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Preface

Finite and boundary element methods belong to the most used numerical dis-
cretization methods for the approximate solution of elliptic boundary value
problems. Finite element methods (FEM) are based on a variational formu-
lation of the partial differential equation to be solved. The definition of a
conforming finite dimensional trial space requires an appropriate decomposi-
tion of the computational domain into finite elements. The advantage of using
finite element methods is their almost universal applicability, e.g. when con-
sidering nonlinear partial differential equations. Contrary, the use of boundary
element methods (BEM) requires the explicit knowledge of a fundamental so-
lution, which allows the transformation of the partial differential equation to a
boundary integral equation to be solved. The approximate solution then only
requires a decomposition of the boundary into boundary elements. Bound-
ary element methods are often used to solve partial differential equations
with (piecewise) constant coefficients, and to find solutions of boundary value
problems in exterior unbounded domains. In addition, direct boundary el-
ement methods provide a direct computation of the complete Cauchy data
which are the real target functions in many applications. In finite element
methods, the Cauchy data can be computed by using Lagrange multipliers
and by solving related saddle point problems. By combining both discretiza-
tion methods it is possible to profit from the advantages of both methods.
Although the aim of this book is to give a unified introduction into fi-
nite and boundary element methods, the main focus of the presentation is on
the numerical analysis of boundary integral equation methods. Therefore, we
only consider some linear model problems such as the potential equation, the
system of linear elasticity, the Stokes system, and the Helmholtz equation.
When considering the above mentioned elliptic boundary value problems it is
possible to describe and to analyze finite and boundary element methods in
a unified manner. After the description of the model problems, we introduce
the function spaces which are needed later. Then we discuss variational meth-
ods for the solution of operator equations with and without side conditions. In
particular, this also includes the formulation of saddle point problems by using
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Lagrange multipliers. The variational formulation of boundary value problems
is the basis of finite element methods, but on the other hand, domain varia-
tional methods are also needed in the analysis of boundary integral operators.
After the computation of fundamental solutions we define certain boundary
integral operators, and analyze their mapping properties such as bounded-
ness and ellipticity. For the solution of different boundary value problems we
then describe and analyze different boundary integral equations to find the
complete Cauchy data. Numerical discretization methods are first formulated
and investigated in a more abstract setting. Afterwards, appropriate finite
dimensional trial spaces are constructed, and corresponding approximation
properties are given. For the solution of mixed boundary value problems we
then discuss different finite and boundary element methods. In particular, we
investigate the properties of the associated linear systems of algebraic equa-
tions. For this, we also describe appropriate preconditioned iterative solution
strategies where the proposed preconditioning techniques involves both the
preconditioning with integral operators of the opposite order, and a hierarchi-
cal multilevel preconditioner. Since the Galerkin discretization of boundary
integral operators leads to dense stiffness matrices, fast boundary element
methods are used to obtain an almost optimal complexity of storage and of
matrix by vector multiplications. Finally, we describe domain decomposition
methods to handle partial differential equations with jumping coeflicients, and
to couple and parallelize different discretization techniques such as finite and
boundary element methods.

Boundary element methods are a well established numerical method for
elliptic boundary value problems as discussed in this textbook. For the sake
of simplicity in the presentation, we only consider the case of linear and self-
adjoint partial differential equations. For more general partial differential op-
erators one has to consider the fundamental solution of the formally adjoint
operator. While the existence of fundamental solutions can be ensured for a
large class of partial differential operators their explicit knowledge is manda-
tory for a numerical realization. For nonlinear partial differential equations
there also exist different approaches to formulate boundary integral equation
methods which are often based on the use of volume potentials to cover the
nonlinear terms.

While there exists a rather huge number of textbooks on finite element
methods, e.g. [5, 21, 31, 41, 57] just to mention a few of them, much less
is available on boundary integral and boundary element methods. For the
analysis of boundary integral operators related to elliptic partial differential
equations we refer to [3, 60, 81, 88, 102, 103] while for the numerical analysis
of boundary element methods we mention [39, 124, 126, 135]. In addition, the
references [9, 15, 19, 30, 61, 77| are on practical aspects of the use of boundary
element methods in engineering. In [74, 98, 125, 158] one may find recent
results on the use of advanced boundary element algorithms. For a detailed
description of fast boundary element methods starting from the basic ideas
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and proceeding to their practical realization see [117] where also numerous
examples are given.

Since the aim of this textbook is to give a unified introduction into finite
and boundary element methods, not all topics of interest can be discussed.
For a further reading we refer, e.g., to [51, 130] for hp finite element methods,
to [2, 8, 10, 153] for a posteriori error estimators and adaptive finite element
methods, and to [24, 69] for multigrid methods. In the case of boundary el-
ement methods we refer, e.g., to [17, 99, 100, 131, 146] for hp methods, to
[37, 38, 56, 128, 129] for a posteriori error estimators and adaptive methods,
and to [96, 111, 147] for multigrid and multilevel methods. Within this text-
book we also do not discuss the matter of numerical integration, for this we
refer to [55, 67, 87, 93, 115, 123, 132, 148] and the references given therein.

This textbook is based on lectures on the numerical solution of elliptic
partial differential equations which I taught at the University of Stuttgart, at
the Technical University of Chemnitz, at the Johannes Kepler University of
Linz, and at Graz University of Technology. Chapters 1-4, 8, 9, 11, and 13 can
be used for an introductory lecture on finite element methods, while chapters
1-8, 10, 12, and 13 are on the basics of the boundary element method. Chapter
14 gives an overview on fast boundary element methods. Besides the use as
a complementary textbook it is also recommended for self-study for students
and researchers, both in applied mathematics, in scientific computing, and in
computational engineering.

It is my great pleasure to thank W. L. Wendland for his encouragement
and support over the years. Many results of our joint work influenced this
book. Special thanks go to J. Breuer and G. Of, who read the original German
manuscript and made valuable comments and corrections. This text book was
originally published in a German edition [140]. Once again I would like to
thank J. Weiss and B. G. Teubner for the fruitful cooperation.

When preparing the English translation I got many responses, suggestions
and hints on the German edition. I would like to thank all who helped to
improve the book. In particular I thank G. Of, S. Engleder and D. Copeland
who read the English manuscript. Finally I thank Springer New York for the
cooperation and the patience when preparing this book.

Graz, August 2007 Olaf Steinbach
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1

Boundary Value Problems

In this chapter we describe some stationary boundary value problems with
self-adjoint partial differential operators of second order. As simple model
problems we consider the scalar potential equation and the Helmholtz equa-
tion, while for a system we consider the equations of linear elasticity and, as
for incompressible materials, the Stokes system.

1.1 Potential Equation

Let 2 ¢ R? (d = 2,3) be a bounded and simply connected domain with
sufficiently smooth boundary I' = 9f2, and n(x) is the exterior unit normal
vector which is defined almost everywhere for € I'. For x € {2 we consider a
self—adjoint linear partial differential operator of second order which is applied
to a scalar real valued function wu,

d
(Lu)(z) = —Uzzlaa% [aﬂ(x)aiu(x)} + ag(x)u(z) . (1.1)
The coefficient functions aj;(x) are assumed to be sufficient smooth satisfying
a;j(z) = aj(z) for all 4,5 = 1,...,d, € (2. Partial differential operators
of the form (1.1) are used to model, for example, the static heat transfer,
electrostatic potentials, or ideal fluids.

For a classification [79] of scalar partial differential operators L we consider
the real eigenvalues Ag(x) of the symmetric coefficient matrix

Alw) = (ai;(2))!,_,, =€

The partial differential operator L is called elliptic at € 2 iff Ag(z) > 0 is
satisfied for all kK = 1,...,d. If this condition is satisfied for all € {2, then L
is elliptic in £2. If there exists a uniform lower bound Ay > 0 satisfying

Ae(z) > Ao fork=1,...,dand for all z € £, (1.2)

the partial differential operator L is called uniformly elliptic in {2.
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The starting point for what follows is the well known theorem of Gauss
and Ostrogradski, i.e.

[ ami@is = [t wmeds,, =1
0

r

where

VM f(z) = lim  f(F) forz e =00 (1.3)
23z—zel’

is the interior boundary trace of a given function f(z), z € £2.
For sufficiently smooth functions u, v we consider f(z) = wu(z)v(z) to
obtain the formula of integration by parts,

/U(Js) 8iiu(x)dx = /’yéntu(x)%i)mv(x)ni(x)dsx—/u(x) aiiv(x)da:. (1.4)

0 r 2

When multiplying the partial differential operator (1.1) with a sufficiently
smooth test function v, and integrating the result over (2, this gives

J (Lu)(2)o(w)dz = Z_ ! % [aﬁ%%u(x)} o(2)dz .

Applying integration by parts, see (1.4), we obtain

/( x)dx = Z /aﬂ )(“)?cj v(z)dx

17} hi=1lg
0
Y [ o) )] e
i,j= 1[' v
and therefore Green’s first formula
o) = [Lo@p@ds+ [uites, (1)
0 T

by using the symmetric bilinear form

Z / j’L 8361 )%U(I)d% (16)

1,]= 19

as well as the interior conormal derivative

d
- 0
t . - ~
YMu(z) = 93515112661" i]§=1 nj(x)aji(x)a—giu(m) forz eI (1.7)
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As in (1.5) we find, by exchanging the role of v and v, the analogue Green’s
formula

a(u,v) = a(v,u) = /(Lv)(w)u(x)dw+/’y%ntv(x)'yéntu(x)dsx.
2 T

Combining this with (1.5) we therefore obtain Green’s second formula

Jwn@us+ [ tu@niowds, (1.8)

(9] r
~ [wo@uta)de + [Pt utds,
(9] r

which holds for arbitrary but sufficiently smooth functions u and v.

Ezample 1.1. For the special choice a;j(x) = 0;; where ¢;; is the Kronecker
delta with §;; = 1 for ¢« = j and d0;; = 0 for ¢ # j, the partial differential
operator (1.1) is the Laplace operator

d_ 92
(Lu)(x) = —Au(x) = —Z aaxzu(x) for z € RY. (1.9)

The associated conormal derivative (1.7) coincides with the normal derivative

0
ong

"/}ntu(x) = u(z) := n(z) - Vu(x) forxel.

Let ' = T'p Uy UTR be a disjoint decomposition of the boundary
I' = 012. The boundary value problem is to find a scalar function satisfying
the partial differential equation

(Lu)(z) = f(z) forx e 02, (1.10)
the Dirichlet boundary conditions
Nty (z) = gp(x) fora € I'p, (1.11)
the Neumann boundary conditions
Yty (z) = gy(z) forz € Iy, (1.12)
and the Robin boundary conditions
Vit (z) + k(2)yiMu(z) = gr(z) forz € Iy (1.13)

where f, gp, gn, gr, and k are some given functions. The boundary value
problem (1.10) and (1.11) with I" = I'p is called a Dirichlet boundary value
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problem, while the boundary value problem (1.10) and (1.12) with I' = I'y is
called a Neumann boundary value problem. In the case I' = I'g the problem
(1.10) and (1.13) is said to be a Robin boundary value problem. In all other
cases we have to solve boundary value problems with boundary conditions of
mixed type. Note that one may also consider nonlinear Robin type boundary
conditions [119]

() + Gy, z) = gr(z) forz e Iy
where G(v,-) is some given function, e.g. G(v,-) = v> or G(v,-) = v*.
In the classical approach, the solution of the boundary value problem
(1.10)—(1.13) has to be sufficiently differentiable, in particular we require

ueC*)NCHRUINUTR)NC(RUTD)

where we have to assume that the given data are sufficiently smooth. For
results on the unique solvability of boundary value problems in the classical
sense we refer, for example, to [92].

In the case of a Neumann boundary value problem (1.10) and (1.12) addi-
tional considerations are needed to investigate the solvability of the boundary
value problem. Obviously, vy (z) = 1 for = € (2 is a solution of the homoge-
neous Neumann boundary value problem

(Lvy)(z) = 0 forz € 2, 'yintvl(a:) =0 forzel. (1.14)

Applying Green’s second formula (1.8) we then obtain the orthogonality

/(Lu)(gﬁ)dac—i—/ﬂntu(at)dsaC =0. (1.15)

2 r

When considering the Neumann boundary value problem (1.10) and (1.12),
(Lu)(z) = f(x) forze 2, yiMty(z) = gy(z) forz €T, (1.16)

and using the orthogonality (1.15) for the given data f and gy, we have to
assume the solvability condition

/f($)dx+/gN($)dSz =0. (1.17)
2

r

Since there exists a non—trivial solution vy (z) = 1 for « € {2 of the homoge-
neous Neumann boundary value problem (1.14), we conclude that the solution
of the Neumann boundary value problem (1.16) is only unique up to an ad-
ditive constant. Let u be a solution of (1.16). Then, for any a@ € R we can
define

u(z) = u(x)+a forxe R
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to be also a solution of the Neumann boundary value problem (1.16). The
constant o € R is uniquely determined when requiring an additional scaling
condition on the solution u of (1.16), e.g

/u(x) dr =0, or /’y(i)ntu(x) ds; = 0.

2 r

1.2 Linear Elasticity

As an example for a system of partial differential equations we consider the
system of linear elasticity. For any x € {2 we have to find a vector valued
function u(x) with components u;(x), i = 1,2, 3, describing the displacements
of an elastic body where we assume a reversible, isotropic and homogeneous
material behavior. In particular, we consider the equilibrium equations

_Zax oij(u,x) = fi(x) forz e 2,i=1,23. (1.18)

In (1.18), 0;j(u, x) are the components of the stress tensor which is linked to
the strain tensor e;;(u, z) by Hooke’s law,

E
oij(u, ) = %) 8ij > exn(u, ) + T (u, ) (1.19)
e

(1+v

for x € (2, 4,7 = 1,2,3, and with the Young modulus £ > 0 and with the

Poisson ratio v € (0, %) Moreover, when assuming small deformations the

linearized strain tensor is given by

8xiu] . (9:];‘]'

1
eij(u,x) = 5 { uz(x)} forxe 2, i,7=1,2,3. (1.20)

Multiplying the equilibrium equations (1.18) with a test function v;, integrat-
ing over (2, and applying integration by parts, this gives for i =1,2,3

([ fi(@)vs(z)de = — J ]z; a%oij(g, x)vi(x)ds
_ / iaij(g,z)%vi(x)dz - / S 0 (@) (w, 2)vi(x)ds,
J i J

r J=t

Taking the sum for i = 1,2,3 we obtain Betti’s first formula

/Z oz, 0 (u, x)vi(x)dr = a(u,v) — /’y(l)ntv(:r) 'ymt (x)ds, (1.21)

7,7=1 T
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with the bilinear form

and with the conormal derivative

( mt

g oij(u, x)n;(x

foreel,i=1,2,3.

(1.22)

(1.23)

Inserting the strain tensor (1.20) as well as Hooke’s law (1.19) into the equi-
librium equations (1.18) we obtain a system of partial differential equations

where the unknown function is the displacement field u. First we have

3 3
0 .
Zekk(%x) = Z%uk(x) =: divu(z)
k=1 k= k
and therefore
Ev . E 0
oii(u, ) = —(1 )= 20) divu(z) + 70 l/a—xiui(x),
E 0 0 o

oij(u, ) = m [a—xlu](x) + 6—%111(:1:)} for i # j.

From this we obtain

E Ev

Aui(z) —

—divu(z)

C2(1+v)

[(1 +)(1—2v)

N E 0
20 +v)| Oz,

for x € £2, i = 1,2,3. By introducing the Lamé constants

Ev
>\:

I +v)(1—2v)

E

S i)

we finally conclude the Navier system

—pAu(z)

- (A + plgraddivu(z) = f(z)

for x € £2.

fi(x)

(1.24)

(1.25)
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The bilinear form (1.22) can be written as

a(u,v) E /Uljuxe”vx)dx

1,j= 1_()
3
=24 Z eij(u, x)e;j(v, x)dr + /\/divg(x) divu(z)dz (1.26)
o =l 1}
implying the symmetry of the bilinear form a(-, ).
The first component of the conormal derivative (1.23) is

mtf E o1 (u, x)n;(z

= [)\ divu(z) + Q,La‘zlul(x)} ny (@) + {6‘21@&2@) + aiul(x)] ne ()
e {821@63(:5) + (fmul(x)] ns ()

0 0

= Mdivu(z)ni(z) +2u a%x“l () +p [axluQ(x) - amul(x)} na(x)

i [ 881 s(z) — ;xgul(x)] n3(z).

From this we obtain the following representation of the boundary stress op-
erator for x € I',

’yintf( ) = Adivu(z)n(z) + 2u 86 w(z) + pn(z) X curl u(x). (1.27)

x

In many applications of solid mechanics the boundary conditions (1.11) and
(1.12) are given within their components, i.e.

w(l)ntul(x) =gp,i(z) forxelp,,

(y"u) () =

where ' = TDJ UTNJ‘ fori=1,2,3.
The non—trivial solutions of the homogeneous Neumann boundary value
problem

P (1.28)
N,i(x) for z € FN,i>

—pAu(z) — (A + p)graddivu(z) =0 forz € 2, ~My(x)=0 forzel
are given by the rigid body motions v, € R where

1 0 0 —T9 0 3
R = span o, {1,110, 21 |, —z3 |, 0 . (1.29)
0 0 1 0 T2 —I
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Note that Betti’s first formula (1.21) reads
0
w35 Lt [ Ao,
0 —0ij (v, x)ui(x d;v—}—/’y(l,nt ) Ty (2)ds,
;i
T

when exchanging the role of v and v. From the symmetry of the bilinear form
a(-,-) we then obtain Betti’s second formula

/ 5 oy (e (@ds + [ sl atodss (1.30)

1,j=1 I

> e + [ ) .
r

0 1,j=1

Inserting the rigid body motions v, € R into Betti’s second formula (1.30)
this gives the orthogonality

3
a .
_/ Z %Uz‘j(u,x)vk,i(x)da:+/7(1Jntv () Ty (2)ds, = 0
0 b=l J

for all v, € R. Hence, for the solvability of the Neumann boundary value
problem
—pAu(z) — (A + p)grad divu(z) = i( x) for x € (2,
Aty (z) = gyx) forzel

we have to assume the solvability conditions

/gk(x)Ti(x)dx+/7(l)ntvk( )’ gy(@)dsy =0 forally, € R (1.31)

2 r

Note that the solution of the Neumann boundary value problem is only unique
up to the rigid body motions (1.29). A unique solution can be defined when
considering either nodal or scaling conditions in addition.

The second order system (1.25) of linear elasticity can also be written as
a scalar partial differential equation of fourth order. By setting

A+
A+ 24

u(z) = Aw(x) — graddivw(z) forz € 2 (1.32)
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from the equilibrium equations (1.25) we obtain the scalar Bi-Laplace equa-
tion
—pdNw(z) = f(z) forax e £ (1.33)

When considering a homogeneous partial differential equation with f = 0
the solution of (1.25) can be described by setting wy = ws = 0 where the
remaining component w; = 1) is the solution of the Bi-Laplace equation

~A%)(x) = 0 forx € .

Then,
. A+ pu 92
n(®) 1= () - $ g (),
o Afp 02
U2(x) T _)\ + 2[1, 8xlax2w(x)7
o Atp 0

is a solution of the homogeneous system (1.25). The function ¢ is known as
Airy’s stress function.

1.2.1 Plane Elasticity

To describe problems of linear elasticity in two space dimensions one may con-
sider two different approaches. In plain stress we assume that the stress tensor
depends on two space coordinates (x1,z2) only, and that the zz—coordinates
of the stress tensor disappear:

0'@‘(.131,%‘2,1‘3) = O'ij(xl,l‘g) for i,j = 1,2;
o3i(z) = oi3(x) =0 fori=1,2,3.

Applying Hooke’s law (1.19) we then obtain
esi(u, ) = eg(u,x) =0 fori=1,2 (1.34)

and
v

1—v

The resulting stress—strain relation reads

esz(u, ) = — ler1(u, ) + egn(u, x)]. (1.35)

E
oij(u,z) = 67,] Zekk u,x) T —e;i(u, x)

(1+1/
for x € 2 and 7,5 = 1,2. With

ui(xl,xg,xg) = ui(xl,xg) fori:1,2
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we further obtain from (1.34)
uz(v1, 2, 3) = us(3).

In addition, (1.35) gives

0 v 0
6_333u3(x3) =1 [8—331111(5517%2) + 8_31:2”2(:61’%2)} )
and therefore
v 0 0
uz(z) = — T [a—mlul(ﬂﬁ) + a—xzuz(x)} x3.

To ensure compatibility with (1.34) we have to neglect terms of order O(z3)
in the definition of the strain tensor e;;(u,«). By introducing the modified
Lamé constants

~ Ev — E

B A (e

we then obtain a system of partial differential equations to find the displace-
ment field (ug,uq) such that

—iAu(z) — (X + fi)grad divu(z) = f(z) forze 2 CR.

In plain strain we assume that all components e;;(u, z) of the strain tensor
depend only on the space coordinates (x1,x2) and that the zs—coordinates
vanish:

6@'(@,951,1’2,1’3) - eij(gawlaxZ) fOI' 7’7] = 1727

esi(u,z) = ejz(u,x) =0 fori=1,2 3.
For the associated displacements we then obtain
ui (21,22, x3) = ui(x1,29) fori=1,2, ws(xr) = constant,
and the stress—strain relation reads

Ev 2 E
7] 3 = 62 3
RICE (1+v)(1—2v) szzle’“’“(g DT

eij(u, )

for i, 7 = 1, 2 yielding the equilibrium equations (1.25) to find the displacement
field (uq,us). Obviously,

osi(u,x) = o3(u,x) =0 fori=1,2,

and
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Ev
o33(u, ) = m le1n(u, ) 4 eaa(u, x)] .

With

o11(u, z) + 022 (u, ) = m le11(u, x) + ezz(u, x)]

we finally get
o33(u, ) = v [o11(w, z) + o22(u, )] .

In both cases of two—dimensional plane stress and plane strain linear elasticity
models the rigid body motions are given as

() Q(2)) o

For the first component of the boundary stress we obtain for x € I

1nt
’71 _ E O'1j u,T n]

[A divu(z) + QM%ul(x)} ni(z) 4+ p {i

0
Er us () + 3_x2u1(x)] no(x)

= Adivu(z)ni(z) + 2p

0
ong 1

(@) + [a%u

and for the second component

(A w)a () = Adivaa) na(e) + 20 5 us(a)

x

- [ 882 L(z) — a%ug(x)} ().

If we define for a two—dimensional vector field v the rotation as

curly = i1}2( )—ivl( ),

81'1 8x2

and if we declare

a
Qxa::a( aQ)’ QERQ,aER,
—a1

we can write the boundary stress as in the representation (1.27),

,ﬁntu(!@ = Mdivu(z)|n(z) + 2u 88 w(x) + pn(z) x curlv(z), zel.
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1.2.2 Incompressible Elasticity

For d = 2,3 we consider the system (1.25) describing the partial differential
equations of linear elasticity. Here we are interested in almost incompressible
1

materials, i.e. for v — 5 we conclude A — oo. Hence we introduce

p(z) == —( A+ p)divu(z) forxz e 2
to obtain from (1.25)

—pAu(z) + Vp(z) = f(x), divu(r) = —ﬁp(m) for x € 0.

In the incompressible case v = % this is equivalent to

—pAu(x) + Vp(x) = f(z), divu(zr)=0 forze 2 (1.37)

which coincides with the Stokes system which plays an important role in fluid
mechanics.

1.3 Stokes System

When considering the Stokes system [91] we have to find a velocity field u and
the pressure p satisfying the system of partial differential equations

—p Au(z) + Vp(z) = f(z), divu(z) =0 forze 2 cCR (1.38)

where p is the viscosity constant. If we assume Dirichlet boundary conditions
u(z) = g(z) for x € I', integration by parts of the second equation gives

0= / divu(z) dr = / n(2)] T u(z)dss = / (@) g(@)dse.  (1.39)
2 r

r

Therefore, the given Dirichlet data g(z) have to satisfy the solvability condi-
tion (1.39.) Moreover, the pressure p is only unique up some additive constant.

When multiplying the components of the first partial differential equa-
tion in (1.38) with some test function v;, integrating over (2, and applying
integration by parts this gives

/fz(x)vz(m)dx = —,u/Aui(x)vi(x)dx—&—/aip(x)vi(x)dx (1.40)
2 Q o

%
02 r

— / Aus(2)vs () — / p(x)%vi(x)dﬂc—k / p(@)ns()vs (z)dss.
2
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Moreover we have

0 0 0
a_xj [eij(% r)vi(w)] = vi(z) 87@@‘(% x) + eij(% ) a—%vi(ﬂv),

as well as
d P d

Y ewa)—ui(z) = Y elu w)e; (v @).
ij—1 Oz, ij—=1

For d = 3 and i = 1 we compute

’ 0 0 d d
Z 8_ — a—xlell(g,x) —+ 6_],‘2612(u’ 1’) + 6_];3613(g7 l’)
H? 10 0 o

2013 | 0xy PV T g T

1 1 0 0 0 0
- 5Aul(gc) + 5_8:r1 [_6331 uy(x) + 925 uz(z) + 92a ug(x)]
1 0

Corresponding results hold for i = 2,3 and d = 2, respectively. Then we obtain

N SN d 0
Y g lawalui@] = 37 genwo)uila) + 3 exlusa) 5 -vila)
i,7=1 i,j=1 i,j=1
d
1
=3 Z [Aul(x) + oz, dlvg(ac)} vi(x) + Z eij(u, x)e;j(v, x)
i=1 ij=1
This can be rewritten as
d d i 5
_ Z Aug(x)v;(z) =2 Z eij(u, z)e;;(v, ) — 2 Z a—% leij(w, x)vi(x)]
i=1 i,j=1 i,j=1
4 0
+ ;vi (x) oz, div u(x).

Taking the sum of (1.40) for i = 1,...,d, substituting the above results, and
applying integration by parts this gives
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d i)
Z v (x) (%ip(ﬂc) dx

i=1

R —
\/@\
=

d
Ti( d:c_—,u/zw )Au;(z)dx +
=1

b\

ij=1 dg=1 """
d d o
b [ S uta) g-divuta)de + [ 3 vila) 5 -pla)do
o =1 o =1
d d
— 2'[1,/ Z ej(’ll, x)ew(v .’,U dl’ — 2,UJ/ Z n_] 61] u,xr 70 UZ( )dsﬁf
0 Bi=1 T 6=l
—,u/divu( Ydivo(z)de + p | divu(e T’ymt (z)ds,
Q T
/p )divu(z )dw—i—/ (x )Q(ﬂf)—r%l)nt”( )ds.
Q r

Hence we obtain Green’s first formula for the Stokes system

amm!i[mmm+£ﬂ4wmm (1.41)

d
—|—/( Ydivo(x /Z (u, p)vi(z)ds,

9]

with the symmetric bilinear form

d
a(u,v) := 2u/ Z eij(y,x)eij(y,x)dx—u/divg(x) divo(z)dz, (1.42)
n =l %}
and with the conormal derivative
d
ti(w,p) = —[p(x) + pdivau(@)|ni(z) + 20y  eij(u, z)n;(x)
j=1

defined for x € I and i = 1,...,d. For divergence—free functions u satisfying

divu = 0 we obtain, as for the system of linear elastostatics, the representation

Hu,p) = —p(x)n(z) + 2p o—u(r) + pn(z) x curlu(z), wel. (1.43)

Ong

Besides the standard boundary conditions (1.28) sliding boundary conditions
are often considered in fluid mechanics. In particular, for x € I's we describe
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non—penetration in normal direction and no adherence in tangential direction
by the boundary conditions

n(@) u@) = 0, tp(@) = t) - [n(z) " t)ln(z) = 0.

1.4 Helmholtz Equation

The wave equation

1 02 d
describes the wave propagation in a homogeneous, isotropic and friction—free
medium having the constant speed of sound ¢. Examples are acoustic scatter-
ing and sound radiation problems.

For time harmonic acoustic waves

U(z,t) = Re (u(z)e”™")

with a frequency w we obtain a reduced wave equation or the Helmholtz
equation
—Au(z) — K*u(x) = 0 forz € R? (1.44)

where u is a scalar valued complex function and k = w/c > 0 is the wave
number.
Let us first consider the Helmholtz equation (1.44) in a bounded domain
0 c R,
—Au(z) — K*u(x) = 0 forx e .

Multiplying this with a test function v, integrating over {2, and applying
integration by parts, this gives Green’s first formula

a(u,v) = /[—Au(x) — k?u(x)]v(z)dr + /fy%ntu(x)'y(i)ntv(x)dsm (1.45)
0 r
with the symmetric bilinear form

a(u,v) = /Vu(m)Vv(x)dx—k2/u(m)v(x)dx.
Q

9}

Note that vi™u = n(z) - Vu(z) is the normal derivative of v in z € I
Exchanging the role of v and v we obtain in the same way

a(v,0) = [ [-Au(a) - Bo(@u(@ido+ [ o(onitu(e)dss,
(9] I
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and by using the symmetry of the bilinear form a(-,-) we conclude Green’s
second formula

[1-2u(@) - Ku(a)o(eyde + / Bty ()it () ds, (1.46)

0

- / — Av() — K2o(a)u(z)ds + / i ()0 (1) ds,.
0 I

For any solution u of the Helmholtz equation (1.44) we find from (1.45) by
setting v =

[ Ivu@Pds -1 [u@Pde = [t u@sda@ds,
Q Q r
Next we consider the Helmholtz equation (1.44) in an unbounded domain,
—Au(z) — KPu(z) = 0 for x € 2° =R\
where we have to add the Sommerfeld radiation condition
x
]

For xg € {2 let Br(wo) be a ball with center ¥y and radius R such that
2 C Bgr(zp) is satisfied. Then, 2z = Bgr(x)\{? is a bounded domain for
which we can write (1.47) as

/|Vu )|?dx — k2/|u )|?dx

2r

- / At ()@ ua)ds, + / Ay () () ds,

-Vu(z) —iku(z)| =

—0 (| 12> as |z] — o, (1.48)

taking into account the opposite direction of the normal vector on I'. This
clearly implies

Im /’y}m ()" u(z)ds, = Im/ Xy () u(x)ds, = O(1).
9Br(zo)

On the other hand, from the Sommerfeld radiation condition (1.48) we also
conclude the weaker condition due to Rellich,

lim /
R—o

9BRr(z0)

Vint (x )—zk’ymt (x)‘zdsgc = 0. (1.49)
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From this we find

0= lim /
R—o0

OBRr(x0)

it 2 it 2
Rlim / ot u(x)' dsy + k? / T u(x)' ds,
OBR(0) OBR(7o)

int int 2
tu(e) — ki u(e)| ds,

ﬁﬁm/ﬁmﬁﬁ%mﬁx

OBRr(z0)

t oy t oy
Rlim / i (a:)’ dsm+k2/ i u(a:)’ dsy
OBR(0) OBR(zo)

_lem/ ext ext ( )dS;E

and therefore

ZkIm/ ext,, ext u(w)ds,

= lim /
R—o

int 2
Yo tu(x)| dsy| >0

¢ 2
'7?1 (x)‘ d3w+k2/

IBR(zo0) OBR(z0)
implying
2
lim / v(l)ntu(x)‘ ds, = O(1)
R—o0
0BR(z0)
as well as .
lu(z)] = O (ﬂ) as |z| — oo. (1.50)
x

1.5 Exercises
1.1 For x € R? we consider polar coordinates

x1 =a1(r,p) =rcosp, xo=mxa(r,p) =rsing forr >0, ¢ €l0,2n).
Then, a given function u(x) can be written as

U($1,IE2) = U(iIYl(T, CP)?xQ(Ta QD)) - 6(7”, @)
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Express the gradient of @(r, @) in terms of the gradient of u(z1,x2), i.e. find
a matrix J such that

Virpyu(r, ) = JVu(z).
Derive a representation of V,u(z) in terms of V. ,yu(r, ¢).
1.2 Rewrite the two—dimensional Laplace operator

0? 0?
Au(z) = Wu(x) + Wu(x)
1 2

when using polar coordinates.

1.3 Prove that for any o € Ry and  # 0

u(xz) = u(r,p) = r*sin(ap)
is a solution of the two—dimensional Laplace equation.

1.4 Rewrite the three-dimensional Laplace operator

02 0? 0?
Au(z) = @u(m) + Wu(x) + Wu(x) for x € R?
1 2 3

when using spherical coordinates
x1 =rcospsing, xo=rsingsind, x3=rcosy
where r > 0, ¢ € [0,2m), ¥ € [0, 7].
1.5 Consider the Navier system
—pAu(r) — (A + p)grad divu(z) = f(x) forx e R

Determine the constant o € R such that the solution of the Navier system

u(z) = Aw(x) + agrad divw(x)
can be found via the solution of a Bi-Laplace equation.

1.6 Compute all eigenvalues A\ and associated eigenvectors uy, of the Dirichlet
eigenvalue problem

—up(z) = dug(z) forz € (0,1), wuk(0)=ux(l)=0.



2

Function Spaces

In this chapter we introduce the most important function spaces as needed
for the weak formulation of boundary value problems. For a further reading
we refer to [1, 103, 106].

2.1 The Spaces C*(£2), C**(2) and L,(£2)

For d € N we call a vector a = (ay,...,aq), @; € Ny, multi index with the
absolute value |a| = oy + - - + a4 and with the factorial a! = aq!... 4!, For
2 € R? we can therefore write

[ J— al... ad
% = xf gy

If w is a sufficient smooth real valued function, then we can write partial
derivatives as

prat) = (L) () o

Let 2 C R? be some open subset and assume k € Ny. C*¥(§2) is the space of
functions which are bounded and k times continuously differentiable in 2. In
particular, for u € C*(§2) the norm

uller o) = Z sup |D%u(x)]
|a‘§kz€()

is finite. Correspondingly, C'*°({2) is the space of functions which are bounded
and infinitely often continuously differentiable. For a function u(z) defined for
x € (2 we denote

suppu = {x € 2 : u(z) # 0}
to be the support of the function u. Then,
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C5o(2) == {ueC>™(2) : suppu C 2}

is the space of C'*°({2) functions with compact support.
For k € Ny and x € (0,1) we define C**(£2) to be the space of Holder
continuous functions equipped with the norm

[D%u(z) — Du(y)|
fulloxnca) = lulloriay + 3 sup !
la|=k TYEL1FY |z -yl

In particular for k£ = 1 we have C*1(£2) to be the space of functions u € C*(£2)
where the derivatives D*u of order |«| = k are Lipschitz continuous.
The boundary of an open set 2 C R? is defined as

I':= 0N =0nR\N).

We require that for d > 2 the boundary I' = 92 can be represented locally
as the graph of a Lipschitz function using different systems of Cartesian coor-
dinates for different parts of I', as necessary. The simplest case occurs when
there is a function v : R%~! — R such that

2:={ze R? : 24 < y(Z) for all Z = (21,...,24_1) € Rd_l}.
If ~(+) is Lipschitz,
V(@) —1@) < L|z—7| forallz,yeR"!
then {2 is said to be a Lipschitz hypograph with boundary
I'={zeR:z,=77) forallzeR¥'}.

Definition 2.1. The open set 2 C R?, d > 2, is a Lipschitz domain if its
boundary I' = 02 is compact and if there exist finite families {W;} and {£2;}
having the following properties:

i. The family {W;} is a finite open cover of I', i.e. W; C R? is an open
subset and I' C U;W;.

it. Fach (2; can be transformed to a Lipschitz hypograph by a rigid motion,
i.e. by rotations and translations.

iii. For all j the equality W; N 2 = W; N §2; is satisfied.

The local representation of a Lipschitz boundary I" = 942, i.e. the choice
of families W; and 2, is in general not unique. Examples for non-Lipschitz
domains are given in Fig. 2.1, see also [103].

If the parametrizations satisfy v € C*(R9~1) or v € C**(R4"1) we call
the boundary & times differentiable or Holder continuous, respectively. If this
holds only locally, we call the boundary piecewise smooth.
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Fig. 2.1. Examples for non—Lipschitz domains.

By L,(£2) we denote the space of all equivalence classes of measurable
functions on {2 whose powers of order p are integrable. The associated norm
is

1/p

lullz,2) = /|u(x)|pdx for1 <p < oo.
Q

Two elements u, v € L,({2) are identified with each other if they are different
only on a set K of zero measure p(K) = 0. In what follows we always consider
one represent u € L,(§2). In addition, L., ({2) is the space of functions u which
are measurable and bounded almost everywhere with the norm

ullr.. = esssup {|u(z)|} = inf sup |u(z)]|.
fullcoy 5= essup (@)} = inf | sup futa)

The spaces L,(f2) are Banach spaces with respect to the norm || - ||z, 0)-
There holds the Minkowski inequality

lu+vllr,@ < lulle,@) + v, foralluve Ly(£). (2.1)
For u € L,(£2) and v € L,(2) with adjoint parameters p and g, i.e.

1
-+
p

:1’

Q| =

we further have Holder’s inequality

/|u(:c)v(x)|da: < ullp, ) llvliz,@)- (2.2)
0]
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Defining the duality pairing

(u,v) g == /u(a:)v(x)da:,
2

we obtain

1 1
||UHLQ(Q) = sup M forl<p<oo, —-+-=1
o£ueL, () lullz, (@) P oq

In particular, L,({2) is the dual space of L,(2) for 1 < p < oco. Moreover,
Lo (£2) is the dual space of L1(£2), but Lq(£2) is not the dual space of L. (£2).

For p = 2 we have Lo({2) to be the space of all square integrable functions,
and Hoélder’s inequality (2.2) turns out to be the Cauchy—Schwarz inequality

/IU(I)U(z)IdI < lullo @) 1vllza(2)- (2:3)
i0)

Moreover, for u,v € Ly({2)we can define the inner product

<U7U>L2(Q) = /u(x)v(:v)dx

0

and with
(u,u) Loy = llull,(m) forallu e Ly(£2)

we conclude that Lo(£2) is a Hilbert space.

2.2 Generalized Derivatives and Sobolev Spaces

By L (£2) we denote the space of locally integrable functions, i.e. u € Ly<(2)
is integrable with respect to any closed bounded subset K C (2 .

Ezample 2.2. Let 2 = (0,1) and let u(x) = 1/z. Due to

1 1
1 1
/u(az)dw =lim [ —dzx = limln—- = o
e—0 x e—0 £
0 €

we find u ¢ L,(§2). For an arbitrary closed interval K := [a,b] C (0,1) = {2
with 0 < a < b < 1 we obtain

b

1
/u(m)dw = /fdx = lné < 00
T a

K a

and therefore u € Ly<(£2).
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For functions ¢, € C§°(£2) we may apply integration by parts,

13}
ﬁxl x)dr = —/(p(m) 8xiw(x) dx.

0

Note that all integrals may be defined even for non—smooth functions. This
motivates the following definition of a generalized derivative.

Definition 2.3. A function u € L{*(£2) has a generalized partial derivative
with respect to x;, if there exists a function v € L{*(§2) satisfying

/v(w)go(x)dx = —/u(x) aicp(:c)dx for all p € C§°(12). (2.4)

(x) :==v(x).

Again we denote the generalized derivative by

The recursive application of (2.4) enables us to define a generalized partial
derivative D*u(z) € Ly<(£2) by

/[D“u(x)]go(m)dx = (=1)l /u(m)D“gp(m)dm for all ¢ € C3°(£2). (2.5)

2 [0}

Ezample 2.4. Let u(x) = |z| for x € 2 = (—1, 1). For an arbitrary ¢ € C§°(£2)
we have

’—‘\o

1
6 8
0

= j(p(x)dx 1¢(x)dx = /1s1gn( ) p(x)de
-1 0 -1

with

) 1 forz >0,
sign(x) = -1 forz<0

The generalized derivative of u(z) = |z| is therefore given by

7 u(e) = sign(z) € L (2).

To compute the second derivative of u(z) = |z| we obtain
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1 0 1
. 0 0 0 B
/81gn(x) pa /8_ der/ax(p(x)dx = —2(0).
—1 —1

However, there exists no locally integrable function v € L<({2) satisfying

/ o)) = 20(0)

for all ¢ € C§°(£2). Later we will find the generalized derivative of sign(z) in
the distributional sense.

For k € Ny we define norms

1/p
Z ||D“u||ip(9) for 1 < p < oo,
lullwe (@) = lal<k (2.6)
max || D%z (o) for p = oo.

o] <k

By taking the closure of C'*°(£2) with respect to the norm || - HW;«( o) we define
the Sobolev space

WE(0) = T (5) e, (2.7)

In particular, for any u € W;f(()) there exists a sequence {¢;}jen C C(£2)
such that

Jim flu —jllws ) = 0.

Correspondingly, the closure of C§°(§2) with respect to || - ||W§(Q) defines the
Sobolev space

W) = Ce(e) b, (2.8)
The definition of Sobolev norms ||- [y« () and therefore of the Sobolev spaces

(2.7) and (2.8) can be extended for any arbitrary s € R. We first consider
0<seRwiths=k+rand k €Ny, k€ (0,1). Then,

1/p
lullws ey = { el o) + 1y o) }

is the Sobolev—Slobodeckii norm, and

D%y D%y P
|u|P Z //| |d+pn( )| dmdy

lel=k & o

is the associated semi—norm. In particular for p = 2 we have W5 ({2) to be a
Hilbert space with inner product
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(U, V) wp(o) = Z /Dau(x)Dav(x)d:E

lal<k o
for s = k € Ny and
(u, V)ws(2) = (U V) wr) (2.9)
(D%u(z) — D%u(y))(D(z) — Dv(y))
t 2 // |z — y|d+2e ey
lal=k & ©

for s =k + K,k € Nog,k € (0,1).
For s < 0 and 1 < p < oo the Sobolev space W, ({2) is defined as the dual

space of I/f/q_s(ﬂ). Hereby we have 1/¢+ 1/p = 1, and the associated norm is

u,v)n
lllwscy == sup ”'<”>'
oyévev?/;s(rz) Wq *(£2)

Correspondingly, I/?/g(ﬂ) is the dual space of W,~*(£2).

2.3 Properties of Sobolev Spaces

In this section we state some properties of Sobolev spaces W;(Q) which are
needed later in the numerical analysis of finite and boundary element methods.

Assuming a certain relation for the indices s € R and p € N a function
u € W;(§2) turns out to be bounded and continuous.

Theorem 2.5 (Imbedding Theorem of Sobolev). Let 2 C R? be a
bounded domain with Lipschitz boundary 052 and let

d<s forp=1, d/p<s forp>1.
Foru € W (£2) we obtain u € C(£2) satisfying
[ullLw(o) < cllullwso) for allu € Wi(£2).

For a proof of Theorem 2.5 see, for example, [31, Theorem 1.4.6], [103,
Theorem 3.26].
The norm (2.6) of the Sobolev space W3 (2) is

1/2
lolwz oy = {10302y + 19013000 }

where

lvlwio) = VUL
is a semi-norm. Applying the following theorem we may deduce equivalent
norms in W3 ().
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Theorem 2.6 (Norm Equivalence Theorem of Sobolev).
Let f:W3(2)—R be a bounded linear functional satisfying

0 < [f)] < ¢rllvllwg) for allv € Wy(£2).

If f(constant) = 0 is only satisfied for constant = 0, then

1/2
lollwsians = {IF@P+1900,0} (210)
defines an equivalent norm in W4 (2).
Proof. Since the linear functional f is bounded we conclude
Wl 2y,p = If @) + V0l 0
< Aol + 1IVollT 0 £ A+l o)

The proof of the opposite direction is indirect. Assume that there is no con-
stant c¢g > 0 such that

[ollwio) < collvllwy(a),; forallve Wy ().
Then there would exist a sequence {v, }nen C W4 (£2) with

Uy
—H l||W21(Q) for n € N.

“ Nonllwgo).s

For the normalized sequence {¥y, },en with

— UTL
Uy = —————
||UnHW21(Q)
we therefore have
anHWl(Q) f 1
lonllwicoy = 1 lonllwayr = — < ——0 asn— oo.
nllw3(£2) ) nllW3 (2),f an||W21(Q) n

From this and (2.10) we conclude

lim |f(77n)| = 0, lim HV’En”Lz(Q) = 0.
n—oo n—00

Since the sequence {¥y, }nen is bounded in W (£2) and since the imbedding

WH(2) — Lo(92) is compact [160], there exists a subsequence {¥, }nen C

{Un}nen which converges in Lo(£2). In particular, v := lim v, € Lo(£2).

From
}i[[l HV@nrHLQ(Q) =0
n’ —oo

we obtain o € W3 (£2) with ||V, (o) =0, i.e. = constant. With
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0 <|f@] = lim |f(on) =0

n’—oo

we then conclude f(7) = 0 and therefore o = 0. However, this is a contradic-
tion to

10wy = nlljﬂoo [on lwgcoy = 1. o

Example 2.7. Equivalent norms in W3 (£2) are given by

— 5 1/2
lollws .o = / o()dz| + V]2, 0 (2.11)
0 i
and
-2 1/2
lollw o = / o()dse| +IV0I2, 0
I i

We therefore obtain ||V - ||, (o) to be an equivalent norm in I/?/%(Q)

Using the equivalent norm (2.11) as given in Example 2.7 the Poincaré
inequality

2
/|v(m)|2dx < cp /v(az) dx +/|Vv(x)|2dac (2.12)
I7) 7

£2

for all v € W3 (£2) follows.
To derive some approximation properties of (piecewise) polynomial trial
spaces the following result is needed.

Theorem 2.8 (Bramble—Hilbert Lemma).
For k € Ny let f: WQk'H(.Q) — R be a bounded linear functional satisfying

) < e ol for allv e WE(Q).
By Py (£2) we denote the space of all polynomials of degree k defined in 2. If
flag) =0
is satisfied for all g € Py(£2) then we also have
F@)] < elep) s [olysrgg for allv e WETH(Q)

where the constant c(c,) depends only on the constant ¢, of the Poincaré
inequality (2.12).
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Proof. We give only the proof for the case k = 1, i.e. P;({2) is the space of
linear functions defined on 2. For v € W ({2) an q € P (£2) we have, due to
the assumptions,

lf) = 1f)+ F@] = [f(v+a)| < crllv+dllwzo)-

Moreover,

v+ qH%/sz(_Q) = v+ CIH%Z(Q) + v+ q|%/V21(Q) + v+ (I|%v§(m
= v+ QH%Q(Q) + V(v + ‘J)H%Q(Q) + |v|%/V22(Q)

since the second derivatives of a linear function disappear. Applying the
Poincaré inequality (2.12) this gives
2

lv+alliyz o) < cp /[v(a?)+q(x)]dw +(1+ep) IV (0t+)lL, o) vz o)
2

For the second term we apply the Poincaré inequality (2.12) once again to
obtain

IV + Do = / o) + ool do
2
d 2
<
_CPZ /axl )+ afa)lda +;/[axm v) + qfa)]| de
2
d )
= er 3 | [ lote) +a(@lde| + er efigiay
1=1
and hence

2

o+ s < cr | [lo6e) + ale)ldo
2

2 9
(1+CP)CPZ /ax[v(a:) +q(x)|dz| +[1+ (1+cp)ep] |v|€V§(Q).
=1 |5 v

The assertion is proved if we can choose ¢ € P;({2) so that the first two terms
are zero, i.e.

/[v(x) + q(z)]dz = 0, / aii [v(z) + q(z)]de =0 fori=1,...,d.

2 0
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With J
g(x) = ao+ Y aim;
i=1
we get
1
a; = _|~Q/ aiiv(x)dx fori=1,...,d

1)
and therefore

1

apg = —

)+ Z a1$7] dx.

The proof for general k € N is almost the same. O

IQ\

2.4 Distributions and Sobolev Spaces

As it was observed in Example 2.4 not every function in Ly<({2) has a gener-
alized derivative in L7¢(f2). Hence we also introduce derivatives in the sense
of distributions, see also [103, 150, 156, 161].

For 2 C R? we first define D(§2) := C5°(£2) to be the space of all test
functions.

Definition 2.9. A complex valued continuous linear form T acting on D(§2)
is called a distribution. T is continuous on D(2), if v — ¢ in D(£2) always
implies T'(pr) — T(p). The set of all distributions on D({2) is denoted by
D'(12).

For w € Ly<(£2) we define the distribution

Tu(p) = /u(m)g@(m)dm for ¢ € D(12). (2.13)
Q

Distributions of the type (2.13) are called regular. Local integrable func-
tions w € LY*(£2) can be identified with a subset of D'(§2). Hence, instead
of T, € D'(£2) we simply write u € D’(£2). Nonregular distributions are called
singular. For example, the Dirac distribution for xzg € 2,

5900(@) = go(xo) for pE D(Q)a

can not be represented as in (2.13).
For the computation of the derivative of the function v(x) = sign(z) as
considered in Example 2.4 we now obtain:
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Ezample 2.10. Using integration by parts we have for v(z) = sign(x)

/sign(x) %Lp(x)dx = —2p(0) = —/ﬁv(x) p(x)dx  for all p € D(£2).

ox
]

Hence the derivative of v in the distributional sense is given by

0
a_SUU =26 € DI(Q)

As for the generalized derivative (2.5) we can define higher order deriva-
tives D*T,, € D'(2) of a distribution T, € D(£2) by

(DYT,) (@) = (=D)lT,(D¥p)  for ¢ € D(£2).

In what follows we introduce Sobolev spaces H*®({2) which may be equivalent
to the previously introduced Sobolev spaces W5 (f2) when some regularity
assumptions on 2 are satisfied. The definition of Sobolev spaces H*({2) is
based on the Fourier transform of distributions. Hence we need to introduce
first the space S(R?) of rapidly decreasing functions.

Definition 2.11. S(RY) is the space of functions ¢ € C>(RY) satisfying

|x\k Z |[ID%p(x)| < 00 for allk,l € Ny.
lal<t

In particular, the function ¢ and all of their derivatives decreases faster than
any polynomial.

Ezample 2.12. For the function ¢(x) = e 17 we have ¢ € S(R?), but
¢ & D(£2) = C§°(RY).

As in Definition 2.9 we can introduce the space S'(R?) of tempered distri-
butions as the space of all complex valued linear forms 7' over S(R%).
For a function ¢ € S(R?) we can define the Fourier transform @ € S(R?),

d

P(&) == (Fp)(&) = (2m) "2 /e_“r’@ga(as)dm for ¢ € RY. (2.14)

Rd

The mapping F : S(R?) — S(R?) is invertible and the inverse Fourier trans-
form is given by
(F19)(x) = (2m)~4 / €wOGE)de forz eRL (215)

Rd

In general, ¢ € D(R?) does not imply @ € D(R?).
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For ¢ € S(RY) we have
D*(F)(&) = (=) F(zp)(€) (2.16)

as well as

EN(Fp)(€) = (=) IF (D) (©). (2.17)

Lemma 2.13. The Fourier transform maintains rotational symmetries, i.e.
for u € S(RY) we have u(&) = u(|¢]) for all ¢ € R iff u(x) = u(|x|) for all
xr € R,

Proof. Let us first consider the two—dimensional case d = 2. Using polar

coordinates,
¢ |€] cos v 7 COS ¢
- b) xr = . K
|€] sin 4 7sin ¢
we obtain
~ ~ 1 —ir cos ¢ cos sin ¢ sin
a(e) =a(¢,v) = o e~ ir [€l[cos ¢ cos th+sin ¢ w]u(r)rd¢dr

e iIElos@=) o (1) rddr.

¥

With ¢y € [0,27) and substituting ¢ := ¢ — 1 it follows that

oo 2w
u 1 —ir|&| cos(p—p—
u(|&l, v + o) = %//e [€] cos(p—p wO)’u(T)quﬁdr
0 0
1 00 27 —1o
=50 [ b
0 —o
By using
0 2
/ e—i,.|£|cos($—w)d(g — / e—i7»|§|cos($—¢)d5
—Yo 2w —1o

we then obtain

u(lgl ) = u(lgl, v +ho)  for all 4 € [0, 2)

and therefore the assertion u(&) = u(|¢]).
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For d = 3 we use spherical coordinates

|€] cos 4 sin ¥ 7 Ccos ¢ sin
6 = |f\Sinwsin19 , T = TSiH¢Sin9
|€] cos rcosf
to obtain
1 oo 21w
= (2 )3/2 ///e—ir\f\[cosw—w)SinOsim9+cosf)cos19]u(r)r2 sin 0dOdodr.
T
00 0

As for the two—dimensional case d = 2 we conclude

a(|£|a¢ +¢0719) = a(‘ﬂad]?ﬂ) for all VJJO € [0’27(-)

For a fixed ¥ € [0, 7] and for a given radius g we also have @ (&) = u(|¢]) = u(p)
along the circular lines

& +& = o?sin®9, & = pcosd.

Using permutated spherical coordinates we also find u(¢) = u(p) along the
circular lines
& +& = o?sin®, & = pcosd. O

For a distribution 7' € S’(R?) we can define the Fourier transform Te S'(R%)
T(p) == T(P) for ¢ € S(RY).

The mapping F : S'(R?) — &' (R?) is invertible and the inverse Fourier trans-
form is given by

(F7IT)(p) := T(F ') for p € S(RY).
The rules (2.16) and (2.17) remain valid for distributions T' € &’ (R9).
For s € R and u € S(R?) we define the Bessel potential operator
Toulz) = (2m)9/? / (1+ |€P)*20(6) @9 de, o e RY,
Rd

which is a bounded linear operator J° : S(R?) — S(R?). The application of
the Fourier transform gives

(FT*u)(€) = (L+[E7)/2(Fu)(€).
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From this we conclude that the application of J* corresponds in the Fourier
space to a multiplication with a function of order O(|¢|*). Therefore, using
(2.17) we can see J*° as a differential operator of order s.

For T € S'(R%) we define a bounded and linear operator [J° : S'(R?) —
S’(R9) acting on the space of tempered distributions,

(T°T)(p) :=T(T°p) for all p € S(R?).

The Sobolev space H*(R?) is the space of all distributions v € &’(R?) with
J*v € Ly(R?) where the associated inner product

<uuv>H5(Rd) = <~7$U,JSU>L2(Rd)
implies the norm
ey = 1Tl = [ 1+ 1€R) RO
Rd

The connection with the Sobolev spaces W (R?) can be seen from the follow-
ing theorem, see for example [103, 160].

Theorem 2.14. For all s € R there holds
H*(RY) = W3 (RY).

For a bounded domain 2 C R? we define the Sobolev space H*(§2) by
restriction,
H () = {v="q : D€ H'RY},
with the norm

s = inf v s .
vl =) 17€H5(]11R141),5m:v”v“H (Rd)

In addition we introduce Sobolev spaces
ﬁg(Q) — WH'HHS(M)7 H3(0) = WH-HHS(Q)
which will coincide for almost all s € R, see for example [103, Theorem 3.33].
Theorem 2.15. Let 2 C R? be a Lipschitz domain. For s > 0 we have
H*(2) € Hi(1).
In particular,

3
2

DO Ot

H*(2)=[H (), H*Q)=[H )] foralsecR.

b )

DN =

() = Hy(9) forse{

Moreover,
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The equivalence of Sobolev spaces W3 (§2) and H*(f2) holds only when
certain assumptions on (2 are satisfied. Sufficient for the norm equivalence is
the existence of a linear bounded extension operator

2 W5(2) — W3 (RY).
This condition is ensured for a bounded domain 2 ¢ R?, if a uniform cone
condition is satisfied, see for example [161, Theorem 5.4].
Theorem 2.16. For a Lipschitz domain 2 C R? we have
W3(82) = H*(2) for alls > 0.

For the analysis of the Stokes system we need to have some mapping
properties of the gradient V.

Theorem 2.17. [53, Theorem 3.2, p. 111] Let the Lipschitz domain 2 C RY
be bounded and connected. Then there holds

lallzo2) < er {llalla-1c2) + IValli-1(ya}  for allq € Ly(£2)

as well as

lallaey < e2[Vallr-sape Sor allg € Lo(@) with [ g()dz =0. (218)

Bounded linear operators can be seen as maps between different Sobolev
spaces inducing different operator norms. Then one can extend the bound-
edness properties to Sobolev spaces between. For a general overview on in-
terpolation spaces we refer to [16, 103] . Here we will use only the following
result.

Theorem 2.18 (Interpolation Theorem). Let A: H* (02) — HP(2) be
some bounded and linear operator with norm
HAUHHG(Q)

[Allay,p == sup  Tme———.

ozveror(2) VllEe (2)

For ag > ay let A: H*2 () — HP () be bounded with norm ||Ala,.5. Then
the operator A : H*(£2) — HP(R2) is bounded for all a € [, n] and the
corresponding operator norm is given by

140l < ([Allay,6) == (Al oz )25 .

Let the operator A : H*(2) — HP'(£2) be bounded with norm ||Al|a.s, and
let A: H(Q) — HP2(02) be bounded with norm || Al a5, assuming B < Ba.
Then the operator A : H*(2) — HP(£2) is bounded for all 3 € [B1, 3] and
the corresponding operator norm is given by

—B1
lAllos < (1Allas) 7% (14 ]la,6,) 75 .
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2.5 Sobolev Spaces on Manifolds

Let 2 C R? be a bounded domain (d = 2,3) and let the boundary I = 952
be given by some arbitrary overlapping piecewise parametrization

J
r=Jn, n={zeR’:z=x/(¢forécTcR"}. (2.19)
=1

With respect to (2.19) we also consider a partition of unity, {¢;}7_;, of non—
negative cut off functions p; € C§°(R?) satisfying

J
Zcpl-(:c):l forzel, @;(x)=0 forxze '\I;.
i=1

For any function v defined on the boundary I" we can write

J

v(z) = Z(pi(x)v(a:) = sz(a:) forx el

=1 i=1

with v; () = ¢
fore=1,...,J

vi(z) = gi(e)v(z) = @ilx(€))v(xi(§) =: Ti(€) forée TR

The functions v; are defined with respect to the parameter domains 7; ¢ R4~!
for which we can introduce appropriate Sobolev spaces. Taking into account
the chain rule we have to ensure the existence of all corresponding derivatives
of the local parametrization x;(§). For the definition of derivatives of order
|s| < k we therefore have to assume x; € C*~L1(7;). In particular for a
Lipschitz domain with a local parametrization y; € C%1(7;) we can only
introduce Sobolev spaces H*(7;) for |s| < 1.
In general we can define the Sobolev norm

i(z)v(z). Inserting the local parametrizations (2.19) we obtain

7 1/2
[0l s () = {Z IIEI?qs(T,.)} (2:20)
i=1

for 0 < s < k and therefore the corresponding Sobolev space H*(I").
Lemma 2.19. For s = 0 an equivalent norm in H)OC(F) is given by

1/2

lollzacry = / o) Pdsa
I
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Proof. First we note that

J
Il = 3 / 20 ()0 (X)) e
i:l

and
HU||2L2(F) = / dSw Z/% dsm.
T =lp

Inserting the local parametrization this gives

ol = 3 / 106 (©) [0 (s (©) et (€)de.

7,17—

From this the assertion follows, where the constants depend on both the chosen
parametrization (2.19) and on the particular definition of the cut off functions
w;. O

For s € (0,1) we find in the same way that the Sobolev—Slobodeckii norm

1/2
lollcey = 3 Iolur + / / At s,

is an equivalent norm in H}(I').
As in the Equivalence Theorem of Sobolev (Theorem 2.6) we may also
define other equivalent norms in H*(I"). For example,

vl g2y, r = / r)ds, // |x7y|d dsmdsy

r

1/2

defines an equivalent norm in H/?(I").
Up to now we only considered Sobolev spaces H*(I") for s > 0. For s < 0
H*(I') is defined as the dual space of H5(I"),

HY(I) = [H (D],
where the associated norm is

(w,v)
”wHHS(F) = sup TR
0£veH—5(I") vl - s(I)

with respect to the duality pairing

(w,v)p = /w(:r)v(x)dsm.

r
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Let Iy C I' be some open part of a sufficient smooth boundary I" = 92. For
s > 0 we introduce the Sobolev space

H*(Iy) == {v="0jp, : v H*(I)}
with the norm
V|| gs = inf V|| s
ol = i Wl
as well as the Sobolev space
H*(Ip) = {v=", : Ve H*I), suppv C I} .
For s < 0 we define the appropriate Sobolev spaces by duality,
H*(IY) == [H*(IY)), H*(Iy) == [H*(Iy)]'.
Finally we consider a closed boundary I' = 9{2 which is piecewise smooth,
J
F:UTZ‘, FiﬂFjZ[b for i # j.
i=1
For s > 0 we define by
HBW(F) = {v € Lo(I") : vy, € H¥(I3),i = 1,...,J}

the space of piecewise smooth functions with the norm

7 1/2
ol s, (ry == {levmllis(m}
i=1

while for s < 0 we have

J
Hyw (D) = [[ H(1y) (2.21)
j=1
with the norm p
lwllzs,ry = Y lwir lger, - (2:22)
j=1

Lemma 2.20. For w € Hp,,(I") and s <0 we have

lwllgs=ry < llwlas,r)-
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Proof. By duality we conclude

[(w, v) | i [(w, )|

”wHHS(F) = sup < sup _—
ozver—+(r) vlla-r) 0#veH—*(I') 24 vl -1y
J
< sup |<w|Fj’U|Fj>Fj|

0#veH—*(I') =4 ||U|Fj||H—s(rj)

J
w|r., Vi .
<>, s Wt )] lwllag, )-8
= orven—ry villm—sry) »

If I' = 012 is the boundary of a Lipschitz domain 2 C R?, then we have
to assume |s| < 1 to ensure the above statements.

For a function u given in a bounded domain {2 C R? the application of the
interior trace (1.3) gives ya™u as a function on the boundary I" = 9. The

relations between the corresponding function spaces are stated in the next
two theorems, see, for example, [1, 103, 160].

Theorem 2.21 (Trace Theorem). Let 2 C R? be a C*~11-domain. For
% < s < k the interior trace operator
’ant . HS(Q) N Hs—l/Q(F)
1s bounded satisfying
||’yéntv|\H571/z(p) < cr||vl|gsoy for allv € H*(12).

For a Lipschitz domain (2 we can apply Theorem 2.21 with k& = 1 to
obtain the boundedness of the trace operator ™ : H*(£2) — H*~Y/2(I) for

€ (3,1]. This remains true for s € (3, 2), see [44] and [103, Theorem 3.38].
Theorem 2.22 (Inverse Trace Theorem). Let £2 be a C*~ ! —domain.
For 3 < s < k the interior trace operator At H9(02) — H5Y2(I") has a
continuous right inverse operator

E: H V(I — H*(N)
satisfying YiMEw = w for all w € H*Y2(I') as well as
||ngHs(_Q) < cir ||1UHHS—1/2(F) fOT allw € HSil/Q(F).

Therefore, for s > 0 we can define Sobolev spaces H*(I") also as trace
spaces of H*t1/2(£2). The corresponding norm is given by

V|| g7 = inf %4 S(O)-
N SV L Patares

However, for a Lipschitz domain 2 C R? the norms |[v[| = (1), and [|v]| =
are only equivalent for |s| < 1.
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Remark 2.23. The interpolation theorem (Theorem 2.18) holds also for appro-
priate Sobolev spaces H*(I).

As in Theorem 2.8 we also have the Bramble—Hilbert lemma:

Theorem 2.24. Let I' = 0f2 the boundary of a C*~1'~domain 2 C R? and
let f: H*Y(I') — R be a bounded linear functional satisfying

If()| < cpllvllgrtiry  forallv e HMYTI).

If
flg) =0

is satisfied for all g € Py(I") then we also have

|f(v)] < ceplvlgriiry forallv e HEL(D).

2.6 Exercises

2.1 Let u(z), z € (0, ) be a continuously differentiable function satisfying

u(0) = u(1) = 0. Prov
0/ 2de < ¢ 0/ W ()] 2dz

where ¢ should be as small as possible.

2.2 Consider the function

0 forzel0,1],
u(x) = 1
1 forxe(3,1]

Determine those values of s € (0, 1) such that

o _

1
/ |1+29 dmdy < o0
0

is finite.
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Variational Methods

The weak formulation of boundary value problems leads to variational prob-
lems and associated operator equations. In particular, the representation of
solutions of partial differential equations by using surface and volume po-
tentials requires the solution of boundary integral operator equations to find
the complete Cauchy data. In this chapter we describe the basic tools from
functional analysis which are needed to investigate the unique solvability of
operator equations.

3.1 Operator Equations

Let X be a Hilbert space with the inner product (-, ) x and with the induced
norm || - ||x = v/(,)x. Let X’ be the dual space of X with respect to the
duality pairing (-,-). Then it holds that

Il = sup W50

for all f € X'. (3.1)
0AveX HU”X

Let A: X — X’ be a bounded linear operator satisfying
|Av||x < ¢ |v]x forallv € X. (3.2)
We assume that A is self-adjoint, i.e., we have
(Au,v) = (u, Av) for all u,v € X.
For a given f € X’ we want to find the solution u € X of the operator equation
Au = f. (3.3)

Instead of the operator equation (3.3) we may consider an equivalent varia-
tional problem to find u € X such that
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(Au,v) = (f,v) forallve X. (3.4)

Obviously, any solution u € X of the operator equation (3.3) is also a solution
of the variational problem (3.4). To show the reverse direction we now consider
u € X to be a solution of the variational problem (3.4). Using the norm
definition (3.1) we then obtain

JAu— fllx = sup WAv—S0ll

=0
orvex  |lvllx

and therefore 0 = Au — f € X', ie.,, u € X is a solution of the operator
equation (3.3).
The operator A : X — X’ induces a bilinear form

a(u,v) := (Au,v) for allu,v € X
with the mapping property
a(,) : X x X - R. (3.5)
In the reverse case, any bilinear form (3.5) defines an operator 4 : X — X'.
Lemma 3.1. Let a(+,-) : X x X — R be a bounded bilinear form satisfying

la(u,v)| < c? lullxllvlx  for allu,v € X.

For any u € X there exists an element Au € X' such that
(Au,v) = a(u,v) for allv € X.
The operator A : X — X' is linear and bounded satisfying

|Aul|x: < e |Jullx  for allu € X.

Proof. For a given u € X we define (f,,v) := a(u,v) which is a bounded
linear form in X, i.e., we have f, € X’. The map u € X — f, € X’ defines a
linear operator A : X — X’ with Au = f, € X’ and satisfying

lullx = lfullx = sup Wl — gy a2

s < ¢ lullx. O
o#vex |[vllx o£vex  ||V]lx

If A: X — X’ is a self-adjoint and positive semi—definite operator we can
derive a minimization problem which is equivalent to the variational formu-
lation (3.4).

Lemma 3.2. Let A: X — X' be self-adjoint and positive semi—definite, i.e.,

(Av,v) > 0 for allv € X.
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Let F be the functional
1
F(v) = §(Av,v) —(f,v) forveX.

The solution of the variational formulation (3.4) is then equivalent to the
solution of the minimization problem

F(u) = ilélg(l F(v). (3.6)

Proof. For u,v € X we choose an arbitrary ¢t € R. Then we have
F(u+tv) = %(A(u +tv),u+tv) — (f,u+ tv)
= F(u) + ¢ [(Au,v) — (f,0)] + %tz (Av, v).
If u € X is a solution of the variational problem (3.4) we then obtain
F(u) < F(u) + %t2 (Av,v) = F(u+ tv)

forallv € X and ¢t € R. Therefore, u € X is also a solution of the minimization
problem (3.6).
Let w € X be now a solution of (3.6). Then, as a necessary condition,

d
aF(u +tv)—o = 0 forallve X.

From this we obtain
(Au,v) = (f,v) forallve X

and therefore the equivalence of both the variational and the minimization
problem. 0O

To investigate the unique solvability of the operator equation (3.3) we now
consider a fixed point iteration. For this we need to formulate the following
Riesz representation theorem.

Theorem 3.3 (Riesz Representation Theorem). Any linear and bounded
functional f € X' can be written as

<f7 U> = <uv v>X
where u € X is uniquely determined by f € X', and

lullx = [lFllx- (3.7)
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Proof. Let f € X’ be arbitrary but fixed. Then we can find u € X as the
solution of the variational problem

(u,v)x = (f,v) forallve X. (3.8)

Using Lemma 3.2 this variational problem is equivalent to the minimization
problem
F = min F .
(u) = min F(v) (3.9)

where the functional is given by

F(v) = % (v,0)x — (f,v) forve X.

