Let Qa;b, Qc;d be axiparallel cuboids as in Convention 7.1.13.

Let f 2 C 2 .Qa;b � Qc;d/ and D1 2
n

@
@xi

W 1 � i � d
o
, D2 2

n
@

@yi
W 1 � i � d

o
.

We assume that the function D1D2f can be extended to
�!E �1

a;b � �!E �2

c;d with .�1/i >

.bi � ai / =2 and .�2/i > .di � ci / =2, 1 � i � 3. Then the Čebyšev interpolant

pm D �!
…

.m/

Œa;b�;Œc;d�
Œf �, m � 2, satisfies the error estimate

kD1D2 .f � pm/kC 0.Qa;b�Qc;d/ � C .2/
�

	
�min=L C 1

2�min=L


m�1

M�1��2
.D1D2f / :

with

C .2/
� WD eC �

p
d2dC3=2

	
�2

�2 � 1


d�1

:

The proof is completely analogous to that of the previous theorem and will
therefore not be detailed.

For the error analysis of the cluster method we apply the Čebyšev interpolation
to the global kernel function for separated cluster boxes Q1, Q2. To be able to use
the estimate for the interpolation error we need to estimate the modulus M�1��2

for
the (derivative of the) global kernel function.

Here we will restrict ourselves to the fundamental solution G W R3n f0g ! C

G .z/ D 1

4

p

det A

ehb;ziA�
kzkA

kzkA
; �2 WD c C kbk2

A (7.64)

from (3.3) and the kernel functions derived from it

k1 .x; y/ D G .x � y/ , k2 .x; y/ D Q�1;yG .x � y/ ,

k3 .x; y/ D �1;xG .x � y/ , k4 .x; y/ D �1;x Q�1;yG .x � y/

(7.65)

with the conormal derivative �1 and the modified conormal derivative Q�1 [see
(2.103), (2.107)]. Let 	 be as in Definition 7.1.11.

Lemma 7.3.11. There exist constants C1, C2 that depend only on the coefficients
A, b, c in (7.64) and � with the following properties.

Let .�; s/ 2 P far and Q� DW Qa;b, Qs DW Qc;d. With

�1;i WD jbi � ai j
2

	
1 C 2

C1	



and �2;i WD jdi � ci j

2

	
1 C 2

C1	
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for 1 � i � 3, @
�
x @	

y G .x � y/, j� C �j � 2, can be analytically extended to
�!E �1

a;b �
�!E �2

c;d and satisfies the estimate

sup
.x;y/2�!E �1

a;b��!E �2
c;d

ˇ
ˇ@�

x @	
y G .x � y/

ˇ
ˇ �

	
C2

dist .Q� ; Qs/


1Cj�C	j
:

Proof. Let .�; s/ 2 P far be an admissible far-field block with associated clus-
ter boxes Q� DW Qa;b, Qs DW Qc;d. The singular behavior of the function
@

�
x @	

y G .x � y/ is characterized by the function

g
 W Q� � Qs ! R; g
 .x; y/ WD kx � yk�
 ;

which we will consider first. It follows from the admissibility condition

	 dist .Q� ; Qs/ � max fdiam Q� ; diam Qsg (7.66)

that g
 can be extended with respect to every variable to ellipses E�1;i

ai ;bi
or E�2;i

ci ;di
,

1 � i � 3, where

�1;i D jbi � ai j
2

	
1 C 1

3
p

3

dist .Q� ; Qs/

jbi � ai j =2



� jbi � ai j

2

	
1 C 2

C 	



;

C WD 3
p

3 and �2;i � jdi �ci j
2

.1 C 2= .C 	//. The function g
 can be estimated on
these ellipses by

sup
.x;y/2�!E �1

Œa;b�
��!E �2

Œc;d�

g
 .x; y/ �
	

C

dist .Q� ; Qs/





:

This result can be directly transferred to the function kx � yk�

A for the met-

ric induced by A. This is achieved by replacing the constant C by a constant that
depends on A.

For the fundamental solution G .x � y/ or its derivatives @
�
x @	

y G .x � y/ the size
of the analyticity ellipses remains unchanged. For the estimate of the function on
the analyticity ellipses we obtain

sup
.x;y/2�!E �1

a;b��!E �2
c;d

ˇ
ˇ@�

x @	
y G .x � y/

ˇ
ˇ �

	
C

dist .Q� ; Qs/


1Cj�C	j
;

where C depends on the coefficients A, b, c of the differential operator and on � .
�
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By combining Lemma 7.3.11 and Theorems 7.3.6, 7.3.7 and 7.3.10 we obtain the
estimates for the blockwise approximations:

Qk1 .x; y/ WD �!
…

.m/

Œa;b�;Œc;d�
G .x � y/ ; Qk2 .x; y/ WD Q�1;y

�!
…

.m/

Œa;b�;Œc;d�
G .x � y/ ;

Qk3 .x; y/ WD �1;x
�!
…

.m/

Œa;b�;Œc;d�
G .x � y/ ; Qk4 .x; y/ WD �1;x Q�1;y

�!
…

.m/

Œa;b�;Œc;d�
G .x � y/

(7.67)
of the kernel functions from (7.65) on admissible far-field blocks .�; s/ 2 P far

with associated cluster boxes Q� DW Qa;b and Qs DW Qc;d.

Theorem 7.3.12. There exist a sufficiently small 	0 2 .0; 1/ and constants
0 < c1 < 1, C0 > 0 that depend only on the coefficients A, b, c and � with the
following properties.

For all 0 < 	 � 	0 in Definition 7.1.11 the approximations (7.67) of the kernel
functions from (7.65) satisfy on all admissible far-field blocks .�; s/ 2 P far the
error estimate






kj � Qkj








C 0.Qa;b�Qc;d/
� C0cm

1 .dist .Q� ; Qs//
�1�	j

with
�1 WD 0, �2 WD �3 WD 1 and �4 WD 2:

Proof. Lemma 7.3.11 combined with Definition (7.58) yields

�min=L D 1 C 2

C 	
: (7.68)

If we insert this into the error estimate from Theorem 7.3.6 we obtain






k1 � Qk1








C 0.Qa;b�Qc;d/
� C1

	
C 	

2 C C 	


m
1

dist .Q� ; Qs/

with a constant C1 that depends only on � , 	0 and the coefficients A, b, c.
For the first derivatives D 2 f@=@xi ; @=@yi W 1 � i � 3g we combine Theo-

rem 7.3.7 with (7.68), which gives us






D

�
k1 � Qk1

�





C 0.Qa;b�Qc;d/
� C2

	
1 C C 	

2 C C 	


m�1 	
1

dist .Q� ; Qs/


2

with a constant C2 that again depends only on � , 	0 and the coefficients A, b, c. If
we choose c1 WD 1CC �

2CC �
and C0 WD C2=c1 we obtain the asserted estimate.

For the mixed derivatives D1 2 f@=@xi W 1 � i � 3g and D2 2 f@=@yi W 1 �
i � 3g we use Theorem 7.3.10 and obtain






D1D2

�
k1 � Qk1

�





C 0.Qa;b�Qc;d/
� C3

	
1 C C 	

2 C C 	


m�1 	
1

dist .Q� ; Qs/


3

:
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The derivatives Q�1, �1 can be written as a linear combination of the above-
mentioned differential operators with L1-coefficients. This yields the estimates
from the assertion for kj � Qkj , j D 2; 3; 4. �

Remark 7.3.13. The error estimates prove the exponential convergence of the ker-
nel approximations with respect to the expansion order m. Note that by employing
the classical error estimate






u � ….m/u








C 0.Œ�1;1�/
� .1 C cm/ inf

v2Pm

ku � vkC 0.Œ�1;1�/

with the Lebesgue constant

cm WD sup
u2C 0.Œ�1;1�/nf0g

�k…ukC 0.Œ�1;1�/ = kukC 0.Œ�1;1�/

�

and the estimate cm � C m we would obtain the far more pessimistic estimate






k1 � Qk1






 � C0m6c�m

1 .dist .Q�;Qs//
�1 :

Since the previous, derivative-free error estimates due to [81] take advantage of the
analyticity of the kernel function, we were able to avoid the factor m6.

Remark 7.3.14. The size of the constants C0 and c1 for special kernel functions
can be found, for example, in [125] and [122]. For the Taylor approximation of the
fundamental solution of the Laplace operator we obtain C0 D 1 and c1 D 	.

Remark 7.3.15. The explicit dependency with respect to the coefficients A, b, c in
the fundamental solution has to be analyzed from case to case. For the Helmholtz
problem with a large wave number c 
 �1 the quantity M�1��2

.k1/ grows
exponentially with respect to

pjcj and the expansion order m has to be chosen
proportional to

pjcj.

7.3.2 Global Error Estimates

Replacing the kernel function locally by the cluster approximation defines an
approximation Qb .�; �/ of the sesquilinear form b .�; �/. We have derived local error
estimates in Sect. 7.3.1.1 for the Čebyšev interpolation. In this section we will use
the abstract assumption 7.1.23 imposed on the local accuracy of the approximation
of the kernel function. From this we will use the Strang lemma to derive an estimate
for the error b .�; �/ � Qb .�; �/.
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7.3.2.1 L2-Estimate for the Clustering Error Without Integration by Parts

We consider the class of kernel functions from Assumption 7.1.1 and use the admis-
sibility condition from Definition 7.1.11 with a fixed 	 2 .0; 1/. Let b W S � S ! C
be the sesquilinear form for the integral operator K and let Qb be the approximation
that is defined by the cluster representation.

First we will introduce some surface and mesh dependent constants that will be
needed for the error estimates.

Assumption 7.3.16, which is related to the geometry of the surface � , excludes
strongly folded surfaces. For 0 < r < R � diam � and x 2 � we define the annular
domain AR;r .x/ by

AR;r .x/ WD ˚
y 2 R3 W r < kx � yk < R

�
:

Assumption 7.3.16. There exist constants C� ; D� > 0 such that the two-
dimensional surface measure of the intersection �R;r .x/ WD � \ AR;r .x/ satisfies
the estimate

j�R;r .x/j � C�

�
R2 � r2

�
:

for all x 2 � and 0 < r < R < D� .

Assumption 7.3.16 implies the estimate

j!j � C� .diam !/2

for all subsets ! � � with the (Euclidean) diameter diam !.
For a given surface mesh G the constant qG indicates the quasi-uniformity of

the mesh (see Definition 4.1.13) and �G describes the shape-regularity of the ele-
ments (see Definition 4.1.12). The minimal constant in the inverse estimate (see
Corollary 4.4.6)

kukL1.�/ � C h�1
� kukL2.�/ 8� 2 G; 8u 2 S (7.69)

is denoted by Cinv. For s � 0 we need the auxiliary function Cs W R>0 ! R>0

Cs .h/ WD h�2

8
<

:

1 0 � s < 2;

1 C jlog hj s D 2;

h2�s s > 2:

(7.70)

Convention 7.3.17. In general, we will assume for the following theorems that
either Assumption 4.3.17 or Assumption 4.3.18 is satisfied. The constants in the
following theorems usually depend on the polynomial degree in S

p
G and on the mesh

G via the constants �G , qG , Cinv. In the case of curved surfaces they also depend
on the derivatives of the global transformations �, ��1, even if this is not explicitly
stated.
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Theorem 7.3.18. Let Assumption 7.1.23 be satisfied with s � 0 and � 2 �0; 1Œ and
let Assumption 7.3.16 hold. For the cluster approximation Qb of the sesquilinear form
b of the integral operator K the following holds with the notation introduced above:

ˇ̌
ˇb .u; v/ � Qb .u; v/

ˇ̌
ˇ � C " kuk0;� kvk0;� for all u; v 2 S

with
" WD �mCs .h/ (7.71)

and a constant C that depends only on s, 	, � , the constants from Assumption 7.3.16
and the parameters described in Convention 7.3.17.

Proof. We use the notation from Assumption 7.1.23 and Definition 7.1.11 and by
applying (7.19) we thus obtain the estimate

jE .u; v/j WD
ˇ̌
ˇb .u; v/ � Qb .u; v/

ˇ̌
ˇ �

X

bD.c;�/2P far

Z

�c ���

jv .x/j jk .x; y/

�k
.m/

b
.x; y/

ˇ
ˇ
ˇ ju .y/j dsydsx

� C�m
X

bD.c;�/2P far

Z

�c���

jv .x/j ju .y/j
dists .c; �/

dsydsx:

For all cluster pairs .c; �/ 2 P far the admissibility condition implies the
estimate

dist .c; �/ D inf
.x;y/2Qc�Q�

kx � yk � 	�1 max fdiam c; diam �g � .qG	/�1 h

with mesh width h D h .G/. The geometric far-field blocks are thus contained in

.� � �/far WD
n
x; y 2 � W kx � yk � .qG	/�1 h

o
:

Since

dist .c; �/ D dist .Qc; Q� / � kx � yk � diam Qc � diam Q�

� kx � yk � 2	 dist .c; �/

for all .x; y/ 2 Qc � Q� we obtain the estimate

dist .c; �/ � 1

1 C 2	
kx � yk :

Therefore s � 0 yields the estimate

jE .u; v/j � C .1 C 2	/s �m kukL1.�/ kvkL1.�/

Z

.���/far

1

kx � yks dsxdsy:



7.3 Error Analysis for the Cluster Method 451

In Corollary 7.3.19 we show that

Z

.���/far

1

kx � yks dsxdsy � csh2Cs .h/

with Cs .h/ as in (7.70) and a constant cs that depends only on s, � and 	.
For a boundary element function u there exists a panel � 2 G such that

kukL1.�/ D kukL1.�/ � Cinvh
�1
� kukL2.�/ � CinvqGh�1 kukL2.�/ :

Combining this we obtain

jE .u; v/j � bC Cs .h/ �m kukL2.�/ kvkL2.�/

with
bC WD csC 2

invq
2
G .1 C 2	/s :

�

Corollary 7.3.19. Let Assumption 7.3.16 be satisfied. Then we have

Z

.���/far

1

kx � yks dsxdsy � csh2Cs .h/

with Cs .h/ as in (7.70) and a constant cs that depends only on s, � and 	 as well
as the constants from Assumption 7.3.16.

Proof. (a) Let 0 � s < 2 For this case the statement follows from the fact that
kx � yk�s is improperly integrable:

Z

.���/far

1

kx � yks dsydsx �
Z

���

1

kx � yks dsydsx < 1:

(b) Let s � 2 and C� , D� as in Assumption 7.3.16.
We set ı WD .qG	/�1 h and n WD dD�=ıe, where dae denotes the smallest integer

larger than or equal to a. For x 2 � we set �i .x/ WD � \ A.iC1/ı;iı .x/, 1 � i �
n � 1, and �n .x/ WD � \ Adiam �;nı .x/.

Then with Assumption 7.3.16 we have

Is WD
Z

.���/far
kx � yk�s dsy D

Z

�

n�1X

iD1

Z

�i .x/

kx � yk�s dsydsx

C
Z

�

Z

�n.x/

kx � yk�s dsydsx

�
Z

�

n�1X

iD1

j�i .x/j .iı/�s dsx C D�s
� j�j2
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� C�

Z

�

n�1X

iD1

..i C 1/ ı/2 � .iı/2

.iı/s dsx C D�s
� j�j2

D C�ı2�s j�j
n�1X

iD1

2i C 1

i s
C D�s

� j�j2 :

For s D 2 we have

I2 � C� j�j
	

2 log .n � 1/ C 2 C 
2

6



C D�2

� j�j2 :

Since D� depends only on � , it follows for a sufficiently large n D dqG	D�=he or
a sufficiently small h that the statement

I2 � C .1 C log n/ � eC .1 C jlog hj/

is satisfied. For s > 2 we have
Pn�1

iD1
2iC1

is <
P1

iD1
2iC1

is < 1, and the assertion
follows from ı2�s � C h2�s. �

7.3.2.2 L2-Estimates for the Cluster Method with Integration by Parts

The estimate in Corollary 7.3.19 is too pessimistic for hypersingular kernel func-
tions .s D 3/ if we regularize by means of integration by parts (see Theorem 3.3.22).
Applying integration by parts to the hypersingular integral operator for the general
elliptic boundary value problem yields the representation

b .u; v/ D b0 .u; v/ C b1 .u; v/ ;

where b1 .u; v/ contains a kernel function that satisfies

jk1 .x; y/j � C kx � yk�˛ for all x; y 2 � almost everywhere

with ˛ � 1 and where b0 .u; v/ has the form

Z

���

k0 .x; y/ D1 Œu� .y/ D2 Œv� .x/ dsydsx:

D1 and D2 denote differential operators in the tangent plane of � with an order
equal to or smaller than one, i.e.,

kD1ukL2.�/ � C kukH 1.�/ and kD2vkL2.�/ � C kvkH 1.�/ :
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The kernel function of b0 is weakly singular

jk0 .x; y/j � C kx � yk�1 for all x; y 2 � with x ¤ y:

The cluster method can now be applied separately to each of the sesquilinear forms
b0 and b1 so that Theorem 7.3.18 can be applied with slight modifications. In the
error estimate for the approximation of the bilinear form b1, s in (7.71) has to be
replaced by ˛. The error estimate for the cluster approximation of b0 reads:

ˇ̌
ˇb0 .u; v/ � Qb0 .u; v/

ˇ̌
ˇ � C " kukH 1.�/ kvkH 1.�/ for all u; v 2 H 1 .�/ ;

where s D 1 has to be chosen in the definition (7.71) of ".

7.3.2.3 Stability and Consistency of the Cluster Method

We assume that the sesquilinear form b W H s .�/ � H s .�/ ! C in (5.68) is
continuous, injective and coercive with an s 2 ˚� 1

2
; 0; 1

2

�
.

For a given right-hand side F 2 H �s .�/ we are seeking u 2 H s .�/ such that

b .u; v/ D F .v/ 8v 2 H s .�/ :

The conforming boundary element space S � H s .�/ is defined on a surface
mesh of � with a local polynomial degree p 2 N0 (see Chap. 4). The Galerkin
solution uS 2 S satisfies

b .uS ; v/ D F .v/ 8v 2 S:

Since the influence of the quadrature error was already studied in Chap. 5, we
assume in this analysis of the error introduced by the cluster method that the near-
field integrals are computed exactly. Then the cluster method defines a perturbed
sesquilinear form Qb W S � S ! C. This leads to the perturbed Galerkin solution
QuS 2 S

Qb .QuS ; v/ D F .v/ 8v 2 S: (7.72)

In this section we will estimate the error u� QuS which is introduced by the cluster
method.

We will assume that the right-hand side in (7.72) is computed without any numer-
ical errors, i.e., the components of the vectors F

�
bj

�
in the right-hand side of the

linear system of equations are evaluated exactly. If this is not the case the influence
of this additional error can be analyzed as in Sect. 5.3.3.

If the surface is sufficiently smooth and the solution of the problem (5.67) is
sufficiently regular the following asymptotic estimate for the unperturbed Galerkin
discretization error holds (see Sect. 4.3):

ku � uSkH s.�/ � C hpC1�s kukH pC1.�/ :
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In order to achieve this order of convergence for the perturbed approximation as
well, we will use Theorem 4.2.11.

Let s� WD min fs; 0g and sC WD max fs; 0g. The stability and consistency condi-
tions (4.151) and (4.153) follow from Theorem 7.3.18 and the inverse estimate, and
they are given by

ˇ̌
ˇb .u; v/ � Qb .u; v/

ˇ̌
ˇ � CCs .h/ �mhs� kukH

sC .�/ kvkH s.�/ ;
ˇ
ˇ
ˇb .u; v/ � Qb .u; v/

ˇ
ˇ
ˇ � CCs .h/ �mh2s� kukH s.�/ kvkH s.�/

for all u; v 2 S . Therefore the conditions

Cs .h/ �mh2s�
h!0! 0 and Cs .h/ �mhs� � C hpC1�s

are sufficient for the stability and consistency of the cluster method. The following
table gives the required orders of expansion for s D f�1=2; 0; 1=2g, corresponding
to weakly singular, Cauchy singular, and hypersingular boundary integral equations.

s D � 1
2

s D 0 s D 1=2

m .p C 4/
ˇ
ˇ
ˇ log h

log �

ˇ
ˇ
ˇ

.p C 3/ jlog hj C log .1 C jlog hj/
jlog � j .p C 7=2/

ˇ
ˇ
ˇ
ˇ
log h

log �

ˇ
ˇ
ˇ
ˇ

(7.73)

Theorem 7.3.20. Let the conditions from Theorem 7.3.18 be satisfied. Let the
sesquilinear form b W H s .�/�H s .�/ of the boundary integral operator be contin-
uous, coercive and injective for an s 2 f�1=2; 0; 1=2g. Furthermore, let the order
of expansion be chosen as given by Table (7.73). Then the Galerkin solution with
the cluster method converges with the same order as the exact Galerkin solution.

For hypersingular kernel functions the order of expansion refers to the direct
representation. If we apply integration by parts for the purpose of regularization,
the order of singularity is reduced (see Sect. 7.3.2.2). The order of expansion m is
reduced accordingly. We refer to [107] for details.

7.4 The Complexity of the Cluster Method

In this subsection we will show that for all kernel functions k .x; y/ which satisfy
Assumption 7.1.23 the cluster method reduces the storage and computing complex-
ity from O

�
N 2
�

for the matrix-oriented representation of the Galerkin method to
O .N log� N /. We note that the class of kernel functions that we consider here is
considerably more general than the .4
 kx � yk/�1-kernel for the Laplace equation.
For this specific kernel, complexity estimates are proved in, e.g., [111].

The estimate consists of two parts. First we will show that, if we impose suitable
conditions on the surface and the surface mesh, the number of blocks in the covering
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is of the order N . Then the algorithmic complexity of the cluster method is estimated
per block and cluster, from which we determine the overall complexity.

7.4.1 Number of Clusters and Blocks

We will estimate the number of clusters and blocks for quasi-uniform meshes and
balanced cluster trees. Details can be found in the following assumption. The level
of a cluster and the maximal number of levels within a cluster tree are defined as in
(7.52).

Assumption 7.4.1. 1. Let i 2 I ” fig 2 Leaves.
2. The mesh width h of the mesh G and the maximal number of levels `max in the

cluster tree satisfy
2`maxh � Cr (7.74)

with a constant Cr that does not depend on h or `max.
3. Every cluster c 2 T n Leaves has at least four sons.
4. Every block b D .c; s/ 2 P satisfies level .c/ D level .s/ :

Remark 7.4.2. Algorithm 7.1.8 does not necessarily produce cluster trees that sat-
isfy Assumptions 7.4.1.(2) and 7.4.1.(3). This problem can be easily resolved by
using a post-processing algorithm to redefine the set of sons for all clusters � 2 T

with ]† .�/ < 4 according to † .�/ WD S
s2†.�/ † .s/.

Assumptions 7.4.1.(1) and 7.4.1.(2) simplify the complexity estimates for the
cluster method. We recommend using Algorithm 7.1.8 in an unchanged form for
the numerical computations. An algorithm for the generation of a cluster tree that
satisfies Assumptions 7.4.1(1)–(4) is described in [199].

The constants in the following assumption depend on the polynomial degree of
the boundary element space while we do not track this dependence explicitly.

Assumption 7.4.3. There exist constants cp and Cp such that

cp � .]G/ = .]I/ � Cp:

First we will derive estimates for the number of clusters in the cluster tree.

Lemma 7.4.4. Let N WD ]I and let Assumption 7.4.1(1) hold. Then

]T � 4

3
N:

Proof. Let T` be the set of all clusters with a tree depth of ` 2 N0 [see (7.52)]

T` WD fc 2 T W level .c/ D `g
We have ]T`max D ]I D N and, thus, recursively

]T`�1 � 1

4
]T`:
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By summing we obtain

N

`maxX

iD0

4�i � N

1X

iD0

4�i D 4

3
N:

�
In order to estimate the number of blocks in P we use the admissibility condition

and a result concerning the size of the clusters c 2 T`. The constant that describes
the quasi-uniformity from Definition 4.1.13 is again denoted by qG and the minimal
constant in (7.69) is denoted by Cinv.

Corollary 7.4.5. Let Assumptions 7.3.16, 7.4.1 and 7.4.3 hold. Let the cluster tree
be generated by the procedure generate cluster tree (see Algorithm 7.1.8). Then
for � 2 T`

diam � � 2�` diam � C 4h;

j�� j � .qGCinv/�2 4`max�`�1h2; (7.75)

where diam .�/ again denotes the Euclidean diameter.

Proof. (i) Let � 2 T n Leaves be a cluster with cluster box Q� and let Q 2 † .Q� /

be a congruent sub-cuboid [see (7.4)]. The maximal edge length of Q� is denoted
by L. Q is associated with the cluster s D s .Q/, which contains all the indices
i 2 I with Mfig 2 Q (see Definition 7.1.6). The support of the basis function
corresponding to the degree of freedom i satisfies diam .supp bi / � 2h. Therefore
the maximal edge length of the cluster box Qfig is bounded from above by 2h. The
union

S
i2s Qfig is thus contained in a cuboid with the center of mass Ms and the

maximal edge length L=2 C 2h. Hence it follows that

diam s � 1

2
L C 2h: (7.76)

Clearly we have for the root I 2 T

diamI D diam �:

With (7.76) we thus conclude for � 2 T` by induction that

diam � � 2�` diam � C 2h

`�1X

iD0

2�` � 2�` diam � C 4h:

(ii) By Assumption 7.4.1.(3) every cluster � 2 T n Leaves has at least four sons.
With ` WD level .�/ it thus follows that

]� � 4`max�`: (7.77)
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Since every panel has at most 4 vertices (for triangles only 3 vertices), �� contains
at least ]�=4 different panels. We obtain a lower bound for the surface of a panel
with inequality (7.69) by choosing u � 1. This yields

j� j D k1k2
L2.�/ � h2

� =C 2
inv k1k2

L1.�/ D .h� =Cinv/
2 � .qGCinv/

�2 h2 8� 2 G:

It follows that
j�� j � .qGCinv/�2 4`max�`�1h2: (7.78)

�

Corollary 7.4.6. Let the conditions from Corollary 7.4.5 be satisfied. Then there
exists a constant C that depends only on qG , Cinv, Cp and diam � such that

diam � � C 2�` (7.79)

for all � 2 T`:

Proof. Estimate (7.75) with � D I implies that

j�j � .qGCinv/�2 4`max�1h2

and it follows that
h � 2qGCinv2�`max diam �: (7.80)

Therefore the constant in (7.79) can be chosen as C D .1 C 8qGCinv/ diam � . �
With this corollary the number of blocks in P can be estimated.

Theorem 7.4.7. Let the assumptions from Corollary 7.4.5 be satisfied. Then

]P � CN;

where C depends only on 	; Cr, C� , qG , Cinv, Cp and diam � .

Proof. Let b D .�; s/ 2 P . The construction of the covering P of I � I by means
of the procedure divide implies that the father Qb D . Q�; Qs/ WD father .b/ is not
contained in P far and that the admissibility condition for Qb is violated. Therefore
we have

	 dist . Q�; Qs/ < max fdiam Q�; diam Qsg : (7.81)

It follows from � � Q� that �� � �Q� , and combined with (7.81) we obtain

dist .�; s/ � dist . Q�; Qs/ C diam Q� C diam Qs �
	

1

	
C 2



max fdiam Q�; diam Qsg :

We set ` WD level .�/ D level .s/. Corollary 7.4.6 implies the estimate

dist .�; s/ � C .1=	 C 2/ 2�`: (7.82)
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For all .x; y/ 2 .�� ; �s/ we have

kx � yk � dist .�; s/ C diam � C diam s;

and it follows from (7.82) that

kx � yk � C .1=	 C 2/ 2�` C 2C 2�` DW C12�`:

This estimate means that the subset of � �� which is covered by the blocks .�; s/ 2
P` (more precisely by .�� � �s/) is contained in

.� � �/` WD
n
.x; y/ W kx � yk � C12�`

o
: (7.83)

For x 2 � we set

�` .x/ WD
n
y 2 � W kx � yk � C12�`

o
:

Assumption 7.3.16 yields
j�` .x/j � C 4�`

and it follows that
j.� � �/`j � C j�j 4�`: (7.84)

With the help of (7.75) the surface of the block can be estimated by

j.�� ; �s/j D j�� j j�s j � 16`max�`�1 .h= .qGCinv//4 : (7.85)

This means that the number of elements P` [see (7.53)] is bounded by the quotient
of the right-hand sides in (7.84) and (7.85):

]P` � C
4`

h416`max
: (7.86)

If we use (7.74) and sum over all levels we obtain ]P` � C24` and

]P D
`maxX

`D0

]P` � C2

`maxX

`D0

4` � C2

3
4`maxC1: (7.87)

If we then choose � D I and ` D 0 in Estimate (7.77) we obtain the assertion

]P � C3 .]I/ :

�
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Keeping in mind (7.26) and (7.38) we still need estimates for the cardinalities of
the sets P far .c/, c 2 T , and P near .c/, c 2 Leaves.

