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Preface

The integral equation method is an elegant mathematical way of transforming ellip-
tic partial differential equations (PDEs) into boundary integral equations (BIEs).
The focus of this book is the systematic development of efficient numerical methods
for the solution of these boundary integral equations and therefore of the underlying
differential equations.

The integral equation method has a long history that is closely linked to math-
ematicians such as I. Fredholm, D. Hilbert, E. Nystrom, J. Hadamard, J. Plemelj,
J. Radon and many others. Here is a list of some of the original works on the subject:
[46,96,101,126,164,165,173,175-177,181,182,188,214,229].

With the introduction of variational methods for partial differential equations at
the beginning of the twentieth century, integral equations lost some of their impor-
tance for the area of analysis. This was due to the difficulty of formulating precise
results on existence and uniqueness by means of classical integral equations.

Since the middle of the twentieth century the need for numerical methods for
partial differential methods began to grow. This was reflected also in the rapidly
increasing interest in integral equation methods. Some advantages of this approach
for certain classes of problems compared to domain methods (difference methods
and finite elements) are given in the following:

1. The treatment of equations on spatial domains with a complex geometry is sim-
pler with respect to mesh generation — this is the subdivision of the domain
into small geometric elements — for boundary integral equations than for domain
methods, since only a surface mesh of the domain has to be generated as opposed
to an entire volume mesh.

2. The numerical treatment of problems on unbounded domains is especially simple
with integral equation methods, while the treatment by means of domain meth-
ods requires the generation of a mesh on an unbounded domain, which is rather
problematic.

3. For some parameter dependent problems, for example, from the area of electro-
magnetism at high frequencies, numerical methods for integral equations remain
more stable for extreme parameters than for domain discretizations.

vii



viii Preface

4. The large linear systems of equations that appear in almost every discretization
method have a better condition number than the systems of equations for domain
discretizations. Basic iterative methods thus converge more rapidly.

5. The drawbacks of the integral equation method, such as the numerical integra-
tions that are necessary to generate and solve the systems of equations, are being
resolved with numerical methods that have been under constant development
since about 1980.

The Nystrom or quadrature formula methods and the collocation method are clas-
sical numerical solution methods for integral equations. One of the first textbooks
on this topic was written by K.E. Atkinson [7] with an extended new edition [8].
These methods are suited to the solution of boundary integral equations of the sec-
ond kind. These are integral equations with operators of the form / + K, where /
denotes the identity and K an integral operator. They can be implemented on com-
puters relatively easily, although they do have two significant drawbacks: (a) the
Nystrom and collocation methods cannot be applied to all boundary integral equa-
tions that appear in connection with elliptic boundary value problems and (b) the
convergence and stability of the methods can only be shown for very restrictive
conditions imposed on the underlying differential equation and the smoothness of
the physical domain.

Since about 1980-1990 the Galerkin methods for the discretization of boundary
integral equations have been gaining importance for practical problems. From a the-
oretical point of view this method is superior to the alternatives such as the Nystrom
and collocation methods: stability, consistency and convergence of the Galerkin
method can be shown for a very general class of boundary integral equation. The
approach is based on a variational formulation of boundary integral equations as
opposed to the pointwise, classical approach. This approach is explained in detail
in, for example, [72,74,80, 167,171,238] or in the monographs [137,162,170].

The breakthrough for the Galerkin methods for practical, three-dimensional
problems was achieved through the development of numerical methods for the
approximation of integrals in order to determine the system matrix and through
the development of fast algorithms to represent the non-local (boundary integral)
operators.

The focus of this book is the systematic development of numerical methods to
determine the Galerkin solution of boundary integral equations. All necessary tools
from the area of analysis are presented, most of which are proven and derived; some,
however, are only cited so that this book does not become too expansive. This book
can be used as the basis for a lecture course of four hours a week on the numerics
of boundary integral equations, consisting of an intensive short course on functional
analysis and with a focus on the numerical methods. Some of the subsections bridge
the gap between the textbook and current areas of research or should be seen as
complements to the material. They are marked by a star (x). The applications from
the area of electromagnetism (Maxwell and wave equations, Helmholtz equation for
high frequencies), for which integral equation methods are currently being devel-
oped intensively, serve as examples. The methods that are dealt with in this book
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form the basis with which to treat such problems. We will, however, not elaborate
on the concrete applications.

So as not to go into too much detail we refrained from representing methods to
couple finite elements with boundary elements and domain decomposition methods
(see [49,54,71,73,135,149]).

First and foremost the aim of this book is to represent and mathematically analyze
efficient methods. Its purpose is not the treatment of concrete applications from the
area of engineering. For this the books [13,23,32] may serve as an introduction.

Other textbooks and monographs from the area of numerical analysis for integral
equations include [23,60,117,216].

This book is the translation of the German version [204] and extended by chap-
ters on p-parametric surface approximation and a posteriori error estimates — thanks
are due to E. Louw for the translation of the German version. In addition we have
corrected some misprints and incorporated additional material at various places.

The authors would like to thank their colleagues Profs. W. Hackbusch, R. Hipt-
mair and W. Wendland for the numerous discussions concerning the topics of this
book, their co-workers L. Banjai, N. Krzebek, M. Rech, N. Stahn, R. Warnke for
their support during the reading and correction of the manuscript. We also owe
thanks to the Springer-Verlag for their understanding and unproblematic
cooperation.

Ziirich Stefan Sauter
July 2010 Christoph Schwab
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Chapter 1
Introduction

Many physical processes can be described by systems of linear and non-linear differ-
ential and integral equations. Only in very few special cases can such equations be
solved analytically, which is why numerical methods have to be developed for their
solution. In light of the complexity of the problems that appear in practice, it is unre-
alistic to expect to find a numerical method that offers a black-box type of numerical
method that is suitable for all these problems. A more reasonable approach is to
develop special numerical methods for specific classes of problems in order to take
advantage of the characteristic properties of these classes. These numerical methods
should then be decomposed into isolated and elementary partial problems. It would
then be possible to employ or develop efficient methods for these subproblems.

The fundamental aim of this book is to systematically develop the boundary ele-
ment methods for integral equations. These methods are developed for boundary
integral equations that result when elliptic boundary value problems on spatial
domains are transformed to integral equations on the boundary of the physical
domain. In this introductory chapter we will briefly describe the structure and
contents of this book.

1.1 The Concept of the Boundary Element Method

The boundary element method is a method for the solution of integral equations. In
this book we will restrict ourselves to integral equations for the solution of elliptic
boundary value problems. In order to offer a comprehensive description we will
introduce basic terminology and theorems from the theory of partial differential
equations and the integral equation method in Chaps. 2 and 3.

1.1.1 Basic Terminology

We consider the following problem. Our aim is to determine a physical quantity u
that depends on the spatial variable x € R¢. Here d denotes the spatial dimension.

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series 1
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2_1,
(© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

We call equations for u that contain partial derivatives

B = ou

s

(1 <i < d) or partial derivatives of u of higher order partial differential equations.
Classical differential operators that contain partial derivatives of a function are the
gradient, divergence and Laplace operator. For this let u be a differentiable, scalar
function. Then the gradient of u is given by

gradu := Vu := (01u, au, ..., d5u)7 .
The divergence of a differentiable vector field w is defined by
d
divw: =V .-w =Zaiw,-.
i=1

If u is twice differentiable the Laplace operator can be defined:

d
Au= Z 0%u.

i=1
It is easy to verify that
Ay = div grad u.
For a differentiable vector field u : R® — R3 the curl operator is given by
curlu :=V x u := (0pu3 — d3uz, 03u1 — 01u3, 01up — dauq)7 .

Definition 1.1.1. A subset  C R is a domain if it is open and connected.

The domain €2 is called a normal domain if the Gaussian integral theorem holds.
Sufficient conditions can be found in, for example, [246], [128, Chap. 4], [142].

Theorem 1.1.2 (Gauss’ Integral Theorem). Ler @ C R? be a normal domain
with boundary 3R, let n : 3Q — R? denote the exterior normal field and let
U D Q denote an open subset of R?. Then for every continuously differentiable
vector field v: U — R4:

/divv(x)dx:/ (v(x),n(x)) dsx.
Q a9



1.1 The Concept of the Boundary Element Method 3

1.1.2 A Physical Example

We consider the following physical problem. Find the fields E, D in the domain R3
which are characterized by the Maxwell equations:

curlE = 0, (1.1)
divD = p, (1.2)
D =¢E, (1.3)

where ¢ denotes the electrostatic permeability and p the electric charge density. In a
vacuum we have, for example:

-9

e =¢g9 = Farad/meter.

The quantity E : R3—R3 denotes the unknown electrostatic field and D:
R3 —R3 the electrostatic induction. Equation (1.1) implies that there exists a
potential ® : R3>—R such that

E = —grad ®. (1.4)
If we insert this into (1.3) we obtain

D = —ggrad ®.

Combining this with (1.2) yields a scalar equation for the potential ®:

—div(egrad®) = p (1.5)

in R3.
We now consider a conductor that is described by a bounded domain Q™ C R3.
The complement or exterior domain is denoted by QT = R3\Q~. We assume

that the electrical permeability in 27 is given by a positive constant ¢~ and, in the
exterior 7, is given by a further positive constant 7. In the interior 2~ we obtain
the Poisson equation

—ao=L" e (1.6)
&

and owing to p = 0 in the exterior of the conductor we obtain in Q% the Laplace
equation, i.e., the homogeneous Poisson equation:

—AD =0. (1.7)

Remark 1.1.3. Ifthe electrical permeability € is only piecewise smooth but discon-
tinuous the assumptions in the definition of the divergence operator [see (1.5)] are
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generally not fulfilled. If we only consider the equation in the subdomains 2~ and
QT in which ¢ is smooth, applying the div-operator is not a problem.

Through the potential approach (1.4) we have reduced the stationary Maxwell
equations to a scalar differential equation. Since derivatives of second order do occur
but none of higher order, we are dealing with a scalar differential equation of second
order.

In order to find unique solutions for differential equations, we still need to pre-
scribe suitable boundary conditions. For example, for d = 2 the real and imaginary
part of any holomorphic function satisfy (1.7).

Example 1.1.4. Ford = 2 the functionsu = 1, u = x,u =y, u = x%— y2, u=
2Xxy, ... satisfy the Laplace equation. The functions can also be seen as functions in
R? with d > 2 (constant in all further variables). They then also satisfy the Laplace
equation.

We assume that the boundary I of 27 can be oriented and is sufficiently smooth
such that a continuous normal field n : I' — R3 can be defined. We assume that
n(x) points in the direction of the exterior Q. Using physical arguments (see
[138]) that are formulated in a mathematical manner in Sect. 3.3, we find that the
tangential component of the E-field and the normal component of the D-field are
continuous across the boundary. We will prove in Chap. 3 that under suitable condi-
tion the E and D-fields can be extended continuously (to one side) to functions E™,
Dt : Q+ — R3and E-, D™ : @~ — R3. Therefore the normal components of D
for x € T" can be defined by

D} ®=m®.D*®). Dy ®=(nEx.Dx)
and the tangential components by
E,+ (x) =n(x) xE' (x), E, (x) =n(x)xE™ (x).
The transmission conditions are given by
Ef (x) = E; (x), D;F (x) = D (x) vx eT.
We now insert the potential approach (1.4) into these conditions. Note, however,

that the approach (1.4) only determines the potential uniquely up to a constant. It
can be chosen such that the transmission conditions for the potential ® are given by

ot (x) = O (x) (1.8)
Floxs Blo
et o (x) =¢" o (x) (1.9)

forallx € I'. The quantity 8%—3 is called the potential flux. Conditions (1.8) and (1.9)
imply that the potential and the potential flux are continuous across the boundary I
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In summary, we have derived the equations:

AP = £ in Q-
—ADt =0 inQt (1.10)
ot = o~ ands+% = s_ag;n_ onT

for the electrostatic potential. These equations do not necessarily have a unique
solution.

Example 1.1.5. Let Q be the ball in R3 with radius 1 around the origin. In (1.10)
we choose p = —12 ||x|| as the right-hand side. By introducing three-dimensional
polar coordinates we can show that all functions of the form

1 3 +

& ()= — (||x||3 + 2T (e —et) 4 be —4)
e I

ot (x) = -~ +b
I

satisfy (1.10). If we impose the condition that ® be regular at the origin we obtain
a = -3/ and we obtain the single-parameter family of solutions:

3
P (x) = IxI"=1 _ 8% + b,

&€

(1.11)
Ot (x) = — 5y + O

In order to guarantee the unique solvability of partial differential equations on
unbounded spatial domains we still need to prescribe suitable decay conditions
at infinity. For the Laplace equation and spatial dimension d = 3 these can be
written as

[@F @[ = C x|

|grad @+ (x)|| < C |Ix|| 7> for ||x|| — oo. (1.12)

In the case of the solution of Example 1.1.5 we obtain b = 0 as well as the unique

solution

3
IxI”=1 _

s 3 Ixll <1,

P (x) =
—%”X” x| > 1.

Differential equations that are posed on all of R3 are called full space problems.
One also often considers differential equations on bounded domains & C R3. For
example, if one is only interested in the electrical field inside the conductor 2~ the
differential equation (1.6) is only considered in the domain 27 . In place of the trans-
mission conditions (1.8) and (1.9) one now has to deal with boundary conditions
that can be obtained through physical measurements. If the potential is measured
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on I' we speak of Dirichlet or essential boundary conditions. The associated interior
problem reads
—Ad™ =p/e” inQ7,

1.13
®" =gp onl. ( )

If the fluxes are measured on I' we speak of Neumann or natural boundary condi-
tions. The interior problem reads

—ADd” =p/e” inQ7,

1.14

e 0d /on =gy onT. (119

In the case of Neumann boundary conditions the right-hand side p/& has to sat-

isfy suitable compatibility conditions. These can be obtained by integrating the

Poisson equation (1.6) over 2~ and by then applying Gauss’ integral theorem
(Theorem 1.1.2) to grad ®

/_@dx:—/_A@(x)dx=/m_?)—f:(x)dsx-

&

It follows that the compatibility condition

p(x), [ 0D
/Q_ p dx—/rx(x)dsx,

which links the right-hand side in (1.6) with the given Neumann data gy, is neces-
sary for the solvability of the Neumann boundary value problem.

The exterior problems can be formulated in the same way. The Dirichlet exterior
problem consists in solving the problem

—ADtT =p/et inQT,

o* — ¢p onl (1.15)

and the Neumann exterior problem reads

—ADt =p/et inQT,
et _ . (1.16)
5 = &n  onl.

As with the full space problem, suitable decay conditions have to be imposed at
infinity to guarantee the unique solvability. For spatial dimensions d = 3 these read

lux)| = O/ [x]), for [x]| = oo,

_ 1.17
19u @)l = 0 (Ix2) for x| — oo. 1
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1.1.3 Fundamental Solutions

It is our aim to transform the boundary value problems from the previous section into
an integral equation on the boundary I' := 92~ and only then solve it numerically.
To transform a partial differential equation into an integral equation one needs the
fundamental solution of the underlying differential operator. We again consider the
Poisson equation:

—Ap=" (1.18)
£
in R3. The function
N(x):/ G(x—y)mdy (1.19)
R3 &
with the kernel function
G(z) = (1.20)
47 ||z|

is called the Newton potential and the function G from (1.20) is called the funda-
mental solution or the singularity function for the Laplace operator (for d = 3). The
Newton potential exists for all functions p € C° (R3) with compact support and
solves the Poisson equation. For a proof we refer to [115, Chap. 17, Theorem 2].
The fundamental solution satisfies the Laplace equation in R3\ {0}:

AG =0  inR3\{0}. (1.21)

More specifically, we have, in the sense of distributions, the equality AG = §p
on R3 with the delta distribution 8y at the point zero. These and further properties
of the fundamental solution and of the Newton potential are discussed in Chap. 3.

1.1.4 Potentials and Boundary Integral Operators

The boundary element method can be applied especially efficiently to homoge-
neous boundary value problems. If the equation is inhomogeneous the problem can
transformed into a homogeneous problem by using the Newton potential. Since eval-
uating the Newton potential at one point X requires an integration over  (or Q%),
the method becomes very expensive if p has a large or, in the most extreme case,
unbounded support. For this reason we will generally assume that the inhomoge-
neous part p has compact support: suppp CC R3. It can be shown under these
conditions that the Newton potential always satisfies the decay conditions (1.17)
(see Chap. 3).

The Newton potential solves the Poisson equation. In general this potential will
not satisfy the boundary conditions or the jump conditions. It only represents a spe-
cial solution of the problem with which the Poisson equation can be transformed
into the Laplace equation. All solutions of the Poisson equation can be written as
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the sum of a special solution and a solution of the homogeneous problem
® =N + O. (1.22)

We will first consider the exterior problem with Dirichlet boundary conditions (1.15)
and decay conditions (1.17). Evaluating N at one point X requires an integration over
the unbounded exterior domain Q.
The principle of superposition implies that ®¢ is the solution of the Laplace
equation
Ay =0, in Q7
Py =gp onT,
lu(x)[ =0
[Vu@l = 0 (||x||‘2)} for Il = e

with the modified boundary conditions gp = gp — N |r. With the help of the
fundamental solution we can define an approach for x € R3\T" which reads

(1.23)

Dy (x):/FG(x—y)a(y)dFy. (1.24)

The function o : I' — C has not yet been determined and is called density. For
continuous densities 0 € C? (I") the integral in (1.24) exists as a Riemann integral.
The right-hand side of (1.24) defines the single layer potential S (o) of the density o.
Since x € R*\I" and y € T the differentiation and integration commute and with
(1.21) we obtain:

AS (o) =0

in R3\T". We will show in Chap.3 that S (o) satisfies the decay conditions (1.23)
for every o € C°(I"). The problem (1.23) has thus been solved [and with it so has
the initial problem (1.15)] if the density o can be determined in such a way that the
boundary conditions ®y |r= gp are satisfied. It will be shown in Theorem 3.1.16
that the single layer potential S (o) can be continuously extended across the surface
I' by

V(o) (x) = /1: G(x—yo(ydly, forx e I'. (1.25)

Thereby, the integral for ¢ € C°(T") in (1.25) exists as an improper Riemann
integral. The boundary integral equation to determine the density o then reads:

V(o) =gp, onT, (1.26)

or explicitly:

/ &dryzg,) (x), forallx e T
r 4 [Ix -yl
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Note that this integral equation represents a boundary integral equation, as we have
X,y € I and the functions o and gp are mappings from I" to C. Integral equa-
tions where the unknown function only appears under the integral are called integral
equations of the first kind. The idea is based on the fact that the approach (1.25) sat-
isfies the differential equation in Q% for all densities. This approach for the solution
of a differential equation is called the potential approach method or the indirect
formulation.
As a generalization of this approach we note that every derivative of the form

k(y) =) o (¥) R4 G (x—y)
v,

satisfies the Laplace equation Ak (x,y) = O forx € QT and y € I and therefore
also the potential formed with k.

We will introduce the double layer potential for the interior problem with Dirich-
let conditions. Once again the Poisson problem can be transformed into the Laplace
equation by using the Newton potential:

Ady =0in Q7
®y =gponTl

withgp = gp — N |r. We set

(n(y).y —x)

k (X’ y) = (n (Y) »VyG (X_y)) = - 4 ||y—x||3

(1.27)

and with this we form the double layer potential
D (0) (x) := / k(x,y) 0 (y)dTy for all x € R3\T.
r

Again, forx € R3\T" and y € T the differentiation and integration commute and we
obtain AD () = 0in Q. If the unknown density 6 : I' — C can be chosen such
that
lim D () (x) = gp (Xo), forallxg € T’ (1.28)
X—>X(

then ® = N + D (8) solves the interior problem (1.13). We will show in Chap.3

that D (6) can be extended continuously from the interior to the boundary. The
extension has the following representation for sufficiently smooth boundaries:

_ %9 ®+K@)(x xeT (1.29)

with the boundary integral operator [k as in (1.27)]
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K () (x) = / k(x,y)0 (y)dTy, forallx e I (1.30)
r

If we insert the representation (1.30) into (1.29) and then into (1.28) we obtain the
boundary integral equation

—%9 x)+ K@) (x)=gp (x), forallx e T (1.31)

in order to determine the unknown density 6 : I' — C. The integral equation (1.31)
is defined on I' (x,y € I"'and 8,gp : ' — C) and, thus, is again a boundary
integral equation. Since the unknown function 6 appears in the integrand as well as
outside of the integrand, (1.31) is called a boundary integral equation of the second
kind.

If the surface is sufficiently smooth the integral in (1.30) exists as an improper
Riemann integral.

In Chap.3, we will present further possibilities of transforming even more
general elliptic differential equations with more general boundary conditions into
boundary integral equations.

1.2 Numerical Analysis of Boundary Integral Equations

In Chaps. 4-6, we will deal with the numerics of boundary integral equations. Pri-
marily, we will consider Galerkin boundary element methods for the discretization.
Alternatives, such as collocation methods, are considered in examples.

1.2.1 Galerkin Method

In Chap.4 we will consider the Galerkin boundary element method in its original
form.

The basis of the Galerkin method is a finite-dimensional subspace S of the
function space H which contains the continuous solution of the boundary integral
equation. As an example we consider the boundary integral equation (1.26) for the
single layer potential. The construction of the boundary element space S is based
on a decomposition of the boundary I' of Q2 into non-overlapping panels which
defines the surface mesh G of T'. For a panel t € G, b, : T — {0, 1} denotes the
characteristic function on 7. The space S is the span of the basis functions (b;) ¢

S :=span{b; : T € G}. (1.32)
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The dimension of S is denoted by N := dim S. Every function o0 € § is uniquely
determined by the coefficient vector (0¢),cg € RN with respect to the basis
representation o0 = ) 5 0¢b.

Usually one cannot expect the boundary integral equation (1.26) to have a solu-
tion in S. Since every function in S is determined by N degrees of freedom,
in general only N conditions can be imposed to determine the coefficient vector
(Uf)reg‘

For the Galerkin method (1.26) is multiplied by the basis functions b, and then
integrated over the boundary I'. The equations to determine the Galerkin solution
then read: Find o € S such that

a(os,b;) := / V (os)bds = / gpb.ds =: F (by) Vredg. (1.33)
r r

It will be shown in Chap. 4 under which conditions the results on existence and
uniqueness for the continuous boundary integral equations can be transferred to the
Galerkin equations.

Questions concerning convergence and convergence rates are just as important
for the evaluation of the method. We will show that under suitable conditions for
a sufficiently fine surface mesh G the Galerkin solution converges quasi-optimally:
There exists a constant C which is independent of the right-hand side such that

lo —os|lg < Cdist(o,S) with dist(o,S) = Ging lo—6lg (1.34)
€

holds. The quantity dist (o, S) depends only on the regularity of the solution o, the
chosen norm ||-|| z and the boundary element space S

The quasi-optimality of the Galerkin method, i.e., the error estimate (1.34), is
proven under suitable conditions in Chap. 4.

In order to estimate the quantity dist (o, S), the regularity of the continuous solu-
tion o has to be analyzed. Depending on the smoothness of the boundary I" and the
right-hand side gp it can shown that the solution ¢ € H lies in a smoother space
W CH.

We use the dimension N of the boundary element space as a parameter to
describe the rate of convergence. We would like to estimate the quantity dist (o, )
depending on N. The regularity of the solution combined with the approximation
property of the boundary element space leads to the error estimate

dist (0, 8) < CN*|olw,
where @ > 0 denotes the rate of convergence, which depends on W and S. In

summary, we obtain
lo—osllg <CN~®|o|w- (1.35)
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1.2.2 Efficient Methods for the Solution of the Galerkin
Equations

The Galerkin solution is entirely defined by (1.33). However, these equations do
not offer a clear idea of how to solve them efficiently. Since on the computer it is
not possible to work with continuous (boundary element) functions but only real
numbers, we transform (1.33) into a linear system of equations for the coefficient
vector (07),¢g- If we insert the ansatz

os =Y och: (1.36)
T€G

into (1.33) and use the linearity of the operator V' we obtain

Zat/ V (by) beds =[§Db,ds VT eg.
r r

teg

We define the system matrix V := (Vr,,)meg by V;; = fF V (by) b.ds for t,
t € G and the vector g := (8;),cg by 8 := [ §pb-ds for all T € G and obtain a
linear system of equations for the coefficient vector (07) g

Vo =g. (1.37)

The Galerkin solution og results from the vector o through (1.36). In order to
evaluate the Galerkin solution efficiently, it is thus necessary to develop quadrature
methods, specifically designed for each problem, to determine the entries of the
system matrix as well as fast methods to solve the system of equations.

1.2.2.1 Quadrature Methods

In the case of the basis functions b, from (1.32) the matrix entries for V are defined

by the integrals
1
\ :=/ ————dsydsy. (1.38)
O o dm x =y

For t = ¢ these integrals are singular for x = y and special quadrature methods have
to be developed to approximate them. These consist of a combination of regularizing
coordinate transformations and Gaussian quadrature formulas. We will illustrate the
idea of coordinate transformations by using the simple example of the integration of
an integrand with characteristic singular behavior over the triangle with the vertices
0,0)T, (1,0)T, (1, )T
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1 X1
I = [ / f (XI’XZ) dXdel.
0 JoO

/2 2
X7 + x5

The transformation (§1,£1) = (11, n112) maps the (11, n2)-coordinates of the unit
square (0, 1)? to the triangle 7. From this and with the determinant of the Jacobian
det J (n1,1n2) = 11 we obtain the representation

1t 1 1
I :/(; /(; . f (Ul,ﬂlﬂz)dnzdm :/(; f(m’mm)dnzdm.

e mnz)
Vi +mns °© 1+

The integrand in the last integral is smooth for smooth functions f and the integral
can be approximated by using Gaussian quadrature.

In Chap. 5 we will generalize these Duffy coordinates (see [83]) to pairs T x t of
panels.

The approximation of the entries of the system matrix by means of quadrature
methods leads to a perturbed linear system of equations

Vo=g¢g (1.39)

as well as a perturbed Galerkin solution 65 = Zreg 6:b;. The consistency and
stability analysis of this perturbation allows us to choose the order of the quadrature
such that the order of convergence « in (1.35) of the unperturbed Galerkin solution
is maintained. In the second part of Chap. 5 this influence will be analyzed.

1.2.2.2 Solving the Linear System of Equations

In Chap. 6 we will study efficient methods for the solution of the linear system of
equations (1.39). We will also analyze their convergence.

For a large dimension N = dim § of the boundary element space, methods such
as the LR decomposition cannot be considered as their complexity grows in cubic
proportion to the dimension N . Instead, iterative methods are used. The convergence
of classical iterative methods is determined by the condition of the matrix V. The
integral equations under consideration can be divided into three types:

1. Equations with non-symmetric system matrices and a bounded condition number.

2. Equations with symmetric, positive definite system matrices and a condition
number that grows as N /2 in proportion to the dimension N of the boundary
element space. The underlying boundary integral operator is smoothing, i.e., the
order of differentiability of the image of the function is one order higher than that
of the function itself.

3. As in (2) but the boundary integral operator has differentiating properties, i.e.,
the order of differentiability of the image of a function is one order lower than
that of the function itself.
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For systems of equations of type 1 minimal residual methods — these are vari-
ants of the cg-method for non-symmetric matrices — can be used. The number
of iterations necessary to reach a prescribed error tolerance is independent of the
dimension N.

For systems of equations of type 2 and 3 the cg-method can be used. We will
show in both cases that the number of iterations to reach a prescribed error tolerance
grows as N /4 in proportion to the dimension of the system of equations.

Since the equations of type 3 have a differentiating effect they are closely related
to Finite Element discretizations of elliptic boundary value problems. The multi-grid
methods that are used in connection with these discretizations can be generalized for
boundary integral equations of type 3. We will prove in Chap. 6 that the number of
multi-grid iterations needed to reach a prescribed tolerance is independent of N.

1.2.2.3 Cluster Method

The complexity for the solution of the linear system of equations (1.37) with an
iterative method is the product of the number of iterations and the complexity
per iteration. If the iterative methods from Chap. 6 are used we face the follow-
ing dilemma. The number of iterations is essentially independent of the dimension
of the system of equations; however, the complexity per iteration grows quadrati-
cally with respect to N. This is due to the fact that the system matrix for integral
operators is generally dense [see (1.38)].

In Chap.7 we study the cluster method, with which a matrix-vector multi-
plication can be approximated and the complexity of which is proportional to
O (N log“ N) for k = 4 to 6. Closely related to the cluster method is the fast multi-
pole method (FMM) which was originally developed for N -body particle problems
(see [111,193]). We will briefly discuss this method in Chap. 7 as well.

We will explain the idea of the cluster method by using a simple model problem.
For this purpose we assume that the kernel function is degenerate, i.e.,

k(xy) =) ®x) ¥ (y) (1.40)

i=1

for suitable functions (®;)7L, and (¥;)/=, with m < N. Then the coefficients of
the system matrix of the associated boundary integral operator are given by

Vo= [F [F k (%,¥) br () by () dsxdsy

-3 (forwbmas) ([ wwomas).

Although this matrix is also dense in general, it can however be stored by using
O(N) quantities and it can be multiplied by a vector with a complexity of O (N)
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arithmetic operations. For this we define the coefficients

Li.— [ ®; (x) by (X)dsy and Ri, = [ Ui (y) be () dsy
T T

Vteg VI<i<m.

Since the support of the basis functions b, only consists of the panel 7, the integra-

tion over I" can be reduced to the panel t. If the functions ®; and ; are sufficiently

smooth the assumption that every one of the numbers L; , R; r can be evaluated

with a complexity of O (1) arithmetic operations, independent of N, is justified.

The overall complexity for the computation of all quantities is then given by O (N).
One matrix-vector multiplication & = Vo can then be evaluated as follows:

1. Determine the auxiliary quantities y; := Zreg R; 0, for 1 <i < m with an
arithmetic complexity of O (N) operations.

2. Determine 6 as given by 0, := > i~ y;L; ; forall T € G. Complexity: O (N)
arithmetic operations.

In the context of iterative methods to solve linear systems of equations it is often
sufficient to have a subroutine at your disposal that evaluates a matrix-vector mul-
tiplication. Furthermore, only O (N') matrix entries have to be stored (for example,
the diagonal elements for the Jacobi method). We have thus shown that for degen-
erate kernel functions it is sufficient to compute O (N) real numbers in order to
evaluate one matrix-vector multiplication with a complexity of O (N).

We would like to emphasize at this point that the kernel functions for integral
equations are generally not degenerate, but the approach (1.40) has to be general-
ized. The matrix-vector multiplication is, in the general case, only approximated
and the influence of this additional perturbation on the Galerkin solution will also
be analyzed in Chap. 7.

1.2.2.4 Surface Approximation

In practical applications, the description of the “true” physical surface might be
very complicated or even not available as an exact analytic function and has to
be approximated by using, e.g., pointwise measurements of the surface or some
geometric modelling software. In this introduction, we illustrate the concept by the
example of the first kind integral equation for the single layer potential on a smooth
surface I' in R3.

The construction of an approximate surface starts with definition of an interpolat-
ing polyhedron Q" with surface T'*fine, Let Gaffine = {affine  7afined denote a
surface mesh of T'*" consisting of plane triangles with straight edges t#"® which
interpolate the exact surface I' in their vertices. The affine pullback of 72" ¢ Gaffine
to the two-dimensional reference triangle 7 with vertices (0,0)T, (1,0)T, (1,1)7T is
denoted by yiffine . 7 — gaffiee Tet P U — T denote the orthogonal projec-

tion of a sufficiently small neighborhood U C R3 of I'. A surface mesh for I is
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then defined by G = {P (¢*finc) : affine ¢ Gaffinel The pullbacks of 7 € G to the
reference element is given by y; := P o )(f;fﬁ"e.

In principle, the Galerkin boundary element method can be applied directly to the
surface mesh by defining the boundary element spaces with respect to G. However,
the mapping P is in general complicated and non-linear or even available only by
pointwise measurements and hence must be approximated and realized by numerical
approximation.

The p-parametric surface approximation is defined by replacing the mapping y.
by an (componentwise) interpolating polynomial y-,, of degree p and approximat-
ing the panels t € G*" by y, , (7). (Note that for the definition of the interpolating
polynomial y. , only the evaluation of P at the interpolation points are required and
not its functional representation.) This leads to the mesh G? := { Xep(@):iT€eG }
and the approximate surface

re.= (J=.
TEGP
The corresponding piecewise constant boundary element space is S, := span
{by : T € GP}, where b; : '? — R is the characteristic function for T € G?. The
Galerkin method with piecewise constant boundary elements and p-parametric sur-
face approximation for the single layer equation (1.26) is given by: Find 05 €S,
such that

p
/ Mdsydsx =/ glbids vt eGP, (141)
rexre 4 |x =yl re
Here, gﬁ is some extension of gp in (1.26) to I'?, e.g., by polynomial interpo-
lation. From the numerical point of view, the problem is substantially simplified
because the parametrization of I'? is explicitly given by polynomials instead of the
complicated projection P.

In order to compare the solution oéf with the continuous solution ¢ for the error
analysis we have to lift oé’ to the original surface I'. For sufficiently small mesh
width 4 := max {diamt : T € G}, we assume that the restriction P : I'? — T is
bijective and set 67 = ( P|p ») ' Let 65 := 0% o 6?7 denote the Galerkin solution
which is lifted to the surface I so that the error o —6§ : ' — C is well defined. For
the error analysis it is convenient to rewrite (1.41) equivalently as a problem on the
true surface I'. For this, let § p = {08 007 : 0¥ € S,} denote the lifted boundary

element space. Then 6§ € S p 1s the solution of

58 (y) bz (x)
2(52.b; :=/ o5 ) bz ? (y) p? (x) dsydsy
as (0500 = | Gxjer—er g WP 0 dnds
= /rgvgb;,opds=F§’ (by) Vteg, (1.42)

where g{, = gf) 00?7 and p? : T' — R reflects the change of metric. Forany 7 € G
it is defined by



1.2 Numerical Analysis of Boundary Integral Equations 17

-1
oF|, = % with g; = \/det ((D)(r)T D)(r) and
87 9 X+

Sup = \/det ((D)(,,p)T D)(,,p).

For the error estimates, one has to compare the bilinear forms and right-hand sides
in (1.33) and (1.42) and estimate the quantities §' and §" in

|a (u,v) —a§ )| <8 ulg Ivlg YuveS,,
|F(u)—F§’(u)|§8H||u||H Yu e Sp.

To keep this outline short, we assume that the error related to the right-hand side van-
ishes, i.e., 8 = 0. The estimate of §' can be derived from stability and consistency
estimates of the form

1 1
— <
Ix=yl 1167 x) =67 I~ Ix=yl

1 C

p+1’ < ,
107 (x) =67 () ~ lIx—yll

p? (y) — 1] = ChP*L, lp? (Nl = C.
(1.43)
These estimates and similar estimates for more general kernel functions and also for
only piecewise smooth surfaces will be derived in Chap. 8. It will also been shown
that (1.43) implies 8' < ChP*! and in the case of full regularity of the solution &
we get

lo =621 = Co (32 + 171,

This allows us to conclude that, for the boundary integral equation for the single
layer potential on a smooth surface discretized by piecewise constant boundary ele-
ments, the approximation of I' by an interpolating polyhedron, i.e., p = 1, suffices
in order to preserve the convergence rates of the original Galerkin discretization.

1.2.2.5 A Posteriori Error Estimation

The a priori error analysis of Galerkin boundary element methods shows the asymp-
totic convergencerate of the Galerkin solution by combining (a) the discrete stability
of the variational formulation, e.g., in the form of an ellipticity estimate with (b) the
regularity analysis of the continuous solution, e.g., by analyzing the smoothness of
the solution in dependence of the smoothness of the given data, and (c) approxi-
mation properties of the boundary element functions for functions which belong to
the regularity class of the exact solution. These estimates can be applied to large
(infinite-dimensional) problem classes — however they might be very pessimistic
for the concrete problem under consideration. In practical applications, the typical
question is to “compute a numerical solution to a prescribed accuracy with minimal
cost”. However, the exact discretization error is not available in general because it
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requires the knowledge of the exact solution. Hence the only way to guarantee a
prescribed accuracy of the numerical solution is to estimate the error theoretically
by quantities which are computable. Since the upper bounds in a priori estimates, in
general, are by far too pessimistic and various constants appearing therein cannot be
estimated in a sharp, problem-dependent way, the condition: “refine the boundary
element space until the upper bound becomes smaller than the given error toler-
ance” is not practicable because it exceeds the capacities of modern computers as a
consequence of these pessimistic estimates.

The a posteriori error analysis allows us to estimate the error by some quanti-
ties (denoted as error indicators and error estimators) whose computation uses the
computed numerical solution and hence is adapted to the concrete problem under
consideration. The advantage is two-fold: (a) the estimates are sharp and can be
used to guarantee a prescribed accuracy requirement and (b) the local error indica-
tors provide information concerning the local error distribution and can be used to
enrich the boundary element space in an adaptive solution process.

In order to explain the principal idea we consider again the Galerkin dis-
cretization (1.33) of the single layer potential. For the error es := o0 — o5 we
obtain

lo—osllg=|V"'V (e —0s)|yg <CvV(oc—09)llg =Cvlgp - Voslg -
(1.44)
Here H is the infinite-dimensional space in which the continuous problem is for-
mulated and V : H — H’ is the boundary integral operator associated to the single

layer potential. H' is the dual space of H and
-1

Cvi= |V ycn

is the continuity constant of the inverse operator V1. Note that (1.44) contains
the right-hand side gp as in (1.26) and the numerically computed solution og but

not the exact solution. For the operator V' the norm in the space H’ is given for
w e H' by

. 2 2 .
Wl 1= 1wy + 9l -

2
w(Xx)—w
- {||w||iz(r)+ [ [ =D s,
rJr x—yl

1/2

which is denoted as the Sobolev norm of fractional order 1/2. The goal is to estimate
the ||-||H/’F-norm of the residual r = gp — Vog [cf. (1.44)] and use this as a bound
for the discretization error. To get local insights on the error distribution, it will also
be important to estimate [|7|| g/ p by a sum of local error indicators. For this, let 7
denote the set of counting indices of the basis functions b;, i € Z, for the boundary
element space S and let

w; ;= supp b;
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denote their support. Then we will show that

Cerr /Z n <lo—oslg < C /Z n7.  where ;= |rlgs,, . (1.45)
i€l ieZ

A posteriori error estimators which satisfy the upper estimate in (1.45) are called
reliable and if the lower estimate is satisfied they are called efficient. These estimates
require the localization of the integral frxr in the definition of the fractional order
Sobolev norm to a sum of integrals over |, w; xar; - 1 is relatively simple (but technical)
to prove that

Ve < D W +C D IVl7ag

ieZ T€G

Hence it remains to estimate

W 7o) < C Ve, » where or:= U , ‘. (1.46)
teG:tNTH#P

Unfortunately, this estimate cannot hold for all functions v € H’ as can be eas-
ily seen by considering the function v = 1. However, for functions which satisfy
a certain orthogonality relation with respect to the boundary element space, esti-
mate (1.46) can be proved. Furthermore, we will prove that the residual r satisfies
this orthogonality relation and hence the reliability of the error estimator can be
concluded.

Notation 1.2.1. Throughout the book C and c¢ denote generic positive constants
which may vary from inequality to inequality.



Chapter 2
Elliptic Differential Equations

Integral equations occur in many physical applications. We encounter some of the
most important ones when we try to solve elliptic differential equations. These can
be transformed into integral equations and can then be solved numerically by means
of the boundary element method. The subject of this chapter is the formulation and
analysis of scalar, elliptic boundary value problems.

2.1 Elementary Functional Analysis

In this chapter we will present a few fundamental results from functional analysis
that we will need at a later stage. It is not intended as an introduction to functional
analysis; instead we will refer to other textbooks or we will give schematic proofs if
we think this might help the reader’s understanding of the subject. The presentation
is based on the book [115, Chap.6]. A detailed introduction to linear functional
analysis can be found in, e.g., [3,62,98, 195,243].

2.1.1 Banach and Hilbert Spaces

2.1.1.1 Normed Spaces

We denote by X a normed, linear space over the coefficient field K € {R,C}. A

norm | - || : X — [0, 00) is a mapping with the properties
VxeX: x| =0= x =0, (2.1a)
VA e K:[Ax] = [A] [Ix]. (2.1b)
Vx,y € X :lx+yll < [lx[l + [yl (2.10)

We will use the notation |||y if the space X is not clear from the context. We call
the pair (X, || - ||) a normed space.

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series 21
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2_2,
(© Springer-Verlag Berlin Heidelberg 2011
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With || - ||x we have defined a topology on X: a subset A C X is open if there
exists a constante > O forall x € A suchthattheball{y € X : |[x—y|x <&} C A.
For a sequence (x,), C X we write x, — x if

x = lim x, <= lim |x —x,||lx =0.
n—00 n—00

Remark 2.1.1. Every norm || - || : X — [0, 00) is continuous since we have from
(2.1c) the reverse triangle inequality

Vx,y e X [lx = lylll < lx =y (2.2)

We can define several different norms on X. Two norms || - ||1, || - |2 on X are
equivalent if and only if

3IC>0: Clxly <lxl, <Clxl, VxeX. (2.3)

Equivalent norms induce the same topology on X .

2.1.1.2 Linear Operators
Let X and Y be normed spaces with the respective norms | - || x and || - ||y - A linear
mapping 7 : X — Y is called an operator. An operator 7 : X — Y is called
bounded if

ITlly<x := sup{ITxlly /llx]lx : 0#x € X} < oo. 2.4)

Here || T ||y —x is the operator norm. The set of all bounded linear operators T :
X — Y is denoted by L (X, Y) and together with

(Ty + T2)x := T1x + Tox, (ATy)x = T1(Ax), A €K, (2.5)

constitutes a normed, linear space (L(X,Y), || - ly<x). If X = Y we write L(X)
instead of L(X, X). L(X) is an algebra if we set

VT, T2 € L(X,X) : (ThTz)x := T1(Trx).
For a normed space X, Ix € L (X) denotes the identity on X. A mapping 7! €

L (Y, X) is the inverse of the mapping T € L (X,Y) if we have TT~! = Iy and
T7IT = Iy.

Exercise 2.1.2. (a) Show that forall x € X and T € L(X,Y) we have

ITxlly < ITlly<xllxlx. (2.6)
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(b) Show that for Ty € L(Y,Z), T, € L(X,Y) we have T\ T, € L(X, Z) and
IT1T2llzex < [ Tillzey IT2]ly <x. 2.7
Definition 2.1.3. The sequence (7,,),, C L(X,Y) converges to T if
Ty, > T < |T —Tyllyex — 0 for n — oo.
It converges pointwise to 7 if

VxeX: |Tyx —Tx|ly - 0 for n — oo.

2.1.1.3 Banach Spaces

The sequence {x,} C X is called Cauchy sequence if sup{||x, — Xxm| x
n,m >k} — 0fork — oo. X is called complete if all Cauchy sequences converge
toan x € X. A complete, normed, linear space is called a Banach space.

Proposition 2.1.4. Let X be a normed space and Y a Banach space. Then L(X,Y)
is a Banach space.

Proposition 2.1.5. Let X be a Banach space and Z C X a closed subspace. The
quotient space X/Z consists of the classes X := {x +z:z € Z} forall x € X.
The quotient space X | Z with the norm ||X| := inf{||x + z||x : z € Z} is a Banach
space.

We call the set A C X dense in X if we have for the closure A = X. More
specifically, this means that for all x € X there exists a sequence (xp), C A with
xn — x. If (X, ||-||x) is normed but not complete then the Banach space (X -1 X)
is the completion of X if X is dense in X, X is complete and we have || x|z =
|x|lx forallx € X.

The Banach space X is called separable if there exists a countable, dense subset
A={ap:neN}CX.

The completion X is unique up to isomorphism. The continuous extension of a
linear operator 7 € L(X,Y) from a dense subset X9 C X to X is also uniquely
determined. The following proposition explains this in more detail.

Proposition 2.1.6. Let X¢ be a dense subset of (X, | - ||x). An operator Ty €
L(Xo,Y) with
ITolly <xo = sup{[|Tox|ly /llx]lx : 0% x € Xo} < o0

has a unique extension T € L(X,Y) that satisfies the following conditions:

1. Forall x € Xog we have Tx = Tyx.
2. For all sequences (x,),, C Xo with x, — x € X we have Tx = limy o0 ToXn.
3 AT lly<x = Tolly «xo-
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The following theorem and corollary are both a result of the open mapping
theorem (see [243, Theorem 6.6]).

Theorem 2.1.7. Let X,Y be Banach spaces, let T € L(X,Y) be injective (Tx =
Ty = x = y) and surjective (forall y € Y there existsan x € X with Tx = y).
Then the mapping T~ € L(Y, X) exists.

Corollary 2.1.8. Let X,Y be Banach spaces and let T € L(X,Y) be injective.
Then the following conditions are equivalent:

(a) Yo:={Tx:x € X}with | - |y is a closed subspace of Y .
(b) T~ exists on Yo and T~! € L(Yp, X).
2.1.1.4 Embeddings

Let X, Y be Banach spaces with X C Y. The injection (or embedding) I : X — Y
is defined by /x = x forall x € X and clearly is linear. If / is bounded, that is,

VxeX: |x|ly <C|x|x, (2.8)
we have [ € L (X,Y).If X is also dense in Y, we call X densely and continuously
embedded in Y.
2.1.1.5 Hilbert Spaces

Let X be a vector space. A mapping (-,-) : X x X — K is called an inner product
on X if

(x,x) >0 Vx € X\ {0}, (2.9a)
Ax+y,2) =Ax,2)+ (y.2) YreK, x,y,z€X, (2.9b)
(x,y)=(0,x) Vx,yeX (2.9¢)

A Banach space (X, ||| x) is called a Hilbert space if there exists an inner product
on X such that || x|y = (x,x)l/2 forall x € X.
Furthermore, from (2.9) we have the Cauchy—Schwarz inequality

1.l = lxl iyl Vx.y € X. (2.10)

Two vectors x, y € X are orthogonal if (x, y) = 0. We denote this by x L y. For
ACX, At :=={x e X |VaeA:(x,a)=0}is aclosed subspace of X.

Proposition 2.1.9. Let X be a Hilbert space and U C X a closed subspace. Then
we have X = U @ U+, ie.,
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VxeX:x=u+v,uclU, veU, |x|?>=|ul?+ |]v|>

A system of orthonormal vectors (v j)j <7 in a Hilbert space X is an orthonormal
basis of X if, for every x € X, the Fourier expansion

x =) (x.vj)vs

jeT
converges.
Theorem 2.1.10. For every Hilbert space, there exists an orthonormal basis.

A proof can be found, e.g., in [131, Theorem 65.1], [141].

2.1.2 Dual Spaces

2.1.2.1 Dual Space of a Normed, Linear Space

Let X be a normed, linear space over K € {R, C}. The dual space X’ of X is the
space of all bounded, linear mappings (functionals)

X' = L(X,K).
X’ is a Banach space with norm
I lx7 == (%" [k ex = sup {|x' ()| /llx]lx : x € X\{0}}. (2.11)
For x’(x) one can also write
(x. x"Vxxx = (X", x)xxx = x'(x), (2.12)

where (-, ") xxx’, {*,*) x'xx are called dual forms or duality pairings.

Lemma 2.1.11. Let X C Y be continuously embedded. Then Y' C X' is continu-
ously embedded.

Proof. Since X C Y, any y’' € Y’ is defined on X. We therefore have Y’ C X’.
Since X C Y, we have, due to (2.8),

1y'lyr = sup {YI/Ixly}=C™" sup {YI/lIxlx}=C" Iy lx
xeY \{0} xeX\{0}

and therefore ||y'||x» < C||y|ly’. This proves that the embedding ¥’ C X' is
continuous. |
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The bidual space X" of X is defined as
X" = L(X'K).

In general we have the strict inclusion X C X”. However, in many cases X is
isomorphic to X”, i.e., every x” € X’ can be identified with an x € X. We
write X =~ X”. In this case we call X reflexive. In particular, all Hilbert spaces
are reflexive.

2.1.2.2 Dual Operator

One of the most general principles in functional analysis is the extension of contin-
uous linear operators which are defined on some subspace of a Banach space to the
whole Banach space. We will need here the version of the Hahn—Banach extension
theorem in Banach spaces.

Theorem 2.1.12. Let X be a Banach space, M a subspace of X and fy a con-
tinuous linear functional defined on M. Then there exists a continuous linear
Sfunctional f defined on X suchthat (i) f is an extension of fo and (ii) || follcp =

[/ lcex-
The proof can be found, e.g., in [243, Chap. IV, Sect. 5].

Corollary 2.1.13. Let X be a Banach space and xo € X\ {0}. Then there exists a
continuous linear functional fy on X such that

Jo(xo) = lIxollx and | follx = 1.
Proof. Let M := span {x¢} and define fo : M — R by
fo (@xo) :=a|xolly VYaeC.
Then f is linear on M and | fo (axo)| = | [[xol| x| = llexollx.ie.. || follcepr =1.

Theorem 2.1.12 implies that there is a continuous linear functional f defined on X
such that

fx)=/jox) VxeM and |flcex = lfollcen =1.
O
Proposition 2.1.14. Let X, Y be Banach spaces and let T € L(X,Y). Fory’ € Y/,
(Tx,y)yxyr = (x,x')xxx» VxeX (2.13)

defines a unique x' € X'. The mapping y' — x' is linear and defines the dual oper-
ator 7' : Y — X' as given by T'y" = x'. Furthermore, we have T' € L(Y', X')



2.1 Elementary Functional Analysis 27

and
IT |x <y = IT|ly<x- (2.14)

Proof. The relation given in (2.13) can be written as y'(Tx) = x/'(x) orx’ = y’oT.
It follows from y’ € L(Y,K) and T € L(X,Y) that x’ € L(X,K) (Exercise 2.1.2).
From the defining relation (T x, y')y .y = (x, T'y') xxx» We obtain

”T/y/” _ sup |(T/y/’x>X’xX| — su |(Tx’y,)YxY/|
X ex\io) X1l x xeXx\{0} x| x
T
<Iy'ly s I iy

rexviop Ixlx

Hence ||T’||x/ys < |IIT|ly—x. The reverse inequality is proved next. Corol-
lary 2.1.13 implies that for any xo € X\ {0} there exists a functional fo € Y’
such that || follyy = 1 and fo (Tx0) = (Txo0. fo)yxyr = |Txolly. Thus f; :=
T’ fo € X’ satisfies

(x0. f0)xxxr = ITxolly

and so

1T xolly = (0. T" fo) gy < [T’

xrey IXollx I folly = [ 77|y y, lIxollx -

Note that this estimate trivially holds for xo = 0. We conclude that ||T||y _y <
Tl xsy- and (2.14) follows.
|

Conclusion 2.1.15. For two operators S € L(X,Y), T € L(Y, Z) we have:

(i) (TS) = S'T".
(ii) S is surjective = S’ € L(Y’', X') is injective.

Definition 2.1.16. Let X be a Banach space over Ke {R, C}. A function f: X — Y
is conjugate linear if

flau+pv)y=af () +Bf v Yu,ve X and e, f € K.

2.1.2.3 Adjoint Operator
Let X be a Hilbert space over K € {R,C}. Forall y € X,
O =6y»x: X —>K

is continuous and linear. Thus we have f,(-) € X’ and || fy||lx» = |yllx. The
converse is a result of Riesz’ theorem.
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Theorem 2.1.17 (Riesz Representation Theorem). Let X be a Hilbert space. For
all f € X' there exists a unique y y € X such that

Ifllx = lyrlx and f(x)=(x.yr)x  VxeX.

Conclusion 2.1.18. Let X be a Hilbert space. We use the same notation as in
Theorem 2.1.17:

(a) There exists a bounded, invertible conjugate linear mapping Jx : X — X’ with
IJxy = fy. Jx' f = yy. The mapping Jx is an isometry: |Jx||x'<x =
173 xex = 1.

(b) X' is a Hilbert space with inner product (x', y")x' := (Jx' x', Jx' y')x.

(¢) |x'|lx’ in (2.11) is equal to (x/,x/)ll,(/,z.

(d) X = X" with x(x") := x'(x) and we identify X with X". In particular, we
have Jx) = J3', Jx = (Ux), T" =T forT € L(X,Y) if Y = Y" and if
both are Hilbert spaces.

(e) If K = R, the spaces X and X' can be identified with each other by means of
the isomorphism Jx. Then we have X == X' — Jxy = 1.

(f) Let K = C. According to Theorem 2.1.10 we may choose a basis (v;);c1 in X
and define the complex conjugation by

Cx:=%:=» (x.vj)yv (2.15)

which satisfies C™' = C and C,C™! are conjugate linear isometries. Hence
Jx = JxC is anisometric isomorphism and we may identify any Hilbert space
with its dual by means of Jx.

Definition 2.1.19. Let X,Y be Hilbert spaces and T € L(X,Y). The adjoint
operator of T is given by T* := J3! T'Jy € L(Y. X).

We have

ITlly<x = IT lx<y and (Tx,y)y = (x,T*y)x VxeX,yeY.
(2.16)

Definition 2.1.20.

(a) T € L(X) is self adjoint if T = T™*.
(b) T € L(X) is a projectionif 72 = T.

Proposition 2.1.21. Let Xo C X be a closed subspace of the Hilbert space X. For
x € X there exists a unique xo(x) € Xo with

I = xollx = min{[lx — yllx : y € Xo}. (2.17)

The mapping x — xo =: PXx is an orthogonal projection.
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Proof. Existence and uniqueness: The decomposition x = x¢ + x1, X0 € Xo,
x| € XOl is unique. We will show that y = xo minimizes the right-hand side in
(2.17). If we take x; L (xo — z) into consideration, we have for every z € X

Ix = zl% = llx = x0 + x0 — zll% = ¥ = xoll} —2Re (x —x0,x0 — 2)y + [lx0 — zll¥
= Jlx = xoll% + v — 2l¥ = lx — xoll% - (2.18)
This means that x¢ minimizes as required. The inequality in (2.18) only becomes an
equality for xo = z, which gives us the uniqueness.
Projection property: For x € X the first part of the proof implies Px = x and
therefore P2 = P.

Orthogonality: Let P* € L (X) be the adjoint operator of P. For x, y € X with
X := Px and yg = Py we have P = P*, since

(x. P*y)y = (Px,y)x = (x0.¥)x = (X0.y0 + y1)x
= (x0,¥0)x = (xo +xL.y0)x = (x, Py)x.
The assertion follows from the fact that, for all y € X, we have

(x—Px.y)xy =(x—Px,Py)y = (P*x—P*Px.y)y
= (Px— sz,y)X =(Px—Px,y)y =0.

2.1.2.4 Gelfand Triple

In this section V and U will always denote Hilbert spaces with a continuous and
dense embedding V' C U.

Proposition 2.1.22. We have
U’ c V' is continuously and densely embedded. (2.20)

Proof. The continuity of the embedding U’ C V'’ follows from Lemma 2.1.11.
The fact that the embedding is dense follows from the auxiliary result: (U’)* = {0}
in V. In order to prove this we choose a1V’ € V/\ {0} and setu := J,;' v e V C U.
The function «’ := Jyu € U’ C V/ satisfies v/(x) = (x,u)y forall x € U. By
choosing x := u = J;;'v we obtain

oy = Ty VI Wy = W dy Wy = W) = Gy > 0.

Therefore for all 0 # V' € V' there exists a u’ € U’ with (u/,V')ys # 0. From this
we have (U’)* = {0} C V' and therefore U’ is dense in V. a
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We identify U and U’ (cf. Conclusion 2.1.18e,f) and obtain the Gelfand triple
VcUcV' (VcU continuous and dense). 2.21)

Proposition 2.1.23. In the Gelfand triple (2.21), V and U are also continuously
and densely embedded in V'

Remark 2.1.24. (a) In (2.21) one could also choose V. = V', which would result
inU" CcV' =V CU. ForU # V itisnot possible to set U = U’ and V =
V' simultaneously, as, for x,y € U, we would have x(y) = (y,X)uxy’ =
(y,x)v = (v, x)v, which is a contradiction for U # V.

(b) Since U = U’, (x, y)u can also be interpreted as {x, y)uxy’'. Forx € V C U,
we have y(x) = (x,y)yxyr = (x,y)v forally € U C V'. SinceU C V'
is dense and continuous, (-, ")y can be extended continuously to V- x V' as the
dual form (-, -)yxy-.

2.1.2.5 Weak Convergence

The Bolzano—Weierstrass theorem states that in K € {R,C} every bounded
sequence has at least one accumulation point. This statement only holds in a weaker
form when considering infinite-dimensional function spaces. First we will need to
define the concept of weak convergence.

Definition 2.1.25. Let B be a Banach space and let B’ be its dual space. A sequence
(¢)yen 1n B converges weakly to an element u € B if

Jm I f @) = fu)lp =0 VfeB.

Theorem 2.1.26. Let the Banach space B be reflexive and let (ug) e be a bounded
sequence in B:

sup |ugllpg < C < oo.
ZENO

Then there exists a subsequence (I/l(j )jeN that converges weakly to a u € B.
The proof can be found in, e.g., [141, V, Sect.7, Theorem 7], [131, Theo-
rem 60.6]. In order to distinguish the weak convergence of a sequence (ug)ycp to

an element u from the usual (strong) convergence, we use the notation

Uy — U.

2.1.3 Compact Operators

Definition 2.1.27. The subset U C X of the Banach space X is called precom-
pact if every sequence (x,),eny C U has a convergent subsequence (xni),' en- Itis
compact if, furthermore, x = lim; o0 x5, € U.
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Definition 2.1.28. Let X, Y be Banach spaces. T € L(X,Y) is called compact if
{Tx:x€X, |x|lx <1} isprecompactin Y.

We will often consider operators that consist of several other operators.

Lemma 2.1.29. Let X,Y, Z be Banach spaces, let Ty € L(X,Y), T, € L(Y,Z)
and let at least one of the operators T; be compact. Then T = T,Ty € L(X,Z) is
also compact.

Lemma 2.1.30. T € L(X,Y) compact — T’ € L(Y', X') compact.

Definition 2.1.31. Let Y be a Banach space and X C Y a subspace that is con-
tinuously embedded. The embedding is compact if the injection I € L(X,Y) is
compact. We denote thisby X CC Y.

Conclusion 2.1.32. X CC Y if every sequence (x;);eny C X with ||x;||x <1 has
a subsequence that convergesin 'Y .

Lemma 2.1.33. Let V C U C V'’ be a Gelfand triple and let the embedding V CC
U be compact. For T € L (V',V) the restrictions T € L(V',V'), T € L(U,U),
TeLV,V), Te LWV ,U)yandT € L(U,V) are all compact.

Proof. According to the assumptions the embedding I € L(V, U) is compact, and
therefore so is I € L(U, V') (see Lemma 2.1.30). T € L(U, V) is the composition
of the (compact) embedding I € L(U,V’) with T € L(V',V) and thus it is also
compact (see Lemma 2.1.29). O

Remark 2.1.34. For dim(X) < oo ordim(Y) < oo, T € L(X,Y) is compact.

The following lemma will be needed later for existence theorems when dealing
with variational problems.

Lemma 2.1.35. Let X C Y C Z be Banach spaces with continuous embeddings
and let X CC Y. Then for all ¢ > O there exists a constant Cg > 0 with

VxeX: |xlly <ellx|lx +Csllx]z-

2.1.4 Fredholm—Riesz—Schauder Theory

Let X be a Banach space and let T € L(X) be a compact operator. In the following
theorem we will establish the connection between the spectrum

o(T):={1eC:(T-A""¢ LX)} (2.22)

and the eigenvalues of T'.
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Theorem 2.1.36. (i) For all A € C\{0} we have one of the alternatives
(a) (T —AI)~! € L(X) or (b) A is an eigenvalue of T.
The following alternatives are equivalent: (a') The equation

Tx—Ax=y

has a unique solution x € X forall y € X. (b') There exists a finite-dimensional
eigenspace

EAT)={eX |Tv=A1v}
VO#xe E(A,T): Tx = Ax.

(ii) o (T') consists of all eigenvalues of T and it includes . = 0if T™' ¢ L(X, X).
There are at most countably many eigenvalues {A;} and the only possible
accumulation point is zero.

(iii) reo(T) < A eo(T). (2.23)

(iv) We have B
dim(E(A, T)) = dim(E(A, T")) < oo. (2.24)

(v) For A € a(T)\{0} the equation
(T—-A)x =y
has at least one solution if and only if the compatibility condition
(y.xVxxx' =0 Vx' € EQ, T (2.25)

is satisfied.

The following corollary is a result of Theorem 2.1.36 and will play a significant
role in later applications.

Corollary 2.1.37. Let X be a Banach space and let T € L(X) be a compact
operator. Then we have the following equivalence:

I + T isinjective <= I + T is an isomorphism.

2.1.5 Bilinear and Sesquilinear Forms

Let H;, H, be Hilbert spaces with norms || - || 7, , || - || &, over K. A mapping a(,-) :
H; x H, — K is called a sesquilinear form if
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Yuy,up € Hy,vi,va € Hy,A € K : a(uy + Auz,vi) = a(uy,vy) + Aa(uz, vi),

a(uy, vy + Ava) = a(uy,v1) + Aa(ui, va).
(2.26)
For a sesquilinear form a : H x H — C the adjoint sesquilinear form a* : H x

H — C is defined by
a* (u,v) =a (v, u) Yu,v € H. (2.27)

It is called Hermitian if a = a*.
If K = R we speak of a bilinear form. The bilinear forma : H x H — R is
called symmetric if
a(,v) =a(v,u) Yu,v e H.

A sesquilinear form a (-,-) : Hy x Hy — K is continuous (or bounded) if there
exists a constant C < oo with

la(u. V)| < Cllulla, [Vl #, (2.28)

forallu € Hy,v € H,. The smallest C in (2.28) is the norm of a(-, -) and we write

- la(u,v)|
la|| ;= sup sup

1wyl (2.29)
ue H\{0} ve Ho\{0} el Ey VIl A,

We can identify sesquilinear forms with linear operators.
Lemma 2.1.38. Let Hy, H, be Hilbert spaces over K:

(a) For every sesquilinear form a(-,-): Hy x Hy — C there exists a unique A €
L(Hi, H)) such' that

a(u,v) = (Au,v)HéxH2 Yu e Hy,v e H,. (2.30)

It satisfies
lAll e, < lall (2.31)
(b) Let S1,S3 be dense in Hy, Hy and let the sesquilinear form a(-,-) be defined
on S1 x Sp. We assume that (2.28) holds for all uy € Sy, vi € S,. Then a(-, )

can be uniquely and continuously extended on H, x Hy and (2.28) holds on
H, x H, with the same constant C = ||a]|.

! More precisely, 4 € L (H 1s Hz*), where the anti-dual space H," contains all bounded conjugate

linear forms on H,. A linear operator is defined by (Zu V) =a(u,v)forallu € H,v € H,.

H) X< H 2
[Recall that complex conjugation in Hilbert spaces is well defined; see (2.15).] Note that A = C’ 4,
where C’ is the dual operator for the complex conjugation operator C as in (2.15). If no confusion
is possible, we do not distinguish in the notation the dual space from the anti-dual space and always
write Hj.
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Proof. (a) For u € Hi, ¢,(v) := a(u,v) defines a linear functional ¢,(-) € H,
with ||g0u||Hé < Cllullg,. We set Au := ¢, for all u € H;. We then have
||Au||Hé < C||u|| &, and as a consequence (2.31). It also follows that

(Au, V)Hétz = (@u, V)Hétz = @u(v) = a(u,v).

Conversely, let A € L(H;, H}). Then a(u,v) := (Au,v) H}xH, 18 a sesquilin-
ear form with

(A v) e, | < 1 Aull g IV < 1A By ey el 2y 1V] s -

(b) According to Proposition 2.1.6, for the above argument we only need to con-
sider the definition of A on dense subspaces S1 C Hi, Sa C H» to extend the
form a(u,v) to Hy x H,. (Au,v) H}xH, then denotes the extension. a

The operator A from Lemma 2.1.38 is called the associated operator of a (-, -).

Remark 2.1.39. The results from Lemma 2.1.38 can be analogously transferred to
bilinear forms a : Hy x Hy — R.

Let H be a Hilbert space and let A € L(H,H'). Then A € L(H, H') is
defined by .
(Auv) g = (AR e
where complex conjugation in Hilbert spaces is introduced in (2.15). An operator

A € L(H, H') is said to be Hermitian if A = A’. In the case that K = R we use
the term “symmetric”.

Remark 2.1.40. Let H be a Hilbert space and a : H x H — C a sesquilinear
form with associated operator A. The statements (i) and (ii) are equivalent:

(i) a(-,-) is Hermitian.
(ii) A is Hermitian, where

(Auv) g = (AuV) gy = a@v)  Yu,ve H. (2.32)

Proof. By using the definition of A, A', and the complex conjugation in Hilbert
spaces we obtain

A'u,v

a* (I/t, V) =a (V7 I/l) = (:{V,ﬁ) = (Z/ﬁ7 V) >H/ H '

H'xH — H'xH — <

On the other hand, we have

a(u,v) = (Zu,V)H,XH .
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Hence the equivalence is proved:

|

Exercise 2.1.41. If A is associated with the form a(-,-) then C"A’C is associ-
ated with the form a*, where C :js the dual operator for the complex conjugation
in Hilbert spaces. Similarly, if A is associated with a (-,-) as in (2.32), then A’
corresponds to a*.

A sesquilinear or bilinear form b (-, -) : Hyx H, — C is compact if the associated
operator T € L(H;, H}) with (Tu, V) myxH, = b(u,v) is compact.

Example 2.1.42. Let Hy = H, = R" with inner product (X,y) = Y i_, Xi¥i.
Then every matrix A € R™" induces a bilinear form according to the relation
a(x,y) = (Ax,y) : R? x R" — R. The form is symmetric if and only if A is
symmetric, i.e., if Aijj = Aj;, 1 <i,j <n.

Example 2.1.43. We call a matrix A € R™*" positive definite if it is symmetric and
if we have
(Ax,x) >0 Vx € R™\ {0}.

For positive definite matrices, a (X,y) := (AX,y) defines an inner product on R".

2.1.6 Existence Theorems

Differential and integral equations can often be formulated as variational problems.
In this section we will define abstract variational problems and prove the existence
and uniqueness of solutions under suitable conditions. As standard references and
additional material we refer, e.g., to [9, Chap. 5], [151, 166, 174].

For this let Hy, H, be Hilbert spaces, let a(-,-): Hy x H, — K be a continuous
sesquilinear form and £ : H, — K a continuous, linear functional. We consider the
abstract problem: Find u € H; with

a(u,v) =4L(v) Vve H,. (2.33)

The form a(-, -) satisfies the inf~sup condition if

|a (u, v)|

inf ——— >y >0, (2.34a)
we H1\{0} ve i, \¢oy llull &y [IVI| o
Vve H\{0}: sup |a(u,v)|>0. (2.34b)

ue H1\{0}
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Theorem 2.1.44. The following statements are equivalent:

(a) Forevery L € (Hy)' the abstract problem (2.33) has a unique solution u € H,
and we have

1
lell e, = y €11 £z - (2.35)

(b) The sesquilinear form a (-, ) satisfies the inf-sup condition (2.34).

Proof. (b)) — (a):
For the proof we will proceed in several steps:

(i) We choose an arbitrary u € Hj. Then the functional ¢, € Hﬁ, which is
given by ¢, := a(u,-), is continuous and linear on H,. This follows from
the continuity of a(-,-) : Hy x H, — K since

0] = la(u. V)| < llall llulla, VIa, = Cla.w) |v]la,.

Let A be the associated operator of a (-, -). The mapping u — ¢, can therefore
be written as ¢, = Au. The operator A : H; — H} is continuous and linear,

since
|$u(v)]

| Aullg; =
ver\{oy VI,

< llall lullm, < oo.

(ii) We will show that the image of H; under A is closed in H;. We have for all
ue H]

| (V)] la(u,v)| 2.342)
= sup >y lulla,.
vemo\(0y VIlE,  verm\(oy IVIH,

| Aull gy =

Now, let (#,), C H; be such that (Auy,), is a Cauchy sequence in H,. Then
(un),, is a Cauchy sequence in Hj, since

| Avtm — A“n”Hé = || A(un — tm) ||Hé >y llun — “m||H1~

Therefore the image of H; under A is closed in Hj.
(iii) We claim that A (H) = H,. If this were not true, we would have

A(Hy) = AH) "5 £ 1),

and the image of H; under A would be a closed proper subset of H,. Then,
according to the Hahn-Banach theorem (see, e.g., [141], [3, Theorem 4.1]),
there exists a vo € Hy\ {0} with v (r) = O forall r € A (Hy).
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As H, is reflexive, it follows that vo € H, = H)/ and therefore with r =
Au, we have the equation

0=vo(r) =r(vo) = (Au) (vo) = a(u,vy) VYue€ H;.

This is a contradiction to (2.34b). Therefore we have A (H;) = H) and then
A : Hy — Hj is surjective. This means that (2.33) has a unique solution for
alll € H).

(iv) We will show the a priori estimate. For every £ € H} the equation Au = £ has
a unique solution ug = A~'£ and we have

lauo.v)| = €M) = €]l g [IVIlE, Vv € Ha.

It follows that
la(uo, v)| la(uo, v)|
el = sup ———— = lluollz, sup —F———
vero\[0}  IVIIF, ver,\{0} luoll ey VIl F,
) a(u,v)
> |luol| g, inf S #
ue Hi\{0} ve o\ (o3 1l y IVl oy
>y |luoll o, -
(a) = (b):

If A7! € L(H,, Hy) exists, A € L(H;, H}) is bijective and the associated
form a(u,v) = (Au,v) H}xH, satisfies (2.34b). Now, we will show (2.34a): Since
A € L(H,, H)) is bijective, with (2.35) we have

(Au, V)H’tz (w, V)H/tz
inf sup ———=—= = inf sup
MEHI\{O}veHz\{O} lulley IVIlE,  weH MO} vero\(o3 1A WIE, VIH,

(w, V)H’tz
inf sup — = %
weHANO} vero\oy ¥ IWlag [IVIIE,

v

According to Conclusion 2.1.18 (a) there exists an isometry Jg, : H» — H,. We
therefore have

(Ja, W, V)H’XH2

* =y inf sup
e H>\(0) vem\(oy IV Wl a VI &,
. 1 (Jsz’ V)Hétz
=y inf —— sup ———2—
weH\(0} Wl i, ve o\ (o} vl &,

1
=y inf —— | JmWgy =y
Y et oy Tl 12l
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Remark 2.1.45. The adjoint conditions

la (u,v)|

inf up ——————>y'>0 (2.36a)
veH2\(0} ey \(oy lull oy VI A,
Yue Hi\{0}: sup J|a(u,v)|>0 (2.36b)
ve H>\{0}

are equivalent to (2.34).
Proof. (see [115, Lemma 6.5.3]).

1. (2.34) = (2.36).
From Condition (2.34a) we clearly have (2.36b). In the following we will
show (2.36a). Let A : Hy — H, be the associated operator of a (-, -). From
Theorem 2.1.44 we have

A7y ey = 17 (2.37)

Proposition 2.1.14 gives us H An~! H
side of (2.36a) by /. We then have

< 1/y. We denote the left-hand

H2<—H1/

’(Au, V)Hétz ’(“7 AV) xH|

I = inf sup ——————— =

veHo\0} yemr\toy (Ul VI, veHo\ O} wem oy Nl IV]a,
— ‘(u, V/)H xH/{
= inf ||(4) 1‘/”;112 sup | i B
VeH\{0} ue Hi\{0} [l &,
= inf AV IV
L GO 7Y L
1 -1
1 :H(A/) I‘H o
subverpyor |47V L/ IV 2 H
This is the same as (2.36a) with y’ = y > 0.
2. (2.36) = (2.34).
The proof of the converse is analogous to the first part. O

Remark 2.1.46. (i) Let A € L(H,, H)) be the operator that is associated with the
form a(-,") (see Lemma 2.1.38). Let (2.34) hold. Then A=' € L(H), Hy) exists
and

1A ey ey < v (2.38)

(ii) Conversely, if A=\ € L(H), Hy) exists and (2.38) holds, then we have (2.34).
Proof. Part (i) follows from (2.37) and Part (ii) from Theorem 2.1.44. O
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Remark 2.1.47. The following statement is equivalent to the inf-sup condition
(2.34a): There exists a constant y > 0 with

|a(u,v)|

Vi € Hy\ {0} :
ver\{0y [IVIIH,

> yllulla, - (2.39)

Since a(u,v) = (Au,v) H)xH, (see Lemma 2.1.38), (2.39) is also equivalent to

Vu e Hi\{0} : [|Aul gy = yllull#, - (2.40)
Remark 2.1.48. In order to prove the inf-sup condition (2.34a) we will use the
following method: Let u € H be arbitrary and given. If we can find a v, € H, with
the following properties:

vallzr, < Cillulla, . laGu.vi)l = Callulg, . (2.41)

where Cy, Cy are independent of u and v,, then we have (2.34a) withy = C»/C1.
Proof. Letu € Hy and v, € H» such that (2.41) holds. Then

. la (u,v)| . la (u, v,)]
inf _ > e Wl
ue H\{0} ye g1,\fo3 Ul by VI, — weH (0} [[ull &y (vl B,
C2||’/‘||2 C
> inf — i _ =2
ueHi\{0} [lulla, Cillulla,  Ci

Remark 2.1.49. Theorem 2.1.44 also holds for reflexive Banach spaces Hy, H».

Now let
H =H,=H

and let a : H x H — C be a sesquilinear form. In this case, the associated
variational problem reads: For a given £ € H' find u € H with

a(u,v) =L(v) VveH. (2.42)

The sesquilinear form a(-, ) is called H -elliptic if there exists a constant y > 0 and
ao € C with |o| = 1 such that

Yue H: Re(oa(u,u) > ylul%. (2.43)

Remark 2.1.50. 1. Leta : HxH — K be a continuous and H -elliptic sesquilinear
form. Then o in (2.43) can be chosen in such a way that we have Re ¢ # 0.

2. Let H be a real Hilbert space and a (-, ) a (real) bilinear form. Then, in (2.43),
we can choose o € {—1, 1}.
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3. The H-ellipticity implies
Vue H: la(uu)| = ylulF. (2.44)
Proof. of 1: If, for o, we have in (2.43) Reo # 0, nothing needs to be shown.
Therefore in the following we assume that Reo = 0 and choose 6 € C\ {o} with
|6| = 1, so that we have
C.lo—0o|<y/2 and o # —0C
with the continuity constant C, of a (-, -). It then follows that
Re (6a (u,u)) = Re (0a (u,u)) + Re ((0 — ) a (u,u)).
The continuity of a (-, -) gives us
Re (0 —&)a (uu) < Celo =& ullfy < /2 lully .
from which we have the assertion with y < y/2:
Re (Ga (u.u) = y |ullyy — Celo = 5| lullzy = v/2 |lullz
of 2: Let o be as in (2.43). The assumptions give us that

Yue H:y ||u||%_1 <Re(oa (u,u)) = (Reo)a (u,u). (2.45)

From this we have Re 0 # 0. ForRe o > 0, (2.45) gives us the estimate a (1, u) > 0
for all u € H. It follows that (Re o) a (4, u) < a (u,u) and 0 = 1 satisfies (2.43).
The case Reo < 0 can be proven analogously with o = —1.

of 3: We have y ||u||%1 <Re(oa (u,u)) <|oa (u,u)| = |a (u,u)|. |

Lemma 2.1.51 (Lax-Milgram). Let H be a Hilbert space. Let the sesquilinear

forma : H x H — C be H -elliptic. Then (2.34) holds and the variational problem
(2.42) has a unique solution u € H for all £ € H' with

1
lullg < ;”EHH/. (2.46)

Proof. We will show (2.34a) as in Remark 2.1.48: foru € H we choosev, = u € H.
Then, due to ||v,||g = |||l g and (2.44), we have the inequality

lau,vi)| = |a(u,u)| > ylul?.

From this we have (2.34a). We can prove the inequality (2.34b) in a similar way.
Thus, let 0 # v € H. Then
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sup la(u,v)| = la(v,v)| = y|vl|7 > 0.
u€H

The statement follows from Theorem 2.1.44. O

Remark 2.1.52. The Lax—Milgram lemma still holds if we replace Condition (2.43)
by Condition (2.44) (see [137, Theorem 5.2.3]).

Note that in (2.43) we do not impose any conditions on the symmetry of a(:, ).
If a(-, -) is symmetric the solution of (2.42) can be characterized as a minimum.

Proposition 2.1.53. Let the forma : Hx H — K be symmetric and H -elliptic with
0 = 1in(2.43) [see Remark 2.1.50(2)]. Then for all £ € H’ the unique solution
of problem (2.42) is also a solution of the problem of finding a minimizer of the

quadratic functional
) = Lav.v) —L). (2.47)

If, on the other hand, u € V minimizes I1 (-) then u solves (2.42).

Proof. Let u be the solution of (2.42) and v € H\ {0}. Then

2MM(u+v) = a(u+v,u+v) —2¢(u+v)
= a(u,u) +2a(u,v) +a(v,v) —2Lu) — 2L(v)
= 2IT(u) + a(v,v) + 2(a(u,v) — £(v))
= 2I(u) +a(v.v) = 2I1(w) + y V][5, = 2T1(u),

and therefore u solves Problem (2.47).
Now, let u be the solution of (2.47). Then

VveV: 0= LM+ ev))le=o

(%a(u +ev,u+ev) —L(u+ sv))‘

e=0

4
de
= & (Saw.u) + eatw,v) + Le2a(v.v) - L) — )|

&=

=a(u,v) —L(v)

and thus u solves (2.42). O

In some of the applications that we are going to study later on, we will often
encounter sesquilinear forms a(:,-) that do not satisfy (2.43) but only a weaker
condition, the H -coercivity.

Definition 2.1.54. Let the Hilbert spaces U, H constitute a Gelfand triple H C
U C H’ with the continuous and dense embedding H C U. The sesquilinear form
a(-,+): Hx H — C is said to be H -coercive if there exist constants y > 0, Cy € R
and o € C with |o| = 1 such that
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2 2
Vu e H :Re(oa (u,u) >y |ul — Cu llul)? . (2.48)

Remark 2.1.55. The elliptic and coercive forms that we are going to study in this
book will always satisfy the inequalities (2.43) or (2.48) with 6 = 1. However, in
other applications, for example from the area of electromagnetism, there are forms
that have an imaginary principal part and therefore do not allow setting o = 1 (see
[40,44]).

Remark 2.1.50(1), (3) can be applied to H -coercive sesquilinear forms appropri-
ately.

Remark 2.1.56. 1. Let a : H x H — K be a continuous and H -coercive
sesquilinear form. Then o in (2.48) can be chosen so that Reo > 0.

2. The H-coercivity implies that
Vue H: la(u.u)| = ylluly —Cullulf . (2.49)

H -coercive forms a(-,-) remain H -coercive when perturbed by the addition of
suitable forms b(-,-) which are either “small”with respect to the form a(:,-) or
compact.

Lemma 2.1.57. Let the Hilbert spaces U, H constitute a Gelfand triple H C U C
H’ with a dense and continuous embedding H C U. Let the sesquilinear form
a(,?): Hx H — C be H-coercive and letb : H x H — C be continuous. Then
the form a(-,-) + b(-,-) is again H-coercive if one of the following conditions is
satisfied:

(i) For all ¢ > 0 there exists a constant C(g) > 0 with
Vue H: |b(u,u)| < ellulf + C(e) [ulg- (2.50)

(ii) X, Y are Hilbert spaces with continuous embeddings H C X CU, H CY C
U. One of the embeddings H C X, H C Y is compact. Furthermore,

VYu,ve H: |b(u.v)| < Cpllulx [v]y. (2.51)

(iii) The embeddings H C X C U,H C Y C U are continuous and (2.51) holds,
as well as:

For all ¢ > 0 there exists a constant C (¢) > 0 such that for allu € H

(2.52)

lully < elula +Ce) llully —or lulx < elulg +C(e) llully -

Proof. We will show (a): (i) implies the coercivity of a (-,+) + b (-, ), (b): (il) = (iii)
and (c): (ii1) =():
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(a) In (2.50) we set & = y/2 with y from (2.48). Then for all u € H

Re (o{a(u,u) + b(u,u)})

Re (ga(u,u)) + Re (ob(u, u))
>y lull — Cu lullfy — % llullyy — C@)llull
L lulz — (Cu + C(e)) llullz,

which is (2.48) fora(-,-) + b(-, ).
(b) As an example, we consider the case H CC X C U. Lemma 2.1.35 implies

Ve>03C(e) >0: Vue H:|ullx <elullg + C) |ullv, (2.53)

from which we have (2.52).
(c) The embedding H C Y is continuous and therefore there exists a constant
Cy < oo with
Yue H: |u|ly <Cy |ullg-

As an example, we assume that the right-hand inequality in (2.52) is satisfied.
Then, by (2.51), we have for all ¢ > 0 the inequality

A

Yue H: |b(u,u)| < Cp |lullx lully

CoCy (e llullfy + C(e) llullu llull#)
2

CoCy (2elully + €22 )

IA

IA

e fulfy + C'(e) llullfy

and thus we have (2.50). O

Remark 2.1.58. Lemma 2.1.57 still holds if Condition (2.48) is replaced by the
Gdrding inequality: There exists a compact operator T : H — H' such that

Vue H :|a(uu)+ (Tuw) greg| = v llulF -

For a proof of this remark, we refer to [137, Remark 5.3.2]. The following special
case of Lemma 2.1.57 is particularly important when dealing with boundary integral
equations.

Corollary 2.1.59. We assume that U, H, H' form a Gelfand triple H C U C H’
with a compact embedding H CC U. Let a(-,-) be H-coercive and let either b(, -):
HxU — C orb(,-): Ux H — C be continuous. Then a(-,-) + b(-,-) is
H -coercive.

The following theorem is an application of the Fredholm—Riesz—Schauder theory
to H -coercive sesquilinear formsa : H x H — C.



44 2 Elliptic Differential Equations

Theorem 2.1.60. Let H C U C H' be a Gelfand triple with a compact and dense
embedding H CC U. Let the sesquilinear form a(-,-) : H x H — C that is
associated with the operator A € L(H, H') be H -coercive.

Let I denote the embedding: I : H — H'. Then we have for all A € C either

(A=AD)"'eL(H' H) and (A'—AI)"' € L(H',H) (2.54)

or
A is an eigenvalue of A. (2.55)

Should (2.54) hold, then the variational problems: Find x, x* € H such that

a(x,y) = A, »)v = (£ V) axu and a(y,x*) — A(x*, y)u
=(fy)uxu VyeH (2.56)

have a unique solution for all f € H'. Should, however, (2.55) hold, then the
eigenspaces

{0} # E(A) =ker(A — AI), {0} # E'(A) = ker(4’ — A1)
are finite-dimensional and we have forall y € H
xe EA): a(x,y) =Ax,y)vu, (2.57)
x* € E'A): a(y.x*) =A(x* ). (2.58)

The spectrum o (A) of A consists of at most countably many eigenvalues {1;} and
the only possible accumulation point is at infinity. Furthermore, we have

rea(A) < Lea(4).
For A € 6(A) the variational problem
x€e€H: alx,y)—Ax, v ={(f.y)a'xg VyeH (2.59)

has at least one solutionifand only if f 1 E'(L), i.e., ifand onlyif f € H’ satisfies
the compatibility condition

Vx* e E/()\) : (f, x*)H/XH =0. (2.60)

Proof. The statements follow from Theorem 2.1.36. Here we check the assumptions.

If H CC U then we also have H CC H' and the embedding / : H — H'
is compact. Due to Remark 2.1.56(1) we can assume that Reo # 0 and set C :=
Cy/Reo.
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The sesquilinear form a (-, -) + Cc ||-||%, is H -elliptic since, by (2.48), we have for
alue H

Re (ota(u,u) + C ully}) = Re (0a (w.w) + Co lully = v Jully

with y > 0. According to Lemma 2.1.51, (4 + 51)_1 € L(H',H) exists.
Lemma 2.1.29 states that K := (A + C1)~'1 : H — H is compact, and therefore
Theorem 2.1.36 can be applied to the operator K — /. With
~ ~ 1
K—pl=—pu(l —p'K)y=-pu(A+CIH YW A+CI——1)
I
= —w(A+CIH Y (A-2I)

and A = pu~ 1 — C we obtain Theorem 2.1.60 for
1 ~
A—A =—— (A+CIYK —pul)
"

as a consequence of the statements of Theorem 2.1.36 for K — 1.
O

The combination of Corollary 2.1.59 and Theorem 2.1.60 gives us the following
existence theorem, which is often used in the variational formulation of integral
equations.

Corollary 2.1.61. We assume that U, H, H' form a Gelfand triple H C U C H’
with compact embedding H CC U. Let a(-,-) and b(-,-): H x H — C be
continuous sesquilinear forms, let a(-,-) be H-coercive and assume that b(-,-)
satisfies

Vu,ve H : [b(uv)| < Cpllully VIa or [bu,v)] < Cllulla V-
Furthermore, let the form c(-,-) := a(-,-) + b(-,-) be injective:
VweH: cu,v) =0=u=0. (2.61)
Then for every f € H' the variational problem
ue H: aw,v)+bu,v)={fivigxg VYveH (2.62)

has a unique solution u.

Proof. According to Corollary 2.1.59, c(:,-) is H-coercive and satisfies (2.48).
According to (2.61), A = 0 is not an eigenvalue of a(-,) + b(-,-) and so Problem
(2.62) has a unique solution, as stated by Theorem 2.1.60. |
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2.1.7 Interpolation Spaces*™

When dealing with the variational formulation of boundary integral equations as
well as the error analysis of boundary element methods, it is very useful to study
function spaces that describe the differentiability of a function. In classical analysis
differentiation is only defined for integer orders. However, by using “interpolation
spaces” it is possible to formulate properties concerning the smoothness of func-
tions for non-integer orders of differentiability. There are different, not necessarily
equivalent interpolation methods. Here we will only introduce the “real interpola-
tion method”. For a detailed discussion on interpolation spaces as well as proofs we
refer to [22] and [155].

Let Xy, X be two Banach spaces with continuous embedding X; < Xy (this
property is not strictly necessary; however, in the cases that are of interest to us it is
always given). For u € X and all ¢ > 0 we define the “K-functional” as

K(t.u) = inf (Ju=vix, +1]vlx,): 263
veXy

Clearly, we have for u € X;
K(t,u) <tlullx,, K@ u) < lullx,-

For0 <0 <1land1 < p < oo we define the norm

00 1/p
—op » dt
||M||[X0,X1]9,,, = t K(t,u) . . (2.64a)
0
For p = oo we define
lullxg, x11p o := sup ¢~ K(t,u). (2.64b)
0<t<oo

Then the set

[X(),Xl]Q,p = XQ,p = {u € X() . ||u||[X0,X1]€'p < OO}
is a Banach space with norm (2.64).
Let X;,Y;,i =0, 1, be two pairs of Banach spaces as given above, with X; C ¥;.
We then have

Xg,p CYgp, X1 C Xg,p CXo, Xg,p C Xg,00

* This section should be read as a complement to the core material of this book.
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and Xg; C Xg p forall 1 < p < oo. The spaces Xy , form a scale:
Xo5.p C Xg,,p forl <p<oo, 61 <6,

Proposition 2.1.62. Let X;, Y; be two pairs of Banach spaces and let T L(Y;, X;),
i =0, 1. Then we have

T eL(Ysp Xop) for0<6<1,1<p<oo (2.65)

and
—0 0
||T||X€,p(_Y94p S ||T||§(()<—Y() ||T||X1<—Y1' (266)

Another important result is the “re-iteration theorem”. It states that one cannot
obtain “new” interpolation spaces by repeated interpolation.

Proposition 2.1.63. We have for all 0 < 6y < 61 < 1, 1 < po, p1,q < 00 and
0<A<1:

[[Xo. X160, po- [XO»XI]Hl,pl]A,q = [Xo, X1](1-1)80+161 ,q-

The dual spaces of interpolation spaces are isomorphic to the interpolation spaces
of the respective dual spaces. The following proposition will clarify the details.

Proposition 2.1.64. Let X be dense in Xo. Then we have for all 0 < 6 < 1,
l<p<oo 45 =1

[Xo, X115, = [X1, Xoli-6,, = [Xo, X1lo.p-

For functions from X;, the square of the norm of the interpolation space
[Xo, X1]p,p can be estimated by the product of the norms in X and X;. We only
need this result in the case p = 2.

Proposition 2.1.65. There exists a constant ¢ > 0 such that for all u € X the
inequality
Jul < cflully’ lul
X0 X11p.o = € lullx,” llullx,
is satisfied.

We refer to [230], [22] and [155] for proofs of these statements as well as further
reading.

2.2 Geometric Tools

2.2.1 Function Spaces

Boundary integral equations are formulated on the surfaces of domains in R?. In
order to define the relevant function spaces on the boundaries one has to char-
acterize the smoothness of the boundaries. For this one needs Holder continuous
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parametrizations that have to be introduced first. Let k € Ny and let @ C R¢ be
a domain. The space of all k times continuously differentiable functions on 2 is
denoted by

ck (ﬁ) ={f :Q — C: fisk times continuously differentiable
and 0% f can be extended as a continuous function on Q
forall 0 < || < k}.

Herea € Ng is a multi-index and we use the following conventions. For u € Ng
we set

d d
;u:Iym mh=uw=§¥%mu:3ggmm
= P
3Iu|f (x)
Tt R
(2.67)

d
Vv =), e Chvit =T, v f (%)= f (x) =

i=1

On the vector space C¥ (Q) we can define the following norms
o— . o
Iellcoa) = suptle @l llellcr () = max, {IIa <P||c0(§)} -
A function ¢ € C° (5) is Holder continuous of order A € ]0, 1] in €, if

(Oleor oy = sup le ™) eI _
@ e Ix—ylt

The set of all Holder continuous functions is given by C %+ (Q) The space Ck- (5)

contains all functions on € with 3%¢ € C%* (ﬁ) for all |a| < k. On CkA (§) a
norm is given by

Iollcrr @) = Iellee @) + max 19¢lcos ) -

Remark 2.2.1. Forallk € Ngand0 < A < 1, Ck* (m is a Banach space.

Exercise 2.2.2. Let u € [0, 1]. Determine the maximum A € 0, 1] so that the
function f : (—=1,1) > R, f (x) = |x|* lies in the space C** ([—1, 1]).

The space of all infinitely differentiable functions is given by

C* (@)= () c*(Q).

kEN()
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All the functions we have considered so far are scalar, i.e., they map points from
a domain Q2 to C. The definitions can, however, be generalized for vector-valued
functions ® = (CIJ,-)fl:1 1 Q1 — Q5 on domains Q21, 2, C R, We set

CH4 (@)= {0: Q1> Q[ VI=i=d: o eCHA (@) @68)

If the condition ®; € CKk*(Q;) in (2.68) is replaced by ®; € C*(Q;) we
obtain the space Cck (9_19_2) For Q1 = 5, we use the notation CkA (Q_l) =
k4 (Q4, Q2) and similarly C* (Q;) := CF (Q1, Q).

Definition 2.2.3. Let Q1, 2, C R? be two domains and let k € No U {o0}. A
mapping ® : Q; — Q, is a C¥-diffeomorphism if it satisfies the conditions (a)—(c):

(@) ® e Ck (21, Q2).

(b) The inverse mapping ®~! : Q, — Q exists and satisfies

o' e CF (2. ) .

(c) There exists aconstant0 < ¢ < oo such that the Jacobian D® = (?%{')1 "y
7/ 1=ij=
satisfies the inequality
VxeQ:0<c <|det(DP(x))| <1/c. (2.69)

Remark 2.2.4 , follows from the inverse mapping theorem (see, e.g., [245,
Sect. 8.6], [95, Chap. 8]).

Remark 2.2.4. IfQ C R4 is bounded, (a) and (b) imply (c).
Ifk > 1 and ® is surjective, (a) and (c) imply (b).

Definition 2.2.5. A function CD_ t Q1 — Qs bi-Lips_chitz continuous if in
Definition 2.2.3 we have C%1 (QIQ_j) instead of C¥ Q, Qj) and

@0 — @) _

0<c< sup <1/c (2.70)

X,yEQ Ix =yl
x#y

instead of (2.69).

The space of all Lebesgue measurable functions that are bounded almost every-
where on € is denoted by L°° (€2). The term “almost everywhere” always refers to
everywhere except on sets with Lebesgue measure 0.
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Proposition 2.2.6. Ler Q@ C R? be bounded and let ¢ € C%! (ﬁ) d > 2. Then we
have:

(a) Forall ¢ € C%! (Q), the partial derivatives (8(p/3x,~)flzl exist almost every-
where in 2, they are measurable and bounded almost everywhere, i.e., 0%¢ €
L*®(Q) forall |a| = 1.

(b) We have the more general property for k € Ny

peChH(Q)=9pel® Q) V| <k+1

2.2.2 Smoothness of Domains

In order to describe the smoothness of domains one uses local as well as global cri-
teria. Lipschitz domains represent a reasonably general class of domains for whose
boundaries integral equations can be defined. Lipschitz domains are given by the
existence of an atlas which consists of bi-Lipschitz continuous charts. In Chap. 4 we
examine Galerkin boundary element methods in order to numerically solve integral
equations, for which it is necessary to decompose the surface into curved triangles
and rectangles. To be able to do this the surface needs to locally satisfy a greater
degree of smoothness.

In general, we assume that  C R? is a domain with compact boundary I' =
9Q. For r > 0, B, denotes the open ball in R? with radius r around the origin.
We set

B :={£€B, £, >0}, B :={£eB,:& <0},
BY:={teB, & =0}. (2.71)

Definition 2.2.7. A domain @ C R? is a Lipschitz domain (2 € C*!) if there
exists a finite cover I of open subsets in R? such that the associated bijective

mappings’ { v : B, — U}, have the following properties:

1. yu € C™ (B2, U), yxp' €C% (U, By).
2. qu(BY)=UNT.

3. xu(BY)=UnQ.

4. yu (By) =UnNRHN\Q.

Let k € NU{oo}. A domain  is a C¥-domain if Property 1 can be replaced by
)(UECk Bz,U), Xaleck(U,Bz .

Remark 2.2.8. Properties 2—4 in Definition 2.2.7 express the fact that 2 is locally
situated on one side of the boundary 2.

2 The choice of the radius r = 2 for the ball K, is arbitrary but will slightly reduce the technicalities
in the definition of boundary element meshes because the master element then is contained in K.
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In order to describe the local smoothness of the surface we use surface meshes.
For this, letg € N,

Spi={teRI:0<E <k <. .8 <E<1)

be the unit simplex and R
Qq = (07 1)4

be the unit cube. In the following these domains will be called reference ele-
ments and will be abbreviated by 7,. If there is no confusion with respect to the
dimension g we will simply write 7.

Definition 2.2.9. Let @ C R¢ (for d = 2,3) be a bounded domain with bound-
ary I':

1. Asubset t C I is called a boundary element or panel of smoothness & € Ny U
{oo} — in short a C*-element — if there exists a C*-diffeomorphism y; : T — ©
which can be extended to a C¥-diffeomorphism Xr:T* — t*.Heret* C R4-!
signifies a neighborhood of 7 and T C 7*.

2. A set G is called a surface mesh (of smoothness k € Ny) if:

(a) All t € G panels are of smoothness k.
(b) The elements of G are open and disjoint.

© I'=U;eqgT

3. A surface mesh G does not have any hanging nodes if the intersection T N 7 of
all non-identical elements 7,7 € G is either the empty set, a common point or —
if d =3 —acommon edge.

Definition 2.2.10. A bounded domain Q C ]Rd, d = 2,3, is piecewise smooth
with the index k € NU {o0}, in short Q € Ckw, if:

1. There exists a surface mesh G of smoothness k.
2. Q is a Lipschitz domain, where the mapping yy from Definition 2.2.7 can be
chosen in such a way that yy|, = x-.

Similarly, the boundary I" = 92 of a bounded Cg‘w—domain QCcRY, d=23,
is also called piecewise smooth with the index k € NU {oco} and is denoted by
reck.