Hence we have to investigate the unique solvability of the minimization prob-
lem (3.9). From

1
Fv) = 3 lolx = 1£lx llvllx

s 1 1
ol = 1l = 5 115 = =5 1£15%

(v, 0)x = (f,v) =

N~ N~

we find that F(v) is bounded below for all v € X. Hence there exists the
infimum

a = inf F(v) € R.
veX

Let {ug}ren C X be a sequence approaching the minimum, i.e., F(ux) — «
as k — oo. With the identity

lug — well + llun +uelli = 2 {flurli + [luells }
we then obtain
0 < flup —uells = 2 llurll5 + 2 luel% — llu +uell%
=i {G hatk - o b {5 Tl - 00 )
4 (fug + ue) — Jlug + uel %
— 4 F(ug) +4 F(u) — 8 F (%(uk + W))
<4 F(ug)+4 F(ug) —8«x — 0 ask,l— oo.

Therefore, {ug}ren is a Cauchy sequence, and since X is a Hilbert space, we
find the limit
u = lim u, € X.

k—o0
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Moreover,
1
|F(uk¢) _F(u)| < § |<uk>uk>X - <U,U>X| + |<fauk _u>‘
1
= 5 |<’U;k,’U/]€ _U>X + <U,Uk _u>X| + ‘<fauk —’I,L>|
1 1
< 95 lukllx + 5 flullx + 11 ¢ llue = ullx,
and hence

F(u) = kh—{go F(ur) = a.

In particular, v € X is a solution of the minimization problem (3.9) and
therefore also a solution of the variational problem (3.8).

It remains to prove the uniqueness. Let & € X be another solution of (3.9)
and (3.8), respectively. Then,

(w,v)x = (f,v) forallve X.
Subtracting this from (3.8) this gives
(u—1u,v)x =0 forallveX.
Choosing v = u — & we now obtain
il = 0

and therefore u = w, i.e., u € X is the unique solution of (3.8) and (3.9),
respectively.

Finally,
lulk = (wu)x = (f,u) < |fllxflullx
and
£l = sup Wl gy Hwtdd oy
0#veX vl x 0#veX vl x

imply the norm equality (3.7). O
The map J : X’ — X as introduced in Theorem 3.3 is called the Riesz
map u = J [ and satisfies the variational problem

(Jf,v)x = (f,v) forallve X. (3.10)

Moreover,

1T lx = Ifllx- (3.11)
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3.2 Elliptic Operators

To ensure the unique solvability of the operator equation (3.3) and of the vari-
ational problem (3.4) we need to have a further assumption for the operator
A and for the bilinear form a(-, ), respectively. The operator A : X — X' is
called X—elliptic if

(Av,v) > eft||v]|% forallv e X (3.12)
is satisfied with some positive constant c1'.

Theorem 3.4 (Lax—Milgram Lemma). Let the operator A : X — X' be
bounded and X —elliptic. For any f € X' there exists a unique solution of the
operator equation (3.3) satisfying the estimate

1
Jullx < —[Ifllx
S

Proof. Let J : X’ — X be the Riesz operator as defined by (3.10). The
operator equation (3.3) is then equivalent to the fixed point equation

u=u—pJ(Au—f) = Tou+oJf

with the operator
Ty, =1—-0JA : X - X

and with a suitable chosen parameter 0 < p € R. From the boundedness
estimate (3.2) and from the ellipticity assumption (3.12) of A as well as from
the properties (3.10) and (3.11) of the Riesz map J we conclude

(JAv,v)x = (Av,v) > ' vl|%,  ITAv]x = [[Av]lx < cf [lvllx
and therefore
IToll% = (I — eJA)v|%
= |lv[l% — 20(JAv,v)x + o°||JAv|%
< [1—20ct + 0*(c)?] IIvlI%-

Hence we obtain that for g € (0,2¢{!/(c5)?) the operator T}, is a contraction
in X, and the unique solvability of (3.3) follows from Banach’s fixed point
theorem [163]. Let u € X be the unique solution of the operator equation
(3.3). Then,

o Julk < (Au,u) = (fou) < | fllxllullx,

which is equivalent to the remaining bound. O
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Applying Theorem 3.4 this gives the inverse operator A=! : X’ — X and
we obtain

1
A7 fllx < —xllfllxr forall f € X" (3.13)
1

From the boundedness of the self-adjoint and invertible operator A we also
conclude an ellipticity estimate for the inverse operator A~!.

Lemma 3.5. Let A : X — X' be bounded, self-adjoint and X —elliptic. In
particular we assume (3.2), i.e.,

|Av||x < ¢ |lvllx  for allv € X.

Then,
(AU 1)

Y

1

— IfI% forallf €X',

=

Proof. Let us consider the operator B := JA : X — X satisfying

|Bu||x = [|[JAv|x = ||Av]|x < ¢f ||lv||x for allv € X.

Since
(Bu,v)x = (JAu,v)x = (Au,v) = (u, Av) = (u, Bv)x

holds for all u,v € X the operator B is self-adjoint satisfying the ellipticity
estimate
(Bu,v)x = (Av,v) > ¢ |jv]|% forallv e X.

Hence there exists a self-adjoint and invertible operator B'/? satisfying
B = BY?B'/2 see, e.g., [118]. In addition we define B~/2 := (BY/2)~1,
Then we obtain

IBY2u]% = (Bu,v)x < |Bulxllvlx < ' llvlkx for allv € X

and further
B2l x

IN

ci |lvllx  for allv € X.

For an arbitrary f € X’ we then conclude

Ul = sup W00 (0 Whoxl (BT B )
ozvex Vllx  omeex  [vllx OveX ol
B~1/2 BL/2
< sup WECIINIBTI oy gy
0#vEX o]l x

and therefore

IfI% < G IB™Y2If% = & (BYIfJf)x = & (A7 f, f). O
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3.3 Operators and Stability Conditions

Let IT be a Banach space and let B : X — II' be a bounded linear operator
satisfying
|Bv|| < & |v||x forallve X. (3.14)

The operator B implies a bounded bilinear form b(-,-) : X x IT — R,
b(v,q) := (Bv,q) for (v,q) € X x II.
The null space of the operator B is
kerB := {ve X : Buv=0}.

The orthogonal complement of ker B in X is given as

(ker B)* := {we X : (w,v)x =0 forallv€kerB} C X.
Finally,

(ker B)? := {f € X’ : (f,v) =0 forallvekerB} C X’ (3.15)

is the polar space which is induced by ker B.
For a given g € II' we want to find solutions u € X of the operator
equation

Bu = g. (3.16)
Obviously we have to require the solvability condition
g € ImxB := {Bvell' foralve X}. (3.17)

Let B : IT — X' the adjoint of B : X — II', i.e.
(v,B'q) :== (Bv,q) forall (v,q) € X x II.
Then we have
ker B :={q€ Il : (Bv,q) =0 forallve X},
(ker BY: :={pe Il : (p,q)y =0 forallq€kerB'},
(ker B')? :={g € II" : (g,q) =0 for all ¢ € ker B'}.

To characterize the image Imx B we will use the following result, see, for
example, [163].

Theorem 3.6 (Closed range theorem). Let X and II be Banach spaces,
and let B : X — II' be a bounded linear operator. Then the following proper-
ties are all equivalent:

i. ImxB is closed in II'.
1. ImpB’ is closed in X'.
iti. Imx B = (ker B')°.
w. ImpB' = (ker B)°.
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Proof. Here we only prove that iii. follows from i., see also [163]. From the
definition of the polar space with respect to B’ we find that

(ker B = {g € II' : {g9,q) =0 for all ¢ € ker B’}
={gell : {(g,q)=0 forallge Il : (Bv,q) =0 forallve X}

and therefore
ImyB C (ker B')".

Let g € (ker B') with g & Imx B. Applying the separation theorem for closed
convex sets there exists a ¢ € I and a constant o € R such that

(9,0) > o > (f,q) forall felImy(B)CII'.

Since B is linear we obtain for an arbitrary given f € Imx B also —f € Imx B
and therefore

a > 7<fa(j>

From this we obtain o > 0 as well as |(f,7)| < a. For f € Im;;B and for any
arbitrary n € N we also conclude nf € Imj; B and therefore

[(f. @) <% for alln € N

which is equivalent to
(f,@) =0 forall feImx(B).
For any f € Imx (B) there exists at least one u € X with f = Bu. Hence,
0= {(fq = (Bu,q) = (u,B'q) forallue X,
and therefore g € ker B’. On the other hand, for g € (ker B)" we have
(9,q) = 0 for all g € ker B’

and therefore (g, @) = 0 which is a contradiction to (g,q) > o > 0. O
The solvability condition (3.17) is equivalent to

(9,q) = 0 forallgekerB CII. (3.18)

If the equivalent solvability conditions (3.17) and (3.18) are satisfied, then
there exists at least one solution u € X satisfying Bu = ¢g. When the null
space ker B is non—trivial, we can add an arbitrary ug € ker B, in particular,
u + ugp is still a solution of B(u + up) = g. In this case, the solution is not
unique in general. Instead we consider only solutions u € (ker B)*. To ensure
unique solvability in this case, we have to formulate additional assumptions.
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Theorem 3.7. Let X and II be Hilbert spaces and let B : X — II' be a
bounded linear operator. Further we assume the stability condition

Buv,q
eslollx < sup PO
0#qgell ||QHH

for allv € (ker B)*. (3.19)

For a given g € Imx(B) there exists a unique solution u € (ker B)* of the
operator equation Bu = g satisfying

1
ullx < —llgllm-
Cs

Proof. Since we assume ¢g € ImxB there exists at least one solution
u € (ker B)* of the operator equation Bu = g satisfying

(Bu,q) = {g,q) forallqe II.
Let u € (ker B)L be a second solution satisfying
(Bu,q) = {(g,q) forallqe II.

Then,
(Blu—1u),q) =0 forallqe Il

Obviously, u — 4 € (ker B)*. From the stability condition (3.19) we then

conclude B ~
0<ecsllu—ilx < sup M:O
ozqerr  llallm

and therefore uniqueness, u = 4. Applying (3.19) for the solution u this gives

Bu, q .q
esfullx < sup BB _ g 09 0 g

ozqen llallm ozqerr 1gllm

3.4 Operator Equations with Constraints

In many applications we have to solve an operator equation Au = f where
the solution u has to satisfy an additional constraint Bu = ¢. In this case we
have to assume first the solvability condition (3.17). For a given g € IT" we
then define the manifold

Vg ={veX : Buv=g}.

In particular, Vy = ker B. Further, the given f € X’ has to satisfy the solv-
ability condition

felmy, A := {Ave X' forallveV,}.
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Then we have to find u € Vj satisfying the variational problem
(Au,v) = (f,v) forallv e V. (3.20)
The unique solvability of (3.20) now follows from the following result.
Theorem 3.8. Let A: X — X' be bounded and Vy—elliptic, i.e.
(Av,v) > e |vl%  for allv € Vg := kerB,

where B : X — II'. For f € Imy,A and g € ImxB there exists a unique
solution u € X of the operator equation Au = f satisfying the constraint
Bu =g.

Proof. Since g € Imx B is satisfied there exists at least one u, € X with
Bug = g. It remains to find ug = u —uy € Vj satisfying the operator equation

AUO = f — Aug
which is equivalent to the variational problem
(Aug,v) = (f — Aug,v) forallv e V).

From the assumption f € Imy, A we conclude f — Au, € Imy, A. Then there
exists at least one ug € Vy with Aug = f — Aug. It remains to show the
uniqueness of ug € Vp. Let up € Vo be another solution with Aug = f — Au,.
From the Vj—ellipticity of A we then obtain

0 < e luo — ol < (Aluo — o), uo — o) = (Aug — Atig, ug — tg) = 0

and therefore ug = 1 in X.

Note that uy, € Vj is in general not unique. However, the final solution
u = ug + ug is unique independent of the chosen u, € V,: For i, € X with
B, = g there exists a unique 4y € V} satisfying A(4y + 44) = f. Due to

B(uy —iy) = Bug — Big=9g—g=0 inlII'
we have ug — iy € ker B =V} . Using
Alug +ug) = f, At + ug) = f

we obtain
A(UO + Ug — ’lAI,() - T:Lg) = 0.

Obviously, ug — @g + (ug — @y) € Vo, and from the Vy-ellipticity of A we
conclude
UQ—ﬂo—i-(ug—ﬂg) =0

and therefore uniqueness, u = ug +uy = g + tg. O
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For what follows we assume that for g € Imx B there exists a ug, € V,
satisfying
lugllx < cpllgllm (3.21)

with some positive constant ¢g. Then we can bound the norm of the unique
solution u € Vj, satisfying the variational problem (3.20) by the norms of the
given data f € X’ and g € IT'.

Corollary 3.9. Let us assume the assumptions of Theorem 3.8 as well as
assumption (3.21). The solution u € V, of Au = f satisfies the estimate

1 c3
fullx < 2+ (14 %) ealaln
1 1

Proof. Applying Theorem 3.8, the solution u of Au = f admits the represen-
tation u = wp + uy where ug € Vj is the unique solution of the variational
problem

(Aug,v) = (f — Aug,v) for allv e V).

From the Vj—ellipticity of A we obtain
e lluollk < (Auo,uo) = (f — Aug,uo) < || f — Augl|x[uollx

and therefore
1 A
uollx < a [I1fllxr + c§ llugllx] -
1

Now the assertion follows from the triangle inequality and using assumption
(3.21). O

3.5 Mixed Formulations

Instead of the operator equation Au = f with the constraint Bu = g we may
introduce a Lagrange multiplier p € IT to formulate an extended variational
problem: Find (u,p) € X x II such that

(Au,v) + (Bu,p) = (f,v)

(Bu,q) =(g,9) (3.22)

is satisfied for all (v, q) € X x II. Note that for any solution (u,p) € X x II of
the extended variational problem (3.22) we conclude that u € Vj, is a solution
of Au = f. The second equation in (3.22) describes just the constraint u € V
while the first equation in (3.22) coincides with the variational formulation
to find ug € Vi when choosing as test function v € Vj. It remains to ensure
the existence of the Lagrange multiplier p € II such that the first equation in
(3.22) is satisfied for all v € X, see Theorem 3.11.
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For the Lagrange functional

1
E(Ua Q) = §<AU7 U) - <f7v> + <BU7 q> - <g7 q)a
which is defined for (v, q) € X x IT, we first find the following characterization.

Theorem 3.10. Let A : X — X' be a self-adjoint bounded and positive semi—
definite operator, i.e. (Av,v) > 0 for all v € X. Further, let B: X — II' be
bounded. (u,p) € X x II is a solution of the variational problem (3.22) iff

L(u,q) < L(u,p) < L(v,p) for all (v,q) € X x II. (3.23)

Proof. Let (u,p) be a solution of the variational problem (3.22). From the
first equation in (3.22) we then obtain

<A’U,'U> - <f,’U> + <B’Uap> - <g>p>

| =

L(v,p) — L(u,p) =
~5{Au) + () = (Bup) + (9,1)
= S(A =) u =) + (Auw— ) + (Blo — u),p) — (frv—u)
= AW v)u—v) >0,

and therefore
L(u,p) < L(v,p) forallve X.

Using the second equation of (3.22) this gives

£l p) — L) = 5(Au ) = (fu) + (Bu,p) — (9.1)

1
—5{Au,u) + {f,u) = (Bu,q) +(9,9)
= (Bu,p—q) —(9,p—q) =0
and therefore
L(u,q) < L(u,p) forall g€ II.

For a fixed p € II we consider u € X as the solution of the minimization
problem
L(u,p) < L(v,p) forallve X.

Then we have for any arbitrary w € X

d
Eﬁ(u +tw, p)ji=o = 0. (3.24)
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From

£+ tw,p) = 3(Auw) = (£,0) + (Busp) = {g.9) + 5 (Aw, )
+t[(Au, w) + (Bw,p) = (f,w)],
and using (3.24) we obtain the first equation of (3.22),
(Au,w) + (Bw,p) — (f,w) = 0 for allw € X.

Now, let p € II satisfy

L(u,q) < L(u,p) forallqe Il
For an arbitrary ¢ € II we define ¢ := p + ¢. Then,

0 < L(u,p) = L(u,p+q)

— %<Au,u> —(f,u) + (Bu,p) — (9,p)

_%<Au,u> +(fu) — (Bu,p+q) + (g,p+ q)
= —(Bu,q) + (9,q) .

For ¢ := p — ¢ we obtain in the same way

0 < L(u,p) — L(u,p—q) = (Bu,q) — (g, q),

and therefore,
<BU7Q> = <g,q) for all g € I1,

which is the second equation of (3.22). O

Any solution (u,p) € X x IT of the variational problem (3.22) is hence
a saddle point of the Lagrange functional £(-,-). This is why the variational
problem (3.22) is often called a saddle point problem. The unique solvability
of (3.22) now follows from the following result.

Theorem 3.11. Let X and II be Banach spaces and let A : X — X' and
B : X — II' be bounded operators. Further, we assume that A is Vy—elliptic,

(Av,v) > et ||v]|%  for allv € Vo = ker B,

and that the stability condition

Bu,q
eslgln < sup B9
0#veX vl x

for allq € IT (3.25)

1s satisfied.
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For g € Imx B and [ € Imy, A there exists a unique solution (u,p) € X x II
of the variational problem (3.22) salisfying

1 cA
lullx < = 1 fllx + (H%) s gl (3.26)
(&) &1
and
1 cf A
lpllm < . 1+ oy {fllx +esed llgllm} - (3.27)
1

Proof. Applying Theorem 3.8 we first find a unique u € X satisfying
(Au,v) = (f,v) forallvelj

and
(Bu,q) = {g,q) for allqe II.

The estimate (3.26) is just the estimate of Corollary 3.9.
It remains to find p € IT as the solution of the variational problem

(Bu,p) = (f — Au,v) forallv e X.

First we have f — Au € (ker B)?, and using Theorem 3.6 we obtain f — Au €
Im;(B’) and therefore the solvability of the variational problem.

To prove the uniqueness of p € IT we assume that there are given two
arbitrary solutions p,p € I satisfying

(Buv,p) = (f — Au,v) forallve X

and
(Bu,p) = (f — Au,v) forallv e X.

Then,
(Bv,p—p) =0 forallve X.

Using the stability condition (3.25) we obtain

Bo.p— %
0 < eslp—plo < sup ZUPP g
0#£veEX HU”X
and therefore p = p in I1.
Using again (3.25) for the unique solution p € IT this gives

B, — Au,v
eslpln < sup 80P _ gy I Awv)
0#£veX vl x 0#veX vl x

< Ifllxr + 2 flullx

and applying (3.26) we finally obtain (3.27). O
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The statement of Theorem 3.11 remains valid when we assume that
A: X — X' is X—elliptic, i.e.

(Av,v) > v} forallv e X.

For an arbitrary p € IT there exists a unique solution v = A~![f — B'p| € X
of the first equation of (3.22). Inserting this into the second equation of (3.22)
we obtain a variational problem to find p € IT such that

(BA™'B'p,q) = (BA™'f —g,q) (3.28)

is satisfied for all ¢ € II. To investigate the unique solvability of the vari-
ational problem (3.28) we have to check the assumptions of Theorem 3.4
(Lax—Milgram theorem).

Lemma 3.12. Let the assumptions of Theorem 3.11 be satisfied. The operator
S = BAT'B' : II — II' is then bounded and from the stability condition
(3.25) it follows that S is IT—elliptic,

(Sa.q) > cf |lqllF; for allq € II. (3.29)

Proof. For q € II we have u := A~'B’q as unique solution of the variational
problem
(Au,v) = (Bv,q) forallve X.

Using the X—ellipticity of A : X — X’ and applying Theorem 3.4 we conclude
the existence of the unique solution u € X satisfying
1 B

_ 3
lullx = [[A™"B'qllx < = I1B'qllx < 67||Q||H‘
1

off
From this we obtain

5]

A
51

2
ISqllm = |BA™' B'qll = |Bullm < 5 |lullx < lall

for all ¢ € IT and therefore the boundedness of S : IT — II’. Further,
(Sa,q) = (BA™'B'q,q) = (Bu.q) = (Au,u) > ¢f ||uf% .
On the other hand, the stability condition (3.25) gives

B, Au,v
CS ||qHH S Sup < Q> — su < ) >
0£vEX ”UHX 0£veEX HUHX

A
< ¢ Jlullx

and therefore the ellipticity estimate (3.29) with ¢f = c{![es/cs]?. O

From Lemma 3.12 we see that (3.28) is an elliptic variational problem to
find p € II. Hence we obtain the unique solvability of (3.28) when applying
Theorem 3.4. Moreover, for the solution of the variational problem (3.22) we
obtain the following result.
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Theorem 3.13. Let X and II be Banach spaces and let A : X — X' and
B : X — II' be bounded operators. We assume that A is X —elliptic, and that
the stability condition (3.25) is satisfied. For f € X' and g € II' there exists
the unique solution (u,p) € X x IT of the variational problem (3.22) satisfying

1 B 1 [cB
bl < S 1BAF — gl < & [A 1l + gl (3.30)
C1 1 LG
and [ B]2 5
1 Cy Cy
U < — (14 == e ’. 3.31
fullx < o (14 S 151 + 2 ol (3.31)

Proof. The application of Theorem 3.4 (Lax—Milgram lemma) gives the
unique solvability of the variational problem (3.28) as well as the estimate
(3.30). For a known p € X we find u € X as the unique solution of the
variational problem

(Au,v) = (f — B'p,v) forallve X.
From the X—ellipticity of A we obtain
i ullk < (Au,u) = (f = B'p,u) < ||f — B'pllx:|lullx
and therefore
1 cy
lullx < — [Ifllx+ =% Il
il i

Applying (3.30) this gives the estimate (3.31). O

3.6 Coercive Operators

Since the ellipticity assumption (3.12) is too restrictive for some applications
we now consider the more general case of coercive operators. An operator
A: X — X'’ is called coercive if there exists a compact operator C' : X — X'
such that there holds a Gardings inequality, i.e.

(A4 C),v) > it |lo||% forallve X, (3.32)

An operator C : X — Y is said to be compact if the image of the unit sphere
of X is relatively compact in Y. Note that the product of a compact operator
with a bounded linear operator is compact. Applying the Riesz—Schauder
theory, see for example [163], we can state the following result.

Theorem 3.14 (Fredholm alternative). Let K : X — X be a compact
operator. Fither the homogeneous equation

(I-Kju=0
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has a non—trivial solution u € X or the inhomogeneous equation
(I-K)u=yg

has, for every given g € X, a uniquely determined solution u € X satisfying

lullx < cligllx-

Based on Fredholm’s alternative we can derive a result on the solvability
of operator equations Au = f when A is assumed to be coercive.

Theorem 3.15. Let A : X — X' be a bounded coercive linear operator and
let A be injective, i.e., from Au = 0 it follows that w = 0. Then there exists
the unique solution u € X of the operator equation Au = f satisfying

lullx < cllfllx

Proof. The linear operator D = A+ C : X — X' is bounded and, due to
assumption (3.32), X-elliptic. Applying the Lax—Milgram lemma (Theorem
3.4) this gives the inverse operator D! : X’ — X. Hence, instead of the
operator equation Au = f we consider the equivalent equation

Bu= D1Au = D7'f (3.33)
with the bounded operator
B=D'A=D'YD-C)=I1I-D"'C: X —X.

Since the operator D~'C : X — X is compact we can apply Theorem 3.14
to investigate the unique solvability of the operator equation (3.33). Since
A is assumed to be injective the homogeneous equation D~ !'Au = 0 has
only the trivial solution. Hence there exists a unique solution u € X of the
inhomogeneous equation Bu = D~ f satisfying

lulx < clD7'fllx < €llflx- O



4

Variational Formulations
of Boundary Value Problems

In this chapter we describe and analyze variational methods for second order
elliptic boundary value problems as given in Chapter 1. To establish the unique
solvability of the associated variational formulations we will use the methods
which were given in the previous Chapter 3. The weak formulation of boundary
value problem is the basis to introduce finite element methods. Moreover,
from these results we can also derive mapping properties of boundary integral

operators (cf. Chapter 6) as used in boundary element methods.

4.1 Potential Equation

Let us consider the scalar partial differential operator (1.1),

d

(Lu)(z) = 7”2::1 aij [aj,;(x)aiiu(x)} for x € 2 C RY,
the trace operator (1.3),
int _ ; e —
Yo u(x) = Qséﬂeru(x) forx e I' =012,

and the associated conormal derivative (1.7),

d
: 0
t . ~ ~
YiMu(z) = Qg%gepmzzzl n; (x)aji(z)—agiu(x) forx € I' = 012.

Note that Green’s first formula (1.5),

au,v) = / (L) (@)o(a)d + / A ()i (1) s,
2 I

(4.2)
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remains valid for u € H'(£2) with Lu € H='(£2) and v € H'(£2), i.e. we have
a(u,v) = (Lu,v)e + (11" u, 75" 0)r (43)

where a(-,-) is the symmetric bilinear form as defined in (1.6),

d
a(u,v) = Z /aji(x)aiiu(x)aijv(x) dx. (4.4)

Lemma 4.1. Assume that a;j € Loo(§2) fori,j =1,...,d with

lallp. (o) ==  max sup|ay(z)]. (4.5)
,j=1,....d zc

The bilinear form a(-,-) : HY () x HY(£2) — R is bounded satisfying
la(u,v)| < 3 [ulgoyvlpio) for allu,v e H' (1) (4.6)
with ¢5 :=d|all1__(0)-

Proof. Using (4.5) we first have
0
Z / aml )a—x]v(m)dx

Lj=lg
zd: i
‘ ox
j=1

< llall Lo () )
J

Applying the Cauchy—Schwarz inequality twice we then obtain

d a 2 1/2
la(u,v)| < |lallz (o) /lz 633@(:3)1 dx
o Li=t ¢
) 1/2
d
0
Z —uv(x)|| dx
! = 8:cj
< Jlal S o)
S 0] Lo (2) / _ (%iu(l‘) €L
0 1=1
Ly , 1/2
d v(z)| dx
(Z Z (%cj

=dllalr.2) IVull o) VYl Ly(2)- d
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From (4.6) we further get the estimate
la(u,v)| < ¢ lull 1oy l|vll a2y for allu,v € H(92). (4.7

Lemma 4.2. Let L be a uniform elliptic partial differential operator as given
n (4.1). For the bilinear form (4.4) we then have

a(v,v) > Ao |U|%11(9) for allv € H(02) (4.8)

where \g is the positive constant of the uniform ellipticity estimate (1.2).

Proof. By using w;(x) := 3
£

v(x) for i =1,...,d we have
alv,v) = / (A(2)w(e), w(z)) do

> Ao / (w(w), w(x) dz = Xo [Vol, ) O
0

4.1.1 Dirichlet Boundary Value Problem
We start to consider the Dirichlet boundary value problem (1.10) and (1.11),
(Lu)(z) = f(z) forx e §2, ”y(i)ntu(x) = g(z) forzel. (4.9)
The manifold to be used in the weak formulation is defined as
Vy = {v cH' () : ’y(i)ntv(x) =g(x) forze F}, Vo = H}(02).

The variational formulation of the Dirichlet boundary value problem (4.9)
then follows from Green’s first formula (4.3): Find u € V,, such that

a(u,v) = (f,v)e (4.10)

is satisfied for all v € V4. Since the Dirichlet boundary condition is explic-
itly incorporated as a side condition in the manifold V, we call boundary
conditions of Dirichlet type also essential boundary conditions.

The variational problem (4.10) corresponds to the abstract formulation
(3.20). Hence we can apply Theorem 3.8 and Corollary 3.9 to establish the
unique solvability of the variational problem (4.10).

Theorem 4.3. For f € H™'(§2) and g € H'/?(I") there exists a unique solu-
tion u € H'(82) of the variational problem (4.10) satisfying

1 i
lullney < 2 Il + (14 % ) errlollmgn. (@)
1 1
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Proof. For any given Dirichlet datum g € HY/?(I") we find, by applying the

inverse trace theorem (Theorem 2.22), a bounded extension u, € H'({2) sat-
isfying 7™u, = g and

”ugHHl(Q) < cr ||g||H1/2(F).

It remains to find ug := v —wu, € Vy as the solution of the variational problem

a(ug,v) = (f,v)o —a(ug,v) forallvely. (4.12)
Recall that
9 1/2
lolhwgonr =4 | [t ds.| + Vol 0
T

defines an equivalent norm in H'(£2) (cf. Example 2.7). For v € Vo = H}(£2)
we then find from Lemma 4.2

a(v,v) = Ao |’U|§-11(Q) = Ao ||U||%/V21(_(2),F 2 Cfl H’U”%ﬂ((l)' (4.13)

Therefore, all assumptions of Theorem 3.4 (Lax—Milgram lemma) are satisfied.
Hence we conclude the unique solvability of the variational problem (4.12).

For the unique solution ug € Vj of the variational problem (4.12) we have,
since the bilinear form a(-,-) is Vp—elliptic and bounded,

et l[uollFn oy < aluo,uo) = (f,uo)a — alug, uo)
< (Iflle-1c2) + <5 lugllmr (o)) lluoll (),

from which we finally get the estimate (4.11). O

The unique solution u € V, of the variational problem (4.10) is also
denoted as weak solution of the Dirichlet boundary value problem (4.9).
For f € H ~1(2) we can determine the associated conormal derivative
~inty, € H=1/2(I") as the solution of the variational problem

<’}/%ntu,2>[‘ = a(u,&2) — (f,E2)qn (4.14)

for all z € HY2(I'). In (4.14), £ : HY?(I') — H'(2) is the bounded exten-
sion operator as defined by the inverse trace theorem (Theorem 2.22). The
unique solvability of the variational formulation (4.14) follows when applying
Theorem 3.7. Hence we need to assume the stability condition

lwll g-1/2(ry = sup w2 for allw € H~'/2(I). (4.15)

ozzerirz(ry 12l macr)
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Lemma 4.4. Let u € H'(§2) be the unique solution of the Dirichlet boundary
value problem (4.10) when assuming g € HY(T') and f € H=*(R2). For the
associated conormal deriative fyf"tu € H-Y2(I") we then have

H,yimtuHHfuz(p) < crr {”f”}j—l(_q) -l-Cé4 |U‘H1(Q)}. (4.16)

Proof. Using the stability condition (4.15) and the variational formulation
(4.14) we find from the boundedness of the bilinear form a(-, -) and by applying
the inverse trace theorem
int
i ’Yln u,z)r
il ey = sup AT
0#£z€H/2(I") HZHHI/?(F)

la(u,€2) = (f,€2)q]

= sup
0#2€H/2(I) ||z||H1/2(r)
1€2] 112
< {ef lulmro) + 1oy} sup D
ozzer2(r) |2l mery
<err {1l + b i} O

In particular for the solution u of the Dirichlet boundary value problem
with a homogeneous partial differential equation, i.e. f = 0, we obtain the
following result which is essential for the analysis of boundary integral oper-
ators.

Corollary 4.5. Let u € H'(§2) be the weak solution of the Dirichlet boundary
value problem

(Lu)(z) = 0 forz e 2, ~Mu(z)=g(x) forzel

where L is a uniform elliptic partial differential operator of second order.
Then, '
o) = el gy (4.17)

Proof. By setting f = 0 the estimate (4.16) first gives

||’Yint“||§{—1/2(r) < lerres)? |“|%11(Q) :
The assertion now follows from the semi-ellipticity (4.8) of the bilinear form
CL(-, ) o
When {2 is a Lipschitz domain we can formulate stronger assumptions on
the given data f and g to establish higher regularity results for the solution
u of the Dirichlet boundary value problem and for the associated conormal
derivative 10y,
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Theorem 4.6. [106, Theorem 1.1, p. 249] Let §2 C RY be a bounded Lipschitz
domain with boundary I' = 9. Let u € H'(£2) be the weak solution of the
Dirichlet boundary value problem

(Lu)(z) = f(x) forax € £, 'ygntu(x) = g(z) forxzel.
If f € Ly(2) and g € H'(I') are satisfied, then we have u € H3/?(02) with
lullgsrza) < e {Iflleacy + lgllecr b

as well as vy € Ly(I) satisfying
nt
™ ullrary < e2 {1fllLaco) + lgllacr) } -

When formulating stronger assumptions both on the domain {2 and on
the given data f and g we can establish even higher regularity results for the
solution u of the Dirichlet boundary value problem (4.9). Let the boundary
I' = 012 be either smooth or piecewise smooth, but assume that (2 is convex,
and let f € Lo(2). If g = 4w, is the trace of a function u, € H?(£2), then
we have u € H?(§2). For more general results on the regularity of solutions of
boundary value problems we refer, for example, to [66].

4.1.2 Lagrange Multiplier Methods

In what follows we will consider a saddle point variational formulation which
is equivalent to the variational problem (4.10). The Dirichlet boundary con-
ditions are now formulated as side conditions, and the associated conor-
mal derivative corresponds to the Lagrange multiplier [7, 24]. Starting from
Green’s first formula (4.3) we obtain by introducing the Lagrange multi-
plier A := ~i%y € H-1/2(I") the following saddle point problem: Find
(u, \) € H'(2) x H-Y2(I') such that

a(u,v) — b(v,\) = (f,v)e
b(u, 1) = (g, u)r

is satisfied for all (v, ) € H'(£2) x H~/2(I'). Here we have used the bilinear
form

(4.18)

b(v, p) == (v, uyp for (v, ) € H'(R2) x H-V2(I).
To investigate the unique solvability of the saddle point problem (4.18) we
will apply Theorem 3.11. Obviously,
ker B := {1} cH'Y(2): <’y(i)ntv,u>p =0 forallpue H_I/Q(F)} = H} ().

Hence, due to (4.13), we have the ker B—ellipticity of the bilinear form a(-, -).
It remains to establish the stability condition

int
s ||pllg-12(r) < sup O’ e for all p € H=Y2(I').  (4.19)

0AvEH(£2) ||UHH1(Q)
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Lemma 4.7. The stability condition (4.19) is satisfied for all u € H=/2(I).

Proof. Let an arbitrary p € H=/2(I") be given. Applying Theorem 3.3 (Riesz
Representation Theorem) we find a uniquely determined u, € H'/2(I") satis-

fying
<uM,U>H1/2(p) = <M,U>F for allv € Hl/z(F>

and
”U/LHHl/?(F) = HN||H—1/2(F)-

Using the inverse trace theorem (Theorem 2.22) there exists an extension
Eu,, € HY(2) with

[€upllm(2) < crr lupllmzry-

For v = €u,, € H*(£2) we then have

(wopr _ {wmr (W, ) 2 ()
||U||H1((z) ||5Uu||H1(n) ||5uu||H1(!2)
1 1
>

EHUMHHU?(I’) = E”M”H*lﬁ(l”)
and therefore the stability condition (4.19) is satisfied. O

Hence we can conclude the unique solvability of the saddle point problem
(4.18) due to Theorem 3.11.

Recall that the bilinear form a(-,-) in the saddle point formulation (4.18)
is only H}(£2)—elliptic. However, the saddle point problem (4.18) can be re-
formulated to obtain a formulation where the modified bilinear form af(-,-) is
now H'(£2)-elliptic. Since the Lagrange multiplier A := ~"y e H=1/2(I")
describes the conormal derivative of the solution u, using the orthogonality
relation (1.15) we have

/f(:r)dx+/)\(x)dsz = 0. (4.20)
Q T

On the other hand, with the Dirichlet boundary condition ’y(i)ntu = g we also
have

/ Yo u(w)ds, = / g(x)ds, . (4.21)
r r

Hence we can reformulate the saddle point problem (4.18) to find (u, ) €
H'(£2) x H=Y2(I") such that
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[obtutwyds, [t o@)ds, + afu,0) - b, (4.22)

— (fovha+ [gla)ds, [Hlitoie)ds,

r r

bu, 1) /A dsw/ 2)ds, = gur—/f )i [ (oyds, (1.23)

r

is satisfied for all (v, ) € H*(£2) x H=Y/2(I).

The modified saddle point problem (4.22) and (4.23) is uniquely solv-
able, and the solution is also the unique solution of the original saddle point
problem (4.18), i.e. the saddle point formulations (4.22)—(4.23) and (4.18) are
equivalent.

Theorem 4.8. The modified saddle point problem (4.22) and (4.23) has a
unique solution (u, \) € H'(2) x H=Y2(I"), which is also the unique solution
of the saddle point formulation (4.18).

Proof. The extended bilinear form

a(u,v) = /’y(l)ntu( )ds, /’yéntv( )dsz + a(u,v)
r r
is bounded for all u,v € H*({2). Using Lemma 4.2 and Example 2.7 we find
2

a(v,v) = /véntv( Jdso | +a(v,v) > min{1, Ao} [vlFyy ). r > et 017 o)
Ir

for all v € H'(§2) and therefore the H'(§2)-ellipticity of the extended bilinear
form a(-,-). Applying Theorem 3.11 we obtain as in Theorem 3.13 the unique
solvability of the saddle point problem (4.22) and (4.23). In particular for
(v,1) = (1,1) we have

|F|/7(1)ntu )ds, — /)\(x)dsx = /f(a:)d:l:Jr|F|/g(:1:)dsaC7
2 r

/'yéntu( )ds + |F\/)\(x)dsx = /g(m)dsx— |F|/f(x)d:c
r r 2

r

Multiplying the first equation with |I'| > 0 and adding the result to the second
equation this gives

1+ 1) / Ay () ds, = (1+|T2) / o(z)ds,

I Ir

and therefore (4.21). Then we immediately get also (4.20), i.e. (u, ) is also a
solution of the saddle point problem (4.18). O
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4.1.3 Neumann Boundary Value Problem

In addition to the Dirichlet boundary value problem (4.9) we now consider
the Neumann boundary value problem (1.10) and (1.12),

(Lu)(z) = f(z) forxze 2, ~Mu(x) =g(x) forz el (4.24)

Hereby we have to assume the solvability condition (1.17),
/f(x)dx + /g(m)dsm = 0. (4.25)
2 r

Moreover, the solution of the Neumann boundary value problem (4.24) is only
unique up to an additive constant. To fix this constant, we formulate a suitable
scaling condition. For this we define

HI () :=ve H Q) : [v(x)dr =0
/

Using Green’s first formula (4.3) we obtain the variational formulation of the
Neumann boundary value problem (4.24) to find u € H}({2) such that

a(u,v) = (f,v)0 + (g. %) (4.26)
is satisfied for all v € H}(£2).

Theorem 4.9. Let f € ﬁ[‘l(Q) and g € H=Y2(I') be given satisfying the
solvability condition (4.25). Then there exists a unique solution u € HL(82) of
the variational problem (4.26) satisfying

1
lllaay < =5 {11710 + e lglla-er } -
1
Proof. Recall that

9 1/2

lollwi e = / o(@)dz| + Vo2,
0

defines an equivalent norm in H'(£2) (cf. Example 2.7). Using Lemma 4.2 we
then have

a(v,v) > Ao V0|7, ) = o ”U”?/VZI(Q),Q > [0]l31 02) (4.27)

for all v € H!(£2) and therefore the H}(§2)-ellipticity of the bilinear form
a(-,-) follows. The unique solvability of the variational problem (4.26) we
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now conclude from Theorem 3.4 (Lax-Milgram lemma). Using the H}(£2)-
ellipticity of the bilinear form a(-,-) we further have

& llullin ) < alu,u) = (fru)e + (9,%" w)r
int
< ”f”ﬁ*l(())”u”Hl(Q) + gl zr-1r2cry 170" wll 112y -

Applying the trace theorem (Theorem 2.21) gives the assertion. 0O

In what follows we will consider a saddle point formulation which is equiv-
alent to the variational problem (4.26). The scaling condition to define the
trial space H!(f2) is now formulated as a side condition. By using a scalar
Lagrange multiplier we obtain the following variational problem (cf. Section
3.5) to find u € H*(£2) and X € R such that

a(u,v) + A / v(@)de = (f,v)e + (g1t

2 (4.28)
/ u(x)dx =0
2

is satisfied for all v € H'(§2). To establish the unique solvability of the saddle
point problem (4.28) we have to investigate the assumptions of Theorem 3.11.
The bilinear form

b(u,p) == /v(m)dw for allv € H'(2),n € R
Q
is bounded, and we have ker B = H!(§2). Hence we obtain the ker B—ellipticity

of the bilinear form a(-,-) from the ellipticity estimate (4.27). It remains to
prove the stability condition

b
cs |yl < sup LCIDE for all p € R. (4.29)

0AvEHL($2) ||UHH1(Q)

For an arbitrary given u € R we define v* := u € H'(£2) to obtain the
stability estimate (4.29) with c¢g = l/m By applying Theorem 3.11 we
now conclude the unique solvability of the saddle point problem (4.28).

Choosing in (4.28) the test function v = 1 we obtain for the Lagrange
parameter A from the solvability condition (4.25)

A= 0.

Instead of (4.28) we may now consider an equivalent saddle point formulation
to find (u, \) € H'(£2) x R such that

a(u,v) + )\/v(x)dx =(f,v)o+ (g,'y(i)ntmp

2 (4.30)
/u(m)dx - A =0
2
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is satisfied for all v € H'(£2). Using the second equation we can eliminate the
scalar Lagrange multiplier A € R to obtain a modified variational problem to
find u € H'(£2) such that

a(u,v) Jr/u(z:)do:/v(x)dx = (f,v)o+ <g,'y(i)ntv>p (4.31)

0 0

is satisfied for all v € H1(£2).

Theorem 4.10. For any [ € }NI_I(Q) and for any g € H=Y/2(I) there is a
unique solution uw € H(£2) of the modified variational problem (4.31).

If f € H () and g € H-Y/2(I') satisfy the solvability condition (4.25),
then we have u € HL(§2), i.e. the modified variational problem (4.31) and the
saddle point formulation (4.28) are equivalent.

Proof. The modified bilinear form

a(u,v) == a(u,v)—l—/u(x)dw/v(x)da:

o o
is H'($2)-elliptic, i.e for all v € H!(§2) we have
2

(0,0) 2 D [Volf o) + | [ vle)ds
(%

) A
> min{Ao, 1} HUH%VQI(!Z),Q =G H“”%ﬂ(ﬂ)'

Hence we conclude the unique solvability of the modified variational problem
(4.31) due the Theorem 3.4 (Lax—Milgram lemma) for arbitrary given data
feH Q) and g€ HV2(I).

Choosing as test function v = 1 we get, when assuming the solvability
condition (4.25),

) / w(@)dr = (f,1)o + (g 1) = 0
0

and therefore u € H!(£2). The solution of the modified variational problem
(4.31) is therefore also a solution of the saddle point formulation (4.28), i.e.
both formulations are equivalent. 0O

Since the solution of the Neumann boundary value problem (4.24) is not
unique, we can add an arbitrary constant o € R to the solution u € H!(£2)
to obtain the general solution u := u + a € H*(£2).
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4.1.4 Mixed Boundary Value Problem

We now consider the boundary value problem (1.10)-(1.12) with boundary
conditions of mixed type,

(L))
7 u()

)

fx) for x € (2,

p(x) forxz e Ip,

gn(
gy(z) forx e I'y.

We assume I' = I'p Uy as well as meas(I'p) > 0. The associated variational
problem again follows from Green’s first formula (4.3) to find u € H L($2) with
Aity(2) = gp(x) for & € I'p such that

a(u,0) = (f,v)e + (gn, 20" )y (4.32)

is satisfied for all v € H} (2, I'p) where
Hy(2,Tp) = {U cH () : ’yéntv(x) =0 forzxe FD}.
The unique solvability of the variational problem (4.32) is a consequence of

the following theorem.

Theorem 4.11. Let f € H(2), gp € HY*(I'p) and gy € H/2(I'y)
be given. Then there exists a unique solution u € H'(§2) of the variational
problem (4.32) satisfying

lullzr iy < e [1flz-sgoy + loplavan) +lonla-vay] - (433)

Proof. For gp € HY?(I'p) we first find a bounded extension gp € H'Y/?(I")
satisfying

H§D||H1/2(F) < CH9D||H1/2(FD)~
Applying the inverse trace theorem (Theorem 2.22) there exists a second ex-
tension ug, € H'(£2) with ’y(i)ntugD = gp and satisfying

Hu??D”Hl((Z) < crr ||§DHH1/2([').

It remains to find ug € Hj(£2,I'p) as the unique solution of the variational
formulation

auo,v) = (f,v)e + (9N, 20" 0) ry = alugy, )
for all v € H}(2,I'p). As in Example 2.7 we can define
) 1/2

lollwaayrp = / Aty ds, |+ IVell2, 0

I'p
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which is an equivalent norm in H'(§2). Using Lemma 4.2 we find
A
a(v,v) > /\OHV’UH%Q(Q) = Ao ||”H$/V21(Q),FD =G ||UH%/I/21(Q)

for all v € H}(£2,I'p). Hence all assumptions of Theorem 3.4 (Lax-Milgram
lemma) are satisfied, and therefore, the unique solvability of the variational
problem (4.32) follows.

For the unique solution ug € H}(§2, I'p) of the variational problem (4.32)
we then obtain

et [luoll3rr () < aluo, uo)
_ int
= (f,uo)e + (gn, 70 uo)ry — alug,,uo)
< | lG-2 () + €2 lugollacoy | lluollao)

int
+H9NHH*1/2(FN)H76H uOHﬁl/z(pN)a

from which we conclude the estimate (4.33). O

4.1.5 Robin Boundary Value Problems

We finally consider the boundary value problem (1.10) and (1.13) with bound-
ary conditions of Robin type,

(Lu)(z) = f(z) forze 2, ~™u(z)+ r(z)yMu(z) = g(z) forzeT.

The associated variational formulation is again a direct consequence of Green’s
first formula (4.3) to find u € H'(£2) such that

alu, v) + / k(@) ()i () ds, = (f,o)e + (g, (4.34)

is satisfied for all v € H'(£2).

Theorem 4.12. Let f € H () and g € H~Y2(I") be given. Assume that
k(z) > Ko > 0 holds for all x € I'. Then there exists a unique solution
u € HY(82) of the variational problem (4.34) satisfying

lullm ) < e [Ifl-1 o) + gl - (4.35)
Proof. As in Example 2.7 we can define
int, |2 2 /2
lollwgcon,r = {Intolid, ) + 1Vol, 0 }

which is an equivalent norm in H!(§2). Applying Lemma 4.2 and by using
k(z) > ko > 0 for € I we obtain
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int 2d >\ ||V 2 int, |12
a(v,v) + [ w(x)g v(@)] dse = Ao IVVl|7,0) + Kol vllL,
r

. A
> min{Ao, Ko} ||UH%(1(Q),F st HU”iﬂ(Q)-

Hence we can apply Theorem 3.4 (Lax-Milgram lemma) to conclude the
unique solvability of the variational problem (4.34). The estimate (4.35) then
follows as in the proof of Theorem 4.11. O

4.2 Linear Elasticity

Next we consider the system of linear elasticity,
)
Za— (u, ) foree RcRY i=1,...,d

Inserting Hooke’s law (1.19) this is equivalent to
Lu(z) = —pAu(z) — (X + p)grad divu(z) forz € 2 Cc RY

with the Lamé constants

FEv FE

AT T —my M T 3

where we assume E > 0 and v € (0,1/2). Using the associated conormal
derivative (1.23) and the bilinear form (1.26),

d
a(u,v) =2p / Z eij(u, x)e;j(v :E)d:r—i—)\/divy(x) divo(x)dx
)i

3,7=1 0

d
/Z i, x)e;; (v, x)de,

we can write Betti’s first formula as (1.21),

a(w,v) = (Lu.v)a + (11"w 75" 0)
First we show that the bilinear form a(-,-) is bounded.
Lemma 4.13. The bilinear form (1.26) is bounded, i.e.

2F
lalw, v)| = = luli @)l o) (4.36)

for all u,v € [H(£2)]%.
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Proof. In the case d = 3 we can write Hooke’s law (1.19) as

o11 1—v v v €11
022 v 1—v v €22
033 o E 14 14 1—v €33
o | (1+v)(1-2v) 1—-2v e12
Jg13 1—-2v €13
023 1—2v €23
or in short,
E
o= ———-—Ce.

A+)1-2v) °©
Due to the symmetries 0y;(u, ) = 0j;(u, x) and e;; (v, z) = ej;(v, ) we have

E

a(u,v) = A+v)1-20)

/DCeu:r e(v,x))dx
Q

with the diagonal matrix D = diag(1,1,1,2,2,2). The eigenvalues of the ma-
trix DC' € R%6 are
)\1(DC) =1+ v, Az’g(DC) =1- QV, )\475’6(DC) = 2(1 - 21/)

Hence, by applying the Cauchy—Schwarz inequality,

E
la(u, v)| = Ml_M!(DCS(u,x),e(v,x))da:
E
< T ([ IDCe(a ) ale(w, )] do
E
< Ty e )20 - ) ! lew, ) (e )] da
1/2 1/2
<o | [lewnBas) | [leta3a
2 2
Using
d d d d 2
et = 3 Yl = 135 | s o)+ pulo)
1 d D) 2 9 2 d 9 2
a 5132221 { {axj Z(x)} - {axi ](x)} } B =1 [8 J l(x)}

we obtain
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/|| ux||2dx</z

|: l‘:| dr = |g|[2H1(Q)]d
i,j=1
and therefore the estimate (4.36). In the case d = 2 the assertion follows in
the same way. 0O

The proof of the [H}(£2)]%ellipticity of the bilinear form a(-,-) requires
several steps.

Lemma 4.14. For v € [H'(£2)]¢ we have

a(v,v) > 1+V/Zeljvx (4.37)

3,j=1

Proof. The assertion follows from the representation (1.26), i.e

a(v,v —2/1/2 eij(v, )] dm—i—)\/[dlvv( ))? dx

3,7=1 0
d
22 [ Y leswa)fde = 1+U/Z eiy(v, )] 0
o hi=1 ij=1

Next we can formulate Korn’s first inequality for v € [Hg (£2)]9.

Lemma 4.15 (Korn’s First Inequality). For v € [H}(£2)]? we have

d

1
Z[eu(yyw)Pdw 2 §| |[2 1(Q)]d- (4.38)
o hi=1

Proof. For ¢ € C§°(§2) we first have

/Z eij(p,x)Pde = ~ /Z [8%% aiapj(:c)rdx

4,J=1
1< 1 0 0
= = i d = —i(x)=—¢;(x)d
2 Z / {a wil } T _jzl/axj“” (2) 5, o (@)de
= 1,]= o)
Applying integration by parts twice, this gives

0 g B B
/(%j%(x)am%(ff)dx = /%wi(x)(%japj(x)dx
2 o)
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and therefore

Z/a‘pla% Z/asoza%()

)= 1_Q b= 1!2

2
:/ lz (;;%(x)] dz > 0.
o Li=1 77"

Hence we have

d
1 1
/Z e” P, T T > 5 Z / |:(9 QOZ ] dr = 5‘ |[2H1(Q)]d'

1,j=1

Considering the closure of C§°(§2) with respect to the norm || - [|g1(o) we
conclude the assertion for v € [HE(2)]?. O

Using suitable equivalent norms in [H!(£2)]? we now conclude the [H} (§2)]9-
ellipticity of the bilinear form a(-,-).

Corollary 4.16. For v € [H}(£2)]¢ we have
a(QaQ) > CHQH[QHl(Q)]d- (4.39)

Proof. For v € [HE(£2)]¢ we can define by

9 1/2
d

ol ayer =4S / vi(@) dss |+ Lol oy (4.40)

i=1 T

an equivalent norm in [H!(£2)]¢ (cf. Theorem 2.6). The assertion then follows
from Lemma 4.14 and by using Korn’s first inequality (4.38). O

The ellipticity estimate (4.39) remains valid for vector functions v, where
only some components v;(z) are zero for x € I'p; C I'. Let

[HL(02,Ip)]¢ = {y e [H ()] : ity (z) = 0forz € Ipsyi=1,... ,d}.
Then we have
a(v,v) > c||y|\[2H1(Q)]d for all v € [H} (02, I'p)]%. (4.41)
As for the scalar Laplace operator we can extend the bilinear form af(,-)
of the system of linear elasticity by some Lo norm to obtain an equivalent

norm in [H*(£2)]¢. This is a direct consequence of Korn’s second inequality,
see [53].
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Theorem 4.17 (Korn’s Second Inequality). Let 2 C R? be a bounded
domain with piecewise smooth boundary I' = 0f2. Then we have

d
S fess (0, 0)Pde + 0l e > ¢l aye Jor ally € [H ()],
f a=1

Using Theorem 2.6 we can introduce further equivalent norms in [H*(£2)]¢.

Corollary 4.18. Let R = span{yk}ginf (R)

tions as given in (1.29). Then we can define

be the space of all Tigid body mo-

. 2 1/2
dim (R) d
Wl prr =4 Y /%ufmmm +/§Mw@wmm
= |5 o =l

as an equivalent norm in [H(£2)]%.

4.2.1 Dirichlet Boundary Value Problem
The Dirichlet boundary value problem of linear elasticity reads
—pAu(z)—(Mp)graddivu(z) = f(x) forx e f2, ’y(iJnt@(x) =g(z) forz e I.
As for the scalar potential equation we define the solution manifold

Vy = {y e [H (2) - W(i)ntvi(x) =gi(x) forzel, i= 1,...,d}
where Vo = [H} (£2)]%. Then we have to find u € V, such that

a(u,v) = (f,v)0 (4.42)

is satisfied for all v € V. Since the bilinear form a(-,-) is bounded (cf. (4.36))
and [H}($2)]%elliptic (cf. (4.39)) we conclude the unique solvability of the
variational problem (4.42) by applying Theorem 3.8. Moreover, the unique
solution of (4.42) satisfies

lullizr e < e lfli-1c2ne + 2 llgllprrzcry)a-

For the solution u € [H'(£2)]¢ of the Dirichlet boundary value problem we now
compute the associated boundary stress v1™w € [H~1/2(I")] as the solution
of the variational problem

(YRt w)p = alu, Ew) — (f,Ew)g

for all w € [HY/?(I")]®. Here, £ : HY/?(I') — H'({2) is the extension operator
which is applied to the components w; € H'/?(£2). Note that

; E
A |y —1/2 (e < err {||f||[ﬁ1(g)]d t 15, |“|[H1(!2)]d}-
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Lemma 4.19. Let u € [H'(£2)]? be the weak solution of the Dirichlet bound-
ary value problem

—pAu(z) — (A + p)graddivu(z) =0 forx € 2, wu(x)=g(x) forzecl.

Then we have A
a(w,u) > ||y ullPy 1y (4.43)

Proof. The associated conormal derivative 4%y € [H=/2(I")]% is defined as
the unique solution of the variational problem

(it w) = a(u,Ew) for allw € [HY2(I))%.

As in the proof of Lemma 4.13 we have

12 1/2

2F
ot gw)| < oo | [lewoltas | | [ e
0 2

and
/llg(@w)ll%dw < [Ewlfy (-
2

Moreover,

4,j=1

d
Jlewolar < [ Y lepwalar < 2 atww.
£2 2

Applying the inverse trace theorem (Theorem 2.22) this gives

int
i Y u,w)r
||Wintu||[H71/2(r)]d = sup 7< - )
owelr/2(r)e 1@l /2y
I
ap | Mwlw) s

ozwelr1/2(r) [@ll g2y

Note that the constant c in the estimate (4.43) tends to zero when v — . O

4.2.2 Neumann Boundary Value Problem
For the solvability of the Neumann boundary value problem
—pAu(x)—(Ap)grad divu(z) = f(r) forz € £, fyilntg(x) =g(x)forz el

we have to assume the solvability conditions (1.31),
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/yk(m)—ri(x)der/’yéntvk( )Tg(x)ds, = 0 forally, € R

2 r

where v, are the rigid body motions (cf. (1.29)). On the other hand, the
solution of the Neumann boundary value problem is only unique up to the
rigid body motions. To fix the rigid body motions, we formulate appropriate
scaling conditions. For this we define

[HY )] = Qv e [H (2)]: /yk(a:)Ty(x)dx =0 forally, € R
%)

The weak formulation of the Neumann boundary value problem is to find
u € [HL(£2)]% such that

a(wv) = (f,0)0+ (g 70" 0)r (4.44)

is satisfied for all v € [H!($2)]%. Using Corollary 4.18 we can establish the
[H(£2)]%ellipticity of the bilinear form af(-,-) and therefore we can conclude
the unique solvability of the variational problem (4.44) in [H}(2)]%.

By introducing Lagrange multipliers we can formulate the scaling condi-
tions conditions of [H)!(£2)]? as side conditions in a saddle point problem.

Then we have to find u € [H(£2)]¢ and A € RAUM(R) guch that
dim R

alwe) +Y M [ wile) (@) = (fha+ (g2

B=l G (4.45)
[ )Ttz 0
2

is satisfied for all v € [H'(2)]¢ and £ = 1,...,dim(R). When choosing as test
functions v, € R we then find from the solvability conditions (1.31)

dim R

Z /\k/ z)de =0 forl=1,...,dim(R).

Since the rigid body motions are linear independent, we obtain A = 0. In-
serting this result into the second equation in (4.45), and eliminating the
Lagrange multiplier A we finally obtain a modified variational problem to find
u € [H(£2)]¢ such that

dim R
UU+2:/W; @do [ vy(e) s(o)ds = (.00 + (g0
? (4.46)
is satisfied for all v € [H'(£2)]%.



4.3 Stokes Problem 79

The extended bilinear form of the modified variational formulation (4.46) is
[H'(£2)]%elliptic (cf. Corollary 4.18). Hence there exists a unique solution
u € [H'(2)]¢ of the variational problem (4.46) for any given f € [H~1(02))
and g € [H~Y/2(I")]%. If the solvability conditions (1.31) are satisfied, then

we have u € [H}(£2)]¢, i.e. the variational problems (4.46) and (4.44) are
equivalent.

If u € [H}(£2)]? is a weak solution of the Neumann boundary value prob-
lem, then we can define

U=u+ » oapyc[H(2)
which is also a solution of the Neumann boundary value problem.

4.2.3 Mixed Boundary Value Problems

We now consider a boundary value problem with boundary conditions of
mixed type,

—pAu(z) — (A + p)grad divu(z) = f(z) for x € (2,
ity (x) = gpi(x) forxz e I'py,
(™ w)i(@) = gni(w)  forz € Iy

where I' = I'p ; UT'y; and meas(I'p;) > 0 for i = 1,...,d. The associated
variational formulation is to find u € [H'(£2)]¢ with ™ u;(z) = gp.i(z) for

x € I'p,; such that

d
a(w,v) = (f.0)e+ Y {gne 10" vi)ry, (4.47)

i=1
is satisfied for all v € [HE(£2, I'p)]%.
Using (4.41) we conclude the [HZ (£2, I'p)]?-ellipticity of the bilinear form
a(-,-) and therefore the unique solvability of the variational problem (4.47).

4.3 Stokes Problem

Next we consider the Dirichlet boundary value problem for the Stokes system
(1.38),

—pAu(x)+Vp(z) = f(r), divu(z) = 0forz € {2, W(i)ntg(x) =g(z) forz e I

Due to (1.39) we have to assume the solvability condition
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@) g(wis. = o (4.48)

r

Note that the pressure p is only unique up to an additive constant. However,
as for the Neumann boundary value problem for the potential equation we
can introduce an appropriate scaling condition to fix this constant. For this
we define

Lyo(£2) = (g€ La(02) : /q(m)dw =0
Q

To derive a variational formulation for the solution u of the Dirichlet boundary
value problem of the Stokes system, we consider Green’s first formula (1.41),

a(u,v) = / p(a)dive(e)de + (f, )0 + (tw p), i)
0

Due to divu(z) = 0 for x € £2, the bilinear form (1.42) is given as

d
a(u,v) = 2u/ Z eij(u, x)e;; (v, x)d.
o Gd=1

Hence we have to find u € [H*(£2)]? satisfying u(z) = g(z) for € I" and
p € Ly o(£2) such that

2 (4.49)

Q

is satisfied for all v € [H(£2)]? and q € Lo o(92).

Let u, € [H'(£2)]¢ be any arbitrary but fixed extension of the given Dirich-
let datum g € [H'/2(I')]%. Tt remains to find u, € [H(£2)]¢ and p € Ly o(2)
such that

a(ug,v) — / ple) divo(@)de = (f,0)q — a(u,,v),

2 (4.50)
/q(x) div ug(z) dx = —(divug,, 9)n
2

is satisfied for all v € [H(£2)]? and q € L o(£2).

To investigate the unique solvability of the saddle point problem (4.50)
we have to check the assumptions of Theorem 3.11. The bilinear form af(-,-) :
[HE(2)]4 x [HE(2)]¢ — R induces an operator A : [H}(2)]? — [H~1(2)]<.



4.3 Stokes Problem 81

The bilinear form

b(v,q) = /q(m) divo(z)de forv e [HY(2)]% q € Lay(2)
2
induces an operator B : [H{($2)]9 — La(£2). Note that

blua)l = | [ ale) divate) de
(9]
< dllzyldivell,e) < llallollelz (2)e-

A

We further have
ker B := {v € [H)(2)]* : dive =0} C [Hj(2)]“
Applying Korn’s first inequality (4.38) this gives

d
aw) = 2 [ 3 fes(w o) de > uluffys oy
o =1

for all v € [H}(£2)]%. Using the equivalent norm (4.40) we then find the
[H3(£2)]%ellipticity of the bilinear form af(-, ),

a(v,v) > C||yH[2H1(Q)]d for all v € [H} (12)]%.

Due to ker B C [H}(£2)]? we also have the ker B-ellipticity of the bilinear
form a(-,-). It remains to prove the stability condition (3.25),

/ o() div o(z)de

cslaliy < sup 2 for all g € Lyo(£2). (4.51)
0#£vE[HE (2)]? HQH[Hl(Q)]d

This is a direct consequence of Theorem 2.17:

Lemma 4.20. Let 2 C R? be a bounded and connected Lipschitz domain.
Then there holds the stability condition (4.51) .

Proof. For q € Lao(£2) we have Vq € [H~1(£2)]¢ satisfying, by using Theorem
2.17,

lgllLo2) < cllVallig— (o
Recalling the norm definition in [H~'(£2)]? by duality, this gives

1 (w,Vg) o
= allr2) < IVallia-1(@)e = sup
¢ o#welHi(2) 1wl (2)a
—/q(a:) divw(x)dx
o
= sup
ozwelri(2)e  llwlim o)

Hence, choosing v := —w we finally obtain the stability condition (4.51). O
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Therefore, all assumptions of Theorem 3.11 are satisfied, and hence, the saddle
point problem (4.50) is unique solvable.

The scaling condition to fix the pressure p € Ly ¢(2) can now be reformu-
lated as for the Neumann boundary value problem for the potential equation.
By introducing a scalar Lagrange multiplier A € R we may consider the fol-
lowing extended saddle point problem to find u € [H*(£2)]¢ with u(z) = g(z)
for v € I as well as p € Lo(£2) and A € R such that B

a(wo) - / p(a) dive(e)dz = (£,0) e,

9]

/ g(a) divu(e)de + A / g@)dz =0, (4.52)

9] 0

Z p(z)dx =0

is satisfied for all v € [H}(£2)]? and ¢ € Ly(£2). Choosing as test function
q = 1 this gives

A2 = —/diw(x) d = —/Q(x)Tg(a:)dsm ~ 0
(9]

r

and using the solvability condition (4.48) we get A = 0. Hence we can write
the third equation in (4.52) as

/p(:z:)d:c - A =0.
Q
Eliminating the Lagrange multiplier A we finally obtain a modified saddle

point problem which is equivalent to the variational formulation (4.50) to find
uy € [Hg(2)]¢ and p € Ly(£2) such that

olwpr) - [ple)dive@de = (F)a
2 (4.53)
/q(gc) div ug(z) dz + /p(x)dx/q(m)dm = —(divgg,q>g
19

2 02

is satisfied for all v € [H(§2)]? and ¢ € Lo(2) where

(frv)e = (f,v)a —alu,,v) for all v € [Hy(£2)]

induces f € [H~1(£2)]%
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By

(Au,v) o = a(u,v),

(B, @) 1,(0) = b, q),
<ya B/p>Q = <

(Dp, ) 1y(s2) = / pl()dz / g(z)da
2 (9]

Hg((z
B/ : L2
D : L2

Hence we can write the variational problem (4.53) as an operator equation,

A -DB’ ug\ f
B D p ) —Bu, '
Since A is [H{ (£2)]%elliptic we find

Uy = At {z-ﬁ- Blp}

and inserting this into the second equation we obtain the Schur complement

system _
[BA™'B'+ D]p = ~Bu, — A7'f. (4.54)

Lemma 4.21. The operator S :== BA™ B’ + D : Ly(2) — Ly(£2) is bounded
and Lo (82)-elliptic.

Proof. For p € Ly(£2) we have u, = A~*B'p € [H}(£2)]* which is defined as
the unique solution of the variational problem

a(u,,v) = b(v,p) for allv € [H}(£2)]%.
Since A is [H{ (£2)]%-elliptic, and since B is bounded, we obtain
cff HﬂpH[QHl(Q)]d < a(uy,u,) = b(u,,p) < & |l @)elpll. o)

and therefore

C
1wyl (ye < é [Pl L (2)-
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Applying the Cauchy—Schwarz inequality this gives

(Sp,q)1,(2) = ((BA™'B+ Dlp,q)1,(0)

/ 2)diva d:ch/ ()dx/q(:z:)dx
Q

2 0

/\

< 3 [lgll o) 1yl (210 + 120 1Dl Lo () 4l Lo ()
Hp||L2(Q)||Q||L2((Z)

and hence we conclude the boundedness of S : Ly(£2) — Lo(£2).
For an arbitrary given p € Ly({2) we consider the decomposition

1
p = po+ ﬁ /p(m)dx
1?)

where pg € Lg o(f2) and

2

1
P10 = ol + gz | [ plo) o
0]

For py € Lo o(f2) we can use the stability condition (4.51), the definition of

u,, = A™'B'py € [Hj(£2)]* and the boundedness of A to obtain

b(v, p
eslpollisy < sup PO
ozverrg (@) 1Vl (2
a(u, ,v)
sup e < e |2, Il prr (2

0£vE[HE (02)]¢ ||UH [H1(£2)]¢

and therefore

2 2
ol < | 2] N I < = 2] a — cb(uy,.p0)
Pollzae) = | o] 1pollim (oye = o |es a(Upys Upy) = bWy, P0)-

Inserting the definition of u,, = A™*B'py € [Hj(£2)]* we get
(BA™'B'po, po) Ly(2) = (By,:P0)La(2) = ||poH2L2(Q)~
For v € [H}(£2)]? we have

(B'p.v)o = / p(x)dive(e)de = (v, Vp)a = (v, Vpo)a
0
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and hence
_ _ 1
(BA™'B'p,p)Ly(2) = (BA™'B'po,po) o) > E||poH%2(Q)~
From this we obtain

(Sp,P) o) = (BAT'B'p,p)1,(02) + (Dp,p) 1, (02)
2

= (BA_lB'po,p())Lz(n) + /p(;v) dx

02
2

1 . 1
> Sl + | [r@de| > min{ 102 1010
2

ie., Sis La(£2)-elliptic. O
Applying Theorem 3.4 (Lax—Milgram lemma) we finally obtain the unique
solvability of the operator equation (4.54).

4.4 Helmholtz Equation

Finally we consider the interior Dirichlet boundary value problem for the
Helmholtz equation,

—Au(z) — K*u(z) = 0 forx € £, v[i)ntu(a:) = g(z) forxel. (4.55)

The related variational formulation is to find u € H*(£2) with véntu(x) = g(x)
for € I" such that

/Vu(x)Vv(a:)dac— kQ/u(x)v(a;)dx =0 (4.56)
Q I7;
is satisfied for all v € H{(£2). The bilinear form
a(u,v) = /Vu(x)Vv(z) dxsz/u(x)v(x)d:c
17 7

can be written as
a(u,v) = agp(u,v) — c(u,v) (4.57)

where the symmetric and bounded bilinear form

ap(u,v) = /Vu(m)Vv(x) dx  for u,v € H'(12)
2
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is H}(£2)-elliptic, and the bilinear form

c(u,v) = k‘2/u(m)v(x)dx = (Cu,v)p
Q
induces a compact operator C' : H'(§2) — H~1(£2). Hence, the bilinear form
a(+,+) + H3(2) x H}(2) — R induces a coercive and bounded operator A :
H}(2) — H~(£2). Therefore it remains to investigate the injectivity of A,

i.e. we have to consider the solvability of the homogeneous Dirichlet boundary
value problem

—Au(z) — Ku(z) = 0 forz € 2, ~Muy(x) =0 forxel.  (4.58)

Proposition 4.22. If k? = X is an eigenvalue of the interior Dirichlet eigen-
value problem of the Laplace equation,

—Au(x) = Au(x) forax € (2, ’yém( )=0 forxel,

then there exist non—trivial solutions of the homogeneous Dirichlet boundary
value problem (4.58).