Theorem 7.4.8. Let the conditions from Corollary 7.4.5 be satisfied. Then for all
� 2 T and c 2 Leaves

]P far .�/ C ]P near .c/ � C;

where C depends only on 	; Cr, C� , Cp; diam � and the parameters described in
Convention 7.3.17.

Proof. Let � 2 T` and P far .�/ be defined as in (7.7). It follows from (7.83) that all
clusters s 2 P far .�/ (more precisely, the geometric clusters �s) are contained in

�` .�/ WD
[

x2��

n
y 2 � W kx � yk � C12�`

o
:

Let M� be the center of the smallest ball that contains �� and let r� be its radius.
Clearly we have with Corollary 7.4.6 that

r� � diam � � C 2�`;

and that �` .�/ is contained in a ball B� around M� with radius C22�` WD
.C1 C C / 2�`. The surface measure of the intersection B� \ � can be estimated
with Assumption 7.3.16 according to

jB� \ �j � CC 2
2 4�`: (7.88)

Assumption 7.4.1(4) implies P far .�/ � T` and Corollary 7.4.5 gives us that
every cluster s 2 P far .�/ satisfies the estimate

j�s j � 4`max�`�1 .h=c/2 : (7.89)

The quotient of the right-hand sides in (7.88) and (7.89) constitutes an upper bound
for the number ]P far .�/

]P far .�/ � C3

h24`max

and combined with Assumption 7.4.1(2) we obtain the assertion.
The proof of the estimate for the near-field clusters P near .c/, c 2 Leaves, uses

the same arguments as above and is therefore omitted. �
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7.4.2 The Algorithmic Complexity of the Cluster Method

In order to estimate the complexity of the cluster method we will make the following
simplifying assumptions. For a more general discussion we refer to [109].

Assumption 7.4.9. Let Assumptions 7.3.16, 7.4.1 and 7.4.3 hold. The cluster app-
roximation is defined by Čebyšev interpolation. The order of expansion is chosen as
m D O .log N / [see (7.73)].

Generating the Cluster Tree

The cluster tree is generated level-by-level by the procedure generate cluster tree
(Algorithm 7.1.8). The set of sons is generated for all clusters belonging to the
current level. This results in a total computational complexity of O .N / per level
and O .N `max/ for the entire cluster tree. If we use (7.77) with � D I we obtain

`max � log N= log 4

and O .N log N / arithmetic operations for the generation of the cluster tree. This
requires a memory capacity of O .N / floating-point numbers.

Generating the Covering

The covering P is generated by the procedure divide by a recursion over the tree
levels. On every level ` � 1 all pairs .�; s/ 2 T` � T` whose fathers do not satisfy
the admissibility condition are checked for admissibility. Therefore the associated
geometric blocks .�� ; �s/ are contained in .� � �/` [see (7.83)] and their number
can be estimated as in (7.86). By summing over all levels we obtain [see (7.87)] a
computational and memory complexity which is proportional to O .N /.

Generating the Shift Coefficients

For the computation of the shift coefficients in the Lagrange representation we use
the recursion (7.42) combined with Definitions (7.43) and (7.44)

��;	;Qc WD a�1;	1;
1 a�2;	2;
2;a�3;	3;
3 :

Computing the coefficients ai;j;
k for all 1 � i � m, 1 � j � i and 1 � k � 3 is
performed by recursion (7.42) in O

�
m2
�

operations. It is only necessary to compute
and store the coefficients ai;j;
k in this phase. These coefficients can be multiplied
by each other as is necessary during the upwards and downwards paths, for example,
for the computation of
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eR.	/
c WD

X

Q	2Rm

�R
	;Q	;QceR

.Q	/

Qc :

The computational complexity and memory requirements therefore consist of at
most O

�
.]T / � m2

� D O
�
N log2 N

�
operations.

Computing the Expansion Coefficients

For every block b D .�; s/ 2 P far there exist O
�
m6
�

expansion coefficients
��;	 .b/ that are defined by

G
�

.�/; �.	/

�

�;	2Jm

for the interpolation points
�

.�/; �.	/

�
�;	2Jm

� Q� � Qs. The overall com-
putational complexity for the computation of all far-field coefficients therefore
consists of O

�
]P far � m6

� D O
�
N log6 N

�
operations and requires memory

O
�
]P far � m6

� D O
�
N log6 N

�
floating-point numbers.

Computing the Basis Far-Field Coefficients

We will restrict ourselves here to determining the complexity for the computation
of the coefficients

L
.�/

fig D
Z

supp bi

bi .x/ ˆ
.�/

fig .x/ dsx:

The coefficients R
.	/

fig can be computed with the same computational cost.
We achieve this by decomposing supp bi into O .1/ many panels and by apply-

ing the quadrature described in (7.48). Per panel the integrand has to be evaluated in
O
�
m2
�

interpolation nodes. For any panel � � supp bi we denote the associated set

of quadrature points by
�
�.	/

�
	2Im

. In order to evaluate the integrals
�
L

.�/

fig
�

�2Lm

we need to evaluate
�
ˆ

.�/

fig
�
�.	/

��
�2Lm

	2Im

. We use the Algorithm evaluate DLc to

evaluate the expansion functions ˆ
.�/

fig . This requires a computational cost of O
�
m3
�

operations per point �.	/ and a cost of O
�
m5
�

operations for all points
�
�.	/

�
	2Im

.

Analogously, the evaluation of the sum in (7.48) for all � 2 Lm requires O
�
m5
�

arithmetic operations by assuming precomputed values
�
ˆ

.�/

fig
�
�.	/

��
�2Lm

	2Im

. Over-

all, this results in a computational complexity of O
�
.]I/ � m5

� D O
�
N log5 N

�

operations.
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Computing the Near-Field Matrix

We have for the number of near-field matrix elements

]P near � ]P � CN:

In Chap. 5 quadrature methods were developed that allow for an approximation of
the near-field matrix entries with the required precision in O

�
log4 N

�
operations

per element. The total cost for the computation of the near-field matrix therefore
consists of O

�
N log4 N

�
operations and the memory capacity in a sparse matrix

representation consists of O .N / floating-point numbers.
All the computations that we have discussed so far only need to be done once

during a preparatory phase. The following steps have to be performed once for every
matrix-vector multiplication.

Evaluating the Upwards Recursion

Per cluster the operation

8� 2 Rm W eR.	/
c D

X

Q	2Rm

�R
	;Q	;QceR

.Q	/

Qc

has to be evaluated. Since ]Rm D O
�
m3
�

this yields an overall complexity of

O
�
]T � m6

� D O
�
N log6 N

�
. Storing all coefficients eR.	/

c requires storage of
O
�
N log3 N

�
floating-point numbers.

Evaluating the Cluster–Cluster Coupling

Per block the expression

B.	/
c D

X

�2P far .c/

X

�2Rm.	/

�	;� .b/eR.�/
�

has to be evaluated. For every c 2 T Theorem 7.4.8 gives us the estimate
]P far .c/ D O .1/. For � 2 Lm we have for the Čebyšev interpolation the equality

]Rm .�/ D ]Rm D ]Jm D m3:

This yields an overall complexity of O
�
.]T / � 1 � m6

� D O
�
N log6 N

�
oper-

ations. Storing all coefficients
�
B

.	/
c

�
c2T

	2Lm

requires O
�
N log3 N

�
floating-point

numbers.
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Evaluating the Downwards Recursion

The complexity for the downwards recursion is the same as for the upwards recur-
sion and therefore consists of O

�
N log6 N

�
operations and requires a memory

capacity of O
�
N log3 N

�
floating-point numbers.

Evaluating the Matrix-Vector Product

The evaluation of the matrix-vector multiplication by means of the near-field matrix
and the precalculated coefficients L

.�/

fig and eB.�/

fig is given by

8i 2 I W vi WD
X

fj g2P near.fig/

.Knear/i;j uj C
X

�2Lm

L
.�/

fig eB
.�/

fig :

For every i 2 I we have ]P near .fig/ D O .1/ (see Theorem 7.4.8). This yields
an overall complexity of O

�
]I � �1 C m3

�� D O
�
N log3 N

�
operations for this

phase. Storing the resulting vector v requires space for N floating-point numbers.

Theorem 7.4.10. Let Assumption 7.4.9 be satisfied. Then the computational cost of
the cluster method for the approximation of a matrix-vector multiplication is given
by O

�
N log6 N

�
operations and the memory required is given by O

�
N log6 N

�

floating-point numbers.

For special kernel functions (Laplace/Helmholtz) the asymptotic complexity can
be reduced by choosing special approximation systems (see Sect. 7.1.3.2). For a
detailed description of these modifications we refer to [77, 78, 110, 111, 194].

Remark 7.4.11. The estimates that we have presented here illustrate the reduc-
tion in asymptotic complexity of the cluster method in comparison with the usual
matrix oriented representations. Whether this asymptotic behavior becomes evi-
dent for problems with a size that is more common in practical applications, i.e.,
N D 103 � 2 � 104, strongly depends on the efficiency of the implementation.
Numerical experiments have shown that the reductions in computational time and
memory capacity become evident from about N D 500 for standard problems
(Laplace) (see [122, 148, 152, 198, 205]).

7.5 Cluster Method for Collocation Methods

The discretization of a boundary integral operator by means of the collocation
method requires a boundary element space S of dimension N D dim S and a set of
collocation points I � � with N D ]I (see Remark 4.1.26). We assume that the
set I is chosen in such a way that the interpolation problem:
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Find u 2 S such that u .x/ D wx 8x 2 I

has a unique solution for all mesh functions w D .wx/x2I 2 CI .
The collocation solution ucoll

S 2 S for the boundary integral equation

Au D f

is defined by �
Aucoll

S

�
.x/ D f .x/ 8x 2 I: (7.90)

Let A be a boundary integral operator of the form

A D �I C K with .Ku/ .x/ D
Z

�

k .x; y/ u .y/ dsy 8x 2 �:

In order to ensure that the collocation method is well defined we assume that AS �
C 0 .�/.

The cluster method for Galerkin discretizations can be transferred to collocation
methods with small modifications.

For this we define the space V as the span of delta distributions in the collocation
points

V WD span fıx W x 2 Ig
and use .ıx/x2I as a basis for V . Then the collocation method can be written in the
“variational form”: Find ucoll

S such that

a .uS ; v/ WD v
�
Aucoll

S

� D v .f / 8v 2 V:

The cluster algorithm can be easily generalized to handle the bilinear form a W S �
V ! C. It turns out that for the collocation method only the definition of the left
far-field coefficients L	

fig in (7.34) has to be replaced by

L
.	/

fig WD ˆ
.	/

fig .xi / 8� 2 Lm

and the definition of the near-field matrix has to be replaced by

.Knear/i;j WD
� R

�
k .xi ; y/ bj .y/ dsy if .fig ; fj g/ 2 P near;

0 otherwise.

7.6 Remarks and Additional Results

In the present chapter, we introduced the panel-clustering methods for the fast
numerical evaluation of discretized integral operators applied to vectors; this is the
key step in the iterative numerical solution of the large, densely populated matrix
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equations which result from the boundary element discretization of BIEs. Formally,
these methods allow the reduction of the matrix-vector multiplication from O.N 2/

to log-linear in N complexity, and are the key reason why boundary integral equa-
tion based methods are today highly competitive solvers for linear elliptic problems.
In [104], a version of the panel-clustering method for optimally refined, anisotropic
meshes has been developed.

Naturally, as in previous chapters, problems with the panel clustering and the
related, Fast-Multipole-Method (FMM) type approach arise with high frequency
scattering, since the truncation error introduced in the complexity reduction is not
uniformly small with respect to the wave number. Special versions of the FMM are
available, however, which do exhibit log-linear scaling complexity independent of
the wave number. We refer to [77, 78, 194], for example. All these references have
in common a very carefully tailored multipole expansion in different regimes of the
frequency.

An alternative approach which has emerged in recent years and which is, at least
in key components, related to FMM and panel clustering, is the concept of so-called
hierarchical matrices (H- and H2-Matrices). We refer to [19, 24, 118–121]. Here,
no explicit, wave number dependent FMM expansion is required, as optimal, sepa-
rated approximations of the kernel of the BIE are generated by means of recursive
(over all clusters) adaptive low-rank matrix approximations. Another automatic and
purely algebraic approach for the sparse representation of non-local operators is the
Adaptive Cross Approximation (ACA). We refer to [19, 20, 25, 103] for details.



Chapter 8
p-Parametric Surface Approximation

In practice, the description of the “true” physical surface might be very compli-
cated or even not available as an exact analytic function and has to be approximated
by using, e.g., pointwise measurements of the surface or some geometric mod-
elling software. In this chapter, we will address the question how to approximate
quite general surfaces in a flexible way by p-parametric boundary elements. Sur-
face approximations for integral equations and their influence on the discretization
error have first been studied systematically in [167]. Further papers on this topic are
[168], [80, Chap. XIII, Sect. 2], [84], [21], [63, Sect. 1.4].

For the error estimates, we will need some tools from elementary differential
geometry. In order to keep this book self contained we have included Sect. 8.4,
where these tools are developed.

Readers who are interested in the practical application of p-parametric surface
approximations and not so much in the convergence analysis will find in Sect. 8.3 an
overview of the required polynomial orders for the p-parametric approximations.

8.1 Discretization of Boundary Integral Equations
with Surface Approximations

In this section, we assume that � is the surface of a bounded domain � � R3. We
emphasize that the concept of p-parametric surface approximation can be applied
verbatim to one-dimensional boundaries of two-dimensional domains � � R2 and
in higher dimensions as well.

8.1.1 p-Parametric Surface Meshes
for Globally Smooth Surfaces

The approximation of � starts with the construction of a mesh Gaffine which consists
of plane, open triangles with straight edges.

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2 8,
c� Springer-Verlag Berlin Heidelberg 2011

467



468 8 p-Parametric Surface Approximation

Definition 8.1.1 (Affine Surface Approximation). Let � be the boundary of a
bounded domain�. A set Gaffine WD f�1; �2; : : : ; �N g consisting of plane open trian-
gles with straight edges in R3 is an affine surface mesh for � if Conditions 1–3 are
satisfied:

1. Gaffine is a regular boundary element mesh for

�affine WD
[

�2Gaffine

�:

2. �affine interpolates the surface � at the vertices of the triangles.
3. The reference mappings �affine

� W O� ! � are affine.
4. There exists a bi-Lipschitz continuous lifting � affine W � ! �affine, i.e., there exist

constants caffine; C affine > 0 such that

caffine
��� affine .x/ � � affine .y/

�� � kx � yk � C affine
��� affine .x/ � � affiney

�� 8x; y 2 �:
(8.1)

We refer to �affine as the affine surface approximation.

Remark 8.1.2. We restrict ourselves to simplicial surface meshes because then
Gaffine consists of plane triangles while the bilinear images of the unit square would
be, in general, curved quadrilaterals.

The definition of the abstract surface lifting � affine W � ! �affine typically depends
on the concrete application. We will consider a construction which is based on the
following assumption.

Assumption 8.1.3. There is a neighborhood U� of � and a mapping P W U� ! �

such that:

(a) �affine � U� :

(b) P j�affine W �affine ! � is bi-Lipschitz continuous, i.e., there exists a constant
cP > 0 such that

cP kx � yk � kP .x/� P .y/k � c�1
P kx � yk 8x; y 2 �affine:

(c) For any � 2 Gaffine and L� WD P .�/, the restriction P j� W � ! L� is a C k�1

diffeomorphism for some k � 2.

If Assumption 8.1.3 is satisfied, we may simply set

� affine WD .P j�affine/
�1 W � ! �affine:

The p-th order parametric surface approximation will be defined by employing

the mapping P as in Assumption 8.1.3. Recall that
n
bP

.p/

.i;j / W .i; j / 2 �.p/

O�
o

denotes

the set of nodal points on the reference element and bN .p/

.i;j /
is the Lagrange basis on

O� corresponding to the nodal point bP .i;j /.



8.1 Discretization of Boundary Integral Equations with Surface Approximations 469

Definition 8.1.4. For given panel � 2 Gaffine and degree p � 1, the p�parametric
reference mapping ��;p of degree p is (componentwise) the p-th order nodal inter-
polation of P ı �affine

� , i.e., ��;p DbIp
�
P ı �affine

�

�
. It has the explicit representation

��;p . Ox/ WD
X

.i;j /2�O�p

P
.p/
.i;j/

bN.p/

.i;j/
. Ox/ 8 Ox 2 O� , where P

.p/

.i;j/
WD P ı�affine

�

�
bP.p/.i;j/

�
:

For � 2 Gaffine, the image ��;p . O�/ is the p�parametric panel of degree p. The
mesh Gp WD ˚

��;p . O�/ W � 2 G� is the p�parametric surface mesh of degree p.
The p�parametric surface approximation of degree p corresponding to Gp is

�p WD
[

Q�2Gp

Q�:

Remark 8.1.5. The p-parametric reference mapping ��;p W O� ! Q� is component-
wise a polynomial of maximal degree p. The definition of ��;p does not require the
analytic knowledge of the pullbacks P ı �affine

� for all Ox 2 O� but only the discrete

images of the nodal pointsP ı�affine
�

�
bP .p/

.i;j /

	
for all reference indices .i; j / 2 � O�p . In

practice, such discrete images can be obtained either by measurements or by using
geometric modelling provided by CAD-programs.

For p D 1, the mesh G1 D Gaffine is independent of the choice of the surface
projection P since all nodal points of Gaffine lie on the true surface.

The analogue to Assumption 8.1.3 for p-parametric surface approximations of
higher order reads as follows.

Assumption 8.1.6. The mapping P W U� ! � as in Assumption 8.1.3 satisfies:

(a) �p � U� :

(b) P j�p W �p ! � is bi-Lipschitz continuous, i.e., there exists a constant cP > 0

such that

cP kx � yk � kP .x/� P .y/k � c�1
P kx � yk 8x; y 2 �p:

(c) For any Q� 2 Gp and L� WD P . Q�/, the restriction P jQ� W Q� ! L� is a C k�1

diffeomorphism for some k � 2.

If Assumption 8.1.6 is satisfied we set

�p D .P j�p /
�1 :

Notation 8.1.7. For the panels in Gaffine we write � and use them as counting
indices. For the lifted panel on Gp , we use a “e� ” notation and write Q� D lift�;p .�/,

where lift�;p WD ��;p ı
�
�affine

�

��1 W � ! Q� . For the corresponding panel on the
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original surface we use a superscript “ L� ” and write L� D P . Q�/ D lift� .�/, where
lift� WD P ı lift�;p.

In the case of globally smooth surfaces, the orthogonal surface projection is well
defined in a neighborhood of � . This choice will lead to estimates in the analysis of
the surface approximation errors which are improved by one order of h compared
to more general mappings P . The proof of the following example can be found in,
e.g., [100, Lemma 14.16].

Example 8.1.8 (Orthogonal surface projection). Let � be the surface of a boun-
ded domain� � R3 of class C k for some k � 2. This implies that there exist ı > 0
and a tubular neighborhood V of � such that the mapping

 W � � ��ı; ıŒ! V  .x; s/ D xC sn .x/ (8.2)

is a C k�1 diffeomorphism. Thus the orthogonal projection P W V ! � resp. the
oriented distance function dist W V ! ��ı; ıŒ are well defined by

P .xC sn .x// D x and dist .xC sn .x// D s

and of class C k�1 resp. C k .

Remark 8.1.9. The case d D 2 is special because, for sufficiently small mesh
width h, the projection P can always be chosen, locally, as the orthogonal surface
projection, i.e.,

8x 2 � 2 Gaffine Lx � x ? TLx;
where Lx D P .x/ and TLx denotes the tangential plane at L� D P .�/ in Lx.
This is due to the fact that for sufficiently small h� , ı, and any Lx 2 L� , the line
fLxC sn .Lx/ W s 2 Œ�ı; ı�g and � have a unique intersection point.

In the case of anisotropic boundary value problems, where the principal part of
L is given by � div .A grad u/ with some positive definite A ¤ I, the rôle of the
orthogonal surface projection is played by the conormal surface projection.

Example 8.1.10 (Conormal surface projection). Let � be the boundary of a boun-
ded domain� � R3 of class C k for some k � 2. Let A 2 R3�3 be positive definite
and define the exterior conormal vector at z 2 � by v .z/ D An .z/. This implies
that there exist ı > 0 and a tubular neighborhood V of � such that the mapping

 W � � ��ı; ıŒ! eV  .x; s/ D xC sv .x/

is a C k�1 diffeomorphism. Thus the conormal projection P W V ! � resp. the
function distA W V ! ��ı; ıŒ are well defined by

P .xC sv .x// D x and distA .xC sv .x// D s (8.3)

and of class C k�1 resp. C k .
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Proof. The proof of Example 8.1.8 is based on the introduction of a local coor-
dinate system .t1.x/; t2.x/;n.x// at some points x 2 � and the application of
the inverse mapping theorem along with the compactness of � . The positive def-
initeness of the diffusion matrix A implies hv.x/;n.x/i D hAn.x/;n.x/i � 	min,
where 	min is the smallest eigenvalue of A. As a consequence, the transformation
.t1.x/; t2.x/;n.x// ! .t1.x/; t2.x/; v.x// is regular and hence the asserted proper-
ties of the conormal projection (8.3) are inherited from the analogous properties of
the orthogonal projection. �

Remark 8.1.11. In some applications, the function P W U� ! � , which is used in
Definitions 8.1.1 and 8.1.4 for the construction of the p-parametric surface approx-
imations, is not explicitly given. Instead the surface mesh is given in parametrized
form by a set of pullbacks �k W O� ! R3, k 2 I , where I is some finite index set. We
assume here that

LG WD f�k . O�/ W k 2 I g
is a surface mesh for � in the sense of Definition 4.1.2. If the evaluation of the
mappings �k and their derivatives are costly it is recommended that �k be replaced
by a p-parametric approximation

�k;p WDbIp .�k/ and Gp WD
n
�

p

k
. L�/ W L� 2 LG

o
;

where the lifting is defined by �p

k
WD �k;p ı��1

k
. Note that, in general, �p

� is not the
orthogonal surface projection.

8.1.2 .k; p/-Boundary Element Spaces with p-Parametric
Surface Approximation

The definition of boundary element spaces as introduced in Chap. 4 has to be modi-
fied slightly if the original surface is replaced by its p-parametric approximation.

The p-parametric surface mesh Gp is characterized by the set of parametrizations

�!� p WD
˚
��;p W � 2 Gaffine�

which map the reference element O� to the panel ��;p . O�/ 2 Gp . (Recall that we
always use the elements of the affine mesh Gaffine as the counting index for mesh-
related quantities such as the pullbacks

˚
��;p W � 2 Gaffine

�
.)

Definition 8.1.12. For given p � 1, let Gp denote a p-parametric surface approx-
imation of degree p. The space of .k; p/-discontinuous boundary elements of
algebraic degree k 2 N0 and geometric degree p is given by

S
k;�1�!
� p

WD
n
 W �p ! K j 8� 2 Gaffine W  ı ��;p 2 P �

k

o
:
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The space of .k; p/-continuous boundary elements of algebraic degree k 2 N and
geometric degree p is given by

S
k;0�!
� p

WD ˚ 2 C 0 .�p/ j 8� 2 Gaffine W  ı ��;p 2 P �
k

�
:

Remark 8.1.13. If parts of the sub- and superscripts in the notation Sk;r�!
� p

are clear

from the context, we will write for short Sk;0;p, Sk;1;p, Sk;p, or simply S .

Note that the functions u 2 Sk;r;p, in general, are not defined on the true surface.
The approximations to the exact solution are obtained by using the surface projec-
tion by means of u ı �p . For a function v W �p ! C, we denote by Lv the lifted
function

Lv WD v ı �p W � ! C (8.4)

8.1.3 Discretization of Boundary Integral Equations
with p-Parametric Surface Approximation

We will consider the abstract problem:

Find u 2 H W b .u; v/ D F .v/ 8v 2 H: (8.5)

The Hilbert space H , typically, is a Sobolev space H s .�/, s D �1=2; 0; 1=2 resp.
a suitable closed subspace. The functional F 2 H 0 denotes a given right-hand side
which, possibly as, e.g., in the case of the direct method (cf. Sect. 3.4.2), might be
defined via integral operators. For the boundary integral operators V ,K , andK 0 (cf.
Chap. 3), the sesquilinear form b .�; �/ has the abstract form

b .u; v/ D .Bu; v/L2.�/ (8.6)

with the boundary integral operator

.Bu/ .x/ D 	1 .x/ u .x/C 	2 .x/
Z

�

k .x; y/ u .y/ dsy x 2 � a.e. (8.7)

For the integral operatorW , the kernel function is hypersingular and we choose the
regularization via partial integration (cf. Sect. 3.3.4). The sesquilinear form is given
by [cf. (3.3.22)]

b .u; v/ WD
Z

���

fk1 .x; y/ hcurl�;A;0 u .y/ ; curl�;A;2b v .x/i
Cck2 .x; y/ u .y/ v .x/gdsydsx (8.8)
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with

k1 .x; y/ WD G .x� y/ and k2 .x; y/ D G .x � y/
D
A1=2n .x/ ;A1=2n .y/

E
:

Assumption 8.1.14. The kernel function k W � � � ! C is either a fundamental
solution G W R3 ! C [cf. (3.3)]

G .z/ D 1

4

p

det A

ehb;ziA��kzkA

kzkA
(8.9)

or a suitable Gâteaux derivative:

1. k .x; y/ D G .x � y/,
2. k .x; y/ D @G .x � y/ =@vx,
3. k .x; y/ D @

@vy
G .x � y/C 2 ˝b; vy

˛
G .x � y/,

4. k .x; y/ D G .x � y/
˝
A1=2n .x/ ;A1=2n .y/

˛
,

where v D An denotes the conormal vector [cf. (2.103)].

Notation 8.1.15. Existence and uniqueness of the Galerkin solution on the sur-
face �p will be proved for sufficiently fine mesh width. In this light, we consider
a sequence

�Gp

`

�
`2N

of p-parametric surface meshes with corresponding approxi-

mate surfaces
�
�

p

`

�
`2N

. We write
�
S

k;r;p

`

	

`2N
for the corresponding sequence of

boundary element spaces.
If the polynomial orders .k; p/ and the regularity index r 2 f�1; 0g are clear

from the context, we simply write G`, �`, S`, �`. For the mesh sequence
�Gaffine

`

�
`2N

,
the constants in Definition 8.1.1 and Assumption 8.1.3, resp. Assumption 8.1.6, in
general, depend on ` and we write caffine

`
, C affine

`
, cP;`.

The following Assumption expresses the requirement that these constants are
uniformly bounded.

Assumption 8.1.16. There exists constants caffine; cP > 0, C affine < 1 such that
the constants caffine

`
, C affine

`
, cP;` in Definition 8.1.1 and Assumption 8.1.3, resp.

Assumption 8.1.6 satisfy

8` 2 N caffine < caffine
` � C affine

` � C affine and cP � cP;`:

Example 8.1.17. Let � D S2 and let �affine be the double pyramid with vertices
.1; 0; 0/|, .0; 1; 0/|, .�1; 0; 0/|, .0;�1; 0/|, .0; 0; 1/|, .0; 0;�1/|. The mesh Gaffine

0

is the set of the eight triangular faces of �affine. The orthogonal projection P W
�affine ! � is given by P .x/ D x= kxk and can be extended to an appropriate
neighborhood U� as required in Assumption 8.1.3.

Recursively, we assume Gaffine
`�1

has been generated for some ` � 1. A finer mesh
Gaffine

`
is constructed by (a) connecting the midpoints of edges of the panels in G`�1

and (b) projecting these midpoints to the surface by means of the mapping P .
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Because the projectionP is given explicitly, the construction of the p-parametric
surface approximations �p

`
is without any difficulty. This leads to meshes Gp

`

which satisfy Assumption 8.1.16. The proof of this statement is straightforward but
somewhat lengthy and will be skipped.

The Galerkin boundary element method of algebraic degree k and geometric
degree p for the discretization of (8.7) consists of two steps (cf. Notation 8.1.15):

� Replacing the true surface by the p-parametric approximation:

Find u` 2 S` W b` .u`; v/ D F` .v/ 8v 2 S`: (8.10)

The perturbed sesquilinear form is given for the boundary integral operators
V;K; andK 0 by

b` .u; v/ D .B`u; v/L2.�`/ ;

where

.B`u/ .x/ D 	1;` .x/ u .x/C 	2;` .x/
Z

�`

k` .x; y/ u .y/ dsy x 2 �` a.e.

and, for the hypersingular operatorW , by

b` .u; v/ WD
Z

�`��`

˚
k1;` .x; y/

˝
curl�`;A;0 u .y/ ; curl�`;A;2b v .x/

˛

Cck2;` .x; y/ u .y/ v .x/
�
dsydsx:

The kernels k` W �` � �` ! C which correspond to the four cases in
Assumption 8.1.14 are given by:

1. k` .x; y/ D k1;` .x; y/ D G .x � y/.
2. k` .x; y/ D @G .x � y/ =@v`;x, where v` WD An`. The matrix A is as in

(2.98) and n` denotes the normal field at the p-parametric surface �` pointing
towards the unbounded exterior domain. The notation v`;x indicates that the
Gâteaux derivative is applied with respect to the variable x.