The definition of Cpkw-domains that we have presented here has been chosen in
such a way that we will not need to introduce a new notation for the discretization.

Exercise 2.2.11. Show that polygonal domains (domains whose boundaries are
described by polygonal curves) are Lipschitz domains.

Show that the bounded (cusp-) domain Q C R? which is bounded by the bound-
ary segments {0} x [0, 1], [0, 1/2] x {1}, {(t,¢5) : 0 <t < 1/2}, {1/2} x [275,1] is
not a Lipschitz domain for all s € (0, 1) (see Fig.2.1).

A surface mesh allows us to define piecewise smooth functions on surfaces.
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Fig. 2.1 Cusp domain as in
Exercise 2.2.11

Definition 2.2.12. Letk € NoU{oo}and T € CP{‘W. A function f : I' — C is called
k times piecewise differentiable if there exists a surface mesh G of smoothness k
with .

_foX,eCk<%) VYVt eg.

The set of all k times piecewise differentiable mappings on I' is denoted by C;‘W ().

2.2.3 Normal Vector

Let © C R? with d = 2,3 be a bounded domain of the type CplW and let G be

the surface mesh from Definition 2.2.9 of smoothness k > 1. The sphere in RY is
denoted by S;_;. For x € 7 € G we define a normal vector n (x) € S;_; by

(1, ©)" d=2
n(x) =
@< (§) /9E1) X Dxc (§) /0E>) d = 3
.
n(x) =)/ i 2.72)

In general, we assume that the orientation of the charts y; is chosen in such a way
that the normal vector points towards the unbounded space outside of £2:

Remark 2.2.13. . For domains of type CplW the set

{er‘:xgé Ur}

T€G

has zero surface measure. Therefore (2.72) defines an outer normal field on T’
almost everywhere.
2. For domains of type C there exists a normal vector for allx € T.

Lemma 2.2.14. Let v be a C2-element. Then there exists a constant 0 < Cp < 00
such that
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).y —x)| < Cally—x|>.

Proof. Let y; : © — T be the C2-diffeomorphism given in Definition 2.2.9. For two
points X,y € T we set

x:=y;'(x and §:= 7' @).

The mean value theorem guarantees the existence of a point £ on the line [X, §] such
that

n@).y=x) =0tz ® -1 X)) =0y, J: ) F—-%).

where J; := Dy, € R?*(@=1 s the Jacobian. Since n (y) is perpendicular to the
column vectors of J; (¥), we have

(n(y).y —x) = n(y).(J< (§) ~J: (1)) § —%)).

The assumptions we made concerning the smoothness of 7 imply that the matrix J,
is continuously differentiable (componentwise). This, however, proves the assertion
since

3 2
N, A E-T @G- <Cr =31 Ini (I —K;

i=1j=1
<GInWI 7" ® -2 @ <G ly—xI*.

|

2.2.4 Boundary Integrals

Let 7 be a C!-panel with the parametrization y; : £ — tandlet f : 7 — C bea
measurable function. Then the surface integral of f over t can be written as

/f(x)dsx=[f(§) Ve®dx  with f:= foys. (2.73)

Here g signifies the Gram determinant, which is defined as follows. The Jacobian

of the parametrization y. is denoted by J; := Dy, = (%) 1<i<d - The Gram
7 1<j<d-1
matrix is given by

G %) = JT (%) J; (%) e R@Dx@=D),
The surface element /g (X) in (2.73) is the square root of the determinant of the

Gram matrix
g (X) :=detG (x).
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More generally, for piecewise smooth boundaries I" € CplW and measurable func-
tions f : I' — C we have

[F.f X dsx =Y | fr ® Vg ®)d

reg??

where ﬁ := f o x; and ,/g7 is the surface element of the parametrization y.
For a measurable subset y of a surface I' we denote the surface measure by
ly| = fy 1dsy. For measurable subsets @ C R¢ we use the same notation and set

lw| == [, 1dx.

2.3 Sobolev Spaces on Domains €2

Results concerning existence and uniqueness can be formulated for elliptic bound-
ary value problems by using Sobolev spaces on domains. We will briefly review
some of the properties of the function space L? (), after which we will introduce
Sobolev spaces. The relevant proofs can be found in [242], for example.

We consider an open subset 2 C R¢. L2 () denotes all Lebesgue measurable
functions f : @ — C that satisfy [, | |> dx < 0o. We do not distinguish between
two functions u, v if they differ on a set of zero measure.

Theorem 2.3.1. L2 () is a Hilbert space with inner product
(U, v)o.0 = (U,v)2q) = [Q u(x)v(x)dx

1/2
and norm ||ullg.q = llullL2q) = (u,u)O’/Q.

If there is no cause for confusion we will simply write (u, v), and ||u||, instead
of (u,v)g,q and ||ul,q.

It is not possible to define classical derivatives (e.g., pointwise as the limit of
difference quotients) for functions from L? (2). In order to define a generalized
derivative we use the fact that every function from L? (2) can be approximated by
smooth functions. For a continuous function u € C° (Q),

supp (u) == {x € Q :u(x) # 0} (2.74)

denotes the support of the function u. The space of all infinitely differentiable
functions on €2 is denoted by C *° (2) and we set

C§° () :={ue C®(Q) : supp (1) CC Q}.
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The space of all functions from C*° (£2) with compact support is defined as

comp

C® (Q):i= C&® (]Rd)’Q = {ulg 1ue g (RY)}. (2.75)

Remark 2.3.2. It should be noted that the support of a function u € C0 () is

comp

compact in R? but in general is not compact in Q. Therefore we have Ceomp (82) #*
Cs° () for domains @ # Q # R4,

Lemma 2.3.3. The spaces C* (Q2) N L? () and CS° (Q) are dense in L* (Q).
Definition 2.3.4. A function u € L? (2) has a weak derivative g := 3%u € L? (Q)
if the property

8o = (D" @rug. Ve (5 (Q)

is satisfied.
We denote the weak derivative by 0,,.

Remark 2.3.5. If u has a weak derivative 3%u € L? () and the classical deriva-
tive 0%u exists on w C K2 then these two derivatives coincide on w (almost
everywhere). For this reason, in the following we will omit the index w in 0%.

Definition 2.3.6. Let & C R< be a bounded domain. For £ = 0,1,2,... the
Sobolev space H¢ (Q) is given by

HY(Q) :={p € L>(Q) : 8%¢ € L*(Q) forall || < {}. (2.76)

On the space H* () we define the inner product
(@)= ) 9. 0%) = ) /Q I p0*yrdx (2.77)
lee| <€ || <t

and the norm
1/2
lelle = (e.0),% (2.78)

The space H* (2) is sometimes denoted by W42 (). We will also need the space
WER(Q) = {p € L®(Q): 3% € L™ (Q) forall || < £}
which is equipped with the norm

Vo e WER (@) lgllwecoqg = max 9]l ooy -

Jee]

If in (2.77) we only sum over those multi-indices with |o| = £ we can define a
seminorm on H* (Q2) by
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2, 2
o= Y [ el 279
Q
] =£

Sobolev spaces can also be defined for non-integer exponents. For £ € R, |{]
denotes the greatest integer for which [£] < £. For a non-integer £ > 0, i.e., { =
[£] + A with A € (0, 1), we define

@ V)= Y, (39, 0%), (2.80)
FE
(0% (x) — 0% (y)) (0% (x) — 0¥V (y))
+ dxdy
|a§ej /QXQ Ix —y )42
and
lolle = (. 0),". 2.81)

For a non-integer £ the Sobolev space H* () is defined as the closure of
{ue C®(Q): |lull, < oo} (2.82)

with respect to the norm ||-||, from (2.81).

Proposition 2.3.7. The space H' () is a separable Hilbert space, i.e., H® ()
has a countable basis (see Sect.2.1.1.3). We can define an inner product by (2.77),
(2.80) and a norm by (2.78), (2.81).

The fact that certain smooth function spaces are dense in H* () becomes very
helpful with respect to techniques used in proofs concerning Sobolev spaces.

Definition 2.3.8. H(f (£2) is the closure of the space Cg° (£2) with respect to the
||l norm.

Proposition 2.3.9. We have
HO(Q) = HY(Q) = L2 (Q), H" (Rd) = H¢ (]Rd).

Proposition 2.3.10. Let @ C R? be open and let £ > 0. Then the space H* () N
C>®(Q) is dense in H* (Q).

The proofs of Proposition 2.3.9 and 2.3.10 can be found in [242, Theorems 3.3—
3.6, Conclusion 3.1], for example.

The Sobolev spaces H¢(Q) of non-integer order £ = [£] + A can also be
characterized by interpolation. We have

Proposition 2.3.11. Let k € Ng and 0 < A < 1. For a bounded domain Q with a
Lipschitz boundary we have

HH(Q) = [HF(Q), H 1 Q)12 (2.83)

A proof can be found in, e.g., [230] or [155].
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2.4 Sobolev Spaces on Surfaces I’

In order to define boundary integral equations one needs Sobolev spaces on bound-
aries I' := 0 of domains. These are defined with the help of Sobolev spaces on
Euclidean (parameter-) domains by means of “lifting”.

2.4.1 Definition of Sobolev Spaces on "

Let @ C R? be a bounded Lipschitz domain. We can define coordinates on the
boundary " := 92 with the help of a surface mesh G. For this we use the notation
from Definition 2.2.7 and introduce the following restrictions

XU, - BS —Up:=UNT, XU,0 = )(U|Bg~

Now we can define a coordinate system a = (Uo, XZ_JIO)U as well as a subordi-
> eu

nate partition of unity {8y : I' — R}y, by

1= Zﬂu onT, supp (Bu) C Uy, Bu o xuo € Cy' (B_S)
Ueu

Functions ¢ : I' — C can be localized with the help of this partition. The function
ou = @By : T — C satisfies  supp (pv) C Up.

If Q is a C*¥-domain with k > 1 we can carry out the localization in an analogous
way, in which case the functions yy,o are C k_diffeomorphisms. The smoothness of
a function on the surface I' is characterized by the smoothness of the pullback of
the localized function to the parameter domain. In this light, we define

QU :=¢uoyuo:BYy—>C, Ucel.

Therefore it is obvious that the maximal smoothness of the domain €2 is an upper
bound for the order of differentiability of the Sobolev spaces on I". More specifi-
cally, for C%! or C*-domains, only Sobolev spaces H* (I') with a maximal order
of differentiability £, invariant under the choice of the coordinate system, that satisfy

£ <1 for Lipschitz domains €2, (2.84)

¢ < k for C*-domains Q ’
can be defined. We use the previously introduced notation for the following defini-
tion.
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Definition 2.4.1. Let @ C R9 be a bounded C %! or C¥-domain with k > 1. We
assume that (2.84) is satisfied for £ € R¢. The space H ¢ (T") contains all functions
¢ : ' — C that satisfy gy € H{ (BY) forall U € U.

In the same way as in (2.80), we can define a norm on H* (') for ¢ € H*(I")
by setting A := £ — [£] and

Z ||‘Pa||iZ(F) if £ € N,
lal=t
lell7 = o 0 " :
Yo (X) — Qo (Y .
Z ”(pa”ZLZ(F) + Z / wdé‘xdé‘y if £ € R\N(),
lel<le] lwi=1e)? 0T Ix =yl
(2.85)
where the functions ¢, : I' — C are given by
0o (X) 1= ) 3% (¢0) (§) withx = yuo () (2.86)

Ueu

and 8? denotes the differentiation with respect to the variable .

Formally, the Sobolev space H* (T") depends on the chosen coordinates. Should
it be necessary, we will write H f (I') instead of H* (I"). It can, however, be shown
that H (') is defined invariantly on I" under the condition that there is a suitable
relation between the order of differentiation £ and the smoothness of the boundary.

Proposition 2.4.2. Let Q be a bounded Lipschitz domain or a C*-domain with
k > 1. We assume that the index of differentiation £ satisfies (2.84). Let a1, a, be
two coordinate systems on I'. Then the spaces Hfl (') and Hfz (T') are equivalent,
i.e., they contain the same set of functions, and the norms are equivalent.

The proof of this proposition can be found in [242, Theorem 4.2].
Sobolev spaces H*(T") of non-integer order can also be characterized by inter-
polation. We have the following theorem, which is analogous to Proposition 2.3.11:

Proposition 2.4.3. Ler Q@ C R? be a bounded Lipschitz or C*-domain with k > 1
and T := 0Q2: Furthermore, let { € Ng be such that £ + 1 satisfies Condition (2.84).
Thenfor0 < A < 1

L+ A _ V4 {+1
H (F)_(H (), H (r))m. (2.87)

More generally, if £1, 4, satisfy (2.84) then

HYT) = (H‘l ), H‘z(r))A i (2.88)

forl =28+ (1 =X)Ll with0 <A <1.
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We have introduced Sobolev spaces with non-negative differentiation indices for
domains 2 and their boundaries I". The dual spaces of these Sobolev spaces contain
all the continuous linear functionals defined thereon. Let X be either a domain 2 or
a surface I'. Then the following notation is used for the dual space:

HY(X) = (Hg (X))', ¢>0. (2.89)

Note that in the case of closed surfaces (X = I') the boundary of X is the empty set
and therefore H§ (X) = H (X).

All the results for H(f (X)) concerning density can be directly transferred to the
dual spaces. Due to the Riesz representation theorem (Theorem 2.1.17) for every
F € H™*(X) there exists an element f € H(f (X) with

F) = Nyeg Vv e HE (X).

If a space U is dense in H(f (X), then for every functional F € H ¢ (X) there exists
a sequence of elements (f;); ey, in U such that

1—>00

2.4.2 Sobolev Spaces on I'y C T

In order to formulate integral equations on domains with “cracks” we need Sobolev
spaces on open manifolds with boundary conditions. In the following we will briefly
discuss the most important definitions and properties and refer to [162, Sect. 3], for
example, for a more detailed discussion.

Let I'g C T be a measurable subset of the boundary with [I'g| > 0. The Sobolev
space H® (I'g), s € [0, 1], is defined by

H* (To) := {ue H*(T) : supp (u) C To} . (2.90)
The norm on H* (Tp) is given by
”u“ﬁY(FO) = ”M* ”HY(F) > 2.91)

where u* denotes the extension of # on I' by zero.

Exercise 2.4.4. Let I' = (—1,2) and Ty = (0, 1). Show that the characteristic
function
1xely,

u(x) = 0 otherwise

isin H® (L) for s < 1/2 but not for s > 1/2.
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The spaces with a negative index are again defined as dual spaces: H™S (Ty) :=
(H* (I'y))’ for s € [0, 1]. Conversely, we have: H™ ([p) = (HS (I‘O))/ for s €
[0, 1]. Note that for closed surfaces I' the spaces H*(I") and H*(T") are isomorphic.

2.5 Embedding Theorems

The spaces H¢ (Q), H® (') are nested for a continuous scale of indices .

Theorem 2.5.1. There holds

HY (Q) c H2(Q)

HY (T) © H® (1) 0> 10,>0. (2.92)

In the case of a surface we require that Condition (2.84) is satisfied with £ = {;.

The Sobolev spaces with a positive differentiation index £ together with L2 (2)
and their dual spaces form a Gelfand triple.

Proposition 2.5.2. For { > 0 the triples

HY Q) c L2 (@) C (HZ (9))/
HE(Q) C L2 (Q) c (HE ()
HYT)cL*(I) c (He (F))/

are Gelfand triples, whereby we again require that Condition (2.84) be satisfied in
the case of a surface. The inner product (-, -)12q) can therefore be continuously
extended to dual pairings on HY (Q) x (HY(Q)), (H* (Q)) x HY (Q), HE (2) x
(H(f (Q)), and (H(f (Q))/ X H(f (2). Analogously, the innerproci'uct )2 c/an
be continuously extended to dual pairings on H* (I') x (H6 (F)) and (H6 (F)) X
HY (D).

Notation 2.5.3. Assuming the same conditions as in Proposition 2.5.2 we again
denote the extensions by (-,-)12(q) and (-,")p2(r), in case the relevant function
spaces can be determined from the arguments. If the domain Q2 is clear from the
context, we simply write (-, -),.

It is interesting to know under which conditions every function (equivalence
class) ¢ € H®(Q) has a continuous representative. This question is answered by
the Sobolev embedding theorem.

Theorem 2.5.4 (Sobolev Embedding Theorem). Let Q@ C R? be a bounded Lip-
schitz domain. Then for £ > d /2:
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H Q) cC’(Q).

For bounded C*-domains Q, k > {, functions (equivalence classes) ¢ € H* ()
have an m times continuously differentiable representative for integerm < £ —d /2:

H Q) cCc™(Q)
with a continuous embedding:
I¢lem@) < Cligluem. VYo H Q).

In order to determine whether a function from H*2 (Q) can be approximated
with respect to a (weaker) norm |||, o, i-€., £, < {,, the compactness (see

Definition 2.1.31) of the embedding I : H*' (Q) — H*2 (Q) will be crucial.

Theorem 2.5.5 (Rellich). Ler 2 C RY be a bounded Lipschitz domain. Then
the first of the embeddings in (2.92) for £1 > {5 is compact. To guarantee the
compactness of the second embedding, Condition (2.84) also has to be satisfied.

The proof can be found in, e.g., [3,242].

In some proofs, results are first proven for dense subspaces of Sobolev spaces.
They are then applied to the Sobolev spaces by considering Cauchy sequences and
their limits. Keeping this in mind we will use Rellich’s embedding theorem (see,
e.g., [3, Sect. 5.9(4), A 5.4], [242]).

Theorem 2.5.6. Let @ C R? be a bounded domain with a Lipschitz boundary.
Then the embedding H' (Q) — L2 () is compact, i.e., there exists for every

bounded sequence in H' (Q) a subsequence that converges with respect to the norm
in L% (Q).

The Poincaré inequalities are useful consequences of these compact embeddings.

Theorem 2.5.7. Let @ C R be bounded and { = 1,2,... . Then for all ¢ €
Hg ()
lol7 g < € (1 + diam )** Y / 10%|* dx. (2.93)
Q
la|=L

The inequality in (2.93) is also referred to as the Friedrichs inequality.

Corollary 2.5.8. Let T'p be a subset of the boundary T" with a positive (d — 1)-
dimensional surface measure. Theorem 2.5.7 remains valid if the space H(f (RQ) is
}”'”LQ

replaced by the space {(p e C>® (ﬁ) 9o =00nTp

Forop e H £ (2), this assertion is only true in the modified form (2.94).
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Theorem 2.5.9. Let @ C R¢ be a Lipschitz domain. Then for all ¢ € H* ()

/ % pdx
Q

The inequalities (2.93) and (2.94) are called the first and second Poincaré
inequalities and are proven in [166, Theorems 1.1 and 1.5].

2
(2.94)

lelZg<c{ Y /Q|a“<o|2dx+ 3

lee|=¢ loe| <

Corollary 2.5.10. Let Q2 C R¢ be a Lipschitz domain. Then there exists a constant
cq > 0 such that for all p € H' (Q)

inf [l9 —z|l; o < caleliq-
zeR

Proof. Choose « := [ ¢dx/ || and define ¢, := ¢ — a. It then follows from
(2.94) that

inf o — 2l g < loallio < C (|<oa|1,g + ‘/ wadX) ~ Clglia.
zE]R Q

O
For convex, polygonal domains Q C R2, the constant C is known explicitly.

Theorem 2.5.11. Let Q@ C R? be a convex and polygonal domain. For any function
we H(Q) with fQ wdx = 0, there holds the estimate

L.
Wliz2(9) = — (diam €2) [wlgi () -
For the proof we refer to [180].
Theorem 2.5.11 can be generalized to neighborhoods of convex sets.

Corollary 2.5.12. Let Q@ C Q* C R? denote two convex and polygonal domains.
Forue HY(Q*), let TIg (u) := [ udx/|S2|. Then

|M|H1 «Q*) -

€2

|2*| \ diam Q*
lu—Tlg W 2@+ = (1 + —

Proof. Foru € H' (Q*), let g« (1) := Jor udx/ |Qq~|. The projection property
of I1g leads to
u—Tou= (I —Tg) (u—Tg+u),

where [ is the identity. Hence

ITevliz2 -
lu—oul2x = |1+ sup @) lu — Toxull 2qx -
veL2(Q*)\{0} ||V||L2(S2*)
(2.95)
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The supremum can be estimated by using the Cauchy—Schwarz inequality for the
L2-scalar product

1 2 1
IMav|72gs) =/ (@/dex) dy =< /9* @”V”iz(g) dy

= g <
T

Applying Theorem 2.5.11 to the right-hand side in (2.95) results in

[€2*] | diam Q*
— |M|H1(Q*) .

|u_HQu|L2 Q* < 1+
(22*) 12|

T

2.6 Trace Operators

The trace (restriction) of a function u € H* () on the boundary 9 can be given
areasonable definition if the differentiation index of the Sobolev space and the reg-
ularity of the surfaces are both sufficiently large. The main result is summarized in
Theorems 2.6.8 and 2.6.9. The Sobolev norm of the trace of a sufficiently smooth
function u : 2 — C can be estimated by the Sobolev norm of u in a local neighbor-
hood of d€2. Therefore traces can also be deﬁned for functions that are only locally
in H* (). The relevant space is called loc (2). For later applications we will also
introduce the associated dual space H, Comp (€2). Although norms cannot be defined
on these spaces, a metric and therefore a topology can be defined. We refer to [243]
and [85, pp. 48, 114 ff] for details. However, for our applications we only need the
results given in Theorem 2.6.7, which provides us with criteria with which we can
prove the continuity of mappings from and to these spaces.

Definition 2.6.1. Let Q be a (possibly unbounded) domain. The space H loc ()
contains all continuous, linear functionals (distributions) on C3;, (€2), in short u €

Camp (Q)’, with the property that pu € H* (Q) forall ¢ € Caomp (£2).

Remark 2.6.2. (a) The definition of the space HloC () does not contain any restric-
tions with respect to the growth of the function towards infinity. For example,
every polynomial as well as the exponential function are in H1 (R) for an
arbitrary £ > 0.

(b) By choosing ¢ = 1 we see that for bounded domains 2, H
coincide (see Remark 2.3.2).

(c) Let Q= C R? be a bounded domain with boundary T := Q™ and Q7 =
R4 \Q~. Then the growth of functions from Hlf)c (Q+) is not restricted towards

oc

(Q) and H* ()

loc
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inﬁnity However, it is restricted in every bounded neighborhood of I': For u €

loc (Q+) we have u|y € HY (U) for every bounded subdomain U C Q.
(d) In some literature, in the definition of H, IOC (2) the condition ¢ € CZ,, (2) is
sometimes replaced by ¢ € Cg° (R2). In this case, using the conditions in (c),

the growth of the functions in a local neighborhood of T is also not restricted.

In order to define the dual space of H10C (R2), we need to extend the definition of
the support of a function [see (2.74)] to Sobolev functions.

Definition 2.6.3. Let £ > 0. The restriction of a function u € H* () to an open
subset U C  is the zero function u|y = 0 if

(l/l, W)HZ(Q) =0

for allw € C*° (2) with suppw C U.
For £ < 0 the condition (u, w) y¢(q) = 0 has to be replaced by u (w) = 0.

Definition 2.6.4. Let u € H' (). The support supp () is the largest, relatively
closed set V' C Q for which u is the zero function on Q\ V.

Definition 2.6.5. Let £ € R and @ C R? be open. The space H,
by

(2) is given

comp

He (@)1= | {u € HE (@) supp () € KT
K

where the union is taken over all relatively compact subsets K C 2.

Remark 2.6.6. Note that for bounded domains, H: () coincides with H¢ ()

comp
and Hlf)c ().

Theorem267 (a) For every s € R the bilinear form (-,-) : C%®(Q) x
Comp (22) > K

(u, v) =/ uvdx (2.96)
Q

can be extended to a dual pairing (-, -) : (Q) x H Comp () - K.

(b) Let E be a normed space. A linear mapping A : H,,, (§2) — E is continuous
if and only if the restriction A : {u € H () :supp (u) C K} — E is con-

loc
tinuous for all compact sets K C Q. A llnear mapping A : HS () — E is
continuous if and only if there exist ¢ € C, () and a constant C < o0 such

that

loc

comp

[Aulg < Cllpullgs@) — Yu € Hi ().

(c) A linear mapping A : E — HS_(Q) is continuous if and only if for all ¢ €
(R2) there exists a C < oo such that

comp

lp (Al sy = Cllullg  VueE.
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(d) A linear mapping A : Comp (Q) — Hli)c (R2) is continuous if and only if for all
compact sets K C Q and all ¢ € C,

comp (§2) there exists a C < oo such that

lg (Al ey < C lullms@) Y € Heomp () 2 supp (u) C K.

(e) A linear mapping A : loc () — HL.(Q) is compact if and only if for all
cut-off functions ¢,y € C2° (K2) the restriction u — ¢A (Yu) : H* (Q) —
H! (Q) is compact.

comp

Theorem 2.6.8. Let 2~ be a bounded Lipschitz domain with boundary I and
Qt = RIN\Q~.

(a) For 1/2 < £ < 3/2 there exists a continuous, linear trace operator yg :
HE (RY) — HY2(T) with

Yo = ¢ |r forallp € C° (Rd>.

(b) For s € {4, —} there exist one-sided, continuous, linear trace operators y§ :
IOC (%) > HY2(T) with

7/5(/) =9 |r forall ¢ € c’ (@)

and
+ -
Yo U= Yo U= Yol almost everywhere

forallu e Hlf)c (Rd).
This result can be generalized for smoother domains.

Theorem 2.6.9. Let Q= C R? be a bounded C*-domain, k € NU {oo} and
QF = RI\Q~. Let the differentiation index £ satisfy the condition 1/2 <
L < k. Then the trace operator from Theorem 2.6.8 is a continuous operator
vo : H, (RY) — H'"Y/2(T) which satisfies the property

loc
ve=¢lr  VoeCq(R?).

The proof is based on a localization of the statement with the help of a C¥ or
C%!-atlas of " and a subordinate partition of unity. In doing so, the trace theorem
can be reduced to a trace theorem in the half-space and can then be proven by
characterizing Sobolev norms in terms of Fourier transforms (see [162] and [72]).
A direct result is the fact that the trace of a function is solely determined by its local
behavior in a neighborhood of T.

Remark 2.6.10. With the same conditions as in Theorem 2.6.8 we have for all v €
loc ( ) 1/2 < £ < 3/2, and all cut-off functions y € Cg° (Rd) that satisfy
x = 1 in aneighborhood of T
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Yo (Xv) = vo (v).

Forvt e HY

loc

(Q+) andv~ € HY

loc

(27) we have

Yo (0vT) =y (vF) and vy (v =y5 (V).

The trace theorem answers the question under which conditions functions from a
Sobolev space H* (2) can be restricted to surfaces I". It turns out that this is possible
for sufficiently smooth surfaces. Furthermore, the differentiability is reduced by half
an order.

There are a number of applications in which the inverse of this question plays
a significant role. Can functions from H t=1/2 (I'), that are given on surfaces, be
extended to H¢ (Q)?

Theorem 2.6.11. Let Q™ be a bounded Lipschitz domain with surface I' and
Q1 :=RIN\Q~. Thenfor 1/2 < £ < 3/2 there exists a linear, continuous extension
operator Z : H*"1/2(I') — Hfomp (R?) with (yo 0 Z) (p) = ¢ on HV/2().

ForQ € {SZ_, §2+} the composition

Za:=RoZ: H"V2(T) - HL. (Q)

comp

is continuous. Here, Rq denotes the restriction of a function in Hfomp (]Rd) to Q.

The proof is given in, e.g., [242, Theorem 8.8].
Notation 2.6.12. Alternatively, Zq+ is denoted by Z 1 and Zq- by Z_.

2.7 Green’s Formulas and Normal Derivatives

Classically, elliptic boundary value problems consist of a differential equation for
the unknown function on the domain 2 and associated boundary conditions. We
formulate the Laplace problem with Dirichlet boundary conditions as a prototype
for a linear elliptic differential equation: Let f € C°(Q) and gp € C°(T) be

given. Findu € C%2(Q) N C° (ﬁ) such that
—Au=f inQ, u=gp onl. (2.97)
In general, for equations of second order, either the trace or the normal derivative
of the unknown function is given on the boundary.
In this section we will define the conormal derivative to the general linear, elliptic

differential operator with constant coefficients. This operator has the form

Lu := —div (A gradu) + 2 (b, grad u) + cu, (2.98)
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where we generally suppose that A € R?*4 is positive definite, b € R? and ¢ € R.
The smallest eigenvalue of A is denoted by api, and the largest by amax. We always
assume that we have

0 < amin < Amax < 0. (2.99)

The Laplace problem (2.97) results if we choose A =1, b = 0 and ¢ = 0.
In order to define the conormal derivative we will multiply the operator L in
(2.98) by suitable functions and integrate by parts over 2. The equations that

result from this are called Green’s formulas and also form part of this chapter. Let
L () := (L% (I'))“.

Theorem 2.7.1 (Rademacher). Let Q2 be a bounded Lipschitz domain with bound-
ary I'. Then there exists an outer normal vector almost everywhere on I which
satisfiesn € L (I).

A proof of this theorem can be found in, e.g., [241, 11A, p.272]. Next we will
introduce some conventions which will be used frequently.

Convention 2.7.2. Let Q™ be a bounded Lipschitz domain with boundary T and
let Qt := RI\Q~. We assume that each of these domains is connected and, fur-
thermore, that the orientation of the normal field n : I' — Sy_1 is chosen in the
direction of Q7. In the following Q2 denotes one of the domains Q~, Q¥, and the
algebraic sign function ogq is given by

1 forQ=Q7,

o2 = -1 forQ=Q".

Therefore ogn is the outer normal relative to 2.

The principal part of the operator L in (2.98) is given by div (A grad-). Gauss’
theorem deals with integration by parts of integrands in “divergence form”.

Theorem 2.7.3 (Gauss’ Theorem). Let Q € {Q~,Q*}. ForallF € H! (Q,]Rid)
we have

/(divF)dX:/ (ogn, F) dsy.
Q r

The proof can be found in, e.g., [162, Theorem 3.34, Lemma 4.1]. A direct result
of Gauss’ theorem is the first of Green’s formulas.

Theorem 2.7.4. Let A € R?*4 be symmetric and positive definite. Then we have
forallu € H? () andv € H' (Q) Green’s first formula

/ div (A gradu) vdx = —/ (A gradu, gradv) dx + oq / (An, grad u) vd sy.
Q Q

: (2.100)
Forv € H? (Q) one obtains Green’s second formula
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/ div (A grad u) vd x— / udiv (A gradv) dx
Q Q

= 0q (/ (An, grad u) vdsyx — / u (An, gradv) dsx) .
T T

(2.101)
A proof can be found in, e.g., [162, Chap. 4].
For u,v € H' () we can define the sesquilinear form
B (u,v) := [ (<A grad u, grad v) + 2 (b, gradu) v + cuV) dx (2.102)
Q
and for u € H? (Q2) we can define the conormal derivative
yiu := (An, yo gradu) . (2.103)
A direct consequence of (2.100) is the representation
/ (Lu)vdx = B (u,v) — oq / (y1u) (Yov)dsx (2.104)
Q r
forallu € H? (Q)andv e H! (Q).
The formal adjoint operator of L is given by
L*v := —div (A gradv) — 2 (b, gradv) + cv. (2.105)

The term “formal adjoint” refers to the property (whose proof is achieved by means
of integration by parts)

(Lu,v)p2(ga) = (M’L*V)L2(]Rd)
for all u,v € C*® (Rd) which have the property that one of the two functions u, v

has compact support. In general, this relation does not hold for bounded domains.
Through integration by parts we have the following representation

/ u(L*v)dx = B (u,v) — og [ (you) (Y1v)dsx (2.106)
Q r

forallu € H' (Q) and v € H? () with the modified conormal derivative
y1v := (nyp, A gradv + 2bv) = y;v + 2 (b, n) yov. (2.107)

Remark 2.7.5. The boundary differential operators y1 and y1 are continuous map-
pings from H? () to H'/? ().
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The formulas (2.104) and (2.106) are called Green’s first formulas for the opera-
tor L. The domain of the conormal derivatives y; and 37 can, for s > 1, be extended
to the space

HS (Q) = {u € HY

loc

(Q): Lue L2 (9)} (2.108)

comp

by using the relations (2.104) and (2.106).

Definition 2.7.6. Let Q € {SZ_, Q+} be as in Convention 2.7.2 and let Zg be
the extension operator from Theorem 2.6.11. Then the (weak) conormal derivative
y1: H} () — H™/2(T') is characterized by

i, ¥) 2@y = 0 (B (. Zay) — (Lu, Za V) 12(q)) vy e HY/2(I).
(2.109)
The modified (weak) conormal derivative 77 : H} (Q) — H~'/2(T) is given by

W 7M1y = 0a (B (Zavoy) = (Za¥ L™ o)) V¥ € HY2 (D).

Theorem 2.7.7. Let Q € {Q_, Q+} be as in Convention 2.7.2. The conormal
derivative y1 : Hi () — H~Y2(T) is continuous. Let u € Hi (Q),ve HL (Q)
and let one of the two functions u, v have compact support, then

(Y1iu. yov) 12y = 0@ {B (u,v) — (Lu,v)12(q)} - (2.110)

For u € H? (), y1u coincides with the conormal derivative from (2.103) almost
everywhere on T.

The modified conormal operator V7 : Hi (Q) — H™Y2(T) is continuous. Let
v € Hi (Q), u € HL () and let one of the two functions u,v have compact
support. Then

(yott, iv) 12(r) = 0% {B (. v) — (u, L*V)Lz(m} . 2.111)

For v € H?(RQ), 1 coincides with the modified conormal operator defined in
(2.107) almost everywhere on I

A proof of this theorem can be found in [162, Lemma 4.3].

Theorem 2.7.7 implies that the definitions of y; and %] are independent of the
choice of the tragggxtension Z . In order to see this we consider another continuous
trace extension Zg : H'/2(T') — H}  (Q).Foru € H} () we define g := yju

comp

as in (2.109) and we define g by replacing Zg in (2.109) by /Zg; Then

@ V)12 = 00 (B (wZay) - (LuZav) (m) Vi € HU2 ().
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For ¢ € H'2(T') we define v := Zqy and ¥ := %1// and note that yov =
yov = ¥ (see Theorem 2.6.11). In (2.110) we set yiu = g, yov = Yandv = Zm/f
From this we subtract (2.110) while setting y;u = G, yoV = ¥ and V= Zmﬁ
and thus we obtain

o0 (g~ & W = B (u.(Za - Za) ) - (Lu. (22 - Za) v)

@10 5 (87 Yo (ZQ —%) w)LZ(I‘) =0

Since ¥ € H'/2(I') was arbitrary, we have as a consequence g = &. The
corresponding result for 1 can be proven analogously.

Corollary 2.7.8. Letu € H Ll (2). Then, for every cut-off function y € Cg° (]Rd)
that satisfies y = 1 in a neighborhood of T, the equation y1 (yu) = y1u holds.

Proof. Let U be a neighborhood of I with y = 1 on U. We choose a second cut-off
function y» that satisfies supp y2 C U and y2 = 1 in another neighborhood U,
of I'. We define /Zg; := x2Zgq and yju in (2.109) by using /Zg instead of Zg. (The
definition of y;u is independent of the choice of the trace extension, as was shown

above.) By using y = 1 on supp (%go) we obtain for all p € H'/2(I")

(1. @) 2y = 0@ {B (” ZQ‘/)) B (L”’ ZW)L%Q)}

= og {B (xu, Z?w) — (Lxu, %w) = (1 (xu) . @) 2 -

L2(sz)}

|

Remark 2.7.9. The definition of the conormal derivative depends only on the prin-
cipal part of the operator L from (2.98), since the sum of the terms of lower order
on the right-hand side in (2.110) equals zero [see (2.102)].

Remark 2.7.10. In order to distinguish whether yy is applied to functions in Qtor
Q7, we write y1+, Yy or )/1+, )71: Analogously, the notations By (-,-) and B_ (-,-)
indicate whether the sesquilinear form B is defined with respect to Q% or Q™.

Remark 2.7.11. By combining the formulas (2.110), (2.111) for the two functions
u,v € H ]1 (2), one of which has compact support, we obtain Green’s second
formula

(Lu,v) 2@y =, L) 12(qy = 00 {(vout, P1v) 21y — (Y1, Yov) 2y - (2.112)

Green’s third formula appears in connection with transmission problems. Here
the goal is to find a function u whose restrictions u™ := u|g+ and u™ = ulg-
satisfy the equations
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Lut=f* i@t

Lu = f~ in Q7.
Apart from this, the behavior of the traces of u™* and u~ has to be prescribed on the
boundary I'. In the remainder of this section we will derive a Green’s representation
formula which is relevant to the study of this question.

Foru € L2 (Rd) we first introduce the abbreviations u := ulg+ and u~ =
u|q— in order to define the space

HE (RAT) = {u € L2 (Rd) |ut e HL(QF) A u™ e H] (9—)}, 2.113)

where the spaces H} (Q7), H} (Q7) are given as in (2.108).

Remark 2.7.12. In general, for a function u € HL1 (]Rd\l"), we do not have Lu €
L? (]Rd). An easy counter-example is obtained by setting u~ = 1 andu™ = 0.

Foru € H} (RY\T') the function L+u € L2 (R?) is defined as

Lu” in Q™

Lut inQt "~ (2.114)

Liu =

For a given f/ € L2, (R?) we now consider functions u € H} (R?\T) that
satisfy
Liu=f  inR\T. (2.115)

Forue H Ll (]Rd \1") the application Lu can be defined as a functional (distribution)
on Cg° (RY)

(L) o (may = (0. L7V) o gay YV ECEE (Rd) . (2.116)

We use u € L? (]Rd), L*v e C§° (]Rd), (2.111) and (2.110) to maintain the separa-
tion

(Lu,v)Lz(R,,) = Z (M,L*V)Lz(m) = Z (Bs (u,v) — ogs (ygu,)’/\fv)Lz(r))

se{+.—} se{+.—}
2.117)
= L@+ D, ow ((Vls”’ ) ey — (e ”lsv)m))
se{+.—}
(2.118)

on the right-hand side in (2.116). The traces and conormal derivatives of u are,
in general, discontinuous across the boundary I'. As an abbreviation we use the
following notation
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[u] := y(;ru —you and [yu] ==y tu—yyu (2.119)

The smoothness of v € C$° (R?) implies [77v] = [v] = 0 and therefore (2.118)
implies the equation

(Luv)pagay = (fV) p2way + ([l V1v) 20y = (1wl vov) 2y (2.120)

forallu € H} (RY\T) andv € C$° (RY).

By using the dual mappings of 7 and yg, (2.120) can be expressed with-
out the use of test functions. Theorem 2.6.8 implies that the trace mapping yo :
H}. (R?) — H'Y2(T) is continuous and that the dual mapping y;, : H~/2(I') —
HL (Rd) is characterized by

comp
0700 2y = (VowV) amay VY € Hik (Rd> we HV2(I). .121)
For functions v € C*® (]Rd) the modified conormal derivative can be written as
y1v = (nyo, A gradv + 2bv)

and we have y7v € L® (T'). As a consequence, 7;’ can be defined on (L*® (T'))" =
L' (T) by

W, V) 2y = (71w, V)L2(]Rd) Ywe L' (D). veC® (Rd)

and therefore ¥1’w describes a functional on C *° (]Rd ) With this result and (2.120)
we obtain the third of Green’s formulas

Lu= f+y1" ([u]) = yo ([y1ul) (2.122)

foru € H} (R?\I') as a functional on C$° (R9).
The derivation of (2.122) can be done in complete analogy for u € H} (R?)
with compact support and v € C* (R?).

Proposition 2.7.13. Ifu € Hi (Rd\F) has compact support, (2.122) still holds
when considered as a functional on C > (Rd).

2.8 Solution Operator

Let Q be a bounded Lipschitz domain with L as in (2.98). Then the modified
differential operator L can be defined by

L:=L+2, (2.123)
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where A > 0 will be determined at a later stage. B (-, -) denotes the sesquilinear form
from (2.102) and B = B + A (.*)2(g)- For given boundary values ¢ € H'/?(I')
we consider the homogeneous Dirichlet problem: Find u € H' (Q) with you = ¢
and "

Bu,v)=0 VveHj(Q). (2.124)

Proposition 2.8.1. Every solution of (2.124) that satisfies u € H 11 (R2) solves the
homogeneous equation _
Lu=0 in Q. (2.125)

Solutions of (2.125) are called L-harmonic.
Proof From Lu € L2 (Q)andu € L2 () = L? () (see Remark 2.6.2.b) we

- comp loc
have Lu = Lu+ Au € Lfomp (f2) and therefore u € Hé (2). By using (2.110) with
L« L and yov = 0 forall v € HJ (2) we obtain the assertion. |

By using the trace extension Zg from Definition 2.6.11 the problem (2.124)
can be transformed into an inhomogeneous Dirichlet problem with homogeneous
boundary conditions. We set u; := Zqe and uy = u — u;. We apply this approach
in (2.124) and thus obtain the equation that determines ug: Find uo € HO1 (2) with

B (up.v) = —B (u1,v)  Vve H! (Q). (2.126)
We will show in Lemma 2.10.1 that
Re B (u,u) = ¢ ||”||fql(gz) -C ||”||%,2(Q)

holds with constants ¢ > 0, C € R thatdo notdependonu € ,flol (£2). The choice of
A > C therefore implies that the modified sesquilinear form B is elliptic in HO1 ().
We will also prove the continuity in Lemma 2.10.1. According to the Lax—Milgram
lemma (Lemma 2.1.51) problem (2.126) has a unique solution ug, which satisfies
the inequality
luoll 1) = € llurllmi(g) -

By using the continuity of the extension operator (see Theorem 2.6.11) one can
deduce that

lull gr) < luollgiy + luillmi@) = 1+ C) 1 Zaellgi@) = C lelgrzr-
With these results, the existence of a continuous solution operator 7 : H/2 (T") —

H' (Q) that maps the Dirichlet data ¢ € H'/?(I') to the solution u of problem
(2.124) has been shown. It satisfies

1T g1 @yemrr2ay < C.

Since LTu = 0 the mapping T : H'/2(I') — Hi (f2) is also continuous. It
follows from the mapping properties of 7 that the operator y; T is well defined.
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This operator maps the trace of an L-harmonic function to its conormal derivative
and is called Steklov—Poincaré operator. The mapping properties of y; and 7" imply
that

nT :HY2 () —> H Y2 (T).

This result can be generalized to a larger scale of orders of differentiation.

Theorem 2.8.2. Let Q be a bounded Lipschitz domain. Then for —1/2 < s < 1/2,
both the Steklov—Poincaré operator

le . H1/2+S (F) — H—1/2+S (F)
and, for —1/2 < s < 1/2, the solution operator T
T: H1/2+S (F) N H1+S (Q)

are continuous.

A proof of the first assertion can be found in [166, Chap.5, Theorem 1.3,
Lemma 1.4] (see also [72, Lemma 3.7] or [162, Theorem 4.25]). The second
assertion is proven in [72, Lemma 4.2].

The solution operator allows us to show that the conormal operator is also
continuous for a scale of Sobolev spaces.

Theorem 2.8.3. We use the notations from Convention 2.7.2. The conormal trace
operators

v HPTHQT) > BTV (D),
7/1 :Hi+l (Q+) — HS™ 1/2 (F)
are continuous for —1/2 <s < 1/2.

Proof. Due to Remark 2.7.9 we only need to consider the case Lu=— div (A grad u).

We begin by considering the interior problem. For u € H (Q7) and ¢ €
Hl/2 (T) we setv 1= Ty. We then use Remark 2.7.11 in which we replace L
by L. With L* =L, LT¢ = 0 and Y; =y we get

(yl_u7 w)LZ(F) = (7/01"7 yl_T(p)LZ(F) - (Lu7 Tﬁﬂ)Lz(Qf) . (2.127)
By using the dual operators T’ and (y;T)" we obtain the representation
nw=0iT) n-TL

To obtain the first assertion we combine yg : Hl(l);” (Q7) — HY2+s(T) with

(»1T) : HY2+5(I') — H*~1/2(T"). For the second term we use L: Hi"” (Q7)
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— L2(Q7), L2(Q7) € (H'* (7))  forall —1/2 < s < 1/2 with a continuous
and dense embedding and finally 7" : (H'~* (7)) — H~/2*5 (D).

The continuity of y1+ for the exterior problem is proven by localization (see The-
orem 2.6.7b). Let y; € C° (Q+) be an arbitrary cut-off function that is equal to 1

comp
in a neighborhood of I'. We need to show the following:

[ Cowll gs-r2y = Clxwlggri @y Ywe HH(QF). (2.128)
We choose a sufficiently large, open ball Br with
supp x1 U Q™ C Bg.

Let x> € C$° (R?) be another cut-off function with supp y» C Bg and y» = 1 on

Supp x1-
We set Q; := Br N Q7 and define the solution operator T with respect to the

Lipschitz domain Q; with prescribed boundary conditions ¢ € H'/? (") and zero
boundary conditions on dBg.

As before, we choose ¢ € H'/2(T) and in this case set v := x,T¢. For an
arbitrary w € H} (1) we define u := y;w and observe that u,v € H} (Q%).

It should be noted that, taking Remark 2.7.11 into consideration, the traces of
u and v are zero on the outer boundary dBg. Furthermore, we have

(M,Z*V)LZ(Q+) = (XIW,Z(X2T¢))L2(Q+) - (XIW’Z(X2T‘/’))L2(Q+ﬂsur>pm)
= (XIW,ZT§0)L2(Q+ﬂsupr1) =0

and
(Zu, V)L2(9+) = (Lu, Tw)LZ(Q+ﬁsupr|) = (Lu, T‘P)Lz(gg) = (T,Z“"p)LZ(r)'
By Remark 2.7.11 we then obtain
(viu. VOV)Lz(p) = (vou. ;" (X2T¢))L2(r) + (T/z”’g")Lz(F)'
By using y1+ x2To = y1+ T ¢ (see Corollary 2.7.8) we obtain the representation
yiu=TTu+ (y{T) you

as a functional on H /2 (T). In the same way as was done for the interior problem
we can now deduce the estimate (2.128) for u = yw. O

In order to prove the mapping properties of boundary integral operators we
will need dense subspaces of the Sobolev spaces H* (I"). The relevant results are
summarized in the following lemma.
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Lemma 2.8.4. We assume the same conditions as in Theorem 2.6.8:

(a) The trace mapping yo maps C§° (Rd) 1o a dense subspace of H'/? (I).
(b) The trace mapping (yo, y1) maps C§° (Rd) 10 a dense subspace of H'/2 (') x
HY2(T).

The proof can be found in, e.g., [72, Lemma 3.5].

2.9 Elliptic Boundary Value Problems

We introduced boundary value problems for the Laplace operator in Chap. 1. In this
section we will treat the boundary value problems related to the operator

Lu = —div (A gradu) + 2 (b, grad u) + cu

[see (2.98)]. In general, we will assume that the space is of dimension d = 3.
The trace and conormal operators g, y; on the boundary I' of a bounded Lips-
chitz domain ~ C R? were introduced in Theorem 2.6.8 and (2.103) as well as
Definition 2.7.6.
For sufficiently smooth functions u € C°(Q) and v € C! () these can be
written as
You = ulp and y1v = (An, (gradv)|r).

2.9.1 C(lassical Formulation of Elliptic Boundary Value Problems

First we will present the classical (or strong) formulation of elliptic boundary value
problems, after which we will introduce the relevant variational formulations. We
will use the notation from Convention 2.7.2.

2.9.1.1 Interior Dirichlet Problem (IDP)

Fora given f € C°(Q ) and gp € C°(I') findu € C2(Q7)NC° (F) such
that
Lu=f inQ~,

2.129
u=gp onl. ( )

2.9.1.2 Interior Neumann Problem (INP)

Fora given f € C°(Q ) and gy € CO(I') findu € C2(Q7) N C! () such
that
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Lu=f inQ7,

2.130
yiu=gn onl. ( )

2.9.1.3 Interior Mixed Boundary Value Problem (IMP)
Let I' be partitioned into relatively open, non-empty subsets I'p and 'y, i.e.,
[=TpUTy, TpNIy=0,

where we assume that the surface measure |'p| > 0. For a given right-hand side
feCc’ Q) and boundary data gp € C%(T'p)and gy € C°(Tw), find u €
c2(Q)nce (Q_) N C'(Q~ U T'y) such that

Lu=f inQ7,
u=gp onlp, (2.131)
yiu=gn only.

2.9.1.4 Exterior Dirichlet Problem (EDP)

In order to formulate the exterior boundary value problem one needs to prescribe the
boundary conditions on I as well as the behavior of the solution at infinity. For the
strong formulation we will only present these decay or radiation conditions, which
depend on the coefficients of the differential operator L, for the case ¢ > 0 [see
(2.98)] and for the Helmholtz equation.

Let ¢ > O for the coefficient ¢ in L. Then the decay conditions are given by

lu(x)| < C x| for ||x| — oo. (2.132)

We consider the Helmholtz operator Lu = —Au — k?u and a positive wave number
k > 0. For these we impose Sommerfeld’s radiation conditions

lu(®)| < C [|x]|”"

for ||x|| — oo. (2.133)

0
]l—stchrz
ar

Here du/dr = (x/ ||x||, Vu) denotes the radial derivative.

The radiation condition (2.133) describes outgoing waves. Time-harmonic
incoming waves can be described analogously. In this case in (2.133) k is simply
replaced by —k.

Foragiven f € C®(QT)andgp € C°(T") findu € C*(Qt)NC?(QT UT)
such that
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Lu = f in QJ’_,
u=4gp on F,
2.134
u satisfies (2.132) ifc =0, ( )
(2.133)  for the Helmholtz problem.

2.9.1.5 Exterior Neumann Problem (ENP)

For a given f € C°(Q%) and gy € CO(T') findu € C2(QF) N C' (QTUT)

such that
Lu = f in Q+,
yiu = gnN onT,
2.135
u satisfies (2.132) if¢ 20, ( :
(2.133)  for the Helmholtz problem.

2.9.1.6 Exterior Mixed Boundary Value Problem (EMP)

Let I be partitioned into relatively open, disjoint, non-empty subsets I'p and T'y,
i.e.,
I=TpUTy and |Ty|>0, |Tp|>0.

For a given right-hand side /' € C°(Q*) and boundary data gp € C°(I'p) and
gy € CO(Ty) findu € C2 (@) N CO (Q*+ UTp) N C! (+ U T'y) such that

Lu=f inQT,
u=4gp on ['p,
Yiu = gN on 'y, (2.136)
u satisfies (2.132) ife 20,
(2.133)  for the Helmholtz problem.

2.9.1.7 Transmission Problem (TP)
Finally, we want to formulate the transmission problem. The differential equation is
considered in both the interior and the exterior domain and appropriate transmission
conditions are imposed on the common boundary I' = Q™ = dQ~. The differ-
ential operators in the interior and exterior domain need not be the same, which is
why we denote the differential operator in the interior domain by L™ and for the
exterior domain Q1 by LT . The relevant coefficients for s € {—, +} are denoted by
A%, b%, 5.

For a given right-hand side f = (f~, fT) with /5 € C%(Q*) fors € {—, +}
and transmission data gp € C°(I'p), gy € C°(I'y), the aim is to find u =
(u™,ut) withu® € C2 () NC! (RS UT) for s € {—, +} such that
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LSy = f* in QF fors € {—, +}
[u] = gp onlI,
[yiu] =gn onT, (2.137)

(2.132) ifc >0,

+ satisfi
- sahisties (2.133)  for the Helmholtz problem.

2.9.2 Variational Formulation of Elliptic Boundary
Value Problems

One of the decisive disadvantages of the strong formulation of boundary value prob-
lems is that questions concerning existence and uniqueness cannot be answered in
a satisfactory way. We can overcome these difficulties by choosing a variational
formulation in appropriate function spaces instead. In order to do this we multiply
the differential equation by a test function and then integrate over 2. If we then
use integration by parts, the boundary conditions can directly be incorporated in
the variational formulation. The solution of the variational problem is called a weak
solution. In contrast to the strong formulation, the solutions are either sought or
given in Sobolev spaces. We will show in Sect. 2.9.3 that if the solution to the vari-
ational problem is sufficiently smooth, it coincides with the classical solution. We
briefly review the formal definition of the sesquilinear form B from (2.102), which
will appear in the variational formulation

B (u,v) = A gradu, gradv) + 2 (b, gradu) v 4 cuv) dx.
Q

For some of the boundary value problems that are to follow, the coefficients A, b
and ¢ will have to satisfy additional conditions.

2.9.2.1 Interior Dirichlet Problem (IDP)
First we suppose that the function « in (2.129) is sufficiently smooth. More specif-
ically, this means that u € H} (Q7) and therefore f € L? (7). We multiply

(2.129) by the functions v € C§° (227) and integrate over Q™. The conditions we
imposed on u and v allow us to apply Green’s formula (2.110)

B (u,v) — (yiu, yov) r2ry = (V)20 -
If we set yov = 0 we obtain

B (u,v) = (fiv)r2(q) Yve Hy (7). (2.138)
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Since
F) =(/v)2@ (2.139)

the right-hand side in (2.138) defines a functional on HO1 (27). Equation (2.138) is
also valid for functions u, v € H' (7). This leads us to the

Variational formulation of the interior Dirichlet problem (2.129): For a given
FeH ' (Q )andgp € HY/?2(T) findu € H' (Q7) with y;u = gp on I such
that

B u,v) = F (v) Yve Hy (7). (2.140)

Solutions of (2.140) that are not in C2 (™) are called weak solutions. Con-
versely, solutions that are in u € C?(Q7) N H, () are called strong solutions.
By using the trace extension Z_ (see Remark 2.6.12) the problem can be formu-
lated as a homogeneous Dirichlet problem. We set u; := Z_gp and suppose that
u = ug + uj. Then the unknown function u is the solution to the problem: Find
ug € HO1 (27) such that

B (ug,v) = F (v) — B (u1,v) Vv e Hy (Q7). (2.141)

2.9.2.2 Interior Neumann Problem (INP)

In the case of Neumann boundary conditions it is not the trace but the conor-
mal derivative of the solution that is given. Therefore we use the function space
H'(Q7). We then multiply by a test function and apply Green’s formulas which
gives us

B (u,v) = F (v) (2.142)
forall v € H' (Q7). In general, F is a given functional from (H1 (Q_))/. If the
boundary data in (2.130) is given, with f € (H' (Q_))/ and gy € HV/2(T"), the
associated functional is given by

F )= (V)2 + (&N, Yov) L2(r) - (2.143)

2.9.2.3 Interior Mixed Boundary Value Problem (IMP)

In the case of the mixed boundary value problem, the trace of the solution is given on
the Dirichlet boundary I'p C T" with |[I'p| > 0. This fact is the motivation behind
the definition of the Sobolev space

Hé (Q7):= {v € H' (Q7) : v =0o0nI'p in the sense oftraces} .

Again we multiply the differential equation by test functions v from H}, () and
integrate over 7. By applying Green’s formula (2.110) we obtain
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B (u,v) = (fv)p2@—) + (1. Yov) 121y -

Since v vanishes on I'p and yju = gn on 'y, we obtain

(Y1u, Yov) L2y = (N YoV) L2(ry) -

The variational formulation for the interior mixed boundary value problem reads:
Find u € H' () with you = gp on I'p such that

B u,v) = F (v) Yve H)(Q). (2.144)
For given data f € (H}, ()" and gy € H~'/? (Ty), F is defined by
F@):=(fV)2@-) + @N. YoV L2y - (2.145)

By using an arbitrary trace extension u; € H'! (Q7), i.e., you; = gp on I'p, we
can apply the approach u = ug + u;. The function uy is the solution of the equation
with homogeneous Dirichlet boundary conditions: Find ug € H 5 (27) with

B (ug,v) = F (v) — B (u1,v) Yve H) (Q7). (2.146)

2.9.2.4 Function Spaces for Exterior Problems

We now move on to exterior problems. In principle we approach the problem in the
same way as for interior problems. However, now we have to consider the decay
conditions, which have to be formulated within the definition of the function spaces
in a suitable way. We achieve this by introducing suitable weight functions in the
definition of the Sobolev spaces. These characterize the behavior of the functions at
infinity and depend on the differential operator L under consideration. The notation
H' (L, Q%) makes this dependency evident. The applied weight function should,
on the one hand, guarantee the existence and uniqueness of the solution of the vari-
ational problem. On the other hand it should also imply that the weak solution
also solves the strong formulation of the boundary value problem, possibly after
imposing certain conditions on the smoothness. In the following we will specify the
relevant function spaces for the general differential operator with a positive reaction
component (¢ > 0) and for the Laplace and Helmholtz operators. The variational
formulation requires different trial and test spaces for the Helmholtz problem. The
trial space will always be denoted by H' (L. Q) and the test space by Hy (L, Q).

General Differential Operator with ¢ > 0

If, in the general differential operator L from (2.98) the component ¢ > 0, then the
weighted and non-weighted Sobolev spaces coincide:
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H'(L,Q%):=H'(QT) and Hj (L.Q"):=H] (QT).

We define the norm appropriately ||-||H1(L,Q+) = (, -)ZIZ(L,QJF) with the usual
inner product

V)i (La+) = /m ((Vu, V) + uv) dx. (2.147)
The trial and test spaces coincide: ||-||H}(L’Q+) = ||-||H1(L’Q+), H% (L, Q+) =

HY(L,Q%) and H}, (L, Q%) == H (L, Q7).

Laplace Operator

The differential equation for the Laplace operator L = —A leads to the Poisson
equation
—Au=f inQ".

For sufficiently smooth functions u, v € Ccf)omp (Q+) [see (2.75)] we can define the
inner product

V) gi(La+) = /m ((Vu, v7) +ﬁ) dx (2.148)

as well as the norm ||u|| g1 (Lat) = (u, u)ZIZ(L a+): For L = —A the weighted

Sobolev spaces H'! (L, §2+) and HO1 (L, Q+) are given by the closures of the
spaces C2o (1) and C§° (%) respectively, with respect to the norm

||-||H1(L,Q+) in (2.148).
The trial and test spaces coincide for the Laplace problem: ||-|| L(Lat) =

Il gy Hp (LoQF) = HY (L.QF) and Hp, (L. Q%) = H (L. Q).

Remark 2.9.1. Since H' (21) C H' (L, Q%) in the case of the Laplace operator,
one could also formulate the exterior boundary value problem in H'! (Q+) How-
ever, as functions that satisfy the classical decay conditions (2.132) in general are
not in H'! (Q+) the solutions of the variational problem would be “unphysical”.
In contrast, the space H! (L, Q"’) allows for solutions with a physically correct

behavior O (||x||_1)f0r x| — oco.
For aginc > ||b||2 [see (2.99)] the physically relevant solutions show exponential

decay for ||x|| — oo (see Lemma 3.1.9) and so the Sobolev space H' (Q+) can be
used for the formulation of the relevant variational problem.

Remark 2.9.2. For every bounded, open domain o C Q7F the spaces H' (L, w)
and H' (w) coincide as sets and the norms are equivalent. We have the same
assertion for the spaces HO1 (L,w) and HO1 (w).
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Helmbholtz Equation
The Helmholtz equation is given by
Lyu:=—-Au—k*u=f inQ".

Let p(r) := 1 + 72 and p := p~!. For sufficiently smooth functions u,v €
Caonp (271) the inner product can be defined as

. (Vu, V¥) +uv  (Ou . v
V)1 (L.0+) = /Q+ (—p(HXH) + (ar zku) (Br zkv)> dx

(2.149)
(see [154,170]). The norm is given by ||u||H1(L,S2+) = (u,u);,/;l(L,Q+). The

weighted Sobolev spaces H 1 (L, §2+) and HO1 (L, Q+) are the closures of the
spaces C2o (QF) and C§° (%) respectively, with respect to the norm
I e (z,0+) -

The associated test spaces Hj (L, Q") and H%,o (L,Q7") are the closures
of the spaces CC%"mp (Q"’) and C§® (Q+) respectively, with respect to the norm
lul = ) oy = )l

Hp(Lat) = Yo Vglet) — Vs HI (L)

Remark 2.9.3. We have introduced the weighted Sobolev spaces

H! (L,Q+) — o _(ah) (Q+)II~HH1(L,Q+) and H] (L,Q+) ::WWIIH](L.QJQ

comp

HE(L.o%) = m“‘”*’%(mﬂ and H,(L.2F) = o (@) Mrteet)
for the general differential operator L from (2.98) with ¢ > 0, as well as for the
Laplace and Helmholtz operators. The norms are the square roots of the inner
products from:

e Equation (2.147) for the general differential operator L from (2.98) with ¢ > 0
e Equation (2.148) for the Laplace operator
o Equation (2.149) for the Helmholtz operator

2.9.2.5 Exterior Dirichlet Problem (EDP)

Let L again be the general differential operator from (2.98) with ¢ > 0 or the
Laplace or Helmholtz operator and let H' (L, Q*), H} (L, Q") and H} (L,Q7),
H%,o (L,7") be as in Remark 2.9.3.

We obtain the variational formulation of the exterior Dirichlet problem by mul-
tiplying the differential equation in the strong formulation (2.134) by test functions
ve (g (Q+) We can apply Green’s formula (Theorem 2.7.7) under the condition
thatu € H} () and we then have
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B (u,v) = / fvdx.
Q+

The sesquilinear form B can be extended to H'! (L, Q"’) X H}O (L, Q+). The

variational formulation of the exterior Dirichlet problem then reads: Let F €
/

(Hio(L.2%)) and go € H'2(T) be given. Find u € H'(L,R*) with

u = gp on I" such that

B u,v) = F®) Vve Hpo(L,Q). (2.150)
If we consider the strong formulation (2.134) the functional F is defined as
F @) :=(f v)Lz(Q+) . (2.151)

Here we assume that f is sufficiently smooth, so that the right-hand side in (2.151)
exists forall v € H|} (L, Q+).

We can also transform this problem into one with homogeneous boundary con-
ditions by applying a trace extension. We do this by choosing a function u; €
H'(L,Q) with u; = gp and by then applying the approach u = ug + u;. The
unknown function ug is then the solution of the homogeneous Dirichlet problem:
Find up € H, (L, §2+) such that

B (ug,v) = F (v) — B (u1,v) Vve Hp,(L.QY). (2.152)

2.9.2.6 Exterior Neumann Problem (ENP)

Let L again be the general differential operator from (2.98) with ¢ > 0 or the
Laplace or Helmholtz operator and let H'! (L, Q+), H} (L, Q"’) and H|} (L, Q+),
H%,o (L,2") be as in Remark 2.9.3.

In this case we multiply the differential equation in the strong formulation (2.135)
by test functions from C2° (§2+) and then apply Green’s second formula from

comp

Theorem 2.7.7. We then have
B (u,v) = / fvdx + / gnvdsy,
ot r

where yu has already been replaced by the Neumann data gn. The sesquilinear
form B can be extended to H' (L, Q%) x H}. (L, Q7). The variational problem

then becomes: For a given F € (H} (L. S2+))/ findu € H' (L, Q") such that

B (u,v) = F (v) Vve Hp (L,QT). (2.153)
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Combined with sufficiently smooth data gn and an f [see (2.135)] which is known,
the functional F is given by

F (v) :=[ dex+[gNVdsx. (2.154)
o+ r

2.9.2.7 Exterior Mixed Boundary Value Problem (EMP)

Let L again be the general differential operator from (2.98) with ¢ > 0 or the
Laplace or Helmholtz operator and let H'! (L, Q+), H% (L, Q"’) and H, (L, Q+),
H%,o (L,27") be as in Remark 2.9.3.

Let I' be decomposed into I'p and 'y as in (2.136). The relevant function space
is given by

Hé (L, Q+) = {u c H! (L, Q+) :u = 0on I'p in the sense oftraces} .

The variational formulation of the exterior mixed boundary value problem then
/
reads: For F € (H%D (L,Q+)) findu € H' (L,Q") withu = gp on Tp
such that
B u,v) = F®v) Vve Hpp (L.QF). (2.155)

For the strong formulation the functional F is given by
F@):= / fvdx + / gNvdsy Yve H} p (L, Q+) . (2.156)
Qt 'y ’

By means of a trace extension ug € H' (L, Q%) that satisfies ug = gp on I'p, this
problem can again be transformed into a homogeneous boundary value problem,
although we will not go into detail here.

2.9.2.8 Transmission Problem (TP)

For s € {—,+} the differential operator L® refers to the domain QS (see
Sect.2.9.1.7). Let L™ be the general differential operator from (2.98) with ¢™ > 0
or the Laplace or Helmholtz operator and let H'! (L+, S2+), Hj (L+, §2+) and
Hy (LT, QT), H%,o (LT, Q%) be as in Remark 2.9.3.

In order to derive the variational formulation we multiply (2.137) by functions
v € C° (R?) and integrate over @~ U Q. The conditions for u and v allow us to
apply Green’s formula (2.110)

B_ (u,v) + By (u,v) = (f. M2 (rd) ~ (&N, Y0V) L2(r) - (2.157)
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The sesquilinear form is well defined for functions u = (u~,u*), v = (v7,v") €
H'(Q7) x H' (L, Q™) that satisfy [v] = 0. We define the closed subspace W C
H'(Q7) x H} (L, Q") and the associated test space W as

(uut)y e HY(Q)x H' (L. Q") : [u] = 0},
(vovt) e Hi (27) x Hf (L. Q%) : [v] = 0}.

=
I
——
<
I

(2.158)

1/2
The norm on W is given by |Ju|ly = {||u_||fql(g,) + [|lut ||21(L Q+)} and the
norm |[u| 5 is defined analogously.
Thﬁi{l the variational formulation of the transmission problem (2.137) reads: Let
F € W and gp € HY?(T) be given. Find u € H' (Q7) x H! (L, Q") with
[u] = gp such that

B_(u,v)+ By u,v)=F () VYveW. (2.159)

For the strong formulation (2.137) the functional F is defined by the right-hand side
of (2.157) for sufficiently smooth f and g.

2.9.3 Equivalence of Strong and Weak Formulation

The variational formulation was derived from the strong formulation by multiplying
it by test functions, integrating and then integrating by parts.

In this section we will discuss whether the solution of the variational problem is
also a solution of the strong formulation of the boundary value problem. To do this
we have to integrate back by parts in the variational formulation. However, the con-
ditions in Theorem 2.7.7 require that u € H i (€2). In general, a weak solution does
not satisfy these conditions. If the weak solution is to solve the strong formulation
an additional regularity condition u € H} (£2) has to be fulfilled.

2.9.3.1 Interior Problems

Let u be the solution of one of the interior problems: IDP (2.140) with right-hand
side (2.139), INP (2.142) with right-hand side (2.143) or IMP (2.144) with right-
hand side (2.145). In the derivation we make the following assumption.

Assumption 2.9.4. For the variational problem we have:

(a) 2~ is a Lipschitz domain.

(b) The weak solution satisfies u € HL1 (27) and in the case of a Neumann problem
Yiu € LZ (F)

(¢) The functional on the right-hand side is defined by (2.139), (2.143) or (2.145)
with f € L?(Q7) and gy € L* (I).
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The condition u € Hj (7) allows us to apply Theorem 2.7.7, which in turn
allows us to undo the integration by parts. Therefore the weak solution u satisfies

(Lu - f, V)LZ(Qf) =0 YveV,

with
HO1 (R27) for (2.140),
V=4 H' (Q7) for (2.142),
Hll, (R27) for (2.144).

Assumptions 2.9.4.aand b imply that Lu— f € L? (7). Since H| ($27) is densely
embedded into L? (Q7) (see Proposition 2.5.2) the embedding V' C L? (™) is also
dense. Therefore there exists a sequence (v,), C V C L? (Q7) withv, — Lu— f
in L2 (") that satisfies

0= Jim (Lu~ fom) 2oy = (Lu= £ Jimva) | o0 = 1Lu= I
With this we have shown that if the weak solution u satisfies the additional con-
ditions u € H ]1 (R7) and f € L% (Q7) it also satisfies the differential equation
Lu = f almost everywhere.

For the IDP and the IMP the Dirichlet boundary conditions you = gp on I'p are
required explicitly. Here we will only consider the INP, the proof for the IMP can

be done in the same way.
From Lu = f in L2 (Q7), (2.142) and Theorem 2.7.7 we have

0=B(u,v)—(fiv)r2-) — (&N. YoV) L2(1)
= (Lu— fiv)r2@-y + (V1w —gn. Yov) L2(n)
= (y1u—gn.Yov) L2(1)

forallv € H' (7). Lemma 2.8.4 implies that the image of H! (7) under yj is
dense in H'/2 (T") and therefore is also dense in L2 (T"). It follows that

(Vlu_gN,W)LZ(F)ZO VWGLz(F).

With Assumptions 2.9.4(b) and 2.9.4.c we have yu = gy in L2 (T').

2.9.3.2 Exterior Problems

In principle, the argument for exterior problems is the same as for interior problems.
However, Assumption 2.9.4 does not guarantee that the conditions of Theorem 2.7.7
are satisfied. In general, neither the weak solution nor the test function v €
H } (L, Q +) has compact support. We will however show that under suitable condi-
tions Green’s second formula remains valid for functions that do not have compact
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support. For this we consider the following abstract situation, which has been chosen
to fit Remark 2.9.3.

lI-lly

. = =
Assumption 2.9.5. V = C2,,(Q") " and Vr := CZ,, (QF) T are the
closures of the sets of smooth functions with compact support with respect to the
norms ||-|ly and ||-||y,. respectively, so that:

(a) V, V1 are complete and satisfy V, Vy C Hkl)C (Q"’)
(b) B :V x Vy — C is continuous.

Theorem 2.9.6. Let Assumption 2.9.5 hold for the spaces V,Vr. Then Green’s
second formula is applicable for allu € V N Hi (Q+) andv € Vr.

Proof. (a) Since Vr C Hl(l)C (Q+) there exists a continuous trace operator yg : V1 :
H'/2(T") (see Theorem 2.6.8).

(b) Forallu € V.N H} (Q%) and v € C,, (") we have, with Theorem 2.7.7,
Green’s second formula

(Lu, v)Lz(Q+) — B (u,v) = (yau, Yov) L2(1) -

The mapping (Lu,);2(q) : Vr — C is continuous, since we assume that Lu
has compact support and that V7 C H,.. (Q+) Due to Assumption 2.9.5.b, the
sesquilinear form B : V x Vr — C is continuous. If, for an arbitrary v € Vr,
we choose a Cauchy sequence (vn), C Cg,, that converges towards v with
respect to the V7-norm we have

lim {(Lu,vn)Lz(QJr) — B (u, vn)} = (Lu, V)L2(9+) — B (u,v). (2.160)

n—>oo

On the other hand, according to Theorem 2.7.7, yju defines a continuous
functional on H /2 (T'). Therefore because of (a) we have

Jim (yius yova) L2y = (it Yov) L2ry »

which with (2.160) proves the statement. O

In order to apply this result to the exterior problem we use the function spaces
that were defined in Remark 2.9.3. We set V := H' (L, Q%), Vr := H} (L,QY)
and check the conditions from Assumption 2.9.5.

Continuity:

In Lemma 2.10.1 and Theorem 2.10.10 we will show the continuity of the sesquilin-
ear form B on H! (Q+) and on H! (—A, S2+). The continuity for the Helmholtz
problem is investigated in Corollary 2.10.3.
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Embedding:

The embedding from Assumption 2.9.5.a follows for all considered differential
operators, as the weight functions only influence the behavior of the functions
f € W at infinity.

Therefore Assumption 2.9.5 is also satisfied and Green’s second formula is appli-
cable for u € HL1 Q) NH'(L,Q) and v € H} (L, <2). The way in which we
treated the interior problems, in this case deriving the strong formulation from the
weak formulation, can be repeated identically for the exterior problems.

Decay Condition:

In the following chapters, the solutions of the boundary value problems that have
been discussed above will be represented by means of a surface integral, from which
the decay conditions for the Laplace operator, Helmholtz operator and the general
elliptic operator with ¢ > 0 can be deduced immediately [see (3.22) and (3.23)].
The Sommerfeld radiation conditions for the solution of the Helmholtz problem are
discussed with the help of the integral representation in Exercise 3.1.15.

2.10 Existence and Uniqueness

In the previous section we formulated interior and exterior elliptic boundary value
problems as variational problems. We will now give the most important results on
existence and uniqueness. Since the focus of this book is on integral equations
for elliptic boundary value problems, we will not elaborate the analysis of elliptic
differential equations. Instead we will refer to the appropriate textbooks. First we
will prove the continuity and coercivity of the sesquilinear form B for the interior
problem.

Lemma 2.10.1. Let Q € {Q_, Q"’}. The sesquilinear form B (-,+) as in (2.102) is
continuous and there exist positive constants Cy, Co such that

Re B (u,u) > Ci ||u 31 gy — C2 Ul 2q) Vue H' (Q).

Therefore B is coercive on H' (Q) for Q = Q™.
Proof. Let amax (amin) be the largest (smallest) eigenvalue of the matrix A. Then,

with the notation (2.79), we have for all u,v € H' (Q)

|B (u,v)] < /Q (@max [Vl VY]] + 2] [[Vael| [v] + ] |ul [v]) dx

= Amax |“|H1(Q) |V|H1(Q) +2b]| |u|H1(Q) ||V||L2(Q)
+ [l ull 2@y IVIlL2 ()
< 3max {dmax. 2 |[b|l . ¢} l[ull g1 @) VIl a1 (@)-
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For the proof of the coercivity we use for arbitrary 6, & > 0

2 2 — 2 2
Re B (1, 4) = amin 1371y — I (8 ul3y1 gy + 87" ll32(0) ) + € Il 2
2 2 — 2
> (amin = & ) 131y & 1l 2 + (¢ = DI 6™ =) 1l 2 g -

We now choose 0 < & < api, and set § := (amim —¢)/ ||b]| if ||b]| # O and
8 := 400 otherwise. We then have

Re B (u,u) > ¢ |ul 51 q) + (¢ = [b 87" — &) ulZ2q - (2.161)

If Q = Q~ the compact embedding L? () — H!(Q) (see Theorem 2.5.5)
implies the coercivity. O

In Corollary 2.10.2 the quotient space H! (™) /K appears. Its equivalence
classes consist of functions in H! (™) that only differ by a constant. A norm on
this space is given by

_ = inf |lu — - . 2.162
lull g1 (@-y/x Inf = cll g1y ( )

Corollary 2.10.2. (a) The result from Lemma 2.10.1 also holds for every subspace
of HY (Q7).

(b) The sesquilinear form is elliptic on H' (Q7) if we have ayinc > ||b||2

(c) Forb = 0andc = 0, the sesquilinear form B_ is elliptic on Hy (7).

(d) Forb = 0 and ¢ = 0, the sesquilinear form B_ is elliptic on H' (Q7) /K.

(e) The inequality (2.161) also holds for the exterior problem, i.e., @ = Q% and
B = B.. Therefore, for apinc > ||b||2, the sesquilinear form By is elliptic on
H! (Q"’) and, consequently, on every subspace.

Proof. Statements (a), (b) and (e) follow directly from the proof of the previous
lemma.

(c): Here we use Theorem 2.5.7 and obtain
Re B (1, ) > amin |4l 31— = C llul 1o Yue H} (Q7).
Statement (d) follows from the second Poincaré inequality (Corollary 2.5.10)
Il 31 @k < C lul71qy < C/amnRe B (w,u)  Vue H' (Q7) /K.
O

Corollary 2.10.3. The sesquilinear form of the exterior Helmholtz problem is con-
tinuous.

Proof. If we use the explicit representation of the sesquilinear form of the Helmholtz
equation and apply the Cauchy—Schwarz inequality, we obtain for all u € H!
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(L.Q%)andv € H} (L, Q%) the continuity

B (u,v) = /Q+ ((Vu, Vv) —kzu\_/) dx < |”|H1(Q+) |V|H1(SZ+)

+ k? Hup_l/z‘

1/2‘

L2(qt) HV'O L2(qt)

< (1 + k2) ||M||H1(L,Q+) ||V||H;(L,sz+) .

|

By combining Lemma 2.10.1 and Corollary 2.10.2 with the results from
Sect. 2.1.6 one obtains the existence and uniqueness of the solution for the boundary
value problems from Sect. 2.9.2.

2.10.1 Interior Problems

We first prove the results on existence and uniqueness for interior problems.

2.10.1.1 Interior Dirichlet Problem

The following theorem will demonstrate that the Fredholm alternative always holds
for the Dirichlet interior problem. Furthermore, if the coefficients of the differential
operator satisfy suitable conditions, the Lax—Milgram lemma guarantees the exis-
tence and uniqueness of the solution.

Theorem 2.10.4. We consider the IDP [see (2.140)] and assume that the func-
tional F is defined as in (2.139) and that we have gp € H'? (T') for the boundary
data:

1. The Fredholm alternative is applicable: Either, for every right-hand side F €
HO1 (27) and boundary data gp € H/? ('), the problem (2.140) has a unique
solution u € HO1 (27) that depends continuously on the right-hand side, i.e.,

el ey = € (IF gy @y + gl

or zero is an eigenvalue of the operator associated with B that corresponds to a
finite-dimensional eigenspace.

2. The condition ayinc > ||b||2 implies that the first case will always apply in the
above-mentioned alternative.

3. Statement (2) remains true if the condition amnc > ||b||* is replaced by ¢ =
[Ib]| = .
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Proof. For 1: We use the approach u = up + u; with the trace extension u; :=
Z_gp. The right-hand side in (2.141) defines a continuous functional on HO1 ():

|F () = B 1.v)] < (IFllg-1-) + Ci llurll g1 @) IV &1 @)
< (IFllg-1@- + C2 lgnllgi2@y) VI a1 -

so that the Fredholm alternative (see Theorem 2.1.60) is applicable for (2.141). The
assertion for the problem (2.140) then follows from |[u| g1q-) < luoll g1 (- +

Cligplla12ry-
For 2,3: The proof is done in the same way as in the first part. Here we combine
Corollary 2.10.2.(b),(c) with Lemma 2.1.51. O

2.10.1.2 Interior Neumann Problem

In the following theorem we will formulate results on existence and uniqueness for
the interior Neumann problem.

Theorem 2.10.5. We consider the INP (2.142), (2.143) and assume that f €
(H'(Q)), gn € H71/2(D):

1. The Fredholm alternative is applicable: Either, for every right-hand side F €
(H1 (Q_))/ the problem (2.142) has a unique solution u € H'(Q7) that
depends continuously on the right-hand side [see (2.89)], i.e.,

4l 1@y = € IF @y < € (1f s amyy + Newlla-1a)

or zero is an eigenvalue of the operator associated with B that corresponds to a
finite-dimensional eigenspace.

2. The condition aymnc > ||b||2 implies that the first case will always apply in the
above-mentioned alternative.

3. Letc = ||b|| = 0. Then there exists a solution u € H' (27) if and only if f and
g satisfy the relation

(£ 2@ + (gn. D) p2ry = 0. (2.163)

The solution is unique up to a constant function. Therefore, if we restrict the
solution space to H' (Q7) /K, there exists, for all f € (H1 (Q_))/ and gn €
H~Y2(T) that satisfy (2.163), a unique solution in H' (27) /K that depends
continuously on the data.

Proof. The proofs of (1) and (2) are similar to the proof of Theorem 2.10.4. The
proof of (3) can be found in, e.g., [162, Theorem 8.19]. O
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2.10.1.3 Interior Mixed Boundary Value Problem

We now move on to existence and uniqueness results for the interior mixed boundary
value problem [see (2.9.2.3)].

Theorem 2.10.6. The results from Theorem 2.10.4 also hold for the interior mixed

boundary value problem. Here T" has to be replaced by I'p and HO1 (R7) by
HL(Q7).
D

Proof. The proof of this statement is analogous to the proof of Theorem 2.10.4. To
prove the third statement we use Corollary 2.5.8. O

2.10.2 Exterior Problems

Results on existence and uniqueness for exterior problems require the use of the
weighted Sobolev spaces H'! (L, Q+) that were introduced in the previous section
(see Remark 2.9.3).

2.10.2.1 General Elliptic Operator with ayi,¢ > ||b|*

If we combine Corollary 2.10.2.e with the Lax—Milgram lemma we get existence
and uniqueness for the exterior boundary value problems under the condition that
aminc > |[b||*. Note that in this case we have H' (L, QT) = H}. (L, Q%) which s

[T

why we can omit the “~” notation.
Theorem 2.10.7. Let apinc > ||b]|*.

(a) EDP (2.150). Forall F € H™! (Q"’) and gp € HY? (T) there exists a unique
solutionu € H1 (Q"’) that depends continuously on the data, i.e.,

el riaty = € (IF Ia-1a+y + lgnlma) -

(b) ENP (2.153). For all F € (H1 (Q“L)), there exists a unique solution u €
H1 (Q"’) that depends continuously on the data, i.e.,

lull g1 (@+) = € ||F||(H1(Q+))’-

(c) EMP (2.155). For all F € ( ( )), and gp € H'Y?(Tp) there exists a
unique solutionu € H é (Q+) that depends continuously on the data

el g1ty = € (IF sy ooy + 18Dl 12, -
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(d) TP (2.159). Let W be as in (2.158). Forall F € W’ and gp € HY/2(T) there
exists a unique solution u € W that depends continuously on the data

lullw = € (1Fllw: + lgpllzir2ry) -

Proof. The proofs for the interior problem can be directly transferred to this partic-
ular case. O

2.10.2.2 Laplace Operator

The proof of existence and uniqueness results for the Laplace operator is more elab-
orate than for the differential operator from Sect. 2.10.2.1 because of the use of the
weighted Sobolev spaces.

We begin with a few auxiliary results on the function spaces H ! (—A, §2+) and
Hj (—A, Q) (see [80, Chap. XI, Part B]). For the Laplace operator the inner prod-
uct and the norm on H' (—A, Q%) and H{ (—A, Q™) are defined by (2.148). We
will first show that the norms [see (2.148), (2.79)] |||l 4 (-A.9+) and || g1 (o+) are

equivalent on H ( A Q+) for exterior problems. For the proof we again denote
the ball with radlus a > 0 around the origin by B, := {X eR3:|x|| < a} and the
exterior complement of B, by B, := R4 \B,.

Proposition 2.10.8. For a > 0, the norms |-|H1(B+) and ||-||Hl(_A 87) are
equivalent on Hg (—A, B;)

Proof. As C° (B;") is dense in Hy (—A, B}) it suffices to show the equivalence
for smooth functions.

(i) The inequality |u|H1(B;) < ||u||H1(_A,Bj) is obvious.
(i) We will now show that ||u||H1(_A’Bj) <C |u|H1(B;r). Obviously, we only

need to show that

[ ﬂ x§C|u|21 -
B 1+ ||x|? H'(BF)

We introduce spherical coordinates x = r{ with { = x/ ||x|| € Sz, where S,
denotes the unit sphere in R3. We then have

|u (x))| lu(ro)? ,
AJLHMI / A21+ﬂrdw"

For functions f (r) that vanish for sufficiently large r and satisfy f (a) = 0,
we have, with the help of integration by parts:
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/oo \f (NPdr = —[oo 2rRe (f ) 8,7(;’)) dr (2.164)

00 1/2 00 1/2
52(/ If(r)lzdr) ([ |ar.f(r)|2r2dr) ,

/oo |f ()P dr < 4/oo 10, f (r)|? r2dr.

Since u has compact support, we can choose f (r) = u(r¢) in (2.164). We
obtain the required inequality by integrating over S:

/Sz /aoo “I(;—Er)frzdrdf = /Szfaoolu(rcnzdrdc

< 4/82 Lw|3ru(r§)|2r2drd§

:4/3; <i Vu(x)>

Ix[1”
Note that the equivalence constant is independent of a.

ie.,

2
dx < 4 |u|21(3j) .

|

Remark 2.10.9. The spaces HO1 (—A, Q+) and H'! (—A, Q+) are complete by
definition. They become Hilbert spaces once we define the inner product from
(2.148) on them.

From Proposition 2.10.8 we directly have an inequality of Poincaré type for
HY (A, Q7).

Theorem 2.10.10. |-| 4 (@+) defines a norm on H! (—A, Q+) and HO1 (—A, §2+)
that is equivalent to the ||-|| g (—a.9+) norm.

Proof. Since Hy (—A, Q1) c H' (—~A, Q1) we only need to prove the statement
for H' (—A, Q).

(i) We obviously have |u|H1(Q+) < ”u”Hl(—A,SZ"")‘
(ii)) We prove ||u||H1(_A’Q+) <C |u|H1(Q+) indirectly. We assume that there
exists a sequence (un),en in H' (—A, Q1) such that

lunl i@y =n ™ lunllgcanr) =1 (2.165)

For sufficiently large a > 0 we have Q C B,. We choose a cut-off function
¢,y € C® (Q1) (see Fig.2.2) with
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[ [ | @ | \>6

N N ) T

Fig. 2.2 Cutoff functions ¢ and  for the proof of Theorem 2.10.10

¢, >0, p+v=1inQ", ¢(x)=0 forall x| >2a and
Y (x) =0 forall |x|| <a.

We obviously have u, = ¢u, + Yu,. By differentiating the products yv and
pvforve H' (—A, Q1) we obtain

WV'HI(BJ) < |V|H1(Ba+) +cVliL2(Byune+) - (2.166)

|¢V|H1(Q+) = |V|H1(32aﬂs2+) +C ||V||L2(32ansz+)~

Foreverya > 0, H! (Bzd Al Q“') is compactly embedded in L? (Bzd Al Q+)
(see Theorem 2.5.5). Therefore there exists a subsequence (u,, /)jeN (see
Theorem 2.5.6) that satisfies
Un; — U in L? (32a N Q+) .

From (2.165) and (2.166), (Wunj) and (qbu,,j) are Cauchy sequences in H'!
(BZF)and H' (1). Since Yu,,; € Hy (B;), Proposition 2.10.8 is applicable
and implies convergence in the H'! (—A, Bf )-norm as well. Since ¢uy, ; has
compact support the norms in H'! (B[;Ir ) and H'! (—A, Bf ) are equivalent and

hence
Pun,; — w1 with respect to ||'||H1(—A,SZ+) ’

Yitn, — w2 with respect to |'|H1(B+)'
a

Thereforeun ; = (¢ + V) un ; convergesto some w € H! (—A, Q"’). Assump-
tion (2.165) implies that Vw = 0 and therefore that w is constant. Finally, from
we H' (—A, Q") we have w = 0, which is a contradiction to (2.165). O

Exterior Dirichlet Problem
We now come to the theorem on existence and uniqueness for the exterior Dirichlet
problem.

Theorem 2.10.11. We consider the (EDP) [see (2.150)]. Let F be defined as in
(2.151). Then, for every f € (HO1 (—A, §2+))/ and gp € H'Y?(T), the exterior
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Dirichlet problem has a unique solution u € HO1 (—A, S2+) that satisfies the
inequality

el g1 (—a2t) = WF (g caryy T € I8DIEA@) -

Proof. We choose a > 0 with Q C B,. By using the trace extension operator (see
Theorem 2.6.11) Z, := Zp,, : HY2(T) - H{ (B,) the Dirichlet data gp can be
extended:

1Zagpl 1 (~a.0+) = CrllZagp a8,y = C2 gD H12(T). (2.167)

We use the approach u = ug + Z,gp in (2.150) and thus obtain an equation of the
form (2.152) with u; = Zagp forug € Hy (—A, Q7).

As in the proof of Theorem 2.10.4, part 1, it can be shown that the right-
hand side in (2.152) defines a continuous linear functional on H{ (—A, Q7).
Theorem 2.10.10 implies that the sesquilinear form B is elliptic on H! (—A, Q“')
(and therefore also on Hy (—A, Q7)). Thus

B(v,v) = /Q+ [Vv|*dx > C ||v||§{1(_A’Q+) Vve H! (—A,Q+).
(2.168)
The continuity of B follows from Theorem 2.10.10. The Lax-Milgram
Lemma 2.1.51 becomes applicable and as a consequence the problem (2.152) has a
unique solution ug € Hj (—A, Q1) with

ol g1 (—a,+) = 1Fll (g1 —anryy T € 1Zaglla180)
S IF gy ooty + € EDlgpllam) -

Exterior Neumann Problem

We now consider the exterior Neumann problem for the Laplace operator.

Theorem 2.10.12. For every F € (H1 (—A, Q"’))/ there exists a unique solu-
tionu € H! (—A, S2+) of the exterior Neumann problem (2.153) that depends
continuously on F':

||M||H1(_A’Q+) =C ||F||(H1(_A’Q+))/'

Proof. We combine Corollary 2.10.2.(e) and (2.168) with the Lax—Milgram
lemma 2.1.51 and thus obtain the statement. O



98 2 Elliptic Differential Equations

Exterior Mixed Boundary Value Problem

Results concerning existence and uniqueness can be found for the EMP analogously
[see (2.155)].

Theorem 2.10.13. The results from Theorem 2.10.11 hold for the exterior mixed
boundary value problem. Here T" has to be replaced by I'p and HO1 (L, §2+) by
H) (L.2%).

Transmission Problem

We finally turn our attention to the transmission problem (2.157).

Theorem 2.10.14. We consider the TP (2.159) with W as in (2.158). For every
F € W' and gp € HY2(T) there exists a unique solution u € H' (™) x
H! (—A, Q"’) of the transmission problem (2.159). It depends continuously on F
and gp:

lullw = CIFlw +llgpllai2r)-

Proof. We use the approach u = ug + u; with u;|qg+ = 0 and u;|g- := —Z_gp.
Then we have uy € H' (Q7) x H' (—A, Q%) and [u1] = gp. Then ug is the
solution of the problem: Find uy € W such that

Bo-uq+ (o, v) := B_ (uo,v) + B+ (uo,v) = F (v) — B— (u1,v) VveW.
(2.169)
The continuity of Bg— o+ and the right-hand side in (2.169) follow from
Lemma 2.10.1.
For the Lax—Milgram lemma we still need to show the ellipticity of Bg—q+-
For an arbitrary function v € W we set v~ := v|g— and v’ := v|g+. Since
wpeW Cc H' (Q ) x H! (—A, S2+), the ellipticity of B4 on H'! (—A, §2+) gives
us [see (2.168)]
B (Fv®) = Co v 3 Caty (2.170)

For v~ we set g = y,v" and w~ := Z_g with the trace extension Z_ :
HY2(T) - H'(Q") from Theorem 2.6.11. Then we have v~ — w™ € HO1 (Q7)
and due to the Friedrichs inequality (see Theorem 2.5.7)

||V_||ill(sr) <2y - w_||§_11(97) +2 ||W_||fql(sr)
<2C| — w_|§11(9—) +2 ||W_||§11(52—)
<4C v ey + @+ 4C) W gmy
=CiB- (v V) +C, ||W_||§11(52—) .
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The continuity of the trace extension and the trace operator as well as the condition
[v] = 0 give us

W a1 @y = 1Z-gllar@-) = Caligllazay = Cs llvo v gz
_ + + +
=G |ygv ||H1/2(1") < Gy HHI(—A,Q+) :
From this we obtain
_ _ 2
IV 1@y < C1B= (7 v7) + CaCF v 1 a0t -
If we combine this result with (2.170) we obtain the assertion
_ 2 -
VI = 1V Iz @) + [ [ caspsy = C1B- (7 v7)
+ (14 C2CF) Cy ' By (vovt). (2.171)

|

In the case of the general elliptic operator L from (2.98), especially when
L # —A and apinc < ||b||?, proving the results on existence and uniqueness
becomes far more complicated.

2.10.2.3 Helmholtz Equation
The Helmholtz equation in the interior space
Liu=—-Au—k>u= f in Q° (2.172)

with Dirichlet or Neumann boundary conditions y, u = gp € H 12(T) or yiu=
gy € H™Y2(I') and with the sesquilinear form B_(u,v) = Ja- ((Vu, Vv) —
kzuv) dx has, according to Theorem 2.10.4.1 and Theorem 2.10.5.1, a unique
solution if and only if k2 is not an eigenvalue of the IDP or INP.

For the Helmholtz equation in the exterior space

Liu:=—-Au—k>u=0 inQ" (2.173)

we are looking for solutions that satisfy the Sommerfeld radiation conditions
(2.133).

Theorem 2.10.15. The variational problem (2.150) that is associated with the EDP
from (2.173), has a unique solutionu € H'(Ly, Q") for every gp € HY?(I').
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For a proof we refer to, e.g., [154,170]. Note that the additional term (d,u — i ku,
0rv — ikv) 2 in the sesquilinear form (2.149) represents the analogy to the Som-
merfeld radiation condition. We have a corresponding result for the Neumann
problem:

Theorem 2.10.16. The variational problem (2.153) that is associated with the ENP
from (2.172) has a unique solution in H(Ly, Q7T for every gy € H~Y/2(I).



Chapter 3
Elliptic Boundary Integral Equations

Homogeneous, linear elliptic boundary value problems with constant coefficients
can be transformed into boundary integral equations by using the integral equation
method. In this chapter we will introduce the relevant boundary integral operators
and we will derive the most important mapping properties and representations. We
will also present the boundary integral equations for the boundary value problems
from the previous chapter. Finally, we will prove the appropriate results on existence
and uniqueness for these boundary integral equations.

3.1 Boundary Integral Operators

We consider the differential operator L from (2.98)
Lu = —div (A gradu) + 2 (b, gradu) + cu. (3.1)
Our goal is to solve the homogeneous differential equation
Lu=0 in Q (3.2)

for this operator with appropriate boundary conditions. Solutions of these differen-
tial equations can be formulated with the help of potentials that are closely linked to
the fundamental solution of the operator L, which in turn can be formulated explic-
itly. In general, we assume that the coefficients of L satisfy A € R4*? positive
definite, b € R and ¢ € R. With the help of the matrix A we can define an inner
product and a norm on R?

¥}y =xTAly  and [x]|y = (x,x)}/2.

We set ¥ := ¢ + ||b||i and A = /0 for ¥ > 0 and A = —i \/|¥| otherwise. The
fundamental solution G (x — y) then has the following form

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series 101
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2_3,
(© Springer-Verlag Berlin Heidelberg 2011
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PILEDN 1
YT log 7 ford =2and A =0,
G (g — P2 a .
(z) = ml[‘lo (ir]z|,) ford =2and A # 0, (3.3)
1 eb:z)a—Allzll s
inJaoA T ford = 3.
The function G is singular for z = 0 and analytic for z # 0. By choosing A = 1,
b = 0 and ¢ = 0 we obtain the Laplace operator L = —A and the fundamental

solution to the Laplace operator.

With the help of the fundamental solution we can introduce the single layer
and double layer potentials for v € L' (I"). We recall the notation yo for the
trace operator (see Theorem 2.6.8), y; for the conormal derivative (see (2.103) or
Definition 2.7.6) and ¥7 for the modified conormal derivative (see (2.107) or Defini-
tion 2.7.6). In order to explicitly state whether the trace is applied from the interior

or exterior domain, we use the indices “—" for the interior and “+” for the exterior
domain.
Single Layer Potential:
(Sv) (x) := / G(x—y)v(y)dsy, xeRI\T. (3.4)
r
Double Layer Potential:
(Dv) (x) := A iyG (x—y)v(y)dsy xeRI\T, (3.5)

where the subscript y in 1y indicates that the modified conormal derivative 77 is
applied with respect to the y-variable. Since the fundamental solution G (x —y) is
regular for x # y, the single and double layer potentials are both well defined.

Theorem 3.1.1. Letv € L' (I).
(a) We have

(LSV) (x) = (LDv) (x) =0  forallx € R?\T.

(b) The functions Sv and Dv are infinitely differentiable in RZ\T.

Proof. For (a): We set ks (x,y) := G (x—y) and kp (X,y) := y1,G (x—y). Let
xg € R3\TI'. Then there exists a compact neighborhood Uy of x that is entirely
contained in 2 € {Q_, Q+} and therefore has a positive distance to I'. The restric-
tions ks, kp : Uy x I' — C are then bounded and are differentiable for almost
every y € ' on Up. For all x € Uy, ks and kp are integrable over I". The
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theorem on dominated convergence then implies that differentiation and integra-
tion may be interchanged. Ly denotes the application of L with respect to the x
variable. This gives us the assertion from LyG (x—y) = Ly (y1,G (x—y)) =
YiyLxG (x—y) =0.