If k2 is not an eigenvalue of the Dirichlet problem of the Laplace operator,
then the operator A : H}(2) — H~*(£2) which is induced by the bilinear form
(4.57) is injective.

Hence we conclude, that if k2 is not an eigenvalue of the Dirichlet eigen-
value problem of the Laplace operator the operator A : H} () — H~1(£2)
which is induced by the bilinear form (4.57) is coercive and injective, and
therefore the variational problem (4.56) admits a unique solution.

4.5 Exercises

4.1 Derive the variational formulation of the following boundary value prob-
lem with nonlinear Robin boundary conditions

—Au(z)tu(z) = f(z) forze 2, ~u(x)+HMu)? = g(z) forz el

and discuss the unique solvability of the variational problem.

4.2 Consider the bilinear form

a(u,v) /Z:a]Z (2)

i,j=1

dx+/2b 8x Jo(z)dz

87 ;
/ x)dx
2
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which is related to a uniform elliptic partial differential operator, and where
we assume c(z) > ¢o > 0. Formulate a sufficient condition on the coefficients
b;(z) such that the bilinear form a(-,-) is H'(£2)-elliptic.

4.3 Consider the Dirichlet boundary value problem
—div[a(z)Vu(z)] = f(z) forx € 2, ’y(i]ntu(z) =0 forzel

where
e forxe 2y C 12,
alz) = _
1 foraz e 2\(.

Prove the unique solvability of the related variational formulation. Discuss the
dependence of the constants on the parameter ¢ << 1. Can these constants be
improved when using other norms?

4.4 Formulate a sufficient condition on the wave number k such that the
variational formulation of the interior Neumann boundary value problem of
the Helmholtz equation,

—Au(z) — K*u(x) = 0 forx € £, ﬂntu(x) = g(x) forxel,

admits a unique solution.
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Fundamental Solutions

We now consider the scalar partial differential equation (1.10)

(Lu)(z) = f(z) forze 2 CRY
with an elliptic partial differential operator of second order

d

B = = 32 5 [antar et
The associated conormal derivative (1.7) i
z 9
~inty, Z z)aj;(z achu(x) forx el

and Green’s second formula (1.8) reads for the solution u of the partial dif-
ferential equation (1.10) and for an arbitrary test function v

(Lo)(y)uly)dy = | YW u(y)rio(y)ds, — [ 40
/ / /

1oy )’Y(l)ntu( )dsy
I7) T

+ [ fWv(y)dy
/

If there exists for any x € 2 a function v(y) := U*(z,y) satisfying

/ (L, U") (@ )u(y)dy = ulz) (5.1)
0

then the solution of the partial differential equation (1.10) is given by the
representation formula for z € (2
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u(x) = / U* (2, y)riu(y)ds, — / AU i tu(y)ds,  (5.2)
+ [ U™ (z,y)f(y)dy.
/

Hence we can describe any solution of the partial differential equation (1.10)

just by knowing the Cauchy data [yiPtu(z), yiu(z)] for z € I".
Due to

u(z) = /§O(y —x)u(y)dy forx € 2
I7)

we have to solve a partial differential equation in the distributional sense to
find the solution of (5.1),

(L,U*)(z,y) = o(y — ) forz,y € R (5.3)

Any solution U*(x,y) of (5.3) is called a fundamental solution.

The existence of a fundamental solution U*(x,y) is essential to derive the
representation formula (5.2), and therefore to formulate appropriate boundary
integral equations to find the complete Cauchy data. For general results on
the existence of fundamental solutions for partial differential operators we
refer to [79, 90]. In particular for partial differential operators with piecewise
constant coefficients the existence of a fundamental solution is ensured. But
here we will only consider the explicit computation of fundamental solutions
for the Laplace operator, for the system of linear elastostatics, for the Stokes
system, and for the Helmholtz operator.

5.1 Laplace Operator

Let us first consider the Laplace operator
(Lu)(z) == —Au(z) forz eRY d=2,3.

The corresponding fundamental solution U*(x, y) is the distributional solution
of the partial differential equation

~AU*(z,y) = do(y — ) forz,y € R

Since the Laplace operator is invariant with respect to translations and rota-
tions, we can find the fundamental solution as U*(z,y) = v(z) with z := y—=z.
Hence we have to solve

—Av(z) = () for z € R% (5.4)

Applying the Fourier transformation (2.14) this gives, when considering the
derivation rule (2.17),
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=R 1
€ D(¢) = Gnie
and therefore 1 )
v(¢) = (27T)d/2 |§|2 € 8’(Rd)

For the Fourier transform ¥ of a tempered distribution v € S’(R?%) we have
by definition

(0, 0) Lyme) = (U, P)rymay forallp € S(RY).

Using
o(€) = (2m) /2 / ¢ 3(2)dz

]Rd
it follows that

A 1 1 o
(U, 0) Ly (rdy = (2m)d /§_|2/€Z<z’5>90(z)dzd§.

Since the integral
1
Tz d€
/ €2
Rd

does not exist we can not exchange the order of integration. However, using

Aze“z’@ — _|§|2ei<Z»E>
we can consider a splitting of the exterior integral, apply integration by parts

and exchange the order of integration, and repeat integration by parts to
obtain

(U, ) Ly(ray = @ /|£|2/ 28 3(2)dzdé

/ P+ / |5|2/ 4. TZ?]@(’“’)‘M

|§|<1 \§\>1
- / e s+ oy [ [ €5 (2B s
|§|<1 |€[>1  Rd
1 PRERS; 1 PRERS
= D déd —A,p dz
(W/ °@) | Tep 5”(2n>d/ | “”(Z”/ T ®
R4 [€1<1 R4 lg]>1

/€|£2 A/ |£|4

R4 lg1<1 [€1>1

I
\
©)
X

S
| =
=
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In the three-dimensional case d = 3 we use spherical coordinates
& =rcospsing, & =rsingsinf, &3 =rcosf

for r € (0,00),¢ € (0,27),0 € (0,7) to obtain, by using Lemma 2.13,

1 ei(z{ ’L
@) =l = e | [ gre-a. [ o |£|4

|¢1<1 [§]>1

27 w1
///eiIZ‘TCOS"sinedrded@
0 0 0

2w

x i|z|r cos 6
fAz///e Smodrd&dgp
0 0 1

T 1 T 00

. i|z|r cos @ 0
//e”zlrwsasiHGdrdﬂfAz//e sin dr do
0 0 0 1

The transformation u := cos 6 gives

i 1

/eilzlrcosesinede = /eilzlmdu = — ! [ei‘z‘r —e_i‘z‘r} = isin|2’|r
i|z|r |z|r

0 Z1

and therefore

1
1 sin|z|r sin |z \7"
vE) = 5 / EL /|7°3
0

Using the transformation s := |z|r we obtain for the first integral
1 |zl
/ 1n|z|7" 1 / Si(]z])
EERE I
0

sin ax lsinax a cos ax
3 dr = 53 t3 —2d:1:
x 2 x 2 T

lsinaz acosax a2/sinaxd
= x

With

T2 2 2 g 2

T

the computation of the second integral gives
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I = /Mdr _ _ lsinfz[r 1cos|z|r Al / sm|z\r
|2[r3 2 |z[r2 2
1

o) 1
1sin |z l2] /sin\z|r /sin|z|r
e + 2cos\z| 5 dr dr
0 0
Isin|z| 1 lz| 17 .
== - =212 = siflaD)]
3 3ol |5 - sidz)

Inserting this and applying the differentiation we obtain

1 [Si(]z]) 1 sin|z| .
() = s { S = A, |3 T 4 G coslel = el + 51D
1 1 [Si(|z]) Isin|z] 1 1, ..
=—A, 53 - A |5 5 5
- |z| + 5.3 { E 3 7] + 5 cos |z| + 2|z|Sl(|z|)
_ Lt -
A

Hence the fundamental solution of the Laplace operator in three space dimen-
sions is

1
U* — f ,y € R3.
@) = g g T
For the two—dimensional case d = 2 the inverse Fourier transform of the

fundamental solution has to be regularized in some appropriate way [154]. By

1 _ p(z) —¢(0) ple) .
<7’W»80>L2(Rd) = / e + / |x|2d

>
zeR?:|z|<1 zER?:|z|>1

we first define the tempered distribution PW € S'(R%). Then,

2m (0, @) sy = (P P)rae) = / Wd§+ / (Ipf(r")d’5

£eR2:(¢I<1 £eR2:(E|>1
for all p € S(R?). With
ﬂ@zi/“wﬂﬂzwwzifﬂmz
2 ’ 2
R2 R2

we then obtain

P e Pnaen = g [0 -12 d‘“l“/|§|2/”27€ 2)dzdt.

£ER2:|¢|<1 R2 EER2:|¢[>1  R?
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Again we can not exchange the order of integration in the second term. How-
ever, as in three—dimensional case we can write

) N N ei(z,&) -1 1(z,£)
e B = [26) | [ s [ S| e

R2 £ER2:|g|<1 EER2:|E|>1
With Lemma 2.13 we further have
1 / e _ 1 / ei(z:€)
v(z) = v(|2|) = m—5 ———dE+ ——d¢
() = vle) = oy G G
§ER2:[¢|<1 SERZ:[E[>1

and using polar coordinates we obtain

2w

1 27 00
1 1,
’U( // zr|z\cos<p_ 1} dapdr‘—l— (27T)2 //;6”' |cos<pd(pdr
00 10
1 1 1 7
=== —1]
2W/r[ o(rlzD) = 1)dr + 5= [ Lzl
0 1
with the first order Bessel function [63, Subsection 8.411],
27
J ( ) _ 1 iSCOSLpd
o(s) = 5 [ e 0.
0
Substituting r := s/p we compute
U [do(s) =1, 1 [ Jos)
- [ LS = [ 2o8)
v(z) = 27r/ . ds+27r/ . ds
0
LT 17 Jols) 1l
of ol(s
— — ds+— [ —=d
27r/ 27r/ s s 27r/s s
0 1 4
1 Co
= ——1 —_—
o log| — 5" (5:5)

with the constant

1 e}
1—
e [ L0, [0,
0 1

Since any constant satisfies the homogeneous Laplace equation we can ne-
glect constant terms in the definition of the fundamental solution. Hence the
fundamental solution of the Laplace operator in two space dimensions is
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1
U*(z,y) = —glog |z —y| forz,ye R

In what follows we will describe an alternative approach to compute the fun-
damental solution for the Laplace operator in two space dimensions. From
Lemma 2.13 we know that the solution v(z) depends only on the absolute
value ¢ := |z|. For z # 0 the partial differential equation (5.4) can be rewrit-
ten in polar coordinates as

{;—; + %%} v(o) = 0 for o> 0.

The general solution of this ordinary differential equation is given by
v(p) = alogo+0b, a,beR.

In particular for b = 0 we have

U*(,y) = alogla —y.

For z € {2 and for a sufficient small € > 0 let B.(z) C {2 be a ball with center
2 and with radius €. For y € 2\B.(z) the fundamental solution U*(x,y) is
a solution of the homogeneous Laplace equation —A,U*(z,y) = 0. Applying
Green’s second formula (1.8) with respect to the bounded domain 2\ B, (x)
we obtain

Oz/U*(ac y) y)ds, — /—U* Ju(y)ds, + / U*(z,y)f(y)dy

r S0\B:(x)

+ / U*(x,y)ai%u(y)dsy— / ai%U*(x7y)u(y)dsy.

dB:(x) 9B, (x)

Taking the limit € — 0 we first bound

. 0 o)
/ U (x,y)aTu(y)dsy = |a| |loge] / aTu(y)dsy
Y Y

9B, (I) OB, (z)

< la|27 e [loge| ||lullcr ()

) 1
= - - €
Using n, 5 (x —y) for y € OB (z) we have

| aevutis, = [ S Dugas, -2 [ uis,

ony lz —y[?
9B (x) OB.(x) OB.(x)

The Taylor expansion
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u(y) = u(z) + (y — z)Vu(§)

with a suitable £ = z + t(y — x), t € (0,1) yields

* a
| st auts, = —aznu@ -2 [ (-0 Vuy
ny e
9B (x) OB.(x)
where

a

[ w-a)vu©dy| < fal2m<ules o).
OB (x)

Taking the limit € — 0 gives

—a2mu(xr) = /U*(m,y)aiyu(y)dsy—/aiU*(x,y)u(y)dsy
T r

and therefore the representation formula when choosing a = —1/27.
To summarize, the fundamental solution of the Laplace operator is given
by

1
——log|lz —y| ford=2,
2m

11
Am |z -y

U(z,y) = (5.6)

for d = 3.

Any solution of the partial differential equation
—Au(z) = f(z) forz e 2 cCR?
is therefore given by the representation formula for = € 2

ua) = [0 @)z my/—W* Julds,  (5.7)

r
+/U*(x,y)f(y)dy-
2
5.2 Linear Elasticity

Let us now consider the system of linear elastostatics (1.25),

—pAu(z) — (A + p)graddivu(z) = f(z) forze 2C R,
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and the associated second Betti formula (1.30),

/ 3 5 )y = / () M uly)ds, (58)

7,7=1
- / Aty () T () ds, + / F@) T u()dy.
I N

To derive a representation formula for the components ug(z), € 2, we
therefore have to find solutions v*(x,y) satisfying

/ Z 8 —0i; (0" (2, y), Y)ui(y)dy = up(x) forzxe 2, k=1,...,d
4,5=1

Let ef € R? be the unit vector with ef = &, for k,¢ = 1,...,d. Using the
transformation z := y — x we have to solve the partial differential equations,
k=1,...,d,

—nA 0" (2) — (A + p)grad div,v®(z) = do(z) e for z € RY.
Using (1.32),

At p
A2

v*(2) = Alp(2)e"] — E grad div [12(2)e"],

we have to find the Airy stress function 1) satisfying the Bi-Laplace equation
—uA%P(z) = do(z) for z € RY

—udp(z) = do(2), A(z) = @(z) forz € R

From the fundamental solution of the Laplace operator we find

11
—— — loglz|, ford=2,
=1 "7
p\z) =
111
- = for d = 3.
AT |2

For d = 2 we have to solve the remaining Poisson equation when using polar
coordinates,

{82 10

~ 11
8_g2+58_9} P(o) = —;%logg for o > 0,

with the general solution
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11
U(0) = L [0®log o — 0®] +alogo+b for 0>0, a,b€R.

In particular for a = b = 0 we have
11 ., 9
= ——— |p°logo— 0°]|.
v = 15 [0°log 0 — ¢7]
Due to A?|z]? = 0 we then obtain for ¢ = |z|

11

P(z) = Tusn |2|? log |2| .

For k = 1 we find for v'(z)

At 0% Ap 02
1,y _ N
Using — 92 |z| ﬁ we obtain
z
0 11 ,
azf/’(z) =L [2zilog |z + 2] (i=1,2)
02 11
5.2 = 21 2— 1 i =1,2
62121/}('2) NS og|z| + E ‘2+ ] (i ,2)
82 11 Z129

021079 ?) = _;E |2|?

and therefore

V() = — 1 A+3p log |2] + 1 X4np zl 3

W = T 20) B T vy 2p) (12 2)
1A

W) = s

im ul+ 20 o

For k = 2 the computation is almost the same. Since the constants are so-
lutions of the homogeneous system we can neglect them when defining the
fundamental solution. From v* for k = 1,2 we then find the Kelvin solution

tensor U*(z,y) = (v!,v?) with the components

1 A+up [_A+3u

(Yx — =) (ye — xé)]
a7 p(\ + 2p) A+

log [z — y[ ke + ey

Upe(z,y) =

for k,¢ = 1,2. Inserting the Lamé constants (1.24) this gives

(yr — zx)(ye — wz)} '

|z —yl?

. 11140
Upe(z,y) = T E1—v {(4V3)10g$y|5k6+
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This is the fundamental solution of linear elastostatics in two space dimensions
which even exists for incompressible materials with v = 1/2.

For d = 3 we have to solve the Poisson equation, by using spherical coor-
dinates we obtain

19,0~ 11
_—— _— = — — f
22 90 {Q agw(m] L or 0 >0,

SR

with the general solution
~ 11 |1
Y(o) = — — [—Q+g+b} , foro>0,a,beR.
wamr |2 0

For a = b =0 we have

11
U(z) = 5 8r |2] .
For k = 1 we obtain v!(2)
A p 02
1 :A _ —
o2) = 206 - 3L (),
Ap 02
1 e
UQ(Z)_ >\+2ﬂ621822w(2)7
Adp 0
1 e
Uu(2) =~ o nam L)
and with the derivatives
0 11 z 0? 111 22
=L R 93w [F )
(92 11 ZiZj
_ 1 for i £ i
3zi5‘zjw(z) w8 |z[3 ori # ]

we then find for the components of the solution v'

1 A+3u 1 1 A+p 2}

1 _ _ - =
1) = 5 ar 2w B T 8 O+ 20 P

1 _i A 2129
87 HO+ 20) 2P

oh(z) = o ATH 21z
37 5 ubr 20 P

For k = 2,3 the computations are almost the same. Hence, the Kelvin solution
tensor is given by U*(x,y) = (v!,v?,v?) where

Uy (o) = = 20 (A0 Ok (ge = @) (e = 20)
T S O o) [ A ey |z —yl?
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for k,¢ = 1,...,3. Inserting the Lamé constants (1.24) this gives the funda-
mental solution of linear elastostatics in three space dimensions

1 11+_1/{( ) Oke +(yk—$k)(yz—$£)}

U; -~ =
k(@ y) 8t E1—v |z — g |z —yl3

Hence we have the fundamental solution of linear elastostatics

1 l 14+v (T — yx)(Te — o)
4d—1)r B 1—v |z — y|d

Uz, y) = [@—4WE@wwu+

for k,/=1,...,d with

—log|lz—y| ford=2,
Fle) = ! ford =3
|z =yl '

Inserting the solution vectors v(y) = Uy (x,y) into the second Betti formula
(5.8) this gives the representation formula

1M@z/%@@%@iﬁ%*/()7ﬁ%@m%y
I

/ VU5 (2, y)dy (5.10)
0
for x € 2 and k = 1,...,d. Thereby, the boundary stress T (z,y) of the

fundamental solution Uj (z,y) is given for almost all y € I" by applying (1.27)
as

int

IZ(Q)‘, y) =N Y UZ(Z‘, y)
= Xdiv, Uy (z,y) n(y) + 2#%Qk(xa y) +pn(y) x curl, Uy (z,y).
Yy
Using

1 11 -
TV (o — 1) YTk

divUj (v, y) =

4d-Dr El1—v |z — y|d
we then obtain
. 1 vVooYp — Tk E «
T = - _—
FE
_ 1, 11
+ (1—|—I/) (y) X cur Uk(x y) (5 )

Obviously, both the fundamental solutions Uj (z,y) and the corresponding
boundary stress functions T} (z, y) exist also for incompressible materials with
v=1/2.
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5.3 Stokes Problem

Next we consider the Stokes system (1.38),
—pAu(z) + Vp(r) = f(r), divu(z)=0 forxe 2C RY.

For the solution u and for an arbitrary vector field v we obtain from Green’s
first formula (1.41) by using the symmetry a(u,v) = a(v,u) Green’s second
formula

/ Ed:[ pdvily azq(y)] ui(y)dy + / p(y)divu(y)dy (5.12)
i=1 g A
/Ztupvz )ds, — /Zt v, @)u; (y)ds, + ![i y

with the conormal derivative t(u,p) as given in (1.43).
To obtain representation formulae for the components uy(x), € 2, for
the velocity field u we have to find solutions v*(x,%) and ¢*(z,y) such that

0 .
/Z[ pdvy (z,y) 55 ", y)] W)y = up(x), divye®(z,y) =0
forx € 2, k=1,...,d. With the transformation z := y — x we have to solve
fork=1,...,d

—pu®(2) + Vgt (2) = do(2)eF, dive®(z) = 0 for z € RZ.

The application of the Fourier transform (2.14) gives

d
plEPo5(€) +i&qh () = W@k G=1,...,d), iy &5 =0
=1

In particular for d = 2 and k = 1 we have to solve a linear system,

pIEP O +i6 3 () = 5.

1 E205(6) +i& gl (€) = 0,
i€101(€) + 16203 (€) = 0,

yielding the solution

ey L1 1&g ey L1 && o i &
et TR -
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As for the scalar Laplace equation we obtain

1 1 / (2,6) [ 1 £2 ]

_ e'L Zy R dé‘
I (27T)2R2 SR

1 1 1 62 1 1
. 6 Lgey 1O |1 / ¢ 1y
s | O e | R

R2

vi (2)

and with (5.5) we have

1 X C
Uzl) ___de = ——1 =
oy | ¢ e = sk~ 57
Rz
On the other hand,
1 1 1 1 C
| ¢ | = e e = grreslel+ 3,
R2 R2
implies
1

1 1 Co
(271-)2 /€< 2,€) |€|4 5 = 8_71' [|z|2log|z| — |z|2] + 8_7( |Z|2 "‘Cl +02 10g|z‘
R2

with some constants C7,Cs € R. In particular for C; = Cy = 0 this gives

1[ 1 Co] 1021 Co
o) = 2 [~ toull = $2] + 2 7 | L (s oglel - +7) + £ I+

11 23 2Cp) +1

== —|-1 i Sk L

37 [osl+ i - 255

Analogous computations yield

1y 11 / i(z6) §182 1 o2 L/ Uz _—_
vy(2) = " (27T)2]R2 € |§|4 de = 1 021029 (QW)2R2 ‘ |£|4

1 2 C() 11 Z129
1 _ 2 ~0 2 .
o (ePlogl = 4 + G017 = o 22

1
02102

and

1 b ize) &1 9 1 gy L
¢(2) = <27r>2/ R T <27r>2/ R ®
R2 R2

BRI A R <y B
- 821 27’1’0 “ o
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For d = 2 and k£ = 2 the computations are almost the same. Neglecting the
constants we finally have the fundamental solution for the Stokes system in
two space dimensions,

11 (yre — 1) (ye — 2)
Uy =—— |1 —y|d 5.13
k@(xay) Ar L 0g |.1? y| ke + ‘.’ﬂ 7 y|2 ( )
1 yp —
X = — 5.14
Qk)(xay) o |SE _ y|2 ( )
and k,/ =1,2.

For d = 3 we obtain in the same way the fundamental solution for the
Stokes system as

11 Ore (yk - xk)(ye - ‘TE)

U;@('xa y) =

8|z -yl |z —y[?
* o 1 Yk — Tk
Qk(xay) - A |.’I,‘—y|3

and k,/=1,...,3.
Comparing the above results with the fundamental solution of the system
of linear elasticity we obtain the equality for
1 1+v 1

El-v ( V)

and therefore for )
v = 3’ E =3u.
The fundamental solution of the linear elasticity system with incompressible
material therefore coincides with the fundamental solution of the Stokes sys-
tem.
Inserting the fundamental solutions v(y) = U (z,y) and q(y) = Q) (z,y)
into the second Greens formula (5.12) this gives the representation formulae

r

+ /i(y)TQZ(w, y)dy (5.15)
02

forz € 2 and k =1,...,d. Hereby the conormal derivative T (z,y) is defined
via (1.43) for almost all y € I" by

Ty (z,y) = LUk (2, y), Qr(z,y))
= Qi nle) + 2 Ui (2,9) + pnle) X ewl Ui ,0)
Yy

1 Yk — Tk
2(d— D7 |z —y|?™

0
(@) +2u7 U (@, y) + pn(z) x curlUy(z, y).
Yy
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Hence the boundary stress (1.43) of the fundamental solution of the Stokes
system also coincides with the boundary stress (1.27) of the fundamental
solution of the linear elasticity system when choosing v = % and F = 3pu.

It remains to find some appropriate representation formulae for the pres-
sure p. Let us first consider the case d = 2 and the second Green formula
(5.12) where we have to find solutions v3(z) and ¢3(z) with 2z := y — x such
that

—puA®(2) + V@ (2) = 0, dive*(z) = o(z) for z € R%

By applying the Fourier transformation we obtain the linear system

pIEP () +i& 3 (6)

=0,
1 EPU3(6) +i8g°(€) =0,
1

€107 (€) +i&203(€) = o
with the solution
WO = g WO = s 1O - &
As before we obtain
W) = goalogle] (i=1,2), @) = uio(z).
21 0z;
Using z := y — x we conclude for z € (2 a representation formula for the

pressure

2 2
p(z) = /Zti(u,p)vf’(x,y)dsy—/Zti(yg(%y),q?’(x,y))ui(y)dsy
=1 T =1

r

v} (z,y) fi(y)dy

2
+

i=1

b\

where the conormal derivative (1.43) implies
ti(@(2,), 6% (x,y) = —[pdo(y — @) + dive® (z, y)]ni(@)

+24 Z eij (v’ (z,9), y)n;(y)

fori=1,2, 2 € 2 and y € I'. Since v is divergencefree,

2.0 1 o 02
dive’ (z,y) = Y 7—vf(@,y) = 5= > 5 loglr—y| =0,
= Ovi 2m = Oy;



5.4 Helmholtz Equation 105

we obtain for I' 3y #z € 2
2
t(0*(2,9), % (2,)) = 21 e (0 (2, 9), y)n;(y).
j=1

Moreover,

1[0 0
eij(yg(mvy)ay) = [ayv?(l'vy)—’_ ayvf(xay)}
i j

2
- L ailogl —yl+ -5 loglz —y|
4m | Oy; Oy, dy; Oy
1o
727r8yi8] & 4
1 0 0
R | _ — _ Y n*
27 Oz Oy og |z = | aijl( Y)

Finally we obtain the representation formula for the pressure p, x € {2,

o) = [ S ttw Qs+ 2 [ 3 S wutds,
boi=1 rodg=1"
+ [ fily)Qj (z,y)dy . (5.16)
/

For d = 3 one may obtain a similar formula, we skip the details.

5.4 Helmholtz Equation

Finally we consider the Helmholtz
—Au(z) — K*u(z) = 0 forz e R keR (5.17)

where the computation of the fundamental solution can be done as in the
alternative approach for the Laplace equation.

For d = 3, and by using spherical coordinates we have to solve the partial
differential equation to find v(p) = v(|z|) = u(x) such that

107450 9
~ 20 [g agv(g)] —k*v(p) = 0 for p > 0.
With the transformation 1
v(o) = EV(Q)

this is equivalent to
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V"(0) + k*V (o) = 0 for o >0
where the general solution is given by
V(o) = Ajcosko+ Aysinkp
and therefore we obtain

cos ko sin @

+ Ay

v(o) = lV(Q) = A

When considering the behavior as ¢ — 0 we find a fundamental solution of
the Helmholtz equation given by

1 cosklz — y

Up(x,y) = PP — for z,y € R3.

However, it is more common to use a complex combination of the above fun-
damental system to define the fundamental solution by

. 1 etklz—yl 3

For d = 2, and by using polar coordinates the Helmholtz equation (5.17) reads

0? 10

—8—920(9) - Ea—gv(g) —k*v(0) = 0 for o >0,
or

28—211( ) + 2v( )+ k*0%v(0) = 0 for o >0

o 902 o Q@Q 0 o vle) = 0 .
With the substitution

_ — oSy = sy = 12

s = ke vle) = o(3) = V), V() = 1 500(0)

we then obtain a Bessel differential equation of order zero,
s2V"(s) + sV'(s) +s2V(s) = 0 for s > 0. (5.19)

To find a fundamental system of the Bessel differential equation (5.19) we first
consider the ansatz

Vi(s) = kask, Vi(s) = kaksk_l, Vi'(s) = kak‘(k‘— 1)sh=2.
k=0 k=1 k=2

By inserting this into the differential equation (5.19) we obtain
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0 = 52V (s) + sV (s) + s*Vi(s)
- Z vpk(k —1)s* + kak‘sk + kask“
k=1 k=0

= Z [vk,g + kQ’Uk} ¥ +us fors>0

k=2
and thus 1
v1 =0, v, = —ﬁvk,z for k > 2.
Hence we obtain
1
vor—1 = 0, v = —@’Ug(g,l) for{=1,2,...

and therefore

(-1
'UQ[:W’UO fOI‘E:l’Q,....

In particular for vg = 1 we have

To find a second solution of the fundamental system including a logarithmic
singularity we consider the ansatz

Va(s) = Jo(s)lns+W(s) fors>0.

By using
1
Vi(s) = Jh(s) s+ —Jo(s) + W'(s),
2 1
V3 (s) = J () Ins + 2 J5(s) = 5 Jols) + W (s)

we obtain

0= 2VY(s) + sVi(s) + 52Va(s)
= [$*J{(s) + sJi(s) + 8% Jo(s)] Ins
+25J4(8) + $2W" (5) + sW'(s) + s*W (s)
= 25J5(5) 4+ s2W" (5) + sW'(s) 4+ s*W (s)

since Jy(s) is a solution of the Bessel differential equation (5.19). Hence we
have to solve the differential equation
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S2W"(s) + sW'(s) + s W(s) + 2s1)(s) for s > 0.
With - -
W(s) = Zwksk, Ji(s) = kakskfl
k=0 k=1

we have to solve

o0
[kszk + wk_g} s+ wis+2 Z vkksk
k=1

o

~
[l
N

ol

[kak + Wh_o + 2k‘vk} sP+ [wy + 2v1]s  for s > 0.

>~
||
[\V)

Hence we find

wp = —2v1 = 0,
and
2wy, +wy_o + 2kv, = 0 for k> 2,
ie. ]
wy = = [wk—o + 2kvg]  for k > 2.

By using voy_1 = 0 for £ € N we then obtain wsy_1 = 0 for £ € N and

1 1 (—1)*
422D T e

wag Wog—1) + M) = —

1
- el
When choosing wy = 0 we find by induction
(_1 241

4
) 1
Wop = ———r — for ¢ e N.
Xy ;

Hence we have

H
+
NE
>"i/—\
=
=

—1)* X =1) (-1
) 5%]11152 ;3 4(€(£!))252£'

{=1

Instead of V5(s) we will use a linear combination of V;(s) and Va(s) to define
a second solution of the fundamental system, in particular we introduce the
second kind Bessel function of order zero,

Yo(s) = [In2—~] Jo(s) — Va(s)

where
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n

1
v = lim E — —1In n| ~ 0.57721566490. ..
n— o0 "—1‘7
=
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is the Euler-Mascheroni constant. Note that Yj(s) behaves like —In s as s — 0.

The fundamental solution of the Helmholtz equation is then given by

1
Ui(e,y) = 3-Yolklz —yl) for o,y € B2

5.5 Exercises

5.1 Consider the recursion

1 1 (=1)¢
U/():O, W2 = — =705 ( )

4€2w2@_1) — 245(61)2 for £ € N.

Prove by induction that

(71)l+1 4 1
Woy = 74@(0)2 Z; for ¢ € N.
Jj=1
5.2 Compute the Green function G(x,y) such that

u(x) = / Gle.y)f(w)dy forz € (0.1)
0

is the unique solution of the Dirichlet boundary value problem

—u"(z) = f(z) forz € (0,1), wu(0) = u(l) = 0.

(5.20)
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Boundary Integral Operators

As a model problem we first consider the Poisson equation for d = 2,3
—Au(z) = f(z) forze 2 c R
The fundamental solution of the Laplace operator is (cf. 5.6)

1
——loglz —y| ford=2,
2T

dm o —y]

for d = 3,

and the solution of the above Poisson equation is given by the representation
formula (5.2)

u(z) = / U (2, g™ u(y)ds, — / AT (2, () s, (6.1)
I I

—I—/U*(x,y)f(y)dy for z € 2.
Q

To derive appropriate boundary integral equations to find the complete
Cauchy data [yi™u(z), v{™u(z)] for © € I' we first have to investigate the
mapping properties of several surface and volume potentials.

6.1 Newton Potential

By

(Nof)(a) = / U*(2,9)f(y)dy forx € RY (6.2)
(94

we define the volume or Newton potential of a given function f(y), y € 2.
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For ¢, € S(R?) we have

(Nog,9) = / () / U* (2, y)o(y)dydz = {p, Now)e
0 0

and, therefore, Nog € S(RY). Then we can define the Newton potential
N : 8'(RY) — S'(R9) by

(Nof, ) == (f,No¥)o for all ¢ € S(RY).

Theorem 6.1. The volume potential Ny : H=(2) — H(£2) defines a con-
tinuous map, i.e.

1Rl < elflz-s(0- (6.3)

Proof. For ¢ € C§°(£2) we first have

|B(&)I?
||90||%1*1(]Rd) = /1+|§|2d€
Ré

where the Fourier transform ¢ is

P(6) = (2m) 2 / e @8 p(z)d.

Due to supp ¢ C {2 we have

. (e, U>L2(]R4)
”SDHH*I(]RL‘) = sup TR
0#£veH1(RY) ”UHHl(Rd)

<S07 /U>L2(Q) o

< sup = H‘PHﬁﬂ(Q)'

" overi() IVl (o)
Moreover,
u(e) = (Fop)(e) = [U"@.pli)dy fora € R,
(9]

Let £2 C Br(0), and let 1 € C5°([0, 00)) be a non—negative, monotone decreas-
ing cut off function with compact support, and let u(r) = 1 for r € [0, 2R].
Define

wla) = [ ule =)0 @ ey forx R
2

Due to u(|lz —y|) =1 for z,y € £2 we have
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uy(z) =u(z) forze 2
and therefore
lulltio) = llupllare) < llupllm @a
with
Jualp ey = [0+ 1P Ru(OPe.
Rd

For the computation of the Fourier transform %, we obtain

8(6) = 2m) ! [ (oo

]Rd

— (2m)4 / e / u(z — y))U* (2, 9o () dyde
Rd Rd

= (2m)7 //6_i<z+y’§>u(|ZI)U*(z +u,y)e(y)dydz
Rd Rd

— (2m)4 / eI () dy / e~ H59 (|2 U (2, 0)dz
Rd Rd

=5(0) [ Oua)U” 2.0y

Rd

113

Since the function p(|z|)U*(z,0) depends only on |z|, we can use Lemma 2.13,

i.e. it is sufficient to evaluate the remaining integral in & = (0,0, [£]) .

Let us now consider the case d = 3 only, for d = 2 the further steps are

almost the same. Using spherical coordinates,
z1 = rcos¢gsing, zo = rsingsinf, z3 = rcosf

for r € [0,00),¢ € [0,27),0 € [0,7), we obtain for the remaining integral

1) = = [0ty

|2|

oo 27w

]Rd
:%/// *”5‘”059“ M) 12 G 0d6 do dr
Iy
0

0
/T u(r / —irlélcos b ¢in @ df dr-.
0

Using the transformation u = cos 6 we get for the inner integral

N
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s 1

i ) 1 ] 1 24i
/672r|§|cosesin0d9 _ /671r|§|u du — |: 6“«|5|u:| _ smr|§|
0 1 irlé| -1 rl€]

and therefore

I(l€)) r)sinr|&| dr.
“w [

For |£] > 1 we use the transformation s := r|¢| to obtain

T = |527 (i) e

Due to 0 < pu(r) < 1 and since p(r) has compact support, we further conclude

(D] < e1(R) =5

Note that
(141[¢%)* < 4¢* for [¢ > 1.

Then,

/(1+\€|2)\@u(€)l2d£= /(1+|£|2)|I(|€|)@(€)|2d§
j€1>1 j¢1>1

2
<tamp [ L porde < gamp [ o eore

|€1>1 1€1>1

For €] <1 we have

e = | u(r)“ﬁg'g'dr
0

and therefore

[Z(1ED)]

IN

co(R) for|€] < 1.

Hence we have

/(1+|§I2)Iﬁ#(£)l2dfz /(1+|£\2)|I(|£\)@(£)I2d£

lgl<1 lg1<1

<2Aa®) [ 12OPE < dio@)? [ Hla@Pe

[gl<1 l€l<1

Taking the sum this gives
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et 21 ) = / (14 [¢2)[a,(6) [2de

¢ER
1 -~ 2 2
< [ oEElPOr = clielf-o
£er?

and therefore B
[Noollm2) < cllellg-1iq)

Hence we have

(Nof, el _ W Nophal _ [/l (o) [INo#ll o)
H@Hﬁ—l(g) ”50”1?[’—1(9) - ||§0||f111(9)

~cC ||f||ﬁ71(9)

for all ¢ € C§°(£2). When taking the closure with respect to the norm
I II-1 () and using a duality arguments gives (6.3). O

Theorem 6.2. The volume potential Nof is a generalized solution of the par-
tial differential equation

flx)  forxze 0,

0 for x € RN\ (2. (6.4)

~A:(Nof)(z) = f(z) = {

Proof. For ¢ € C5°(R?) we apply integration by parts, exchange the order of
integration, and using the symmetry of the fundamental solution we obtain

/ = As (No ) (@) pla)dr = / (M) @) [~ Aspla))da

Rd R
_ / / U* (2, y) Fy)dy[— Ao (a)]da

Rd R4

/ o / U (0, 2) [ Avpl)ddy
- / fw) / [~ 80" (3, 2) ()
gy —
= / Fl)e(w)dy
4

When taking the closure of C§°(R?) with respect to the norm || - || g1 (gay this
shows that the partial differential equation (6.4) is satisfied in the sense of
H-Y(RY). O
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Considering the restriction to the bounded domain 2 ¢ R¢ we further
conclude:

Corollary 6.3. The volume potential ]\Nfof is a generalized solution of the
partial differential equation

—AyNof(x) = f(z) forze .
The application of the interior trace operator

W (Nof)(@) = Jim _ (Nof)(@) (6.5)

defines a linear bounded operator
No = %" No : H (@) — H'*(I)
satisfying
INof oy < A If g forall fe HN(R).  (6.6)
Lemma 6.4. Let [ € Loo(£2). Then there holds

(Vo)) = 2 (Fof)(@) = [ U (@)1 @iy
Q
for x € I' as a weakly singular surface integral.

Proof. For an arbitrary given € > 0 we consider = € {2 and = € I" satisfying
|z — Z| < e. Then we have

/ U*(Z,y)f(y)dy — / U (z,y)f(y)dy

2 yeN:|ly—z|>e
< UG - Ui + | [ UG,
yeER:|ly—z|>e yeR:|y—z|<e
and
lim / [U*(@,y) = U (z,9)]f(y)dy| = 0.
25—zl
yeR:ly—z[>e

For the remaining term we obtain

U* @ 9)f )dy| < 1 llo o500 / U* @, y)\dy
ye:|ly—z|<e 2NB:(z)

<l / U* @, )l dy.
B (T)
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In the case d = 2 we get, by using polar coordinates,

* 1 ~
[ @iy = g [ ogly~lldy

B (7) ly—z|<2e
21 2e

1
= g//ﬂog rlrdrde = &* [1 — 2log(2¢)].
00

In the same way we find for d = 3, by using spherical coordinates,

1 1
U*(Z,y)|dy = — — d
U@, y)ldy = / P
Bo. (%) ly—] <2

2 7w 2e
1 1
—///—TQSinwdrd@/Jdgp = 2¢2,
47 T
00 0

Taking the limits £ — = and € — 0 we finally get the assertion. O

Lemma 6.5. The operator Ny = 4" Ny : H-1(2) — H-Y2(I") is bounded,
i.€.
”le”H*l/?(F) = ||'Y%ntN0f||H*1/2(F) < C||f||ﬁ—1(g)

is satisfied for all f € H*(02).

Proof. First we note that u = ]Vof € H'(R2) is a generalized solution of
the partial differential equation —Au(x) = f(x) for z € 2. For an arbitrary
given w € HY/?(I') we apply the inverse trace theorem to obtain a bounded
extension Ew € H! () satisfying

||ngH1(Q) < crr ||wHH1/2(F)~
Now, using Green’s first formula,

(40t ) = / Vu(e)VEw(z)dz — (f,Ew)g,
N

we get from Theorem 6.1

|, whr| < {llllm ) + 11510y } 1€l o)
< (e+Derr ||fHﬁ*1(Q)Hw||H*1/2(F)' o
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6.2 Single Layer Potential

Let w € H*1/2(F) be a given density function. Then we consider the single
layer potential

u(z) = (Vw)(x) = /U*(J:,y)w(y)dsy for x € QU N°. (6.7)
T

Lemma 6.6. The function u(z) = (Vw)(z), € 2U 2¢, as defined in (6.7)

s a solution of the homogeneous partial differential equation
—Au(z) =0 forxe 2UNQ°.
For w € H-Y/2(I") we have u € H' () satisfying
lullzray = VWl < cllwllgzm.

Proof. For x € 2U ¢ and y € I' we notice that the fundamental solution
U*(z,y) is C*. Hence we can exchange differentiation and integration to
obtain

~Agul) = —A, / U () f (4)dy = / =AU (&, 9)] f(y)dy = 0.

0 [0}

Moreover, for ¢ € C*°({2) we have

/ dx—// (z,y)w(y)dsy p(x)dx
/ / U pe@hdeds, = [ w(y)(Nog)(0)ds,
I

(Now)(y —'y(l)nt/U*acy x)dr foryel.

where

By applying the estimate (6.6) we then obtain

[utaretaids = [ wi)Noe)wis,
0 r
< ”w”H*l/?(I’)||N090||H1/2(F)

< & Jwlla-srsry el s -

Taking the closure of C'*°({2) with respect to the norm || - ||ﬁ_1(9) and using
a duality argument finishes the proof. O
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The single layer potential (6.7) defines a bounded linear map
V : HY2(I) - H'().

Hence, the application of the interior trace operator to Vw e H L(92) is well
defined. This defines a bounded linear operator

Vo= 4tV oo gV — HYA(D)
satisfying
||V’UJ||H1/2(F) S C;/ ||’U)||H71/2([~) for all w S H_1/2(F). (68)
Lemma 6.7. Let w € Loo(I") be given. Then we have the representation

(Vo)(@) = " (Vo) (@) = /U*(l‘,y)w(y)dSy
r

for x € I' as a weakly singular surface integral.

Proof. For an arbitrary ¢ > 0 we consider z € (2 and = € I satisfying
|x — Z| < e. Then we have

[ Gwewis, - [ U@ e,
r yel:|ly—x|>e

<| [ wEy-vewis +| [ UG,

yer|y—u|>e yel|y—z|<e

and for the first expression we obtain

1m
25r—zel’

| UGy -Ueyuwds,| - o.
yel|ly—z|>e

For the remaining term we have

U* (@, y)wy)dsy| < [wllz rrp. o) / U* (&, y)\ds,
yel:|ly—x|<e I'NB.(x)

< Nwllp / \U* (&, ) |ds,.
I'NB.(7)
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The assertion now follows as in the proof of Lemma 6.4 for z — x and € — 0,
we skip the details. O
In the same way we obtain for the exterior trace

(Vw)(z) = A& (Vw)(z) := Qcagglwep(vw)@) forz eI

Hence we get the jump relation of the single layer potential as

oVuw] == v (Vw)(z) — 1" (Vw)(z) = 0 forz e I (6.9)

6.3 Adjoint Double Layer Potential

For a given density w € H~Y/2(I') we can define Vw € H*(£2) which is a
solution of the homogeneous partial differential equation (cf. Lemma 6.6).
Using Lemma 4.4 we can apply the interior conormal derivative to obtain a
bounded linear operator
intf/ C 1/ —1/2
AT () - BV
satisfying
||’}/ tVvU)HH 1/2(1) < c||wHH 1/2(r) forallwe H™ 1/2(F)
Lemma 6.8. For w € H='/?(I") we have the representation
VM (Vw)(z) = o(z)w(z) + (K'w)(x) forzel
in the sense of H='/2(I'), i.e.

(YW vy = (ow + K'w, o) for allv € HY?(I).

Here we used the adjoint double layer potential

(K'w)(a) = tim [ A0 @ yuly)ds, (6.10)
yel|ly—z|>e
and )
o(x) = ;E% med - / ds, forx eI (6.11)
yER:|y—a|=¢

Proof. For w € H=Y/2(I") the single layer potential Vw € H(£2) is a solution
of the homogeneous partial differential equation. Hence, from Green’s first
formula we find for p € C*°(12)
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/ Ay ()t (2)ds, = [ Vau(e)Vap(e)da

b\ b\

VI/U* (y)dsyVgp(z)de.
T

Inserting the definition as weakly singular surface integrals and interchanging
the order of integration this gives

/ 0 ()0 (1) s,

r

:/Vx lir% / U*(z,y)w(y)dsy | Vip(z)de
o)

yel:ly—x|>e

e—0
€ |x—y|>e

- / w(y) lim / VU™ (2, y)Vap(x)dads, .

Using again Green’s first formula we obtain for y € I

VU™ (2,y)Vap(w)de = / TRU* (@, y)e o () ds,
zER:|x—y|>e zel:|x—y|>e
+ /vinﬁU*(x,y)w(w)dsw-
e |x—y|=¢

The first summand corresponds to the double layer potential operator K’ as
defined in (6.10). The second term can be written as

[ bvrewe@is = [ Al - ew)ds.
TEN:|z—y|=¢€ TzENR:|z—y|=¢
vol) [ U@y,
zENR:|z—y|=¢

with

/ AT (2, ) () — plw))dss

xeN:|x—y|=c

() — o) / T (2, )| s

reN:|x—y|=c

< max
€ |z—y|=¢

For d = 2 we have
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U (2, y) s, < / U (2, )| s

1,z

TE:|z—y|=¢ z€ERZ:|z—y|=¢
1 1
- L / s =
2 |z -yl
z€ERZ:|z—y|=¢
while for d = 3

AU (2, )l ds, < / T (2, ) dss

€ |z—y|=¢ z€R3:|z—y|=¢
1 1
= — ——=ds, = 1.
4 / o —y2"
TzER3:|z—y|=¢
Taking the limit € — 0 this gives

lim / AT (a2, )p(a) — p(y)]dss| = 0.

e—0
z€:|z—y|=¢

For the remaining integral we find by using n, = |;x‘ forxz € 2, |ly—z| =¢,
y—z
; 1 (ng,z—y)
intrrs 5 Y
U dsy = ———— ~ 2 s,
Nz U (@, y)ds 2d—1)n / Iz — g §
zER:|z—y|=¢ €N |z—y|=¢
1 1 1 1
- sy = ds,.

20— Dn / 2 —y[17% T 20— )x a1 3

€N |z—y|=¢ rENR:|z—y|=¢

Taking into account the definitions (6.10) and (6.11) we finally obtain

/ A () () ds,
I

w(y) | lim / YRU* (2, 9) %™ p(@)dse + 70" e (y)o(y) | ds,
zel|z—y|>e

L

= [t i [ A @ guds,ds + [w@ot)ews,
r yerl|y—z|>e r

lo(@)w(z) + (K'w) (@) e (z)ds,. O

-
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Let I' = 012 be at least differentiable within a vicinity of = € I'. From the
definition (6.11) we then find

1
o(x) = 3 for almost all x € I'.

The boundary integral operator K’ which appears in the conormal derivative
of the single layer potential is the adjoint double layer potential. The operator
is linear and bounded, i.e.

1Kl g-1/2ry < & Nwllg-sr2ry  forwe H V().

As in the proof of Lemma 6.8 we obtain the following representation of the
exterior conormal derivative of the single layer potential V' in the sense of
HV2(D),

AN V) (z) = [o(z) — Nw(z) + (K'w)(z) foraz e I.

Lemma 6.9. For the conormal derivative of the single layer potential V there
holds the jump relation

Vuw] = y&H(Vw)(z) - Y Vw)(z) = —w(z) forzel (6.12)
in the sense of H=1/2(I').

Proof. For u=Vw and ¢ € C5°(R?) we first have

/[ Au(z dx—/ /U* z,y)w(y)dsyp(x)de

4
- / w(y) / AU (@, y)ple)dads,

/ /50 (x — x)dxds,
t

/w m y)ds,.

r

On the other hand,
1 Au@(@)ds = asatu ) = aalu ) + aa-(u.9)

Rd

= [Atunito@ds, - [ ulani e,

r r



124 6 Boundary Integral Operators

and therefore
/w( / mt ext ( )h/lntcp( )dsz
T T

holds for all ¢ € C§°(R?). The closure of C§°(R%) with respect to || - || g1/2(r)
and a duality argument then gives the assertion. 0O

6.4 Double Layer Potential

Let v € HY2(I') be a given density function. Then we consider the double
layer potential

u(z) = Wo)(x) := /[’yin;U*(x,y)]v(y)dsy for x € 2U 2°. (6.13)

Lemma 6.10. The function u(x) = (Wv)(z), x € 2U02°, as defined in (6.13)
s a solution of the homogeneous partial differential equation

—Agu(z) =0 forxze 2U02°
Forv € HY?(I') we have u € H'(2) satisfying
[ullzro) = Wl < cllvllgiz -

Proof. For x € 2U §2¢ and y € I we first notice that « # y. Hence we can
interchange differentiation and integration and the first assertion follows from
the properties of the fundamental solution U*(z,y).

For ¢ € C°°(£2) we then have

Wo,p)0 = / / U (2, )] (y)ds o (2)da

- / s [ U e )(odsds,

0

V()1 (Now) (y)dsy = (v, " Now)r.

Se—

For f € H~'(£2) this gives

(W, flo = (1" Nof)r

and, by applying Corollary 6.3, No f € HY(£2) is a solution of the inhomoge-
neous partial differential equation
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—Ay(Nof)(z) = f(z) foraz e 0.

By Lemma 6.5 we further obtain v Ny f € H=1/2(I"), and therefore
WU7f 2
Wl () = sup ||<f||~—>
ozrer-1o) I E-1(02)

nt 57
_ sup <Ua 7 0f>F

U] ||f||~ < C||U||H1/2(1-v). O
orfer-1(o) I lE-1c0)

The double layer potential (6.13) therefore defines a linear and bounded op-

erator
W . HY(I') — HY(2).

When applying the interior trace operator 42 : H(£2) — HY2(I') to the
double layer potential u = Wov € H'(£2) this declares, for v € HY?(I'), a
linear and bounded operator

,y(i)ntW . HY2(I') — HY2(I)
satisfying
I W ol rary < ellvllmaqry  forve HYA(D).
Lemma 6.11. For v € H'/2(I") we have the representation
’yg"t(Wv)(a:) = [-1+o(2)v(z) + (Kv)(z) forzel (6.14)

where o(x) is as defined in (6.11) and with the double layer potential

e—0

(Kv)(z) := lim / ['y%ZtU*(:U,y)]v(y)dsy forxz eI

yel|y—z|>e
Proof. Let € > 0 be arbitrary but fixed. For the operator
Eo@ = [ ek,
yel|y—z|>e

we first consider the limit 2 5 ¥ — = € I'. Hence we assume [T — x| < e.
Then,



126 6 Boundary Integral Operators

W@ - Ko = [ [0 G - ) v,
yelly—a|>e
4 / U (&, g)lo(y)ds,
yel|ly—x|<e
= [ G -] s,
yelly—a|>e
o[ @) - o@)ds,
yel|ly—x|<e

+ v(z) / 'y}n;U* (T, y)ds,.

yelly—a|<e

For all ¢ > 0 we have

. intyrs/~ int 7 _
plm [ G -l )] s, = 0
yeT:ly—=z|>e

while the second term can be estimated by

/ T (7, )] [0 () — v(a))ds,
yel:|ly—z|<e

< s @) [ UG,
yel:|ly—z|<e
yel:|ly—z|<e

For z € {2 we further have

/|vth* z,y)|ds, < M.

Therefore, the second term vanishes when considering the limit ¢ — 0. For
the computation of the third term we consider

B.(zx) ={ye: |ly—x|<e}.
Then,
/ AU (7, y)ds, = / AU (Z,y)ds, — / VI (F, y)ds, .
yer:ly—ol<e B~ (x) ye 2 |y—al=c

Using the representation formula (6.1) for v = 1 and due to T € B.(x) we
obtain
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th (z,y)ds, = —1.
0Bc ()

Moreover, inserting n(y) = 1 (y — z) we get

. . intyrx ~ T 1nt *
g%ng%ﬂgr / U (z,y)ds, —glil(l) / U*(z,y)ds,

yER:|ly—x|=¢ yE:|y—x|=¢
1 —
=—lim ———— / g,y — ) )dsy
20 2(d — D) [ — g7
yER:|y—z|=¢

. 1 1
B Ty / dsy = —ol@). O

yEQ:|y—z|=e
In the same way we obtain for the exterior trace
AN W) (z) = o(z)v(z) + (Kv)(x) forzel
and therefore the jump relation of the double layer potential,
ool = A& (W) (@) — 7 (W) (@) = v(z) forz eI

Lemma 6.12. For the jump of the conormal derivative of the double layer
potential there holds

M Wo] = A (W) (z) — " (Wo)(z) = 0 forz eI

Proof. For the double layer potential u(z) = (Wwv)(x), + € R™ and for ¢ €
Cs°(R?) we first have

1= tut@)pta)ds - / / AU (2, ) () dsy () d

4
- / (y)yint / AU (2, y)p(a)dads,

/ Win;/éo (v — z)dzds, = 0.

On the other hand, using Green’s first formula we have

0= /[—Au(m)]gp(w)dm = apa(u, ) = an(u, ) + age(u, @)
Rd
= [Artu@pito@ds, - [ A5 uani e s,
T T
and taking the closure of C§°(R?) with respect to the || - || g1 (gay norm we

obtain the assertion from iy = &ty O
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6.5 Hypersingular Boundary Integral Operator

The conormal derivative of the double layer potential Wv for v € HY?(I")
defines a bounded operator

Nty HY2(r) — HOV2(I).

For
(Dv)(z) = —Wilnt(Wv)(x) = —QS%iLr;anzoni(Wv)(E) forz e I' (6.15)
we first have
1Dull oy < 2 olgiagry forve HYAD).  (6.16)

In the two—dimensional case d = 2 the double layer potential reads

- 1 z—y, ~
wo@ = g-tm [ S, o
yel:ly—x|>e

For a fixed ¢ > 0 we can interchange taking the limit © — x € I" and
computing the conormal derivative to obtain (d = 2)

_ i _(nmany) ( —y,nz) (@ —y,ny) v s
S 2 s,

In the same way we find for d = 3

L[ [Hlem e,

T ar e —yP jz — g5

(D.v)(x) } v(y)ds,.

yely—a|>e

However, when taking the limit € — 0 for x € I" the integrals does not exist as
Cauchy principal value. As a generalization of the Cauchy integral we there-
fore call D a hypersingular boundary integral operator. To find an explicit
representation of D we therefore have to introduce a suitable regularisation.
Inserting ug(x) = 1 into the representation formula (6.1) this gives

1 = —/fyif,l;U*(f, y)ds, forZ € (2.
T

Hence we have
Vi(Wup)(z) = 0 forz € 2,

and therefore
(Dug)(z) =0 forzel. (6.17)
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Moreover we can write

(Dv)(x) = — Qg%’iigef‘ ne - Vi /’y}n;U*(ﬁc', y)v(y) —v(z)|ds, forx el
r

If the density v is continuous, we can obtain for the hypersingular boundary
integral operator D the representation

(Dv)(z) = /Wmt*yinth*( yY)v(y) —v(z)ds, forxzel
T

as a Cauchy principal value integral.
In what follows we will describe alternative representations of the bilinear
form which is induced by the hypersingular boundary integral operator D,

wmwpz—/<>ﬁ%/ﬂ%wwywwwm%-

Ir r

In the two—dimensional case d = 2 we assume that I" = 92 is piecewise

smooth,
P
I = U Iy,
k=1
where each part [} is given by a local parametrization

Ly =y(t) = (g;g

N

) for t € (tg, tps1). (6.18)

Moreover,

dsy = \J I (D)2 + [wh(0)]2 dt,
and the exterior normal vector is given by

n = 1 / (t) or .
W VMWP+MU]( @J fory € 1

For = € R?, the rotation of a scalar function v is defined as

If v(z), x € T, is a given function, we may consider an appropriate extension
v into a neighborhood of I}, in particular we may define

() =v(x) forx=x+ (T —z,n(x))n(x).



130 6 Boundary Integral Operators
Then, for « € I';, we can introduce
curlp, v(z) = n(x) - curlv(x) = ny(z)=—v(z) — na(z) z—0(z)

and we obtain

8242
I Iy
_ [y;@)aiyz w(®) +y1<t>a¥;v<y<t»} dt
Loty dr,

i.e. curlp, v does not depend on the chosen extension v.

Lemma 6.13. Let I} be an open boundary part which is given by a local
parametrization (6.18) with continuously differentiable functions y;(t), i =
1,2. If v and w are continuously differentiable, then we have the formula of
integration by parts, i.e.

/ o(y) curlpw(y) ds, = - / curlp, v(y) w(y) ds, + o(y(t))w(y(t)[=.
I Iy

Proof. The assertion follows from

[ewlntwulds, = [ GOl = bu@weoz

through differentiation by the product rule. 0O
For a function v which is defined on a closed curve I" we define

curlpv(x) = curlpv(x) forzely, k=1,...,p.
As a consequence of Lemma 6.13 we then have:

Corollary 6.14. Let I' be a piecewise smooth closed curve. If v and w are
piecewise continuously differentiable, then

[ vtw) curtrotuyds, =~ [ curtroty) w(w)ds, + 3 ®eeO)E
r r k=1

If in addition v and w are globally continuous, then

[ vt curtruty) ds, =~ [ curtroty) wiy) ds,.

r Ir
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By applying integration by parts we can rewrite the bilinear form which is
induced by the hypersingular boundary integral operator D as a bilinear form
which is induced by the single layer potential V. In case of the two—dimensional
Laplace operator this relation already goes back to [101].

Theorem 6.15. Let I' be a piecewise smooth closed curve and let u and v be
globally continuous on I'. Moreover, let u and v be continuously differentiable
on the parts I'y. Then we can rewrite the bilinear form of the hypersingular
boundary integral operator D as

(Du,v)p = ——/curlpv /10g|a: —ylcurlpu(y)ds,ds, . (6.19)

Proof. The hypersingular boundary integral operator D is defined as the neg-
ative conormal derivative of the double layer potential W, see (6.15). For
T € 2 we have

1 B)
— = loglz— .
5 u(y) o, og |z — ylds,

r

w(@) = (Wu)(@) = —

Since x € 2 and y € I' it follows that = # y. With

fUz_ 5i—yi_ 1
WS E T R a5 ozl )
y|>~

0
yi

we obtain

0 0 0
8_~ (8_ log [z — y|> —n(y) - Vy <3yi

Due to Ay log |z — y| = 0 for y # T we further get

curlp,y, (%logﬁ—m) =
o 0 o 0
n1(y) 99 90; og [T —y| —na(y) 01 90, og |z -yl

0 9 log |7 — |—&-n()a
8y28y1 g Yy 2

0 ~
= n(y)-Vy <8—y210gl’ - y> ;

= mi(y)5—

and
curl — lo |§E — I = —n( ) -V — o, |5 — |
Iy 9y2 g Y ) y 9y1 g Y .

Hence we can write the partial derivatives of the double layer potential for a
globally continuous function u by applying integration by parts as
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0 . 1 0o 0 ~
@ =57 [ )55 0wl ~ vl ds,

a_glw Com Ony
r
= o w9, (= 10g ) d
= 55 | vV ( 5, los 7~y ) ds,
r
) o
=5 u(y) curlp, (3_112 log |z — y|) ds,
r

1 0 -
=5 /curlpu(y) 8_y2 log |z — y| dsy,
T

and

1
ai,fzw(f) = —g/curlpu(y) aiyllog|5—y|dsy.
T

For the normal derivative of the double layer potential we then obtain

n(x) - Viw(r) =

— %/curlpu(y) [nl(x)aiyZ log |7 — y| — ng(x)aiyl log |7 — y|] ds,
T

1 0 0
— i 1 — log|7 —y| — — log|7 —
o i [ curtra(y) (o) - tow 7~ o] = na(o) - T 7~ o ) s,

yel|y—z|>e

and taking the limit 2 5 = — x € I this gives

0
an. (%) =
= 1lim curlpu(y) n(x)alo | — |—n(x)alo |z —y| ) ds
= o am ruly 1 B g Y 2 an g Y Yy
yelly—z|>e
i truty) (ns(e) o Tog e — ] —na(e) o logle — y1 ) d
= —— lim curlru ni(x) = log |z — y|—n2(x) =— log |x — s
27 €0 A N S YTt G, 8 Y Y
yel:ly—z|>e
1.
= —%g% curlpu(y) curlp, log |z — y| ds,.
yer:y—o|>e

Therefore,
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/v(x) 82 w(z)ds, = ——/ hm curlpu(y) curlp ; log |z — y| dsyds,
i xT

zel’ yeF \y z|>e

1
—5- curlpu(y) 1in(1)/v(x) curlp , log |z — y| ds,ds,
’/T £—

yel’ zel|z—y|>e

1
Py curlpu(y) lin%)/curlpv(x) log |z — y| ds,ds,,
T E—

yel’ zel|z—y|>e

from which we finally obtain (6.19). O
The representation of the hypersingular boundary integral operator D via
integration by parts can be applied correspondingly to the three—dimensional

case [50]. Let
P
= U I
k=1

be a piecewise smooth surface where each piece I can be described via a
parametrization

yl(svt)
y €Iy :y(s,t) = | yals,t) for (s,t) € T
y3(57t)

where 7 is some reference element. The rotation or curl of a vector—valued
function v is defined as

curlv := V x v(x) forz € R3.
If w is a scalar function given on I, then
curly, u(z) = n(x) x Vu(z) forax e I}

defines the surface curl, where w is a suitable extension of the given u on Iy
into a three-dimensional neighborhood of I'. Finally we introduce

curlp, v(z) = n(x) - curlv(x) for x € T

Lemma 6.16. Let I' be a piecewise smooth closed Lipschitz surface in R3.
Assume that each surface part I}, is smooth having a piecewise smooth bound-
ary curve OIy. Let w and v be globally continuous, but locally bounded and
smooth on each I'y. Then, applying integration by parts,

[ ewtrute) vty ds, = ~ [ ulz)cutraods,

r r
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Proof. Using the product rule
V x [u(z)v(x)] = Vu(x) x v(z) + u(x) [V x v(z)]

we obtain

[ el @) s, = [ln(e) % V@) - vie)ds,

I Iy
= /[Vﬂ(x) x v(x)] - n(x)ds,
= /[V x [u(z)o(z)] —u(z) [V x v()]] - n(z) ds,
Iy
= / u(x)v(x)t(x)do — /u(x) curlp, v(x)ds,
oIy, Iy

by applying the integral theorem of Stokes. 0O

Theorem 6.17. Let I be a piecewise smooth closed surface, and let u and v
be globally continuous functions defined on I' which are differentiable on I7,.
Then the bilinear form of the hypersingular boundary integral operator D can
be written as

(Du,v)p = L / / aulpuly) - curlpo() dsgds,.
A |z -yl
rr
Proof. The proof follows essentially as in the two—dimensional case. For x € (2
and using the definition (6.15) of the hypersingular boundary integral operator
D we have to consider the double layer potential

~ 1 0 1
I

Using
0 1 Ti—yi _ Yi—1 0 1

yilz—yl  T—y®  [T-yl  0mlT—yl

we obtain for the partial derivatives of the kernel function

o (o 1 o 1
O_%i(a_nyli—yl) =) Yy (3_yilf—y|>’

Let e; be the i—th unit vector of R®. Due to T # y we can expand the vector
product as
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1 1
curl, | e; X Vy—=——"-— ] =V, X [ ¢; X V=
y(‘ ywyl) ! ( e yl)

1 1
A= R

1 0 1 0 1
— A e L _ V-2 - ).
s o (V) ~ o (V)

When exchanging the order of differentiation and integration we then obtain
the partial derivatives of the double layer potential as

o . 1 0 0 1
8_@“’(1‘) = _E/u( )8_5@ (a_ny—lf—yl) ds,
0 1
= — —_—— ds
/ (3% |z — y) Y

1
= 47‘( u(y) Ny - CllI'l ( €; X vym> dSy
r

1

1
-1 u(y)curlp, (gi X Vym> dsy.
r

By using Lemma 6.16 we have

0 - 1 1
@ = 1= [ty ul) - (e x V=) ds,
r

1

1
=—5 /& (&ﬂnyu(y) X vyﬂ) dsy,
2

and hence we can write the gradient of the double layer potential as

1
Vazw( =——/<curlpy ><Vy|~ |>d8y
1
= E &rlnyu(y) X ng dsy
r

Multiplying this with the normal vector n(x) this gives

n(a) - Veu(E) = / (coslry ) x Vot ) ) s,

1 1
— 1 . N
o F/wr,yU(y) (ﬂ(w) x Vz 7o y|) dsy

1
——pin [ ct,u) (a) x Vet ) ds,
yelly—x|>e
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Taking the limit 2 57 — x € I" we find

1 . 1
(Du)(x) i / curlp u(y) - (n(x) X Vg = y|) dsy
yelly—x|>e

1 . 1
L / curlpu(y) ‘%ﬂnzmdsy’

yel|ly—z|>e

I
|
|
=

For the bilinear form of the hypersingular boundary integral operator we
therefore obtain

1
(Du,v)p = ——/ ) lim / curlp u(y) - curlm| ‘ds ydsy

e—0
yel:ly—x|>e

1 . 1

- T un 313% / (v(x)mpyu(y)) : Cuﬂpwl ‘dsxdsy
r zel|z—y|>e
; 1

~ir ilﬂ% / curlp, (v(z)curlp u(y)) Hdsxdsy.

r zel|z—y|>e

By using
curlp[o(z)curlr u(y)] = n(x) - [Va x [o(z)eulr, u(y)]]
= n(x) - [Veo(z) x curlp,u(y)]

= [n(z) x Vyo(x)] - curl - u(y)
= curl,., o(x) - curl ., u(y)

we finally conclude the assertion. 0O

6.6 Properties of Boundary Integral Operators

Before proving the ellipticity of the single layer potential V' and of the hy-
persingular boundary integral operator D we will derive some basic relations
of boundary integral operators. For this we first consider the representation
formula (6.1) for = € £2,

wa:/W@wﬁwuwf/%%mmmwmm%
I I
+ [ U*(z,y)f(y)dy.
/

Taking the limit 2 3 & — x € I" we find from all properties of boundary and
volume potentials as already considered in this chapter a boundary integral
equation for xz € T,
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Yot u(z) = (V*u) (@) + 1o (@)™ u(@) — (Ky™u) (@) + No f(2). (6.20)

The application of the conormal derivative to the function w defined by the
representation formula yields a second boundary integral equation for = € I',

NMu(e) = ol@)i™ue) + (K1) (@) + (Dyu) (@) + Nif(z). (621)

With (6.20) and (6.21) we have obtained a system of two boundary integral
equations which can be written for € I" as

'y(i)ntu _ (1-0)[—-K 'V 'y(i)ntu N Nof (6.22)
~inty, D ol + K' | \ ~inty, Ny f '

where
l1-0) - K 'V
c = <( 01)) I+K’> (6.23)
o

is the Calderén projection.
Lemma 6.18. The operator C as defined in (6.23) is a projection, i.e., C = C2.

Proof. Let (1,¢) € HY/2(I') x H'/2(I'") be arbitrary but fixed. The function
w(@) = (V)(@) — (We)(F) forZ e R

is then a solution of the homogeneous partial differential equation. For the
trace and for the conormal derivative of u we find from the properties of the
boundary potentials for x € I’

u(z) = (V)(z) + (1 — o(x))e(z) — (K¢)(z),
u(z) = op(x) + (K'9)(x) + (D) ().

The function wu is therefore a solution of the homogeneous partial differential
equation whereas the associated Cauchy data are determined for x € I" by

[yinty,(z), 7104 (2)]. These Cauchy data are therefore solutions of the bound-

ary integral equations (6.20) and (6.21), i.e. for x € I
(Vo) () = (o + K™ u(x),
(D)) = (1= o) = K"y u(a).
This is equivalent to
("Y(i)ntU(x)> _ ((1 —o)l-K 'V > (%ﬂtU(ﬂf)>
ytu(z) ) D ol +K' ) \yitu(z) )

Inserting
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Whu@)) _ (A=) -K Vv o ()
fy‘intu(gj) D ol + K/ ’(/)(J))

this gives the assertion. 0O
From the projection property C = C? we can immediately conclude the
following relations of boundary integral operators.

Corollary 6.19. For all boundary integral operators there hold the relations

VD = (ol + K)(1 - 0)] — K), (6.24)
DV = (6l + K')((1 —0)I — K'), (6.25)
VK =KV, (6.26)
K'D = DK. (6.27)

Note that (6.26) describes the symmetrization of the double layer potential
K, which is in general not self-adjoint, by the single layer potential V. This
property was already described by J. Plemelj in 1911 in the case of the two—
dimensional Laplace operator [112].