3. k` .x; y/ D @G .x � y/ =@v`;y C 2
˝
b; v`;y

˛
G .x � y/.

4. k2;` .x; y/ D G .x � y/
˝
A1=2n` .x/ ;A1=2n` .y/

˛
.

Furthermore, the (real-valued) coefficients 	1;` and 	2;` are defined by 	1;` WD
	1 ı��1

`
, 	2;` WD 	2 ı��1

`
. Note that in most cases 	1, 	2 are piecewise constant

implying that 	1;` D 	1 and 	2;` D 	2.

Remark 8.1.18. We do not discuss the approximation of the right-hand side F .v/
in detail, since its accurate evaluation strongly depends on the specific problem. As
a rule of thumb, one replaces integrals over � by integrals over �` and (expressions
containing) the conormal vector field v by An`. The arising approximation of the
functional F in (8.10) is denoted by F`.
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� Lifting the approximation u` to the true surface:
The p-parametric Galerkin approximation to the exact solution of (8.5) is
given by

Lu` WD u` ı �`: (8.11)

8.2 Convergence Analysis

In this section, we will address the question how the degree p in the p-parametric
surface approximation has to be chosen such that the convergence rates of the
unperturbed Galerkin discretization (on the exact surface) are preserved. The dis-
cretization parameter for the mesh G` is the mesh width h`. In this section, we
will investigate the convergence of the corresponding sequence .u`/` of Galerkin
solutions.

For the continuous problem (8.5) we assume existence and uniqueness via the
following conditions.

Assumption 8.2.1. 1. Continuity: There exists C > 0 such that

8u; v 2 H W jb .u; v/j � C kukH kvkH :

2. Gårdings’s inequality: There exist a constant c > 0 and a compact operator
T W H ! H 0 such that

8u 2 H W jb .u; u/� hT u; uiH 0�H j � c kuk2H :

3. Injectivity: For all v 2 Hn f0g,

b .u; v/ D 0 H) u D 0:

In order to compare the sesquilinear forms b .�; �/ and b` .�; �/, we will lift the
sesquilinear form b` .�; �/ to the true surface � . For � 2 Gaffine and Q� D lift�;p .�/

(cf. Notation 8.1.7), the pullback of the corresponding panel L� D P . Q�/ � � to the
reference element is the composition

�� D P ı ��;p W O� ! L� : (8.12)

The function �` W � ! R>0 is the quotient of the square roots of Gram’s
determinants for � and �`. We define �` W � ! R piecewise, for x 2 � � G`, by

�` .x/ WD
�
g�;p ı ��1

�

�
.x/

g� ı ��1
� .x/

:

Here, g� W O� ! R>0 denotes the surface element of � 2 G` and g�;p is the surface
element of the corresponding p-parametric panel. Explicitly, we have
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g� .Ox/ D
p

det G� .Ox/ with G� .Ox/ WD J|
� .Ox/ J� .Ox/ ; (8.13a)

g�;p .Ox/ D
q

det G�;p .Ox/ with G�;p .Ox/ WD J|
�;p .Ox/ J�;p .Ox/ (8.13b)

where J� (resp. J�;p) is the Jacobi matrix of �� (resp. ��;p).
The following quantities will enter the error estimates

N�` WD k�`kL1.�/ and N��
` WD k�` � 1kL1.�/ : (8.14)

By employing the function �`, we may define the lifted p-parametric boundary
element space by

LS` WD fu ı �` W u 2 S`g ;
and the lifted sesquilinear form Lb` W LS` � LS` ! C as follows:

� For the boundary integral operators V;K , and K 0,

Lb` .Lu; Lv/ WD
Z

�

	1 .x/ Lv .x/Lu .x/ �` .x/ dsx

C
Z

�

	2 .x/ Lv .x/�` .x/
�Z

�

Lk` .x; y/ Lu .y/ �` .y/ dsy

�
dsx;

where Lk` .x; y/ WD k` .�` .x/ ; �` .y//.
� For the hypersingular integral operatorW ,

Lb` .Lu; Lv/ WD
Z

���

�` .x/ �` .y/
n Lk1;` .x; y/

D�
curl�`;A;0 Qu

�
.Qy/ ;

�
curl�`;A;2b Qv

	
.Qx/
E

Cc Lk2;` .x; y/ Lu .y/ Lv .x/
o
dsydsx; (8.15)

where Lki;` .x; y/ WD ki;` .�` .x/ ; �` .y//, i D 1; 2, and Qv WD Lvı��1
`

, Qv WD Lvı��1
`

,
and Qx WD �` .x/, Qy WD �` .y/.

� The lifted right-hand side LF` W LS` ! C is given by

LF` .Lu/ WD F`

�Lu ı ��1
`

�
:

Remark 8.2.2. (a) For all u; v 2 S` and corresponding lifted Lu; Lv [cf. (8.4)],

b` .u; v/ D Lb` .Lu; Lv/ and LF` .Lu/ D F` .u/ :

(b) The Galerkin solution Lu` in (8.11) can be characterized equivalently: Find
Lu` 2 LS`, such that

Lb` .Lu`; Lv`/ D LF` .Lv`/ 8Lv` 2 LS`:
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Since the sesquilinear form Lb` and the right-hand side LF` are both defined for
functions on the true surface � , we may compare them with the original sesquilinear
form b and right-hand side F . In order to ensure well-posedness of this problem
and quasi-optimal error estimates, we employ the concepts of uniform continuity,
consistency, and stability as introduced in Sect. 4.2.4.

1. The family of sesquilinear forms b` .�; �/ W S` �S` ! C is uniformly continuous
if there is a constant C such that

8u; v 2 S` W jb` .u; v/j � C kukH kvkH : (8.16a)

2. The family of lifted sesquilinear forms Lb` .�; �/ W LS`� LS` ! C is uniformly stable
if there exists a null sequence .c`/` such that

8Lu; Lv 2 LS` W
ˇ̌
ˇb .Lu; Lv/� Lb` .Lu; Lv/

ˇ̌
ˇ � c` kLukH kLvkH : (8.16b)

3. Let U be a subspace of H with continuous embedding and LS` � U . (Note that
the trivial choiceU D H is always possible.) Let the exact solution beU -regular,
i.e, the solution u of (8.5) satisfies u 2 U . The family of lifted sesquilinear forms
Lb` .�; �/ W LS`� LS` ! C is uniformly consistent with respect to k�kU if there exists
a null sequence

�
ıI

`

�
`

such that

8Lu; Lv 2 LS` W
ˇ̌
ˇb .Lu; Lv/� Lb` .Lu; Lv/

ˇ̌
ˇ � ıI

` kLukU kLvkH : (8.16c)

4. The family of right-hand sides LF` .�/ W LS` ! C is uniformly consistent if there
exist a constant CF which depends only on F and a null sequence

�
ıII

`

�
`

such
that

8Lu 2 LS` W
ˇ̌
ˇF .Lu/ � LF` .Lu/

ˇ̌
ˇ � CF ı

II
` kLukH : (8.16d)

Remark 8.2.3. Let the exact solution satisfy u 2 U . Conditions (8.16) imply, by
means of Strang’s lemma (cf. Sect. 4.2.4), that the error of the exact solution u and
the .k; p/-boundary element approximation Lu` can be estimated by

ku � Lu`kH � C
�ku �…`ukH C ıI

` kukU C CF ı
II
`

�
; (8.17)

where …` W H ! S` denotes the orthogonal projection with respect to the scalar
product .�; �/U . The first term on the right-hand side of (8.17) can be estimated as in
(4.158). IfH D H s .�/ for some s 2 f�1=2; 0; 1=2g, if the polynomial order for the
boundary element functions equals k, and if problem (8.5) has fullH kC1-regularity,
the error estimate

ku � Lu`kH s.�/ � C
�
hkC1�s

`
kukH kC1.�/ C ıI

` kukU C CF ı
II
`
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follows. Hence the optimal convergence order is preserved if the family of sesquilin-
ear forms is uniformly stable, and both ıI

`
and ıII

`
are bounded from above by

ChkC1�s .

In view of the Strang’s lemma it suffices to estimate the constants in the estimates
(8.16). We write the sesquilinear form b .�; �/ as a sum

b .u; v/ D bI .1; u; 1; v/C bII .1; u; 1; v/ ;

where

bI .w1; u;w2; v/ WD
Z

�

	1w2 .x/ v .x/w1 .x/ u .x/ dsx

and

� For the boundary integral operators V , K , and K 0,

bII .w1; u;w2; v/ WD
Z

�

	2 .x/w2 .x/ v .x/
�Z

�

k .x; y/ u .y/w1 .y/ dsy

�
dsx:

� For the boundary integral operatorW , we set bI D 0 and

bII .w1; Lu;w2; Lv/ WD
Z

���
w2 .x/w1 .y/

n Lk1 .x; y/
D�

curl�;A;0 Lu
�
.Qy/ ;

�
curl�;A;2b Lv

	
.Qx/
E

C c Lk2 .x; y/ Lu .y/ Lv .x/
o
dsydsx:

Note that the use of the real-valued weights w1, w2 in the sesquilinear forms bI

and bII allows us to express some error splittings in a more compact way.
An analogous splitting is employed for the sesquilinear form Lb` .�; �/

Lb` .u; v/ D LbI
` .1; u; �`; v/C LbII

` .�`; u; �`; v/ :

The difference of the sesquilinear forms b .�; �/ and b` .�; �/ can be written in the form

b .Lu; Lv/ � Lb` .Lu; Lv/ D
3X

iD1

ei .Lu; Lv/ ;

where

e1 .Lu; Lv/ D bI .1; Lu; .1 � �`/ ; Lv/C bII .1; Lu; .1 � �`/ ; Lv/
e2 .Lu; Lv/ D bII .�`; Lu; �`; Lv/� bII

` .�`; Lu; �`; Lv/ (8.18)

e3 .Lu; Lv/ D bII ..1 � �`/ ; Lu; �`; Lv/ :
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Lemma 8.2.4. For all u 2 L2 .�/ and w 2 L1 .�/,

kwukL2.�/ � C kwkL1.�/ kukL2.�/ :

The estimate of the sesquilinear form e2 is based on an estimate of the difference
of the kernel functions k and Lk`. Let k be defined as in Assumption 8.1.14. Since
norms are equivalent in finite-dimensional spaces there exist constants cA, CA > 0

such that
cA kuk � kukA � CA kuk 8u 2 R3: (8.19)

In the following convergence analysis, certain geometric quantities d`, Qd`, "` will
determine the convergence rates of the .k; p/-boundary element method. Let

d` WD max
˛2f�1;1;2g

8
<̂

:̂
sup

x;y2�
x¤y

jkx � yk˛A � k�` .x/� �` .y/k˛A j
kx � yk˛

9
>=

>;
(8.20a)

and

Qd` WD sup
x;y2�
x¤y

kx � y � .�` .x/� �` .y//k and "` WD CA kbkA
Qd` C .diam�/ j	jd`;

(8.20b)
where A, b, 	 are as in (3.3), (8.9).

First, we prove convergence estimates in terms of d`, Qd`, "`, while the conver-
gence rates of these three geometric quantities will be estimated in Sect. 8.4.

Lemma 8.2.5. Let the kernel function be defined as in Assumption 8.1.14(1). Then
there exists a constant C >0 which depends only on the coefficients of the differen-
tial operator L and the diameter of � such that

8x; y 2 �; x ¤ y;
ˇ̌
ˇk .x; y/� Lk` .x; y/

ˇ̌
ˇ � C ."` C d`/

1

4
 kx � yk : (8.21)

Proof. For x; y 2 � , let Qx WD �` .x/ and Qy 2 �` .y/. The differences are denoted by
z D y� x and Qz WD Qy � Qx. Then

k .x; y/� Lk` .x; y/ D ehb;ziA��kzkA

4

p

det A kzkA

�2 .z; Qz/C ehb;QziA��kQzkA

4

p

det A
�1 .z; Qz/ :

where

�1 .z; Qz/ WD kzk�1
A � kQzk�1

A and �2 .z; Qz/ WD 1 � ehb;Qz�ziA��.kQzkA�kzkA/:
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The definition of d` immediately implies that

j�1 .z; Qz/j � d`= kQzkA � d`= kQzkA

Assumption 8.1.6b� d`

cP cA kzkA

(8.19)� d`

cP c
2
A kzk

;

(8.22)

while the exponent in the definition of �2 can be estimated by

jhb; Qz � ziA � 	 .kQzkA � kzkA/j � kbkA kQz � zkA C j	j d` kzk � "` � Qc:

This leads to
j�2 .z; Qz/j � e Qc"`:

Since the surface is bounded there is a constant eC > 0 such that

sup
x;y2�
zDx�y

ehb;ziA��kzkAp
det A

� eC and sup
x;y2�

QzD�`.x/��`.y/

ehb;QziA��kQzkAp
det A

� eC : (8.23)

Thus we have proved that

ˇ̌
ˇk .x; y/� Lk` .x; y/

ˇ̌
ˇ � C

4
 kzk ."` C d`/ 8x; y 2 � , x ¤ y;

where C depends on the coefficients of the differential operator. �

For the proof of the following lemma, we will employ an inverse inequality in
the form

8u 2 LS kukL2.�/ � Cinvh
�1=2

`
kukH �1=2.�/ : (8.24)

The constant Cinv is moderately bounded for shape-regular and quasi-uniform
meshes. In addition, it depends on the polynomial degree of the shape functions
(cf. Theorem 4.4.3).

Corollary 8.2.6. Let the kernel function be defined by Assumption 8.1.14(1). Then
there exist a constant C > 0 which depends only on the coefficients of the
differential operatorL, the diameter of � andCinv in (8.24) such that for s D 0; 1=2

8Lu; Lv 2 LS`

ˇ̌
ˇb .Lu; Lv/� Lb` .Lu; Lv/

ˇ̌
ˇ � Ch�1=2�s

`

n
."` C d`/ N�2

` C .1C N�`/ N��
`

o

kLukH �s.�/ kLvkH �1=2.�/ :

Proof. We start with the estimate of the sesquilinear form e2 as in (8.18). The
monotonicity of the Riemann integral allows us to use (8.21) to get

je2 .Lu; Lv/j � C ."` C d`/

Z

�

Z

�

j�` .y/ Lu .y/j j�` .x/ Lv .x/j
4
 kx � yk dsydsx:
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The continuity of the single layer potential for the Laplace operator [fromL2 .�/ to
H 1 .�/ (cf. Theorem 3.1.16)] implies the continuity from L2 .�/ to L2 .�/. Thus

je2 .Lu; Lv/j � C ."` C d`/

Z

�

Z

�

j�` .y/ Lu .y/j j�` .x/ Lv .x/j
4
 kx � yk dsydsx � C ."` C d`/

k�` LukL2.�/ k�` LvkL2.�/

Lemma 8.2.4� C ."` C d`/ N�2
` kLukL2.�/ kLvkL2.�/ ; (8.25)

where N�` is as in (8.14). The inverse inequality (cf. Remark 4.4.4) finishes the
estimate of the sesquilinear form e2.

The estimates of the sesquilinear forms e1, e3 are simpler because no perturbation
of the kernel function appears therein and we may directly apply the continuity of
the original boundary integral operator to obtain

je1 .Lu; Lv/j D jb .Lu; .1 � �`/ Lv/j � C kLukL2.�/ k.1 � �`/ LvkL2.�/

Lemma 8.2.4� C N��
` kLukL2.�/ kLvkL2.�/ : (8.26)

In a similar fashion, the estimate

je3 .Lu; Lv/j � C N�` N��
` kLukL2.�/ kLvkL2.�/ (8.27)

is derived and an inverse inequality finishes the proof. �

In the following we will briefly explain why our proof does not give a better
estimate if we employ theH�1=2 .�/-continuity of the single layer potential directly
instead of the L2 .�/-continuity along with an inverse inequality.

Note that the inclusion LS � L2 .�/ implies that j�` Luj, j�` Lvj 2 L2 .�/ �
H�1=2 .�/ holds for all Lu 2 LS . Hence in (8.25) we could employ the H�1=2 .�/-
continuity of the single layer potential to obtain

je2 .Lu; Lv/j � C ."` C d`/ kj�` LujkH �1=2.�/ kj�` LvjkH �1=2.�/ : (8.28)

By the continuity of the embeddingL2 .�/ ,! H�1=2 .�/ and an inverse inequality
the estimate

kj�` LujkH �1=2.�/ � C kj�` LujkL2.�/ � C N�` kjLujkL2.�/

D C N�` kLukL2.�/ � eCh�1=2

`
N�` kLukH �1=2.�/

follows. The combination with (8.28) yields

je2 .Lu; Lv/j � Ch�1
` ."` C d`/ kLukH �1=2.�/ kLvkH �1=2.�/ : (8.29)
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Example 8.2.7 explains why the estimate

kjLujkH �1=2.�/ � Ch�1=2

`
kLukH �1=2.�/ 8Lu 2 LS;

in general, is sharp so that (8.29) cannot be improved along the lines of our proof.
In order to avoid technicalities we consider the H�1 .�/-norm instead of the
H�1=2 .�/-norm in the following example.

Example 8.2.7. Let � D .0; 1/ and N 2 N . For h D N�1, we set xi WD ih,
i D 0; 1; : : : ; N , and define the intervals �i D .xi�1; xi /, 1 � i � N , which define
the mesh G WD f�i W 1 � i � N g. For a function f W � ! R, we define its scaled
and periodic version f per W �! R elementwise by

f perj�i
D f ı ��1

i with ��1
i .x/ D x � xi�1

h
; 1 � i � N:

We consider the function

u .x/ WD

 �1 x 2 .0; 1=2/ ;
1 x 2 .1=2; 1/ :

Note that

u.�1/ .x/ WD
Z x

0

u .s/ ds D
ˇ̌
ˇ̌1
2
� x

ˇ̌
ˇ̌ � 1

2
;

u.�2/ .x/ D
Z x

0

u.�1/ .s/ ds D 1

2

�
1

4
� x C

ˇ̌
ˇ̌x � 1

2

ˇ̌
ˇ̌
�
x � 1

2

��
:

Note that uper 2 S0;�1
G is piecewise constant. Our goal is to compute kuperkH �1.�/,

where H�1 .�/ D �H 1
0 .�/

�0
. By definition, we have1

kuperkH �1.�/ D sup
v2H 1

0
.�/nf0g

.uper; v/L2.�/

jvjH 1.�/

: (8.30)

For the computation of the maximizer v0 we define the Lagrange function

J .v/ D .u; v/L2.�/ � 	
�
jvj2H 1.�/

� 1
	
:

The equations for a stationary point .v0; 	0/ are given by

�
v00;w0

�
L2.�/

D 1

2	0

.uper;w/L2.�/ 8w 2 H 1
0 .�/ ^ jv0jH 1.�/ D 1:

1 For simplicity, we employ the H1-seminorm as the norm in H1
0 .�/ which is equivalent to the

standard norm.



8.2 Convergence Analysis 483

The strong formulation is

� �vper
0

�00 D 1

2	0

uper ^ jv0jH 1.�/ D 1:

The solution is the scaled and period version vper
0 of

v0 .x/ D � h
2

2	0

�
�xu.�2/ .1/C u.�2/ .x/

	
;

where 	0 is chosen such that
���
�
vper

0

�0���
L2.�/

D 1. Since the scaling in (8.30) cancels

we set 	0 D 1. We get

���
�
vper

0

�0���
2

L2.�/
D

NX

iD1

Z

�i

ˇ̌
ˇ
�
vper

0

�0 ˇ̌ˇ
2 D h�2

Z 1

0

ˇ̌
v00
ˇ̌2 D h2

192

and
�
uper; vper

0

�
L2.�/

D
NX

iD1

Z

�i

upervper
0 D

Z 1

0

uv0 D h2

96
:

Hence

kuperkH �1.�/ D
�
uper; vper

0

�
L2.�/ˇ̌

vper
0

ˇ̌
H 1.�/

D
p
3

12
h:

Since juperj � 1 we get

kjuperjkH �1.�/ D k1kH �1.�/ D C D O .1/

so that

kjuperjkH �1.�/ D C
12p
3
h�1 kuperkH �1.�/ :

Hence the estimate

kjujkH �1.�/ � kukL2.�/ � Ch�1 kukH �1.�/

cannot be improved in general for piecewise constant functions.

We turn to the estimate of the derivatives of the fundamental solution. For
x; y 2 � , let Qx D � .x/ and Qy 2 � .y/. The error estimates depend on the following
quantities
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nI
1;` WD max

L�1; L�22 LG`L�1¤L�2

sup
x2L�1

y2L�2

jhn .x/ ; y � xi � hn` .Qx/ ; Qy � Qxij
ky � xk ; nII

` WD max
L�2 LG`

sup
x2L�
kn .x/ � n` .Qx/k ;

nI
2;`
WD max
L�2 LG`

sup
x;y2L�

jhn .x/ ; y � xi � hn` .Qx/ ; Qy � Qxij
ky � xk2 : (8.31)

The proof of the following lemma employs two estimates which will be proved in
Sect. 8.4:

max
jˇ jD2

���@ˇ��;p

���
C 0. O�/

Lemma 8.4.2� Cstabh
2
� and sup

Ox;Oy2b� , Ox¤Oy
xD�� .Ox/, yD�� .Oy/

ky � xk
kOy � Oxk

.8.85)� ch� :

(8.32)

Lemma 8.2.8. Let the kernel function be defined by Assumption 8.1.14(2). Then
there exists a constant C > 0 which depends only on the coefficients of the differen-
tial operator L, the diameter of � , and the constant in Lemma 2.2.14 such that, for
sufficiently small 0 < h � h,

1. 8x; y 2 L� 2 LGW
ˇ̌
ˇk .x; y/� Lk` .x; y/

ˇ̌
ˇ � C

4
 kx � yk
�
nI

2;` C d` C "` C kbknII
`

	
: (8.33a)

2. 8L�1; L�2 2 LG, L�1 ¤ L�2, and x 2 L�1 and y 2 L�2,

ˇ̌
ˇk .x; y/� Lk` .x; y/

ˇ̌
ˇ � C

4
 kx � yk

 
nI

1;`
C d` C "`

kx � yk C kbk nII
`

!
: (8.33b)

Proof. For x; y 2 � , let Qx WD �` .x/ and Qy 2 �` .y/. The differences are denoted by
z D x� y and Qz WD Qx � Qy. We start with the splitting

k .x; y/� Lk` .x; y/ D G .z/
�
�	
�

1;` .x; y/� 
�
2;` .x; y/C '�

` .x/
	

(8.34)

C .G .z/�G .Qz// ��
2;` .Qx; Qy/C '` .Qx/� 	
1;` .Qx; Qy/
�
;

where, for ˛ 2 f1; 2g,


˛ .x; y/ WD hx � y;n .x/i
kx � yk˛A

; ' .x/ WD hb;n .x/i ;


˛;` .x; y/ WD hx � y;n` .x/i
kx � yk˛A

; '` .x/ WD hb;n` .x/i ;


�
˛;`
.x; y/ WD 
˛ .x; y/� 
˛;` .Qx; Qy/ ; '�

`
.x/ WD ' .x/� '` .Qx/ :

Next, we will estimate the different terms in this splitting separately.
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Estimate of 
�
˛;`

:
We distinguish two cases:

1. For x; y 2 L� 2 LG, let Qx; Qy be defined as before. Note that Qx D ��;p .Ox/, Qy D
��;p .Oy/ holds for Ox WD ��1

� .x/ and Oy WD ��1
� .y/. By using the quantities nI

2;`
,

d` we obtain

ˇ̌
ˇ
�

˛;` .x; y/
ˇ̌
ˇ D

ˇ̌
ˇ̌ hx � y;n .x/i
kx � yk˛A

� hQx � Qy;n` .Qx/i
kQx � Qyk˛

A

ˇ̌
ˇ̌

� c�˛
A kx � yk2�˛ nI

2;` C c�2˛
A c�˛

P

jhQx � Qy;n` .Qx/ij
kQx � Qyk˛ d`

� C
 
h2�˛

� nI
2;` C

ˇ̌˝
��;p .Ox/� ��;p .Oy/ ;n` ı ��;p .Ox/

˛ˇ̌

kQx � Qyk˛ d`

!
;

(8.35)

where C depends only on cA, ˛, and cP .
The first factor in the second term in the right-hand side of (8.35) can be estimated
by repeating the steps in the proof of Lemma 2.2.14. We obtain

ˇ̌˝
��;p .Ox/ � ��;p .Oy/ ;n` ı ��;p .Ox/

˛ˇ̌

kQx � Qyk˛ � C max
jˇ jD2

���@ˇ��;p

���
C 0.O�/

c˛
P

kOx� Oyk2
kx � yk˛ ;

(8.36)
where cP is as in Assumption 8.1.6. From (8.32) we conclude that

ˇ̌
ˇ
�

˛;` .x; y/
ˇ̌
ˇ � eCh2�˛

�

�
nI

2;` C d`

	
; (8.37a)

where eC depends only on C in (8.36), Cstab, cP , c in (8.32), and cA:

2. Let L�1; L�2 2 LG with L�1 ¤ L�2 and x 2 L�1, y 2 L�2. In the same way as before we
derive

ˇ̌
ˇ
�

˛;` .x; y/
ˇ̌
ˇ D

ˇ̌
ˇ̌ hx � y;n .x/i
kx � yk˛A

� hQx � Qy;n` .Qx/i
kQx � Qyk˛A

ˇ̌
ˇ̌ � C kx � yk1�˛

�
nI

1;` C d`

	
:

(8.37b)

Estimate of 
˛;`:
As before, we obtain improved estimates if x; y belong to the same panel


˛;` .x; y/ D jhQx� Qy;n` .Qx/ij
kQx � Qyk˛A

�



Ch2�˛
� if x; y 2 L� 2 LG;

C kx � yk1�˛ if x 2 L�1, y 2 L�2:
(8.37c)
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Estimate of '�
`

:
By employing the quantity nII

`
we obtain

ˇ̌
ˇ'�

` .x/
ˇ̌
ˇ D jhb;n .x/� n` .Qx/ij � kbk kn .x/� n` .Qx/k � kbk nII

` : (8.37d)

Estimate of '`:
Since n` has length 1,

j'` .Qx/j � kbk : (8.37e)

We have all ingredients to estimate the perturbation error (8.34) of the kernel
function due to boundary approximation. Again, we will distinguish two cases:

(a) Let x; y 2 L� 2 LG.
The combination of (8.21), (8.23), and (8.37) yields

ˇ̌
ˇk .x; y/� Lk` .x; y/

ˇ̌
ˇ � C

4
 kx � yk
�
nI

2;` C d` C "` C kbknII
`

	
:

(b) Let x 2 L�1 and y 2 L�2 for some non-identical panels L�1; L�2 2 LG.
In this case, we obtain

ˇ̌
ˇk .x; y/� Lk` .x; y/

ˇ̌
ˇ � C

4
 kx � yk

 
nI

1;`
C d` C "`

kx � yk C kbknII
`

!
;

where C depends on the coefficients A, b, c of the differential operator L. �

Corollary 8.2.9. Let the kernel function be defined by Assumption 8.1.14(2). Then
there exists a constant C > 0 which depends only on the coefficients of the dif-
ferential operator L, the diameter of � , the shape-regularity of the mesh, and the
constant in Lemma 2.2.14 such that

8Lu; Lv 2 LS` W
ˇ̌
ˇb .Lu; Lv/� Lb` .Lu; Lv/

ˇ̌
ˇ � Cı` kLukL2.�/ kLvkL2.�/ ;

where
ı` WD N��

` C N�2
`

n
nI

2;`h` C
�
nI

1;` C d` C "`

	
.1C jlogh`j/

o
:

Proof. We consider first the term e2 in (8.18). For any L� 2 LG, we introduce a partition
of � and of LG by

LGI
L� WD fL�g ; � I

L� WD L�;
LGII
L� WD

n
L�1 2 LGn fL�g W L�1 \ L� ¤ ;

o
; � II

L� WD
[

L�12GII
L�

L�1;

LGIII
L� WD

n
L�1 2 LG W L�1 \ L� D ;

o
; � III

L� WD
[

L�12GIII
L�

L�1:
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With this partition at hand, we employ (8.33) to obtain

je2 .Lu; Lv/j �
X

L�2 LG

Z

L�

X

R2fI , II , IIIg

Z

�R
L�

j�` .x/ Lv` .x/j
ˇ̌
ˇk .x; y/� Lk` .x; y/

ˇ̌
ˇ

� j�` .y/ Lu .y/j dsydsx

� C
�
nI

2;` C d` C "`

	
N�2
`

X

L�2 LG
kLv`kL1.L�/ kLu`kL1.L�/

�
Z

L��L�
1

4
 kx � ykdsydsx

C C N�2
`

�
nI

1;` C d` C "`

	X

L�2 LG
kLv`kL1. L�/

X

R2fII;IIIg
kLu`kL1.�R

L� /

�
Z

L�

Z

�R
L�

1

4
 kx � yk2 dsydsx

C C N�2
` kbknII

`

Z

�

Z

�

jLu` .y/j jLv` .x/j
4
 kx � yk dsydsx

D S1 C S2 C S3:

Estimate of S1:
By introducing local polar coordinates as in (5.53) with s D 1 one proves for any
L� 2 LG Z

L��L�
1

kx � ykdsydsx � Ch3
� :

The combination of this estimate and Corollary 4.4.6 yields

S1 � C
�
nI

2;` C d` C "`

	
N�2
`h`

X

L�2 LG
kLv`kL2.L�/ kLu`kL2. L�/

� C
�
nI

2;` C d` C "`

	
N�2
`h` kLv`kL2.�/ kLu`kL2.�/:

Estimate of S3:
The continuity of the single layer potential in L2 .�/ results in

S3 � C N�2
` kbk nII

` kLu`kL2.�/ kLv`kL2.�/ :

Estimate of S2:
For non-identical panels L�1; L�2 2 LG which have, at least, one common point, i.e.,
L�1 \ L�2 ¤ ;, we may use (5.59), (5.60), resp. (5.62) to get

Z

L�1�L�2

1

kx� yk2 dsydsx � Ch2
�1
;

where the shape-regularity of the panels implies h�1
	 h�2

.
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The shape-regularity also implies that ] LGII
L� D O .1/ and hence the summation

over all panels in LGII
L� yields

Z

L�

Z

� II
L�

1

4
 kx � yk2 dsydsx � Ch2
L� :

For the integral over L� � � III
L� we argue as in the proof (Part b) of Lemma 7.3.19 to

obtain Z

L�

Z

� III
L�

1

4
 kx � yk2 dsydsx � Ch2
� .1C jlogh� j/ :

This leads to the estimate of S2

S2 � C N�2
`

�
nI

1;` C d` C "`

	
Ch2

` .1C jlogh`j/
X

L�2 LG
kLv`kL1.L�/ kLu`kL1.�/ :

Let L�1 2 LG denote the triangle with kLu`kL1.�/ D kLu`kL1.L�1/. By using the inverse
inequality (cf. Corollary 4.4.6) we obtain

kLu`kL1.�/ D kLu`kL1. L�1/ � h�1
�1
kLu`kL2.L�1/ � h�1

` kLu`kL2.�/

from which we conclude with a Cauchy–Schwarz inequality that

S2 � C N�2
`

�
nI

1;` C d` C "`

	
.1C jlogh`j/ kLu`kL2.�/ kLv`kL2.�/ :

This finishes the estimate of e2

je2 .Lu; Lv/j � C N�2`
�
nI
2;`h` C

�
nI
1;` C d` C "`

�
.1C jlogh`j/

� kLv`kL2.�/ kLu`kL2.�/ :

The estimates of e1 and e3 are based on the continuity of the integral operator
and derived as estimates (8.26), (8.27). �

Corollary 8.2.10. Let the kernel function be defined by Assumption 8.1.14(3). Then
there exists a constant C > 0 which depends only on the coefficients of the dif-
ferential operator L, the diameter of � , the shape-regularity of the mesh, and the
constant in Lemma 2.2.14 such that

8Lu; Lv 2 LS` W
ˇ̌
ˇb .Lu; Lv/� Lb` .Lu; Lv/

ˇ̌
ˇ � C Qı` kLukL2.�/ kLvkL2.�/ ;

where (recall ı` as in Corollary 8.2.9)

Qı` WD C N�2
`

�
nII

` C d` C "`

�C ı`:
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Proof. The kernel function for the double layer potential is (recall: vy D Any)

k .x; y/ D @

@vy
G .x � y/C 2 ˝b; vy

˛
G .x � y/ :

The perturbation due to the first part of the kernel function can be estimated as in
Corollary 8.2.9 and we consider only the second summand. Let z WD x � y and
Qz WD Qx � Qy WD �` .x/� �` .y/. The splitting

kI
� .x; y/ WD 2

˝
b; vy

˛
G .z/� 2 ˝b; v`;Qy

˛
G .Qz/

D 2 ˝Ab;ny � n`;Qy
˛
G .z/C 2 ˝Ab;n`;Qy

˛
.G .z/�G .Qz//

leads to

ˇ̌
kI

� .x; y/
ˇ̌ (8.23)� C

 ��ny � n`;Qy
��

4
 kzk C jG .x � y/�G .Qx � Qy/j
!

(8.37d), (8.22), (8.23)� C
nII

`
C d` C "`

4
 kzk :

For the estimate
ˇ̌
ˇ̌
Z

���

kI
� .x; y/ Lu .y/ �` .y/ Lv .x/ �` .x/ dsydsx

ˇ̌
ˇ̌

� C N�2
`

�
nII

` C d` C "`

� kLukL2.�/ kLvkL2.�/

we may argue as in (8.25) and this finishes the proof. �
It remains to estimate the hypersingular boundary integral equation. Let � 2

Gaffine. The pullback of L� D lift� .�/ 2 LG is �� and its Jacobi matrix is denoted by
J� . Similarly the Jacobi matrix for ��;p is J�;p.

Let

J` WD max
�2Gaffine

sup
Ox2O�

��J� .Ox/ � J�;p .Ox/
��

h�

: (8.38)

k�k denotes the matrix norm which is induced by the Euclidean vector norm. The
proof of the following lemma requires an estimate of the number of mesh cells.
Under a weak assumption on the mesh, there exists a constant C] such that

]Gaffine � C]h
�2
` : (8.39)

The proof of the following lemma uses two results from Sect. 8.4 which reads as
follows. Corollary 8.4.3 states that

8Ox 2 O� kG� .Ox/k � Ch2
� and

��G�;p .Ox/
�� � Ch2

� (8.40a)
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while Lemma 8.4.4 implies that

ˇ̌
g�;p .Ox/

ˇ̌ � Ch2
� and jg� .Ox/j � Ch2

� : (8.40b)

Lemma 8.2.11. Assume that LS` � H 1 .�/. Let the sesquilinear forms b and Lb`

be defined by (8.8) and (8.15). Let Assumption 8.1.6 and the estimates (8.40) be
satisfied. Then there exists a constant C > 0 which depends only on the coefficients
of the differential operator L, the diameter of � , the shape-regularity of the mesh,
the constants in (8.40) and in Lemma 2.2.14, and the constants in (8.39) and the
inverse inequality, such that

ˇ̌
ˇb .Lu; Lv/ � Lb` .Lu; Lv/

ˇ̌
ˇ � C �d` C "` C nII

` C J` C N��`
�
h

�
1
2�s

` kLukH1�s.�/ kLvkH1=2.�/

for s D 0; 1=2 and any Lu; Lv 2 LS`.

Proof. We will estimate the sesquilinear forms e1; e2; e3 as in (8.18) and start
with e2.

The kernel function (cf. (8.8) consists of two parts. The estimate of the second
part is simple by using the previous results. Again, let z WD x� y and Qz WD Qx� Qy WD
�` .x/� �` .y/. We have

kII
� .x; y/ WD G .z/

D
A1=2n .x/ ;A1=2n .y/

E
�G .Qz/

D
A1=2n` .Qx/ ;A1=2n` .Qy/

E

D G .z/ .hAn .x/ ;n .y/i � hAn` .Qx/ ;n` .Qy/i/
C .G .z/�G .Qz// hAn` .Qx/ ;n` .Qy/i :

The estimates

jG .z/j � C

4
 kzk ; jG .z/�G .Qz/j �
C

4
 kzk .d` C "`/

follow from Lemma 8.2.5, while

jhAn` .Qx/ ;n` .Qy/ij � C

and
jhAn .x/ ;n .y/i � hAn` .Qx/ ;n` .Qy/ij � CnII

`

are obvious. Hence we may argue as in the proof of Lemma 8.2.5 to obtain the
estimate of the perturbation in the second part of the sesquilinear form associated
with the operatorW

ˇ̌
ˇ̌
Z

���

kII
� .x; y/ �` .y/ Lu` .y/ �` .x/ Lv` .x/ dsydsx

ˇ̌
ˇ̌

� C N�2
`

�
d` C "` C nII

`

� kLu`kL2.�/ kLv`kL2.�/

� C N�2
`

�
d` C "` C nII

`

� kLu`kH 1=2.�/ kLv`kH 1=2.�/ : (8.41)
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We turn to the first part of the sesquilinear form (8.8). For i D 1; 2, fix some
�i 2 Gaffine and let L�i WD lift�i

.�i /. Define the local sesquilinear form b�1;�2
by

b�1;�2 .Lu; Lv/ D
Z

L�1�L�2

G .x � y/
D
curlL�2;A;0 Lu .y/ ; curlL�1;A;2b Lv .x/

E
�` .y/ �` .x/ dsydsx:

We will transform the integrals to the reference element. For i D 1; 2, the local
pullbacks of the normal vectors are

Oni D n ı ��i
:

The column vectors of A1=2 are denoted by aj 2 R3, 1 � j � 3. Let A� WD
A1=2 � A1=2 2 R3�3 be the matrix formed by the column vectors a2 � a3, a3 � a1,
a1 � a2. Then, for any � 2 Gaffine and L� D lift� .�/ 2 LG,

curlL�;A;c Lv D A� curlL�;I;0 LvC Lv
�

A�1=2c � A1=2n L�
	

8Lv 2 H 1 . L�/ ;

where I is the 3 � 3 identity matrix. The transformation formula (3.79) leads to

�
curlL�;I;0 Lv

� ı �� D J� G�1
�
brOu � n L� ;

where J� is the Jacobi matrix of �� and G� WD J|
� J� denotes Gram’s matrix. Some

tedious but elementary tensor analysis leads to

�
curlL�;I;0 Lv

� ı �� D g�1
� J�

Or?Ov;

where br?Ov WD .@2 Ov;�@1 Ov/| and g� WD
p

det G� is the surface element. We
introduce the matrix A�� and the vector w1 by

A�� WD �A��| A� and w1 WD
�
A�
�| �

2A�1=2b �A1=2 On1

	
: (8.42)

(If A is the identity matrix we have A1=2 D A� D A�� D I.) Thus the pullback of
b�1;�2

.Lu; Lv/ can be written as

b�1;�2
.Lu; Lv/ D

Z

O��O�
Ok .Ox; Oy/

nD
A�� bcurl2 Ou .Oy/ ; bcurl1 Ov .Ox/

E

C
D
bcurl2 Ou .Oy/ ;w1 .Ox/

E
g1 .Ox/ Lv .Ox/

o
dsydsx; (8.43a)

where

Ok .Ox; Oy/D O�` .Ox/ O�` .Oy/G
�
��1

.Ox/ � ��2
.Oy/� and bcurli Ow .Oy/ WDJ�i

.Oy/ Or? Ow .Oy/ :
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The pullbacks of the finite element functions are

Ov D Lv ı ��1
and Ou D Lu ı ��2

:

To estimate the effect of the perturbation we have to compare b�1;�2
with

Qb�1;�2
.Lu; Lv/ D

Z

L�1�L�2

Ok` .Ox; Oy/
nD

A��1curl2;` Ou .Oy/ ; 1curl1;` Ov .Ox/
E

C
D
1curl2;` Ou .Oy/ ;w1;` .Ox/

E
g1;` .Ox/ Ov .Ox/

o
dsydsx; (8.43b)

where
Ok` .Ox; Oy/ WD G

�
��1;p .Ox/� ��2;p .Oy/

� O�` .Ox/ O�` .Oy/
and the remaining quantities are defined by replacing��i

by ��i ;p (recall the relation
(8.12) between ��i ;p and ��i

/.
We have to estimate corresponding quantities in (8.43) and their differences:

1. Estimate of (the difference of) the kernel function
Lemma 8.2.5 implies that

j�` .x/ �` .y/G .Qx � Qy/� �` .x/ �` .y/G .x � y/j � C ."` C d`/ N�2
`

1

4
 kx � yk
with N�` as in (8.14).
For the kernel function itself, we obtain (cf. Proof of Lemma 8.2.5)

j�` .x/ �` .y/G .x � y/j � C N�2
`

1

4
 kx � yk :

2. Estimate of (the difference of) the first part of the sesquilinear form (8.43)
We obtain

D
A�� bcurl2 Ou .Oy/ ; bcurl1 Ov .Ox/

E
�
D
A�� 1curl2;` Ou .Oy/ ; 1curl1;` Ov .Ox/

E

D
D
A��

�
bcurl2 Ou .Oy/� 1curl2;` Ou .Oy/

	
; bcurl1 Ov .Ox/

E

C
D
A��1curl2;` Ou .Oy/ ; bcurl1 Ov .Ox/� 1curl1;` Ov .Ox/

E
: (8.44)

The definition of J` [cf. (8.38)] implies

���bcurl1 Ov .Ox/� 1curl1;`Ov .Ox/
���D

���
�
J�1

.Ox/ � J�1;p .Ox/
� br? Ov .Ox/

���� J`h�1

���brOv .Ox/
���:

Recall that Ov D Lv ı P ı ��2;p so that the chain rule gives us

brOv .Ox/ D J|
�1;p .Ox/ J|

P .Qx/r� Lv .x/;
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where Qx WD ��1;p .Ox/, x WD P .Qx/ and JP denotes the Jacobi matrix of P .
The surface gradient is defined as the composition r� Lv D �0rZ� Lv, where Z�
denotes the lifting of Lv to �� (cf. Remark 2.6.12).
The Euclidean norm of JP is bounded

��J|
P .Qx/

�� � C;

where C depends only on cP in Assumption 8.1.6. Hence

���brOv .Ox/
��� � C ��J�1;p .Ox/ J|

�1;p .Ox/
��1=2 kr� Lv .x/k :

From elementary linear algebra follows the first equality in

��J�1;p .Ox/ J|
�1;p .Ox/

��1=2 D ��G�1;p .x/
��1=2 (8.40a)� Ch�1

:

Thus we have shown that
���bcurl1 Ov .Ox/� 1curl1;`Ov .Ox/

��� � J`h
2
�1

���br� Lv .x/
��� : (8.45)

Similarly, we obtain

���1curl2;` Ou .Oy/
��� � ��G�2;p .Oy/

��1=2
��� Or Ou .Oy/

��� � Ch2
�2
kr� Lu .y/k : (8.46a)

The estimate ���bcurl2 Ou .Oy/
��� � Ch2

�2
kr� Lu .Oy/k (8.46b)

is derived analogously to (8.46a). From (8.46), one derives

ˇ̌
ˇ
D
A��

1curl2;` Ou .Oy/ ; bcurl1 Ov .Ox/ �1curl1;` Ov .Ox/
Eˇ̌
ˇ � CJ`h2�1h2�2 kr� Lv .x/k kr� Lu .y/k :

The same arguments, applied to the first term on the right-hand side in (8.44),
altogether leads to the estimate

ˇ̌
ˇ
D
A�� bcurl2 Ou .Oy/ ; bcurl1 Ov .Ox/

E
�
D
A��1curl2;` Ou .Oy/ ; 1curl1;` Ov .Ox/

Eˇ̌
ˇ

� CJ`h
2
�1
h2

�2
kr� Lv .x/k kr� Lu .y/k :

For the term
D
A�� bcurl2 Ou .Oy/ ; bcurl1 Ov .Ox/

E
, we apply (8.46) twice to obtain

ˇ̌
ˇ
D
A�� bcurl2 Ou .Oy/ ; bcurl1 Ov .Ox/

Eˇ̌
ˇ � Ch2

�1
h2

�2
kr� Lv .x/k kr� Lu .y/k :
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3. Estimate of (the difference in) the second part of the sesquilinear forms (8.43)
The estimate of the difference

� WD
D
bcurl2 Ou .Oy/ ;w1 .Ox/

E
g1 .Ox/ Ov .Ox/ �

D
1curl2;` Ou .Oy/ ;w1;` .Ox/

E
g1;` .Ox/ Ov .Ox/

requires us to investigate corresponding quantities in both terms and their differ-
ences:

(a) As in (8.45) and (8.46) we get

���bcurl2 Ou .Oy/� 1curl2;` Ou .Oy/
��� � CJ`h

2
�2
kr� Lu .y/k ;

���1curl2;` Ou .Oy/
��� � Ch2

�2
kr� Lu .y/k ;

���bcurl2 Ou .Oy/
��� � Ch2

�2
kr� Lu .y/k :

(b) The definition of the vector w1 [cf. (8.42)], directly implies that

kw1 .Ox/k � C;
��w1;` .Ox/

�� � C; ��w1 .Ox/ �w1;` .Ox/
�� � CnII

` ;

where nII
`

is as in (8.31) and C depends only on the coefficients A and b.
(c) It remains to consider the surface element g1. From (8.40b) we conclude that

jg1 .Ox/j � Ch2
�1
:

Recall the definition of N��
`

as in (8.14). The difference can be estimated by

ˇ̌
g1 .Ox/� g1;` .Ox/

ˇ̌ D j�` .Ox/� 1j jg1 .Ox/j � C N��
` h

2
�1
:

By combining these inequalities we obtain

j�j � C
�
J` C nII

` C N��
`

	
h2

�1
h2

�2
kr� Lu .y/k jLv .x/j :

Since the function
����1

.Ox/� ��2
.Oy/���1

is integrable there exists a constant such
that

Z

O��O�
1

4

����1

.Ox/� ��2
.Oy/��d Oxd Oy � Ch�2

�2
h�2

�1

Z

L�1�L�2

1

4
 kx � ykdsydsx:

In summary, we have estimated

ˇ̌
ˇb�1;�2

.Lu; Lv/ � Qb�1;�2
.Lu; Lv/

ˇ̌
ˇ � C N�2

`

�
"` C d` C J` C nII

` C N��
`

	

�
Z

L�1�L�2

kr� Lu .y/k .kr� Lv .x/k C jLv .x/j/
4
 kx � yk dsydsy:
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Let b .�; �/ WD P
L�1; L�22 LG b�1;�2

.�; �/ and define Qb .�; �/ analogously. A triangle
inequality leads to

ˇ̌
ˇb .Lu; Lv/ � Qb .Lu; Lv/

ˇ̌
ˇ � C N�2

`

�
"` C d` C J` C nII

` C N��
`

	

Z

���

kr� Lu .y/k .kr� Lv .x/k C jLv .x/j/
4
 kx � yk dsydsy:

Our assumption LS` � H 1 .�/ implies that the functions kr� Lu .�/k and kr� Lv .�/kC
jLv .�/j are in L2 .�/. From the continuity of the single layer potential we obtain

ˇ̌
ˇb .Lu; Lv/� Qb .Lu; Lv/

ˇ̌
ˇ � C N�2

`

�
"` C d` C J` C nII

` C N��
`

	
kLukH 1.�/ kLvkH 1.�/ :

(8.47)
The combination of (8.41) and (8.47) yields the estimate of the perturbation e2

je2 .Lu; Lv/j � C
�
d` C "` C nII

` C h�1=2�s

`

�
"` C d` C J` C N��

` C nII
`

		

kLukH 1�s.�/ kLvkH 1=2.�/ (8.48a)

for s D 0; 1=2.
The estimates of the perturbations e1 and e3 are based on theL2-continuity of the

single layer potential. Lemma 8.2.4 and an inverse inequality imply for s D 0; 1=2

that

je1 .Lu; Lv/j � C N��
` kLukH 1.�/ kLvkH 1.�/ � C N��

` h
�1=2�s

`
kLukH 1�s.�/ kLvkH 1=2.�/ :

(8.48b)
In a similar fashion one proves that

je3 .Lu; Lv/j � C N�` N��
` h
�1=2�s

`
kLukH 1�s.�/ kLvkH 1=2.�/ : (8.48c)

The assertion follows from (8.48). �

8.3 Overview of the Orders of the p-Parametric
Surface Approximations

In the previous section, we have analyzed the perturbations which are introduced
by the p-parametric surface approximation. The errors are expressed in terms of
geometric quantities. In Sect. 8.4, we will estimate these geometric perturbations
by using elementary tools of differential geometry. Here, we will summarize these
results and combine them with the perturbation analysis of the previous section to
derive conditions for the orders of the p-parametric surface approximation such that
the optimal convergence rates of the original Galerkin method are preserved.

First, we introduce the appropriate notion of smoothness of the surface � .
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Definition 8.3.1. The mapping P in (8.12) belongs to the class Am
pw if there is a

neighborhoodU� of � such that P W U� ! � is Lipschitz continuous and:

1. �p � U� :

2. P j�p W �p ! � is bi-Lipschitz continuous:

cP kx � yk � kP .x/� P .y/k � c�1
P kx � yk 8x; y 2 �p:

3. For any � 2 Gaffine and Q� D P .�/, the restriction P j� W � ! Q� is a Cm

diffeomorphism for some m � 1.

A mapping P 2 Am
pw belongs to Am if � 2 C 2 and if Condition 2 can be

replaced by
P j�p W �p ! � is a C 1-diffeomorphism.

For the error analysis, we assume that �� is as in (8.12) and that the mapping P
satisfies Assumptions 8.1.3, resp. 8.1.6. If P W U� ! � is m times differentiable
the quantity

C�;m WD max
˛2N3

0j˛j�m

sup
x2U�

k@˛P .x/k (8.49)

is well defined. We distinguish between the following two cases

P belongs to Am
pw form � k C 2; (8.50a)

P belongs to Am form � k C 2 and is chosen as the conormal projection,
(8.50b)

where k denotes the algebraic polynomial degree of the finite element space (cf.
Definition 8.1.12).

In Sect. 8.4, we will prove that, for the p-parametric surface approximation of
degree p, the quantities d`, Qd`; : : : can be estimated from above by Chq

`
, where the

corresponding values of q are listed in Table 8.1. Hence the perturbations in the
sesquilinear forms can be estimated by using Corollaries 8.2.6, 8.2.9, 8.2.10 and
Lemma 8.2.11.

Exemplarily, we discuss the integral equation for the single layer potential [cf.
(4.9)]

Find ' 2 H�1=2.�/ W .V'; 
/L2.�/ D .gD ; 
/L2.�/ 8
 2 H�1=2.�/:

(8.51)
We assume that the coefficients A, b, c are such that Assumption 8.2.1 is satis-
fied. We consider the discretization of (8.51) by .k; p/-boundary elements. Corol-
lary 8.2.6 implies that

ˇ̌
ˇb .Lu; Lv/ � Lb` .Lu; Lv/

ˇ̌
ˇ � Ch�1=2�s

`

n
."` C d`/ N�2

` C N��
`

o
kLukH �s.�/ kLvkH �1=2.�/
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Table 8.1 Convergence orders of geometric quantities which are related to the surface approxi-
mation

Case (8.50a) Case (8.50b)

b D 0 b ¤ 0 b D 0 b¤ 0

d` (8.20a) p
Lem. 8.4.12
Cor. 8.4.13

p
Lem. 8.4.12
Cor. 8.4.13

pC 1 Lem. 8.4.12
Cor. 8.4.13

pC 1 Lem. 8.4.12
Cor. 8.4.13

Qd` (8.20b) p Lem. 8.4.11 p Lem. 8.4.11 p Lem. 8.4.11 p Lem. 8.4.11
"` (8.20b) p p pC 1 p

N�` (8.14) 0 Lem. 8.4.4 0 Lem. 8.4.4 0 Lem. 8.4.4 0 Lem. 8.4.4
N��` (8.14) p Cor. 8.4.7 p Cor. 8.4.7 pC 1 Lem. 8.4.10 pC 1 Lem. 8.4.10
nII
` (8.31) p (8.95b) p (8.95b) p (8.95b) p (8.95b)
nI
1;` (8.31) p Lem. 8.4.14 p Lem. 8.4.14 p Lem. 8.4.14 p Lem. 8.4.14
nI
2;` (8.31) p � 1 Lem. 8.4.14 p � 1 Lem. 8.4.14 p � 1 Lem. 8.4.14 p � 1 Lem. 8.4.14
J` (8.38) p (8.71) p (8.71) p (8.71) p (8.71)

for s 2 f0; 1=2g and all Lu; Lv 2 LS`. For the piecewise smooth case, i.e., Case (8.50a),
we obtain from Table 8.1

ˇ̌
ˇb .Lu; Lv/� Lb` .Lu; Lv/

ˇ̌
ˇ � Chp�1=2�s

`
kLukH �s.�/ kLvkH �1=2.�/ :

Hence the sequences in (8.16) are given by c` D h
p�1

`
, ıI

`
D h

p�1=2

`
, and the

uniform stability follows for sufficiently large ` � `0 from

ˇ̌
ˇ Lb` .Lu; Lv/

ˇ̌
ˇ � jb .Lu; Lv/j C

ˇ̌
ˇb .Lu; Lv/ � Lb` .Lu; Lv/

ˇ̌
ˇ � C

�
1C hp�1

`

	
kLukH�1=2.�/ kLvkH�1=2.�/

by taking into account Assumption 8.2.1. If the boundary element space consists
of piecewise polynomials of degree k on a piecewise smooth surface, the optimal
choice of p is given by

p D k C 2:
All other cases can be treated in an analogous way. Table 8.2 lists the values of

c` and ıI
`
, where s D 1=2 corresponds to c` and s D 0 to ıI

`
. Finally, Table 8.3 lists

the orders of the p-parametric surface approximation so that the convergence order
is as in the unperturbed case (up to, possibly, a logarithmic factor .1C log jhj/.

To preserve the convergence rates of the perturbed Galerkin method with respect
to weaker norms or, e.g., field point evaluations, the order of the p-parametric sur-
face approximation has to chosen higher as for the energy norm. The error due to the
geometric perturbation has to be in balance with the convergence order of the unper-
turbed Galerkin method. For field point evaluations, the convergence rates are twice
as high as the rates with respect to the energy norm provided the problem is suffi-
ciently regular (cf. Sect. 4.2.5.1), ju .x/� u` .x/j � Ch2kC2�2	 for any x 2 �. The
constant C is independent of the mesh width but, possibly, depends on x. Table 8.4
lists the required orders of the p-parametric approximation to preserve these higher
convergence rates.
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Table 8.2 Values of c` and ıI` in the Strang Lemma (cf. Remark 8.2.3) where s D 1=2 corresponds
to c` and s D 0 to ıI`
Operator Case (8.50a) Case (8.50b)

b D 0 b ¤ 0 b D 0 b¤ 0

V Chp�1=2�s

` Chp�1=2�s

` ChpC1=2�s

` Chp�1=2�s

`

K Ch
p

`
.1C jlogh`j/ Ch

p

`
.1C jlogh`j/ Ch

p

`
.1C jlogh`j/ Ch

p

`
.1C jlogh`j/

K 0 Chp` .1C jlogh`j/ Chp` .1C jlogh`j/ Chp` .1C jlogh`j/ Chp` .1C jlogh`j/
W Ch

p�1=2�s

` Ch
p�1=2�s

` Ch
p

` Ch
p

`

Table 8.3 Required orders p of the p-parametric surface approximation so that the overall
convergence rates are preserved (up to, possibly, a logarithmic factor .1C log jhj/)
Operator Case (8.50a) Case (8.50b)

b D 0 b ¤ 0 b D 0 b ¤ 0

V p D k C 2 p D kC 2 p D k C 1 p D k C 2
K p D k C 1 p D kC 1 p D k C 1 p D k C 1
K 0 p D k C 1 p D kC 1 p D k C 1 p D k C 1
W p D k C 1 p D kC 1 p D k C 1 p D k C 1

Table 8.4 Required orders p of the p-parametric surface approximation so that the overall
convergence rates with respect to field point evaluations are preserved

Operator Case (8.50a) Case (8.50b)

bD 0 b ¤ 0 b D 0 b ¤ 0

V p D 2k C 4 p D 2k C 4 p D 2k C 3 p D 2k C 4
K p D 2k C 2 p D 2k C 2 p D 2k C 2 p D 2k C 2
K 0 p D 2k C 2 p D 2k C 2 p D 2k C 2 p D 2k C 2
W p D 2k C 2 p D 2k C 2 p D 2k C 1 p D 2k C 1

8.4 Elementary Differential Geometry

The convergence analysis of boundary element methods with p-parametric surface
approximation requires some estimates for d`, Qd`, "` in (8.20) which, in turn, require
the approximation of the normal vector, the surface element, and the kernel function.
In this section, we will develop these results from basic calculus. We avoid the use
of the intrinsic calculus of differential geometry but employ the parametrizations
which are also used for the numerical realization of boundary element methods.

Some of the results in this section go back to [167]. Further papers on this topic
are [168], [80, Chap. XIII, Sect. 2], [84], [21], [63, Sect. 1.4].

Recall that LG denotes the boundary element mesh on the original surface � and
Gaffine is the corresponding affine surface mesh. The p-parametric surface mesh
is Gp . For � 2 Gaffine, the lifted panel in Gp is denoted by Q� D lift�;p .�/ (cf.
Notation 8.1.7) and the corresponding panel in LG by L� D P . Q�/ D �� . O�/, where

�� D P ı ��;p W O� ! L� . (8.52)
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For the convergence analysis, we consider a sequence of meshes Gaffine
`

, Gp

`
; : : : (cf.