For (b): The statement then follows from repeated application of the arguments
given in (a) by means of induction. O

In order to solve problem (3.2) we can therefore consider the ansatz Sv or Dv.
As a result of Theorem 3.1.1, for every boundary density v, this ansatz satisfies the
homogeneous differential equation (3.2). Therefore the problem is reduced to the
question of whether the boundary density v can be determined in such a way that
the boundary traces of these potentials satisfy the boundary conditions.

Formally, the boundary integral operators V', K, K’, W can be defined by means
of the introduced conormal operators )y, y1+ , ¥y - Foro € {—, +} we set

Vv = yoSv, Ke¥ :=yJ Dy,
(3.6)
K,y :=y{Sy, Wu:= -y (Du).

The index + or — indicates that the trace operators yy (w) and y; (w) are applied
to the restrictions w|g+ and w|q— respectively. We will show (see Theorem 3.3.1)
that we have y(;rSv = Y, Svand )/1+Du =y Du, which is why we have already
omitted the indices =+ in the definition of IV and W'.

3.1.1 Newton Potential

Before we turn our attention to the mapping properties of the above-mentioned
potentials and boundary integral operators, we will consider the converse problem.
If the Dirichlet and Neumann data of a function u that satisfies Lu = f are known,
it can be formulated in terms of the boundary data and f explicitly. The associated
formula is called Green’s representation formula. The derivation of this formula
uses the mapping properties of the Newton potential, which in turn are proven by
means of a Fourier analysis. Here we will restrict ourselves to an overview of the
required properties, and for proofs we refer to [133, 184] and [162, Theorem 6.1].
For a given f € Lfomp (Rd) we consider the functions u € H} (Rd\F ) [see
(2.113)] with
Liu=f  inRU\I (3.7)

[see (2.114)]. The Newton potential

Nf@® = [R Ga-yf(Mdy  VxeR? (3.8)

will play a significant role in the representation of the solutions of this equa-
tion. We will first need a few mapping properties of the Newton potential. For
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functions f € C§° (R9), NV f is defined as an improper integral: N : C$° (RY) —
Cc*® (Rd). We use Fubini’s theorem to obtain a representation of the dual operator.
The extension of the inner product (-, ) ;> (ga) to L2 (RY) x L2 (R?) is again

loc comp

denoted by (-.+) 2(ga)- For f.g € Cg° (R?) we then have
Wiroeen = [ ([, 6x-nrmiy)zwax

-/ f(y)([ E(x—y)g(y)dy)dx,
R4 R4

and thus we obtain the representation

Ng) () =/Rd6(x—y)g(x)dx Vy € R4, (3.9)

The mapping property N/ : C§° (Rd) — C*® (Rd ) of the dual Newton potential
can be shown in the same way. The domain of the Newton potential can be extended
to functionals f € (C o (Rd))/ by means of the dual mapping. The functional

Nfe(C (]Rd)), is characterized by

N2y = (PN ey e G5 (RY).

The Newton potential can also be defined for functions in Sobolev spaces (see [216,
Sect. 6.1]).

Theorem 3.1.2. For the Newton potential, the mapping

N HS (]Rd) — HF? (]Rd)

comp loc

is continuous for all s € R.

Remark 3.1.3. Problems in acoustics and electromagnetism can often be described
by the Helmholtz equation with the operator

Liu = —Au — k’u, k € R.

The associated fundamental solution [see (3.3)] for d = 3 is given by

eiklal

Gi (2) = ——
€@ =

and the associated Newton potential is denoted by Ny. Then Ny is the Newton
potential (Coulomb potential) for the Laplace operator. The expansion
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1 ik
— + O(k?
I 2] tot (k= llz|)

Gi (2) = G, (2) + G (2) + G (z) :=

shows that the kernel Gy —Gy is continuous at ||z|| = 0 and has bounded derivatives
that are discontinuous in z = 0. With the help of the calculus of pseudo-differential
operators we obtain the mapping property

N —No - HE o (R?) — HIF*(R?) VseR

loc

by reasoning as follows. From [137, Definition 7.1.1 and (7.1.2)], we conclude that
G]ICII has a pseudohomogeneous expansion of degree 1 so that, according to [137,
Theorem 7.1.1], the associated volume potential N,?Iu = Jg3 G,ICII (—yyu(y)dy

belongs to ,CC_14 (]R3), i.e., to the classical symbol class as defined, e.g., in [137,
Definition 6.1.6]. From [137, Definition 6.1.12], we conclude that ./\/}?I

Henp (R3) — HET (R3) is continuous for all s € R. For the volume poten-

tial associated to G]ICI (z) this mapping property follows trivially because the kernel
function is constant.

The formal adjoint operator L* : C* (R?) — C* (R?) from (2.105) satisfies
(Lu, V)Lz(Rd) = (u L*V)Lz(Rd) Vu e Cg° (Rd) VveC® (Rd) .
Thus the domain of L can be extended to (C°° (]Rd)), as well as (C0°° (Rd))/:

(Lf. &) 2 (ra) = (/. L*g)Lz(]Rd) Vfe (C°° (]Rd))/ VgeC® (]Rd>,
(Lf. &) L2 (ra) = (/. L*g)Lz(]Rd) Vfe (C(‘)X’ (]Rd))/ Vg e Cs° (]Rd> :

The following theorem shows that the Newton potential constitutes a right and
left inverse of the operator L.

Theorem 3.1.4. For all functionals u € (C°° (]Rd)), we have
INu=u=NLu in (C(‘)’o (Rd))/.

The explicit representations (3.4) and (3.5) of the operators S and D are only
suited to locally integrable functions v € L' (I"). The domain of the single and
double layer potential can be substantially enlarged.

Definition 3.1.5. The single layer potential S and the double layer potential D are
given by
S =Ny, D = N7

Theorem 3.1.6 deals with the connection between the abstract Definition 3.1.5
and the explicit representations (3.4) and (3.5). The jumps [u], [y1u] of a function
ueH} (]Rd\F) across I" were introduced in (2.119).
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Theorem 3.1.6. (a) For functions u € Hi (]Rd\l") with compact support and f =
Liu [see (3.7)] we have Green’s representation formula

u=Nf =S8 (ywu]) + D ([u]) (3.10)

as a functional on C§° (]Rd).

(b) The operators S = Nyy and D = NP1’ have the representations (3.4) and
(3.5) foru € L' (T') on R4\T.

Proof. Functions u € H Ll (]Rd\l") with compact support can be interpreted as
functionals on C* (R¢) according to

U= ()2 (ga) -
Applying Theorem 3.1.4, we then have

(LNu, V)2 (ra) = (u,N’L/v)Lz(Rd) =U (N'L'v) = (LNU) (v)

=U(@) = (”»V)LZ(Rd)

forallv e C*® (]Rd ) and subsequently the equality LNu = u in the sense of a
functional on C* (R?). A'Lu = u can be shown analogously.

The operator N can then be applied to Green’s third formula (2.122). With
Theorem 3.1.4 we then obtain the representation

u=Nf—Nyy(yru]) + N71' ([u]).

Foru € C* (R9) we have [yju] € L' (T). Under these conditions we will show

that for x € R?\I" we have the representation (3.4) for A Yo- In the following, let S
and D be defined by the right-hand sides in (3.4) and (3.5). The representation (3.9)
gives us, along with Fubini’s theorem, for all v € L' () andw € C° (Rd)

N¥or ) gy = (2 voNW) 2y = [F v ) ( [R ) 6(x—y>w(x)dx)dsy
= /Rd w(x) (/F v(y)G (x—y) dsy) dx = (Sv. W) 2(ga)-

Letx € QT andU/ C Q7 be an arbitrary, compact neighborhood of x. Then Sv|; €
C° (U) (see Theorem 3.1.1). Since the restriction of Cg* (Rd) on U is dense in
L? (U), we have the equality N'y) = S in x. The assertion for x € Q~ can be
shown analogously.

In order to prove the representation (3.5) for N7’ for x € R?\T', we again
first consider the case x € Q% and a compact neighborhood U C Q1 of x. Let
x € C§° (Rd) be a test function with supp y C Q% and y = 1 onU. Forv € L' (T")

andw € C§° (Rd) we obtain
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NF 0W) 2 gy = (0 TIN W) 12y

Z/V(Y) (ﬁ; (/ E(X—y)xw(x)dx)) dsy.
r supp x

Since the distance between (supp ) and I is positive, the kernel function G (x —y)
is smooth and the differentiation and integration can be interchanged. Fubini’s
theorem then gives us

0T ) gy = [ 7500 ([ 20 (7136 6wy ) ax
= (Dv, XW)LZ(Rd) .

We obtain the equality N'J1’v = Dv on QT because the restriction xCs° (]Rd) on
U coincides with the restriction C§® (Rd) 1> Which is itself dense in L?>W). O

We will generalize Theorem 3.1.1 by proving that L+ Sv = 0 for all v €
H~Y2(T).

Proposition 3.1.7. Ler —1/2 < s < 1/2andv € H=Y?%5(T"). Then LSv = 0 on
RA\T.

Proof. We use Definition 3.1.5 and obtain
LSv = LNyjv.

The mapping properties of the trace operator yo : H,\T* (R?) — H/2%$ (T) imply
the continuity of the dual operator

/ /
yo: HV2™S (1) - Hghos (Rd) - (Hl})js (]Rd)) c (C°° (Rd» .
Therefore Theorem 3.1.4 becomes applicable and we obtain
LSv =y (3.11)

in the sense of a functional on C*® (R¥). Let y € C* (R?\TI") with suppy C
RZ\T. Without loss of generality we assume that supp  C Q. From this we have
Yo = 0 and

(y(/)v’ W)Lz(]Rd\l") = (v, VOW)Lz(F) =0

and as a consequence LS = 0 on R4\T. |

Green’s representation formula (3.10) was shown for functions u with compact
support. We will prove a modified form of Green’s representation formula for func-
tions that satisfy the characteristic physical decay condition but do not have compact
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support. We will restrict ourselves to functions that satisfy Lu = 0 in R*\T". In the
following section we will anticipate a result and use the mapping properties of the
potentials S and D from Theorem 3.1.16:

S:H'2(T) - H

loc

() and D:HY?>(')— H} (]Rd\F> are continuous.
(3.12)

First, we will choose a sufficiently large a >0 with Q- CB,. Let ueH ]1
(RY\T) with Lu = 0 in R\ {T'}. For the boundary of the intersection of the
domains Q, := QT N B, we have 9Q, = I' U I, with I'; := 9B,. Let the
normals on I' again point in the direction of Q% and those on I, in the direc-
tion of B := R¥\B,. The function u, := u in B, and u, = 0 in B} satisfies
ug, € H i (Rd\aﬁa) and has compact support. Therefore we can apply Green’s
representation formula (3.10), which gives us

u=-=S[ywul+Dul+v in B,\T,
(3.13)
0=—-S[ywul+Du+v inBf

with
vi=Sa ((11)lr,) — Da ((yow)lr,) in B, U B} (3.14)

Here, in (3.14), S, and D, denote the single and the double layer potentials for Iy,
while S and D in (3.13) denote those for I". We define

v (x) in B,,

v(x)+u(x) inB} . (3-15)

w(x) =

Combining the first equation in (3.13) with the first equation in (3.15) gives us
w=u+ S [y1u] — D [u] in By\T. (3.16)

The mapping properties of S and D [see (3.12)], the boundedness of B, and
Proposition 3.1.7 imply that

wlg, = Vg, € H'(B;) and Lw=0 inB,. (3.17)

Combining the second equation in (3.13) and (3.15) gives us, together with (3.16),
w=u+S[yul—D[u]  inRI\IQ,. (3.18)

It follows from (3.18) together with the mapping properties of S and D that w|q+ €

H! (QT)and Lw = 0in Q. With (3.17) this givesus w € H._ (Rd) and Lw =0
in R?. These ideas are summarized in the following theorem.
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Theorem 3.1.8. Letu € H} (R\T) with Lu = 0in Q= U Q. Then
u=—S[yiu]l + D [you] +w nQ - uQt (3.19)

with an L-harmonic function w € le)c (]Rd).

Theorem 3.1.8 generalizes Green’s representation formula so that it applies to
functions that have unbounded support. However, the space H,!. (Q"’) also contains
functions with an unphysical behavior for ||x|| — oco. Ideally, for ||x|| — oo the
required behavior of u at infinity should imply w = 0. For such functions u Green’s
representation formula remains valid unchanged. We will carry out these ideas and
use the Laplace and Helmholtz operators as examples. We will also consider the
operator L under the condition that the coefficients satisfy aminc > ||b||?. Here amin
again denotes the smallest eigenvalue of the matrix A [see (2.99)].

Lemma 3.1.9. Let d = 3 and aminc > ||b||>. Then, for all ¢ € H~V2(T') and
W € HY2(T), there exist positive constants Cy, C» such that

1S ()| + [DY )| + |V (Sp) ®)]| + |V (Dg) )| < Cre N
for all x € R3 with ||x|| > a. Here a > 0 is chosen so that ' CC B, and

inf x—y| > 1. 3.20
LU Ix—yl > (3.20)

Proof. It follows from api,c > ||b||* that we have for the exponent of the fundamen-
tal solution in (3.3)

(b.7)x — A lzlls < [Blla lzls — Izl ve + DI <~y 1]
y = (\/c b2 - ||b||A) ) Jam > 0.

From this we have for the fundamental solution under consideration

with

G (2)] < Coe™?17l/ |12

This gives us the estimate

G (x—y)|

IA

Cre 7N — v Uxl=lx=yD Il < ¢, (maxeynyn) oVl
yel

—: Cye? I

forallx € R3\ B, andy € T'. Now let ¢ € H~"/2 (") and ||x|| > a. Then
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1S @) §/F|G(x—y)||<p(y)|dsy§C3e_1’”"”/r|<p(y)|dsy
< G llUlgaay e "™ el g-1/20y = Cae ™ ol g-1/2(ry -

The result concerning the double layer potential and the gradients of the potentials
can be proven analogously. O

The following lemma shows that L-harmonic functions on R? are always poly-
nomials for the coefficients under consideration.

Lemma 3.1.10. Let d = 3 and aminc > |b||* or ¢ = ||b|| = 0. Then every w €
H}. (IR3) with Lw = 0 on R3 is a polynomial. If ¢ = ||b|| = O the statement
remains valid for the space H' (L, R3).

The assertion of this lemma follows from [80, Chap. X1, Part B, Sect. 2, Theo-
rem 1].

Theorem 3.1.11. Let d = 3 and aminc > ||b||>. Let the function u € H' (R3\F)
satisfy Lu = 0 in Q™ U Q. Then the representation formula (3.19) holds with
w=0.

Proof. The mapping properties of S, D imply S [yiu],D[u] € H,]. (R3\F )
Lemma 3.1.9 gives us the stronger statement S [y u], D [u] € H'! (R3\F ) Accord-
ing to the conditions, the left-hand side in (3.19) is in H' (R*\I') and therefore
the right-hand side is also in H'! (]R3\F). Since the only polynomial for which
w € H' (R?) is the zero polynomial, we have w = 0. O

Theorem 3.1.12. Let d = 3 and L = —A. Let the function u € H' (Q7) x
H! (—A, Q+) satisfy Au = 0 in QT U Q™. Then the representation formula holds
withw = 0.

Proof. Choose a as in (3.20). For ||b|| = ¢ = 0, the fundamental solution and its
derivatives satisfy the inequalities

G (z)| < Cy |zl

IVG @)|| < C1 [1z] 2 vz € R\ {0}.

It follows for all y € I' and ||x|| > a with Cr := maxyer (1 + ||y||) that the
following inequalities hold

IG(x—y)| < Cilx—y|™' < CiCrx[™"
IVxG (x—y)|| < C1CEIx| 2.
0G (x—y) /ony| < C1 [x—y|| 7> < C1CE x| 72, (3.21)
|Vx0G (x—y) /omy | < Ca |x—y]| 7> < C2CR x| 7>

From this one deduces, as in the proof of Lemma 3.1.9, that for all ¢ € H —1/2 ()
and ||x|| > a
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1
1S )| s[F|G(x—y>||¢><y)|dsysclcrmfrwwsy
< Cs X1 llell g-1/2(r) - (3.22)

In a similar way one can prove forall ¢ € H~'/2(T"), v € HY/2(T') and ||x|| > a
the inequalities

IV (Se) )] < Cq ||x||‘§ ol 12y -

|IDy (x)| < Cs ||x]| \ 1V g2y - (3.23)

V(DY) X < Co X 1Y | 7172y -
Note that the constants Cy,...Cg are independent of @. Theorem 3.1.16 implies
[see (3.12)] that S¢, Dy € H! (R3\I'). From the boundedness of 2~ and €, :=
Q1 N B, one deduces

Selgar- DV|gr € H' (Ba\D).

Let B; := R3\B,. If one combines the inequalities (3.22), (3.23) with the
definition of the H' (L, B )-norm, it follows that (see Exercise 3.1.14)

S¢lyr € H'(L,BY) and Dy|py e H' (L, B]).

Finally, by the equivalence of the norms in H'(Q,) and H'! (L,Q,) on the
bounded domain €2, one obtains the property

Se.Dy e H' (Q7)x H' (L, Q7). (3.24)

The conditionu € H' (27)xH' (L, Q1) combined with (3.24), Theorem 3.1.8
and Lemma 3.1.10 gives us that the L-harmonic function w is a polynomial with
we H' (Q7)x H' (L,QT). Hence w = 0. O

Theorem 3.1.13. Let d = 3 and Lu := —Au — k*u with a positive wave number'
k > 0. Let the space H' (L, Q) be defined as in Remark 2.9.3. Let the function
ue H' (Q7) x H' (L, Q%) satisfy Lu = 0 in Qt U Q™. Then the representation
formula holds with w = 0.

Proof. The statement follows from [80, Chap. XI, Part B, Sect. 3], as no plain wave
e!®x) with ||k| = k is contained in H' (L, Q™). O

Exercise 3.1.14. Let 9 € H™'/2 (") and ¢ € H'/? (). Show that the single and
double layer potentials for the Laplace problem satisfy

SpeH'(L,B}) and Dy € H'(L.B]).

Exercise 3.1.15. Let ¢ € H™Y2(I') and ¥ € HY?(T), and let S be the single
and D the double layer potential for the Helmholtz problem. Show that S ¢ and D
then satisfy the Sommerfeld radiation conditions (2.133).

! The wave number is a scalar quantity which characterizes the oscillatory behavior of time periodic
waves. It is proportional to the reciprocal of the wave length.
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3.1.2 Mapping Properties of the Boundary Integral Operators

In this section we will derive the mapping properties of the potentials and the bound-
ary integral operators. The definitions of S, D, V, K4, K;E, W can be found in
Definition 3.1.5 and (3.6).

Theorem 3.1.16. Let @ C R3 be a bounded Lipschitz domain with boundary
I' := 0Q. The operators S, D, V, Ky, K_, K\, K’ and W are continuous for
Is| < 1/2:

(i) S: H7Y2 (') — H)F* (R3).

(ii) D : HY?>™(T') - H} ™ (R3\I').
(iii) V : H=V/2+s () — HY2+s(T).

(iv) 0 € {—, +}: Ky : HY2+s () — HY2+s(I).

(v) 0 €{— +}: K. : H=V2+5(T) — H~Y/2+5 (),

(vi) W : HY2+s () > H~V/2+s ().

Proof. By Definition 3.1.5, finding the mapping properties of S reduces to finding
the mapping properties of A" and y{. The trace theorem implies the continuity of
Yo : HS (R®) — HY275 (") for |s| < 1/2. This in turn implies the continuity of
the dual operator y, : H*~V/2(T") — H s (R?). Combined with Theorem 3.1.2
this gives us

S HV2() — HIF(RY).

loc

The mapping properties of the operator V' follow directly from the mapping proper-
ties of the trace operator yo : H,\1T* (R%) — HSTV/2(T).

We now consider the double layer potential. This case can be reduced to the
previous case by representing the double layer potential in terms of the single layer
potential. We use the solution operator 7" from Sect. 2.8 for the interior problem and
define, for given boundary data v € H/2+5 ("), the function u € H} (R3\F) by

Tvin Q7
0 inQ™.

u .=

Note that we have for the jumps of u and y;u across I'

W =ut—u =—v and [yu] =yu—yju=—yu

We define f € Lfomp (R3) by

—ATvin Q™
= L = ’

f = Lau 0 inQt.

Green’s formula (3.10) can be applied, as u has compact support, which gives us the

relation

u=Nf+ Sy u— Dv.
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If we solve for Dv we obtain

Dv=N (_%TV) +S(rT)v— (76”) , (3.25)

where (v—,v4)T is an abbreviation for v_y_ + v4 y+ with the characteristic func-
tions y—, x+ for the domains 7, Q*. The mapping properties of S, N and y; T
(see Theorem 2.8.2) imply that

(5" N
H1/2+s (F) - Lgomp (RB) - Hl%)c (]R3) ’
H/2+s (T ’iT) HU/2+s (T i H]:):—s (RB),
(o)
H1/2+s Tr) =% Hlts (RB\I‘) _

Combined this gives us D : HY2¥5(T') — H\)}* (R3\I'). By Proposition 3.1.7
one obtains § : H~Y/2+s(T') — H;*5 (R3\TI'). Let L be as in (2.123). From
LT = 0in Q it follows that (7,0)T : HY?>*5 (') — H}* (R3\T), which
proves that D : HY/2+S (') — H}*S (R3\T).

The continuity of the operators K+, K/, W follows from the continuity of
the trace operators yi : H. T (QF) — H*TV2(T) and y : H; T (Q%) —
H*~'/2(I") (see Theorem 2.6.8 and Theorem 2.8.3) combined with the mapping
properties of S and D. |

Corollary 3.1.17. From the proof of the mapping properties for the double layer
potential D and Proposition 3.1.7 we have LDv = 0 in R3\T for all v €
H'Y2+ (Tyand —1/2 <s < 1/2.

We close this section with a remark on the optimality of the interval |s| < 1/2 in
Theorem 3.1.16.

Remark 3.1.18. (a) The restriction |s| < 1/2 in Theorem 3.1.16 is a result of the
representation S = N'y{ of the single layer operator, used in the previous proof,
as well as the range of the trace operator Yy for Lipschitz domains (see Theo-
rem 2.6.8). In general, this interval cannot be enlarged for Lipschitz domains,
which means that the interval |s| < 1/2 cannot be determined more accurately
with the method chosen for the proof (see [72, 162]).

(b) The continuity of the operators in Theorem 3.1.16 can also be shown for s =
+1/2 for the Laplace operator. The proof requires methods from the area of
harmonic analysis and goes beyond the scope of this book. It can, however, be
foundin, e.g., [143,231].

(c) If the Lipschitz boundary T is globally smooth, ' € C®°, the trace operator
Yo : Hlf)c (Rd) — HYY2(T) is continuous on the entire range £ > 1/2 and
Theorem 3.1.16 is then valid for all s > —1/2 (see [170, Chap. 4]).



114 3 Elliptic Boundary Integral Equations

(d) If the Lipschitz boundary T = 0K is piecewise smooth, more specifically, if
there exists a finite number of disjoint, relatively open surface patches I'; C T’

q
with 1 < j < g that are smooth, I'; C C®, and that satisfy I' = UF_J
j=1
then the upper bound of the interval on which the trace operator in Theo-
rem 2.6.8 is continuous can be extended beyond the interval of indices given (see
[39, 79]). From this we have the mapping properties in Theorem 3.1.16 for all
—1/2 < s < s¢ withan sy > 1/2.

3.2 Regularity of the Solutions of the Boundary
Integral Equations

The derivation of a priori convergence rates for discretizations of the boundary inte-
gral equations is based on regularity properties of the continuous solutions. More
specifically, this means that the solution of the associated integral equation should
not only exist in the energy space (s = 0 in Theorem 3.1.16) but should also be
sufficiently smooth. The regularity theory for boundary integral equations follows
from the regularity of the solutions of the associated partial differential equations.
Both of these questions go beyond the scope of this book and we will only present
the relevant results. Appropriate proofs can be found in, e.g., [72, Theorem 3], [162,
Theorems 7.16, 7.17], [79, 113, 145].

For the formulation of regularity results we distinguish between the following
cases: a globally smooth surface, a piecewise smooth Lipschitz polyhedron and a
general Lipschitz surface.

Definition 3.2.1. A domain @ C R3? is a Lipschitz polyhedron if @ € C%!

and there exist finitely many disjoint, relatively open surface patches I'; C T,
q

1 < j < q thatare smooth, I'; € C*°, and satisty I = UF_J

ji=1
Theorem 3.2.2. Let Q@ C R3 be a bounded domain with a globally smooth
boundaryI' = 0Q € C*°:

(a) Let g € H"Y2(T) and Vo = f € HY2S(T) for an arbitrary s > 0. Then
¢ € HV2+5 (') and

||¢||H*1/2+S(1") <C (||f||H1/2+s(r) + ”(/)”H*I/Z(F))-

(b) Let ¢ € H™Y2(T') and Ko =f¢€ H~Y2%S (T for an arbitrary s > 0.
Then ¢ € H='/2%5 (') and

@l g—1r24+sy < C (1f lg=172+s@y + @l g-172()) -

The analogous result holds for the operator K’ .
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(c) Let v € HY2() and Ky = f € H'?+5 () for an arbitrary s > 0. Then
v € HY?*5 (') and

1V 1245y < C (L lgzesay + 1V 1 g12@)) -

The analogous result holds for the operator K_.
(d) Lety € HY2(T) and Wy = f € H~'/2+5 () for an arbitrary s > 0. Then
v € HY?2*5 (') and

1l ziz+sy = € (L a1+ @y + 1 m12a@y) -

The constants C in the above-mentioned inequalities depend on s.

In the following theorem we consider surfaces of Lipschitz domains and bounded
Lipschitz polyhedra.

Theorem 3.2.3. (a) Let T be the surface of a bounded Lipschitz polyhedron Q2 C
R3. Then there exists some sg = so (I') > 1/2 such that the regularity and the
a priori estimates from Theorem 3.2.2 hold for all 0 < s < 5.

(b) For general Lipschitz domains this statement only holds for s = 1/2.

3.3 Jump Relations of the Potentials and Explicit
Representation Formulas

In this section we will first derive the jump properties of the potentials and their
conormal derivatives on an abstract level, after which we will give an explicit
representation. The approach we have chosen here avoids the calculus of pseudo-
differential operators, which is used in [144], for example, for the derivation of
one-sided jump relations.

3.3.1 Jump Properties of the Potentials

The single and double layer potentials have characteristic jump properties on the
surface I'.

Theorem 3.3.1. Let Q2 be a bounded Lipschitz domain with boundary I' = 0K2. The
single and double layer potentials satisfy for all p € H=Y/2 (') and ¥ € H'Y?(I")
the jump relations

[S¢] =0, [Dy] =y in HY2(T),
V1S9l = —¢. [y1Dy] =0in H-1/2(I).
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Proof. The first jump relation [S¢] = 0 is a direct result of Theorem 2.6.8 and the
mapping properties of S (see Theorem 3.1.16).

To deal with the jump of the normal of S, weletp € H~'/2(I") and set u = S¢.
Theorem 3.1.16 combined with Proposition 3.1.7 imply that u € H Ll (]Rd \1") and
Lu = 0in RY\T. By using Green’s second formula (2.112) with v € C$® (R9) we
obtain, for @ € {Q~, Q1},

— (u, L/v)Lz(Q) = o {(You. 71v) 12(r) — (14, YoV) 12(1) } -

If we add both equations (for @ = Q™ and Q = Q™) while using [v] = [y1v] = 0
andu € L2 (R9) we obtain

- (M L/V)Lz(Rd) =—([u], )71V)L2(1") + ([yau], )’OV)LZ(F) .
We have already shown that [u] = [S¢] = 0 and thus obtain
([yru], VOV)LZ(F) == (147 L/V)LZ(Rd) . (3.26)

Combining (2.116) with the definition of S (Definition 3.1.5) and Theorem 3.1.4
we obtain

(u, L/V)LZ(Rd) = (Lu, V)Lz(Rd) = (LSop, V)L2(1R<d) = (LNV(/)‘/)» V)L2(Rd)
= (V(/)f/’»V)Lz(Rd) = (¢, VOV)L2(F) (3.27)
and combined with (3.26)
([y1Sel.yov) 2y = — (@ Yov) L2(ry -
The assertion follows, as yoC§® (R?) is dense in H'/2 (T') (see Lemma 2.8.4).
To deal with the jump properties of D, we start in the same way as for the single

layer potential with an arbitrary function ¢ € H'/2 (I') and set u = D¢. As before,
this time by using Corollary 3.1.17, Green’s second formula gives

— (u, L/V)Lz(Rd) =—([ul.y1v) 2y + (rul . vov) L2(ry
forallv e Cg° (Rd). With the definition of D (Definition 3.1.5) we obtain

(M, L/V)LZ(Rd) = (Lu, V)LZ(]Rd) = (LDy, V)LZ(]Rd) = (LN)?V]/(p, V)LZ(Rd)
= (ﬂ"/’,V)Lz(Rd) = (¢, 77iV)L2(F)

and therefore
([y1Dol . yov) 2y = ([De] — @, V1) L2(r) - (3.28)
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Since yoC (RY) x 71C¢° (RY) is dense in HY2(T) x H™V2(T) (see
Lemma 2.8.4) each of the two sides in (3.28) has to be equal to zero. This, how-

ever, gives us exactly the two stated jump relations for the double layer potentials.
|

3.3.2 Explicit Representation of the Boundary Integral
Operator V

Theorem 3.3.1 demonstrates that the one-sided limits of the potentials and their
conormal derivatives in general define different functions on I". For the numerical
solution of boundary integral equations it is essential that the integral operators can
be evaluated on the surface I'. For this, the representations of the integral operators
as one-sided traces of potentials, i.e., as one-sided limits, prove to be unsuitable. We
have seen for the single and double layer potentials that for sufficiently smooth data
v the explicit representation (3.4) and the abstract definition 3.1.5 coincide.

The functions that we use for the discretization are always bounded, i.e., in
L°° (T'). Under this condition the integral operators have an explicit representation
on piecewise smooth surfaces. In order to determine the limits of the potentials we
need estimates of the fundamental solution G [see (3.3)] and its derivatives. These
depend on the coefficients A, b and ¢ in the definition of the differential operator L
[see (3.1)] as given in (3.3). With regard to (3.3) we introduce the function

g:RY - C,  g(@:=exp((b,z), —Alz|y)

with A as in (3.3). The behavior of this function depends on the coefficients A, b
and c.

Lemma 3.3.2. Let ami, again be the smallest and an,y the largest eigenvalue of A:

1. ¢ > 0. Then for all z € R?

¢
lg (@) < el withp:= — .
Ve +21bll,

2. ¢ =0. Forall z € R? we have
lg @) = 1.
3. ¢ <0andb = 0: Then we have
g =1 VzeR?

4. ¢ < 0andb # 0. Then the function g diverges exponentially in the direction of
b, more precisely, for all « > 0 we have

g (ab)| > o min{lel/2,IbIX}
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Proof. For case 1. we have
A= IbI3 +c= b+

and thus

C
> bl + —————
AT e+2]bl,

C
Iblls + /IR + ¢

(b,z), —Alzls < [Iblls lzlla = (Iblly + 0) 12l = —pl2lls <O.
Case 2: For ¢ = 0 it follows from the Cauchy—Schwarz inequality that
g (z) = 2= Ibllallzla < 00 — 1,
Case 3: For ¢ < 0 and b = 0 we have

g (2)| = ‘e—i«/HIIZIIA - 1.

Case 4: First let — ||b||i < ¢ < 0. We choose z = ab with ¢ € R~. In the same
way as before one can show that

c c
A= IbIR +c = Ibll, + —— = [blla + 2l
Iblls + /IIbllx +¢ A

From this, with z = «b, it follows that

2 (2) = g (ab) = ePIsUbla—d) 5 palel/2,

and the function diverges exponentially for « — oo.

Now let ¢ < — ||b||i < 0. In this case we have A = —i/|c| — ||b||i and

therefore for all z € R

2
o2l

g @] = [

|

Fundamental solutions, the coefficients of which correspond to case 4 in Corol-
lary 3.3.2, induce potentials with exponential growth in certain directions for
|x|| = oo. From a physical point of view, these potentials are not very important
and will no longer be examined.

Lemma 3.3.3. Letb =00rc > 0.

(a) Forall0 < & < 1 and R > 0 there exists a constant C < oo such that for all
y € " and all x € Br (y) we have
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|G (x—y)| < (3.29)

d—2+¢"
Il —y )

(b) Under the additional assumption “T' € C? in a local neighborhood of y” we
have

— [fmy. x )| ! )
VyG X=y)| + [yyG (y—x)| =C + -
s [+lns | (|u—yw Ix =y

forally € T" and x € Uy where Uy denotes an arbitrary, bounded neighborhood
of y.
Remark 3.3.4. For d > 3 we can choose ¢ = 0 in Lemma 3.3.3. In two spa-

tial dimensions the kernel function has a logarithmic singularity and ¢ = 0 is not
admissible.

Proof of Lemma 3.3.3: We will only prove the assertion for d = 3 and refer to [102]
for the general case.
Corollary 3.3.2 implies the uniform boundedness

|e(b,z)A_/u|z||A |
VdetA

for the considered values of the coefficients. From this follows (3.29).
We will now study the derivatives of the fundamental solution. We have

<C VzeR4

1 A7lz

V,G(2) = —————— +
) 47 /det A ||z|¢

R (z). (3.30)
The remainder can be estimated by
C
IRt @) < —F—+
||Z||d—2+8

with a suitable ¢ € 0, 1]. The definition of the modified conormal derivative (2.107)
leads us to the decomposition

V1iyG x—y) =y1,G(x—y) +2(n,b)G (x—Yy), (3.31)

and because of (3.29) it suffices to consider the first summand. Using (3.30) this

gives us
|(“y’X_y)| 1 )
715G (x—y) §C< + — .
s | Ix—yl  lx—y42te
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We use the representation of the single layer potential from (3.4), and for ¢ €
L™ (') we define the extension of S on R? by

(S9) (x) :=[FG(X—y)<p(y)dsy vx € R?. (3.32)

Theorem 3.3.5. Let I be the surface of a bounded Lipschitz domain  C R?. For
any ¢ € L (I), the integral in (3.32) exists as an improper integral and defines a
continuous function S¢ on R4,

Proof. The continuity of S¢ in R?\I' has already been determined in Theo-
rem 3.1.1.

We use the notation from Definition 2.2.7. Let x € T" and Uy be a d-dimensional
neighborhood of x for which there exists a bi-Lipschitz continuous mapping
x . Bo — Uy. Here B, again denotes the d-dimensional ball with radius 2 around
the origin, and BY is defined as in (2.71). Without loss of generality we assume that
x (0) = x. The integral in (3.32) is splitinto [\ + [png, and, for the first part of
the integral, the continuity in x follows as in the proof of Theorem 3.1.1.

In local coordinates the second part of the integral gives us
Sz(X):=/ G(X_Y)‘P(Y)dsy:/ GO —x®e¢ @ dy
'NU BY

with@ (§) := g (§) (¢ 0 x) (§) € L™ (BY) and the surface element g (§) (see 2.2.4).
The Lipschitz continuity of the surface implies the existence of a constant C; > 1
that depends only on I', with

CrHE=FI <lIx®—x@I <Cilk=§]  V&§e B

Combined with (3.29) we obtain the following estimate for an arbitrary 0 < ¢ < 1
- Cy
G (x(0) =x @) = TG (3.33)
y

forally € BY\ {0}, where C depends only on Cy, d, € and A. This proves that

sw<c [ Oy

B3 |yl

The regularity of the parameterization combined with ¢ € L°° (T') result in the
existence of a constant M < oo such that

sup @ (¥)| = M.
&eBg
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With this we have {

S2(x) < oM R B
BY 9472+

The integrand on the right-hand side defines an integrable upper bound (see Exer-
cise 3.3.6) so that the right-hand side in (3.32) exists as an improper integral.

In order to prove the continuity of S, in x we consider a sequence of points
(X1),en in Uy that converges to x. The associated sequence (X;),cn in Bz con-
verges to zero. Without loss of generality we assume that (X,),ey C Bi. Let
A € C§° (RY) be a cut-off function with 0 < A < 1 and

A=1lonBY and A=0onR%\Bs.

We have to show that

lim Ld& = / &dﬁ
R

n=00 Jra—1 %, — g4 -t ||y 92t

The integrand on the right-hand side defines the function f. The integral on the
left-hand side can be written as

[ 385 e[ hwads

~d—2+
=t |yl ¢

Note the inclusion

|J supp 2 (- + %4) C Ba.
neN

If we use the fact that f;, is integrable, converges to f almost everywhere and is
bounded above by the integrable function

|—(d—2+8)

o . ) 1I¥l ify € By
g): { 0 otherwise

we can apply Lebesgue’s theorem of dominated convergence and thus prove the
statement. O
Exercise 3.3.6. Let By be the (d — 1)-dimensional unit ball and 0 < ¢ < 1. Show

that
fy s
By ||§) 42t

exists as an improper integral. Hint: Use polar coordinates.
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3.3.3 Explicit Representation of the Boundary Integral
Operators K and K’

We will now turn our attention to the one-sided traces of the double layer potential.
The derivation of explicit representations of the traces y(;L D,y, D, y1+ S,y S is,
technically speaking, more complex than for the boundary integral operator V. We
will limit this discussion to the essential arguments and refer to [102] for details.

Explicit representations have a great significance, especially for the numerical
solution of the integral equations. For the numerical treatment, the boundary I is
always assumed to be piecewise smooth and usually one uses piecewise smooth
functions for the discretization. Keeping this in mind, it is therefore only neces-
sary to derive the explicit representation formulas under these conditions. These
assumptions will greatly reduce the technical difficulties in the following section.
For a more general discussion we refer to [162, Chap. 7].

Assumption 3.3.7. The surface I" belongs to the class szw (see Definition 2.2.10).

This assumption on the smoothness implies that the conormal derivative of the
fundamental solution G is improperly integrable.

Lemma 3.3.8. Let T € C}, and ¢ € L (T):

(a) The function ¢ (y) y1,yG (X —y) is improperly integrable on T with respect to y.
(b) If T is smooth in x € I then the function ¢ (y) y1xG (X —Y) is improperly
integrable with respect to'y.

Proof. Lemma 3.3.3 implies the existence of an ¢ € ]0, 1] with

— |(ny. x —y}| 1 )
Y1yG (x—y) §C< + — .
7 | Ix—y[¢  x—y|¢2te

It suffices to consider a local neighborhood Uy C R4 of x to determine whether the
function is integrable or not. If we choose a sufficiently small Uy there exist parts
Icl,1 <i <q,withI; € C?and

q
UynT = JWnTy).
i=1
On each of these parts I'; we have (see Lemma 2.2.14)
[(n(y),x—y)| < C[x—y|*,
and therefore

lo () 713G (x—y)| < CM x—y|~“ %) with M :=suplg (2)|.

zel
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Hence, as was shown in the proof of Theorem 3.3.5, we have found an improperly
integrable upper bound.

In case (b) we need the smoothness of I" in x to be able to define the conormal
derivative y; x pointwise. In this case we can use Lemma 3.3.3 in the same way as
above to find an improperly integrable upper bound. |

This lemma shows that

(Ko) (x) == 1"371\3/G x-y)e(y)dsy xeT,
(3.34)
(K'p) (x) := [yl,xG (x —y) ¢ (y) dsy T smooth inx € T.
r

are well defined under the condition that ¢ € L (I").

Corollary 3.3.9. Let T € CPZW. The mappings K and K' from (3.34) map L (T")
to L>® (T') continuously. The continuous embedding L°° (') C L?* (T) results in
the continuity of the operators

K:L®(T)— L®(), K:L>®(T)— L2(I),
K':L® () - L®[T), K': L®(I') > L2(T).

Proof. Let ¢ € L*° (I"). As in the proof of Lemma 3.3.8 one can deduce that

1

———ds
d—24¢ Y
=yl

(3.35)
[[x

Ko ()] < ||¢||Loom/r

for all x € I'. From the proof of Theorem 3.3.5 we have the boundedness of the
integral

1
_— <
=€
with a constant that does not depend on Xx.
The operator K’ can be estimated in the same way in all smooth points x € T
by the right-hand side in (3.35). Since the set of all non-smooth points has zero
measure, the mapping properties from the assertion result in this case as well. [

The existence of K¢ and K'¢ on the surface of " does not in any way mean that
these functions are limits of the potential D¢ as a transition from Q% on T'. In the
following these one-sided limits will be put into relation with one another.

The utilized geometric construction is illustrated in Fig.3.1. Let S (x, r) be the
surface of the d-dimensional sphere around x € R? with radius r > 0. We set
H(x,r) := S(x,r) NQ~. The functional J : R? — [0, 1] is related to the
principal part of the differential operator L [see (2.98)] and is defined by

. 1
J (x) 1= lim —[ T -
r—0 a)d\/m H(X,r) ||X_ylli '
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Fig. 3.1 Intersection te,
H(x,r) = S(x,r)N Q™ and
corresponding choice of the
orientation of the normal
vector with respect to the
local coordinate system

R,(0,r)
K(x,r)
S(x,r)
n(y)
Here w; denotes the surface measure of the unit sphere in ]Rd, i.e., wp = 2m,

w3 = 4, etc. Before we present the properties of J we will need a preparatory
lemma.

Lemma 3.3.10. For all nonsingular matrices B € R*? we have

1 Wy
——dsy = ——. (3.37)
/sd_l IBx||“ |detB|

Proof. We define the function ¢ : R — R by r — rZexp (—r?). On the one hand
we have

d—1
o [ 0D [T 0O,
md [Bx|’ sact 1 B

1 1
— |detB| —ddsy/ AUPR |detB|/ ——ds,
Sa—1 Byl o T 2 Sa—1 Byl

and on the other

1
qep) [ 203D, =/ NBXH / f HBymmm
R B R x| s Jo fry| @ ri-d

/ f r”B OB 4 g, =
Sa—1 ' 2°

which proves the assertion. |
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From this lemma we have the estimate

0<

r 1
< —ds
wg v/ detA /H(X,r) ||X_Y||Z !

<

r 1 1 1
" wg+/detA /S(x,r) Ix — yl% & wq v/ detA /S(O,l) lyld oy =109
We will show in Lemma 3.3.11 that the limit in the definition of J (x) exists and
that we therefore have J (x) € [0, 1].
The conormal derivative of the principal part of the double layer potential,
applied to the unit function, coincides with the functional J up to a sign. The
principal part of the fundamental solution is defined by

1 1
log ford =2,
Go (z) := { 2Vdetih [N (3.39)

ford >3
(d —2) wg /detA ||z]|%2

and the principal part of the double layer potential is defined by

P ) i= [ 1Gox=yr@ds,  xeRAL (G40

Lemma 3.3.11. The functional J has the representation
709 == [ 11560 =y ds, (3.41)

while for yy in (3.41) one can choose y1+ as well as y1 .

Proof. (Schematic proof) The proof for x € R?\T" follows from Green’s formulas
by a suitable choice of the functions u# and v. We refer to [102] for the details and
restrict ourselves to the more interesting case x € I

The normal field to H (X, r) is chosen according to

1
nE)=_-E-x VEcHXr)
and thus y; is defined on H (x,r) by y1(:) := (An,ypgrad-). Let Q=

Q7\ By (x). By applying Gauss’ theorem (for sufficiently small r > 0) to Q™ and
by using the equality LoGo (x —-) = 0 in 7, we obtain

/ Y1yGo (X —y) dsy = [ Y1,yGo (X —y) dsy.
I'\B;(x) H(x,r)

The theorem of dominated convergence implies that we can let r — 0, i.e.,
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/ Y1,yGo (X —y) dsy = lim Y1,yGo (X —y) dsy
r =0 JH(x,r)

li il [ L 4 J (%)
=—lim ——— ——dsy = — .
>0 wg/detA JHxr) ||y — x||fi Y

Corollary 3.3.12. We have

0xeQt,
JX)=31xeQ,
%X € I" and T' is smooth in X.

Let (X;;'_)n ey and (X;)n e be sequences of points in QT and Q respectively that
converge to a point X € I'. Then we have for o € {—, +} the relation
. p ol —1
lim J (x7) =— [ y1yGo(x—y)dsy— | —— +J () ]. (3.42)
n—o00 r 2

Proof. For x € Q7 and a sufficiently small » > 0 we have H (x,7) = @ and
the integral in (3.36) equals zero. For x € Q7 and a sufficiently small r > 0 we
have H (x,r) = S (x,r) and the result follows from (3.38). We now need to con-
sider the remaining case x € I' and I" smooth at x. Since the integral in (3.36) is
invariant under rotation and translation of the coordinate system, we can choose
a Cartesian coordinate system (E,-);jzl with origin x and the first d — 1 coordi-
nates in the tangent plane at x € I'. The component §; points towards Q7. Let
T©,r):={€S5(0,r):£&; > 0} be the upper half sphere and

Ry (0,r):=T(0,r)\H (0,r), R, (0,r):= H(0,r)\T (0,r).
The smoothness of the surface at x implies that
|R1 (0,7)] + [R2 (0,r)] < Cre.

From this we have

r 1 r 1
ds frd / ng
wa/detA /H<x,r) Ix—yl¢ " wsvdetA Juon E]$

r 1
o ds (3.43)
wg ~/det A /T(Oar) ||§||Z :

r 1 r 1
+ —[ dsg — / ——dsg.
wa/aetA Jroon) [E]9 wg~/detA Jr,0.0) [|£]|4
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It follows from the symmetry of S;_; that the integral (3.37) over the half sphere
T (0,1) is equal to wg/(2detB). As in the proof of (3.38) it follows that the first
term in the right-hand side of (3.43) is equal to 1/2. The other terms tend towards
zero for r — 0 since

r 1 1
—— —dsg| + / dsglp <Cr
g /det A [Rzm,r) [HH ’ R0 JEN
One obtains the second equality, i.e., (3.42), by using Lemma 3.3.11. O

Lemma 3.3.8 implies that the double layer potential is defined as an improper
integral on the surface of I". The one-sided limits K+ and K’_ also exist, as given
in (3.6). The relation between these three functions on I is given in the following
result.

Theorem 3.3.13. Let T" € szw and let (X;l'—)neN and (X;)nEN be sequences of

points in QY and Q™ respectively that converge to x € T. Let the density
@ € L% (') be continuous at x. Then we have for the double layer potential and
o € {—, +} the jump relations

— 1-1
Jim (Do) (x7) = /Fgo(y) V1yG (x—y) dsy+(OT +J(X))<0(X). (3.44)

Proof. Let 0 € {—, +}. We first consider the statement for the principal part G¢ of
the fundamental solution G [see (3.39)] and the associated double layer potential
Dy [see (3.40)].

Forx € I' and £ € R we define

10 ® = [ (00 =9 @) 11,60~y ds,
and for £ ¢ I obtain the representation

(Do) (§) = —p (x) J (§) + Yo (§). (3.45)
Next, we replace D and G in (3.44) by Dy and G, with, consequently, ¥ = y;. By

Corollary 3.3.12 and (3.45) the resulting right and left-hand sides of (3.44) have the
representations

o (40 00 [ 1160 (x =3 dsy + T ) =0 (-9 () lim I(57)

and
o Jim, 1 (5)+ im0 )

respectively. Therefore it suffices to show that lim, .« Yo (xg) — Yo (X).
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For the difference function we obtain the estimate

Yo (x) — o (x7)| < dm[ (x3.x.y) dsy
with
n@y).x—y) (n(y).&-y)
K (Ex.y) = - 0¥ — 0 ®).
AR T R T A L

The limit x — X, is determined by the behavior of the kernel function k for § — x.
For this, the integral over I is split into an integral over I'\ Bs (x) and I" N B (x)
with a sufficiently small § > 0. For §¢ — x and y € I'\ Bs (x) we clearly have
limg .y k (§,x,y) = 0 and thus

lim k&, x,y)dsy =0.
§-xJT\Bs(®)

The domain of integration I'N Bs (x) is further split into smooth parts. The following
construction is illustrated in Fig.3.2. For this let v be a panel with x € 7 and a
smooth extension 7* (see Definition 2.2.9). For the discussion on convergence we
may assume without loss of generality that all X are contained in Bs (X) and that
for every £ € {x : n € N} there exists an orthogonal element £, € t* such that

§-tL=o§-ELln(L). (3.46)

The proof is given once the

Auxiliary Assumption:

I(§) ::/ k(& xy)dsy =0 for§ — x
TNBg(x)

has been proven.

Fig. 3.2 Point £ which \,j

converges towards x € I
The angle condition implies
that the angle B is bounded
from below away from 0. The
intersection of the concentric
circles Kj,; with T defines
the subsets t;

=
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Case a: We will first consider sequences that satisfy an angle condition, i.e., there
exists some « € ]0, 1[ with

1€ —&Lll = I§ — x|l VEe{x;neN}. (3.47)

For sufficiently large n € N there exists some m = m (n) € N with

b b
— <Ixy —xll < — 4
2 = I —x = . (3.48)

where b > 0 is the smallest number such that 7 C Bj (x). In the next step T N B (x)
is decomposed into m parts

Tm :=1N B (X),

. (3.49)
- :=rﬂ<B?(x)\B%(x)) l<i<m—1.
We then have
m
rﬂBg(X):Ur,-, |rm|§le_d, |r,-|§Ci_d forl <i<m-—1.
i=1
(3.50)

The integrals over these parts are denoted by
T = [ k (x7.x,y) dsy,
T

while we use the convention that integrals over sets of zero measure and over empty
sets are equal to zero. Finally, we require the parameter

p(B) :=supile(m) —p®|:n—x| < B}, (3.51)

which converges to zero for 8 — 0 because of the continuity of ¢ in x. It follows
that

m
1& <Y 1.
i=1
We begin by estimating the kernel function on t,,, and use Lemma2.2.14, (3.51) and
the equivalence of the norms ||-||, |||| to obtain
b 1 1
kExy) < Cp (—) ( |+ ‘ _ ) LG
M7\ lx—=yla 1E=y s

We estimate the denominator of the second summand
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IE—yI3 = cllE—yl*> = ¢ (IIE —EL)®—21(E — 1. EL — W) + €L — YIIZ) ~
(3.53)
The middle summand in (3.53) can be estimated by using Lemma 2.2.14 and (3.46),
so that

[(E—EL.EL—y) = [E—EL|(n(EL) . E1-y)| <C x| [EL—yII* <C8 | EL—v]*.

Therefore, for § < (4C )_1 , we have shown that

2
5 5. C 5 2\ G4 ¢ , 5 C (b
613 ze 16=y1” =5 (IE=E0l” + IEL—¥1?) = 5216 —xI* = 5 (=) -

Finally, we obtain the inequality

~ (b

This means that

~ b 1 my\d—1
= “"5”"”"%“"(%){/FW"“'”"'(E) }
Tm — A

As has already been shown in Theorem 3.3.5, the integral in the above inequal-
ity is bounded. Since Cm'~¢ forms an upper bound for the surface |z, from
p (b/m) — 0 it follows that T,,, — 0 for m — ooc.

For the remaining terms 7;, 1 <i < m — 1, we use the decomposition

n@y).x—y) m(y.§-y)

1
d_
Ix —yl|4~>

(")

Ix — |4 & —yl4
_n@.x-§) ( 1 )d (¥).x—y)

I —ylg Ui - NA E:w—yn FllE -yl
=: 51+ 5.

The second summand can be estimated by the reverse triangle inequality

15, < 1€ —ylla — X —yllal Z Ix =yl
T Ix=vlallE=vla = Ix—yIs R e - vk
d

Ix = &1l
SCZ d—k

=
=1 IX=¥la " 1§ —yllx

so that on 7;
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d
Sis e B asn ety
eI " A ey e I

is proven. If we apply the inequalities (3.48)—(3.50) and

A

1 1 1 i+ 1\* 1
k= K= =\ 10K
& —yll lIx =yl = I1€ —x]|| (L_L) (1 - Lt
+1 2m

i+1\*
<(2
< (57)

to 7; we obtain

(i +1)?
m
with a constant C that depends only on A, b and d. From this we have, with (3.50),

s <c

m m

Sr=pe(f) = n () o

i=1 1

Since p (b/ i) is a null sequence the right-hand side in (3.54) converges to zero for
m — oo. Because of (3.48) we also have m — oo from xJ — x.

Case b: The proof of the auxiliary assumption for sequences that do not satisfy
an angle condition of the form (3.47) requires a more complicated decomposition
of the surface element 7 and will not be carried out here. Instead we refer to [102,
Theorem 18] for details.

The proof for the general double layer potential is based on the fact that the
singularity of the difference function

Y1y (Go (x—y) — G (x—Y)) (3.55)

is reduced and therefore that the operator which is associated with the difference
kernel (3.55) can be continuously extended to R?. Again we will not elaborate and
refer to [117, Lemma 8.1.5] and [102, Theorem 41]. O

We have already mentioned that the explicit representation of the boundary inte-
gral operators is essential for their numerical solution. In Chap. 4 we will focus on
discretization methods, for which the boundary integral operators have to be applied
to bounded, piecewise smooth functions. The resulting functions will always be
interpreted as L2-functions, the values of which are always determined up to a set
of zero measure. Under these conditions Theorem 3.3.13 can be simplified. We will
use the notation from Definitions 2.2.9 and 2.2.12.

Corollary 3.3.14. Let T € szw and ¢ € CplW (T). Then (3.44) can be simplified for
o € {—, +} as an equality
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1
Yo Dy = o5 + Ko (3.56)

in L2 (T') with K as given in (3.34).

Proof. Let ¢ € CplW (T') be arbitrary. Corollary 3.3.9 implies the continuity of
the operators K : CplW T) - L?>() and K’ : CplW (I') = L2(I"). From this
we have K¢ € L?(I'). As the set of non-smooth points x € I' has zero mea-

sure, these have no effect on the equality in L2 (I") and the assertion follows from
Theorem 3.3.13. |

In the next theorem we will present the conormal trace of the single layer
potential.

Theorem 3.3.15. Let T € szw and ¢ € CplW (T"). Then we have for o € {—, +}

1
vy Se =— (05(/) - K'(p) a.e.onT (3.57)

with K’ as given in (3.34).

The jump relation (3.57) is first proven at smooth surface points x, similarly to
Theorem 3.3.13. Furthermore, the difference n (y) — n(x) has to be estimated in
a neighborhood of x. Details can be found in [102, Theorem 21] and will not be
presented here.

3.3.4 Explicit Representation of the Boundary Integral
Operator W

We will now turn our attention to the operator W. We have already shown in
Theorem 3.3.1 that [y; D] = 0 holds. This statement, however, does not contain
any explicit representation of the boundary integral operator W. We will note in
advance that the integral over the function y1 x¥1,yG (x —y) ¢ (y) in general does
not exist as an improper integral over I' x I' and therefore the differentiation can-
not be interchanged with the integration (see Remark 4.1.35). There do, however,
exist different representations of the trace y; D as an improper integral. Here we
choose the representation by means of integration by parts, which possesses favor-
able stability properties with respect to numerical discretization and is due to [159],
[171] and [136]. Alternatively, one can also define the integral for the function
Y1xV1yG (X —y) ¢ (y) by means of a generalized form of integration (Cauchy prin-
cipal value, part-fini integral). We will deal with the Cauchy principal value in
Sect. 5.1.2. For an approach via hypersingular or part-fini integrals we refer to [201]
and [211].

In this section we will use elementary properties of Fourier analysis that are
proven in, e.g., [243].
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For ¢ € H'/2(I") the double layer potential D¢ is defined by (3.5) or Defini-
tion 3.1.5. We set
X = {D¢ L9 e H/? (r)}

and recall the relations
=9, [yiul=0 and L (ulg-uo+)=0 onQ UQT (3.58)

forallu = Dp € X and L as in (3.1). We set L2 (R3) := (L2 (R%))’. As the
matrix A is positive definite, another positive definite matrix A'/? can be uniquely
defined by A/2A1/2 = A. The function u is, in general, discontinuous across I' so
that the gradient Vu cannot be defined in the classical sense, but instead has to be
interpreted as a distribution. The “function part” g € L2 (IR3) of A2V is defined
by

glgo 1= AY2V u|qe oe{—+} (3.59)

on Q- UQT.

Lemma 3.3.16. Let g be as in (3.59) and let the coefficients in L be denoted, as in
(3.1), by A, b and c. Then

div (A1/2g> 2 <A—1/2b, g> —cu=0

in the sense of distributions on C§° (]R3).

Proof. The jump relations (3.58), the definition of the weak derivative and integra-
tion by parts on the subdomains 7, Q% together give us for all w € C§° (R?)

div (A1/2g) (W) = —[R3 <A1/2g, Vw>dx — —[Qium <A1/2g, Vw>dx

:/ div (Al/zg) wdx+/ [y1u] wds
Q-uQt r

L (i g s

|

In the following lemma we will be using the surface distribution §r, which is
defined by

vér (w) := [F (v, w) (x) dsx (3.60)

for sufficiently smooth test functions v, w.
Lemma 3.3.17. Letu = Dp € X and g be as in (3.59). Then

AV2Vy — g = gAY ?nsp

in the sense of distributions on C3° (R3).
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Proof. For w € C3 (R?) we have

(A‘/ZVu) (W) = —/Rs u div (A‘/Zw) dx = /Q_Um <A1/2Vu,w>dx

+/ (/)<A1/2n, w> ds =[ (8. W) dx + A?nér (w).
r Q-uQt

|

Therefore we have derived the system of equations

div (A'/2g) —2(A71/2b,g) — cu =0 G
A2Vy —g = pA'/?né1

for the functions u, g.
Case 1: ¢ # 0.

Elimination of u in the first equation gives us, with the abbreviation VT := div,
1
Lg:= - (AI/ZVVTAI/Zg - 2A1/2VbTA_1/2g) —g =AY nér.  (3.62)
c
We set

Y = —cGI —curly, o curly o (GI) (3.63)

with
curly y W = (AI/ZV + A_1/2V> X W

and the fundamental solution G from (3.3). The application of the differential
operator curly y to a matrix is defined columnwise:

Yw = —cGw—curls,—op curls o (GW) .

Lemma 3.3.18. Let ¢ # 0. The function X in (3.63) is a fundamental solution of
the operator L in (3.62), i.e.,
LY =41 (3.64)

Proof. The Fouri~er transform of equation (3.64) combined with the substitutions
¢:= A'"2g and b := A~"/2b gives us

1 2i - N
(—-{@T b - 1) S=1L (3.65)
c c
If we insert the Fourier transform of X

— (i¢—2b) x (ig

—cl
ICI? + 2ibTe + ¢

|
X 3 —
lZII© + 2ibT¢ + ¢

3= ) (3.66)

into (3.65) and use the statement of Exercise 3.3.19 we obtain the assertion. O
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Exercise 3.3.19. Show that the function S in (3.66) satisfies (3.65).

By means of a fundamental solution X, the solution of (3.62) can be written as a
convolution
g =3« (¢A1/2n5[‘) . (3.67)

Case 2: c = 0.

We eliminate the function u from the second equation in (3.61) by applying the
operator curly ¢ and by then using curly o (Al/ 2 orad u) = 0. This gives us

—curlaog = curla o ((pAl/anF) . (3.68)

Applying the operator A2V to the first equation (3.61) (with ¢ = 0) and using the
relation
A2y (divAl/ 2g) = div (AV) g + curlp g curla o g

gives us the equation
div (AV) g + curly g curly o g — 2A1/2V <A—‘/ 2p, g> —0.  (3.69)
Elementary tensor algebra then results in the two relations:
curla o curly o0 g = curly,—p curlp o g+2(A_1/2b) xcurlaog
(3.70)
2 (A7V2b) x curly o g — 2AY2V (A71/2p,g) = —2 (b, V) g.
By combining (3.68)—(3.70) we obtain
div(AV)g—2(b, V) g = curla,—op curla o (pndr) .
The solution of this equation is
g = — (GI) % curls —op curly o (¢ndr) .
As differential operators commute with convolutions, we have
g = —curly,_op curly o (GI) * (pndr) .
This means that the representations (3.63) and (3.67) remain valid for ¢ = 0 as well.

Elementary properties of convolutions (see, e.g., [243, Chap. VI.3]) combined
with (3.60) yield
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g (x) = ((pA1/2n5r " 2) (x) = / 0 (y) <A1/2ny, S(x—y) > dsy.  (3.71)
r

Since in (3.58) we set u = D¢ € X for an arbitrary ¢ € H'/2(T"). We use
the relation (3.59) between g and A'/2Vy and note the continuity of (Al/ ny, g (x))

over I' [see (3.58)]. Then we have for all v € H'/2 (")

[F (yiu) Yrds = [F (An, Vi) yds = [F <A1/2nx,g(x)>1ﬁ(x) ds, (3.72)
:/F/Fgo(y)l//(X)<A1/2ny,E(X—y)Al/znx>dsydsx. (3.73)

The definition of the function X in (3.63) is somewhat unwieldy. We will therefore
simplify the integrand in (3.73) somewhat in the next step. The first summand of ¥
in (3.63) is the motivation behind the definition of the integral

I = —c/F/FG x=V)o MV @ (A0, A ) dsydse. (374

Hence the right-hand side in (3.73) is equal to I; + I with

I = /1" <— curla,—op curly o GI % ((pAl/anr) , WA1/2n> ds.
Since differentiation and convolutions commute, we have

I, =— /F <curlA,_2b GI x (curlA,o (¢A1/2n5p)) , 1/fA1/2n> ds

= — (CurlA,_zb GI * (curlA,o ((pAl/zn(Sr))) (¢A1/2n8r> .
Lemma 3.3.20. The integral I, has the representation
I, = <GI * (curlA,o ((pA1/2n8r>) ,curla b (WA1/2n8r>>.

Proof. Letv € R3, q := GIx(curla o (¢A1/2n8r)) and w := Y A/2nér. It follows
from Parseval’s equation that

(s (@ W2 = (s (9 @.5)

1
@n)? Jr3

((A12iE + A7) x q (0). W (©) dt.

where (-,-) is defined without complex conjugation. Elementary tensor algebra
gives us
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(urtyy @ Wz ey = s [ 0@ (8737 = A7) 5 @) g
= (q, curly,—y (W))LZ(R3) ,

from which we have the assertion. O

Finally, we will apply curly,y to the distribution ¥ A'/2ngr. For this we define,
for A € H'/2 (I"), the boundary differential operator

curlppy A = <A1/2 grad A* + /\A_l/zv) x A?n, (3.75)

where A* := Z_1 € H'(Q7) denotes the trace extension of A in Q= (see
Remark 2.6.12).

Lemma 3.3.21. Let A € H'/2(I). Then
curla v (/\Al/anF) = (curlp A,y A) ér

in the sense of distributions on C3° (]R3).

Proof. Letw € C3° (R?). Then

(curlA,V (AA1/2n8r)) (w) = /r </1A1/2n, curly,—y w> ds

:/(n,)LAl/zcurlA,_vw>ds. (3.76)
r

Let A* := Z_A. One can easily verify that div (A2 curlp 9 (-)) = 0. Thus with
Gauss’ theorem we obtain

/ <n,A1/2 curla o (/\w)> ds = [ div (Al/2 curla o ()L*w)) dx=0. (3.77)
r _
On the other hand, elementary tensor algebra gives us

A2 curly o (A*w) = A2 ((Al/2 grad A*) X W+ A% curly o w) ) (3.78)

By combining (3.76)—(3.78) we obtain
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curly y (AAl/zn(?p) (W) :/
r

/ An, Al/2 gradk*) X w>

<A1/2n /1( l/zv) X w> ds

- /F<(A1/2 grad A* + AA_I/ZV) x Al/2p, w> ds.

< AAY2 curlew> <A1/2n,)k (A_l/zv) x w> ds

We have thus derived the following representation of /5

I, = — [ G (x—y) {(curlr a0 ¢ (x), curlp,a 2p ¥ (Y)) dsxdsy.
I'x"

If we combine the previous representations we obtain the proof of the following
theorem.

Theorem 3.3.22. Let ¢,y € HY?(T') and u = D¢. Then

bw (¢, V) = /r FG (x — ) (curlr a0 ¥ (%), curlr a 26 @ (¥)) dsxdssy
b 6x-nT@em{A w0 AV )dsds,
'xT
- [ s
r

Remark 3.3.23. As yju = y1 Do = —W¢, we have the representation

bw (9. ¥) = Wo. )2y Yo, ¥ € HY2 ().

Corollary 3.3.24. For the Laplace operator “—A”, the bilinear form by is explic-
itly given by

by (0. ) = / {curlr ¢ (y) , curlr ¥ (x)) dsdsy,

T 4 |x =yl

where
curlp A ;= gradA* xn and A*:=Z_A.

For the Helmholtz operator “—A — k?”, we obtain

eiklx—yl

bw (9. ) = [F eyl @) cune ¥ o)

—k* (n(x),n(y) ¢ () ¥ (%)} dsxdsy.
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The implementation of the Galerkin discretization of boundary integral equa-
tions requires the transformation of the operator (yo grad Z_u) in (3.75) to two-
dimensional parameter domains. The following remark provides us with the relevant
transformation formula (see [170, Chap. 2]).

Exercise 3.3.25. Let t C I' be a panel which is transformed back to a two-
dimensional parameter domain © C R? by means of a C'-diffeomorphism y. :
T — 1. Let i : © — K be a sufficiently smooth function and let u : © — K be
defined by lifting, i.e., u := iio y;'. Then we have

(yograd Z_u) o y = JfGr_lﬁﬁ, (3.79)

where V denotes the gradient with respect to the parameter variables, J; : T —
R3*2 denotes the Jacobian of the transformation Xz and Gy 1= JT), e R?2 s the
Gram matrix.

3.4 Integral Equations for Elliptic Boundary
Value Problems

In Sect. 2.9 we formulated elliptic boundary value problems as variational problems.
These problems can be transformed into integral equations, which are derived in this
chapter.

We will present two methods with which one can formulate elliptic boundary
value problems as boundary integral equations. The indirect method uses an ansatz
consisting of potentials. The unknown density functions are then determined by the
given boundary data. The direct method uses an ansatz where the given boundary
data is inserted into Green’s representation formula, which in turn is solved for the
unknown boundary data. Formulating elliptic boundary value problems as integral
equations is very advantageous from a numerical point of view if the right-hand side
in the differential equation equals zero. Therefore we will always assume, unless
explicitly stated otherwise, that the right-hand sides f in (2.129)—(2.137) are all
equal to zero. All formulations can be modified by adding Newton potentials N f
should the source term f not be equal to zero.

The sesquilinear forms associated with the operators V, K4, K_, K fi_, K., W
[see (3.6)] are, for o € {—, +}, given by

by - H7Y2(T) x H7Y2(T') - C by (9. ¥) := (V. ¥) 12(r

by HY2(T)x H-V2 () > C  b% (p.¥) =04 (0. ¥) 120 + bk (9. V)
by, H-V2(M) x HY2(I') > C b%, (p.w) := 03 (9. ¥) 121 + bxr (0. V)
by : HY2(T)x HY2(T) > C by (p.¥) := W, V) 2(r
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with
bk ((/% Ir//) = (K(p7 Ir//)Lz(l") and bg/ (€0’ W) = (K/(p7 Ir//)Lz(l")

[see (3.34)], where (-,-);2(r) again denotes the extension of the L?(T') inner
product to H'/2(I') x H™/2(T") or H~'/2(T") x HY?(T"). If the sesquilinear
form — as in the case of b%, b}‘(, — contains one summand which is of the form
+1/2 (u, ¢) 1 2(r) itis called an integral operator of the second kind. Otherwise, it is
called — in the case by and by — an operator of the first kind. The associated integral
equations are appropriately called equations of the first and the second kind.

3.4.1 The Indirect Method

For functions ¢ € H~'/2(T") and ¢ € H'/2 (") we can define the potentials

u_:=Sgp on 7, w_:= Dy on Q7,
+ 4 (3.80)

uy = So on Q", wi =Dy on Q7.
The principle of the indirect method consists in first determining the unknown den-
sity function ¢ as a solution of a boundary integral equation by means of the given
boundary conditions. Then we can insert it into the associated potentials, which
gives us the solution of the boundary value problem. The following proposition
recalls the properties of the potentials u+ and w.

Proposition 3.4.1. The functions uy, wx from (3.80) satisfy

l.u_ e H' () and Lu_=0inQ7,
2.uy € HL (Q1) and Luy =0inQ™,
3.w_e HY(Q) and Lw_=0inQ~,

4.wy € HY (QF) and Lwy =0in Q.

We will formulate the integral equations for the boundary value problems given
in Sect.2.9. The formulation as an integral equation is by no means unique. The
single layer potential can just as well be used as the double layer potential.

3.4.1.1 Interior Problems

IDP:

Single Layer Potential: Let gp € H'/? (I') be given. Find ¢ € H~'/2(I") such
that

by (p.n) = (gp. M2y  Yne H V(D).

Double Layer Potential: Let gp € H'/? (I') be given. Find v € H/2(T) such
that



3.4 Integral Equations for Elliptic Boundary Value Problems 141

1
—3 W M2y + 0k (Wm) = (€D M r2(n) Vne HV2(T). (3.8

INP:

Single Layer Potential: Let gy € H~'Y/2(I") be given. Find ¢ € H~Y/2(I")
such that

1
~(@.M2ry +br (9.0 = (gn.n)p2y Yne HY2(D).
2

Double Layer Potential: Let gy € H~'/2(T") be given. Find v € HY2(T)
such that

bw (W.m) = —(gn. M2y ¥ne HY (D).
IDNP:

In order to formulate integral equations for mixed boundary value problems, we
need to use Sobolev spaces on the Dirichlet and Neumann parts of the boundary I
Here we will only introduce the relevant function spaces and summarize the required
theorems. For a detailed analysis we refer to [162, p. 231 ff].

Let I'g C T be a measurable subset of the boundary with [I'g| > 0. The Sobolev
space H® (I'g), s € [0, 1] was defined in (2.90) as

H* (To) = {u € H* () : supp (u) C To} . (3.82)
The norm on H* (Tp) is defined by

||u||H~V(l"0) = ”M* ”HY(F) ’ (383)

where u* denotes the extension of # on I by zero. "

The spaces with negative indices are again defined as dual spaces: H ™5 (I'y) :=
(H* (I'y))’ for s € [0, 1]. Conversely, we have: H™ ([p) = (ﬁs (I‘O))/ for s €
[0, 1].

For the mixed boundary value problem our aim is to find the Dirichlet data on
I'y where the Neumann data is given and vice-versa on I'p. This requires the local-
ization of the boundary integral operators on I'y and I'p in the range as well as the
domain. For functions ¢, ¥ on T" with supp (¢) C Tp and supp (¥) C Ty we set

Vopy :== (V)lr, . Kypy == (K'¢)Ir,,

Kpny = (K¥Y)Ir, . Wany := WYP)|r,

where the operators K, K’ are given by
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1 4 1 _
K=—2I+yy,D=z1+y,D
2 2
1 1 _
K’=§I+y1+S=—§I+yIS
and the two equalities on the right-hand side follow from (3.56) and (3.57). For suf-

ficiently smooth ¢, ¥ they have the representation (3.34). The mapping properties
of these operators are given in the following theorem.

Theorem 3.4.2. We have
Vpp : H-V2(Tp) — HY?>(Tp), Klyp : H-Y/*>(Tp) — H™Y2(Ty),
Kpy : HY2(Ty) —> HY2(Tp), Wyn : H/2(Ty) > H V2 (Ty).
Forg € H™V/2(I'p)and ¥ € HY/2 (y) we use,in 7, 0 € {—, +}, the ansatz
u’ =S¢ — Dy in Q7.

If we then form the traces we obtain
o o ol
vou’ = Vo — 71 + K )y,

ol
yu® = (—71 + K’) ®+ Wiy

If we consider the first integral equation on I'p and the second on I'y and if we
apply the given data (yg u“) |FD = gp and (y{’ u“) |FN = gnN, we obtain a system

of integral equations for ¢ € H=1/2(T'p) and ¥ € H'/2(Ty)

ol
gp =Vppy — (71DN + KDN) ) onIp, (3.84)
ol ,

If we then combine the operators in (3.84Land (3.85) to iorm a 2 x 2-system of
operators we formally obtain for (¢, ¥) € H='/2(I'p) x H'/2 (I'y) the equation

[( VoD —(olIpn + KDN)] (¢) _ (gD) (3.86)

—Z Inp + Kiyp) WnnN 14 gN

in H'/2(I'p) x H~'/2 (I'y). If we multiply (from the right-hand side) by (1. x) €
H~Y2(T'p) x HY2 (T'y) and integrate over I'p and 'y we obtain
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bVDD ((P7 77) _bKDN (1/& 'l) + bK;\,D (¢vK) + bWNN (1//7 K)
= (gp-Mr2rp) + @N. K21y - (3.87)

where each sesquilinear form is defined by localization analogously
byyp : HV2(Tp) x H-Y2(Tp) = C by, (9.1) :== (Vppo. ML2(rp)
bipy : HV2(Tp) x HY2(Ty) = € bipy (1) = (Kon ¥, M 2(ry)
bk, HY2(Ty)x H'/2(I'p) - C biy,, @.6) = (Kyp¥.k) 2py,)

bwyy : HY2 (D) x HY2(Tyn) = C  bwyy (k) = (WNNY.K) L2y -

Note that the contribution of the identity operators / px and Iyp in (3.86) vanishes,
as I'y and I'p have a disjoint interior. We obtain a more compact representation if
we use the left-hand side of (3.87) to define the sesquilinear form b,,;,.; on H x H,
with

H:= H Y2(Tp) x H/*(Ty). (3.88)

The direct method for the interior mixed problem as an integral equation then
reads:

In (2.144) and (2.145) let f = O and (gp.gn) € H'/?>(I'p) x H~Y/2(I'y) be
given. Find (¢, ¥) € H such that

bmixed ((;Z>7 (Z)) = (gD7 7,})LZ(I‘D)_'_(gN?K)Lz(I‘N) v (777’() € H (389)

Remark 3.4.3. Mixed boundary value problems are usually only continuous and
regular for a small range of Sobolev indices. The operator on the left-hand side
of (3.86) maps H™Y/2%s (Ip) x HY2*S (Ty) to HY/2+S (Tp) x H™Y/2+5 (I'y)
continuously for all |s| < so (I') < 1/2. We have:

(a) so = 1/4 for general Lipschitz domains.
(b) 1/4 < so < 1/2 for Lipschitz polyhedra (see Definition 3.2.1) and also for

globally smooth domains.

The range of regularity for the mixed boundary value problem is smaller com-
pared to the range of regularity for the pure Dirichlet and Neumann problems (see
Theorem 3.2.2 and 3.2.3). Essentially, these theorems can be applied to the present
case; however, the range of regularity is given by |s| < so where s¢ is defined as in
(a) and (b).
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3.4.1.2 Exterior Problems

EDP:

Single Layer Potential: Let gp € H'/? (I") be given. Find ¢ € H~'/?(I") such
that
by (p.m) = (gp. M2y  Yne HV2(T).

Double Layer Potential: Let gp € H/2 (I") be given. Find ¥ € H'/? (") such
that

1 -
5 W2y +bx (n) = (gp. M2y Yo € H2(D).

ENP:

Single Layer Potential: Let gy € H~'/2(I") be given. Find ¢ € H~V2(T)
such that

1
=5 @2y +bx (@) = (v M2y Y€ HU2(ID).

Double Layer Potential: Let gy € H~Y/2(I') be given. Find v € HY2(I")
such that
bw (Y.m) = —(gn. M2y ¥ne H'P (D).
EDNP:

In (2.155) and (2.156) let f = O and (gp.gn) € H'?>(I'p) x H~Y/2(I'y) be
given. Then the associated formulation by integral equations for the indirect method
reads: Find (¢, ¥) € H such that

bmixea ((Zj) (Z)) = (gD Mr2rp)+@N. K2y v (n,«) € H. (3.90)

3.4.1.3 Transmission Problem
For g € H™Y/2(T") and € H'/2(I") we use the ansatz
u=Sp+Dy inQ UQ"

and note that Ly = 0in Q~ U Q7. The jump relations from Theorem 3.3.1 give us
the two relations

gp = [Dy] =1, gn = [y1S¢] = —¢.

This means that we can formulate the solution to the TP explicitly:
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u=—-Sgn + Dgp inQ-uQt.

With this we have given formulations by integral equations for all boundary
value problems for the indirect method. Once the unknown density functions have
been determined they have to be inserted into the associated single or double layer
potentials, which results in a function u that satisfies the boundary conditions and
the equation Lu = 0 in the appropriate domain. We will discuss existence and
uniqueness theorems for these integral equations in Sect. 3.5.

3.4.2 The Direct Method

The direct method is based on Green’s formulas (Theorem 3.1.6). In general, we
will again assume that the differential equation is homogeneous, i.e., that we always
have f = 0in Q. In the event that f # 0 we can use the Newton potential to revert
to the case f = 0 [see (1.22) and Theorem 3.1.6].

3.4.2.1 Interior Problems

We shall again begin with interior problems. The extension of a function u €
H} (Q7) to Q7 by zero will again be denoted by u and satisfies u € H} (R).
Thereby, Green’s representation formula (3.10) becomes applicable and gives us

u==_S (yl_u) -D (yo_u) in Q7. (3.91)

This means that the function « in Q7 is determined as soon as the boundary values
Yo U or, as is necessary, the values of the conormal derivative y; u are known. By
applying y, or y; to (3.91) we obtain two boundary integral equations, i.e., a rela-
tion between the Dirichlet and Neumann data. We set up := you and uy := yju
and obtain

1
up = VuN—(K—EI)uD
| (3.92)
uy = (K’ + 51) uy + Wup.

By means of these two equations, the interior problem can be transformed into one
boundary integral equation of the first kind and another of the second kind.

IDP:

Equation of the first kind: Let gp € H/? (T") be given. Find uy € H™1/2 ()
such that

1 -
by (un.9) = 5 (gp.¢)r2m) + bk (gp.9) Vo e HT'2 (D).
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Equation of the second kind: Let gp € H'/? (T") be given. Finduy € H~/2 (")
such that

1
5 N @) 12y — bk (un. @) = bw (gp.9) Vg € H'Y2().
INP:

Equation of the first kind: Let gy € H~Y/2(T) be given. Find up € HY2(I)
such that

1
bw (up.¢) = 5 (8- 9)12(r) = bk (gn.9) Vg € H'(T).

Equation of the second kind: Let gy € H~Y/2(T) be given. Find up €
H'/2(T) such that

1 _
5 D, @)y + bk (up, @) =bv (gn9) Vg e H 2(T).

IDNP:

For the mixed boundary value problem we use the first equation in (3.92) on I'p
and the second equation on I'y. In so doing, we obtain the 2 x 2 system of boundary
integral equations

|:VDD —KDN}(MN): [ —VbN %I+KDD:|(gN)
Kyp Wwn Up 31 —Kyy  —Wap 8D
If we then multiply by (¢, ) € H and integrate over the respective surface parts

I'p and I'y we obtain the variational formulation: Find (ux,up) € H [cf. (3.88)]
such that

1
bpixed ((ZZ) (Zj)) =5 {(gD-©) 12y + (€N- V) 12T p)

1 prhs &N ’ @
mixed ((gD I//
for all (¢, ¥) € H with

brls, ((gN), (“’)) = by, (§8-9) + bk pp (80.9) —biy | (EN. V)

gp) \v
—bwyp (gD, V). (3.93)
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Remark 3.4.3, which concerns the mapping and regularity properties of the
integral operators of the indirect method as applied to the mixed boundary value
problem, also holds for the direct method.

3.4.2.2 Exterior Problems

Green’s representation formula as given in (3.19) was proven for exterior problems
with an additive, L-harmonic extra term. However, with Theorems 3.1.11, 3.1.12
and 3.1.13, we know that, for the Laplace and Helmholtz problems as well as for
the positive definite case aminc > ||b||?, this extra term vanishes and that Green’s
representation formula holds unchanged. In this section we will assume that there
exists a subspace V' C H,!, (RY\T) such that, for all u € V with Lu = 0 in

loc

Q7T U Q, the representation
u = —S [y1u] + D [you] inQ uQt (3.94)

and the trace theorems for y¢ and y; in V all remain valid unchanged. We setu™ = 0
on Q7 and only consider (3.94) in the exterior space

u+=—Sy1+u++Dyo+u+ inQ*.
If we form the traces we obtain the equations

up = —Vuy + (Kup + up), in HY/2(I),
(3.95)
uy = — (K'uy — Sun) — Wup, in H-V2(T).

In the following we will use these results to derive the boundary integral equations,
achieving this by using the known, and solving for the unknown, boundary data.

EDP:
Equation of the first kind: Let gp € H'? (I") be given. Find uy € H~/2(T)

such that

1 B
by (un.¢) = =3 (0. 9)12r) + b (¢p.¢) Ve € H 2(T).

Equation of the second kind: Let gp € H'/? (T") be given. Finduy € H~/2 (")
such that

1
5 N V) 2y + b (un . ¥) = —bw (gp.¥) VY € HI2(IT).
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ENP:

Equation of the second kind: Let gy € H~'2(T) be given. Find up €
H'/2(I") such that

1
bw (up,¥) = =3 (@n-V)ray —bxr (gn.¥) VY € H'2(T).

Equation of the second kind: Let gy € H~Y2(I') be given. Find up €
H'/2(T) such that

1 _
3 (up,9)2qry — bk (up,9) = —by (gn, ¢) Vo e HV2(T). (3.96)

EDNP:
Let gy € H~'2(I'y) and gp € H'? (T'y) be given. Find up € H1/? (T'n)
anduy € H~'/2(I'p) such that

1
Dinixed ((ZZ)7 (;Z)) = _5 {(gDv (p)Lz(FD) + (gN7 I//)LZ(I‘N)}

e ((22)2)

for all (¢, ¥) € H, where b,jyeq and brhsd are defined as in (3.90) and (3.93).

mixe

3.4.3 Comparison Between Direct and Indirect Method

It is either the integral operators V, W, £ 1+ K and =1 4 K’ or their localizations on
the boundary parts I'p and 'y that appear in the direct and indirect formulations.
This raises the question which of the two formulations is more suited to concrete
applications. In the following we will discuss some of the merits and drawbacks of
the direct and indirect formulations:

1. The right-hand side of the integral equation for the direct formulation is defined
by an integral operator [see, e.g., (3.96)]. In contrast, in order to generate the
right-hand side of the indirect formulation one simply needs to evaluate the
L? (T) inner product of the boundary data and the test functions.

2. When one solves the direct formulation one obtains the Dirichlet and Neumann
boundary data explicitly. However, solving the indirect formulation only pro-
duces an abstract auxiliary function that subsequently has to be evaluated by
means of potentials.

3. The solution of the underlying differential equation in the interior is defined as
a representation formula in both cases. For the indirect formulation an integral
over the boundary I" has to be evaluated for every point of the domain [see, e.g.,
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(3.4)], while the direct formulation requires the evaluation of two integrals over
I" [see, e.g., Theorem 3.1.6 (with f = 0)].

4. For non-smooth surfaces the solutions of the integral equations contain charac-
teristic singularities at the vertices and edges of the surfaces, [237]. With the
direct method the solutions are exactly the Cauchy data of the underlying bound-
ary value problem. Therefore the singularities of the solutions of the boundary
integral equations with the direct method are exactly the Cauchy data of the
singularities of the solutions of the boundary value problem. With the indirect
method, however, the solutions of the boundary integral equations are jumps of
the Cauchy data of the interior as well as the exterior problem. On non-smooth
surfaces the solutions of the boundary integral equations, obtained by the indirect
method, contain traces of the singularities of solutions of the interior and exterior
problem, which may in turn reduce the regularity considerably: If Q7 is a convex
polyhedron the solutions of the Dirichlet problem for the Laplace equation are in
H?(Q7) within Q™. However, the solutions of the associated exterior problem
are, in general, only in HS (QT) with s < 2 because of the reentering vertices
and edges within Q.

These comparisons only give us a rough indication as to which of the two for-
mulations is more suited to practical applications. Note that, in principle, solving
the integral equations has the same complexity for both formulations, since in both
cases the same operators appear. We will consider two typical applications:

1. If the purpose is simply to determine the unknown boundary data then the direct
formulation is more suitable than the indirect formulation.

2. For applications in which the solution of the underlying differential equation has
to be evaluated in many points of the domain, the indirect formulation is more
suitable.

3.5 Unique Solvability of the Boundary Integral Equations

In this section we will show the coercivity of the integral operators V' and W under
suitable conditions. Combined with the injectivity of the boundary integral opera-
tor we can then deduce the unique solvability of the variational boundary integral
equation of the first kind.

3.5.1 Existence and Uniqueness for Closed Surfaces
and Dirichlet or Neumann Boundary Conditions

First we will consider closed surfaces I' = 02~ and the case that either Dirichlet
or Neumann boundary conditions are prescribed on all of T".

We begin with the ellipticity of V' and W in the case of the Laplace operator.
For this, we will need to generalize Green’s formula (2.110) for functions with
unbounded support.



150 3 Elliptic Boundary Integral Equations

Lemma 3.5.1. Let aminc > |b|> or d = 3 and L = —A. For all ¢,y €
H™'V2(T) withu:= (Sg)|g+, v:i= (SY¥)|g+ we have

(yl"'u, VOV)L2(F) = —Bg+ (,v). (3.97)

Proof. We will first consider the case L = —A andd = 3.Leta > 0 with Q~ C K,
and

inf x—y| > 1.
(x,y)€I'xdB, ” y” -

We apply Green’s formula (2.110) for the bounded domain Q, := Q+ N B, and
obtain

(y1u, yov) L2ry + (V1us yov) 2,y = —Be, (u,v) (3.98)

with T, = 8B,. The normal vectors on I" point, as usual, in the direction of Q
and those on T, in the direction of ©2,. With this we have

ou
’/Fa B_HVdSy

/r 1G (=M 12t

< llella-12ay 1V a-172(r)

0
%G (X— dSX.

|
HI/Z(F)

It follows from (3.21) for x € I', that

IG x =12y < CIG & =iy < Ca™!

Hic(x—-)H <C H—G(x— )H < Ca™>.
on

H1/2(T) H1(T)

With |T;| < Ca? we obtain

du
—vdsy

= < Ca ' el g-12@) I¥l g-1/2(r) -

Therefore, in (3.98), we can let a — oo where the second term on the left-hand side
goes to zero. This proves the assertion for L = —A.

Now let aminc > |[b]|*. Lemma 3.1.9 shows that, in this case, the potentials
exhibit an exponential decay so that the same arguments as in the previous case can
be used to prove the statement. O

Exercise 3.5.2. Let aminc > |b||? ord =3 and L = —A. Forall ¢, € HY?(I")
withu = (D@)|q+, v:i= (DV¥)|q+ we have

()/1+l/l, VOV)LZ(F) = _BQ+ (l/l, V).
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Theorem 3.5.3. Let d = 3 and L = —A. Then the associated sesquilinear forms
by : HY/2() x HY2(T') — C and by : H/?(T') /K x HY?(T") /K are
elliptic:

by (9,9) = cv 9312y Vo€ HTV/2(I),

bw 0. ¥) = ew [V 15120y x Vo € HYZ (D) /K.

Proof. We begin with the sesquilinear form by . For ¢ € H™'/2(I') we setu = S¢.

It follows from (3.24) that u € H! (L, R?). The jump relations give us
[yiu] = —pin HY2(I') and [u] =0in H?(I). (3.99)

Green’s representation formulas (2.110) and (3.97) give us, because of Lu = 0 in
Q- uQt,

(7/1_“7 V()_”)LZ(F) = B_ (u,u),

(y1+u, V(TM)LZ(F) = —By (u,u).
By subtracting the first equation from the second and by using [#] = 0 we obtain,
with BQ_UQ+ = B_ + BJ,_,

([yaul, )’OM)LZ(F) = —Bg-ug+ (u,u).

Combining (3.99) with the H ! (L, Rd)—ellipticity of Bo—q+ [see (2.171)] gives us

bV (§0’ (p) = (€0’ V¢)L2(F) = (§0, VOM)LZ(I‘) = BQ_UQ+ (Lt, M) =c ”M”?r{l(L’]Rd) .

(3.100)
By Definition 2.7.6 and the fact that Lu = 0on Q™ U Q1. we have for the one-sided
conormal derivatives (where o € {—, +})

1ul ‘(VI” V) LZ(F)’ |Bs (1, Zaoyh)|
yiu —-1/2(r sup AT
" @~ YweH1/2(I")\{0} ||1//||H1/2(F) weH1/2(T)\{0} ||1//||H1/2(F)
-c sup lull .oy 1 Zoo Yl g, %)
B YeH/2(I)\{0} ||W||H1/2(F)

Since Zgoy € H Comp (29) there exists a ball B, with supp (Zgo ) C B,. With
this and by the equivalence of the norms in H' (B,) and H' (L, B,) we obtain

1Zao Yl g0y < 1 Zoo Vg1 (Banaoy = C IV T2y -

From this and with (3.100) we have the ellipticity

”(p”H 1/2(ry = ”[Vlu]”[-] /2y = = ”Vl u”H 1/2(T) + ”7/1 u”H 1/2(T)

=C ||“||H1(L,Rd) = ?bV (p.9).
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Next we will prove the ellipticity of the sesquilinear form by on H'/2 (T) /K.

For Y € HY/2(T") /K we define u := Dv. From (3.24) we have u € H' (Q7) x
H' (L, Q%). The jump relations give us

[u] = v, [y1u] = 0. (3.101)

Green’s representation formulas (2.110) and (3.97) give us, by taking into consider-
ationthat Lu =0on Q- U QT,

()/1_1/!, y()_u)LZ(I‘) = B_ (u,u)
(ri"u. VSL”)L2(F) = =B+ (uu).
If we subtract the first equation from the second and use [y;u] = 0 we obtain
(. ) 2y = — (B— () + By (uw,w). (3.102)

The right-hand side in (3.102) defines, as in (2.169), the sesquilinear form Bg— o+
By combining ¢ = [u] with (3.6) we obtain with (3.102)

bw (U, ) = (Y, W) p2¢ry = ([u], —v1w) L2(ry = Bo-uq+ (w,u).  (3.103)

The continuity and the second Poincaré inequality (Corollary 2.5.10 and
Theorem 2.10.10) give us

2 _ 2
HIﬂ”H‘/Z(F)/K = Clgﬂfg [|[ue] CHHI/Z(F)

IA

2
+ ~ — ()
(15l 05 =)

<2C (||“||21(L_Q+) + ciélnf@ [l — C||%Jl(sr))
< 2C(|u|i11(L,sz+)+ |”|2HI(Q—)) < CBg-ug+ (wu) =Chy (. ¥) .

|

We now turn our attention to the ellipticity of the boundary integral operators V'
and W for the general elliptic differential equation.

Theorem 3.5.4. Let aminc > ||b||*. Then the associated sesquilinear forms by :
H Y2(T)x H Y2 () - C and by : H/2 (') x HY2 () are elliptic.

Proof. The proof is analogous to the proof of the previous theorem. We begin with
the sesquilinear form by. For ¢ € H™V2(T') we set u = S¢. It follows from
Theorem 3.1.16 and Lemma 3.1.9 that u € H' (R?). As before, the jump relations
and Green’s representation formulas (2.110) and (3.97) give us

([y1ul , yow) 12(ry = —Bg-uq+ (u,u) .



3.5 Unique Solvability of the Boundary Integral Equations 153

It follows with the H'! (]Rd)-ellipticity of Bq—q+ and the continuity of the trace
operator that

by (0,9) = (0, V@) 12ry = (@, You) 12(r) = Ba-uq+ (4, u)

2 2
zc ||”||H1(L,Rd) > cllelz-12qy -

The proof of the ellipticity of by in H'/2 (T') is similar to, yet simpler than, the
proof of Theorem 3.5.3. This is due to the fact that, since the interior Neumann prob-
lem is uniquely solvable in the case aminc > ||b||*, we need not consider quotient
spaces. O

We have now shown that the integral operators V' and W are elliptic in suitable
Sobolev spaces for elliptic boundary value problems with L = —A or apjnc >
|b]|>. Thus the unique solvability is a direct consequence of the Lax—Milgram
lemma.

Considering the general elliptic operator L in (2.98), we can prove a Garding
inequality for the integral operators V' and W and therefore the Riesz—Schauder the-
ory from Sect. 2.1.4 becomes applicable. The details can be found in the following
Proposition.

Proposition 3.5.5. Let G be the fundamental solution [see (3.3)] defined in combi-
nation with the operator L from (2.98) and let V and W be the boundary integral
operators defined thereby. These satisfy a Gdrding inequality in H='/2 (") and
HY2(T). More specifically, there exist compact operators Ty : H™ Y2 () —
HY2(T) and Ty : HY* (') — H~Y2(T) such that

((V + Ty w )o@y = ov lul3mroqy  forallue HV?(T). (3.104)
(W + Tw) v, 2 = ew Vll3i2qy  forallve HY>(T).
The proof can be found in [72]. The Garding inequality does not yet provide

us with the existence of solutions; we still need to determine the injectivity of V
and W.

3.5.2 Existence and Uniqueness for the Mixed
Boundary Value Problem™

Let Q= C R3 again be a bounded Lipschitz domain with boundary I" and let
I'p, 'y C T be relatively open boundary pieces with I'p N 'y = @ and

r=TpUTxn. (3.105)

* This section should be read as a complement to the core material of this book.
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For simplicity’s sake, we assume that I'p and I'y are simply connected and we
recall the definition (3.82) of the relevant function spaces H*® (I'g), H® (I'y) on
T'ocCT.

We consider the mixed boundary value problem for the Laplace operator:

Au=0 1in €, u=gp onlp, du/on =gy only (3.106)

for given boundary data gp € H'Y?>(I'p), gy € H Y?(T'y) and we refer to
Sect. 2.9.2.3 for the associated variational formulation.

A (weak) solution u € H'(—A, Q™) can be written in terms of its Cauchy data
¢ = u|r and 0 = Ju/dn|r according to

u(x) = (So)(x) — (DY)(x), xe€Q~ (3.107)

(see Theorem 3.1.12).

In order to determine u, we need to determine the missing Cauchy data (u|r,, ,
(0u/0m) |1, ), which can be obtained as a solution of the integral equation (3.89).

In this section we study the ellipticity of the sesquilinear form b,eq : H X
H — K from (3.89) with H = H~/2 (I'p) x H'/2 (I'y). We restrict ourselves to
the Laplace problem.

For (¢,0) = (¥, n) € H we have

binixed ((:f_) s ((/))) = (VDD(/)’ (/))LZ(FD) + (WNNO’ O)LZ(FN) .

o

The following lemma deals with the ellipticity of the single layer operator as well
as the normal derivative of the double layer operator.

Lemma 3.5.6. Let @ C R3 be a bounded Lipschitz domain and let Tp, Ty be
a partition of the boundary T into simply connected pieces with positive surface
measure that satisfy (3.105). Then there exists a constant y(U'p, Tn) > 0 such that

Vo € HV2(Tp): (Vopg. @)1y = v 100151120 )

VYo € HY2(Ty): (Wwno, 0)r2ry) =Y ||0||%1/2(FN).

Proof. For the first estimate we use ¢ € ﬁ_l/z(I‘D) = ¢* € HY2(I) with
the zero extension ¢* of ¢ on T'. It follows from (3.83) that ||§0||1?*1/2(1“D) =
ll* [l r—1/2(ry and the ellipticity of V on T (see Theorem 3.5.3) gives us

(VDD‘/’,‘/))LZ(FD) = (V(/’*,‘/’*)Lz(r) = CV”(/)*Hzfl/Z(F) = CV“‘/’”%q/z(pD)-
(3.108)
The estimate for the operator W follows from

oe H2(Ty) = 06" c H'2().,  lolguacy = lo*lm2m) -



3.5 Unique Solvability of the Boundary Integral Equations 155

From this and from the ellipticity of the hypersingular operator W on T' (see
Theorem 3.5.3) it follows that

(Wnno, U)LZ(FN) = (WU*,U*)Lz(r) z CW||0*||111/2(1~)/K

=cw ?éiﬁ |o* — c||§,1/2(r). (3.109)
We recall the definition of the H'/2(T")-norm
||‘P||21/2(r) = ||€0||iz(p) + |€0|§11/2(p),
o312y = [ [ l(p(ﬁz — ;('Z)'zd sydsy. (3.110)
Therefore we have [¢|g1/2(r) = 0 and thus
lo* ||H1/2(F)/]K lo* |H1/2(F) + mln o C”iz(p)-
The minimum is attained for the mean value ¢ := |T'|™! [.o*ds = |['|™! fFN ods.