From the system (6.22) of boundary integral equations we may also find
a suitable representation of the Newton potential N;f when assuming the
invertibility of the single layer potential V', see also Subsection 6.6.1.

Lemma 6.20. For the volume potential (N1f)(xz), © € I, there holds the
representation

(N f)(@) = (lo = 1T + K)VH(Nof)(w).

Proof. Using the first boundary integral equation in (6.22) and assuming the
invertibility of the single layer potential V' we first obtain

71nt (z) = V (ol + K)W(l)ntu(x) VY Nof)(x) forx el

Inserting this into the second boundary integral equation of (6.22) we get

m u)(z) + (o + K™ u(z) + (N1 f) ()
= (D) (@) + (o] + K[V (o(2) + K)yu(e) — V7 (Nof) ()]
+(N1f) (@)
= [D+ (ol + K'YV oI + K)] vitu(z)
—(oI + K')V"H(Nof)(x) + (N1 f)(x)
and therefore the equality

(Nof)(@) = (o + KWV (Nof)(2) + (N1 f)() fora e I,

int ( ) ( 1nt

From this we immediately find the assertion. 0O
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6.6.1 Ellipticity of the Single Layer Potential

By using Theorem 3.4 (Lax—Milgram theorem) we can ensure the invertibility
of the single layer potential V : H~'/2(I") — H'/?(I'). Hence we need to
prove the H~1/2(I")-ellipticity of V.
The function _
u(z) = (Vw)(x) forax e 2

is a solution of the interior Dirichlet boundary value problem
—Au(x) =0 forzxe 2, ulx)= W(i)nt(Vw)(x) = (Vw)(z) forzel.

Assuming w € H~Y2(I') we have u = Vw € H'(£2) and by choosing
v € H'(£2) we obtain, by applying Green’s first formula (1.5),

ag(u,v) = /Vu(m)Vv(a:) do = (yi0y, A0ty (6.28)
2

Moreover, inequality (4.17) implies

int

A ey < anlu,u). (6.29)

To obtain a corresponding result for the exterior conormal derivative
Xty € H=1/2(I") we need to investigate the far field behavior of the single
layer potential (Vw)(x) as |x| — oo. For this we first introduce the subspace

H V(D) = {w e HV2(I) : (w, 1) = 0} (6.30)
of functions which are orthogonal to the constants.

Lemma 6.21. For yo € 2 and x € R? we assume

|z — yo| > max{l,2diam(£2)}

to be satisfied. Let w € HY2(I) ford = 3 and w € H, "*(I") for d = 2,

respectively. For uw = Vw we then have the bounds

1

lu(@)] = |(Vw)(@)| < e(w) =0l

(6.31)

and

V()| = [V(Tw)@)| < CQ(w)m_;yOP. (6.32)

Proof. By using the triangle inequality we have for y € 2

. 1
|t —yo| < lz—yl+|y—wyo| < |z—y|+diam(2) < Ix—y|+§\x—yo\
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and therefore )
|z —y| > 5|~T—y0|'

In the case d = 3 we find the estimate (6.31) from
u(@)] = | U (@, ), ) |

< ™ U @, My llwll 1oy < er U (@) @ llwllz-vz

and by using

1 1 1 1
* 2
. _ d d
L AP = et
5090 1

Q Q
1 1 1 1
<[ — gy [ gy <2~
- 47r2/|x—yo|2 y+7r2 / |z — yol* y= 4 72 |z — yo)?
19 Q

The estimate (6.32) follows correspondingly from

0 (@) 1 Yi — T

—u(r) = —

ox; dr ) |z —y|?
T

w(y)dsy.

In the case d = 2 we consider the Taylor expansion

y— y07?7 -z
log |y — z| = log|yo — x| + %
5 — |
with an appropriate § € £2. Due to w € H;l/Q(F) we then obtain
1 (yfy()ag*z)

u(z) = 5 7 — 2’ w(y)dsy,
r

and therefore the estimate (6.31) follows as in the three-dimensional case.
The estimate (6.32) follows in the same way. 0O
For yo € 2 and R > 2diam({2) we define

Br(yo) == {z € R : |z —yo| < R}.

Then, u(z) = (Vw)(z) for € £2¢ is the unique solution of the Dirichlet
boundary value problem

—Au(x) = B for x € Bgr(yo)\{2,
u(z) = 'ySXt(Vw)(x) = Vw)(z) forxzel,
u(z) = (Vw)(x) for x € 9BRr(yo).

Using Green’s first formula with respect to the bounded domain Bg(yo)\2
this gives
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GBR(yU)\ﬁ(U,U) = —<71eXtU, 78Xt?1>r + <71ntuﬁcl)ntv>aBR(yo)

where we have used the opposite direction of the exterior normal vector along
I'. Choosing v = u and using Lemma 6.21 we have

1

|z — yol?

int int

<’71 U, Yo U>OBR(y0) dSw < CRd_4.

< cr(w)ea(w) /

lz—yo|=R

Hence we can consider the limit R — oo to obtain Green’s first formula for
u = Vw with respect to the exterior domain as

age(u,u) = /Vu(x)Vu(J;)dx = — (v, Sy (6.33)
nec

Note that in the two-dimensional case the assumption w € H, 12 (I') is es-

sential to ensure the above result. In analogy to the estimate (4.17) for the
solution of the interior Dirichlet boundary value problem we find

N ||7?Xtu||§rl/2(r) < age(u,u). (6.34)
Theorem 6.22. Let w € H™'/2(I") for d = 3 and w € H*_l/Q(F) ford =2,
respectively. Then there holds

Vw,whr > e ol
with a positive constant ¢} > 0.

Proof. For u = Vw we can apply both the interior and exterior Green’s for-
mulae, i.e. (6.28) and (6.33) to obtain

ag(u,u) = (1"u, 2" wr,

age(u,u) = (17, 75 u) r
Taking the sum of the above equations we obtain from the jump relation (6.9)
of the single layer potential

ag(u,u) + age(u,u) = ("u = 7$%%), you)r.

The jump relation (6.12) of the conormal derivate of the single layer potential
reads

Nule) —Fu(x) = w(z) foreel

and therefore we have
ao(u,u) + age(u,u) = (Vw,w)p.

Using the inequalities (6.29) and (6.34) this gives
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(Vw,wyr = an(u,u) + age(u, u)

> M I ull ey + S DT ull 2

> min{el™, &} 1130 ull3 /oy + ISl 1a )] -

On the other hand, the H~/2(I") norm of w can be estimated as

1nt u ext

||wH12q—1/2(p) = |Iv N “Hi]—l/z(p)

3 2
t t
< (Il -2y + 1§ ulg-172(

<2 [l s gy + ISl aary| - O

In the two—dimensional case we only have the H, 1/2 (I) ellipticity of the single
layer potential when using the previous theorem. To obtain a more general
result we first consider the following saddle point problem, d = 2,3, to find
(t,\) € H='/2(I') x R such that

(Vt, 7\ p — M1,7)p =0 forallT € H-Y/2(I),

1 . (6.35)

If we consider the ansatz t := ¢ + 1/|I'| for an arbitrary ¢ € H;1/2(F) the
second equation is always satisfied. Hence, to find t € H;l/Q(F) the first
equation reads

_ 1

Vi) = T (V1,7)p forallre H (D).

The unique solvability of the variational problem follows from the H, 1/ 2(F )—
ellipticity of the single layer potential V', see Theorem 6.22. The resulting
solution weq := t + 1/|I'| is denoted as the natural density. By choosing
T = weq We can finally compute the Lagrange parameter

A= <Vweq7 weq>F~

In the three—dimensional case d = 3 it follows from Theorem 6.22 that A > 0
is strictly positive. In this case the Lagrange parameter A is called the capacity
of I'. In the two—dimensional case d = 2 we define by

capp = e 2™

the logarithmic capacity. For a positive number » € R, we may define the
parameter dependent fundamental solution

i 1 1
Uf(ay) = 5-log r— ——logle —y
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which induces an associated boundary integral operator

(Vew)(z) = /Ur*(x,y)w(y)dsy forz eI’

satisfying
r

capp

1 1
(Viweq)(x) = %log r+A = %log

In particular for r = 1 we obtain

1 1
= —log .
2m capp

A

If the logarithmic capacity cap, < 1 is strictly less than one, we conclude A >
0. To ensure capp < 1 a sufficient criteria is to assume diam {2 < 1 [81, 157].
This assumption can be always guaranteed when considering a suitable scaling
of the domain 2 C R2.

Theorem 6.23. For d = 2 let diam(§2) < 1 and therefore X > 0 be satisfied.
The single layer potential V is then H~'/?(I")-elliptic, i.e.,

(Vw,wyp > ¢ Hw||§{,1/2(r) for allw e HY*(I).
Proof. For an arbitrary w € H~'/ 2(I') we consider the unique decomposition
W= W+ aWeq, WE HQI/Q(F)7 a=(w,1)p
satisfying
||w||§rl/2(r) = [lw+ aweqllifﬂ/z(r)
< 1@l -2y + @ llweqla-r2ry)°
< 2 113272y + 02 luteq I3 -1/2() |
< 2 max{1, fweqll3 172y} (181312 + 07 -
On the other hand we have by using (Vweq, w)r =0

(Vw,w)r = (V(W + aweq), W + cweq) r
= <Vﬂ)’, w>[‘ + 2« <‘/'LUeq7 w>[‘ + Oé2 <‘/U}eq7 'erq>[‘

> e 18312y + 02 2
> min{c!, A} [II@HZ—U’-’(F) +a?|,

and therefore the ellipticity estimate follows. O
The natural density weq € H~/2(I') is a solution of an operator equation
with a constraint,
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(Vweq)(xz) = A forz eI, (weq,1)r = 1.
By introducing the scaling
weq = A’I:Uveq
we obtain

(Veq)(z) = 1 forxz e, % = (Weq, - (6.36)

Instead of the saddle point problem (6.35) we may solve the boundary integral
equation (6.36) to find the natural density weq and afterwards we can compute
the capacity A by integrating the natural density weq.

The boundary integral operator V : H='/2(I") — H'/2(I') is due to (6.8)
bounded and H~1/2(I")-elliptic, see Theorem 6.22 for d = 3 and Theorem 6.23
for d = 2 where we assume diam({2) < 1. By the Lax—Milgram theorem (The-
orem 3.4) we therefore conclude the invertibility of the single layer potential
V,ie V7' HY%(I') — H~'/2(I') is bounded satisfying (see (3.13))

_ 1
HV IU”H*I/?(F) S CTHU||H1/2(F) for aHUGHl/Q(F).
1

For w € H;l/z(F) we have
(Vw,weq)r = (w, Vweq)r = Mw,1)r =0
and therefore Vw € H,/ *(I') where
H&”(F);::{ve.Hﬂﬂ(r);<v,wmpp::o}.

Thus, V : H*_l/z(F) — Hi/Q(F) is an isomorphism.

6.6.2 Ellipticity of the Hypersingular Boundary Integral Operator

Due to (6.17) we have (Dug)(z) = 0 with the eigensolution wug(z) = 1 for
x € I'. Hence we can not ensure the ellipticity of the hypersingular bound-
ary integral operator D on H'/?(I'). Instead we have to consider a suitable
subspace.

Theorem 6.24. The hypersingular boundary integral operator D is Hi/2 (I)-

elliptic, i.e.,
1/2
(Dv,v)r = P |oll]epy  for allv e HYP(D).
Proof. For v € Hy /2 (I") we consider the double layer potential

u(z) == —(Wo)(z) foraxe 2U02°
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which is a solution of the homogeneous partial differential equation. The ap-
plication of the trace operators gives

Wu(@) = (1-o(@)o(@) - (Kv)(x), "u@) = (Dv)(x) forzel
and
() = —o(x)v(z) — (Kv)(z), ~+&u(z) = (Dv)(z) forz el

The function v = —Ww is therefore the unique solution of the interior Dirichlet
boundary value problem

—Au(x) =0 forz € (2, ’y(i)ntu(x) =1 —-o(x)v(z) — (Kv)(xz) forxzel

and we have, by applying Green’s first formula (1.5),

[ vu@Ve@s = Gituaite)
(9]

for all w € H(£2).

For yo € 12 let Br(yo) be a ball of radius R > 2 diam({2) which circum-
scribes 2, 2 C Br(yo). Then, v = —Wwv is also the unique solution of the
Dirichlet boundary value problem

—Au(z) =0 for * € Br(yo)\ 12,
1$&X¥(x) = —a(z)v(x) — (Kv)(z) forxz €' = 09,
You(x) = —(Wov)(zx) for x € OBRr(yo)

and the corresponding Green’s first formula reads
/ Vu(z)Vw(z)de = —(15u, A8 r + (111, %0w) a8
Br(yo)\2

for all w € HY(Bgr(yo)\{2). For z ¢ I" we have by definition

w(z) = — /(y*‘”’”y)v(y)dsy.

2d—m ) |z—yl!
I

In particular for € dBg(yo) we then obtain the estimates
lu(z)] < ei(v) R, |Vu(x)| < ex(v) R72.

By choosing w = ©w = —Ww and taking the limit R — oo we finally obtain
Green’s first formula with respect to the exterior domain,

/ Vu(z) Pz = (7w, 7% .
Q(‘
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By taking the sum of both Green’s formulae with respect to the interior and
to the exterior domain, and considering the jump relations of the boundary in-
tegral operators involved, we obtain for the bilinear form of the hypersingular
boundary integral operator

(Dv,v)p = <'Yint [%l)ntu ’YgXtUDF _ <71ntu ,ylnt Vr (’7€Xtu ,yext Vr

— [ Vu@)Pds + [ [Vuo)Pds = oy + ulip e
Q c
For the exterior domain (2¢ we find from the far field behavior of the double
layer potential u(z) = —(Wwv)(z) as || — oo the norm equivalence
crl[ull ooy < ulinae < e llullfn oo

For v € H/*(I'), for the natural density Weq € H™Y2(I'), Vweq = 1, and by
using the symmetry relation (6.26) we further obtain

(8, weq)r = (5T~ K)o, weq)r = (v, weq)r — (5T + K)o, weq)r
= —<<%I+K)v, Vi) = —(V ' (T + K, 1)r
= —<(11+K/)V—1v,1>p = —(V‘lv,(%l—i—K)l)p =0

and therefore fy(i) ue HY 2(F). By using the norm equivalence theorem of
Sobolev (Theorem 2.6) we find

L int 2 v 2 1/2
ullri2) = {0 w weq)r]” + [[Vullz, o

to be an equivalent norm in H'(§2). For v € Hi/Q(F) we have 7y e Hi/z(l“)
and therefore

|u‘§{1(9) = [<7(1)ntU,weq>F]2+ ||VU||2L2(Q) = ”“H%{i(ﬂ) 2 C||U||§J1(Q)

By using the trace theorem and the jump relation of the double layer potential
we obtain

(Dv,v)r 2 ¢ { Il o) + lulliys o) }
int t
> & {1l nry + 106l §
1
2 5¢ Elhe™u = ¥ ullin 2y = o Il

for all v € HY/ *(I') and therefore the H / ?(IN)—ellipticity of the hypersingular
boundary integral operator D. O
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To prove the ellipticity of the hypersingular boundary integral operator
D we have to restrict the functions to a suitable subspace, i.e. orthogonal to
the constants. When considering the orthogonality with respect to different
inner products this gives the ellipticity of the hypersingular boundary integral
operator D with respect to different subspaces.

As in the norm equivalence theorem of Sobolev (cf. Theorem 2.6) we define

1/2
loll iz ry = { [{0 wea)r]® + [0puary }

to be an equivalent norm in H'/2(I"). Here, weq € H~1/?(I') is the natural
density as defined in (6.36).

Corollary 6.25. The hypersingular boundary integral operator D is H'/? (-
semi—elliptic, i.e.

(Dv,v)p > & |v|}1jopy  for allv e HYA(T). (6.37)

The definition of Hi/Q(F) involves the natural density weq € H™V/?(I") as
the unique solution of the boundary integral equation (6.36). From a practi-
cal point of view, this seems not to be very convenient for a computational
realization. Hence we may use a subspace which is induced by a much simpler
inner product. For this we define

HYA(D) = {v e HY2(I') : (v,1)p = o}.
From (6.37) we then have for v € Hi,.{z(]“)
(Dv,v)r > & |U|§{1/2(F)

=P {0l + (002} = @ ol (6:38)

the H i{ 2(F )—ellipticity of D where we again used the norm equivalence the-
orem of Sobolev (cf. Theorem 2.6).

We finally consider an open surface Iy C I'. For a given v € H'/2(I}) let
¥ € H'Y2(I') denote the extension defined by

3(x) = v(z)  forx € I,
vir) = 0 elsewhere.

As in the norm equivalence theorem of Sobolev (cf. Theorem 2.6) we define

9 9 1/2
lwllg1/2(ry,r, = {Hw||L2(F\Fo) + |w|H1/2(F)}

to be an equivalent norm in H/2(I"). Hence we have for v € HY/2(I})
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(Dv,v)r, = (D0, 0)r > & |”|H1/2(p) = ||U||L2(F\FU) + ‘U|H1/2(F)
=& [0l s2ryry 2 & 10052y = 7 01 50n g, (6:39)

and therefore the H/ 2(Iy)-ellipticity of the hypersingular boundary integral
operator D.

6.6.3 Steklov—Poincaré Operator

When considering the solution of boundary value problems the interaction of
the Cauchy data fymtu and 41y plays an important role. Let us consider
the system (6.22) of boundary integral equations for a homogeneous partial
differential equation, i.e., f = 0:

”y(i)ntu B l-o)I-K 'V ’y(i)ntu
i b orar) o)

Since the single layer potential V' is invertible, we get from the first boundary
integral equation a representation for the Dirichlet to Neumann map,

My () = Vol + K)yiMu(z) forz e I (6.40)
The operator
S =V Yol +K): HY>(I') — H Y*(I) (6.41)

is bounded, and S is called Steklov—Poincaré operator. Inserting (6.40) into
the second equation of the Calderén projection this gives

Nule) = (D"w)(@) + (o1 + K')i"u(x)
= [D+ (oI + K"V oI + K)| i u(z) forz e I (6.42)

Hence we have obtained a symmetric representation of the Steklov—Poincaré
operator which is equivalent to (6.41),

S:=D+ (ol +K)W ol +K): HY>(I') = H Y*(I). (6.43)
With (6.40) and (6.42) we have described the Dirichlet to Neumann map

Wint (x) = (S'ymt) (x) forz el (6.44)

which maps some given Dirichlet datum y(i)ntu e HY 2(I') to the corresponding
Neumann datum %y € H=1/2(I") of the harmonic function u € H(£2)
satisfying Lu = 0.

By using the H'/?(I")-ellipticity of the inverse single layer potential V!
we obtain
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(Sv,v)p = (Dv,v)p + (V" oI + K)v, (oI + K)v)p > (Dv,v)r (6.45)

for all v € HY?(I"). Therefore, the Steklov-Poincaré operator S admits the
same ellipticity estimates as the hypersingular boundary integral operator D.
In particular we have

(Sv,v)p

v

P [l oy for all v € HY?(I) (6.46)

as well as

(Sv,v)p
while for Iy C I" we get

| \/

P N[olZs ey for all v e HIL (D) (6.47)

(Sv,0)p, > & |Jv]|% for all v € H'/?(I). (6.48)

H/2(I)

6.6.4 Contraction Estimates of the Double Layer Potential

It is possible to transfer the ellipticity estimates of the single layer potential
V' and of the hypersingular boundary integral operator D to the double layer
potential oI + K : HY?(I') — H'Y/2(I"), see [145]. Since the single layer
potential V' : H~/2(I') — HY?(I') is bounded and H~'/?(I")-elliptic, we
may define

ully-1 = /(V-Yu,u)p for allu € HY/?(I')
to be an equivalent norm in H'/2(I).
Theorem 6.26. For u € Hi/Q(F) we have

(1 =cx) ullv—r < (0] + K)ully— < ek [Jully - (6.49)

1 1
K = 5 + 1 —clcP <1 (6.50)
%

where ¢} and cP are the ellipticity constants of the single layer potential V
and of the hypersingular boundary integral operator D, respectively.

with

Proof. Using the symmetric representation (6.43) of the Steklov—Poincaré op-
erator S we have

(oI + K)ull}—2 = (V" ol + K)u, (o] + K)u)r
= (Su,u)p — (Du,u) .

Let J: H-'/2(I') — HY?(I') be the Riesz map which is defined via

(Jw,v) grs2(py = (w,v)p forallv € HY2(I).
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Then, A := JV~1: HY?(I') — H'2(I') is self-adjoint and H'/?(I")-elliptic.
Using the first representation (6.41) of the Steklov—Poincaré operator S and
considering the splitting A = A'/2A4Y2 we conclude the inequality

(Su,u)p = (V" oI + K)u,u)r
= (JV Yol + K)u,u) iz
< (U[—"-K)’u A%y >H1/2(F)
< JAY2 (0T + KYul sy | AY 20l 1z o

and with

||A1/2U||fql/2 = <A1/2U A%y >H1/2(F)
<JV v, U>H1/2(I‘)
= (V7 v,0)r

= [lv ||v .

it follows that
(Su,uyp < [[(o + K)ully-[|ully-1.

Since the hypersingular integral operator D is elliptic for v € H, 1 2(I) we
find from the mapping properties of the inverse single layer potential V! the
lower estimate

(Duuyr > e [ulZeiry > Pl (V) = ePe ul? o
Hence we have obtained
l(o1 + K)ul}-r = (Su,u)r — (Duu)p
<ol + K)ully-1[lully-+ — ¢ e ullf -+

Denoting
a = ||(ol + K)ully-1 >0, b := [Jully- >0

we conclude

and therefore to the assertion. O
The contraction property of ol + K, in particular the upper estimate in
(6.49), can be extended to hold in H/?(I).
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Corollary 6.27. For u € H'/?(I") there holds
(el + K)ully-1 < cx [lully— (6.51)
where the contraction rate cx < 1 is given as in (6.50).
Proof. For an arbitrary u € H'/?(I") we can write

<U7 weq>F

U = u-+
<1aweq>F

Uo

where u € Hi/2(F) and ugp = 1. Due to (oI + K)ug = 0 we have by using
Theorem 6.26

ol + K)ully-+ = (o] + K)ulv-1 < ex [[ally-.
On the other hand,
9 2 [(U,weq>l“]2 > |72
e

which implies the contraction estimate (6.51). O
Note that a similar result as in Theorem 6.26 can be shown for the shifted
operator(l — o)l — K.

Corollary 6.28. Forv € Hi/Q(F) there holds
(I =ecr) [lollv— < [([1 = o)l = K)vlly— < ek [fofly— (6.52)
where the contraction rate cx < 1 is given as in (6.50).

Proof. By using both the triangle inequality and the contraction estimate of
ol + K we obtain with

[ollv—+ = [I([1 = o}l = K)v+ (o1 + K)vlly-
<[ = oll = K)vlly-2 + (61 + K)vlly-»
<[ = ol = K)vlly -1 + ek [[oflv—

the lower estimate in (6.52). Moreover, using both representations (6.41) and
(6.43) of the Steklov—Poincaré operator S, we conclude

(1= o) = K)ol = (Il = (o + K)ol
( [5—2 =2V (ol + K)v,0)r
= [[vllY - + (o] + K)v[[§ - = 2(Sv,v)r
= [[vllY - = (o] + K)v[[§ - = 2(Dv,v)r

[1—(1—cx)? =2/ cl] ollf-s = i ol

= [ollZ - + [l(e] + K)v
v

IN
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This gives the upper estimate in (6.52). O
Let H*_l/2(1") be the subspace as defined in (6.30). Due to V' : H*_l/Z(I’) —

Hi/Z(F) we can transfer the estimates (6.49) of the double layer potential
ol + K : HY*(I') — H'?(I') immediately to the adjoint double layer poten-
tial o + K': H-Y/2(I") — H-Y*(I).

Corollary 6.29. For the adjoint double layer potential and for w € H*_l/2(1")
there holds

(1 =cx) wlly < (0l + Kwllv < ek llwlyv (6.53)

where the contraction rate cx < 1 is given as in (6.50) and || - ||y is the norm
which is induced by the single layer potential V.

Proof. For w € H*_l/Q(F) there exists a uniquely determined v € Hi/Q(I’)
satisfying v = Vw or w = V ~!v. Using the symmetry property (6.26) we first
have
(oI + K'w|} = V(eI + KV ', (o + K')V ')
= (VoI + K)v, (o] + K)v)r = |(o] + K)ol[{,-1,
as well as
lwl} = (Vw,w)r = (V7 v,0)r = |v][f-.

Therefore, (6.53) is equivalent to (6.49). O
As in Corollary 6.27 we can extend the contraction property of oI + K’
to H=Y/2(I).

Corollary 6.30. For w € H~'/2(I") there holds the contraction estimate
||(UI+ K/)U)HV < ¢k ||’LUHV (654)

To prove related properties of the shifted adjoint double layer potential
(1 —0)I — K’ again we need to bear in mind the correct subspaces.

Corollary 6.31. For w € H;1/2(F) we have
(1= cx) wlly < (A = o) = KNwlly < ek llwllv (6.55)

where the contraction rate cix < 1 is given as in (6.50).

6.6.5 Mapping Properties

All mapping properties of boundary integral operators considered up to now
are based on the mapping properties of the Newton potential Ny : H~1(§2) —
H'(£2), and on the application of trace theorems and on duality arguments.
But even for Lipschitz domains more general results hold.
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Theorem 6.32. The Newton potential Ny : H*(2) — H*+2(£2) is a continu-
ous map for all s € [—2,0], i.e.

INofllmev22) < ¢llflzuiy  for all f € H*(£2).

Proof. Let s € (—1,0] and consider f to be the extension of f € H*(£2) as
defined in (6.2). Then,

7 f;’U d f,’U (]
1 1l e ey = sup MO0 < sup _Afo)e = | fllzs (2
otver -+ D) 1Vl E-s®e) ~ 0zver—s(2) IVIH-5(2)

and the assertion follows as in the proof of Theorem 6.1, i.e.

INofllmres2(2) < el fllzuqqy for all f € H*(£2).

Since the Newton potential Ny is self-adjoint, for s € [—-2, —1) we obtain by
duality

sup (Nof,9)a _ sup (f, Nog) e

0#£geH—2-5(2) ||g||H72fs(Q) 0£geH-2-5(12) ”9”1772—5(9)

INo f 1l 212+2(2)

||N09||H*SQ
Nl s 2

< cllflligeqa- O
0£ge H=2-5(R) ||9||ﬁ—2_s(9) ()

By the application of Theorem 6.32 we can deduce corresponding mapping
properties for the single layer potential V' as defined in (6.7) and for the
boundary integral operator V := ’y(l)ntV by considering the trace of V.

Theorem 6.33. The single layer potential V : H=2+5(I'") — H=5(I") is
bounded for |s| < 3, i.e.,

[Vwllgirovsry < cllwllg-1r2+s
for all w € H=Y/2+5(I).

Proof. For v € C°°(§2) we first consider

Vw,p)g = /(p(x)/U*(m,y)w(y)dsydm = /w(y)/U*(x,y)go(m)dmdSy
I7; ia r I7;
= (W, %" Nophr < Nwllg-1r2es () 70" Nowll 1172+ 1)
<cr |wll g-17245 () [[Nop| -5 (2

where the application of the trace theorem requires 1 — s > 0, see Theorem

2
2.21. With Theorem 6.32 we then obtain
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Vw,o)p < ¢ Hw||H_1/2+s(p)||go||ﬁ_1_s(9) for all p € C*°(£2).

By using a density argument we conclude Vwe H 1+5(12). Taking the trace
this gives Vw := 'yénti € H'/275(I") when assuming $+s>0 O

In the case of a Lipschitz domain {2 we can prove as in Theorem 6.33
corresponding mapping properties for all boundary integral operators.

Theorem 6.34. [44] Let I' := 012 be the boundary of a Lipschitz domain {2.
Then, the boundary integral operators

V i HYHS() — HY2S(r
K :H1/2+s([1) N H1/2+S(F
K’ H=Y24s(I) — H=Y/2+3(D),
D :H1/2+s(1—1) N H—1/2+s(1—1)

);
)

)

are bounded for all s € [—3, 1].

Proof. For the single layer potential V and for |s| < 1 the assertion was
already shown in Theorem 6.33. This remains true for |s| = 1 [152], see also
the discussion in [103].

For all other boundary integral operators the assertion follows from the
mapping properties of the conormal derivative operator.
First we consider the adjoint double layer potential K’. Recall that the sin-
gle layer potential u(z) = (Vw)(z), € §2, is a solution of the homoge-
neous partial differential equation with Dirichlet data 7w (z) = (Vw)(x) for
x € I'. By using Theorem 4.6 and the continuity of the single layer potential
V : Ly(I') — HY(I') we obtain

- B
™ ullL,ry < cllVwllairy < €llwll,mr

and therefore the continuity of Y™V = oI 4+ K’ : Ly(I') — Ly(I'). On the
other hand we have by duality
. 'yintw
HﬂntUHH—l(r) = sup i o) SD>F~
0£peHL(I) H€0||H1(r)

For an arbitrary ¢ € H'(I') let v € H?/?(2) be the unique solution of the
Dirichlet boundary value problem Lv(z) = 0 for z € 2 and 7™v(x) = ¢(z)
for x € I'. By using Theorem 4.6 this gives
it it
WP olary < el = ellela .

Since both u = Vw and v are solutions of a homogeneous partial differential
equation, we obtain by applying Green’s first formula (1.5) twice and taking
into account the symmetry of the bilinear form
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(" uhr = alu,v) = a(v,u) = (v, u)r
int int
< " llay e ulleaary < ellellm Vel
From the continuity of the single layer potential V : H=1(I') — Lo(I") we
now conclude

I ul -1y < elVwllpyry < Ellwlla-1r)
and therefore the continuity of Y™V = oI+ K’ : H-Y(I') — H~(I'). Using
an interpolation argument we obtain K’ : H~Y/2+5(I") — H~1/2+5(T) for all
|s| < 1. Due to

Kuv,w)p
||KUHH1/2+5(F) = sup #
0£weH—1/2=5(I) ||w\|H71/275(r)
(v, K'w)p
= sup

0#we H—1/2=5(I") ||wHH—1/2—s(r)

||K'wHH—1/2—s(r)

= HU||H1/2+s(p) sup
orwer—1/2-r) [Wla-1r2-+(r)

IN

c HU||H1/2+S(F)

we immediately conclude K : HY/2+5(I") — H'Y/2+3(I") for |s| < 3.

It remains to prove the assertion for the hypersingular boundary integral
operator D. The double layer potential u(x) = (Wv)(z), x € {2, yields, by the
application of Theorem 4.6,

1DV Lory = IM™ullLoiry < el ullar oy = ell(fo = 0T+ K)ol i)
and therefore D : HY(I') — Lo(I"). Again, using duality and interpolation
arguments completes the proof. O

If the boundary I = 92 of the bounded domain 2 C R? is piecewise
smooth, Theorem 6.34 remains true for larger values of |s|. For example, if
2 C R? is polygonal bounded with .J corner points and associated interior
angles a; we may define

. | ™
0o := min {min|—,—| 5.
j—l,...,J{ [aj 27r—ozjl}
Then, Theorem 6.34 holds for all |s| < o [45]. If the boundary I" is C°°, then
Theorem 6.34 remains true for all s € R.
6.7 Linear Elasticity

All mapping properties of boundary integral operators as shown above for the
model problem of the Laplace equation can be transfered to general second
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order partial differential equations, when a fundamental solution is known. In
what follows we will consider the system of linear elastostatics which reads
for d=2,3 and z € 2 C R? as

E

T graddivu(z) = f(). (6.56)

E
21+v)(1—2v)
The associated fundamental solution is the Kelvin tensor (5.9)

1 1 1+4+v (i —yi)(z; —y;)

Uii(z,y) = 4(d—1)7TE 1-. (3 —4v)E(z,y)di; + iz — |

fori,j =1,...,d where

—log|lz—y| ford=2,
E(x,y) = 1

_ for d = 3.
|z —y

For the components u; of the solution there holds the representation formula
(5.10) (Somigliana identity), z € 2,i=1,...,d,

/Z y)ds, — /Z (@, y)u;j(y)ds,

d
+/ZU z,y) fi(y (6.57)
J=1

As in (6.4) we define the Newton potential
d
Nof /Z (Z,y) fi(y)dy forzeR,i=1,...,d
i=1

which is a generalized solution of (6.56). Moreover, as in Theorem 6.1,

INofllicne < ellf g gy

By taking the interior traces of u;,

(Nof)i(z) := B (Nof)i(z) = . Jim (Nof)i(®) fori=1,....,d,
Sx—xel’

this defines a linear and bounded operator
No = Ny - [ @) — [HV(D)

In addition, by applying the boundary stress operator (1.23),
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(v th fli(z) = lim ZO’U Nof, T)n;j(z) fori=1,...,d,

991—>16F
we introduce a second linear and bounded operator
Ny = "Ny« [H Q) — [H V)

For x € £2U £2¢ the single layer potential

d
:/Z (z,y)w;(y)ds, fori=1,...,d
j=1

is a solution of the homogeneous system of linear elasticity (6.56) with f =

Hence we have _
Vi [ YA — [HY(2))

When considering the interior and exterior traces of V this defines a bounded
linear operator

Vo=V = AV [HOV) — ()

with a representation as a weakly singular surface integral,
(Vw /Z (z,y)w;(y)ds, forxelyi=1,...,d (6.58)

If w € [H-Y/2(I")]? is given, the single layer potential Vw € [H(£2)]¢ is a
solution of the homogeneous system (6.56) of linear elastostatics. Then the
application of the interior boundary stress operator (1.23),

(P V), () QS;EI}EGFZU” (Vw, Z)n;(x) fori=1,...,d,

defines a bounded linear operator
WV = BRI — [HA)
with the representation
it e 1
(Y VW), (z) = §w1(9&) + (K'w)i(z) for almost allz € I'i=1,...,d,

where

d d
(K'w)i(z) = lim / szw (2 9), 2)ne(z)w; (4)ds,
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is the adjoint double layer potential, & = 1,...,d. For simplicity we may
assume that € I" is on a smooth part of the surface, in particular we do
not consider the case when x € I is either a corner point or on an edge.
Correspondingly, the application of the exterior boundary stress operator gives

~ 1
(VX W w)(z) = féwi(x) + (K'w);(z) for almost allz € I';i =1,...,d.

Hence we obtain the jump relation for the boundary stress of the single layer
potential as

MV = (¥ Vw)(z) — (" Vw)(x) = —w(@) forazel

in the sense of [H~/2(I")]%.

As for the Laplace operator the far field behavior of the single layer poten-
tial V is essential when investigating the ellipticity of the single layer potential
V. The approach as considered for the Laplace equation can be applied as well
for the system of linear elastostatics. Note that the related subspace is now
induced by the rigid body motions (translations). Hence, for d = 2, we define

HY2(D)? = {we [HY2(D)]? + (wi, 1)p =0 fori = 1’2}'

Lemma 6.35. For yo € 2 and x € R3 let |x — yo| > 2 diam(§2) be satisfied.
Assume w € [H-Y2(D))? for d = 3 and w € [H;1/2(F)]2 for d = 2. For
u(x) = (Vw)(z) we then have

fus(z)| < e —

<c——,i=1,....,d.
[z — Yol

Proof. Let d = 3. Due to

_ 1 114w 0ij (zi —yi) (v — y;) _
|u;(x)] = wE1 o /[(3 4V)|x—y| + e w;(y)ds,
T

1 1 1+v 0i 1
- - —4 Y .
I

we obtain the assertion as in the proof of Lemma 6.21. For d = 2 we consider
the Taylor expansion of the fundamental solution to conclude the result as in
the proof of Lemma 6.21. O

As for the single layer potential of the Laplace operator (Theorem 6.22)
we now can prove the following ellipticity result.

Theorem 6.36. Assume w € [H~Y/2(I")]* for d = 3 and w € [H;l/z(F)]d
for d =2. Then we have

(Vw,wyr > e [[wllfy-1/2(rya

with a positive constant cy .
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Proof. The ellipticity estimate follows as is the proof of Theorem 6.22 by using
Lemma 4.19. O
To prove the [H~'/2(I")]?-ellipticity of the two-dimensional single layer
potential V' we first introduce the generalized fundamental solution
1 11+4v (i —yi)(xj — yj)

Ug = — = v —3)1 —y))dy;
’Lj(x’y) dr E1—v ( v ) og(a|x y|) J+ “T*y|2

for i,j = 1,2 which depends on a real parameter & € R, and we consider the
corresponding single layer potential V,, : [H~Y/?(I")]> — [H~'/2(I')]%. Note
that this approach corresponds to some scaling of the computational domain
2 ¢ R? and its boundary I, respectively.

For w € [H_:l/z(l“)]2 we have by using Theorem 6.36 the ellipticity esti-
mate

(Vaw,w)r = (Vw,w)r > ¢f [[wllty-1/2(py2-

The further approach now corresponds to the case of the scalar single layer
potential of the Laplace operator [142] to find (w*,A") € [H~V2(I")]? x R? as
the solution of the saddle point problem

(Vowh, 7y r — M1, 7)) = M1, 72)r =0

<w%7 1>F =1

<w%7 1>F =0
to be satisfied for all 7 € [H~/2(I")]%. By introducing w} := @} + 1/|I"| and
wh := @} it remains to find @' € [H_:l/Q(F)]2 as the unique solution of the
variational problem
1

T (Va(1,0)T,7) 0 for all - € [H7/*(I)]2.

<Va@171>1_' - -

When @' € [H_:l/Q(F)}Q and therefore w! € [H~'/2(I')]? is known we can
compute
A= (Vaw' wh)r.

In the same way we find (w?,\*) € [H=Y/2(I")]?> x R? as the solution of the
saddle point problem

(Vow?, ) = M(L,mi)r = A3(L,m2)r = 0
<w%a 1>F =0
<w§, Dr =1
to be satisfied for all 7 € [H~/2(I")]2. Moreover, we obtain

A3 = (Vow?, w?)r,

as well as
Ay = A = (Vow', w?)r.
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Lemma 6.37. For the Lagrange multiplier \} (i

1,2) we have the repre-

sentation . o L 114w
A = (Vw',w')r + B V(41/ —3) loga,
while the Lagrange multiplier \y = A} is independent of o € R,
Ay = A = (V! w?)r.
Proof. For i = 1, a direct computation gives, by splitting the fundamental

solution log(alz — y|),
A= (Vowh, whyr

2
_ L1l4v / / > (4w = 3)log(alz — y)w! (y)w} (x)ds.ds,

(i — yi) (5 — yj) Hy)w) (z)ds,ds,

2
/Z EE R
I

2
_ 1114w //Z(4y —3)log |z — y|w} (y)w; (z)ds.ds,

|z —y[?

2
/ S @@ 200 ) () dsds,
r

due to (w}, 1) = 1 and (w3, 1) = 0. For A3 the assertion follows in the same
way. Finally, for A\? = A} we have

A= (Vow' w?)r

2

11140 ) )

= Viw'wr+—= (4v =3)loga » (w},1)p(w?, 1)1
Ar E1—v p

= (Viw', w?)r
due to (w?,1)r = (w, 1) =0. O
Hence we can choose the scaling parameter o € Ry such that
min{\{,\3} > 2|\} (6.59)
is satisfied. An arbitrary given w € [H~'/2(I")]? can be written as
a; =(w, 1)r (1=1,2) (6.60)

w=w+oaw' + aw?

where @ € [H, /()2
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Theorem 6.38. Let the scaling parameter o € Ry be chosen such that (6.59)
is satisfied. Then the single layer potential V is [H_l/z(F)Ffelliptic, i.e.

(Vaw, w)p > ¢ lwlit—1/2(pye for allw € [H™V2()).
Proof. For an arbitrary w € [H~'/2(I")]? we consider the splitting (6.60).
By using the triangle inequality as well as the Cauchy—Schwarz inequality we

obtain

”2”[21{*1/2(1‘)]2 = ”@"' alwl + a2w2||[2H71/2(F)]2
< [||@||[H—1/2(r)]2 + |aa | Hw1”[2H*1/2(F)]2 + |az| Hw2||[2H*1/2(F)]2}

<3 [||@||[2H—1/2(r)]2 +af ||w1||[2H—1/2(r)]2 +a3 ||w2H[2H—1/2(F)]2}

IN

3 max {1, | 2y 1o oo 102 B poroge } (1T sn e + 0 + 03]
Moreover, by the construction of w' and w? we have
(Vow, w)r = (Val@ + cnw' + cow?], @ + cqw' + cow?)r

- <Vaﬁ7 @>F + Oé% <Vawlaw1>f‘ + Oé% <VaM2722>F

+2a1 (Vow!, @) r + 200 (Vow?, @) r + 20y (Vow', w?) r
= (Vall, @)1 + 03 A\ + 03 A3 + 20000 A7

From the [H;l/ ?(I')]?-ellipticity of V, and by using the scaling condition
(6.59) we finally get

(Vow,w)r > ¢f ”@”[2}[71/2(1‘)]2 +ai AL + a3 A3 — 2] |az| [Af]

> O @12y + min{AL A3} [a? + a3 — o |as]]

_ 1
> C‘l/ ||w||[2H—1/2(p)]2 + 5 mln{)\%, )\g} [O{% + Ol%]
. 1 1 .
> min {CY,iA%,i)\g} [”w||[2H—1/2(p)]2 +C¥? +a§} . O

Therefore, the single layer potential V : [H~Y2(I")|¢ — [HY?(I")]? is
bounded and [H~'/2(I")]% elliptic, where for d = 2 we have to assume a
suitable scaling of the domain {2, see (6.59). By using the Lax—Milgram lemma
(Theorem 3.4) we therefore conclude the existence of the inverse operator
VL [HY2(D)E — [HY2(D))e

By R we denote the set of rigid body motions, i.e. (1.36) for d = 2 and
(1.29) for d = 3, respectively. Define

[H*—l/Q(F)]d — {'&6 [H—1/2([’)]d s (w,v)p = 0 for v, GR},
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and
[Hi/Q(F)]d — {QG [H1/2(F)]d : <V71272k>1ﬂ =0 fory, € R}

Obviously, V : [H;l/Q(F)]d — [Hi/2(F)]d is an isomorphism.
For z € £2U £2¢ we define by

w /Z (z,y)u(y)dsy, i=1,....d,

the double layer potential of linear elastostatics satisfying
W [HY2(D) — [HY(D).

The application of the interior trace operator defines a bounded linear oper-

ator )
YW [HYAD)) — (Y1)

with the representation

; 1
(VW) (z) = —évi(x) + (Kv);(z) foralmostallz e INi=1,....d,

(6.61)
where

e—0

d
(Kv);(z) := lim / Z (Z,y)uj(y)dsy, t=1,...,d
yel:|ly— ;c\>s =1

is the double layer potential. Correspondingly, the application of the exterior
trace operator gives

1
(V& W), (z) = 5vi(@) + (K)i(x) for almost allz € i =1,....d.
Hence, we obtain the jump relation of the double layer potential as
oWl = 7§ (Wo)(2) — W (Wo)(@) = v() forz el

From the Somigliana identity (6.57) we get for 2 > & — x € I" by using (6.58)
and (6.61) the boundary integral equation

(Vt)(z) = <%I + K> u(z) — (Nof)(x) for almost all z € T (6.62)

Inserting the rigid body motions (1.36) for d = 2 and (1.29) for d = 3 this
gives

1
(§I—|—K>yk(x) =0 forzel andy, € R.
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The application of the interior boundary stress operator 'y%m on the double
layer potential Wv defines a bounded linear operator

W = AW (YD) (YA

As in the case of the Laplace operator we denote by D := —ﬂntW the hyper-
singular boundary integral operator.

When applying the boundary stress operator 'ymt on the Somigliana iden-
tity (6.57) this gives the hypersingular boundary integral equation

(Du)(z) = (;I - K’) t(z) — (N1f)(z) forxzel (6.63)

in the sense of [H~/2(I)]%.

As in (6.22) we can write both boundary integral equations (6.62) and
(6.63) as a system with the Calderén projection (6.23). Note that the projec-
tion property of the Calderén projection (Lemma 6.18) as well as all relations
of Corollary 6.19 remain valid as for the scalar Laplace equation.

Analogous to the Laplace operator we can rewrite the bilinear form of the
hypersingular boundary integral operator by using integration by parts as a
sum of weakly singular bilinear forms. In particular for d = 2 we have the
representation [107]

(Du, v) Z /curlpv] /GZJ z, y)eurl pu, (y)ds,ds,

1,]= 1F
for all u,v € [HY?(I') N C(I"))?> where

1
471 — 12

(xi —yi) (@5 —y;)

|z —yl?

Gij(x,y) = {log|o:y|5ij+ , 1,7 =1,2.
Here, curl denotes the derivative with respect to the arc length. Note that the
kernel functions G;;(z,y) correspond, up to constants, to the kernel functions

of the Kelvin fundamental solution (5.9).

In the three-dimensional case d =3 and i, = 1,...,3 we define
0 0
M — () ——
15 (O, () n;(x) o, ni(x) oz,
and
L i= Ms5(0y, n(2))
851(.’13) = 32\Vz;, x)),
L = My5(0,,n())
ﬁSg(x) = 13\Vz, )
0

_— = MQl(ax, n(x))
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The bilinear form of the hypersingular boundary integral operator D can then
be written as [75]

0
(Dy, v) 47r// |z — vyl (Z OSk(y u(y) ask( )~ u(@ )> dsydss
n / | (M(az,nm)v(a:)f(“ ! 4u2U*<x,y>>M<ay,n<y>>u<y>dsydsm

21 |z — y|

3
+4i// Z Myj (0, n( ))Ui(x)%Mki(ay,n(y))vj(y)dsydgm_ (6.64)

i,7,k=1 - ‘

Hence we can express the bilinear form of the hypersingular boundary integral
operator D by components of the single layer potential V' only.

Moreover, for d = 3 there holds a related representation of the double layer
potential K, see [89],

(Ku »(y))u(y)ds,

47r an |a:fy|* Jdsy = 47T/|x—y|

(VM0 n())u()()
where the evaluation of the Laplace single and double layer potentials has to
be taken componentwise.

Hence we can reduce all boundary integral operators of linear elastostatics
to the single and double layer potentials of the Laplace equation. These rela-
tions can be used when considering the Galerkin discretization of boundary
integral equations, where only weakly singular surface integrals have to be
computed.

Inserting the rigid body motions (1.36) for d = 2 and (1.29) for d = 3 into
the representation formula (6.57) this gives

v, () = —=(Wu,) (@) forZ € 2andv, € R.
The application of the boundary stress operator vmt yields

(Dvy)(z) =0 forx e I'and v, € R.

As in Theorem 6.24 we can prove the [Hi/2 (I")]%-ellipticity of the hypersin-
gular boundary integral operator D,

(Dv,v)p > cP HU”[Hl/?(F)]d for all v € [H 1/2(F)]d.

In addition, the ellipticity of the hypersingular boundary integral operator D
can be formulated also in the subspace
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(HY2 (D) = {ye[H*p(Fﬂd:<y4%ﬁﬂ:() brgk€7€}

of functions which are orthogonal to the rigid body motions. Then we have,
as in (6.38),

(Du,v)r > &P [|ullg ey for all w € [HA2 (D))

As in Subsection 6.6.3 we can define the Dirichlet to Neumann map, which
relates given boundary displacements to the associated boundary stresses via
the Steklov—Poincaré operator. Moreover, all results on the contraction prop-
erty of the double layer potential (see Subsection 6.6.4) as well as all mapping
properties of boundary integral operators (see Subsection 6.6.5) remain valid
for the system of linear elastostatics.

6.8 Stokes System

Now we consider the homogeneous Stokes system (1.38) where we assume
=1 for simplicity, i.e.,

—Au(x) + Vp(x) = 0, divu(zr) =0 forx e (2.

Since the fundamental solution of the Stokes system coincides with the Kelvin
fundamental solution of linear elastostatics when considering v = % and £ =3
as material parameters, we can write the representation formula (6.57) and
all related boundary integral operators of linear elastostatics for v = % and
E = 3 to obtain the Stokes case. However, since the analysis of the mapping
properties of all boundary integral operators of linear elastostatics assumes
v e (0, %) we can not transfer the boundedness and ellipticity estimates from
linear elastostatics to the Stokes system. These results will be shown by con-
sidering the Stokes single layer potential which is also of interest for the case
of almost incompressible linear elasticity (v = 1) [141].

Let 2 C R? be a simple connected domain with boundary I' = 2. The
single layer potential V : [H~1/2(I")]* — [H'(£2)]? induces a function

d
u; (%) = (Vw /Z (z,y)w;(y)ds, forze R,i=1,...,d

which is divergence—free in {2, and satisfies Green’s first formula

d
2 [ Y estwreswarts = [ o) (Tw@ds, (66

o =1

for all v € [H*(£2)]¢ with divy = 0. The application of the interior trace
operator defines the single layer potential
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Vo= T ) ()

which allows a representation as given in (6.58). To investigate the ellipticity
of the single layer potential V' we first note that u* = 0 and p = —1 defines
a solution of the homogeneous Stokes system. From the boundary integral
equation (6.62) we then obtain

1
(Vt*)(z) = (§I+K)g*(x) =0 forzel
with the associated boundary stress

d

t"(z) = —p*(z)n(z) + 2 Z eij(u”, z)n;(z) = n(z) forxel.

J=1 i=1

Hence we can expect the ellipticity of the Stokes single layer potential V' only
in a subspace which is orthogonal to the exterior normal vector n.

Let VI : H=Y/2(I') — H'/2(I") be the Laplace single layer potential which
is H—1/2(I")-elliptic. Hence we can define

d

(w,T)ve = Z<VLwia7_i>F

i=1
as an inner product in [H~1/2(I")]4. When considering the subspace

[Hy 207 = {w e (BT (wn)ye = 0}

we can prove the following result [50, 159]:

Theorem 6.39. The Stokes single layer potential V is [H‘;i/z

i.€.

()] elliptic,
(Vw,wp > e w1y for allw € [Hy/*(D)]%,

As for the homogeneous Neumann boundary value problem for the Laplace
equation we can introduce an extended bilinear form

(Vw,7)r = (Vw,7)r + (w,n)yz{T,n)yr

which defines an [H~1/2(I")]?~elliptic boundary integral operator V.

When the computational domain {2 is multiple connected, the dimension of
the kernel of the Stokes single layer potential is equal to the number of closed
sub—boundaries. Then we have to modify the stabilization in a corresponding
manner, see [116].
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6.9 Helmholtz Equation

Finally we consider the interior Helmholtz equation
—Au(z) — K*u(r) = 0 forx € 2 CR?

where the fundamental solution is, see (5.20) for d = 2 and (5.18) for d = 3,

1

—Yo(klx —y|) ford=2,

N 2w

Uk (xay) = 1 etklz—yl

_ for d = 3.
Ar |z —y|

Then we can define the standard boundary integral operators for x € I, i.e.

the single layer potential

(Viw)(z) = / Uz (2, y)w(y)ds,,

the double layer potential

O Ut (@ yyo(y)ds,,

(Kw)@) = [ 5

w\

the adjoint double layer potential

(Kio)@) = [ 5
r

and the hypersingular boundary integral operator

Uy (z, y)v(y)dsy,

(Dpv)(x) = ~on / Ui (z,y)v(y)ds,.

As for the Laplace operator there hold all the mapping properties as given in
Theorem 6.34. In particular, Vi, : H=Y/2(I") — H'/?(I") is bounded, but not
H1/2 (IM—elliptic. However, the single layer potential is coercive satisfying a
Gardings inequality.

For = € {2 we consider the function

u(z) = (Vyw)(@) = (Vw)(z) = /[Ué‘(%y) —U*(z,y)]w(y)ds,  (6.66)
(0]

where U*(x,y) is the fundamental solution of the Laplace operator. In par-
ticular we have for y € I" and = € {2

— AU (z,y) — KU (2,y) = 0, —AU*(2,y) = 0.
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Then, by interchanging differentiation and integration, we obtain

[~ A, — k*Ju(z) = /[—Ax — KR (2, y) = U (z,9)]w(y)ds,
Ir

=k | U*(z,y)w(y)ds,.
/

Moreover,

fAkAfw%mw:%hn/wuwm@@y:a

i.e. the function u as defined in (6.66) solves the partial differential equation
—A[~A, — K u(z) = 0 forz e 2

which is of fourth order. Hence, we obtain as in the case of the Laplace oper-
ator, by considering the corresponding Newton potentials, that

Vi —V : HY2(I') — H3(R).

Thus,

VeV = ST HA) B
and by the compact imbedding of H*/*(I") in H'/*(I") we conclude that
Vi =V : HOVAI) — HYAD) (6.67)
is compact.

Theorem 6.40. The single layer potential Vi, : HY?*(I') — HY?*(I') is
coercive, i.e. there exists a compact operator C : H=Y/?(I') — HY*(I") such
that the Gardings inequality

(Vikw, w)r + (Cw,w,)r > 0‘1/ ||w||?q—1/2(p) forw e H71/2(F)
1s satisfied. For d = 2 we have to assume diam 2 < 1.
Proof. By considering the compact operator
C=V-V,: HY¥I) - HY*I)
we have
(Viw,w)r + (Cw,w)r = (Vw,w)r > ¢f |wl3-1/2p

by using Theorem 6.22 for d = 3 and Theorem 6.23 for d =2. O
Note that also the operators
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Dy —D :HY*I')— HY2(I),
K, —K :HY*(I')— HY*(I),
Kj — K': HY*(I') — H-Y2(I')

are compact where D, K, K’ are the hypersingular integral operator, the dou-
ble layer potential and its adjoint of the Laplace operator, respectively.

As for the Laplace operator the bilinear form of the hypersingular bound-
ary integral operator Dj; can be written as, by using integration by parts
[107),

et klz—yl
(Dru,v)p = 477// P (curl pu(y), curl po(z)) dsy ds,

zk\z y|
//| u(y)v(z)(n(z),n(y))dsyds, . (6.68)

x —yl

6.10 Exercises

Let I' = 982 be the boundary of the circle 2 = B,(0) C R? which can be
described by using polar coordinates as

cos 27t
z(t)r(_ )GF fort € [0,1).
sin 27t

6.1 Find a representation of the two—dimensional single layer potential

(Vw)(z) = —% /log o — ylw(y)ds, forze I’ = 9B, (0)

when using polar coordinates x = x(7) and y = y(t), respectively.
6.2 Find a representation of the two—dimensional double layer potential
1 [ (y—=n(y)
r
when using polar coordinates © = x(7) and y = y(t), respectively.

6.3 The eigenfunctions of the double layer potential as considered in Exercise
6.2 are given by _
vp(t) = e for k € N.

Compute the associated eigenvalues.

6.4 By using the eigenfunctions as given in Exercise 6.3 compute all eigen-
values of the single layer potential as given in Exercise 6.1. Give sufficient
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conditions such that the single layer potential is invertible, and positive
definite.

6.5 Prove Corollary 6.19.

6.6 Determine the eigenfunctions of the hypersingulur boundary integral op-
erator D for x € 0B,.(0) and compute the corresponding eigenvalues.

6.7 Let now I" be the boundary of an ellipse given by the parametrization

a cos 2mt
x(t) = ) eI’ fortel0,2m).
b sin 27t

Find a representation of the corresponding double layer potential

1 [ (y—zn(y)

(Kv)(z) = —5—
2m ) |z —yf?

v(y)ds, forzel.

6.8 Prove that the eigenfunctions of the double layer potential as considered
in Exercise 6.7 are given by

cos2mkt  for k >0,
v (t) = 1 for k =0,
sin27wkt  for k < 0.

Compute the corresponding eigenvalues. Describe the behavior of the maximal

eigenvalue as § — oo.

6.9 Prove for the double layer potential of the Helmholtz equation that

is satisfied when considering the complex inner product

(w,v)r = /w(m)@dsw.

r



7

Boundary Integral Equations

In this chapter we consider boundary value problems for scalar homogeneous
partial differential equations

(Lu)(z) = 0 forz e 2 (7.1)

where L is an elliptic and self-adjoint partial differential operator of sec-
ond order, and {2 is a bounded and simple connected domain with Lipschitz
boundary I = 942. In particular we focus on the Laplace and on the Helmholtz
equations. Note that boundary integral equations for boundary value prob-
lems in linear elasticity can be formulated and analyzed as for the Laplace
equation. To handle inhomogeneous partial differential equations, Newton po-
tentials have to be considered in addition. By computing particular solutions
of the inhomogeneous partial differential equations all Newton potentials can
be reduced to surface potentials only, see, for example, [86, 136].

Any solution u of the homogeneous partial differential equation (7.1) is
given for T € {2 by the representation formula (5.2),

u(®) = / U* (@, y)n"uly)dsy, — / NAU* @ o™ u(y)ds,.  (7.2)
r r
Hence we have to find the complete Cauchy data *y(i)ntu(x) and *yilntu(x) for
x € I', which are given by boundary conditions only partially. For this we
will describe appropriate boundary integral equations. The starting point is
the representation formula (7.2) and the related system (6.22) of boundary
integral equations,

'y(i)ntu B l—0o]l-K 'V 'y(i)ntu (73)
S poorew) ) O

This approach is called direct where the density functions of all boundary
integral operators are just the Cauchy data [y u(z), ¥\ u(z)], 2 € I'. When
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describing the solution of boundary value problems by using suitable poten-
tials, we end up with the so called indirect approach. For example, solutions
of the homogeneous partial differential equation (7.1) are given either by the
single layer potential

w(@) = /U*(E, y)w(y)ds, forz € (2, (7.4)
r

or by the double layer potential

u(@) = f/vi?JU*(%, y)v(y)ds, forz € (2. (7.5)
r
It is worth to mention that in general the density functions w and v of the
indirect approach have no physical meaning.
In this chapter we will consider different boundary integral equations to

find the unknown Cauchy data to describe the solution of several boundary
value problems with different boundary conditions.

7.1 Dirichlet Boundary Value Problem
First we consider the Dirichlet boundary value problem
(Lu)(xz) =0 forz € £2, 'y(i)ntu(m) =g(z) forxzel. (7.6)
When using the direct approach (7.2) we obtain the representation formula
u(T) = /U*(ﬁc’, y)’y}ntu(y)dsy — /7{1’1;U*(5, y)g(y)ds, forz e 2 (7.7)
r r

where we have to find the yet unknown Neumann datum 'yilntu € H-Y(I).
By using the first boundary integral equation in (7.3) we obtain with

(VAi'tu)(2) = o(2)g(e) + (Kg)(z) forz el (7.8)

a first kind Fredholm boundary integral equation. Since the single layer poten-
tial V. : H-Y2(I') — HY?(T) is bounded (see (6.8)) and H~'/2(I")-elliptic
(see Theorem 6.22 for d = 3 and Theorem 6.23 for d = 2 when assuming
diam(£2) < 1), we conclude the unique solvability of the boundary integral
equation (7.8) when applying the Lax—Milgram lemma (Theorem 3.4). More-
over, the unique solution y1™vu € H~1/2(I") satisfies

: 1 c
t
™ ull -1z < v (oI + K)gllgrr2ry < % gl zr1r2ry-
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Since the boundary integral equation (7.8) is formulated in H/2(I"), this gives
0= [[Vyi™u — (o + K)gllsrasery

Vint — (eI + K
oy WA= T+ Kl

0£TEH—1/2(T) ||THH*1/2(F)

and therefore, instead of (7.8) we may consider the equivalent variational
problem to find 4"y € H~'/2(I") such that

Vot n)r = (31 + K)g,m)r (7.9

is satisfied for all 7 € H~/2(I"). Note that the definition of o(z) gives o(z) =
% for almost all x € I

Instead of (7.8) we may also use the second boundary integral equation in
(7.3) to find the unknown Neumann datum ~ty € H=1/2(T), i.e.

(1 — o)l — K')yi"u(z) = (Dg)(z) forz el (7.10)

which is a second kind Fredholm boundary integral equation. The solution of
this boundary integral equation is given by the Neumann series

Whu(z) = Y (ol + K')'(Dg)(x) forz eI (7.11)
=0

The convergence of the series (7.11) in H~'/2(I") follows from the contraction
property (6.54) of oI+ K’ when considering the equivalent Sobolev norm ||- ||y
which is induced by the single layer potential V.

When using the indirect single layer potential ansatz (7.4) to find the un-
known density w € H~'/2(I") we have to solve the boundary integral equation

(Vw)(z) = g(x) forxzel. (7.12)

Note that the boundary integral equation (7.12) differs from the boundary
integral equation (7.8) of the direct approach only in the definition of the
right hand side. Hence we can conclude the unique solvability of the boundary
integral equation (7.12) as for (7.8).

By using the double layer potential (7.5) to describe the solution of the
homogeneous partial differential equation we obtain from the jump relation
(6.14) of the double layer potential the boundary integral equation

1—o(x)v(z) — (Kv)(x) = g(z) forxel (7.13)

to compute the density v € H'/?(I") via the Neumann series

o0

Z ol + K)'g(x) forzel. (7.14)
=0
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The convergence of the series (7.14) in H'/2(I") follows from the contraction
property (6.51) of oI + K when considering the equivalent Sobolev norm
| - |-+ which is induced by the inverse single layer potential V=1,

To obtain a variational formulation of the boundary integral equation
(7.13) in H'/2(I") we first consider

<%’U - Kv _g7T>F

0= |1 —olv—Kv—gllgmr = sup
0£TEH=1/2(T) ”THH*U?(F)

where we have used o(z) = 3 for almost all = € I.
This gives a variational formulation to find v € H'/?(I") such that

(5]~ K)o, 7r = {g.7)r (7.15)

is satisfied for all 7 € H~1/2(I).

Lemma 7.1. There holds the stability condition

i1 - K,
cs vl ey < sup (GI=K)v.nr for allv € HY2(I)

0#T€H~1/2(I") ”T”H*l/?(l“)
with a positive constant cg > 0.

Proof. Let v € H'/?(I') be arbitrary but fixed. For 7, := V~lv € H-Y/2(I')
we then have

_ 1
I7ollzr-12ry = IV 0l =12y < ?HUHHU?(F)'

By using the contraction estimate (6.51) and the mapping properties of the
single layer potential V' we obtain

(51~ K)o e = (51— K)o, Vo)

1
= (V"' v)r — <V71(§I + K)v,v,)p

1
> |lollf -1 — IGT+ K)vlly-1]vlly—
> (1= cx) vlly-
=(1—ck)(V ' v,0)r

1
> (- CK)C—V 1% /2y
2

c
> (1- CK)C_lv Il 12yl ol =172y
2
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from which the stability condition follows immediately. O
Hence we conclude the unique solvability of the variational problem (7.15)
by applying Theorem 3.7.

Remark 7.2. To describe the solution of the Dirichlet boundary value problem
(7.6) we have described four different boundary integral equations, and we
have shown their unique solvability. Depending on the application and on the
discretization scheme to be used, each of the above formulations may have
their advantages or disadvantages. In this book, we will mainly consider the
approximate solution of the variational formulation (7.9).

7.2 Neumann Boundary Value Problem

When considering the scalar Neumann boundary value problem
(Lu)(z) =0 forze 2, ~™u(z)=g(x) forzel (7.16)

we have to assume the solvability condition (1.17),

/g(af)dsm = 0. (7.17)

r

The representation formula (7.2) then yields

/U* (@,y)9(y)ds, — / A (E, y) i u(y)ds, for T e 2 (7.18)

where we have to find the yet unknown Dirichlet datum ~*tw € HY/2(I).
From the second boundary integral equation of the Calderon system (7.3) we
obtain

(Dy"u)(z) = (1= o(2))g(x) — (K'g)(x) forawel (7.19)

which is a first kind Fredholm boundary integral equation. Due to (6.17) we
have that ugp = 1 is an eigensolution of the hypersingular boundary integral
operator, i.e. (Dug)(z) = 0. Hence we have ker D = span {ug}, and to ensure
the solvability of the boundary integral equation (7.19) we need to assume,
by applying Theorem 3.6, the solvability condition

(1—0)g—K'g€Im(D) = (ker D)°.

Note that (ker D)? is the orthogonal space which is induced by ker D, see
(3.15). From

(1 —olg— K'g,uo)r = (g,1)r — (6] + K')g,uo) r (7.20)
= <971>F - <ga (UI+K)UO>F =0
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we then conclude the solvability of the boundary integral equation (7.19).
The hypersingular boundary integral operator D : HY?(I') — H~'/2(I') is
bounded (see (6.16)) and Hi/Z(F)felliptic (see Theorem 6.24). Then, apply-
ing the Lax-Milgram lemma (Theorem 3.4), there exists a unique solution
y(i)ntu cHY 2(F ) of the hypersingular boundary integral equation (7.19). The
equivalent varitional problem is to find *y(i)ntu e HY 2(F) such that

(Dt )r = (31 - K')g,v)r (7.21)

is satisfied for all v € H./? (.
Instead of the variational problem (7.21) with a constraint we may also
consider a saddle point problem to find (7™ u, \) € H'/2(I') x R such that

(DY u, v) p + A (v, weq)r = (31 — K')g, v)r
(36" u, weq) r =0

is satisfied for all v € H'Y/2(I).

When inserting v = ug € HY/?(I") as a test function of the first equation in
the saddle point problem (7.22) this gives Dug = 0 and from the orthogonality
(7.20) we get

(7.22)

0= ALweq)r = AL,V '1)p
and therefore A\ = 0, since the inverse single layer potential V! is elliptic.
The saddle point problem (7.22) is therefore equivalent to finding (v{™u, \) €
H'Y?(I') x R such that

(DY u,0)r + A (v, weq)r = (31— K')g,v)r

(
i 7.23
<7(1)ntuyweq>1“ - AN a =0 ( )

is satisfied for all v € H'/2(I'"). Here, a € R, is some parameter to be chosen.
Hence we can eliminate the Lagrange multiplier A € R to obtain a modified
variational problem to find y™*u € H'/?(I") such that
. . 1

(D™, v) r + o (3™ u, weq) r (v, weq) = (1=K gv)r  (7.24)
is satisfied for all v € H'/2(I"). The modified hypersingular boundary integral
operator D : H/?(I') — H~'/2(I") which is defined via the bilinear form

<5w, v)r = (Dw,v)r + o (w,weq) r (v, Weq) r

for all v,w € HY?(I') is bounded, and H'/?(I")-elliptic, due to

(Dv,v) = (Dv,v) + a (v, weq) r]?

Y

&P (031 2y + @ [{v, weg) ]2

v

min{ef, a} {[0f3:/a ) + [(v, weq)r]* }

> & ||UH§11/2(F)

win{e?, o} ol
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for all v € H/ 2(I"). This estimate also indicates an appropriate choice of
the parameter o € R. Note that the modified variational problem (7.24)
admits a unique solution for any right hand side, and therefore for any given
Neumann datum g € H‘1/2(F). If the given Neumann datum g satisfies the
solvability condition (7.17), then we conclude, by inserting v = ug = 1 as a
test function, from the variational problem (7.24)
a (7™, weq) r (1, weq)r = 0, (Lweq)r = (L,V"'1)p > 0

and therefore ’y(i)ntu e HY *(I'). The modified variational problem (7.24) is
thus equivalent to the original variational problem (7.21).

Since the hypersingular boundary integral operator D is also H*l*/2(F )
elliptic (see (6.38)), there also exists a unique solution vty e H,},P(F) of
the boundary integral equation (7.19). In analogy to the above treatment we
obtain a modified variational problem to find ’y(i)ntu € H'/?(I') such that

. . 1

(D™ u,0)r + g™ u, 1) p (v, 1) = (51— K g,v)r (7.25)
is satisfied for all v € H'/2(I"). Again, @ € R, is some parameter to be chosen.
Moreover, if we assume the solvability condition (7.17) this gives v™u €
Hif (I). By the bilinear form

(Dw,v)p = (Dw,v)r + & (w,1)p(v, 1) (7.26)

for all w,v € HY?(I') we define a modified hypersingular boundary integral

operator D : HY/2(I") — H~'/2(I") which is bounded and H/2(I")-elliptic.
When using the indirect double layer potential (7.5) to find the unknown

density v € H! / 2(F ) we obtain the hypersingular boundary integral equation

(Dv)(xz) = g(x) forax e, (7.27)

which can be analyzed as the boundary integral equation (7.19).