Sect. 4 and Notation 8.1.15), while we skip the index ` here for ease of notation.
Throughout this section we assume that Assumption 8.1.16 is satisfied.

Let � 2 Gaffine and L� D lift� .�/ 2 LG. Recall that ��;p D bIp
�
P ı �affine

�

�
, while

the pullback of L� is given by �� D P ı ��;p .We will apply the interpolation error
estimates as derived in Sect. 4.3.

Lemma 8.4.1. Let P in (8.52) belong to the class ApC1
pw (cf. Definition 8.3.1) for

some p � 1. Then, for 1 � i � 3 and ˛ 2 N2
0 with j˛j � p, we have

���P ı ��;p � ��;p

�
i

��
C 0. O�/ � C0C�;pC1h

pC1
� ; (8.53a)

��@˛
�
P ı ��;p � ��;p

�
i

��
C 0. O�/ � C1C�;pC1h

pC1
� ; (8.53b)

where C0, C1 depend only on p and C�;pC1 is as in (8.49).

Proof. We have ��;p D bIp
�
P ı �affine

�

�
. For any nodal point bP .p/

.i;j /, we have

��;p

�
bP .p/

.i;j /

	
2 � and thus ��;p DbIp

�
P ı ��;p

�
. This leads to

�
P ı ��;p � ��;p

�
i
.Ox/ D

�
P ı ��;p �bIp

�
P ı ��;p

�	

i
.Ox/

and we may apply standard interpolation estimates to bound the right-hand side and
its derivatives.

Fix 1 � i � 3 and write L
p WD
�
P ı ��;p

�
i

resp. 
p WD
�
��;p

�
i
. Note that

bIp L
p D 
p . Let Tp

� L
p

�
denote the p-th order Taylor expansion of L
p about the

barycenter bM of O� . Then

L
p � 
p D
� L
p � Tp

� L
p
��C

�
Tp
� L
p

� �bI p L
p
	
D � L
p � Tp

� L
p
��CbI p �Tp

� L
p
� � L
p

�
:

This leads to

�� L
p � 
p

��
C 0. O�/ �

�
1C

���bIp
���

C 0. O�/ C 0. O�/

���Tp

� L
p

� � L
p

��
C 0. O�/ : (8.54)

Standard error estimates for two-dimensional Taylor expansions lead to

��Tp

� L
p

� � L
p

��
C 0. O�/ �

1

.p C 1/Š max
0�j�pC1

���@j
1@

pC1�j
2 L
p

���
C 0. O�/

:

In Lemma 8.4.2, we will prove that

max
0�j�pC1

���@j
1@

pC1�j
2 L
p

���
C 0.O�/

� ChpC1
� ;

where C depends only on p and C�;pC1.



500 8 p-Parametric Surface Approximation

It remains to estimate the first factor in (8.54). For any w 2 C 0
�
O�
	

, let

wp WD bIp .w/. The coefficient vector of wp with respect to the nodal basis is
denoted by wp . We argue as in the proof of Corollary 4.4.6 to obtain

��wp

��
C 0. O�/

Theorem 2.5.4� C
��wp

��
H pC1.O�/

Lemma 4.3.1� C 0
�
wp

�
pC1

(4.262)D C 0
��wp

��
`1 � C 00

��wp

��
`1
� C 00 kwk

C 0. O�/ ; (8.55)

where C 00 depends only on p.
For the estimate of the derivatives (8.53b), we employ

@˛
� L
p � 
p

� D
n
@˛
� L
p � Tp

� L
p

��C @˛
�
Tp

� L
p

� �bIp L
p

	o

D �@˛ L
p � @˛Tp

� L
p

��C @˛bIp
�
Tp

� L
p

� � L
p

�
:

The inverse inequality (cf. Theorem 4.4.2), applied to the reference element O� ,
results in

��@j wp

��
C 0. O�/ � eC inv

��wp

��
C 0. O�/

(8.55)� eC invC
00 kwk

C 0. O�/ (8.56)

and a recursive application of the first estimate in (8.56) yields

��@˛wp

��
C 0. O�/ � eC

j˛j
invC

00 kwk
C 0. O�/ :

The Taylor expansion commutes with the derivatives, more precisely, @˛Tp

� L
p

� D
Tp�j˛j

�
@˛ L
p

�
, where formally, we set Tk .f / D 0 if k < 0. Thus we obtain

ˇ̌
@˛
� L
p � 
p

�
.Ox/ˇ̌ � ˇ̌�@˛ L
p � Tp�j˛j

�
@˛ L
p

��
.Ox/ˇ̌C �eC invC

00
�j˛j C�;pC1

.p C 1/Š .3h� /
pC1

� C1C�;pC1h
pC1
� ;

where C1 depends only on p. �

Lemma 8.4.2. Let p � 1 and let P in (8.52) belong to the class Ak
pw for some k.

For any � 2 N2
0 with j�j D k,2

��@	��;p

��
C 0. O�/ � Cstabh

k
� ; (8.57a)

2 Note that, for k > p and j�j D k, the derivatives @���;p vanish and the right-hand side in
(8.57a) may even be replaced by 0.
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where Cstab depends only on p, k, and C�;k . The derivatives of the pullback �� D
P ı ��;p satisfy

k@	��kC 0. O�/ � eC stabh
k
� ; (8.57b)

where eC stab depends only on p, k, and C�;k .

Proof. First, we will prove (8.57b) for the case p D 1, i.e., ��;p D �affine
� . The

mapping �affine
� has the form

�affine
� .Ox/ D B� OxC b�

with some B� 2 R3�2 and b� 2 R3. The columns of B� are denoted by a1; a2 2 R3.
As in the proof of Lemma 4.3.6, we derive

@	
�
Pi ı �affine

�

� D
X

ˇ2N3
0jˇ jD	1

X


2N3
0j
jD	2

�Š

ˇŠ�Š
aˇ

1 a

2

�
@ˇC
Pi

	
ı �affine

� :

Next, we employ
ˇ̌
.B� /i;j

ˇ̌ � h� and obtain

sup
Ox2O�

ˇ̌
@	
�
Pi ı �affine

�

�
.Ox/ˇ̌ � C�;k .3h� /

k ; (8.58)

where C�;k is as in (8.49).
Next, we will prove (8.57a) for general p 2 N . The result is trivial for k > p

and we restrict to the case 0 � k � p. We use the same notation as in the previous
proof. (Recall that L
1 D Pi ı �affine

� and 
p DbIp L
1.) We obtain

@	
p D @	
�
bIp L
1

	
D @	

�
I �bIp

	
.Tk�1 L
1 � L
1/C @	 L
1; (8.59)

where I is the identity and, formally, we put T�1 L
1 D 0. Observe that @	

Tk�1 L
1 D 0. By taking norms on both sides in (8.59) and by using (8.58), we
obtain

��@	
p

��
C 0. O�/ � k@	 L
1kC 0. O�/ C �	 kTk�1 L
1 � L
1kC 0. O�/ C C�;k .3h� /

k

� �	 kTk�1 L
1 � L
1kC 0. O�/ C 2C�;k .3h� /
k

where [cf. (8.56)]

�	 WD sup
w2C 0. O�/nf0g

���@	bIpw
���

C 0. O�/
kwk

C 0. O�/
� �eC invC

00�k .
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For the estimate of the error in the Taylor expansion, we employ (8.58) and get

kTk�1 L
1 � L
1kC 0. O�/ �
C�;k

kŠ
.3h� /

k : (8.60)

The combination of these estimates proves assertion (8.57a).
Next, we will estimate the derivatives of the pullback �� D P ı��;p of a surface

panel L� D lift� .�/ 2 LG for general p � 1 and employ Lemma 4.3.11 (with the
substitutions u Pi and 
 ��;p). We obtain

�
@	 L
p

� D
j	jX

jˇ jD1

cˇ

�
@ˇPi

	
ı ��;p

where the coefficients cˇ are real linear combinations of the terms

jˇ jY

rD1

@�r
�
��;p

�
nr
;

where, for 1 � r � jˇj, the indices obey the relations 1 � nr � 3, 	r 2 N3
0 , andPjˇ j

rD1 j	r j D j�j. By using (8.57a) we get

ˇ̌
ˇ̌
ˇ̌
jˇ jY

rD1

@�r
�
��;p

�
nr
.Ox/
ˇ̌
ˇ̌
ˇ̌ �

jˇ jY

rD1

�
Cstabh

j�r j
�

	
� .Cstabh� /

j	j :

Thus the coefficients cˇ satisfy the same estimate (with a different constant C ) and
we obtain ˇ̌�

@	 L
p

�
.Ox/ˇ̌ D Chj	j� ;

where C depends only on k, p, and C�;k .
�

Corollary 8.4.3. The Gram matrices for �� and ��;p satisfy

8Ox 2 O� kG� .Ox/k � CC 2
�;1h

2
� and

��G�;p .Ox/
�� � CC 2

�;1h
2
� : (8.61)

Proof. Let Ot1 .Ox/, Ot2 .Ox/ denote the column vectors of J� .Ox/. The Gram matrix can

be written in the form G� .Ox/ D
�˝Oti .Ox/ ; Otj .Ox/

˛
i;jD1;2

	
. Lemma 8.4.2 implies that

ˇ̌˝Oti .Ox/ ; Otj .Ox/
˛ˇ̌ � Ch2

� :
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Hence the matrix norm

kG� .Ox/k WD max
1�i;j�2

ˇ̌
.G� .Ox//i;j

ˇ̌

is bounded by Ch2
� . Since G� .Ox/ is a 2 � 2 matrix and norms in finite-dimensional

spaces are equivalent the first assertion follows.
The proof of the estimate for G�;p is analogous. �

For ��;p and �� D P ı ��;p, the surface elements g� and g�;p can be written in
the form

g� .Ox/ D k@1�� .Ox/ � @2�� .Ox/k and g�;p .Ox/ D
��@1��;p .Ox/ � @2��;p .Ox/

�� :

Lemma 8.4.4. Let P in (8.52) belong to the class ApC1
pw for some p � 1. Then, for

all Ox 2 O� ,
ˇ̌
g�;p .Ox/� g� .Ox/

ˇ̌ � C2h
pC2
� and

ˇ̌
g�;p .Ox/

ˇ̌ � C3h
2
� : (8.62a)

For sufficiently small h� � h, we have the lower estimates

c3h
2
� �

ˇ̌
g�;p .Ox/

ˇ̌
and Qc3h

2
� � jg� .Ox/j : (8.62b)

The constants C2; c3; Qc3,C3 depend only on Cstab,C�;pC1, and p while h may in
addition depend on the shape-regularity of the mesh [cf. (4.17)].

Proof. The reverse triangle inequality leads to
ˇ̌
g�;p .Ox/ � g� .Ox/

ˇ̌ � ��@1�� .Ox/ � @2�� .Ox/� @1��;p .Ox/ � @2��;p .Ox/
�� (8.63)

� ��@1

�
�� .Ox/ � ��;p .Ox/

� � @2�� .Ox/
��

C ��@1��;p .Ox/ � @2

�
�� .Ox/ � ��;p .Ox/

���
DW S1 C S2:

We start with the estimate of S2 and employ (8.53) to obtain

S2 �
��@1��;p .Ox/

�� ��@2

�
�� .Ox/ � ��;p .Ox/

��� � C1C�;pC1h
pC1
�

��@1��;p

�� :

The quantity @1��;p can be estimated by means of Lemma 8.4.2
��@1��;p

�� � Cstabh� : (8.64)

The combination of these estimates leads to

S2 � ChpC2
� ; (8.65)

where C depend only on Cstab, C�;pC1 and p. The estimate of S1 is just a repetition
of the previous arguments and is skipped here.
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The estimate of g�;p from above follows from (8.64)

ˇ̌
g�;p .Ox/

ˇ̌ � ��@1��;p .Ox/
�� ��@2��;p .Ox/

�� � C 2
stabh

2
� :

For the estimate from below, we start with

ˇ̌
g�;p .Ox/

ˇ̌ � ˇ̌gaffine
� .Ox/ˇ̌� ˇ̌�gaffine

� � g�;p

�
.Ox/ˇ̌

� ˇ̌gaffine
� .Ox/ˇ̌� ˇ̌�gaffine

� � g�

�
.Ox/ˇ̌� ˇ̌�g� � g�;p

�
.Ox/ˇ̌

� 2 ˇ̌� affine
ˇ̌� C2

�
h3

� C hpC2
�

�
:

The shape-regularity of Gaffine implies that

ˇ̌
� affine

ˇ̌ � ch2
� ;

where c depends only on the shape-regularity of the mesh [cf. (4.17)]. Thus, for
sufficiently small h� � h, the first estimate in (8.62b) is proved.

The second one simply follows by combining the first estimates in (8.62a) and
(8.62b)

jg� .Ox/j �
ˇ̌
g�;p .Ox/

ˇ̌� ˇ̌g� .Ox/� g�;p .Ox/
ˇ̌ � c3h

2
� � C2h

pC2
� � Qc3h

2
�

for sufficiently small h� . �
Next, we will transport estimates (8.53) to the surface. For this we have to intro-

duce some notation. Recall that, for � 2 Gaffine, the Jacobi matrices of ��;p resp.
�� D P ı ��;p are denoted by J�;p resp. J� and the corresponding Gram matrices
by G�;p resp. G� [cf. (8.13)].

Notation 8.4.5. Let � 2 Gaffine and L� D lift� .�/ 2 LG. For x 2 L� , let Tx be the
tangential plane to � at x which is spanned by3 Oti .Ox/ D @i�� .Ox/, i D 1; 2. For a
tangential vector � 2 Tx, the Gâteaux derivative of some sufficiently smooth function

 W L� ! R3 is defined by

D
 .x/ � WD .D O
/ .Ox/G�1
� .Ox/ J|

� .Ox/ �; (8.66)

where O
 D 
 ı �� .

Corollary 8.4.6. Let P in (8.52) belong to the class ApC1
pw for some p � 1. For

� 2 Gaffine, let L� D lift� .�/ 2 LG. If h� is sufficiently small h� � h0 then, for any
x 2 L� and � 2 Tx,

k�� .x/� xk � eC 0h
pC1
� ; (8.67a)

kD�� .x/ � � �k � C4h
p
� k�k ; (8.67b)

3 Convention: If x 2 L� 2 LG and Ox 2 O� appear in the same context, they are related by x D �� .Ox/.
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where �� is as in Remark 8.1.11. The constant eC 0 depends only on Cstab, C�;pC1,
and p, while C4 and h0 > 0 may in addition depend on the shape-regularity of the
mesh [cf. (4.17)].

Proof. For � 2 Gaffine, let L� D lift� .�/ 2 LG. The first estimate follows from
(8.53a) by

sup
x2L�
k�� .x/� xk D sup

Ox2O�

����;p .Ox/ � �� .Ox/
�� � p3C0C�;pC1h

pC1
� :

We turn to the second estimate. Let I W R3 ! R3 denote the identity. Then (8.66)
simplifies to4

.DI/ .x/ � D �J� .Ox/G�1
� .Ox/ J|

� .Ox/
�
� D � 8� 2 Tx and x D �� .Ox/ :

(8.68)

Note that �� D ��;p ı ��1
� so that O�� D ��;p and

�
D O��

	
.Ox/D J�;p .Ox/. Thus and

in view of (8.66) we derive

kD�� .x/ � � �k D
���J� � J�;p

�
.Ox/G�1

� .Ox/ J|
� �
�� : (8.69)

For a matrix-valued function A W O� ! Rm�n, A .Ox/ D �
ai;j .Ox/

�
1�i�m
1�j�n

, we define

the norm
kAk O� WD sup

Ox2b
max

1�i�m
1�j�n

ˇ̌
ai;j .Ox/

ˇ̌
. (8.70)

Since all norms are equivalent in finite-dimensional spaces (the matrix dimensions
occurring in (8.69) are 3 � 2, 2 � 2, and 2 � 3), there is a constant C > 0 such that

kD�� .x/ � � �k � C
���J� � J�;p

���O�
��G�1

�

�� O�
��J|

�

�� O� k�k
(8.53b)� CC1C�;pC1h

pC1
�

��G�1
�

�� O�
��J|

�

�� O� k�k : (8.71)

The chain rule implies that

J� .Ox/ D
�
JP ı ��;p .Ox/

�
J�;p;

where JP is the 3 � 3 Jacobi matrix of P . By using Lemma 8.4.2 we obtain

��J|
�

�� O� � CC�;1h� : (8.72)

It remains to estimate the inverse of the Gram matrix. We have

G�1
� D

1

g2
�

" ��Ot2

��2 � ˝Ot1; Ot2

˛

� ˝Ot1; Ot2

˛ ��Ot1

��2

#
:

4 This can easily be seen by writing � D J� Oz and inserting this into (8.68).
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Lemma 8.4.4 implies that
g� .Ox/ � Qc3h

2
�

for sufficiently small h� . The estimate [cf. (8.72)]

˝Oti .Ox/ ; Otj .Ox/
˛ � CC 2

�;1h
2
� (8.73)

leads to ��G�1
�

�� O� � Ch�2
� : (8.74)

The combination of (8.71), (8.72), and (8.74) leads to the assertion. �
The following statement is a Corollary of Lemma 8.4.4 and applies for any suffi-

ciently smooth projection P W �` ! � . In the case that P is the orthogonal surface
projection, estimate (8.75) can be improved by one order (cf. Lemma 8.4.10).

Corollary 8.4.7. Let the Assumptions of Lemma 8.4.4 be satisfied. For sufficiently
small h� � h, we have

ˇ̌
ˇ̌
ˇ

�
g�;p ı ��1

�

�
.x/

g� ı ��1
� .x/

� 1
ˇ̌
ˇ̌
ˇ �

C2

Qc3

hp
� ; (8.75)

where h, C2, Qc3 are as in Lemma 8.4.4.

Proof. By using Lemma 8.4.4 we obtain

ˇ̌
ˇ̌
ˇ

�
g�;p ı ��1

�

�
.x/

g� ı ��1
� .x/

� 1
ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ

�
g�;p ı ��1

�

�
.x/ � g� ı ��1

� .x/

g� ı ��1
� .x/

ˇ̌
ˇ̌
ˇ � sup

Ox2O�

ˇ̌
ˇ̌g�;p .Ox/ � g� .Ox/

g� .Ox/
ˇ̌
ˇ̌

� C2

Qc3 h
p
�

�
We will derive an estimate for the error in the approximation of tangential vectors

and surface elements under the assumption that P is the orthogonal resp. conormal
surface projection (cf. Example 8.1.8). We start by writing the ratio in (8.75) in
an alternative way. Note that the Gram matrix G� .Ox/ D J|

� .Ox/ J� .Ox/ 2 R2�2 is
symmetric and positive definite so that there exists a positive definite square root
G1=2

� .Ox/ 2 R2�2 such that G� .Ox/ D G1=2
� .Ox/G1=2

� .Ox/. The inverse of G1=2
� .Ox/ is

denoted by G�1=2
� .Ox/.

Lemma 8.4.8. For any x 2 � 2 G, the ratio of the original surface element and its
p-parametric approximation satisfies

�
g�;p ı ��1

�

�
.x/

g� ı ��1
� .x/

D
r

det
�

G�1=2
� .Ox/G�;p .Ox/G�1=2

� .Ox/
	

,

where Ox WD ��1
� .x/.
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Proof. The assertion follows from Exercise 8.4.9 and the multiplication theorem for
determinants of matrix products. �

Exercise 8.4.9. For a1; a2 2 R3 and A D Œa1; a2� 2 R3�2,

det .A|A/ D ka1 � a2k2 :

Let � 2 Gaffine. For any x 2 L� D lift� .�/ 2 LG and � 2 Tx, we introduce the
deformed tangential vector by Q� WD D�� .x/ �.

Lemma 8.4.10. Let P in (8.52) belong to the class ApC1 for some p � 1 and
be chosen as the orthogonal surface projection (cf. Example 8.1.8). Let L� D
lift� .�/ 2 LG for some � 2 Gaffine and assume that h� � h0 with h0 as in
Corollary 8.4.6. Then, for all x 2 � ,

ˇ̌
ˇ
D Q�1; Q�2

E
� h�1; �2i

ˇ̌
ˇ � C5h

pC1
� k�1k k�2k 8�1; �2 2 Tx; (8.76a)

ˇ̌
ˇ̌
ˇ

�
g�;p ı ��1

�

�
.x/

g� ı ��1
� .x/

� 1
ˇ̌
ˇ̌
ˇ � C6h

pC1
� ; (8.76b)

where C5, C6 depend on eC 0, C4 as in Corollary 8.4.6.

Proof. For � 2 Gaffine, let x 2 L� D lift� .�/ 2 LG. The difference in (8.76a) is split
into
D Q�1; Q�2

E
� h�1; �2i D

D
�1; Q�2 � �2

E
C
D Q�1 � �1; �2

E
C
D Q�1 � �1; Q�2 � �2

E
: (8.77)

The estimate for the last term follows from Corollary 8.4.6

��� Q�i � �i

��� D kD�� .x/ �i � �ik � C4h
p
�

since 2p � p C 1.
Next, we consider the first term on the right-hand side of (8.77). The vector

�� .x/ � x D ��;p .Ox/ � �� .Ox/ is collinear to the normal vector n .x/. Since, for
any Oy 2 R2, the vector J� .Ox/ Oy 2 Tx, we have

˝
��;p .Ox/� �� .Ox/ ; J� .Ox/ Oy

˛ D 0:

Applying the Gâteaux derivative in the direction of some Oz 2 R2 results in

˝�
J�;p .Ox/� J� .Ox/

� Oz; J� .Ox/ Oy
˛C ˝��;p .Ox/� �� .Ox/ ;DJ� .Ox/ .Oz/ .Oy/

˛ D 0; (8.78)

where we employed the notation

DJ� .Ox/ .Oz/ .Oy/ WD
2X

kD1

2X

jD1

Ozk Oyj @k@j�� .Ox/ 2 R3:
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Any �1 2 Tx can be written in the form �1 D J� .Ox/ Oy for some Oy 2 R2. Hence
(8.78) is equivalent to

˝�
J�;p .Ox/� J� .Ox/

� Oz; �1

˛C ˝��;p .Ox/ � �� .Ox/ ;DJ� .Ox/ .Oz/ .Oy/
˛ D 0: (8.79)

By substituting � by J� .Ox/ Oz and 
 by �� in (8.66), we derive

J�;p .Ox/ Oz DD�� .x/ .J� .Ox/ Oz/ :

Let �2 D J� .Ox/ Oz. Then (8.79) can be written equivalently as

D Q�2 � �2; �1

E
D �h�� .x/� x;DJ� .Ox/ .Oz/ .Oy/i :

The chain rule yields (with Qx D ��;p .Ox/)

@k@j .�� .Ox//i D
3X

m;nD1

.@m@nPi / .Qx/
�
@j

�
��;p .Ox/

�
m

� �
@k

�
��;p .Ox/

�
n

�

C
3X

mD1

.@mPi / .Qx/ @k@j

�
��;p .Ox/

�
m
:

Lemma 8.4.2 implies that

��@k@j��;p .Ox/
�� � Ch2

� ;

where C depends on Cstab and C�;2. Since the dimension of the tensor DJ� .x/ is
finite and equals 3 � 2 � 2, the equivalence of norms in finite-dimensional spaces
implies that there is a constant C > 0 such that

ˇ̌
ˇ
D Q�2 � �2; �1

Eˇ̌
ˇ � Ch2

� k�� .x/� xk kOzk kOyk (8.67a)� eChpC3
� kOzk kOyk :

Finally, we employ

k�1k D kJ� .Ox/ Oyk D hG� .Ox/ Oy; Oyi1=2 � C 1

kG�1
� k1=2

O�
kOyk (8.74)� Ch� kOyk :

The combination with the analogous estimate for �2 D J� .Ox/ Oz leads to

ˇ̌
ˇ
D Q�2 � �2; �1

Eˇ̌
ˇ � bChpC1

� k�1k k�2k :

Repeating all arguments for the second term on the right-hand side in (8.77)
completes the proof of (8.76a).



8.4 Elementary Differential Geometry 509

It remains to prove (8.76b). In view of Lemma 8.4.8, we consider

G�1=2
� .Ox/G�;p .Ox/G�1=2

� .Ox/ D IC E .x/ ;

where I is the 2 � 2 identity matrix and E .x/ WD G�1=2
� .Ox/G�;p .Ox/G�1=2

� .Ox/ � I.
From the continuity of the determinant we conclude that

det .IC E/ D 1CO .kEk/ ; (8.80)

where k�k denotes the spectral norm of E. Since E is symmetric we have

kEk D sup
v2R2nf0g

jhv;Evij
kvk2 D sup

w2R2nf0g

ˇ̌˝
w;G�;p .Ox/w

˛ � hw;G� .Ox/wiˇ̌

hw;G� .Ox/wi

� sup
�2TxQ�DD�� .x/�

ˇ̌
ˇ̌
��� Q�
���

2 � k�k2

ˇ̌
ˇ̌

k�k2
� ChpC1

� :

Thus (8.76b) is proved. �
Next, we will investigate the difference of the distance kx � yk between two

points on the original surface � and the distance kQx � Qyk between the corresponding
points on the approximate surface. Recall the definition of g� which measures the
ratio between the geodetic distance and the Euclidean distance of surface points [cf.
(4.80)].

Lemma 8.4.11. Let P in (8.52) belong to the class ApC1
pw for some p � 1. Let the

mesh width h be sufficiently small h � h0 with h0 as in Corollary 8.4.6. For any
x; y 2 � , we have

k� .x/� � .y/� .x � y/k � C7h
p kx � yk :

The constant C7 depends only on Cstab [cf. (8.57)], C4 as in Corollary 8.4.6, cP as
in Assumption 8.1.16, g� [cf. (4.80)] and the shape-regularity of the mesh.

Proof. First, we consider two points x; y 2 L� D lift� .�/ 2 LG for some � 2 Gaffine.
Let Ox D ��1

� .x/, Oy D ��1
� .y/. For t 2 Œ0; 1� we write Oz .t/ WD Oy C t .Ox � Oy/ and

z .t/ WD �� .Oz .t//. Then

�� .x/� �� .y/� .x � y/ D ��;p .Ox/ � ��;p .Oy/ � .�� .Ox/ � �� .Oy//

D
Z 1

0

d
��
��;p � ��

�
.Oz .t//�

dt
dt D

Z 1

0

�
J�;p � J�

�
.Oz .t// .Ox � Oy/ dt:

Note that � WD J� .Oz .t// .Ox � Oy/ 2 Tz.t/ and, thus, we obtain

�� .x/� �� .y/� .x � y/ D
Z 1

0

.D�� .z .t// � � �/ dt: (8.81)
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Estimate (8.67b) implies that

k�� .x/� �� .y/� .x � y/k � C4h
p
� k�k : (8.82)

The norm of � can be estimated by [cf. (8.73)]

k�k2 D h.Ox � Oy/ ;G� .Oz .t// .Ox� Oy/i � CC 2
�;1h

2
� kOx � Oyk2 : (8.83)

Let x D �� .Ox/ and y D �� .Oy/. By using the bi-Lipschitz continuity of P [cf.
Definition 8.3.1(2)] we get

kx � yk D ��P ���;p .Ox/
�� P ���;p .Oy/

��� � cP

����;p .Ox/ � ��;p .Oy/
�� :

Taylor expansion of ��;p about Oy yields

��;p .Ox/ � ��;p .Oy/ D J�;p .Oy/ .Ox� Oy/CR .Ox; Oy/

where

kR .Ox; Oy/k � kOy � Oxk
2

2
max
j˛jD2

��@˛��;p

��
C 0. O�/

Lemma 8.4.2� Cstab
kOy � Oxk2

2
h2

�

This leads to

kx � yk � cP

 
��J�;p .Oy/ .Ox � Oy/

�� � Cstab
kOy � Oxk2

2
h2

�

!
: (8.84)

For the first term on the right-hand side, we proceed with

��J�;p .Oy/ .Ox � Oy/
��2 D ˝Ox � Oy;G�;p .Oy/ .Ox � Oy/

˛
:

The inverse of the Gram matrix has the form

G�1
�;p D

1

g2
�;p

" ��@2��;p

��2 � ˝@1��;p; @2��;p

˛

� ˝@1��;p ; @2��;p

˛ ��@1��;p

��2

#
:

The combination of (8.62b) and (8.57a) leads to

��G�1
�;p

�� O� � C
Cstab

c2
3h

2
�

and
��J�;p .Oy/ .Ox � Oy/

��

� 1
q��G�1

�;p

�� O�
kOx � Oyk � c3h�p

CCstab
kOx � Oyk :
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Inserting this into (8.84) results in

kx � yk � cP kOx � Oyk
�

c3h�p
CCstab

� Cstab

2
h2

�

�
:

For sufficiently small h� we have proved that

ky � xk � c8h� kOy � Oxk ; (8.85)

where c8 > 0 depends on Cstab, c3 and the shape-regularity of the mesh.
The combination of (8.1) and (8.82)–(8.85) leads to

k�� .x/� �� .y/� .x � y/k � CC4C�;1h
pC1
� kOx � Oyk � C9h

p
� kx � yk (8.86)

with C9 WD
�
CC4C�;1C

affine
�
=c8.