This leads to |c|? < |F|_2|FN|”0”%2(FN) and

min [lo* — «|? = ||lo||? cll? -2 ocds
aeR ” ||L2(F) ” ||L2(FN) + ” ||L2(F) Ty

= ”0”22(1“;\;) +|T||c|? —2c/ ods

Iy

1 2 2 2
_ 2 - _ -
= lolzamy 5 ([FN “ds) T ([FN “ds)
1 > ITw|
_ 2 o 2 LA
= ot~ i (o) = Ity (17

Therefore we have the following estimate for all o € HY 2(Ty):

T
10127120y = (1= T88E) (H0* By + 10 By oy )

r * r
= (1= ) 1o oy = (1= ) oW oy -
(3.111)
This proves part 2 of the assertion. O

From (3.108) and (3.109) we have the ellipticity of b,yeq:

Corollary 3.5.7. For |y | < |I'| there exists a constant ¢ > 0 such that for all
(p,0) € H~ 1/2(Tp) x H1/2(FN) we have
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2 ¢ 2 2
bt ((£)(2)) 2 ¢ (W sy + 101, G112

Theorem 3.5.8. The systems of boundary integral equations (3.89) and (3.86) asso-
ciated with the mixed boundary value problem have a unique solution (¢,0) € H
forallgp € HY*(T'p) and gy € H™Y2(Ty).

The variational problem (2.144), (2.145) associated with the mixed boundary
value problem (3.106) also has a unique solution u € Hé (27). This solution can
be written as in (3.107).

Proof. The unique solvability of the boundary integral equations follows from the
H-ellipticity of the bilinear form b, and the Lax-Milgram lemma.

The unique solvability of the variational problem (2.144), (2.145) associated with
the mixed boundary value problem (3.106) follows from Theorem 2.10.6.

The representation formula was proven in Theorem 3.1.12. |

3.5.3 Screen Problems*

The boundary value problems that we have considered so far always lead to integral
equations on closed surfaces. The computation of electric fields and potentials or of
stress fields near cracks often requires the solution of screen problems. Here fields
are induced by thin charged plates or screens. Screens are modelled as hypersurfaces
Iy € R3 which, in general, are not closed surfaces, i.e., 39 # @. The potential
equation is formulated on the exterior R3\I'y and the boundary integral equations
reduce the problem to the screen Iy.
__ The energy spaces for integral equations on boundary pieces were given by
H~Y2(I'p) and H'/2(T'y). These spaces allow us to consider boundary integral
equations on open surface pieces I" as well.

Therefore, in this subsection we assume that an open surface piece Iy is given,
which can be extended to a closed Lipschitz surface I" in R so that

[ =ToUTE, (3.113)

where I'§ = I'\Ty. In order to avoid technical difficulties we assume, as in the
previous subsection, that both I'g and I'§ be simply connected.

Dirichlet Screen Problem: Find, for a given gp € H 1/2(Ty), the function u €
H! (R3\T) such that

Au=0 inR*\Ty, wu=gponTy, lu(x)| = O (||X||_1> for ||x|| — oo.
(3.114)

Neumann Screen Problem: Find, for a given gy € H™'/2(Ty), the function
u € H! (R3\Ty) such that

* This section should be read as a complement to the core material of this book.
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Au=0 inR*\Ty, u/dn= gy onTyu(x)| =0 <||X||_1) for ||x|| — oo.
(3.115)
By using the ansatz via potentials, these screen problems can be transformed into
boundary integral equations and we again formulate these as variational problems.

Dirichlet Screen Problem: Find, for a given gp € H 1/2(Ty), the function S
H~Y2(Ty) such that

Vo.M 2y = €D M2y ¥n€ H2(To). (3.116)

Neumann Screen Problem: Find, for a given gy € H ~1/2(Ty), the function o €
H'/2(Ty) such that

(Wo.k) 2y = (gn.k) Yk € H'2(T). (3.117)

Here we identify, as usual, the inner product (-, -) L2(Ty) with its extension on
HY2(Ty) x H™'/2(T'g) oron H1/2(T'y) x HY2 (Ty).

Theorem 3.5.9. The operators V :H~V2(Ty) — HY2(To)and W : H/2(Ty) —
H~Y2(Ty) are continuous and positive, that is, there exist cy and cyw > 0 such that

Vo e HV2T0): (V. 9) 2y 2 v 191 1oy - (3.118)

Vo € H3(To) : (Wo,0) 12y = cw o] (3.119)

2~
H1/2(Tg) "

Theorem 3.5.9 is a direct consequence of Lemma 3.5.6 with I'g = I'p or I’y =
I'y, while ¢y, cw depend on T'y.

3.6 Calderon Projector*®

The direct method results in boundary integral equations for the unknown boundary
data of the boundary value problem. In this section we will again turn our attention
to the identities (3.92) and (3.95) and derive some useful conclusions.

For ¢ € {—, +} we define the space Y, by

Yo :={ue H} (Q7):Lu=0inQ}.

On Y_ x Y4 Green’s representation formula is, in general, only valid in the form
(3.19) with an extra additive term.

* This section should be read as a complement to the core material of this book.
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For the operator L in (3.1) with apinc > ||b||2 we have shown in Theorem 3.1.11
that the extra term in Green’s representation formula disappears for functions from
Y_ x Y+.

This also holds for the Laplace operator —A (see Theorem 3.1.12) on the
subspace

{ue H'(Q): Au=0} x{ue H' (A, Q%) : Au =0}

and for the Helmholtz operator Ly := —A — k? (see Theorem 3.1.13) on the
subspace

lue H'(Q7): Lyu=0} x {ue H' (Ly, Q") : Lyu =0}

[see (2.149)].

Assumption 3.6.1. For the given differential operator L we can choose a subspace
X_ x Xy C Y_ x Y4 such that the extra term in (3.19) vanishes and Green’s
representation formula holds in the form

u=—S[y1u] + D [you] nQ - uQt

forallu € X_xXy, whereu € X_x X is an abbreviationfor (u—,us+) € X_xX4
with the convention u|qos = Ug, 0 € {—, +}.

The direct boundary integral equations are based on the identities (3.92) and
(3.95) between the Dirichlet data up € H %(F) and the Neumann data uy €
H_%(I‘). For all u € X_ x X4, we have with (up,uy) = (yo_u, yl_u) in the
inner domain Q™

()0 L)) ) o
Yy u UN W %I—FK' un UN

and with (up,un) = (yo"'u, y1+u) in the outer domain Q7 :

+ 1
u up sI+K -V up
Yot} _ _ (2 — P, (”D) . (121
y1+u un -w % I —-K' UN UnN
This is the motivation behind the definition of the Calderon operator A on the
boundary I" by

A=Lp —P)—<_KV> (3.122)
S Y N wr) '

Therefore the compact form of (3.120) and (3.121) reads
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(:‘;:) = — (oA —1L1) (:‘;Z) o€ {—+}. (3.123)
1 1

For o € {—, +} we then have

1
= (oa-11)

Proposition 3.6.2. The operators Py have the following properties:
(i) Py can be continuously extended to Hl/z(l") X H_l/z(l") — Hl/z(l") X
H~Y2(I).
(ii) P(I is a projection of H'/2(T') x H~Y*(I') — HZ

e ) Cauchy(I‘) where the space
is defined as

Cauchy

Hepyeny (D) :=A{(ygu. yiu) : u € Xo} . (3.124)
(iii) We have
P++P—=I and P+P_:P_P+ on HI/Z(F)XH_I/Z(F)_

Proof. Statement (i) is a direct result of the mapping properties of the boundary
integral operator in the Calder6n operator A.

We prove (ii): Let ¢ € H~'Y/2(T"), ¥ € H'Y?(T) be arbitrary and given. Then
the potential u = S¢ — Dy € Y_ x Y and therefore satisfies the homogeneous
differential equation.

We use the notation u® = u|qo. If we apply the trace operators y§, y{ to u® we
obtain

- ol
You’ =75 Se—vo DY = Vo — S TK)v
and
o 01 I
yiu® =yiSe—yi Dy = _71"‘[{ v+ Wy,

¢ 73” o
F = e H ).
o (W) (yfu) CaUChy( )

We obtain statement (iii) via the relations

so that we have

1 1 1 1
O

Definition 3.6.3. For 0 € {—, 4}, P, are the Calderdn projectors for the elliptic
system (L, yp, y1) in Q7.
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Let yoX = yy X- + y(;rXJ,- and y1 X = y; X_ + )/I“LX+. (Note that for all
standard cases we have yoX = H'/2 (") and y, X = H~'/2(I").)

Proposition 3.6.4. We have the Calderdn identities

KV =VK' ony X, WK = K'W on yo X (3.125a)
and
VW =3I —K?onyeX, WV =231l —K?onyX. (3.125b)
Proof. The identity (Py)? = Py on Hgauchy (T") can be written componentwise

(aK+K2+VW+i1 —(V + KV —VK’) ) (UK+%I —(aV) )

— (W +WK—KW) —(cKk'—K?*—=WV —1I) —(@W)  —(ok’-1I)

By comparing the coefficients we obtain (3.125). O

Remark 3.6.5. The Calderon identities (3.125) have different implications.

(a) Relation (3.125a) implies that V and W symmetrize the operators K and K’
respectively, more specifically, we have (KV) = KV and (WK) = WK.

(b) The operators V and W have the order 1 and —1 respectively. We have from
(3.125b) that applying the operators successively, i.e., VW and WV, defines
operators of order zero. This property can be used advantageously to precondi-
tion the linear system of equations that results from the Galerkin discretization
of the boundary integral operators V. and W (see Chap.6, [217], [218] and

[67]).

3.7 Poincaré-Steklov Operator*

We consider the Dirichlet interior problem [see (2.140)]: For a given gp € H 1/2
(T'), findu € H' (™) with y;u = gp on T such that

Bu,v)=0 VYveH; (Q). (3.126)

In this section we assume that the Dirichlet problem has a unique solution.

Assumption 3.7.1. Problem (3.126) has, for all gp € HY? (T'p), a unique solu-
tion that depends continuously on gp:

lul i@y = C lgnllmar)-

* This section should be read as a complement to the core material of this book.
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We will study necessary and sufficient conditions for the coefficients of the
differential operator L to satisfy Assumption 3.7.1 in Sect. 2.10.

The mapping gp — y; u, which assigns Neumann data to a solution of
the Dirichlet problem in 27, defines the Dirichlet-to-Neumann mapping. The
associated Poincaré—Steklov operator is given by

Psgp 1=y u. (3.127)
For u € X_ (see Assumption 3.6.1) this mapping can also be written as
Pg ()/O_u) =y, u.

Clearly, Ps : H?(T') — H~3(T') is continuous. With (3.120) and (3.125) we can
write Pg explicitly as

Ps=V ' +K) =W+ (31 +K)V ' (3] +K). (3.128)

The operator Ps coincides with the composition y; o T, where T denotes the
solution operator from Sect. 2.8 (for the choice A = 0) and whose existence is
guaranteed by Assumption 3.7.1.

We will now consider the Neumann interior problem [see (2.142), (2.143)]. For
agiven gy € H™V/2(I') findu € H' (™) such that

B(u.,v) = (gn,yoV) 2y  YveEH' (7). (3.129)

In this case we also assume the existence of a unique solution.

Assumption 3.7.2. Problem (3.129) has, for all gy € H™Y? ("), a unique solu-
tion that depends continuously on g :

lull 1@ < Clignllg—172ry -

We will discuss necessary and sufficient conditions for the coefficients of the
differential operator L to satisfy Assumption 3.7.2 in Sect.2.10. In case that the
existence of a unique solution on H' (Q7) is not ensured (Example: L = —A), we
may consider suitable subspaces of H' (27) and H~/2 (T') in order to satisfy the
assumption.

The Neumann-to-Dirichlet mapping Sp : H~1/2 (') — HY?(I') foru € X_
is defined by

Sp(yiu) = ygu (3.130)

and is called Steklov—Poincaré operator. Assuming that W : HY2 () - H1/?
(") is bijective, we obtain the explicit representation
Sp = w1 (

H-K)=vVv+EZI-K)w ' (iI-K). (3.131)
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Remark 3.7.3. The conditions placed on W can be reduced. Let

1
R:= E(p—K'(p:(pEH_l/z(F)} and U := {<peH1/2(F):W¢>eR}.

Then, under the assumption that W : U — R is bijective, (3.131) still holds.

Proposition 3.7.4. The operators Ps, Sp in (3.127), (3.130) are continuous. If the
underlying differential operator is self-adjoint, then Ps and Sp are Hermitian:
Ps = P and Sp = Sp.

Proof. Follows from the representations (3.128) and (3.131). O

Remark 3.7.5. Let Assumptions 3.7.1 and 3.7.2 be satisfied.
The operators Ps : HY/2(I') - H™Y2(T") and Sp : H~'/2(I') — HY2(I)
are invertible and satisfy

PsSp =1 on H'V2(I'), SpPs =1 on H'/2(I).

3.8 Invertibility of Boundary Integral Operators
of the Second Kind*

In Sect.3.4 we have derived integral equations of the second kind in order to
solve boundary value problems. The relevant boundary integral operators % I +K,
%I + K’ have order 0 and, in general, are not self-adjoint. Therefore it seems
logical to choose the function space LZ(T") for a variational formulation. How-
ever, the Calderén identities (3.125) and the mapping properties of K, K’ (see
Theorem 3.1.16) demonstrate that the function spaces H*'/2(T") provide a more
natural choice for such a formulation. For the existence of solutions on non-smooth
boundaries I' this choice becomes essential.

Assumption 3.8.1. The single layer operator V. : H~Y*(') — HY2T) is
Hermitian, continuous and positive: there exists some cy > 0 such that

©.Vo) 2y Z v [0l g-1ny Yo € HTV2(D). (3.132)
Combined with the boundedness of V' the expression

lolly == (0. Vo) i, (3.133)

* This section should be read as a complement to the core material of this book.
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therefore constitutes a norm on H~/2(T") and is equivalent to the H~/2(I")-norm.
In the same way V~': H/2(I') — H~'2(T) is continuous, Hermitian and we
have

_ 1
lely-1 = (0. V0) 12y < o elngy Ve e H'2(T).  (3.134)

Therefore [|¢]|,—1 defines a norm that is equivalent to ||-|| gr1/2r). We can formulate
analogous definitions for the hypersingular operator W, which, for example for the
Laplace problem, is only positive on quotient spaces.

Definition 3.8.2. For the homogeneous Neumann problem
Lu=0 inQ7, yu=0 ondQ~ (3.135)
the space of the traces of the solutions is given by
N = {you:ue H' (Q7) solves (3.135)}.

Remark 3.8.3. (a) The Riesz—Schauder theory (see Sect. 2.1.4) implies that N' C
HY2(T) is finite-dimensional.

(b) If the operator associated with the boundary value problem (3.135) is injective
we have N' = {0}.

(c) ForL = —A, y; = a% we have N' = span{1}.

Remark 3.8.4. For o € {—, +} the quotient spaces H®'/2(T") /N are given by the
classes
{u} :={u+v:vespanN}, ue HV2 ().

These can be identified with the representatives ug = ug (u) := u + v, where v =
v (u) is chosen so that
Vv e N : (uo,v)r2(r) = 0.

Thus H°Y2(T) /N is isomorphic to
HIM(T) := {uo (u) : u € HOV? ()}, (3.136)

and the quotient norm HY2(T)/N is equivalent to the H'/? (I')-norm on
HJI/Z(F)
N .

Assumption 3.8.5. There exists a constant cy > 0 such that

(@ W) 12y = ew 19112y Yo € HAP(D). (3.137)

In Theorem 3.5.3 we have shown that Assumptions 3.8.1 and 3.8.5 are satisfied
for the integral operators V' and W associated with L = —A.
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Exercise 3.8.6. Prove that

VoeN: Wo=(3I+K)p=0.
Hint: In Sect. 3.9.2 the same statement is proven for the Helmholtz operator.

Theorem 3.8.7. Assuming that Assumptions 3.8.1 and 3.8.5 hold, we have for the
product of the constants in (3.132) and (3.137) the estimate cycw < 1/4 and for

(A —collully—1 < |(0K + 21 ul|,_y <cxlully-1  Yue HY? (D).

(3.138)
0<CK=%+‘/%—CVcw<1.

Proof. The Calderén identity (3.123) combined with (3.128) gives us

with

2 —
|GT+ K)uly = (VTG + K)u, G+ K)u) o,
= ((%1 + K/) v (%1 + K) “7“)1,2(1“)
= (PSM, M)LZ(F) - (WM, M)LZ(F).

By Assumption 3.8.1, V! : HY2(I') — H~12(TI") has a square root: More
precisely, there exist a complete orthonormal system (e;); ¢ in L2 (') and positive
numbers (1;);cy With V"le; = A;¢; forall i € N. Thus the square root V"2 of
V=1 can be defined for all u € H/2 (T) as

— 1/2
|4 l/zl,t = Z)\l/ (M,e[)LZ(F) €;
ieN

and satisfies (V_lu, ”)L2(F) =
rem 2.37, Corollary 2.38]).
Hence we have

(V_l/zu, V_l/zu)Lz(r) (see, e.g., [162, Theo-

(Psu.u)r2ry = (V7' VPsu,u) (V12 vPgu v1i)

LZ(F) = L2(F)
_1 1

< V72 VPsul 20y IV 2ull 22(ry

= [[VPsully—1 [lully-1

= [GI+K)uly luly—r.
Foru e HJ{/Z(I‘) we have by Assumption 3.8.5 with (3.134)

Wu,u)p2ry = cw ”””%{1/2(1") > cwey (V_lu, ”)LZ(F) = chW||u||%,,1.
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It follows for all u € H /1// Z(I‘ ) that

[GT+K)ulymr < [T+ K)ul o Nully= = evew - -

This inequality has the form

a? < ab — cyew b2,

The case 0 = b = ||u||y—1 implies thatu = 0 and 0 = ||(%I + K) u” y—1 =aand
therefore is trivial. For b # 0 the inequality is equivalent to

a
a2bh=2 — ab! +ceyew <0< 1—cg < E <cx Acycew < 1/4,

from which we have (3.138) with “+”.
We prove the “—” estimate. With the inequality for “+” it follows for u €
H\/*(T) that
lully— = (31 + K + 31 = K) uf s
= GI=K)ulyr + | (1 + K) -
(A =co)lully-1 = [(51 = K)ul, .

The proof for the upper bound uses (3.128):

|7 = K)ulyms = lulfys + | GT+ K)oy =277 (BT + K) i) o,
= ully—1 + | GT + K)ulyo =2 (Psuw2qy
= Nl = | G1 + K)uly =2 (W) 2y
< (1= =ck)?*—2cyew) ully-,
= ck lullf .
O

If the operator that is associated with the boundary value problem (3.135) is
injective Theorem 3.8.7 implies that the equation of the second kind

(31 —K)p = —gp in HY*(I') (3.139)
has a unique solution for the interior Dirichlet problem
Lu=0 inQ~, yu=gpinHY?>T) (3.140)

by the double layer ansatz with the indirect method.
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Exercise 3.8.8. Show that for the solution ¢ of the equation of the second kind
(3.139) we have the representation

o=—GL1-K) " gp=-Y (1 +K)" gp. (3.141)

and that the Neumann series converges in H'/?(T").

Analogously, we have for the Neumann problem
Lu=0 inQ", yu=gy inHZ?(D), (3.142)
the integral equation of the second kind
BI+K)y=2gn in H712(T") (3.143)

by means of the single layer ansatz of the indirect method. Formally, the solution is
given by the Neumann series

o0
-1
v=(GI+K) en=) (1-K) gn. (3.144)
v=0
The Neumann series (3.144) converges in the || - ||y-norm. It also converges in
H™Y2(I") because the | - ||y and the || - || z—1/2(ry norms are equivalent, as the

following result, which is analogous to Theorem 3.8.7, shows.

Theorem 3.8.9. With cx € (0,1) in (3.138) we have for o € {—, +}

(I —cllully < [(0K =31 ul, <cxluly  Vue HF2(T).  (3.145)

Proof. It follows from the boundedness of %I - K HX/I/Z(I‘) — HA_[I/Z(F) and
(3.138) that for o € {—, +} we have

oK' = 1)l = (oK'~ 11) . V (0K = 1)) 1y
= (V (oK' = 31)u. V7' (0K = 31) Vi) 1o
= ((OK — %1) VM, V_l (OK - %1) VM)LZ(I‘)
= ek = 31) Vally-,
< g IVull}y = ckluli.
The left-hand inequality is proven in the same way. o

The Neumann series (3.141) and (3.144) for the representation of solutions of
the integral equations (3.139) and (3.143) motivate the representation by series for
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discretized integral equations as well. (Note that in order to evaluate (3.141) and
(3.144) one only has to apply the matrices of the discretized boundary integral oper-
ators.) However, since there already exist efficient, iterative methods for the solving
of (discretized) equations of the second kind (see Chap. 6), we do not advise the use
of Neumann series for the numerical solution of integral equations.

The algorithmic realization of equations of the second kind in H*1/2 (T") is tech-
nically involved, as the discretization is based on the H*'/2 inner-product. We will
therefore provide criteria in the remainder of this section, which permit the formu-
lation of equations of the second kind in L? (I"). As an example we consider the
abstract equation of the second kind:

Let g € H'/? (") be given. Find ¢ € H'/?(I') such that

1 B
=5 @ M) + bk (9. = (& M2y V1€ H Y2(@M).  (3.146)

Here (-, ) 2(ry again denotes the continuous extension of the L? (T') inner-product
to the dual pairing (-, ) gr1/2(ryx g —1/2(r)- The equation

Yo Do =g (3.147)

in H'/2 (") is equivalent to (3.146), with double layer potential D, where we have
used the relation yy D = —%I + K [see (3.56)]. According to the Riesz repre-
sentation theorem, every functional 7 € H~'/2(I') has a unique representative
W € HY2(T) such that

veom a2 @yxa—172@) = 0 ¥) g2y Yve H'Y2(I).

With this, (3.146) can be equivalently formulated as follows:
Find ¢ € H'/2 (") such that

(o DoY) 1oy = (€W miny VY € HVZ2 (D). (3.148)

The existence and uniqueness of the solution ¢ and the continuous dependency on
the data g is guaranteed by the assumption: y, D : HY2 () - HY2(I') is an
isomorphism.

The numerical implementation of the H'/?(I') inner-product is technically
involved. Thus we will discuss in the following under which additional conditions
the H'/? (T) inner-product in (3.148) can be replaced by the L2 (I") inner-product
(see, for example, [86, Corollaries A.2 and A.5] and [160]).

Assumption 3.8.10. The operator yy D : H* (I') — H* (') is an isomorphism
fors € {0,1/2}.

The following remark shows that Assumption 3.8.10 is satisfied for the Laplace
operator.
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Remark 3.8.11. In the case of the Laplace operator, in [86, Corollaries A.2
and A.5] a Gdrding inequality is shown for the operator y, D on HY2 ().
Furthermore, y, D satisfies Assumption 3.8.10.

The properties that have been described in the previous remark could be directly
transferred to the numerical discretization if the operator y; D were seen as an
operator in H /2 (I"). However, this is usually avoided because of the increase in
complexity for the discretization of the non-local H!/? (T") inner-product. Instead,
Yo D is interpreted as an operator in L? (T'). Assumption 3.8.10 allows us to for-
mulate the integral equation in L2 (T") as well: Let g € L?(T") be given. Find
@ € L2 (T') such that

(Yo DY) 2y = (& W)2@y,  Y¥ € L2(D). (3.149)

Here (-, +)12(ry denotes the usual inner product in L?(T") (and not the extension
to dual pairings). Assumption 3.8.10 guarantees the existence of a solution in
L2 (T). Under the additional condition that g € H'/2(T), the solution satisfies
¢ € H'Y2(I). Since y; D : HY2(I') — H'Y2?(T') is, according to the our
assumptions, an isomorphism, it follows that ¢ = ¢.

Remark 3.8.12. (a) Let Assumption 3.8.10 be satisfied and let g € H'/? (T). Then
the solutions from (3.148) and (3.149) coincide.

(b) The statement “yy D : L2 (T') — L2 () is an isomorphism” cannot, in gen-
eral, be transferred to the numerical discretization of (3.149). In general, the
operator vy D does not satisfy any Gdrding inequality in L% (T') and the sta-
bility of the discretization has to be analyzed with special methods for concrete
situations.

3.9 Boundary Integral Equations for the Helmholtz Equation

3.9.1 Helmholtz Equation

Thus far, we have always assumed apinc > ||b||? for the solvability of the bound-
ary integral equations or we have considered the Laplace problem. In this section
we will discuss physical applications from the areas of time-harmonic acoustics
and electromagnetism that are given by the Helmholtz equation with positive wave
number k > 0

Liu:=—Au—k*u=f. (3.150)

In terms of the spatial dimension we will assume d = 3. As usual, these equa-
tions require suitable boundary conditions. For the exterior problem we impose the
Sommerfeld radiation conditions [see (2.133)]
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Ju )] = Cllx| ™"
for ||x|| — oo. (3.151)

d
‘l—stchrz
ar

Here du/dr = (x/ ||x||, Vu) denotes the radial derivative.

As the coefficients of the Helmholtz operator L do not satisfy with the above-
mentioned conditions, special methods have to be developed for the analysis.

The fundamental solution for the operator Ly is given by [see (3.3)]

(3.152)

In Exercise 3.1.15 it had to be shown that the single and double layer potentials for
the Helmbholtz equation

mm®=/(mkwmw% (mww=/

Y1y Gk (x=y) ¥ (y)dsy
yel’ yel

(3.153)
satisfy the Sommerfeld radiation conditions (3.151).
For a given gp € H 1/2(T) the exterior Dirichlet problem (EDP) for the
Helmbholtz equation reads [see (2.134)]:

Lyu=0inQ™, y(;LuzgponF, (3.154)

u satisfies the Sommerfeld radiation conditions. '
For given data gy € H —1/2(T") the exterior Neumann problem (ENP) for the
Helmbholtz equation [see (2.135)] is given by

Lyu=0inQT, yiu=gnonT,

3.155
u satisfies the Sommerfeld radiation conditions. ( )

3.9.2 Integral Equations and Resonances

In this section we will give necessary and sufficient conditions for the existence of a
unique solution of the integral equations for the interior problems of the Helmholtz
equation. For the exterior problem the radiation conditions guarantee that the EDP
and ENP for the Helmholtz equation has a unique solution for every k. Some of
the integral equations that appear during the boundary reduction of the interior and
exterior problems are identical. It follows that, although the boundary value problem
has a unique solution, the integral operators of the exterior problem are not invertible
in the natural Sobolev spaces on I' for every wave number.
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It follows from Theorem 3.1.1, Proposition 3.1.7 and Exercise 3.1.15 that for
¢ € H™Y2(I") the single layer potential u = Sy satisfies the homogeneous dif-
ferential equation Lg Sx¢ = 0in QT U Q™ as well as the Sommerfeld radiation
condition (3.151). According to Theorem 3.3.1 we have [Sx@] = 0 and the single
layer operator

Vg = vo Skw = vy Skw s HV2(I) — HYA(T)
is well defined. For the IDP
Lyp=0inQ~, ypyyu=gpE€ HI/Z(F)
we obtain the integral equation of the first kind: Find ¢ € H~/2(I") such that

Vep V) 12y = (gD V) 12y V¥ € H V(D). (3.156)

In the following theorem we will discuss the invertibility of the operator V.

Theorem 3.9.1. The single layer operator Vi for the Helmholtz problem is invert-
ible on H=V2(T) if and only if k2 is not an eigenvalue of the IDP for the
operator —A:

—Au=kuinQ -, You=0=u=0inQ".
The null space of Vi is given by
span {y;v:—Av=k>vinQ Aysv=00nT}.

Proof. Let v be an eigenfunction of the IDP for the Laplace operator with eigen-
value k2, i.e., —Av = k?vin Q7, yyv = 0. The single layer potential Sy, v is
identical to zero on R3. We denote the zero extension of v to all of R3 by w. Then
we have [yow] = 0 and [y;w] = —y; v. Therefore the representation formula (3.10)
for the Helmholtz operator is applicable and gives us v = —Si [y1w] = Sgy; vin
Q7. As v is an eigenfunction of the IDP for the Laplace operator with eigenvalue
k2, we have Lpv = 01in Q™ and Yo vV = 0 and so we have

0=yv="yy (Skyyv) = Viyyv.

Hence y{ v is in the zero space of V.

Assume k? is not an eigenvalue of the IDP for the Laplace operator in 2~ and
let w # 0 be in the kernel of V. Then the single layer potential v = Sy w satisfies
the equation Liv = 0 in 7 and from w € Kern (V) we have y, v = 0. From this
we obtain Lgy = —Av—k?v = 0in Q7, y, v = 0. Since k? is not an eigenvalue
of the IDP for the Laplace operator in 27, it follows that v = 0 in Q7 and with
w = —y; v = 0 we arrive at a contradiction.
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Corollary 3.9.2. Although the EDP (3.154) has a unique solution for all k > 0, the
first kind integral equation (3.156) for the EDP that results from the direct method
does not have a solution for all gp € H'/? (T) if k? is an eigenvalue of the IDP for
the operator —A.

We have a similar result for equations of the second kind. If we use the single
layer potential ansatz u = Sy for the ENP we obtain the problem: For given data
gn € H™Y2(I) find ¢ € H~'/2(I") such that

1
- 5(‘/’, M2y + (Kpp. M2y = (gv. M2y ¥ne HYAID).  (3.157)

Theorem 3.9.3. For every eigenvalue k? of the IDP for the operator —A in Q7
—% I 4 K is not injective.

Proof. The proof is similar to the proof of Theorem 3.9.1. Let 0 # w € H} ()
be an eigenfunction of the IDP for —A in Q7 and let w* be the zero extension of
this eigenfunction to 2. Then w* solves the homogeneous equation L;w* = 0 in
Q1 U Q™ and the radiation condition (3.151) holds. Therefore 0 = Sk (y; w) is in
Q1 [see (3.1.13), (3.19)]. It follows that

(—%1 + K,;) (yiw) =0. (3.158)

|
Corollary 3.9.4. The ENP (3.155) cannot be solved for all gy € H~"/*(T') by the
integral equation (3.157) if k? is an eigenvalue of the IDP.
We have an analogous result for the integral operators % I + Ky and Wy.

Exercise 3.9.5. Let k? be an eigenvalue of the INP for the Laplace equation and let
0 # w e HY(Q7) be an associated eigenfunction. Then we have

1
(— ST+ Kk)(yl_w) =0, Wilygw) =0, (3.159)

and the integral operators in the boundary integral equations

1
(31+Ke)e=gp. Wio=egn. (3.160)

for the EDP and ENP of the Helmholtz equation (both of which have a unique
solution) are not invertible in this case.

Remark 3.9.6. Note that the statements from Theorems 3.9.1 and 3.9.3, Corollar-
ies 3.9.2 and 3.9.4 and of Exercise 3.9.5 remain valid unchanged for the operators
Vi, K_p, K’_k and W_y, as the associated eigenvalue equation —Au = k?u in
Q™ does not depend on the sign of k.
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These observations raise the following dilemma: The solutions of the exterior
problems (3.154) and (3.155) are uniquely determined for all k; however, the (stan-
dard) boundary integral equations (3.156) and (3.157) cannot be solved for the
resonant frequencies of the interior problems for arbitrary boundary data gp €
HY2(T), gy € H™Y2(T). In Sect.3.9.4 we will introduce modified boundary
integral equations which avoid this difficulty.

3.9.3 Existence of Solutions of the Exterior Problem

In this section we will provide a proof of existence for the solutions of the Helmholtz
exterior problem. In the classical point of view the boundary integral operators for
the Helmholtz operator are seen as a compact perturbation of the operators for the
Laplace operator. The disadvantage of this approach is the fact that the boundary
integral equations do not have a solution for certain critical wave numbers, even
though the associated boundary value problem has a unique solution.

One stabilized formulation without critical frequencies is due to Panich and will
be introduced in Sect. 3.9.4.

The easiest situation occurs when the boundary I' is smooth. In this case
Ky : HY2(I') - H'Y2(I") is compact, since the associated kernel function is
then weakly singular, as the following exercise demonstrates.

Exercise 3.9.7. Let I € C2. Then there exists some C(I') > 0 such that

¢ (T)
Ix =yl

|Gk (x—y)| + |y15Gk x—y)| < vx,yeT, x#y. (3.161)

(Hint: Use Lemma 2.2.14.)

If K is compact the integral equation (3.139) becomes a Fredholm equation of
the second kind in H'/2(I"). Furthermore, the injectivity of the integral operator
in (3.139) implies the existence of a unique solution ¢ € H'/2(T"), according to
Theorem 2.1.36, provided that k? does not lie in the spectrum of the INP for the
Laplace equation.

If we decompose Wy, into a definite operator and a compact perturbation we may
apply Theorem 2.1.36 to the integral equation of the first kind, Wy¢ = gn, which
arises during the indirect boundary reduction of the ENP. The following lemma
provides the details.

Lemma 3.9.8. Let T be a Lipschitz boundary in R3 and let k € R. Then the
following operators are compact:

Vi—Vo:  H™Y2T)— HY2(I)
Kok — Koo : HV2(') - HY2(T'), o € {+,—}
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K, —Kjo: HV2() > HTV2(I), o0 €f{+,-}
Wi —Wo: HY2I)— H-Y2(I).

Proof. We consider the Newton potential for the Helmholtz operator (MVzp)(x) =
Jz3 Gr(x — y) @(y)dsy. Then Ny — N is the potential for the kernel function

G (2) — Go(z) = L=l

n
anlay 20d

Nk—No : 1‘[Z

comp

R > H*R?) VLeR

loc

is continuous (see Remark 3.1.3). We use the representation V; — Vy =
Yo(Nk — No)y} [see (3.1.6)]. The continuity of yo : H! (R?) — H'/2(T') implies
the continuity of yg : H~/2(I') — HZ} (R®). From this we have the compact-
ness of Vy — Vo : H~Y/2(I') — H'/?(I") by considering the composition of the
following mappings

comp

H7Y2() — HE L (R —  HJ.(R?) < H}.(R*) — HY(I).
y(/) Nie—No oc ¢ oc Y0

Here the compactness of the embedding H2,(R?) — H,! (R?) follows directly
c

from the compact embedding H?3 () = H'(Q) for every compact domain
(see Theorem 2.6.7). We have K,k — Koo = y§ (N — No)(y7) foro € {—, +}
(see Definition 3.1.5).

In order to analyze the mapping properties of K, — K0, we use the same
approach as in the proof of Theorem 3.1.16. We apply the solution operator T from
Sect. 2.8 for the interior problem (with L < Lj; and A < k?) and define the
function u € H} (R3) for given boundary data v € H'/2(T") by

- Tv inQ™,
10 inQT.
We define fi € L2, (R?) by
—k%2Tv inQ~,

fk = (Lk):i: u= { 0 in QT

Green’s formula (3.10) may be applied thanks to the compact support of u and gives
us the relation

u = Ni fi + Sky;u— Dyv,
u =N0f0 + So)/l_l/l— Dov.
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We clearly have f, = 0 and by subtracting one equation from the other we obtain
(Dx — Do)v = N fi + (Sk — So) vy Tv. (3.162)

In the following we will use the same notation as in the proof of Theorem 3.1.16.
The mapping properties of Sx — So, N and y7 T (see Theorem 2.8.2) imply

—k2T
wrm ) e @)% e @) < ae,

comp

T Si—S
HY2() 2 B2 () S B (RP) > HEL(R).
c

By combining these results we obtain the compactness of the mapping Dy — Dy :
H'Y2(T) — H (R?). The continuity of the trace operators yi : H} (Q%*) —
H'Y2(T') therefore gives us the compactness of the difference mapping
Koj — Koo : HY?(T) — HY2(T).

The right-hand side in (3.162) can be decomposed into N fr + Sey  Tv €
H} (R3\T) and Soy; Tv € Hj (R?\T).Hence y{ : Hj (Q°) — H™'/>(T)
can be applied to every one of these summands, which yields the compactness of
Wi —Wo=—y1D: HY2(T) - H-'/2 (). O

We now use Lemma 3.9.8 to show existence for the EDP for the Helmholtz
equation.

Theorem 3.9.9. For every gp € H'Y?(T') the EDP (3.154) has a unique solution.

Proof. We transform the EDP with the representation formula u(x) =
Sxun — Dy gp and the direct method to the equivalent boundary integral equation:
Find uy € H~'/2(T') such that

1 _
(Veeun . ) r2(ry = ((——I + Ki)gp. n) Vne HTV2(I). (3.163)
2 L2(F)

According to Lemma 3.9.8 there exists a constant C > 0 with
Vg 912y = Cligl-1/20y = c(0.0) Yo € HTV2(T)

and a compact form c(-, -) on H~'/2(T") (given by the sesquilinear form associated
with Vi — V}). The Fredholm alternative is applicable to (3.163) and the injectivity
of Vj implies that (3.163) has a unique solution. According to Theorem 3.9.1, Vi
is injective on H~'/2(T") if and only if k2 is not an eigenvalue of the IDP for the
operator —A. Then (3.163) has a unique solution uy € H~'/2(T) for all gp €
H'2(I'p).

If k2 is an eigenvalue of the IDP for the operator —A then, according to the
Fredholm alternative, the integral equation (3.163) can be solved if and only if the
right-hand side vanishes on the kernel of the adjoint operator of V.
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The adjoint operator of Vi is given by V;* (x) = [; 47;]61)( yy”” u(y)dsy. By
virtue of Remark 3.9.6, the kernel of V;* is spanned by y; v with

—Av—k*>=0inQ", Yov=0onT. (3.164)

Let v be a solution of (3.164). Then, with Green’s second formula [see (2.112)], we
have for this v in Q7:

- 1 -
yiv. (=51 + Ki)gp = (7/1 L) (Dng))Lz(F)
2 L2(n)

= (Yo v. 71 (DkgD)) 121y — (Lkv. DkgD) 122y
+ (v, Lk DkgD) 122y -

All terms on the right-hand side vanish, which is why, according to the Fredholm
alternative, the integral equation (3.163) has a solution. The solutions are unique up
to elements from the kernel of V%, i.e., up to y; v for eigenfunctions v of the IDP for
the operator —A with eigenvalue k2.

We have shown that the integral equation (3.163) has a solution uy for every k
and every gp € H'/2(I"). By means of Sguy — Drgp we have therefore shown
the existence of a solution of the EDP. O

We can show the existence of solutions for the ENP for all wave numbers with
similar methods.

3.9.4 Modified Integral Equations

Finding a stable numerical solution of the boundary integral equations for the
Helmholtz equation is substantially complicated by the problem of resonant fre-
quencies. Therefore we are interested in modified integral equations that have
unique solutions for all wave numbers.

There are several approaches to transform the exterior problems (3.154) and
(3.155) into modified integral equations that have unique solutions for all wave
numbers. We will present two.

The classical approach is due to Brakhage and Werner [28] and it consists of
using a combined single and double layer ansatz. For globally smooth surfaces it
can be shown that the resulting boundary integral equations have unique solutions
for all wave numbers. We consider the EDP (3.154) and use the indirect method.
Let n € R with

nRek > 0. (3.165)

In Q1 we set
u= Dro—inSke. (3.166)
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This ansatz satisfies Lyu = 0in Q7 as well as the Sommerfeld radiation conditions
(3.151). The jump relations give us the boundary integral equation

1
g§p =You= (51 +Kk)<p—ind<o, (3.167)

an integral equation of the second kind for the unknown ¢. Assuming that I' is
globally smooth it can be shown, as, for example, in [147, Theorems 3.33, 3.34],
that the integral operator %I + Ky — inVy is bijective for all wave numbers k. The
proof is similar to the proof of Theorem 3.9.1, where, instead of the null space of
the IDP, we have the null space of the interior problem

—Au—k*>n=0 inQ", yiu+inyou=0,

in which for all  # 0 the term k2 is not an eigenvalue.

The proof of the bijectivity uses the global smoothness of the boundary, which,
according to Exercise 3.9.7, implies the weak singularity of the kernels of K3 and
K . Therefore the integral operator in (3.167) is a Fredholm integral operator of the
second kind and is thus boundedly invertible for all wave numbers k.

With the Brakhage-Werner regularization (3.167), the question whether %I +
Ky —in Vg is also bijective for piecewise smooth or general Lipschitz boundaries I",
remains unanswered. In this case the ansatz (3.166) becomes problematic, since the
domains of Dy and Sj do not coincide on non-smooth boundaries.

This problem is solved by an approach due to Panich [179], which guarantees
the existence of a unique solution for all wave numbers for Lipschitz boundaries as
well. We assume that there exists an isomorphism

R:H™'2* () > H'?T ()  V|s| <1/2 (3.168)
on general Lipschitz boundaries I' that is Hermitian for s = 0.
For the solution of the EDP with Lipschitz boundary we use the ansatz by means
of potentials
u(x)=Dro+in Sk R Vo e HV*(). (3.169)
Then we have Lyu = 0in Q% and (3.151) forall ¢ € H'Y2(T'). The unknown data

is the solution of the boundary integral equation

1
gp = yju= Bry:= (5 I+ Kk) ¢ +inVi R 9 in HY*(').  (3.170)

Furthermore, we have for the potential u in (3.169)

[youl = ¢ and [yu] = —inR™'p. (3.171)
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If we eliminate the density ¢ in (3.171) we obtain that « in (3.169) is a solution of
the interior problem

Lyu=0inQ~, inyou+ R(y;u) =ingp + Ry; u. (3.172)

Proposition 3.9.10. For n # 0 the integral operator By in (3.170) is injective for
all k.

Proof. Let 0 # ¢ € H'Y2(T") be a solution of Bxg = 0. Then u := Drp +
inSy R™'¢ is a solution of the EDP (3.154) in Q%+ with gp = 0. The fact that
the EDP has a unique solution implies that ¥ = 0 in Q7. From this we have
that —ygu = [you] = ¢ and —y;u = [y1u] = —in R 1. Green’s formula in
Q7 yields

IVl 2 gy — K2 4220y = 07 ve W) 20y = —(1R ™ 0.0) 120)-

Since R is Hermitian, it follows for 0 # n € R that the right-hand side of this
identity is purely imaginary, from which we have (R™!¢, ¢) L2y = 0. By virtue of
(3.168) we then have ¢ = 0, i.e., we have the injectivity of B. |

The existence of a unique solution of the integral equation (3.170) for all wave
numbers follows from the injectivity and a Garding inequality for By in H'/2(I")
that is uniform in k.

Remark 3.9.11. The choice of R is not unique. In [45], the definition of R is based
on the strongly smoothing integral operator [ e~ Ixvly (y) dsy. It is also explicitly
analyzed in how far the Galerkin discretization depends on the wave number k.
In [132] the inverse of the Laplace—Beltrami operator for the stabilization of the
integral equation is proposed.

For further readings we refer, e.g., to [55,56,70].

3.10 Bibliographical Remarks on Variational BIEs

In this and the preceding chapter, we presented elements of variational formulations
of boundary integral equations on Lipschitz domains & C R3. We also established
the well-posedness of these variational boundary integral equations by proving coer-
civity of the boundary integral operators in scales of Sobolev spaces on the boundary
I =09Q.

The use of integral equation methods to analyze the existence and unique solv-
ability of elliptic boundary value problems is not recent: it dates back to the
nineteenth century in the work of Fredholm, Radon, Neumann. Ideas from the anal-
ysis of integral equations entered also in an essential fashion into the development
of functional analysis at the beginning of the 20th century. However, in these works
the boundary integral operators were analyzed as mappings between Holder spaces.
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In our presentation, we paid particular attention to the proof of coercivity in suit-
able function spaces of Sobolev type on the surface I'. A key step in the approach
presented here consists in establishing Garding inequalities in function spaces on I'
by “transfer of coercivity” from the elliptic problem in €2 to spaces of traces and nor-
mal derivatives on I'. This avenue to formulating and to studying well-posedness
of BIEs is relatively recent: it originates in work of J.C. Nédélec and Planchard
[171] and, independently, of G.C. Hsiao and W.L. Wendland in [136]. A particularly
lucid exposition of the approach for boundary value problems of linear, scalar, sec-
ond order strongly elliptic differential operators in or exterior to bounded Lipschitz
domains €2 is [72] due to M. Costabel.

The formal approach has, however, a much wider scope than scalar, second order
elliptic problems: it has been extended to quite general classes of boundary value
problems for systems of partial differential equations which are elliptic in the sense
of Agmon, Douglis and Nirenberg in smooth domains as was shown by M. Costabel
and W. Wendland in [74]. This result covers in particular the Lamé—Navier sys-
tem of linearized elasticity in Lipschitz domains €2 where the analogs of the screen
problems of Sect. 3.5.3 are the first kind boundary integral equation reformulations
of elastic fracture mechanics. Their well-posedness was first established by E.P.
Stephan in [219]. These formulations have the appeal that they require only dis-
cretizations of the fracture, and not of the ambient, possibly infinitely large, linearly
elastic medium. We note in passing that the formulation and the analysis of prob-
lems from both elastostatics as well as elastodynamic problems interior or exterior
to bounded domains  C R? in function spaces of Holder type is quite mature and
classical by now, see, e.g. [23,150] and the references there. For specific variational
formulations of these boundary value problems for vector-valued functions we refer
to Chap.2 of [137]. Importantly, all concepts presented in Chap. 3 of the present
monograph for scalar, second order elliptic problems carry over to problems of
elastostatics verbatim.

Also due to M. Costabel is the application of the variational formalism to the
derivation of coercive coupled variational boundary integral formulations. There,
a variational formulation of a (possibly nonlinear) elliptic boundary value problem
in a bounded domain is coupled to a linear elliptic exterior problem by means of a
one-sided boundary reduction in the exterior domain. This results, in effect, in varia-
tional formulations of elliptic PDEs with nonlocal and, possibly, nonlinear boundary
integral operators in their variational form. These coupled formulations constitute a
nonlocal exact artificial boundary condition for the artificial reduction of boundary
value problems on unbounded domains to a bounded, truncated domain.

Once again, strong ellipticity of coupled variational formulations on the bound-
ary can be established, as was first explained by M. Costabel in [73]. The variational
approach for deriving well-posed, i.e. strongly elliptic, coupled formulations of
boundary value and transmission problems has subsequently found many applica-
tions, in particular in contact problems in elasticity (see, e.g. [61, 158] for a formu-
lation, and for asymptotic convergence estimates for some Galerkin discretizations
of such coupled formulations).
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In problems of linearized elasticity, this leads once again to boundary integral
variational inequalities on the (a priori unknown) contact surface. Again, the bound-
ary integral operators appearing in these inequalities are shown to be strongly elliptic
by the variational method; also here, the function spaces H*Y 2(I‘ o) enter in an
essential fashion.

A particularly interesting feature of boundary integral reformulations of bound-
ary value problems of homogeneous, isotropic three-dimensional, linearized elas-
ticity is the fact that the fundamental solution and the mapping properties of all
boundary integral operators remain unchanged in the incompressible limit, i.e. in
the passage from the Lamé—Navier equations to the Stokes equations. This is in
stark contrast to the variational formulations of the domain problems, where in the
incompressible limit the function spaces must change, due to the appearance of
the “incompressibility constraint” divu = 0 in 2. This constraint is accounted for
exactly by the fundamental solution (which, in this case, is a matrix-valued inte-
gral operator with kernels derived from the so-called Kelvin fundamental tensor.
As a consequence, variational boundary integral formulations for linearized, three-
dimensional elastostatics do not suffer from the so-called locking effect which is a
well-known problem for domain based Finite Element discretizations of the PDE.

A further important class of elliptic problems for which the use of bound-
ary integral equations is fertile for efficient numerical treatment is computational
electromagnetism. This class of problems has not been discussed in the present
monograph since, unlike the above-mentioned problems, on nonsmooth domains
(such as Lipschitz domains €2), the Maxwell system does not fit straightforwardly
into the variational framework of Chaps.2 and 3. One approach to overcoming this
consists in reformulation of the governing equations in terms of vector potentials;
indeed, in this setting, the governing Maxwell equations can be, at least on smooth
domains €2, recast into elliptic systems which allow for a strongly elliptic bilinear
form (see, e.g. [170] and the references there).

For time-harmonic electromagnetic wave propagation problems, a basic problem
in computational electromagnetism is the numerical solution of the time-harmonic
Maxwell governing equations subject either to “electric” or to “magnetic” bound-
ary conditions (taking formally the place of Dirichlet and Neumann boundary
conditions, but being different from these) in the exterior of a bounded Lipschitz
polyhedron Q C R3. Degenerate domains like screens, or wires, are again of par-
ticular interest in connection with electromagnetic fields in antenna design. Here,
a direct approach towards variational boundary integral equations on nonsmooth
domains has been developed in recent years. It was initiated by electrical engineers,
starting from the so-called Stratton—Chu representation formula for electromagnetic
fields as potentials of so-called surface currents. The principal issues, definitions and
mathematical results in well-posed variational formulations of BIEs on Lipschitz
polyhedra is recapitulated in the survey [41] and the references there. In particu-
lar, the variational functional framework of the associated BIEs (such as, e.g., the
so-called “Flectric Field Integral Equation (EFIE)”), is quite distinct from that pre-
sented in Chaps.2 and 3 of the present volume. The structure of the trace spaces
on Lipschitz surfaces were only recently characterized in [39]. Likewise, coercive
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variational formulations of the variational BIEs have been obtained by boundary
reduction from corresponding statements of the domain problems in [40]. Many
features of the BIEs of electromagnetics are reminiscent of the (simpler) Helmholtz
equation which was described in Sect. 3.9 of the present volume: in particular the
occurrence of resonance frequencies at which the homogeneous, interior boundary
value problems admit nontrivial solutions causes instabilities of the boundary inte-
gral equations; these can be overcome by the use of the so-called “combined field
integral equation (CFIE)”, see for example [42, 43] for details. The numerical anal-
ysis of the BIEs obtained by the direct boundary reduction is complicated in that
the function spaces which are natural for the BIE have an infinite dimensional null
space; accordingly, the standard convergence framework of Galerkin BEM which
we presented in the present chapter does not apply anymore. This problem was
overcome first by S. Christiansen in [64] and later extended to the case of screen
like conductors in [37].

The above references underline the wide applicability of the variational approach
to the systematic derivation of stable boundary integral equation formulations, in
particular on nonsmooth domains 2. Still, the variational approach is historically
rather recent, and relies on transfer of strong ellipticity of a related partial differen-
tial equation together with the existence of a fundamental solution of the differential
operator.

We mention several other approaches for proving stability of boundary integral
operators which do not draw upon the variational approach. Most if not all of these
approaches require, however, surfaces I' which are considerably more regular than
Lipschitz which was sufficient for the variational approach.

One of the earliest approaches is the proof of bounded invertibility of the double
layer potential for the Laplacian by means of showing convergence of the so-called
Neumann series representation of the inverse in classes of Holder continuous func-
tions on I'. We refer to [160] and the references there for more on this topic. In
particular, the bounded invertibility of the boundary integral operators for elasticity
in classes of Holder continuous functions has been investigated in [150].

A second, general approach to the analysis of boundary integral operators is by
interpreting them as particular instances of pseudodifferential operators. In this
way, powerful tools from the theory of these operators can be brought to bear.
This requires, however, boundaries I" which are smooth, closed manifolds in R3.
Still, in this case strong ellipticity in the form of coercivity of the boundary integral
operators can be established directly, i.e. without resorting to ellipticity of a par-
tial differential operator in the domain €2 bounded by I". This is done by proving a
Garding inequality for the principal part of the boundary integral operator A. The
principal part of the operator A at a pointx € I'" coincides with the restriction of this
operator on the tangent bundle to I' at x. A key result from the theory of pseudod-
ifferential operators on manifolds states that the Gdrding inequality for A follows
from the positivity of the real part of the principal symbol of the boundary integral
operator A. For many boundary integral operators, the principal symbol is easily
calculated. The verification of its positivity is then elementary. The mathematical
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details of this direct approach to strong ellipticity of boundary integral operators are
nicely laid out in the recent monograph of G.C. Hsiao and W.L. Wendland [137].

So far, all boundary integral equations considered were posed on bounded sur-
faces T C R3. There are several cases of practical interest where the surfaces I are
unbounded. We mention only acoustic or electromagnetic scattering on a halfspace
or the integral equations which arise in the modelling of water waves. We refer to the
recent papers [58,59,186] for more on the formulation and the bounded invertibility
of integral operators on noncompact boundaries I".

Another area of active current research is the uniformly bounded invertibility
of parametric boundary integral operators. This pertains in particular to acoustic
and electromagnetic scattering problems at high frequencies where the parameter
is the (nondimensional) wave number. In our considerations, the boundary integral
equations for Helmholtz problems were always considered at fixed wave number «;
however, all constants in the stability estimates for the boundary integral operators
which are obtained by the abstract error analysis depend on the wave number k in
an unspecific way. In recent years, considerable progress was made in establish-
ing stability bounds which are explicit in the wave number « for boundary integral
operators for acoustics and electromagnetics (i.e. for the Helmholtz and Maxwell
equations) (see, e.g., [15,45,55,56, 146, 156]).



Chapter 4
Boundary Element Methods

In Chap.3 we transformed strongly elliptic boundary value problems of second
order in domains Q C R?3 into boundary integral equations. These integral equations
were formulated as variational problems on a Hilbert space H:

Findu € H: b, v)=F () VveH, 4.1

which, in the simplest cases, was chosen as one of the Sobolev spaces H® (I'), s =
—1/2,0,1/2. The functional F € H’ denotes the given right-hand side, which, in
the case of the direct method (see Sect. 3.4.2), may again contain integral operators.
The sesquilinear form b (-, -) has the abstract form

b (u,v) = (Bu,v)2(r)

with the integral operator

(Bu) (x) = A1 (X) u (x) + A5 (x) /1“ kxy y—x)u(y)dsy xelae (4.2)

Convention 4.0.1. The inner product (-, ) 2(r) is again identified with the contin-
uous extension on H= (I') x H® (T).

The coefficients A1, A, are bounded. For A; = 0, a.e., one speaks of an integral
operator of the first kind, otherwise of the second kind. In some applications the
kernel function is not improperly integrable, and the integral is defined by means of
a suitable regularization (see Theorem 3.3.22).

The sesquilinear form in (4.1) associated with the boundary integral operator in
(4.2) satisfies a Garding inequality: There exist a y > 0 and a compact operator
T : H — H’ such that

Yue H :|b@u)+ (Tu,u) gl = yllulz. (4.3)

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series 183
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2_4,
(© Springer-Verlag Berlin Heidelberg 2011
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The variational formulation (4.1) of the integral equations forms the basis of
the numerical solution thereof, by means of finite element methods on the boundary
I' = 09, the so-called boundary element methods. They are abbreviated by “BEM”.

Note: Readers who are familiar with the concept of finite element methods
will recognize it here. One essential conceptual difference between the BEM and
the finite element method is the fact that, in the BEM, the resulting finite ele-
ment meshes usually consist of curved elements and therefore, in general, no affine
parametrization over a reference element can be found.

Primarily, we consider the Galerkin BEM, which is the most natural method for
the variational formulation (4.1) of the boundary integral equation. In Sect. 4.1 we
will describe the Galerkin BEM for the boundary value problems of the Laplace
equation with Dirichlet, Neumann and mixed boundary conditions, all of which
lead to boundary integral equations of the first kind with positive definite bilinear
forms. We obtain quasi-optimal approximations and prove asymptotic convergence
rates for the Galerkin BEM. In Sect.4.2 we will then study Galerkin methods in
an abstract form for operators that are only positive with a compact perturbation.
We will also present a general framework for the convergence analysis of Galerkin
methods. In Sect.4.3 we will finally prove the approximation properties of the
boundary element spaces.

4.1 Boundary Elements for the Potential Equation in R?

We will first introduce the Galerkin BEM for integral equations of the classi-
cal potential problem in R3 and derive relevant error estimates for the simplest
boundary elements.

4.1.1 Model Problem 1: Dirichlet Problem

Let Q= C R3 be a bounded polyhedral domain, the boundary I' = 9Q~ of which
consists of finitely many, disjoint, plane faces I'/, j = 1,...,J: T = UJJ-ZI .
In the exterior QT = R3\Q~ we consider the Dirichlet problem

Au=0inQT, (4.4a)
u=gponl, (4.4b)
lu(x)| = 0(||x||_1) for ||x|| — oo. (4.4¢)

In Chap.2 (Theorem 3.5.3) we have shown the unique solvability of Problem
(4.4).
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Proposition 4.1.1. For all gp € H?(I') Problem (4.4) has a unique solution
ue HY (L, Q%) with L = —A.

Proof. Theorem 2.10.11 implies the unique solvability of the variational formulation
associated with (4.4) in H'! (L, §2+) with L = —A. In Sect.2.9.3 we have shown
that the solution also solves (4.4a) and (4.4b) almost everywhere.

Decay Condition: Theorem 3.5.3 provides us with the unique solvability of the
boundary integral equation that results from (4.4) (with the single layer ansatz)
in H~Y/2 (). The associated single layer potential is in H' (L, Q%) (see Exer-
cise 3.1.14) and, thus, is the unique solution.

Finally, in (3.22) we have shown that the single layer potential satisfies the decay
condition (4.4c). O

We will now reduce (4.4) to a boundary integral equation of the first kind. We
ensure that (4.4a), (4.4c) are satisfied by means of the single layer ansatz (see
Chap. 3)

U(x) = (S@)(x) = [F %d% xeat. 45)

The unknown density ¢ from (4.5) is the solution of the boundary integral
equation
Vo =gp onT (4.6)

with the single layer operator

¢0) 4o xer @7

(Vo)(x) = [F ey Ay

(4.6) defines a boundary integral equation of the first kind. The Galerkin boundary
element method is based on the variational formulation of the integral equation.
Instead of imposing (4.6) for all x € I', we multiply (4.6) by a “test function” and
integrate over I'. This gives us: Find ¢ € H~'/2(T") such that

_ @(y)
[wemas = | (/1" an % =] dSy) Ty

= / gp(x)n(x)dsx  Vne H'2(I). (4.8)
I

For the Laplace operator we only consider vector spaces over the field R and not
over C, so that in (4.8) there is no complex conjugation.

The “integrals” in (4.8) should be interpreted as duality pairings in H 3 (') x
H~2(T) in the following way. For ¢ € H~1/2(T') we have Vg € H/2(T') and, by
Convention 4.0.1, we can write (4.8) as

Findg € H2(): Vo.n) oy = (gp M2y ¥n€ HV2(D). (4.9)
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The left-hand side in (4.9) defines a bilinear form b(-,-) on the Hilbert space
H = H™Y2(I') with
b(e.n) = (Vo.M r2r)- (4.10)

and the right-hand side defines a linear functional on H~1/2 (I'):
Fn) :=(gp. M2 4.11)

Keeping the duality of H~/2(T") and H'/2 (I") in mind, it follows from

| (gp. )2 |
[F(n)| < sup 7 | Inlla- v2(ry = ||gD||H1/2(r)||77||H 1/2(T)
pEH—/2(D\{0} ”N”H*I/Z(F)

that F is continuous on H /2 ().
For sufficiently smooth functions ¢, 1 in (4.10) we have, by virtue of Fubini’s

theorem,
blp.m) = / / W)y s — b (n. ) (4.12)
4 |x —y|

and therefore the form b(-,-) is symmetric. Furthermore, it is also H~!/2-elliptic

(see Theorem 3.5.3). According to the Lax—Milgram lemma (see Sect. 2.1.6), Prob-
lem (4.9) has a unique solution ¢ € H~Y2(T) for all gp € HY?(T'). In the
representational formula (4.5) this ¢ gives us the unique solution u of the exterior
problem (4.4).

The discretization of the boundary integral equation consists in the approxima-
tion of the unknown density function ¢ in (4.6) by means of a function ¢ which
is defined by finitely many coefficients (oc,-)fv:1 in the basis representation. In the
Galerkin boundary element method, this is achieved by restricting ¢, 7 in the vari-
ational form (4.9) to finite-dimensional subspaces, the boundary element spaces,
which we will now construct.

4.1.2 Surface Meshes

Almost all boundary elements are based on a surface mesh G of the boundary I.
A surface mesh is the finite union of curved triangles and quadrilaterals on the
boundary I', which satisfy suitable compatibility conditions. A general element of
G is called a “panel”.

For the definition we introduce the reference elements

Unit triangle: S, := {(1.6£2) eR?:0< & <& <1}
(4.13)
Unit square: Qz = (0,1)%

Our generic notation for the reference element is 7.
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Definition 4.1.2. A surface mesh G of the boundary I" is a decomposition of T’
into finitely relatively open, disjoint elements t C I' that satisfy the following
conditions:

(a) Gisacoveringof I':

= Ureg T.

(b) Every element T € G is the image of a reference element 7 under a regular
reference mapping y.. Then y. is called regular if the Jacobian J; = Dy,
satisfies the condition

0 < oy = nf ”vvi%ile (3 (8) vae (8)v) = up ||%11[§21 (3¢ (§) v.3- (€) v)

< Amax < 00.

(c) For a plane triangle t € G with straight edges and vertices Py, P; and P,, the
regular mapping y. is affine:

1e (§) =Po+ & (P1 —Po) + & (P — Py).. (4.14)

For a plane quadrilateral T € G with straight edges and vertices Py, P, P, and
P; (the numbering is counterclockwise) the mapping is bilinear:

1e (E) = Po+ & (P1 —Po) + & (P — Po) + 16 (P — P3 + Py — Py).
(4.15)

Figure 4.1 illustrates Definition 4.1.2 for a triangular and a quadrilateral element.

D

—_—> 4 5

Fig. 4.1 Schematic illustration of the reference mappings; triangular panel (left), parallelogram
(right)
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Exercise 4.1.3. Show the following:

(a) The affine mapping x in (4.14) is regular if and only if Py, Py, Py are vertices of
a non-degenerate (plane) triangle t, i.e., they are not colinear. Find an estimate
for the constants Amin, Amax from Definition 4.1.2(b) in terms of the interior
angles of t.

(c) Let Py, P, Py, P3 be the vertices of a plane quadrilateral T with straight edges.
The mapping x from (4.15) is regular if all interior angles are smaller than
and larger than 0.

In some cases we will impose a compatibility condition for the intersection of
two panels.

Definition 4.1.4. A surface mesh G of T’ is called regular if:

(a) The intersection of two different elements 7, t’ € G is either empty, a common
vertex or a common side.

(b) The parametrizations of the panel edges of neighboring panels coincide: For
every pair of different elements 7,7’ € G with common edge e = T N 7/ we
have

Xele = XvovVerlss

where é := y.!(e) and y; : T — 7 is a suitable affine bijection.

Remark 4.1.5. Throughout this section we assume that the boundary T is Lipschitz
and admits a regular surface mesh in the sense of Definitions 4.1.2 and 4.1.4. This
is a true restriction since not every Lipschitz surface admits a regular surface mesh.

For later error estimates we will introduce a few geometric parameters, which
represent a measure for the distortion of the panels as well as bounds for their
diameters.

Assumption 4.1.6. There exist open subsets U,V C R* and a diffeomorphism yr :
U — V with the following properties:

(a) T' CU.
(b) For every t € G, there exists a regular reference mapping y. : T — 1 of the
form
Xo = yro ez g
where y¥ne : R?2 — R3 is a regular; affine mapping.
Example 4.1.7.

1. Let T" be a piecewise smooth surface that has a bi-Lipschitz continuous para-
metrization over the polyhedral surface T': yr : T' — T. Let Gifire .=

A

{Iffﬁ“e :1<i <N } be a regular surface mesh of T with the associated ref-
erence mappings )(iff&ee 0T — e Then G = { T (fafﬁ"e) ; affine ¢ Qafﬁne}

defines a regular surface mesh of I" which satisfies Assumption 4.1.6.
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2. For the unit sphere " := {X eR3: x| = 1} one can choose the inscribed dou-
ble pyramid with vertices (£1,0,0)7, (0, £1,0)T, (0,0, £1)T as a polyhedral
surface [, while AT : [ > Tis defined by yr (x) := x/ ||x||. By means of xr,
regular surface meshes on I' can then be generated through lifting of regular
surface meshes of the polyhedral surface I.

In order to construct a sequence of refined surface meshes for I', in many cases
the procedure is as follows.

Remark 4.1.8. Let I' be the surface of a bounded Lipschitz domain Q CR3In
the first step we construct a polyhedron r along a bi-Lipschitz continuous map-
ping xr : [>T (see Example 4.1.7). Let gafﬁ"e be a (very coarse) surface
mesh of I Then Go = {r = xr ( afﬁ""’) . gaffine o gg“me} defines a coarse sur-
face mesh of T'. We can obtain a sequence (gafﬁ"e) of finer surface meshes if,
during each refinement, we decompose every panel in Qafﬁ“e into new panels by
means of a fixed refinement method. For triangular elements, for example, we
interconnect the midpoints of the sides and for quadrilateral elements we connect
both pairs of opposite midpoints. This gives us a sequence of surface meshes by
gé = {‘L’ =xr (Tafﬁne) : .L,afﬁne = ngﬁne}'

Convention 4.1.9. If t and t*M appear in the same context the relation between
the two is given by Tt = yr (fafﬁ"e).

The following definition is illustrated in Fig. 4.2.

Definition 4.1.10. Let Assumption 4.1.6 be satisfied. The constants c,gipe > 0
(Catfine > 0) are the maximal (minimal) constants in

Cattine X = Y[ < [l xr (%) = xr ]| = Catine [x —y[| Vx,y € ¢, wrifine g gatfine

and describe the distortion of curved panels t compared to their affine pullbacks
affine
e,
The diameter of a panel t € G is given by

he = sup [Ix —y]|

X,yET

and the inner width p, by the incircle diameter of 72/,

l p.

Fig. 4.2 Diameter of a panel and incircle diameter; triangular panel (left), parallelogram (right)
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The mesh width hg of a surface mesh G is given by
hg := max{h; : T € G}. (4.16)

We write A instead of g if the mesh G is clear from the context.

Remark 4.1.11. For plane panels t, p; is the incircle diameter of t.
The diameters of T and " satisfy

Ca?ﬁlnehf = sup ”X - YH = hr“fﬁ‘lc = c;ﬁlnehf'

X,yE‘Eafﬁ"C
Definition 4.1.12. The shape-regularity constant kg is given by

h
Kg = max —. 4.17)
T€G Pz

For some theorems we will assume, apart from the shape-regularity, that the
diameters of all triangles are of the same order of magnitude.

Definition 4.1.13. The constant g¢ that describes the quasi-uniformity is given by
qg '= hg/min{h, : t € G}.

Remark 4.1.14. In order to study the convergence of boundary element methods,
we will consider sequences (Gg)yen of surface meshes whose mesh width hy := hg,
tends to zero. It is essential that the constant for the shape-regularity kg = Kg,
remains uniformly bounded above:

sup kg < kK < 00. (4.18)
LeN
In a similar way the constants of quasi-uniformity q¢ := qg, have to be bounded
above in some theorems:
sup gy < ¢q < 0. (4.19)
LeN

We call a mesh family (Gg)gen With the property (4.18) shape-regular and with the
property (4.19) quasi-uniform.

Exercise 4.1.15. Show the following:

(a) If the surface mesh Gq is regular and if finer surface meshes (Gy), are con-
structed according to the method described in Remark 4.1.8 then all surface
meshes (Gy), are regular.

(b) The constants concerning shape-regularity and quasi-uniformity are, under the
conditions in Part (a), uniformly bounded with respect to £.



4.1 Boundary Elements for the Potential Equation in R? 191

4.1.3 Discontinuous Boundary Elements

The boundary element method defines an approximation of the unknown density ¢
in the boundary integral equation (4.6) which is described by finitely many parame-
ters. This can, for example, be achieved by (piecewise) polynomials on the elements
7 of amesh G.

Example 4.1.16. (Piecewise Constant Boundary Elements)
Let T' = 0Q be piecewise smooth and let G be a — not necessarily regular —
surface mesh on I'. Then S g denotes all piecewise constant functions on the mesh G

Sy :={y € L®°(T) | VT €G: ¥|, is constant}. (4.20)

Since v € L (), we only need to define \ in the interior of an element, as the
boundary 01, i.e., the set of edges and vertices of the panel, is a set of zero measure.

Every function ¥ € Sg is defined by its values \; on the elements t € G and can
be written in the form

Yx) =) Yebe(x) 4.21)

T€G

with the characteristic function b, : T' — R of 1 € G:

l1xer,
b (x) ;= . (4.22)
0 otherwise.

In particular, Sg is a vector space of dimension N = #{t : t € G} with basis

{b: : Tt € G}.

In many cases the piecewise constant approximation of the unknown density
converges too slowly and, instead, one uses polynomials of degree p > 1. In the
same way as in Example 4.1.16 this leads to the boundary element spaces Sgp . For
their definition we need polynomials of total degree p on the reference element as
well as the convention for multi-indices from (2.67)

P2 = span {§" : u € N§ A|u| < p}. (4.23)
Forp=1and p =2, IPPA contains all polynomials of the form

ago + a1061 + ané Yay,aip. a1 € R for p =1,
2 2 _
ago + ark + aoks + axki + ankié + ank; Yae. a. aor. ax. ai.ap € R for p =2.

Definition 4.1.17. Let ' = 92 be piecewise smooth and let G be a surface mesh
of I'. Then, for p € Ny,

S§:={¢:F->K|vfeg:on,ePpA}. (4.24)

We simply write S# or only S if the reference to the surface mesh G is obvious.
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Remark 4.1.18. Note that in (4.24) the functions ¥ € S? do not constitute poly-
nomials on the surface I'. Only once they have been “transported back” to the
reference element T by means of the element mapping x. (see Fig.4.1) is this the
case. The parametrizations y. of the elements t € G in Definition 4.1.2 (b,c)
are thus part of the set Sé’ . A change in parametrization y. will lead (with the
same mesh G) to a different Sé’ . Therefore for a mesh G we summarize the element
mappings - in the mapping vector

X ={c:t€q} (4.25)

and instead of (4.24) we write Sg,x'

Remark 4.1.19. Note that (4.24) also holds for meshes G with quadrilateral ele-
ments, i.e., with reference element © = (0, 1). Since SP does not require continuity
across element boundaries, the space of polynomials Pﬁ in (4.23) can also be
applied to quadrilateral meshes.

For the realization of the boundary element spaces we need a basis for P2, which
we denote by N a j)(él , éz) and which satisfies

P2 — span {JT/(,-,]-) L0<ij<pit]< p}. (4.26)
For example, 1/\7(1-,]-) (&1,&) = gigé, 0 <i+j < pasin (423), would be

admissible basis functions.

Remark 4.1.20. (Nesting of Spaces)
We have IP’pA C IP’qA forall p < q. Therefore we can always choose a basis in IP’qA

which contains the basis functions from ]P’ﬁ as a subset. The basis functions N )
in (4.23) have this property.

Once we have determined a basis N a, j)(é) on 7, every Y € Sé’ , on a panel
T € G can be written as

V= D) iy (N(i,j) ° X?l)
0si+j<p

and R
NEy=Napoxs' 0<i+j<p

spans the restriction {y|, : ¥ € S (I',G, x)}. In order to give a basis of Sg,x
suitable indices, we define

= {p e N3 : ] < p}.

Thus we have
Sy = span{bgu 0 (x) © (11, 7) € 1p X G}, (4.27)
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where the global basis functions by (x) with the multi-index / = (u, t) denote the
zero extension of the element function N to I': For

I = 1)e,xgG=12(G p) =171 (4.28)
we explicitly have
NI(x), x €T,
br(x) = k) (4.29)
0 otherwise.

Hence, every ¥ can be written as a combination of the basis function by (x):

Y@ =Y vrbi(x). xer, t€g. (4.30)

IeZ

Let |G| be the number of elements in the mesh G. The dimension of S gp’ , or the
number of degrees of freedom is then given by

N =G| (p+ D(p +2)/2 =dim(S] ). 4.31)

Every functionin ¢ €S gp’ , is then uniquely characterized by the vector (Y1) ;ez(g, p)
C RN = RZEP) a5 in (4.30).

4.1.4 Galerkin Boundary Element Method

The simplest boundary element method for Problem (4.6) consists in approximating
the unknown density ¢ in (4.9) by a piecewise constant function g5 € S°(T, G).

Convention 4.1.21. The boundary element functions depend on the boundary ele-
ment space S? (', G, y); in particular, they depend on T, the surface mesh G and
the polynomial degree p. We will, whenever possible, use the abbreviated notation

@s instead Of‘/’sé’ e

Inserting (4.30) into (4.6) or into the variational formulation (4.8) leads to a con-
tradiction: since, in general, we have g5 # ¢, (4.6) and (4.8) cannot be satisfied with
¢ = @s, which is why the statements have to be weakened. As ¢g is determined
by N parameters ((p;9 ) ez [see (4.29)-(4.31)], we are looking for N conditions to
determine ¢ IS . In the Galerkin boundary element method we only let the test func-
tion 7 run through a basis of Sé’ in the variational formulation of the boundary
integral equation (4.9). The Galerkin approximation of the integral equation (4.9)
then reads:
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Find g5 € S§ , such that

blgs.ns) = F(ns)  Vns € S§ (4.32)
with b(-,-) and F(-) from (4.10) and (4.11) respectively.

Remark 4.1.22. (i) The Galerkin discretization (4.32) of (4.8) is achieved by res-
tricting the trial and test functions @, 1 to the subspace SQP,X c HV2(') in
the variational formulation (4.8).

(ii) The boundary element solution ¢s in (4.32) is independent of the basis chosen
for the subspace.

The computation of the approximation ¢g requires that we choose a concrete
basis for the subspace. Therefore, [see (4.29)—(4.31)] for a fixed p € Ny, we choose
the basis

(br: 1 €Z(G.p)) (4.33)
for S é’, »- Then (4.32) is equivalent to the linear system of equations:
Find ¢ € R¥ such that
By =F. (4.34)
Here the system matrix B = (B1,J); jer(. p) and the right-hand side F =
(Fr)yezg,p) € RN with I = (u,7) and J = (v, 1) are given by

B],J = b(b[ bJ) (4.35)

// bJ(X)bI(Y) //N’(X)N’(Y)d s

4m IIX—YII dr fx—yf Y
Fj = F(by) = [ gp(X)by(X)dsx = /gD(X)le(X) dsy. (4.36)

r t

Remark 4.1.23. The matrix B in (4.34) is dense because of (4.35), which means
that all entries By j are, in general, not equal to zero. Furthermore, the twofold sur-
face integral in (4.35) can very often not be computed exactly, even for polyhedrons,
and requires numerical integration methods for its approximation. The influence of

this additional approximation will be discussed in Chap. 5. In this chapter we will
always assume that the matrix B can be determined exactly.

Proposition 4.1.24. The system matrix B in (4.34) is symmetric and positive defi-
nite.

Proof. From the symmetry of b(¢, n) = b(n, ¢) we immediately have
Bry =0b(br.bs) =b(by.br) = By,

and subsequently B = BT. Now let ¢ € RY be arbitrary. Then we have
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0B =Y @By =) ¢sorb(br.bs)=b <Z¢1b1,2¢1b1>

1,J€Z(G.p) 1,J 1 J
= b(@s, (PS) = )’||‘PS||§{—1/2(F) >0
if and only if s # 0. Since {b; : I € T} is a basis of S, we have g # 0 if and
only if ¢ # 0 € RY . Therefore B is positive definite. O

Thus the discrete problem (4.32) or (4.34) has a unique solution ¢g € S, é’ .
The following proposition supplies us with an estimate for the error ¢ — ¢s.

Proposition 4.1.25. Let ¢ be the exact solution of (4.9). The Galerkin solution ¢g
of (4.32) converges quasi-optimally

Ibll .
le —esllg-1/2qry < B n;llelgp lo —nsllg—1/2(r)- (4.37)

The error satisfies the Galerkin orthogonality
bp —¢s.ns) =0  VngeSP. (4.38)

Proof. We will first prove the statement in (4.38). If we only consider (4.10) for test
functions from S? we can subtract (4.32) and obtain

b(p —¢s.ns) = b(p.ns) —b(ps.ns) = F(ns) — F(ns) =0  Vns € SP.

Next we prove (4.37). For the error es = ¢ — ¢s we have by the ellipticity and
the continuity of the boundary integral operator V' and (4.38)

vle —@s ||§,—1/z(r) < b(es,es) = b(es,p — ¢s)
= b(es,p) —b(es,ps) = b(es,p) —bles,ns) = b(es,p —ns)

< l1bllleslla=2)lle = nsll =12y

forall ng € SP.
If we cancel |les || g—1/2(ry and minimize over ng € S? we obtain the assertion
(4.37). O

The inequality in (4.37) shows that the Galerkin error ||¢ — @s|| g—1/2(r) coin-
cides with the error of the best approximation of ¢ in S? up to a multiplicative
constant. This is where the term quasi-optimality for the a priori error estimate
(4.37) originates.

Remark 4.1.26 (Collocation). We obtained the Galerkin discretization (4.32) from
(4.8) by restricting the trial and test functions ¢,n to the subspace SP? C S.
Alternatively, one can insert s into (4.6) and impose the equation
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(Ves)(xy) =gp(xy)  J €I(G.p) (4.39)

only in N collocation points {x; : J € ZI}. The solvability of (4.39) depends
strongly on the choice of collocation points {xy : J € I}. Equation (4.39) is also
equivalent to a linear system of equations, where the entries of the system matrix
B! are defined by

bj(y)
B! :=/—d : 4.40
SR Arey P (40

Note that B! s again dense, but not symmetric.

The collocation method (4.39) is widespread in the field of engineering, because
the computation of the matrix entries (4.40) only requires the evaluation of one
integral over the surface T, instead of, as with the Galerkin method, a twofold inte-
gration over I'. However, the stability and convergence of collocation methods on
polyhedral surfaces is still an open question, especially with integral equations of
the first kind. For integral operators of zero order or equations of the second kind
we only have stability results in some special cases. For a detailed discussion on
collocation methods we refer to, e.g., [6,8, 87, 187, 207, 215] and the references
contained therein.

We now return to the Galerkin method.

Remark 4.1.27 (Stability of the Galerkin Projection). The Galerkin method
(4.32) defines a mapping

nZ: H2(I) - SE % = ¢s,

which is called the Galerkin projection. Clearly, Hg is linear and because of the
ellipticity of the boundary integral operator V we have

YITISQ 1% 12y = YIes 1720y < b(95.95) = b9, ¢s)

IA

11l =120 1Tl =172y,

from which we have, after canceling, the boundedness of the Galerkin projection
Hg 0 (') —> H™S (T') independent of the mesh G:

1]l
ITS@l gr—-1/2ry < 7||</’||H—1/2(r)- (4.41)

The quasi-optimality (4.37) and the boundedness of the Galerkin projection
combined with the following corollary give us the convergence of the Galerkin
BEM.

Corollary 4.1.28. Let (Gy),en be a sequence of meshes on I' with a mesh width
he = hg, and let hy — 0 for £ — oo. Then the sequence (pg)ien of boundary
element solutions (4.32)in Sy = Sé’lz converges to ¢ for every fixed p € N.
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Proof. Since S € S/ forall p € Ny, we will only consider the case p = 0. S are
step functions on meshes whose mesh width converges to zero. The density follows
from the construction of the Lebesgue spaces

”'”LZ(T)
0 _ 72
UeeN St = L7(@)

and from Proposition 2.5.2 we have the dense embedding L2 (I') ¢ H~'/2(T").
For ¢ € H™'/2(T") and an arbitrary ¢ > 0 we can therefore choose a ¢ from
L? (T') and an £ € N, combined so that ¢; € S?, such that

lo —olg—1/2qry <€/2 and @ — @ell2(ry < &/2.

From this we have

o = Gel-12) < o = lu-12ay + 18 = Gl w12y < 5 +5 <.
The quasi-optimality of the Galerkin method gives us
o= oull-vary = Ol = ey < e,
As ¢ > 0 is arbitrary, we have the assertion for £ — oo. O

4.1.5 Convergence Rate of Discontinuous Boundary Elements

We have seen in Proposition 4.1.25 that the approximations ¢s € S from the
Galerkin boundary element method approximate the exact solution ¢ of the equa-
tion of the first kind (4.9) quasi-optimally: the error ¢ — @5, which is measured in
the “natural” H~1/2(I")-norm, is — up to a multiplicative constant — just as large as

min {|l¢ — Y5l g-1/2qry : ¥s € S} (4.42)

which is the error of the best approximation in the space S. The convergence rate of
the BEM indicates how fast the error converges to zero in relation to an increase in
the degrees of freedom N . Here we will only prove the convergence rate for p = 0,
while the general case will be treated in Sect. 4.3. We begin with the second Poincaré
inequality on the reference element .

Convention 4.1.29. Variables on the reference element are always marked by a
“~»_If the variables x € t and X € T appear in the same context this should
always be understood in terms of the relation x = y (X). Derivatives with respect
to variables in the reference element are also marked by a “”. We will write, for
example, V as an abbreviation for Vg . Should the functionsu : t — K and it : T —
K appear in the same context, they are connected by the relation u o x, = i.
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Proposition 4.1.30. Let ¢ C R? be the reference element, § € H' (%) and ¢ :=
ﬁ [; ¢ dX. Then there exists some ¢ > 0 such that

16— @ollL23) = ENVOllL2(s). (4.43)
where ¢ depends only on 1.

Proof. The assertion follows directly from the proof of Corollary 2.5.10. O

In the following we will derive error estimates for a simplified situation. We will
discuss the general case in Sect. 4.3. Here we let I" be a plane manifold in R3 with
a polygonal boundary. As integrals are invariant under rotation and translation, we
assume without loss of generality that

I' is a two-dimensional polygonal domain, (4.44)

i.e., we restrict ourselves to the two-dimensional approximation problem in the
plane.

Furthermore, let G = {t; : 1 <i < N} be a surface mesh on I" of shape-regular
triangles with straight edges and with mesh width 2 > 0. Then the triangles t € G
are affinely equivalent to the reference element 7 via the transformation (4.14):

t5x=y:R) =Py +Jk. ket (4.45)

where J is the matrix with the columns P; — Py and P, — P; (see Fig.4.1). With
(4.45) and the chain rule

0 d 0X; d 0X2

— :1,2,
Oxe 0% 0%y | 0%p 0y

the relation R
V=UHTV, dx=(det)) dk =2]|t|d%k (4.46)

follows. This leads to the transformation formula for Sobolev norms
~ . ~ . R |7?|
IV@I220 = | IVePds == [ (Vo) "I (Ve)dx
® T |T| T

?
< er / |Vol* dx, (4.47)

where A, denotes the largest eigenvalue of JJ7 € R?*2. Furthermore, we have for
the left-hand side of (4.43)

T |

. A |7
16 —Goll7>z) = e ol 72 (4.48)
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with ¢g 1= |17| fr @dx. If we combine (4.48) with (4.43) and (4.47) we obtain

Izl | l s
llo = @ollZ2) = 7 = Golljap) = aF |||V<p||L2(r) <A | Volise YT el
(4.49)
Exercise 4.1.32 shows that
Ae < |P1—Po|? + [Py — Py |* < 272, (4.50)
From this we have
lo = poll L2ey < V26h|¢| 1 (o). 4.51)

Squaring and then summing over all T € G leads to the following error estimate.

Proposition 4.1.31. Let (4.44) hold. Let G be a surface mesh of T'. Let ¢ € L*(T")
with ¢|, € H'(z) for all T € G. Then we have the error estimate

1/2
min, I~ Vllz2r) < V2 c(Zh|¢|H1(,)) : (4.52)

T€G

For ¢ € HY(T) the error estimate can be simplified to

min [l¢ — V|20 < V2¢hglel g1 - (4.53)
yesd

Exercise 4.1.32. Let © be a plane triangle with straight edges in R? with vertices
Py, Py, Ps. Let the matrix J and the eigenvalue A, be defined as in (4.45) and (4.47)
respectively. Show that

<[Py —Po|* + [[P2 — Py|*.

From the approximation property we will now derive an error estimate for the
Galerkin solution.

Theorem 4.1.33. Let ' be the surface of a polyhedron. Let the surface mesh G
consist of triangles with straight edges.
For the solution ¢ of the integral equation of the first kind (4.6) we assume that
foran 0 < s < 1 we have
p € H(T). (4.54)

Then the Galerkin approximation ¢s € Sg satisfies the error estimate

le — sl -2y < C B2l s (. (4.55)

Proof. The conditions of the theorem allow us to apply Proposition 4.1.31. With
(4.37) we obtain for the Galerkin solution ¢g the error estimate
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ol .
o — (pS”H*I/Z(l") = [l — Hg §0||H*1/2(F) <— min [¢— I,/fS||1rrl/2(r)-
YV ysesy

The definition of the H~'/2 (I')-norm gives us

— Vs, 2
lo=vslaong = sp LY M@

(4.56)
neH1/2(TM\{0} Il 172

We will first consider the case ¢ € H!(I") and choose ¥s elementwise as the mean
value of ¢

. 1
Py :=vys with yg|, = m[(de, T€g,
T

i.e., P is the L2-orthogonal projection onto Sg. Hence it follows from Proposi-
tion 4.1.31 that

1¥sllezay < llellzay. e = ¥sllzay <20ell2ay. e = ¥sliza < chllell g -
4.57)

If in Proposition 2.1.62 we choose T = I — P we have T : L2 (I') — L2?(T")
and T : H! (I') — L? (I"). For the norms we have, by (4.57), the estimates

ITlL2ryr2qy =2 and  ||T||L2ryepi ) < ch.
Proposition 2.1.62 implies that 7 : H* (I") — L2 (') for all 0 < s < 1 and that
ITN 22y ms(ry < ch’.
This is equivalent to the error estimate
lo — Vsl < ch’lellas). (4.58)

In order to derive an error estimate for the H ~'/2 (I")-norm, we use (4.56) and note
that the equality

[ —=V¥s.Mr2ay | = (@ —V¥s.n—ns) 21|

holds for an arbitrary ns € SJ. By using ¢ € H*(I'), n € H'Y2(I") and (4.58) and
by choosing s elementwise as the integral mean value of 7, we obtain the estimate

(e —Vs.m2my| = (@ —¥s.n=ns) 2| < le = ¥sli2wy In—nsllz2r

< ch* ol asa@h nll g ).
0
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The error estimate (4.55) shows that the convergence rate h° +1/2 of the BEM
depends on the regularity of the solution ¢. In Sect. 3.2 we stated the regularity —
the maximal s > 0 such that ¢ € H /2% (I") — without knowing the exact solu-
tion ¢ explicitly. Ideally, ¢ is smooth on the entire surface (s = oo) or at least
on every panel. The convergence rate would then be bounded by the polynomial
order p of the boundary elements, due to the fact that the following generalization
of Theorem 4.1.33 holds.

Corollary 4.1.34. Let the exact solution of (4.9) satisfy ¢ € H*(T') forans > 0.
Then the boundary element solution ¢s € Sé’ satisfies the error estimate

o — s lg-120y < chd ™ Pl s (), (4.59)

for a surface mesh G of the boundary ', which consists of triangles with straight
edges. Here the constant ¢ depends on p and the shape-regularity of the surface
mesh.

The proof of Corollary 4.1.34 will be completed in Sect.4.3.4 (see Remark
4.3.21).

4.1.6 Model Problem 2: Neumann Problem

Let 2~ C R? be a bounded interior domain with boundary I' and Q%1 := R3\ Q.
For gn € H~'/2(T") we consider the Neumann problem

Au=0 inQ", (4.60)
yiu = gN onT, (4.61)
lu(x)| < C |x||" for ||x| — oo. (4.62)

The exterior problem (4.60)—(4.62) has a unique solution u, which can be
represented as a double layer potential

1
u(x) = / go(y)mﬁ dsy, xeQt. (4.63)
Y

Thanks to the jump relations (see Corollary 3.3.12)
-1 xeQ,
1 0 1 1 . .
— | ———ds, =1 —3 x€ T and I' is smooth in x
any [x—y]

0 xeQ™t
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u(x) in (4.63) does not change if a constant is added to ¢. If we put (4.63) into the
boundary condition (4.61) we obtain the equation

d (1 3 1
- We ( /F‘P(Y)_—d):gN(X)v xel. (4.64)

=—|— s
ony \ 47 ony [x -y y

The following remark shows that the derivative d/dny and the integral do not
commute.

Remark 4.1.35. The normal derivative 9/ dny, applied to the kernel in (4.64), yields

92 1 (nx. ny) (nx.x— ) {ny.x—)
= 33 5
Inydny [Ix =y [Ix—y]| lIx —yll

Therefore the kernel of the associated hypersingular integral operator is not inte-
grable.

There are three possibilities of representing the integral operator W¢ on the
surface: (a) by extending the definition of an integral to strongly singular kernel
functions (see [201,211]), (b) by integration by parts (see Sect.3.3.4) and (c) by
introducing suitable differences of test and trial functions (see [117, Sect. 8.3]). In
this section we will consider option (b). The notation and theorems from Sect. 3.3.4
can be simplified for the Laplace problem, so that they read

curlr ¢ := yo (grad Z_¢) x n,

curlr ¢ (y), curlr 7 (x)
b(¢,ﬂ)=//( FZ) — A >dSydsx,
rJr mlx—yl

where Z_ : HY2(I') — H' (") is an arbitrary extension operator (see Theo-
rem 2.6.11 and Exercise 3.3.25).

The variational formulation of the boundary integral equation is given by (see
Theorem 3.3.22): Find ¢ € H'/?(I")/K such that

blp.n) =—(gn.Mr2qy  Yne HY*(D)/K. (4.65)

In Theorem 3.5.3 we have already shown that the density ¢ in (4.63) is the unique
solution of the boundary integral equation (4.65). The proof was based on the fact
that the bilinear form b (-, ) is symmetric, continuous and H /2 (I") /K-elliptic.

4.1.7 Continuous Boundary Elements

The Galerkin method is based on the concept of replacing the infinite-dimensional
Hilbert space by a finite-dimensional subspace. The bilinear form that is asso-
ciated with the hypersingular integral operator is defined on the Sobolev space
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H'2(I') /K. As the discontinuous boundary element functions from Example
4.1.16 and Definition 4.1.17 are not contained in H'/2 (I") /K (see Exercise 2.4.4),
we will introduce continuous boundary element spaces for the Neumann problem.

We again start with a mesh G on the boundary I'. In order to define continuous
boundary elements, we assume (see Definition 4.1.4):

The surface mesh G is regular. (4.66)

This means that the intersection T N 7’ of two different panels is either empty, a
vertex or an entire edge. Furthermore, the boundary elements are either triangles
or quadrilaterals and are images of the reference triangle or quadrilateral 7 respec-
tively (see Fig.4.1). Note that the boundary edges of the panels “have the same
parametrization on both sides” in the case of continuous boundary elements (see
Definition 4.1.4).

We assume that the boundary I' is piecewise smooth (see Definition 2.2.10 and
Fig.4.1) so that the reference mappings y, : T — 7 can be chosen as smooth dif-
feomorphisms. As in the case for discontinuous boundary elements, the continuous
boundary elements are also piecewise polynomials on the surface I'. When using
discontinuous elements, a boundary element function gy is locally a polynomial of
degree p in each element T € G:

VYVt eg: ¥s 0 Yt € IP’I,A(%).
With continuous elements we have for t € G:
]P’pA if 7 is a triangular element,

psoxc €Ppi= (4.67)
]P’E if 7 is a quadrilateral element,

where for p > 1 the polynomial space PPA is defined as in (4.23) and

PS = span{iéy : 0<i.j < p}.

Now we come to the definition of continuous boundary element functions of
degree p > 1.

Definition 4.1.36. Let " be a piecewise smooth surface, G a regular surface mesh
of I"'and y = {y; : © € G} the mapping vector. Then the space of continuous
boundary elements of degree p > 1 is given by

Sgp”)(() ={p e CO(F) |Vt egG: @l oxc € IP’;}

In order to make the distinction between continuous and discontinuous boundary
elements of degree p we will from now on denote discontinuous elements by S g ” '
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Just like the space S7~! of discontinuous boundary elements, the space S0 is
also finite-dimensional. In the following we will introduce a basis {¢7 : I € Z} of
S7:0 In contrast to S?>~!, the support of the basis functions in general consists of
more than one panel and the basis functions are defined piecewise on those panels.
We begin with the simplest case, p = 1.

Example 4.1.37. (Linear and Bilinear, Continuous Boundary Elements)
The shape functions N (X), X = (X1, X») on the reference element T are:

o In the case of the unit triangle with vertices Po = (0,0)T, Py = (1,0)T, P, =
(1, DT [see (4.13)], given by

No@®) =1— 3y, (4.68)
Ni®) = % — %2,
No(®) = £,

and

o In the case of the unit square with vertices Py = (0,0)T, Py = (1,0)T, P, =
(I, DT, P3 = (0, )7, given by

0oX) = (1 =% —%2), (4.69)
1(X) = x1(1 — X2),
2(X) = (1 = X1) X2,

3(X) = X1k

2 2 2 2

We notice that the shape function N i is equal to 1 at the vertex P; of the reference
element 1 and vanishes at a/l\l other vertices (see Fig.4.3). R
It holds PP (%) = span{N; : i = 0, 1,2} and PP(7) = span{N; : i =0,...3}.

For the definition of the boundary element spaces of polynomial degree p we
have to distinguish between quadrilateral elements and triangular elements. For the
reference element T € G and p € Ny we define the index set

0,

Fig. 4.3 Reference elements S,
7= S5 (left) and 7= Qz

(right) and nodal points for
IE»I? 0 1 0 1
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Fig. 4.4 Nodal points 131(2) 2,2 0,2 e 2,2
for the reference triangle (left) ’
and for the unit square (right)
1,1
L1 2,1 0,1 . 2,1
S, 0,
0,0 1,0 2,0 0,0 1,0 2,0
¢ ._ J1G,j)eNg:0<j <i<p} inthe case of the unit triangle, 4.70)
P {(i, j) e Ng :0<i,j < p} in the case of the unit square.

We will omit the index 7 in Lf, if the reference element is clear from the context.

Example 4.1.38 (Boundary elements of degree p > 1). The trial spaces P2, IP’E

in (4.67) are spanned by the functions N Ef’ }) € IP’I%, which will be defined next. The
nodal points for the reference element T are given by

NG i j)T R
Pi.ni=— =), V(i,j)et 4.71)
@.J) (p P p

(see Fig.4.4).

For(i,j) € Lf, the shape function N Ef’ }) is characterized by

F@) ¢ S 3P 1k =0G0.)).
Bihers wa MO = {3l Sy

(see Theorem 4.1.39).
Theorem 4.1.39. Let k € N. Then every q € IP’; is uniquely determined by its

values in Xy, 1= {(i/k,j/k) 1 (i, j) e L;é}

The set X is called unisolvent for the polynomial space P,f because of this
property.

Proof. A simple calculation shows that
dimP{ = 5.
Therefore it suffices to prove either one of the following statements (a) or (b):

(a) For every vector (b,),cx, there exists a g € IP’,f such that g (z) = b, for all
Z€Xy. R
(b) If g € Pf and g (z) = O forallz € Xy theng = 0.
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Case 1: © = (0,1)*: For pu € lk we define the functlon NM by

;=i
Ny ® = T2 115, =0 —_ L,
lj#“’j //Lj

Then Nu € P,f with Nu (n/k)=1 andN (" ’2) = Oforall (i1, i) € Lk\{/L}
Now let (b “)u af be arbitrary. Then the polynomial ¢ € IP’,:

gx) =Y buN,(x)

WELY,

satisfies property (a).
Case 2: 7 is the reference triangle. As in Example 4.1.37 we set

A

M) :=1-%1, J®:=% %,  Azx) := .
Clearly, these functions are in IP’f and have the Lagrange property
VI<i,j<3:X(A;) =68, with Aj = (0,07, A = (1,007, A3 = (1,1)T.