If we consider the representation formula (7.18) of the direct approach, and
use the first boundary integral equation of the resulting Calderon projection
(7.3), we find the yet unknown Dirichlet datum as the solution of the boundary
integral equation

(oI + K)yi"y(z) = (Vg)(z) forz el (7.28)

The solution of the boundary integral equation (7.28) is given by the Neumann
series

’y(i)ntu(l‘) - Z([l — oI — K)Z(Vg)(x) forxzel. (7.29)
(=0

The convergence of the Neumann series (7.29) follows from the contraction
property (6.52) of ([1 — o]l — K) in Hi/Q(F) when considering the equivalent
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Sobolev norm || - ||y/-1 which is induced by the inverse single layer potential
V~1. The variational formulation of the boundary integral equation (7.28)
needs therefore to be considered in H'/?(I"). Since the single layer potential
Vi H-Y2(I') — H'Y2(I') is bounded and H~'/2(I")-elliptic, we can define

(w,v)yy -1 = (V hw,v)p  for w,v 6H1/2(p)

to be an inner product in H'/?(I"). The variational formulation of the bound-
ary integral equation (7.28) with respect to the inner product (-,-)y -1 then

reads to find 7w e o2 (I') such that

(oI + K)ni"u,v)y -1 = (Vg,v)y-1 (7.30)

is satisfied for all v € Hy/ *(I'). The variational problem (7.30) is equivalent

to finding ity € H*l/Q(F) such that

(9, 0) = (VN ol + K, 0)r = (go)r (T.31)
is satisfied for all v € HY/ *(I'). Since the Steklov—Poincaré operator S :
HY2(I'Y — H~Y?(I') admits the same mapping properties as the hyper-
singular boundary integral operator D : H'/?(I') — H~/2(I), the unique
solvability of the variational problem (7.31) follows as for the variational
formulation (7.21). When using the symmetric representation (6.42) of the
Steklov—Poincaré operator S, the variational problem (7.31) is equivalent to

(S9u,v)p = ([D+ (oI + K"V (oI + K)] v, v)r = (g,v)r (7.32)

When using the indirect single layer potential (7.4) we finally obtain the
boundary integral equation

(ol + K'w(z) = g(z) forzel (7.33)

to find the unknown density w € H~'/2(I") which is given via the Neumann

series
oo

wz) = > (1-0) - K')g(x) forzel. (7.34)
£=0
The convergence of the Neumann series (7.34) follows from the contraction
property (6.55) of ((1—0)I—K') in H*_l/Q(F) when considering the equivalent
Sobolev norm || - ||y

Remark 7.5. For the solution of the Neumann boundary value problem (7.16)
again we have given and analyzed four different formulations of boundary
integral equations. As for the Dirichlet boundary value problem each of them
may have their advantages and disadvantages. Here we will mainly consider
the approximate solution of the modified variational formulation (7.25).
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7.3 Mixed Boundary Conditions

In addition to the standard boundary value problems (7.6) and (7.16) with
either Dirichlet or Neumann boundary conditions, boundary value problems
with mixed boundary conditions are of special interest,

(Lu)(z) =0 for x € (2,
Aity(z) = gp(x)  forx € I'p, (7.35)
Aty (z) = gn(x)  forz € I'y.

From the representation formula (7.2) we get for 7 € 2

u(@) = / U* (&, y)gn (y)ds, + / U @ 91 u(y)ds, (7.36)
FN FD
- / AT, y)gp (y)ds, — / AT F, y)yiBtu(y)ds,.
FD FN

Hence we have to find the yet unknown Dirichlet datum i u(z) for z € I'y
and the Neumann datum 'y%ntu(w) for x € I'p. Keeping in mind the differ-
ent boundary integral formulations for both the Dirichlet and the Neumann
problems, there seems to be a wide variety of different boundary integral for-
mulations to solve the mixed boundary value problem (7.35). Here we will
only consider two formulations which are based on the representation formula
(7.36) of the direct approach.

The symmetric formulation [134] is based on the use of the first boundary
integral equation in (7.3) for € I'p while the second boundary integral
equation in (7.3) is considered for = € I'y,

(Vi) (2) = (o + K)yittu(z) for z € I'p,
. . (7.37)
(Dyi™u)(z) = (1 — 0)] — K')yi"u(z)  forz € I'y.

Let gp € HY?(I') and gy € H~Y?(I") be suitable extensions of the given
boundary data gp € HY?(I'p) and gy € H™'/?(I'y) satisfying

gp(x) =gp(x) forxelp, gn(x)=gn(x) forxe I'y.
Inserting these extensions into the system (7.37) this gives the symmetric
formulation to find

U=y —gp e H/*(Iy), t:= y"u—gy e H Y*(Ip)

such that

(VD)) — (K0) (@) = (oI + K)jp(x) — (Vi) (@) for z € Ip,

(Dii) () + (K'T)(x) = (1 = 0)] = K")gw () — (Djp)() forz € I'y.
(7.38)
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The related variational formulation is to find (£, %) € H~Y/2(I'p) x HY/2(I'y)
such that _
a(t,u;m,v) = F(1,v) (7.39)

is satisfied for all (7,v) € H~Y2(I'p) x HY2(I'y) where

a(?,ﬂ;T,v) = <V%V,T>FD — <Kﬂ,T>FD + <K/%V,U>FN + <D17,U>['N,
1 - ~ 1 - -
F(r,v) = <(§I+K)9D —Vgn,T)rp + <(§I—K')9N — Dgp,v)ry-

Lemma 7.4. The bilinear form a(-;-) of the symmetric boundary integral for-
mulation is bounded and H~/?(I'p) x HY?(I'y)-elliptic, i.e.

a(t,u;T,v) < Céq ||(t7U)”ﬁ—ln(rD)xﬁln(pN)”(7'»U)Hﬁ—l/z(rD)xﬁl/z(pN)
and

: ~D
(I(T/U; T7’U) > mln{CY7 1 } ||(T7’U)H’Qﬁ—l/2([‘D)Xﬁl/2([‘N)

for all (t,u), (r,v) € H-Y2(I'p) x HY2(I'y) where the norm is defined by

= Il + o]

2 2 2
||<T7’U)”ﬁ—l/Q(FD)Xﬁl/Z(['N) H-1/2(I'p) H/2(I'y)

Proof. By using
a(t,v;7,v) = V1, 7)rp — (Kv, )y + (K'7,0) ry + (Dv,v) 1y
= V7, 7)r, + (Dv,v)ry

> |I7] +ép ||l

2 2
ﬁ—l/Z(FD) 171/2(1#]\])

we conclude the ellipticity of the bilinear form a(-,;-,-) from the ellipticity
estimates of the boundary integral operators V' and D, see Theorem 6.22 for
d = 3 and Theorem 6.23 for d = 2, as well as (6.39). The boundedness of
the bilinear form a(-,-;-,-) is a direct consequence of the boundedness of all
boundary integral operators. O _

Since the linear form F(7,v) is bounded for (r,v) € H~'2(I'p) x
H'/2(I'y), the unique solvability of the variational formulation (7.39) follows
from the Lax—Milgram lemma (Theorem 3.4).

To obtain a second boundary integral equation to solve the mixed bound-
ary value problem (7.35) we consider the Dirichlet to Neumann map (6.44) to
find vty € HY/2(I") such that

()

gp(x) forz e Ip,
YiMu(z) = (S7"u)(@) = gv

() foraxeIy.
Let gp € HY?(I') be some arbitrary but fixed extension of the given Dirichlet

datum gp € HY?(I'p). Then we have to find % := 'y(i)ntu —9gp € ﬁl/Q(FN)
such that
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(Su,v)ry = (g8 — SGD, V) ry (7.40)

is satisfied for all v € HY2(I'y). Since the Steklov—Poincaré operator S :
HY2(I') — H=Y2(I') is bounded and H'/2(I'y)-elliptic (sce (6.48)) we con-
clude the unique solvability of the variational problem (7.40) from the Lax—
Milgram lemma (Theorem 3.4). If the Dirichlet datum 'y(i)ntu € HY*(I) is
known, we can compute the complete Neumann datum %y € H=Y/2(I") by
solving a Dirichlet boundary value problem.

7.4 Robin Boundary Conditions
Next we consider the Robin boundary value problem
(Lu)(z) =0 forz e 2, ™ u(z)+ sz ™u(z) = g(z) forzeT.

To formulate a boundary integral equation to find the yet unknown Dirichlet
datum véntu e HY 2(I') again we can use the Dirichlet to Neumann map
(6.44), i.e.

Aity(z) = (Sytu)(@) = g(z) — n(e)ritu(z) forz e I,
The related variational problem is to find {"*u € H'/2(I") such that
($90" w,v)r + (52w, v} = (g, 0)r (7.41)

is satisfied for all v € H'Y2(I'). By using (6.45) and the H'/?(I')-semi-
ellipticity of the hypersingular boundary integral operator D and assuming
k(x) > ko for @ € I' we conclude

a(v,v) := (Sv,v)r + (kv,v)p
> & [olfpsegr + Rollollf = min{el’, w0} o] 72y
and therefore the H'/?(I")-ellipticity of the bilinear form a(-,-). Again we

obtain the unique solvability of the variational problem (7.41) from the Lax—
Milgram lemma (Theorem 3.4).

7.5 Exterior Boundary Value Problems

An advantage of boundary integral equation methods is the explicit consider-
ation of far field boundary conditions when solving boundary value problems
in the exterior domain ¢ := R%\ 2. As a model problem we consider the
exterior Dirichlet boundary value problem for the Laplace equation,

—Au(z) = 0 forze 2° A&%(z)=g(z) forzel (7.42)
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together with the far field boundary condition

M@—wﬂ=0(é> as |z| — 0. (7.43)

where ug € R is some given number.

First we consider Green’s first formula for the exterior domain. For yy € (2
and R > 2diam({?2) let Br(yo) be a ball with center yg, which circumscribes
2. Using the representation formula (6.1) for 2 € Bg(yo)\§2 this gives

u(z) = — / U* (2, )7 u(y)ds, + / VU (2, y)7§ ¥ uly) ds,
I I
+ / U ()7t u(y)ds, — / AT (o, )Pty s,
OBRr(yo) 9BRr(yo)

Inserting the far field boundary condition (7.43) and taking the limit R — oo
this results in the representation formula for = € ¢,

u(@) = up— / U* (e, y)r S uly)ds, + / AU (2, )y () s,

I I

To find the unknown Cauchy data again we can formulate different boundary
integral equations. The application of the exterior trace operator gives

16 u(@) = uo — (VAT¥) (@) + o (275 u(w) + (K75 u)(2) forz € I
while the application of the exterior conormal derivative yields
V¥u(z) = [1 - o(@)h i u(@) — (K'7*u)(@) — (D5 u)(z) forz € T

As in (6.22) we obtain a system of boundary integral equations,

7§ (ol +K -V R L
Aty )\ =D -0l - K’ ) \ 48Xty 0/

Using the boundary integral equations of this system, the exterior Calderon
projection, we can formulate different boundary integral equations to handle
exterior boundary value problems with different boundary conditions. In par-
ticular for the exterior Dirichlet boundary value problem (7.42) and (7.43) we
can find the yet unknown Neumann datum ¥ty € H~1/2(I") as the unique
solution of the boundary integral equation

(V’nytu)(:c) = —[1—o(z)lgp(z) + (Kgp)(x) + ug forxz e I. (7.44)

Note that the unique solvability of the boundary integral equation (7.44)
follows as for interior boundary value problems from the mapping properties
of the single layer potential V : H=Y/2(I") — H'/2(I").
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7.6 Helmholtz Equation

Finally we consider boundary value problems for the Helmholtz equation, i.e.
the interior Dirichlet boundary value problem

—Au(x) — kK*u(xr) = 0 forx € 0, 'y(i)ntu(:r) =g(x) forxzel (7.45)
where the solution is given by the representation formula

u(x) = /U,j(%y)ﬂntu(y)dsy — /W%?;Ug(w,y)g(y)dsy for z € 0.
T T

The unknown Neumann datum t = 4™y € H=1/2(I") solves the boundary
integral equation

(Vit)(z) = (%I—l— Ki)g(x) forxz el (7.46)

Since the single layer potential Vi, : H~Y/2(I") — HY?(I') is coercive, see
Theorem 6.40, we can apply Theorem 3.15 to investigate the solvability of the
boundary integral equation (7.46).

Lemma 7.5. If k> = X is an eigenvalue of the Dirichlet eigenvalue problem
of the Laplace equation,

—Auy(z) = Aup(z) forz e 2, AMuy(z)=0 forzel, (7.47)
then the single layer potential Vi, : H=Y/2(I") — H'/?(I") is not injective, i.e.
(Veymtuy)(z) = 0 forz eI

Moreover,

1 .
(51 — Kp)yMuy(z) =0 forz el

Proof. The assertion immediately follows from the direct boundary integral
equations

) 1 )
(kay;ntu)\)(x) = (§I+ Kk)’y(l)ntu)\(x) =0 forzel

and

1 . .
(if—Ké)%ntuA(x) = (De™uy)(z) = 0. O

Hence we conclude, that if k? is not an eigenvalue of the Dirichlet eigen-
value problem of the Laplace equation, the Helmholtz single layer potential
Vi : H-Y/2(I') — H'Y?(I') is coercive and injective, i.e. the boundary integral
equation (7.46) admits a unique solution, see Theorem 3.15.
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Next we consider the exterior Dirichlet boundary value problem
—Au(z) — Ku(z) = 0 forze 2° A&%(z)=g(x) forzel (7.48)

where, in addition, we have to require the Sommerfeld radiation condition

1
:O(W) as |z| — oo

Note that the exterior Dirichlet boundary value problem is uniquely solv-
able due to the Sommerfeld radiation condition. The solution is given by the
representation formula

‘(x,Vu(x)) — iku(z)

||

u(r) = —/U,j(a:,y)v‘thu(y)dsy—i—/ﬁf;tU{:(x,y)g(y)dsy for x € N°.
T T

To find the unknown Neumann datum ¢ = 4% € H=/2(I") we consider the
direct boundary integral equation

1
(Vit)(x) = (—§I—|— Ki)g(x) forxzel. (7.49)
Since the single layer potential Vj, of the exterior Dirichlet boundary value
problem coincides with the single layer potential of the interior problem, Vj is
not invertible when k2 = \ is an eigenvalue of the Dirichlet eigenvalue problem
(7.47). However, due to
int int

(=594 u)r = ~(a. (5T = KLl un)r = 0

we conclude 1
(—§I+Kk)g € Im V.

In fact, the boundary integral equation (7.49) of the direct approach is solvable
but not unique.

Instead of a direct approach, we may also consider an indirect single layer
potential approach

u(z) = /U,:(:c,y)w(y)dsy for x € £2°
T

which leads to the boundary integral equation to find w € H~Y2(I") such
that
(Vyw)(x) = g(x) forz el (7.50)

As before, we have unique solvability of the boundary integral equation (7.50)
only for those wave numbers k% which are not eigenvalues of the interior
Dirichlet eigenvalue problem (7.47).
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When using an indirect double layer potential ansatz

u(x) = /'yf?;tU,:(x,y)v(y)dsy for z € N°
T

the unknown density function v € H'/ 2(I") solves the boundary integral
equation

(%[4_ Kp)v(z) = g(z) forz el (7.51)

Lemma 7.6. If k? = is an eigenvalue of the interior Neumann eigenvalue
problem of the Laplace equation,

—Auy(z) = puy,(z)  forxz e 2, 'yfmu“(x) =0 forxel, (7.52)

1 A
(51 + Kk)”yéntuﬂ(x) =0 forxel.

Proof. The assertion immediately follows from the direct boundary integral
equation

1 : .
(§I+Kk)véntu#(m) = (Viy'®™u,)(@) = 0 forzel. O

The boundary integral equation (7.51) is therefore uniquely solvable if k? is
not an eigenvalue of the Neumann eigenvalue problem (7.52).

Although the exterior Dirichlet boundary value problem for the Helmholtz
equation is uniquely solvable, the related boundary integral equations may
not be solvable, in particular, when k? is either an eigenvalue of the interior
Dirichlet eigenvalue problem (7.47), or of the interior Neumann eigenvalue
problem (7.52). Since k% can not be an eigenvalue of both the interior Dirichlet
and the interior Neumann boundary value problem, one may combine both the
indirect single and double layer potential formulations to derive a boundary
integral equation which is uniquely solvable for all wave numbers. This leads
to the well known Brakhage—Werner formulation [23]

u(z) = / VU (a2, ) (y)dsy — in / Ut (z,y)w(y)ds, forze 0°
I I

where n € R, is some real parameter. This leads to a boundary integral
equation to find w € Ly(I") such that

1
(51 + Kp)w(z) — in(Viyw)(z) = g(z) forax e I. (7.53)
Instead of considering the boundary integral equation (7.53) in Lo(I"), one
may formulate some modified boundary integral equations to be considered
in the energy space H=/2(I'), i.e. find w € H~'/?(I") such that
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. 1 n—1 1 /
Vi +in §I+ K | D 5] + K, )| w(z) =g(x) forxel (7.54)

where D is the modified hypersingular integral operator of the Laplace equa-
tion as defined in (7.24). The modified boundary integral equation (7.54)
admits a unique solution for all wave number k for general Lipschitz domains
[54], for other regularizations, see [33, 34].

7.7 Exercises

7.1 Counsider the mixed boundary value problem

_Au(x) =0 for xz € 9\9707 ‘QO - ‘Q’
W) = gla)  fora e I'= 0,
'y}ntu(:c) -0 for x € Iy = 012.

Derive the symmetric formulation of boundary integral equations to find the
complete Cauchy data. Discuss the solvability of the resulting variational
problem.

7.2 Discuss boundary integral formulations to solve the exterior Neumann
boundary value problem

—Au(z) — Ku(z) = 0 forze 2° A%%(z)=g(z) forzel

1
= O(W) as |z| — oo.

and

‘(;,VM@) — iku(z)
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Approximation Methods

In this chapter we describe and analyze approximation methods to solve the
variational problems for operator equations as formulated in Chapter 3. This
is done by introducing conforming finite dimensional trial spaces leading to
linear systems of algebraic equations.

8.1 Galerkin—Bubnov Methods

Let A: X — X’ be a bounded and X-elliptic linear operator satisfying
(Av,v) > et |vl%,  ||Av|xr < &' |jv]|x for allw € X.

For a given f € X’ we want to find the solution u € X of the variational
problem (3.4),
(Au,v) = (f,v) forallve X. (8.1)

Due to the Lax—Milgram theorem 3.4 there exists a unique solution of the
variational problem (8.1) satisfying

1
Jullx < — [Ifllx
S

For M € N we consider a sequence
o M
X := span{pg }peqg C X

of conforming trial spaces. The approximate solution

M

up = Zukgok e Xy (8.2)
k=1

is defined as the solution of the Galerkin-Bubnov variational problem
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(Aupr,vpr) = (f,vn) for all vy € Xy (8.3)

Note that we have used the same trial and test functions for the Galerkin—
Bubnov method.

It remains to investigate the unique solvability of the variational problem
(8.3), the stability of the approximate solutions up; € Xy as well as their
convergence for M — oo to the unique solution u € X of the variational
problem (8.1). Due to X, C X we can choose v = vy € Xy in the variational
formulation (8.1). Subtracting the Galerkin-Bubnov problem (8.3) from the
continuous variational formulation (8.1) this gives the Galerkin orthogonality

(A(u — upr),vpr) = 0 for all vy € Xy (8.4)

Inserting the approximate solution (8.2) into the Galerkin—-Bubnov formu-
lation (8.3) we obtain, by using the linearity of the operator A, the finite
dimensional variational problem

> ur{Apk, o) = (frpr) for=1,..., M.
k=1
With
Apll k] = (Apr, 0e),  fe = (f,00)

for k, £ =1,..., M this is equivalent to the linear system of algebraic equations

to find the coefficient vector u € RM. For any arbitrary vector v € RM we

can define a function
M

Vv = ka@k c Xy
k=1

and vice versa. For arbitrary given vectors u,v € RM we then have

AMU ’U ZZAJW E kukw = ZZ Agok,gof UkVy

k=1+¢=1 k=1 +¢=1
AZU;«%,ZWW (Aunr,vnr).

Hence, all properties of the operator A : X — X’ are inherited by the stiffness
matrix Ay, € RM>XM In particular, the matrix Ay, is symmetric and posi-
tive definite, since the operator A is self-adjoint and X —elliptic, respectively.
Indeed,

(Anrv,v) = (Avar,onr) > ef ok
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for all v € RM « vy, € X, implies that Ay is positive definite. Therefore,
the X—ellipticity of the operator A implies the unique solvability of the varia-
tional problem (8.1) as well as the unique solvability of the Galerkin—Bubnov
formulation (8.3) and hence, of the equivalent linear system (8.5).

Theorem 8.1 (Cea’s Lemma). Let A : X — X' be a bounded and X -
elliptic linear operator. For the unique solution up; € Xy of the variational
problem (8.3) there holds the stability estimate

1
unmlx < o I £1l x (8.6)
1
as well as the error estimate
3
u—u < = inf |lu—w . 8.7
l Mmllx < o UMEXMH mllx (8.7)

Proof. The unique solvability of the variational problem (8.3) was already
discussed before. For the approximate solution uy; € Xy of (8.3) we conclude
from the X—ellipticity of A

e lumlk < (Aunr,uar) = (frune) < I1Fxelluarllx

and therefore we obtain the stability estimate (8.6). By using the X—ellipticity
and the boundedness of the linear operator A, and by using the Galerkin
orthogonality (8.4) we get for any arbitrary vy, € Xy

et lu —unr|) < (A(u —unr),w — unr)
= (A(u —upn),u —var) + (Alu — upr), var — unr)
= (A(u —upr),u — vpr)
< g [lu = unllxlu = varllx

and therefore the error estimate (8.7). O
The convergence of the approximate solution uy; — v € X as M — oo
then follows from the approximation property of the trial space Xy,

lim inf |lv—om|x =0 forallveX. (8.8)

M—ocovpeXn

The sequence of conforming trial spaces { X s} pren € X has to be constructed
in such a way that the approximation property (8.8) can be ensured. In Chap-
ter 9 we will consider the construction of local polynomial basis functions for
finite elements, while in Chapter 10 we will do the same for boundary el-
ements. Assuming additional regularity of the solution, we then prove also
corresponding approximation properties.
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8.2 Approximation of the Linear Form

In different applications the right hand side f € X’ is given as f = Bg where
g € Y is prescribed, and B : Y — X'’ is a bounded linear operator satisfying

1Bgllx: < 3 llglly forallgey.
Hence we have to find v € X as the solution of the variational problem
(Au,v) = (Bg,v) forallve X. (8.9)

The approximate solution uy; € X/ is then given as in (8.3) as the unique
solution of the variational problem

(Aupr,vpar) = (Bg,vp)  for all vy € Xy (8.10)
The generation of the linear system (8.5) then requires the computation of
fo = (Bg. ) = (9, B'py) fort=1,..., M,

i.e. we have to evaluate the application of the operator B : ¥ — X’ or of
the adjoint operator B’ : X — Y”. In what follows we will replace the given
function g by an approximation

N
gy = »_githi € Yx = span{y;}, C Y.

=1

Then we have to find an approximate solution uy; € X of the perturbed
variational problem

(Aupr,var) = (Bgn,vn) for all vy € Xy (8.11)
This is equivalent to the linear system
Ami = Bng (8.12)
with matrices defined by
Amll k] = (Apr,pe),  Bn[l,i] = (B, pe)

fori=1,...,N and k., =1,..., M, as well as with the vector g describing
the approximation gn. The matrix By can hereby be computed independently
of the given approximate function gn. From the X—ellipticity of the opera-
tor A we find the positive definiteness of the matrix Ay;, and therefore the
unique solvability of the linear system (8.12) and therefore of the equivalent
variational problem (8.11). Obviously, we have to recognize the error which is
introduced by the approximation of the given data in the linear form of the
right hand side.
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Theorem 8.2 (Strang Lemma). Let A : X — X' be a bounded linear
and X —elliptic operator. Let uw € X be the unique solution of the continuous
variational problem (8.9), and let upy € Xpp be the unique solution of the
Galerkin variational problem (8.10). For the unique solution uy; € Xpr of the
perturbed variational problem (8.11) there holds the error estimate

~ 1[4 B
Ju=nlx < o {ef | int. ool +f o= anly ).

Proof. When subtracting the perturbed variational problem (8.11) from the
Galerkin variational problem (8.10) this gives

(A(upr — tpnr), o) = (B(g—gn),vn) for all vy € Xy

In particular for the test function vy := upsr — ups € Xy we obtain from the
X—ellipticity of A and using the boundedness of B

it lluar — tar |5 < (A(uns — ), uns — )
= (B(g — gn),unm — Unr)
< [|B(g = gn)llxllunr — || x
<5 |lg — gnllvlluar — tnr|x -

Hence we get the estimate

B
- C
luv —umllx < c%||g—gN||Y~
1

Applying the triangle inequality
v —unmllx < llu—unlx + lusr — tnx

we finally obtain the assertion from Theorem 8.1 (Cea’s Lemma). O

8.3 Approximation of the Operator

Besides an approximation of the given right hand side we also have to con-
sider an approximation of the given operator, e.g. when applying numerical
integration schemes. Instead of the Galerkin variational problem (8.3) we then
have to find the solution wy; € X of the perturbed variational problem

(Alpr, o) = (fyoar)  for all vpy € Xy (8.13)
In (8.13) A: X — X' is a bounded linear operator satisfying

|Av||x < & |lv|x forallv e X. (8.14)
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Subtracting the perturbed variational problem (8.13) from the Galerkin vari-
ational problem (8.3) we find

(Aup; — Atiag,vpar) = 0 for all vy € X (8.15)

To ensure the unique solvability of the perturbed variational problem (8.13) we
have to assume the discrete stability of the approximate operator A. From this

we then also obtain an error estimate for the approximate solution uy; € Xy
of (8.13).

Theorem 8.3 (Strang Lemma). Assume that the approximate operator
A: X — X' is Xy —elliptic, i.e.

(Avpr,oag) > @ lom |3 for allup € X (8.16)

Then there exists a unique solution upy; € Xy of the perturbed variational
problem (8.13) satisfying the error estimate

A | ~A

_ 1 ey 1 ~
lu—tnrllar < 1+ = (3 +65) clA inf lu—varlx+ =g [1(A— Al x.
1 1 1

vm €X M
(8.17)
Proof. The unique solvability of the variational problem (8.13) is a direct
consequence of the X,-ellipticity of the approximate operator A, since the
associated stiffness matrix A, is positive definite.

Let ups € Xpr be the unique solution of the variational problem (8.3).

Using again the assumption that Ais X m—elliptic, and using the orthogonality
relation (8.15) we obtain

S lluns — Ul < (Aluns = Uiar), uns — iar)
= (A — A)yuns, upr — Tps)
<A — A)ung | x|June — e x

and therefore )
lurr — unrllx < = (A= A)unrl|x
1

Since both operators A, A: X — X' are bounded, this gives
[(A = Aunr[x < [[(A = Aullx + [[(A = A)(u—unr)x
< (A = A)ullxo + [ef + ] [lu — unl|x-

Applying the triangle inequality we obtain
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Ju—tnrllx < llu—unrllx + [lusr — Tl x

1 -
< lu—unllx + = (A = A)unrl x
1

1 T Lioa a
< llu—unrllx + =5 I(A = Aullxr + =l + Tl —unmllx
1 1

and the assertion finally follows from Theorem 8.1 (Cea’s Lemma). O

8.4 Galerkin—Petrov Methods

Let B : X — II’ be a bounded linear operator, and let us assume that the
stability condition

Bov
eslolx < sup B9

for allv € (ker B)* € X (8.18)
o£qerr |lallm

is satisfied. Then, for a given g € Imx(B) there exists a unique solution
u € (ker B)* of the operator equation Bu = g (cf. Theorem 3.7) satisfying

(Bu,q) = {g,q) forallqe II.
For M € N we introduce two sequences of conforming trial spaces
Xy = span{pp M € (ker B)*, Iy = span{yy M, c II.

Using (8.2) we can define an approximate solution uy; € X, as the solution
of the Galerkin—Petrov variational problem

(Bupr, qur) = {g,qu) for all gar € Iy (8.19)

In contrast to the Galerkin—Bubnov variational problem (8.3) we now have
two different test and trial spaces.
Due to II; C II we have the Galerkin orthogonality

(B(u—up),qn) = 0 for all gpy € ITyy.

The variational problem (8.19) is equivalent to the linear system Byuy, = g
with the matrix Bj; defined by

BM [‘67 k] = <B@k7 ¢l>
for k,£ =1,..., M and with the right hand side g given by
ge = (9:%¢)

for £ =1,...,M. As in the continuous case we obtain the unique solvability
of the linear system when assuming a discrete stability condition,

. Buyy,
Ccs ||U]VI||X S sup M for all VS XM. (820)

0#qnr €10 ||QM||H
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Theorem 8.4. Let u € (ker B)* be the unique solution of the operator equa-
tion Bu = g, and let upr € Xy be the unique solution of the variational prob-
lem (8.19). We further assume the discrete stability condition (8.20). Then
there holds the error estimate

cB ,
lu—unllx < (1+ = inf |lu—ovum|x.
CB

vn €X nr

Proof. For an arbitrary v € (ker B)* C X there exists a uniquely determined
vy = Ppv € Xy as the unique solution of the variational problem

(Bun,qu) = (Bv,qu) for all o € Iy .
For the solution vy, € X3, we obtain from the discrete stability condition

~ Bua, qu Bv, qum
Gslonrllx € sup  Bowdm) oo Buaw) o opy

0#qnm €M 0y ||QM||H 0#qn €1 HQMHH

For any v € (ker B)* we therefore obtain a unique vy, = Pyrv € Il satisfying
)
[Prollx < == [vllx-
Cs

In particular, for the unique solution uy; € Xj; of the variational problem
(8.19) we obtain up; = Ppru. On the other hand we have vy, = Pyvyy for all
vy € Xps. Hence we have for an arbitrary vy, € Xy

lu—unllx = [[v—var + v —unmllx = [lu—var — Par(u—vn)lx

B
C.
< llu— varllx + [ Par— var)lx < (1 ; i) e = onrll

and therefore the assertion. 0O

The convergence of the approximate solution uy; — v € X as M — oo
then follows as for a Galerkin-Bubnov method from an approximation prop-
erty of the trial space Xjy.

It remains to establish the discrete stability condition (8.20). A possible
criterion is the following result due to Fortin [58].

Lemma 8.5 (Criterium of Fortin). Let B : X — II’ be a bounded linear
operator, and let the continuous stability condition (8.18) be satisfied. If there
exist a bounded projection operator Ryy : I1 — Il satisfying

(Buai,qg— Ryq) = 0 for allvy € Xy

and
|Ramallm < crllgllm  for allq € 11,

then there holds the discrete stability condition (8.20) with ¢s = cs/cR.
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Proof. Using the stability condition (8.18) we have for gy € Iy C IT

(Bun,q) (Bunr, Rarq)
csllvmllx < sup ———+ = sup ————
0#£qell lallm 0#qell llq|l
B R B
<cr sup ( UM, MQ> < ¢ sup < UMaQM>’
o#qerr  ||1RMmqllm 0£qvemy vl

and therefore the discrete stability condition (8.20). O

8.5 Mixed Formulations

Now we consider the approximate solution of the saddle point problem (3.22)
to find (u,p) € X x II such that

<AU,U> + <vap> = <f’ U)
(Bu, q) = (9,9

is satisfied for all (v,q) € X x II.

We assume that A : X — X’ and B : X — II’ are bounded linear oper-
ators, and that A is X—elliptic. For example, the last assumption is satisfied
when considering the Stokes system and the modified variational formula-
tion (4.22) and (4.23) for a Dirichlet boundary value problem with Lagrange
multipliers. We further assume the stability condition (8.18). Hence, all as-
sumptions of Theorem 3.11 and of Theorem 3.13 are satisfied, and there exists
a unique solution (u,p) € X x II of the saddle point problem (8.21).

For N, M € N we define two sequences of conforming trial spaces

(8.21)

Xy = span{gok}kle cX, IIy = span{wi}i]\il C II.

Then the Galerkin variational formulation of the saddle point problem (8.21)
is to find (ups,pn) € Xar X Iy such that

<AUM,UM> + <B'UMapN> = <f’UM>

(8.22)
(Bunr, qn) = (9,qn)

is satisfied for all (var,qn) € X X IIy. With the matrices Ay and By
defined by
Apl, k) = (Apk,ve),  Bnlj, k] = (Bek, 1))

for k,=1,...,M, j=1,...,N, and with the vectors f and g given by
fe=(f.00)s 95 ={g:%;)

fort=1,...,M,j=1,..., N, the variational formulation (8.22) is equivalent
to the linear system
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) (G- ()

We first consider the unique solvability of the linear system (8.23) from an
algebraic point of view. The dimension of the system matrix K in (8.23) is
N + M. With

rang Ayy < M, rang By < min{M, N}

we find
rang K < M + min{M,N}.

In particular for M < N we obtain

rang K < 2M <M + N = dim K.

i.e. the linear system (8.23) is in general not solvable. Hence we have to define
the trial spaces X,; and Il with care. The necessary condition M > N
shows, that the trial space X s has to be rich enough compared with the trial
space Ily.

To investigate the unique solvability of the Galerkin variational problem
(8.22) we will make use of Theorem 3.13. When considering the conform-
ing trial space Xj; C X we obtain from the X-—ellipticity of A the positive
definiteness of the matrix Ay, i.e.

(An,v) = (Avar,on) 2 ¢ flouli >0

for all 0 # v € R™ «— vy, € Xpy. The matrix Ay is therefore invertible
and the linear system (8.23) can be transformed into the Schur complement
system

BNAy Byp = ByA f—g. (8.24)
It remains to investigate the unique solvability of the linear system (8.24).

For this we assume the discrete stability or Babuska—Brezzi-Ladyshenskaya
(BBL) condition

- Buyr, gy
Gslanlln < sup  DUMLIN)

for all gy € Ily. (8.25)
0Fvpr €X s ||U1WHX

It is worth to remark, that the discrete stability condition (8.25) is in general
not an immediate consequence of the continuous stability condition (3.25).

Lemma 8.6. Let A: X — X' and B : X — II' be bounded linear operators,
and let A be X —elliptic. For the conforming trial spaces Xy C X and Iy C IT
we assume the discrete stability condition (8.25). The symmetric Schur com-
plement matriz Sy = BNAJ;}B;'\; of the Schur complement system (8.24) is
then positive definite, i.e.

(Sna,q) = eV llav %

fOlelQ?égGHNHqNGUN.
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Proof. For an arbitrary but fixed ¢ € RY we define 4 := AK;B;{;Q, i.e. for the
associated functions gy € Iy and uy; € X we have

(Aups,vp) = (Buar,qn)  for all vy € Xy
Using the X-—ellipticity of A we then obtain
o lam|kx < (Aung,tn) = (B, qy) = (Byt,q) = (BvAy By, ).

On the other hand, the discrete stability condition (8.25) gives

csllowlln < sup APUINL g, SABLOM) g
0tv,erv  lvmllx 0tv, erv lvarllx
and with
lan Iz < <1 2||ft 1% < (e 2(3 A3/ BRg, q)
H—(CS) MX_C,14 (Cs) NAy DN G

we finally get the assertion. 0O

Hence we have the unique solvability of the Schur complement system
(8.24) and therefore of the linear system (8.23). Moreover, we also have the
following stability estimate.

Theorem 8.7. Let A : X — X' and B : X — II' be bounded and linear
operators, and let A be X —elliptic. For the conforming trial spaces X C X
and Iy C IT we assume the discrete stability condition (8.25). For the unique
solution (upr,pn) € Xar x Iy of the saddle point problem (8.22) we then have
the stability estimates

1
lowlln <~ % % £l + gl (8.26)
and P 5
cy C 1 ¢
huallx < (1+ o i)nfnx + 5 Sl (8.27)

Proof. Let (u,p) € RM xRN « (unr, pn) € X X Iy be the unique solution
of the linear system (8.23) and of the saddle point problem (8.22), respectively.
Using Lemma 8.6 we have

P lon N < (Swpp) = (By Ay Bip.p) = (BNAy [ — g.p)
= (Buy — g,pn) < [ lanllx + llgllm] Ipwlm

and therefore 1

Il < ¢ (e lanllx + llgllm] -
1
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Hereby, u = A;/Il fe RM s tip; € Xy is the unique solution of the variational
problem
<A’CLM,UM> = <f, ’UM> for all vpy € Xy
From the X—ellipticity of A we then find
i 1
lamlx < — Ifllx-
1

Moreover,
e [luar % < (Auar, unr)
= (founr) = (Buar,pn) < [[Ifllxr + 3 lpnllm] llunllx
and therefore

1
lenellx < — [I£11x +c lpwlln] -
1

With (8.26) we then obtain (8.27) O.
Using the stability estimates (8.26) and (8.27) we also obtain an error
estimate for the approximate solution (unr,pn) € Xar X Iy .

Theorem 8.8. Let all assumptions of Theorem 8.7 be valid. For the unique
approzimate solution (upr, pn) € X x Iy of the saddle point problem (8.22)
there holds the error estimate

u—1u - <c inf JJu—w inf — .
o= sl + o=l < e { it hu—oulls + gl vl

Proof. When taking the difference of the continuous saddle point formulation
(8.21) with the Galerkin variational problem (8.22) for the conforming trial
spaces Xy X IIy C X x II we obtain the Galerkin orthogonalities

(A(u —upnr),vm) + (Buy,p —pn) =0
(B(u—unm),qn) -0

for all (var,qn) € X X ITy. For arbitrary (aas, pn) € Xar X Iy we then
obtain

(A(arr —un),var) + (Bua, py — pn) = (A(anr — u) + (B' (PN — p),vmr)
(B(upm — unr), gn) = (B(am — u), qn)

for all (var,qn) € Xar X . Using Theorem 8.7 we find the unique solution
(ipr — upns, PN — pyvr) € X X ITy, and we obtain the stability estimates

o8 — pnllr < cl|A(unr —uw) + B'(bn — p)llxo + c2l| B(unr — w)|
lanr — unllx < esl|A(aar —u) + B (pn — p)l|x + cal| B(anr — )|

for arbitrary (@ar,pn) € Xar X ITy. Due to the mapping properties of the
bounded operators A, B and B’ we get with the triangle inequality
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lp —pnllm < llp—bnllo+ D8 + ol
< (L+cicd) lp—pnllm + (c1cd + eacd) ||u — anrl|x

for arbitrary (@, pn) € Xar X I y. The estimate for ||u — ups||x follows in
the same way. O

It remains to validate the discrete stability condition (8.25). As in Lemma
8.5 we can use the criterion of Fortin to establish (8.25).

Lemma 8.9 (Criteria of Fortin). Let B : X — II' be a bounded linear
operator, and let the continuous stability condition (3.25) be satisfied. If there
exists a bounded projection operator Py : X — Xy satisfying

(B(v—Pyu),qn) = 0 for allqy € Iy
and
|Pyvllx < cpllvllx  forallv e X,
then there holds the discrete stability condition (8.25) with ¢g = c¢s/cp.

8.6 Coercive Operators

We finally consider an approximate solution of the operator equation Au = f
when A : X — X'’ is assumed to be coercive, i.e. there exists a compact
operator C': X — X’ such that Garding’s inequality (3.32) is satisfied,

(A4 C),v) > ¢t jv]|% forallv e X.

For a sequence Xy C X of finite dimensional trial spaces we consider the
Galerkin variational problem to find u; € X such that

(Aupr,vm) = (f,vm) (8.28)

is satisfied for all vy, € Xjps. Note that the variational problem (8.28) for-
mally coincides with the Galerkin-Bubnov formulation (8.3). However, since
we now consider the more general case of a coercive operator instead of an el-
liptic operator, the numerical analysis to establish suitable stability and error
estimates is different.

Theorem 8.10 (Cea’s Lemma). Let A : X — Xy be a bounded linear
coercive operator and let the stability condition

A
cs llwnllx < sup {Awar, v} (8.29)

v €EX L |lvm || x >0 ||UMHX

be satisfied for all wy; € Xpr. Then there exists a unique solution upys € Xy
of the Galerkin variational problem (8.28) satisfying the stability estimate
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1
Junmllx < — I fllx/ (8.30)
cs
and the error estimate
Ay
Ju—unllx < (14 2) inf = vux. (8.31)
cs/ vm€e€XM

Proof. We consider the homogeneous linear system Ap;w = 0 to find an ap-
proximate solution wy; € Xj; of the homogeneous variational problem

(Awpr,vp) = 0 for all vy € Xy

Using the stability condition (8.29) we then obtain

_ A, v
eslonlx < sup AU

— 0
’UIWGXM7H'U1W”X>O ||UMHX

and therefore wy; = 0 <= w = 0. This ensures the unique solvability of the
linear system Apru = f and therefore of the variational problem (8.28).

Let u € R™ « wuy, € X be the unique solution of the Galerkin varia-
tional problem (8.28). Again, applying the stability condition (8.29) this gives

AUM UM
eslumllx < sup  \Auaom)
v EX |l | x >0 ||UM||X
UM
— s )y

v EX |l ] x >0 HUM”X

and therefore the stability estimate (8.30).
For an arbitrary w € X we define an approximate solution wy; € Xy of
the Galerkin variational formulation

(Awpr,vpr) = (Aw,vpr)  for all vpr € Xy

This defines the projection operator G s : X — X by wyy = Gpyw satisfying

1 g
[Guwlx = lumlx £ —[[Awlx < = [lwlx.

cs cs

In particular, we have u,; = Gpru for the solution of the Galerkin variational

formulation (8.28). Since G/ is a projection, Gprvpr = vps for all vy € Xy,

we then find

v —umllx = [lu—vm +Guonm —umllx

A
C
< = varllx + 1Gasu—van)lx < (14 22) flu—varlx

for all vps € Xpr. From this, the error estimate (8.31) follows. O
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It remains to validate the discrete stability condition (8.29). Note, that for
an X—elliptic operator A we then obtain

<AwM,wM> sup <AwM,vM>
llwarllx v eXanoaelx>0  llvarllx

IN

e loallx <
for all wy € Xy, e (8.29). In what follows we consider the case of an
coercive operator A.

Theorem 8.11. Let A : X — X’ be a bounded linear operator which is as-
sumed to be coercive and injective. Let Xy C X be a dense sequence of con-
forming trial spaces. Then there exists an index My € N such that the discrete
stability condition (8.29) is satisfied for M > My.

Proof. Let wy; € Xy be arbitrary but fixed. Since A : X — X' is assumed to
be coercive, there is a compact operator C': X — X’ such that the bounded
operator D = A+ C : X — X' is X-elliptic. Hence we can set v = D~ 'Cwyy
as the unique solution © € X of the variational problem

(Dv,v) = (Cwpr,v) forallve X.

Moreover we can define an approximate solution vy; € Xj; as the unique
solution of the Galerkin variational problem

<D1_)M,’UM> = <O’LUM,’UM> for all vps € Xy
Hence we have the Galerkin orthogonality
(D(v —op),om) = 0 for all vy € Xy

Applying Cea’s lemma (cf. Theorem 8.1) for the X—elliptic operator D we
also find the stability estimate

_ 1 ¢
lomllx < 5 ICwumlx < =5 lwallx
1 C1
and therefore

_ C
hwar = nallx < lwarllx + sl < (1425 ) lowllx
1

as well as the error estimate

D
||17—17M||X < Cl inf ||77_'UJ\/[||X-
- ClD vnr €X

Hence, the approximation property (8.8) of the trial space gives the conver-
gence Uy; € v in X for M — oo.
Considering as test function vy; = wps — v37 we obtain
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<AwM, Wpr — "(_)M> = <AwM,wM - 1_)> + <AwM, U — 1_)M>
= (Awpr, wyr — D7 Cway) 4 (Awpr, 0 — Tag).
For the first summand we further get
<AU)M7U)M—D71CU}M> (AwM, (D—C)wM>
= (AwM,D AwM>

> of [Awn |k > ePealwnlk

since A : X — X’ has a bounded inverse. On the other hand, using the
Galerkin orthogonality we get
<DZUM71_) — 77M> — <CU)M71_) — ’UM>|
(v = o)) = (wnr, C(0 — V)|
= [war, C(0 = om))| < lwnm | x1C(0 = var)ll x-

[(Awnr, © = or)| =

I
B
=

>

I

\

<

Since C': X — X' is a compact operator, there exists a subsequence {Tys }aren
satisfying

Hence there exists an index My € N such that

(Awpr, wpr — Opr) > CA ||wM||X

1
27
1
2

cD\ -1
> gelea(1+5)  Toarlixlhon = oarlx

is satisfied for all M > My which implies the stability condition (8.29). O

8.7 Exercises

8.1 Let X be a Hilbert space and let a(-,-) : X x X — R be a symmetric
and positive definite bilinear form. For the approximation of the minimization
problem

Flu) = min F(v), F(v) = sa(v,v) ~ (f,0)

veX
we introduce a finite-dimensional trial space
— < M
Xy = span{yi}iy C X.

Derive the variational problem to find the approximate solution uy; € Xyy.
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Finite Elements

For the approximate solution of variational formulations as described in
Chapter 4 we introduce appropriate finite-dimensional trial spaces, and prove
certain approximation properties in Sobolev spaces. For simplicity we just
consider lowest order polynomial basis functions. For an introduction of more
general finite elements we refer, for example, to [31, 41, 85].

9.1 Reference Elements

Let 2 C R? (d = 1,2,3) be a bounded domain with a polygonal (d = 2)
or with a polyhedral (d = 3) boundary. We consider a sequence {7y }yen of
decompositions (meshes)

N
0=Ty=J7 (9.1)
=1

with finite elements 7o. In the simplest case we have an interval (d = 1), a
triangle (d = 2), or a tetrahedron (d = 3). Further we denote by {z;}L, the
set of all nodes of the decomposition 7y, see Fig. 9.1 for a finite element 7,
and the corresponding nodes x. In addition, for d = 2,3 we have by {k; }szl
the set of all edges.

By I(k) we denote the index set of all elements 7, where x; € Ty is a node,

I(k) ={{eN:a,eT} fork=1,...,M.

Moreover,
JW) :={keN: z,e7} forl=1,...,N

is the index set of all nodes xy with x; € 74. Note that dim J(¢) = d + 1 in
the case of the finite elements 74 considered here. Finally,

K(j) ={¢teN: kje7y} forj=1,...,K
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— NN

Fig. 9.1. Finite element 74 and related nodes xj.

is the index set of all elements 7, with the edge k;.

The decomposition (9.1) is called admissible, if two neighboring elements
join either a node (d = 1,2,3), an edge (d = 2,3), or a triangle (d = 3),
see Fig. 9.2. In particular, we avoid hanging nodes as in the inadmissible
decomposition of Fig. 9.2.

] K

Fig. 9.2. Admissible and inadmissible triangulations (d = 2).

In what follows we only consider admissible decompositions of the computa-
tional domain (2. For a finite element 7,

Ay = /da; (9.2)

is the volume, while
hy = A}/ d

is the local mesh size. Moreover,

dy := sup |z —yl
T,YETy

is the diameter of the finite element 7,, which coincides with the longest edge
of the element 7. Obviously, for d = 1 we have

Ag == h[ == dg.
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Finally, 7, is the radius of the largest circle (d = 2) or sphere (d = 3) which can
be inscribed in the finite element 74. A finite element 7, of the decomposition
(9.1) is called shape regular, if the diameter dy of the finite element 7 is
bounded uniformly by the radius ry, i.e.

dy < cpry ford=1,...,N

where the constant cp does not depend on 7. For the two—dimensional case
d = 2 we then have

mri < Ag=h? < d} < il
and therefore the equivalence relations
Vrrg < hy < dg < cpry.

Correspondingly, for d = 3 we have

4
—ary < Ap=hi < d} < chrd

3
514
37T < hg <d¢ < cpry.

The global mesh size h is defined by

and therefore

h = hpax = max hy
(=1,....N
while
Amin = min hy
=1,....N

,,,,,

is the minimal local mesh size. The family of decompositions 7y is called
globally quasi—uniform, if
hmax
hmin
is bounded by a global constant c¢g > 1 which is independent of N € N. The
family 7 is called locally quasi—uniform, if

< cg

h
h—li <¢, fort=1,...,N

J

holds for all neighboring finite elements 7; and 7. Here, two finite elements 7
and 7; are called neighboring, if the average 7, N7, consists either of a node,
an edge, or a triangle.

In the one-dimensional case d = 1 each finite element 7, can be described
via a local parametrization, in particular for « € 7, and ¢4, ¢y € J(¢) we have

x =z, +&(xp, —wp,) = x4y, + &My for £ €(0,1).
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Here, the element
T := (0,1) (9.3)

is called reference element. If we consider a function v(x) for € 7, we can
write

v(z) = v(ze, +Ehe) =: Ue(§) for € €,

in particular we can identify a function v(z) for « € 7, with a function in the
reference element, v,(&) for £ € 7. It follows that

loll2, ) = / jo(a)Pde = / F(©) hedé = he [T, 00
Ty T

For the first derivative we have, by applying the chain rule,

d d
d—vg(f) = hy %v(ac) forzem,fer

and therefore 1 d
%v(m) = h_z d—gﬂg(ﬁ) forxz € 7,6 €.

For m € N the recursive application of this result gives

d'”'L Cm d"”/ .
dxmv(x) = h, dgmw(g) forzem, e

Hence we obtain for the local norms of v and vy

In the two—dimensional case d = 2 the reference element 7 is given by the
triangle

2 2

dm
-

T for m € Ny . (9.4)

= h;_%n ng—mig

Lz (Tg) L2 (T)

T={(eR?*:0<§<1,0<6<1-4). (9.5)

Then we find the local parametrization for x € 74 as

2
L= Ty, +Z§i(xfi+1 _xfl) = x¢ + J§ for§er

i=1

with the Jacobian

Loyl — Ty 1 Teg,1 — Ly
Jp = .
Ley,2 = Tpy,2 Tz, 2 — Ly ,2

To compute the area (volume) of the finite element 7, we obtain
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Fig. 9.3. Finite element 7, and reference element 7 (d = 2).

1 1-&

1
Ag:/dsz :/|deth|d§ _ |deth|/ / deadéy = |det
Ty T 0 0
and therefore
|deth| = 2A4,. (96)

If we consider a function v(x) for x € 7, we can write
v(z) = v(ze, + Je§) = ve(§) forer
Then, by applying the chain rule we get
Veil6) = J V(o)

and therefore
Veo(z) = J; T Vevg(€).

As for the one—dimensional case d = 1 we can show the following norm equiv-
alence estimates:

Lemma 9.1. For d = 2 and m € Ny there hold the norm equivalence inequal-
1ties

1 —m I~ m —m o
7(2A6)1 IV, ) < IVEOIL, () < em(2A0)' ™ IVETIL, )

" (9.7)
2 m
en = () |
T

Proof. For m = 0 the assertion follows directly from

where
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[olZcr) = /Iv(fﬂ)lzdiﬂ = /Wz(&ﬂz\detJeldf = 24512, (-
Te

T

Now we consider the case m = 1. Then,

Vool = [ IVavt@)de = [ 107V det il de

4

— 24, / (7 7 TV (E), Veb(e)) de

< 20 A (T / V(e e
= 2404 Amax (J; ' T7 D IVEDIZ,

as well as
IVavl17, () = 240 Amin (J7 1T ) I VEDIT, (-

It is therefore sufficient to estimate the eigenvalues of the matrix .J,' J,. With

a = |:L'z2 - ‘r41|7 b= |l'53 - ‘r41|7 o = %:(xzz = Ly Ly — xfl)

Ty = a? ab cosa
eot ab cosa b2 ’

and the eigenvalues of JZT Jy are

we have

Aijg = % {aQ +b% £ /(a2 — b2)2 + 4422 cos? a} .
Obviously, for the maximal eigenvalue A\; we have the inclusion
%(a2+b2) <A < a4 b2
while for the product of the eigenvalues A/, we have with (9.6)
Mo =det(J) Jp) = |det Jy|* = 4A7.

The minimal eigenvalue Ay admits the lower estimate

44?2 44?2
do = —F > 2 y 2
A1 a’+b

and therefore we conclude

442

g S Amin (I J0) S Amax (T Te) < a® 4+ 02
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Moreover,

2
a +b2<2dz<20F7’?§ﬂAy
™

Hence we have
2 e
3 A < Aain () Je) < Amax (J[ J) < 5 A,
cp s
and the eigenvalues of the inverse matrix J[l(][ T can be estimated as

2
T _ 1 - 1 c _
= (2407 < Ain (7] M) < Amax (S0 T) < — (24,7
r

Hence we conclude the norm equivalence inequalities for m = 1. For m > 1,
the assertion follows by recursive applications of the above estimates. O

In the three—dimensional case d = 3 the reference element 7 is given by
the tetrahedron

T={eR*:0<&E<10<6E<T-6,0<6 <16 &) (98)

For x € 7, we then have the local parametrization

x = xy +Zfi(wi+1 —xy,) = ¢ + S forer

i=1
with the Jacobian
LTpy 1 — Loy 1 Thz 1 — Loy 1 Ty, 1 — Ty 1
Jo = | Toy2—Tp 2 Toy 20— Tp 2 Ty 2 — Ty 2
Lpy,3 — Tpy,3 TY3,3 — Tfy,3 Tiy3 — Tfy,3
For the volume of the finite element 7, we find

Ay = /dsw =/|detJe|d§

Te

1 1§ 1-&1—

— |det Ji| / / / deydesdey — é|deth| (9.9)

and therefore
|det J¢| = 6 A,. (9.10)

As for the two—dimensional case we can write a function v(z) for z € 74 as
v() = v(xe +Je§) = 0e(§) forfer
Again, the application of the chain rule gives
Ve (§) = J) Vav(x), Vev(w) = J; T Veu(€)

and in analogy to Lemma 9.1 we have:
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Lemma 9.2. For d = 3 and m € Ny there hold the norm equivalence inequal-
ities

c1 Ay h2™ ||V, |2 < VT2 < g Agh 2™ ||V

1eelly & VLy(r) = x UllLy(r) = 2200 & VlllLy(7)
with positive constants c1 and co which may depend on m and on cp.

Proof. For m = 0 a direct computation gives

0@,y = [ o6@)Pdz = [ Gu(€)Pldet el d = 62 [Tl

Ty T

For m = 1 we first obtain, as in the proof of Lemma 9.1, the equivalence
inequalities

GAZ Amin (J[_l‘]g_T) va,ﬁenigﬁ) < HVQ?UH%Q(TZ)
< 647 Amax (Jé_l‘][T) ||v£5€|‘%2(r)'

Hence we have to estimate the eigenvalues of the symmetric and positive

definite matrix

a®> abcos o accosf

J ' Jr = | abcosa B> becosy

accos 3 bccosy 2

where
a = |xg, —xp,|, b= |xe, —xg|, c:=|xe, — g,

and

@ = q(x@ — Xy, Tpy — xh)’
6 = <I($€2 - xflax& - xfl)a
v = Hwey — T4y, X0, — Tp,)-

From 0 < \; fori =1,2,3 and
M+ A+ A3 =a®+b0+ ¢
we can estimate the maximal eigenvalue by
Amax (J/ Jo) < a® + 0% + 2.
The product of all eigenvalues can be written by using (9.10) as
MAAs = det(J,Jp) = |det Jy|? = 36 A2

and hence we obtain an estimate for the minimal eigenvalue

36.A2 36A7
(7T > 4 > £ .
Auin (¢ Je) 2 Pmax (J) Je)]* — [a? + 0% + 2]
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Altogether we therefore have

36.A2
m < )\min(JZTJZ) < Amax (JgTJe) < a®+ b+ A

Since the finite element 74 is assumed to be shape regular, we can estimate
the length of all edges by

/9
a® +b* +c* < 3d?7 < 3ckr? <34 167T2C%h?

and hence we obtain

4 4/25674 . i 5
% ]1 h? S Amin (J@ J[) S >\Hlax (‘]é Jf) S 3 3 IGWQCQF h?

The assertion now follows as in the proof of Lemma 9.1. O
By using the norm equivalence estimates (9.4) for d = 1 as well as Lemma
9.1 for d = 2 and Lemma 9.2 for d = 3 we can formulate the following result:

Theorem 9.3. Let 7, C R? be a finite element of a shape reqular and admis-
sible decomposition Ty . If v is sufficiently smooth we then have for m € Ny

aa Ach P VP, < IVEUI Ty < 2 Aehy ™ V0T,

with positive constants ¢; and co which may depend on m and on cp.

9.2 Form Functions

With respect to the decomposition 7y as defined in (9.1) we now introduce
trial spaces of piecewise polynomial functions. The related basis functions,
which are associated to global degrees of freedom, are defined locally by using
suitable form functions which are formulated with respect to an element 7.
We consider a reference element 7 which is either an interval (9.3) for
d =1, a triangle (9.5) for d = 2, or a tetrahedron (9.8) for d = 3.
The simplest form functions are the constant functions

Y€ =1 foréer

If we consider a function v, (x) which is constant for x € 7y we then have the
representation

vp(x) = vp(ae, + Je&) = vg 1/)(1)(§) forx e 7, €T, (9.11)

where vy is the associated coefficient describing the value of vy, on 7,. Moreover,

we have
[0nll3,(rpy) = Aev] - (9.12)
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If we consider a function vy, (x) which is linear for « € 74, then this function is
uniquely determined by the values v; at the nodes of the reference element 7,

d+1

) = > Tkph(§) foréer (9.13)
k=1

Here, the linear form functions are given for d = 1
D) = 1-¢ (€)= ¢,
for d =2
i) =16 &, () =&, ¥3(6) = &,
and for d = 3
V1) =1-& —&— &, (8 =&, ¥3(8) =&, vi(f)=6&.

Let 7¢ be an arbitrary finite element with nodes xy, , ¢ € J(£). If vy, is a linear
function on 7y, then we can write

d+1
vp(x) = vp(ae, + J€) = ngkz/},i(f) forzem, e (9.14)

As in (9.12) we can estimate the Ly norm ||vp ||, (- by the Euclidean norm
of the nodal values.

Lemma 9.4. Let vy, be a linear function as given in (9.14). Then,

d+1 d+1
(d+1 d+2 vak — ||’UhHL2(7—Z — d+1 Z fk

Proof. We can compute the local Ly norm of the linear function vy, as

d+1d+1
0R 1170 (r) = (Ohs VR Loy = D D w05 / Ui (€)[det Tpld¢ = (Gor',v)
i=1 j=1
where
Ay

_ T
Gy = CESCED) (lay1 +eqi1€d441)

is the local mass matrix and ¢;,; = 1 € R4, From the eigenvalues of the
matrix Iz41 + §d+1§(—ir+1,

AM=d+2, A=-=Xy1=1,

the assertion follows. 0O
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Corollary 9.5. Let vy, be a linear function as given in (9.14). Then,

Ay
@+ d+2) 0nllF _(rpy < N0nlZs i < Aellvnlll -

Proof. Obviously, the maximal value of v, and therefore the maximum norm
vl L. () is equal some nodal value vg~ = vy, (2y+). The assertion then follows
from Lemma 9.4. 0O

In many applications it is essential to bound the norm of the gradient of
a piecewise polynomial function by the norm of this function itself.

Lemma 9.6. Let vy, be a linear function as given in (9.14). Then there holds
the local inverse inequality

IVavnllLacr < erhi lvnllLacr (9.15)
where ¢y is some positive constant.
Proof. The application of Theorem 9.3 gives first
IVovnll7, oy < c2 Achy 2 IVeel 2, (v
To compute the gradient of the linear function

d+1

() = v, (9
k=1

we obtain for d =1
v§5g = ’ng — Ugl

and therefore
IVetellT, iy = (e, —ve,)? < 2[v7, +07,] < 4]lwall}

oo (Te)"

In the two—dimensional case d = 2 the gradient is
~ Vy, — Uy
Vevy = 2 !
ehe <’Ug3 — Uy, )
and therefore we obtain

IVetelZ, ) = 5 [(ve, — ve,)? + (vey — v2,)?]

N — DN —

< = [20F, 4+ 207, + 407 ] < 4|}

oo (7—2) '
Finally, for d = 3 we have

Vey — Vyy
Veve = | v, — v,
Ug4 — Ugl
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and thus

IVetel|7, ) = = [(ve, = v6,)? + (veg — v6,)? + (ve, — vg,)?]

INA
| — | =

211?2 + 21}?3 + 21)?4 + 611%1] <2 th||%oom).

gl
Altogether we therefore have
IVanlZ,iry < 4e2 Achy? onll (r

and the inverse inequality now follows from Corollary 9.5. O

Form functions of locally higher polynomial degree can be defined hierar-
chically based on piecewise linear form functions. We define quadratic form
functions for d = 1 by

YO =1-¢ 43 =¢ U39 =4(1-9),
for d = 2 by
Ve =1-& — &, 38 =&, Y36 =&,
Pi(€) = 46 (1 — & — &), Y3(§) = 4&i&, ¥E(€) = 46(1 — & — &),
and for d = 3 by

PIE) =1—& — & — &, P3(8) =46(1—& — & — &),
P3(8) = &, P5(&) = 4&i&a,
P3(8) = &, P2(8) =461 — & — & — &),
P3(8) = &, P3(8) =4&(1 - & — & — &),
P3(8) = 481,
Pio(€) = 46a€3

Note that linear form functions are associated to degrees of freedom at the
nodes xy € Ty, while the quadratic form functions are associated to the edge
mid points xzj If the function vy is quadratic on 74 then we can write

3 (d+1)(d+2)
vp(x) = vp(xe, + Ji€) = Z ve VE(€) forx €T, €T. (9.16)

k=1
As in the proof of Lemma 9.4 we have

%(d+1)(d+2)
lonlFory = D, vy [ YFOUI(©)|detp|de = (G v).

i,j=1 z

In particular for d = 1 the local mass matrix is
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1/31/6 1/3
Go=24,[1/61/3 1/3
1/31/38/15

where the eigenvalues of G, are

Ay 31 /89
)\ = — )\ == A - :l: — .
7% 8T S060 T 20 1

By using a similar approach in the two-dimensional case d = 2 as well as in
the three-dimensional case d = 3 we can prove equivalence estimates which
correspond to the results of Lemma 9.4,

$(d+1)(d+2) $(d+1)(d+2)
[GWAY] Z v < ||vh||2LQ(T£) < ey Z v, (9.17)
k=1 k=1

where vy, is a quadratic function as defined in (9.16). Moreover, as for lin-
ear functions also the inverse inequality (9.15) remains valid for quadratic
functions.

Finally we will discuss bubble functions cpf and their associated form
functions ¥ which are needed, for example, for a stable discretization of the
Stokes problem. The basis functions ¢Z are polynomial in the finite element
7¢, and zero on the element boundary d7,. Hence we can extend them by zero
outside of the finite element 7,. Later we will make use of an inverse inequality
for the induced trial space SP (7x) which is spanned by the bubble functions.
For d = 1 we have the form function

¥p(€) = (1 -¢) forfer

and for the associated basis function ¢? it follows that

1
1
I8 sy = 4o [ 1601 = OPdg = 5o
0

Moreover,

1
d g 1
1928 ey = i [ | gl - 1] de = g
0

Hence we conclude for the one—dimensional bubble function the local inverse
inequality
HVESOZBHLQ(W) =V ]‘O he_l ”@?”Lz(ﬂ)

In the two—dimensional case the form function ¥ 5 reads
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Yp = (1 —-& —&) forfer

and for the associated basis function ¢Z it follows that

1

= — A,
2520

1922,y = 240 / E162(1— & — E)]2de

T

Then, by using Lemma 9.1 we conclude

2

1928 e < cWVevili, = e f|(EH2E 560 )| & = 5
and therefore we obtain the local inverse inequality
Vel lary < Shy 107 L (re)- (9.18)
In the three—dimensional case d = 3 we finally have
P(E) = &880 - & — & — &)
and therefore
08 eatey = 64r [Wn(@PdE = oo A
as well as
1908 [y < cAehg® Vewsl i = 1rg5 Qe he ™

in particular we conclude the local inverse inequality (9.18) also for d = 3.

9.3 Trial Spaces

The standard trial space to construct an approximate solution of boundary
value problems with second order partial differential equations is the space
Sﬁ (7n) of piecewise linear and globally continuous functions. When consider-
ing an admissible decomposition (9.1) those functions are uniquely determined
by the nodal function values vy = vy (x) which are given at the nodes zj, of
the decomposition. Therefore, in the finite element 7, we then have a local
representation by using local form functions. The dimension dim S} (7y) = M
of the global trial space Si(7x) is obviously equal to the number of nodes in
the decomposition. A basis of the trial space S}(7y) is given by, see Fig. 9.4,

1 for x = xy,
op(z) =<0 for x = xy # xy,
linear  elsewhere.
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ok (z)

Tk
Tk

Fig. 9.4. Linear basis functions for d = 1, 2.
If v, € S§}(Ty) is piecewise linear, then we can write

M
) = > upi(e)
k=1

Lemma 9.7. For v, € S}(7n) there hold the spectral equivalence inequalities

M

1
—_—— A < < — A 2
d+1)d+2) ; MZW o] v2 < lonld, iz ’; wz(k) 0| v
Proof. By using Lemma 9.4 we have with
N N d+1 | M
HUh”%g(TN) = ZHUhH%Z(T, Z Z 71 Z Ay, U;%
=1 =1 k: k=1 \tel(k

the upper estimate. The lower estimate follows in the same way. O

Lemma 9.8. For a piecewise linear function vy, € S}(Tn) there holds the
inverse inequality

N

IVaeonllF, ) < 1 Zh [onl17, (ry)-
=1

If the decomposition T is globally quasi—uniform, then we have

IVatnll Loy < b vnlly(z)- (9.19)

Proof. Both estimates follow immediately from Lemma 9.6. O
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To prove some approximation properties of the trial space S}(7y) we will
use error estimates of certain interpolation and projection operators. For a
globally continuous function v € C(7x) we define the interpolation in the
space of piecewise linear functions,

M
Inv(z) = v(xk)or(x) € Si(Ty). (9.20)
k=1

Lemma 9.9. Let v|;, € H?(7y)be given. Then there holds the local error esti-
mate

v = ThollLy(ry) < chf [0la2(r,).

Proof. For the error of the piecewise linear interpolation we first have, by
using the norm equivalence inequalities of Theorem 9.3,

lo = Invll ) < e Aelte = L] o),

where I is the linear interpolation operator with respect to the reference
element 7. Then,

11-0e]| s (r) < meas (7) Vel ()
and the use of the Sobolev imbedding theorem (Theorem 2.5) gives
Vel iry < cllvellmz(ry -
Therefore we conclude that the linear operator
I, : H*(1) — Lo(7)

is bounded. For an arbitrary but fixed w € La(7) we define the linear func-
tional

flu) = / (I — I yu(€)w(€)de

T

If u € H?(7) is given, then we have

[f ()]

/ (I — L )u(€)Jw(€)de

<N = Iull o llwllizary < cllullmz@llwllpy e -

For any linear function ¢ € Py (7) we have I.q = ¢ and therefore f(q) = 0 for
all ¢ € Py(7). Thus, all assumptions of the Bramble-Hilbert lemma (Theorem
2.8) are satisfied implying

[f ()]

When choosing u := vy and w := (I — 1), we obtain

IN

E/”rw”Lz(‘r)‘U|HQ(T) .
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I = LYl oy = [0 = @) = [ (2 = FTu(€)de = |£(50)

T

< cllwllpy(n) Vel () < €N = 1)l Ly () [Ve] 27
and hence the estimate
(I = I )Vell Loy < €l0e]me(r)
follows. Altogether we therefore have

[0 = InollLy(r) < e Aelbeluzry < Ehi[vla2(ry)

by applying the norm equivalence theorem (Theorem 9.3). O
As a direct consequence of the above we conclude the global error estimate

N
o = Inol|7, () < ¢ Zhe 01327y - (9.21)
—1

In the same way we obtain also the error estimate

N

lv = Invll31 ¢y < € D E [0f3r2(ry) - (9.22)
=1

The application of the interpolation operator requires the global continuity of
the given function to be interpolated. To weaken this strong assumption we
now consider projection operators which are defined via variational problems.
For a given u € Lo(7y) we define the Lo projection Qpu € Si(TN) as the
unique solution of the variational problem

(Qnu, V) Ly(1y) = (U, 0n)1y(7y)  for all vy € Sp(Ty). (9.23)
When choosing v, = Qpu as a test function we obtain the stability estimate
1QnullLo(7hy < lullpo(zyy for allu € Ly(7y), (9.24)
and by using the Galerkin orthogonality
(u— Qpu,vp) (1) = 0 for allv, € S (Ty) (9.25)
we conclude

l|u— QhUHZLQ(TN) (u—Qpu,u— Qpu >L2(TN
= (u — Qnru,u) 1, (7y)
< HU' - Qhu||L2(TN)||u||L2(TN)

and therefore



220 9 Finite Elements
||u - QhU”L2(TN) < ||UHL2(7'N) for all u € LQ(TN) (926)
On the other hand, again by using the Galerkin orthogonality (9.25) we have
lu = Qnull?, () = (= Qnu,u — Quut) L,y (1)
= (u— Qnu,u — Inu) L, (7y)
< llu = Qnrull Ly () lv = Inull Ly 7

and therefore the error estimate

N
lu = Quull?, iy < llu—TnulZ, gy < ¢ Z he [0 32 (7 (9.27)
=1

as well as
[ — QnullLy(zyy < h® 0]l 2(zy)-

By interpolating this estimate with the error estimate (9.26) this yields the
error estimate

lu = Qnullry () < chlvlla(zy)- (9.28)

By Q}, : H'(Ty) — S}(7n) we denote the H' projection which is defined as
the unique solution of the variational problem

<Q}Lu, Uh>H1(TN) = <U7Uh>H1(TN) for all v, € S}L(TN) (9.29)
As above we find the stability estimate
1Qhull (1) < |l (zyy for allu € H'(Ty) (9.30)

and the error estimate

lu — Qhull e (zyy < Ml (9.31)
as well as
N
llu— Q}lLu”?{l(TN) < flu— IhuH%ﬂ(TN) <c Z hi |U@12(n) : (9.32)
(=1

Hence we obtain the approximate property of the trial space S} (7x) of piece-
wise linear and continuous functions.