Next, consider some x; y 2 � , x ¤ y, and choose a path s WD fs .t/ W t 2 Œ0; 1�g 2
C 0;1 .Œ0; 1� ; �/ of minimal geodesic length, which connects y and x and satisfies
y D s .0/ and x D s .1/. Let . L�k/

q

kD1
denote a minimal sequence of triangles in LG

such that

s D fs .t/ W t 2 Œ0; 1�g �
q[

kD1

L�k:

Choose a minimal number of points

0 D t0 < t1 < : : : < tm D 1

such that s1 WD fs .t/ W 0 � t � t1g and

82 � j � m sj WD
˚
s .t/ W tj�1 < t � tj

�

define a disjoint partitioning of s which satisfies

81 � j � q 91 � k .j / � q sj � L�k.j /.

Let jsj denote the length of s while the length of sj is called
ˇ̌
sj

ˇ̌
. Then

k� .x/� � .y/� .x � y/k �
mX

jD1

����k.j /

�
zj

� � ��k.j /

�
zj�1

� � �zj � zj�1

���

� C9

mX

jD1

hp
�

��zj � zj�1

�� � C9h
p

mX

jD1

ˇ̌
sj

ˇ̌ � C jsj hp

(4.80/� C9g�h
p kx � yk :

�
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Lemma 8.4.12. Let P in (8.52) belong to the class ApC1
pw for some p � 1. Let

the mesh width h of G be sufficiently small h� � h1, where h1 > 0 depends on
h0 as in Corollary 8.4.6 and C7 as in Lemma 8.4.11. For any ˛ 2 R, there exist
C10; C11 > 0 such that, for any x; y 2 � , we have

ˇ̌k� .x/� � .y/k˛ � kx � yk˛ ˇ̌ � C10h
p kx � yk˛ : (8.87a)

If P 2 ApC1 is chosen as the orthonormal projection (cf. Exercise 8.1.8) the
estimate can be improved by one order of h

ˇ̌k� .x/� � .y/k˛ � kx � yk˛ ˇ̌ � C11h
pC1 kx � yk˛ : (8.87b)

The constants C10 depends only on C7 while C11 depends on eC 0; C7; h1, and the
constant C as in Lemma 2.2.14.

Proof. The function p˛ W R3n f0g ! R, p˛ .x/ WD kxk˛ is infinitely differentiable.
Let further

q .t/ WD xC t .� .x/� x/� .yC t .� .y/� y// :

We obtain

k� .x/ � � .y/k˛ � kx � yk˛ D
Z 1

0

d

dt
p˛ .q .t// dt

D
Z 1

0

˛p˛�2 .q .t// hq .t/ ; � .x/ � x � .� .y/ � y/idt:

The norm of q can be estimated by using Lemma 8.4.11.

kq .t/k D kx � yC t .� .x/� � .y/� .x � y//k � kx � yk � tC7h
p kx � yk

� .1� C7h
p/ kx � yk : (8.88)

Analogously, the estimate kq .t/k � .1C C7h
p/ kx � yk is derived. Hence, for

sufficiently small h � h1, we have

1

2
kx � yk � kq .t/k � 3

2
kx � yk and j˛p˛�2 .q .t//j � C12 kx � yk˛�2 ;

(8.89)
where C12 depends only on ˛ 2 R.

The combination of the left estimate in (8.89) and Lemma 8.4.11 leads to

jhq .t/ ; � .x/� x � .� .y/� y/ij � kq .t/k k� .x/� � .y/� .x � y/k
� 3

2
C7h

p kx � yk2 : (8.90)

Hence (8.87a) follows from (8.89) and (8.90).
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IfP 2 ApC1 is the orthonormal surface projection the estimate can be improved.
We write

hq .t/ ; � .x/� x� .� .y/� y/i D hx � y; � .x/� x � .� .y/� y/i
C t k� .x/� x � .� .y/� y/k2 : (8.91)

The second term on the right-hand side can be estimated by using Lemma 8.4.11

k� .x/� x � .� .y/� y/k2 � C 2
7 h

2p kx � yk2 � C13h
pC1 kx � yk2 ; (8.92)

where C13 depends only on h1 and C7. For the first term in (8.91), we employ
� .z/� z D ˙kz � � .z/kn .z/ for z 2 fx; yg. Thus

jhx � y; � .x/� x � .� .y/� y/ij � k� .x/� xk jhx � y;n .x/ij
C k� .y/� yk jhx � y;n .y/ij :

The combination of Lemma 2.2.14 and (8.67a) leads to

jhx � y; � .x/� x � .� .y/� y/ij � 2CeC 0h
pC1
� kx � yk2 ;

where C is the constant as in Lemma 2.2.14. �
For anisotropic problems, where the principal part of L is given by � div

.A grad u/ with some positive definite A ¤ I, the fundamental solutionG [cf. (3.3)]
contains the anisotropic distance k�kA D h�; �i1=2

A , where

hu; viA WD
˝
A�1u; v

˛
:

In this case, the following corollary of Lemma 8.4.12 will be employed for the error
estimates.

Corollary 8.4.13. Let the assumptions of Lemma 8.4.12 be satisfied. For any ˛ 2 R
and x; y 2 � , we have

ˇ̌k� .x/� � .y/k˛
A � kx � yk˛A

ˇ̌ � eC 10h
p kx � yk˛ : (8.93a)

If P 2 ApC1 is chosen as the conormal projection (cf. Exercise 8.1.8) the estimate
can be improved by one order of h

ˇ̌k� .x/� � .y/k˛A � kx � yk˛A
ˇ̌ � eC 11h

pC1 kx � yk˛ : (8.93b)

The constants eC 10 (resp. eC 11) depend only on cA, CA [cf. (8.19)], and C10 (resp.
C11).

Proof. Instead of the function p˛ as in the proof of Lemma 8.4.12 we employ Qp˛ W
R3n f0g ! R, Qp˛ .x/ WD kxk˛A. By repeating all steps of the previous proof we
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derive

k� .x/ � � .y/k˛A � kx � yk˛A D
Z 1

0

˛ Qp˛�2 .q .t// hq .t/ ; � .x/ � x � .� .y/ � y/iA dt:

The equivalence of norms [cf. (8.19)] implies that

Qp˛�2 .z/ � C14p˛�2 .z/ ;

jhq .t/ ; � .x/� x� .� .y/� y/iAj � C 2
A kq .t/k k� .x/� � .y/� .x � y/k :

where C14 depends only on cA; CA, and ˛. We use (8.88)–(8.90) to obtain

ˇ̌k� .x/� � .y/k˛
A � kx � yk˛A

ˇ̌ � 3C 2
AC7C12C14

2
hp kx � yk˛ :

If P 2 ApC1 is the conormal surface projection the estimate can be improved.
We write

hq .t/ ; � .x/� x� .� .y/� y/iA D hx � y; � .x/� x � .� .y/� y/iA
C t k� .x/� x � .� .y/� y/k2A : (8.94)

The second term on the right-hand side can be estimated by using (8.92)

k� .x/� x � .� .y/� y/k2A � CAC13h
pC1 kx � yk2 :

For the first term in (8.94), we employ � .z/� z D ˙kz � � .z/k v .z/ for z 2 fx; yg
with the conormal vector v .z/ D An .z/. Taking into account the definition of the
h�; �iA we derive

jhx � y; � .x/� x � .� .y/� y/iAj D j.˙/ kx � � .x/k hx � y;n .x/i
� .˙/ ky � � .y/k hx � y;n .y/ij
� k� .x/� xk jhx � y;n .x/ij
C k� .y/� yk jhx � y;n .y/ij
� 2CeC 0h

pC1
� kx � yk2 :

�
In order to analyze the perturbations for the kernel of the double layer potential

and its adjoint, we will use the following lemma.

Lemma 8.4.14. Let the assumptions of Lemma 8.4.12 be satisfied. Then

8x; y 2 L� D lift� .�/ 2 LG W jhn .x/ ; y � xi � hn` .Qx/ ; Qy � Qxij � C14hp�1
� ky � xk2 :
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For any pair of non-identical panels �1, �2 2 Gaffine and x 2 L�1 D lift�1
.�1/,

y 2 L�2 D lift .�2/ we have

jhn .x/ ; y � xi � hn` .Qx/ ; Qy � Qxij � C15h
p
� ky � xk :

where C14 and C15 depend on c8, Cstab, eC stab, C�;pC1, C2, c3, p, and the shape-
regularity of the mesh.

Proof. First, we will consider the case x; y 2 L� D lift� .�/ 2 LG for some � 2 Gaffine.
Let Qx D � .x/ and Qy D � .y/. Taylor expansion on the reference triangle about Ox
leads to (cf. (5.3) and Definition 5.1.2)

hn .x/ ; y � xi � hn` .Qx/ ; Qy � Qxi D hn .x/ ; �� .Oy/ � �� .Ox/i �
˝
n` .Qx/ ; ��;p .Oy/ � ��;p .Ox/

˛

D
*

n .x/ ;
pX

kD1

D
Oy � Ox;br

Ek
�� .Ox/

kŠ
CR1 .Ox; Oy/

+

�
*

n` .Qx/ ;
pX

kD1

D
Oy � Ox;br

Ek
��;p .Ox/

kŠ
CR2 .Ox; Oy/

+
:

Because
D
Oy � Ox; Or

E
�� .Ox/ D J� .Ox/ .Oy � Ox/ 2 Tx, the term k D 1 in the first sum

vanishes and the same holds for the second sum and the summand with index k D 1.
Thus

hn .x/ ; y � xi � hn` .Qx/ ; Qy � Qxi D
*

n .x/� n` .Qx/ ;
pX

kD2

D
Oy � Ox;br

Ek
�� .Ox/

kŠ

+

C hn .x/ ; R1 .Ox; Oy/i � hn` .Qx/ ; R2 .Ox; Oy/i

C
*

n` .Qx/ ;
pX

kD2

D
Oy � Ox;br

Ek �
�� .Ox/� ��;p .Ox/

�

kŠ

+
:

We will estimate the various quantities in the above expression in the following.

Estimate of R1, R2:
Since R1, R2 are the remainders of the p-th order Taylor expansion, we obtain as
in (8.60)

kR1 .x; y/k C kR2 .x; y/k � C .h� kOy � Oxk/pC1

.p C 1/Š
(8.85)� C

c
pC1
8

ky � xkpC1

.p C 1/Š �
eC ky � xk2 hp�1

� ; (8.95a)

where eC depends only on p, c8, Cstab, eC stab, and C�;pC1.
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Estimate of n � n`:

Next, we consider the difference of the normal vectors and derive, from
Lemma 8.4.4 and its proof, the estimate

kn .x/� n` .Qx/k D
�����
Ot1 .Ox/ � Ot2 .Ox/

g� .Ox/ � Otp;1 .Ox/ � Otp;2 .Ox/
g�;p .Ox/

�����

�
����
g�;p .Ox/ � g� .Ox/

g�;p .Ox/ n .x/

����

C
��Ot1 .Ox/ � Ot2 .Ox/� Otp;1 .Ox/ � Otp;2 .Ox/

��
g�;p .Ox/ � Chp

� ; (8.95b)

where C depends only on C2 and c3.

Estimate of derivatives of the pullback �� :

We employ estimate (8.57b) and (8.85) to derive, for k � 2,

�������

D
Oy � Ox; Or

Ek
�� .Ox/

kŠ

�������
D

���������

X

˛2N2
0

j˛jDk

1

˛Š
.Oy � Ox/˛ @˛�� .Ox/

���������

� C.h� kOy � Oxk/k � Cky � xk2 ;

(8.95c)
where C depends on eC stab; c8, and k.

Estimate of derivatives of the p-parametric approximation error:

By using (8.53b), we obtain

�������

D
Oy � Ox; Or

Ek �
�� .Ox/� ��;p .Ox/

�

kŠ

�������
� C1C�;pC1h

pC1
� kOy � Oxkk� Chp�1

� ky � xk2;

(8.95d)
where C depends only on p and C�;pC1.

The combination of estimates (8.95) with some Cauchy–Schwarz inequalities
leads to

jhn .x/ ; y � xi � hn` .Qx/ ; Qy � Qxij D Chp�1
� ky � xk2 :

We turn now to the case that x 2 L�1 D lift�1
.�1/ and y 2 L�2 D lift�2

.�2/ for
some non-identical �1; �2 2 Gaffine. Lemma 8.4.11 and (8.95b) imply that

jhn .x/ ; y � xi � hn` .Qx/ ; Qy � Qxij D jhn .x/ � n` .Qx/ ; y � xiChn` .Qx/ ; y � x � .Qy � Qx/ij
� C15hp� ky � xk ;

where C depends on the constant in (8.95b) and C7.



Chapter 9
A Posteriori Error Estimation

The error analysis for the Galerkin discretization exhibits the asymptotic conver-
gence rates for the boundary element method which depend on the regularity of the
underlying integral equation. These estimates are called a priori estimates because
they hold for large classes of problems which are characterized by their regular-
ity. They are important because they show the asymptotic quality of the Galerkin
boundary method. However, for a concrete problem these estimates could be by far
too pessimistic and do not allow answers to the following questions:

� Is the size of the error u` �u with respect to some norm or to some other measure
below some given error tolerance "?

� If the numerical solution u` 2 S` is not accurate enough, what is a good strategy
to enrich the space S` in a problem-oriented way? Is the uniform refinement as
described in Remark 4.1.8 a good strategy?

The a posteriori error estimation uses the computed numerical solution u` and
the given data (such as the right-hand side or the integral operator) and computes
non-negative indicators .�i /

n
iD1 which have the property that the (weighted) sum

is an upper bound for the true error. The quantities will be local in the sense that
their computation involves integrals over small patches !i � � and their number n

depends linearly on the number of panels.
Furthermore, the size of these local quantities can be used directly to detect sub-

regions on the surface � where the error is large and which should then be locally
refined.

The development of a posteriori error estimation for finite element discretizations
of partial differential equations started with the pioneering papers [10, 11]. Since
then the number of publications in this field has grown enormously and we refer
to the monographs [2, 12, 14, 172, 232] for a thorough treatment of this topic and
further references.

However, for boundary element methods, the nonlocal character of the integral
operator and the nonlocal fractional Sobolev norms cause difficulties in the mathe-
matical derivation of local error indicators and much fewer authors have investigated
local a posteriori error estimates for integral equations [47, 48, 50–53, 89, 90, 92, 93,
189, 196, 209, 210, 240, 244].

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2 9,
c� Springer-Verlag Berlin Heidelberg 2011
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In this chapter, we will develop and analyze a posteriori error estimators for
boundary integral operators. We will follow the approach and the analysis as
introduced in [89, 90, 92].

9.1 Preliminaries

In Chap. 4 we introduced the Galerkin boundary element method for the abstract
variational problem: For given F 2 H 0, find u 2 H such that

a .u; v/ D F .v/ 8v 2 H: (9.1)

Let A W H ! H 0 denote the operator associated with the sesquilinear form a .�; �/
(cf. Lemma 2.1.38). Throughout this chapter we will assume that the operator A

is either of negative order and maps into H s .�/ for some positive s or is of non-
negative order. Note that we always require throughout this chapter that the range
for the differentiability indices s in H s .�/ obeys condition (2.84) depending on the
smoothness of � . A first assumption on the operator A is stated next.

Assumption 9.1.1. A W H s .�/ ! H�s .�/ is an isomorphism for some order
2s 2 R, i.e., there exist constants C1; C2 > 0 such that

kAkH �s.�/ H s.�/ � C1 and
�
�A�1

�
�

H s.�/ H �s.�/
� C2:

The boundary element space S is composed by local polynomials which are
lifted to the surface � via local charts and put together either in a continuous or
discontinuous way. The Galerkin discretization is given by seeking uS 2 S such
that

a .uS ; v/ D F .v/ 8v 2 S: (9.2)

The boundary element mesh is denoted by G consisting of surface panels �

(cf. Chap. 4).
Typically, the error u � uS will not be distributed uniformly over the surface � ,

and adaptive refinement aims at refining the mesh in regions where the error is larger
than some threshold. In this chapter, we will introduce local a posteriori refinement
indicators for the detection of such regions (and for the estimation of the total error).
In this light, the goal of this chapter is to define computable quantities �i which will
depend on the discrete solution uS such that the estimates

Ceff

nX

iD1

�2
i � kuS � uk2

H s.�/ � Crel

nX

iD1

�2
i (9.3)

hold. The upper estimate is called “reliability” because it guarantees a prescribed
given accuracy while the lower estimate is called “efficiency” because it implies
that the qualitative behavior of the error is reflected by the error indicators and not
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overestimated in an unspecified way. The quantities �i will be local in the sense that
their computation involves integrals over small patches !i � � . The number n in
(9.3) will depend linearly on the number of panels in G.

Remark 9.1.2. The size of the constant Crel is important for the practical use of
a posteriori error estimation. In order to guarantee a prescribed accuracy for the
energy error kuS � ukH s.�/ one has to refine the discretization as long as the upper

bound
�

Crel
Pn

iD1 �2
i

�1=2
is below the given threshold. In this light, we will track the

dependence of Crel on more elementary constants as clearly as possible.

The adaptive solution of the problem (9.1) is structured in the following abstract
way. Let " > 0 be a given tolerance for the energy error kuS � ukH s.�/ and let
ı 2 .0; 1/ be a control parameter for the refinement. Let G0 be a coarse surface
mesh and let S0 denote the corresponding boundary element space.

Algorithm 9.1.3 (Adaptive Refinement).
begin

if ` D 0 then compute the solution u0 of problem (9.2) for S D S0I
1: compute the error indicators �i , 1 � i � n`;

if
Pn

iD1 �2
i � " then STOP: Solution is u`;

else begin

` WD ` C 1I
refine all panels � 2 G`�1 with � � !i and �i > ı max

1�j�n
�j I (9.4)

subdivide (if necessary) further panels � 2 G`�1 such that the mesh G`

(9.5a)

becomes regular (cf. Definition 4.1.4); (9.5b)

solve problem (9.2) for S D S`,

where S` corresponds to the new mesh G`;

goto 1;

end;
end;

The realization of the algorithm requires some mesh refinement techniques and
we will present some basic principles in the sequel.

We assume that a coarse mesh G0 is given. This initial mesh is used to generate
finer ones .G`/

`max
`D1

in a recursive way by applying different refinement patterns.
For triangles, there exist various refinement patterns, some of them are depicted in
Fig. 9.1.

If discontinuous boundary elements are employed the mesh G is not required to
be regular (cf. Definition 4.1.4). In this case, step (9.4) in the adaptive algorithm is
realized by refining all panels which satisfy �� � ı maxt2G �t by the red refinement
pattern and skip step (9.5).
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Fig. 9.1 Different refinement patterns for triangles. Red: Subdivision into four concruent triangles,
Green .i/: Connecting the i -th vertex with the midpoint of the i -th edge, White: No refinement

Fig. 9.2 Red refinement of a panel, typically, results in a hanging node (here marked by filled
square). Connecting this node with the opposite vertex of the neighboring panel results in a regular
mesh

If continuous boundary elements are employed the mesh G must be regular. In
particular, hanging nodes have to be avoided which typically arise if some panels
are refined by the red pattern. A panel vertex is called a hanging node if it lies in the
interior of an edge of some other panel. A typical situation is depicted in Fig. 9.2.

The green closure algorithm refines some further panels so that the resulting
mesh becomes regular. It uses a function “mark” which contains the refinement
patterns for the panels in G`�1 and is initialized by mark .�/ D “white” for all
� 2 G`�1. Hence it is straightforward to check from the function mark .�/ whether a
mesh, which would result by refining G`�1 according to mark .�/, is regular or not.
We set the function regular .G`�1; mark/ D “true” in the first case and “false” for
the other case.

The green closure algorithm is realized by replacing steps (9.4) and (9.5) by the
following piece of code.
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for all panels � 2 G`�1 with: � � !i and �i > ı max
1�j�n`

�j for some 1 � i � n do

mark .�/ WD redI
while regular .G`�1; mark/D false do

for all � 2 G`�1 do begin

if mark .�/ D green^� contains one additional hanging node then mark .�/ WD redI
elseif mark .�/D white then begin

if � contains more than one hanging node then mark .�/ WD redI
elseif � contains one hanging node then mark .�/ WD greenI

end;

end;

Remark 9.1.4. In the literature, there exist many advanced versions of the green
closure algorithm (see, e.g., [17] and the update [18]), which, e.g., use a larger
class of refinement patterns or guarantee that the shape-regularity of the panels is
preserved through the refinement process.

The efficient algorithmic realization of the refinement algorithm requires appro-
priate data structures for the mesh handling. We refer, e.g., to [17] and the update
[18] for the details.

9.2 Local Error Indicators and A Posteriori Error Estimators

The definition of local error indicators and a posteriori error estimators for operators
of negative order will differ from those of non-negative order.

9.2.1 Operators of Negative Order

We start with the case that the operator A W H s .�/ ! H�s .�/ which is associated
with the sesquilinear form a .�; �/ in (9.1) is of negative order 2s 2 Œ�4; 0� and, in
addition, s has to satisfy condition (2.84) depending on the smoothness of � . Note
that the boundary integral operator V for the single layer potential for the Laplacian
satisfies this condition for 2s D �1 (cf. Theorem 3.1.16).

Let u denote the exact solution to problem (9.1) while the Galerkin solution uS

is the solution of (9.2). Our goal is to estimate the Galerkin error

e D uS � u

by computable local error indicators. The image of the error under A is denoted as
the residual

r WD Ae D AuS � F 2 H�s .�/:
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The continuity (cf. Assumption 9.1.1) of A and A�1 leads to the estimates

C�2
1 kAvk2

H �s.�/ � kvk2
H s.�/ � C 2

2 kAvk2
H �s.�/ 8v 2 H s .�/:

The choice v D e shows that the Galerkin error is bounded from below and from
above in terms of the residual

C�2
1 krk2

H �s.�/ � kek2
H s.�/ � C 2

2 krk2
H �s.�/ 8v 2 H s .�/:

We will show in Sect. 9.3 that the norm of the residuals can be localized under very
mild assumptions on the mesh.

Let I denote the set of counting indices for the basis functions bi , i 2 I. The
nodal point associated with bi is denoted by zi 2 � . For any i 2 I, we introduce
panel neighborhoods !i about zi and, for any � 2 G, neighborhoods !� about � by

!i WD supp bi and !� WD
[

t2G
t\�¤;

t : (9.6)

The distance of a panel � from �n!� is denoted by

d� WD dist .�; �n!� /: (9.7)

The definition of the local error indicators will be based on the explicit representa-
tion of the seminorm j�jH � .!i / for non-integers � > 0:

j'j2H � .!i / D
X

˛Db�c

Z

!i

Z

!i

j@˛' .x/ � @˛' .y/j2
kx � yk2C2�

dsydsx;

where � D b�c C �. The surface derivatives @˛' are defined via local pullbacks
to two-dimensional parameter domains as in (2.85). Recall that the range of � is
restricted depending on the smoothness of the surface [cf. (2.84)].

Definition 9.2.1. Let uS denote the Galerkin solution to problem (9.2) and let the
residual be given by

r D AuS � F:

The local error indicators are given by

�i WD jr jH �s.!i / i 2 I

and the global error estimator is

� WD
s
X

i2I
�2

i :
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9.2.2 Operators of Non-negative Order

If the operator A W H s .�/ ! H�s .�/ which is associated with the sesquilinear
form in (9.1) is an isomorphism of non-negative order 2s � 0, the residual

r D AuS � F 2 H�s .�/

is a functional. In this light, the operator A acts as a differential operator in a broader
sense. For this case, we will derive error indicators which are of residual type. For
partial differential equations this type of error estimators goes back to the pioneering
papers [10, 11]. For integral equations they have been developed in [89].

Definition 9.2.2. Let .bi /i2I denote the basis of the boundary element space. The
Galerkin solution is denoted by uS , the exact solution by u, and the corresponding
error by e D uS � u. For i 2 I, the local error indicators are given by

�i WD sup
v2H s.�/

bi v¤0

ja .e; bi v/j
kbi vkH s.�/

: (9.8a)

Note that

sup
v2H s.�/

bi v¤0

ja .e; bi v/j
kbi vkH s.�/

D sup
v2H s.�/

bi v¤0

ˇ
ˇhr; bi viH �s.�/�H s.�/

ˇ
ˇ

kbi vkH s.�/

: (9.8b)

Remark 9.2.3. Note that the quantities �i are not computable because the supre-
mum (9.8) is taken over an infinite-dimensional space. Under the assumption that
the residuum is in L2 .�/, computable lower and upper bounds which can be
approximated by quadrature formulae are given by

ˇ
ˇ
ˇ

�

r; b2
i

�

H �s.�/�H s.�/

ˇ
ˇ
ˇ

�
�b2

i

�
�

H s.�/

� �i � C

v
u
u
u
t

X

�2G
��!?

i

h2s
� krk2

L2.�/

for all i 2 I, where
!?

i WD f� 2 G W � \ !i ¤ ;g : (9.9)

The constant C depends only on the shape-regularity of G.

9.3 Proof of Efficiency and Reliability

This section is devoted to the proof of efficiency and reliability of the error estima-
tors which have been presented in the previous sections. Again we will distinguish
between operators of negative order and operators of non-negative order. Throughout
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this section, we will assume that the surface � is of class A2
pw (cf. Definition 8.3.1)

and we will restrict to the three-dimensional case.

9.3.1 Analysis of Operators of Negative Order

The analysis of the a posteriori error indicator as in Definition 9.2.1 will be based
on the localization of the globally defined norms of Sobolev spaces of positive frac-
tional order [cf. (2.85)]. Although this can be worked out for any Sobolev index
s 2 R>0nN we restrict the presentation to s 2 �0; 1Œ which includes the most
important case s D 1=2 for integral operators of negative order corresponding to
elliptic boundary value problems of second order. For the general case we refer to
[92].

We start with two preparatory lemmata.

Lemma 9.3.1. For � > 0 and for any y 2 R2 and " > 0, we have

Z

R2nB".y/

1

ky � xk2C�
dx D 2�

�
"��:

Proof. We introduce polar coordinates centered at y by x D y C r .cos '; sin '/|

and obtain
Z

R2nB".y/

1

ky � xk2C�
dx D 2�

Z 1

"

1

r2C�
rdr D 2�

�
"��:

�

Lemma 9.3.2. For � > 0 there exists a constant C� depending only on � and the
geometry of � such that

Z

�nB".z/

1

ky � xk2C�
dsx � C�"��

for all z 2 R3 and " > 0.

The proof is completely analogous to the estimate of the quantity S2 .x/ in the
proof of Theorem 3.3.5 and we leave the details as an exercise.

We start with the derivation of estimates of the H s .�/-norm by a sum of local
integrals for the case s 2 �0; 1Œ. Recall the definition

kvk2
H s.!/ D kvk2

L2.!/
C jvj2H s.!/

for any measurable ! � � and note that, for s 2 �0; 1Œ, we have
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jvj2H s.!/ D
Z

!

Z

!

jv .x/ � v .y/j2
kx � yk2C2s

dsydsx:

Lemma 9.3.3. Let s 2 �0; 1Œ. For any function v 2 H s .�/ and any boundary
element mesh G,

jvj2H s.�/ �
X

�2G

(
Z

�

Z

!�

jv .x/ � v .y/j2
kx � yk2C2s

dsxdsy C 4C2sd
�2s
� kvk2

L2.�/

)

(9.10a)

�
X

i2I
jvj2H s.!i / C 4C2s

X

�2G
d�2s

� kvk2
L2.�/

; (9.10b)

where !� , !i are as in (9.6) and d� is as in (9.7). The constant C2s depends only on
s and on the geometry of � .