1. k = 1:Foragiven (b;);_, € R3, g € P;:

3
q(x) =Y biki(x)
i=1
clearly has the property (a).
2.k =2Forl <i<j<3,Aqj = (Ai +Aj) /2 denote the midpoints of the
edges of 7. We define

Then we clearly have N > N (Q.j) € ]P’Z% and

~

Ni(A))=38i; Ni(Agp) =0 Vi k.4,
NG, jyAr) =0Ng ) (A(k,@)) = 8,-,](51-,[ Vi, j, kL.

Foragiven{b,:z € X,} = {b,-, b(k’()}, the polynomial g € ]P’zf defined by

3
qX) =Y bNi®+ > baoNuyX)

i=1 1<k<{<3

has the property (a).
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3. k = 3: This case will be treated in Exercise 4.1.40.
4. k > 4:Letqg € ]P’kA with g (z) = O for all z € . Then g vanishes on all edges
of 7. Therefore there exists a ¢ € IP’kA_3 such that

g =MAAAsy and Vze ZpN?%:y(z)=0.
(Note that T is open.) The problem can thus be reduced to
(WEIP’kA_3)/\(Vz€Zkﬂf:W(z)=0)=>WEO. 4.72)

Property (b) follows by induction over k as follows.

Let 7/ be the triangle with vertices A = (L #)T B= (%, 6 L T C =
g =) P = \kFrR) Y T

T
( k k_l) .Thenwe have X, N T

Rl : X} C 7. The transformation

is affine and therefore 1} =vyoTl € IP’kA_3. Furthermore, we have 71 E;{ =
3k—3. Hence (4.72) is equivalent to

(&ePkA_3)A(vZezk_3:1/?(z):0):>1/}so.

This, however, is statement (b) for k <— k — 3. Since the induction hypothesis
for k = 1,2,3 is given by steps 1-3 in the proof, the assertion follows by virtue
of the equivalence of the two statements (a) and (b). O

Exercise 4.1.40. Let T be the unit triangle. For IP’; construct a Lagrange basis for
the set of mesh points X3 (see Theorem 4.1.39).

In combination with the polynomial space IP’; on T we define an interpolation

~(p)

operator 17 for the set of nodal points ¥ p = (P G.)) for continuous

)(i,j)EL,,
functions ¢ € C° (?) by

- S\ o
7g:= Y ga(P(l-jj)) N 4.73)
G.))ed

The Sobolev embedding theorem (Theorem 2.5.4) proves the continuity of the
embedding H? (t) — C° (?) thanks to 7 C R2 for ¢ > 1 and therefore 17 is
defined on H? (%), thus
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\_/k\ "o,

Fig. 4.5 Quadratic triangular and quadrilateral elements which share a common edge. The com-
patibility of the parametrizations ensures that the midpoints (cross marks) of the pullbacks of the
common edge in the reference elements are mapped to the same surface points

17 H'() —> ]P’;7 and continuous: H/I\p)

_ < 00
CO(3)«<H' (%)

One obtains the set of nodal points on the surface by lifting the set of nodes on
the reference element by means of the element parametrization

7= {Xr (’P(I-,,-)) VieG, V(,j)e z;} (4.74)

Clearly, in a mesh G on I there will be nodal points that lie in more than one
element, more precisely, that lie in their closures. As an example, consider Fig. 4.5
with two panels that have a common edge.

If the parameter representation y., y, of the panels 7,7’ € G is not compatible,
the eqz\ge midpoint “x” on the common edge will be mapped to different points

in 7, v/, depending on whether it is associated with t or t’. Thus, regular element
mappings (see Definition 4.1.4) must parametrize edges e = TNT’ “identically from
both sides”. In the following we will always assume in the definition of continuous

boundary elements S, g,’)? that G and y are regular.

Example 4.1.41 (p-Parametric Boundary Elements). Let G be a regular mesh on
I and let ¢ > 1 be given and fixed. Then we can approximate a regular, generally
non-linear, parametrization . : T —> t© € G by means of a p-parametric element
mapping

T® = Y PP OND %, ket (4.75)

(.)ed

where Pg{)j)(f) = Xt (/};g])])) denotes the lifted nodes of the reference element.
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Remark 4.1.42. In practical applications the construction (4.75) is used for p = 1
and p = 2 with the shape functions ]/\\/Ef’i) for the set of points ﬁg’i) in (4.71). In
every case the approximation panel T := ¥ (%) interpolates the exact panel t at the
points P(‘!J ) It is known from interpolation theory (see Sect. 7.1.3.1) that, for the
quality of the approximation, the choice of interpolation points becomes essential
for high orders of approximation such as p > 3. For p > 3 the images of the
Gauss—Lobatto points for the unit square represent a better choice for the set of

nodes P(p) Similar sets of points are known for the unit triangle (see [16, 130]).

In the following we will always assume that the y describe the surface I' exactly.
The influence of the approximation of the domain on the accuracy of the boundary
element solution is discussed in Chap. 8.

We define the space of the continuous, piecewise polynomial boundary elements
of degree p > 1 by a basis by. For this, let Z be, as in (4.74), the set of all nodal
points in the mesh G. The basis function bp for the nodal point P € 7 is characterized
by the conditions

2.0 , 1 forP =P,
bp € Sg’ and bp(P) := (4.76)
0 forP #P, P el

For a nodal point P € 7 we define a local neighborhood of triangles by I'p :=
\U{T : T € G, P € T}. Then we have

supp(bp) = T'p. 4.77)
In order to derive a local representation of the basis functions by element shape

fgnctions, we need a relation betvyeen global indices P € 7 and loca} indices (i, j) €
tp-Fort € Gand I = (i, j) € 1}, we define a mapping ind : G x 1}, — 7 by

ind (2, 1) := ye (ﬁ(,-,,-)) eT. (4.78)

With this we have, fort € G, I = (i, j) € Lf, and P = ind (z, I) € Z, the relation
bele = N& jy = Nrioyx;'. (4.79)
In the following we will show that the functions in S, gp”)(() are Lipschitz continuous

and are thus contained in H' (I"). In order to compare the Euclidian distance with
the surface distance, we introduce the geodesic distance

distr (x,y) := inf {length (yx,y) : Yx,y is a path in I" that connects x and y}

and the constant gr
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distr (x,y) }

gr = sup { (4.80)
x,yeI' ”X - y”

Remark 4.1.43. The functions ¢s € Sgp”)(() are Lipschitz continuous

lps (x) —@s(¥)| = C [x—y]| vx,y e,

where C depends on T', G, y and gr.

Proof. The continuity of ps € S gp”)(() follows directly from the definition so that we
only need to prove the Lipschitz continuity. Let x, y € I" and let yx y be a connecting
path with minimal length on I". Let (t j)‘j.zo C G be a minimal subset of G with the
property:

q

xe®m, yer, ny<JT
j=1

V1<j<gq:7T,-1NT,isacommonedgee; ande; N yyy # 0.

We fix the points M; one; Nyyy, 1 < j < gandset My = xand My =y.

q+1

Without loss of generality we assume that all (M /)j=0 are distinct; otherwise we

simply eliminate points that appear in the sequence more than once. Then, by the
continuity of ¢, we have

q
95 (¥) — s (x) = ¢s (Mg+1) — s (Mo) = Z (os Mj11) —os (M})).

Jj=0

The points M1, M; are in the panel 7;. Since ¢g|, is the composition of a
polynomial with a diffeomorphism, these restrictions are Lipschitz continuous. With

lps (x) — s ()|

Cp 1=
x,yer Ix —yll

we have
|‘/’S (M;41) —¢s (MJ)| =6 HMJ'+1 -M; ” =L (VM/:M/+1)7

where L ()/M M le) denotes the length of the shortest connecting path in I" that
connects M; with M 1. Finally, with (4.80) we have

s () — o5 ()] < (lrsn]a;q cr,-) L (xy) < gr (lrgja;q c,,) Ix =yl

which is the Lipschitz continuity of ¢g. |
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4.1.8 Galerkin BEM with Continuous Boundary Elements

The inclusion SZ° 2 C H'2(I") of the continuous boundary elements permits the

Galerkin d1scretlzat10n of the hypersingular boundary integral equation:
Find g5 € S; 20 /K such that

b(ps.ns) = (gn.Ns)L2(r) Vs € SEO/K. (4.81)

The ellipticity (Theorem 3.5.3) implies the existence of a unique solution of Prob-
lem (4.81). The system matrix of the hypersingular integral equation has similar
properties to the matrix of the single layer potential (see Proposition 4.1.24).

Proposition 4.1.44. The system matrix W of the bilinear form b Sgp’O/R X

Sé”o/]R — R in (4.65) is symmetric and positive definite. The entries Wy y, I, J €
T have the explicit form

Ir b Ir b
WI,‘] — [ / (Cur ror (X),Cur roJg (y)) dSdex — WJ’I. (482)
rJr 4r x =yl

The integrals in (4.82) are, according to Remark 4.1.43, weakly singular and
therefore the matrix entries are well defined. We can write the actual generation
of the matrix by means of integrals over single panels, with the help of the index
allocation (4.78). In the following we will give an algorithmic description in the
form of a pseudo programming language.

procedure generate_system_matrix;
for all 7,1 € G do begin
forall / = (i,i') € Lp, J=(.,j)e L ? do begin

d =/;/;G (x—y) <curlr (ﬁ(i,i/)o)(r_1 (X)),Curlr (1/\7(“-/) o ;! (y))>dsydsx;

=ind(r,/); L:=ind(¢,J); Wk, := WK,L—i-W

rt’

(4.83)
end;end;

Exercise 4.1.45. Let 1,1 € G be panels with reference elements T, t and refer-
ence mappings X, Xt The Jacobian of the transformation is denoted by J, :=

[81)(r, 82)&] and we set V+ = (82,—8 ) For sufficiently smooth functions
u: t — R prove the relation

greurlpuo y, = JrﬁJ‘ﬁ,

where g, := ,/det (JIJT) and it := uo yy.



212 4 Boundary Element Methods

For the local system matrix W,{,’J in (4.83) we have the representation

[ (394N ) ® . (198 9 @))d&di
Tt Jt

4r || xe %) = e D]

(Hint: Use Exercise 3.3.25.)

In the same way as in Proposition 4.1.25 we obtain a quasi-optimal estimate for
the Galerkin error for continuous boundary elements on a regular mesh G.

Proposition 4.1.46. The Galerkin approximation ¢s € Sgp 0 of the solution ¢ of
the hypersingular boundary integral equation converges quasi-optimally:

bl .
lp —¢sllmizmyx < —= min e =Ysllgi2w)x. (4.84)
14 wSeSé"

The Galerkin projection Hép) cHY2(T)/K — Sé”o/K, given by H(gp)(p = @s, Is
stable:
I 120y mi2y e < 161/7. (4.85)

where the norm of the bilinear form b(-,-) is given by

bl = b(¢.n)
6]l :== sup sup
wer 12003 nem 17203 12 a2y Il 172y

[see (2.29)].

Thanks to the stability result (4.85), the search for convergence rates of the
Galerkin BEM is again reduced to the study of the approximation properties of
the spaces S 0,

4.1.9 Convergence Rates with Continuous Boundary Elements

In order to find convergence rates for the boundary element approximation ¢g in
(4.81) of the hypersingular equation (4.65), we need approximation properties of
the continuous boundary element spaces, which we will now specify. For this, let
the boundary I" be bounded and piecewise smooth in the sense of Definition 2.2.10.

Remark 4.1.47. The partitioning of I" which is employed in Definition 2.2.10 of
piecewise smoothness is denoted here by C = {I'; : 1 <i <gq} instead of G in
order to distinguish the notation from the boundary element mesh G and its panels
T € G (cf. Definition 4.1.2). In this light, the cardinality q of C depends only on
T and is, in particular, independent of the discretization parameters. However, we
always assume that the boundary element mesh is compatible with C in the sense
that, for any t € G, there existsa I'; € C with t C T;.
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We will prove the approximation property and the convergence rates for the
Galerkin solution under the assumption that the exact solution belongs to the space
H,,, (T') which we will define next.

Definition 4.1.48. Let I" be piecewise smooth with partitioning C:= {I';:1 <i <g}:

(a) Fort > 1, the space H;fw (T") contains all functions ¥ € H! (T") which satisfy
VFI' eC: I//|I~i EHt (Fl)

and is furnished with the graph norm

1/2

W lag,@ = D Wikiay | - (4.86)

I;eC

(b) For0 <t < 1, the space H}, (') equals H' (I') and the norm ||'||ng(r) is the
usual H* (T')-norm.

Some properties of the H;fw (T)- and the H' (T")-norms are stated in the next
lemma.

Lemma 4.1.49. (a) Lett > 1. For any ¥ € H' (I"), we have

”W”HI{W(F) < ¥l r)-

(b) Lets > 0. Let t denote a finite index set and let {v; : i € t} be a set of functions
in H® (). If the supports w; := suppv; satisfy

lwi Nw;| =0 Vi, jeuiwithi # j,

then
2

) 2
<32 illhsay-
Hs(T) i€L

Qv

i€t

Proof. Part a: Lett € Ny. Then

Wy = D0 W1,y = 1913 @)

T;ecC

Fort € R>9\Ny, lett = [t] + A with A € ]0, 1[. We employ (2.85) to obtain

_ 2
Wiy = 3 Waltaqy+ > [ el asas,

lal<lt] <1 X Ix =yl
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2
> Z Z ||I//“”L2(F)+ Z / Wu(X) Igiz(z’ﬂ dsydsy

rec \lal<Lt) jal=le) YT X =yl
=Y Wik, -
T;ecC

Part b: The proof of Part b is as in [91, Satz 3.26]. First, we will consider the
case s € ]0, 1[. We write

v:Zv,-, D; := suppv;, D::UD,- = suppv

i€t i€l

and introduce the shorthand

[ ] [

for any measurable subsets I'', T C T andw € H* (T).
Forany i € (, we get

[ fwe=[ [weeaf [ wpef [ wE
rJr D; JD; D; JT\D; r'\D; JT\D;
D e e —
=0
:/ / [v,-]§+2/ |vi (x)|2/ Ix —y|| 7> dsydsy. (4.87)
D; JD; D; '\D;

On the other hand,

/F/F[V]§=/’3/F[V]§+/F\D/[V] +/F\D/F\D
_Z/ /DJ,?_,JFZ/ /F\D +/D/F\D[V]§ (4.88)

1EL 1EL

_[Vl]_s

6=, [ S
D; JT\D; r'\D; Y||
1
52/ vxz(/ —als)alsX
ro, O U, ey

=:J;

and
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1
+ 2[ v (y)|? —————5-dsxdsy
p; —~—Jr\p; [x—y|***

=lvi W

@/r/r[”"]f_/]),. /D ]2 + 2.

Inserting this into (4.88) results in
[v < (/ / [v +2J; ) / / . (4.89)
Jo L= (f fomeean)« [ [

Next, we will investigate the sum over the quantities J;. Let y; denote the
characteristic function for I'\ D;. Then

1
YU = Z/ |v()| (/ sty)dsx

i€l 1EL

_Z/Xz x) v (x)? (/ mdsy)dsx

1€L

[ v () (sz( x) [ y”2+2sd y)dsx. (4.90)

1€L

=/

o
Let j € ¢ and let x be an interior pointof D;,i.e.,x € D ;. Forany i € ¢, we have

‘ | 1lifxe\D;| _ e
ri= | eI ).

o

Forx € D we have

f()—Z/

1
—__dsy= / B —
o ||x—y||2+2s o\, [x—yP**

Inserting this into (4.90) results in

1
2y Ui = Z/ v ) (/D\D,sty>dsx

i€t Jjet
|"/(X)|

(487)
<> / / vil; (4.91)

jeu
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It remains to estimate the second term in (4.89). We have

2 2 1
/;)/I“\D [V]s _[ |V(X)| (/I“\D ||X_y||2+2sdsy) dsx
1
_ Z/ v ()2 (/F\D —”X_y”msdsy) ds,

1€L
=|v; (X)|

1
< Vi (x —————dsy | dsy
Zf'””“@wbwmso

LEL

(4 87 1
Z / / vi]Z. (4.92)

i€l

The combination of (4.89), (4.91), and (4.92) leads to

Because the L2 (I")-norm is additive we obtain

= My + [ [ B8 = X bt + 5 Z/[W

Hs(T) i€l

2
<23 Wil

i€t

2
D

i€l

The proof for s € R~1\N can be carried out in the same way. Note that the
expression [v]; has to be replaced by [v], where vq is defined as in (2.86). |

Proposition 4.1.50. Let T" be piecewise smooth and let G be a surface mesh of T':

(a) Let' ¢ € Hlfw(F) for some t > 1. Then there exists a continuous interpolation
Ié’go € Sgp’0 with

le — 18 ellaswy < C g™ P lgllgg ). s €401}, (4.93)
where the constant C depends only on p and on the constant kg from Defini-
tion 4.1.12, which describes the shape-regularity of the mesh.

(b) Let 0 < s <t < 1. Then there exists a continuous operator Qg : H' (T') —
Sgp’o such that, for every ¢ € H' (T'), we have

"In Sect.4.3.3, we will prove the continuous embedding H, () — C O() for t > 1 and
piecewise smooth Lipschitz surfaces.
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lo — Qg@llmsary < Chg ™ llell gery -

The operator Qg is stable for 0 <s < 1

19¢l s ry—msa) = C.

The proof of Proposition 4.1.50 is postponed to Sect. 4.3.5.
With Proposition 4.1.50 we can now derive quantitative error estimates from the
quasi-optimality (4.84) of the Galerkin solution ¢g.

Theorem 4.1.51. Let " be a piecewise smooth Lipschitz surface. Furthermore, let
G be a regular surface mesh on T'. Let ¢ € Hlfw (') with t > 1/2. Then we have for
the Galerkin approximation ¢s € Sgp 0 of (4.65) the error estimate

lo = @sllgr/2qym < CH™ P2 o] gy 1y, (4.94)

where the constant C depends only on p and, via the constant kg from Defini-
tion 4.1.12, on the shape-regularity of the mesh.

Proof.

Case 1:t =1/2.

For ¢ € H'Y2(I")/K it follows from (4.84) that by choosing ¥s = 0 we obtain
the boundedness of the error |[¢ — @5 g1/2¢ry/x bY (DN /¥) ||l g1/2(ry/x - This
yields (4.94) fort = 1/2.

Case 2:t > 1.
Now let o € H} (T') with# > 1. Let TS Hy, () — Sg’o be defined by

rr._ | Qgift=1
¢ IE it > 1

Proposition 4.1.50 implies that T_Cf’ is continuous. The estimate

(L]
y

< » _IBl,
le —esllg2ryx = le = Tg el m2myx < 7”(/, — T2l g2y
follows from the quasi-optimality (4.84), and we have used [|¢|g1/2(ryx =
12;1]11’@1 ”(p - c”Hl/Z(F) = ||§0||H1/2(F).

If we apply Proposition 2.1.65 with Xo = L2 (I'), X; = H' (') and 6 = 1/2

we obtain the interpolation inequality

2
||<P||H1/2(r) < llellz@y lell ey -

With this and with Proposition 4.1.50 it follows for # > 1 that
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lo = T4 @312y = €l = T80l 2mylle = T3 @l
< C h2min(t,17+1)—1||(p||§{r @ (495)
pw

and therefore we have (4.94) for ¢t > 1.

Case3:1/2 <t <1.
In this case we prove (4.94) by interpolation. We have for the operator I — Qg the
estimate [cf. Proposition 4.1.50(b)]

11 = Qgllmi2@yenirzm < C. 11 = Qgll /2yt < C h'2.

As in the proof of Theorem 4.1.33, the estimate

_1
I = Qa)¢ll g2y < CR 2@l g (r).

follows for 1/2 < ¢ < 1 by interpolation of the linear operator I — Qg: H'(T") —
H? (T") (see Proposition 2.1.62). |

4.1.10 Model Problem 3: Mixed Boundary Value Problem™

We consider the mixed boundary value problem for the Laplace operator:
Au=0 inQ7, u=gp onlp, du/on =gy only (4.96)

for given boundary data gp € H'/?(T'p), gy € H™'/?(T'y). For the associated
variational formulation we refer to Sect.2.9.2.3. The approach that allows the dis-
cretization of mixed boundary value problems by means of the Galerkin boundary
element method is due to [220, 239]. For the treatment of problems with more
general transmission conditions we refer to [233].

The problem can be reduced to an integral equation for the pair of densities
(p,0) e H= H1/2 (I'p) x H/2 (T'n). The solution of (4.96) can be represented
with the help of Green’s representation formula

u(x) = (So)(x) - (Dy)(x),  xe€Q".

The variational formulation of the boundary integral equation reads [see (3.89)]:
Find (¢, 0) € H such that

bmixed ((i) (Z)) = (&p-Mr2rp) + @N-K)2(ry) V(n.k) eH
4.97)

* This section should be read as a complement to the core material of this book.
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with

@ n
bmixed ((0)’ (K)) = (Vpop@. M 12(rp) — (KpNo M) 12(r0) + (Kyp @ k) 121y
+ (WNNU, K)LZ(FN) .

The boundary element discretization is achieved by a combination of different
boundary element spaces on the pieces I'p, I'y. For this let Gp, Gy be surface
meshes of I'p, 'y, while we assume that Gy is regular (see Definition 4.1.4). We
use discontinuous boundary elements of order p; > 0 on I'p. The inclusion

st ¢ H-V2(Ip), (4.98)

results, because the zero extension {* of every function ¥ € Sg”l‘)’_1 satisfies the
inclusion y* € L2(T") ¢ H~"/2(T) and thus we have y € H~'/2 (T'p).
For the approximation of o € H'/2(I'y) we define for p, > 1

552’?0 = {'7 € Sé’i’o “nlory = 0} (4.99)

and therefore the boundary values of the functions € S é’i]’,% vanish on 0y .

Remark 4.1.52. The zero extension 6* of functions o € Sé),’\?,o satisfies 0* €
Sgp’o C H'2(T"), where we have set G == Gp U Gy.

With these spaces we can finally formulate the boundary element discretization
of (4.97). In the following we will summarize the polynomial orders p; > 0 and
p2 = 1in the vector p = (p1, p2).

Find (ps,0s) € SP := Sé’;’_l X Sé’i]”% such that

Brnived ((‘05) , (”S)) = (80715 12y + (N k) 2y V(05 Ks) € SP.

os Ks
(4.100)
The norm for functions (¢,0) € His given by [[(¢.0)|g := ¢l g-1/2¢,) +
lloll g1 /2(ry)- Once more the unique solvability of the boundary element dis-
cretization of the integral equation follows from the H-ellipticity (3.112) of the
bilinear form b,,;xeq, and from the Galerkin orthogonality of the error, we have
the quasi-optimality.

Theorem 4.1.53. Let (¢, 0) € H be the exact solution of (4.97). The discretization
(4.100) has a unique solution (ps,os) € SP, p = (p1, p2), which converges quasi-
optimally:

(@, 0) = (¢s,08)|lg = €1 _min_ (¢, 0) = (7, 6)l|q - (4.101a)

(n,k)€SP
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If the exact solution satisfies (¢,0) € Hlfw (I'p) x Hlfw (Tw) for s,t = 0 we have
the quantitative estimate

min 1
(9. 0) = (gs. 09l = Co (AP0 g g 1
; _1
+ e o gy ). @.101D)
Here the constant Cy depends only on Cy in (4.101a), the shape-regularity (see

Definition 4.1.12) of the surface meshes Gp, Gy and the polynomial degrees p;
and p;.

Proof. For the proof we only need to show the approximation property on the bound-
ary pieces 'p and I'y. Here we use (4.59) on I'p and (4.93) on I'y for a sufficiently
large ¢ > 1. Hence the interpolation Igp ¢ in (4.93) is well defined and we have
@lary = 15 ¢|arN = 0. Therefore the zero extension of the difference function

satisfies ((p — Ié’(p)* € H'2(I") and from (4.93) with s = 0, 1 we have:

* .
(e —18¢) N2y = le — 15 ¢ll2ry) < Chml"(t’pH)||</’||H,£W(FN),

* M —
(e —12¢) laiay =l —1fellgiry) < C pmin(tp+1) 1||¢||HI{W(FN)~

(4.102)
Then, by interpolation as in the proof of Theorem 4.1.51 and by the boundedness of
the Galerkin projection (see Remark 4.1.27), (4.101b) follows. O

4.1.11 Model Problem 4: Screen Problems*

In this section we will discuss the Galerkin boundary element method for the screen
problem from Sect. 3.5.3, which is due to [219].

Hence we again assume that an open manifold Iy is given, which can be extended
to a closed Lipschitz surface I in R? in such a way that we have for I'§ = T \To

=T, UTE.

In order to avoid technical difficulties, we require that T’y and I'§ be simply con-
nected. We have already introduced the integral equations for the Dirichlet and
Neumann screen problems in Sect. 3.5.3:

Dirichlet Screen Problem: For a given gp € H'Y?(Ty) find ¢ € H~1/2(Ty) such
that

Vo.M 2wy = €p. M2y Y0 € HV2(Ty). (4.103)

* This section should be read as a complement to the core material of this book.
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Neumann Screen Problem: For a given gy € H™1/2(Ty) find 0 € H'/%(Ty) such
that

(Wo.k)12rg) = (8N-K)2ryy Yk € HY?(T). (4.104)
The Galerkin BEM for (4.103) and (4.104) are based on a regular mesh G of
T'p and a boundary element space of polynomial degree p; > 0 for the Dirichlet

problem (4.103) and p, > 1 for the Neumann problem (4.104).
Dirichlet Screen Problem: For a given gp € H'/2(I'y) find g5 € S& =1 such that

(V¥s. 1) 2y = (€D 182y ¥ns € SEVTL (4.105)

Neumann Screen Problem: For a given gy € H~'/2(I'y) find o5 € Sgpfo’o such that

(Wos.ks)r2wy) = (8.K) 2@y Yk € S53°. (4.106)

Note that in S(‘;J 2:9 the boundary data of g on 9Ty is set to zero (see Remark 4.1.52).
With the ellipticity from Theorem 3.5.9 we immediately have the quasi-optimality
of the discretization.

Theorem 4.1.54. Equations (3.116), (3.117) as well as (4.105), (4.106) have a
unique solution and the Galerkin solutions converge quasi-optimally:

I —vs ||1§—1/2(r0) =C min . I —ns ||1§—1/2(r0)» (4.107a)
7]5€S§1A

lo — 05”1—71/2(1“0) <C min . lo — ks ”1511/2(1"0)' (4.107b)
SESg?d

If the exact solution of the Dirichlet problem (3.116) is contained in Hj, (To) for
an s > 0 we have

i 1
1V = Vsl -3 g, < CoR™ P2 Yy . (4.108a)

If the exact solution of the Neumann problem is contained in H;W (Do) forat > 1/2
we have

; _1
lo = ol 12y < C2 BP0 Y o gy ). (4.108b)

Here the constants Cy, Co depend only on the respective constant C in (4.107), the
shape-regularity (see Definition 4.1.12) of the mesh and the polynomial degrees p;
and p».

Remark 4.1.55. In general, the exact solutions of the screen problems have edge
singularities and therefore they do not have a very high order of regularity s or
t in (4.108). Therefore the convergence rates of the Galerkin solutions in (4.108)
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are low, even for higher order discretizations. This problem can be overcome by an
anisotropic mesh refinement near 01'y. For details we refer to [221].

4.2 Convergence of Abstract Galerkin Methods

All boundary integral operators in Chap. 4.1 were elliptic, which allowed the use
of the Lax—Milgram lemma to prove existence and uniqueness. As we have already
seen with the Helmholtz problem, however, in certain practical cases we encounter
indefinite boundary integral operators. Here we will show for very general subspaces
and especially for non-symmetric and non-elliptic sesquilinear forms, under which
circumstances the Galerkin solution us € S exists and the error converges quasi-
optimally. An early study on this subject can be found in [223]. For a study on the
convergence of general boundary element methods we refer to [215].

4.2.1 Abstract Variational Problem

We would first like to recall the abstract framework from Sect. 2.1.6 and, again, refer,
e.g., to [9, Chap. 5], [151, 166, 174] as standard references and additional material.

Let H,, H, be Hilbert spaces and a(-,-) : H; x H — C a continuous
sesquilinear form:

_ la(u,v)|
lall = sup  sup ————— <00, (4.109)

we Hy\{0} ve Ho\(0} lull iy VI Hs

and let the (continuous) inf—sup conditions hold: There exists a constant y > 0 such

that
inf  sup 2V oy (4.110a)
ue Hi\{0} e 1\ (o3 [l &y VI F,

and we have
Vv e H\{0}: sup |a(u,v)| > 0. (4.110b)

ue Hy
Then for every functional F € H) the problem

Findu € H; : a(u,v) = F(v) Vv e H, 4.111)

has a unique solution, which satisfies

1
lulle, < —11F |l ay- (4.112)
Y
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4.2.2 Galerkin Approximation

We require the following construction of approximating subspaces for the definition
of the Galerkin method, which we use to solve (4.111).

For i = 1,2, let (S}),y be given sequences of finite-dimensional, nested
subspaces of H; whose union is dense in H;

1Nl &
i 1

=H, i=122
(4.113)

VE>0:S{C Sy, dimS{<oco and [, S

and whose respective dimensions satisfy the conditions

Ny = dimSzl = dirnS(2 <00, VL eN: Ny < Nygq,

4.114
Ny — oo forl — oo. ( )

Since the dimensions of S [1 and S 62 are equal, it follows that the system matrix for
the boundary element method is square.
The density implies the approximation property

Yu; € Hj : [l_i)m min{||lu; —v|m, :v e S} =0. (4.115)
o0

Every u; in H; can thus be approximated by a sequence v% eS é In Sect. 4.1 we

have already encountered the spaces S gp %and S gp "~ and one obtains a sequence of
boundary element spaces by, for example, successively refining an initially coarse
mesh Gy.

With the subspaces (S;) .y C Hi the Galerkin discretization of (4.111) is given
by: Find u; € S, such that

a(ug,ve) = F(vy) Vv € S7. (4.116)
A solution of (4.116) is called a Galerkin solution. The existence and uniqueness

of the Galerkin solution is proven in the following theorem.

Theorem 4.2.1. (i) For every functional F € H), (4.116) has a unique solution
ug €S 61 if the discrete inf-sup condition

inf  sup W 4.117)

ueS;\{0} yes2\(0} el &2, 11Vl 11
holds with a stability constant yy, > 0 and if

Vv e SP\ {0} : sup |a(u,v)| >0 (4.118)

1
ues,

is satisfied.
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(ii) For all £ let (4.118) and (4.117) be satisfied with y; > 0. Then the sequence

(ug)y C Hy of Galerkin solutions satisfies the error estimate

lu—uella, < (1 + @) min [|u—v||#H,. 4.119)
(4

vESl}
Proof. Statement (i) follows from Theorem 2.1.44.
For (ii): The difference between (4.116) and (4.111) with S ez C H, yields the
Galerkin orthogonality of the error:

au—ug,v) =0 VveS;. (4.120)

Owing to the discrete inf—sup condition (4.117) we have

vl < sup 12Vl |F ()|
' eszvey Ml westvoy Vs
|F ()] _ |a(u,v)|

< su < llall llull &,
vemo\oy IWlE  vemngoy VAL

This means that the statement Q u := uy defines a linear mapping Q, : H; — S [1
with [|Q¢llm, < m, < llall/ye. Forallw € S} C Hj it follows from (4.117) and
(4.120) that we have the estimate

1 la(w — Qgw,v)|
w—Qewlln, <— sup ———— =

0,
{ vESez\{O} ”V”Hz
from which we have the projection property:
Yw e Sel : Qww =w.
It then follows forallw € S el C H,, that
lu—uellm, < llu—wla, + llw— Qeulla,
= llu—=wla, +11Qe(u—w)lla,
a
< (120 =l
Ve
Sincew € § el was arbitrary, we have proven (4.119). O

Remark 4.2.2. (i) The Galerkin method (4.116) is called uniformly stable if there
exists a constant y > 0 that is independent of £ such that y; > y > 0. In this
case (4.119) implies the quasi-optimal convergence of the Galerkin solution.



4.2 Convergence of Abstract Galerkin Methods 225

(ii) The subspaces S 61 and S 62 contain different functions: S 61 serves to approximate
the solution and guarantees the consistency, while S ez guarantees the stability,
because of the discrete inf—sup condition [which is equivalent to (4.117)]

|a(u,v)|

YuesS, : > ye |lull o, - (4.121)

veS2\{0} V]| £,

Remark 4.2.3. In Sect. 4.1 we have seen that for the integral equations for the
Laplace problem we can always choose S el =S ez The same property holds for
the integral equation formulation of the Helmholtz equation.

Remark 4.2.4. Equations (4.117) and (4.118) are equivalent to the conditions

|a(u,v)| «

inf > y; (4.122)

veS7\0} yes)\{o} el 2, V]l e

with y; > 0 and
Yu € S;\ {0} : sup |a(u,v)| > 0. (4.123)

2
veS]

Remark 4.2.5. For Hy = H, = H and S} = S} = Sy, (4.117) implies the
condition (4.122) with y; = yy and vice-versa.

The Galerkin method (4.116) is equivalent to a linear system of equations. To see

AN .
this we need to choose bases (b;) ‘ of Sé, i=1,2:

j=1
S[1 = span{bjl- cj=1,...,Ng}, S[2 = span{bjz-: j=1,...,Ng}.

Therefore every u € S [1 andveS [2 has a unique basis representation

Ny Ny
w=Y ujbj,  vg=y_ v;b3. (4.124)
j=1 j=1

If we insert (4.124) into (4.116) we obtain:

VveSez: au,v)y— Fv) =0 =

N N
N, —
Vv = ()L, e CVe Y[ 9D Jualbp b))y - Fb) | = 0=
j=1 k=1
Kou = Fy, (4.125)

Ny

.~ and
Jj=1

where the matrix K, and the vectors u, Fy are given by u = (u j)
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(Kp)j i = a(b).b?)

) 1 <j,k =N,

(Fe); = F(b3)
The linear system of equations in (4.125) is the basis representation of (4.116). In
engineering literature the system matrix Ky is also called the stiffness matrix of the
Galerkin method (4.116) and the vector F; on the right-hand side is called the load
vector.

Proposition 4.2.6. The stiffness matrix Ky in (4.125) is non-singular if and only if
we have (4.121) with yg > 0.

Proof. Let Ky be singular. Then there exists a vector u = (u,)} L, € Che\{o}

Ny
with Ky,u = 0. Since (bl) : is a basis of S, ! we have for the associated function
j=

u = Z 1 ujb1 # 0. It follows from (4.125) that a(ug, v¢) = 0 for all vy € S2
Thisis a contradlctlon to (4.121) with y > 0.
The inverse statement is proven in the same way. O

4.2.3 Compact Perturbations

Boundary integral operators often appear in the form
A+Tu=F (4.126)

with a principal part A € L(H, H') for which the associated sesquilinear form
a(-,-): Hx H — C satisfies the inf-sup conditions

inf  sup AU, (4.127)

weH\(O}vemr\(oy llull o [IVIlE

Vv e H\{0}: sup la(u,v)| >0 (4.128)

u€eH

and a compact operator T € L(H, H'). Lett : H x H — C be the sesquilinear
form that is associated with 7'. The variational formulation:
Find u € H such that

a(u,v) +t(u,v) = F(v) Vve H 4.129)
is equivalent to (4.126).

The discretization of the variational problem (4.129) is based on a dense sequence
of finite-dimensional subspaces (S¢)ep in H:
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For a given F € H’ find uy € Sy such that
a(ug,ve) + t(ug,ve) = F(vy) Yve € Sg. (4.130)

The following theorem states that the inf—sup condition for the principal part of the
sesquilinear form together with the injectivity of the operator A + T ensure well
posedness of the continuous problem. Furthermore, the discrete inf—sup conditions
for a dense sequence of subspaces imply (a) the well-posedness of the discrete prob-
lem, (b) the unique solvability of the continuous problem, and (c) the convergence
of the Galerkin solutions to the continuous solution.

Theorem 4.2.7. Let (4.127) and (4.128) hold, let T € L(H, H') be compact and
A + T injective,
A4+THu=0=u=0. (4.131)

Then problem (4.126) has a unique solution u € H for every F € H'.
Furthermore, let (S¢), be a dense sequence of finite-dimensional subspaces in H

and t (-, ) the sesquilinear form associated with the compact operator T. We assume

that there exist an £y > 0 and a y > 0 such that for all £ > £y the discrete inf-sup

conditions
|a(ug, ve) + t(ug, vo)|

inf > (4.132a)
ueeS\0} y eso\oy  luella lvella
and
b t b
inf la(ug, ve) + t(ug, ve)l . (4.132b)
eSO} ypesp\oy  luella lvella

are satisfied uniformly with respect to £. Then we have:

(i) Forall F € H' and all { > £y the Galerkin equations (4.130) have a unique
solution uy.

(ii) The Galerkin solutions uy converge for £ — 0o to the unique solution u € H of
the problem (4.126) and satisfy the quasi-optimal error estimate

lu—uellr = C min{llu — vl cve € Sy £=4o

with a constant C > 0 which is independent of L.

Proof. As a (-, ) satisfies the inf-sup conditions, the associated operator A : H—H’
is an isomorphism with ||A| g g < y~! [see (2.38)]. Hence (4.126) is equivalent
to the Fredholm equation

(I+A'T)u=4a7"f

with the compact operator A'T : H — H (see Lemma 2.1.29). By (4.131), —1
is not an eigenvalue of A™!T and, from the Fredholm alternative (Theorem 2.1.36),
I + A7'T is an isomorphism ||I + A_IT”H(_H < C. This yields the unique
solvability of (4.126) and the continuous dependence on the data.
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of (i): Theorem 2.1.44 implies both (i) and the fact that the Galerkin solution
depends continuously on the data:

1
luell g < y I 7 - (4.133)

of (ii): Let
b(u,v) :=au,v) +t(u,v).
Because of (4.133) the sequence (1), of Galerkin solutions is uniformly bounded
in H. Theorem 2.1.26 thus guarantees the existence of a subsequence uy; — u € H
that converges weakly in H (in the following we will again denote this sequence by
ug). We will now show that, with this limit u, b(u,v) = F(v) for all v € H. For an
arbitrary v € H, Pyv € Sy denotes the orthogonal projection:

VYwg € S (v— Pev,wg)g = 0.
Then we have

|b(u.v) = FO)| < |b(u,v) = b(ug.v)| + |bug.v) — b(ug, Pyy)|

T T
+ |b(ug, Pev) — F(Pev)| + [ F(Pgv) — F(v)|.
Ts T,
Forafixedve H
b(v):H—C

defines a continuous functional in H’. The definition of weak convergence then
yields the convergence of T} to 0 for £ — oo.

Since US ¢ is dense in H , according to the conditions, we consequently have the

consistency of the discretization sequence
. {—00
lu— Peully = inf lu—ve|lg — O. (4.134)

veESy

Thus we have for Ty
£—o00
[Tal = 1F =P < [Fllg Iv=Pevllg — 0.
Since (uy), is uniformly bounded, we have

72| < (1 Allg'em + T <n) lluela Iv = Pevla,
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and the consistency again implies that 7, — 0 for { — oo. Finally, we have 75 = 0
since b(ug,v¢) = F(vy) for all vy € Sy. Therefore u is a solution of (4.126). By
(4.131), u is unique.
We have thus shown the unique solvability of Problem (4.126) in H.
By (4.132), b(-,-) satisfies the conditions of Theorem 4.2.1 for £ > £y, from
which we obtain the quasi-optimality.
|

Remark 4.2.8. Theorem 4.2.7 only holds if the discrete inf-sup conditions (4.132)
are satisfied. In general, the discrete inf-sup conditions do not follow from the den-
sity of (S¢); in H combined with (4.127) and (4.128). Instead, they have to be
verified for each specific problem.

In applications concerning boundary integral equations we often encounter the
following special case of Theorem 4.2.7.

Theorem 4.2.9. Let H be a Hilbert space and (S¢), a dense sequence of finite-
dimensional subspaces in H. We assume that for the sesquilinear forms a (-, -) and
t (-, ) of the variational problem (4.129) we have

(i) a(-,-) satisfies the ellipticity condition (2.44), i.e., there exists a constant ¢ > 0
such that
Yue H : la(u, u)| > ollull%. (4.135)

(ii) The operator T € L(H, H') that is associated with the sesquilinear form
t(-,): Hx H— C is compact.
(iii) We assume that, for F = 0, (4.129) only has the trivial solution:

Vv e H\{0}: a(,v) +t(u,v) =0= u=0. (4.136)

Then the variational problem (4.129) has a unique solution u € H for every
FeH.

There exists a constant Loy > 0 such that for all £ > L the Galerkin equations
(4.130) have a unique solution uy € Sy. The sequence (ug), of the Galerkin solutions
converges to u and, for £ > Ly, satisfies the quasi-optimal error estimate

lu—uellg <C min flu—ve|m (4.137)
veE€Sy

with a constant C which is independent of £.

Proof. The H -ellipticity of a (-, -) implies the inf-sup condition (4.127), (4.128), and
therefore the unique solvability of (4.129) follows from Theorem 4.2.7.

Now we will turn our attention to the Galerkin equations and prove the inf-sup
condition for a sufficiently large £.

Weseth (+,-) = a (-,+) +1 (-, -) and define the associated operators B : H — H’
and By : S¢ — S, by
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YuveH:(Buv)gyy =b(u,v) and
Voug.ve € S¢: (Beug.ve)s;xs, = b (ue. ve) -

The norm of Byug € S is given by

_ b (ug, ve)|
| Beuellsy = sup ————
Cesovoy vella

and the discrete inf-sup condition (4.132a) is equivalent to
Yuy € S¢ with |Jug||y = 1 we have: 3 > 0 s.t. ||Bgug||5;Z >y VL= 4.

We will prove this statement by contradiction by using the conditions given in the
theorem. For this we assume:

I (we)geny With wy € Sgpand ||we||gy =1 such that: ||B[W(||Sé —0 for{ — oo.
(4.138)
As (wg), is bounded in H there exists, according to Theorem 2.1.26, a weakly
convergent subsequence (which we again denote by (wy),) such thatw, -~ w € H.
For all v € H, b (-,v) defines a continuous, linear functional on H and so we
have
Yve H:b(wgv)—b(w,v) forl— oo.

It follows that

b (w, . |b(we,
1Bl = sup 2000 lim 120ve VI (4.139)
ver\{oy VIl ver\(oy (=00 |IVllg

In the following we will estimate the numerator on the right-hand side and for this
purpose we use the decomposition

b (wg,v) =b(wg,ve) +b(wg,v—ry) (4.140)

with the H -orthogonal projection v = Pyv € S;. From assumption (4.138) we
have

{—>00
b (we,vo)l < | Bewells; Ivellg < 1 Bewells IVIlg = O.
The fact that the spaces Sy are dense in H yields for the second term in (4.140)
{—00
b we,v—=vol = b Iwellg v —vellg = 1BI1 IV —vellg — 0.
Hence for all v € H we have the convergence limy_, o, b (wg,v) = 0 and from

(4.139) we have Bw = 0, which, combined with the injectivity of (4.136), finally
givesus w = 0.
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We will now show the strong convergence wy; — w and begin with the estimate

a|w—well3 < law—wgw—wp)| = law—wgw)—aw,we) + a(wg, wp)|.

(4.141)
Since T is compact, there exists a subsequence (which we again denote by (wy) )
such that Twy — Twin H'. This can be written in the form

{—
sup |t (wg,v) —t (w,v)| =: 8¢ 2 0,
veH
vl =1
from which we deduce by using ||wg ||z = 1 that

{—00

[t (We,we) =t (w,wy)| < 8¢ [lwellyg =8¢ — 0.

This result, combined with assumption (4.138), yields

L—o00
0 <« [b(we,we)| = la(weg,we) +t (wg,wp)| < |a (wg,we) +t (W, we)| + 8y,
in other words:

a(we,wg) = —t (w,wg) + g[ with elim ge =0. (4.142)
—>00
If we insert this into (4.141) we obtain
o llw—wellgy < |a(w—we.w) =b (w,we) + 8|

The first two terms on the right-hand side are equal to zero because of w = 0. We
also determined limy_,¢ §; = 0 in (4.142) so that we have proven wy, — w = 0.
This, however, is a contradiction to the assumption that ||wg|| g = 1.

Condition (4.132b) can be proven similarly.

The solvability of the Galerkin equation for £ > £, and the error estimate (4.137)
then follow from Theorem 4.2.7. |

4.2.4 Consistent Perturbations: Strang’s Lemma

In this section we will consider variational formulations of boundary integral equa-
tions of abstract form:
Find u € H such that

b(u,v) = F(v) Vve H (4.143)

with F € H'.
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In general we assume that the sesquilinear form b (-, -) is continuous and injective
and that it satisfies a Garding inequality.

Continuity:
Yu,ve H: |bw,v)| < Cplullg IVllg - (4.144)

Garding Inequality:
VYue H:|bu)+ (Tu,u) gyl > alul (4.145)

with @ > 0 and a compact operator T € L (H, H’).

Injectivity:

VYve H\{0}: b(u,v) =0=u=0. (4.146)
Conditions (4.144)—(4.146) yield the prerequisites (i)—(iii) from Theorem 4.2.9 with
t(,) := —(T-,Yg/xyg and @ := b — t. From Theorem 4.2.9 we derive the

unique solvability of (4.143) as well as the stability (and thus the quasi-optimal
convergence) of the Galerkin method as follows. For a dense sequence of finite-
dimensional boundary element spaces (S¢), in H there exists some £y > 0 such
that for all £ > £, the discrete inf—sup conditions

b )
weSAMO} veso\toy lullm [IvIia

b 5
veSe\M0} yeso\foy lulle IvIia

(4.147)

hold, while y > 0 is independent of £. The Galerkin equations
Find u; € Sy : b(ug,v) = F(v) VveSy (4.148)
are, by Theorem 4.2.7, uniquely solvable for £ > £ and we have

lu—uel|lg < C min [lu—v|q. (4.149)
veSy

In practical implementations of the Galerkin boundary element method in the form
of a computer program it is usually not possible to realize the exact sesquilinear
form b (-, -). Instead, one usually uses an approximative sesquilinear form by (-, -).
Reasons for this are:

(a) The approximation of the system matrix by means of numerical integration

(b) The use of compressed, approximative representations of the Galerkin equations
with cluster or wavelet methods,

(c) The approximation of the exact boundary I" by means of, for example a
polyhedral surface.
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The perturbation of the sesquilinear form b (-, -) as well as the functional F leads
to the perturbed Galerkin method:

Find &1y € Sy such that
be(itg,v) = Fe(v) Vv e §y. (4.150)

For the algorithmic realization of boundary element methods, one of the essential
aims is to define the approximations (4.150) in such a way that the solutions i
exist, converge quasi-optimally and — in comparison with the computation of the
exact Galerkin solution — can be calculated reasonably rapidly and with little use of
computational memory. A sufficient condition in this respect is that the difference
be(-,-)—b(-,-)is “sufficiently small”. We will specify this statement in the following.

For the Galerkin discretization we will generally assume in the following that
we have chosen a dense sequence (Sy), C H of subspaces of dimension Ny :=
dim Sy < oo which satisfies (4.114).

Let sesquilinear forms by : Sy x S — C be defined for all { € N. These are
uniformly continuous if there exists a constant C, which is independent of £ such
that "

|be (ue.vo)l = Cp lluell g Ivellg - Yue.ve € Se. (4.151)

The forms by satisty the stability condition if there exists a null sequence (c¢)pen
such that

|b(ug,ve) — be(ug,ve)| < celluglla vellm Yug,ve € Sp. (4.152)

The stability condition will imply the existence of a unique solution of the perturbed
Galerkin equations for a sufficiently large £ (see Theorem 4.2.11).

For the error estimate of the perturbed Galerkin solution we may measure
the function u; on the right-hand side in (4.152) in a stronger norm (see Theo-
rem 4.2.11). In this context ||-||; : S¢ = Rx¢ defines a stronger norm on Sy if there
exists a constant C > 0 independent of £ such that

lulg = Cllully — Yu e Se.
The perturbed sesquilinear forms by : Sy x Sy — C satisfy the consistency con-
dition with respect to a stronger norm ||-||; if there exists a zero sequence (8¢)yen
such that

|b(ug,ve) — be(ug, ve)| < S¢lluellv vella Vug, v € Sg. (4.153)

Remark 4.2.10. (a) The stability condition and the continuity of b (-,) imply the
uniform continuity of the sesquilinear form by (-, -).

(b) The consistency condition follows from the stability condition with §; = Ccy.
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(c) In many practical applications the use of the stronger norm ||-||y; in (4.153)
permits the use of a zero sequence (8¢), which converges more rapidly than in
(4.152). The convergence rate of the perturbed Galerkin solution is influenced
by (8¢), and not by (cg),.

Theorem 4.2.11. Let the sesquilinear form b(-,-): H x H — C be continu-
ous, injective and let it satisfy a Gdrding inequality [see (4.144)—(4.146)]. Let the
stability condition (4.152) be satisfied by the approximations by.

Then the perturbed Galerkin method (4.150) is stable. That is, there exist y > 0,
Lo > 0 such that for all £ > Lg the discrete inf-sup conditions

. |be (g, ve)| .
inf —_—— >,
ueeSe\{0} \,es,\t0y luella [vellm
, (4.154)
o |be(ug, ve)l > 7

veeSOMO} ypeso\toy el Ivellm

hold. The perturbed Galerkin equations (4.150) have a unique solution for £ > £y.
If in addition the approximative sesquilinear forms are uniformly continuous and
satisfy the consistency condition (4.153) the solutions 1y satisfy the error estimate

3 . | F(ve) — Fy(ve)l
lu—ig|lg <C§ min (lu—welg + S¢llwellv) + sup —————
weESe v €So\{0} Ivell &
(4.155)

Proof. According to the assumptions, the exact sesquilinear form b (-, -) satisfies the
inf—sup conditions (4.147) as well as the stability condition (4.149). We will verify
(4.154). For this let 0 # uy € Sy C H be arbitrary. Then we have

|be (g, ve)| (|b(ue,Ve)| |b(ue,Ve)—be(ue,w)|)
su _— > su —

veesovoy Ivellr 7 vespvor \ el [vell e
b (g, ve) — by(ug, ve)|
> yllugllz — sup
ve€Sy ”Ve”H
> (y—co) luela- (4.156)

If we choose £y > 0 so that ¢, < y forall £ > £, we have verified the first condition
in (4.154). The second condition can be verified in a similar way.

Combined with (4.154), it follows from Theorem 4.2.1(i) that the perturbed
Galerkin equations (4.150) have a unique solution for £ > £.

Next, we will prove the error estimate (4.155). Let uy € S¢ be the exact Galerkin
solution from (4.148). For £ > £, we have, according to (4.156), the following
estimate for the perturbed Galerkin solution iy € Sy
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lu —tielln < llu—welle + llue = el

|bg (g — Tag, ve)|

<llu—wlly + @ —c)™" sup
veeS\{0} ”V[”H
= =y + (=)™ sup e (ue, ve) — Fe(ve)
veeS\{0} ”‘)Z”H
- be(ug, ve) — b(ug, vo)| + | F(ve) — F,
<lu—ully + @ —co)™" sup 1beue, ve) = bl vo)l + [F(ve) AW)'.
v €S\ {0} lvell

We consider the difference term |bg(ug, v¢) — b(ug, v¢)| and obtain, by using the
continuity of by and b as well as the consistency condition, for an arbitrary wy € Sy

|bg(ug, ve) — bug, ve)| < |be (ug —we,ve)| + |be (We, ve) — b (we, ve)l
+ b (we — ug, ve)|
< Cp llue —well g Ivell g + 8e Iwelly Ivell
+Cp [lwe —uell g vellgr-

From this we have

|be (g, ve) — blug, ve)| ,
Sp < C min ([Ju—wellz + 8¢ lIwelly) -
ve€S\{0} Vel we€Sy

With ¢; < y and the consistency condition (4.153) we finally obtain

~ . 1
lu—iigllg <C min |lu—wellg + —— (Ju—wellg + Sellwelly (4.157)
we€Sy Yy —¢Cg

v €S, \{0} [vell

+ s M)}

|

Remark 4.2.12. In connection with the boundary integral operator V for the single
layer potential we have H = H~'/2 (T). Since all the boundary element spaces we
have considered so far are contained in L* ('), we can choose |||y = ||l 2 (ry as
a stronger norm on Sy. The term ||\w¢| 21y on the right-hand side in (4.155) can be
easily estimated if the boundary integral operator is L?-regular, more specifically if
V1. H' (') — L2(T) is continuous. Let u € L? (") be the exact solution and
wy 1= Ilyu the L?-orthogonal projection of u onto the boundary element space Sy.
Then we have |wellp2ry < llullp2qry < C |Fll g1y and, thus for a sufficiently
large £ > Ly

lu = itgll 172y < €3l — Mgutll 1720y + Sell Fll g vy

|F(ve) — Fe(ve)|
+ sup —r——
vees\oy Vel a—172¢ry
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From this we can deduce how the null sequence (8¢), and the consistency of the
approximation affect the right-hand side in the error estimate.

The error ||u — Tlgu|| g—1/2(ry can be traced back to the approximation proper-
ties of Sy. The choice wy = Tlu yields, for an arbitrary vy € Sy

|(u — ng, V)L2(F)|

lu — Meull g-1/2(ry = sup
ve H1/2(T)\{0} IVl E 12y
| — Teu,v—ve) 2|
= sup
ve H1/2(T)\{0} IVl 7172

Now we take the infimum over all vy € Sy and obtain

V—y
lu— Meull g—1/2¢ry < sup inf M
veH1/2\{0} V¢ €S \0} ||V||H1/2(I‘)
X ( inf |ju— W[”Lz(r)) . (4.158)
we€Sy

4.2.5 Aubin-Nitsche Duality Technique

Boundary integral equations were derived with the help of the integral equation
method (direct and indirect method) for elliptic boundary value problems. In many
cases our goal thus is to find the solution of the original boundary value problem
by solving the boundary integral equation. The numerical solution of the boundary
integral equation then only represents a part of the entire process. (Note, however,
that with the direct method the boundary element method yields a quasi-optimal
approximation of the unknown Cauchy data.) More importantly, the aim is to find
the solution u of the original elliptic differential equation in the domain €2. This
solution can, as we will show here, be extracted from the Galerkin solution of the
boundary integral equations with an increased convergence rate, a fact which stems
from the representation formula.

Example 4.2.13 (Dirichlet Problem in the Interior, 2). Let Q2 C R3 be a bounded
Lipschitz domain with boundary T and given Dirichlet data gp € H'Y*(T). Find
u € HY(Q) such that

Au=0 inQ, ulr = gp. (4.159)
The fundamental solution for the Laplace operator is given by G (z) := (4n ||z||)_1.

The single layer potential u(x) = fr G(x—y)o(y)dsy, x € Q, leads to the
boundary integral equation: Find o € H~Y*(T") such that
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Vo iawy = (gp. M2y Yne H VD), (4.160)

where (-, ) 1 2(ry again denotes the continuous extension of the L? inner-product to
the dual pairing (-, ) g1/2(ryx g—1/2(r)-

For a subspace S¢ C H~'Y2(T") the Galerkin approximation o¢ € S is defined
by: Find oy € Sy such that

(Voe.m) 2y = (8D M) 2(1) Vn € Sg. (4.161)

Equation (4.161) has a unique solution which satisfies the quasi-optimal error
estimate

lo —o¢llg—1/2¢ry < € min {llo — vllg-1/2(ry. v € Sel. (4.162)

We obtain the approximation of the solution u(x) of the boundary value problem
(4.159) by

ue(x) := / G (x—y)og(y) dsy, X € Q. (4.163)
r

In this section we will derive error estimates for the pointwise error |u(x) — ug(x)|.

4.2.5.1 Errors in Functionals of the Solution

The Aubin—Nitsche technique allows us to estimate errors in the linear functionals
of the Galerkin solution. We will first introduce this method for abstract problems as
discussed in Sect. 4.2.1. The abstract variational problem reads: For a given F(-) €
H’ find a function u € H such that

b(u,v) = F(v) Vv e H. (4.164)
Let (S¢); C H be a family of dense subspaces that satisty the discrete inf—sup
conditions (4.117), (4.118). Then the Galerkin discretization of (4.164), i.e., find

ug € Sy such that
b(ue, V[) = F(V{) Yve € Sg, (4.165)

has a unique solution. The error e; = u — uy satisfies the Galerkin orthogonality
b(u—ug,vg) =0 Yve € S (4.166)

as well as the quasi-optimal error estimate
c .
lu— el < me{”“_(ﬂénH D e € Si} (4.167)

The Aubin—Nitsche argument estimates the error in functionals of the solution.
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Theorem 4.2.14. Let & € H' be a continuous, linear functional on the set of
solutions H of Problem (4.164) which satisfies the assumptions (4.109), (4.110).
Let ug € Sy be the Galerkin approximation from (4.165) of the solution u. Fur-
thermore, let the discrete inf—sup conditions (4.117), (4.118) be uniformly satisfied:
yezy>0.

Then we have the error estimate

& W) — G ue)| = C llu—eellallwg — Velln (4.168)
for an arbitrary g € Sy, Yy € Sy, where we is the solution of the dual problem:
Findwg € H : bw,wg) = &(w) VYwe H. (4.169)

Proof. From the continuous inf-sup conditions (4.110) Remark 2.1.45 gives us the
inf-sup conditions for the adjoint problem, from which we have the existence of a
unique solution.

Remark 4.2.4 shows that the discrete inf-sup conditions for b (-, -) induce the
discrete inf-sup conditions for the adjoint form b*(u,v) = b(v, u). Therefore the
adjoint problem (4.169) has a unique solution wg € H for every &(-) € H'. By
virtue of Sy C H and (4.169), (4.166) it follows that

& W) — G )| =16 (u—up)| = 1bu—ug, we)|
= [b(u—ug,we —ve)| Vv €Sy
The continuity (4.109) of the form b(-,-) and the error estimate (4.119) together
yield (4.168). O

The error estimate (4.168) states that linear functionals & () of the solution may
under certain circumstances converge more rapidly than the energy error |Ju—ug | g .
The convergence rate is superior to the rate in the energy norm by a factor inf{||wg —
Yellg: e € S¢}. The following example, for which & (+) represents an evaluation
of the representation formula (4.163) in the domain point x € €2, makes this fact
evident.

Example 4.2.15. With the terminology used in Example 4.2.13, for the error |u(x)—
ug(X)| we have the estimate

|u(x) — ue(x)| < C min {{lo — @¢llg-1/2(ry : ¢ € St}

' (4.170)
xmln{||ve —Vellg—12qy Yo € Sg}

with the solution ve € H~Y/2(T) of the dual problem:

Findv, € H™3 (T') such that

Vvesmoqy = (G =), M2 ¥ne H V(D). (4.171)
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With Corollary 4.1.34 we deduce the convergence rate for Sy = Sgplj_l

min(s, p+1)+ 4 +min(z, p+1)+ 1
lu(x) —ug(x)| < Ch, : *Nollas

O vellaiy — (4.172)
fors,t > —% if lollasa) and ||vel gt are bounded. If we have maximal regularity,
i.e, s =t = p+ 1, the result is a doubling of the convergence rate of the Galerkin
method. For example, for piecewise constant boundary elements p = 0 and (4.172)
with s =t = 1 we obtain the estimate

u(x) —ug(X)| < C hillo | g1 oy Ivell g ry (4.173)

and, thus, third order convergence for all x € Q. Note that the constant C tends to
infinity for dist (x, ') — 0.

Remark 4.2.16 (Regularity). Inequality (4.172) only gives a high convergence
rate if the solutions o, v, are sufficiently regular. For the boundary integral operator
V on smooth surfaces T, the property gp € HY2TS(T) with s > 0 is sufficient
so that o € H™V2%S(T"), and the property G(x —-) € HY2T(T') witht > 0 is
sufficient so that ve € H~Y2T1(T') (see Sect. 3.2). Then we have the estimates

012717245 @y SC@ gD a1 sscrye Vel 1201y < CONGE A gr17250ry.

(4.174)

with a constant C(-) which is independent of g p and G. Because of the smoothness

of the fundamental solution G(x — ) forx € Q,y € I we have G(x —-) € C*(I").

On smooth surfaces this implies the estimate (4.174) for all t > 0. With this (4.172)
becomes

Ju(x) — ue(®)| < Ci(p) Co(x) hy PV, (4.175)

where we have C2(x) = |[ve |l gr+1ry < C(PIIGX = )| gr+2(r)-

Note that especially for elements of higher order, C»(x) can become very large
for x near I'. Formula (4.163) should therefore only be used for points x in the
domain that are sufficiently far away from I'. For points x which are very close
to the boundary or even lie on I', a bootstrapping algorithm has been developed to
extract the potentials and arbitrary Cauchy data and their derivatives near and up to
the boundary (see [213]).

If a quantity which has been computed or postprocessed by using the Galerkin
method converges with an order that is higher than the order of the Galerkin error
in the energy norm one speaks of superconvergence. Similar to the superconver-
gence (4.168) of functionals & () of the Galerkin solution ug, one can also study the
convergence of u; in norms below the energy norm.

Now let H = H*(I") be the Hilbert space for the boundary integral operator
B : H5(I') —» H5(T") of order 2s and let b (-, -) be the H* (I")-elliptic and injective
sesquilinear form associated with B:

b(u,v) = (Bu,v) 2y : H(T) x H*(T') — C.
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Here the continuous extension of the L2 (T") inner-product for the dual pairing
(s ") ls (ryx -5 () 18 again denoted by (-, ) 2(r). Furthermore, let (S¢), be a dense
sequence of subspaces in H¥(I")and let the discrete inf—sup conditions (4.117),
(4.118) hold. Then we have for ¢t > 0

(v, u—ug) 2
le—uelgerqy = sup D
ve H—s+1(T)\{0} IVl zr=s+¢ ()
Let w, be a solution of the adjoint problem: Find w, € H* (T") such that

b(w,w,) = (v,w)2(r) Ywe H* (). (4.176)

Then with the Galerkin orthogonality (4.166) we have (transferred to the adjoint
problem)

b (u - Li[, Wv)
o — ugll grs—1 ) = sup T
veH—s+1(IM\{0} ”V”H—S‘H(I‘)

b (u—ug, w, — wy)

= sup
ve H—s+1(T)\{0} IVl E—s+2 1y

[wy —wellms

<Clu—ulgsqy  sup D

ve H—s+1(T)\{0} ||V||H—S+f(r)
Since wy € Sy was arbitrary, we obtain

o we = wellEs
lu—ucllrs—ry < Cllu—uellgsry  sup  inf S D
ve H=S+1(T)\{0} weESy ”V”H_S'H(F)
4.177)
For ¢ > 0 higher convergence rates are therefore possible for uy than in the H*-

norm, assuming that the adjoint problem (4.176) has the regularity
veHM () = w,e HST"(TI'), V0O<t<T. (4.178)

In order to obtain quantitative error estimates with respect to the mesh width iy we
again consider a dense sequence of boundary element spaces (S¢), of order p on
regular meshes Gy of mesh width 4. Then the approximation property

inf |lw, —wellgsay < C hzli“(p+l,s+t)—s

w K
nf. Wl &5+

holds. These ideas are summarized in the following theorem.

Theorem 4.2.17. Let the sesquilinear form b (-,-) of problem (4.164) satisfy the
conditions (4.109), (4.110). Let the exact solution satisfy u € H" (I') with r > s.
We assume that the adjoint problem (4.176) has the regularity (4.178) with t > 0.
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Furthermore, let (S¢), be a dense sequence of boundary element spaces of order p
in H® (") on regular meshes Gy of mesh width hy.
Then we have for the Galerkin solution ug € Sy and 0 < t < [ the error estimate

|| u— iy || Hs—1(F) S C hzlin(p-i-l,r)+min(p+1),s+t)—2s || u || Hr (D)- (4‘ 179)
In particular, in the case of maximal regularity, i.e., forr > p+1,7 > p+1—s, it
thus follows that we have a doubling of the convergence rate of the Galerkin method:

lu = ugll g2s—p—1 < C R2PEDT25 ]| iy .

4.2.5.2 Perturbations

The efficient numerical realization of the Galerkin BEM (4.165) involves, for exam-
ple, perturbations of the sesquilinear form b (-, -) by quadrature, surface and cluster
approximation of the operator or the functional & (-), used for the evaluation of the
representation formula at a point x € 2. Instead of (4.165) one implements a per-
turbed boundary element method:

Find &1y € Sy such that

b((ft[, V) = Fg(\/) Vv e S( (4.180)

and instead of & (1¢) one implements an approximation &/ (iiy). Here we will study
the error

& (u) — &y(itg) (4.181)

of a linear functional of the solution, for example of the representation formula
(see Example 4.2.13). According to Theorem 4.2.11, (4.180) has a unique solu-
tion for a sufficiently large £ if the exact form b(:, ) satisfies the discrete inf—sup
conditions

b(uy,
inf |b(ug, ve)l >y >0,
ue eSO} yyes,\f0y luella lIvella 4.182)
|b(ug, ve)l >0 ’

inf —_— >
veeSe\ 0}y es,\f0y lluella vella

on Sy xSy and if the perturbed form by (-, -) is uniformly continuous [see (4.151)] and
at the same time satisfies the stability and consistency conditions (4.152), (4.153).
Then for a sufficiently large £ we have the error estimate

Ju—diels = C | min (u—wella +Slhwello) + sup 0O =0l
we €Sy ve €S \{0} Ivell
(4.183)
The perturbations of the right-hand side F and of the functional & define the
quantities
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. | Fe (vg) — F (vg)] , |G (ve) — & (vy)]
fii= sup ——————— and gg:= sup )
v €SE\{0} vell g v €S\ {0} Ivell g

(4.184)
Note that in many practical applications the perturbations Fy and & are not defined
on H but only on S;. We assume that (f¢), and (g¢), are null sequences and, thus,
that there exist constants Cr and Cg such that

Gy =:Cc <oo and |Fllg + foe <Cr Ve e N.

Theorem 4.2.18. Let the form b(-,-) satisfy (4.182) and let the perturbed form
be(-,-) satisfy the conditions (4.151)—(4.153). Then, for a sufficiently large {, the
error (4.181) has the estimate

N . Ce . Cg
& (w) — Ge(ite)| = Cllu—uellp min ||we — Vellu + —ce llite —ully +— fe
Ve ESe 14 V4

C . C
+ % min (¢ lu— @l + 8 loelly) + —ge. (4185
Y wES Y

Proof. By the definition (4.170) of wg and the orthogonality of the Galerkin error
we have

|G () — G (itg)| = |b(u—itg, we)|
(4.186)
= |b(u—ug, we — V)| + |b(ug — itg, we)|

for an arbitrary vy € Sy. Furthermore, let wf” € Sy be the solution of the Galerkin
equations
b(we. wS) = b(we.wg) = G(w))  Vwg € Sy

Then, taking the Galerkin orthogonality into consideration, we have
1b(ug — iig. we)| = |bug — itg. W) = b(ug. w§) — b(itg, )|
< |Fw§) = be(itg, w)| + (be — b) (it wg)|
= [FW) — Few)| + |(b — be) (g w§)).

We consider the difference b — b, and with the stability and consistency conditions
we obtain for an arbitrary ¢y € Sy the estimate

(b = be) e w§) | = |(b = be) e = g wE )| + [b (e wE ) = be (0o 0 )|

< celie—gellg W] +8ledy W], . @18
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With this result and with (4.186) we obtain
16) — G Gie)| < |65 () — G o) + 16 ie) — Gae)|
< b — ug. we — Yol + |(F — F)w)]
H(b — bo) i W) | + (6 — &) (@) 4.188)

< Cllu— el Iwe — el + o |wE|

+ w8 (eellie = gl + b leell) + ge lel -

According to Theorem 4.2.11, for a sufficiently large £ the sequence (i), of the
perturbed Galerkin solutions is stable and with £y from Theorem 4.2.11 we have

. 1 Cr
lella < y (IF g+ fo) < o Ve > L. (4.189)
We use the discrete inf—sup conditions (4.182) to find a bound for the term H wf” H H:
< |b(we, w$)| |G (wy)]
yiwg lle < sup ————— = <ISGlg =Cqs
wees\oy  lIwella weeso\foy wella

for £ > £y. This yields

~ C
|6 () = G (o] < Cllu—ueller Iwe — Vel + TGfg

Ce . Cr
+ oV (ce litg — @ell g + S lloelly) + 786~

The triangle inequality ||ity — @¢ll g < llite — ull g + |lu — @¢ || finally yields the
assertion. |

The inequality (4.185) can be used to bound the size of the perturbations ¢y, 8y,
fe and gg in such a way that the functional & (i) converges with the same rate as
the functional & (uy) for the original Galerkin method.

To illustrate this we consider H = H*® (") and a discretization with piece-
wise polynomials of order p. Then the optimal convergence rate of the unperturbed
Galerkin method is given by |u — ug||; < ChYT'™°.

Inequality (4.183) shows that the two conditions §; < C hf 175 and fi <
C hf s imposed on the size of the perturbations guarantee that ||u —itg|| g <

C hf s converges with the same rate as the unperturbed Galerkin method. The

optimal convergence rate for the dual problem is also H We — wf H . <C hf tls
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and it is our aim to control the size of the perturbation in such a way that the
functional & (ii¢) converges at the rate Chy?7>7>°.

For this to hold, the perturbed sesquilinear forms, the right-hand sides and
functionals in (4.152), (4.153) and (4.184) all have to satisfy the estimates

cr S Ch;"l‘l—S’ 5[ S Ch§p+2—2s7 _f[ S Cth+2—2s7 g[ E Ch§p+2—2s.

In the following theorem we will determine a bound for the effect of perturbations
b — by and F — Fy on negative norms of the Galerkin error.

Theorem 4.2.19. Let the assumptions from Theorem 4.2.18 hold for H = H*(T'),
b: HS (I')x HS (I') — C. Furthermore, let the adjoint problem (4.176) satisfy the
regularity assumption (4.178) for a t > 0. Then for a sufficiently large { we have
the error estimate

llu = diell s (ry < C {de,s s 1w — wgll grsry + ce | — el grs oy

+ fo+ inf (cellu— el gsry + 8 ||<Pe||u)} (4.190)
YeESY

for0 <t <Twith

. w—Yellgs
di s s+t 1= sup inf w .
we Hs+ (T)\{0} \VeESe ||W||Hs+t(r)

Proof. Let v € H™*T!(T") be arbitrary and let w, be the solution of the adjoint
problem (4.176) with the right-hand side v. We then have

(V, u— ﬁZ)LZ(F) =b (u - ﬁe,wv)
=bu—ug,w) + b (ug— g, w). (4.191)
~——— ———
(*)

L

We consider (k). Let wé € S be the Galerkin approximation of w':

b (V@, Wf) = (WV, V()Lz(p) Vvg € S[.

With vy = ug—ity € Sg it follows from the Galerkin orthogonality b (vg, w, — w!) =
0 that we have the relation

(%) = b (ug —itg,w,) = b (ue - ﬁe,Wf)

= (b= bo) (e — e w’) + be (e — e, w!)
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= (b —by) (ug iy, w‘;’) + by (ug, wf) )
— (b—by) (ug — ae,wf) + (b —b) (ug,wf) +b (ug,wf> — Fwh
— (b—by) (—ae, wf) + Fwh) — Fy(wh).

With this we will estimate (4.191) by using (4.166) as follows. For every ¥, € Sy
we have

| (V’ u— i;tf)Lz(F) | = |b (l/l —Ug, Wy — WZ) |

+ ](b — be) (iie. wt) o

+ |Fov) = Futwl)

As in (4.187), we use the consistency condition to prove for an arbitrary ¢; € Sy
the estimate

| = bo) e, w!) W

< (ce llie = ol sy + 8¢ lgelly) | (4.193)

Hs()'

where |-||;; again denotes a stronger norm than H* (I").

The regularity assumption (4.178) and the stability of the Galerkin approxima-
tions (wf), of the adjoint problem yield forall 0 < 7 < 7 and all v € H~ (T) the
estimate

Wil sy < Clwllzs@y < C IVla-s@y < C IV g-s+1(r)- (4.194)

Therefore it follows from (4.192) and (4.193) with (4.184) that

| (vou— i) 21y |
sup

| — el grs— (ry
ve H—s+1(I")\{0} ||V||H—S+f(1“)

IA

ve H—s+1(T)\{0} IVl z7=s+¢ ()

Wy = Vel sy
C u—u s su 1nf _—
I tllm IT) p (weSe

+ C inf (cq llitg — @ell grsry + 8¢ lpelly) + Cfe
YeESY

The regularity assumption imposed upon the adjoint problem yields the estimate
IVl gr—s+¢ @y = € Iwy || s+ (ry- Hence we have

Hm—thv

sup inf
veH—s+1(T)\{o} \VeESe VIl gy —s+1 @ )

. w—=VYellgs
<C sup inf m =Cdy 55+t
we Hs+ (M)\{0} \VeESe Wl grs+e(ry
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Note that dy ;. represents an approximation property of the space S;. Combining
these results we have proved that

llu = @gll prs—r(ry < C {dsse 1= well grsry + ce llu = el grsry

+fo+ (ce llu—@ell grsry + 8e llgellp) ¢ -

inf
PeESe
O
With the help of inequality (4.190) we can determine sufficient conditions on the
admissible magnitude of the perturbations ¢y, &z, fy and gg so that the Galerkin error
llu — wig || grs—: (ry converges with the same rate as the unperturbed Galerkin solution.
In order to illustrate this, we consider a discretization with piecewise polyno-
mials of order p and assume that the continuous solution satisfies u € H?+! (T).
Then the optimal convergence rate of the unperturbed Galerkin method is given by
= sl prseqry < CREH TP g oy,

Inequality (4.183) shows that the two conditions §; < Ch} T and £, <

Chy 175 imposed on the size of the perturbations guarantee that ||u — i | HsT) =
C hf s converges with the same rate as the unperturbed Galerkin method (with
respect to the H*-norm). The optimal convergence rate of the term dy s, is
dpsst < Ch;‘i"{pH_s’t} and it is our goal to control the size of the per-
turbations in such a way that the term |u — ity || gs— (ry converges at the rate

Chy Fi=s+min(p+1-5).1) This leads to the following condition for the quantities
¢, 8¢, f

c (hzlin{p-i-l—s,t}-i-p-i-l—s ghPYYS & fy 4 cghPHS +5£)

< Chf-l—l—s—i—mm(p—i—l—s),t).

For this the perturbed sesquilinear form, right-hand sides and functionals in
(4.152), (4.153) and (4.184) have to satisfy the estimates

c[fch?m{p+l—s,t}7 86§Ch21m{p+l—s,t}+p+l—s’ ﬁfCh?ln{p+l_s’t}+p+l_s.

4.3 Proof of the Approximation Property

In Sects.4.1-4.2.5 we have seen that the Galerkin boundary element method pro-
duces approximative solutions of boundary integral equations which converge quasi-
optimally. Here we will present the proofs of the convergence rates (4.59) and (4.93)
of discontinuous and continuous boundary elements on surface meshes G with mesh
width 2 > 0.

In general we will assume that Assumption 4.1.6 holds, i.e., that the panel

parametrizations can be decomposed into a regular, affine mapping y" and
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a diffeomorphism yr, independent of 7, since y; = yr o e, For yiffi*e there
existb; € R3 and B, € R3*2 such that

xne (%) = B.X + by.

The Gram matrix of this mapping is denoted by G, := BIB, € R?*2 It is
symmetric and positive definite.

Note: The proof of the approximation property has the same structure as the
proofs for the finite element methods (see, for example, [27,33,68, 115]) and is also
based on concepts such as the pullback to the reference element, the shape-regularity
and the Bramble—Hilbert lemma.

4.3.1 Approximation Properties on Plane Panels

We use the same notation as in Sect. 4.1.2. Let I be a polyhedral surface with plane
sides and let G*"® be a surface mesh of I" which consists of plane triangles or
parallelograms. The panels 7 € Gi"® are images of the reference element 7 under
a regular, affine transformation )(ifﬁ"e T > T

As in (4.23), for the reference element T and p > 0 we denote the space of
all polynomials of total degree p by ]P’pA (1), while Lf, denotes the index set for the
associated unisolvent set of nodal points [see (4.70) and Theorem 4.1.39].

In preparation for Proposition 4.3.3 we will first prove a norm equivalence.

Lemma 4.3.1. Let k € Nxy. Then

e i)‘ (4.195)

i1 = [l +
+1 +1 Z P p

(E
defines a norm on H**1 (%) which is equivalent to 141

Proof. The continuity of the embedding H**! () — C (?) follows from the

Sobolev Embedding Theorem (see Theorem 2.5.4), and thus [-];, ; is well defined.
Therefore there exists a constant ¢c; € R~ such that

k+1 (~
(i1 = c1 llullgsq VYue H* ' (7).
Therefore it remains to show that there exists a constant ¢, € R~ such that
k+1 (2
lullger < c2 [ulgsq Vue H "' (1),

We prove this indirectly and for this purpose we assume that there exists a sequence
(tn), ey C H¥1 (%) such that
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¥n € N:llunllpy =1 and  Hm unlyy = 0. (4.196)

We deduce from Theorem 2.5.6 by induction over k that there exists a subsequence
(“"j)jeN that converges to some u € H¥ (7):

Jll)rr;o H“"/ - “Hk =0.

The second assumption in (4.196) yields

=0.

lim |u,,j.

oo 1Hni = Ui

Hence u € H**! (%) with |u;,; = 0 and we have

jgf;o Jttn; = ullry =0

Since |u|y; = 0, we have u € Py and the Sobolev Embedding Theorem implies
the convergence in the nodal points

W@ = lim u,, (z) Vz= (’—,i), i, )) e
Jj—>00 p p

Theorem 4.1.39 therefore yields a contradiction to the first assumption in (4.196).
|

Lemma 4.3.2 (Bramble-Hilbert Lemma). Let k € Ng. Then
pien]Pfk lu— plles1 = c2 [ulkyq

forallu € H*+' (%), with ¢, from the proof of Lemma 4.3.1.

Proof. For k = 0 the statement follows from the Poincaré inequality (see Corol-
lary 2.5.10).

In the following let k > 1 and u € H¥*! (%). Thanks to the Sobolev Embedding
Theorem the point evaluation of u is well defined. Let (b,) 5, be the vector that
contains the values of u at the nodal points: b, = u(z) forallz € X. Let p € ]P’;
be the, according to Theorem 4.1.39, unique polynomial with b, = p (z) for all
z € Y. Then, by Lemma4.3.1,

inf [lu—qllgsqr < llu—plliggr S c2lu— pliyr = c2 Juljy -
q<Py
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Proposition 4.3.3. Let [1 : HPT1(2) — H*(%) be linear and continuous for 0 <
s < p + 1 such that R
Vg eP)(#): Mg =q. (4.197)

Then there exists a constant ¢ = c(ﬁ) so that
Ve HPPU@) o v — Tl sy < € Vot - (4.198)
Proof. Letv € HP*1(%). Then by (4.197) forall g € IP’pA () we have

v—Tlv = v4+q—-T1+q)
lv—Tv|gsz < ¢lv +ACI||HP+‘(7?)
¢ = ||I — H||Hs(,j-)<_1-1p+1(i-)v

where I denotes the identity. Since ¢ € P ﬁ (7) was arbitrary, with Lemma 4.3.2 we
deduce

Yve HPTY D) : |lv— HV”HS(?) <c inAf v+ qllgrrig =¢ |V|Hp+1(;).
qePy (7) 0

The estimate of the approximation error is proven by a transformation to the
reference element.

First we will need some transformation formulas for Sobolev norms. Let 7 C R?
be a plane panel as before (triangle or parallelogram) with an affine parametrization
yaffine . — 7. Tangential vectors on t are defined by b; := 9y2"/9%; for
i = 1,2. The (constant) normal vector n is oriented in such a way that (bq, b2, n;)
forms a right system. For ¢ > 0 we set I, = (—¢,¢) and define a neighborhood
Us C R3 of z by

U={zeR’:A(xa) et x[;:z=x+oan}. (4.199)
A function u € H**1 () can be extended as a constant on U,:
u* (x +ong) = u(x) V(x,a) €1 x I,
The surface gradient Vgu is defined by

Vsu = Vu*|_, (4.200)

T
which gives us

|u|§11(r) =/(Vsu,vsu).
T

The pullback of the function u to the reference element is denoted by & := u o y2ffine

T .
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T N
)22, = L2 / af?
7] Jz

Izl
Wb = 5 (v G; Vi),

Lemma 4.3.4. We have

where V denotes the two-dimensional gradient in the coordinates of the reference
element.

Proof. The transformation formula for surface integrals yields the first equation

[ =5 [k

We define y : R3 — R3 forx € 7 and x3 € R by
X & £3) i= (™ (R) + f3n; = BeX + f3n; + b,
and we set 06 := x~ 1 (U). With this we can define the function it* : l/}e — K by
W =u*oy
and it satisfies &#*|; = # in the sense of traces. The chain rule then yields
(Vsu) o y2fme = (Vu*) o yifine = (JT—I)T Vit (4.201)

with the Jacobian J; = [B;, n;] of the transformation y. From this we have

(VSM) o X:ﬂme — (Jr_l)T Vl:\l*

Elementary properties of the vector product give us
_ _I\T G:lo
L [ 0 1]
and from this it follows that
[(Vswy o ™| = (Vi 67'Vi)  ont.

Combined with the transformation formula for surface integrals we obtain the
assertion. 0
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Lemma 4.3.5. We have
2 -1 2 (he ¢ -2
IGell =202 NG = () et (4.202)
T

Proof. The Jacobian B, of the affine transformation " has the column vectors
b1, b,. The maximal eigenvalue of the symmetric, positive definite matrix G, can
be bounded by the row sum norm

IGell = max {IIbi[1” + (br.by)} =< 282,
since b; are edge vectors of t (see Definition 4.1.2). For the inverse matrix we have
G_lz;[ b2 _(bl,bz):|:(|_%|)2|: b2 —(bl,bz)]
T detGe [~ (bib)  [by)? o[/ L= (bi.b2) [by]f?

From this we have for the largest eigenvalue

(LY g2 < 2 (1)
1= () = 2 (1) o

|
Lemma 4.3.4 can be generalized for derivatives of higher order.
Lemma 4.3.6. Let t € G pe the affine image of the reference element
T =y (2)  with (%) = B.X + b,.
Then
ve H (1) <= ¥ :=vo i e Hk (%), (4.203)
which gives us for all0 < { <k
W ge < Cihi™ Plgec. (4.204a)
Plae < C2hE " Ve (4.204b)

with constants Cy, C, that depend only on k and the constant kg, which describes
the shape-regularity (see Definition 4.1.12).

Proof. The equivalence (4.203) follows from the chain rule, as the transformation
is affine and therefore all derivatives of y2™" are bounded. We will only prove the
first inequality, the second can be treated in the same way.

Since C* () N H* (7) is dense in H* (7) (see Proposition 2.3.10), it suffices to

prove the statement for smooth functions.
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Letv*, v, Ug, ﬁg, v*, x, J; be as in the proof of Lemma 4.3.4. In the following
a will always denote a three-dimensional multi-index « € Ng and d denotes the
derivative in the coordinates of the reference element. Then we have

V|H[(r) - Z /|8a * 2 |T| Z A |(3°‘v*)ox|2.

oe|=¢ |a|=e T

The chain rule then yields
((80‘\/*) o X) _ ((Jr_l)T §*)“ o

where V* denotes the three-dimensional gradient (while, in the following, the two-
dimensional gradient will be denoted by V, as before). For the (transposed) inverse
of the Jacobian of y we have (J7!)T = [A,, n] with
T T
A, :=[a;,a] e R¥? a,:= H(b2 n;), ap:= |—||(n, xby).
T T

Since d3v* = 0 we obtain

We use the convention
o o o3
Y= Y Y ()= ()()(®) and at = ]ak.
n=a n1=0 =0 u3=0 i=1
for the multi-indices u, @ € NS. With this we have
(A9) 5= 3" (@)aka " bds .
u=<a

In order to estimate the absolute value, we use

he th 1

[acj < llaill = 5 = 5

and obtain with || = ¢

‘(AV) v(x)’ < Ch? Z ‘a“a“ " (4.205)
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with a constant C, which depends only on £ and the constant k¢g. By integrating
over T we obtain

6" |72 = H V)’

If we sum over all « with |a| = £ we obtain the assertion. |

224
126 = Chy > [ilyee) -

The following corollary is a consequence of (4.205).

Corollary 4.3.7. Let T € G¥" be the affine image of the reference element T
T = x4 (2)  with  }¥"¢ (%) = B.& + b,.

Then
veCkr) <=1 :=vo ydfine & ck@),

which gives us for all0 < { <k

Vlce < Crhyt Pleeg. (4.206a)
Plee < Cahl Pleee (4.206b)

with constants Cy, C, that depend only on k and the constant kg, which describes
the shape-regularity (see Definition 4.1.12).

Theorem 4.3.8. Let t € G¥™ pe the affine image of the reference element v =
yne (2). Let the interpolation operator m: H* (%) — H'(%) be continuous for
0§t§s§k+1andlet

VgePi: Tig=gq (4.207)
hold. Then the operator 1 : H*(t) — H'(t), which is defined by:
Mv:= (9) o (™)™ with §i=vo g™, (4.208)
satisfies the error estimate
Vve H* D) v — vl < ChE v msco) (4.209)
for 0 <t < s < k + 1. The constant C depends only on k and the shape-

regularity of the surface mesh, more specifically, it depends on the constant kg in
Definition 4.1.12.

Proof. According to Proposition 4.3.3, on the reference element T we have

~
A A

—Iv
H!(7)

< cPlas@)-
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We transport this estimate from 7 to T = Xifﬁne (7). With Lemma 4.3.6 we obtain
the error estimate fors = k + 1

|V — HV|H’(‘E) S Cl’li_t {/ — ﬁf) < Ch.l_t|\,>|Hk+1(f) S Chl.;+1_t|V|Hk+l(r).

Hi(®) —

Fors < k + 1, (4.209) follows from the continuity of f: HS () - H'(7) by
means of interpolation (see proof of Theorem 4.1.33). O

Remark 4.3.9. The interpolation operator Tk from (4.73) satisfies the prerequisites
of Proposition 4.3.3 with p <— k > 1 by virtue of the Sobolev Embedding Theorem.
Fork =0, I can be defined as a mean value:

(ﬁv)(x):l%l/;v Vx € 1.

4.3.2 Approximation on Curved Panels*

In this section we will prove the approximation properties for curved panels that

satisfy the following geometric assumptions (see Assumption 4.1.6 and Fig. 4.6).
Forx € t € G, n; (x) € S, denotes unit normal vector to t at the point x. The

orientation is chosen as explained in Sect. 2.2.3 with respect to the chart y.

Assumption 4.3.10. For every © € G with the associated reference mapping y :
T -1

o There exists a regular, affine mapping )(f;fﬁ"e :R3 — R3 of the form

affine (& _ al X bl’
=[5 (2) (%)

witha € R?*2, (%, X3) € R? xR, b; € R? and deta > 0.

Fig. 4.6 Left: curved surface panel t and three-dimensional neighborhood U, . Middle: flat surface
panel 4" with neighborhood U2, Right: reference element 7 C R?

* This section should be read as a complement to the core material of this book.
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o There exists a C*®-diffeomorphism y : U — V that is independent of G, with
open sets U,V C R3 that satisfy

gaffine — gy, gaffine . — {)(ifﬁ“e (x,0):x € ?} x (—¢, €),

. CV, o ={x4an;(X) :xe1,c(—¢¢))}

foran ¢ > 0 such that
xe ®) =y oy (}.0).

e Forevery functionu € H k (1) with a constant extension
u* (x + ang (x)) = u(x) (4.210)

we have )
3 (u* o x o x¥) /0% = 0. 4.211)

A situation of this kind was introduced in Example 4.1.7 (also see [170, Chap. 2]).

First we will prove a transformation formula for composite functions.

Lemma 4.3.11. Let n : U — V be a C®-diffeomorphism and let U,V C R3 be
open sets. For a functionu € H¥ (V) we set it = uo 1. Then it € H* (U) and for
allo € Ng, 1 < |a| <k, we have

]
@mont =3 csfu (4.212)
IBl=1

with coefficients cg that are real linear combinations of products of the form

18I
[ 12" mn,- (4.213)
r=1
The relevant indices for 1 < r < |B| satisfy the relations 1 <n, <3, u, € Ng and
1Bl
AN REH)

Proof. For the equivalence u € H k(V) < & € H¥(U) it suffices to prove
(4.212) for smooth functions. We will prove Formula (4.212) by induction. Let ex
be the k-th canonical unit vector in R3.

Initial case: For |a| = 1 we obtain explicitly

@)ooyt = Z c,gaﬂu, where for B = e; we have cg = 0%n.
|Bl=1

Hypothesis: Let the statement hold for || <i — 1.
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Conclusion: Let || =i, choose k = 1,2,0r3,andlet&d = o —e; € Ng. Thus
we obtain

i—1

(%) on~" = 0k (3&5{) on ' = {0 Z cB (3ﬂu) on|o 77_1

IBl=1
- i-1 3
Z (9kcp) Pu+ D 3 (cpden;) (8,0%u).
=1 BI=1j=1

This proves the assertion if we show that dxcg and cg (Bk n j) are of the form
(4.213). With the Leibniz product rule we obtain

18] 1B 18]
O [ J0" t, = Z 00"7) 1 | ]9 1,
= =

and the expression on the right-hand side is a linear combination of terms of the

form
1B

l_[ aﬁr Nn,
r=1

with Zlfil |ii-| = i. The assertion follows analogously for the product cg (Bk n j).
O

Corollary 4.3.12. 1. Let the conditions of Lemma 4.3.11 be satisfied. Then

Crl Nl 2@y < lullp2gry < Ca il L2y
and
k k
~12 2 2 ~12
il @y < C1 Y _lulgiqry  and  |ulfpy < C2 Y |l gy -
i=1 i=1

The constants Cy, Co depend only on k and the derivatives of n, 1" up to the
order max {1, k}.

2. Let Assumption 4.3.10 and the conditions of Lemma 4.3.11 be satisfied with n <
x. Forv € G, e .= y~V(t) andu € H¥ (1), it (X) 1= u o y (%, 0) we have

—1 1712 2 ~112
C3 ”u”LZ(rafﬁnc) = ||u||L2(r) = C4 ||u||L2(rafﬁnc)
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and

k k
~12 2 2 ~12
|M|Hk(rzlfﬁne) <G; Z |M|H’(r) and |“|Hk(.,) <Cq4 Z |M|Hi(rzlfﬁne) .

i=1 i=1

The constants C3, C4 again depend only on k and the derivatives of y, y~' up to
the order k.

Proof. Statement 1 follows from the transformation formula (4.212).

For the second statement we define a constant extension of u in the direction of
the normal as a function u*, according to (4.210), and note that the normal derivative
of u* vanishes, i.e., we have |u*| gk (,,) = |u| gk (1)

From (4.211) we have |u* o )| gk (qamne) = |i| gric (gaine) and, thus, we have the
assertion in Part 1. O

At the next step we will apply Lemma 4.3.11 to the composite reference mapping
and study how far this depends on the panel diameter /.

Lemma 4.3.13. Let Assumption 4.3.10 and the conditions of Lemma 4.3.11 hold
withn < y. Fort € Gandu € Hk(r), T CV,u:=uo y; we have

ve Hf (1) <= v :=vo yr € H*(%) (4.214)
and
k
|u|§-1k(r) = Clhf_Zk Z |’}|§{i(f) ) (4.215a)
i=1
k
ik ey < C2H2* 72D " fulgiey - (4.215b)

i=1

The constants C1, C, depend only on k, the constant kg of the shape-regularity (see
Definition 4.1.12) and the derivatives y, ' up to the order k.

Proof. It follows from Corollary 4.3.12 that

k

2 ~12
il ey < € D |l ey -
i=1

We can therefore apply the transformation formulas from Lemma 4.3.6, which gives
us the estimates
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k k
2 2 —2i |72 2—2k ~12
|M|Hk(r) < Cih; Zh ' |M|Hi(rzlfﬁne) < Goh; Z |u|Hi(,j-) )
i=1 i=1
k
~12 2k—2 |~|2 2k—2 2
|M|Hk(-'f) S C3hr |u|Hk(rzlfﬁne) S C4h-[ Z |M|Ht(r) .
i=1

With this we obtain the analogy of Theorem 4.3.8 for curved panels.

Theorem 4.3.14. Let Assumption 4.3.10 and the conditions from Lemma 4.3.11
hold with 1 < y. Let T € G be the image of the reference element T as given
by T = y o yine (7). Let the interpolation operator : H3 (%) — H'(?) satisfy
the conditions from Theorem 4.3.8for0 <t <s <k + 1.

Then we have for the operator Tl : HS(t) — H'(t), which is defined by

Iy := (ﬁf/) o )(;1 with V:=vo xq,
the error estimate for0 <t <s <k + 1
Vve H* @)t v — TV geey < CRET IV s oy - (4.216)

The constant C depends only on k, the shape-regularity of the surface mesh via the
constant kg in Definition 4.1.12 and the derivatives of x, y~' up to the order k.

Theorem 4.3.8 and Theorem 4.3.14 contain the central, local approximation
properties that are combined in Sects.4.3.4 and 4.3.5 to form error estimates for
boundary elements. The easiest way of constructing a global approximation for
continuous boundary elements and sufficiently smooth functions is by means of
interpolation. For this the functions u € Hp, (I') need to be continuous. In the
following section we will show that this is the case for s > 1.

4.3.3 Continuity of Functions in H (I') for s > 1

In order to avoid technical difficulties, we will generally assume in this section that
we are dealing with the geometric situation from Example 4.1.7(1).

Assumption 4.3.15. T" is a piecewise smooth Lipschitz surface that can be para-
metrized bi-Lipschitz continuously over a polyhedral surface I': yr : I' — T.

Then the Sobolev spaces H*(I") on I" are defined invariantly for |s| < 1, which
means that they do not depend on the chosen parametrization of I" (see Proposi-
tion 2.4.2). For a higher differentiation index s > 1, Hlfw (T') is defined as in (4.86).
These spaces form a scale with
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L*(T) = H),(T") D Hy,(T) D Hy (T), 0 <5 <1. (4.217)

Lemma 4.3.16. For s > 1 every u € Hy (T') is continuous on T', i.e., Hj (I') C
coI).

Proof. T is the bi-Lipschitz continuous image of a polyhedral surface: I' = yr (f‘)

and therefore it suffices to prove the statement for polyhedral surfaces. Let ,1<
j < J,be the plane, relatively closed polygonal faces of the polyhedron.

Letu € HpsW (f‘) for s > 1. The Sobolev Embedding Theorem implies that

ue CO(1J) forall 1 < j < J and, thus, it suffices to prove the continuity across

the common edges of the surface pieces r ;. For this we consider two pieces I; and
r ; with a common edge E. Then there exists an (open) polygonal domain U C R?
and a bi-Lipschitz continuous mapping y : U — I'; U I'; with the properties

U, := )(_1 (f‘,-), U, := )(_1 (f‘j>, and )(|Uk is affine fork = 1, 2.
Ui, U, are disjoint and U = U, U Us.
=y ! (E) =U; NU,.

We only need to show that w := u o y is continuous over e. Clearly, we have
wr = wo yx € HS(Uy), k = 1,2,and w € H' (U). If we combine this result
with the statements from Theorem 2.6.8 and Remark 2.6.10 we obtain the assertion.

|

4.3.4 Approximation Properties of S, o

We will now prove the error estimate (4.59) for the following two geometric
situations.

Assumption 4.3.17 (Polyhedral Surface). I' is the surface of a polyhedron. The
mesh G on I consists of plane panels with straight edges with mesh width h > 0.