Theorem 9.10. Let u € H*(Ty) with s € [0,2] and 0 = 0,1. Then there
holds the approximation property

inf — - < chS° i ' 9.33
vaIS,%,(TN)”u vnllme () < ¢ |l brs (1) (9.33)
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Proof. For 0 =0 and s = 2 the assertion is a direct consequence of the error
estimate (9.27). For s = 0 the approximation property is just the error esti-
mate (9.26). For s € (0,2) we then apply the interpolation theorem (Theorem
2.18). For 0 = 1 we use the error estimates (9.32) and (9.31) to obtain the
result in the same way. O

In what follows we will investigate further properties of the H' projection
Q}L which are needed later on.

Lemma 9.11. For s € (0,1] let w € H}(Ty) be the uniquely determined
solution of the variational problem

(W, )i (1y) = (U= QRu,v)gi—s(7y) for allv e H' (Ty). (9.34)

If we assume w € H*(Ty) satisfying

wll s 7y < ¢llu— Qpullgi-s(zy),

then there holds the error estimate

||u — Q%LUHHI*S(’TN) S Chs ||u — Q}lLuHHl(TN) . (935)

Proof. Using the assumptions we conclude

lu — QhullF-s 7y = (u— Qhu,u— Qpu) s ()
= (w,u — QLu) 1 (1)
= (w— Q}Lwa C Q%LU'>H1(TN)
< lw = Qrwll izl = Qpull (7
< ch® [wlaiezy) lv = Quull a7y
<R [lu — Qpull s (1) lu — Qhull iy ()
from which the error estimate follows. 0O

Remark 9.12. In Lemma 9.11, the best possible value of s € (0, 1] depends on
the regularity of the decomposition 7. If, for example, 7y is convex, then
we obtain s = 1 [66]. In the case of a corner domain, see, for example, [49].

Note that due to S}(7y) C H'*#(Ty) for s € (0, %) the H' projection Q}u is
well defined also for functions u € H'~*(7Ty) and s € (0,1). As in the proof
of Lemma 9.11 we then can conclude the stability estimate

|Qhull g+ (zy) < cllullgi-s(zy) forallue H'™*(Ty). (9.36)

Using the error estimates of Lemma 9.11 for s = 1 we can show the stability
of the Ly projection in H*(Ty).
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Lemma 9.13. Let the assumptions of Lemma 9.11 be satisfied for s = 1.
Then, the Ly projection Qp, : H (Ty) — SE(Ty) € HY(Ty) is bounded, i.e.

||QhUHH1(TN) < C”U”Hl(TN) for allv € H1<TN)

Proof. Let Q} : H'(Tn) — S} (Tn) € H'(7n) be the H! projection as defined
in (9.29). By using the triangle inequality, the stability estimate (9.30), the
global inverse inequality (9.19), and the projection property Qnv, = v, for
all vy, € S} (7)) we obtain

1Qnvll e (1) < QR0 a1 (1) + Q1Y — Qi (1)
< |l zy) + et B 1Qnv — Qhvll Ly
= wllg(z) + er B 1Qn(w — QL) || Loz )-

By applying the stability estimate (9.24) for @), we further conclude

1Qnvll a7y < vl (z) +erh ™ v — Quvll Ly 7y

Now the stability estimate follows from the error estimate (9.35) for @} and
from the stability estimate (9.30). O

Remark 9.14. The Ly projection Qp, : H (Ty) — S}(Ty) € H'(Zy) is also
bounded when the decomposition 7y is locally adaptive refined, if the ratio
of local mesh sizes of neighboring elements does not vary too strongly [27].

In what follows we will always assume that the Ly projection is stable in
H'(7y). Then, by using an interpolation argument, it follows that the error
estimate

[u— Qnullre(ryy < ch'"® |ullgri(zy) for allu € H' (Ty) (9.37)

is valid.
Based on the trial space of piecewise linear and globally continuous func-
tions we can introduce trial spaces of locally higher polynomial degrees.
In the one-dimensional case d = 1 we can define quadratic basis functions
locally by
pi(x) = 46(1 =€) forz=a, +ER €T

An arbitrary function v, € S7(7y) then can be written as

N

M
vn(@) = > veph(z) + D> varieg; ().
k=1

{=1

Therefore we have dim S3(7y) = M + N. For both the two-dimensional case
d = 2 and the three-dimensional case d = 3 we have to ensure the continuity
of the quadratic basis functions go?. Since the quadratic form functions are
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defined locally with respect to the edges of the reference element, the support
of a global quadratic basis function consists of those finite elements which
share the corresponding edge. Denote by K the number of all edges of the
decomposition (9.1), then we can write for d = 2,3 the global representation

M K
vn(x) = D veph(r) + D vai0)(x)

k=1 j=1

as well as the local representation
5(d+1)(d+2)
_ 2 _
vp(x) = Z ve, i (€) forx =wxe, + Ji&, E €T
i=1

Here, ¢4, ..., {4+1 denote, as before, the indices of the associated global nodes,
while C42, ... ,6%(d+1)(d+2) are the indices of the associated global edges, see

also Fig. 9.3 for d = 2.

Lemma 9.15. Foruv;, € SEL(TN) there hold the spectral equivalence inequalities

dimS? (Tw) dimS? (Tw)
e Yk} <wnlliyyy S Y, didf
k=1 k=1

with
SN Ay fork=1,...,M,
4y = { Lellh)
Ap_ fork=M+1,....M + N

in the one—dimensional case d =1, and
SA fork=1,..., M,
eeI(k)
dy =
Ay fork=M+1,... M+ K
CeK (k—M)

when d = 2, 3.

Proof. First we will use the local spectral equivalence inequalities (9.17). For
d =1 we have!

N N 3
||Uh\|%2(TN) = Z ||UhH2L2(T,Z) = ZAIZZUZ
=1 =1

i=1
M N
= Z Z Ay ’U% —&-ZAKU]QVIJFK.
k=1 \teI(k) =1

! The equivalence A ~ B means that there are positive constants ¢; and ¢z such
that c1A < B < 2 A.
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In the same way we have for d = 2,3

N N 3
P CAFRED BRI
=1 k=1

/=1
M K

S DI TS Si U DI [ AR
k=1 \tel(k) J=1 \LeK(j)

By I, : C(7Tn) — S?(Tn) we denote the interpolation operator into the
trial space of locally quadratic functions. The interpolation nodes are hereby
all M nodes of the decomposition (9.1) and all N element midpoints in the
one—dimensional case d = 1 and all K edge midpoints in the cases d = 2, 3.
Note that the interpolation operator Ij, is exact for locally quadratic functions.
Analogous to Lemma 9.9 as well as to the global error estimates (9.21) and
(9.22) we can prove the following error estimates, when assuming u € H*(7y),

N
HU - Ihu”Lz(TN) <c Z h? |u|§{3(n)7
=1
and
N
lu = Tnull gy < ¢ >R [ulFs(ry-
=1

As in the case of piecewise linear basis functions we can show a global ap-
proximation property.

Theorem 9.16. Let uw € H*(Ty) with s € [0,3] and 0 = 0,1. Then there
holds

inf u—v o < ch® 7 |ulgs .
vhesg(:rN)” nllee (1) < ul b (1)

By SB(7Tn) = span{pP} | we denote the global trial space of local bubble
functions. For an arbitrary given vy, € SP(7y) we can write

vn(z) = Y vP el (@).

=1

If the decomposition 7 is globally quasi—uniform we can derive, by using the
local inverse inequality (9.18), the global inverse inequality

||V’Uh||L2(TN) < cr h! ||'Uh||L2(’TN) for all vy, € Sf(TN) (938)

For a given u € La(7x) we denote by QF : Lo (Ty) — SE(7y) the projection
into the trial space SP(7y) which is the unique solution of the variational
problem

/va(m)dw = /v(m)dm forall {=1,...,N. (9.39)

Te
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Lemma 9.17. Forv € Ly(Ty) let QPv € SP(Tw) be the projection as defined
in (9.39). Then there holds the stability estimate

1QF V|| Ly (1) < V20l Lara)-

Proof. From (9.39) we find for the coefficients of v, € SP(Ty)

. 6 ford=1,
v = A—d/v(x)dx, cg = 60  ford=2,
‘ 840  for d = 3.

Te

Hence we have

2

B 2|, B2 A
1QF el ey = It 16 IRy = ok S | [ v@)da
0 Cq
Ty
with
30 ford =1,
B =< 2520  ford=2,
415800  for d = 3.

By using c2/c} < 2 for d = 1,2,3 and by applying the Cauchy—Schwarz

inequality we therefore obtain

2
2 2
1QFolaen < 7 | [o@idn| < - [ do [lola)Pde = 20l
Te Ty

Te

Taking the sum over all elements this gives the desired stability estimate. O

9.4 Quasi Interpolation Operators

For a given function v € H!(7xy) we have considered the piecewise linear
interpolation (9.20). By using Lemma 9.9 there holds for v € H?(Ty) the
local error estimate

[0 = Il Lo (ry < B (V] 52y

where we have to assume the continuity of the function to be interpolated.
In particular, the interpolation operator I, is not defined for a general
v € H'(Ty) and d = 2,3, and therefore Ij, is not a continuous operator
in I{1 (TN)

On the other hand, the Lo projection

Qn : Lo(Tn) — Sp(Tn) C Lao(Ty)
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as defined in (9.23) is bounded (see (9.24)), and there holds the global error
estimate (9.27),

lu = QnullLyiz) < ch? lulmz(zy).-
As already stated in Remark 9.14, the Lo projection

Qn: HY (Ty) — SL(Tn) € HY(Ty)

is bounded, but it is not possible to derive a local error estimate. Hence we
aim to construct a bounded projection operator

P, : H'(Ty) — Sj(Ty) € HY(Ty),

which admits a local error estimate. This can be done by using quasi interpo-
lation operators [42].
For any node xj, of the locally uniform decomposition 7y we define

Uw

Lel(k

to be the convex support of the associated piecewise linear basis function
o1 € SH(Tn). By hy, we denote the averaged mesh size of wj, which is equiv-
alent to the local mesh sizes hy of all finite elements 7, with ¢ € I(k) when
the decomposition is assumed to be locally quasi—uniform. Then we introduce
QF : Lo(wy) — Sp(wk) as the local Ly projection which is defined by the
variational formulation

(@b, 00) Lo(wr) = (V) Lo(wy)  for all vy, € S (wi),
and by using (9.27) there holds the error estimate
lu = Qull ooy < ehilulmwy)
As in (9.24) we can prove the stability estimate
QK ull ey < llull sy for allu € Lo(we)
and by applying Lemma 9.13 there holds
1Qull ) < cllullmiw,) for allu € H (wy).

By using the local projection operators we can define the quasi interpolation
operator or Clement operator

M
(Pru)(z Z (QFu)(z1) o} (z).
k=1

It is easy to check that Pyvp = v, € S} (Ty).
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Theorem 9.18. [27, 42, 139] For u € H'(Zy) there holds the local error
estimate

|lu — Prullp,r) < c Z hy, |u| 1wy foralll=1,...,N, (9.40)
keJ(£)

and the global stability estimate
[1Prullgr(zy) < cllullazy)- (9.41)

Proof. Let 7, be an arbitrary but fixed finite element and let k € J(£) be an
arbitrary fixed index. For x € 7, we can write

(P)(@) = (Qu)(@) + > [(Qku)(ar) — (QF)(@n)]ek(x).

keJ(£),k#k

By using Lemma 9.4 we have

. <
l@kllLy(ry < i 1

and therefore

7 d/2 k
lu— Pl £y ry < €1 by, [ul g gy +e2 Y/ ) (Qhw) (zx) — (Qpu) (k)]
keJ(l),k#k

For an arbitrary v;, € S} (7n) we conclude from Corollary 9.5

—d/2
[0nllpere) < g ™ J0nllare)-
Therefore,
(QEu)(zx) — (QFu)(xr)| < |QFu — Qhullp(ry)

< chy " |QFu — QFull 1y ry)

—d/2 k k
< chy " {I@Qku =l + e = Qe }
< chy ™ {hy Jul g o) + bl g }

from which the error estimate (9.40) follows. The stability estimate (9.41) can
be shown in the same way. 0O

9.5 Exercises

9.1 For an admissible decomposition of a bounded domain 2 C R? into
triangular finite elements 7, and for piecewise linear continuous basis functions
ok the mass matrix M), is defined by
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Mulj k] = / or(@)p;(@)de, jk=1,..., M.
0

Find a diagonal matrix D;, and positive constants ¢; and cs such that the
spectral equivalence inequalities

are satisfied for all u € RM.

9.2 For the two-dimensional reference element 7 C R? the local quadratic
shape functions are given by

Vi) =1—-¢& — &, V35(8) = &, V3(8) = &,
Pi(6) =46(1 & — &),  P3(8) =468, P§(€) = 461 - & — &).

Compute the local mass matrix M, as well as the minimal and maximal
eigenvalues of Mj.
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Boundary Elements

For the approximate solution of the boundary integral equations as considered
in Chapter 7 we introduce suitable finite-dimensional trial spaces. These are
based on appropriate parametrizations of the boundary I" = 92 and on the
use of finite elements in the parameter domain. In particular we can think of
boundary elements as finite elements on the boundary.

10.1 Reference Elements

Let I' = 012 be a piecewise smooth Lipschitz boundary with I" = U‘jjzl T;
where any boundary part I'; allows a local parametrization I'; = x,;(Q) with
respect to some parameter domain Q@ C R?~!. We assume that

cf < |dety (&) < ¢y forallée Q,j=1,...,J. (10.1)

Further we consider a sequence {I'v}yen of decompositions (meshes)

N
Iy = (10.2)
(=1

with boundary elements 7,. We assume that for each boundary element 7,
there exists a unique index j with 7, C I';. A decomposition of the boundary
part I'; into boundary elements 7, implies a decomposition of the parameter
domain @ into finite elements qZ with 7, = Xj(qg ). In the simplest case the
boundary elements 7, are intervals in the two—dimensional case d = 2 or
triangles in the three—dimensional case d = 3, see Fig. 10.1.

Ezxample 10.1. The boundary of the two—dimensional L. shaped domain as de-
picted in Fig. 10.1 can be described by using the following parametrization
for £ € Q = (0,1):
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Fig. 10.1. Boundary discretization with 32 and 56 boundary elements.

¢ 1 1—2¢
we=[1], wo=[*]. wo=| * |

0 g 1

4 4

1 £-1 0

xa(§) = 1_425 s xs(8) = 41 xo(§) =1 e-1

T i 1

For j = 1,2,5,6 the parameter domain Q = (0, 1) is decomposed into 4 equal
sized elements ¢, while for j = 3,4 we have 8 elements ¢, to be used.

By {71}, we denote the set of all nodes of the boundary decomposition
I'y. The index set I(k) describes all boundary elements 7 where zy, is a node,
while J(¢) is the index set of all nodes xj, describing the boundary element
7¢. In the three-dimensional case d = 3 the boundary decomposition (10.2) is
called admissible, if two neighboring boundary elements share either a node
or an edge, see also Fig. 9.2. Analogous to (9.2) we compute by

Ae = /dsw
Te

the volume and by
he i= A/

the local mesh size of the boundary element 7,. Then,

h := max hy
e_

Ly
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is the global mesh size of the boundary decomposition (10.2). Moreover,

d¢ == sup |z —y|
T,YETy

is the diameter of the boundary element 7,. Finally,

Amin := min hy.

)=1,...,

is the minimal mesh size. The family of boundary decompositions (10.2) is
called globally quasi—uniform if

hmax S

cq
hmin

is satisfied with a global constant ¢ > 1 which is independent of N € N. The
family {I'v} nen is called locally quasi—uniform if

is satisfied for all neighboring elements 7; of 74, i.e. 7, and 7; share either a
node or an edge.

In the two—dimensional case d = 2 a boundary element 7, with nodes xy,
and xy, can be described via the parametrization

a:(§) = Ty + 5(55@2 - xfl) fOI‘f €T = (Oa 1)

where 7 = (0, 1) is the reference element, and we have

di=he =2 = [ds. = [ \Jlsl@F + (€2 = hov, ~ 2.
Te 0

In the three-dimensional case d = 3 we consider plane triangular boundary
elements 7, with nodes zy,, ¢, and x,,. The parametrization of 7, with respect
to the reference element

Ti={(eR:0<E<L0<E<I -6}
then reads
(&) = xo, + &1 (e, —wp,) + Ea(apy, —p,) forer.
For the computation of the boundary element volume we obtain

Ay = /dsgg = /\/EG—FQdf - %\/EG—F2

Te
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where

3 2

E= 3 [gge)] = lon, ol

i=1

3 2
_ 2
G= Z |:a£2 ] - |‘TZ3 - xf1| )

=1

= 3 G50 = (s~ )

In the three-dimensional case d = 3 we assume that all boundary elements 7,
are shape regular, i.e. there exists a constant cp independent of the boundary
decomposition such that

dyp < cghy forl=1,...,N. (10.3)

By using
Loy, 1 — Toy,1 Tog,1 — Lo 1
Jo = | Tep2 — Ty 2 Ty 2 — Tay 2
Lpy,3 — Lpy,3 Le3,3 — L4y,3
we can write a function v(x) for x € 74 as
v(x) = v(xzey + Je&) =: ve(§) for & €T

Vice versa, for a function v(£) which is given for £ € 7 we can define a function
ve(z) for x € 74,

vi() 1= vlas, + Ji€) = B(E) foréer
In the two—dimensional case d = 2 we have

M@m=ﬂme=/mm%@=mm&m
Te

T

and for the three—dimensional case d = 3 it follows that

wﬁwﬂ:/ﬁume:m»/mgwﬁzzmmwaﬂ
Te

T

To define Sobolev spaces H*(I") for s > 1 we have to use a parametrization
I'; = x,;(Q), see Section 2.5. In particular,

Mhm:/WMMQW£

a

m:ﬁm:/mmw%
e a;

and
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10.2 Trial Spaces

With respect to the boundary decomposition (10.2) we now define trial spaces

of local polynomials. In particular we will consider the trial space SP(I") of

piecewise constant functions and the trial space S} (I") of piecewise linear

continuous functions. By considering appropriate interpolation and projection

operators we will prove certain approximation properties of these trial spaces.
Let

Sp(I') = span{}}il,
be the space of functions which are piecewise constant with respect to the
boundary decomposition (10.2). The basis functions go% are given by

0( ) 1 forz ey,
) =
Pk 0  elsewhere.

If uw € Ly(I') is a given function, the Ly projection Qnu € SP(I') is defined as
the unique solution of the variational problem

(Qnu, Uh>L2(p) = (u, Uh>L2(p) for all vy, € Sg(F) (10.4)

This is equivalent to finding the coefficient vector u € RV as the solution of

N
> w0 pary = (w90 Loy for£=1,...,N.
k=1
Due to
A, fork=/
0,0 _ 0 0(x)ds, = )
<90ka905>L2(F) /@k(il?)@e(x) Sz 0 for k # ¢
r
we obtain )
up = — /u(:v)dsm fork=1,...,N.
Ay

Tk

Theorem 10.2. Let v € H*(I') be given for some s € [0,1], and let
Qru € SY(I") be the Ly projection as defined by (10.4). Then there hold the
error estimates

N
lu = Quull?, iy < ¢ Z W [ul e () (10.5)
k=1

and
|u— QrullLyry < ch® |ulgs (). (10.6)
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Proof. By using the Galerkin orthogonality

(u— Qnu,vp)pyry = 0 for all vy, € Sp(I)
we obtain

flu — Qhu\|%2(r) = (u— Qpu,u — Qhu>L2(F)
= (u— Qnu,u)r,ry < llu— QnullL,rllullLy(r)
and therefore
v = QnullLyry < llullLyr

which is the error estimate for s = 0.
We now consider s € (0,1). For « € 7, we have Qpu(z) = uj and therefore

u(z) — Quu(x) = Aik /[u(x) —u(y)lds, forx € 7.

Tk

By taking the square and applying the Cauchy—Schwarz inequality we con-
clude

2

() — Quu(a)? = / () — u(y)]ds,

Tk

L~
Eal

2

A

1 [u(x) —u(y)] / d—1
< —d +28d
ST A T LR

Tk
- L[ |u(@) - U(y)|2

d—1+2s

S dk A_k |x—y‘d_1+25 dSy

Tk

By using the shape regularity (10.3) and A = hz_l we can replace the
diameter d; and the area Ay by the local mesh size hy,

u(e) - Quu(o)® < e ne [ ufe) —uw)?

|£L' _ y|d71+25
Tk

When integrating with respect to = € 75, this gives
—142s 72
|| Qhu”LQ(Tk) * *h S|u|HS(Tk)7

and by taking the sum over all boundary elements we obtain the error estimate
for s € (0,1).
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To prove the error estimate for s = 1 we first consider

1

u(z) — Qpu(x) = A, /[u(x) —u(y)lds, forx € 7.

Tk

By using the local parametrization 7, = x; (qi) we further get

u(@) — Qnu(r) = Aik/[U(Xj(f)) — u(x; (m))][detx; (n)] dn. (10.7)

In the two—dimensional case d = 2 we have
1 ; d
u(w) = Quale) = [ [ St (©)itldens; () dn
Ay, dt
q,

and therefore

(o) = Quato)| < 5 [ [ |t aevxsonlan
-+ / (det; ()] di / Veu(x; (€))de
— [ Feutusteplae.

By taking the square and applying the Cauchy—Schwarz inequality we find by
considering (10.1)

2

/ Veuln; (€)]de] < / e / Ve (€))[2de

a,

[u(2) — Quu(x)]”

1 1
= X /|deth(§)|d§ |u|§11(7—k) = X Ay, |u|?{1(m)'
1 1

j

s

A

When integrating with respect to x € 74 and using Ay = hy for d = 2 this
gives
1
o)~ Quut)Pas, < e il

1
Tk

and by taking the sum over all boundary elements 75, we finally obtain the
error estimate for s =1 and d = 2.
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In the three-dimensional case d = 3 we have from the representation (10.7)

u(z) ~ Quu(a A/ u(xs () = ul ()t ()]

N A%//%“(Xj(”“@ —n)))dt |detx; ()| dn

al 0

1
1
= [ (€= m- Tutso + (6 ~ )y ety )] dn
o 0
Taking the square

2

) -Quu) < 55 | [ / €~ 1)+ V(i 0+ (€ = )t et () i

qk
and by applying the Cauchy—Schwarz inequality this gives

1 2

[ Futsn+ e = ] an

)~ Quute)* < 7 [

al

/IE — nl?|detx; (n)*dn

@i
2

<c / dn.
ai

[ T+ e = pyas
0

When integrating over 75, we obtain

2

/[() Qnu(z d5T<c///1 u(x;(n +t(€ —m)))dt| dndg
qk qk 0
///'V u(x; (0 + (& =m)))[* dt dn d¢

< cAk/\VnU(Xj(n)\Qdﬁ = c A |ulip )

@
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and with Ay = h% for d = 3 we find
lu = Quull, < chiulf -

By taking the sum over all boundary elements we finally get the error estimate
fors=landd=3, O

Corollary 10.3. Let u € H*(I") be given for some s € [0,1]. For o € [-1,0)
then there hold the error estimates

N
lu = Quullre(ry < b7 D" h lulfya(ry)
k=1
and
lu = Qnullgory < ¢h® 7 |ulgs(r). (10.8)

Proof. For o € [—1,0) we have by duality, by using the definition (10.4) of
the Lo projection, and by applying the Cauchy—Schwarz inequality

|(u — Qnu, U)LQ(F)|

[[w — Qhu”H”(F) = sup
0w H (D) vl =1
|(u — Qnu,v — Qrv) L, ()l
= sup
0#ve H—o(T) ””HH*U(F)
Ilo = Qnvlleyry

< lu—Qnullpyry  sup
0#vEH — () ||U||va(r)

By using the error estimate (10.5) for [[u — Qpul|z,(r) and the estimate (10.6)
for [[v — Quvl|L,(ry the assertion follows. O

Altogether we can formulate the approximation property of the trial space
SY(I') of piecewise constant functions.

Theorem 10.4. Let o € [—1,0]. For w € H*(I") with some s € [o,1] there
holds the approzimation property of Sp(I")

q;hei,ls‘lg([‘) ||U7'Uh||HU([‘) S ch®™° |U|Hs(p). (109)

Proof. For o € [—1,0] and s € [0,1] the approximation property is just the

statement of Theorem 10.2 and Corollary 10.3. It remains to prove the ap-
proximation property for o € [—1,0) and s € [0,0).

For a given u € H°(I') let Qqu € S\(I") C H°(I') C Lo(I") be the H(I")

projection which is defined as the unique solution of the variational problem

(QFu,vn) o (ry = (W, vp) oy for all vy € Sp(I).

As for the Lo projection there holds the error estimate for s = o,
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lu — Qpullory < llullme(ry-

Therefore, I — Qf : H°(I") — H°(I") is a bounded operator with norm

I —Qullae(ry—mory < 1.

On the other hand, by using (10.8) and s = 0 we have
lu — Qhullaery < llu—Quullgory < ch™ ||ullL, -

Thus, I — Q7 : Lo(I') — H?(I') is bounded with norm

I — Qi Lory—mo(ry < ch™7.

By applying the interpolation theorem (Theorem 2.18 and Remark 2.23) we
conclude that the operator I — Q7 : H*(I') — H°(I") is bounded for all
s € [0,0], and for the related operator norm it follows that

11— Q7 s (ry—mo(r)
s—0

a—0 —0

IN

(I = QN ero(ry— o (ry) (I = QF |l o(ry—re (1))

s—o
—0o

< (eh™) = c(s,0)h*7°.

This gives the approximation property for o € [-1,0) and s € [0,0). O

Now we consider the case where I; C I' is an open boundary part of
I' = 012, and S)(I7) is the associated trial space of piecewise constant basis
functions. As in (10.6) there holds the error estimate

lu — QnullLy(ry) < eh®ulms(r)

for the Lo projection Qy : Lo(I;) — SY(I;) which is defined accordingly.
Analogous to Corollary 10.3 for o € [—1,0) we find the error estimate

flu — QhUHﬁa(pj) < b’ Julgs (ry)-
Hence we have the approximation property

Uhelsngfwj)||ufvh||ﬁ(,(lﬂj) < b7 ulgs(ry) (10.10)
forwue H*(Ij) and -1 <o <0<s<1.

In addition to the trial space SP(I") of piecewise constant basis functions
@2 we next consider the trial space S}L(I’ ) of piecewise linear and globally
continuous basis functions o). If the boundary decomposition (10.2) is ad-
missible, a function v, € S} (I") is determined by the nodal values which are
described at the M nodes . Hence, a basis of S} (I) is given by

1 for x = x;,
oi(r) =40 for x = x; # x;,
linear  elsewhere.
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If a piecewise linear function vy, is considered in the boundary element 7,, this
function is uniquely determined by the nodal values vy, (xy) for k& € J(¢). By
using the parametrization 7, = x;(¢)) we can write

on(z) = v(x;(€) = T(§) foréeq c QCRITL

Hence we can identify a boundary element 7, C I" where I" = 92 and {2 C R¢
with a finite element ¢, in the parameter domain Q C R?~!. Thus we can
transfer all local error estimates of piecewise linear basis functions, which
were already proved in Chapter 9, to the finite element ¢, and therefore to
the boundary element 7.

Lemma 10.5. For a function vy, which is linear on 1y there holds

A d Ay &
4 2 2 ¢ 2
dd+ 1 ;% < lonlzyn = - ;Uek-

Proof. By mapping the boundary element 7, to the reference element 7 we
obtain

0nll7 5 vy = (Vhs OR) Lo ()

=3 vy [ e ©ldetilde = (Gunt,n)

i=1 j=1 p

where
Ay

Ge = d(d+1)

(Ia+eqeq)
is the local mass matrix and ¢; = 1 € R?. The eigenvalues of the matrix
Iy + gdgl—; are given by
M=d+ 1 =--=)=1
and therefore the assertion follows. O

Corollary 10.6. For a function vy, which is linear on 1y there holds

Ay

m””b“%w(m < lonllZ, e < Acllonlltiry-

Proof. Since the maximum of |vy,| and therefore the [|vy[|z_(r,) norm is equal
to some nodal value |vp(zp+)| = |vg~| for some xp«, the assertion follows
immediately from Lemma 10.5. O

Lemma 10.7. For a function v, which is linear on 1, there holds the local
inverse inequality

|’Uh‘H1(Tz) < ¢ he_l HUhHLz(Tz)'
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Proof. First we have

[onl T () = /|ngh(Xj(§))|2\deth(§)|d£ < A IIngh(Xj('))H%oo(qg)-

9
By mapping the finite element qz to the associated reference element we obtain
I9en OGOy < ehilnOG IR = hi® ol ey

and the inverse inequality follows from Corollary 10.6. O
Hence we also conclude the global inverse inequality

N N
onlF () = Z|Uh|§{1(n;) <c Zhe_Q onll7, ()
=1 =1

and, for a globally quasi—uniform boundary decomposition,
lonlmry < ch™ ol Lacr)-

In particular for h < 1 we obtain
loallzrry < eh™ onllpacry,
and an interpolation argument gives
lonllgrs(ry < ¢h™ lonllpyry  for s € [0,1].

Analogous to the error estimates (9.21) and (9.22) we can estimate the interpo-
lation error of the piecewise linear interpolation operator I, : H(I') — S}(I")
as follows.

Lemma 10.8. Let v € H?(I') be given. Assume that I' = 012 is sufficiently
smooth where 2 C R%. Let Iv be the piecewise linear interpolation satisfying
Iyv(xg) = v(zgk) at all nodes i of the admissible boundary decomposition
(10.2). Then there hold the error estimates

N
lv = TnvllZ, ) < € > hE[Wl3eiry < b [olfen
=1
and
N
H’U — Ihv”QHl(F) S & Zh? |’U|fr_]2(m) S Ch2 |'U‘?_I2(F).
=1

By applying the interpolation theorem (Theorem 2.18, Remark 2.23) we can
conclude the error estimate

v = Invl|gory < ch?=° |02y for o € [0, 1].
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The piecewise linear interpolation requires, as in the case of finite elements, the
global continuity of the function to be interpolated. The function v € H*(I")
is continuous for s € (%7 2] and the following error estimate holds,

lv = Inv|lgery < ch® 7 ulgsr), 0<o <min{l,s}. (10.11)

To prove more general error estimates we now consider projection operators
which are defined by some variational problems. If u € Lo(I") is given the Loy
projection Qru € S}(I') is defined as the unique solution of the variational
problem

(Qnu, va) Loy = (w,vp)ryry  for all v, € Sp(D),
and there holds the error estimate
v —Qnull,ry < [lullzyr)-

On the other hand, by using Lemma 10.8 we also have the error estimate
N

lu = QuullLyry < lu—TnullLyry < €Y b luliery < b ulfs
=1

and by applying the interpolation theorem (Theorem 2.18, Remark 2.23) we
conclude the error estimate

lu— QrullL,ry < ch®|ulgsry forue H¥(I'), se]0,2]. (10.12)

Accordingly, for v € H?(I') and o € (0,1] we define the H? projection
Qf : H°(I') — S}(I") as the unique solution of the variational problem

(QFu,vp) o (ry = (u,vp) ey for all v, € Si(I)
satisfying the error estimate
|lu — QFullgory < ch®™ 7 |ulgsry forue H(I'), selo,2]. (10.13)

Theorem 10.9. Let I' = 912 be sufficiently smooth. For o € [0,1] and for
some s € [0,2] we assume u € H*(I"). Then there holds the approzimation

property of SE(I),

inf u— - < ch® 7 ulgsm. 10.14
vaS,IL(F) ” h”H (ry > | |H () ( )

Proof. For 0 = 0 and o € (0,1] as well as for s € [0,2] the approximation
property is just the error estimate (10.12) and (10.13), respectively. O

As in Lemma 9.13 the Ly projection Qp : HY?(I') — SHI') ¢ HY*(I)
defines a bounded operator satisfying

1Quvll 2y < cllvllgiregry for allv € HYA(T). (10.15)
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Note that if the boundary decomposition is locally adaptive, to ensure (10.15)
we have to assume that the local mesh sizes of neighboring boundary elements
do no vary too strongly [137].

It remains to prove the inverse inequality of the trial space S§(I") of piece-
wise constant basis functions. For this we first define the global trial space
SB(I') of local bubble functions ¢ which are defined on 7,. With respect to
the reference element 7 C R?~! the associated form functions are given by

B c1-¢) for d = 2,
550 = {geati e tord =5

If the boundary decomposition is globally quasi—uniform there holds as in
(9.38) a global inverse inequality

H’Uh”Hl([‘) < Cr h_l ||’Uh||L2(F) for all vp € S}?(F)

By using an interpolation argument we then conclude
HU}LHHl/z(F) < ecr h_1/2 th||L2(p) for all vy, € S,LB(F) (10.16)

For a given u € Lo (I") we define the projection operator QF : Lo(I') — SE(I')
as the unique solution of the variational problem

/(qu)(m)wh(x)dsw = /u(a:)wh(a:)dsx for all wy, € Sp(I").  (10.17)
T T

When considering piecewise constant test functions this is equivalent to

/(QhBu)(x)dsgc = /u(m)dsx foral¢=1,... N.

As in Lemma 9.17 we can prove the stability estimate
1QPul Lyry < V2Iullp,ry for allu € Lo(I). (10.18)

Hence we can formulate an inverse inequality of the trial space SP(I) of
piecewise constant basis functions.

Lemma 10.10. Assume that the boundary decomposition (10.2) is globally
quasi—uniform. Then there holds the global inverse inequality

1/2

lwnllL,ry < crh™ ||’UJh||H—1/2(F) for allwy, € Sg(l“).

Proof. For wy, € S(I") we have by using (10.17)

(Why ) Ly (wh, QFV) Ly
lwnllLyry =  sup  ———— = —_—
0#£vELy () HU||L2(F) 0#£vELy(I) ||UHL2(F)

1QF V[ 172
< lwnllg-rory  sup  —n D
0#£vE Ly (I) ||’U||L2(F)

By applying the inverse inequality (10.16) as well as the stability estimate
(10.18) we finally obtain the assertion. O
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Finite Element Methods

For the approximate solution of the variational problems as described in Chap-
ter 4 we will use the finite-dimensional trial spaces which were constructed in
Chapter 9. Here we will just consider finite elements of lowest order, in partic-
ular we will use piecewise linear and continuous basis functions. The stability
and error analysis is imbedded in the general theory as given in Chapter 8.
Some numerical examples illustrate the theoretical results.

11.1 Dirichlet Boundary Value Problem

For the Poisson equation we consider the Dirichlet boundary value problem
(1.10) and (1.11),

—Au(z) = f(z) forze R, ~Mu(z) = glz) forzel =00. (11.1)

Let u, € H'(£2) be some bounded extension of the given Dirichlet datum
g € HY?(I'"). Then the variational problem is to find ug := u — u, € H} ()
such that

/Vuo(x)Vv(x)dx = /f(x)v(m)dx—/Vug(x)Vv(x)dx (11.2)
2 2 2

is satisfied for all v € H}(£2). By using Theorem 4.3 we can state the unique
solvability of the above variational formulation.
Let .
X = 8,(2) N Hy(2) = span{ep; 12,

be the conformal trial space of piecewise linear and globally continuous basis
functions ¢} which are zero on the boundary 9£2. Note that the trial space is
defined with respect to some admissible decomposition 2 = UéV: 1Te of 2 into
finite elements 7y. Then the Galerkin variational problem of (11.2) is to find
up,, € Xp, such that
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/Vuoyh(:v)Vvh(:c)dx = /f(x)vh(x)dxf/Vug(x)Vvh(:v)dx (11.3)

2 2 2

is satisfied for all v, € X},. By applying Theorem 8.1 (Cea’s Lemma) there ex-
ists a unique solution ug j, of the Galerkin variational problem (11.3) satisfying
the error estimate (8.7),

Cy .
— < £ f _ .
HUO uO,h”Hl(Q) — 0114 vhlg)fh ||’U,0 UhHHl(.Q)

If the solution w of the Dirichlet boundary value problem (11.1) satisfies
u € H*(2) for some s € [1,2], then we obtain by applying the trace the-
orem g = ’yéntu € H* Y2(I"), i.e. the extension u, of the given Dirichlet
datum g can be chosen such that u, € H*({2) is satisfied. Therefore we have
uy = u—uy € H*(§2) and from the approximation property (9.33) we conclude
the error estimate

uo — wonllmi(o) < ch® ' ulgs(n) forue H*(12), s€[1,2]. (11.4)

When assuming certain smoothness properties of the domain {2 we can prove,
by using some duality arguments, error estimates which are valid in Ly (£2).

Theorem 11.1 (Aubin—Nitsche Trick). Suppose that 2 is convex or the
boundary I' = 0f2 is smooth. For given f € Lo(£2) and g = 'yémug with
ug € H%(92) let ug € H(12) be the unique solution of the variational problem

/Vuo(x)Vv(:c)dz = /f(x)v(:z:)dx—/Vug(:zr)Vv(x)dx
Q Q Q
to be satisfied for allv € H}(£2). Assume that

luollz(y < ¢ {Ifllzaco) + lugllarz () } -

The approzimate solution ug , € Xj, of the Galerkin variational problem (11.3)
then satisfies the error estimate

luo — vonllLo) < ¢h® [1fllrac2) + lluglazo)] -

Proof. By assumption we have uy € H?(f2), and for the approximate solution
uo,n, € X, we get by using (11.4) the error estimate

luo — wonllmr (o) < chluoluziay < ch [[IfllLa2) + lugllmz(ey] - (11.5)

Let w € Hg(£2) be the unique solution of the variational problem

/Vw(:c)Vv(x)dx = /[uo(x) —ug p(x)]v(z)de

0 0
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to be satisfied for all v € Hj(£2). Due to the assumptions made on 2 we
conclude w € H?({2), and

|wllz2(2) < clluo —vonllLy(2)-

Due to ug — ug,, € H($2) and by using the Galerkin orthogonality

/V[uo(x) —uop(z)]Vop(z)de = 0 for all v, € X,
Q

we get

o = 02y = [ Tuo(@) = o)) — o (o)l
2
= /Vw(x)V[uo(a:) — o, ()|dx
2

- / Viw(z) — Qhw(@)]Vuo(z) — uop(x))da

%)
< |lw — Qhwllm (o) lluo — wo,nllai (o)

where Q) : H}(2) — X;, C H}(82) is the Hj(§2) projection which is defined
similar to (9.29). For w € H?({2) we obtain from the approximation property
(9.32) of the trial space X}, the error estimate

lw — Qpwllaie) < chllwllg2e) < chlluo —uonllL,(2)-
Altogether we have
luo — vo.n|lr,0) < chlluo — uonllmr ()

and by using (11.5) the assertion follows. O

To realize the Galerkin variational formulation (11.3) we need to know the
bounded extension u, € H?(§2) of the given Dirichlet datum g. Formally, for
ug € H?(£2) we denote by Iyu, € S}(§2) the piecewise linear interpolation
which can be written as

Intg(@) = 3" g}l (o).

Instead of the exact Galerkin variational formulation (11.3) we now consider
a perturbed variational problem to find @, € X} such that

Vo n(z)Vup(z)de = | f(x)vp(x)de — | VIjug(z)Vor(z)de  (11.6)
/ [riomo

0 0
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is satisfied for all vj, € Xj,. For the unique solution uy ), € X; we have, by
using Theorem 8.2 (Strang Lemma), the error estimate

A

~ ch )
luo — @o,n | mr (o) < o o nf luo — vnllar () + llug — Inuglla (o)

If we assume u € H*({2) for some s € [1,2] and u, € H?({2), then by using
the approximation property of the trial space X as well as the interpolation
estimate (9.22) we get

[uo — Tonll (o) < €1 B* ! |uolme(a) + c2 h|ug|me(0)
< ch® " [luolmsco) + lgllms2r)] -

The piecewise linear interpolation Ipu, can be written, by considering the

interior nodes {xi}ij\zl, x; € 2 and the boundary nodes {z; }MM+1’ x; €I,
as
M
Iyug(z Zug (z)ei(@) + D glz)ei().
1= ]\7—}-1

Hence the perturbed Galerkin variaitional formulation (11.6) is equivalent to
finding

M
Uo,p(z) = Uo,n(z +ZIhug z;) (@ Zulcp2 € Xy

=1

as the unique solution of the variational problem

/Vﬂo7h(m)Vvh(x)d:c = /f(a:)vh(x)da:— /Vg@z YWop(z)dx
2 22 i=M+1

(11.7)
to be satisfied for all v, € Xj. The resulting approximate solution of the
Dirichlet boundary value problem is then given by

M M
=Y el @)+ D glw)e(z) € Si(R). (11.8)
=1 i=M+1

Theorem 11.2. Let u € H*(2) for some s € [1,2] be the unique solution of
the Dirichlet boundary value problem (11.1). Let uy, € H*(£2) be an appropri-
ate chosen extension of the given Dirichlet datum g. Let up, be the approximate
solution of (11.1) which is defined by (11.8). Then there holds the error esti-
mate

lu— o) < ch® " [luolus(o) + llugllaz(o)] (11.9)
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Proof. By using the triangle inequality we have
lw = unllm(2) = lluo +ug — (to,n + Inug)l ()
< lluo = tonllmr () + llug = Tnugl a (2)-

Therefore, the assertion follows from Theorem 8.2, by estimating the interpo-
lation error, and by applying the inverse trace theorem. 0O
If the solution u € H?(§2) is sufficiently regular, we therefore obtain the
error estimate
||u—uhHH1(Q) < ch|u\H2(Q). (1110)

As in Theorem 11.1 (Aubin-Nitsche Trick) we can also prove an estimate for
the error [|ug — to,nll1,(52)-

Lemma 11.3. Let all assumptions of Theorem 11.1 be valid, in particular we
assume u € H?(§2) to be the unique solution of the Dirichlet boundary value
problem (11.1). Then there holds the error estimate

[Jwg — ao7h||L2(Q) < ch? [|U0|H2(Q) + |ug|H2(Q)] . (11.11)
Proof. Let w € H&(Q) be the unique solution of the variational problem
/Vw(x)Vv(x)dx = /[uo(x) — Uo.p(z)|v(z)dz
2 7}

to be satisfied for all v € H}(§2). For ug — g, € L2(£2) and due to the
assumptions made on {2 we conclude w € H?(£2), and therefore we have

|wlla20) < clluo — tonllL,(2)-

By subtracting the perturbed variational problem (11.6) from the variational
problem (11.2) this gives

/V[uo(x) — g p(2)]Vop(x)de = /V[Ihug(a:) — ug(x)|Vop(x)dz
o Q

for all v;, € X},. Hence we have

o = ol = | @) — T (&) o) — To (o)l do
N
= /Vw(x)V[uo(a:) — U, (x)]dx
(9]
- / V(w(z) — Qhw(@)]V[uo(x) — T (x))da
2

Jr/VQ}lw(:r)V[Ihug(z) — ug(x)]de.
2
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The first term can be estimated as in the proof of Theorem 11.1,
[ Flut@) - Q@) Vlua(w) ~ T (z)do
Q

< chljug — aOJL”Lz(.Q)HUO - ao,h||H1(Q)-

For the second term we first have

[ V@) Vi (o) - uy(a)ldo
%)
— [ ViQhu() - w@)Viliuy ) ~ uy(a))dz
7}
+/Vw(x)V[Ihug(ar) — ug(z)]d.
7
The resulting first term can further be estimated by

[ ¥1Qhw(e) — w@) V(o) — vy o))z
[0}

IA

g [lw = Qhwll () llug — Inugllz (o)

A

< chljwllgz)llug — Inugll (o)

IN

chllug —to,nllLy2)llug — Inugll (o)

For the remaining second term we have, by applying integration by parts, for
w € H(2)N H?(0),

/Vw(x)V[Ihug(x) —ug(x)]dz| = f/Aw(:v)[Ihug(x) — ug(x)]dx
Q Q

IN

[wllz2(2)llug = Tnugl Lo(2)

IN

c|luo — o nllLo(2)lltg — IntgllLo(2)-

Altogether we have

[uo — o,nllLy(0)

< crh [luo = opllmr(2) + llug — Tnugl (o)) + lug — Intgll Lo o)-

For ug,u, € H?*(2) the assertion now follows from the error estimates
for |lug — uo,nllg1 () as well as from the interpolation error estimates for
lug — InugllL, (o) and [lug — Inug| (o). O
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The Galerkin variational problem (11.7) to find the coefficients ; for

i=1,..., M is equivalent to an algebraic system of linear equations Apu = f
with the stiffness matrix A; defined by

Ah .]7 /v@z VQOJ )d

fori,j=1,..., M, and with the right hand side vector f given by

M
f= [1wa@is= Y @) [ V@@
0 i=M+1 19’
forj=1,... ,M. The stiffness matrix A, is symmetric and due to

Mwmz/wmwmmmz#m%m>

for all v € RM o v, € Xp, C HY(92) positive definite. In particular we have
the following result:

Lemma 11.4. For allv € RM « v, € X, C HX(82) there hold the spectral
equivalence inequalities

c1 b 12ll3 < (Anw,w) < o b2 [l0]3 (11.12)

max

Proof. For v € RM o v, € X), C H}(02) it follows by localization and by
applying the local inverse inequality (9.15)

M M M M
Ah’U ’U ZZA}L gyt Uvj ZZG(Q@},@})’UZ"U]'

i=1 j=1 i=1 j=1

M M
= a(z 'Ui%pilvzvj@]l‘) = a(vn,vn)
i=1 j=1
N
:/|Vvh(x)|2dx = Z/|Vuh(ﬂc)\2da:
7 =17

N

||Vvh||2Lg (1e) = < cr Zh |Uh||L2(TZ)
=1

N
Sth[zAg Z vi = CZ Z h?_z v3
(=1

keJ(6) k=1 \¢cI(k)
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and therefore the upper estimate. On the other hand, by using the H}(£2)
ellipticity of the bilinear form a(-,-) and by changing to the Ls(f2) norm we
get

(Anw,v) = a(vn,vn) > e llonllFnigy > ot lonlli, o)

N N M
=Y onlliymy =D A > g =ed | D hi |}
=1 )

=1 keJ(t k=1 \teI(k)

and therefore the lower estimate. 0O
Note that the constants in the spectral equivalence inequalities (11.12) are
sharp, i.e. the constants can not be improved. Hence we have for the spectral
condition number of the stiffness matrix Ay in the case of a globally quasi-
uniform mesh
ro(Ap) < ch™2, (11.13)

in particular the spectral condition number increases when the mesh is re-
fined. As an example we consider a Dirichlet boundary value problem where
the domain is given by the square 2 = (0,0.5)2. The initial mesh consists of
four finite elements with five nodes, which are recursively refined by decom-
posing each finite element into four congruent elements, see Fig. 11.1 for the
refinement levels L =0 and L = 3.

Fig. 11.1. Initial mesh (L = 0) and refined mesh L = 3.

The minimal and maximal eigenvalues and the resulting spectral condition
numbers of the associated finite element stiffness matrices are given in Table
11.1. Note that when choosing d = 2 and h = O(N~?) the results of Lemma
11.4 are confirmed. Thus, when using a conjugate gradient scheme to solve
the linear equation systems Apu = f with the symmetric and positive def-
inite system matrices A, we need to have an appropriate preconditioner to
bound the number of necessary iteration steps to reach a prescribed accuracy
independent of the system size. Note that preconditioned iterative schemes
are considered later in Chapter 13.
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N Amin (Ah) Amax (Ah) H2(Ah)
64 5.86 -1 7.41 12.66
256 1.52 -1 7.85 51.55

1024 3.84 -2 7.96 207.17
4096 9.63 -3 7.99 829.69
16384 2.41 -3 8.00 3319.76
65536 6.02 4 8.00  13280.04
8 262144 1.52 4 8.00  52592.92
Theory:  O(h?) O(1) O(h™?)

EN e NG IISGUN T i o

Table 11.1. Spectral condition numbers of the stiffness matrices Ay,.

Next we will discuss the computation of the load vector f and the realization
of a matrix by vector multiplication with the stiffness matrix Ap,_as needed in
the application of an iterative solution scheme. For j = 1,..., M we have by
localization and parametrization, see Chapter 9,

f = [ raelds Z / f@)eha
(9

S [det Ji / Fee, + TE)L, (€)de

leTy

where ¢; is the local index of the global node x; with respect to the finite
element 7,. Hence we can reduce the computation of the global load vector
f to the computation of local load vectors f In particular, for each finite
element 74, we need to compute

L= |deth|/f(96g1 + J)H(€)de forv=1,...,d+ 1.

For:=1,...,d+1 we denote by ¢, the corresponding global node index, then
the global load vector f is computed by assembling all local load vectors f ”
ie.

f& = f& + ﬁ,u

If u € RM o up, € X, is given, the result v = Aju of a matrix by vector
multiplication with the global stiffness matrix Aj;, can be written as

vj = ZAh gyilui = a(un,¢;) = /Vuh 2)Vo;(z)de
i=1 Lel( j)n

Z Zul/v% Vgoj x)dx, jzl,...,M.

Lel(j)ieJ(b)

Te
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Therefore it is sufficient to compute the local stiffness matrices AfL which are
defined by

AL 0] = |det gy / T TV (€)T7 TV e (€)d

for ¢,/ =1,...,d+1. Hence we can reduce the matrix by vector multiplication
with the global stiffness matrix Aj, to a localization of the global degrees of
freedom u € RM to local degrees of freedom u, € R where Up, = Up,, 8
multiplication with the local stiffness matrices v, = Aﬁﬂea and the assembling
of the global vector v from the local results v,, i.e.

Vg, = Vg, + Vg,

The incorporation of given Dirichlet boundary conditions to compute the
global load vector f can be done in the same way. Hence, for a matrix by
vector multiplication with the global stiffness matrix A, we only need to
store the local stiffness matrices A% with an effort of O(N) essential opera-
tions. For alternative approaches to describe the sparse stiffness matrix Ay,
see, for example, [85].

To check the theoretic error estimates (11.9) and (11.11) we now consider
the Dirichlet boundary value problem (11.1) where £2 = (0,0.5)? and f = 0
are given, and where the Dirichlet boundary data are prescribed such that

1
u(@) = =5 loglz —a"|, 2" = (=011, -0.1)" (11.14)

is the exact solution. In Table 11.2 we give the errors of the approximate
Galerkin solutions wuj, for a sequence of uniformly refined meshes, where L is
the refinement level, IV is the number of finite elements, M is the total number
of nodes, and DoF is the number of degrees of freedom which coincides with
the number of interior nodes.

N M DoF |u — un|gi(o) eoc [[u — unllL, ) eoc
64 41 25 1.370 -1 2.460 -3

256 145 113 6.954 -2 098 57174 211
1024 545 481  3.494 -2 0.99 1.408 4 2.02
4096 2113 1985 1.749-2 1.00 3.511 -5  2.00
16384 8321 8065 8.748-3 1.00 8.771-6 2.00
65536 33025 32513 4.374-3 1.00 2.192-6 2.00
8 262144 131585 130561  2.187 -3 1.00 5481 -7  2.00
9 1048576 525313 523265 1.094 -3 1.00 1.370 -7  2.00

Theory: 1 2

O Ut W N

Table 11.2. Errors and estimated order of convergence, Dirichlet problem.
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Since the solution (11.14) of the Dirichlet boundary value problem is infinitely
often differentiable, we can apply Theorem 11.2 and Lemma 11.3 for s = 2.
Hence we obtain one as order of convergence when measuring the error in the
energy norm |u —up| g1 (). Moreover, when applying the Aubin-Nitsche trick
we get two as order of convergence when measuring the error in the Ly norm
|u — un||z,(2)- By eoc we denote the estimated order of convergence which
can be computed from

log ||u — up, || — log [lu — up, ||

coe = log hy —log hyyy

Note that the theoretical error estimates are well confirmed by the numerical
results as documented in Table 11.2.

11.2 Neumann Boundary Value Problem

We now consider the Neumann boundary value problem (1.10) and (1.12) for
the Poisson equation,

—Au(z) = flz) forze R, ~Mu(z)=g(z) forzel =002 (11.15)

where we have to assume the solvability condition (1.17)
/f(x) dx—i—/g(ac) ds; = 0. (11.16)
Q r

For a finite element discretization we consider the modified variational prob-
lem (4.31) which admits, due to Section 4.1.3, a unique solution u € H'(2)
such that

/Vu(x)Vv(x)dw—i—/u(x)dm/ r)dr = /f dx+/ ()70 () ds,
2 7

(11.17)
is satisfied for all v € H'(£2). From the solvability condition (11.16) we
then conclude the scaling condition u € H(§2), i.e. u € H(2) satisfying
(u, 1) ,(0) = 0.

Let
Xy = 51(2) = span{gl )L, € H'(2)

be the conforming trial space of piecewise linear and globally continuous basis
functions ¢ with respect to an admissible finite element mesh 2 = UéV: 1Te-
Note that the basis functions {¢+}4 | build a partition of unity, i.e.

Z(pi(x) =1 forallzef2 (11.18)
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The Galerkin variational formulation of (11.17) is to find u, € X}, such that

/Vuh YWop(x )dx+/uh( )da:/vh( )dx (11.19)

/f Dnlz m+/<>%m@z

is satisfied for all v;, € X},. By applying Theorem 8.1 (Cea’s Lemma) we
conclude that there exists a unique solution wuj of the variational problem
(11.19) satisfying the error estimate (8.7),
&
- < — inf — .
lu = unllm (o) —'cf»vfgxh”u Va1 ()

If the solution u of the Neumann boundary value problem (11.15) satisfies
u € H#*(£2) for some s € [1,2], then we conclude, by using the approximation
property (9.33) the error estimate

lu—unllm (o) < ch® ulgen) forue H*(2), se[1,2].

Due to (11.18) we can choose v, = 1 as a test function of the Galerkin
variational formulation (11.19). From the solvability condition (11.16) we then

obtain
/uh(x)dx/dx =0

2 2

and therefore uj, € HL(2), i.e. the scaling condition is automatically satisfied
for the Galerkin solution uj, € Xj.

The Galerkin variational problem (11.19) to find the coefficient vector
u € RM is equivalent to the solution of the linear system of algebraic equations

[An+aa'Ju=f

where the stiffness matrix A;, defined by

Ah ]v /V% VQJO]( )

fori,j =1,..., M, and with the load vector given by

= [ 1@l + [ garelieyis,
0

r

for j =1,..., M. In addition, a € RM is defined by

a; = /gog(x) da

n
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for i = 1,..., M. Note that the modified stiffness matrix A, +aa' is sym-
metric and positive definite. Moreover, the spectral equivalence inequalities
(11.12) remain valid. Hence, when using the conjugate gradient scheme to
solve the linear system iteratively we have to use again an appropriate precon-
ditioner. Both the computation of the load vector f as well as an application
of the matrix by vector product with the stiffness matrix A, can be realized
as for the Dirichlet boundary value problem.

The approximate solution of boundary value problems with mixed bound-
ary conditions as well as with Robin boundary conditions can be formulated
and analyzed as for the Dirichlet or Neumann boundary value problem. Here,
we will not discuss this in detail. The same is true for the approximate solution
of boundary value problems in linear elasticity. However, when considering the
Neumann boundary value problem we have to modify both the solvability con-
ditions as well as the definition of the modified variational problem due to the
rigid body motions.

11.3 Finite Element Methods with Lagrange Multipliers
For an alternative approximation of the Dirichlet boundary value problem

(11.1) we consider the modified saddle point problem (4.22) and (4.23) to find
(u, \) € H'(£2) x H~Y/?(I') such that

/%ﬁm>@z/%ﬁm)wz+/vmwvwmmv—/%ﬁw>xwm%

:
= (f,v)e+ F/g dszl/wéntv z)ds, (11.20)
lnt
F/ . 2)ds, + F/ A(z)ds, F/ () ds.
~ e~ [ f@)do [ ua)ds,
(9] r

is satisfied for all (v, ) € HY(2) x H=Y*(I').
Assume that there is given an admissible finite element mesh 2 = U2 T
of the polygonal or polyhedral bounded domain £2 C R?. The restrlctlon of

the finite element mesh in (2 defines a boundary element mesh I" = Uz I,
on I' = 0f2. Let

X (2) := SL(2) = span{p} M, c H'(2)

be the conforming finite element space of piecewise linear and globally contin-
uous basis functions ¢}. The restriction of X, (£2) onto I = 9f2 then defines
a boundary element space
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Xu(I') == Si(I') = span{¢t} ML ¢ HY*(I)

of piecewise linear and continuous basis functions ¢;. We denote by M, the
number of all interior nodes x; € {2, and we have M = M + Mr as well as

Xh(“o) - Span{(pz} U Span{@z }1 Meao+1 -
In particular,
¢ = ’Y(l)nt(p]\/[QJﬂ fOrZ-: 17...7M[’.
Moreover, let
. N —1/2
Iy := span{¢y ;1 C H (I
denote a suitable trial space to approximate the Lagrange multiplier A.

The Galerkin discretization of the saddle point problem (11.20) is to find
(up, Air) € Xp, X ITy such that

/76“%( \ds. /’yé“tvh( s, + /Vuh@)wh(x) /vgnw Vst () dss

r I 0 T
= <fvvh>(z+/g(x)dsz/7(ﬂntvh( )ds, (11.21)
r r
/ i, () s () ds, + / A (2)ds, / i () ds,
T e 7
= <97UH>F_/f($)d$/MH(x)dsw
9] r

is satisfied for all (vp, pr) € Xp, x ITy. With

Al i) = / Vil (1)l (2)de

0
Bult,1] := / et o ()ds,
I
a = / At L (1) ds,,
I
b[ = W’(x)dsl
/

fori,j=1,....,.M and ¢/ =1,..., N, as well as with

f; :=/f )pk(@ da:+/ ()dsm/ it (2)ds,.
9@5:/( pe()dss — /f d:c/w \ds.
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forj=1,...,M and £ = 1,..., N we conclude that the approximate saddle
point problem (11.21) is equivalent to a linear system of algebraic equations,

<QQT + Ay —B§> <u> _ <i> . (11.22)
Bn  bb A g

L 0 fori=1,..., Mg,
Bplt,i] = {Bh[é,i—MQ] fori=Mgo+1,...,M

Obviously,

with
Bult,i] = / Vo(@)ol (x)dss
I

fori=1,...,Mpand {=1,...,N.

The matrix aa' + Ay, is by construction symmetric and positive definite
and therefore invertible. In particular, the first equation in (11.22) can be
solved for u to obtain

u=[aa +A4,]" [f+B2] .

Inserting this into the second equation of (11.22) we end up with the Schur
complement system

(Bufoa™ + 407 Bl +007|A = g Bufaa” + 4 £ (1123)
The unique solvability of the Schur complement system (11.23) and therefore
of the linear system (11.22), and hence of the discrete saddle point problem
(11.21), now follows from Lemma 8.6 where we have to ensure the discrete
stability condition (8.25), i.e.

int
csllprllg-120my < sup St 70 vn) e for all upy € . (11.24)

0#£vp EX 1 (£2) thllHl(Q)

This stability condition is first considered for the boundary element trial
spaces ITy and X, (I).

Theorem 11.5. The mesh size h of the trial space Xp(I") is assumed to be
sufficiently small compared to the mesh size H of Iy, i.e. h < coH. For the
trial space Iy we assume a global inverse inequality. Then there holds the
stability condition

, W
es lpallp-120my < sup {pazr, wn) for all pp € Iy.  (11.25)

0w exy () 1wnll gz
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Proof. Let uy € Iy € H-Y/?(I') be arbitrary but fixed. By using the Riesz
representation theorem (Theorem 3.3) there exists a unique Jug € H'/?(I)
satisfying

(Jpm, w) g2y = (pa,w)r for allw € HY?(I)

and || Jpg | gizry = lpellg-12r). Let Q;L/QJ,uH € X,(I') be the unique
solution of the variational problem

( }11/2J/,6H7wh>H1/2(F) = (um,wp)r for all wy, € Xp(I).
Then there holds the error estimate
1-Q/*%J ey < inf || —
(I = Q) pwll ey < . L | Jpr — wnllg1/2r
Due to py € Lo(I") we obtain, by using duality and the definition of Ju gy,

T, v
Waalm = sup 00w {paz1,0)r

= < Nenll.r
ozvelo(ry  NVllacr) oveLy (1) 1Vl Loy

and therefore Juy € H'(I'). From the approximation property of the trial
space X (I"), see the error estimate (10.13), we then obtain

1T — Q") urllery < eah? | Tunllmry < cah? |uall ).

By applying the inverse inequality in the trial space Il this gives

1o h 1/2
I~ @3/l < cact (57) - Nonll-sry

Assume that the constant cg is chosen such that h < ¢gH and

1

1/2

I = Qi Tuallmairy < 5 Malla-reery
is satisfied. Then we have

||ﬂH||H—1/2(F) = HJNH”HW(F)
1/2 1/2
<@y Jumllgiremy + 1 Tua — Q" Jumll gz

1
1/2
< Q3 Tustllmrary + 5 lusilli-sr2ry

and therefore

1
1/2
1y Tusillmrary = 5 Insll-racry-

By using the definition of Q}L/2J,uH we get
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(o, Q> Ty r = { 2/2J/~LH7Q2/2J/~LH>H1/2(F)

1/2
= Q) Tl

V

112
> 5 1@ Tl syl -2y
from which the stability estimate (11.25) follows. O

Remark 11.6. To establish the stability condition (11.25) one may also use
Fortin’s criterion (Lemma 8.9). Then we have to prove the boundedness of
the projection operator Qy : HY/2(I') — X,,(I') C HY/2(I') which is defined
via the variational formulation

(@nu, pr)r = (u,pgr)r for all py € .

If we assume a global inverse inequality in the trial space X, (I"), then we can
prove the H'/2 (I")-boundedness of @h by using the error estimates of I — @h
and I — Q}/Q in Ly(I") as well as the stability of Q,ll/Q in H'/2(I"). For the
case of trial spaces which are defined with respect to some adaptive boundary

element mesh where we can not assume an inverse inequality globally, we refer
to [137, 138].

By using the inverse trace theorem (Theorem 2.22) the stability condition
(11.25) implies

_ , Wh
s lpullp-12(ry < v sup Sy, wnpr for all ppr € Hp.

0Awp Xy () ”‘SwhHHl(Q)

Finally, let R, : H'(2) — X,(2) Cc H'(£2) be some quasi interpolation
operator [133] satisfying

[Rnvllai o) < crllvlla (o)

and where Dirichlet boundary conditions are preserved. Then we obtain

¢ H,Wh)r
s llpnllg-172(ry < crrer  sup (g, wn)

_MHSOME ool iy € g,
0wneXn () 1RREWR 1 ()

and by choosing v, = RpEwy, € Xp(2) we conclude the stability condition
(11.24). This gives us the unique solvability of the Schur complement system
(11.23) and therefore of the linear system (11.22). The application of Theorem
8.8 yields, when assuming u € H*(£2) and A € H}j,(I'), the error estimate

||U—Uh|\?ql(Q)+||)\—)\H||?{fl/2(r) < e h® [ulfpa(g)te2 H? ”)‘Hiféw(F)' (11.26)

To ensure the discrete stability condition (11.25) we need to assume h < coH
where the constant ¢y < 1 is sufficiently small.
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We now consider the numerical example of Section 11.1 with h = %H . For
L = 3 the finite element mesh of {2 and the associated boundary element mesh
are depicted in Fig. 11.2. In Table 11.3 the computed errors of the approximate
solutions (up, Agr) € Sp(£2) x S%(I') are given. The numerical results for the
approximate solution uy of the primal variable u confirm the theoretical error

estimate (11.26).

Fig. 11.2. Finite and boundary element meshes of 2 (L = 3).

L N_(z NF HU7U}1”H1(Q) eocC H/\f)‘hlez(F) €eocC
1 16 4 5.051 -1 1.198 +0

2 64 8 2.248 -1 1.17  9.350 -1 0.36
3 256 16 9.897 -2 1.18 5.662-1 0.72
4 1024 32 4.133 2 1.26  2.970 -1 0.93
5 4096 64 1.851 -2 1.16 1.457 -1 1.03
6 16384 128 8.889 -3 1.06 7.093 2 1.04
7 65536 256 4.393 -3 1.02 3.482 -2 1.03
8 262144 512 2.190 -3 1.00 1.723 -2 1.01
9 1048576 1024 1.094 -3 1.00 8569 -3 1.01
Theory: 1 0.5

Table 11.3. Results for a Finite Element Method with Lagrange multipliers.

To describe the error of the approximation Agy of the Lagrange multiplier A
we use the Lo norm which is easier to compute.

Lemma 11.7. For the trial space S% (") we assume a global inverse inequality
to be valid. If w € H?*(£2) and X € Hzl,w(F) are satisfied, then there holds the

error estimate



11.4 Exercises 261
IN=Au 7,y < et h? H  ulfe () + 2 H? ||)\||§{;w(r)~

Proof. For A € H},(I") we define Qu\ € S%(I') to be the Ly projection as
defined in (10.4). By using the triangle inequality and the inverse inequality
we obtain

X=Xl 2,y < 210 = QuAllT, oy +21QuA = Al 1y
< 2| A= QuAlT, ) +2eF HHIQuA = Aullf—12py

IA

207 = QuAlIZ, ry + 46 B [1QuA = Mgy + X = Al 1/ | -

The error estimate now follows from Theorem 10.2, Corollary 10.3, and by
using the error estimate (11.26). O

When choosing h = %H we conclude by applying Lemma 11.7 the error
estimate

1
IAN=Aul7, ) < ZClH‘“ﬁP(Q) +e2 H M, )

and therefore an asymptotic order of convergence which is 0.5 when measur-
ing the error in the L, norm. However, the numerical results in Table 11.3
indicate a higher order of convergence which is equal to 1. This preasymptotic
behavior may be explained by different orders of magnitude in the constants

1 2 2
1¢llullz o) and 02‘|t|‘H;W(F)'

11.4 Exercises

11.1 Consider the Dirichlet boundary value problem

—u"(z) = f(x) forz e (0,1), u(0)=wu(l)=0.
Compute the finite element stiffness matrix when using piecewise linear basis
functions with respect to a uniform decomposition of the interval (0,1).

11.2 Show that the eigenvectors of the finite element stiffness matrix as de-
rived in Exercise 11.1 are given by the nodal interpolation of the eigenfunctions
as obtained in Exercise 1.6. Compute the associated eigenvalues and discuss
the behavior of the resulting spectral condition number.

11.3 Derive a two—dimensional Gaussian quadrature formula which integrates
cubic polynomials over the reference triangle

r={reR?:x; €(0,1),22 € (0,1 —xy)}

exactly.
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Iterative Solution Methods

The Galerkin discretization of variational problems as described in Chapter 8
leads to large linear systems of algebraic equations. In the case of an elliptic
and self adjoint partial differential operator the system matrix is symmetric
and positive definite. Therefore we may use the method of conjugate gradients
to solve the resulting system iteratively. Instead, the Galerkin discretization of
a saddle point problem, e.g. when considering a mixed finite element scheme
or the symmetric formulation of boundary integral equations, leads to a linear
system where the system matrix is positive definite but block skew symmetric.
By applying an appropriate transformation this system can be solved again
by using a conjugate gradient method. Since we are interested in iterative
solution algorithms where the convergence behavior is independent of the
problem size, i.e. which is robust with respect to the mesh size, we need to
use appropriate preconditioning strategies. For this we describe and analyze
first a quite general approach which is based on the use of operators of the
opposite order, and give later two examples for both finite and boundary
element methods. For a more detailed theory of general iterative methods we
refer to [4, 11, 70, 143].