Proof. The additivity of the integral leads to the splitting

jvj2H s.�/ D
X

�2G

Z

�

Z

�

jv .x/ � v .y/j2
kx � yk2C2s

dsxdsy D
X

�2G

�Z

�

Z

!�

: : : C
Z

�

Z

�n!�

: : :

�

:

(9.11)
The second term can be estimated by

Z

�

Z

�n!�

jv .x/ � v .y/j2
kx � yk2C2s

dsxdsy � 2J I
� C 2J II

� ; (9.12)

where

J I
� WD

Z

�

Z

�n!�

jv .y/j2
kx � yk2C2s

dsxdsy and J II
� WD

Z

�n!�

Z

�

jv .x/j2
kx � yk2C2s

dsydsx:

Note that for any � 2 G we have ft 2 G W � � �n!t g D ft 2 G W t � �n!� g and,
thus, the summations of J I

� and J II
� over all panels coincide as can be seen from

X

�2G
J II

� D
X

�2G

X

t2G
t��n!�

Z

t

Z

�

jv .x/j2
kx � yk2C2s

dsydsx

D
X

�2G

X

t2G
���n!t

Z

�

Z

t

jv .y/j2
ky � xk2C2s

dsxdsy

D
X

�2G

X

t2G
t��n!�

Z

�

Z

t

jv .y/j2
ky � xk2C2s

dsxdsy D
X

�2G
J I

� :

The combination of this equality with (9.11) and (9.12) implies that
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jvj2H s.�/ D
X

�2G

(
Z

�

Z

!�

jv .x/ � v .y/j2
kx � yk2C2s

dsxdsy C 4J I
�

)

: (9.13)

Observe that �n!� � �nBd�
.y/ for any y 2 � and Lemma 9.3.2 implies

J I
� D

Z

�

jv .y/j2
�Z

�n!�

1

kx � yk2C2s
dsx

�

dsy � C2sd
�2s
� kvk2

L2.�/
:

Thus the first estimate (9.10a) is proved.
For the second estimate (9.10b), it remains to consider the first term in (9.13).

Note that for any pair of panels �; t 2 G with � \ t ¤ ; there exists at least one
i 2 I such that � [ � 0 � !i . Hence we are led to the final estimate

X

�2G

Z

�

Z

!�

jv .x/ � v .y/j2
kx � yk2C2s

dsxdsy D
X

�;t2G
�\t¤;

Z

�

Z

t

: : : �
X

i2I

X

�;� 0�!i

Z

�

Z

t

: : :

D
X

i2I

Z

!i

Z

!i

jv .x/ � v .y/j2
kx � yk2C2s

dsxdsy:

�
The second term on the right-hand sides of (9.10) is a weighted sum of local

L2-norms of the function v and our goal is to estimate this terms by a sum of local
H s .!i /-norms. Note that an estimate of the form

d�2s
� kvk2

L2.�/
� C kvk2

H s.U� / (9.14)

for some small �-neighborhood U� of � cannot hold for arbitrary functions v 2
H s .�/ as can be seen from the counter example v � 1.

d�2s
� kvk2

L2.�/

kvk2
H s.U� /

Dd�2s
� j� j
jU� j

hG!0! 1 if the ratio j� j = jU� j is bounded away from zero.

However, we will prove an estimate similar to (9.14) for functions being orthog-
onal to some boundary element functions. First, the result will be proved in some
two-dimensional parameter planes and then lifted to the surface. Let !i be as
in (9.6). We introduce a lifting 	i W e!i ! !i from a two-dimensional convex
polygonal domain to !i as follows:

� If !i D � for some panel � 2 G the mapping 	i is chosen as the reference
mapping 	� of � (cf. Definition 4.1.2).

� For continuous boundary elements, !i is the union of a few panels, i.e., there
exist subsets Gi � G – the cardinality jGi j of which is bounded by a constant
independent of the refinement level – such that
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!i D
[

�2Gi

� :

In this case, the lifting 	i W Q!i ! !i is as introduced in Sect. 4.3.5 (cf. Assump-
tion 4.3.25). Recall that Q!i is a two-dimensional convex and polygonal parameter
domain. Note that, for any � 2 Gi , the pullback Q� WD 	�1

i .�/ is a plane panel
with straight edges.

The following Lemma is a refined version of the second Poincaré inequality (cf.
Theorem 2.5.9), where the dependence of the constants on the geometry is traced
more explicitly.

Lemma 9.3.4. Let D � R2 be a polygonal domain. Then we obtain for s 2 �0; 1Œ

and any functions w 2 H s .D/ the estimate

kwk2
L2.D/

� 1

2

.diam D/2C2s

jDj jwj2H s.D/ C 1

jDj
ˇ
ˇ
ˇ
ˇ

Z

D

w .x/ dx

ˇ
ˇ
ˇ
ˇ

2

: (9.15)

Proof. We proceed with

Z

D

Z

D

jw .x/ � w .y/j2 dxdy

D
Z

D

Z

D

jw .x/j2 dxdy C
Z

D

Z

D

jw .y/j2 dxdy

�
Z

D

Z

D

	

w .x/ w .y/ C w .x/w .y/



dxdy

D 2 jDj kwk2
L2.D/

� 2 jJ j2 (9.16)

where J WD R

D w. Hence (9.15) follows from

2 jDj kwk2
L2.D/ � 2 jJ j2 D

Z

D

Z

D

jw .x/ � w .y/j2
kx � yk2C2s

kx � yk2C2s

„ ƒ‚ …

�.diam D/2C2s

dxdy

� .diam D/2C2s jwj2H s.D/ :

�

In the following we will estimate the term jJ j2 in (9.16) in more detail. Note
that, for general functions w 2 L2 .D/, the Cauchy–Schwarz inequality

jJ j D
ˇ
ˇ
ˇ
ˇ

Z

D

w

ˇ
ˇ
ˇ
ˇ

� jDj1=2 kwkL2.D/ (9.17)

is sharp. In the next lemma, we will prove that, for functions w 2 L2 which are
orthogonal to finite element basis functions, the estimate (9.17) can be strengthened.
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Recall that, for the boundary element space S , the local nodal basis is denoted
by .bi /i2I . First, we will prove the result for the pullbacks Q!i WD 	�1

i .!i / and then
lift it to the surface. For s > 0, we introduce the mesh-dependent Sobolev space

H s
? . Q!i / WD ˚

v 2 H s . Q!i / W .v; bi ı 	i /L2. Q!i / D 0
�

: (9.18)

Definition 9.3.5 (Local Residual Property). A boundary element space along with
a basis .bi /i2I satisfies the “local residual property” if there is some constant 0 �

 < 1 such that

ˇ
ˇ
ˇ
ˇ

Z

Q!i

w

ˇ
ˇ
ˇ
ˇ

� 
 j Q!i j1=2 kwkL2. Q!i / 8w 2 H s? . Q!i / 8i 2 I: (9.19)

Later, we will need the local residual property only for the two basic boundary
element spaces S

0;�1
G , which consists of discontinuous piecewise constant func-

tions, and S
1;0
G which consists of continuous, piecewise affine boundary elements.

Lemma 9.3.6. For S D S
0;�1
G the local residual property is satisfied with 
 D 0

while, for S D S
1;0
G , the estimate (9.19) holds for 
 D 1=

p
2.

Proof. Let S D S
0;�1
G . Then it is sufficient to prove (9.19) for the unit panel O� ,

i.e., either the unit triangle or the unit square [cf. (4.13)]. In this case, we have
H s? . O�/ D ˚

w 2 H s . O�/ W R O� w D 0
�

and (9.19) holds with 
 D 0.

Let S D S
1;0
G . For i 2 I, let Q!i again denote the pullback to the two-dimensional

parameter domain and let ebi WD bi ı 	i . For any w 2 H s? . Q!i /, we have

ˇ
ˇ
ˇ
ˇ

Z

Q!i

w

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

Z

Q!i

	

1 � ebi




w

ˇ
ˇ
ˇ
ˇ

�
�
�
�1 � ebi

�
�
�

L2. Q!i /
kwkL2.e!i / : (9.20)

Pick some � � !i and let Q� D 	�1
i .�/ � Q!i . Then Ob� WD ebi

ˇ
ˇ
ˇQ� is the affine function

which equals one at some vertex of Q� and zero at the others. Note that
	

1 � Ob�


2

is a

quadratic polynomial and the following quadrature rule is exact. Let mi , 1 � i � 3,
denote the midpoints of the edges of Q� . Then

Z

Q�

	

1 � Ob�


2 D jQ� j
3

3X

iD1

	

1 � Ob�


2

.mi / D jQ� j
2

and for the integral over e!i we get

�
�1 � eBi

�
�

2

L2.e!i /
� je!i j

2
: (9.21)

The combination of (9.21) with (9.20) yields
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ˇ
ˇ
ˇ
ˇ

Z

Q!i

w

ˇ
ˇ
ˇ
ˇ

� 1p
2

je!i j1=2 kwkL2. Q!i /

and 
 equals 1=
p

2. �

Lemma 9.3.7. Let s 2 �0; 1Œ and assume that the boundary element space has the
local residual property. Then, for any i 2 I and w 2 H s? .e!i /, we have

kwk2

L2.e!i /
� .diam e!i /

2C2s

2 .1 � 
2/ je!i j jwj2H s. Q!i / :

Proof. Let Ji WD R

Q!i
w. By (9.15) and the local residual property of S we obtain,

for any w 2 H s? .e!i /, the estimate

kwk2
L2. Q!i /

� 1

2

.diam e!i /
2C2s

je!i j jwj2
H s.e!i /

C 1

je!i j jJi j2

� 1

2

.diam e!i /
2C2s

je!i j jwj2H s. Q!i / C 
2 kwk2
L2. Q!i /

:

From 
 2 �0; 1Œ, the assertion follows. �
Now, we are in the position to prove a Poincaré-type inequality similar to (9.14).

The global version of H s? .e!i /, for a boundary element space S , is given by

H s? .S; �/ WD ˚

w 2 H s .�/ j 8v 2 S W .v; w/L2.�/ D 0
�

; (9.22)

i.e., H s? .S; �/ D S?\H s .�/. The following remark states that piecewise smooth
surfaces can be covered by a selection of smooth patches !i provided that the mesh
width of the surface mesh is small enough. This property will be needed in the proof
of Lemma 9.3.9.

Remark 9.3.8. For a given surface � of class A2
pw (cf. Definition 8.3.1) and any

regular surface mesh G with sufficiently small mesh width hG � h� the following
property holds. For all � 2 G there exists i 2 I such that � � !i and the mapping
	i can be chosen such that 	i 2 C 2 .e!i /.

We always choose 	i 2 C 2 .e!i / if possible. The subset Ismooth � I contains all
indices I such that 	i 2 C 2 .e!i /. Note that � D

[

i2Ismooth

!i .

Lemma 9.3.9. Let the surface � be of class A2
pw and hG � h� (cf. Remark 9.3.8).

Let Assumption 4.3.29 hold and let Assumption 4.3.17 or Assumption 4.3.18 hold.
Further, let s 2 �0; 1Œ. Then there exists a constant C? depending on the shape-
regularity constant and on � such that

X

�2G
d�2s

� kvk2
L2.�/

� C?
X

i2I
jvj2H s.!i /

for all v 2 H s
? .S; �/.
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Proof. Let � 2 G and choose i 2 Ismooth such that � � !i . For v 2 H s? .S; �/ we
have

0 D .v; bi /L2.�/ D
Z

Q!i

eBi Qvgi dx;

where eBi WD bi ı 	i , Qv WD v ı 	i , and gi is the surface element. We conclude that
Qvgi 2 H s? .e!i / and apply Lemma 9.3.7 to obtain

X

�2G
��!i

d�2s
� kvk2

L2.�/
D
X

�2G
��!i

d�2s
�

Z

Q�
jQvj2 gi D

X

�2G
��!i

d�2s
�

Z

Q�
jQvgi j2 g�1

i ; (9.23)

where Q� D 	�1
i .�/. By using

�
�g�1

i

�
�

L1.e!i /
D � je!i j = j!i j (cf. (4.227), Lemma

4.3.27) we get

X

�2G
��!i

d�2s
� kvk2

L2.�/ � �
je!i j
j!i j

X

�2G
��!i

d�2s
�

Z

Q�
jQvgi j2 � �

je!i j
j!i j

0

@max
�2G

��!i

d�2s
�

1

A

Z

Q!i

jQvgi j2 :

Note that d� � c4 .diam !i / where c4 depends only on the constant of shape-
regularity and on the global chart 	 (cf. Assumption 4.3.10). This leads to

X

�2G
��!i

d�2s
� kvk2

L2.�/
� � je!i j

j!i j .c4 diam !i /
2s

kQvgi k2
L2. Q!i /

Lemma 9.3.7� � je!i j
j!i j .c4 diam !i /

2s

.diam e!i /
2C2s

2 .1 � 
2/ je!i j jQvgi j2H s. Q!i / :

There is a constant C5 depending only on the shape-regularity of the mesh and the
global chart 	 such that

.diam e!i /
2 = je!i j � C5:

This leads to

X

�2G
��!i

d�2s
� kvk2

L2.�/
� C5� je!i j

2 .1 � 
2/ j!i j
�

diam e!i

c4 diam !i

�2s

jQvgi j2H s.e!i /
: (9.24)

Next, we will transform the H s .e!i /-seminorm back to the surface. Corollary 4.3.30
implies that

kQx � Qyk � c
diam e!i

hi

k	i .Qx/ � 	i .Qy/k

for all Qx, Qy 2 e!i . Hence we obtain (with Lgi D gi ı 	�1
i )
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jQvgi j2H s.e!i /
D
Z

Q!i

Z

Q!i

jQvgi .Qx/ � Qvgi .Qy/j2
kQx � Qyk2C2s

d Qxd Qy

� 2

�
hi

c diam e!i

�2C2sZ

!i

jv .x/j2
Z

!i

j. Lgi .x/ � Lgi .y//j2
kx � yk2C2s Lgi .x/ Lgi .y/

dsydsx

C 2

�
hi

c diam e!i

�2C2s Z

!i

Z

!i

jv .x/ � v .y/j2
kx � yk2C2s

Lgi .y/

Lgi .x/
dsxdsy:

(9.25)

Recall (cf. (4.227) and Lemma 4.3.27) that

�
�g�1

i

�
�

L1.e!i /
D �

je!i j
j!i j and kgi kL1. Q!i / D ‚

j!i j
je!i j : (9.26)

The difference Lgi .x/ � Lg .y/ can be estimated by

j Lgi .x/ � Lgi .y/j xD�i .Qx/, yD�i .Qy/D jgi .Qx/ � gi .Qy/j � krgi kL1. Q!i / kQx � Qyk
Corollary 4.3.30� diam e!i

chi

krgi kL1. Q!i / ky � xk ;

where c is as in Corollary 4.3.30. Recall that, for Q� � e!i , the gradient of gQ� WD gi jQ�
can be written as

rgQ� D r kQnQ�k D g�1
Q� HQ� QnQ� ; (9.27)

where QnQ� WD t1 � t2 with tk WD @k .	i j� /, k D 1; 2, and

.HQ�/i;j WD @i . QnQ� /j 1 � j � 3; 1 � i � 2:

Applying norms to both sides in (9.27) results in

krgQ� kL1.Q�/ � �
�g�1
Q�
�
�

L1.Q�/
kgQ� kL1.Q�/ kHQ�kQ� ;

where k�kQ� is as in (8.70). The combination of (9.27) and Lemma 4.3.31 leads to

krgQ� kL1.Q�/ � C9

�
hi

diam e!i

�3

;

where C9 depends only on �; ‚, C�;2 [cf. (8.49)], and the shape-regularity of the
surface mesh. Because i 2 Ismooth we have rgi 2 C 0 .e!i / and

krgi kL1.e!i / � C9

�
hi

diam e!i

�3

:

Thus we have proved that

j Lgi .x/ � Lgi .y/j � C9

c

�
hi

diam e!i

�2

ky � xk :
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Substituting this and (9.26) into (9.25) yields

jQvgi j2H s.e!i/
� C10

�
hi

diam e!i

�2C2s �Z

!i

jv .x/j2
Z

!i

1

kx � yk2s
dsydsx

C
Z

!i

Z

!i

jv .x/ � v .y/j2
kx � yk2C2s

dsxdsy

)

;

where C10 depends only on c, � , ‚, C9, the shape-regularity of the surface mesh,
and the global chart 	. Since kx � �k�2s is weakly singular, there exists a constant
C11 depending only on s 2 �0; 1Œ such that

sup
x2!i

Z

!i

kx � yk�2s dsy � C11: (9.28)

Note that the improved estimate � C11h2�2s
i is possible by introducing local polar

coordinates in the parameter plane, while it turns out that (9.28) is sufficiently sharp
for our purpose.

We have proved that

jQvgi j2H s.e!i /
� C10

�
hi

diam e!i

�2C2s 	

C11 kvk2
L2.!i / C jvj2H s.!i /




and the combination with (9.24) leads to

X

�2G
��!i

d�2s
� kvk2

L2.�/
� C12 kvk2

L2.!i /
C C13 jvj2H s.!i /

� C12h2s
G
X

�2G
��!i

d�2s
� kvk2

L2.�/
C C13 jvj2H s.!i / ;

where C12; C13 depends only on � , on 
 [cf. (9.19)], and on the shape-regularity of

the mesh. Thus, for sufficiently small mesh width hG � .2C12/�
1

2s , we have

X

�2G
��!i

d�2s
� kvk2

L2.�/
� 2C13 jvj2H s.!i / :

Finally, we obtain

X

�2G
d�2s

� kvk2
L2.�/

�
X

i2Ismooth

X

�2G
��!i

d�2s
� kvk2

L2.�/
� 2C13

X

i2I
jvj2H s.!i / :

�
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The combination of Lemmas 9.3.3 and 9.3.9 leads to the following localization
of the H s .�/-norm for fractional Sobolev indices s 2 �0; 1Œ.

Theorem 9.3.10. Let � be in the class A2
pw. Let the boundary element mesh be

shape-regular and satisfy the local residual property. Then

kvkH s.�/ � .1 C 4C2sC?/

 
X

i2I
jvjH s.!i /

!

8v 2 H s? .S; �/ ;

where C2s is as in (9.10a) and C? is as in Lemma 9.3.9.

Proof. Combine (9.10a) and Lemma 9.3.9. �
We come to the main result of this section stating that the local error indicators

as in Definition 9.2.1 are reliable and efficient for shape-regular meshes. Recall that
all boundary element spaces S which have been introduced in Chap. 4 contain either
the space of discontinuous, piecewise constant boundary elements or the space of
continuous, piecewise affine boundary elements, in short, the following condition is
satisfied

9Smin 2
n

S
0;�1
G ; S

1;0
G
o

such that Smin � S: (9.29)

Furthermore, the overlap constant

Col WD max
�2G fi 2 I W � � !i g (9.30)

depends only on the kind of boundary element, i.e., the polynomial degree, the basis
functions, the type of panels (triangular/quadrilateral), and on the shape-regularity
but not on the mesh width.

Theorem 9.3.11. Let s 2 ��1; 0Œ and assume that A satisfies Assumption 9.1.1. Let
S be a boundary element space satisfying (9.29). Then the a posteriori estimate for
the error ku � uSkH s.�/ of the Galerkin solution holds:

Ceff

X

i2I
�2

i � ku � uSk2
H s.�/ � Crel

X

i2I
�2

i (9.31)

with �i as in Definition 9.2.1.
The efficiency estimate holds for any boundary element mesh G and the estimate

of reliability holds for shape-regular meshes.
The “efficiency” constant is given by Ceff D C 2

1 =Col with C1 as in Assump-
tion 9.1.1 and the “reliability” constant Crel depends only on � and the shape-
regularity of the mesh.

Proof. Let e D uS � u and recall the definition of the residual r D Ae. The lower
estimate follows from
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X

i2I
jr j2H s.!i / �

X

i2I

X

�2G
��!i

Z

�

Z

!i

jr .y/ � r .x/j2
kx � yk2C2s

dsydsx

� Col

X

�2G

Z

�

Z

�

jr .y/ � r .x/j2
kx � yk2C2s

dsydsx

� Col krk2
H �s.�/ � Col

C 2
1

kek2
H s.�/ :

For the proof of the upper estimate we assume that the mesh is shape-regular.
Note that the Galerkin orthogonality (4.120) implies that

hr; viH �s.�/�H s.�/ D hAe; viH �s.�/�H s.�/ D a .e; v/ D 0 8v 2 S: (9.32)

In particular, (9.32) holds for the space Smin � S . Since Smin has the local residual
property, we conclude that r 2 H�s

? .Smin; �/. Hence we may apply Theorem 9.3.10
to obtain

kek2
s

Assumption 9.1.1� C 2
2 krk2

H �s.�/ � C14C 2
2

X

i2I
jr j2H �s.!i / :

This is the upper estimate in (9.31) with Crel D C14C 2
2 . �

Remark 9.3.12. (a) The above theorem expresses the efficiency and reliability of
the local a posteriori error indicators. The upper estimate requires shape-
regular meshes. However, it is possible to modify the error indicators so that
the upper estimate becomes independent of the shape-regularity of the mesh
while then the efficiency estimate depends on that property. For the details, we
refer to [92, Theorem 5.2].

(b) In this section, we considered isomorphisms A W H s .�/ ! H�s .�/ for some
negative s. In [92, Theorem 5.2], the theory has been developed for more general
isomorphisms A W H ˛C2s .�/ ! H ˛ .�/ for some ˛ � 0 and arbitrary s 2 R.

9.3.2 Analysis of Operators of Non-negative Order

We start by introducing the assumptions for the main theorem of this section.

Assumption 9.3.13. The sesquilinear form a W H s .�/ � H s .�/ ! C satisfies a
Gårding inequality of the form: There exist a constant CG � 0 and an index � < s

such that, for all u 2 H s .�/,

ˇ
ˇ
ˇa .u; u/ C CG kuk2

H � .�/

ˇ
ˇ
ˇ � 
 kuk2

H s.�/ : (9.33)



9.3 Proof of Efficiency and Reliability 535

Furthermore, A W H s .�/ ! H�s .�/ is an isomorphism for some s 2 Œ0; 1�.

The next assumption is concerned with the boundary element space S .

Assumption 9.3.14. If s � 1=2, the continuous, piecewise affine functions S
1;0
G are

contained in the boundary element space S and

S
1;0
G � S � C 0 .�/: (9.34)

For S
1;0
G 6� S , there holds 0 � s < 1=2 and S D S

p;�1
G for some p 2 N .

In both cases, the basis .bi /i2I satisfies
P

i2I bi D 1.

Note that the standard case of an integral operator of positive order is the hyper-
singular operator which maps H 1=2 .�/ ! H�1=2 .�/. The conformity condition
S � H 1=2 .�/ implies that the functions in S are continuous and the inclusion
(9.34) holds for all practical cases. The proof of the second part of the following
lemma is based on the Aubin–Nitsche duality technique (cf. Sect. 4.2.5). In this
light, we assume some regularity for the adjoint problem:

For v 2 H�s.�/ find wv 2 H s.�/ such that a.w; wv/ D .v; w/L2.�/ 8w2H s.�/ :

(9.35)

Assumption 9.3.15. There exist some t > 0 and some constant Cadj > 0 such that,
for any v 2 H�sCt .�/, the solution of (9.35) satisfies wv 2 H sCt .�/ and the
estimate

kwvkH sCt .�/ � Cadj kvkH �sCt .�/

holds.

Example 9.3.16. Let � be a Lipschitz domain and consider the operator �
u C cu
for some c > 0. Theorem 3.2.3 implies that the sesquilinear form for the cor-
responding hypersingular integral operator W W H 1=2 .�/ ! H 1=2 .�/ satisfies
Assumption 9.3.15 for any 0 < t < 1=2.

Lemma 9.3.17. Let G be a boundary element mesh and let S denote a boundary
element space which satisfies Assumption 9.3.14:

(a) There exists a constant C stab
s such that

8v 2 H s .�/ 9' 2 S W
X

i2I
kbi .v � '/k2

H s.�/ � C stab
s kvk2

H s.�/: (9.36)

(b) Let uS 2 S denote the solution of (9.2). For s D 1, we choose 0 < t � 1 such
that Assumption 9.3.15 holds and, for 0 � s < 1, we choose t such s C t � 1

and Assumption 9.3.15 holds. Let Assumption 9.3.13 hold.
Then there exists a constant Cdual such that

ku � uSkH s�t .�/ � Cdualh
t
G ku � uSkH s.�/: (9.37)
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Proof. Part a:
Case 1: s D 0.
The choice ' D 0 leads to

X

i2I
kbi .v � '/k2

L2.�/ D
X

i2I
kbi vk2

L2.!i / � max
i2I kbik2

L1.!i /

X

i2I
kvk2

L2.!i /

(9.38)

� C]
MC1 kvk2

L2.�/
;

where
C] WD max

�2G card fi 2 I W � � !i g
depends only on the shape-regularity of the mesh and the polynomial degree of the
space S and MC1 is as in Corollary 4.4.8.

Case 2: s D 1:
Let QG W L1 .�/ ! S

1;0
G � S denote the Clément interpolation operator as in

Sect. 4.3.5. For v 2 H 1 .�/, let ' WD QG .v/ and e WD v � '. Then

jbi ej2H 1.!i /
D kerbi C birek2

L2.!i /
� 2 krbi k2

L1.!i / kek2
L2.!i /

C 2 kbi k2
L1.!i / krek2

L2.!i /

Corollary 4.4.8� 2 MC 2
2 h�2

i kek2
L2.!i /

C 2 MC 2
1 krek2

L2.!i /

Theorem 4.3.28� 2
	

C MC 2
2 c2

1 C MC 2
1 Qc2

1




„ ƒ‚ …

DWC

kvk2

H 1.!?
i /;

where the constants are as in the quoted Corollary and Theorem and !?
i is as in

(9.9). A summation over all i 2 I and using (9.38) gives

X

i2I
kbi .v � '/k2

H 1.�/ �
X

i2I

	

kbi .v � '/k2
L2.!i / C jbiej2H 1.!i /




� C]
MC1 kvk2

L2.�/ C C
X

i2I
kvk2

H 1.!?
i /

�
	

C]
MC1 C C C




kvk2
H 1.�/

;

where C WD max�2G card
˚

i 2 I W � � !?
i

�

again depends only on the shape-
regularity of the mesh.

Case 3: s 2 �0; 1Œ and S
1;0
G � S .

For v 2 H s .�/, let ' WD QG .v/ and e WD v � '. We have
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kbiek2
H s.�/

(9.10a)�
X

�2G

(

4C2sd�2s
� kbiek2

L2.�/

C
Z

�

Z

!�

j.bie/ .x/ � .bi e/ .y/j2
kx � yk2C2s

dsxdsy

)

� 4C2s

X

�2G
��!i

d�2s
� kbiek2

L2.�/

C 2
X

�2G
��!i

Z

�

Z

!�

jbi .y/j2 je .x/ � e .y/j2
kx � yk2C2s

dsxdsy

C 2
X

�2G

Z

!�

je .x/j2
Z

�

jbi .x/ � bi .y/j2
kx � yk2C2s

dsy

„ ƒ‚ …

DWQ.x/

dsx: (9.39)

Note that the term Q .x/ vanishes if j!i \ !� j D 0. Otherwise, we employ the
Lipschitz continuity of the basis functions to obtain

jbi .x/ � bi .y/j � kbikW 1;1.!� / kx � yk Corollary 4.4.8� Ch�1
� kx � yk 8x; y 2 !� :

Thus

jQ .x/j � Ch�2
�

Z

�

1

kx � yk2s
dsy � C h�2s

� ; (9.40)

where the last inequality is proved in the same way as Theorem 3.3.5 by transform-
ing to a two-dimensional parameter plane, introducing local polar coordinates as in
(5.20a)–( 5.20c) and then integrating with respect to the radial coordinate.

This leads to

kbiek2
H s.�/ � C

 
X

�2G
��!i

h�2s
� kek2

L2.�/
C
Z

!i

Z

!?
i

je .x/ � e .y/j2
kx � yk2C2s

dsxdsy

C
X

�2G
j!i\!� j>0

h�2s
� kek2

L2.!� /

!

� C

 
X

�2G
��!i

h�2s
� kek2

L2.�/ C jejH s.!?
i / C

X

�2G
��!??

i

h�2s
� kek2

L2.�/

!

;

where !?
i WD

[

�2G
�\!i¤;

� and !??
i WD

[

�2G
�\!?

i
¤;

� . A summation over all i 2 I
yields
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kbiek2
H s.�/ � C 0

 

jej2H s.�/ C
X

�2G
h�2s

� kek2
L2.�/

!

(4.237b)� C 00 kvk2
H s.�/ :

Case 4: s 2 �0; 1Œ and S
1;0
G 6� S .

From Assumption 9.3.14 it follows that 0 � s < 1=2 and S D S
p;�1
G . We choose

' D I
p;�1
G .v/, where I

p;�1
G is as in Theorem 4.3.19 and obtain, analogously as

(9.39),

kbiek2
H s.�/ � 4C2s

X

�2G
��!i

d�2s
� kbiek2

L2.�/

C 2
X

�2G
��!i

Z

�

Z

!�

jbi .y/j2 je .x/ � e .y/j2
kx � yk2C2s

dsxdsy

C 2
X

�2G

Z

!�

je .x/j2 Q .x/ dsx:

Since the basis functions are discontinuous we obtain (cf. (9.40)

jQ .x/j �
Z

�

1

kx � yk2C2s
dsy � C h�2s :

The rest of the proof is a repetition of the arguments as for the previous case.