Assumption 4.3.18 (Curved Surface). Assumption 4.3.10 holds and the condi-
tions from Lemma 4.3.11 are satisfied with n < y.

Theorem 4.3.19. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. Let
s > 0. Then there exists an operator Igp’_1 D Hj, (') — Sgp’_1 such that

Hu—lp’_lu‘

z <C hmin(p-i—l,s) ”u”Hé

L2(T) — @) -

(4.218)

For a polyhedral surface the constant C depends only on p and the shape-regularity
of the mesh G via the constant kg from Definition 4.1.12. In the case of a curved



260 4 Boundary Element Methods

surface it also depends on the derivatives of the global transformations y, y~' up

to the order k.
Proof. Let ﬁf cHS (1) —> Pﬁ be the L2-projection:

ne4 _ A
(Hfu,q)Lz(%) =wa)p  YaER) (4.219)
We lift this projection to the panels 7 € G by means of
(Hfu,) (x) := (ﬁfﬁr) o X;I (x) Vx €1,

where u; := u|, and @i; := u; o x. The operator Igp’_1 then consists of the
panelwise composition of T1%:

Igp’_lu

= I1%u VYt eg.

T

Obviously, this defines a mapping from H, (') to S é’ ! The operator ﬁf satisfies
the prerequisites of Theorem 4.3.8, because we have for the orthogonal projection:

1. “ﬁga“o <ple, VieL’@®).

Since ﬁf V is a polynomial in a finite-dimensional space PP ﬁ, all norms are equiv-
alent and there exists a constant Cj, > O such thatforall0 <¢ <s < p 4+ 1 we
have

an’o
T

=Gy |TZ] =Cplfilo <Cplldl,  Vie H ().
N

2. It follows immediately from the characterization (4.219) that

~

g =g¢ quIP’pA.

Therefore we can apply (4.209) or (4.216) with # = 0 and obtain the error
estimate

‘v—lgp’_lv

2@ < Chi Vil s (o (4.220)
forallv e H’(I') with 0 < s < p + 1. If we then square and sum over all T € G
we obtain the assertion. |

Theorem 4.3.19 gives us error estimates in negative norms by means of the
same duality argument as in the proof of Theorem 4.1.33. This is the subject of
the following theorem.

Theorem 4.3.20. Let the assumption from Theorem 4.3.19 be satisfied. Then we
have for the interpolation 15’_1 and0 <t <s < p+landallu € Hj, () the

estimate
—1
e — 18 ull -1 vy < CHF|u] s .- (4.221)
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Proof. The continuous extension of the L? inner-product to HJ (D) x Hj (D) is

again denoted by (-, -),. Since [ gp ! consists locally of L2-orthogonal projections,
we have for an arbitrary ¢g € Sé’ !

—1
‘(u—lg u,(p)o‘

Hu—lé”_luu = sup
H™'(T)  yeqt(T)\{0} ol & ry
,—1
(e~ 18" wp—09) |
= sup 00 4.222)
pe H (T)\{0} lell 7

(see proof of Theorem 4.1.33). If we choose ¢g = Ié”_l(p € Sé”_l, (4.221) follows
by means of a twofold application of (4.218). |

Remark 4.3.21. Corollary 4.1.34 follows from (4.221) with t = %

4.3.5 Approximation Properties of Sgp 0

Here we will prove approximation properties of continuous boundary elements that
have already been introduced in Proposition 4.1.50.

Theorem 4.3.22. Let Assumption 4.3.17 or Assumption 4.3.18 hold:

(a) Then there exists an interpolation operator Igp’O : HSW(I‘) — Sg’o such that

p,0 —t
Hu Yy “Hm(r) < CI*™ ull gy ) (4.223)

fort =0,1,1 <s < p+1landallu € Hy, (T). For a polyhedral surface
the constant C depends only on p and on the shape-regularity of the mesh G
via the constant kg from Definition 4.1.12. In the case of a curved surface it

also depends on the derivatives of the global transformations x, x~' up to the
order k.

(b) Letu € HS (T') for some 1 <s < p + 1. Then, for any 0 <t < 1, we have

— 1% = T ey
18], = T sy

Proof. Part a: Lemma 4.3.16 implies that u € H;W(I‘) c CcoM) fors > 1. We
define Igp’ou ont € G by

(Ié”our) (x) 1= (?Par) oyl (x)  Vxer (4.224)
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with u; := u|,, itz := u; o y. and the interpolation operator 77 from (4.73) for
the set of nodal points ¥, from Theorem 4.1.39. By Theorem 4.1.39 this operator
is well defined and satisfies

By Lemma 4.3.1 we have on the reference element

-
HPH1(3) + Z ‘(1 MT) (Z)D
zeX P

A

Ur

HTP@,

|77

< | |77
HIG) — Hotl) — 2 (‘ te

=C2 Z i (2)]

ZEXP

<ec ||'3||Co(§) < Cca litll sz -

Therefore Theorem 4.3.8 or Theorem 4.3.14 is applicable and for 1 < s < p 4+ 1
and ¢ € {0, 1} we obtain the estimate

p,0

Yue H(t): |ug— 15 ur

—t

If we square (4.225) and sum over all 7 € G¥"® we obtain (4.223).
Part b: By using Lemma 4.1.49 we derive from Part a the estimate

e H < Ch |Ju s 4226
u= 18], o = €I sy (4.226)

fort € {0, 1}. We apply Proposition 2.1.62 with T = [ —I_é”o, Yo=Y, = H* (),
Xo = L>(T), X; = H'(I'),and # = t € (0,1) to interpolate the inequality
(4.226). The result is

1—t¢ t
1T e @yermsa@ < N T 2@y ms @) 1T a1 @yems @
< (ch) T (Cng) = cny

and this implies the assertion of Part b. O

Next we investigate the approximation property for functions in Hpy, (I") for
0 < s < 1. Recall that H;fw (I') = H?* (') in this case. In general, functions in
H?* (T") are not continuous and the application of the pointwise interpolation / gp s
not defined. We will introduce the Clément interpolation operator Qg : L' (T') —
Sé’o for the approximation of functions in H* (T") if 0 < s < 1 (cf. [69]). To avoid
technicalities, we consider only the case that all panels are (possibly curved) sur-
face triangles. Let Z denote the set of panel vertices with corresponding continuous,
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piecewise linear nodal basis (b;),c7. For z € 7 and 7 € G, we introduce local
meshes G, and G; by

Goi={te€G|tCsuppb,}, G:={t€G|INT+#0}.

The corresponding surface patches on I' are denoted by

W, = U?, Wy = Uf.

1€y, teGy
For functions f € L! (") and z € Z, the functional r, : L' (') — C is defined by

1

|wz| Wy

1, (f) = S (y)dsy.

Remark 4.3.23. For z € I, we set h, := maxceg, h. There exists a constant Cy
which depends only on the shape-regularity constant kg such that

hy < COhr V1 e g,.

Definition 4.3.24 (Clément interpolation). The Clément interpolation operator
Qg:L'(T) — Sé’o is given by

Qqf =) 1 (f) bs.

z€Z

The proof of the stability and the approximation property of the Clément inter-
polation employs local pullbacks to two-dimensional polygonal parameter domains
and then follows the classical convergence proof in the two-dimensional parameter
plane. The next assumption is illustrated in Fig. 4.7.

Assumption 4.3.25. (a) For any z € I, there is a two-dimensional convex and
polygonal parameter domain @, C R? along with a bi-Lipschitz continuous
mapping x, . 0, —> w, which satisfies: For any T € G,, the pullback T =

A\ 2

Fig. 4.7 Pullback of a surface patch to a two-dimensional parameter domain
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1, ' (v) is a plane panel with straight edges. The pullback T can be transformed

to the reference element T by a regular, affine mapping which is denoted by
ffine
/A

(b) The reference mapping (see Definition 4.1.2) is denoted by X+ : T — 1, where
the reference element is always the unit triangle T = S, because we only
consider triangular panels. For curved panels, Assumption 4.3.18 holds so that

Yo =0

where M is affine and y : U — V is independent of G.

T
(c) For any © € G, the image 2™ (%) is the pflane triangle with straight edges
affine

which has the same vertices as t, i.e., % is the componentwise affine
interpolation of x+.

Notation 4.3.26. If 7, T, T, xr, )(‘;fﬁne, etc., appear in the same context their
relationships are always as in Assumption 4.3.25.

Let g, € L (&,) denote the surface element

g (x) = /det(J] (x) ), (x)) Vxed, ae,
where J, denotes the Jacobian of y,. Let the constants 6, ® be defined by

-1 _. gl . oled

Lemma 4.3.27. Let Assumption 4.3.17 or Assumption 4.3.18 hold:

(a) Then, 0, respectively ©, in (4.227) can be bounded from below, respectively
from above, by constants which depend only on the shape-regularity of the mesh,
the ratios

D) 1)
€1 }= max max o] and C; ;= max max | fl , (4.228)
2T t€G, | |T| z€Z t€g, | |T|

and, for curved panels, on the global mapping y (cf. Assumption 4.3.10).
(b) There exists a constant Cy so that, fori € {1,2} and any X € T C @, we have

diam T
2|7

19: {(x= = x4") 0 ™™ )} < Co 2. (4.229)

Proof. Proof of part a. Let T € G, and 7 := x, ! (t). The restriction y, . := y,
can be written as

|z

affine
Xzt = Xt ©1] s

where y; : T — 7 is the reference mapping as in Definition 4.1.2 and 7 is the unit
triangle as in (4.13). Further, nafﬁ“e : T — T is some affine map. For x € t, let
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A _ ~ -1 A
X:= 7' (x) and X := (n*™¢) " (X). Then

Jz,‘t (i) = J‘t (ﬁ) Jafﬁne (i) ) (4230)

affine

where J, ¢, J, Jasine are the Jacobi matrices of yz ¢, xz, 7 , and

2, (%) = \/det (Iine ®) G R) Jafine (X)) with G, ®) = JT ®)J; }).

We introduce Gufipe = Jafﬁm,/Jaﬂme and employ the multiplication theorem for
determinants to obtain

gz (X) = |det Jataine| v/ det Gy (X) = M. (4.231)

27|

If 7 is a plane triangle with straight edges then

VdetG; (X) = 2|7].

For curved panels, we have y; = x o 1" (cf. Assumption 4.3.10) and obtain by
arguing as in (4.231)

CXZ |Tafﬁne| < /detG, (f() < CXZ |Tafﬁne| with _L,afﬁne o— Xz;fﬁne( )’

where the constants 0 < ¢, < C, depend only on y, i.e., are independent of the
discretization parameters. From this we derive, by using the bi-Lipschitz continuity
of x and the shape-regularity of the surface mesh, the estimate

2¢cy |t] < 2¢yh? < /detG, (X) < 2Cyh% < 2CCy 7],
where ¢, C depend only on the shape-regularity constant «g. Thus

cox el U < e ®)| < ccxm <CCC 2

o 1@ - RS 7] ||

||

Proof of part b. The statement is trivial for plane triangles with straight edges
because the left-hand side in (4.229) is zero.

Let z € Z and assume that T € G, is a curved panel. For any X € T C @, we
have

” 9; {( Xz;fﬁne) affine (X) ” Z ”a afﬁne) (X) ” |a n

(4.232)
where & = 7" () € 7.
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Let i\, X+ denote the p-th order Taylor expansion of y, about the barycenter M
of 7 and let 2" = 7, y, be the affine interpolation at the vertices of 7. Then

O ()(r -~ flxr) + (TAl X — xifﬁ“e) = ()(r — flxr) +1; (fl Xe— xr) :

For k = 0, 1, this splitting leads to the estimate

Xr_ﬂ)(r

c'«G)«ckG)) k@)

Standard error estimates for two-dimensional Taylor expansions result in

|

Because Bﬂ/"\l)(, = ﬁ) (Bj )(r) we obtain

e Foe (R

1 o
Ja2—J
coiy = 3 om0, |15 xe

Xt _T\l)(r

coF)’

Haj)(r_ajfl)(r Co3) = Haj)(r TO jXt o) <0rilla§ Haila%_iaj)(ruco(a-
Thus
N afﬁne J92—J
e =2y = (14 Al ycongo) om0 5 oy
(4.233)

Next, we will estimate the first factor in (4.233). Forany w € C 0 (?)’ we have

A

|7

= max |wX W o
co(2) ﬁisavertexof%| ® = ”CO(;)

We denote the vertices of T by /PLZ (0,0), Py = (1,0), Py = (1,1) and the
values of a continuous function w at P ; by w;, 1 < j < 3.1Itis easy to see that

and, similarly, we obtain the stability of the derivative d,. Hence we have proved
that the first factor in (4.233) is bounded from above by 2.

To estimate the second derivative of x. in (4.233) we write the mapping 2" in
the form

[wa —wi| lw (X) —w (¥)]
7 = e = Wle@
HPZ_PI e [x =yl

= w2 —wy| <

>
< =
B

afﬁne (X) Brf{ 4 br

with the (constant) Jacobi matrix B; € R3*? and b, € R3. The columns of B; are
denoted by a;,a, € R3. As in the proof of Lemma 4.3.6, we use
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M (X ° Xiﬂme) — Z Z %afa; (aﬁ+vx) ° X:ﬂme.

BeNG veNj
[Bl=p1 vI=p2

Next, we employ |(B,),-,j| < h, and obtain for any u € NZ with |u| = 2

sup [3 (x o x3™) R)| < C3hZ,

XET

where C3 depends only on the derivatives of y which, by Assumption 4.3.10, are
independent of G. Thus we have proved that

[ 1 = £ or ey =< 2Csh3 (4.234)

and it remains to estimate the last factor in (4.232). Because n*i" is affine, it is

straightforward to show that J_1 € R?*2 [cf. (4.230)] has column vectors B — A

affine
and C — B, where A, B, C denote the vertices of 7. Hence

P [(C—B)z —<C—B)1].
217 [-(B—-A), (B—A),
Consequently
diam 7
3| < 4.235
O

As a measure for the distortion of the local patches w, by the pullback, we
introduce the constant Cy by

Cy := max {|a7z|—‘/2 diam&Tz} . (4.236)
z€T

Theorem 4.3.28. Let Assumption 4.3.25 be satisfied.

There exist two constants c1, ¢ depending only on the shape-regularity constant
kg [cf (4.17)], the constants Cq and Cy [as in (4.228)], and, for curved panels, on
the global chart y so that

lv—=0¢vl12¢x) = c1he IVlg1(0,) and | QgVla1) = C1 Va1 (00)
(4237a)

forallv e H' (') and all triangles Tt € G. Also,

Iv—0gvllgomy < c2hg * IWlgsay and Q¢ gsrymsr) < 2
(4.237b)
forany0 <o <s <landv e H ().
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Proof. We present the proof in eight steps (a)—(h).

(a) Forz € Z, let y, : @, — w, be the mapping as in Assumption 4.3.25. For
¢ € H'(w,), the pullback to @, is denoted by ¢ := ¢ o x,. The Lipschitz
continuity of y, implies that § € H! (@).

We consider 77, (¢) € C as a constant function and obtain
o= @y = [ @156 —m @) dx (4238)
Wy

Case 1: First, we consider the case of flat panels with straight edges. Note that, for
anyt € G,and 7 := y; ! (r), we have gz|, = |t|/|T|
Lett € G,. Thenforanyx € T = y; ! ()

§®) — 10 = K) - |Z| [v=ic-, ! Agza

- o lt]
=R —— > [ GP=9® -3 = [¢ (4239
| zlteg | zlteg | |
L .
=Y — (@ ® —m9)
teg, |a)z|
with 779 1= |71| 7 @. Applying the L?-norm to both sides yields
- lt]
19 = mglliz = D 1 19— 7l 2 - (4.240)

teg, | Z|
Because T C @, are both convex we may apply Corollary 2.5.12 to obtain

|| dlama)z
7]

diam @, _
5(1+\/C1) — 10l (4.241)

where C is as in (4.228). Inserting this into (4.240) yields

- diam o,  _
16 = mpllz2 = (14 V) = 1@l -

We sum over all T C @, and apply a Cauchy—Schwarz inequality to derive the
estimate

1 = 7@l L2@) = 10 — 70l 25 = (1 + @11 @)

5 diam @, _
||(p — JTZ(p”LZ(a;Z) < vV Cardgz (1 + V Cl) T . |(/)|H1((51) ’
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where the number of panels (card G,) is bounded by a constant which depends only
on the shape-regularity of the surface mesh.
The combination with (4.238) leads to

o — 72 (@) L2(,) = /182l Loo () 1€ — T2l L2(5,)
4.227)

diam @,  _
< Cavlod—— 9lu1@)
V|C‘)Z|

< C4Cah; 19| g1(s,)
with C4 := /O card G, (1 + «/Cl) /7. From Lemma 4.3.6 resp. Lemma 4.3.13 we

obtain
19516y = Z Pl1@ = Cs D 1ol (4.242)

er, T€G,

and, finally, for any t C w,

lo=72 (@)l 22(0,) < C 62 |91 11 (@) < CoC6he 9] 1w,y With Ce = CaCay/Cs,
(4.243)
Case 2: Next, we consider the general case of curved panels. As in (4.239) we derive

= 7|
e Zw( 7 e i

teg,
- - 1 -
= Z @ = 779) + 7= | i@ (4.244)
teg, | zl | | !
with d; = ||f|| 8zl;- The first difference in (4.244) can be estimated as in the

case of flat panels while, for the second one, we will derive an estimate of d;. We
use the notation as in Assumption 4.3.25 and employ the splitting

tafﬁne 1 ~
dy = 1_u + — (2" = 2|T | (glp). (4.245)
|t] 2]
where 73ffine = yaffine () js the plane triangle with straight edges which interpolates

T at its vertices.
We start by estimating the second term in (4.245). We employ the representation
(4.231) for Gram’s determinant to obtain

2|T| (g.lp) = &

where g; is Gram’s determinant of the reference map y; : T — ¢, i.e.
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g = 191xe X D2 )e -

The area 2 |r*°| can be expressed by

| afﬁne| _ ||a Xaﬂme X 8 Xaﬂme || g;iﬂme (4246)

Hence
2| 2 [ ol = [ ] = 10026 x 026 120 % |
(4.247)

”a Xafﬁne % 0 Xafﬁne (31)(1 X 32)(t)”

affine

< 91 (xe = £5™) x 0214
4 Hal)(?fﬁne X 82 (Xt _ X?fﬁne) H .

We employ (4.234) to obtain

2| =2 |T| (galp)| < 2C3h7 (uazxt loo @) + 101" Hma) :

The estimate ”81 Xafﬁ“e ||Loo(%) < h; is obvious because r2ffine

vertices. For the other term, we use

interpolates ¢ in its

3
192 ¢ llg.00 2y = Z j 10 XY By (im0 <Ch,,

N Loo(2)

where C depends only on the global chart y but not on the discretization parameters.
In summary we have proved that

[l = [T] (gal0)| _ C3Che
1 R

where ¢ depends only on the shape-regularity of the mesh and the global chart y.
The first term of the sum in (4.245) can be estimated by using (4.247)

|t| / g — aﬂme
It |

_ GCh} _ CiChy.

|tafﬁne| |l| _ |tafﬁne

1-—

7]

|t] ¢

This finishes the estimate of d;
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CsC

|di| <

Inserting this into (4.244) and proceeding as in the case of flat panels yields

o, 7]
16 — mell L2 < Z| N0 =70l + D 72 | S 7] Welleacay
t€G, Wz t€G,
(4.241) diam @, C3C JC
= (14 V0) =10l ey + 27— e 62 -

We sum over all T C @, and apply a Cauchy—Schwarz inequality to derive the
estimate

) diam o,  _
16—l 12, = Veard G, (14 VCr) == 1l

C3C«/
R 191l 225, }

From Lemma 4.3.6 resp. Lemma 4.3.13 we obtain the scaling relations
916 = Cs 10Pp10y and 12 10120, < 1912205 = C i )2
Pl =5 191H1 (@) 5wy 1PN @) =19 L2@) = Jw,| "N L2 @)
and, finally, for any t C w,
lo = 720l 12(0,) < Cohall@llf1(w) = CoCohe @l gt (w,) - (4.2438)
where 66 depends on Cy, Cy, Cs, s, 55, and card G,. Let Cg := max {56, 66}
[cf. (4.243)].

(b) Let T € G. The set of vertices of 7 is denoted by Z,. Then

bezl onT.

x€Z,

By using Step a, we derive

lo = QaollL2@y = || Y ba (0 — 1 (9)) <Y llba (9 = 7 (@)l 22

2€71¢ L2(7) 2€7;

<Y e = @lrze = Y e — 12 (@) 120y

2€I; 2€1r
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< CoCsh. Z ||‘/)||H1(wz)

2€7r

< V3CoCohr [ 101310y (4.249)
2€1,

5«/§C0C6hr Z Z ||</’||%11(t)

tewr z€Zr:tCwy

< Crhe |9l mt (wr) (4.250)

with C7 := 3CyCe.

(c) By summing over all panels we obtain

lo = Qaeliay = Y lle = Qaeli2) < C7hE D N0l3 o,y

T€G T€G
=GPy > el = Chg el -
teg teG:tCwr
where Cg = C7Cﬁl/2 and
Cy:=maxcard{t € G :t C w}
1eG
depends only on the shape-regularity constant.

(d) For the L? (T')-stability we repeat the first steps of (4.249) to obtain

106¢lr2) = Y 1M (@)l 12wy -

z€Tr
The Cauchy-Schwarz inequality yields
72 ()] <l ™2 0ll 2,
and as in (4.250) we derive
106012 = D 101126 = V319l20r) - (4.251)

y A

A summation as in Step c results in the L2 (I')-stability of the Clément interpolation
operator

1Qg¢llL2ry = V3Cs llelliL2ry - (4.252)
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(e) From Step c and Step d we conclude that
lp = Qgelir2m = ColleliLaqy and o = Qgoll2my = Cshg ll¢ll g1y

hold with Cy := 1 + ,/3Cy. Hence the approximation result for the intermedi-
ate Sobolev spaces H® (I"), s € ]0, 1], follows by interpolation as in the proof of
Theorem 4.1.33.

(f) For the local H !-stability we proceed as in Step d, respectively as in (4.249).
Recall the definition of the surface gradient as in (4.200) and (4.201) to derive

106010y = | D 7 (#) Vsh, =D (2 () = 74 (9)) Vs
2€71¢ L2(7) 2€7; L2(7)
(4.253)

for any fixed zg € Z;. Let ¢, := ﬁ Jw, ¢- Then 1, (¢1) = 74y (¢1) = @ and
|7Tz (¢) — 114 (f/’)| < |72 (¢) — 0 (@0)| + |7Tzo (Pr) — 74 ((/))|

1 )
|— / (@ — )
w10| Wz

e =ellizw, | 19 =9z,
= 1/2 ’

(¢ —@o)| +

‘ 1
T sl Jo,

|a)l| |wZO|

In a similar fashion to (4.243) and (4.248) one derives for D € {a)z, a)zO}

lg = @ell2py < ¢ = Pellr20,) = C7 (diamwo) @]l g1 w,) -

Hence
|72 (9) = 2 ()] < Cro 101l 111 @) (4.254)
where C1¢ depends only on the shape-regularity constant and the global parametriza-
tion y.
In Theorem 4.4.2 (with £ = 1 and m = 0), we will prove the inverse inequality
and, thus, obtain the estimate

19sball 2 < Ch7 b2y < Ch 212 < Cuy, (4.255)
where Cj; depends only on the shape-regularity of the mesh and the global

parametrization y.
By inserting (4.254) and (4.255) into (4.253) we derive

196@|m1(r) < 3C10C11 10l 11 (w,) -
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The combination with (4.251) leads to the local stability with respect to the [|[| 1 ()~
norm and a summation over all panels as in Step c results in the global H !-stability

1Qg¢llarary = Cr2 ll@llgiry -

(2) Applying Proposition 2.1.62 with Xg = Yo = L?(I") and X; = Y; = H' (')
we obtain by interpolation of (4.252)

||Qg||HS(F)<—HS(F) = ”Qg”izé(‘r)(_LZ(r) ”Qg“;‘ril(l")(—Hl(F) <Ci3

1=s
with Cy3 := (3C#) 2 Ciz.
(h) Part e and g imply that

lg = Qoollrz2ary = Cshgllelgsry and llo— Qg@llgsry = (1 + Cia)llgllmsry -

We apply Proposition 2.1.62 with T = I — Qg, Yo = Y; = H* (T"), Xo = L (I),
Xy = H* ('), and 8 = o/s € [0, 1] to interpolate these two inequalities. The
result is

1-6 6 1-6 9
1T go@yersay = IT I p2ayemsa@y 1T 1 as @y<—ms@ = (Cshsg) (1+ C13)
= Crah®

with Cq4 1= Csl_o/s 1+ C13)°/s and this implies the first estimate in (4.237b). O

In Sect.9 we will need an estimate of the surface metric on w, compared with
the two-dimensional Euclidean metric on @;,. Since w, may consist of several panels,
the local Assumptions 4.3.17 and 4.3.18 have to be supplemented by the following,
more global Assumption 4.3.29 which states that I" has to satisfy a cone-type con-
dition and that the minimal angle of the surface mesh has to be bounded below by a
positive constant (see Fig. 4.8).

Assumption 4.3.29. [. Forallt € G, x € '\t andy € 1, there exist c > 0 and an
Xo € T such that

Ix—xoll = dist(x.7) and x—yI” = e (Ix = xol* + 0 — yII”).

Fig. 4.8 Illustration of the cone and the angle condition for the surface mesh
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2. For all t,t € G whose intersection consists of at most one point, there exists a
point p of t such that

Ix =yl zc(x—pl+lp-yl)  Vxez.Vyer

3. Forallt,t € G with exactly one common edge TNt = E and forallx € T,y € t
there exists a point p € E such that

ly =xIl = ¢ (ly —pll + llp —xID

Lemma 4.3.30. Let Assumption 4.3.29 be satisfied and let Assumption 4.3.17 or
Assumption 4.3.18 hold. Then

diam @,

cllx—y| <
=30 = =

Ixe ®) =X DI = CIX=§II VX.§ €,

where C depends only on the global chart y but is independent of the surface mesh.

Proof. (a) Let T € G, be a surface triangle with vertices A, B, C. First, we will prove
the statement for X,y € 7 = x, ! (7).
fﬁ R fﬁ A . . . . .
Let " := ¥ (7) be the plane triangle with straight edges which interpo-
lates 7 in its vertices. Note that y (rafﬁ“e) = 7. Hence

X (X) - X (Y) = J)( (W) (X — y) VX, y€ 7:afﬁne

where J, € R3*3 is the Jacobi matrix of the global chart y and w is some point in
Xy. Note that the largest and the smallest eigenvalues A, and Ay, of the positive
definite Gram matrix G, depend only on the global chart y and are, in particular,
independent of the discretization parameters. Thus

Vamin X =¥ < X 0 =2 DI < VAmax X =y ¥Vx.y € e

Let Gifﬁ“e € R?*2 denote the (constant) Gram matrix of )(ifﬁ“e. From Lemma 4.3.5
we conclude that

affine

[ 2 %) — e )| = (G2 & —§). & —§))"% < V2h, [R—

for all X,y € 7. Because the matrix G‘;fﬁne is symmetric and positive definite, its
minimal eigenvalue A% can be expressed by

min
min

Jaffine _ H (Gifﬁne)_l H_l

We employ Lemma 4.3.5 to obtain

affine affine

|22 G = 22" @) = che %=
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for all X,y € t, where C depends only on the shape-regularity of the mesh. Thus
we have proved that

Cv Aminh‘l: ”ﬁ _y” = ||X‘L' (ﬁ) —X (y)” = Vv ZAmaxh‘t ”5Z - S’”

for all X, § € 7. Finally, we replace % and § by 7" (X) and 5" (y). From (4.235)

we derive the estimate for the largest eigenvalue )U,;‘a" of the Gram matrix G; of

affine
n

(4.235) diam 7T .
)L‘,;m < V2 20| < C diam™!' %,
T

where C depends only on the shape-regularity constant and the global chart .
For the smallest eigenvalue we use

G = [(nélnz (51,52)]

€1.&) [&?
where K ﬁ C denote the vertices of 7 and € = B— K, e, = C —B. Thus
|G, || <2diam?
and the minimal eigenvalue /X‘,}“n satisfies

min — —1)—1/2 1
N 1 e

The combination of these estimates leads to

T

Chamz XY =l ® - @I =€
lamTtT

T

diam 7

Ix=yII  Vxyet.
(4.256)

(b) We assume that G, contains more than one panel and consider the case that x
and y belong to different panels t, ¢ € G,. Note that

h, he h,
< <C YVt eqG,,

C— ~ = = " =
diamw, ~— diam7 diam w,

where ¢ and C depend only on the global chart y and the shape-regularity
constant. Assumption 4.3.29 implies that one of the following two cases is
satisfied:

(i) The panels T and ¢ share exactly one common edge T N7 = E. Then there
exists a point p € E such that

ly =xII = ¢ (ly —pll + llp —xI) .
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The combination of (4.256) and a triangle inequality leads to

ly —xll = ¢ (Iy=pll+lp—xl)=¢ Iy —xI

z z
diam @, diam @,
with p := x; ! (p). For the upper estimate we use Xy C @, since @, is
convex. Let (p; ?:0 be the minimal number of points lying on Xy such that

Po =X, Ppg =y, and V1 <i <gq:p;—1p; is contained in some T C @,.
Letp; = x. (Pi), | <i < gq. Then the upper estimate follows from

hy

s
—x| < <C — — — |ly—x|.
Iy —xll < ;np, pi1| <C s an, Piotll = C s 1§ = %

(ii) 7 and ¢ share exactly one common point {z} = T N 7. Then
Ix =yl = ¢ (Ix —z[| + [lz -yl

and the rest of the proof is just a repetition of the arguments as in Case i. ]

Lemma 4.3.31. Let Assumption 4.3.17 or Assumption 4.3.18 be satisfied. For t €
Gy, let Y0 := Julz where T := x; ' (v). Then, for any u € Ng with k := ||,

h, \F
ot 4 s =C (W, ’
10" xaell oo z) = (diamwz)

where C depends only on k, Cy as in (4.228), Cq as in (4.236), and the global
chart y.

affine affine

Proof. Recall that y, ; = x o« where « = ydffine o paffine jg affine. As in the

proof of Lemma 4.3.6, we use

M (X ° Kafﬁne _ Z Z ﬂ' ' 135 (aﬂ+vx) ° Kafﬁne,
ﬁeNo veNo
[Bl=m1 Iv|=p2

where aj, a, are the column vectors of the Jacobi matrix of k"¢ that is,

(al)J — afﬁne _ Z 8 Xafﬁnea] 77z}fﬁne
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We have ‘8k )(if?“e‘ < h; and from (4.235) we conclude that |0; nj-fﬁne <
diam 7/ (2 |7]). This leads to |(a,-)j| < hydiam 7/ |7|. Thus
N k
9 (o)) < ¢ (MY C e (e te Y
|7| diam @,
where C depends only on k and the global chart y. |
4.4 Inverse Estimates
The spaces H®(I") form a scale:
HS(') € H'(T'), fort<s (4.257)
with a continuous embedding: there exists some C(s,?) > 0 such that

Note that the range of s and # may be bounded by the smoothness of the surface (see
Sect. 2.4). In general, the inverse of this inequality is false.

Exercise 4.4.1. Find a sequence of functions (i), ey € C* ([0, 1]) which contra-
dicts the inverse of (4.258) for s = 0 andt = 1, i.e., which satisfies

i lun 1o,y / Nlunll 20,17y = 00

However, for boundary element functions there is a valid inverse of (4.258), a
so-called inverse inequality, where the constant C depends on the dimension of the
boundary element space. In the following we will assume that the maximal mesh
width 4 is bounded above by a global constant /. For example, we can choose
ho = diam I" or otherwise iy = 1 for sufficiently fine surface meshes. Recall the
definition of P} as in (4.67).

Theorem 4.4.2. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. We have
forO<m <t allteGandallv € ]P’,::
—L
IVl zey < ChE " vl gm e -

The constant C depends only on hg, £, k and, for a polyhedral surface, on the
shape-regularity of the mesh G via the constant kg from Definition4.1.12. In the case
of a curved surface it also depends on the derivatives of the global transformations
1 x~ ' up to the order k.
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Proof. Owing to the h-independent equivalence of the norms |[v||ge(,) and
IVl H(gafine) from Corollary 4.3.12, it suffices to consider the case of a plane
polyhedral surface.

Case 1: m = 0. Since IP’,: is finite-dimensional, all norms on IP’,: are equivalent:
There exists a positive constant Cy such that for 0 < j < ¢

e < CelVllzq Ve P
With Lemma 4.3.6 or Lemma 4.3.13 it follows for all v € P/ that
Wai@ < Crha ™ Plgiay < CeCrhy™ [Pllr2¢) < CeC1Ch77 [VlL2(r -
For the |-|| ge-norm, by summing the squares of the seminorm we obtain
Mlaew < Ch IVl - (4.259)
where C depends on £, k and the upper bound of the mesh width /.

Case2: 0 <m <{.For{ —m < n < { and |¢| = n we write 0% = 98 928 with
|B] = £ —m and B < o componentwise. Then with Case 1 we have

< Chm_e |V|Hn—li+m(r) .

e < ‘3“‘/3 ‘ <cnmt
| V||L2(r) = v He-m(z) — T L2(r) = T

ge—p v‘

Since |a| = n was arbitrary, this result and n — £ + m < m together yield
W gniy < CHP W gn—cimy < CRPE V]| gm o) (4.260)

for an arbitrary £ — m < n < {£. (Note that the constant C in (4.260) depends on
n,m, and £. However, n and m are from the finite set {0, 1, ..., ¢} and — by taking
the maximum over n and m — results in a constant C which does not depend on
n and m but on £ instead.) Inequality (4.259) for £ <— £ — m as well as Estimate
(4.260) finally yield the assertion

m
2 2 2
ey = Wl3eomey + Y. Wi
n={—m+1

m
—L 2 —L 2
<C iR O lTay+ Y RO il
n={—m+1

—L
< CR2O |v]3m e -
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The global version of Theorem 4.4.2 requires the quasi-uniformity of the surface
mesh G.

Theorem 4.4.3. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. Then we
have forall t,s € {0, 1}, t <'s, the estimate

Vv e SEO: vlasey < Ch™*[v]l e - (4.261)

The constant C depends only on hy, p and, for a polyhedral surface, on the shape-
regularity and quasi-uniformity of the mesh G via the constants kg and qg from
Definitions 4.1.12 and 4.1.13. In the case of a curved surface it also depends on the
derivatives of the global transformations y, y~' up to the order k.

Proof. From Theorem 4.4.2 we have

2(t—s)
2 2 — 2 . 2
Wz @y = 20 Mz = € 2 m ™ M = € (mgh) IVl o)
1439 Teg
2(s—, _
= (Caz* ™) 2 ey
O

Theorem 4.4.3 can be generalized in various ways. In the following we will cite
results from [75].

Remark 4.4.4. (a) Theorem 4.4.3 holds for all t,s € Rwith0 <t <s < 1or
—1 <t <0As =0(see[75 Theorems 4.1, 4.6]).

(b) Theorem 4.4.3 is valid for the space Sé”_l forallt,s € Rwitht =0A0 <
s <1/20r—1 <t <0As=0/(see[75 Theorems 4.2, 4.6]).

We will also require estimates between different L”-norms and discrete £7-
norms for boundary element functions and, thus, we again start with a local result.
Here we will always consider the situation where a Lagrange basis is chosen for P}

ont. X, = {/l;, S LZ} denotes the set of nodal points on 7. The Lagrange basis

<ﬁ1> . of ]P’,ﬁ satisfies
i€

N,‘ (i;j)z(gi,j Vi,jetli.

A vector of coefficients w := (w;)._+ is put into relation with the associated

lELk

polynomial w € IP’k% on the reference element by means of

W= /PWZZ ZW,’Z\\],’.

ie T
i€ty
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We define the “lifted” function

wi=Pow:= Y wN; with N;=DN;oy"

i€l
analogously.

Theorem 4.4.5. Let either Assumption 4.3.17 or Assumption 4.3.18 hold. For all
Tt € Gandallw := (w;),_+ we have

lELk

Che Wz < [[PeWll 2y = Che [[Wlle2 -

The constants ¢ and C depend on the parameters qualitatively in the same way as
does C in Theorem 4.4.3.

Proof. From Lemma 4.3.6 or Lemma 4.3.13 we have

chell#l a0y = Wl = Che [Pl o) with = wo

Since all norms are equivalent on IP’%, we have
e Wl gr+1zy < IWll2e) < Cr IIVVIIHHI(;) -

The equivalence of the H*¥*! ()-norm and the [-]; 41-norm follows from Lemma
4.3.1. Since W € Pf,

[WMesr = Wlgrnig+ Y @I = Y W@ =) |wil =Wl . (4262)

ZE€EX ZE€EX I‘GL;

Since X is finite, there exist positive constants ¢, C depending only on the
cardinality of X, i.e., on k, such that

clwle < Iwllg = Clwlle2 .
Combining all these results, we have thus proved that

Che Wl < Wl 2@y < Che [[Wlle2 -

Corollary 4.4.6. Let the conditions from Theorem 4.4.5 be satisfied. Then

Che Wl poory = Wl 2y < Che Wil poo(ry
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for all w € P. The constants ¢, c qualitatively depend on the parameters in the
same way as do ¢, C in Theorem 4.4.3.

Proof. If we combine Theorem 4.4.5 with the norm equivalence on finite-
dimensional spaces for w = (w;) e, and w = P;w it follows that

Wliz2@y = Che[Wllez = Che [[Wllgeo < Che W]l poo(er) -

Conversely, with the notation from the proof of Theorem 4.4.5 we have

A . . (4.262)
Wllzoo @y = IWlLooy < C Wl a1y < C Mgy =" C' Wl

< C"wllgee = C" W2 -

Note that the constants in this estimate depend on the cardinality of X, i.e., on k.
From Theorem 4.4.5 we thus have the lower bound. O

The global version of Theorem 4.4.5 shows an equivalence between boundary
element functions and the associated coefficient vector. Let (b,-),]-V:1 be the Lagrange
basis of the boundary element space S. We define the operator P : RN — § for

_ N
w = (w;);= by

N
Pw = Zwib,‘.
i=1
Theorem 4.4.7. Let Assumption 4.3.17 or Assumption 4.3.18 hold. Then for all
we RN 5
chwlez = 1PW L2y < Ch[Wle2 -

The constants ¢, C qualitatively depend on the parameters in the same way as ¢, C
do in Theorem 4.4.5.

Proof. Let w € RY be the coefficient vector of the boundary element function
w = Pw. For T € G we can associate a global index ind (m,7) € {1,2,..., N}
on 7 with every local degree of freedom m € (. We set Wy 1= (Wm),, @i =
(Wind(m,7) ),z - With Theorem 4.4.5 we obtain

k

2 2 2
IPWIZ2y = D IPeWl 7oy < CH* Y IWellZa -
T€g €@

The constant

M = { €lf xG:i=ind }
l_e{l,rr;z}iN}ji (m,7) €1, xG i =ind(m,7)
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depends only on the polynomial degree k and on the shape-regularity of the surface
mesh. It thus follows that

| PW|2a 0y < CME? W] .
The lower bound can be found in a similar way. O

Corollary 4.4.8. Let either Assumption 4.3.17 or Assumption 4.3.18 hold and let
(bi); ez denote the nodal basis for the boundary element space S. Then

16i || Loo (ry < Ci. (4.263)

The constant C, depends only on the shape-regularity of the mesh and the polyno-
mial degree of S.
IfS = Sé’ofor some k > 1 then

il w1.00ry = [IVsbill poo(ry = éthI forany Tt C suppb;. (4.264)

The full W'-°° (T')-norm is given by |||y 1.00(ry = max{||-||Loo(F) , |'|W1400(I‘)}
and hence 5
1Di llw1.00(ry < C3h:1 forany t C suppb;. (4.265)

Proof Let e; € RZ denote the vector with (e;); = 1 and (e;); = 0 otherwise, i.e.,
b; = Pe;, Let T C supp b;. The combination of Corollary 4.4.6 and Theorem 4.4.5
leads to _

1bill ooy < @he) ™" 1bill g2y < C /2.

Because b;|, = 0 forall € G; with ¢ supp b; we have proved (4.263).

For the proof of the second estimate we observe that — as in the proof of Theo-
rem 4.4.3 — it suffices to consider plane panels with straight edges. Hence Vgb; is a
polynomial on every panel t so that

n Cor. 4.4.6 Theo. 4.4.2 _1
Che |Vsbillpoowy = WVshillpzey = Chy 1bill2

Theo.4.45 ~ ~
< CCleilp=CC

from which the assertion follows. O

We can also analyze how far the constants in the norm equivalences depend on
the mesh width % in the case of the £Z and L? (I")-norms with 1 < p < oo. Here
we will only require the cases p = 2 and p = oo and refer to [75] for the more
general case.
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4.5 Condition of the System Matrices

One of the first applications of the inverse inequalities is the estimation of the
condition of the system matrices of the integral operators.

Lemma 4.5.1. Let Assumption 4.3.17 or Assumption 4.3.18 hold. Let K be the sys-
tem matrix associated with the Galerkin discretization of the single layer operator
V for the Laplace problem. Then we have

cond>(K) < Ch™ L.

The constant C depends only on the polynomial degree p and the shape-regularity
and the quasi-uniformity of the surface mesh G, more specifically on the constants
kg and qg from Definitions 4.1.12 and 4.1.13. In the case of curved surfaces it also
depends on the derivatives of the global transformations x, y~' up to the order k.

Proof. Since K is symmetric and positive definite, we have

Amax (K)
Amin (K) ’

cond, (K) =

In the following we will thus estimate the eigenvalues of K. It follows from the
continuity and the H~'/2-ellipticity of the bilinear form (V-,-), : H~Y/?(T') x
H~'Y2(I') — K that there exist two positive constants y and C, such that

14 ||”||§{71/2(r) < (Vu,u)y < C ||”||§{71/2(r) Vue H'/? (T).

From this it follows with Theorem 4.4.7 that

Kw, w Vw,
Amax (K) = max % < Ch? max (WZ—W)O
w=(w;); ERV\{0} |w]| weS\{O} [lwll7 2
2
w5 —
< ch2C M < Cch2C..

. max 5
weS\0} w32y

By Theorem 4.4.7 and Remark 4.4.4 we have for the smallest eigenvalue

. Kw, w . (Vw,w)
A ()= e o <|I—2) = O ol
w=(w;); w|| weS\(O} [lwl| 72
2 . ||W||§1,1/2(F) 2
y mn ————— > C'h*yh.
weS\{0} ||W||L2(F)

Thus
/'\max (K) /Amin (K) S Ch_l

and the lemma follows. O
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Exercise 4.5.2. Show that the system matrix K associated with the hypersingular
operator also satisfies the estimate

cond, (K) < Ch™!
under the conditions of Lemma 4.5.1.

N
Remark 4.5.3. For the condition of the mass matrix M := ((bi’bj)L2(F))- -
ij=
we have
cond, (M) < C.

Proof. Since
(w,Mw) = (Pw, PW)LZ([‘)

we can apply Theorem 4.4.7:

Mw, w Mw, w v
3Ph? < in % < max % < C?h?,
weRN\{o} |w]| weRM\{0} | w]|

from which we have the estimate of the condition with C = C2/¢2. O

Estimating the condition of system matrices for equations of the second kind is
more problematic, as the stability of the Galerkin discretization for these equations
is in many cases still an open question. If we assume that the /-independent stability
of the discrete operators is given, the condition of the system matrices for equations
of the second kind can be determined in terms of an s-independent constant in the
same way as before.

4.6 Bibliographical Remarks and Further Results

In the present chapter, we introduced spaces of piecewise polynomial functions
on the boundary manifold I', and established approximation properties of these
spaces, as the meshwidth % tends to zero, in several function spaces of Sobolev
type on I'. These boundary element spaces are, in a sense, Finite Element spaces
on the boundary surface I'. We also presented a general framework for the conver-
gence analysis of Galerkin boundary element methods, in particular necessary and
sufficient conditions for the quasi-optimality of the Galerkin solutions to hold.

For reasons of space, our presentation does not cover the most general cases.
For example, the surface meshes upon which the boundary element spaces are built
did not allow for local mesh refinement or, more importantly, for anisotropic local
refinements for example in the vicinity of edges (see, e.g., [75,87,234]).

Most of our results do extend to so-called graded, anisotropic meshes (cf. [104,
107, 108]). In addition, besides mesh refinement, analogs of spectral methods or
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even a combination of mesh refinement and order increase, the so-called hp-Version
BEM , is conceivable (cf. [222] and the references therein).

Further, for particular classes of boundary integral equations, special choices of
subspaces may yield large gains in accuracy versus number of degrees of freedom.
Let us mention, for example, the case of high frequency acoustic scattering. Here,
the stability of the boundary integral operators depends, of course, on the problem’s
wave number but, in addition, also the solutions contain high-frequency compo-
nents which are smooth, but highly oscillatory at large wave numbers, and therefore
poorly captured by standard boundary element spaces, unless the fine scale of the
unknown functions on the boundary is resolved by sufficient mesh refinement. This
strategy may lead, however, to prohibitively large numbers of degrees of freedom.
A better approach may be to augment the standard boundary element spaces by
explicitly known, dominant asymptotic components of the unknown solution. In
high frequency acoustics and electromagnetics, in particular for BIEs obtained from
the direct method (where the unknowns are Cauchy data of the domain unknowns),
strong results on the asymptotic structure of the solution are available from geo-
metrical optics. These can be used to build boundary element spaces with no or
a reduced preasymptotic convergence regime at high wave numbers. We refer e.g.
to [5, 57, 153] for recent work on wave number independent Galerkin BEM for
acoustics problems.

In this chapter, and throughout this book, we focused on Galerkin BEM. We do
emphasize, however, that the alternative collocation BEM do constitute a powerful
competition; for collocation BEM on polyhedra, however, the theory of stability and
quasi-optimality is much less mature that in the Galerkin case. Still, since colloca-
tion methods do not require the numerical evaluation of double surface integrals,
they offer a substantial gain in accuracy versus CPU time.

For this reason, in recent years substantial work has been devoted to collocation
based BIEs for high frequency acoustic and electromagnetic scattering. We mention
in particular the work of O. Bruno et al. (e.g. [34,35,161]) which is a collocation type
boundary element method which combines incorporation of high frequency asymp-
totics with a degenerate coordinate transformation of the surface in the presence of
edges or vertices and a Nystrom type collocation procedure. The mathematical error
analysis of this method is in progress.

The a priori asymptotic error bounds for Galerkin BEM developed in Sect. 4.2
show that Galerkin BEM exhibit superconvergence in negative Sobolev norms on
I". This allows us, in particular, to deduce corresponding results for postprocessed
Galerkin approximations which can be obtained as smooth functionals of the solu-
tion. Importantly, the insertion of the Galerkin solution into the representation
formula is such a postprocessing operation. Therefore superconvergent pointwise
approximations of the solution to the underlying boundary value problem at interior
points of the domain result usually from Galerkin boundary element approxi-
mations. Note that our analysis in Sect.4.2 reveals the crucial role of Galerkin
orthogonality of the discretization in the derivation of superconvergence estimates
in negative order norms (indeed, for other discretization schemes such as colloca-
tion or Nystrom methods, such superconvergence results either do not hold or only
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with a much smaller gain in asymptotic convergence order). We finally note that
the superconvergence error bounds for the solution at points x in the interior of
both the domain €2 or its complement deteriorate as x approaches I". Nevertheless,
this deterioration can be remedied and postprocessing procedures can be designed
to recover superconvergent solution values and normal and tangential derivatives
(required, for example, in shape optimization or uncertainty quantification) of arbi-
trary order from the Galerkin solution such that the superconvergence bounds are
uniform in the distance of x to the boundary I'. For the details, we refer to [213].



Chapter 5
Generating the Matrix Coefficients

In order to implement the Galerkin method for boundary integral equations, the
approximation of the coefficients of the system matrix and the right-hand side
becomes a primary task. The integrals are of the form

/b,- (x)b; (x)dsx, /b,- (x) r (x) dsy (5.1
r r
and

[ 5@ [kevy =05 @dsdse [ 500 [kxyy—xr @) dsds,

r r r r (52)
where b; denotes the basis functions of the boundary element space and r is a
given function (right-hand side). Note that the basis functions are real and therefore
complex conjugation becomes obsolete.

The aim of this chapter is to develop and analyze problem-specific integration
techniques in order to approximate these integrals. Note that the integrals in (5.1)
do not contain any singularities, assuming that the right-hand side r is sufficiently
smooth on every panel. Furthermore, the number of non-zero integrals in (5.1) is
proportional to the dimension of the boundary element space (and not the square of
the dimension) because the basis functions are only locally defined.

First we will define a class of functions, the kernel functions, and derive their
characteristic properties (in local coordinates). All the kernel functions that we have
dealt with so far are part of this class as are kernels that appear in connection with
linear elasticity. Subsequently, we will introduce suitable variable transformations
that render the singular integrands analytic. This, in turn permits the numerical
approximation of the integral by means of standard quadrature methods. These
coordinate transforms are applicable to any integral operator arising in the bound-
ary reduction of strongly elliptic partial differential equations in R> (see [137]).
They will not depend on the explicit form of the kernel function. This implies that
the numerical integration in the computer program can be realized in an abstract
manner.

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series 289
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2_5,
(© Springer-Verlag Berlin Heidelberg 2011
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We will conclude this chapter with an error analysis. First we will analyze the
local quadrature error depending on the order of the quadrature, after which we will
estimate the effect this has on the entire discretization.

If not explicitly stated otherwise we will restrict ourselves to the case d = 3 and
two-dimensional surfaces I in the entire chapter.

Remark 5.0.1. In certain special cases (plane, right-angled panels, kernel func-
tions for the Laplace operator) the integrals in (5.1) and (5.2) can be evaluated
exactly (see [157]). However, we prefer the ansatz via numerical quadrature, as this
allows for a much larger class of integral operators and is also easier to implement.

Note: Readers who are more interested in the quadrature formulas and in the
required number of quadrature nodes than in the analysis and derivation will find a
compact summary of these in Sect. 5.2.4 and Theorem 5.3.30.

5.1 Kernel Functions and Strongly Singular Integrals

The properties of an integral operator of the form

(Ku) (x) = [F k(% y.y—x)u(y)dsy

are characterized by the properties of the kernel function k and the smoothness of
the surface.

5.1.1 Geometric Conditions

In this section we will summarize a set of conditions imposed on the surface and
the boundary element mesh. Most of the applications satisfy either these conditions
or some weakening of them. The relevant cases in which the conditions can be
weakened will be duly noted.

As before we use the notation G := {t1,...,1,} for the boundary element
mesh and y, : T — 1 for the parametrization over the reference element (unit
square/triangle).

Assumption 5.1.1. The surface mesh G is regular in the sense of Definition 4.1.4.

We assume that the functions y., y; are analytic. The details can be found in the
following definition. The differential operator (v, V)™ that appears in the definition
is defined for a vector v € R? by

VY f =Y (Z)va;"—kafa;"—k_ﬁ (5.3)
k=0
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Definition 5.1.2. Let T € G. The parametrization y, : T — t is analytic if there
exists an open, complex neighborhood t* C C x C of 7 in which y, can be
extended analytically, i.e., for all z = (z1,22) € T* there exists a neighborhood
U (z) C 7* such that

AeW) =) (W_Z’Z)l)“(z) Vwe U ().
i=0 :

The extension is again denoted by y-.

Assumption 5.1.3. For all T € G the parametrizations x : T —> T are analytic.

The integrals (5.2) over I' x I" will be split into a sum of integrals over t X ¢,
where 7,7 € G. The quadrature error will depend on the angles between adjacent
panels and the distortion between the surface and the Euclidean metric. We will
employ Assumption 4.3.29 and the constants therein to quantify this influence. The
discretization parameter for the boundary element method is the diameter / of the
largest panel of a surface mesh. The error estimates from Chap. 4 describe quantita-
tively at what rate the error goes to zero as i — 0. Therefore it is essential for local
quadrature error analysis that the behavior of the parametrization with respect to the
panel diameter is properly understood. In order to describe this behavior we define
the quantities e, e3,0 : T — R as follows:

e1 (X) := |91 xc X[, e2 (X) := [[d2 1 X) |,
(011 (%), 02 1« (X))
101z B 1921 R

cosf (X) := (5.4)

For plane triangular elements, e, e», cos@ and the ratio e;/e; can be easily
estimated by geometric terms related to the triangle.

Example 5.1.4. Let t C R3 be a plane triangle with vertices A, B, C and interior
angles a, B, y. The reference triangle is denoted by S and has the vertices (0, 0)T,
(1,0)T, (1, 1)7. Then the mapping x. : S — T is given by

1r (X) = A4+ mx
with the 3 x 2-matrix
m:=[B—-A,C-B].
We have

(B—A,C —B)

e1 = [B—Al, e = ||C—B|, cosf := .
IB—A|C—B

In terms of the smallest interior angle of the triangle T

0o (t) := min{a, B,y} (5.5)
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we obtain the estimates

[B—Al siny - 1

Op<O<m—0 d sinfy < = .
o=v =Tl an sm0_||C—B|| sina ~ sin 6y

This means that for triangulations that only consist of plane triangles, the quantities
e1/ez and cos 0 depend only on the minimal interior angle but not on the refinement
of the triangulation.

Example 5.1.5. Let I be a surface and Gy a triangulation with (curved) triangles
whose diameter is of order 1. We can construct a refinement of Gy as follows. For
everyt € Gy we generate a plane triangulation G; of the reference element t, which

is then mapped by y; onto T, i.e., G := {)(t (7): 7€ Q\t} The refinement of Gy is
given by

Gi= {1 (®): Vi € Gu, Vi € Go|
(see Fig.5.1). For a triangle T € G with t C t € Gy the vertices and interior

angles of the triangle T := y;' (t) are denoted by A, B, C and w, B, y. Then the
parametrization of T is given by

X (X) := ¢ (A + mx)
with the 2 x 2-matrixm = [B — A, C — B]. It follows that

er ) = (B—A,G X)) B—A)"?,  e3(%) = (C—B,G, (X (C—B))"/?
(B—A,G; (%) (C—B))

cosf ®) = e1 (X) ez (X)

Li
Li

% ?fﬁne

) ~
T

Fig. 5.1 Refinement of the reference element induces a refinement of the surface mesh
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with the Gram matrix
G; (%) := Dy (A + mx))T (Dy; (A + mx))

and the Jacobian D y;. Clearly, the smallest and largest eigenvalues of this matrix
can be bounded below and above by Ay and Ay respectively, while these are
defined by

.G, (X G, &
0 < Amin := inf inf inf w < supsup sup (£, Gy (Z‘) £)
t€Go xef £€R2\{0} ]l 1€G0 1ef £€R2\{0} 1]

= Apax < 00.

Note that Amin, Amax depend only on the coarsest triangulation Gy and, in particular,
are independent of the refinement of G. Hence it follows that

Amin Sin 6g Amax
—— <efea = ——
/'\max /'\min s 90

with [see (5.5)]
0o 1= inf{eo ():VieG, Vie go} .

For the term cos 0 (X) we obtain

(my, G, (X) my)

(i, G, (}) 1) /2 (iy, G, (%) ) '/2

cosf (X) =

withm; = (B—A) /||B—A| and my; = (C — B) / ||C — B||. With the function 6y
from (5.5) we have
[(m;,my)| < cosby(7) < 1.

We define the compact set D = {(§,0) € Sp xS, : (£,¢) < cos B (T)}. Since
G; (X) is positive definite, the Cholesky decomposition of Gy (X) exists, i.e., there
is an upper triangular matrix R = R; (X) with G; (X) = RTR. This results in the

estimate RER
|cos 6 (X)| < max l(l/i’ 9l 7z < 1. (5.6)
&9eD (RE,RE) /“ (RE,RE)
The equality on the right-hand side only holds for linearly dependent vectors RE =
cR¢, ie., &£ = cC with c € R. These, however, do not lie in D and it follows that
the quotient in (5.6) will always be strictly smaller than one. Since D is compact, it
follows that

[cos 8 (X)] < |c059* ()2)| <1

with 0 < 0* (X) < 7. This estimate is valid for every X € S and from the compact-

ness 0f§ we again deduce the existence of a 8* (0 < 8* < 1) depending only on
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00 (), x¢ and Amin, Amax, Such that

sup|cos 6 (X)| < |cos6*| < 1.
%es

5.1.2 Cauchy-Singular Integrals

We have shown in Sect. 3.3 that all kernel functions G (x —y), y1xG (x —y) and
71,yG (x —y) with G from (3.3) are improperly integrable. For other kernel func-
tions (Example: Elasticity) this is not the case. As all quadrature methods in this
chapter can also be applied to Cauchy-singular kernel functions without being mod-
ified, we will extend the class of kernel functions. The spatial dimension is denoted
byd =2,3.

Definition 5.1.6. The kernel function k is Cauchy-singular if the Cauchy principal
value

pv/‘k(xyy—x)f(y)dsy —hm F\B()k(x,y,y—x)f(y)dsy VxeTl

exists for all functions f € L (I") that are Holder-continuous with exponent A > 0
in a local neighborhood of x.
Remark 5.1.7 is a direct consequence of the definition of improper integrals.

Remark 5.1.7. For weakly singular kernels k the Cauchy principal value coincides
with the improper integral.

Example 5.1.8. Letd = 2 and I = (—1, 2). The kernel functionk : T' x I' = R,
k (x,y) = 1/ (x — y) is Cauchy-singular for x € T, but not for x € {—1,2}. We
have

(L0 gy [ LS Dy [ Ly

Let [ be Holder-continuous with exponent A > 0. Then |(f(y) — f(x))/(x — y)]
< Cl|x — y|*~" represents an improper upper bound of the first integrand. The
second integration yields for x € I' and a sufficiently small &

1 S| 2]
p.v./ dy = lim (/ dy +/ dy) (5.7
rx—y e>0\J1 X—Yy xt+e X =)
2
= lim (loge —log (1 + x) + log (2 — x) —loge) = log x.
£—0 14+ x
This proves the representation
2—x
L0y [ LTy oy 58
rX 1+x
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If x is a boundary vertex the integral diverges, since in (5.7) there is only one
(loge) term. Note that the function p.v. [ f (y)/(-—y)dy : T — R in (5.8)
has logarithmic endpoint singularities for x = —1, 2.

Exercise 5.1.9. Let T' = (—1, 1) x (=1, 1). Show that the functionk : T x_f - R,
kxy :=x1—y)/|x— y||3, is Cauchy-singularon I' X I" but noton I x T.

Efficient numerical quadrature methods are defined on a reference domain and
are then transferred to other domains via pullbacks. For this it is necessary to decom-
pose the twofold integration over I' into a sum of integrals over pairs of panels and
then to transform the integration over a pair of panels into a twofold integral over a
reference element. Both steps can be complicated for kernel functions with strong
singularities and are derived in the following. The conditions imposed on the kernel
function and the associated integral operator will be specified in the following. The
general boundary element space on I" for a surface mesh G is again denoted by S.

Assumption 5.1.10. The kernel function k is Cauchy-singular. The associated inte-
gral operator

(Ku) (x) := p.v. [F kxyy—x)u(y)dsy

is a continuous operator K : H* (I') — H " (') for some u € {—1/2,0,1/2}
and a continuous mapping K : S — L* ().
The boundary element space S is embedded in L (I') and L*° (I").

Remark 5.1.11. The condition K : S — L? (T') allows the decomposition of the
outer integral

(Kuv)paqy = (Kuv)pa — YueS, Yvel?(T). (59
T€g

where here (-,+) 2y and (-, )2y denote the usual L? inner-product and not the
continuous extension to dual pairings.

Remark 5.1.12. The integral operators (V, K, K') for the single and double layer
potentials from Chap. 3 satisfy Assumption 5.1.10 with u = —1/2,0,0. For u =
—1/2, this follows from Theorem 3.1.16 and the continuous embeddings S <~
H=Y2(T') and HY? (") < L2 (). For u = 0, this follows from Corollary 3.3.9
and the continuous embedding S — L*° (T").

For the hypersingular operator we use the representation from Theorem 3.3.22
as well as the property curlp a9 ¢, curlpa op ¥ € L (T) forall , ¥ € SP0 (see
Definition 4.1.36). Combining this with previous results we obtain

bw (Y. ¢) = (V curlr,aon ¥, curlrao ©) 2y + ¢ (V. )2

= Z {(V curlr,A,Zb v, Curlr,A’o (/))Lz(r) + (Viﬂ, ‘/’)LZ(r)}

T€G
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with the integral operator V for the single layer potential and

(V) 1= c /F Gx-y) ¥ M (A nx), A ny)dsds,  VxeTae

The fact that the integral operator can be localized is, for Cauchy-singular ker-
nel functions, a consequence of the locality of the Cauchy principal value. The
restriction of the integration to one panel t € G leads to the definition

(K:u) (x) := p.v./k(x,y,x—y)u(y) dsy. (5.10)

Lemma 5.1.13. Let Assumption 5.1.10 hold. Let u € L°° (') and u|, € C' () for
all T € G. Then we have:

(a) Foreveryx €t € G, (5.10) is finite.
(b) Forx ¢ T the Cauchy principal value coincides with the Riemann integral .
(c)
(Ku)(x) =Y (Ku)(x)  Vxer€g. (5.11)

T€g

Letx € t € Gandu € L™ (') with u|, € C! (r). We can find an &9 > 0 with
I'N B, (x) =1t N B (x) forall 0 < & < gp. Since u is differentiable in t N B (X),
the Cauchy principal value p.v. [, B.(x) k(x,y,x—y)u(y)dsy exists. The local
definition of the principal value property and the boundedness of the integrand on
I'\ Bg, (x) together yield that

p.v./k(x,y,X—y)”(Y) dsy

exists for x ¢ t as a Riemann integral and for x € 7 as a Cauchy principal value.
Summing over all T € G gives us the representation

(Ku) (x) = Zp.v./k Xy, X—y)u(y)dsy. (5.12)

€@

O

In Sect.5.3 we will discuss efficient numerical integration methods for the

approximation of integrals of the type | ot KXy, Yy = X) u(y) v (X) dsydsy.

Lemma 5.1.13 and Assumption 5.1.10 show that this decomposition is unproblem-
atic for Cauchy-singular integrals.

Corollary 5.1.14. Let the assumptions from Lemma 5.1.13 hold. Then we have for
allve L?(IN)
(KM, V)LZ(F) = Z (K[Ll, V)L2(r)

T,t€G
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with

[ sk yy-oumdsds A
TXt
(Ktlxl, V)L2(r) =
/V (x) p.v./k XYy y—x)u(y)dsydsy t =1t.
T T

5.1.3 Explicit Conditions on Cauchy-Singular Kernel Functions

In this subsection we will formulate explicit conditions that describe the analytic
properties of the kernel functions (Assumption 5.1.15) and guarantee the existence
of the Cauchy principal value (Assumption 5.1.19).

Assumption 5.1.15. The kernel function has the representation

4

b
b= o™ Y o) i (1l

), Vx,yel,z=y—x,x#y
i=0

(5.13)
with s € Z and b € N. The functions k; (X,y) and A; (r, §) satisfy the conditions:

1. For0 <i < b, A; is analytic on (0, pg) x Uy where Uy is a neighborhood of the
unit sphere S, and pg > 0.

2. |1z Ay (||z|| , ||ZT||) is improperly integrable in every two-dimensional, bounded
neighborhood of the origin.

3. The coefficient functions k; are contained in L*° (I' x I') and are uniformly,
continuously differentiable on smooth parts I'; x T'y of I' x T'. The order of
differentiation depends on the smoothness of the surface pieces I'j x I'y. If these
are analytic then the coefficients are also analytic.

We note that practically all kernel functions that are derived by integral equation
methods from either scalar elliptic boundary value problems (in R3) or systems
thereof have the form (5.13). For a detailed analysis of fundamental solutions of
partial differential equations we refer to [97, 139]. The assumption » € N in (5.13)
guarantees that at most finitely many terms exist that are not improperly integrable.
It should be noted that the representation (5.13) is by no means unique.

Example 5.1.16. The fundamental solution G from (3.3) is of the form (5.13) with
s=1,b=0,k9p=1and

1 e ((b.E)A—AlIElA)

dr/detA  [IE]la

The kernel function of the classical double layer potential also belongs to the
introduced class of kernels.

A()IRE()XSz—)(C, A()(r,é)z
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Example 5.1.17. The kernel of the double layer potential is given by
YiyG (x—y) =y1,G x—y) +2(n,b) G (x—y).
We use (3.30) and obtain

1 A7z

=" "4 R with |[R@|<Clz|™".
I (2) IR ()| llz]|

V.G (z) =

It follows that

b
Cxya) = ™ Yo xn) i (1l o)

2 fa
withs =2, b =6,

Vi=0,1,2:k (X,y) = ki+3 (X,¥) = nj41 (y).
Vi=0,1,2:4; (r¢) = —g,-/(4m/detA ||§||§), Aigs (r.§) = r? (AR (r§)); 4,

and kg (x,y) = 2 (n(y).b), 4¢ (r.£) = r2G (r§).
The representation can be simplified for the Laplace operator and the parameters
can be chosenass =2, b =3, k3 = A3 =0,

Vi=01.2:6 (xy) =011(y). 4 (r§):=—§/(4m).

Exercise 5.1.18. Let G be the fundamental solution from (3.3). Show that the kernel
functions
yl,xG (X - Y) 5 yl,xPl,yG (X - Y)

belong to the introduced class of kernels.

It is shown in [139] that, for kernel functions of elliptic differential operators of
second order in R3, the order of singularity s in (5.13) is an integer and satisfies
s < 3. The case s = 3 occurs for the kernel function y;x71,yG (x —y) with G
from (3.3). We have, however, shown in (3.3.22) that the (hypersingular) kernel
function can be regularized by means of integration by parts. Similar regularization
techniques also exist for the integral operators of elasticity (see [127, 169]).

Kernel functions that satisfy Assumption 5.1.15 do not necessarily have a Cauchy
principal value. We have to require that the order of singularity s satisfies s < 2
and if s = 2 it also has to satisfy an antisymmetry condition (see also the parity
condition, e.g., in [137, (7.1.74) and Definition 7.1.3]).

Assumption 5.1.19. The kernel function satisfies Assumption 5.1.15 with s < 2. In
the case s = 2 let there exist a decomposition
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i (v i) = () + v s (o) a9

for 0 <i < b with functions Aip(§) : So - Kand Ai1 (r,§) : Rso xS, - K
that have the same analytic properties as A; and satisfy
Aio (§) = —Ai0 (=§)
forall§ € S,.
Kernel functions that satisfy Assumption 5.1.19 are called antisymmetric.

Remark 5.1.20. Improperly integrable kernel functions satisfy Assumption 5.1.19
with A,"() =0.

5.1.4 Kernel Functions in Local Coordinates

In order to investigate the kernel function in local coordinates, it suffices to analyze
an arbitrary term in the sum (5.13). Therefore we assume that the kernel function is
given by

k@m)-ﬂw”K@wAQH|”0

and satisfies Assumption 5.1.19. We set

k&) =k(e®, ), 60 -1 ®), VR etxi:X#§ (5.15)

and, for the analysis of the behavior of k in local coordinates, we distinguish
between three cases:

(I) T, 7 touch each other in at most one point.
(I1) The intersection T N 7 is a common edge.
(III) The panels are identical T = 7.

With regular surface meshes one of the above-mentioned cases always applies
for two panels t,¢ € G. Should there be any hanging nodes the situation can be
reduced to one of the three above-mentioned cases by appropriate decomposition.

Case I: For T N =  the kernel function is regular and the analytic properties on
the reference domains follow from the analytic properties of the transformations y
and y;. We therefore assume in the following that T N7 = p. In local coordinates
we obtain for the difference variable z = y — x the representation

2= (§)— X X). (5.16)
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Without loss of generality we assume that y; (0) = y; (0) = p. Clearly, we have
z = O if and only if X = § = (0,0)T. Thus, in the case under consideration kis
analytic outside of ||X|| + ||¥]| < & with an arbitrary ¢ > 0 and it suffices to analyze
the singular behavior of k in an arbitrarily small neighborhood of 0. If we replace
X< and y; in (5.16) by their respective Taylor expansions about 0 we obtain

,— Z ¥ " 1 (O)n:!(f‘, V)" xe (O). 5.17)
m=1

We interpret (X, §) as a vector in R* and introduce four-dimensional polar coordi-
nates

x,y) =ré (5.18)
with &£ = (X,¥) / ||(X,¥)| € S3. If we insert this into (5.17) we obtain

z=rY "l (€) = ray (r.§) (5.19)
m=0
with
m+1 m+1
I (£) = (4. V)T e O = (612. V)" "2 O Ei=(6.,). 1<i,j <4

(m+ 1!

The function a; is analytic in (0, p1) x U; where U; is a neighborhood of the unit
sphere S3 and p; > 0. By Assumption 4.3.29 and the bi-Lipschitz continuity of x;,
Xz there exist ¢, ¢, ¢ > 0 such that

rllar (r, )N = llray (. O = Nzl = lly = x| = ¢ (ly = pll + [lp —x[D
Zc(lxe @ =2 Ol + e ®) = x= O = ¢yl + X)) = ér

and therefore a; does not have any zeros in (0, p;) x U, where U, is a neighborhood
of S3 and p, > 0. It follows from this that a 5 (r, &) := |lai (r, €)|* is analytic for
alls e R.

Therefore the quotient z/ ||z|| = a; (r, &) az,—1 (r, &) is also analytic in (0, p2) %
U,. By combining these representations we obtain

z

2]~ 4 (uzu, ) — ass (1) (5.200

||

where a3 ¢ (r, §) is analytic in (0, p3) xUs with p3 > 0 and a neighborhood U3 of Ss.

Case II: The intersection E := T N7 is a common edge. Without loss of generality
we assume that the parametrizations y;, x; satisfy the relation

() =x) Ve e[0.1].
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Hence the difference
z=y—x= ¥~ )z (¥
is zero if and only if the three-dimensional relative coordinates
J1—X
2:=(21,%2.,23)":= V2
X2

are equal to zero. In these coordinates the difference z has the form

We introduce three-dimensional polar coordinates z = r§ with r := ||z|| and § =
Z/||z|| € S, and expand z with respect to Z about zero

@9 1) - @ v ()

o0
z=x (" ;;1 Z — (5.21)

=7 > Ml (31.8) =i b (1.1, 8)
m=0
with s A A
<(§§)7 V> xe () — E302)™ !y ()
(m + 1)! :

By Assumption 4.3.29 there exists a point on the common edge p = y; (6,0) € E
with

Im (%1,8) =

rb(£1.r.8) = |ly=xl = c(ly—pl + p — x|
=C(‘Xz(§2) X (o H+)xrh —1:(3) H)
)"

= (1 =00 + 33 + (1 —0) + £
1/2
Gr—%20)° o o c .. C
c(T+y§+x§ = 5 Il = 5r.

Therefore b (X1, r, £) does not have any zeros in (0, p4) X U where Uy is a neigh-
borhood of S and ps > 0. From this we have that by 5 (£1,7, &) := ||b (%1, 7, §)|°
is analytic for all s € R.

A%
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As in Case I we deduce the representation

z

2]~ A (IIZII , ) =r" bas (x1,1,§) (5.20b)

(el

with a function b3 s that is analytic in I5 x (0, ps) x Us with neighborhoods /5 and
Us of [0, 1] and S, respectively and ps > 0.

Case I11: The panels t, t are identical. Since y; is bijective, the difference

z2=y—xX= y: () — x: (¥

vanishes if and only if the two-dimensional relative coordinates
A V1 — X
5 ( Vi =% )
Y2 — X2
are equal to zero. If we expand the difference z about Z = 0 we obtain

> A7Vm T A
2= - 0= 3 (S @,

m=1

We introduce two-dimensional polar coordinates 2 = r§ with § = 7/ ||| and obtain

2=r Y r"lpy &€ =rd (X.1.£) (5.22)
m=0
with "
coon _ [EVTT X .
Im (X,8) = (—(m+1)! )(X)-

We deduce from the bi-Lipschitz continuity of y, that

rld &r )l =zl = lxe @) —x: Ol z |y —x| =clz]| = cr,

and therefore d (X, r,£) does not have any zeros in Is x (0, pg) x Us with neigh-
borhoods I and Ug of T and S; respectively and pg > 0. From this we have that
dy.s (x1,1,6) := ||b (x1,r,8)|’ is analytic for all s € R.

As in Case I we deduce the representation

z

k(x.y.2) = 2]~ A (uzn , ) Sy (o) (5.200)

(el

with a function d3 s that is analytic in /7 x (0, p7) x U; with neighborhoods /7 and
U; of T and S respectively and p7 > 0.
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For Cauchy-singular kernel functions that satisfy Assumption 5.1.19 we can
further improve this result. We use the decomposition from Assumption 5.1.19

(1t i) = o () + s (1 357)

with an antisymmetric Ag. By choosing A = Ag, s = 2andx = lor A(r,§) =
rAj (r, £) in (5.20c) we obtain

||z||‘2( (” ”) T ) A (u .o ”)) 2y (or B) 4 s (R E).

Exercise 5.1.21. From the antisymmetry of Ao deduce the existence of a function
d3 2 that is analytic in Ig x (0, pg) x Ug with neighborhoods Ig ofr Us of Sq and
ps > 0, and satisfies

ds *x.r.§) = ds * 8 + VCZ3,2 *, 1.8, ds X&) = —d3 x,—§)
with d3,2 ()2, E) = d3’2 ()A(, 0, E)
Theorem 5.1.22. Let the kernel function satisfy Assumption 5.1.19:

(a) Then there exist functions d~3,2, J3,1 that are analytic in I x (0, p) x U, and
there exist neighborhoods I of T, U of Sy and p > 0 such that

k(x,y.2) = r2dsp (R, &) +r 7" da1 (], 1, £) and d3p (RX,§) = —d3 (X, —§)

withx = yz (X), y = x X+ré), z=y—x
(b) Let bl , b be the basis functions on the reference elements. The integrand b (X)
b; i () k (X,¥) g¢ (X) g (¥) [see (5.15)] has the representation

r_zc?3,2 ()2, %') + r_lc?3,1 (f(, r, %')

with functions dA3,2, dA3,1 that have the same analytic and antisymmetric prop-
erties. ~ B

(c) There exists a function f that has the same analytic properties as d3, d3,1
from (a) and satisfies

kERX—2)+kE—2.80=r'f&1E). (5.23)

Proof. The fact that k is analytic in both variables combined with the fact that y; is
analytic passes on this property to
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K ®) e G) = R (R 9) =R R X +2) = F&R) + (271 (D)

= RER) +r (671 Rrd) = R &) + 1k R 6)

with analytic functions k; and a (vector-valued) ® 1. Similar arguments can be
applied to the surface element g, as well as the basis functions b and b and, thus,
give us the statements of (a) and (b).

For c: If we substitute X — Z < ¥ in the second summand of (5.23), apply the
already derived representations and use the fact that d3,; is smooth with respect
to the first variable, we obtain with z = r& for lg(f(f( —-7) + lg(ffff + z) the
representation

r2dsy (&, —€) +r 7 g (Ko, —8) + 1 2d3n (3.6) + r dsa (§.1.6)
= r(dap (o =8) + d3p G =2.8) )47~ (da Ko7 —8) + doy (K= 2.17.))

=12 (dp G =8 + dp G B +r (67 Gr0)) +r7 fo o d)
= f&1E).

5.2 Relative Coordinates

The numerical integration is defined on a pair of reference panels and is transferred
by means of a transformation to an integration over pairs of panels t x ¢. In general
we will assume that the conditions from Sect. 5.1.1 hold. We distinguish between
four cases:

Identical panels

Panels with exactly one common edge
Panels with exactly one common vertex
Panels with positive distance

Ll

Relative coordinates for one-dimensional curves and interval partitionings are
due to [134]. In [211] general kernel functions in local coordinates were analyzed
and, based on these results, it was shown in [212] that when using simplex coordi-
nates the determinant of the transformation removes the singularity in the integrand,
which becomes analytic in a neighborhood of the original singularity.

Relative coordinates for triangular elements were introduced in [197] and [125].
Combining this with the pullback to the reference element was developed in [235].
Erichsen and Sauter [88] contains a compact summary of the required quadrature
orders, depending on the underlying operator, the order of approximation and the
norm in which the error is measured.
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5.2.1 Identical Panels

In order to generate the matrix coefficients the sesquilinear form is evaluated for
pairs b;, b; of basis functions. In the case of identical panels we consider the integral

/b,- (x) p.v. / k(x,y,y—x)b; (y) dsydsx. (5.24)

For x € t and a sufficiently small g > 0 we have B, (x) NI" C t forall0 < & < gg
and the boundedness of the kernel function on 7 x (t\ B (x)) allows the definition

of the integral
I, = /[ ki1 (X,y,y —x) dsydsg
© JT\Be(x)

kl (X’ y,Z) = bi (X)k (X9 y. Z) b] (Y)

Let y; : T — t be the transformation of the reference element to 7. We set

with

ko (%.9) := k1 (r ®) . xx 3) 2 xe () — X (%)) 82 (%) g (9) - (5.25)

B, ®) = ;' (@ N B (X (X)) denotes the pullback of the e-neighborhood of x
(see Fig. 5.2). Note that B, (X) in general does not by any means represent a circular
disc in the parameter domain. We will however show that the limit ¢ — 0 remains
the same if B, (x) is replaced by the disc B (X).

Theorem 5.2.1. Let the kernel function satisfy the assumption (5.1.19). Let t € G
be parametrized by y. € C't* (%) with A > 0. Then

lim / / ks (&) d§d% = lim / / ks (&, §) d§d%.
20 /3 JA\B.(® 20 J: JN\B. %)

Fig. 5.2 Intersection of the & ball with the surface and deformed intersection in the parameter
domain
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Proof. We introduce polar coordinates (r, ¢) about X := y7 ~! (x). The parametriza-
tion of the boundary 3B, (x) implicitly defines the function p : [0, o] X [-7, 7[ —

Rzo by
|c (5 + e (29)) —x| =

If we expand with respect to ¢ (see Exercise 5.2.2) and by using the implicit function
theorem we obtain p € C'*4 ([0, g9] x [—7, 7[) and

p(0.9)=0. p(e.¢) = ep:(0.9)+ O (81“) and, p (0.¢) = H Dy ®) (o) H
(5.26)
This leads to the decomposition

4 &€
[ [ =) [ s
T J\B:(X) T J\B:(®) T J—m Jple,9)

We will show that the second integral on the right-hand side converges to zero for
& — 0. The angular integration is split into [—, O] and [0, [ and ¢ is substituted
in the first interval by ¢ = ¢ — 7. For the second integral in (5.27) this yields the
representation

&€

/ / (/ kz X x+r(§;’;$)) rdr+/ ko (f(, X+ r(zi’;((z:;)))) rdr)dtpdf(.
p(e,0) p(e,p—m)
(5.28)
The expansion (5.26) implies that

p(e.o—m) =ep: (0,0 —m) + O (81+A> =¢0:(0,9) + O (81+A>
= p(e.g)+ 0 (),

which for the integral in (5.28) yields the representation

cos ¢ . (cos(p) R
[/ [”(8 ?) k2 X X r(sm“’)> th ( %X r(sin((l’))>) rdrdpdx
p(2,0) ks (%, X_r(c"s(‘p)))rdrd J% 520
2 in(g) dX. (5.29)
o

(e,9—m)

The kernel function in polar coordinates can be estimated as

rka (%% =r(20)| = €7
Since |p (e, ¢) —p (g, — )| = O (81+A) the second integral in (5.29) converges
to zero and we therefore only consider the first integral. The antisymmetry of the
kernel function in local coordinates (see Theorem 5.1.22) implies
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r (ke (R34 7(00) +h2 (23— r(29))) = 0 (1)
and therefore the first integral in (5.29) also converges to zero. |

Exercise 5.2.2. Prove the expansion (5.26).

This proves that (5.24) coincides with the limit of the integral

" 1 %1 pl1 i

18::// / ks (%.§) d§d%
0 0 0 0
——

I5—%ll=e

for ¢ — 0. It is our aim to represent the limit lim,—¢ 78 as an integral over a fixed,
e-independent integration domain with an analytic integrand. To achieve this we first
introduce relative coordinates (X,Z) = (X, ¥ — X) that shift the singular behavior of
the kernel function into Z = 0. For now, let T be the unit triangle. The results for the
unit square will be summarized in Sect. 5.2.4.

Then we have

. 1 X1 1-x1 Z1+X1—%X2
18:// / ks (.7 + %) did%. (5.30)
0 0 —x1 —X>
lzll=e

The following two examples serve to illustrate the characteristic behavior of the
integrand as well as the strategy for its numerical treatment (see Fig. 5.3).

Example 5.2.3. Letk : (—1,2) x (—=1,2) — R be given by k (x,y) = (y —x)" ..
For smooth functions u, v our aim is to evaluate the integral

2 2
16=/1v(x) /_1 k (v y)u () dydsx.

[x—yl=e

—l-x

Fig. 5.3 Relative coordinates for (x, y) € (—1,2) x (—1,2)
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In this case relative coordinates 7 = y — x yield

2 2—x
I, = [ v (x) [ “etD ) ax. (5.31)
-1 —1—x <z
lzl>e
For simplicity’s sake we set u(z) = 1 (in general u would have to be expanded
about z = 0). The inner integration can be evaluated explicitly and yields (for

e <min{2—x,1+ x})

2—Xx
1 2 —
lim Sdz=Tn—%
e—>0 —1-x < 1 + X
|z|>€

This example shows that the result of the inner integration has characteristic (log-
arithmic) singularities on the boundaries of the panel related to the outer integration
and that it therefore is not sufficient to only develop special integration methods for
the inner integration. Standard quadrature methods can thus only be used with a sig-
nificant loss in accuracy. In the case of two-dimensional surfaces it can be shown for
Cauchy-singular kernel functions that the result of the inner z-integration behaves
as ~ log (dist (x, d7)). The strength of the singular behavior generally depends on
the order of singularity of the kernel function and significantly complicates the use
of weighted integration formulas. We will show in the following that the integrand
can be regularized by simply changing the ordering of the integration variables.

Example 5.2.4. Tuking the auxiliary condition |z| > ¢ into consideration yields the
decomposition of the integration domain in (5.31) as given by

2
UDf:Z{_ISXSZ_S}U{ —1+g§x52}.

e e<z=<2-—x —1-x<z<-¢
1=

Changing the ordering of the integration variables in the subdomains D7 , yields

DfUDi:{ £<z<3 }U{ —3<z<-¢ }

-1<x=<2-z —1-z<x<2

and we obtain

3 1 2—z - 2
lim I, = lim / —/ v(x)dxdz +/ —/ v(x)dxdz (5.32)
e—0 e—0 e ZJ-1 -3 ZJ-1—
S———— S————

=1V () h@(z)

> 1
lim ([ -hW () dz + [ -h@ () dz) :
>0\ Js < -3 Z
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The substitution z <— —z in the second integral gives us

300 () _ 5@ (_
lm 7, = fim [ Q=MD

e—>0 e—>0 Jo Z

By virtue of |h(2) (z) — hD (—z)| < Cz the integrand is bounded and the Cauchy
principal value coincides with the Riemann integral

30 (o p@ (_
1m5=/h @173,
0

e—>0 Z

The integrand has a removable singularity for z = 0.

We will apply the one-dimension concept developed in this example to the
general situation (5.30) and first change the order of integration.
The integration domain is decomposed as

-1<z1 <0 —1<71 <0 -1<z1 <0
—1<% =<2z U 21 <22 <0 U O<Z=1+2
<% =<1 -1 <% =<1 -1 <X =1
22 <X <X —H<X=X+u-2 0<X<X+Z1—2
0<z1 <1 0<zi1 =1 0<zi1 =1
U —14+21 <2 =<0 U 0<z =<2z U 715 =1
—H <X =1-2 0<% =1-2 - <X =1-2Z
— <X =X 0<% <X 0<% =<Z1—-22+%

with the auxiliary condition ||Z|| > ¢ into subdomains D;, 1 < i < 6. Note
that the z-variables describe the outer integration as in (5.32). As in the proof of
Theorem 5.2.1 we use the antisymmetry of the principal part of the kernel function
to regularize the integrand by means of mirroring. The subdomains D;, D, D4 are
mirrored onto the subdomains D¢, Ds, D3 by means of the substitution 2"¢" = —2
(see Fig.5.4). The X-variables in the other integrand are transformed by the substi-
tution X" = x — 7""¢". More specifically, on the integration domain D; we use the
linear transformations

xio) [ x xXa) [ x X\ [(x+z
) -() CGE)-() (e )-03)
X\ x ) (<) x4z (X)) (x+z
(zlﬁﬁv)_(—z) (ZSE“)V)_( z )<ZE§3V)_( z )
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Fig. 5.4 Subdomains D;,
1 <i <6, with
corresponding directions for
reflection
D, Ds
DS
D
) D,
Dl
and again denote the new coordinates by (X, z). This gives us
. 1 ,1 1 pX
7, — [ [ [ [ ko RoR — ) + ko R — 2,8) dR | d2
0 Jz; 2 J
N——
Izl =&
1 pz; 1 px1—214+22
+[ [ [ [ kr (X,X—7Z) + ko (X—1Z,X)dX | dzZ
0o Jo 21 I
N——
lzli=e
0 (147 1+21 p¥
+/ / / / ko (X,X—2) + ko (X—2,X)dXx | dZ.
-1Jo 22 )
N———
lzll =&

Owing to the smoothness of k with respect to the first argument and, in the case of
Cauchy-singular kernels, the antisymmetry of the kernel function [see (5.23)] for
|z|]| — O, the integrands behave as

ke R —3) +ky R—2.%) = O (|2 ")

and are therefore improperly integrable. We set k) (X,2) = k> (X, X—2) +
k> (X — Z,X). The limit ¢ — 0 then yields

— 1 1 1 X1
I =lim 7, =/ / / / ki (%,2)dx|dz (5.33)
§—>0 0 Jz; 2 J2n
1 pZy 1 pX1—-21+22
+/ / / / ki (%,2)dx|dz
0o Jo 21 I
0 1+2; 1+21 pX
+/ / [ [ ki (%,2)d% | da.
-1Jo 2 o)
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In the next step these three integrals are transformed onto the four-dimensional
reference domain

D:={0<w; <1,0<wy <w(,0 <w3 <wy,0 <ws <ws}.

The associated linear mappings 7; : D — D;, (x,z) := T;w are given fori =
1,2, 3 by the matrices m; :

1000 1000 100 —1
B L B R m e | 010
0001 | “loo1o0| "~ lo00-1
0010 000 1 001—1

We have det (m;) = 1 forall 1 <i < 3. From this we have for the integral (5.33)

I—Z/ /wl /OWZ/()W3k;(m,-w)dw.

The simplex coordinates (£, 171, 72, n3) transform the unit cube (0, 1)* onto D:

(w1, wa, w3, wa)T = (§,En1, Enin2, Eninans)T.

Note that the determinant of the Jacobian of this transformation is equal to & 377%772
and that we finally obtain the representation

I'= Z/ / / / E3ntnaky (Emy (1, n1, min2, mn2n3)T) dnydnadnzdé.

(5.34)

It is proved in Theorem 5.2.5 that the integrand in this representation is ana-

Iytic. The integral can therefore be efficiently approximated by means of Gaussian
quadrature with respect to each coordinate.

Theorem 5.2.5. The integrand in (5.34) can be analytically extended with respect
10 all variables in a complex neighborhood of [0, 1]*.

Remark 5.2.6. The size of the complex neighborhood of [0, 1]4 in which the inte-
grand in (5.34) can be extended, is estimated in Sect. 5.3.2.3.

Notation 5.2.7. A functionu : t xRx¢ xSy has the property (A) if p > 0 and there
exist neighborhoods ©™ of T and U of Sy such that u can be extended to a function
u* 1 v x Rso x U which is analytic on t* x [0, p] x U.

Proof of Theorem 5.2.5: We set b; := (b; o y¢) gr and use r = ||| and & = 2/ ||2].
The fact that the basis functions and the surface element g, are analytic in local
coordinates gives us the representation
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kS (k.2) =r (131- ®) b R—2)k (R &k—2) + b R—2)b; (ﬁ)lé(ﬁ—i,f())
= b ®)b; ®)r (12 &% —2) +1€(§—2,§)) + 2R (K1)
with
R:=b; ) (Drby) &)k &k =r8) +b; %) (Drbr) Ger &)k G=r.%)

and A A

(Dru) (R.1. ) := el L

(EVu®)  ifr =0.

Clearly, the functions D,IS s Drls,- have the property (A). From Theorem 5.1.22(c)
we thus also have the property (A) for the function rk;|r in (X, r, £)-coordinates.
The integrand in (5.34) is therefore analytic with respect to every variable if we
can show that the transformation from (&, 7)-coordinates to (X, r, £) is analytic. The
coordinate systems satisfy the relation

(%1, %2, rcosg, rsing)T = (X,2) = Em; (1, 91, nin2, mn2ns)T.

Form;, 1 <i < 3, we obtain the transformations

.
(E,E(l =+ mn) Emmy/1+ nﬁ,arccotm) i=1
.
(E1, %, r0)T= (E,Em (1 =2+ m2m3) . Emimay/1 + 03, arctan 773) i=2
) 2 1—m\T .
EA—n3), Em (L=mans), Emnay/n; + (1 —13)°, arctan ; i=3
3
(5.35)

that are clearly analytic with respect to all variables in (0, 1). For the determi-

nant of the Jacobian in (5.34) we have in (X, r, ¢)-coordinates 5377%772 =r X
(entire function in %, ) and, thus, Property (A) is transferred from rk; (f(, r (Z?;Z:))
to the integrands in (5.34). O

5.2.2 Common Edge

We consider two panels 7,7 € G with exactly one common edge E = TN 7. In
Lemma 5.1.13 it was shown that the integral

o= [ b )by )k (x.y.y = x) dsyds,
TXt
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exists in this case as an improper Riemann integral. Let the parametrizations y. :
T — tand y; : t — t be chosen in such a way that

1:(o) = 1:(g) Vs elo.1].

The integrand is given in local coordinates by

ks (R, 9) 1= b ®)b; §)k (1 R), % §) 2 20: §) = 2t ®) g R & §) . (5.36)

Iix: = /[k3 (x,¥) dydx.
tJi

We will again first consider the case that £ = 7 is the unit triangle. As before we
introduce relative coordinates

ie.,

A

i= 1 — %0207,

in order to fix the location of the singularities of the integrand in Z = 0. Then

1—X 21+ X1
Lot = / / / / ks 15021+ 81,50 daddr. (5.37)
— 0 0

In general the result of the z-integration, considered as a function of X1, has end-
point singularities in (0, 1). We change the order of integration for the purpose
of regularization. The integration domain in (5.37) can be decomposed into five
disjoint, four-dimensional polyhedra

I = Z/ .d%ydi

i=1

with
-1<z1 <0 -1<z1<0 0<z1 =<1
ODiI= 05?25}-%-%1 U 95%2514-21 U 0§A2§21A
Pt 0=z3=2—-u n-—u=z=1 O0<zz=<1-21
H-21<x% =1 z<x =<1 <X <1-7
0<z1 <1 0<z1 =1
U 21522 =<1 U 271 <72 <1
0<z3<2—-2 -1<z3<1-2
—u<xn<l-7 <X <1—2

The integration domains D;, 1 <i < 5, are transformed onto the four-dimensional
unit cube as in the case of identical panels. For 1 < i < 5 the transformations
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T; : (0, D)* - D;, (%1.%) := T; (£, ), have the form

1 1
E) —11n2 £ —M17213
T ( =§ ; T> =¢£
n m (1 —n2) n mnz (1 —n3)
nns m
L—mnin2 1 — 011273
T3 (é):g mmnz 7 T4(E)=f n1n2n3
n ninz2ns n m
m (1 —mn2) nnz (1 —n3)
(1 =n1m2n3)
Ts (E) _g|  mmem
n nmnz
m (1 —n2n3)

We have for the absolute value of the Jacobian determinant of 7;

5377% fori =1,

detT;| =
|det 73| {§3n%n2for2§i§5.

Therefore for the integral I;x; we have derived the representation

o = [ {6k 6umna.§ (1= mu) 6m1 (1= 1)
0.1

+&nin2 ks (€. En1. & (1 — minana) Eninz (1 — n3))
+k3 (E(A —mn2),§(m (1 —n2)), &, Enin2nz)
+k3 (E(1 —nin2n3)  Emna (1 —n3), £, En1)

+k3 (6 (1 —minans) .Em (1 —n2m3) , & Emma)l} dndé.

(5.38)

The following theorem proves that the integrand is analytic with respect to every

variable.

Theorem 5.2.8. The integrand in (5.38) can be extended analytically with respect

to every variable in a complex neighborhood of [0, 1]4.

Proof. Using the same arguments as in the proof of Theorem 5.2.5 we only need to
show that the transformation from the (£, n7)-coordinates to the (x1, r, £)-coordinates

is analytic. The coordinate systems satisfy the relation
(X1,rcosqsinf, rsingsinf, rcosf) =T; (§,1) .

Fori = 1 we can explicitly determine the transformation
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. 3

X1

r fﬂl\/ﬂ§+(1—ﬁ2)2+ﬂ%

) arctan "3};1 ’
9 n3

arccos ————=——
VN3 +(1=n2)"+n3

which is analytic with respect to every variable &, n1,m2, n3. Fori = 2,3,4,5 the
coordinate transformations can also be given explicitly, which also supplies their
analyticity. Here we will refrain from a detailed analysis of thecase 2 <i <5. O

5.2.3 Common Vertex

We consider two panels t,¢ € G with exactly one common point p = T N 7. It was
shown in Lemma 5.1.13 that the integral

Toxe = [ bi ) b; (W) k (x,3,y — x) dsydsy
TXt

exists in this case as a Riemann integral. Let the parametrizations y; : T — 7 and
Xt : t — t be chosen such that

Xz (0) = x: (0) = p.
As in the case of the common edge the integrand in local coordinates is given by
ks (%.9) = bi )b §)k (e ®) e §) 2 200 §) = 2 R) g R & §) -
We introduce four-dimensional relative coordinates
Z=(X1,%, 71,927,

in order to fix the location of the singularities of the integrand in z = 0.
First, let £ = 7 again be the unit triangle. Then

1 21 1 23
I = [ [ [ [ k3 (i) dz.
0 Jo 0 Jo

In order to again be able to remove the singularity by means of a suitable multilinear
transformation, the integration domain has to be decomposed into

0<z1 <1 0<zz3=1
0<72, <7 0<z24 <7
DiUDy:=3 — 2= U oo
0<z3<7 0<z1 <7
0<z4 <73 0<z <%
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For i = 1,2 the transformations 7; : (0, 1)4 — D;,z = T; (£, n) are given by

Ty (€. n) ==&, n1,n2,m2n3)7
Ty (E.n) ==& (2, m2m3, 1,m)T.

The absolute value of the Jacobian determinant is in both cases equal to £37,. Thus
we have derived the representation

Iixe =/( 1)4€3nz{k3 (.En1,8n2,Emans) + ks (Ema, Emans. §,6m1)} dédn.

’ (5.39)
The following theorem shows that the integrand in (5.39) is analytic with respect to
every variable.

Theorem 5.2.9. The integrand in (5.39) can be extended analytically with respect
to every variable in a complex neighborhood of [0, 1]4.