13.1 The Method of Conjugate Gradients

We need to compute the solution vectors u € RM™ of a sequence of linear
systems of algebraic equations (8.5), Ayyu = f, where the system matrix
Ay € RM*XM s symmetric and positive definite, and where M € N is the
dimension of the trial space to be used for the discretization of the underlying
elliptic variational problem (8.1).

To derive the method of conjugate gradients we start with a system of
conjugate or Aj;—orthogonal vectors {pk }qu\/[: 61 satisfying

(Ap®,p") = 0 fork,0=0,...,M — 1,k #¢.
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Since the system matrix Ay, is supposed to be positive definite, we have
(Aarp®,p*) > 0 fork=0,1,...,M — 1.

For an arbitrary given initial guess u’ € R™ we can write the unique solution
u € RM of the linear system Ajju = [ as a linear combination of conjugate

vectors as
M—1

u=1u"— ) ap
=

o

Hence we have

M—1
Apu = Apu’ — Z acAup’ = f,
=0

and from the Ap;—orthogonality of the basis vectors ge we can compute the
yet unknown coefficients from

Apul — ¢
ar = (Anry li;ﬂ for 0 =0,1,..., M — 1.
For some k= 0,1,..., M we may define an approximate solution

k—1
gk = go — Zozgpé e RM
=0

of the linear system Apu = f. Obviously, uM = u is just the exact solution.
By construction we have

ubtl = gk—ak]_ak fork=0,1,...,M — 1,

and from the Ap;—orthogonality of the vectors {p bl we obtain

k—1
Apu® = agAppt — f,pk>
(Amu® — f,p%) < ; - (Apur — f

p

(AmpF,pF) (Anph, pF) (Anph,

If we denote by

/
Qp =
P

¥ = Ayuh - f

the residual of the approximate solution u* we finally have

(r*, p*)

ot (13.1)

o =

On the other hand, for k = 0,1, ..., M — 1 we can compute the residual r*+!

recursively by
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P = Ayt — f = Ay (P - anp®) — f = 1 — e Aup”.

The above approach is based on the use of Ap;—orthogonal vectors {Be}[AiIO'
Such a vector system can be constructed by applying the Gram—Schmidt
orthogonalization algorithm which is applied to some given system {Qe}l]\i 61
of vectors which are linear independent, see Algorithm 13.1.

Initialize for k = 0:

p° = w®

Compute for £k =0,1,..., M — 2:

k ktl ¢

k1 k1 ¢ (Apw"™", p")
p=wt =Y Brep, Bre= —
p ; b (Ap’, p%)

Algorithm 13.1: Gram—Schmidt orthogonalization.

By construction we have for k =0,1,..., M — 1
span {p' Yo = span {w' Y, .

It remains to define the initial vector system {Qe}é\i 61. One possibility is to
choose the unit basis vectors w* = e* = (§p11,0)2L, [59]. Alternatively we
may find the basis vector w**! from the properties of the already constructed
vector systems {p‘}}_, and {r‘}}_,.

Lemma 13.1. For k=0,1,..., M — 2 we have
(kL phy =0 fort=0,1,... k.

Proof. For ¢ =k =1,...,M — 1 we have by using (13.1) to define the coeffi-
cients oy, and by using the recursion of the residual r**! the orthogonality

(rF k) = (oF, ") — an(Anp®,p*) = 0.

For ¢/ = k — 1 we then obtain

2If—l) _ (fk,pk_l) —ak(AM}_jk7£k_1) -0

(fk—H;

by applying the Aj;—orthogonality of Qk and B’“_l. Now the assertion follows
by induction. O
From the orthogonality relation between the residual r

directions EZ we can immediately conclude a orthogonality of the residual r

with the initial vectors w?.

k+1 and the search

k+1

Corollary 13.2. For k=0,1,..., M — 2 we have

(kL w =0 fort=0,1,... k.
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Proof. By construction of the search directions ]_95 from the Gram—Schmidt
orthogonalization we first have the representation

¢
w' ="+ B

|
-

=0
Hence we obtain
-1
(fchrl7 we) = (£k+1’£€) + Z Be-1, (thrl?}_j])’
=0

and the orthogonality relation follows from Lemma 13.1. O
Hence we have that all vectors

wl wt, . wk

are orthogonal to each other, and therefore linear independent. Since we need
only to know the search directions 1_90, . ,]_)k and therefore the initial vec-

tors w?, ..., w® to construct the approximate solution v**' and therefore the
residual 7**!, we can define the new initial vector as

whtt = P fork=0,..., M —2
where w” := 7. By Corollary 13.2 we then have the orthogonality

(e =0 forl=0,...,kk=0,...,M—2.

Moreover, for the numerator of the coefficient « we obtain

k—1
(%, ") = (@F P+ Beore(rh ph) = (8, rh),
£=0

and therefore, instead of (13.1),

(r*, %)
(Arrpk, p*)

In what follows we can assume

o = fork=0,...,M — 1.

ag >0 forl=0,...,k.
Otherwise we would have

(£g+1,££+1) _ (Eg—aeAz_De,ZZH) — (£2’£€+1) =0

implying 7! = 0 and therefore u‘*! = u would be the exact solution of the
linear system Apu = f.
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From the recursion of the residual 7! we then obtain

1
AMQZ = a_z(té—zz"'l) for{=0,...,k.

Now, by using w**! = r¥+1 and by using the symmetry of the system matrix

Apr = A}, we can compute the nominator of the coefficient (3, as

1
(AMQ]CJFI,EZ) _ (£k+17AMB£) _ a_e(£k+1,zf - Z€+1)

0 for £ < k,
= (£k+1’£k+1)

- forl{=k.
Qg

The recursion of the Gram-Schmidt orthogonalization algorithm now reduces

to
1 (Tk+1 Tk+1)
k+1 _ _k+1 k _ L ) L
p = 1" = Bup”  where By = —— .
L 154 ag (AMBkvz_jk)

On the other hand we have

Fopk) = (F = Beoi k1™t = (F k)

1=

and therefore
k+1 k+1
r ,
pFt = " 4 BipF where By = W

Summarizing the above we obtain the iterative method of conjugate gradients
[78] as described in Algorithm 13.2.

For an arbitrary initial guess u° compute
r’ = Apu’ — f, p” i=1", 0o := (r°1°).
For k=0,1,2,... . M — 2:

"= Aup®, on = (s",p%), an == or/ow;

k41 k

uF = uf —agp®, R =t ¥

= agSS

k1 = (" Rty

Stop, if pr+1 < €po is satisfied for some given accuracy e.
Otherwise, compute the new search direction

Br = ort1/ok, P =" 4 Bip®

Algorithm 13.2: Method of conjugate gradients.
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If the matrix Ap; is symmetric and positive definite we may define
|- llan = vV (Anrs )

to be an equivalent norm in R™. Moreover,

_ )\max (AM)

%) AM = AM 2 A ! 2 = ——————

(Aar) = [ Anrll2llAnrfl2 = == Ar)
is the spectral condition number of the positive definite and symmetric ma-
trix Ap; where || - ||2 is the matrix norm which is induced by the Euclidean

inner product. Then one can prove the following estimate for the approximate
solution u”, see for example [70, 143)].

Theorem 13.3. Let Ayy = A}, > 0 be symmetric and positive definite, and
let u € RM be the unique solution of the linear system Apyru = f. Then the
method of conjugate gradients as described in Algorithm 13.2 is convergent for
any initial guess u® € RM, and there holds the error estimate

=l € 2 —ufla wh Via(Ay) +1
u” —ulja < u —u where q =
S 4 T me(Aa) 1

To ensure a certain given relative accuracy € € (0,1) we find the number
k. € N of required iteration steps from

[u* — ul|a 24"
u® —ulla = 1+¢2 —

)

and therefore

In[l —v1—¢€?] —1Ine
ke > .
Ingq

The number k. obviously depends on ¢ and therefore on the spectral condi-
tion number ko(Aps) of Apr. When considering the discretization of elliptic
variational problems by using either finite or boundary elements the spectral
condition number ko (Aps) depends on the dimension M € N of the used finite
dimensional trial space, or on the underlying mesh size h.

In the case of a finite element discretization we have for the spectral con-
dition number, by using the estimate (11.13),

Ra(AR™) = O(h72), e ma(AL) & 4ro(AF™)

when considering a globally quasi—uniform mesh refinement strategy. Asymp-
totically, this gives

r2(AL75) + 1 2V (AP + 1

Ingp/;, = In

(AZ%A) 2 HQ(AFEM) 1
2 (A —1 2
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Therefore, in the case of an uniform refinement step, i.e. halving the mesh
size h, the number of required iterations is doubled to reach the same relative
accuracy €. As an example we choose ¢ = 107'°. In Table 13.1 we give the
number of iterations of the conjugate gradient method to obtain the results
which were already presented in Table 11.2.

FEM BEM
L N ka2(Ap) Tter N k2(Va) Tter
2 64 12.66 13 16 24.14 8
3 256 51.55 38 32 47.86 18
4 1024 207.17 79 64 95.64 28
5 4096 829.69 157 128 191.01 39
6 16384 3319.76 309 256 381.32 52
7 65536 13280.04 607 512 760.73 69
8 262144 52592.92 1191 1024 1516.02 91
Theory:  O(h™2) O(h™) O~ O(h~1?)

Table 13.1. Number of CG iteration steps when ¢ = 1071°.

When considering a comparable discretization by using boundary elements as
already discussed in Table 12.2 we obtain for the spectral condition number
of the system matrix

Ro(AF) = O(h™Y) hee k(AR & 2ra(AR™).

The number of required iterations to reach a certain relative accuracy € then
grows with a factor of v/2, see Table 13.1.

Hence there is a serious need to construct iterative algorithms which are
almost robust with respect to all discretization parameters, i.e. with respect
to the mesh size h. In general this can be done by introducing the concept of
preconditioning the linear system Apu = f.

Let C4 € RMXM be a symmetric and positive definite matrix which can
be factorized as

Cy = JDc,J", Dc, =diag(M\(Ca)), M(Ca) >0

where J € RM*M contains all eigenvectors of C'4 which are assumed to be
orthonormal. Hence we can define

02/2 _ JDlC/AQ‘]T’ D¢, = diag(v/ A\ (Ca))

satisfyin
e L A1/2 41)2 —1/2 1/2v—1
Ca=0C)"C)", Cy =(C/7) .

Instead of the linear system Aju = f we now consider the equivalent system
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Au = ¢y P AanC PPy = ¢ Pp = f
where the transformed system matrix
A= Paycy?

is again symmetric and positive definite. Hence we can apply the method
of conjugate gradients as described in Algorithm 13.2 to compute the trans-
formed solution vector u = 0114/ 2g. Inserting all the transformations we finally
obtain the preconditioned method of conjugate gradients, see Algorithm 13.3.

For an arbitrary initial guess 2°

compute
= Ana® — £, =040, BO i=1°, 00 := (u°,r°).
For k=0,1,2,..., M — 2:
M= Anp®, ow = (85, pY), ar = on/ow;

MU= g — o, T =R — g

18

_C 1 k+ k+1 7r,lc+1)
, T .

; Ok+1 = (Q

Stop, if pr+1 < €po is satisfied for some given accuracy .
Otherwise compute the new search direction

Br = ok+1/ 0k, P =0 + Brp®

Algorithm 13.3: Preconditioned method of conjugate gradients.

The Algorithm 13.3 of the preconditioned method of conjugate gradients re-
quires one matrix by vector product per iteration step, sk = AM;t_)k, and one

application of the inverse preconditioning matrix, v**! = C;'rF*1. From
Theorem 13.3 we obtain an error estimate for the approximate solution ﬂk,

_ _ HQ(A) +1
|z" —ull; < 1+A2k (o —ull; where § = ——.
HQ(A) —1
Note that for z = C’L/ Qg we have
~ cL/2 1/2
I21% = (ACY?2,CY/%2) = (Auz,2) = |2,

k:O 1/2 ~k

Hence, for the approximate solution u we find the error estimate

255
q ||H0

1+§2k _Q”AM'

[u* — ulla,, <
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To bound the extremal eigenvalues of the transformed system matrix A we
get from the Rayleigh quotient

s : (227 Z)

Amin A) = — < = = Amax A
(4) = min, @z ~ zerw (2,2 “
When inserting the transformations A= 21/2AM021/2 and z = Ci‘mg this
gives
- . (AM§7 é) (AM§7 g) A
)\min A) = — < A _ N >\max A).
D = miy Eo D < B ) W

Hence we have to assume that the preconditioning matrix C'4 satisfies the
spectral equivalence inequalities

' (Caz,2) < (Amz,2) < cf (Caz,z) forzeRY (13.2)

independent of M. Then we can bound the spectral condition number of the
transformed system matrix as

—1/2 4 ~—1/2 1 CZA

KQ(CA ACA ) = HQ(CX AM) < C_A
1

If the spectral condition number ko (C'ZIAM) of the preconditioned system
matrix can be bounded independent of the dimension M, i.e. independent of
the mesh size h, then there is a fixed number k. of required iterations to reach
a certain given relative accuracy ¢.

13.2 A General Preconditioning Strategy

We need to construct a matrix C'y as a preconditioner for a given matrix
Ajs such that the spectral equivalence inequalities (13.2) are satisfied, and an
efficient realization of the preconditioning v* = C’Zlgk is possible. Here we
consider the case where the matrix Ay, represents a Galerkin discretization
of a bounded, X—elliptic, and self-adjoint operator A : X — X’ satisfying

(Av,v) = ef ol%,  I[Avllx < e ollx forve X. (13.3)
In particular, the matrix A,; is given by
A]Vfw?k} = <AS01€7S0€> for ]C,é:l,...7M

where X := span{ey}L, C X is some conforming trial space.
Let B : X’ — X be some bounded, X’—elliptic, and self-adjoint operator,
i.e. for f € X' we assume

(Bf.f) = L Ifllxr,  IBfllx < @ [flx.
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By applying Theorem 3.4 there exists the inverse operator B~ : X — X’. In
particular, by using (3.13) and Lemma 3.5 we have
_1 1 1 1
IB™vlx < 5 lvllx, (B v,0) 2 —5 v
1 =

|% forve X. (13.4)

From the assumptions (13.3) and (13.4) we immediately conclude:
Corollary 13.4. For v € X there hold the spectral equivalence inequalities
B (B, v) < (Av,v) < &'el (B o, v).
Then, by defining the preconditioning matrix
Call,k] = (B pr,p0) fork,0=1,...,.M (13.5)

we obtain from Corollary 13.4 by using the isomorphism

M
QGRM — UM:Z’l)k(pkEX]\/[CX
k=1

the required spectral equivalence inequalities
el (Cav,v) < (Apw,v) < i (Cav,v) forv e RM. (13.6)

Although the constants in (13.6) only express the continuous mapping prop-
erties of the operators A and B, and therefore they are independent of the
discretization to be used, the above approach seems on a first glance useless,
since in general only the operator B is given explicitly. Moreover, neither can
the preconditioning matrix C'y be computed nor can the inverse C;l be ap-
plied efficiently. Hence we introduce a conforming trial space in the dual space
X/
Xjy = span{¢r}ply € X,

and define

Byl k] = (Bg,we), Ml k] = (pr, ) fork,e=1,..., M.

Note that the Galerkin matrix Bj; is symmetric and positive definite, and
therefore invertible. Therefore we can define an approximation of the precon-
ditioning matrix C4 by

Ca = M By M. (13.7)

We need to prove that the approximated preconditioning matrix C 4 1s spec-
trally equivalent to C'4, and therefore to Ayy.

Lemma 13.5. Let Ca be the Galerkin matriz of B~ as defined in (13.5),
and let Cy be the approzimation as given in (13.7). Then there holds

(Cav,v) < (Cav,v) forv e RM.
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Proof. Let v € RM « vy € Xjr C X be arbitrary but fixed. Then,
w = B~ vy € X’ is the unique solution of the variational problem

(Bw,z) = (vp,z) forze X',

Note that
(Cav,v) = (B op, vpr) = (w,vpr) = (Bw,w). (13.8)
In the same way we define w = B]\}l Muyv < wy € X, as the unique solution
of the Galerkin variational problem
(Bwyy, z2p) = (var, 2a)  for zpy € XYy,
Again,
(Cav,v) = (By Marv, Magv) = (w, Myrv) = (war, var) = (Bwar, war).

(13.9)
Moreover we have the Galerkin orthogonality

(B(w—wpr), zm) = 0 for zp € X
By using the X'—ellipticity of B we now have

0 < ¢f lw—wnli < (B(w —wnr),w —war)

= (B(w —wy),w) = (Bw,w) — (Bwpr, wpr)
and therefore
(Bwpr,wy) < (Bw,w).

By using (13.8) and (13.9) this finally gives the assertion. O

Note that Lemma 13.5 holds for any arbitrary conforming trial spaces
Xy € X and X}, C X'. However, to prove the reverse estimate we need to
assume a certain stability condition of the trial space X}, C X'.

Lemma 13.6. In addition to the assumptions of Lemma 13.5 we assume the
stability condition

csllomllx < sup {oar zar) for allvy € Xpg. (13.10)
0#zm €X Yy ||ZM||X’
Then,

B\ 2 N
<CS c—lB> (Cav,v) < (Cav,v)  for allv € RM.
=5

Proof. Let v € RM « vy, € Xy be arbitrary but fixed. From the properties
(13.4) we then obtain

_ _ 1
(Cav,v) = (B oa,om) < 1B lomllxelomlx < C—B||UM||§<~
1
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As in the proof of Lemma 13.5 let w = BE}MMQ — wy; € X};. Then, by
using the stability assumption (13.10),

VM ZM Bwy, z2m
eslonllx < sup A0 _ g Bon g om0
0#20 €X Yy 2 x7 0#20m €X Yy, ll2aellx
and hence
2 2
1 cB 1 cB
C < (= 2, < (== B )
(Can) < (CS) lon % < (CSCF (Buwas, war)

By using (13.9) this gives the assertion. 0O
Together with (13.6) we now conclude the spectral equivalence inequalities

of 6,4 and Ajy.

Corollary 13.7. Let all assumptions of Lemma 13.6 be satisfied, in partic-
ular we assume the stability condition (13.10). Then there hold the spectral
equivalence inequalities

2
~ 1 c8 ~
citef (Cav,v) < (Apo,v) < cfe? (é) (Cav,v)  for allv € RM.
Cs Cy
Due to dim X, = dim X, the discrete stability condition (13.10) also ensures
the invertibility of the matrix M. Hence for the inverse of the approximated
preconditioning matrix C'4y we obtain

Cit = My'BuMy,",

in particular we need to invert sparse matrices Mp; and M]I[, and in addition
we have to perform one matrix by vector multiplication with B,.

13.2.1 An Application in Boundary Element Methods

The general approach of preconditioning as described in Section 13.2 is now
applied to construct some preconditioners to be used in boundary element
methods. By considering the single layer potential V' : H=1/2(I") — H/?(I')
and the hypersingular boundary integral operator D : HY/2(I") — H~/2(I")
there is given a suitable pair of boundary integral operators of opposite order
[104, 105, 144]. However, the hypersingular boundary integral operator D is
only semi-elliptic, hence we have to use appropriate factor spaces Hf[ Y 2(F )
as already considered in Section 6.6.1.

Lemma 13.8. For the single layer potential V' and for the hypersingular
boundary integral operator D there hold the spectral equivalence inequalities
- . 1 -
/P (Ve 0 < (DY, 0 < 1<V_1v,v>p

for allv € HY*(I') = {v € HY2(I') : (v, weq)r = O}
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Proof. The single layer potential V' : H*_l/Q(F) — Hiﬂ(l“) defines an iso-
morphism. Hence, for an arbitrary given v € H. ! / 2(F ) there exists a unique
w E H;l/z(F) such that v = Vw. By using the symmetry relations (6.25)
and (6.26) of all boundary integral operators we obtain the upper estimate,

(D¥,5)r = (DV@&, Vit)r
_ <(%1 _ K’)(%I + K, VE)

. <(%1 + K@, (%z — KWV

1 - 1 .
- <(§I+ K’)w,V(§I - K"w)r
1
=1 (Vw,w)r — (VK'w, K'w)

. 1 -
< —(Vw,w)p = Z(V_lv,v>p.

==

From the H~'/2(I")-ellipticity of the single layer potential V (see Theorem
6.22 in the three-dimensional case d = 3, and Theorem 6.23 in the two—
dimensional case d = 2) we conclude, by using the estimate (3.13), the bound-
edness of the inverse single layer potential,

_ 1
(Vv v)p < T ||v||§{1/2(F) for all v € HY?(T').

By using the Hi /2 (I)-ellipticity of the hypersingular boundary integral op-
erator D (see Theorem 6.24) we then obtain the lower estimate

<D’67 5>F > g]1:) ||5||§{1/2(F) 2 CIDCY <V_1575>F

for all 7 € HY/*(I'). O
By the bilinear form

(Du,v) := (Du,v) + a (u, Weq) (v, Weq)

for u,v € HY?(I") we may define the modified hypersingular boundary inte-
gral operator D : HY/?(I') — H~'/2(I") where a € R is some parameter to
be chosen appropriately, and weq = V-lle H_l/z(F) is the natural density.

Theorem 13.9. For the single layer potential V' and for the modified hy-
persingular boundary integral operator D there hold the spectral equivalence
imequalities B

AV~ 0y < (Du,v)p < 3o (Vo 0)p (13.11)

for all v e HY?(I') where

. 1
v = min{c) el a(l,weg)r}, 72 = maX{Z>a<17'weq>F}~
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Proof. For any v € HY/ 2(I') we consider the orthogonal decomposition

<U7 weq>F

-3 = ve HYX(I).
v=0+7, 7 T weq) 1 ve (")

The bilinear form of the inverse single layer potential can then be written as

[<aneq>F]2

V=lo,o\p = V79,0 + .
( r={ )r [, weq) 7

By using Lemma 13.8 we now obtain
(Dv,v)p = (DV,0) r + & [(v, weq) r]?

[<'U»weq>F]2

VB e e S

1
!
1 -1
< max Z,a(l,weq>p (V™" v, 0)p.
The lower estimate follows in the same way. 0O

From the previous theorem we can find an optimal choice of the positive
parameter oo € R

Corollary 13.10. When choosing

1

o=
4<1, 'I.Ueq>[‘

we obtain the spectral equivalence inequalities

~ 1
e/ P (V7o) p < (Du,v)r < = (V7o o)

>

for allv e HY2(I).

By using Corollary 13.10 we now can define a preconditioner for the linear
system (12.15) of the Dirichlet boundary value problem, and for the sys-
tem (12.27) of the Neumann boundary value problem. The system matrix in

(12.27) is Dy, := Dy, + caa’ where

Dh[j,l] = <D90i790;>F7 aj = <‘Pj1‘»weq>l“

for i, = 1,...,M and ¢} € S}L(F) are piecewise linear continuous basis
functions. In addition we define

Vh[j7i] - <V9011730;>F7 Mh[]’z] - <§0%750;>F

fori,j=1,..., M.
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Lemma 13.11. Let the Ly projection Qp, : HY/?(I') — SH(I') € HY?(I") be
bounded. Then there holds the stability condition

1 )
— ||UhHH1/2(F) < sup (vn, wn)r for allvy, € S,ll(l“).
cQ

0w, €SE(I) ||wh||H*1/2(F)
Proof. The Ly projection Qy, : HY/?(I') — S}(I") € HY?(I') is bounded, i.e.
||Qh’UHH1/2(F) < cQ ||’UHH1/2(F) for all v € HI/Q(F)

For any w € H~'/2(I') the Ly projection Quw € S}(I') is defined as the
unique solution of the variational problem

(Qnw,vn) 1,y = (w,vp)p for all vy, € SE(I).

Then,
(Qnw,v)r (Qnw, Qnv) L1
HQthH*l/?(I‘) = sup T = sup
0£veHY/2(I") ||UHH1/2(F) 0#AvEH/2(I) ||”HH1/2(F)
w, v 1Qnvl /2
— Sup M S ||w||H71/2(1_,) Sup —()
ozvemi/a(ry [0l mrzr) ogoeri2ry  |10lme(r)

IN

cQ HwHH*l/?(F)v

which implies the boundedness of Qp, : H~/2(I") — S}(I') ¢ H='/2(I"). Now
the stability estimate follows by applying Lemma 8.5. O
By using Lemma 13.11 all assumptions of Lemma 13.6 are satisfied, i.e.

Cﬁ = thh_th

defines a preconditioning matrix which is spectrally equivalent to Dy. In par-
ticular there hold the spectral equivalence inequalities

VN 2

/P (Cpu,v) < (Dho,v) < i (CQ Z%) (Cpu,v)  for ally € RM.

1
In Table 13.2 the extremal eigenvalues and the resulting spectral condition
numbers of the preconditioned system matrix C='D;, are listed for the L—
shaped domain as given in Fig. 10.1. For comparison we also give the corre-
sponding values in the case of a simple diagonal preconditioning which show
a linear dependency on the inverse mesh parameter h~'.

By applying Corollary 13.10 we can use the Galerkin discretization of
the modified hypersingular boundary integral operator D as a preconditioner
for the discrete single layer potential V}, in (12.15). However, when using
piecewise constant basis functions to discretize the single layer potential, for
the Galerkin discretization of the hypersingular boundary integral operator
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Cﬁzdiagﬁh Cf) :Mh‘_/hith

N Amin Amax #(C5'Dr) Amin Amax  #(C5'Dy)
28 9.05 -3 2.88 2 3.18 1.02 -1 2.56 -1 2.50
112 4.07 -3 2.82 -2 6.94 9.24 -2 2.66 -1 2.88
448 1.98 -3 2.87 -2 14.47 8.96 -2 2.82 -1 3.14
1792 9.84 -3 2.90 2  29.52 8.86 -2 2.89 -1 3.26
7168 4.91 -3 291 -2 59.35 8.80-22.92 -1 3.31
5 28672246 4292 -2 11872 8792292 -1 3.32
6 114688 1.23 -4 2.92 -2 237.66 8.78 -22.92 -1 3.33
Theory: Om™h O(1)

B W N~ O~

Table 13.2. Extremal eigenvalues and spectral condition number (BEM).

D requires the use of globally continuous basis functions. Moreover, as an
assumption of Lemma 13.6 we need to guarantee a related stability condition,
too. One possibility is to use locally quadratic basis functions [144]. For the
analysis of boundary integral preconditioners in the case of open curves, see
[104].

13.2.2 A Multilevel Preconditioner in Finite Element Methods

For u,v € H'(£2) we consider the bilinear form

a(u,v) = /v(i)ntu(;v)dsz/%i]ntv(x)dsx +/Vu(x)Vv(m)dx
o

r r

which induces a bounded and H(£2)-elliptic operator A : H'(£2) — H~*(£2).
This bilinear form is either related to the stabilized variational formulation
(4.31) of the Neumann boundary value problem, or to the variational formu-
lation of the Robin boundary value problem, or to the modified saddle point
formulation (4.22) when using Lagrange multipliers.

Let us assume that there is given a sequence {7x; }jen, of globally quasi-
uniform decompositions of a bounded domain 2 C R? where the global mesh
size h; of a decomposition 7y, satisfies

1277 < hj < 277 (13.12)

for all 7 =0,1,2,... with some global constants ¢; and cy. In particular, this
condition is satisfied when applying a globally uniform refinement strategy to
a given uniform coarse decomposition 7y, .

For each decomposition 7y, the associated trial space of piecewise linear
continuous basis functions is given by

V; = Sh (1) = span{@}0, € H'(2), je€N.
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By construction we have
VocViC-CVp=X,=5,,(2)CVpy1 C---CHY(R2)

where X, = S1(£2) ¢ H'(£2) is the trial space to be used for the Galerkin

discretization of the operator A : H!(£2) — H~1(£2) which is induced by the
bilinear form a(-,-), i.e.

Al K] = a(@k,@f) fork,£=1,..., M.

It remains to construct a preconditioning matrix CN'A which is spectrally
equivalent to Ajp. For this we need to have a preconditioning operator
B : H7Y(£2) — H(£) which satisfies the spectral equivalence inequalities

ot IflE-12) < (B Hlo < o5 1flH-10 (13.13)

for all f € ﬁ_l(!)) with some positive constants ¢ and c¢Z. Such an op-
erator can be constructed when using an appropriately weighted multilevel
representation of Lo projection operators, see [28, 162].

For any trial space V; C H(£2) let Q; : Lo(£2) — V; be the Ly projection
operator as defined in (9.23), i.e. Q;u € V; is the unique solution of the
variational problem

(Qju, ) Ly(2) = (U, Vj)Ly(2) for allv; € V.
Note that there holds the error estimate (9.28),
(I = Qj)ullry2) < chylulgiq) forallue H'(R2). (13.14)

In addition we assume an inverse inequality (9.19) to hold uniformly for all
trial spaces Vj, i.e.,

”ijHl(Q) < cr hj_l ij||L2(Q) for all v € V] (1315)
Finally, for j = —1 we define Q_; := 0.

Lemma 13.12. For the sequence {Q;}jen, of La projection operators Q; we
have the following properties:

L. QrQj = Quinf{k,j}-
2. (Qr —Qr-1)(Q; —Qj—1) =0 fork #j,
3.(Qj —Qj—1)* =Qj — Qj1-
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Proof. For u; € V; we have Q;v; = v; € V; and therefore Q;Q; v = Q;v for
all v € Ly(82). In the case j < k we find V; C Vj. Then, Qv € V; C Vj, and
thus QrQj v = @;v. Finally, for j > k we obtain

<Qj’l},’l_)j>L2(Q) = <’U,'Uj>L2(Q) for all v; € V}
and therefore
(QrQjv,vk) Lo(2) = (R0, Vk) La(2) = (V0k)1o(@) = (QrV,Vk) La(2)

is satisfied for all v, € Vj, C Vj. This concludes the proof of 1. To show 2. we
assume j < k and therefore j < k — 1. Then, by using 1. we obtain

(Qr — Qr-1)(Q; — Qj-1) = QrQj — Qr1Q; — QrQj—1 + Qr_1Q;1
=Q;—Q; —Qj—1+Qj—1 = 0.

By using 1. we finally get

Qi —Qj—1)* = Q;Q; — Q;Qj—1 — Qj—1Q; + Qj—1Qj1
=Q;—Qj1—Qj1+Q—1 = Q; —Q;—1. O

By considering a weighted linear combination of Lo projection operators Qp
we define the multilevel operator

B' =Y A (Qx — Qi) (13.16)
k=0

which induces an equivalent norm in the Sobolev space H'((2).

Theorem 13.13. For the multilevel operator B! as defined in (13.16) there
hold the spectral equivalence inequalities

ot olin o) < (B'v,v)rye) < & Ivllin o
for all v € HY(2).

The proof of Theorem 13.13 is based on several results. First we consider a
consequence of Lemma 13.12:

Corollary 13.14. For v € H'(£2) we have the representation

(B'0,0) Lo2) = > hi > Qk — Qe-1)vl7, (0
k=0
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Proof. By the definition of B! and by using Lemma 13.12, 3., we have
(B'0,v),(0) = Z hi 2 ((Qk — Qr—1)v,0) 1, ()
=0

Z hi 2 ((Qr — Qi—1)0,v) 1, ()

= Zh (Qr — Qr—1)v, (Qr — Qr—1)V) 1, ()

— Zh;QH(Qk —Qr-1)0l7,) O

From the inverse inequalities of the trial spaces Vj and by using the error
estimates of the Lo projection operators Qi we further obtain from Corollary
13.14:

Lemma 13.15. For allv € H'(§2) there hold the spectral equivalence inequal-
ities

1 ZII(Qer—l)vllipm) < (B'0,v)L,0) < e Z”(Qk*Qk—l)vH%{l(Q)'

Proof. By using Lemma 13.12, 3., the triangle inequality, the error estimate
(13.14), and assumption (13.12) we have

(B'0,v)1,(0) = Zh 21Qk — Qr—1)vll7, ()

k=0

> 1@k — Qr—1)(Qk — Qu—1)vl17, (0

k=0

22/1* {1@k = D@k = Q)

IA

0 = Q) (@i — Qe ol 0}

IN

2c2h (R 1Qk = Que1)vlid ) + Wy 1@k = Qu-1)ollins ) |

IN

o Z (Qr — Qkfl)UH%Il(Q)

and therefore the upper estimate. To prove the lower estimate we get from
the global inverse inequality (13.15) for (Qx — Qx—1)v € Vk_1, and by using
assumption (13.12),
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oo

D @k = @r-1)vll3n o) < Dby 1(Qk = Qr—1)vll7 0
k=0

k=0

<c z:h;2 1@k — Qr—1)vl1 7,

k=0
= c<Blv,v>L2(Q). O

The statement of Theorem 13.13 now follows from Lemma 13.15 and from the
following spectral equivalence inequalities.

Lemma 13.16. For allv € H'(£2) there hold the spectral equivalence inequal-
ities

(oo}
& ol < D@k — Qr-1)vlFn () < & llvlFn -
k=0
To prove Lemma 13.16 we first need a tool to estimate some matrix norms.

Lemma 13.17 (Schur Lemma). For a countable index set I we consider
the matriz A = (A[¢, k])kcr and the vector uw = (uy)ker. For an arbitrary
a € R we then have

sup DIl H] QQ(H)] [iup D ALK 22 .

el kel GIEEI

lAull3 <

Proof. Let v = Au. For an arbitrary £ € I we first have

SAl K| < ST A ] - fu]

kel kel

= VAL K] 22F 072 /1AL, K] 220 R2 .

kel

|ve| =

By applying the Cauchy—-Schwarz inequality this gives

> AL K| 2@“%01

kel

oe* <

S AL K] 29 R g |
kel

Hence we have
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Sl < 3 |30 Jal 200 ZIAW“W)“i]
el el Lker 1 Lkerl
< sup [ S ]A[L K[ 2200 | S ZIA[&MIW“"“)U%]
el ey 1 terl Lkel
el 1ot 1 ker Leer
< sup | 3 [A[, k][ 22¢9 | sup ZIMM]?”“‘“]Z%&%
tel ey | kel | yer kel

which concludes the proof. 0O
As a consequence of Lemma 13.17 we immediately obtain the norm esti-
mate

1/2 1/2
Alls < |[su All, ]| 2000 su All, k]| 2¢—R) 13.17
[A]l2 < ZpZI [4, k]| kpZI [¢, k]| ( )

€l yer €l yer

where a € R is arbitrary. In particular for a symmetric matrix A and when
considering a = 0 the estimate

|A[l2 < sup > |A[¢ k]| (13.18)
€ ker

follows. To prove the lower estimate in the spectral equivalence inequalities of
Lemma 13.16 we need to have a strengthened Cauchy—Schwarz inequality.

Lemma 13.18 (Strengthened Cauchy—Schwarz Inequality). Let as-
sumption (13.12) be satisfied. Then there exists a ¢ < 1 such that

Qi = Qim1)v, (Q5 — Qj—1)v) ()|
< e MN(Qi — Qi—)vllin (@) 1(Q5 — Qi—1)vll (o)
holds for all v e H'(£2).

Proof. Without loss of generality we may assume j < 7. For v; € V; we have
for the H' projection Q;vj =v; € V; and therefore

(Qi = Qi—1)v, (Q; — Q1)) () = ((Qi — Qi—1)v, Qj(Q) — Qj—1)v) i1 ()
= (Qj(Qi — Qi—1)v,(Q; — Qj-1)v) i (02)
< 1Qj(Qi — Qi) () 1(Q5 — Qij—1)vll a1 (-
Due to V; = S} (2) € H'7(22) the H' projection as given in (9.29) is well

defined for u € H'=?(£2) and for o € (0, 3). Dependent on the regularity
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of the computational domain (2 there exists an index s € (0,0] such that
Qj : H'™*(2) — V; € H'*(£2) is bounded, see Lemma 9.11. By using
the inverse inequality in V; and by using the error estimate (9.37) of the Lo
projection @; we then have

1Q}(Qi — Qi—1)vll 1oy < e hi® Qi — Qi—1)v|l -5 ()
=crh* [(Qi — Qi—1)(Qi — Qi—1)v| -+ ()
<erhy® Qi — Qi — Qi1)vll -+
(I = Qi—1)(Qi — Qi—1)vll g1+ ()]
<ch;® [hf +hi ] Qi — Qi1)vll a0
<e2°U(Qi = Qi-1)vlla (0)-
With ¢ := 27° we obtain the strengthened Cauchy—Schwarz inequality. 0O
Proof of Lemma 13.16: Let Q) : H'(22) — S}Lj(ﬁ) C HY(R2) be the H!
projection as defined by the variational problem (9.29), in particular for a
given u € H'(£2) the projection leu € Vj; is the unique solution of
(Qju,v;) (o) = (u,v) (o) for allv; € V.

Then, dependent on the regularity of the computational domain (2, and by
applying Lemma 9.11, there exists an index s € (0, 1], such that the following
error estimate holds,

(I = Qp)ulli-s(0) < ch® |ullg (o).
As in Lemma 13.12 we also have
(Q; - }—1)(@} - 31'—1) - le‘ - Q;—r

Therefore, for v € H'(£2) we obtain the representation

o oo
v o= Z(Qll QI ))v = Zvi where v; := (Q} — Q}_,)v.
i=0 i=0

For i < k we therefore have v; = (Q} — Q}_,)v € V;_1 C Vj_1, and thus

(Qr — Qr—1)v; = 0. Hence, by interchanging the order of summation,

D 1@k = Qu-1)vlFey = D D U(Qk = Qr—1)vi, (Qk — Qk—1)v) ()
k=0

— k=01i,5=0

oo min{i,j}
D Q= Q1) (Qk — Qr—1)v) i ()

i,j=0 k=0

oo min{ij}

S0 @k = Qu-)vill (@) l(Qk — Qr—1)vjll a1 (2)-

i,j=0 k=0

IN
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By using the global inverse inequality (13.15), the stability of the Lo projection
(see Remark 9.14), and applying some interpolation argument, we obtain from
assumption (13.12) for the already fixed parameter s € (0, 1] the estimate

1(Qr — Qr—1)villgr(0) < chy,® [[(Qr — Qr—1)villa1-5(2)
S Ch]:s ”leHl*b(Q)

Moreover,

Qi — Qi_)vllm-+(e)
Qi — Qi—)(Qi — Qi_)vllm—+(a
1@} — Dvillr-s(ay + | — Qi_1)vill s (02)

S Chf Hvi”Hl(Q)~

HUiHH“S(Q)

IN

Hence we obtain

o0 o0 mm{z,g}
DM@k = Qu-)vliny < ¢ >, > WFRE vl lvilla ).

k=0 i,j=0 k=0

By using assumption (13.12) we further have
_92s P —2s PP
h;QS <ec (271(7) = e (len{z,]}fk) 225m1n{2,]}'

Then, for the already fixed parameter s € (0,1] it follows that

min{i,j} min{i,j} o
Z h;Qs < 622smin{i,j} Z (2725)“‘“’“{1:]}_!C < EzQsmin{i,j} )
k=0 k=0

By using assumption (13.12) this gives

oo

D @k = Qr-1)vll3n gy < ¢ Y 22 275 TH) |l || o v | 10 )
k=0 i,j=0

=c Y 27 il g ) sl ()

1,j=0
If we define a symmetric matrix A by its entries A[j,i] = 275/*~7! we then get
o0 o0
DM@k = Qr-1)vllz () < cllAllz D llvill o)-
k=0 i=0

By using the estimate (13.18) of the Schur lemma we obtain
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[A]l2 < sup 22 st

J€No =g

For ¢ :=27° < 1 and for some j € Ny this norm is bounded by

oo j—1 00 J 00 0o 9
SUEED SURED ST SED UEED ST
i=0 i=0 i=j i=1 i=0 i=0

and therefore it follows that

ZII Qr — Qu-1)vlF () < CZHvzllm

k=0

Finally,

D Nvilli o) = D _(QF = Qi_)v, (@ — Qv i (e
1=0 1=0

Z«Q% —Qi_1)(Qf — Qi_)v,v) (0

@
I
<

tqu

(Qi = Qiy)v, V) mi@) = (v 0)12) = l[vllFn ()

I§
=

7

which gives the upper estimate.
To prove the lower estimate we use the strengenthed Cauchy-Schwarz
inequality (Lemma 13.18) for some ¢ < 1 to obtain

oo

1010y = D Qi = Qi—1)v,(Qs — Qj—1)v) ()

i,j=0
e . .
< "N = Qic)vll (@ (@ — Qi—1)vll (o)
i,j=0
Now the assertion follows as above by applying the Schur lemma. 0O

Remark 15.19. For s € [0, ) we may define the more general multilevel oper-
ator

o0
= > h*(Qk — Qr-1)
k=0
which satisfies, as in the special case s = 1, the spectral equivalence inequali-
ties

1 H’UH?{.;(Q) < (B*0,0)1,0) < 2 ||1}H%(s(9) for allv € H*(2).
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Although the following considerations are only done for the special case s = 1,
these investigations can be extended to the more general case s € [0, %), too.

By using Theorem 13.13 the multilevel operator B! : H*(2) — H1(12)
is bounded and H!(£2)—elliptic. The inverse operator (B')~! : H=1(£2) —
H'(£) is then bounded and H~!(£2)—elliptic, in particular the spectral equiv-
alence inequalities (13.13) are valid. For the inverse operator (B!)~! again a
multilevel representation can be given.

Lemma 13.20. The inverse operator (BY)~! allows the representation

B~ = (BY)! = Zh%(Qk*Qk—l)-

k=0

Proof. The assertion follows directly from

BB = kzoz;)h *h3(Qr — Qr—1)(Qj — Q1)
J

oo

(Qr — Qr—1) = 1. o

k=0

Remark 13.21. If we define the Lo projection operators Q; : La(£2) — ng (2)

onto the space of piecewise constant basis functions gpg’j, then the related
multilevel operator B* satisfies the spectral equivalence inequalities

e |Jv|3s s(0) S B0, 0) ) < 2 ||v||Hs(Q) for allv € H*(2)

where 5 € (-3, ).

By using corollary 13.7 we can now establish the spectral equivalence of the

system matrix Ay, with the discrete preconditioning matrix

Ca = My, B; ' My,

hr,

where

BhL[€7 k] = <B_1@£7¢%>L2(0)7 MhL [67 k] = <(P£a90£L>L2(Q)

for all o, of € Vi, = S} (92).

It remains to describe the application v = aglg inside the algorithm of
the preconditioned method of conjugate gradients, see Algorithm 13.3. There
we have to compute

v = AT—M BhLMhr
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or,

— -1 ._ N -1
u:= M, 'r, w:= Byu v:i=DM w

By using the isomorphism u € RMz « vy, € V7, we obtain for the components
ofw= B, u

ML ML
= Bu,[6Kur =Y (BT of 0 otk = (B un,, 0F ) La(e)-
= k=1

Hence, for uy, € Vi, we need to evaluate

L
2y = B tup,, = th Qk — Qr—1)un, = Y hi (Qk — Qr—1)un, € Vi
k=0

which is a finite sum due to Qruy, = up, for k > L. For the components of
w = By, u we then obtain

My,

we = (B ny, 00 ) 1a(2) = (e 0 1a(2) = D 2{PF 08 ) La(02)-
k=1

This is equivalent to
w = My,z,

and therefore there is no need to invert the inverse mass matrix M}y, when
computing the preconditioned residual,

— VI Ve —
=M, w=M, "M,z=z.

It remains to compute the coefficients of z € RMr zp, € Vi. For this we
have the representation

Zhy = Z hi (Qk — Qr—1)un,

k=0

L—1
= hiQrun, + Z(hi — hif 1) Qrun,
k=0

L—1
= hi tn, + Z(hi — B 1) tn,
k=0
where

n, = Quun, = Y uff € Vi

is the Ly projection of uj, into the trial space Vi, £ =0,1,..., L. Due to
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we can define
L
— L 2 —
Zhy = E hk Up,,
k=0

to be spectrally equivalent to 6‘;1. The evaluation of z;, can be done recur-
sively. Starting from 2, = h%ﬂho € Vo we have

M1
L 2 Z Zh1 k1 2:
Zhy = Zhg_, T hkuhk - + hkUgQOz

Due to the inclusion Vj,_1 C V},, we can write each basis function @’g lev,y
as a linear combination of basis functions gp? € Vi,

My,
spéf*l = Zréﬁjg@f foralll=1,..., M;_4.

=1
Hence we can write
My, My, -1 M, My, M1
k=1 k—1 _ k—1 k
doE T = D AT Y el = D0 Y AT el
=1 =1 j=1 j=1 ¢=1

By introducing the matrices
Ryl ] = rj; forj=1,... Mg =1, M
we obtain for the coefficient vector
28 = Ry 27+ bt

When considering a uniform mesh refinement strategy the coefficients 7’4 are

given by the nodal interpolation of the basis functions gpe 1€ Vj_; at the
nodes z; of the decomposition 7y, , see Fig. 13.1.
By using the matrices

Rk = RL*I,L"'RIC,’C#*]. fOI‘k,‘:O,...,L—L RL =1
we obtain by induction

L
L Z hiRkﬂk .
k=0

It remains to compute the Ly projections @y, = Qrup, as the unique solutions
of the variational problems

(Why, 0 La(2) = (Ungs 94 )La(0)  for all of € V.
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0 0 0 0 0
1 1
2 2
0 0
1 1
2 2
0 0 0 0 0

Fig. 13.1. Basis functions %' and coefficients 6 (d=2).

This is equivalent to a linear system of algebraic equations,
th@k _ ik

where
M, 16,5] = (05,00 Laq)s F7 = (Unys 0F) La(2)-

In particular for £ = L we have
ff=Myu= M, M 'r=r

and therefore

L -1
u- = Mh
Due to
M,
k—1 k—1 k
¢ = <UhLaS% >L2(Q) Zrzj UhL,SDJ Ly (2) = ZTZJf
j=1
we get

k—1 T k T
/ = Rk—uqi = Ry_yr.

By recursion we therefore have

—k _ —1pT
u = th Rk£7

and the application of the preconditioner reads

L
2 —1pT
= > hiR.M, 'R]r.
k=0
Taking into account the spectral equivalence of the mass matrices with the
diagonal matrices hg I, see Lemma 9.7, we then obtain for the application of
the multilevel preconditioner

L
= > Wi “ReR[r (13.19)
k=0
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The realization of the multilevel preconditioner (13.19) therefore requires the
restriction of a residual vector r which is given on the computational level
L, and a weighted summation of prolongated coarse grid vectors. Thus, an
application of the multilevel preconditioner requires O(M) operations only.

Ca=1 CA:MhLB;LthL
L M Amin Amax £(C3 AR) Amin Amax 5(C7 AR)
1 132.88 -1 6.65 23.13 16.34 130.33 7.08
2 41 8.79 -2 7.54 85.71 16.69 160.04 9.59
3 145242 -2 7.87  324.90 16.32 179.78 11.02
4 5456.34 -3 7.96 1255.75 15.47 193.36 12.50
5 21131.62-3 7.99  4925.47 15.48 202.94 13.11
6 8321 4.10 -4 8.00 19496.15 15.58 209.85 13.47
7 33025 ~80000 15.76 214.87 13.63
8 131585 ~320000 15.87 218.78 13.79
9 525313 ~1280000 15.96 221.65 13.89
Theory: O(h™?) (1)

Table 13.3. Extremal eigenvalues and spectral condition number (FEM).

In Table 13.3 we give the extremal eigenvalue and the resulting spec-
tral condition numbers of the preconditioned finite element stiffness matrix
C4'laa" + Ay, . This preconditioner is also needed for an efficient solve of the
linear system (11.22), as it will be considered in the next section. The results
for the non—preconditioned system (C4 = I) confirm the statement of Lemma
11.4, while the boundedness of the spectral condition of the preconditioned
systems coincides with the results of this section.

13.3 Solution Methods for Saddle Point Problems

The boundary element discretization of the symmetric formulation of bound-
ary integral equations to solve mixed boundary value problems, as well as
the finite element discretization of saddle point problems, both lead to linear
systems of algebraic equations of the form

A —B Uy il
) () - (2) a0

where the block A € RMi>*Mi s symmetric and positive definite, and
where D € RM2XMz j5 symmetric but positive semi-definite. Accordingly,
B € RMixMz_ Gince the matrix A is assumed to be positive definite, we can
solve the first equation in (13.20) for u, to obtain
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U = AilBQQ + Ailil .

Inserting this into the second equation of (13.20) this results in the Schur
complement system

[D+BTA'Blu, = f,-BTA7'f, (13.21)

where

S =D+ BTA'B e RM2xMz (13.22)

is the Schur complement. From the symmetry properties of the block matrices
A, B and D we conclude the symmetry of S, while, at this point, we assume
the positive definiteness of S.
We assume that for the symmetric and positive definite matrices A and
S = D + BTA™!'B there are given some positive definite and symmetric
preconditioning matrices C'4 and Cg satisfying the spectral equivalence in-
equalities
i (Cazy,zy) < (Azy, ;) < &5 (Cazy, ) (13.23)

for all z; € RM! as well as
Cig (Csza, xy) < (Szg,25) < C2S (Cszy, z5) (13.24)

for all z, € R™2. Hence, to solve the Schur complement system (13.21) we
can apply the C's preconditioned method of conjugate gradients (Algorithm
13.3). There, the matrix by vector multiplication s* = Sp* for the Schur
complement (13.22) reads B

sk = ng + BTAleBk = ng + BTwk,
where w” is the unique solution of the linear system
Aw® = ng.

This system can be solved either by a direct method, for example by the
Cholesky approach, or again by using a C4 preconditioned method of con-
jugate gradients (Algorithm 13.3). Depending on the application under con-
sideration the Schur complement approach can be disadvantageous. Then, an
iterative solution strategy for the system (13.20) should be used. Possible iter-
ative solution methods for general non—symmetric linear systems of the form
(13.20) are the method of the generalized minimal residual (GMRES, [120]),
or the stabilized method of biorthogonal search directions (BiCGStab, [155]).
Here, following [26], we will describe a transformation of the block—skew
symmetric but positive definite system (13.20) leading to a symmetric and
positive definite system for which a preconditioned conjugate gradient ap-
proach can be used.
For the preconditioning matrix C'4 we need to assume that the spectral equiv-
alence inequalities (13.23) hold where
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> 1 (13.25)

is satisfied. This can always be guaranteed by using an appropriate scaling,
i.e. for a given preconditioning matrix C'4 we need to compute the minimal
eigenvalue of the preconditioned system C’;lA. From the assumption (13.25)
we find that the matrix A — C4 is positive definite,

(A= Ca)zy,zy) 2 (¢ff = 1) (Cazyozy) forallz; € R,
and hence invertible. Thus, also the matrix

ACY =1 = (A-Ca)0y!

ACM—T0
T= T—1
-B'C, I
defines a invertible matrix. By multiplying the linear system (13.20) with the
transformation matrix 7" this gives

ACy' —1T10 A -B)\ [u ACM 10\ [ f
. . = o ! (13.26)
-BTCc;' 1)\ B" D Uy -BTC ' 1)\ f,
where the system matrix
ACM—T0 A -B
M =
-B'c;'1)\B" D
[ AC'A-A (I-AC,M)B
S\ BTI-C;'A)D+BTC,'B

is invertible, and

(13.27)

is symmetric. From the spectral equivalence inequalities of the transformed
system matrix M with the preconditioning matrix

A—Cyu O
Cy = 13.28
M ( 0 Cs) ( )

then the positive definiteness of M follows. Hence we can use a preconditioned
conjugate gradient scheme to solve the transformed linear system (13.26).

Theorem 13.22. For the preconditioning matriz Cp as defined in (13.28)
there hold the spectral equivalence inequalities

" (Cyz,z) < (Mz,z) < 3'(Cyz,z)  for allz € RM M

where
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1 1
A = el v o) Hed 1w e - e

1 1
o' =5 l+a]+ \/Z[cé(l +e§)? —c3ef

Proof. We need to estimate the extremal eigenvalues of the preconditioned
system matrix C’]\_/[lM , in particular we have to consider the eigenvalue prob-
lem

AC'A—A (I-AC B (z) \ A—Cy 0 )
BT(I-C;'A)D+B7Cy'B) \z, ) 0 Cs)\zy)
Let \; be an eigenvalue with associated eigenvectors 2 and z%. From the first
equation,
(ACLTA = A)zl + (I — AC")Bah = \i(A— Ca)ai,
we find by some simple manipulations
—Bzlh = (\Ca — A)zt.

For \; € [1,¢4] nothing is to be shown. Hence we only consider \; ¢ [1,c3']
were \;C4 — A is invertible. Thus,

i = —(\Cy — A)" ' Bab.
Inserting this result into the second equation of the eigenvalue problem,
B'(I—-C;'A)z} + D+ B"C;'Blzl = \Cszb,
this gives
—BTC; (Ca — A)(ACa — A)"'Bah + [D+ BTC'Blzl, = A\iCsh.

Due to

—C N C4 — A)(NCy — A7 = —C NCa — A+ (1= X)Ca](MCa — A)!

(N — (MO — A=t

this is equivalent to
(N = 1)BT(\iCa — A)"'Bah + Dzl = \Csah.

When \; > ¢4 is satisfied we have that \;C 4 — A is positive definite. By using
the spectral equivalence inequalities (13.23) we then obtain

A
)\ifcg

A
)

(Azqy,z1) < (ANiCa — A)zy, 24)
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for all z; € RM1 and therefore

A
(NCa—A) 2y, ay) < —2

Sl W (A7 'z, z,) forallz; € R™.

From the spectral equivalence inequalities (13.24) we conclude

;\_5(5@73;12) < \i(Cszh, zh)
= (D, 25) + (i = 1)((\iCa — A)~' Bz, Br))
< (Dah, 28) + (M — 1)&0_90? (A™' Bz, Bu)
< ;;i_ 612 (Szh,zh)
and therefore \i 4 Ni—1
g < 6 N —cd

M e+ N+ ey <0.

P

From this we obtain
Al <A <A

where

1 1
Ay = 50‘24[1 —l—c*zg] + \/1[0’2“(1 + c5)]2 —c‘?cg.

Altogether we therefore have

1 1
o < h < el )+ et e - el = el

[\]

It remains to consider the case \; < 1 where A — \;C4 is positive definite. By
using the spectral equivalence inequalities (13.23) we get

CA—)\Z‘
(A= XNCa)zy,2y) < 2—5""(Azy,y)

5

and therefore

o

(A=XCa)7'zy,2)) 2 — (A2, z))

Cy 7)\1'

for all z; € RM1. Again, by using the spectral equivalence inequalities (13.24)
we conclude
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0y
5
1

(Sab, xb) > \i(Cszh, xh)

= (Dzb,z%) + (1 — X)((A — X\;Ca) "' B}, Bzh)
A

> (Daty,23) + (1 = \) 25— (A™' Buj, Ba})
2 i
C? 7 7
> (1= N) 7 (Sz5,25)
02 — Ag
and therefore
A 11—\ ﬁ
2 0’24 -\ Cf

This is equivalent to

A el +H 1N+ ey <0,

A< A < Ay

where

1 1
Ay = 50’24[1 +c51+ \/Z—l[cé“(l +cf)]? = cfed

Summarizing we have

1 1
1>\ > el +cf] - \/1[0‘24(14—6?)}2 S Seh = M

[\

This completes the proof. 0O

For the solution of the transformed linear system (13.26) Algorithm
13.3 of the preconditioned conjugate gradient approach can be applied. On
a first glance the multiplication with the inverse preconditioning matrix
vkt = C;/[lzk“, in particular the evaluation ofylfJrl = (A—Ca) 'k seems
to be difficult. However, from the recursion of the residual,
r* 1 =¥ — o, Mp*, we find the representation
rlf'H = z’f - ak(Acgl - I)(Aglf - B;_)’;).

Hence we can write the preconditioned residual v¥ recursively as
y’f+1 =h — akCgl(A}_all“ — BB’;).
In particular for £ = 0 we have

u) = Oyt [Ag? — Bz — [,

The resulting preconditioned iterative scheme is summarized in Algorithm
13.4.
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For an arbitrary initial guess u® € RM+M2 compute the residual

70 = Au® — Bud = [ 79 := B u} + Du) — [,
Compute the transformed residual

w) = C’Zlﬁ, r = Awd — 79, rd =75 — BTw
Initialize the method of conjugate gradients:

vy =), vy = Cgiry, p°:=1°, 0o = (0°,r°).
For k=0,1,2,...,n—1:
Realize the matrix by vector multiplication

= Ap - Bp 3= BTgllc + DQS'
Compute the transformation

wh = C '8, sb = Awk — ¥, sk =35 - BTwh.
Compute the new iterates

ok = (s",p"), ok = or/ow;

= —agp®, M =R - ans®s
K+l .k k41l k41 . =1 k41 k41 k1
v =y —agwy vy = Cg s ok = (@)

Stop, if pr+1 < €po is satisfied for some given accuracy e.
Otherwise compute the new search direction

Br = ort1/ok, P =0T + Bep”

Algorithm 13.4: Conjugate gradient method with Bramble/Pasciak transformation.

L N M Schur CG BP CG
2 16 11 11 16
3 32 23 13 19
4 64 47 14 21
5 128 95 14 21
6 256 191 15 23
7 512 383 16 23
8 1024 767 16 23
9 2048 1535 16 24

Table 13.4. Comparison of Schur CG and Bramble/Pasciak CG.

As an example we consider the solution of the linear system (12.43) which
results from a Galerkin boundary element approximation, see Section 12.3,

Vi —1iM;, — K, w) (0
(;M,j+z<,;r " )<u>_<f> (13,29

The associated Schur complement system reads
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1
Syl = Dh+(§MhT + KDV (M + K| a = f. (13.30)

As preconditioner for the Schur complement matrix S, we can apply the
preconditioning strategy as described in section 13.2.1. But in this case the
spectral equivalence inequalities (13.11) of the hypersingular boundary in-
tegral operator D : HY/2(I'y) — H~'/2(I") and of the inverse single layer
potential V : HY/2(I'y) — HY2(I'y) are not satisfied due to the differ-
ent function spaces to be used. But for finite dimensional conformal trial
spaces S} (I'v) € HY?(I'y) one can prove related estimates [104], i.e. for all
vy € S}L(F v) there hold the spectral equivalence inequalities

(V" op, o) r < (Dow,on)p < y2 [141og [h]]* (V™ on, vn)p

When using the preconditioning matrix Cp = MV, ' M), we then obtain the
estimate for the spectral condition number,

ko(Cp'Dy) < e[l +log|hl?

As described in section 13.2.1 we can also define a preconditioning matrix Cy
for the discrete single layer potential V;, which is based on the modified hyper-
singular boundary integral operator D : HY/2(I") — H~Y/2(I'), see [144]. In
Table 13.4 we give the number of iterations of the preconditioned conjugate
gradient approach for the solution of the Schur complement system (13.30),
and of the conjugate gradient approach with the Bramble/Pasciak transfor-
mation to solve the system (13.29). As relative accuracy we have considered
¢ = 1078, and the scaling of the preconditioning matrix Cy, of the discrete sin-
gle layer potential was chosen such that the spectral equivalence inequalities
(13.23) are satisfied with ¢f! = 1.2.
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Fast Boundary Element Methods

Boundary element methods as described in Chapter 12 result in dense stiff-
ness matrices. In particular, both the storage requirements and the numerical
amount of work to compute all entries of a boundary element stiffness matrix
is quadratic in the number of degrees of freedom. Hence there is a serious
need to derive and to describe fast boundary element methods which exhibit
an almost linear, up to some polylogarithmic factors, behavior in the num-
ber of degrees of freedom. Here we constrict our considerations to the case
of a two—dimensional model problem, for the three-dimensional case, see, for
example, [117].
As a model problem we consider the Dirichlet boundary value problem

—Au(z) =0 forz e 2CRY W(i)ntu(x) =g(x) forzel =00

where we assume diam {2 < 1 to ensure the invertibility of the single layer
potential V. When using an indirect single layer potential (7.4) the solution
of the above problem is given by

~ 1 ~ ~
u(T) = —%/logp: —ylw(y)ds, forz e 0.
r

The yet unknown density w € H—'/2(I") is then given as the unique solution
of the boundary integral equation (7.12),

Vw)(z) = f%/logmfy\w(y)dsy = g(x) forxel.

Let S)(I') = span{¢?}1_, be the trial space of piecewise constant basis func-
tions Y which are defined with respect to a globally quasi-—uniform boundary
mesh {7}, with a global mesh size h. Then we can find an approxi-
mate solution wy, € S5 (I") as the unique solution of the Galerkin variational
problem



328 14 Fast Boundary Element Methods

(Vwp,m)r = {g,m)r forallm, € SY(I). (14.1)

This variational problem is equivalent to a linear system V,w = f of algebraic
equations where the stiffness matrix V}, is defined as

1
Vilt, k] = (Vgog,gog)p = f%//log\xfmdsydsm (14.2)

¢ Tk

for all k,¢ = 1,...,N. Note that for the approximate solution wy, € SY(I")
there holds the error estimate

lw = whll =172y < b wluy, (r)- (14.3)

when assuming w € Hyy, (I'). Due to the nonlocal definition of the fundamen-
tal solution the stiffness matrix V}, is dense, i.e. to describe the symmetric
matrix Vj, we need to store 2 N (NN + 1) matrix entries. Moreover, a realization
of a matrix by vector product within the use of a preconditioned conjugate
gradient scheme (Algorithm 13.3) requires N2 multiplications. Hence we have
a quadratic amount of work in both storage of the matrix and in a matrix by
vector product with respect to the number N of degrees of freedom. In con-
trast to standard boundary element methods we are interested in the design
of fast boundary element methods where the numerical amount of work will
be of the order O(N (log, N)*) where we have to ensure an error estimate as
given in (14.3) for a standard boundary element method.

In this chapter we will consider two different approaches to derive fast
boundary element methods. The use of wavelets [46, 47, 94, 127] leads to dense
stiffness matrices V},, but since most of the matrix entries can be neglected this
results in a sparse approximation V}, of the stiffness matrix. A second approach
is based on a hierarchical clustering of boundary elements [14, 62, 65, 73, 122]
which defines a block partitioning of the stiffness matrix Vj,. If two clusters
are well separated the related block can be approximated by some low rank
matrices.

14.1 Hierarchical Cluster Methods

Since the fundamental solution U*(z,y) = — 5= log |z — y| is only a function
of the distance |z — y|, all matrix entries Vj[¢, k] of the discrete single layer
potential V}, as defined in (14.2) only depend on the distance, on the size, and
on the shape of the boundary elements 7, and 7. Hence we can cluster all
boundary elements when taking into account their size and the distances to
each other. The ratio of the cluster size and the distance between two clusters
will then serve as an admissibility criterion to define an approximation of the
fundamental solution. A larger distance between two clusters then also allows
to consider larger clusters of boundary elements. For this we will consider
an appropriate hierarchy of clusters. The interaction between two boundary
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elements 7, and 74 to compute the matrix entry V;,[¢, k] is then replaced by
the interaction between the associated clusters.

For a given globally quasi—uniform boundary decomposition I" = Uévzl Ty
we first have to construct a suitable cluster hierarchy. Due to the general
assumption diam £2 < 1 we may assume {2 C (0,1)2. Hence, all boundary ele-
ments 7, are contained in the surrounding square box 29 = (0,1)2. Applying
a recursive decomposition of Q;‘*l into four congruent boxes 23 as depicted
in Fig. 14.1 this first defines a hierarchy of boxes 27, and from this we easily
find a hierarchical clustering of the boundary elements 7,. The number X\ of
recursive refinement steps is called the level of the hierarchy.

Q% | Q% | 235 | 286
2 2
025 |28 | 23 | 254
*
25|25 | |95
(0%, 2;
2|03 |28 |92
Fig. 14.1. Hierarchy of boxes _Q]A for A\=10,1,2.
For A =1,..., L we therefore have the representation
A Y A
—A—1 — .
2 = U 2, j=1...,4%0 (14.4)
i=4(j—1)+1

where the length d;‘ of an edge of the box Q;‘ is given by

The refinement strategy (14.4) is applied recursively until the edge length dJL
of a box QJL on the finest level L is proportional to the mesh size h of the
globally quasi-uniform boundary mesh {7}, i.e.

df =27% < cph

induces a maximal number of boundary elements 7, which are contained in
the box QJL. Then we find for the maximal level of the cluster tree

cr, In(1/h)
In2

Since the boundary decomposition is assumed to be globally quasi—uniform,
this implies that the surface measure |I'| is proportional to Nh and therefore
we obtain

L >
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L = O(nN). (14.5)
To describe the clustering of the boundary elements {,}}’ ; we may consider
the clustering of the associated element midpoints z, € 7p for £ = 1,..., N.

For j =1,...,4" we first collect all boundary elements 7, where the midpoint

Iy is in the box QjL in a cluster w]’-'ﬂ

—L . —
wj = U T¢-

5 L
x[EQj

The hierarchy (14.4) of boxes (ZJ)‘ now transfers directly to a hierarchy of the
related clusters w;‘, see Fig. 14.2,

4j
—A—1 —A . A—1 _
o= | @ forj=1,...,4%70 A=, 1 (14.6)
i=4(j—1)+1
w?
wi o owy  owi o wi
wIL72
/wwé_l w‘f—l
wi  wy  wi o wf
e .

Fig. 14.2. Cluster tree w;\‘

For each cluster wj\ we define

I;‘ = {KEN : Tng])-‘}
as the index set of all associated boundary elements 7, where
P 1) ={1,2,... N} > I}

describes the assignment of the boundary elements {7,}}¥_, to the associated
cluster wj‘. Finally,

DN P A
Nj = dlmwj
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denotes the number of boundary elements 7, inside the cluster w;‘. By con-

struction we have for each A =0,1,2,...,L
4>\
> N} =N. (14.7)
j=1
By
diamw;‘ = sup |z —y
z,y€w>‘

we denote the diameter of the cluster w , and by

. A .
dlSt(w;?wj )= (x y)gg‘ﬂxw\ e =yl
s h 7

we deﬁne the distance between the clusters w} and w?. A pair of clusters wf
and w is called admissible, if

dist(wf,w;‘) > 7 max {diamwf,diamw;‘} (14.8)

is satisfied where > 1 is a prescribed parameter. For simplicity we only
consider admissible clusters w}* and w;-‘ which are defined for the same level

k = \. If there are given two admissible clusters w? and w;‘, then also all

A+1 A+1

subsets wyt C w) and wi C w} are admissible. Therefore, a pair of clusters

w and wj is called max1mally admissible if there exist inadmissible clusters

wk, ! and w;\,_l where w?* C wi Land w? € w)™! are satisfied.

For the stiffness matrix V}, as defined in (14.2) the hierarchical clustering
(14.6) allows the representation

4* 4 4k 4t
Vi, = Z ST @)V Py N (P Tv Y PE (14.9)
A=0 g=11i=1 Jj=11i=1
—— ——
w} wrmaximally admissible wk wkinadmissible

A
\iJ ERN ><N

where the block matrices V/ , are defined by

y 1
Vh,\,zj [0, k] = —%//logh: — yldsyds, for T, € W}, 7 € wj)-‘, (14.10)

Te Tk

see also Fig. 14.3. The sum is to be taken over all inadmissible clusters w’ and
ij includes in particular the interaction of a cluster with itself and with all
neighboring clusters. Hence we denote this part as the near field of the stiffness
matrix V}, while the remainder, i.e. the sum over all maximally admissible
clusters is called the far field. A box 2/ has maximal 8 direct neighbors

.QjL, the associated cluster w’ therefore has a certain number of inadmissible
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Fig. 14.3. Hierarchical partitioning of the stiffness matrix Vj,.

clusters ij where the number only depends on the parameter n > 1. All other
clusters are thus admissible and therefore they are included in the far field.

The near field part therefore contains only O(n24%) = O(n?N) summands.
While the block matrices of the near field part can be evaluated directly as
in a standard boundary element method, the block matrices of the far field
part can be approximated by using low rank matrices which allow for a more
efficient application. The resulting matrices are called hierarchical matrices,
or ‘H matrices. [72].