Part b:
Statement b is proved by the Aubin–Nitsche duality technique (cf. Sect. 4.2.5). We
apply (4.177) to obtain

ku � uSkH s�t .�/ � C ku � uSkH s.�/ sup
v2H �sCt .�/nf0g

inf
w2S

kwv � wkH s.�/

kvkH �sCt .�/

with wv as in (9.35). For s D 1, we have s C t > 1, where 0 < t � 1 is chosen
such that Assumption 9.3.15 is satisfied. Hence H sCt .�/ � C 0 .�/ and the nodal
interpolant I

1;0
G W H sCt .�/ ! S is well defined. We employ Theorem 4.3.22 to

obtain

inf
w2S

kwv � wkH s.�/ �
�
�
�wv � I

1;0
G wv

�
�
�

H s.�/
� C ht kwvkH sCt .�/

� CCadjh
t kvkH �sCt .�/;

where C is as in Theorem 4.3.22.
For 0 � s < 1, we choose t > 0 such that Assumption 9.3.15 and s C t < 1

hold. Let QG W H sCt .�/ ! S denote the Clément interpolation operator as in
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Definition 4.3.24. Then (4.237b) and Assumption 9.3.15 imply that

inf
w2S

kwv � wkH s.�/ � kwv � QGwvkH s.�/ � C ht kwvkH sCt .�/

� CCadjh
t kvkH �sCt .�/:

�
For the proof of the next Theorem 9.3.18 we have to introduce further notation.

We consider decompositions D D fImgqD
mD1 of I into non-empty, pairwise disjoint

subsets Im � I, 1 � m � qD , such that I D
qDS

mD1

Im and

81 � m � qD 8i; j 2 Im W !i \ !j D ;:

A decomposition D which satisfies these conditions and consists of a minimal num-
ber of subsets fImgqD

mD1 is called minimal disjoint decomposition of I. For such a
decomposition, we define a second overlap constant [cf. (9.30)] by

C ?
ol WD qD:

Now we have all ingredients to prove the main theorem of this section which
states that the error indicators as in Definition 9.2.2 for operators of positive order
are reliable and efficient.

Theorem 9.3.18. Let Assumptions 9.1.1, 9.3.13, 9.3.14 and 9.3.15 be satisfied for
some s 2 Œ0; 1�. Let e D u � uS be the error for the Galerkin solution. Then the
estimate

Ceff

X

i2I
�2

i � kek2
H s.�/ � Crel

X

i2I
�2

i (9.41)

holds, where the error indicators �i are as in Definition 9.2.2 and

Ceff WD 2

5

�

C ?
olC

2
1

��1

with C1 is as Assumption 9.1.1. The constant Crel is given by

Crel WD
�

C stab
s 
�2 if CG D 0 in (9.33),

4C stab
s 
�2 if CG > 0,

(9.42)

where 
 is as in (9.33) and C stab
s as in (9.36). In the case CG > 0, we have to

assume, in addition, that the mesh size is sufficiently small, i.e., hG � h0, for some
h0 > 0 (cf. Theorem 4.2.7).
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Proof. Part a: Proof of efficiency.
Let D D fImgCol

mD1 denote a minimal disjoint decomposition of the index set I and
set

Dm WD
[

i2Im

supp bi :

In the first step, we will prove the estimate

X

i2Im

sup
v2H s.�/

kbi vkHs.�/D1

ˇ
ˇhr; bi viH �s.�/�H s.�/

ˇ
ˇ
2

� sup
w2H s.�/

jDm\supp wj>0

ˇ
ˇ
P

i2Im
hr; bi wiH �s.�/�H s.�/

ˇ
ˇ
2

P

i2Im
kbi wk2

H s.�/

DW Mm: (9.43)

Let " > 0. For i 2 Im, there exist fi 2 H s .�/ with

kbi fikH s.�/ D 1 (9.44)

and

ˇ
ˇhr; bi fi iH �s.�/

�H s.�/

ˇ
ˇ
2 � sup

v2H s.�/
kbi vkHs .�/D1

ˇ
ˇhr; bi viH �s.�/

�H s.�/

ˇ
ˇ
2 � "1 with "1 WD "

card Im

:

(9.45)
Because the intersections supp bi \supp bj have zero measure for all i; j 2 Im with
i ¤ j , there exists w 2 H s .�/ such that for all i 2 Im we have

wjsupp bi
D ci fi jsupp bi

with ci WD .r; bifi /L2.�/: (9.46)

This function satisfies

bi w D ci bifi on � for all i 2 I: (9.47)

The definition of Mm [cf. (9.43)] implies that

Mm �
ˇ
ˇ
P

i2Im
hr; bi wiH �s.�/�H s.�/

ˇ
ˇ
2

P

i2Im
kbi wk2

H s.�/

(9.47)D
ˇ
ˇ
P

i2Im
ci hr; bifi iH �s.�/�H s.�/

ˇ
ˇ
2

P

i2Im
jci j2 kbifi k2

H s.�/

(9.44), (9.46)D
ˇ
ˇ
ˇ

P

i2Im
jci j2

ˇ
ˇ
ˇ

2

P

i2Im
jci j2

D
X

i2Im

ˇ
ˇhr; bifi iH �s.�/�H s.�/

ˇ
ˇ
2

(9.45)�
X

i2Im

sup
v2H s.�/

kbi vkHs.�/D1

ˇ
ˇhr; bi viH �s.�/�H s.�/

ˇ
ˇ
2 � ":

Since " > 0 was arbitrary we have proved (9.43).
From (9.43) we derive
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X

i2Im

�2
i

(9.8)D
X

i2Im

sup
v2H s.�/

bi v¤0

ˇ
ˇhr; bi viH �s.�/�H s.�/

ˇ
ˇ
2

kbi vk2
H s.�/

D
X

i2Im

sup
v2H s.�/

kbi vkHs.�/D1

ˇ
ˇhr; bi viH �s.�/�H s.�/

ˇ
ˇ
2

(9.43)� Mm:

This leads to

X

i2Im

�2
i � Mm D sup

w2H s.�/
jDm\supp wj>0

ˇ
ˇ
ˇ

˝

Ae;
P

i2Im
bi w

˛

H �s.�/�H s.�/

ˇ
ˇ
ˇ

2

P

i2Im
kbi wk2

H s.�/

� kAk2
H �s.�/ H s.�/ kek2

H s.�/ sup
w2H s.�/

jDm\supp wj>0

�
�
P

i2Im
bi w

�
�

2

H s.�/
P

i2Im
kbi wk2

H s.�/

Lemma 4.1.49b� 5

2
kAk2

H �s.�/ H s.�/ kek2
H s.�/

and we obtain the estimate for the error indicators by

X

i2I
�2

i D
ColX

mD1

X

i2Im

�2
i � 5Col

2
kAk2

H �s.�/ H s.�/ kek2
H s.�/:

Thus we have proved the left side in (9.41).

Part b: Proof of reliability.
The Galerkin orthogonality and the Definition 9.2.2 imply for any v 2 S that

ja .e; e/j D ja .e; e � v/j D
ˇ
ˇ
ˇ
ˇ
ˇ

X

i2I
a .e; bi .e � '//

ˇ
ˇ
ˇ
ˇ
ˇ

�
X

i2I
�i kbi .e � '/kH s.�/ �

s
X

i2I
�2

i

s
X

i2I
kbi .e � '/k2

H s.�/: (9.48)

From (9.36) we conclude that there exists ' 2 S such that

X

i2I
kbi .e � '/k2

H s.�/ � C stab
s kek2

H s.�/:

Inserting this into (9.48) and using Gårding’s inequality (9.33) yields
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 kek2
H s.�/ �

ˇ
ˇ
ˇa .e; e/ C CG kek2

H � .�/

ˇ
ˇ
ˇ�
q

C stab
s kekH s.�/

s
X

i2I
�2

i CCG kek2
H � .�/

(9.49)
for some � < s. If CG D 0 then the right estimate in (9.41) is proved with Crel as in
(9.42).

If CG > 0 we employ (9.37) to obtain

kekH s�t .�/ � Cdualh
t
G kekH s.�/:

We may choose t > 0 always sufficiently small such that � � s � t and hence

kekH � .�/ � kekH s�t .�/ � Cdualh
t
G kekH s.�/:

Substituting this estimate into (9.49) yields


 kek2
H s.�/ �

ˇ
ˇ
ˇa .e; e/ C CG kuk2

H � .�/

ˇ
ˇ
ˇ

�
q

C stab
s kekH s.�/

s
X

i2I
�2

i C CGC 2
dualh

2t
G kek2

H s.�/:

If the minimal mesh width h0 is chosen such that

CGC 2
dualh

2t
0 � 1

2



we obtain
kekH s.�/ � 4
�2C stab

s

X

i2I
�2

i

and this is the assertion. �
In some cases, the boundary integral operator has a non-trivial, finite-dimensional

null space as, e.g., the hypersingular operator for the Laplace operator on closed
manifolds, where the null space is spanned by the constant functions. Then the
operator A W H s .�/ ! H�s .�/ is not an isomorphism. On the other hand, the
restriction A W H ! H0 to some quotient space H WD H s .�/ =N , where N
is finite-dimensional, is an isomorphism with respect to the induced norms. Such
operators are considered in the following remark.

Remark 9.3.19. Assume that A W H s .�/ ! H�s .�/ does not satisfy Assump-
tion 9.1.1. Assume that, for a quotient space H WD H s .�/ =N with some finite-
dimensional subspace N � H s .�/, Assumption 9.1.1 holds for the restricted
operator A W H ! H0. Let S be a boundary element space for H s .�/ and
let the index set I correspond to the nodal points for S . Assume further that
N � S � H s .�/ which, e.g., is satisfied for the hypersingular operator for the
Laplacian on closed manifolds. Then S WD S=N is a finite-dimensional subspace
of H. For other operators such as, e.g., the Helmholtz operator, the null space of
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the corresponding hypersingular operator, in general, does not belong to S . Then
the following comments directly apply for this case only if the null space N , resp.,
a basis thereof, is known.

Assume that (9.33) holds for all u 2 H. Let the error indicators be defined as
before by (9.8a). For F 2 H0, let uS denote the Galerkin solution of

a .uS ; v/ D F .v/ 8v 2 S

and let e WD u � uS denote the corresponding error. Then Theorem 9.3.18 and its
proof remain valid without any changes. Note that the space S in Part b of the proof
must not be replaced by S.

9.3.3 Bibliographical Remarks, Further Results
and Open Problems

As we saw in Chaps. 3 and 4, boundary integral operators obtained via boundary
reduction of elliptic boundary value problems via the direct method are boundedly
invertible between fractional order Sobolev spaces on the boundary. The deriva-
tion of residual a posteriori error estimates in fractional Sobolev norms which are
obtained as sums of O.N / many scaled local residual error bounds is an easy con-
sequence of the bounded invertibility of the boundary integral operators in Sobolev
spaces which we established in Chaps. 3 and 4. The key to obtaining efficiently com-
putable upper bounds for the residual in the relevant, fractional Sobolev norms is the
localization of these norms, i.e., their representation as sums of O.N / many scaled
local residual error bounds. We showed, based on the work of B. Faermann [89, 90,
92] on the localization of fractional order Sobolev norms, how to obtain computable
upper bounds for the intrinsically nonlocal fractional order Sobolev norms of the
weak residual. While this is not possible for general functions, it is feasible for the
weak residual by exploiting its Galerkin orthogonality as we explained in Sects. 9.2
and 9.3. This implies in particular that an analogous residual estimate for collocation
BEM will require additional technical steps to achieve O.N / complexity.

Due to the appearance of fractional order Sobolev norms, the derivation of upper
bounds for the error of Galerkin discretizations of integral equations is substantially
more involved than in the case of second order, elliptic partial differential equations,
where it involves only elementwise integration by parts and, once more, Galerkin
orthogonality.

Computable residual a posteriori error estimators are a convenient tool to decide
when to terminate mesh refinement procedures in practical computations. If these
estimators are obtained from sums of (squared) error contributions which are local-
ized to (a patch of) elements, it is suggestive to use these contributions as error
indicators, i.e., as a measure for the relative contributions to the global error bound
from the element associated with the error indicator. This is usually successful in
computational practice. Note, however, that this reasoning is completely heuristic:
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there is a priori no reason at all why a localized quantity should be in one-to-
one correspondence with the source of discretization error in the Finite Element
Galerkin projection. In fact, counterexamples to this heuristic reasoning exist, even
in the case of local operators, i.e., for finite element discretizations of elliptic par-
tial differential equations. Nevertheless, in recent years, substantial progress in the
analysis of adaptive Finite Element Methods for elliptic partial differential equations
has been made. Proofs of optimality of adaptive finite element methods for partial
differential equations are by now available.

While the mathematical understanding of adaptive Finite Element Methods
(AFEM) has proceeded substantially in the past years and has, at least for second
order elliptic PDEs and conforming FEM, reached a certain maturity, the corre-
sponding situation for mathematical analysis of adaptive Galerkin BEM considered
in this book is, at the time of writing, still considerably less developed. While relia-
bility and efficiency of computable residual a posteriori error estimators is available
in Sects. 9.2 and 9.3, neither a convergence result along the lines of [82] nor any
kind of optimality result is known to us at time of writing for Galerkin BEM based
on the standard shape functions described in Chap. 4.

There is, however, an alternative approach of wavelet based Galerkin BEM which
does have a complete mathematical theory with optimality and convergence rates
at linear computational complexity available. It is based on piecewise polynomial,
spline wavelets as basis functions for the subspaces used in the Galerkin discretiza-
tion. The construction of such spline wavelet basis functions on general polyhedra in
R3 is involved, and their supports are considerably larger than the supports of basis
functions described in Chap. 4 above. The effort in their construction and implemen-
tation is, however, worthwhile, since their use in Galerkin BEM achieves two pur-
poses: (1) matrix compression and (2) optimal preconditioning in a unified fashion.

Multilevel Preconditioning in linear complexity is, for these basis functions,
achieved by a simple diagonal scaling of the stiffness matrix due to the fact that
the wavelets constitute Riesz bases of the energy spaces for the boundary integral
operators.

Matrix compression implies that the Galerkin stiffness matrix in these wavelet
bases is, while still being densely populated, numerically sparse. This means that
all but O.N / nonzero matrix entries out of the N 2 overall matrix entries need to
be actually computed, and that a mathematical analysis reveals the location and
the accuracy of these O.N / essential matrix entries. We refer to [208] and to the
recent paper [76] and the references therein for details and further results. Note that,
in this setting, acceleration techniques of clustering or fast multipole type are not
required any more. We remark, however, that fast multipole accelerations are natu-
rally robust with respect to the complexity of the boundary surface, since they are
based on the (coordinate free) approximation of the fundamental solution in ambient
space, while the analysis of wavelet matrix compression methods reveals a substan-
tial dependence of the matrix compression error on the surface parametrizations and
their derivatives.

We note, in closing, that also in the wavelet Galerkin approach to the discretiza-
tion of BIEs, the numerical quadrature of the diagonal entries of the Galerkin
stiffness matrix requires the quadrature techniques presented in Chap. 5 above.
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11. I. Babuška and W. C. Rheinboldt. Error estimates for adaptive finite element computations.
SIAM J. Numer. Anal., 15:736–754, 1978.
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tiques et électromagnetiques. PhD thesis, l’Ecole Polytechnique, Paris, 2002.
64. S. H. Christiansen. Discrete Fredholm properties and convergence estimates for the electric

field integral equation. Math. Comp., 73(245):143–167, 2004.
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Index of Symbols

V
kıkW Closure of a subset V � W in a normed vector space

.W; kıkW /

T � Adjoint operator, 28
j!j Volume measure of a measurable subset ! � Rd or

a surface measure of a measurable subset ! � � of a
surface �

]‚, j‚j, card ‚ Number of elements of a finite set ‚

p:v: Cauchy principal value, 294
Am

pw Class of piecewise analytic surfaces, 496
Am

pw Class of smooth, piecewise analytic surfaces, 496
B .�; �/, BC .�; �/, B� .�; �/ Sesquilinear form that belongs to the elliptic differen-

tial equation. The indices C, � indicate whether the
exterior �C or the interior �� is being considered

Br .x/ Open ball with radius r > 0 around a point x 2 X with
respect to the norm in X , 50

Br , BCr , B�r , B0
r Open ball with radius r > 0 around zero, upper half of

Br , lower half of Br , middle plane of Br , 50
C k .�/ Space of all k times continuously differentiable func-

tions on �, 48
C k

�
�

�
Space of all k times continuously differentiable func-
tions on � with k times continuously differentiable
extensions to �, 48

C k;�
�
�

�
Space of all k times Hölder continuously differentiable
functions, 48

C10 .�/ Space of all infinitely differentiable functions with com-
pact support in �, 54

C1comp .�/ Restriction of C10
�
Rd

�
to �, 54

Ck
�
�1; �2

�
Space of all vector-valued, k times continuously differ-
entiable functions, 49

Ck;�
�
�1; �2

�
Space of all vector-valued, k times Hölder continuously
differentiable functions, 49
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C k Domain with k times continuously differentiable
boundary, 50

C k
pw Piecewise smooth domain, 51

C k
pw .�/ Set of all k times piecewise differentiable mappings

on � , 52
‰�

c , ˆ�
c Expansion systems for the cluster method, 413

rS Surface gradient, (4.200)
h� Diameter of a panel � , 189
�� Inner diameter (incircle diameter) of a panel, 189
h, hG Mesh width of the mesh G, 190
I, I .G; p/ Set of counting indices of boundary element basis

functions (4.28)
I� Subset of I corresponding to the panel � (5.71)
�G Constant which describes the shape-regularity, 190
qG Constant which describes the quasi-uniformity

of the mesh, 190
….m/ One-dimensional Čebyšev interpolation on Œ�1; 1�, 412�!
….m/ Lagrange interpolation on Q D Œ�1; 1�3, 412�!
…

.m/
a;b Lagrange interpolation on the cuboid Qa;b, 413

�!
…

.m/

Œa;b�;Œc;d�
Lagrange interpolation on Qa;b � Qc;d, 413

L General elliptic differential operator of second order
with constant coefficients, 66

L? Formal adjoint operator, 68
QL Modified elliptic differential operator, 73
L˙ Differential operator L, restricted to �� [ �C, 71
T 0 Dual operator, 26
V 0 Dual of the Banach space V , 30
a.e. Almost everywhere
G .x � y/ Fundamental solution of the general elliptic

operator, 101
�� Bounded domain in Rd

�C WD Rd n�� Unbounded exterior
H ` .�/ Sobolev space, 55
H `

0 .�/ Sobolev space of functions with zero boundary condi-
tions, 56

H 0
D .�/ Sobolev space of functions whose traces are equal to

zero on �D � � , 80
H�` .�/ Dual space of H `

0 .�/, 59
H ` .�/ Sobolev space on the surface � , 58
H t

pw .�/ Sobolev space which is smoother when considered
piecewise, 213

QH s .�0/ Sobolev space on a section of the surface �0 � � , 59
H�s .�0/ Dual space of QH s .�0/, 59
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H `
loc .�/ Fréchet space of all functions u with 'u 2 H ` .�/ for

all ' 2 C1comp .�/, 63

H `
comp .�/ Fréchet space of all functions u with supp u �� Rd , 64

H s
L .�/ Sobolev space with Lu 2 L2

comp .�/, 69

H 1
L

�
Rd n�

�
Sobolev space whose restrictions to ��, �C are con-
tained in H s

L .��/ H s
L

�
�C

�
, 71

H 1 .L; �/ Sobolev spaces that have weight functions for the decay
conditions that depend on the operator, 83

H 1
T .L; �/ Associated test space, 83

Š Isomorphic
†p Set of nodal points on the reference element, 205, 205
K 2 fR; Cg Field
L.X; Y / Set (vector space) of all bounded linear operators, 22
L1 .�/ Lebesgue space of all measurable, almost everywhere

bounded functions, 49
L2 .�/ Lebesgue space of all measurable, square integrable

functions, 54
L1 .�/ Lebesgue space of all d -valued functions with compo-

nents in L1 .�/, 67
lift�;p Lifting operator from the affine surface approximation

to the p-parametric one, 469
N D f1; 2; : : :g
N0 D f0; 1; 2; : : :g

n W � ! Sd�1 Field of unit normals, 52
n` W �

p

`
! Sd�1 Field of unit normals at p-parametric surface approxi-

mation, 474
Jm WD ˚

� 2 N3 j 81 � i � 3 W 1 � �i � m
�

	b�p Index set for the nodal points in the reference element
b� , 192, 204

k�kk , k�kk;�, k�kH k.�/ H k .�/-norm, (2.78), (2.81), (2.85), (2.91), (2.149),
(2.162)

.�; �/k , .�; �/k;�, .�; �/H k .�/ Associated inner product. Identified with the continu-
ous extension to dual pairings. The complex conjuga-
tion is applied to the second argument

j�jk , j�jk;�, j�jH k .�/ H k .�/-seminorm, which only contains the highest
derivative, (2.79)

� 2 Nd
0 Multi-index, subject to rules given in (2.67)

!d Surface measure of the unit sphere in Rd

� Panel, Definitions 2.2.9 and 4.1.2
G Surface mesh, Definition 4.1.2
PS Poincaré–Steklov operator, (3.127)
P �

m Space of all polynomials of two variables up to a total
maximal degree of m 2 N0 [see (4.23)]
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P �
m Space of all polynomials of two variables up to a maxi-

mal degree of m 2 N0 per component [see (4.67)]
Pm General term for P �

m or P �
m

Qm Space of all polynomials of three variables up to a
maximal degree of m 2 N0 per component [see (7.8)]

S; D; V; K; K 0; W Single layer and double layer potential and associated
boundary integral operators, see (3.4), (3.5), Defini-
tion 3.1.5, (3.6)

N Newton potential, (3.8)
S0
G; S

p
G;Ø, S

p;k
G , S

p;k
G;Ø Boundary element spaces, (4.20), (4.24), Defin-

ition 4.1.36
Re, Im Real part, imaginary part
Q WD Œ�1; 1�3 Reference element for Čebyšev interpolation
bQ D .0; 1/2 Unit square as reference element
bS W Unit triangle (with vertices .0; 0/|, .1; 0/|, .1; 1/|) as

reference element
b� 2

n
bQ; bS

o
General term for the reference element

† .
/ Set of sons of a cluster 
 , Definition 7.1.4
† .Q/ Set of eight congruent subcuboids that result when the

edges of Q are bisected

 .T / Spectrum of an operator T

Sd�1 d -Sphere, surface of the d -dimensional unit sphere
T Solution operator,73
Z, Z�, ZC, Z� Trace extension operators, Theorem 2.6.11, Nota-

tion 2.6.12
�0, �C0 , ��0 Trace operator and one-sided variants, Theorem 2.6.8
�1, �C1 , ��1 Conormal trace operator and one-sided variants,

Definition 2.7.6, Remark 2.7.10
e�1, e�1

C, e�1
� Modified conormal trace operator and one-sided vari-

ants, (2.107), Definition 2.7.6, Remark 2.7.10
[u] Jump in a function across the boundary, Œu� WD �C0 u �

��0 u
Œ�1u� Conormal jump in a function across the boundary,

Œ�1u� WD �C1 u � ��1 u

� Sign function, 
� D �1 for the exterior and 
� D 1

for the interior
SP W Steklov–Poincaré operator, (3.130)
supp .u/ Support of a function u, (2.74)
W `;1 .�/ Sobolev space of functions having all derivatives up to

the order ` in L1 .�/,55
�� W b� ! � Transformation of the reference element to the panel � ,

Definition 4.1.2
�affine

� Affine part of the transformation: �affine
� .Ox/ D A� C

m� Ox, Assumption 4.1.6
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Adjoint operator, 28
Admissibility condition, 408
Antisymmetry condition, 298
Approximation property, 385
Associated operator, 34

Banach space, 23
Bi-Lipschitz continuous, 49
Bidual space, 26
Bilinear form, 33
Boundary conditions

Dirichlet, 6
essential, 6
natural, 6
Neumann, 6

Boundary density, 103
Boundary element, 51
Boundary integral operators, 103
Bramble–Hilbert lemma, 248

Calderón identities, 159
Calderón projector, 157
Cauchy convergent, 23
Cauchy principal value, 294
Čebyšev

interpolation, 412
nodes, 411
polynomials, 411

Cg-method, 354
Clément interpolation operator, 262
Cluster, 405

box, 406
center, 406
diameter, 407
father, 406
geometric, 406
son, 406
tree, 405

Cluster method, 403
algorithm, 423
representation, 417

Coercive, 41
Collocation method, 195, 463
Compact, 30
Compact bilinear form, 35
Complete, 23
Completion, 23
Conormal derivative, 68, 69
Conormal jump, 71
Continuous embedding, 24
Coulomb potential, 104
Curl operator, 2

Degree of exactness, 322
Descent method, 361
Diffeomorphism, 49
Differential operator

elliptic, 66
Domain, 2
Double layer potential, 102, 105
Dual operator, 26
Dual space, 25

Elliptic, 39
Elliptic boundary value problems, 76

classical formulation, 76
exterior Dirichlet problem, 77
exterior mixed problem, 78
exterior Neumann problem, 78
exterior transmission problem, 78
interior Dirichlet problem, 76
interior mixed problem, 77
interior Neumann problem, 76

variational formulation, 79
exterior Dirichlet problem, 83
exterior mixed problem, 85

559
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exterior Neumann problem, 84
interior Dirichlet problem, 79
interior mixed problem, 80
interior Neumann problem, 80
transmission problem, 85

Elliptic differential operator, 66
Embedding

compact, 31
continuous, 24
dense, 24

Expansion system, 420
Extension operator, 66

Far-field coefficients, 418, 420
basis, 420

Fredholm alternative, 32
Friedrichs’ inequality, 61
Fundamental solution, 101

Gårding inequality, 43
Galerkin approximation, 223
Galerkin method, 193
Galerkin orthogonality, 195, 224
Galerkin product, 393
Galerkin projection, 196
Galerkin solution, 223
Gauss’ theorem, 67
Gauss–Seidel method, 370
Gaussian quadrature, 323
Gelfand triple, 30
Green’s formula

first, 67
representation, 106
second, 67, 70
third, 72

Hölder continuous, 48
Hanging nodes, 51
Helmholtz equation, 83, 168
Hermitian, 33
Hermitian operator, 34
Hilbert space, 24

Inf–sup condition, 35
Inner product, 24
Integral

Cauchy-singular, 294
improper, 294
Riemann, 296

Integral equation
1. kind, 9
2. kind, 10

Interpolation spaces, 46
Iteration

matrix, 371
nested, 381

Iterative methods, 370
convergent, 371

Jacobi method, 370, 372, 376
Jump of a function, 71
Jump relations, 115

Kernel function
Cauchy-singular, 294
weakly singular, 294

L-harmonic, 73
Lagrange polynomials, 410
Laplace equation, 3
Laplace operator, 82
Legendre polynomials, 414
Lemma

Bramble–Hilbert, 248
Lax–Milgram, 40

Lipschitz domain, 50

Matrix
adjoint, 354
Hermitian, 354
positive definite, 354

Measure
surface, 54
volume, 54

Mesh width, 190
Minimal residual method, 362
Modified conormal derivative, 68, 69
Multi-grid method, 374, 381

symmetric, 393
Multi-index, 48
Multipole expansion, 414

Near-field matrix, 417
Nested iteration, 381, 397
Newton potential, 103
Norm, 21
Normal derivative, 68
Normal jump, 71
Normal vector, 52
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Operator, 22
adjoint, 28
bounded, 22
compact, 31
dual, 26
Hermitian, 34
Laplace, 2
linear, 22
Poincaré–Steklov, 160
Steklov–Poincaré, 161
symmetric, 34

Orthomin, 362

Panel, 51
Parity condition, 298
Piecewise differentiable, 52
Piecewise smooth domain, 51
Poincaré inequalities, 62
Poincaré–Steklov operator, 160
Poisson equation, 6
Positive definite, 35
Potential

double layer, 102, 105
jump properties of, 115
mapping properties of, 112
Newton, 103
single layer, 102, 105

p-parametric surface approximation, 467
Precompact, 30
Projection, 28

orthogonal, 28
Prolongation, 379

Quadrature
degree of exactness, 322
Gaussian, 323
methods, 321
simple, 322
stability, 322

Quasi-uniform, 190
Quotient space, 23

Radial derivative, 77, 169
Reference elements, 51
Reflexive, 26

Regular, 188
Relative coordinates, 304
Rellich’s embedding theorem, 61
Restriction, 379
Riesz–Schauder theory, 32

Self adjoint, 28
Semi-separable, 415
Separable, 23
Sesquilinear form, 32
Shape-regularity, 190
Shift coefficients, 420
Single layer potential, 102, 105
Singularity function, 101
Smoothing iteration, 380
Smoothing method

adjoint, 393
Smoothing property, 383
Sobolev space, 55
Solution operator, 73
Sommerfeld radiation conditions, 77, 168
SOR method, 370
Spectral radius, 371
Spectrum, 31
Sphere, 52
Steklov–Poincaré operator, 74, 161
Support, 54, 64
Surface gradient, 249
Surface mesh, 51
Symmetric operator, 34

Trace extension, 66
Trace operator, 65
Two-grid method, 377, 380

Unisolvent, 205

V-cycle, 392

W-cycle, 389
Weak convergence, 30
Weak derivative, 55