Proof. As before, it suffices to show that the transformation from the (&, n)-
coordinates to four-dimensional polar coordinates is analytic. We recommend the
explicit derivation of the transformation formulas as an exercise for the interested
reader. O

5.2.4 Overview: Regularizing Coordinate Transformations

In this subsection we will formulate the regularizing coordinate transformations for
all occurring cases in a compact form. We assume that the kernel function satisfies
the assumption 5.1.19.For 7, € G, y; : © — tand y; : f — t denote the (analytic)
parametrizations over the reference elements. In the case of identical panels we
assume y; = J;, in the case of a common edge we assume y. (s,0) = y; (s,0) and
in the case of a common point we assume y; (0) = y; (0). The integrand in local
coordinates defines

ks R9) = b R b; k(e ®) . 10 @) xe §) — 2 R ge R g0 @)

and we set

Iy = /p.v./k3 (X,y) dydx.
% f

The unit square is denoted by @ and the unit triangle by S,
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1. Identical Panels
ILl1Caset =f=3S

1 1 —nim2ns3
L—n1+mn2 1—m
IrX = 32 k n —|—k
t /(\0’1)4%- nin2 3 E 1_)71)72']3 3 %‘ |
1—m I1—n14+nn2
1 I —mn2
+hs | g n (1 —=n2 +n2n3) ths | g m (1 —mn2)
L—mnin2 1
m (1 —n2) nm (1 —=n2 + n21m3)
L —n1n2n3 1
1- ) n (1 —n2)
+k m(=mma) | dnidnydnsdE.
| 1 | 1 —mmnans s
n (1 —n2) m (1 —nan3)
12Caset =1 = 0Q
(1—=&n (1 —E&n)m
_ _ _ (1—=E&n)m 1—=8&mn
o= [ ga=oa—o | SR el GO0
Em+ (1 —En)n E+0—=8n
(1=8n; (1 —=&n)n E+(1—=8m
Em+ A —E&n)n E+(1—=8n (A—=E&n)m
ol e a—om [ TPl +a—gon | TRl oo
1 —=E&n)n 1=8n Em+ Q0 —E&n)n
Em+ QA —=E&n)mn E+(0—=8ns Em+ QA —=E&n)m
(1—=8n Em+ QA —=En)n E+(1—=8n;
Tl a—en  |TRT acen TR Ca-eom |97
5+(1—5)Tl3 (1—5711)712 (1—5)713
1I. Common Edge
IL1Caset =1 =28
3
Eﬂlﬂs 3.2 Em
IrX - + k
' (o 1)4 E(—mn2) £ ) ks E(1—nin2ns)
En (1 —n2) Eninz (1 —n3)
E(1—mmn2) & (1 —min2ns) & (1 —n1n2ns)
ks Em (1 —n2) ks Emnz (1 —n3) ks Em (1 —n2n3) dnd
3 3 3 '

Eninanz Em Eninz
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I1.2 Case © =:§§, i=S

2
Xt = - k
I /;D4s<1 6 1k

Ena
E(1—n3) +n3
3
(I—=&nm)ns
3
Enm + (1—=§n)ns
Enina

+k

w

+ks3

l13Caset =S8, =0

Xt = 2 - k
I /;D £2(1-8 ks

E(1—n3)+n3
3
s E(1—n1—n3) +n3
En2
Em+ (0 —=E&n)ns
Enna
A ey
£

114 Caset =1 =0

2
>t — - k
I /;U4s<1 £ 1k,

E1—n1—n3)+n3
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E(1—mn3)+n3 (I=%)n3
£n2 ks En2
EA—n1—n3)+n3 E(1—n3)+1n3
E(1—mn1) Em
Ent (1 —m3) + 3
2 3
+ E i (1=Eny) k3 £n1 (1= 1> — 13) +115
Em (1 —n2)
Eni (1 —n2—n3) + 13
3
Em(1—mn3)+n3 dnd.
&m
EA—ni—n3)+n3 E(1—n3)+ns3
E(1—mn1) \ Em
E(1—mn3)+n3 (I=%)ns
£n2 Ena
Em (1 —n2—n3) +n3
2 _ Em (1 —n2)
T (=5 ks Em(1—n3)+n3
£
Em (1 —n3)+n3
+ks X dnd.
Eni (1 —n2—n3)+ 13
¢
(1-8n+§& (1=8)ns3
Ena Ena
a-en | TRl era—on
Em Em
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(I—=&ny)ns +&m (I—=E&n)ns +&m

201 _ Enz 3
TE =) ks (I =&n)ns ks (I —=&n)ns

3 Ena

(I =&n)ns (I=8&n)ns
+ ks £ ks § dndE.
(I=8n)ns +&m (I=E&n)ns +&m
3 £na

11I. Common Vertex

ILI Caset =t =38

Ios = [(0 e E3n2 ths (5, En1, €02, Enana) + k3 (Ena, Enana, £,Em)} dndE.

II1.2 Case T = Q, i=S

3 Em Em
Toxe :/ €3772 k3 §m + k3 § —l—f3k3 §12 dndé.
©,1)* Ena Ena 3
Enans Enans N3
I3 Caset =8, i=0
Enz Enz £
Irx — [ 3 k E’]Z’B +k 5772773 + 3k 5713 dndé.
! (0,1)45 LR 3 1 oem 5k Em nds
Em 13 Ena
14 Caset =7 =0
3 Em Em Em
s = [ §3 k3 §m + k3 § + k3 §112 + k3 §112 dndé§.
©,n* En2 Eny 3 £ns

Ens YE Ens 3
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5.2.5 Evaluating the Right-Hand Side
and the Integral-Free Term

In the following we will briefly deal with the approximation of the integrals
/bi (x)b; (x)dsx, /b,- (x) 7 (x) dsx (5.40)
r r

[see (5.1)]. Let T be the reference element, y. the parametrization and 131- = bj|, 0
Xt» Pz i= r|; o xz. Then

/F bi (0b; M dsy = / b )b, (%) g0 %) d.

€@

For the unit triangle we transform the integral over T onto the unit square by means
of X = (€, £n) and obtain

A A 1 1 A A
5 6b @ @ax= [ [ eh(Eb e )aean  san

The integrand on the right-hand integral is analytic, since the basis functions in £, 5-
coordinates are polynomials and, thus, analytic. We have already shown in Sect. 5.1,
proof of Theorem 5.1.22, that the surface element g; (£, £n) is analytic.

In the same way we have under the condition r € L2 (T") the representation

[bwr@ds=3 [ 5@ &g @
A :

reg’?

for the integral in (5.40) with

A~ 1 1 A~
[b@i@e@ai= [ [ i@ EeEacam s

If 7, (€, €n) can be analytically extended to a neighborhood of the unit square then,
using the same arguments as before, the integrand on the right-hand integral is ana-
lytic. However, in practical applications there are also cases in which the right-hand
side is not so smooth or even has singularities. In this case one should use adaptive
numerical quadrature methods that are able to suitably resolve the singular behavior
of the function 7;. Since such methods depend very much on the actual function
7. under consideration, we will refrain from a general description of these methods
and refer to [225] for an introduction to the problem.

Remark 5.2.10. If the reference element is the unit square the transformation X =
(&, &n) becomes superfluous. The results concerning analytic properties for the local
integrand can be appropriately applied.

If the direct method is used to formulate the boundary value problem as an
integral equation the right-hand side r is usually defined by an integral operator



5.3 Numerical Integration 321
r = /'\zf ~|— Kzﬂ

and therefore integrals of the form

/ bi (%) (x) dsy = / 22 (%) by (%) f (%) dsy
T T
+ [F bi () [F by (o y.x—Y) f W dsydss  (5.43)

have to be evaluated. However, both integrals are of the type (5.40) and (5.2) and
can thus be regularized and approximated by the same techniques, assuming that the
function f is piecewise analytic. Otherwise adaptive methods have to be employed
that take into account the singular behavior of f.

5.3 Numerical Integration

We have shown that the coefficients of the system matrix and the right-hand side
can be formulated as integrals over [0, 1]4 with an analytic integrand. Such inte-
grals can be efficiently approximated by means of Gaussian quadrature methods
(see [225]). In this section we will present the appropriate Tensor-Gauss quadrature
for the approximation of these integrals. We will also estimate the minimal number
of quadrature points per spatial dimension in order to reach a given approximation
tolerance. We will later see that the quadrature order for some integrals has to be
chosen proportional to |log /|, i.e., the quadrature order goes to infinity for # — 0.
Therefore the error estimates have to depend explicitly on not only the mesh width
h but also the quadrature order.

The integrals in (5.1) are approximated with quadrature methods of fixed order
and so allow the use of simple quadrature methods.

Remark 5.3.1. If the continuous integral operators lead to symmetric bilinear
forms or Hermitian sesquilinear forms then the (exact) system matrices K of the
Galerkin discretization are, respectively, symmetric or Hermitian. Hence it suffices
to approximate and save the upper triangular part of the matrix K by numeri-
cal quadrature. Since the symmetry of system matrices is often an essential factor
for the convergence of iterative solution methods, this method also automatically
guarantees the symmetry of perturbed system matrices.

5.3.1 Numerical Quadrature Methods

In this subsection we will present simple quadrature methods for squares and
triangles, as well as Gaussian quadrature methods of arbitrary order.
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5.3.1.1 Simple Quadrature Methods

For t € G, T denotes the reference element and y, : T — t the local parametriza-
tion. The integration of a continuous function v € C° (7) is transported back to the
reference element as

I (v) :=/v(x)dx=[\3(§()g, (X) dx.

Here g; (X) denotes the surface element and v := v|, 0 y. The numerical quadrature

on the reference element is given by a mapping Q : C° (?) — K of the form

QW)=Y wiav(in)

i=1
with weights w; , € R and nodes &; , € 7. The associated quadrature error E; :
C° (7) — K on the surface panel is given by
Er(v):=1: (v) — O (Vgr) . (5.44)

The space of all polynomials of maximal degree m € N was introduced in (4.23)
and denoted by P4 In this section we will use the abbreviation P,, = P5.

Definition 5.3.2. The numerical quadrature has the degree of exactness m € Ny
if the quadrature method on the reference element is exact for all polynomials of

maximal degree m, i.e.,
E;:(vy=0 Yv € Py,.

The numerical quadrature is stable if

n n n
Za),-,n = |7] and Z |win] < Co Za),n

i=1 i=1 i=1

Example 5.3.3. Let T be the unit triangle with vertices (0,0)7, (1,0)7, (1, 1)T. Then

06) = v(2/32, 1/3)

defines a quadrature formula with exactness degree 1 and Cg = 1.
A quadrature formula with exactness degree 2 and Cg = 1 is given by

v(1/2,0) +v(1,1/2) +v(1/2,1/2)
- .

()=

Example 5.3.4. Let T be the unit square. Then

Q) =v(1/2,1/2)



5.3 Numerical Integration 323
defines a quadrature formula with exactness degree 1 and Cg = 1. Also

2

oM =7 Y viE&)

L,j=1

with &, = (1 — 1/\/5) /2 and & = (1 + 1/\/§) /2 defines a quadrature formula
with exactness degree 3 and Cg = 1.

Further quadrature formulas for the unit triangle and square can be found in
[226].

5.3.1.2 Tensor-Gauss Quadrature

For a continuous function f : [0, 1] — C we set

1
1) = /0 fdx.

Let (& n, a),-,n)l'-’=1 be the nodes and weights of the Gaussian quadrature of order n
with the weight function 1 on the interval [0, 1] (see [225]). The associated Gaussian
quadrature is given by

Qn (f) = Za)i,nf (Si,n) .

i=1

The quadrature error is denoted by E” (f) := I (f) — Q" (f) and satisfies
E"(p)=0  VpePy_.

For a function f : [0, 1]4 — CwesetI(f) = /(0 4 f (x)dx and for n =

(n;)}—, € N* we define the Tensor-Gauss quadrature of order n by

ny np n3 ng

Q"[f]= Z Z Z Zwi,nleyﬂzwk,ﬂwf,wf (gi,nl s Ekeonss &JM) :
i=1j=1k=14=1

(5.45)
Since all the derived integral representations from the previous section are of the
form I (f) with an analytic integrand f : [0, 1]* — C, the Tensor-Gauss quadra-
ture can be used for their approximation. As the numerical integration takes up a
significant part of the total computation time used for the numerical solution of
boundary integral equations, it is very important that a minimal quadrature order
n := (n;){_, be found to achieve a prescribed tolerance & > 0. The condition on n
reads

E" (N:=1(H-Q" (N =elfl. (5.46)
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The nodes and weights of the Gaussian formulas up to a high order can be pre-
computed, for example, with the program GAULEG described in [185, Sect. 4.5].
The output of the procedure “gauleg(a, b, x, w,n)” consists of the arrays x(1 : n),
w(1l : n) of the nodes and weights of the n-point Gaussian formula Q" on the
interval [a, b].

5.3.2 Local Quadrature Error Estimates

We begin with quadrature error estimates for stable quadrature methods with an
exactness degree m. We will prove the convergence for i; — 0 and a fixed degree
of exactness. These can be used for the approximation of the integrals in (5.1).

The integrands in the regularized integral representations (see Sect. 5.2.4) are all
analytic. However, they do have poles close to (more specifically: in a complex
neighborhood of) the integration domain. In practical applications the occurring
kernel functions and their derivatives in local coordinates often have a very com-
plicated form, so that the quadrature error estimates, which often contain high order
derivatives of the integrand, are not suitable. We therefore use derivative free error
representations for analytic integrands for the estimation of the local quadrature
error. These are explicit with respect to the order.

5.3.2.1 Local Error Estimates for Simple Quadrature Methods

We will analyze the question whether the parametrization y; can be analytically
extended, which will form the basis for this discussion. We will restrict ourselves to
triangular meshes. The analysis for squares can be performed in a similar way. In
order to explicitly analyze the scaling of the size of the triangles we need to impose
suitable conditions on the parametrization.

Assumption 5.3.5. For every © € G the parametrization x, can be represented as
the composition of an affine mapping

X:;fﬁne . ]RZ - RZ, aﬂme (X) _ A + mr

and a mapping x : U — T with yiffiee (7) C U,

aﬂme

Xt = X° Xz
The image © := " (2) is a plane triangle in ]Rz The mapping x can be extended
analytically in a complex neighborhood U* withT C U c U* € C x C and, in
particular, independent of the triangulation G.

There exists a positive constant Cx with the property: For all T,t € G with
TNT # @ we have

he/hy < Cx with he == diamzt, h; := diam¢. (5.47)
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Remark 5.3.6. The mapping x : U — T can be considered as a chart in an atlas
A for T'. The choice of the chart from A depends on the panel T € G through
© C x (U). The chart y itself, however, is independent of t.

Remark 5.3.7. From Condition (5.47) we have the existence of a constant ¢y > 0
that depends only on y so that

cihy < hz <c7'he (5.48)

for the plane panels T := y® o y =1 () and i := ¢ o y 1 (¢). Furthermore, it
follows that "
hz/h; < ¢7?he/hy < Ck

with 5K = cl_ZCK (see Remark 4.1.11).

The scaling and deforming behavior of the affine mapping Xa“me will be char-

acterized in the following by suitable geometric parameters. The vertices of the
image triangle 7 =y () are denoted by A., B;, C, and have a counter-
clockwise orientation. We call the associated interior angles oy, B¢, y;. Then m; =
B —A;,C; —B;]. We set

0; := min {ar, Br, Yr} . (5.49)

Proposition 5.3.8. Let m; be as in Assumption 5.3.5 and let Ayax (Amin) be the
largest (smallest) eigenvalue of mIm;. Then

ch2 < Amin < Amax <202 and ch? < g2 := \/det (m{m;) < Ch2

with constants ¢, C > 0 that depend only on 6.

Proof. We set e; := ||B; —A;| and e; = ||C; — B;|| and note that ¢; < hz,
1 < i < 2. The upper bound for the singular values of m; results from

[(m:§, m:§)| = 5161 + 26162 (B —A;,C; —B;) + gzez
< (&1l er + €] e2)® < 2% |I€|% .

Elementary geometric relations on 7 and the binomial formula yield

(m:§ m.§) zel
e1éy

2%‘152 COS,B +§:
> (1 —coS,B)( 2 +s§a) = 2sin® B min | 2L, 21 2,
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The estimate for the eigenvalues finally follows from

, B el e

0 . [siny sina
sin —>s1n > and min{—,—; = min{ ——

ey’ ey

} > sin 0.

sina’ siny

affine ; affine

The estimate for g2 is a result of the representation g2"'""* = eje, [sin f|. O
We consider stable quadrature methods with a degree of exactness m. The

stability implies that for all / € C° (?)

Zwl nf Gin)

i=1

12 (Nl = < max |f<sm)|2|wm| < Collflcog) -

i=1

If we apply this estimate to the product g,V we obtain
10 (89| < Co llgebllcogz) < Co lgellcogs) Pllcogs) -
Lemma 5.3.9. Let Assumption 5.3.5 be satisfied, i.e., yr = x o y¥®. Then
||gr||c0(§) = Ch%,

where C depends only on the global parametrization and the quantity 0; from
(5.49).

Proof. The multiplication theorem for determinants yields

g ) = \/det (D)e)T (Dy0) = |detme| y/det (G o g2 (%))
= |detm,| (g% o 2™) (%) (5.50)

with the Gram matrix
G: (W) := (Dy (W))T Dy (W) € R,
which depends only on the global chart y and g¥ := +/det G.. From this we have
lgzllcoz) = Cx [detme| < Ch2,

where C depends only on the global parametrization and the quantity 6, from (5.49).
|

Corollary 5.3.10. Let Assumption 5.3.5 be satisfied. Then the stability estimate
[E: ) £ OB Vo YveC® (@

holds for the error E; from (5.44).
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Proof. The triangle inequality combined with Lemma 5.3.9 yields

Z Wi.n (Qgr) (Si,n)

i=1

|E: (V)| =

[ V(%) dx— O (g2)| < [l IVl coge +
T
< CR2 Pllcoy + CoCal 9l cogsy = (C1 + CoCa) k2 [¥lcoge -

|

We now turn to the main error estimate for stable quadrature methods with an
exactness degree m.

Theorem 5.3.11. Let Assumption 5.3.5 be satisfied, i.e., xr = y o )(‘;fﬁ“e. Let the
quadrature method be stable and let it have the degree of exactness m.
Then there exists a constant C, which depends on Cg, m, the global parametriza-

tion y and 0, from (5.49), such that for all functions v € Hm () with m*™ =
max {2, m + 1} the quadrature error satisfies the estimate

| Ee )] < G2 0]yt -

Proof. Let v := v o x, and observe that due to the degree of exactness we have
E:(v) = E; (vg:) = Ez (gr —p)  Vp€Pn.

Assumption 5.3.5 and the Sobolev embedding theorem imply g, € C° (7).
First let m > 1. We choose p := (7’” (Qg,)) o )(;1 with the interpolation Im
from (4.73) and obtain

R Corollary 5.3.10 R ~m N Tm A
B Gge=p = eI Og0) L, <Cie =17 G0
Lemma 4.3.1 “ “~m on ~
<" c ‘Vgr IO S C gy

The Leibniz rule for products yields

> (Z) (@) (" Pg0)

Pgelmiie= D ||3“(9gr)lliz(?): >

la|=m+1 lo|=m+1ll =c L2(3)
m+1
<Cn Z Plgr @y l&clem+i-r &)
r=0
(4.204b), (4.215b) mtl r—1
< Culvllgmei ) R gelemii-ry
r=0

where
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MH2=a2
As in formula (5.50) we have

affine

gr = |detme| g¥ o x3
and Corollary 4.3.7 leads to
|gelemt1-rzy < CHE 37,

where the constant C depends only on m, x, and the shape-regularity of the panel.
Thus

~ 2 2
|Vgr|Hm+1(%) = Ch'rn+ VIl gm+12)

and, all in all we have proved that
|Ec (V)] < CRPT2 Wil g1z -

For m = 0 we replace the interpolation of Im (vg:) by the integral mean of g,
and apply Poincaré’s inequality (cf. Corollary 2.5.12). O

Corollary 5.3.12. Let the assumptions from Theorem 5.3.11 be satisfied and let r €
cmt (7) and v € S with local polynomial degree p. Then

|E (vr)| = CRY 2 Wgo oy Il gt (g - (5.51a)
For two boundary element functions u,v € S we have
|Ec )] < CH ooy V] o) - (5.51b)

Proof. By Theorem 5.3.11 it suffices to prove ||vr||Hm+(r) < Clvlgee %
17l gt gy We set v =vo y~!,F =roy ' and 7 := y~! (r) C R?. Note that the
mapping y~! is independent of the mesh G. It follows from Corollary 4.3.12 that
m+
2 ~=12
IV 1t oy < € D 1177 sy

j=1

The Leibniz rule for products yields

D* (W) =) (%) (D7) (D*7HF).

w<o
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With j = || we then have the estimate

ID* G2y < C 1Vllms @) Pl i ) -

Since v is a polynomial of maximal degree p, we have ||V gz = 0 fork > p and
hence
Wl ey = 9l E ) -

All in all, we have shown that
||‘~}f||Hm+(.;) <C ||‘~)||HI’(-?) ||f||cm+(.;) .

Finally, the transformation to the surface element (see Corollary 4.3.12) yields the
first assertion.

For the product of boundary element functions we obtain by (5.51a) and by using
Corollary 4.4.6 the estimate

|Ex )] < CHT2 |l g oy 1Pl gt 2y = CHE 2 Ml ooy WFll e o)

1
< CHF  ull ooy IVl o ey -

5.3.2.2 Derivative Free Quadrature Error Estimates
for Analytic Integrands

In this section we will present the classical, derivative free quadrature error estimates
for analytic integrands, which are due to Davis [81, (4.6.1.11)]. Let £ 5 » C C bethe
closed ellipse with the focal points at z = a, b, semimajor axis @ > (b —a) /2

and semiminor axis b > 0 (see Fig.5.5). The sum of the half-axes is denoted by

Fig. 5.5 Ellipses 511.1 with foci at —1, 1 and semi-axis sum p € {1.1,1.2,1.5,3}
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p=a+b.Fora = 0andb = 1 we abbreviate 8{)’,1 by £P. A classical derivative free
error estimate of Gaussian quadrature for analytic integrands can be found in [81].

For f :[0,1] — C, Q" denotes the Gaussian quadrature with n nodes, scaled
to [0, 1], I (f) denotes the integral of f over [0, 1] and E” denotes the associated
error.

Theorem 5.3.13. Let f : [0, 1] — C be analytic with the analytic extension f* on
an ellipse E° C C, p > 1/2.
Then

1= 0" =€ 20" max | 2)].
Z€0EP

This one-dimensional error estimate can be easily transferred to the error of the
Tensor-Gauss quadrature.

Definition 5.3.14. For 1 < i < d and —o0 < a; < b; < oo let w =
®;i:1 [a;.h;] € R?. A continuous function f : @ — C is called component-
wise analytic if there exists a (,o,-)?:1 e R? with p; > (b; —a;) /2,1 <i <d such
that forall 1 <i < d and all x € w the function

ﬁ,x : [alvbl] - <C’ ﬁ,X(t) = f (x17"'7-xi—17t’xi+lv"'xd)

can be extended to an analytic function f; x : 55 i b C.
Y1

Theorem 5.3.15. Let f : [0, l]d — C be componentwise analytic and let (,o,-)?!:1
be as in Definition 5.3.14. Then the error for the Gaussian quadrature with n; nodes
per coordinate direction, 1 <1i < d, satisfies the estimate

B f| < Z max IE"'ﬁx|<ZCz (2p) 7" max max | fix ()]

i—1 x€lo o1 xe[0,1]4 €0

The constants C;, 1 <i <d, are as in Theorem 5.3.13.

Proof. Tt suffices to consider the case d = 2, as the statement for d = 1 has
already been treated in Theorem 5.3.13 and the result for d > 2 follows by means
of induction. We use a classical tensor product argument. Let g : [0,1] — C,
£ :10,1]> — C be analytic and (,(),-),-2:1 as in Definition 5.3.14. We set

hg —fo‘gm dt, (I.f) (1) —fo‘f(t 5)ds,
1 'g _Z 1wjﬂg(é§]")’(ngf)(t) _Z lenzf( Sj,nz)'

This yields the error

E'f = (- 07'0%) f = (2= 10 + 105> - 07'05%) f
=11 (B3> f) + E}' (052 f)
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with E/" := I; — Q. Fori = 1,2 the integral I; : C° ([0, 1]) — C is continuous,
ie.,
|711g] = max |g (1)], |(I2f) ()] = max | f (z,5)].
tefo,1] s€[0,1]

The weights of the Gaussian quadrature are positive and add up to the length of the
interval Z;'-:l wjn = 1 (see[225]). It follows that

n»
=Q") /1 < max [E3/ (1) + 3 wjna [ET' S (- Emo)|
: =~

< max |E;’2f (t,-)| + max |E;”f(t)|
tef0,1] tefo0,1]

5.3.2.3 Estimates of the Analyticity Ellipses of the Regularized Integrands

In this subsection we will estimate the size of the analyticity domains of the regu-
larized integrands from Sect. 5.2.4 as well as those that have been extended on these
domains. We again distinguish between four cases: identical panels, panels with a
common edge, with a common point and with a positive distance to each other. The
estimates of the integrands on the analyticity ellipses are always derived accord-
ing to the same concept: First the integrals are transformed onto the unit triangle
or square. By means of suitable expansions in local coordinates the singularity is
determined in the transformed, complex coordinates. More specifically, the size of
the ellipses on which the integrands can be extended analytically is estimated. Then
other properties of the integrands on the ellipses are estimated, such as the Gram
determinant, basis functions and kernel functions. We also explicitly determine the
dependency on the panel diameter /., i; so that the constants in the estimates gen-
erally depend only on the polynomial degree p of the boundary element space and
the shape-regularity of the mesh.

Case 1: Identical Panels

We first consider the case £ = 7 = S and use the representation /. / from Sect. 5.2.4.
In view of the definition of k3 [see (5.36)] we analyze the analyticity domains of the
basis functions, the surface elements and the kernel functions separately. We begin
with the kernel function in local coordinates. We again assume that the panel t can
be written as the composition of a global chart y and an affine mapping Xifﬁ“e :
R? — R2: y, = y o yfn Let the affine part again be of the type y2fire (%) =
A; +m.X.

For the parametrizations under consideration the difference variable z = y — x
has the following representation in two-dimensional polar coordinates [see (5.22)]
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2= e @R = xe R) =her Y (her)" b (12 (%) . §)

m=0

=: (hr)d (Xafﬁne (X) . her, hr_lmré)

T

with

-1 m+1
(h‘f mrg, V) X) (‘,’\V)

b (W,8) = ( (m + 1)!

and a function d that depends only on the global chart y but not on the triangulation
X< In the same way as in (5.20c) we deduce the representation

k(x,y,2) = (her) ™ dag (0 (R) , her, b 'me§) (5.52)

with a function d3 s that depends only on the global chart y and the kernel func-
tion k. o

The basis functions b;, b; on the reference element are polynomials of degree p
and have the representation in polar coordinates

Bij R, 1§) = b (R)b; K+ rE),

which is independent of the triangulation G. With this we have for the integrand
ka (X, X + r§) from (5.25) the representation [see (5.50)]

rky (R, % +r€) =r(detm;)” B; ; (X, 1,€) g¥ (W) g¥ (V) (hr) ™ x
dss (W, her, hy'me§) (5.53)

where W := x4 (%) and v := y3fre (X + r£). The functions B; ;, g%, d3 > depend
only on the global chart y, the polynomial degree p and the coefficients of the kernel
function k and, in particular, they are independent of the triangulation. They can be
extended to suitable complex neighborhoods of the parameter domains, the size of
which also does not depend on the triangulation.

The numerical quadrature was not formulated in polar coordinates but with
respect to the (&, n)-coordinates, which are mapped to (X, r, ¢)-coordinates by
means of the transformation from (5.35). The transformation with the index i in
(5.35) corresponds to the summand i in (5.34) and it is denoted by T;:

x.r.o)=Ti (0. (5.54)

As these transformations are again analytic and independent of the triangulation, we
obtain the analyticity with respect to the coordinates (£, ) € [0, 1]*.

We use the following notation to describe these neighborhoods. For p > 0 and
i €{1,2,3,4} we set
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?(” (0,1) x (0, 1) x ... x (0, 1) x & x (0, 1) x (0,1) x ... x (0, 1).

(i—1) times (4—1) times

Lemma 5.3.16. Let the kernel function k satisfy Assumption 5.1.19 with s € Z <».
Let 0 := min {1, s}. There exist constants p1 > 0 and p, > 1/2 that depend only
on 0, from (5.49), the global chart y, the coefficients of the kernel function and the
polynomial degree p such that the integrand from Sect. 5.2.4 (1.1)

3
A Ccos
kot (O.D)*>C ki) =Emn ) ks (x,x+r(. “’)) (5.55)
sin ¢

i=1

can be analytically extended to ?(1) he Y Uj‘:z ?g) after substituting as in (5.54).
We have the estimates

sup - [ka (§.1)] = Chy 2P,

=)
Enec 01/ ht

sup |ka (§,)| < Ch}™
EmeE )

for2 <i <4.

Proof. We only need to analyze each summand in (5.55) separately and in the
following we will abbreviate T; to T.

We will first consider weakly singular kernel functions with s < 1. The size of
the analyticity ellipses can be determined from the representation (5.53) and from

I B- Ar” IC. —

‘L'

|h7 me | < |81 ——— + |&] < vage

[with ¢ from (5.48)]. In order to estimate the integrands on the analyticity ellipses
we consider the functions in (5.53) separately. To estimate the functions B; ; in

(&, n)-coordinates, we consider the transformations that appear in Sect.5.2.4, I.1,
and obtain

Bij o T (£,0) = bi (A1 () b (EA2 (1))

with functions A1, A, that are affine with respect to every variable. Since l;,- and b j
are polynomials of degree p, we deduce that

sup |B,-,j0‘1‘ (&, n)|§ Ch;?P and sup_ |B,-,j0‘1‘ (&, n)|§C,2§i <4,
Emeg) . Emee)

(5.56)
with a constant C that depends only on the polynomial degree p.
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We now consider the roots of the Gram determinants g (X), g (¥) and define for
i=1,2
— ) =z
Uppi i= A+ Emes () G €0, L
Depending on 6, and the global chart y we can choose p; > 0 sufficiently small so

that we have
Upi C U’

where U* C C x C is the domain onto which y can be extended analytically. From
this we have fori = 1,2

sup  |g¥ oy (EA; ()| = sup |g¥ (W) < C,
Em)e?D WeU* (1)

o1/ ht

where C depends only on the global chart y. In the same way we can show that

sup gFo ™ EA ()| =C, i=12, j=234.
EmeE)

We consider the singular term (h.r) ™" in (5.53) together with the factors £>137,.
In (£, n)-coordinates we have

Enim Enin _ Enm
s s
(her) (hrffll N2/ Aa (713)) hiAfl/z (13)

with a polynomial A4 which satisfies A4 (n3) > 0 for all 3 € [0, 1]. It follows that

Enin)' ™

su 52771 G )l—s < Ch3
— hsAS/2 M2 - T
Emeey),,, rha (13)
fzﬂl

sup = (Emmn)'™ < Ch*
Emed ) AL (n3)

for i = 2,3,4. Finally, we need to estimate the factor d3 ¢ (W, h.r, h;'m;§) in
(&, n)-coordinates. We obtain the estimate

sup ds (X*}fﬁne (ﬁ),h,r,h;lm,(z’;(‘ﬁ)) R <C,
,10)=T (&,
EneED,, ®ro=sEn
su d ( affine (& her,h>'m Cf’s“’) <C
Ilm') 30 (1 @) e e r(sm‘ﬂ) Gro)=TEn| ~

Eme€s)
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fori = 2,3, 4 with the same arguments as for g;. With (detm,)? < Ch‘r‘ we have
proved that

sup  |ka (£,m)| < Ch1™?P and  sup |kq (E,m)| < Ch¥™S, i =2,3,4.
EneEP,, EmeE )

We now consider Cauchy-singular kernel functions that satisfy Assumption
5.1.19 with s = 2. The integrand from Sect. 5.2.4, 1.1, is a sum of pairs of kernel
functions of the type k2 (X,X — Z) + k» (X — Z,X). We can therefore apply Theo-
rem 5.1.22(c) and show that the above-mentioned arguments can be applied to the
terms ko (X,X — Z) + k» (X — Z,X). Thus we can also prove the statement for the
kernel function from Assumption 5.1.19. O

Proposition 5.3.17. The statements from Lemma 5.3.16 can be directly transferred
to identical squares, as the variable transformations given in Sect. 5.2.4, 1.2, are of
the same type as for triangles.

Case 2: Panels with a Common Edge

We apply the same ansatz that we developed for identical panels to panels with
exactly one common edge. We first consider the case of two triangles 7,f € G
with y; (£,0) = x;(£,0) for all £ € (0,1) and use the representation /I.] from
Sect. 5.2.4. We again assume that the local charts y, and y; can be written as a
composition of global charts y;, y» and affine transformations

_ affine _ affine
Xt =X19X7 s Xe =X20X: -
For the parametrization in three-dimensional polar coordinates z = r§, r =

Iz, &€ = z/ ||Z|| [see (5.21)] under consideration, the three-dimensional difference
variable Z = (§; — X1, J2. X2)T has the representation

Z:Xt(zlgjl)_ —htrZ(hzr) I (aﬂme( )Xiﬂme( )75)

m=0

= ()b (6™ (), 2™ (). her e §1). B 6 (Co — Bo) )
with

i m ) 9)" e = 18 € - B 1

b (¥, W.8) := (m + 1!

and a function b that depends only on the global charts yi, y» but not on the
triangulation. In the same way as in (5.20b) we deduce the representation

k(x,y,2) = (hr)” b“( afine (%) e ($4) or by (81). By 6 (C,—B,))
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with a function b3 s that depends only on the global charts y;» and the kernel
function k.

The numerical integration is not carried out in (X1, r, §)-coordinates but in sim-
plex coordinates (£, ). The associated transformation is denoted by ¥ ;, (X1, 7, §) =
T; (§, 1), where the index j refers to the single summands in the representation
from Sect. 5.2.4(I1. I-11.4). It will be omitted in the following. The transformations
are analytic with respect to every variable. It is easy to verify that the 3. — 5.
components of T are independent of £, which is why we introduce the abbreviation

§i=Tiv2(n)  1=i=3

The size of the analyticity ellipses of the local integrands is estimated in the
following lemma.

Lemma 5.3.18. Let the kernel function satisfy Assumption 5.1.19 with s € Z <.
Let the function ks : (0, 1)* — C denote one of the integrands from Sect. 5.2.4,
I1.1-11.4. Then there exist constants p1 > 0 and p, > 1/2 that depend only on
0:,0;, Ck, c1 from (5.49), (5.47), (5.48), the global charts y1,, the coefficients of
the kernel function and the polynomial degree p so that ks can be analytically

¢Y) 4 () ;
extended to ?m/hz UU = ?pjz . The estimates

sup  |ks (£,m)| < Ch 22,
Emeg ),
sup  |ks (£, )| < Chi™

b
Emes )

hold fori = 2,3, 4.

Proof. The components of the integrand are each analyzed separately and we begin
with the kernel function in local coordinates.

The analysis of the surface elements and basis functions is done in the same way
as in the case for the identical panels and leads to

g (®) g (§) = |detm;|[detm, | (g1 0 x7™) (%) (g2 0 1i"™) )

with the surface elements g, for the global charts 1 5.
The coordinate transformations in the case of a common edge (see Sect.5.2.4)
can be written as

R=A1ED,  F=AEm,  r=tVAs(m) (5.57)

with functions A;, i = 1,2 that are affine with respect to every variable and a
quadratic polynomial Az with Az (1) > 0 for all 5 € [0, 1]3. The power £ in (5.57)
is equal to one for the transformations in Sect. 5.2.4, II.1 and zero for the transfor-
mations /1.2-11.4. Note that the mappings A;, 1 < i < 3, are independent of the
triangulation and the surface parametrization.
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The determinant of the Jacobian of the transformation (§,7) — (X,§) from
Sect. 5.2.4 is of the form

det (D@) En) =E08pEn). (5.58)

with a polynomial p of maximal degree 1 with respect to £ and maximal degree 2
with respect to the n-variables. For the power £’ we have

0= 2 for the transformation /1.1
" | 0 for the transformations I1.2-4

Using this, we can deduce a representation for the integrand k3 (X, §) in (5.36).
Thus, with W := yffire (%), ¥ := yaffine (§) and the substitutions (5.57), we obtain

ks (%,9) = |detm,| |detm,| g1 (W) g2 (¥) bi (R) b; ()
> (htr)—s bs.s (X?fﬁne(fg)’ Xifﬁne()?&)’htr’ht—lmt (%%)vht_l(% ()

x (Cp — Br)> . (5.59)
The product of »—* with the determinant of the Jacobian is, since s € Z <3,

(her) ™ 208 p (E.n) = h7SE75 (£, 1) (5.60)

a polynomial and therefore analytic. More specifically, p is a polynomial with
maximal degree 1 with respect to £ and maximal degree 4 — s with respect to
the n-variables. The size of the analyticity ellipses can be determined from the
representation above, while using ||C; — B¢|| / h; < ¢ 1 Cx [see (5.47), (5.48)].

In order to estimate the integrands on the analyticity ellipses we consider the
functions in (5.59), (5.60) separately. Since b; and b ; are polynomials of degree p
we deduce that

sup

=)
¢Emece 01/ ht

EmeE s

bi (A1 € m) B (A2 &) < O

(5.61)

with a constant C that depends only on the polynomial degree p.
We now turn our attention to the surface elements g, g» (for the global charts
X1, x2) and define

Upie o= [Ac+mehs 6 : 6 € €
p1,T *— T Ti31 v'l)-@"/)e p1/hef”

Up i = {Az +mAz(§.n): ()€ ?;11)/11,}'
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At the same time note that i, ~ h; [see (5.47)]. Depending on 6; and the global
chart y; we can choose a sufficiently small p; > 0 such that

Up,x CUT, Upie C U5,

where Ul-* C CxC,i = 1,2, denotes the domain on which y; can be analytically
extended. From this we have

sup  |gro XM (AL €)= sup |g1 (W) =<C,

=2 weU* (1)
¢Emes 01/ ht

where C depends only on the global chart y;. Analogously, we deduce that

sup  |g1o (AL (E)| =C. i=2.3.4,
=23)
Emee )

and the corresponding estimates for g.
We consider the singular term (,;7)™° in (5.59) in combination with the deter-
minant of the Jacobian (5.58), (5.60) and obtain

sup  (her) £ p (E.m) < Chy

=)
¢Emee 01/ hz

sup  (her) T EnpE ) < Ch7t, i =2,3,4.
Eme€ )

Finally, we need to estimate the factor b3 s (-) from (5.59) in (€, n)-coordinates. With
the same arguments as for g, we obtain the estimates

b (x?fﬁ“e(‘};), 2 (@), e by, (51O 7 2 () (€, — B,)) ‘ <c.

sup T
(5-0)6?;]1)/11r 2(77)
Sup.> | b3,s <X?fﬁne(§01)’ Xifﬁne (%1)’ hr, l’ll_lml (i;gg)’ hl_l'zg (7’]) (C, — BJ)‘ <C.
(en)e €l

With |detm, | [detm,| < Ch} we have proved that

sup  |ks (€, )| < Chy?? and sup ks (&, m)| < Chg™*
EmMeE ), EmeE )
fori = 2,3, 4. O

Case 3: Panels with a Common Vertex

We first consider the case of two triangles 7,¢ € G with y; (0,0) = x; (0,0) and use
the representation from Sect. 5.2.4, III. We assume that the local charts y, and y;
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can be written as a composition of global charts y1, y» with affine transformations

affine affine

XT:XIOX‘: ) Xt_XZOXt

For the parametrization under consideration the four-dimensional difference
variable Z = (J1, §2, %1, %2)7T has the representation in four-dimensional polar
coordinatesz = r&, r = ||z||, £ = z/ ||z|| [see (5.18)]

o]

2= () = 2eE) = her 3 ()™ b (265, 23™=(9). 6)

m=0

— (htr)b( afﬁne() Xz;fﬁne() hzr ]’l mt( ) h mf(&))
with

" 11 ()

1o @) = i me (). )"

(m + 1)!

h_lm, & ,V
Ly (3, W, €) :=< ()

and a function b that depends only on the global charts yi, y» but not on the
triangulation. Similarly to (5.20a) we deduce the representation

k(x.y.z) = (hir) " as (x?fﬁ“e( ). x40 Q). Aer, by g (51), h?‘mr(gj))
(5.62)
with a function a3 that depends only on the global charts y; and the kernel
function k.

The transformation from simplex coordinates to polar coordinates is again
denoted by T, i.e., (r,£) = T (£, 1), and it is analytic with respect to every vari-
able. It is easily verified that the 2. — 5. components depend on T, not on &, and we
therefore introduce the abbreviation

& = Tiv1(n) 1<i<4.

The size of the analyticity ellipses of the local integrand is estimated in the following
lemma.

Lemma 5.3.19. Let the kernel function satisfy Assumption 5.1.19 with s € Z <.
Let the function k¢ : (0,1)* — C denote one of the integrands from Sect. 5.2.4,
II.1-111.4. Then there exist constants py > 0 and py > 1/2 that depend only
on 0,0, Ck, c1 from (5.49), (5.47), (5.48), the global charts x1,2, the coefficients
of the kernel function and the polynomial degree p so that k¢ can be analytically

9 .
extended to £ 21)/ n Y U?:z & Sz) . The estimates
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1-2
sup  [ke (&) = Ch 7,
Emee ),

sup [k (€. )| < Chy ™
Emes )

(5.63)

hold for2 <i < 4.

Proof. The proof of this lemma can be accomplished with the same arguments and
analogous estimates as for the case of the common edge. |

Case 4: Panels with a Positive Distance

We will now turn our attention to the case of two panels 7, € G at a positive
distance apart. Let

deyi=dist(r,t):= inf |x—y| >0. (5.64)

(x,y)eTxt

In local coordinates the integrand is again denoted by

ks (%,9) = g ®) & D) b R b; )k (e ), 20 Bt ) — 4z R) (565

and is analytic with respect to every coordinate. We again assume that the paramet-
rizations ., y; can be represented by means of global charts y;, y» that do not

depend on the surface mesh and by affine mappings y2ffine, yaffine

affine affine
T ’ t .

Xt =X1°X Xt = X2°%
Lemma 5.3.20. Let the kernel function satisfy Assumption 5.1.19. Let (5.64) and
t=71=Q holdfort,t €G.

Then there exists a positive constant p > 1/2 that depends only on 0, 6; from
(5.49), the global charts y1 ., the coefficients of the kernel function and the poly-

nomial degree p so that k3 can be analytically extended to (U?:l?g()r,t)) U
(U‘;:3 ?fsj(z r)> with p (t,t) := pmax {d;/ hc, 1}. We have the estimates

d P
sup ks (X.§)| < Ch2h? (hl) ;s i=1.2,
GHEL ’

NP (5.66)
sup |k3(§,y)|ECh3h$(ﬂ) A% j=3,4.

20 hy o
L s J
(X,y)E & p(t.7)

Proof. We first consider the statement for the variable ;.

The scaling of the affine mapping " combined with the distance condition

(5.64) yield the existence of a constant p > 0 such that
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Uppie 1= {Ac + %1 (Be = A) + 52 (Cc—Bo) s (R §) € €0y |
is contained in U;. Here U C C x C denotes the domain to which y; can be
extended analytically. We have a corresponding result for the remaining variables.
As before, fori = 1,2 and j = 3, 4, we deduce the estimates

s a des\? -
sup  |k3 (X, Y)] SChfhzz( m) deys

GHEE L), e
v v 27,2 er ? —S
sup ks &.Y)| = Chehi | 5= ) doy
GDEL),, '
O
affine affine

Proposition 5.3.21. If either © or t is the unit triangle we precede X3 or xi

by the mapping ({1,82) — ({1, 8182) (with Jacobian determinant 1), which maps
the unit square to the unit triangle. The above-mentioned analysis can be repeated
for the composite mapping and one obtains results that are analogous to those in
Lemma 5.3.20.

Remark 5.3.22. The constants in the quadrature error estimates from this section
depend on the shape-regularity of the triangles and the polynomial order. In [203]
and [202] numerical quadrature for degenerate (non-shape-regular) panels is intro-
duced and analyzed, which are used for the adaptive hp-version of the boundary
element method (see [222]).

5.3.2.4 Quadrature Orders for Regularized Kernel Functions

The estimate for the analyticity domains for the regularized integrands allows the
use of derivative free error estimates from Sect. 5.3.2.2.

The Singular Case

Letk, : (0,1)* — C denote one of the integrands from Sect. 5.2.4./-III. The num-
ber of nodes with respect to the &-integration is denoted by n; and with respect to
the n;-integrations, 1 < i < 3, by np. We set n = (n1,n2,n2,12), and p again
denotes the polynomial degree of the boundary element space.

Theorem 5.3.23. The approximations of the integrals 1-111 by means of Tensor-
Gauss quadrature converge exponentially with respect to the number of nodes:

[E"k.| < ChL™2P (pyhe)®™ + ChE™ (2pp) 2"

with p1 > 0and p, > 1/2.
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Proof. Note that for two triangles 7,7 € G with T N7 # @ we have ch, < hy <
Ch; [see (5.47)]. By combining Lemma 5.3.16, Proposition 5.3.17, Lemma 5.3.18,
Lemma 5.3.19 and Theorem 5.3.15 we obtain the assertion. O

The Regular Case

Let 7,t € G with a positive distance dr, [see (5.64)] and for T = f= Q let the
function k3 be as in (5.65). If either 7 or 7 is the unit triangle we first apply the
mapping ({1, §2) — (&1, £182) as in Proposition 5.3.21 and the resulting function is
again denoted by k3. The polynomial degree of the boundary element space is again
denoted by p.

Theorem 5.3.24. The approximation of the integral f(o " k3 (X,¥) dXdy by means
of Tensor-Gauss quadrature converges exponentially with respect to the number of
nodes

2 3—s dT,t ? ~ —2n dl',t r ~ —2n
s | < C (hehi)? d2 ((h ) 25 (5.1 3*(;7) (25t ) )

with p (t,t) = pmax{d;/he, 1} and p > 1/2.

Proof. The statement follows from Lemma 5.3.20, Proposition 5.3.21 and Theo-
rem 5.3.15. |

5.3.3 The Influence of Quadrature on the Discretization Error

In Chap. 4 we introduced the Galerkin boundary element method for the abstract
variational problem: Find u € H such that

a(,v)=F () Vve H (5.67)

with

a(u,v) = / A (X)u(x)v(x)dsx + / p.v./ k(x,y,y—x)u(y)v(x)dsxdsy.
r r r
(5.68)
The boundary element space is given by the abstract notation S C H and the local
nodal basis is denoted by (b;);.,. With this we can define the linear system of

equations
Au=F

with
A,"j =a(bj,bi) lfi,jEN and F,‘IF(b,‘) 1<i<N.

The coefficient vector u is associated with the Galerkin solution by us = Z;N=1 u; b;.
The approximation of the matrix entries and also the right-hand side by means of
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numerical quadrature leads to a “perturbed” linear system of equations

which in turn can be written as a variational problem: Find zzs € S such that
a(ig,v)=F (@), Vves.

The error u — g was abstractly analyzed in Sect. 4.2.4. In this subsection we will
apply these results to the perturbation by numerical quadrature and derive a relation
between the convergence rate of the Galerkin discretization and the local quadrature
order.

First we will need some notation. The quadrature method for the approximation
of the integrals

Ity = / pv. / k (x.y.y — %) bi (%) b (v) dsydsy (5.69)
T t

is denoted by le{, The associated error is given by

. i,j
E Xt T Irxt TXt*
We use the convention that for boundary element functions u, v the coefficient vector
is always denoted by u, v € C¥ in the basis representation.
For boundary element functions u,v € S we set

Lose (u,v) 1= Z wiv; I, (5.70)

i,j=1

and, similarly, define Q;x; (1, v), E¢xs (u,v). Note that the sum in (5.70) can be
reduced to a sum over 7, j with |suppb; Nt| > 0 A |suppbj N t| > 0. This
motivates the definition of the index set Z; by

Iy :={i : |suppb; N | > 0}. (5.71)
Finally, we set
ER = o EZ|. (5.72)

Assumption 5.3.25(a), (b) is satisfied for all boundary element spaces from
Chap. 4.

Assumption 5.3.25. (a) There exists a constant P > 0 such that

max{fZ; : 1€ G} < P.
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(b) There exist constants Amin, Amax that depend only on the polynomial degree p
such that the spectrum o () of the matrix

= (/Ei (X) b; (f;)df;)
T i,j€ZL3

satisfies the estimate

0 < Amin <A <Amx <00 VA€o ().

As (l;l> is a basis in P, and (-, ) 2(;) defines an inner product on P, m is
1€1z

positive definite and the existence of the constants Ay, Amax i guaranteed. How-
ever, note that these can go to either zero or infinity as the polynomial degree p
increases.

Example 5.3.26. Let T be the unit triangle. For:

e p=0wehavem = (%) and Apin = Amax = 1/2.
e p=1wehave

. 3 11 1
. Lok o 12 24 24
m = // bi X)b; (X)dx =| 2 5 u
0 Jo ii=1 1 11
»J 24 24 12
and Amin = 1/24, Ao = 1/6.
Let T be the unit square. For:
o p=0wehavem = (1) and Ayin = Amax = 1.
e p=1wehave
11 1 1
1 1
Lot 4 R U i
a= ([ [hwb@a) | P
o Jo i,j=1 36 18 9 18
1 1 1 1
18 36 18 9

and Amin = 1/36, Anax = 1/4.

Lemma 5.3.27. Let Assumptions 5.3.5 and 5.3.25 be satisfied. Then
| Eoxe (u.v)| < Chz iy ETS | ull 2oy IV L2y

forallu,v € S, where C depends only on Amin, Amax, 0o (), 8o (t) [see (5.5)] and
P from Assumption 5.3.25.
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Proof. We use the Cauchy—Schwarz inequality and obtain

|Eoq )l =| > wi¥; B < [ERY " jwi| Y |v)]

(i,J)ELr XTIy i€Zr JEL;
2
<|EZHIP [ il YVl
ieT, JE€T;
Furthermore, with & := u|, o yr and gl := maxze; |g: (X)| we have the

representation
/|u| dx —/(gr ®) i @ di < gm“[ 17 R)2 dk

With u; = (u;);¢7, and the matrix m from Assumption 5.3.25 we obtain
2
[|u| dx < gmaxlleur < g, max Z |ll,'| .
ieZ,

In a similar way, we can show that

[P = g 3 i
i€l
From this we have for the error £ «; the estimate
|Evxi (V)| < |ELG | ——=—llullL2) VL2 -

min
8 mmg t Amin

Assumption 5.3.5 combined with Proposition 5.3.8 implies, as in (5.50) and in the
proof of Lemma 5.3.16, the estimate

Ch2 < gmm < Ch2

from which we have the assertion. O

The following corollary is a by-product of the previous proof.
Corollary 5.3.28. Under the conditions set out in Lemma 5.3.27 we have
cllullzzqry < il < Cllull2qy — Vues,

where u denotes the coefficient vector of the boundary element function u in basis
representation and ||| is the Euclidean vector norm in RN. The constants ¢, C
depend only on Apin, Amax, 00 (), 0o (t) [see (5.5)] and P from Assumption 5.3.25.
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We will now deduce the total error from the local error estimates. We consider
the variational problem: Find u € S such that

/Al (x) u (x) v (x) dsy +/V(x) (p.v./ k(xy,y—x)u(y) dsy) d sy
T T r
:/r(x)\_z(x)dsX (5.73)
T

forallv e S.
The integrals

/ bi (%) / k (x.y.y —%) b (¥) dsydsy
I T

are regularized (see Sect.5.2.4) and then approximated by means of the Tensor-
Gauss quadrature method. The integrals

[FM (x) b; (x)b; (x)dsx

are approximated by stable quadrature methods with an exactness degree m; and
the integrals

/ b; (x) r (x) dsx
r

by stable quadrature methods with an exactness degree m;.

Let A be the Galerkin matrix determined by numerical quadrature and a (u, v) :=
(Au v) the associated, perturbed sesquilinear form. Let F be the right-hand side
determined by numerical quadrature. We set

Emax := max h lh Em,

X
T,t€G o

Theorem 5.3.29. Let Assumptions 5.3.5, 5.3.25 and the conditions from Corol-
lary 5.3.12 be satisfied. Let the sesquilinear form a : H* (I') x H*(I') — C
in (5.68) be continuous, injective and coercive for some |1 € {—% 0, %}, and let p
denote the polynomial degree of the boundary element space S.

Then

la (u,v) —a (u,v)| < CH™ 20722 || e oy IVl ey
+Emax #9) llull L2y VIl L2
for all u,v € S. The constant C does not depend on h but, in general, it does

depend on Apin, Amax, B0 (t), B0 (t) [see (5.5)], P from Assumption 5.3.25 and the
quasi-uniformity of the mesh (see Definition 4.1.13).
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Proof. Let E; be as in (5.44) and E;x; as in (5.70). We define [] as the smallest
integer that satisfies [;] > . We observe that every introduced boundary element
space satisfies S ¢ H*1(I).

The quadrature error in the sesquilinear form in (5.73) can be estimated by the
inverse inequality (see Theorem 4.4.2) according to

la @.v) = )] < 3 |Ee ) + Y | Evse (0,)

T€g T,t€G
<CY T ul gy Wlgoe + D e ERS ull g2 ] 22y
T€G T,t€g
1 —_
< CHMHIPRIZ2P N )| g ) Il gy + Emax Y 1l 2 D _IVIz2¢)
T€G T€g teg

< CmMHRRI22 1y oy IV ey + B B9 Tl 220y 9] 22y

< CH™M Y 2R222 ey I ey + Emax (89) lull 22y IVl 22 r) -

|

With respect to Theorems 4.2.11 and 4.2.18 we can now determine the necessary
quadrature orders. For a prescribed consistency tolerance |a (u,v) —a (u,v)| < §
the local quadrature order can be determined by Theorem 5.3.29 and, by means of
Theorems 5.3.23 and 5.3.24, the number of Gaussian points per coordinate direction
can be determined.

We will carry out this process for characteristic examples. It is our goal to choose
the number of quadrature points in such a way that the order of convergence of the
original Galerkin method is maintained for the Galerkin method that is perturbed
by the quadrature. For this we assume that the Galerkin method converges with an
optimal order of convergence, i.e., the exact solution is sufficiently regular. In this
discussion we will restrict ourselves to shape-regular, quasi-uniform meshes (see
Definitions 4.1.12 and 4.1.13). For the general case we refer to [105, 106].

We assume that the sesquilinear form a : H* (I') x H* (I') — C in (5.68)
is continuous, injective and coercive with a u € {—% 0, %} The local polynomial
degree of the boundary element spaces is denoted by p € Nj. If the surface is
sufficiently smooth and the solution of Problem (5.67) is sufficiently regular the
error estimate for the Galerkin error (see Sect. 4.3)

= us |l grery < CHPF 7 lull o+ oy (5.74)
holds. In order to also obtain this order of convergence for the perturbed problem,

we choose the tolerance § in Theorem 4.2.11 as § = Ch?T1™*, From the estimate
in Theorem 5.3.29 and with the inverse estimate we obtain for all u,v € S

la (u,v)—a (u,v)| <C (hlnl_zﬁ+2ﬂ+l||”||f1ﬂ(r) +Emax(ﬁg)hﬁ|lu|lL2(F)) VI ey s

ja ) =@ ()] = € (B 20024 B (89) W) Nl gy Il
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with ft := min {u, 0}. If the local quadrature error and the local degree of exactness
m satisfy the estimates

EL | < Chpt5—m—l wrreG, V(i,j)eTI(x)xI(),
Xt J

(5.75)
my =3(p—p)
we deduce with f#1G < Ch™? that
~ +1_
|a (u,v) —a (u,v)] < CRPT7H lluell gpmastie. 08y VI proery - (5.76)

ja (u,v) = a ()| < C (WP 4+ BP0 ul| gy IV ey -

Since p+1—p>0andp+1—p+p>min{l, 1 —p}> 1/2 the terms hP 14
and pPT1-ntic converge to zero for 1 — 0, and therefore the Galerkin method with
quadrature is stable and consistent for i < hy.

Theorem 5.3.30. Let the mesh G be quasi-uniform with h < hy < 1 and let
the assumptions from Theorem 5.3.29 hold. The order of singularity of the ker-
nel function is denoted by s as in Assumption 5.1.19. Let the quadrature orders
be chosen as

- 3p+4—pu—pn

(p+1+s—p—f)llogh|
ny = 3 s >

5.77
"= 210 (202) G177

in the singular case and as

lo h—Zp—l+;L+[LdP—S
ny=ng > g ) (5.78)
2log (2pxz.t)

with y¢; := max {dist (t, ) / h, 1} in the regular case. We assume that the exactness
degrees for the approximation of the integrals in (5.1) satisfy

my=3(p—p) and my=2(p—p). (5.79)
Then the Galerkin method with quadrature is stable [see (4.152)].
If the exact solution u is contained in H'* (T') for a t € [max {0, u},p + 1]

and the right-hand side in (5.73) satisfies r € C™2+1(T") the solution iig of the
perturbed problem satisfies the error estimate

llu = s || gruegry < CR ™ ||ull ey -

Before we prove this theorem we will make a remark concerning its conse-
quences.
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Remark 5.3.31. The estimates (5.77), (5.78) show that the quadrature orders n,, ns,
ng should grow logarithmically with h — 0 for singular integrals and for the
nearly-singular integrals with dist (t,t) ~ O (h). In the far field, i.e., for y.; ~ h™!
and dr; ~ 1, the quadrature orders are independent of the step size h.

Theorem 5.3.30 is explicit with respect to the step size h. The quantities p and p;
usually depend on the polynomial degree p, which is, however, always fixed for the
discretizations under consideration.

Proof of Theorem 5.3.30. Let k, : (0, 1)* — C denote one of the integrands from
Sect. 5.2.4.I-111. If we insert (5.77) in the estimates from Theorem 5.3.23 we obtain

|E k.| < ChS+Pr=i

with a constant C; that depends only on the constants C, p; from Theorem 5.3.23
as well as p, u, ft.

If we combine the estimate (5.78) with the estimate from Theorem 5.3.24, by
virtue of # < 1and 1 < y,, = max{d.,/h, 1} we obtain

|EPks| < Czhp-i-S—u—ﬂ’

with a constant C; that depends on the same parameters as Cj.

Since the choice of m; in (5.79) is the same as in (5.75), we have the estimates
(5.76) and, thus, the stability and consistency of the sesquilinear form.

The consistency estimate for the approximation of the right-hand side
fF v(x) r (x)dx still needs to be shown. We then have with E7* from (5.44),
Corollary 5.3.12 and the inverse inequality

[FW=FW|=Y_IEP )] <CY R Wl gy 7l emati

T€G T€G

- 1
< CH™2 2P GO || gy 17 Nl oot 1y

1—
< CRP W ey N7l gmatr -

We deduce from Theorem 4.2.11 with p4 := max {u, 0} that

= s ey < €4 min (llu = well ucry + B2 Iwel s ry)
we€Sy

P s } (5.80)

Let wy be the best approximation of the solution u with respect to the H*+ (I")-
norm. It satisfies ||w¢ | gu+ )y < |[ul gr+ )y and it follows from Theorem 4.2.17
that ||u — wel| gury < CR* ™" ||ull gt (ry- The conditionu € H' forat € [, p+1]
guarantees the existence of [|u| gu+ (ry- O

The error estimates that we have developed thus far can not be directly applied to
hypersingular kernel functions that have been regularized by means of integration
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by parts (see Theorem 3.3.22). The sesquilinear form contains an additive term of
the form
G (x—y)(Du(x),Dv(y)) dsxdsy,
I'xI'
where D denotes a tangential derivative of first order which satisfies

I1Dull L2y = C llullgrry -

These integrals can be regularized with the transformations that were developed
in Sect.5.2 and can then be approximated by Tensor-Gauss quadrature methods.
However, the error estimates have to be slightly modified. We will summarize these
modifications:

(a) The size of the analyticity ellipses remains qualitatively unchanged in the sin-
gular case. In order to estimate the integrand in relative coordinates, the basis
functions B; ; := (Db,- ,Db j) have to be estimated on the analyticity ellipses. In
general, the operator D also contains derivatives of order zero so that the poly-
nomial degree of the basis functions is not necessarily reduced by one order after
applying D. Therefore the estimates (5.56), (5.61), (5.63) and (5.66) remain
valid unchanged. Note that for the order of singularity of the kernel functions
we have s = 1 in the representation through integration by parts.

(b) It follows from the arguments above that the error estimates from
Theorem 5.3.23 and Theorem 5.3.24 (with s = 1) remain valid.

(c) The hypersingular integral equation in Theorem 3.3.22 is an equation of first
kind so that we have A; = 0 in (5.68).

(d) For the error analysis we set

I = [ k (x.y.y — %) (Db; (). Db, (y)) dsxds,.
Xt

and we denote the associated quadrature method by Qi’i', and the quadrature
error by E.},. The error E,y is now defined by the new quantities 1,3/,, 0%,

as in (5.72). Under the same conditions as in Theorem 5.3.29 we have

la (u,v) —a (u,v)| < Emax 19) lull 20y VIl L2(r)

< Emax (#9) |l 1720y VI 1720y -

(e) The formulas for the quadrature orders in Theorem 5.3.30 are applied with s = 1
and the results are carried over as is appropriate.
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5.3.4 Overview of the Quadrature Orders for the Galerkin
Method with Quadrature

5.3.4.1 Integral Equations of Negative Order

We first consider the boundary integral operator V : H~Y/2(T") — H'/2(I") for
the single layer potential. The following table summarizes the number of quadrature
nodes and the degree of exactness for various polynomial degrees. Note that there
is no integral of the form (5.1). The quadrature order for regular integrals depends
onh and yo; = max{d;/h,1},ie., n3 = n4 = nuq (h, xz¢). The case n,, (h, 1)
corresponds to the almost singular case, i.e., dist (t, ) ~ h and the case 71, (h, h_l)
corresponds to far field integrals, i.e., dist (7,7) = O (1).

ni np nreg (h’ Xr,t) nreg (h7 1) nreg (h’ h_l) ma
llog (h=2d}')|
=0 3 [3C; logh|] | m—=—2L21 | [C,2 [logh 1 1
p [3C) loghl] { 2oz 2yer) [C23 [loghl]
[log (h~*)]
p=14 [4C logh|]] | ——>—| [C22|logh|] 2 3
2log (2pxx,t)

The constants Cy, C, are independent of p, h and dist (z, t).

5.3.4.2 Equations of Order Zero

We now consider the boundary integral operator for the double layer potential or
for the adjoint double layer potential. We consider the mapping as an operator K :
L? (T') — L2 (). If we apply the formulas from Theorem 5.3.30 to an operator of
order zero, we obtain the following expressions for the number of quadrature nodes
or for the required exactness degrees. Note that in this case we encounter an integral
of the type 5.1.

ni na Nyeg (h» Xr,t) Nyeg (h» 1) Nyeg (h» Ch_l) ny ny
[ [log (h'd2)] ]
=0 2 [3Cs3|logh|] | ————=22 | [2Cy4|logh 1 0 0
P [3C3 [log h|] 2l 2ges) [5Calloghl]
_|10g(h_3dr_,1)|_
p=14 [4Cs|logh|] | =———==—| [2C4|logh|] 2 3 2
2log (2pxz,1)
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5.3.4.3 Equations of Positive Order

We now consider the boundary integral operator W : H'Y2(I') — H~Y2(I")
of order 1. The following table gives us the required number of quadrature nodes
and exactness degrees. Note that there is no term fr Aiuvdx, i.e., mq need not be
considered. The minimal polynomial degree is p = 1 and here we consider the
ansatz by means of integration by parts.

ni na Nyeg (h, Xr,t) Nyeg (h» 1) Nyeg (h» Ch_l) ny
5|logh
p=1 4 s oghll | ol pcmo 2
41log 2px<.t)

Remark 5.3.32. Our analysis of the quadrature in the far field can be refined by
using the higher regularity of the boundary element functions. More precisely, we
often have S C H**S (') with an s > 0, where H" (I") denotes the energy space
[see (5.74)]. Details can be found in [200] and [140].

5.4 Additional Results and Quadrature Techniques

In the work of O. Bruno et al. (e.g. [34, 35, 161]) on frequency robust boundary
integral equation based solvers for electromagnetic and acoustic scattering, a key
component is the use of frequency dependent numerical integration to deal effi-
ciently with the highly oscillatory integrand functions (the oscillations stemming
from the Helmbholtz kernel and its derivatives but also on special, oscillatory non-
polynomial shape functions which resolve the high frequency components of the
solution). This requires the use of stationary phase asymptotics for the efficient
numerical evaluation of the oscillatory surface integrals. We refer to, e.g., [36] for
details and applications. An alternative is the use of frequency adapted quadrature
methods, such as Filon’s quadrature rule which has been used by [163].



Chapter 6
Solution of Linear Systems of Equations

The Galerkin boundary element method transforms the boundary integral equation
to the linear system of equations
Ku =f, (6.1)

where K is the system matrix of the integral operator and f is the load vector. In
this chapter we study the efficient solution of (6.1). If the dimension of the linear
system of equations is very large, i.e., N = dimK ~ 10* — 10°, direct methods
such as Gauss elimination become impractical, as their complexity grows propor-
tionally to N 3. Instead, one should use iterative methods to solve the system. As
will be explained in Chap. 7, iterative methods for the solution of linear systems of
equations do not require that the matrix K be known explicitly. Their complex-
ity is dominated by the cost of a matrix-vector multiplication multiplied by the
number of iteration steps for the computation of a sufficiently accurate solution
of the linear system. The cluster method, which is discussed in Chap. 7, provides an
approximative matrix-vector multiplication with a complexity of O (N log N). This
is achieved with the help of an alternative representation of the Galerkin discretiza-
tion. As opposed to this, the evaluation of Ku with a dense matrix K in the usual
basis representation has a complexity of O (N?).

Since (6.1) already contains the discretization error, an exact solution u = K~ !f
is not necessary. It suffices to solve (6.1) approximately with a precision which is
of the same size as the discretization error. Therefore in this chapter we discuss
the most important iterative methods for the solution of (6.1): the cg method by
Hestenes and Stiefel (see [129]) for a symmetric (Hermitian in the complex case) K,
as well as certain steepest descent methods that are of the same type as the minimal
residual methods for a non-symmetric (non-Hermitian in the complex case) K. The
convergence rate of classical iterative methods is determined by the condition of the
matrix K. Equations of the second kind are usually well-conditioned, in which case
the convergence rate of iterative methods is independent of the dimension of the
matrix. The condition of the matrix K for equations of the first kind usually grows
at a rate of 4~ ! with a decreasing mesh width / (see Lemma 4.5.1). This means that
the number of iterations necessary in order to reach a prescribed stopping condition
grows as the dimension increases. If the dimension of the matrix K becomes so
large that the computing time for the iterative solver dominates the overall solution

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series 353
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2_6,
(© Springer-Verlag Berlin Heidelberg 2011
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process, preconditioning methods should be used to improve the condition of the
transformed system. We will discuss an example of this situation in Sect. 6.5.

6.1 cg Method

First we recall the definition of positive definite matrices. Let K € {R,C}. The
Euclidean inner product on K¥ is defined by

N
(wy) =) wv,

i=1

where @ — @ denotes complex conjugation. For a matrix A € K¥*V the adjoint
N
matrix is defined by AH := (A j,,-> . A is Hermitian if A = AH. A is positive
ij=1
definite if
(Au,u) >0 Vue KM\ {0}.

The cg (“conjugate-gradient””) method by Hestenes and Stiefel for the solution
of (6.1) with positive definite matrices K is based on the derivation of (6.1) by
minimizing a quadratic functional, i.e., computing u* € K¥ so that

J(u*) = min{J (u):ue ]KN} with J (u) := % (Ku,u) —Re (f,u). (6.2)

Foru € K¥, r(u) := f — Ku denotes the residual of u.

6.1.1 cg Basic Algorithm

The cg algorithm constructs a sequence (u;); oy of vectors u; € K that converges
to the exact solution of (6.1). We begin with the cg algorithm in its most basic
version.

Algorithm 6.1.1.

Initialization:
u € KV given
ro ;= f— Kuyg
(6.3)
so € KV

po :=so € KV
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Iterations: Fori = 0,1,2,... evaluate

ai+1 € K,
Wit =W +&i4+1Pi;s

rit1 =1 —o;+1Kp;, 6.4)
sit1 € KV, .

Bi+1 € K,
Pi+1 = Si+1 + Bit1 pr € KV

We still need to determine «;, §;, s;. For this we note that for the derivative of J
in the direction of a vector z € KV at the point u; we have

(J'(u;),z) = Re (Ku; —f,z) = —Re (r;,z) . (6.5)

Therefore u; € K minimizes J(-) on an affine subspace Z C K% if and only if
Re(r;,z) =0forallz € Z.
In the following Z will be spanned by the directions of descent p; for j < i. We
define ¢+ by
(ri.pi)

——, if (Kp;.p; 0. 6.6
Kp,.pi) if (Kp;,pi) # (6.6)

Qi1 =

We have (rg, po) = (ro,So) and from (6.4) we have (r;,p;—1) = 0 fori > 1,
from which we deduce by using (6.4) that

(r;,pi) = (r;,si + Bi pi—1) = (ri,si), i>1. (6.7)
With (6.6) this yields
(ri,s;)
o] = ——. (6.8)
T (Kpy.p)

We determine ;41 in Algorithm 6.1.1. We have

®it1(Tit2, Pi) = dit1(tit1 — 42 Kp;yq, i) = dit2(pi+1, —ai+1Kp;)
= ai42(Si+1 + Bi+1Pi- i1 —Ti) .
We have already seen that the new residual r;, is perpendicular to the direction
Pi+1- It is now our aim to determine ;41 in such a way that r; 4, is also perpen-

dicular to p;. We will show in Proposition 6.1.3 that r; 1, is then perpendicular to
allpj,j <i+41.
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For (r;,s;) # 0 we thus set &2 (Si+1 + Bi+1 Pi,Ti+1 —r;) = 0 and obtain
[using (6.7)]
(Sit1,rig1—1;)

Bi+1:= (6.9)
(si,ri)
One possible choice of s; which ensures that (r;,s;) # 0 forr; # 0is
si=r;,i=012,.... (6.10)

Algorithm 6.1.1 combined with (6.8)—(6.10) defines the so-called Polak—Ribiére
version of the cg method [183].

6.1.2 Preconditioning Methods

We will see that the convergence rate of the cg method depends on the condition of
the matrix K. If it is large the computational complexity of the iterative solver may
start to dominate the entire discretization. A remedy for this is the use of precondi-
tioning, which we will consider on an abstract level in this section. For every regular
matrix C € KV *¥ the solution of the preconditioned system

CKu = Cf 6.11)

solves (6.1). By choosing C in a suitable way, we aim to decrease the condition of
the system matrix CK in (6.11) considerably compared to the condition of K. Note
that we obtain Algorithm 6.1.1 if we choose C = I. In this section we will present
the cg algorithm for the preconditioned system (6.11).
Let C : K¥ — K¥ be positive definite. As an alternative to s; = r; in (6.10) we
may choose
S = Cl‘i. (6.12)

Then we have (r;,s;+1) = (r;, Cri4+1) = (Cri,rit1) = (S;i,rit1). We have seen in
Sect. 6.1.1 that the given choices for ¢ 41 [see (6.8)] and ;41 [see (6.9)] determine
the relation (p;,ri+1) = (pi—1,ri+1) = 0. From this and with (6.3) we have

fori =0 (si,rit1) = (po,11) =0,

fori > 1 (si.rix1) = (pi —BiPi—1.Ti4+1) =0. (6.13)

Inserting this into (6.9) we obtain

Bi+1 = _(Siz:’:l:;rl)' (6.14)

Algorithm 6.1.1, (6.8), (6.12) and (6.14) give us the Fletcher—Reeves version of the
cg method (see [94]).
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Remark 6.1.2. 1. The Hestenes—Stiefel version of the cg method uses

. (Tit1 —1i,8i+1)
Bi+1:=—F——

,i>1. (6.15)
(ri —ri_1.s;)

In view of (6.13), this variant is equivalent to the Fletcher—Reeves version. How-
ever, for problems in nonlinear optimization the resulting methods, in general,
are different.

2. The directions s; in (6.12) are opposite to the gradients of J () in the inner prod-
uct (-,-)c = (-, C-) and thus correct the previous directions of descent. More
precisely, we have

(VJ (0;),si)c = Re (Ku; —f,Cs;) = —Re (r;, Cs;) = —||s; |* < 0.

3. The Fletcher—Reeves and Polak—Ribiére versions have their origins in the exten-
sion of the cg method to non-linear problems.

6.1.3 Orthogonality Relations

Fori > 0 we define the Krylov space of order i by
K" :={p(CK)so : p € Pi(K)}, (6.16)
where P; (K) denotes polynomials of degree < i with coefficients in K.

Proposition 6.1.3. As long as the cg method does not terminate because of zero
division we have

Vi >0: span{py,...,pi} = span{Sg,...,S;}, (6.17a)
Vo< j<i: (ripj)=0 and (Kp;.p;)=0, (6.17b)
Vi>0: span{po,....pi} =K". (6.17¢)

Proof. (a) is trivial. We will prove (b). We have (r1,po) = 0. We assume that (b)
holds for an i > 1, more precisely, we assume that (r;,p;) = 0 for j < i and
(Kp;_;,p;) = 0 for j <i — 1. As we have already seen in Sect.6.1.1, we have
(rit1,pi) = 0and (rj41,pi—1) = 0. For j <i — 1 we obtain
(riy1,p;) = (ri —o 41 Kp;,pj)
= —a;j+1(K(si + Bi pi-1).p;)
= —aj+1(si, Kp;)
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— -1
= ai1(@41) " (sirje1 — 1))
— -1
= i +1(@j 1) (ri.sj+1—5/)

(64) .
= i1 @) pj+1 — (14 Bj+1)pj + Bipj-1)
(inductionissumption)

)

and for j <i: (Kp;,p;) = ——L(rig —r;,pj) =0.

o 4+1

We prove (c) by recursion. We have sg = po and thus K® = span{so} =
span {po}. Nowlet C' = span{po,...,p;} fori > I be already proven. For vectors
a € K" and subspaces V' C K¥ we use the notationa+V = span {ea + v : a€K,
v € V} in this proof. Then with ;1 p; € span{po....,p;} = K and (6.12) we
have the equality

span{po. ..., Pi+1} = span{po.....Pi} + Pi+1
=K' + (si+1 + Bi+1p:)
=K'+ Cri;.

Since Cr; =s; € span{po, ..., p;} it follows from (a) that
span{po.....pi+1} =K' + C(r; — ;41 Kpy)
=K + CKp;.

It then follows that span{po,....pi+1} = K' + CKp; € K'*1. We then obtain
the equality by considering the dimensions. |

6.1.4 Convergence Rate of the cg Method

In case there are no rounding errors, Proposition 6.1.3 implies that the cg method
terminates at the latest after N steps with the solution u* of Ku = f. A far more
important property of the cg method lies in the fact that it already offers very good
approximations of u* after only i < N steps, as we will show in this section.

Let u . = K~ !f be the solution of (6.2). Then we have

J) = = (Ju—ulg — usllg). (6.18)

=

where [[u]|% := (u, Ku) = (Ku, u) denotes the energy norm for K. Since J'(u; 1) =
—Re(rj41,-) vanishes on K' = span{po,...,p;}, J(-) assumes its minimum over
uo + K in w; 4. Therefore we have for all real polynomials p € P;:

wi+1 —uxllk < [[p(CK)so +uo—uk. (6.19)
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Since s = CK(u « — uy) it follows for all p € P;4; with p(0) = 1 that we have
the estimate

Juis1 — sl < [1P(CK) (wo — u)x - (6.20)

Exercise 6.1.4. Show for positive definite matrices K, C and for an arbitrary poly-
nomial p with real coefficients that

Ip (CK) Wik < [Wlgmax{[p()|: A€o}  VweK",

where o denotes the spectrum of the matrix CK.
One of the consequences of (6.20) is an estimate of the error after i iterations.

Proposition 6.1.5. For alli > 0 and all real polynomials p € P; with p(0) = 1
we have

loj —uy|lk < max{|p(A)|: X € o} |lup —u«lx - (6.21)
We obtain a convergence estimate from (6.21). However, we first need a prepara-
tory lemma.

Lemma 6.1.6. Let 0 < a < b. The problem
min{max{|p(A)| : A € [a,b]}: p € P; A p(0) =1} (6.22)

has a unique solution
b—a

r@@) = W,

b—a

T; (b+a—2z)

where Ty (x) is the Cebysev polynomial of order k on (—1,1) which satisfies
|Tie(x)] < 1for|x| < 1 and Ty (1) = 1.

If we combine this result with (6.21) we obtain the statement concerning conver-
gence.

Theorem 6.1.7. Let
0(CK) C [a,b], k:=bj/a>1.
Then for allu g € KN andi > 1

ﬁ—li
s — el < — o — s I < 2 (— lwo—wlx.  (623)
B e W
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Proof. Proposition 6.1.5 and Lemma 6.1.6 give us the first inequality. Furthermore,
we have T; (x) = cos(i arccos x) or

Ti(x) = % ((x +Vx2 = 1) 4 (x — V2 — 1)f) , (6.24)

while there are only even powers of v/ x2 — 1 and thus (6.24) is defined for all
x € R. We then have

1 i
T,-(x)zz(x—i—«/xz—l) forx > 1

and from

Vi +1
(4 Va2 =Dt = Ji—1

we obtain the assertion. O

6.1.5 Generalizations™

We will briefly discuss generalizations of Theorem 6.1.7. Firstly, the restriction to
finite-dimensional spaces K¥ is not important. The cg method can just as well be
defined for infinite-dimensional Hilbert spaces, in which case (6.23) still remains
valid if X, Y are Hilbert spaces over K, (-,")y«x : ¥ x X — K is a sesquilinear
formand A € £(X,Y) satisfies

Yu,ve X : (Au,v)yxx = (Av,u)yx- (6.25)

IfY =Xand A4,C € L(X,Y) withCA =1 4+ K and acompact K : X — X
we can again determine a convergence rate from (6.21). In this respect we note that
the spectrum o (K) of K is discrete and only has an accumulation point at zero [see
Theorem 2.1.36(ii)]. Now let ¢ > 0 be given and let ¢(z) be a polynomial such that
q(0) =1 and

qg(A) =0 Vieo(I +K);|A—1|>e. (6.26)

Since there are only finitely many A € o(/ + K) that satisfy the condition [A—1| > ¢
for every ¢ > 0, g in (6.26) exists. With 7(z) = (1 —z)’ and p;(z) = q(2)r(2) we
have p;(0) = 1, degree of p; = j+ degree of g and

max{|p;(z)| :z€ o(I + K)} < &/ max{|q(z)| : z€ o(I + K)}.

* This section should be read as a complement to the core material of this book.
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In the following u; again denotes the i-th iterate of the cg method. For all i >
degree g from (6.21) we deduce the estimate

wj —usllx < max{|g(2)| : z € o(J + K)}el™%eD ug —u, ||k .

Proposition 6.1.8. Let X be a Hilbert space over K and CA = I + K with a
compact K : X — X. Let u; be the i-th iterate of the cg method.
Then for all € > O there exists a constant C(g) such that for all i we have

w; —us]g < C € |lup —us k. (6.27)

6.2 Descent Methods for Non-symmetric Systems

We consider
Ku=f (6.28)

in RY with a non-symmetric K. The symmetric or skew symmetric parts of K are
given by
1 1
M= §(K+KT), R= 5(K—KT). (6.29)
We then have K = M + R. For an arbitrary matrix X let A, (X) and A4 (X) be
the eigenvalues with the smallest and largest absolute values respectively and let
p(X) = |Amax(X)| be the spectral radius of X. o(X) denotes the spectrum of X.

For a non-singular X the condition number with respect to the Euclidean norm ||-|
is given by «(X) = [ X[|X7"].

6.2.1 Descent Methods

The general form of descent methods for the solution of (6.28) is described in
Algorithm 6.2.1. Here we will restrict ourselves to the case K = R.

Algorithm 6.2.1 (Descent Method).

uo € RN (Initial Vector) (6.30a)

ro=f-Ku (6.30b)

o = KR (6.30¢)
(Kp;.Kp;)

Wiy =W + o P; (6.30d)

ri+1 :=r; —o; Kp; (6.30e)

Compute pi+1 - (6.30f)
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The choice (6.30c) minimizes the residual
i1l = [If — K(ui +ap)]| .

with respect to « and therefore we have |r;+1] < ||r;|| in every step. We still need
to determine the algorithm that provides us with p;. We set

i
Pi+1:=Ti+1 + Z ﬂﬁl)Pj (6.31a)
j=0
BY = — (Kri11.Kp,) / (Kp;.Kp,) . (6.31b)

The vector p;+1 from (6.30) and (6.31) minimizes E(w) := ||f — Kw|| over the
affine space u ¢ + span{po, ..., p;}. (6.30) and (6.31) together define a generalized
conjugate residual method. Ignoring round-off errors it produces the solution of
(6.28) in at most N steps, just like the cg method.

Storing all the p; in (6.31a) requires too much memory for large N. Therefore
we replace (6.31a) by

i
Pi+1 =Ti+1 + Z ﬂﬁ-l)pj (6.32)
j=i—k+1

for a k > 0 with ,3;” as in (6.31b). Note that for k = 0 we have

Pi+1 =Tit1. (6.33)

In this case (6.30) is also called the “minimal residual method” (MR) or otherwise
Orthomin(k).

6.2.2 Convergence Rate of MR and Orthomin(k)

Lemma 6.2.2. The vectors (u;), (r;) and (p;) for the MR or Orthomin (k) satisfy

(Kp;.Kp,) =0 j=i—k ....i—1i>k, (6.34a)
(r.Kp;) =0 j=i—k—1.. .i-1i>k+1, (6.34b)
(ri,Kp;) = (r;,Kr;) . (6.34¢)

Proof. (6.34a) follows from (6.31), (6.32) by induction over i. We recommend the
proof as an exercise.
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The relation in (6.34b) follows by induction over i. Thus we let (6.34b) hold for
alli < I. Then with (6.30e) we have

(ri+1,Kp;) = (ri,Kp;) — @i (Kp;, Kp;) .

Fori —k < j < i < I all terms on the right-hand side vanish, according to
the induction hypothesis and (6.34a). For j = i = I the right-hand side vanishes
because of the definition (6.30c) of «; . This shows that (6.34b) also holds in the case
i = I + 1. For (6.34c) we multiply (6.31a) and (6.32) by K and then form the inner
product with r;: it follows that

i—1
(ri. Kp;) = (r. Kry) + Y BV (r Kp;) = (ri. Kry),
j=i—k
because of (6.34b). O

Theorem 6.2.3. Let the symmetric part M of K be positive semidefinite. The sequence
(r;) of the residuals of MR or Orthomin (k) satisfies

Amin M 2 lj
Il = (1- g ) Il (635)

We need a preparatory lemma for the proof.

Lemma 6.2.4. For (p;) and (r;) of MR or Orthomin(k)
(Kp;.Kp;) = (Kr;, Kr;). (6.36)

The proof uses (6.31a), (6.32) and (6.34a) and we recommend it to the reader as
an exercise.

Proof of Theorem 6.2.3. From (6.30¢e) we have

Iri+1)1? = (ri. i) — 204 (r;, Kp;) + o (Kp; . Kp;)

(l’,’, Kpi)2 (ri7Kpi)2

= |rill> -2
l (Kp;, Kp;) (Kp;; Kp;)
S A i T
= ||r; .
(Kp;, Kp;)

With this it follows from (6.34c¢) and (6.36) that



364 6 Solution of Linear Systems of Equations

i l® _ {ri.Kp;) ({ri.Kp;)
[[ri |2 (ri,ri)  (Kp;.Kp;)
1— (I‘i,KI‘,') (I‘i,Kl‘,')

(rir;)  (Kr;,Kr;)
Since (v,Rv) = 0 for all v € R" with R from (6.29) we have

(r, Kr;)  (r;, Mr;) |
(ri,r;) - (rj,r;) > Amin(M).

From this and from

(ri,Kri)  (ri,r) (ri, Kri) - Amin(M)
(Kl‘,‘,Kl’,‘) o (l‘i,KT Kl‘i,) (l’,‘,l‘i) - lmax(KTK)

we have the assertion (6.35). O

6.3 Iterative Solvers for Equations of Negative Order

In this section we discuss the iterative solution of the integral equation for the single
layer operator V, i.e., an operator of the first kind and negative order.

Numerical approximations of the entries of the system matrix and the right-hand
side (see Chap. 5) or the cluster method (see Chap. 7) both lead to a perturbed system
of Galerkin equations "

Kug = f. (6.37)

The size of the perturbations should be chosen in such a way that if the system of
equations is solved exactly the associated boundary element solution izs € S should
converge optimally. As we have already seen in Chap. 4, Lemma 4.5.1, the condition
number

K (K) = Amax (K)/Amin (K)

of the exact Galerkin matrix K for a boundary integral operator of the first kind with
order =1 on a quasi-uniform mesh G on I" with mesh width / behaves as

x(K) < Ch~' < CN'/2. (6.38)

If the appg)ximation K in (6.37) satisfies suitable stability conditions (6.38) also
holds for K, as the following exercise will show.

Exercise 6.3.1. Let K be the exact Galerkin matrix of a boundary element method
Jor an elliptic boundary integral equation of the first kind and of order —1 on a
shape-regular, quasi-uniform mesh G with mesh width h. Furthermore, let K be a
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stable, consistent, symmetric approximation of K, more precisely, we assume that
the perturbed Galerkin solution us € S from (6.37) converges at an optimal rate.
Show that the condition number of the perturbed matrix K satisfies

K(K) = Amax(K) /Amin(K) < Ch™' = CN'/? (6.39)

for a sufficiently small mesh width h < hy.

The previous exercise, together with the symmetry of the approximation K and
the convergence estimate (6.23) in Theorem 6.1.7 for the cg method, all combine
to give us estimates for the error of the approximation ftg after j steps of the cg
method.

For this let ﬁé be the j-th iterate of the cg method applied to (6.37) and let
ﬁg e S = Sg ! be the associated boundary element solution. The connection
between the Euclidean vector norm ||f1§ — Ug| of the error in the j-th iterate and
the error ||ftJS — us||g—1/2(ry in the boundary element solution is established by

normalizing the basis functions of S as follows. Since the basis (by);¢7 of S 5 !
is constructed separately for every panel 7, it can easily be made orthonormal with
respect to the L2(I") inner-product. In this case we have

is = Z (us); by € S = |lus| 2y = llus, (6.40)
IeT
where ||| again denotes the Euclidean norm.

Proposition 6.3.2. Let K be a stable, consistent and symmetric approximation of
the Galerkin matrix K of the boundary integral equation of the first kind for the
o0

single layer potential. Furthermore, let (ﬁj ) be the sequence of the iterated

vectors of the cg method with the initial vector 02 s = 0 and the approximate solu-

tions i 5 € S associated with u uS Let the basis of S be L?-orthonormal and let the
inverse inequality from Theorem 4.4.3 hold. Then the error estimate

llis — L7§||H—1/2(r) < C(=h"h 2 fllgiam (6.41)

holds.

Proof. We apply the convergence estimate (6.23) with the unit matrix C = I, which
is the cg method without preconditioning, and with the matrix K. According to
Exercise 6.3.1 it follows for a sufficiently small & < hq that

kK(Ky<Ch™' <CN'V2.

With this, Theorem 6.1.7 gives us the estimate
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ug—u{g

= C |as - af] (6.42)

c”a —af] =
ST

| <
H=1/2(I)

<C(1=h") as| < € (1=h"2)" k=2 liis|| g1 -

The stability of the perturbation and of the Galerkin method combined with the
ellipticity of the integral equation together yield

sl g-12ry < Cillusllg-12ry < Callull g—172¢0y < C3ll f g2y,

which gives us the assertion. O

Remark 6.3.3. The factor h='/2 in (6.41) can eventually be omitted if the Galerkin
projection is stable in L? so that ||Us|| in (6.42) can be estimated in terms of the
right-hand side f (with constants independent of h) under appropriate regularity
assumptions.

In order to obtain the order of convergence for the approximation ﬁg, we need
to set the error bound (6.41) in the same way as for the discretization error of the
unperturbed Galerkin method. In the H~'/2(I")-norm the Galerkin method con-
verges with an order of O(h?%3/2) if the exact solution u has maximal regularity,
more precisely, if we have u € HP*!(T"). This means that we terminate the cg
method after jo steps, where j is chosen so that the following condition holds

(1 — hl/z)jo h=V2 < CppHI2, (6.43)

Proposition 6.3.4. For a sufficiently small h < hq the cg method without precon-
ditioning yields an approximation ﬁg‘) € S of the Galerkin solution us € S that
converges with an optimal order after

jo = C |logh|h™"?2 ~ CNY*10g N (6.44)

steps.

We note that a cg step requires a matrix-vector multiplication u +—— Ku. For
dense matrices the evaluation thereof has a complexity of O (N 2). In this case the
total complexity of the entire solution process is proportional to N°/#log N . For a
large dimension N ~ 10* — 10° this behavior leads to unacceptable computational
costs, even for modern supercomputers.

In Chap.7 we will introduce the cluster method for a fast matrix-vector multi-
plication, which only needs O (N (log N)%) arithmetic operations with a > 0. This
gives us an almost linear total complexity of O(N>/*(log N )#*1) for the cg method
without preconditioning.

Exercise 6.3.5. In Proposition 6.3.4 we assume that the approximation K of the
matrix K is symmetric. Study the case in which K is a stable, consistent and
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non-symmetric approximation of a positive definite matrix K and in which an MR
or Orthomin(k) method is used for the iterative solution of (6.37).

In many cases the complexity of the cg method and its non-symmetric variants is
reasonable so that preconditioning is not necessary.

If, however, the dimension of the linear system of equations is very large, i.e.,
N > 10°, preconditioning methods can be applied to reduce the condition number.
For example, we can achieve a condition number of O (|log |) if we precondition
using the Haar-Multiwavelet basis of the subspace S [178,205]. Wavelet discretiza-
tions of integral equations are discussed in [190, 191, 208, 236]. In [227], [228]
and [206] a wavelet construction is described which is also suited to very complex
surfaces.

6.4 Iterative Solvers for Equations of Positive Order

Integral equations of positive order are similar to differential equations. Multi-
grid methods belong to the most efficient solution methods for finite element
discretizations. They can also be applied to integral equations without too many
modifications. In this chapter we will give an introduction to multi-grid methods that
have been adapted to integral equations. For a detailed discussion we refer to [114]
and [116].

6.4.1 Integral Equations of Positive Order

In this section we will introduce multi-grid methods for the efficient solution of
integral equations of positive order. We consider an integral operator of the form

(Ku) (x) = /1“ k(x,y)u(y)dsy Vx e I

T" denotes the surface of a three-dimensional domain and G denotes a surface mesh
of I.

Assumption 6.4.1. The operator K : HY2 (I') — H~Y2(T") is continuous with
the continuity constant C, and elliptic on a closed subspace V.C H'/? (I):

b(v,v):i= K2y = v Vg2 Yvev. (6.45)

For integral equations of positive order the kernel function is usually hypersin-
gular and the integral is defined by means of a suitable regularization.
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For a right-hand side f € V' we are looking for a function u € V such that
bw,v)y=f () VveV. (6.46)

The Galerkin or collocation discretization transforms the integral equation into a
coefficient matrix K € C¥*¥ and into the right-hand side f € CV. The coefficient
vector u in the basis representation of the boundary element solution u € § is the
solution of the linear system of equations

Ku = f. (6.47)

Since it is difficult to define point evaluations for integral equations with a hyper-
singular kernel function, we will restrict ourselves to Galerkin discretizations. The
conformity S € V < H'2(T) implies the Lipschitz continuity of the bound-
ary element function. Some proofs require inverse inequalities and we denote the
minimal constant in

lull grr2ry < Ch™Y2 |Jull L2y YuesS (6.48)

by Ciny. It depends on the regularity of the mesh G [see Chap. 4, Theorem 4.4.3 and
Remark 4.4.4(a)]. The minimal and maximal constant C and ¢ in

[supp b;| < Ch? and |[supp b; | > ch? (6.49)

are denoted by Cqypp and cgypp respectively.
We will now provide an estimate for the diagonal elements of the matrix K for
later applications.

Lemma 6.4.2. There exist positive constants cq and Cq such that
cqhi < |K,',,'| < th,' VI<i<N (6.50)
with h; := max{h, : © € G At C suppb;}. Here the constants cq, Cq depend only

on T, the minimal angle of the surface mesh, the constants from local inverse
inequalities and the coefficients of the kernel function.

Proof. The continuity and ellipticity (cf. Assumption 6.4.1) implies that
veu 1Bi 13120y < Kisi < Ce il 312 -

From Remark 4.4.4a with s = 1/2 and t = 0 we deduce that

Th. 4.4.5
1Bi g2y < CHY2 bl oy = CRM2.
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The lower estimate is proved in two steps. Recall that (b;) is a Lagrange basis.
Owing to the h-independent equivalence of the norms ||[v|| g¢(;) and [[V] e (zafine)
from Corollary 4.3.12, it suffices to consider the case of a plane polyhedral surface.

Step a: Estimate with respect to the H !-seminorm.

For a basis function b; we select some © € G with T C suppb; and denote the
reference map by x; : T — 7. Let N, = b;|, o x denote the local shape function
for some u € L; [cf. Example 4.1.37 and (4.70)]. Then we obtain

|m;mzwﬁmﬂ=[&®«xwﬁmmvﬁmmW&
T

Lemma 4.3.6

N ch%[(G,‘lVﬁM(i),VﬁM(ﬁ)>dﬁ 6.51)

with the inverse of Gram’s matrix G7! := J7! (J7!)" and the Jacobian J; of ..
Note that the minimal eigenvalue of G ! is the reciprocal of the maximal eigenvalue
of G; so that from Lemma 4.3.5 and (6.51) we derive

|bi|H1(I‘) >c ‘NM’Hl(f) .

There exists some Z € 7 such that

VAL @

= sup HVNM ()A()H > 1.
XeT

The smoothness of N .. implies that there exist some / C 7 and some constants
a, B €10, 1] which depend only on the polynomial degree p such that

viel  a| VN, (@

5“Vﬁu(ﬁ) and |f| > B2

Thus

il z ¢ [Nu| Lz e|Ru] s ca [VN G ] 2 ca VBTEL

H'(%) — H'(f) —

Step b: H'/?-estimate.
From Remark 4.4.4a with s = 1 and t = 1/2 we deduce the second inequality in

~ —1/2
cav/B el < bilgiry < Ch7 2 Ibill g1y -
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6.4.2 Iterative Methods

In this subsection we will summarize some of the properties of iterative methods.
For a more elaborate treatment we recommend [116]. The proofs that we do not
provide here can be found in [116].

Since the large dimension of the matrix K does not allow the use of direct solution
methods (complexity O (N 3)), we should use iterative methods to solve (6.47). In
the following we will consider linear iterative methods of the type:

D = u® - W (Ku® —f). (6.52)

Clearly, the iteration process is defined entirely by the choice of the matrix W and
the initial vector u(®.

Some of the common iterative methods include the Jacobi method, the Gauss—
Seidel method and the SOR method (Successive OverRelaxation method). They are
based on the decomposition

K=D-L-R (6.53)

with the diagonal matrix D := diag K, the strictly lower triangular matrix L and the
strictly upper triangular matrix R.

Example 6.4.3. The Jacobi method is defined by W = D~!. Componentwise the
iterative procedure reads

i+1 :
ug.’ ) = (’) (Z K;ul — j) 1<j=<N.

In many applications the method has to be damped by a parameter v > 0. The
damped Jacobi method is defined by W = wD ™1,

Example 6.4.4. The Gauss—Seidel method is characterized by the choice W =
(L — D). Note that for this method the triangular matrix L — D does not have
to be inverted. One only needs to solve a system of equations with a triangular
matrix. Componentwise this reads

N
i+1 +1 ' .
uf D = - ZK pul ™+ S K — f; 1<j<N

(6.54)
One obtains the damped version by introducing a positive factor @ so that W :=
w(L-D)""

Example 6.4.5. The SOR method is obtained by introducing a parameter > 0 in
(6.54) which yields
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(+1) _ (l ) _ (i+1) .
u; ZK,kuk +ZK,kuk —f; 1<j<N.