14.2 Approximation of the Stiffness Matrix

For a maximally admissible pair of clusters w and w;\ we have to compute

all entries of the block matrix VhMj ,

X/,;\’ij[f, k] = //U*(x,y)dsydsm for 7, € W, 7 € w;-‘.

T¢ Tk

The basic idea for the derivation of fast boundary element methods is an
approximate splitting of the fundamental solution U*(z,y) = —5-log |z — y|
into functions which only depend on the integration point y € w?, and on the
observation point x € w])-‘,
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U, (2,y) Z faa(x)ghi(y)  for (z,y) € w;-‘ X W (14.11)

We assume that there is given an error estimate
\U*(z,y) — Uy (z,y)| < c(n,0) for (z,y) € w;\ X W, (14.12)

where ¢(n, 0) is a constant which only depends on the admissibility parameter
n and on the approximation order p. By using the decomposition (14.11) we
can approximate the entries of the block matrix V,f"” by computing

VMK // (z,y)ds,ds, form, € w} 7 € w (14.13)
Te Tk
From the error estimate (14.12) we then obtain
V16K = VNG K] < e(n,0) AwAe formp € w}mpew).  (14.14)

Inserting the series expansion (14.11) into (14.13) this gives

0
Vh)"” [0, k] = Z /fﬁﬂ(x)dsz/g%l(y)dsy for all 7, € w}, 7y € w;-‘.
m=0

Tk

Hence, for all boundary elements 75, € w?* and 7y € wg\ we need to compute
vectors defined by the entries

= /f’\j( Vs, b = /g;}ii(y)dsy’

Te Tk

a

where £ =1,..., Nj)‘7 k=1,... 7N7f\ and m = 0,..., 0. The numerical amount
of work to store and to apply the approximate block matrix

)\ K% Z ad A,j b)\ %
which is a matrix of rank o + 1, is therefore
(0+ 1)(N} + N}Y).

As in (14.9) we can now define an approximation Vi, of the global stiffness
matrix Vj,

4™ g 4l 4t
Vi, = Z ST @HVM P Y N (PH VYRR (14.15)
A=0 j=11i=1 j=11i=1

w) ,w;maximally admissible wk ,ijinadmissible
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Due to (14.7) the total amount of work to store and to apply the approximate
stiffness matrix V}, is proportional to, by taking into account the near field
part,

(04 1)(n+1)2(L +1)N +7N. (14.16)
Instead of the original linear system Vj,w = f we now have to solve the per-

turbed system Vol = f with an associated approximate solution wy, € S (I').
The stability and error analysis of the perturbed problem is based on the
Strang lemma (Theorem 8.3). Hence we need to prove the positive definiteness
of the approximate stiffness matrix XN/;17 which will follow from an estimate of
the approximation error V;, — V,.

Lemma 14.1. For a pair of mazimally admissible clusters w and w)‘ the

error estimate (14.12) is assumed. Let Vh be the approximate stiffness matriz
as defined in (14.15). Then there holds the error estimate

(Vi = Va)w, 0)| < e, 0) IT] [wnll oyl acr)
for all w,v € RN — wy,, v, € S)D).
Proof. By using the error estimate (14.14) we first have

4N g
(Vi = Viw, v)| < Z ST ST ST VIR = Vi K] wg o]
= j=11i=1 'rk€w T[GUJ
w} wimaximally admissible
PRV

c(n.e Z 2.0 2 2 Alwed Acfeel.

A=0 j=1i=1 TkEOJ Tng
N——

w} wrmaximally admissible

Due to the assumption of the maximal admissibility of clusters wf‘ and w])-‘
each pair of boundary elements 7, and 74 appears maximal only once. Hence

we have
N N

(Vi = Vi), v)| < e(n,0) > Ak |wi] A fve]

k=1/¢=1

By applying the Holder inequality we finally obtain

1/2

N N 2 , N
2 Aelnel = (ZAk> (ZAWI%) = T2 wnllzo )
k=1 k=1 k=1

from which the assertion follows. 0O
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By using the error estimate of Lemma 14.1, by applying the inverse inequality
in S (I"), and by an appropriate choice of the parameter 7 for the definition of
the near field and of the approximation order ¢ we now can prove the positive
definiteness of the approximate stiffness matrix V.

Theorem 14.2. Let all assumptions of Lemma 14.1 be satisfied. For an ap-
propriate choice of the parameter n and o the approximate stiffness matrixz Vy,
18 positive definite, i.e.

~ 1
(Vhww) > §CY ||wh||?q—1/2(p) for allwy, € Sg(F)~

Proof. By using Lemma 14.1, the H—/?(I")-ellipticity of the single layer po-
tential V, and the inverse inequality in S9(I") we obtain

(Vhw, w) = (Viw, w) + (Vi — Vi)w, w)
> (Vwp,wp)p — (Vi — vh)&a@”

> o fwnl1ya ) — cn,0) 1] lonl2, 1y

2 [CY —c(n, 0) || ¢ hil] ”wh”%{*lﬂ(r)
1
> §C¥ ”wh”?{flﬂ(r)v
if
c(n,0) < ih (14.17)
T 2l

is satisfied. 0O

In the same way as in the proof of Theorem 14.2 the boundedness of the
approximate single layer potential V}, follows. Due to the positive definiteness
of the approximate stiffness matrix V} we then obtain the unique solvability
of the perturbed linear system Vyw = f. Moreover, as in Theorem 8.3 we
can also estimate the error ||w — wp|| Hf?/z( ry of the computed approximate
solution wy, € SY(I").

Theorem 14.3. Let the parameter n and o be chosen such that the approwi-
mate stiffness matriz Vi, as defined in (14.15) is positive definite. The uniquely
determined solution w € RN « 1wy, € SV(I") of the perturbed linear system
Vh@ = [ then satisfies the error estimate

|w = wnllg-120ry < llw—=wnllg-172(ry + ¢, 0) hm12 |

|w||L2(F)-
Proof. Let w,w € RLN be the uniquely determined solutions of the linear sys-
tems Vyw = f and Vjw = f, respectively. Then there holds the orthogonality
relation _

(Vaw — Vi, v) = 0 for allw € RY.
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Since the approximated stiffness matrix V, is positive definite, we obtain, by
using Lemma 14.1

1 - -
sV N — @ls/e gy < (Valw - @), w — @)

2
((Vh —Vh)w,w — w)

< e, 0) |lwnllLorllwn — WrllL,(r)

Applying Lemma 12.2 this gives the stability estimate

lwnllryry < llwllpary + llw = wallL,ary < ellwllra
Then, using the inverse inequality in S} (I") we conclude

—1/2

lwn = Whllg-1/2ry < €, 0) W™= [lwllL, )

The assigned error estimate now follows from the triangle inequality. O
From the error estimate (14.3) we conclude, when assuming w € H;l)w(F>7

—1/2

fw — @h”H*I/?(F) < e B2 |w|ng(r) +cn,0)h ||wHL2(F)~

To ensure an asymptotically optimal order of convergence we therefore need
to satisfy the condition
&, 0) < e h?. (14.18)

In this case, the error estimate
Jw = Wnll 1720y < 1 h*/2 (wlay, (r) + c2 W32 lwll ()

is asymptotically of the same order of convergence as the corresponding error
estimate (14.3) of a standard Galerkin boundary element method. A com-
parison with the condition (14.17) which was needed to ensure the positive
definiteness of the approximate stiffness matrix ‘7h shows, that asymptotically
condition (14.17) follows from (14.18).

It remains to find suitable representations (14.11) of the fundamental so-
lution U*(x,y) = 7217r log |z — y| satisfying the error estimate (14.12). Then,
the condition (14.18) also implies a suitable choice of the parameters 7 and p.

14.2.1 Taylor Series Representations

A first possibility to derive a representation (14.11) is to consider a Taylor
expansion of the fundamental solution U*(x, y) with respect to the integration
variable y € w? [73]. First we consider the Taylor expansion of a scalar function
f(t). For p € Nwe have

1

p m +1
S = 5O+ D i O 5 [0 8 f(s)s.

n! dt"
—1 )
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Let y be the center of the cluster w?. For an arbitrary y € w? and t € [0,1]
let

F@) = U (2,9 +ty — v).

Then we have
d o ..,
Ef(t) = Z(yj - Z/{\,j)—asz (%5 2) =y 4t (y—y2):

and by applying this recursively, we obtain for 1 <n <p

d7L n‘ N
dtnf(t) = Z ol —v= ) DIV (2, 2) oz +i(y—32)

|a|=n

Thus, the Taylor expansion of the fundamental solution U*(z, y) with respect
to the cluster center y gives the representation

U*(JJ,Q) = U;‘(m,y)—l—Rp(x,y)

where

Uy(z,y) = U (2,97 +Z Z (U =y DU (@, 2)anyy (14.19)

n=1 \(x|—n

defines an approximation of the fundamental solution. By setting

137 (@) = U (), 05" (w) = 1

and
AJ arT* A, 1 A\«
n,a(x) = D;U (Ivz)|z:y$a In, a(y) = a(y*yz)
forn =1,...,p and |a| = n, we then obtain the representation (14.11). For

any n € [1,p] there exist n + 1 multi-indices o € N2 satisfying |a| = n. Then,
the number p of terms in the series representation (14.11) is

Zp:nﬂ p+1)(p+2)

To derive the error estimate (14.12) we have to consider the remainder

1
1 a yayr
R y yz - _'/ 175 (yfyz)\) DZU (‘Taz)\z:yl{\+s(y—y;\)ds'
p
0 Ial =p+1

For this we first need to estimate certain derivatives of the fundamental solu-
tion U*(z, y).
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Lemma 14.4. Let wf‘ and wj)-‘ be a pair of maximally admissible clusters. For
|a| = p € N there holds the estimate

137 (p—1)

DU @ )] < 21z -yl

for all (x,y) € w;-‘ X w.
Proof. For the derivatives of the function f(z,y) = log|z — y| we first have

if(ﬂfay) = YiTT = 1,2.

y; |z —y|?
For the second order derivatives we further obtain
9? 1 (yi — x;)?
— f(z,y) = -2 fori=1,2,
Oy; |z —y|? |z —y[t
and
62

(y1 — 1) (y2 — 72)
flry) = =2 :
|z —y|*
In general we find for |a| = p € N a representation of the form

8y1 6y2

)P
Dy f(x,y) = Y aﬁ|w - y“mﬂ) (14.20)

[Bl<e
where ag are some coefficients to be characterized. Hence we conclude

Do flay)| <

|B]<e

0 1 Co

Al —yle |z —ylo

a

A comparison with the first and second order derivatives of f(z,y) givesc; = 1
and cz = 3. Now, a general estimate of the constant c, for o > 2 follows by
induction. From (14.20) we obtain for ¢ = 1,2 and j # 1

0 o o o 0 (y _x)ﬂ
a—yiDyf(x,y) = Z aﬁayz |z — y|lP+e
1B]<e
— i — . ,87
_ al |:ﬁz (yi — i) (y; —xj)"”
ﬁz;g B8 ‘.’If _y||6|+9
(yi — )" (y; — )

By using

lyi —xi| < lz—yl, B < B <o Bit+pB; <8 fori#j

we then obtain
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30c, Cot1

2=yl Jo yleT

7]
‘a_legf(‘rvy)’

|8 \<Q
and therefore

Cot1 = 30c, = 3%0!.
In particular for ¢ = p this gives the assertion. 0O

By using Lemma 14.4 we now can derive an estimate of the remainder
R,(z,y) of the Taylor series approximation (14.19).

Lemma 14.5. Let w;\ and w;‘ be a pair of maximally admissible clusters. For
the approzimation U (x,y) of the fundamental solution U*(x,y) as defined in
(14.19) there holds the error estimate

1\
|U*(x,y)—U;(x,y)| < 3 (5> for all (z,y) Ew])-‘ X w.
Proof. By applying Lemma 14.4 for (z,y) € wg\ X wi)‘ and by using the admis-
sibility condition (14.8) we obtain

1
< = |y yz\erlmaX Z |DSU* (2, 2) o= /l—spds
geEw)
|a|=p+1 0
1

3Pp!
— p+1 -
(p + 1)! |y Yi | Héa}f " lz: |z — g|p+!

p+1 p+1
< gy |diame] < (l> .o
[dist (w;, w})]P n

The decomposition (14.19) of the fundamental solution defines via (14.15) an

approximated stiffness matrix V}. To ensure the asymptotically optimal error
estimate (14.3) the related condition (14.18) reads

1 p+1
3P (—) < ch?.
n

If we choose a fixed admissibility parameter n > 3, then due to h = O(1/N)
we therefore obtain the estimate

1 /3\""! 1
() <o
from which we finally conclude
p = O(logy N).
The total amount of work (14.16) to store Vj, and to realize a matrix by vector

product with the approximated stiffness matrix V}, is then proportional to

N (log, N)3.
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14.2.2 Series Representations of the Fundamental Solution

Instead of a Taylor expansion of the fundamental solution U*(z,y) one may
derive alternative series expansions which are valid in the far field for (z,y) €
w} x w? where w? and w;\ is a pair of admissible clusters. In particular, these
series expansions are the starting point to derive the Fast Multipole Method
[64, 65] which combines the series expansions on different levels. However, the
resulting hierarchical algorithms will not discussed here, see, e.g. [48, 62, 109,
110].

Let y)‘ be the center of the cluster w)‘ By considering the fundamental

solution in the complex plane we have

1 1 1
—glogle —yl = —5—log|(z — ¥)) — (y—v))| = Re <%10g(z - ZO))
where
i —y
2= (21— yy) +ilwe — yy) = |z — g eV,
i >
2= (1 — ) Filye — yo) = |y — y| PV
Since the clusters w and wj)‘ are assumed to be admissible, it follows that
@ = |y7yl)\ < 'dianiwi)‘)\ < 1 < 1.
|z |z — y| dist(w;, w3) n

Hence we can apply the series representation of the logarithm,

1 1 1 20
——1 — =——1 ——1 (1——)
27 08(2 = 20) 27 08% 27 o8 z

1 1 <1 /20\"
- g2 ()
27r0gz+27rn§1n z

and for p € N we can define an approximation

. 1 1 &1 /20\"
Uy(z,y) := Re (—%logz—i—%ZE (;) ) (14.21)

n=1

of the fundamental solution U*(z,y). By using

Aln
Z0\" n-n _ W= iney-2) —ine(z—y)

= 20z S € e
z |$ -y

we then obtain the representation

* 1 A
Uy(z,y) = —%log\x — il

+ 1 - 1| )\|n ( A)Cosn@(x_y;\)
— E —|y — y|" cosn -y ) —
27_(_ — n y yz %0 y yz |x _ y2)\|n
1 & n wsinne(z — yz}‘)
- — S —yr)—_ 1 Tt
o > Iy Y " sinng(y — u7) D

n:l
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By introducing . N
[l (@) = Ur(z,9), 95" (y) =1

and
; 1 cosnp(z — y) ;
A, — LA A
anl1(z) = 7 g Gon—1(y) = Iy v |" cosnp(y — y7),
as well as

-3 A
)\,j(x) — iblnn@(m - yz) k,i(y) .

|n
2n 2 |$ __y?\n ) 2n

Iy g™ sinnp(y — ;')

forn =1,...,p we finally obtain the representation (14.11) where o = 2p+ 1.

Lemma 14.6. Let wf‘ and w;‘ be a pair of admissible clusters. For the approx-
imation Uy(z,y) of the fundamental solution U*(x,y) as defined in (14.21)
there holds the error estimate

el 1 1 1 (1) Ao
0 @) = U] < o (5 ) foralt ) €

Proof. By using the series expansion

1 1 o1
—%log(z—zo) = ——logz 2_§::ﬁ (—)

we conclude from the admissibility condition (14.8)

(3 H2))

n=p+1

1 < 1/1\"
< i
T or 2 n(n)

n=p+1
p+1 oo n
smla) 26)
2rp+1 \\n —=\n

To ensure the asymptotically optimal error estimate (14.3) the related condi-
tion (14.18) now reads

P
R R RS
2rp+1n—11\"n

If we choose a fixed admissibility parameter n > 1 this finally gives

p = O(logy N).
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The total amount of work (14.16) to store V, and to realize a matrix by vector
multiplication with the approximated stiffness matrix V}, is then proportional

to
N (logy N)?.

Note that both the approximation (14.19) based on the Taylor expansion
as well as the series expansion (14.21) define nonsymmetric approximations
U, (z,y) of the fundamental solution U*(w,y), and therefore this results in

a nonsymmetric approximated stiffness matrix V},. Hence we aim to derive a
symmetric approximation U (z,y). For this we first consider the representa-
tion (14.21),

* 1 1 u 1 720\
U,(z,y) = Re (—%logz—&-%zg(?) )

where . . | i
z = |{L' — y;\|ew(w—yi )’ z0 = |y _ y;\|€1ga(y—yi )

For the center yJA of the cluster wg\ we consider z = w — z; where

w o= ‘yj)\ _ y{\|eiw(y;—y?)’ 2 = |ij\ _ x‘eisa(y?—:c)_

By using the admissibility condition (14.8) we have

A dia A
@:w; gi‘g.lni%kgl<1,
[wl |yj =y dist(w; 7wj) n

and therefore we can write
1 1 1 =1 /z1\»
~logz = ——1 Tl (—) .
21 08 % 21 ng+2ﬂ';n w
Lemma 14.7. Let w, 21 € C satisfying |z1| < |w|. For n € N then there holds

1 _ N (m+n—1 2]
e - o () o

m=0

Proof. For |z| < |w| we first have

1 1 1 1 o= /21\™
s e m m e (W)

w

and therefore the assertion in the case n = 1. For n > 1 we have
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1 1 dr—1 1

(w—z)"  (n—1dz"tw—2z

~tmi 5 5 6]

I
[}
VRS
3
3 4
I3
=
o
N———
SN
s
3
O

By using (14.21), z = w — 21, and by applying Lemma 14.7 for p € N we can
define a symmetric approximation of the fundamental solution U*(x,y) as

. 1 1 &1 /27 1 1 /z\"
TRV RS SR NN SEE Y
Ug(xy) Re( 2 ng+27rm§:lm w +27Tn:1n w ( )

I mxm L (m4n—1Y 25
e (M) )
n=1m=1
Lemma 14.8. Let w{\ and wg\ be a pair of admissible clusters. For the approx-

imation [7; (z,y) of the fundamental solution U*(x,y) as defined in (14.22)
there holds the error estimate

11 1 1\?
* * 2 - _
‘U (2, 9) = Uy ( xy‘_27rp+177—1[+77—1}<77>

for all (z,y) € wj)»‘ X w.

Proof. By applying the triangle inequality and Lemma 14.6 we have

]U*xy) U*(ay)] U (@,9) = Uy (@,9)| + |Ug (@) = U (a,9)|

1 p+1
< —
_27rp In—1 (n)
1 °° 2\ 1 & o= 1 (m—n—1\ iz
fre( S @R 3 () A
p+1 p 00 m+n
1 1 /m-n-1 1
—_— +_ — —_
7rp+1n1<n> 2m z:;m:zp;l” n—1 )(n)

where we have used the admissibility condition (14.8). With

IN
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1 (m—n—l) 1(m-n-1)!

n n—1

1
o (n=Dm!  m oalm—-1! — m

we obtain for the remaining term

1 p [es} 1 m—n—1 1 m+n
w26 e
n=1m=p+1

AN
| =
(7=
[]e
3=
~
|~
N
3
+
:

IA
)
ﬁ"‘
i
+ |~
—
—
3
s
—
S—
[\v]
7N
I | =
N————
<
+
—

which concludes the proof. 0O

14.2.3 Adaptive Cross Approximation

All approximations Uy (, y) of the fundamental solution U*(z,y) as described
before require either the knowledge of a suitable series expansion, or the com-
putation of higher order derivatives of the fundamental solution. Hence we
want to define approximations which only require the evaluation of the fun-
damental solution in appropriate interpolation nodes. One possibility is to
consider the Tschebyscheff interpolation of the fundamental solution. Here
we describe an alternative interpolation algorithm which was first given by
Tyrtyshnikov in [151], see also [12, 13].

Let w} and w} be a pair of admissible clusters. To define an approximation
of the fundamental solution U*(x, y) for arguments (z,y) € w} X w}* we con-
sider two sequences of functions sy (z,y) and ri(z,y). In particular, ri(x,y)
describes the residual of the associated approximation si(z,y). To initialize
this construction we first define

so(z,y) == 0, ro(z,y) := U'(z,y).

Fork=1,2,...,0let (z,yx) € wj)-‘ X w;\ be a pair of interpolation nodes with
a nonzero residual, i.e. oy := rg_1 (2, yr) # 0. Then we define the recursion
as

1

sk(x,y) == sp—1(z,y) + afkaA(fCayk)?“kA(xk,y)a (14.23)
1

ri(z,y) == rp_1(z,y) — ()Tkrkfl(x»yk)rkfl(xkay)' (14.24)

For ¢ € Ny and for (z,y) € w;-‘ x w we finally define the approximation

4

" rp—1(x yk: Th— 1(331973/)
U x, = 5, (x 14.25
( y) y Zl Tk— 1(Ik,yk) ( )

of the fundamental solution U*(x,y) with respect to an admissible pair of
clusters (w},w;). The recursion as defined in (14.23) and (14.24) admits the
following properties.
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Lemma 14.9. For 0 < k < ¢ and for all (z,y) € w;‘ x w) there holds
U*(x,y) = si(z,y) + iz, y). (14.26)
Moreover, there holds the interpolation property
re(z,y;) =0 foralll<i<k (14.27)

as well as
ri(zj,y) =0 foralll <j <k (14.28)

Proof. By taking the sum of the recursions (14.23) and (14.24) we first have
(2, y) + sk(z,y) = re—1(z,y) + sp—1(2, )
for all k =1,...,p, and therefore
rr(z,y) + sk(@,y) = ro(z,y) + so(x,y) = U (z,y).
The interpolation properties follow by induction with respect to j, k. For k = 1
we have

ri(x,y1) = ro(x,y1) — ro(z,y1)ro(z1, 1) = 0.

To(ml,?h)

Hence we have ri(z,y;) = 0 for k = 1,2,...,p and i = 1,..., k. Then we
conclude

rer1(2,y:) = rr(e,y:) — Tk (%, Yy 1)k (Thr1,96) = 0,

Q41

ie rpp1(z,y;) =0 forall i =1,... k. By using (14.24) we finally obtain

1
)Tk(fﬂ, Ykt 1)k (T 15 Yet1) = 0.

Th1 (% Yrr1) = T(T, Yry1) — P P
b

The other interpolation property follows in the same way. O
When inserting in (14.27) x = x; for j = 1,...,k this gives

ri(zj,y;) = 0 foralli,j=1,... k,
and due to (14.26) we conclude
sp(xj,ys) = U(xj,y;) foralli,j=1,....kk=1,...,0.

This means that the approximations si(x,y) interpolate the fundamental so-
lution U*(x,y) at the interpolation nodes (z;,y;) for 4,5 =1,... k.

To analyze the approximations U} (z,y) as defined via (14.23) and (14.24)
we consider a sequence of matrices

Mglj, i) = U*(xj,y;) fori,j=1,...,kk=1,...,0 (14.29)

where we compute the determinants as follows.
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Lemma 14.10. Let My, k=1,...,0, be the sequence of matrices as defined
n (14.29). Then there holds

k
det My = ro(z1,y1) - Th—1(Tk, Y) Hn 1z, y:) = Hai~ (14.30)
i1

Proof. To prove (14.30) we consider an induction with respect to k =1,..., 0.
For k =1 we first have

det My = Mi[1,1] = U™ (z1,y1) = ro(x1,91) = .
Assume that (14.30) holds for Mj. The matrix M}, allows the representation

U(z1,y1) - U(@,y6)  US(%1,Yr11)

Myyr = o o o
U(xr,y1) - U2k ue) U™ (Tk, Yktr)
U (@ry1,91) - U (@rg1,96) U (Thg1, Yrt1)

A

For any (z,y;) € w} X w;* we have by the recursion (14.24)

7“0(377%‘) = U*(xay’b)a
To(ﬂ%yl)?‘o(fﬂhyi)
TO(mlayl)

* TO(xlayi) *
=U"(x,y;) — ————=U
( y) 7‘0(£1,y1)

7“1(%%) = To(xyyi) -

(x’yl)

and therefore

N o— [T N — Al T 1 ,__7“0(5517%)
7“1(1',11/1) =U (xayz) al(yz)U (-T,y1), al(yl) = —To(xl,yl)-

By induction, this representation can be generalized to all residuals rg(z,y;)
forall k =1,...,pand for all (z,y;) € w;‘ x w?. Note that all residuals satisfy

ri(@,y:) = U (z,y:) (z,y;) (14.31)

IIMw

By using the recursion (14.24) and inserting twice the assumption of the
induction this gives
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Tk($7 yk+1)rk(33k+1a yi)
Te(The1, Yht1)

k
(z,:) Z (z y_])

_ Te(@rt1, i)
Tk(l‘k+17 yk+1)

Tk+1(f€7yi) = Tk(ﬂfyyi) -

k
U™ (2, Y1) Z (@,9;)

k+1
(x,y;) ZakH W™ (z,y;) -

By
My i1lj,i] == Myjalj,i] fori=1,...kj=1,...,k+1

and

k
Myia[j k+1] = Mya[j, k+1] — Za’g YMpy1]j, f] forj=1,... k+1
=1

we define a transformed matrix M, k41 satisfying det M, k+1 = det My1. Insert-
ing the definition of My1[j, ] this gives for j =1,...,k+ 1, due to (14.31),

E
My [k +1] = U (2, yns1) Zaf U (%, 9e) = ri(@j, yrs)-
Note that, see Lemma 14.9,
re(xj, Y1) = 0 forallj=1,...,k,

In particular, the determinant of the matrix M} 1 remains unchanged when a
row My[j, -] multiplied by a? is subtracted from the last row of M. By using
(14.31) we then conclude

U*(l‘l?yl) U*(3317yk) 0
My = | | f
U*(ffk,yl) U*(xk»yk) 0

U (@rt1:91) - U (Trg1:Yr) 7e(Trt1s Y1)

The computation of det M, k41 Via an expansion with respect to the last column
of M}, +1 now gives

det M1 = deth+1 = re(@ps1, Yrs1) det My

which concludes the induction. O
By using the matrices My now we can represent the approximations
si(z,y) as follows.
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Lemma 14.11. For k =1,..., o the approxzimations sg(x,y) allow the repre-
sentations

* T — *
sp(z,y) = (U (%yi))i:lw,k My, ! (U (xiay))i:1,..,,k~
Proof. By using the recursion (14.23) the approximation sy (z,y) is defined as
"
Z_ Ti— 1 x yl Ti— 1(3927?/)

(67
i=1 "

From (14.31) we find for the residual r;_;(x,y;) the representation

ri-1(@,y:) = U™(z,5:) Za YU (. ye).

Analogously we also have

ri—1(zi,y) = U (@i, y) Zﬁ 2)U" (20, y).

kak

Hence there exists a matrix Ay € satisfying

sp(r,y) = (U*(fcayz))Z:L...,kAkU*(W,y)le,...,k-

In particular for (x,y) = (z;,y;) we have r(z;,y;) = 0 and therefore
U(zjys) = se(@j, ) = (U (25,90))i=1. 1 ARU* (@0, i) e=1,...k
fori,j =1,...,k. This is equivalent to
My, = M A My

and since M}, is invertible this gives Ay = Mk_l. O

To estimate the residual r,(x,y) of the approximation U (x,y) as defined
n (14.25) we will consider a relation of the above approach with an inter-
polation by using Lagrange polynomials. For p € Ny let PP(R2) denote the
space of polynomials y® of degree |a| < p where y € R%. We assume that the
number of interpolation nodes (xj, yx) to define (14.25) corresponds with the
dimension of P,(R?), i.e

1
0 := dim P,(R?) = §p(p+1).

For k # £ let yi, # ye, then the Lagrange polynomials L € P,(R?) are well
defined for kK =1,..., 0, and we have

Lk(y[) = 516[ fOI‘k,£:17...,Q
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The Lagrange interpolation of the fundamental solution U*(x, y) is then given
as

UL o(x,y) Z (@, yr)Li(y) = (U*(x, Z/lc))—r 1o LEY)) k=1
k=1

where the associated residual is

Ey(z.y) = U(2,y) — (U (@, 96))j—1... o Le))ir. -

Let
U (xluyl) """ U (fhyg)
U (xg—1,91) =~ U*(ze-1,Yo)
Moe(z) == | U™(@,90) oo U*(z,y0)
U (zog1,y1) = U*(2e11,Y0)
U(zg,y1) +oooe U*(20,Ys)

Lemma 14.12. For (x,y) € w;‘ x wl let ro(x,y) be the residual of the ap-

prozimation U} (x,y). Then there holds

o
detM, ;.(x
ro(r,y) = Bylw,y) =) W:)EQ(xkyy)-
k=1

Proof. By using Lemma 14.9 and the matrix representation of s,(z,y), see
Lemma 14.11, we first have

ro(w,y) = U™ (2, y) = so(2,y)
= U (@) = (U (@, 90) ket o My (U (09
U*(z,y) — (U*(x, yk))k 19(Lk( ))k:l,g
— (U (z, yk))k 1,0 M [(U*(fkay )k:1,g - M, (Lk(y))kzl,g] :

Due to

(U*(xkvy))k=l,g - M, (Lk(y))kzl,g = ( (ks y Z (zk, ye) Lo( ))
k=10

=1
= (Eq(w, y))kzLQ

we then conclude

ro(@,y) = Eylw,y) — (U (@,y0)ics o My (Boleny)iey
= By(e) - (M7 O @) mr,) Egloes))y
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Let e’ € R? be the unit vectors satisfying ef = &;o. Then,
T
M, e = (U™ (@i, Yk)) =1,
and thus

Qi = M_T (U*(IE’Uyk))k‘:l,Q'

4

Hence we conclude
My ™M), (x) =
= MQ_T ((U*(xi, yk))k:l,g;i:l,ffh (U*(a, yk))k:l,g’ (U (i, yk))k:l,g;i:éJrl,g)

= (Q17 cee v§€_17MQ_T (U*(xayk))k:LQ 7§€+17 cee 729) y

and with
- _ det M, ()
T * T T —7k
(MQ v (%ye)e:m)k = det (M, "M, (2)) = det?\lg

we finally get the assertion. 0O

Corollary 14.13. Let the interpolation nodes (xk,yr) € w;‘ x w be chosen
such that
|det M, o(z)| < |detM,| (14.32)

18 satisfied for all £ = 1,...,0 and for all x € wj»‘. The residual r,(x,y) then
satisfies the estimate

Ire(w,y)l < (1+¢) sup |Ep(z,y)|.

mewj

The criteria (14.32) to define the interpolation nodes (zy, yx) € w} € w;* seems
not be very suitable for a practical realization. Hence we finally consider an
alternative choice.

Lemma 14.14. For k = 1,..., 0 let the nodal pairs (xg,yr) € w;‘ € w be
chosen such that

Ire—1(zr, yr)| > |re—1(z,yk)|  for allz € wj)-‘ (14.33)
18 satisfied. Then there holds

|det My, o(z)| k—r

EEROT < gkt
U et S

J

rew

Proof. As in the proof of Lemma 14.10 we have for det My, ¢(z) and 1 < ¢ < k
the recursion

det My, o(z) = rp—1(zk, yu)det My_1 () — m6—1 (2, Yy )det My_1 ¢(z1),
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or,

det My 1(w) = ro(w,y1), det My p(x) = ri—1(x, yx)det My,
for k=2,3,..., 0, as well as
det Mk = rk_l(:vk,yk) det Mk—l .
Hence we have for 1 < ¢ < k by using the assumption (14.33)

det My ()  det My_1(x) re—1(z,yr) det My_q ()

det M, a det My, _4 rk_l(xk,yk) det My, _4

and therefore

det M det My
sup |det My ()| < 2 sup |det M, 1,e($)|,
szj.‘ |deth‘ azew; |deth—1‘
or,
det My, i () _ Th—1(2, Yx) < 1. -
det Mj, Th—1(Tk, )

By using Lemma 14.14 we obtain from Lemma 14.12 an upper bound of
the residual r,(x,y) by the Lagrange interpolation error E,(z,y).

Corollary 14.15. For k = 1,..., o let the nodal pairs (xy,yi) € wg\ X wi)‘ be
chosen such that assumption (14.33) is satisfied. Then there holds

rola )| < 2 sup |Ey(wy)

waj

Contrary to the one-dimensional Lagrange interpolation the interpolation
in more space dimensions is quite difficult. In particular the uniqueness of the
interpolation polynomial depends on the choice of the interpolation nodes.
Moreover, there is no explicit representation of the remainder E,(x,y) known.
Hence we skip a more detailed discussion at this point. By using results of
[121] one can derive similar error estimates as in Lemma 14.6, see [13].

The adaptive cross approximation algorithm to approximate a scalar func-
tion as described in this subsection can be generalized in a straightforward
way to define low rank approximations of a matrix, see, e.g. [12, 14], and [117]
for a more detailed discussion.

14.3 Wavelets

In this subsection we introduce wavelets as hierarchical basis functions to
be used in the Galerkin discretization of the single layer potential V. As in
standard boundary element methods this leads to a dense stiffness matrix,
but by neglecting small matrix entries one can define a sparse approximation.
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This reduces both the amount of storage, and amount to realize a matrix by
vector multiplication.

Without loss of generality we assume that the Lipschitz boundary I" = 912
of a bounded domain 2 C R? is given via a parametrization I = x(Q) with
respect to a parameter domain Q = [0, 1] where we assume that the Jacobian
[X(&)| is constant for all £ € Q. Moreover, we extend the parametrization
I' = x([0,1]) periodically onto R. Hence we can assume the estimates

A & =nl < Ix(€) —x()| < e3|§—n| forall{neR (14.34)

with some positive constants ¢ and c¥. In the case of a piecewise smooth
Lipschitz boundary I" all following considerations have to be transfered to the
non-periodic parametrizations describing the parts I'; satisfying |x;| = ¢;.

For j € N we consider a deCOHlpOblthIl of the parameter domain Q = [0, 1]
into N; = 27 finite elements ¢ of mesh size |q£| =277, 0=1,...,N;,

U 7, q=(—1)279,027) fort=1,...,2.
A decomposition Q; implies an associated trial space of piecewise constant

functions,

Vj = S?(Q) = span{&i}évzjl C Ly(Q), dimV; = N; =27,

where the basis functions are given as

i 1 foréeq,
Gy(z) = { ’

0  elsewhere.
By construction we have the nested inclusions
VoC V1 C---CVp=8%Q)C Vi1 C-- C Ly(Q).

For any j > 0 we now construct subspaces W, as Lo(Q)-orthogonal comple-
ments of V;_1 in Vj, i.e.

Woi=Vo, W= {@l € Vi (3,3 rie) =0 foral @' eV}
where
dimWpy =1, dimW; = dimV; —dimV;_; = 2771 for j > 0.
Hence we obtain a multilevel decomposition of the trial space V, = S9(Q) as
Vi =WodWi & ---®Wr.

Due to Wy =V we have
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Wo = span{¢l} where (&) =1 for& € Q=1[0,1], [[¥{]r,0) =1.
It remains to construct a basis of
W; = span{zﬁ}?;l foryj=1,..., L.
By using dim W, = 1 we have to determine one basis function only. By setting
PHE) = a1 PI(E) + a2 §3(6) foré € Q=[0,1]

we obtain from the orthogonality condition

0= [ RO (e = Hlar+a)
Q

and therefore as = —a;. Hence we can define the basis function as

{ I foréeql=(0,3),

Pt =1.
| frgead= (L) 191112y 0)

DiE) =

By applying this recursively we obtain the following representation of the basis
functions,

1 for&e((20—2)277,(20—1)277),
GiE) = 4 1 for& e ((20—1)2779,20279),

0 elsewhere

where £ =1,...,2771 j=2,3,.... Moreover, we have
||1/}Z||%2(g) = )suppwi =2'"7 forj>1
Hence we can define normalized basis functions as
Pi(g) = 2U-D2%1) forl=1,...,277 j>1. (14.35)

Due to the orthogonality relation

/JZ(&)J?(&)ds — 0 forallt=1,....27" j>1
Q

we also obtain the moment condition

/iz?g(g)dg =0 foralll=1,...,277 1 j>1 (14.36)
Q

which holds for piecewise constant wavelets 7:[;; The basis functions (14.35)
as constructed above are also denoted as Haar wavelets, see Fig. 14.4.
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A
1 ¥y
0 1
14 i
U V3

Fig. 14.4. Piecewise constant wavelets for j = 0,1, 2.

~ Via the parametrization I" = x(Q) we can also define boundary elements
7] = x(g)) of the mesh size

W = / ds, — / X(©)lde = [x|27.

J

J
Te

q

The global mesh size of the boundary element mesh I'y, = UéV:jl ?z is then
given as h; = |x|277. Moreover, we can lift both the piecewise constant basis

functions (ﬁ% € V; as well as the wavelets {/;z € Wj; on the boundary I" = 042,
for x = x(§) € I we have

oh(@) = G1(), wi(x) =€) foréeQ=[0,1].
For j > 0 these basis functions define the trial spaces
V= span{g]}iy, Wy = span{uf by,

and for L € N we have
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_ 0 _ LY\NL __ J
Vi = S, (I') = span{p, '}, = Span{we}Z:l,.wmax{l,Qi*l},j:l,.‘.,La
i.e. any function wy, € Vi, can be described as
L max{1,2°71}
wh, =Y, > wiph € VL. (14.37)
i=0 k=1

Due to

Wk 1oy = [ i@l (@)ds,

r

=m/%@%@@:{“
Q

0 elsewhere

fori = j,k =,

the orthogonality of the trial spaces W}C in the parameter domain is transfered
to the trial spaces W} which are defined with respect to the boundary element
mesh.

By using Remark 13.21 we can derive spectrally equivalent norm represen-
tations by means of the multilevel representation (14.37) of a given function
Wh; € VL.

Lemma 14.16. Let wy, € Vi be given as in (14.37). Then,

L max{1,2i’1}
lwn l7e = > 2% > Jwil
=0 k=1

defines an equivalent norm in H*(I') for all s € (—%, 3).

Proof. Since wy, € Vi = SSL(F ) is a piecewise constant function, and by
using Remark 13.21, the bilinear form of the multilevel operator B?,

L
<Bsth’th>L2(F) = Z hz_%”(Qz — Qi—1)wn, H%Q(F)v
i=0
defines an equivalent norm in H*(I'), s € (f%, %) Thereby, the Lo projection

Qiwp, €V = S,gi (I') is the unique solution of the variational problem

(QiWny, V) Lo(ry = (Why,Vn) Loy for all vy, € Vi,

By using the orthogonality of basis functions we conclude for the Ly projection
the representation

i max{l,ijl} i max{1,2j71}

Qiwn,, = @Z S lwn Wl =Y. Y, wiv].
j=0 (=1

j=0 =1
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When taking the difference of two succeeding Lo projections this gives

max{1,2°7 1}
(Qi—Qi—vwn, = > wiv}
k=1
and therefore

max{1,2°~1}
(B*wp,, ,wp,, ) Lo(T) Zh_% Z w,iw,lg
k=1 La(I)
L max{1,2°7 '}
=YY fwil
=0

k=1

By inserting the mesh sizes h; = || 27% this concludes the proof. 0O
By using the representation (14.37) the variational problem (14.1) is equiv-
alent to

L max{1l, 2t~ 1}

> Z wi(Vi, ol = (g,¢)r forallgf € Vi  (14.38)
=0
Hence we have to compute the entries of the stiffness matrix

VEE): () = =5 [ 6@ [ 1og]o— yluiv)ds, s,

Ir r

fori=1,...,max{1,21},j = 1,...,max{1,2¥"} and k,¢/ = 0,..., L. Now
we can estimate the matrix entries V*[(¢,), (k,4)] when assuming a certain
relation of the supports of the basis functions v} and 1. For this we first
define the support of v}, as

S,i := supp (1/},2) cr,

and Ny o
dy, = dist (S;,Sg) = min |z —y|
(z,y)€SL*xS]
describes the distance between the supports of the basis functions % and wg ,
respectively.

Lemma 14.17. Assume that for i,j > 2 the condition dzje > 0 is satisfied.
Then there holds the estimate

14 —
. . X~ 5—3(i+j ij
VHE). (k)| < KD gz (4)
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Proof. By inserting the parametrization I' = x(Q) and by using the nor-

malized basis functions (14.35) the entries of the stiffness matrix V¥ can be
computed as

VEE). )] = ~5- [ 61(0) [ 1og o~ yluiw)ds,ds.
r

= 5 [ F©) [towixtm ~ x(©1 i) [k dn (0 de
Q Q
= L gevrmpunr2 [ Gaie) [rom vt - x(@) dhmande.

Q Q
With the substitutions

n=mn(s) = (2k—2)27" + 5217 € =) = (20—-2)277 4217

for s,t € Q = [0, 1] this is equivalent to

VI, 3), (k)] = — L 9=tz / / (5, )01 (n(s)) ds e

Q

where the kernel function is given by

k(s,t) = log|x(n(s)) — x(£(®))].

Due to the moment condition (14.36) we can replace the kernel function k(s, t)
by r(s,t) := k(s,t) — Pi(s) — Py(t) where P;(s) and Py(t) correspond to
the first terms of the Taylor expansion of k(s,t), i.e. r(s,t) corresponds to
the remainder of the Taylor expansion. The Taylor expansion of the kernel
function k(s,t) with respect to sg = % gives

k(s,t) =k (;’t> ™ <S B 1) {gsk( t)] s=5

with a suitable § € Q. Applying another Taylor expansion with respect to
to = % we obtain

] = (3] e (e ]

where ¢ € Q. Hence we have
1 1 0 1
k(s,t) — k (2,t) — (S — 2> |:85k <S, 2):|s_s
2
= sf1 tf1 0 k(s,t) .
2 2 ) |0sot (s
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Due to the moment condition (14.36) we conclude

/1/)1 (s— —) [%k (s %)L_Sdt = Q/zﬂ(n(s))k (%t) ds = 0.

Hence we obtain

VEL(L,5), (K, 0)]

BEGESTRE [t [ ndtoe)dsa

™

™

Q
| | 9—(i+4)/2 (§(t))
1
[?

and therefore

2

-2
Licg i (roayl < XE o-ise L .
[VEL, ), (k,9)]| < =2 5.5 (D)

max
T 16 (s,t)eoxQ

By applying the chain rule we further have

2 ) ) 82
— 9l—igl—j o

Moreover,

0 2 0

8_7710g|X z:: _x )|\y x(n)a Xj(n)
as well as
9? 0 0

lo = 1 ) v (€)

F7e 108 () =x(©)] = Z 5y13x] 08 ly=aljy=xtm.o=x(6) 5 Xs (1) 5 i (€)

i,7=1

Applying the Cauchy—Schwarz inequality twice this gives

02 S A\
.12
e o) = O < 162 2 |50 0wy~ alymramce)| |

ipj=1 -7
By using

82 1 (l‘i — yi)g
——F—log|lz —y| = — +2 ,
T R T PR

i (1 —y) (22 — y2)

1 =2

0x10 og |v =] |z —y|4



14.3 Wavelets 359

we finally obtain
2
0sot

max k(s,t)‘ < 2270+ x2 max L
(s,)€QXQ (@y)esixsi [v —y)?

The estimate of Lemma 14.17 describes the decay of the matrix entries
VE[(€, ), (k,i)] when considering wavelets 1}, and 1 with supports S} and S,
which are far to each other. By defining an appropriate compression parameter
we therefore can characterize matrix entries VL[(¢, j), (k,i)] which can be
neglected when computing the stiffness matrix V. For real valued parameter
a, k > 1 we first define a symmetric parameter matrix by

Tij =« orb—i=j,

This enables the definition of a symmetric approximation VL of the stiffness
matrix V¥ by

VE(5), (k1) = {VLW’j)’(k’i)] il < 7 (14.39)

0 elsewhere.

For the following considerations, in particular to estimate the number of
nonzero elements of the matrix V¥ as well as for the related stability and
error analysis we define for fixed 4, j > 2 block matrices

VL = (VH[(£,5), (k’i)])k:l,,,.,2i—1,Z:l,.4.72j—1’

and the corresponding approximation ‘7157 respectively.

Lemma 14.18. The number of nonzero elements of the approximated stiff-
ness matriz VE as defined in (14.39) is O(N*®(logy N)?).

Proof. For i = 0,1 and j = 0,1 the number of nonzero elements is 4(N — 1).
For i,j > 2 we estimate the number of nonzero elements of the approximate
block matrix V;% as follows.

By using the parametrization I" = X(Q) we can identify the basis functions
i and W with basis functions ’(/Jk and we which are defined in the parameter

domain Q. For the support of the basis functions z/Jk and Z/JZ we then obtain
Si= ((2(k—1)27%2k27Y),  §) = (2(6—1)277,20279).

For an arbitrary but fixed £ = 1,...,2/7 i—1 we first determine all basis functions
wk where the supports SZ and Sj do not overlap, i.e.

26270 < 2(0—1)279, 20279 < 2(k—1)27",

Then it follows that
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1<k<(@—1)277 146279 <k <271,

Next we choose from the above those basis functions Jf which in addition
satisfy the distance condition

dfge < Ty = a2/,
Due to assumption (14.34) we have dj, < cXdist (S}, S’g) By requesting
cédist(g,i,gg) < a2k
we can find an upper bound for the number of related basis functions. By

using
0 < dist(S},57) = 2(k —1)27" — 202779 < %251:—1‘—3'
for 55 onp<ée 5}6 we obtain the estimate
. le% .
k< 1402077 4 — orb=i
<1+ * 23
and therefore
14277 < k < min {2i-1,1+zzi—j + ;szm—a},
=)

Hence we can estimate the number of related nonzero elements as
«

_—_orL—j
e .
2c5

This results follows analogously in the case g,i 3¢é<ne gz . Thus, for a fixed
¢=1,...,277! there exist maximal

O L

=20

Cy
nonzero elements. The number of nonzero elements of the approximate block
matrix V;% is therefore bounded by

N N
27 x 2" = 50X 2"
2 2
By taking the sum over all block matrices ‘ZJL where k, ¢ =2,...,L we can es-

timate, by taking into account the special situation for i, j = 0, 1, the number
of nonzero elements of V' by
2 @

ok
2c}

4N-1)4+(L-1)
A similar estimate follows when considering basis functions with overlapping
supports. When inserting N = 2& or L = log, N this concludes the proof. O
To estimate the approximation error |[VZ — V|| of the stiffness matrix VX
we first consider the approximation errors ||V;% — V2| of the block matrices
Ve
J
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Lemma 14.19. Fori,j =2,...,L let V”L be the exact Galerkin stiffness ma-
triz of the single layer potential V' with respect to the trial spaces W; and Wj.

Let ‘ZJL be the approzimation as defined in (14.39). Then there hold the error
estimates

IVi§ = Viflloo < ex 27 /2279 ()7,

Vi — Vi1 < e 27 /227 (1)L,

Proof. By using Lemma 14.17 we first have

27, 1
I ij ij”oo = ma>2<] ) Z ‘VL [(¢,7), (k)] _VL[(€7j)7(k’Z_)]
21 1
= max > VEI), (ki)
=1,...,2 =
diiy>Tij
21'71
< 9—3(i+35)/2 ii\—2
=2 8:1171.1”3:}2(]_71 Z (dké)
k=1
dip>Tij

Since we assume (14.34) to be satisfied for the parametrization of the boundary
I" we then conclude

2i—l
L /L ~o—3(i+5)/2 . T Tiv—2
IVij =Vijlle < €2 (i+3)/ s kzl (dist(S},, S7))

exdist(SE,57) >y

For an arbitrary but fixed £ = 1,...,27~! the sum can be further estimated
by
2i—1
> (dist(SE. 57) 2 < 2 > (2(k — 1)27% —20279)
k=1 k>1+2% 2~L J 40203

C?dlst(gi,§£)>7'”

— 22i—1 Z %

n>-o 2~L i

Let n1 € N be the smallest number satisfying n; > %QRL_j. Then we have
1

< 11 < 1 1 71 11 24X
D m=mt D <+ / Sdz= = < = < —Lyik
—~ n n? = n? — n? x n? g T om «
n=ni n=ni+1
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which gives immediately the first estimate. The second estimate follows in the
same way. [0

By applying Lemma 13.17 (Schur Lemma) we can now estimate the error
of the approximation VL,

Theorem 14.20. For wy, v, € Vi, = S,?L(F) — w,v € RN there holds the
error estimate

((VL - ‘N/L)%Q) < ey(hr,01,02) |wnl mow(ryllvnllgoz ()

where

hptter o foroy, o0 € (—3,0),

R |Inhy|  forop =02 =0,

h% foroy, o9 € (0, %),

hite: foray € (0,3),02 € (—3,0).

,y(hLv 01, 0—2) =

Proof. First we note that for i = 0,1 and j = 0,1 there is no approximation
of the matrix entries of VX, Then, by using the Cauchy-Schwarz inequality
and Lemma 14.16 we obtain

)
> wiof [VEI€.5) = O] = VE(6, ), (k. )]

L
o1,,,1002],J9—01i—02]
E 27wy 272 0,2

~[vﬂwJ>@nﬂVﬂwJ»wnﬂ‘

L 2t71 1/2 L 297t 1/2
<Al (S22 i) (DD 2 |
i=2 k=1 j=2 ¢=1

< [|All2llwnll L0 |08l L0
< | Allzllwnll zror (ry vl oz ()

where the matrix A is defined by

Al(E,5), (ky )] = 277720 WV E((L ) = (k,d)] = V(€ ), (k,i)]} :

By using (13.17) we now can estimate the spectral norm || A2 for an arbitrary
s as
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L2i1

1AlI3 < sup DDAl ), (kei)][2077) -

= ".7_z2k1

L 2771

sup Y > AL 4), (k,0)]]2°077,

lkz 2. -2;;}1 j=2 ¢=1

By using Lemma 14.19 we can bound the first term by

L211

Ar= sw SO [V, i) = VEIC ), (k)] 2

sz ]Lz2k1

s(z j)2 o1i—02]

2i—1
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L
= sup 2y gy Z\va,j),(k,n]—VL[(z,j),(k,i)]

- j—1
0=1,..2i-1 =

= sup Zz@“ Do Vi = Vi oo
J=2,0L 555

IN

¢ sup ZQs@ ) g=nizaas g=(i+)/2 5= (7, 41
Jj=2,. ’LZ 2

¢ sup 226(1 J) g=o1i=02j 9—(i+7)/2 9—j ! L gitj—rl

J=2, ’Lz 2 «
L
— gL sup 2j(757%71+1702) 221’(57%4»1701)
=20 L =
L
=co b sup 2 0“22 o
7j=2,...,.L i—2
where s = —=. Note that
L 2=l for gy € (—1,0),
2270” <ec L for o1 =0,
' 1 for oy € (0, %)
and
. 2-72L  for gy € (—2,0
sup 277 < ¢ 2 € (= v )
j=2,...,L 1 for o9 € [0, 5)

To estimate the second term we proceed in an analogous way, and inserting

hy, = 2~F finally gives the announced error estimate. 0O

By using Theorem 8.3 (Strang Lemma) and Theorem 14.20 we can now
derive the stability and error analysis of the approximated stiffness matrix V7.
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For this we first need to establish the positive definiteness of the approximated
stiffness matrix V.

Theorem 14.21. For k > 1 and for a sufficient small global boundary ele-
ment mesh size hy, the approzimated stiffness matriz V¥ is positive definite,
i.€.

~ 1
(VLM7Q) 2 §CY ||th||?{,1/2(F)

is satisfied for all wy,, € Vi « w € RV,
Proof. For o € (—%,0) we have by using Theorem 14.20, the H~'/?(I")-

ellipticity of the single layer potential V', and by applying the inverse inequality
in VL

<
N

IS

S

w) + (V= V5w, w)
> (Vwngwny ) r = [(VE = VEw, w)]

> ef |[wn, IFr-1r2(py = ¢RE wn, 3o ()

> ¢f |lwn, I5r-12(r) — ¢hE > er hp 727 lwn, I 3-172
= [CY _5}1’2_1] ||wh||?q—1/2(r)-

Now, if Eh'z_l < %CY is satisfied the assertion follows. O
Instead of the linear system VZw = f which corresponds to the variational

problem (14.38) we now have to solve the perturbed linear system Vi@ = f
where w € RY « wy,, € Vi defines the associated approximate solution.

Theorem 14.22. Let w € H! (I') be the unique solution of the boundary

pw

integral equation Vw = g. For the approzimate solution wy, € Vi < w € RY
of the perturbed linear system V%Iw = [ there holds the error estimate

~ 3/2 —1/2
lw =@, 120y < e by wlle, ) + c2 B2l e -

Proof. The solutions w, w € RY of the linear systems VZw = fand VL@ =f
satisfy the orthogonality relation

(Viw— Vi@, v) =0 forallveRY.

By using the positive definiteness of the approximated stiffness matrix VL we
then obtain

50‘1/ lwhy, = @ne 512y < (VE(w — @), w0 — @)

= (VE - VEw,w - ).

By applying Theorem 14.20 we conclude for o7 € (0,3) and o5 € (—1,0)
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§C¥ [wn,, = Wy llg-172ry < ¢ wny e (0 llwn, — @, |l e )

Further we have as in Lemma 12.2

lwhy | zor (ry < Nwll g (ry + 1w = why 2o () < cllwllgerry < ellwll gz

On the other hand, by using the inverse inequality this gives

_1_ .
lwh,, = Wny ey < crhp® 7 lwhy, = @ny |l g-172(r)-

Hence we have

1 ~ -1/2
5 lwny = @2y < ehy ™ wll ey,

Now the assertion follows from applying the triangle inequality

|w=wn, |12y < lw—wnyllz-17200) + lwhy = Wnpllg-1720r)
and by using the error estimate (14.3). O

Remark 14.23. The error estimate of Theorem 14.22 is not optimal with re-

spect to the regularity of the solution w € Hll)w(F)- Since Lemma 14.16 is

only valid for s € (—3, 3) the higher regularity w € Hpy,(I) is not recognized

in the error estimate. Formally, this yields the error estimate
~ 3/2
hw =@l -sary < e B+ 0E] Tl or)-

When summarizing the results of Lemma 14.18 on the numerical amount
of work and the error estimate of Remark 14.23 we have to notice that it is not
possible to choose the compression parameter £ > 1 in (14.39) in an optimal
way. In particular for kK = % we obtain in Remark 14.23 the same asymptotic
accuracy as in the error estimate (14.3) of the standard Galerkin boundary
element method, but the number of nonzero elements of the stiffness matrix
VEis (9(]\72/2(10g2 N)?) and therefore not optimal. On the other hand, by
choosing £ = 1 we would obtain O(N,(log, N)?) nonzero elements, but for a
sufficient regular solution w € Hll)W(F ) we will lose accuracy. The theoretical
background of this behavior is given in the proof of Lemma 14.17. There, the
moment condition (14.36) is used for piecewise constant wavelets, i.e. they are
orthogonal on constant functions. To obtain a higher order of approximation
we therefore have to require higher order moment conditions, e.g. orthogonal-
ity with respect to linear functions. This can be ensured when using piecewise

linear wavelets [76] but their construction is a quite challenging task.
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14.4 Exercises

14.1 Consider the finite element stiffness matrix of Exercise 11.1 for h = 1/9,

2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2

Write K, as a hierarchical matrix and compute the inverse K, ! as a hierar-
chical matrix.

14.2. The solution of the Dirichlet boundary value problem
—u(x) = f(z) forz e (0,1), u(0)=u(l)=0

is given by

u(z) = (Nf)(z) = / Gla.y)f(y)dy forz € (0,1)
0

where G(x,y) is the associated Green function, cf. Exercise 5.2. Discuss the
Galerkin discretization of N f when using piecewise linear continuous basis
functions with respect to a uniform decomposition of (0, 1).
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Domain Decomposition Methods

Domain decomposition methods are a modern numerical tool to handle par-
tial differential equations with jumping coefficients, and to couple different
discretization methods such as finite and boundary element methods [43].
Moreover, domain decomposition methods allow the derivation and paral-
lelization of efficient solution strategies [95] in a natural setting. For a more
detailed study of domain decomposition methods we refer, for example, to
[18, 68, 114, 139, 149].
As a model problem we consider the potential equation

—div [a(2) Vu(z)] = 0 for z € £2, (15.1)
=49

yinty(z) = g(x)  forz e I’ = 90
where £2 € R? is a bounded Lipschitz domain for which a non-overlapping
domain decomposition is given, see Fig. 15.1,

p
=% 2n02;=0 fori#j. (15.2)
i=1

The subdomains §2; are assumed to be Lipschitz with boundaries I; = 9£2;.
By

we denote the skeleton of the domain decomposition.
We assume that in (15.1) the coefficient a(z) is piecewise constant, i.e.

afz) = a; forx e, i=1,...,p. (15.3)

For an approximate solution of the boundary value problem (15.1) we will use
a boundary element method within the subdomains {21, ..., {2, while for the
remaining subdomains 2441, ..., {2, a finite element method will be applied.
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.Qg 94

I's

Ql »QQ

Fig. 15.1. Domain decomposition with four subdomains.

By using the results of Chapter 4 the variational formulation of the Dirich-
let boundary value problem (15.1) is to find u € H*(£2) with ymtu = g such
that

/a(m)Vu(x)Vv(w)dm =0 (15.4)
Q
is satisfied for all v € H{(£2).

Due to the non—overlapping domain decomposition (15.2) and by using
assumption (15.3) the variational formulation (15.4) is equivalent to

P
Za,/ z)Vo(r)de = 0 for allv € H} ().
i=1 )

The application of Green’s first formula (1.5) with respect to the subdomains
Q; fori = 1,...,q < p results in a variational problem to find u € H'(£2)
with 7™ = g such that

q
Zaz/vinf (@)% v(x)ds, + Z al/ 2)Vo(z)de = 0 (15.5)

i=q+1 2

is satisfied for all v € H{(£2).
The Cauchy data ’ymtu and *ymtu of the solution u are solutions of the
boundary integral equations (6.22) on I; = 9§2;, i =1,...,¢, i.e.

M\ (oK OV o (15.6)
A D 31+ K] ) \ 5] |

Inserting the second equation of (15.6) into the variational formulation (15.5)

this results in the variational problem to find u € H'(§2) with véntu =g and

Wintu € H=Y2(I;) fori = 1,...,q such that
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q P

1
S aulDitu + (1 + KDyt i) + Y o / V() Vo(z)dz = 0
i=1 i o,

1 .
[<V7mt (§I+ Ki)V(l)r,litU,Ti>Fi] =0

is satisfied for all v € H}(2) andr; € H™V/2(I3),i=1,...,q.
By introducing the bilinear form

int int, .
a(uvvl,luv Sy V1, W U T e 77'q)

1
= Ledbadiut T+ Ko

2

+Za2/Vu YWo(z

i=q+1 2;

1 .
+Zal (ol = (T + Kb

we finally obtain a variational formulation to find u € H(§2) with *y(i)ntu =g
and virfitu € HY2(I),i=1,...,q, such that

a(u, lilntu; v,T) =0 (15.7)

is satisfied for all v € H} () and 7; € H-V/2(I;),i=1,...,q.

Theorem 15.1. There exists a unique solution of the wvariational problem
(15.7).

Proof. Tt is sufficient to prove all assumptions of Theorem 3.8. For this we
define
X = HY2)x HY*(I) x --- x HY2(I,)

where the norm is given by

q

P
1w D% = D (el + 16l3sre | + D lulln -
() (I3)

i=1 i=q+1

The boundedness of the bilinear form a(-,-) follows from the boundedness of
all local boundary integral operators, and from the boundedness of the local
Dirichlet forms.

For arbitrary (v,7) € X we have
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q P
a(v,7;v,7T) Zaz [ Viti, i), + (ley(l)ﬂltu /y(l)nzt ) } + Z o ||Vv||%2(91)
i=1 i=q+1

q .
> IIllIl {azcl i QCLs, 0 ) Z {HTi”%{—l/zm)|’Y(l)r,1itu|§11/2(ﬂ)}
=1

p
+ Z HV”H%g(m)

i=q+1

Due to v € Hg(£2) we therefore conclude the X—ellipticity of the bilinear form
a(+,-) and thus the unique solvability of the variational problem (15.7). O
Let
Xy o= SE(R) x SH(Iy) x - x Sp(I,) € X

be a conforming trial space of piecewise linear basis functions to approximate
the potential u € H{(£2) and of piecewise constant basis functions to approx-
imate the local Neumann data Wmtu e H™ 1/2(Fi), i=1,...,q. All degrees of
freedom of the trial space S} (£2) C Hg(£2) are depicted in Fig. 15.2.

BEM

BEM

Fig. 15.2. Degrees of freedom of the trial space S}, (£2) C H{(£2).

The global trial space S} (£2) C Hg(£2) is decomposed into local trial spaces
Sp(£2;) == Sj(2)0, N Hy(£2;) = span{p} 1ot i=q+1,....p
and into a global one

Sh(Is) = span{py 1o,
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which is defined with respect to the skeleton I's. All global degrees of freedom
are characterized in Fig. 15.2 by e while all local degrees of freedom correspond
tom . From the decomposition

Sh(2) = SpTs)u | Sh(e)
i=q+1

it follows that a function uj, € Si(£2) N H}(£2) allows the representation

Mg p M;
un(z) = Y uspes (@) + D D uikeix(@).
k=1

i=q+1 k=1

Accordingly, the coefficient vector u € RM can be written as

Finally we introduce the trial space
SnI) = span{el Ji € HYA(L), =10,

of piecewise constant basis functions.

Let u, € H'(£2) be a bounded extension of the given Dirichlet datum
g € H'Y2(I'). Then the Galerkin variational formulation of (15.7) is to find
ugp € SH(2) N HY(2) and t;, € S)(I;), i =1,...,q, such that

a(uo,h +ug7§h;vh71h) = O (158)

is satisfied for all v, € SL(2) N H(2) and 7,5, € SY([}),i=1,...,q.
By applying Theorem 8.1 (Cea’s Lemma) the Galerkin variational formu-
lation (15.8) has a unique solution which satisfies the a priori error estimate

(o — won, v™u—t,)llx < c inf  |(uo — v, 7"u—1)|x.
(vn,7p)EXH

Hence, convergence for h — 0 will follow from the approximation properties
of the trial spaces S} (£2) and S} (I).

The Galerkin variational formulation (15.8) is equivalent to an algebraic
system of linear equations,

‘/}L _%Mh—Kh
IM] + K] Dy+Ass Ars us | = | fg (15.9)

Ast AL ur, [
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where the global stiffness matrices are given by

q
Dh[&k} Z Z<D2701 @Sk7701305’£>
i=1
P
Assltck) = 3 o [ Vohe@)Vh (oo
1=q+1 2
for k, ¢ =1,..., Mg, and where the local stiffness matrices are
Vh = diath7i, ALL = diagAhﬂv (1510)
with
Vh7i = ai<‘/i§0?,k7 SO?,£>F1‘ for kae = ]-a ceey NZ,Z = 1; .. q,
and

Api = ai/Vgoik(x)V@}y[(x)dx fork,=1,....M;,i=q+1,...,p

In addition, for k=1,..., Mg and i = 1,...,q we have the block matrices
Mii[6,k] = @il o P01
Khﬂ'[& k] = ai<Ki76l?it‘pé,ka 90?,£>qu

for{=1,...,Ny, whilefori=q+1,...,p

Aspalt K] = a / Vb 4 (2)Vil ,(a)da

for £ = 17~--5Mi and ALS = AgL

The global stiffness matrix of the linear system (15.9) results from an
assembling of local stiffness matrices, which stem either from a local boundary
element or from a local finite element discretization. The vector of the right
hand side in (15.9) correspondingly results from an evaluation of a(ug,0;-,-),

1 ; .
fB,il = az<(§ + Ki)’Y(l)I,litUgﬂ/Ji,@Fm { = 1) .. .7N7;,Z = 17 .. q,

int

q
t
fS,Z = 7Za1< Z’Yénz ugaﬁyOz (pS£>

_Za’/vug V@SE( )d7 ézla"wMSy
i=q+1 2

Jrie= fai/Vug(x)Vgo}’e(sc)dx, b=1,....M;,i=q+1,...,p
2;
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The linear system (15.9) corresponds to the general system (13.20), hence we
can apply all iterative methods of Chapter 13.3 to solve (15.9). In particular,
when eliminating the local degrees of freedom t and u; we obtain the Schur
complement system

1 4.1 _
Dy + (iM;;r + K, )V, 1(§Mh + Kp)+ Ags — ALSALéASL:| us = f

(15.11)
where the modified right hand side is given by

1 _ _
f=Ts- (iM;;r + Ky Vi fp = AvsALt -

Due to (15.10) the inversion of the local stiffness matrices V3, and Ary can
be done in parallel. This corresponds to the solution of local Dirichlet bound-
ary value problems. In general we have to use local preconditioners for the
local stiffness matrices Vj,; and Aj ;. For the solution of the global Schur
complement system (15.11) where the system matrix S, is symmetric and
positive definite, we can use a preconditioned conjugate gradient scheme. The
definition of an appropriate preconditioning matrix is then based on spectral
equivalence inequalities of the corresponding Schur complement matrices,

1 1,1
SPM = Du o+ (GM + KV (G My + o),

and
SEEM = Ags — Asp. A7 Ars,

and with the Galerkin discretization Dy, of the hypersingular boundary inte-
gral operator, see, e.g., [36, 139].
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of the linear form, 190

operator, 191
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Aubin—Nitsche trick, 244, 266, 276

BBL condition, 196
Bessel potential, 32
Betti’s first formula, 5
bilinear form
linear elasticity, 6
potential equation, 2

Stokes system, 14
boundary condition
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boundary element, 229
boundary stress operator, 7
boundary value problem
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CG method, 295
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potential equation, 2
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elliptic operator, 1, 46

far field, 331
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linear, 212
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Galerkin—Petrov method, 193
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Gram-Schmidt orthogonalization, 293
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second, 3
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Hooke’s law, 5

hypersingular operator, 128, 163
integration by parts, 131, 134, 164

incompressible materials, 12
index set, 203
indirect approach, 172
inequality
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Holder, 21
Korn’s first, 74
Korn’s second, 76
Minkowski, 21
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inverse inequality
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double layer potential, 127
single layer potential, 120

Korn’s inequality
first, 74
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method of conjugate gradients, 295
preconditioned, 298

mixed formulation, 52
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multi index, 19

multilevel operator, 308

natural density, 142, 144

near field, 331

neighboring elements, 205, 231
Neumann series, 173, 177
Newton potential, 111
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norm equivalence, 211

null space, 48

operator equation, 41
orthogonal complement, 48
orthogonal space, 48

partial differential equation
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Helmholtz, 183
Helmholtz operator, 15
Laplace operator, 3, 111
linear elasticity, 5
linear elastostatics, 156
Stokes system, 12, 165
partial differential operator, 1
partition of unity, 253
plain strain, 10
plain stress, 9
Poisson ratio, 5
preconditioning, 297, 299
multilevel, 306
with integral operators, 302

projection
H'-, 220
H7-, 237, 241

Lo—, 219, 233, 241
quasi interpolation operator, 226
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reference element, 206, 209, 231
representation formula
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Laplace, 89

linear elasticity, 97

Stokes system, 101, 105
Riesz map, 45
rigid body motions, 7, 11
rotation, 11

scaling condition, 67, 80
Schur complement system, 196, 257,
283, 320, 373
Schur Lemma, 310
series expansion
ACA, 344
fundamental solution, 340
Taylor series, 337
shape regular, 205, 232
single layer potential, 118, 157
Sobolev space, 24
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solvability condition, 4, 8, 12, 48, 50
Somigliana identity, 156
Sommerfeld radiation condition, 16
spectral condition number, 296
BEM stiffness matrix, 278
stability condition, 50, 54, 64, 174
discrete, 193, 196, 257, 301, 305
Stokes problem, 81
Steklov—Poincaré operator, 148, 284
stiffness matrix, 249, 268, 277
local, 252
strain tensor, 5
Strang lemma, 191, 192
stress function of Airy, 97
stress tensor, 5
support of a function, 19
surface curl, 133
symmetric approximation, 284
symmetric formulation, 179, 281

theorem
closed range theorem, 48
equivalence theorem of Sobolev, 26
imbedding theorem, 25
interpolation theorem, 34
inverse trace theorem, 38
Lax-Milgram lemma, 46
of Gauss and Ostrogradski, 2
Riesz representation theorem, 43
trace theorem, 38
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trace, 2 uniform elliptic operator, 1
trial space
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piecewise constant, 233, 263
quadratic, 222 Young modulus, 5
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