In the following we will summarize the basic convergence results for iterative
methods of the form (6.52). We begin with the definition of convergence.

Definition 6.4.6. An iterative method of the form (6.52) is called convergent if for
all f € CV there exists a limit u of the iteration that does not depend on the initial
value u® e CV,

The convergence of a linear iterative method can be similarly defined by means
of the spectral radius of the iteration matrix.

Definition 6.4.7. The spectral radius of a matrix A € CN*¥ is given by
p (A) := max {|A] : A is an eigenvalue of A}.

The iteration matrix of a linear iterative method of the form (6.52) is given by
T:=1-—WK.

Remark 6.4.8. A linear iterative method of the form (6.52) with a regular matrix K
has the representation

ul*D = a® 4 1-T)K'f.

Theorem 6.4.9. The iterative method (6.52) converges if and only if p (T) < 1. The
limit of the iteration is the solution of the linear system of equations.

Proof. Theorem 3.2.7 and Corollary 3.2.8 from [116]. O

In order to assess an iterative method for a special application, quantitative con-
vergence results play a decisive role. For a vector norm ||-|| on C¥ the associated
matrix norm is also denoted by ||-||.

| Av]|
[A]l := —.
vecN oy NIVl

Theorem 6.4.10. Let ||-|| be an associated matrix norm. A sufficient condition for

the convergence of an iteration (6.52) with an iteration matrix T is given by the
estimate | T|| < 1. The error e?) := u) — u satisfies the estimate

o] <im e

o] = mi ]

Proof. Theorem 3.2.10in [116]. O

The condition | T|| < 1 is only sufficient for the convergence of the iterative
method.
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Remark 6.4.11. (a) Let ||-|| be an associated matrix norm. Then for every matrix
A € RV*N we have the estimate

p(A) = JIA]l.

(b) For every matrix A and every ¢ > 0 there exists an associated matrix norm
-l = 1-llae with
Al < p(A) +e.

Proof. Part a: Let w be an eigenvector associated with the eigenvalue A of A with
the largest absolute value. Then

Av Aw
AV AW

Al =
vecMoy VIl [[wll

The proof of Part b uses the Jordan canonical form of the matrix A and can be
found in, e.g., [224, Theorem 6.9.2]. O

The remark shows that for a convergent iterative method there always exists an
associated matrix norm which satisfies the conditions from Theorem 6.4.10. For
linear systems of equations with a positive definite coefficient matrix A € CN>*¥V
choosing the norm

XI5 = (x, Ax)l/2 with  (y, Ax) Z ViA; X/
i,j=1

is often a good option to prove that || T||, < 1.

As an example, we study the convergence behavior of the Jacobi method in
dependence on the condition number of the matrix. For a detailed discussion on
iterative methods we refer to [116,225].

Theorem 6.4.12 (Jacobi Method). Ler K in (6.47) be positive definite. The largest
(smallest) eigenvalue of K := D Y2KD~ /2 is denoted by A (). The optimal
damping parameter for the Jacobi method is given by wep; = 2/ (A + A) and the
norm of the associated iteration matrix satisfies

Kk—1
K+ 1

p(T) = |Tlx = [Tlls = (6.55)

with the condition number k of K.
The following theorem will elaborate on the condition « of K.

Theorem 6.4.13. Let Assumptions 5.3.5, 5.3.25 and let (6.50) be satisfied. Let the
Galerkin matrix in (6.47) be positive definite. Then the iteration matrix of the
damped Jacobi method with an optimal damping parameter satisfies
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p(T) < 1—ch,

where the positive constant ¢ depends on Ciyy [see (6.48))], Ven [see (6.45)], C., cq,
Cq (see Lemma 6.4.2) and the constants from Corollary 5.3.28.

Proof. We begin by estimating the largest and smallest eigenvalues of K (see
Chap. 4, proof of Lemma 4.5.1 and Exercise 4.5.2).

For a coefficient vectoru € C¥, u denotes the associated boundary element func-
tion. Since K is positive definite, we have for the largest and smallest eigenvalues

of K K )
Amax = SUp . Ku) and Ay = inf {u, Ku)
ueCN\{0} (u,u) ueCN\{0o} (u,u)

respectively. The estimate for the largest eigenvalue stems from the continuity of K,
the inverse inequality (6.48) and Corollary 5.3.28. Thus

(u,Ku) = (u, Ku) 2y < llull gi2qry 1Kull g-172¢ry < Ce ”u”i]l/Z(]")
< C2Ch ™ ulfary < Chllu*  for Ay < Ch. (6.56)
The lower bound for the smallest eigenvalue
Amin > ch?
can be obtained from the ellipticity of K by
(w, Ku) = (u, Ku) 21y = Yen lullzo 0y = ven lullg2qry = ch® u)l?.

1/2

Forv € CV we set u = D~/2y and obtain the estimates

Amax < C  and imin >ch
for the largest and smallest eigenvalues imax, ;lmin of K from the inequalities
_ 2
(v.Kv) = (. Ku) < Ch [ju|®> = Ch HD_I/ZVH <C|v|2, (6.57)

(v. Bv) = (w.Ku) > ch? Ju]? = ch? HD—l/ZvH2 > ch|v)?

by using Lemma 6.4.2. "
This proves the estimate k < C A~ for the condition number of K. If we insert
this into (6.55) we obtain the assertion. O

Corollary 6.4.14. Under the conditions of Theorem 6.4.13 the spectrum of the
Galerkin discretization of K in (6.47) satisfies

o (K) C [ch*,Ch]

with positive constants ¢ and C.
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The cg method from Sect. 6.1 is an example of a non-linear iterative method.
If the continuous boundary integral operator is symmetric and elliptic the Galerkin
discretization leads to a positive definite system matrix and the cg method becomes
applicable.

Theorem 6.4.15. Let the conditions from Theorem 6.4.13 be satisfied. The i-th
iteration in the cg method (without preconditioning) is denoted by u. Then the
iteration error € := u'") — u satisfies the estimate

%m

ngo—CJDi

],
K

Proof. We apply Theorem 6.1.7. From Corollary 6.4.14 we have for K = Aax/Amin
the estimate ¥k < Ch~!. For the estimate (6.23) we use

‘/E:rl <1-c<h

B

and thus obtain the assertion. O

Remark 6.4.16. Theorem 6.4.15 implies that the number of iterations necessary to
solve the linear system of equations grows as the dimension of K increases.

Under similar conditions to those in Proposition 6.3.4 we obtain an asymptotic
complexity of O ({1t x M VM) for the solution of the linear system of equations
(6.47), where §1t := (Nl/4 log N) denotes the number of iterations and §M VM
the complexity of a matrix-vector multiplication. For the cluster method we have
fMVM < CN log® N witha > 0.

Remark 6.4.16 shows that the complexity for the solution of the linear system
of equations has a growth which is faster than linear-logarithmic. For very large
problems (N ~ 10° — 10°) the computational costs for the solution of the linear
system of equations will dominate the total costs. In the following subsection we
will introduce a method which can solve the linear system of equations (6.47) at a
linear-logarithmic rate.

6.4.3 Multi-grid Methods*

Multi-grid methods are well suited to solve linear systems of equations that result
from the discretization of differential operators or integral operators of positive
order. In this subsection we will introduce multi-grid methods for the problem (6.47)

* This section should be read as a complement to the core material of this book.
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and refer to the monograph [114] and the textbook [116] for a detailed treatment.
Here we will only give a brief presentation, which is adapted to boundary integral
equations of positive order.

6.4.3.1 Motivation

The elliptic integral operator K : H 1/2(r'y — H~Y2(T') acts on a function
u — Ku as a differentiation. Multi-grid methods can be applied to general, elliptic
problems of positive order. The basic idea behind multi-grid methods can best be
explained by using an elliptic differential operator which has been discretized by
finite differences. Transferring this method to elliptic boundary integral equations
of positive order does not require any modification and is presented afterwards.

We consider the Poisson model problem on the unit interval / = (0, 1). Find a
function u such that

) = :
u=f in 1, (6.58)
u@ =u(l)=0.
For the discretization we use an equidistant mesh ® := {ih:1 <i < N} with

h:=1/(N + 1).Itis our aim to determine an approximation of the solution at the
mesh points x € ©. This mesh function is denoted by u € R¥ . In order to deter-
mine a system of equations for u, the second derivative is replaced by the difference
approximation

—u(x—h)+2u(x)—u(x+h)
h? '

—u" (x) ~

If we use this at every mesh point x € ® and then take the zero boundary conditions
into consideration we obtain the linear system of equations

Lu=f (6.59)

with a tridiagonal coefficient matrix L and the vector f € RV

2 -1 0 ... 0
L=h2| (o - o | f,-::_f(%) Vi<i<N.
-1
L0 0 -1 2

The solution u is the required approximative solution at the mesh points i, 1 <i <
N . For this problem the eigensystem can be given explicitly.
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Proposition 6.4.17. The eigenvalues and eigenvectors (/l(k), ot(k)), 1<k<N,of
the matrix L are given by

kmh
oa® = 2h (sin (kjhn))j-v:1 A0 = 4p=2 gin? o
The damped Jacobi iteration applied to (6.59) can be written in the form
2
Q0D — g _ @8 (Lu(") _ f)
2
and we limit the damping parameter to
w €]0,1]. (6.60)

The iteration matrix is then given by

TR :=1- —w;lzL

and the eigenvectors coincide with those of the matrix L. The eigenvalues read
kwh
A® =1 20 sinz%. (6.61)

Lemma 6.4.18. Let (6.60) hold. Then the spectral radius of the iteration matrix
T satisfies

h 1
P (Ti’j‘c) = 1— 2w sin? % =1- Enzhza) +0 (h4) .
Proof. Tt is easy to see that A% in (6.61) assumes its maximal value for k = 1. O

This lemma explains the slow convergence of the Jacobi method for the linear
system of equations (6.59). The iteration error satisfies the recursion

el +D = lace®) (6.62)

o . N
We expand the vector e) with respect to the eigenvectors (a (k)) P

N
e =3 ¢fa®)
k=1

and insert this into the representation (6.62) and thus obtain
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N
et = Z c](clH)ot(k) with c,(C’H) = c](C’)A(k) and A® asin (6.61).
k=1

As the index k increases, the oscillations of the eigenfunctions a®© grow. The fol-
lowing lemma shows that the parts of the error e!”) that have high oscillations are
reduced by a fixed factor with every Jacobi iteration.

. . _ N+1
Lemma 6.4.19. Let the damping parameter satisfy o = 1/2. For k > =5— we
have
‘A‘k)‘ <1/2
: : @+1 (+1) ; ; _
and the associated coefficients ¢, of the error e in the eigenvector repre
sentation satisfy

™ .
‘c](cl )‘ < 1/2‘61(;) .

Proof. Choosing w = 1/2 gives us

k
AR = _gin2 T
2(N +1)
and the right-hand side, considered as a function of k, 1 < k < N, is monotonically
decreasing. For k > % we thus have
AV <1 —sin® — = —,
- 4 2
and the assertion follows from this. O

The slow convergence of the Jacobi method can thus be explained by the slow
reduction of the low frequency parts of the error. On the other hand, the error e
is already smooth after very few iteration steps, as opposed to the solution u. The
error satisfies the equation

Le) = Lu® —Lu=Lu® —f=: d. (6.63)

The right-hand side is the negative residual of the iteration u®) and in connection
with multi-grid methods it is called the defect. The vector d can be easily computed
by using the previous iteration and (6.63) represents the equation for the error (),
If one were to solve (6.63) for e®) one would have solved the original system of
equations u = u) — e®_ Since (6.63) is of the same type as (6.59), the iterative
solution, e.g., with the Jacobi method, would have the same complexity as the solu-
tion of (6.59). The essential difference between (6.59) and (6.63) lies in the differing
smoothness of the solutions u and e®). We expect that the solution of (6.63) will be
smooth after very few Jacobi steps, as opposed to the solution u.

The basic idea of a rwo-grid method consists in approximating the solution e
from (6.63) by means of a coarser discretization. For this let Lo, be the discretiza-
tion of the problem (6.58) on a coarser mesh Ocoarse 1= {iMcoarse 1 1 < i < Neoarse}
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with hcoarse = (Neoarse + 1)_1 and Neoarse ~ N/2. A coefficient vector v e RY
is transported to the coarse mesh by means of a restriction R : RV — RNeoarse
and a vector w € RMeowse is prolonged to the finer mesh by means of a prolon-
gation P : RNeowse — RN Both mappings R, P will be concretely introduced in
Definition 6.4.21.

Formally one obtains the approximation &%) of (6.63) in three steps, as follows:

1. Restriction of the defect in (6.63):
deoarse := Rd
2. Solving the equation for the coarse mesh

_y-1
€coarse = Lcoarsedcoarse
3. Transfer to the fine mesh
@) .
e( ) = Pecoarse

The new iteration is then obtained by the correction u¢+1 = u@ — g,
The multi-grid method is obtained by again applying the two-grid method to the
equation

Lcoarse€coarse = Aeoarse

and then iterating this process for increasingly coarse meshes.

The multi-grid method described in this subsection can be applied to general,
elliptic differential and integral equations of positive order. It is based on the
property that classical iterative methods rapidly reduce the high-frequency parts
of the error. The more large-scale parts can then be approximated by coarser
discretizations. It is because of this reason that the iterative method within the
multi-grid algorithm is also called the smoothing method.

In the next subsection we will apply this concept to integral equations of positive
order and at the same time define the multi-grid method.

6.4.3.2 Multi-grid Method for Integral Equations of Positive Order

We have already explained in the motivation for this subsection that the efficiency of
multi-grid methods is based on a hierarchy of discretizations. Therefore we assume
that a sequence of surface meshes (ge)?;ﬂg is given and that the linear system of
equations has to be solved on the level £,,. In the simplest case such meshes can
be obtained by refining a coarse mesh.

Example 6.4.20. Let I be the surface of a polyhedron and let Gy be a (coarse) tri-

angulation of I'. A family of fine triangulations (gg)?;ﬂg is obtained by recursively

connecting the midpoints of the sides of every triangle T € Gy_1 and thus subdivid-
ing t into four congruent triangles (see Remark 4.1.8). The mesh points of the mesh

®y are denoted by (X,"[)f.\zl.
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On an abstract level we assume that the surface mesh G is the finest mesh of a
mesh family (gg)ﬁ‘;ﬂg, ie., G = Gy, . with a strictly decreasing mesh width /. The
Galerkin discretization of the integral equation (6.46) with boundary elements on

the meshes Gy, 0 < £ < £,x leads to a family of linear systems of equations
Koug =1, 0= <l (6.64)
It is our goal to efficiently solve the equation on a fine mesh

K, =f, (6.65)

ax Wi ax
max max max

To combine simple iterative methods with a coarse grid correction we need to
define transfer operators from coarse to fine meshes and vice-versa. For 0 < £ <
Lmax We introduce the notation Xy := CN¢ for the space of mesh functions.

The canonical choice for the prolongation Py y_; : Xy—; — X, can be obtained
by interpreting a coefficient vector u € X,_; as a boundary element function. For
this we assume that the boundary element spaces S¢ are nested

SoCSiC...CSg, CH* (). (6.60)

The boundary element basis for Sy is denoted by (b,-,g)lj.vzel.

Every coefficient vector u € X,_; is uniquely associated with a boundary
element function u € Sy_; by

Ne—y
u=Pju:= Y wubi . (6.67)

i=1

which, owing to (6.66), also satisfies u € Sy. In Sy it again has a unique basis
representation

Ny
u=Y aibiy (6.68)

i=1

and the operation Sy > u — o € X, defines the operator Ry : S¢ — Xy. The
composite mapping X¢—; > u — u — a € X, defines the prolongation Py ¢ :
X1 — Xy

Definition 6.4.21. Let (6.66) hold. Let the operators Py : X; — Sg and Ry : Sy —
X be given by (6.67) and (6.68). The canonical prolongation Py o : Xy~ — X,
is the composite mapping

Pro1=RePyy.

The restriction Ry_; ¢ : Xy — X;_; is the adjoint of P; ¢y and it is character-
ized by

(Rg_l,gv,u) = (V, Pe’g_lll) Vve Xy, ue Xp ;4.
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Remark 6.4.22. The canonical prolongation Py ¢_; is represented by a rectangular
matrix of the dimension Ny x N¢_y. For the restriction we have Ry_; ¢ = P} —1

Example 6.4.23. The mesh hierarchy described in Example 6.4.20 has the follow-
ing property: For every mesh point X € ©; we either have x € @y_1 or there exist
two coarse mesh points y,z € ®y_q that are connected by a panel edge and satisfy
X = (y + z) /2. In the case of continuous, piecewise linear boundary elements we
then have for the prolongation

Lifxie=yju-1
(PM—I),-,J' =bj 1 (x,',() = % ifX; ¢, ¥ jt—1 form a panel edge in Gy,
0 otherwise.

We have now defined all the components of the two-grid method and can
describe it in an algorithmic form. The application of one step of a simple itera-
tive method, for example, the Jacobi iteration, to a mesh function u, defines the
mapping Sy (ug, fy), where f; denotes the right-hand side of the associated system
of equations Kyu, = f;. In the following algorithm we will apply this smoothing
iteration v times. The required number of smoothing iterations is estimated in The-
orem 6.4.37 according to v > v with v = O (1). In many applications v = 2,3
proves to be a suitable choice.

Algorithm 6.4.24 (Two-Grid Method). The iteration step of the two-grid method
for the solution of (6.65) is called by TGM (ug,,, . f;,. ) and is defined as follows.

procedure TGM (uy, ) ;
begin

fori :=1tovdouy :=S; (ug,fy);
dg—1 = Ry 0 (Keug —fy) ;
ey =K dey:
w o i=u—Pyo1ep-q;
(6.69)
end;

Remark 6.4.25. The two-grid method defines a linear iterative method with the
iteration matrix

TM .= (I, — Pp o1 K ! Ry (K¢) (TOGM)v ,

where TOM denotes the iteration matrix of the simple iterative method (smooth-
ing method). For the damped Jacobi method we have, for example, TOOM =
I, — a)DZlK[.

For practical applications the two-grid method can not yet be recommended, as
on the level £ — 1 there is still one system of linear equations that has to be solved
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per iteration. The idea of the multi-grid method is to again replace the linear system
of equations
Ky_1€0-1 = dg—

by a two-grid method and to repeat this procedure until we reach the coarsest level
£ = 0. The method includes a control parameter y € {1, 2} which will be explained
at a later stage.

Algorithm 6.4.26 (Multi-grid Method). An iteration of the multi-grid method for
the solution of (6.65) is called by MGM ({max, We,., . fe,.. ) and is defined as follows.

procedure MGM({ ,uy, ;) ;

begin
if ¢ = 0 then ug := Ky 'fy
else begin

fori :=1tovdouy :=S; (ug,fy);

dg—1 =Ry 0 (Keug —1£y) ;

cp—1 :=0;

Jori =1toydoMGM (£ —1,¢ci—1,d¢—1);
wi=ug—Pyyo1c-1;

(6.70)

end;
end;

Remark 6.4.27. It is easy to verify that the recursion in the multi-grid algorithm
reaches the level £ = 0 after L.y Steps and then terminates, which means that the
algorithm is well defined.

Figure 6.1 illustrates the succession of the single recursion steps of a multi-grid
iteration for the cases y = 1, 2. The names V-cycle (y = 1) and W-cycle (y = 2)
stem from the shape of the mesh transitions in Fig. 6.1.

6.4.3.3 Nested Iterations

The multi-grid iteration starts on the finest mesh, descends to the coarsest mesh level
and then prolongs the corrections over the different levels up to the finest level. In
practical applications the following situation often occurs. The finest discretization
level €.« is not known a priori. We start with very coarse discretizations and the
associated Galerkin solutions are computed thereon. It is then decided whether the
current mesh needs to be refined to improve the precision. Thus the object is to
solve a sequence of linear systems of equations on the levels £ = 0, 1,2, .... This
situation can be used to the advantage of the multi-grid iteration by prolonging the
previously computed solution uy to the refined mesh G, where it in turn defines
a suitable initial value for the multi-grid iteration on the level £ 4 1. This procedure
is called nested iteration and can be described in an algorithmic form as follows.
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/AN /
A\ [\ [N\ /
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Fig. 6.1 Schematic representation of a multi-grid iteration with a V-cycle (fop) for y = 1 and
£ =5 and with a W-cycle (bottom) fory =2 and £ = 4

Algorithm 6.4.28 (Nested Iteration). The nested iteration calls the multi-grid pro-
cedure MGM, starting with the coarsest level. Let ug := Ky £y be the solution of
the equation for the coarse mesh.

procedure Nested Iteration;
forl :=1to €, do
begin
=Py qugg;
fori :=1to mydo MGM (uy, ;) ;
end;

In connection with the convergence analysis for nested iterations we will prove
that my = m = O (1) can be chosen independently of £. It turns out in practical
applications that the algorithm already converges form = 1, 2.
6.4.3.4 Convergence Analysis for Multi-grid Methods
The proof of convergence for the multi-grid method is subdivided into an analysis
of the smoothing property and an analysis of the coarse grid correction. For the sake
of clarity we will first consider the convergence of the two-grid method.

Convergence of the Two-Grid Method

In Sect.6.4.3.1 we called a mesh function smooth if coefficients in the expansion
with respect to the eigenvectors of the system matrix have small absolute value
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for the eigenvectors of high frequency. Since we are considering integral operators
of positive order, the smoothness can also be described by the measure ||K4T‘ée
)

b}

where e denotes the current iteration error and S, denotes the v-fold application of
the smoothing iteration. Here and in the following |-|| denotes the Euclidean norm.

Definition 6.4.29 (Smoothing Property). A smoothing iteration with iteration
matrix Ty, £ > 0, satisfies the smoothing property with the exponent s € R if
there exist functions 7 (v) and v (k) that are independent of £ such that:

L KTy <n)hys YO <v <D (he), £>1.
2. lim n(v) =0.
vV—>00
3. }}im v(h) =0 or v (h) = oo.
—0
Theorem 6.4.30. Let the conditions from Theorem 6.4.13 be satisfied for the matri-
ces Ky, 0 < £ < Lax, from (6.64). Then there exist 0 < w < w < 1 independent

of the refinement of the discretization such that the smoothing property holds for the
damped Jacobi method for all w € [w, ®] with exponent s = —1 and v (h) = oo.

Proof. For the sake of simplicity we will omit the index £ in the proof. We have

KT’ =K (I- oD 'K)" = éDl/ZX(I ~X)"D'/? (6.71)
with the positive definite matrix X = oD 12KD~2, From (6.57) we have

o (D_I/ZKD_I/Z) c[0,C]
with a constant C which is independent of the refinement of the discretization. If
we choose w € [¢,C™!] with 0 < ¢ < C™! the spectrum of X is contained in the
interval [0, 1]. It is shown in Lemma 6.4.31 that this yields
IX@=%X)"| <no (v
with 1o (v) from (6.72). Lemma 6.4.2 implies that
o] <

from which we have the assertion by using the Cauchy—Schwarz inequality. |
Lemma 6.4.31. (a) Let X be a positive definite matrix for which 1 — X is also

positive definite. Then
IX@=X)"| <no(w)

for all v > 0, where the function ng (v) is defined by

no(v):=v"/(v+ 1L, (6.72)
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(b) The asymptotic behavior of g (v) as v — o0 is given by

1
no (v) = . +0(v?).

Proof. It is well known from linear algebra (see [116, Theorem 2.8.1]) that for every
matrix A € CV*¥ there exist a unitary matrix Q and an upper triangular matrix U
such that

A = QUQY.

By means of induction one can show that for a polynomial p the representation

P(A)=QpU)Q~

is valid. It follows from the theorem on determinant multiplication that the charac-
teristic polynomials of p (A) and p (U) coincide. Since the product of two upper
triangular matrices is again an upper triangular matrix, it follows by induction that
p (U) is an upper triangular matrix with the diagonal elements (p (U)); ; = p (Ui ;).
As{U;; : 1 <i < N} is the spectrum o (A) of A we have proved that

o(p(A) =p@(A):={pR):Lea(A).

Since X is positive definite, so is B := X (I — X)” and with p (§) = £ (1 — §)”
we thus have

”X(I—X)v” =max{i: A€o B)} =max{p(A): A€o (X)}
=max{p(§):§€[0.1]}.

Simple analysis provides the maximum & = (v + 1)" as well as the equality

1 1 v
p6 =1 (1155 ) =m o,

Part (b) follows by analyzing ng. O

The iteration matrix of the two-grid method has the representation (see Remark
6.4.25)
TTM = (K;' — Py K Re1 o) KT} (6.73)

and can be estimated in the Euclidean norm as
[rem | < it = P K R KT 674

We have already estimated the second factor on the right-hand side in connec-
tion with the smoothing property in Theorem 6.4.30. The first factor compares the
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Galerkin solution on different mesh levels and is therefore called the approximation
property.

Definition 6.4.32 (Approximation Property). The two-grid method has the appro-
ximation property with the exponent s € R if

|Kg! = Pee K Remy | < ChS (6.75)

with a constant C which is independent of £, £, and /.

In order to prove the approximation property for the two-grid method we need
the following assumption.

Assumption 6.4.33. There exists a constant Cg > 0 such that for all right-hand
sides f € L?(I') the Galerkin solution uy € Sy of (6.46) for the mesh Gy satisfies
the estimate

|l — Lt[”LZ(F) < Cghy ||f||L2(F) ’

where u denotes the continuous solution of (6.46).

Lemma 6.4.34. Let Assumption 6.4.1 be satisfied and let the inverse operator
K1 L2T) - H' (D)

be continuous. Let the mesh family Gy be quasi-uniform and let the boundary ele-

ment space S él) satisfy S él) C Sy, where S él) denotes the continuous, piecewise
linear boundary element space. Let the conditions from Theorem 4.2.17 be satisfied.
Then Assumption 6.4.33 holds.

Proof. For f € L?* (I') the continuous solution satisfies u € H! (I"). With Proposi-
tion 4.1.46 and the quasi-optimality of the Galerkin discretization we have

lu—uellgr2qry < C inf lu—vllgi2qy < C inf |lu—v| g2 -
veSy vesV

The approximation property (see Proposition 4.1.50) and the regularity of the
integral operator K yield

. 1/2 1/2
inf fu—vll g2y < Chy/? lull gy < ChY? 1L Loy -

1)
VES,

The estimate
lu—uell g2y = Chell fll L2ry
follows by the Aubin—Nitsche duality argument (see Theorem 4.2.17). O
In order to prove the approximation property, first for the two-grid and then

for the multi-grid method, we need a weak condition on the relation between
consecutive mesh widths.
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Assumption 6.4.35. The mesh widths hy, 0 < £ < £yax, satisfy
c1 <hg/hey =Cy (6.76)

with constants ¢1, C1 that do not depend on {.

Theorem 6.4.36. Let Assumptions 5.3.5, 5.3.25, 6.4.33 and 6.4.35 be satisfied. Let
the Galerkin matrix in (6.47) be positive definite.

Then the two-grid method has the approximation property with exponent s = —1,
where the positive constant C in (6.75) does not depend on the mesh width hy but
does depend on the shape-regularity of the mesh.

Proof. Let f; € CV¢ be arbitrary. We set Ay := Ke_1 —Pu_le_lle_l,g and prove
that A | < Ch;' ]

(a) In the first step we construct a continuous function f; € S, with the property
that f; is the right-hand side of the Galerkin discretization. We use the ansatz

Ny
fe=" Buibe.

i=1

and from the condition (f[,be’,')Lz(F) = (fy);, 1 < i < Ny, we determine the
coefficient vector Sy as the solution of the linear system of equations

Ny

Z Be, (bf,j7b5,i)L2(F) = (fy); 1 <i <N,
i=1

Ny
By using the matrix My := ((b[,j, bi,i)]ﬂ(r)). e obtain the compact repre-
1,]=
sentation
Be = M 'f,. (6.77)

(b) In the second step the vectorsuy := Kzlfg andug 1 : =Py Kz_ll Ro—_1,¢f¢
are interpreted as Galerkin solutions of auxiliary problems.

The vector uy is the coefficient vector of the Galerkin solution of problem (6.46):
Find u; € S¢ such that

b (ug,v) = (fZ,V)LZ(F) Vv e §y.

We now consider ug ¢ and set fy_; := Ry_ ¢f;. The corresponding right-hand
side fy_1 is defined by
Ne—y
fio =) Bevibev

i=1
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with
Be—1 =M £y

Therefore the vector uy_; = Kz_llfg_l is the coefficient vector of the Galerkin
solution: Find uy_; € S¢_; such that

b(l/i[_l,V) = (ﬂ—l’V)Lz(I‘) VV € S(—l'
Then we haveug g1 := Py o_jug_;.

(c) Splitting the term Afy.
By Definition 6.4.21 we obtain

Ay =ug—wg o1 = Roug — Py g 1Ry que_;.
If weuse Py ¢y = R¢Py—; and P,y Ry—y = Iy—; on S¢_; we obtain
w —ugy g = Ry (ug—ug_y).
(d) By using Corollary 5.3.28 we have for the norms of Ry, Py

cphy ull < [[Peufl 2@y < Cphy [ull,

1 Zi— (6.78)
Cp'hyt lull oy < IReull < ' hy* llull 2r
forall u € Sg and u € CV. Hence we have proved that
HIM — Uy 1 H < Chzl leeg — tg—1 ||L2(I‘) . (6.79)

If we insert the continuous solution u of (6.46) with f = f; into the right-hand side
of (6.79) we obtain

lug —wg 1| < Chy* (llue — ull 2ry + llu — we—illz2¢ry) - (6.80)

(e) Estimating the differences uy — u and u — uy—;
Assumption 6.4.33 yields

lug —ull 20y < Chell fell L2y -

and
lug—1 —ullp2qry < Che—y || fo—1ll L2¢ry -
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(f) Estimating the functions f;, fr—1
In the following the norms || f¢|| L2y and || fe—1 || 2y are expressed in terms of
the vector f;. We have

IfellL2@y = CheIBell (6.81)

and similarly
I fe—1ll2qry < Che—1 1Be=1]l - (6.82)

We first estimate the norm of 8. We have

-1 -1
IBell = | Mg | < Ag IIfell
with the smallest eigenvalue A, of the positive definite matrix M. We can estimate
this value by
(v, Myv) (Pev, Pev)2(ry _ . ||P€V||2Lz(r)

Amin = inf = inff ——— = inf ——=—>chl
T ey (v, V) veCVe\f0} (v, v) vechovgoy v T ¢
(6.83)

With (6.81) it follows that
I fell < Chy " |Ifel -

We now turn our attention to (6.82). The definitions of 8¢_; and f;_; combined with
(6.83) and (6.76) yield

[Be—1ll = [IM2 fo1 || < ch? fe—1]l = chy® [Re—yefe| < chy® |Re—ye ] lIfe]l.
We still need to estimate the norm of the operator Ry_; ¢. With (6.78) we have

[Re-ve] = [PLeos| = [Peet] < IRMIPal =€ 634)
so that in all we have proved that

I fell = ChgtIifel and || fe—ill 2y < Chgly el

(g) Estimating the operator Ay

The approximation property follows from

(6.80) 1
< Chy' (lue — ull L2y + lu—ue—rl z2(r)) (6.85)

[Aefell = [lug —wg 1|
©
< Chy" (he ll fell 2y + et | femtll L2 qry)

) _
< Chy'|Ifel.
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Theorem 6.4.37. Let the conditions from Theorems 6.4.30 and 6.4.36 be satisfied.
Then there exist 0 < w < w < 1 and v > 0 independent of the refinement of the
discretization so that the norm of the two-grid method converges with respect to the
Euclidean norm with v > v smoothing steps of the Jacobi method. The damping
parameter w € [w, ] is independent of the mesh width h and the discretization
level {. For the iteration matrix the estimate

e <

holds.
Proof. Combine the decomposition (6.74) with Theorems 6.4.30 and 6.4.36. O

W-Cycle Convergence

In the next step we will prove the convergence of the multi-grid method. The conver-
gence proofs for the W and V-cycles are very different. We begin with the simpler
W-cycle multi-grid algorithm. The proof makes use of the fact that the multi-grid
method (W-cycle) can be regarded as a small perturbation of the two-grid algorithm.
We require an additional condition which will be stated next.

Assumption 6.4.38. The iteration matrix Ty of the smoothing iteration satisfies
IT2] = G
foralld > 1and0 < v <V = ming>y U (hg) with v from Definition 6.4.29.

This assumption is satisfied for the Jacobi method.

Lemma 6.4.39. Let the conditions from Theorem 6.4. 13 be satisfied for the matrices
K¢, 0 < £ < Lpax, from (6.64) and let 0 < w < @ be as in Theorem 6.4.30. Then
the damped Jacobi method satisfies Assumption 6.4.38 for all v € [w, ®].

Proof. For the Jacobi method we have
T := (I, — wD; 'K)" = D, /> (1, — X,)" D}/? (6.86)

with X, from (6.71).
For diagonal matrices D; we have

-1/2 1/2
o [oi] =< <
As was already shown in the proof of Theorem 6.4.30, the matrix in the brack-

ets on the right-hand side of (6.86) satisfies ||I; — X¢|| < 1. The Cauchy—Schwarz
inequality then yields the assertion. O
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Lemma 6.4.40. Let Assumptions 5.3.5, 5.3.25, 6.4.35 and 6.4.38 be satisfied. Let
Ty denote the iteration matrix for the smoothing method and Crgm the norm of the
iteration matrix of the two-grid method. Then

1K Re—1 (KT | < ¢ (Cic + Crom)
Proof. We use the decomposition
Py K Ry (K T) =T — (K" = P K Ry ¢) KT

By Assumption 6.4.38, the first summand on the right-hand side satisfies the esti-
mate H T‘é H < Cy and the second summand is the iteration matrix of the two-grid
method. It then follows that

IPee—1 Kt Re—1,( KT} | < Cie + Crom.
Corollary 5.3.28 [see (6.78)] and Assumption 6.4.35 yield
|Peerv| = IRePervll = crhy ' | Peavlp2qry = e2hy ey |IV]) = c3||v]]

from which we have the assertion. O

In the next theorem we derive a recursive representation for the iteration matrix
of the multi-grid method.

Theorem 6.4.41. Let Ty be the iteration matrix for the smoothing method and let
T;GM be the iteration matrix for the two-grid method with respect to the levels
L, £ — 1. The iteration matrix Té” GM of the multi-grid method can be recursively
represented as

TMGM _ ¢ TMGM _ TTGM

Y
TéWGM — TZGM +P[,(—1 (T%?M) KZ__IIR[—I,ZK[TZ

Proof. The proof is achieved by induction over the levels £ = 0, 1,....For £ =0, 1
the statement is clear, since the solution is exact on the level £ = 0 and since on the
level £ = 1 the multi-grid method and the two-grid method are identical.

In order to identify the iteration matrix TZCGC of the coarse grid correction, we
use (6.70) and set f; = 0. Then

de—1 = Re— 1 ¢Kpuy.

If we denote the first iterate ¢y—; = 0 in (6.70) by CEO_)I and the iterate belonging to
the index i in (6.70) by cg_)l we obtain

@) MGM (i—1) MGM
¢y =T 0 ey 7 + NI dey
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with the matrix NMSM = (I,_; —TMSM)K! (sec Remark 6.4.8). Since

¥, = 0t follows that

y—1 . y—1 .
o = (3 ey ) weracs = (D m ) e - w9

i=0 i=0
= (Ig_l — (Tél/l_CiM)V) KZ__IIR(_MK(U(.

The iteration matrix of the coarse grid correction (6.70) is then given by

4 _
TeCGC = I[ — Pl,(—l (IZ—I — (T%?M) )KZ_IIR[—I,EK[
Y
= (K" =P K Re1 0) Ke + Py (T%?M) K R K.
(6.87)

Combined with the preceding smoothing step T} and with (6.73) we obtain the
assertion

Y
T%GM = TgGM + Py (T%?M> KZ_IIRZ—I,ZKZTIZ-

|

As an abbreviation we set {y = ||T?’I oM || In the following we will derive a
recursive estimate for .

Lemma 6.4.42. Let Assumptions 5.3.5, 5.3.25, 6.4.35 and 6.4.38 be satisfied. For
the numbers {; the recursive estimate

Co=0  andfor1 <{<lmy:t < HT{GM H +cel

holds, where C depends only on HT?GM ,cp, Cp from (6.78), c1, Cy from (6.76)

and Cy from (6.4.38).

Proof. The recursive representation of the iteration matrix of the multi-grid method
from Theorem 6.4.41 can be estimated by using the triangle and Cauchy—Schwarz
inequalities as follows:

o =0, 1= “TZGM)) ,
o= [T+ €L e [ R ety

Lemma 6.4.40 and Py oy = Ry P;_; with (6.78) then yield

¢o< |7 | + el (6.88)
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with a constant C, which depends only on ||T[TGM H, cp, Cp from (6.78), c1, Cy
from (6.76) and Cj; from (6.4.38). O

Theorem 6.4.43. Let the conditions from Lemma 6.4.42 be satisfied.
Then there exists a constant v > 0 such that the iteration matrix for the multi-grid
method with W-cycle and v > v smoothing steps satisfies the estimate

] < <

with a constant C which is independent of £ and the mesh width hy.

Proof. The W-cycle is defined by choosing y = 2 in Algorithm 6.4.26. Without loss
of generality we assume in (6.88) that

C, > 1. (6.89)
We define an auxiliary sequence (xe)i':é by xo := O and for £ = 1,2,...,€nx

by x; := 1+ r]xz_l with n = CrgmCx. We clearly have {; < Crgmx; for all
0 < £ < Lyax and (xg)?;“g is strictly increasing. In the case < 1/4 the auxiliary
sequence is bounded (for example, by 2) and the limit x, is given by

1+ J1—-4n
Xy = ————.
2n
Combining these results we have shown that under the condition CtgmCy < 1/4
the norm of the iteration matrix of the multi-grid method (W-cycle) satisfies the
estimate [see (6.89)]

¢ < Ciom

14+ T4y 14 J1T—4CrouCs <Ccl <1
27] 2C* - ’

By (6.72) the minimal number of smoothing steps can always be chosen such that
the associated two-grid method satisfies CtgmCy < 1/4. O

V-Cycle Convergence

The above argument cannot be applied to the V-cycle. Since the multi-grid iteration
with the V-cycle requires far less computational time than the W-cycle, we will also
present the more complicated convergence analysis associated with it.

The essential differences compared to the W-cycle convergence consist in restrict-
ing the method to symmetric smoothers and using convergence results with respect
to the energy norm ||-|[g, instead of the Euclidean norm. We will specify these
assumptions in the following.
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Assumption 6.4.44. The matrices Ky are positive definite. For the restriction we
have Ry_y 4 = Pz ¢ forall L.

In the next step the multi-grid (and two-grid) method is generalized to form a
symmetric method.

Definition 6.4.45. Let K be positive definite and let a smoothing method S; (u®, f)
of the form (6.52) be given. The adjoint smoothing method S# (u®, f) is given by

ulth .= @ _ wH (Ku(i) — f) .

Definition 6.4.46. The symmetric multi-grid (and two-grid) method results by
adding v post-smoothing steps with the adjoint smoothing iteration. The following
lines

fori :=1tovdouy := Sf (ug,fr);

have to be added to the end of the program in (6.70) [and (6.69)].

For the V-cycle we assume that the coarse mesh matrices are defined by the
Galerkin product
Ky—1 = Ry (K¢Py 1. (6.90)

Remark 6.4.47. By Assumption 6.4.44 we have for the Galerkin product
K¢-1 = PZ,[_IKZPZ,[—I-

Assumption 6.4.48. The smoothing method is Hermitian: Wf = Wy forall) <
{ = Emax'

For positive definite system matrices Ky the matrices Wzl — Ky are also positive
definite.

Assuming these conditions, the iteration matrix for the symmetric two-grid
method is given by

T{ M = Ty (K" = Pee K PL, ) KT

Lemma 6.4.49. Let Assumptions 5.3.5 and 5.3.25 be satisfied. Let the Galerkin
matrix in (6.47) be positive definite. Then, for a sufficiently small parameter domain
0 < w < w, the Jacobi method satisfies Assumption 6.4.48 for all damping
parameters @ € [w, ®].

Proof. For the damped Jacobi method we have Wzl = o 'Dy. For positive
definite system matrices, Wy is therefore also Hermitian and the first part from
Assumption 6.4.48 is satisfied.
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From Lemma 6.4.2 we have
W] = co™he
and, by (6.56), the system matrix Ky satisfies the estimate
IKell < Chy.
It then follows that the smallest eigenvalue A, of Wzl — K satisfies
Amin = (co™" = C) hy.

Therefore We_1 — Ky is positive definite for all damping parameters 0 < w < ¢/C.
O

The V-cycle convergence is proved in terms of the energy norm ||-|k,. For this
we need the approximation property of multi-grid methods in terms of the energy
norm.

Assumption 6.4.50. Forall 1 < { < £, we have
[ W72 (K = Pt K2 Re1, o) W, V2 = Ca

with a constant Ca which is independent of £, £.,x and the mesh width hy.

Lemma 6.4.51. Let the conditions from Theorem 6.4.36 hold. Then Assumption
6.4.50 is satisfied for the Jacobi method.

Proof. We combine the statement
K" = Pee1 K Ry ]| < Crig!
from Theorem 6.4.36 with Lemma 6.4.2
o] e < o < oo
and obtain
HWZI/Z (K;' —Preo i K R ) W, '/2 H < Ci1Go072

|

We have now gathered all the necessary conditions for the convergence of the
V-cycle multi-grid method and have used the damped Jacobi method as a smoothing
iteration to check its validity. The iteration matrix for the multi-grid method with
V-cycle is denoted by Tg.
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Theorem 6.4.52. Let Assumptions 6.4.44, 6.4.48, 6.4.50 and (6.90) be satisfied.
Then the symmetric multi-grid method as a V-cycle converges in the energy norm at
the following rate

Ca

< —07x<1 6.91
Kg_CA+2U ( )

p(11)=

Proof. (see [116, Theorem 10.7.15]). The recursion from Theorem 6.4.41 can be
simplified for the V-cycle (y = 1) to

Ty =0, VL>1:T) =TIM L 10P, ,\ T) K ' Re_1 (K(T). (6.92)
To make use of the symmetric structure of the V-cycle, we insert the transformations

TTGM ._ yl/2pTGM y¢—1/2 () . 1/2 -1/2
T, =K,/ T, K—61/2’ T,” =K, ;l‘/zzK[ ,

D . 1/2 ~ _
Pro1 =K,/ " Pre1K, 17, R =K,

RZ—I,ZKz/z,

into (6.92) and use (6.73) to obtain the representation

'i‘z/ = K2/2TZKZI/2 = TEGM + Tév)l\se’g_l'i‘z/_llv{g_lae'i&v)

=T (1 = Proe-s (e =T, ) Reo ) T (6.93)
=107 (Qe + Peet T Rey ) T (6.94)

with ] )
Q=1 — Py 1Re1 . (6.95)

It follows from Assumption 6.4.44, 6.4.48 and (6.90) that Q% =Q/ = Qf. There-
fore the mapping Qg is an orthogonal projection (see Exercise 6.4.53) and is thus
positive semidefinite. By induction and with (6.94) the property “'i‘g is positive
semidefinite” is transferred to TZ forall £ > 0.

Then the Euclidean norm of 'i‘g is given by the largest eigenvalue of 'i‘g and we
have the equivalence of the two statements (6.96), (6.97)

e, - it =
o (TZV) c0.&]. (6.97)

We assume by induction that o (’i‘z/_l) C [0,Zp—1] with §g—y = Ca/ (Ca + 2v).

Since ’i‘g = 0, this assumption is clearly satisfied for £ = 0.
The spectral radius p (-) (see Definition 6.4.7) coincides with the largest eigen-
value for positive semidefinite matrices. From (6.93) and Exercise 6.4.53 we obtain
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P (TD <p (T?) (Ie —(1=&-1) IV)Z,Z—IRZ—I,Z) TE”)
= p (T (1 = L) Qe + Ll 1) (6.98)
It follows from the approximation property (see Assumption 6.4.50) that
p (K" = Pre 1K Re—1¢) < Cap (Wy)

(see Exercise 6.4.53.c). The eigenvalue inequality (see Exercise 6.4.53.d) is inserted

into the transformation Kz/ 2 “) KE/ 2, which yields the following spectral estimate
for Qg

0= p(Q0) = o (X — K} P, K7 Ry oK)
< Cap (X[) with )V(e = Kz/ZWng/z.

The projection property of Qg implies the alternative estimate o (Qg) C [0, 1].
Therefore we have for all @ € [0, 1]

0= p(Qo) = aCap (Xe) +(1-0).
This inequality, substituted in (6.98), yields
p(TV) =p (T8 (1= ¢-0) («CaXe + (1 = @) Te) + & k) T . (6.99)
Weset § := (1 —&y—1) (1 — @) + &¢—1 and note that for all @ € [0, 1] we have the

inclusion B € [¢y_1, 1]. By using this relation to express « in terms of § we obtain
the estimate for (6.99)

p(TV) =p (T (1= B CaXe + L) 1) Ve =B =1 (6.100)
The matrix ’i‘?’) has the representation
v _ v o v
TV = k21K, "% = (Ig —K;”WZK;”) = (Ig —X[) .

Therefore the matrix on the right-hand side of (6.100) in the argument of p is the
polynomial

fEB) = 1= (1-P)Cak +B)

with § = X,. Therefore the expression

m(B) = max{f (§,8):0=<§=<1}
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is an upper bound for the spectral radius. We choose 8 = {y—1 = Ca/ (Ca + 2v).
An analysis of the function f (-, {¢—;) shows that it is strictly decreasing with
respect to the first argument within the parameter domain under consideration. It
follows that

p(TV) = £0.80) =G

and by induction we have ¢y = Ca/ (Ca + 2v). The fact that (6.96) and (6.97) are
equivalent finally yields the stated estimate in (6.91).

The left-hand equality in (6.91) follows from the similarity of the matrices TZ
and ’i‘g as given by

14
|

_ wr/2qve—1/2] _
e
¢

it =5 (i) o ).

Exercise 6.4.53.
Prove the following:

(a) Let Assumptions 6.4.44, 6.4.48 and (6.90) be satisfied. Let the matrices Ky be
positive definite for all £. Then Qg from (6.95) is an orthogonal projection.
(b) Let A, B be two positive definite matrices. Then

p(A+B)=<p(A)+p(B).
(c) For positive definite matrices A, B the spectral inequality
p(B)<Cp(A™")

follows from HAI/ZBAI/2 H <C.
(d) Let A, B, C be positive definite. Then p (A) < p (B) vields the inequality

o (CI/ZAC1/2) <p (Cl/chl/z) .

Convergence of the Nested Iteration

In this subsection we will present the convergence analysis for the nested iteration
(Algorithm 6.4.28). To do this we begin with suitable assumptions concerning the
prolongation and the multi-grid method which is called in every iteration.

Assumption 6.4.54. Let uy, ug_y be solutions of (6.64) for successive mesh levels
and let Py ¢ be the prolongation in Algorithm 6.4.28. Then

lue =Pee—rues | < Ciigt el and  |Pees| < Ca.
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Assumption 6.4.55. The multi-grid method which is called in Algorithm 6.4.28 has
a mesh-independent convergence rate:

[riem ]| <c <1 vez1

Remark 6.4.56. The first estimate from Assumption 6.4.54 follows from (6.85) if
the conditions of Theorem 6.4.36 are given:

Jug =Py gqug_y || < Chy' |Ifel .

The second estimate follows with (6.84) if the conditions of Theorem 6.4.36 are
given.

Assumption 6.4.55 corresponds to the statements from Theorems 6.4.43 and 6.4.52.
We will only consider the convergence analysis for the L? and Euclidean norm. We
remind the reader that the V-cycle convergence was only proved in the energy norm.
The convergence of the nested iteration in the energy norm can be derived similarly
and is recommended as an exercise.

Let f be the continuous right-hand side in (6.46). Then the right-hand side f; in
(6.64) can be estimated by using

(f0)i| = (- bei) 2y | = 1S M i (suppie) 1260 0 2 (suppis) = CHe NS N2 (suppie)

and the finite intersection of the supports. The estimate is given by
Ifell < C3he | f Nl L2y < oo. (6.101)

The convergence of the nested iteration can be shown under these conditions. If
a vector a € RV¢ and a function @ € S; appear in the same context their relation is
given by a = vaz‘fl a;by;.

Theorem 6.4.57. Let Assumptions 6.4.54, 6.4.55 hold and let (6.78 ), (6.101) be
satisfied. Let the iteration number my = m in Algorithm 6.4.28 satisfy

Czc;lé‘m <1

with cp from (6.78). Then the nested iteration yields approximations Wy of the exact
solution wy of (6.64) which satisfy the error estimate

e — Giell p2ry < g (€™) C1Crhe || f L2y (6.102)
with c
P— 3x
g ()= 1-— Czc;lx

if the initial value 1 satisfies inequality (6.102).
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Proof. According to the conditions, we have (6.102) for £ = 0. We make the recur-
sive assumption that (6.102) is satisfied for the levels < £ — 1. The initial error
u) —ug withuf := Py y_;ii;_; can be estimated by

[up —ug| < |Pee—rue—y —ug| + || Pee—y (We—y —ig—y)|
< |Pee—tue—t —ug| + [ Pee—i | ue—1 — de—1 ||
< Cihg ! Ifell + Ca flug—y — g1 |
< CiGs || fllzz@y + Cacp ity Nug—y — g1l 72y
< C1(Cs+ Cacp'g €)1 f 2y -

Estimate (6.78) implies for the associated boundary element functions that
Juf = ue] oy < CLCP (C3 + Cacp' g (™) he |l fllL2qry -

After m iterations the initial error ug — ug on the level £ is reduced as described by
the multi-grid convergence properties

g = well oy < ¢ g — ulan(r) <{¢"(C3 + Cacp ' g ™M)} CLCphe || fll 2y

The definition of g implies that {. ..} = g ({™) and from this we have the assertion.
O

Exercise 6.4.58. Prove the convergence of the nested iteration for the multi-grid
method with V-cycle under suitable conditions.

6.5 Multi-grid Methods for Equations of Negative
Order*

The efficiency of multi-grid methods consists in the combination of the smoothing
properties of the operator and the smoothing method as well as the approximation
property of the coarse grid correction. The smoothing property is closely connected
with the mapping properties of the operator K : H* (I') — H ™ (I") with s > 0.
For operators of negative order (example: single layer potential) the operator and
the associated simple iterative method are no longer smoothing. High-frequency
eigenfunctions correspond to small eigenvalues and vice-versa.

* This section should be regarded as a complement to the actual focus of the book.
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In this subsection we present an approach with which the mapping properties of
the integral operators of negative order are reversed. This in turn allows the applica-
tion of multi-grid methods. This approach is due to Bramble, Leyk and Pasciak (see
[29,30]).

As a model problem we consider the Galerkin discretization of the boundary
integral equation for the single layer potential V : H~'/2(I') — H'Y/2(T). Let
f € H'Y2 (") be given and let the bilinear form b : H~'/2 (') x H~Y/2 (') > R
be defined as

b(u,v) = (Vu,v) 2y = / r@uG) 4o s, (6.103)

rxr 47 [x =y

S C H~'Y2(T) denotes the boundary element space and the Galerkin solution is
characterized by
YveS: buv)=f(v).

The basis representation u = ZINZI u; b; transfers the problem to the linear system
of equations
Vu=f (6.104)

and our aim is its efficient solution. For simplicity we assume here that V is symmet-
ric and positive definite (see Proposition 4.1.24). Perturbations, for example, due to
numerical quadrature, can be treated as in Exercise 6.3.1 or 6.3.5.

Definition 6.5.1. The surface gradient of a function u € H! (T') is given by
Vru :=yoVZu

with the trace extension Z from Theorem 2.6.11 and the trace operator yo from
Theorem 2.6.8.

With this the bilinear formw : H' (I') x H' (') — R can be defined by
w(u,v) = / ((Vru, Vrv) + uv) dx Yu,ve H' (). (6.105)
r

In order to avoid technical difficulties we assume that the boundary element space
satisfies the inclusion
Sc HY(T). (6.106)

The Galerkin discretization of the bilinear form w yields the sparse matrix
Wj’,' Z=W(b,',bj) Vlfi,ij.
Proposition 6.5.2. The bilinear form w in (6.105) is H' (T')-elliptic.

Proof. The statement follows directly from w (u, u) = ||u||§_11 T) |
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A direct consequence is the fact that the matrix W is positive definite. The oper-
ator W : H'(I') — H~'(I") can be associated with the bilinear form as given
by

(Wu,v) g—1(ryxmi @y = w (u,v) Yu,ve H' ().

The connection between the continuous operators W and V' and the matrices W and
V will be studied in the following.

First let P and R be as in Definition 6.4.21, while the index £ is omitted here.
The mapping T : H~! (T') — R¥ is defined by

N _
Tf = ((fb)req)ie, VS e HTH(D).
Finally, the mass or Gram matrix is given as in (6.77) by
Mj,l' = (bi’bj)LZ(F) lfi,jSN.

Therefore the L2-orthogonal projection O : HS(I') — S for s € [0, 1] has the
representation Q = PM™!T.

Proposition 6.5.3. Let u € S and letu = (u j)N be the associated coefficient
vector. Then
(WM™'Vu), = (WOVu.bi)r2r .-

Proof. The assertion follows from

(WOVu.bi) 2y = (WPMT' TV, by) oy = (WPM_1 (Vi) 1)) o ’bi)Lz(F)

N N
(W > (M 'va) bm,b,-) =) (M'Vu), Wi, = (WM™ 'Va),.
LZ(F) n

m=1 m=1

|

The matrix-matrix multiplication WM™!V corresponds to the Galerkin dis-
cretization of the composition WQV . This composition approximates the operator
W V. For smooth surfaces, ' € C, it is possible to show the mapping prop-
erties WV : HS(') — H* (') and the continuous invertibility wv) !
HS~ (") — H* (T) (see [29]).

Since the matrix WM™V is the product of positive definite matrices, it is regular
and the eigenvalues are real and positive. Therefore the solution of the linear system
of equations

WM 'Vu = WMt (6.107)

solves (6.104). Since WM™V can be considered as the discretization of the contin-
uous, regular operator WV of order + 1, the multi-grid method from Sect. 6.4.3 can
be directly used for the solution of (6.107). It is essential for the efficiency of the
method that W be sparse so that a matrix-vector multiplication with a complexity of
O (N) can be implemented. For the convergence analysis we refer to [29-31].
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6.6 Further Remarks and Results on Iterative Solvers of BIEs

From the convergence bounds for the basic algorithms for the iterative numeri-
cal solution of the large, densely populated linear systems of equations, it is clear
that preconditioning is an important issue. This is particularly so on complicated
geometries, and for parameter dependent boundary integral operators which arise
in acoustic and electromagnetic scattering. In particular, in Galerkin BEM for BIEs
arising in electromagnetic scattering, the large, nontrivial null space of the electric
field boundary integral equation stalls most “black-box” iterative solvers.

Here, construction of a wave number dependent preconditioner is essential and
highly nontrivial. One approach towards such preconditioners is the use of the
Calder6n projector for electromagnetic scattering. This was proposed and analyzed
in [65-67]. The preconditioners thus obtained are based on suitable discretizations
of, in the Calderdén projector, conjugate boundary integral operators and require
therefore the discretization of these additional boundary integral operators.

The question of how to preserve the Calderén identities under discretization
was answered recently, in the case of electromagnetic scattering, with tools from
algebraic geometry in [4, 38].



Chapter 7
Cluster Methods

Partial differential equations can be directly discretized by means of difference
methods or finite element methods (domain methods). For this, a mesh has to be
generated over the d-dimensional domain €2, which is a difficult task for compli-
cated geometries and exterior domains — if the domain is unbounded the generation
of a mesh with finitely many mesh cells is impossible, leading to further compli-
cations. In comparison, the generation of a (d — 1)-dimensional surface mesh for
the boundary element method is a much simpler task. The latter method has the
additional advantage that the degrees of freedom only occur on the surface and the
dimension of the system of equations is decidedly smaller than for domain meth-
ods. If, for example, we generate a mesh of the unit cube in R3 with a uniform
Cartesian mesh and use the number of mesh points N as degrees of freedom then
only O (N 2/ 3) of these actually lie on the surface, which means that in the BEM the
dimension of the system matrix is significantly reduced (in proportion to the number
of degrees of freedom). On the other hand, difference methods and finite elements
lead to sparse system matrices. This means that the memory requirements only grow
linearly as a function of the number of unknowns. At first glance this seems to be
a disadvantage of the matrix representation of boundary integral operators, where
the system matrices are dense. Storing these would repeal the advantage gained by
reducing the dimension of the computational domain through the boundary element
method. In the example considered above, one would need O (N) memory units to
store the system matrix for the domain discretization and O (N 4/ 3) flops for the
boundary element method. The cluster methods use an alternative (approximative)
representation of the discrete integral operator and allows the storage of the opera-
tor with O (N log“ N) memory units, where N denotes the number of degrees of
freedom on the surface and ¥ ~ 4 — 6 depends on the problem.

Direct elimination methods such as the Gauss or Cholesky decompositions are
not suited to higher-dimensional problems as their complexity grows cubically with
respect to the dimension. Iterative methods prove to be much more efficient. The
cluster representation of the integral operator allows matrix-vector multiplications,
which are the elementary operations in iterative methods for linear systems of equa-
tions, to be performed in O (N log® N) arithmetic operations. The representation
does, however, not permit the use of direct elimination methods, as the matrix
elements are usually not evaluated. The cluster method was first developed for

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series 403
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2_7,
(© Springer-Verlag Berlin Heidelberg 2011
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collocation methods and is due to W. Hackbusch and Z.P. Nowak (see [123, 124]).
The extension to Galerkin methods was introduced in [125, 197]. Closely related
to the panel clustering method is the multipole method which has been developed
independently (see [193]).

We will first introduce and describe the cluster method on an abstract level. Then
we will present the algorithmic description of the method. We will conclude this
chapter with an analysis of the error in the Galerkin solution introduced by the panel
clustering approximation and of the overall complexity of the algorithm.

Note: According to the reader’s specific interests, there are different ways of
reading this chapter. Here are a few guidelines.

For readers that are interested in the concrete, algorithmic realization of the clus-
ter method we recommend studying the Sects. 7.1.1,7.1.2,7.1.3.1,7.1.4.4and 7.2.1
in detail. The required orders of expansion can be found in Table (7.73).

If the main point of interest is the abstract error analysis of the Galerkin method
perturbed by the cluster method we recommend Sects. 7.1.1, 7.1.3.3, the introduc-
tion to Sect. 7.1.4 and Sect. 7.3.2.

Readers that are interested in the derivation of local error estimates for the
Cebysev interpolation should focus on Sects. 7.1.3.1 and 7.3.1.1.

Finally, understanding the complexity estimates in Sect. 7.4 requires a certain
knowledge of Sects.7.1.2,7.1.3.3 and 7.1.4.4.

7.1 The Cluster Algorithm

7.1.1 Conditions on the Integral Operator

We will first define the cluster method for Galerkin discretizations. In Sect. 7.5 we
will present the necessary modifications for collocation methods.

Let G be a given boundary element mesh on a surface I' and let K be an abstract
boundary integral operator of the form

K [u] (x) := /rk (x,y)u(y)dsy forallx € T (7.1)

The following assumption describes the class of kernel functions that will be
considered in this section.

Assumption 7.1.1. The kernel functionk : T xT'" — C is the directional derivative
of a global kernel function G : R? x R4 — C that is smooth for x # y:

k (x,y) = DxDyG (x.y). (7.2)

with the differential operators Dy, Dy of order 0 or 1.
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The cluster method will be formulated for this class of integral operators. We will
impose further conditions on the global kernel function G once we deal with results
on convergence and complexity.

Example 7.1.2. For the kernel function of the single layer potential, G is given by
the fundamental solution (3.3) and k (x,y) := G (x —y).

For the kernel function of the double layer potential we have
k (x,y) = 71,6 (x —y) with y1 = (nyo, A grad- + 2b-) [see (2.107)].

For the kernel function of the adjoint double layer potential we have
k (x,y) = y1xG (x —y) with y1 = (nyo, A grad ).

The kernel function of the hypersingular operator (without integration by parts,
see Sect. 3.3.4) satisfies k (X,y) = y1xV1yG (X —Y).

7.1.2 Cluster Tree and Admissible Covering

The cluster method is based on an approximation of the kernel function on I x I
More precisely, first the global kernel function G : R? x R4 — C is approximated
in suitable domains, from which the approximation of the actual kernel function
is constructed. Our approach consists in using the cluster algorithm to represent
and evaluate the Galerkin discretization of boundary integral equations in a mem-
ory efficient way. We begin by clustering the degrees of freedom of the Galerkin
discretization (as opposed to directly clustering the panels). The advantage of this
approach lies in the fact that the algorithmic realization is simpler than the alter-
native approach, i.e., defining the clusters as the union of panels. This factor is
especially relevant to the realization of data structures. The set of degrees of freedom
is denoted by 7 [see, for example, (4.28)].

Definition 7.1.3. A cluster is the union of one or more indices from 7.

The efficiency of the cluster method is based on the organization of the index set
in a hierarchical cluster tree.

Definition 7.1.4. The nodes of the cluster tree 7 are clusters. The set of all nodes
is denoted by 7 and satisfies:

1. ZTisanodeof T.
2. The set of leaves Leaves (7) C T of 7 corresponds to the degrees of freedom
i € 7 and is given by

Leaves (7) :={{i}:i € T}.

3. For every node o from T'\ Leaves (7) there exists a minimal set ¥ (¢) of nodes
in T\ {0} that satisfies

o= U 5. (7.3)

geX(o)
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The set X (o) is called the sons of . The father father (6) of a cluster € T\ {Z}
is that cluster 0 = father (6) € T with o € X (0).

The edges of the cluster tree 7 are those pairs of nodes (o, s) € T x T that satisfy
eithero € X (s) ors € X (0).

If the cluster tree 7 is clear from the context we will write “Leaves” instead of
“Leaves (7).

We emphasize that the clustering concept is not restricted to boundary element
methods but is an abstract concept for organizing large sets as hierarchical trees (see
[118, 119]). The following example illustrates the clustering of a set of panels.

Example 7.1.5. Let {y.x € N be chosen and fixed. We set N = 2bmx gpd h =
(N — 1)_1. The mesh points x; ;= (i —1)h, 1 <i < N, form the set . A mesh
of the interval (0, 1) is given by the panels t; = (xj—1,x;), 2 < i < N. The set of
nodes T of the cluster tree consists of the clusters

- .
NA LN +20 Ny YOS ES bon, 150220

i—1
O; ¢ .= Ze

A= b
The set of sons of a node o; 4y € T\ Leaves is given by
T (0i,6) = {02i—1,641,02i 041} -
For £iax = 3 the cluster tree is illustrated in the following figure.

{1,2,3,4,5,6,7,8}

e N\
{1,2,3,4} {5,6,7,8}
Ve 2 \ N\
{1,2} (3,4} (5,6} {7.8}
A A N N\
{1y {2y 3y 4 {53 {6 {7} {8}

In the next step each cluster o € T is assigned a geometric cluster and a diam-
eter. The basis functions of the boundary element space are again denoted by b;,
i€l

Definition 7.1.6. Every cluster o € T is associated with a geometric cluster I'c CI":
Iy = U supp b; .
i€o

The cluster box Q, of a cluster ¢ € T is the minimal axiparallel cuboid which
contains I';. The cluster center M, is the center of mass of the cluster box.
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The cluster diameter is given by

diamo = sup |x —y|.
x,y€0q

In the original version (see [124]) of the cluster method the size of a cluster was
determined by using the minimal ball that contains I';. Using cuboids, the sides of
which are parallel to the coordinate axes (which we will henceforth call axiparallel
cuboids), is advantageous from an algorithmic point of view and we have chosen
that approach here.

Note that neither the cluster tree nor its generation from the set Z is unique. In the
following we will present a construction which only requires the index set Z and the
associated surface pieces I';y as its input. With the notation from Definition 7.1.6,
Q7 denotes the minimal axiparallel cuboid that contains I'. For an arbitrary cuboid
0O we define the set of sons by

3 (Q) : set of the 8 congruent subcuboids (7.4)

that result by bisecting the edges of Q. '
Remark 7.1.7. Fora set o C R3, Box (w) denotes the minimal axiparallel cuboid
that contains w. Note that Box (t) can easily be determined for panels t € G as is
Box (Box (wy) U Box (wy)) if Box (w;), i = 1,2, is known.

The cluster tree is generated “in steps”. The statements
£:=0; L:=1, T :=1, E =0 generate_cluster_tree(L);

generates the cluster tree, where the subroutine generate_cluster_tree is defined as
follows.

Algorithm 7.1.8 (Cluster Tree).
Comment: Generating the tree structure:

procedure generate cluster_tree(L) ;
begin
forall o € L do begin
initialize ¥ (o) := 0;
generate (temporarily) the set ¥ (Q¢) ;
forall Q € ¥ (Qy) do begin
initialize a (temporary) node s := 0;
Joralli codoif My, € Qdos:=sU{i};
ifs #0ands # o then ¥ (0) := X (0) U {s};
end;
L:=X00)UL\{o};T:=TUZX(0);
end;
if L # @ then generate_cluster _tree(L) ;
end;
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Comment: Generating the cluster boxes.
Comment: Initialization:
Joralli € Tdo Qyy = 0;
forallt € Gandall (b; : suppb; N T # @) do Oy := Box (Qy U Box (1)) :

Comment: For the remaining clusters:
Tiemp = T\ Leaves; for all ¢ € Tiomp do generate_clusterbox(c, Tremp, Oc) :
Comment: The procedure generate_clusterbox is defined as follows:

procedure generate_clusterbox(c, Tremp, Qc) ;
begin
forall ¢ € X (c) do begin
if Q¢ has not yet been generated then generate.clusterbox(f s Tiemps QE) ;
Qc = Box (Qc U Q¢);
end;
Ttemp = Tremp\ {C};
end;

Comment: Computation of the cluster diameter:

Jorall c € T do diamc := diam Q.;

Remark 7.1.9. The construction ensures that a cluster c is either a leaf, i.e., c =
{i} for some i € L, or has a non-empty set of sons that are all different from o.

Remark 7.1.10. The subdivision of a cluster is controlled by the geometric subdi-
vision of the associated axiparallel box. Alternatively, the subdivision can also be
controlled by the cardinality of the sons. Here the index set ¢ is divided in such a
way that the cardinality of the sons is as large as possible. However, for the purpose
of error estimates the geometric subdivision is more advantageous.

A pair of clusters (0,5) € T x T is uniquely associated with a submatrix by
K9 = (K;, j)i_eeg. The idea of the cluster method consists in finding an approxi-
JEs

mate representation of such submatrices with significantly reduced memory
requirements. This entails a reduced complexity for arithmetic operations such as
multiplying a matrix block by a vector. The approximation can be applied to sub-
matrices K@% for which the cluster pair (o, s) is sufficiently well separated. The
details are given in the following definition.

Definition 7.1.11. (a) The distance between two clusters o, s € T is given by

dist (o, s) := f lx =yl - (7.5)

in
(x,y)€Q05X Qs
(b) Forn € R two clusters o, s € T are called admissible if

ndist (o, s) > max {diam o, diam s} .
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The admissibility condition allows the matrix, or rather the index set Z x Z,
to be decomposed into admissible cluster pairs and non-admissible pairs of single
indices. On the admissible cluster pairs the associated submatrices are replaced by
the cluster method representation and on the non-admissible index pairs the associ-
ated matrix elements are computed and stored in the conventional manner. The set
of admissible cluster pairs in this decomposition is denoted by P /2" and the set of
non-admissible index pairs by P"¢%". The union P /2" U P"¢" yields the decomposi-
tion P. It is essential for the efficiency that this (non-unique) decomposition consist
of as few elements as possible. For the algorithmic realization we need a structure
of descendants and predecessors on the set of cluster pairs. For (0,5) € T x T we
define

Y (o) x 2 (s) (o,5) € (T\Leaves) x (T\ Leaves),
Y (o) x {s} (0,5) € (T'\ Leaves) x Leaves,

{o} x X (s) (0,5) € Leaves x (T'\ Leaves),

@ (0,5) € Leaves x Leaves .

Y (o,8) =

The program line
P = PR = g divide (Z x Z, P, PR ;

generates this decomposition, where the recursive subroutine divide is defined as
follows.

Algorithm 7.1.12.

procedure divide((c,s) , P"", Pfr) ;
begin
if (c, s) is admissible then P/4" := P/a7 U {(c,s)}
else if (c, s) € Leaves x Leaves then P := P"* U {(c, s)}
else for all (¢,5) € Y_ (0. s) do divide((¢,§), P, P/er);
end;

The data structures for the algorithmic realization of the cluster method should
be chosen in such a way that, for every degree of freedom, the set of the associated
near-field degrees of freedom and, for every cluster, the set of associated far-field
clusters are stored. Fori € 7 and ¢ € T we define

P ({i}) == {{j} € Leaves : ({i},{j}) € P}, (7.6)
P (¢) = {a €T :(c,0)e Pf‘”} . 1.7)

7.1.3 Approximation of the Kernel Function

The kernel function is approximated on admissible pairs of geometric clusters. In
the first step the global kernel function G is approximated on three-dimensional
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domains and then the approximation of the kernel function k is defined as the
directional derivative of this expansion. Here we consider the approximation by
interpolation in detail and briefly summarize possible alternatives.

7.1.3.1 Cebysev Interpolation

Interpolation is well suited for the kernel approximation because of its easy algo-
rithmic implementation and because of the fact that it can be applied to a large class
of kernel functions.

In this section we will introduce the Ceby3ev interpolation algorithmically. The
error analysis can be found in Sect.7.3. For a detailed introduction to Lagrange
interpolation we refer to [225] and [99].

The space of all three-dimensional polynomials of maximal degree m in every
component is denoted by Q,,

m
. i J k.
Qm = E o jrXxixax; caijxk€Cy. (7.8)
i,j,k=0

Let D C R3andlet f € C°(D) bea continuous function. The interpolation
problem reads: For a given set of nodes Z = {E(’) 11<i < q} C D find a function
p € Q1 such that

pE=/® VE e Z. (7.9)

This problem does not have a solution in general. On axiparallel cuboids and Carte-
sian interpolation nodes the solution of the interpolation problem can, however, be
easily formulated. To do this we introduce, for m € Ny, the sets

In={peN>|VI<i<3:1=<p <m}. (7.10)

Convention 7.1.13. Fora = (ai)?zl, b = (b,-)?:1 e R3 we will always assume
in the following that b; > a;, 1 < i < 3, and consider axiparallel cuboids of the
Sform Qap = [a1,b1] X [az, b2] % a3z, b3]. The associated coordinate intervals are

denoted by Q;l,)J =[a;,bi], 1 <i <3.

Definition 7.1.14 (Tensorized Lagrange basis). Let / := [a, b] be a real interval
withb > a. Let {0, @ . (M} C I be aset of points with

a=£tW <@ o <gmD) o glm —

Fori = 1,2,...,m the Lagrange polynomial LU . I — R for the interpolation
node £ is given by
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mn )
Gm) (1) - x—§
L) = ng(z) £
j=1
Hét
Le_t Conyention 7.1._13 hold. Let the mesh Z = Z; x Z, x Z3 with Z; =
{E(l’f),g(z’f),...,E("”/)}, 1 < j < 3, be given. For € J, we set £ =

(£ ’i))?zl € Z. With this the tensorized Lagrange basis is given by
1,Geom) (x) := 1 Ge1m) (x1) [ (12.m) (x2) [ (13.m) (x3) .

The nodes £ and the associated Lagrange functions generally depend on the
interval / and the order m. The index m in €@ and L*™ will always be omitted
in the following, assuming that it is clear from the context.

The Lagrange basis functions L") are polynomials of maximal degree m — 1 in
every component and have the property

— £
%) (x) = 1 forx=§&W,
0 forx eZ\ {E+}.
Let a and b be as in Convention 7.1.13 and let the mesh Z on the cuboid Q, ), be
as in Definition 7.1.14. Then the solution of the interpolation problem (7.9) can be
given explicitly as
Pm®)= 3 f(§9) L9 (. (7.11)

WETm

The choice of the Cebysev nodes as interpolation nodes has stability advantages
compared to the equidistant division of the intervals. The following classical error
representation illustrates to what extend the interpolation error depends on the
choice of interpolation nodes.

Theorem 7.1.15. 'Iﬁet b>a,l =la,bland f € C™ (I). For a set of interpolation
nodes Z = (5(1))1‘:1 we set pm = Y e, f (E(’)) LY. Then for all x € I there
exists some 0y € I such that

(m) ,
f(x) = pm(x) = / !(QX)I_L—I (x - E")). (7.12)

Choosing the Cebysev nodes minimizes the product [/L; (x — @) in the
error term. We will first introduce the CebySev nodes for the interval [—1, 1] and
summarize some of the properties of the Cebysev polynomials.

The Cebysev polynomials can be recursively defined by Ty (x) 1= 1, T} (x) := x
and fork = 2,3,... by

Teq1 (x) := 2xT (x) = Tie—1 (x) - (7.13)
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We obtain, for example,
T, (x) =2x2 -1, T3 (x) = 4x> — 3x, Ty (x) = 8x* —8x%2 + 1.

Their roots are real, pairwise different and lie in the interval [—1, 1]. More precisely,
for the Cebysev polynomial 7},, n > 1, they have the form
2i —1

2n

S(i’") 1= cos T 1<i<n.

Definition 7.1.16 (Cebysev Interpolation on [—1, 1]). The Ceby3ev interpolation
of a continuous function f € C° ([—1, 1]) is given by

nm (7] = i‘ f (gn) 1O

i=1
. S\
with respect to the nodes (§)_
For u € N3 and x = ()ci)?:1 the tensorized CebySev polynomials are given by

Ty (%) := Ty (x1) Ty, (x2) Tis (x3) . (7.14)

For the three-dimensional unit cube Q = [ x I x I with I = [-1,1] the
interpolation nodes are given by the tensorized one-dimensional CebySev nodes

g(u) — (gl.(“i))I:I ne Im.

Definition 7.1.17 (Cebysev Interpolation on Q). The Cebysev interpolation of a
continuous function f € C%(Q) is given by

o[ f]:= o (E(u)) L.

HETm

For an axiparallel cuboid Q, 1 we define the Cebysev interpolation by means of
the affine transformation y : Q — Qa given by

, 3
1) = (a,- + (b; —m)ngl)‘

The transformed Ceby3ev nodes form the set

®§f’l’)) = {)( (E“”) TR= jm} .
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Definition 7.1.18 (éebyéev Interpolation on Q, ). The Cebysev interpolation of
a continuous function f € Q, is given by

A= > f (g(u)) LW,

(m)
s(lt) e®a.b

where the Lagrange functions correspond to the set ®§"ll)).

The approximation of the kernel function starts with the approximation of the
global kernel function on a pair of axiparallel cuboids Qap X Qc,q.

Definition 7.1.19 (éebyéev Interpolation on Q,p X Qca). For f € C%(Qap x
Qc,a) the tensorized CebySev interpolation is given by

(;n;] le,d] [f1x,y) = Z Z f (g(u)7 é-(v)) LW (x) Lo (y) .

5(“)59%) ;(v)e(aif"i')

In Assumption 7.1.1 we restricted ourselves to kernel functions that were either
the global kernel function or a derivative thereof. We define the approximation of
the kernel function by applying the derivatives in (7.2) to the global kernel function.

Definition 7.1.20 (CebySev Approximation of the Kernel Function). Let b =
(0,5) € P far pe a pair of admissible clusters and let Iy, I's be the associated
geometric clusters. The cluster boxes are denoted by Qs =: Qap and Qs =: Q.
Let the kernel function have the representation

k (X7 Y) = DXDyG (X7 Y)

and let it satisfy Assumption 7.1.1. Then the CebySev approximation kp, : Ty X
I's — C of the kernel function is given by

ky = DD, - G.

[a, b] [e,d]

The representation of the kernel approximation in separated coordinates plays
the key role for the efficiency of the cluster method. For b = (0,5) € P/ we
obtain the abstract representation of the kernel approximation

" ) =Y k(b)) O (x) W (y) (7.15)

L, VELy,
with
i = Tme K (B) = G (gw, §<”)), W (x) 1= Dy L™ (x),
W (y) := DyL™ (y). (7.16)
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Definition 7.1.21. Let b € P/4”. An approximation kj, of the kernel function is
semi-separable if the x and y dependence is factored as in (7.15).

7.1.3.2 Multipole Expansion

The multipole expansion was originally developed for the Laplace problem. In con-
trast to the six-dimensional expansion for the Cebygev interpolation, the multipole
expansion is four-dimensional and thus more efficient. However, the expansion
has to be developed for each kernel function separately in contrast to the more
general interpolation-based approach for the panel-clustering method. So far, multi-
pole expansions are developed for the Laplace problem, linear elasticity, and the
Helmbholtz problem. In the following we will give the expansion of the bound-
ary integral operator for the single layer potential of the Laplace problem, more
specifically, for the kernel function of the Coulomb potential in R3

k(x.y):=Ix—y|™".

which is the fundamental solution of the Laplace operator up to a factor (411)_1. It
can be shown that the multipole expansion and the Taylor expansion are identical if
the Cartesian coordinates are replaced by spherical coordinates. For a detailed study
we refer to [77,78,110,111,193,194].

Definition 7.1.22. Let b = (0,s) € P47 be an admissible block and let Os, Os
be the associated axiparallel cuboid. The kernel expansion for the block b is about
the point M := M, — M; with the centers of mass My, Mg of Oy, Qs (see
Definition 7.1.6).

The multipole expansion (cf. [111]) uses the spherical harmonics ¥;” and the

associated Legendre functions P;" as expansion functions. For £,m € Ny with
m < { we have (cf. [1, 8.6.6])

mi2 (d\"
Pl (x) = (=)™ (1 — x?) /2 (E) Py (x)

with the Legendre polynomials

d

1 ¢ ¢
P[(X)ZW(E) (.xz—l), EGNO.

For ¢ € Ny and m € Z with |m| < £ the spherical harmonics have the representation

Y/ (%) = cem P (cos0) €™ x€S,
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with

_Jee+ ) —|m)
Cm =N\ T an (et m)

where (6, ¢) € [0, ] x [0, 27| denote the spherical coordinates of the point x on
the unit sphere S,. For an admissible block b = (0, s) € P/%" we define expansion
coefficients

1 M; — M
K (b) 1= yHotv (|—)

+
CLZE? 1M — M | F 7\ I — Mo |

with
jlml

JE=m) (€ + m)!

and expansion functions in (7.15) given by

cl =

— X _M
@((TM) (X) = IIJC(TM) (X) = Cﬁblz ||X - 1V[O‘||M1 YMIMQ (m) ’

The kernel approximation on I'; x I's of the order m = my is thus given by

ky (x.y) = > kuw (b)) (x) B (y)
(1-v)€tm
with
O<p1<m
— V) eZ2xT?: —H1 = M2 = M . 717
lm (1, v) X 0<vi <m— ( )
—V1 = V2 =V

7.1.3.3 Abstract Cluster Approximation

The Ceby3ev interpolation and the multipole expansion are two examples for
approximating the kernel function by a semi-separable expansion. For special ker-
nel functions other expansions may be more suitable. The following assumption
summarizes the abstract conditions for the approximation by the cluster method.

Assumption 7.1.23. There exist an admissibility condition on the set of all cluster
pairs and constants 0 <y < 1,0 < C < oo and s € R with the following property:
For all admissible blocks b = (c,0) € P/ there exists a family of semi-separable

approximations {k,gm) Te x Ty — (C} N of the form
me

Py = Y K (0) 90 (0 W (y) (7.18)
(V) €L
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with

k(x,y) =k (x,y)| < Cy™dist™ (c,0) V(xy) €TexTy. (719

Furthermore, there exist constants d1,d, € N and 0 < C < oo such that the index
sets Ly, have the property L, C 7.9 x 792 forallm € N and such that the one-sided
restrictions

Ly = {v |3p e Z4 : (v, p) € Lm} and Ry = {/,L | ez : (v e Lm}
(7.20)
satisfy the conditions
BLm < C (m+ D% and Ry < C (m + )%,

v|<Cm+1) forallve Ly URy,
Ho<m=<M.
Ryy C Rag } fora <m<
Remark 7.1.24. The functions CDEM ), lIJ[(,v) and the coefficients k;,, (b) in the expan-
sion (7.18) usually depend on the order of expansion m.

Exercise 7.1.25. Show that the index set i, from (7.16) and (7.17) satisfies the
conditions from Assumption 7.1.23 imposed on the index sets L, and Ry,.

7.1.4 The Matrix-Vector Multiplication in the Cluster Format

The representation of the integral operator by the cluster method can now be for-
mulated with the help of the near and far-fields P and P/%" and the abstract
approximations kp (x,y). In the following note that the boundary elements 7 € G
are images of the open reference element .

The Figs. 7.1 and 7.2 illustrate the memory organization for the cluster method
and the algorithm for the matrix-vector multiplication.

For a boundary element function u € S we denote the coefficient vector in the
basis representation by u € RZ, where again the set of degrees of freedom Z is used
to index the basis functions:

u = Z u; bi.

i€Z

The decomposition of the index set Z xZ in P"" U P/4" induces the representation

(Ku,v)p2ry = Z V,-uj/bi (X)/k(x,y)bj (y) dsydsy
({i}’{j})epnmr T T

FY Y [ hwkeyb ) dsds,

b=(c.0)ePfar (i,j)e(c,0) TexTo
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block structures - ;’g -
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Fig. 7.1 Memory scheme for the cluster algorithm. The near-field matrix K"**" and expansion
coefficients «, , (b) are stored in the block structure P, the shift coefficients V\f;m’ yfu_(, in the

cluster tree structure and the basis expansion coefficients L({f)} R({';)} in the vector structure

with I'; as in Definition 7.1.6. If we replace the kernel function on the block I'; x I',
by the abstract cluster approximation we obtain the cluster approximation of the
integral operator.

Definition 7.1.26 (Cluster Method Approximation of the Bilinear Form). Let an
order of expansion m € Ny and a family of local kernel approximations be given
as in Assumption 7.1.23. Then the cluster approximation of the sesquilinear form
(Ku,v)p2(ry is given by

(Kpcuv)iam = Ko ¥) £ 30 D souw )L ()R @)
b=(c,0)eP/ar (v,W)Ely
(7.21)
with the sparse near-field matrix
e ) [rk(xy)bj (y)dsydsx if (i}, {/}) € P,
(Knear)l J - .
’ 0 otherwise
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upward recursion
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Fig. 7.2 Computation scheme for the cluster method: upward recursion, cluster—cluster interaction
and downward recursion

and the far-field coefficients

LY (v) =)V / b; (x) @ (x)dsy and

i€c

R¥W () :=> " u; / bi (x) ¥ (x) dsy (7.22)

i€0
forallc,o0 €e Tandv € L, L € Rpy,.

Note that the integrals in (7.22) can be reduced to integrals over I'. N supp b; and
I's N supp b;, which means that they are each the sum of a small number (bounded
independent of the mesh width) of integrals over single panels.

In the following we will deal with the efficient evaluation of the representation
(7.21) by means of the cluster hierarchy.

The explicit choice of the order of expansion m depends on the precision required
from the cluster approximation. The cluster pairs (c, o) € P/4” correspond to the
non-local character of the integral operators. In order to achieve an efficient algo-
rithm, the coupling between the clusters is broken up wherever possible so as to
be able to perform the computations separately on the single clusters. This will be
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done by a one-sided restriction of the index sets and by inheritance of block sizes
on clusters.

It is essential for the efficient realization of the cluster algorithm that the function
oriented representation (7.21) be translated into an algebraic coefficient repre-
sentation. We begin with the near-field and recall the definition of the index set
[see (7.6)]

P ({i}) = {{j} € Leaves : ({i},{/j}) € P""}.
Remark 7.1.27. For the elements of the near-field matrix we have
K" =0 VieZ V{j} ¢ P"™" {i}).

The matrix K”ej‘” is sparse, which here means that per line i we only need to
store the coefficients for the indices {j} € P"™ ({i}). We can then implement a
matrix-vector multiplication with the near-field matrix as given by

> Kru, > KM, (7.23)
JET {jreprear({i})
For the far-field, first, the index set ¢, is separated [see (7.20)]: we define

Rm (V) i={ € R : (V, L) € tim} Yv e L.

Then we have
tm ={(v,u) | v €Ly and u € Ry, (v)}. (7.24)

By means of the one-sided restrictions P /%" (c) [see (7.7)] we obtain for the second
summand in (7.21) the representation (see Exercise 7.1.28)

DY LY ) BY (w) (7.25)
ceTveLy
with
BM ()= Y > k()R (u). (7.26)
oePSar(c)n€Rm(v)

Exercise 7.1.28. Prove the representations (7.25) and (7.26).

The sum in (7.26) corresponds to the evaluation of the cluster—cluster coupling:
The indices v on one cluster ¢ are coupled with the indices i on another cluster o
via the expansion coefficients «,, ;, (b).

We still need to define the efficient evaluation of the sum in (7.25) and the far-
field coefficients. For both tasks we use the hierarchical structure of the cluster tree
to evaluate recursively the approximation by the cluster method.
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7.1.4.1 Computation the Far-Field Coefficients

For the recursive calculation of the far-field coefficients by means of the cluster
tree it does not suffice that the index set 7 is organized hierarchically in the cluster
tree. We also require the expansion functions dng) and \1/5" ) to have a hierarchical
structure formalized in the abstract Assumption 7.1.30 below.

We would like to motivate the abstract Assumption 7.1.30 by a concrete example.
If the monomials (centered in the cluster centers M,.) are used as a basis of the
expansion system, i.e.,

oM (x) := (x —M,)" /v! forallc € T and v € Ly,
we have for the restrictions to the sons

oM = > pupe®d?  forallc € T,¢ € T(c) andallv € Ly (7.27)
HELm

with the coefficients

(ME - Mc)v_M

- - @ <,
Vo = w—p! K= (7.28)
0 otherwise.

Exercise 7.1.29. Prove the representation (7.27).

The hierarchy of the approximation system is abstractly formulated in Assump-
tion 7.1.30.

Assumption 7.1.30. Forallc, o € T, all sons¢ € X (c), 6 € X (0) and expansion
functions {@2“)} and {\IJ((,”)} , the refinement relations

veELm VERm

oM ro= Yy 0% and v = Y R WP (729)
WELM HERm

hold with suitable shift coefficients vau & yfu s €C.

The computation of the far-field coefficients Rc(,v) (u) begins with the comput-
ing and storing of the basis far-field coefficients for every index (leaf) i € Z. The
definition of the far-field coefficients implies that

R(v)

(bi) = [ | bW (0 ds i = ).
Uy T supp b ;

0 otherwise,



7.1 The Cluster Algorithm 421

and we define the basis far-field coefficients by

R{(:)}) = RS}) (bi) VieZ, VYveTRn.

By using these coefficients we obtain a recursion for the calculation of the
coefficients R((,v) (u):

1. For all leaves i € Z compute

R{(:.’}) (1) = u; Rg}). (7.30)

2. For all clusters o € T\ Leaves recursively calculate from the leaves to the roots

RO w= Y > yRR¥ )  forallveRy. (7.31)
6€X(0) LERm

The representation (7.30) follows directly from the linearity of the functional

R((,v) and from the representation (7.22). For the representation (7.31) we used the
additivity of the integral, more specifically, we used the decomposition

RV )= "w | bi (x) ¥ (x)dsy

i€o Ts

> Yu [ v was,
Ts

GgeX(o) i€o

Z Z Z V\fu,éui /1“;, bi (x) ‘Iféu) (x) dsy

HWERm 6€X(0) i€G

oY yR R ),

geX(0) LERm

which in turn uses the geometric hierarchy (7.3) of the cluster tree and the refinement
relation (7.29).

7.1.4.2 Cluster—Cluster Interaction

In order to compute the coefficients Bc(v) (u) we use the representation (7.26). The
algorithmic evaluation of the sum is then a recursive procedure.

7.1.4.3 Evaluating the Cluster Approximation of a Matrix-Vector
Multiplication

The evaluation of the sum (7.25) can be described as a transposition of the upwards
recursion [see (7.31)]. The cluster parts Bc(v) (u) that were already computed in
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(7.26) are distributed to the sons. For this we consider the local situation of a cluster
¢ € T\ Leaves with sons X (¢). The sum in (7.25) includes all clusters from 7.
Therefore the sum over {c} U X (c¢) appears as a partial sum

Z Lgv) b)) Bc(v) (u) + Z Z Lgf‘) (bi) Bcgu) (u). (7.32)

VEL ceX(c) MELm

If we replace Lgv) (b;) in the first term by the refinement relation (7.29) [see (7.31)]
LOG) = 3 3 nipeke” B0
ceX(c) LELm

we obtain the representation (7.33) for (7.32)

SN 3 LW ) B w+ Y vl B g (7.33)

ceX(c) LELm VEL

The recursion for the evaluation of the sum (7.25) is based on an update of the
multipliers B (u) in (7.25) as given by the brackets {. ..} in (7.33). The modified
multipliers are recursively calculated from the root to the leaves and then only have
to be multiplied by the basis far-field coefficients. These only have to be calculated
once and can then be stored. For all i € 7 these are defined by

LY = / obids Vv € L. (7.34)
T iy

{

With these coefficients, the recursion for the evaluation of the matrix-vector multi-
plication can be formulated by means of the known quantities:

1. Forc = Z: For all u € L,, we define
BW (u) :== B (u). (7.35)
2. For all clusters ¢ € T\ {Z}, calculate recursively from the roots to the leaves:

BY w):= B )+ Y yE BP W) VEeT(c). Vi€ Ln.

VELy
(7.36)
3. The cluster approximation of the component (Ku); is then given by
)i = Koo + Y LB @), (7.37)

KELm
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7.1.4.4 Algorithmic Description of the Cluster Method

As an overview, we will summarize all steps of the cluster method in this subsection.

Algorithm 7.1.31 (Cluster Method). We assume that a surface mesh G of I and a
kernel functionk : T x T' — C are given. Furthermore, an admissibility condition
with an associated expansion system q>§“), \I’gv) has to be given. This is done in the
Sform of a rule for calculating the expansion coefficients ik, (b) in (7.18) as well
. . L R . . .
as the shift coefficients Vviné and Voo (7.29). The chosen order of expansion is

c
denoted by m.
(I) Preparatory Phase

1. Generate the cluster tree T from G according to Algorithm 7.1.8.

2. Generate the near and far-field P™ and P'%" according to the procedure
divide (see Algorithm 7.1.12).

3. Compute and store the shift coefficients V&M,E and yfua&for all clusters c,o€T.

R

Compute and store the expansion coefficients k, ;, (b) for all blocks b € prar,
5. Foralli e Tand u € Ly, v € Ry, evaluate the integrals

L ;=/ b (x) @) x)dsy  RY) :=/ bi (%) B (x) dsy
supp b; supp b;

and store them.
6. Foralli €I, {j} € P"™ ({i}) evaluate the integrals

(Knear)y ;1= / b [ kb @) dsds
supp 0;

supp b ;

and store the near-field matrix in a compressed form (see Remark 7.1.27).

(II) Matrix-Vector Multiplication

1. Upwards Recursion:

The computation of the coefficients FE?’) = RE") (u) for all c € T is done with
the program line

Ttemp = T; upward_pass (T,emp,I, <§EV))veR ) ;

where the recursive procedure upward _pass is defined as follows.

procedure upward_pass (T,em 0 C, (FE?’)) » );
VERm
begin
if ¢ € Leaves then begin (75?’) = (RE")) iTiemp =Ttemp\ {c} end
VERm VERm
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else for all ¢ € X (c) do begin
if (FES’)) is not yet computed then begin
eR

VERMm
upward_pass (Tzemp,é, (ﬁg")) ) i Tremp = Tremp\ {C};
end; )
forallv € Ry, do R := Yser, ¥R ER?);
end;
end;

2. Evaluation of the Cluster—Cluster Coupling:

For the cluster—cluster coupling we use the sum representation in (7.26). The
algorithmic representation is straightforward.

3. Downwards Recursion:

The evaluation of the matrix-vector multiplication is based on the recursion
(7.36) and is achieved with the program line

Tiemp := T for all ¢ € Tyomp do downward_pass (Ttemp,c, (E(M))Mec ) :

where the recursive procedure downward _pass is defined as follows. The father

F (c¢) (see Definition 7.1.4) of a cluster ¢ € T\{Z} is characterized by ¢ €
X (F (¢)).

procedure downward _pass(Ttemp, c, (EE" )> . );
HELmM

begin
e - () — (1) . - .
if c = 1 then begin ( B/ = (B, i Ttemp = Ttemp\ {c} end
WELm WELm
else @
. o (i . .
if (BF(C)>ﬁeLm is not yet computed then begin
() .
downward _pass (T,emp, F(c), (B #(c))ﬂeﬁm),
Tiemp = Ttemp\ {F ()}
end; )
forall i € L, do BY := B + > ieln V;%,u,cBS#()c);
end;
end;
4. Approximation of the Matrix-Vector Multiplication:
The evaluation of v := Ku is computed according to
vi= Y Ky up+ Y LWEW. (7.38)

{jyeprear({i}) WELm
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7.2 Realization of the Subalgorithms

The abstract formulation of the cluster algorithm 7.1.31 will now be concretely for-
mulated for the class of kernel functions from Assumption 7.1.1. We will consider
the algorithmic realization of the Cebysev interpolation in detail. This method is
suitable for the cluster approximation of a large class of kernel functions. It is also
easy to implement, as we do not use any analytic properties of the specific ker-
nel functions. Therefore, in order to modify the approximation for a specific kernel
function, only the global kernel function has to be provided as a subroutine in the
computer program. If in Assumption 7.1.1 the kernel function k (x,y) is defined as
the derivative of the global kernel function G (x,y), the expansion functions of the
global kernel functions also have to be replaced by their derivatives.

The expansion is based on the Ceby3ev interpolation of the kernel function on
pairs of axiparallel cubes Q1 x Q> € R? x R3 and thus is six-dimensional.

For some kernel functions certain specific expansions may be more efficient.
For example, the multipole expansion of the fundamental solution of the Laplace
problem is only four-dimensional. Four-dimensional expansions can also be derived
for the fundamental solution of the Helmholtz equation. For details we refer to [77,
78,111, 194].

7.2.1 Algorithmic Realization of the CebySev Approximation

The essential steps for the algorithmic realization of the cluster approximation
by means of CebySev interpolation consist in the computation of the expansion
coefficients, the basis far-field coefficients and the shift coefficients.

Computation of the Expansion Coefficients

The efficient and stable evaluation of the Ceby3ev interpolation is first defined for
the one-dimensional case. Let T’ be areal interval, f € C° (I'y) and let (£¢ ’”’)):.nzl
be the Cebysev interpolation nodes scaled to I'y. The index m is omitted if the order
of expansion is clear from the context. We use the Lagrange representation of the

interpolation polynomial

m

S ) =) fil D (x) (7.39)

i=1

with f; == f (E(i)) and LY as in Definition 7.1.14. The Lagrange functions L
and coefficients f; depend on the interval Ty and we write L)), £, ; to make this
dependency evident.

In the next step this algorithm is generalized so that it applies to the global kernel
function G : Q. x Q5 — C with b := (c,0) € P/ar We set Q¢ =11 X3 X (3
and Qs := A1 X A X A3 with bounded intervals iy C Rand Ay C R,k = 1,2,3.
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This leads to

GXY)~Gn(xy) = Y Kuy(®) L x) L (y) (7.40)
WVETm

with 7, as in (7.10), the expansion coefficients k.., (b) := G (€©*), ")) and
L) (x) 1= LCism1) (x1) L(2:142) (x2) 1,(35143) (x3).

We assume that the kernel function k (X, y) of the boundary integral equation is
the global kernel function or a suitable derivative of it:

k(X’y) = D1D2G (X’y)

with derivatives D (with respect to x) and D, (with respect to y) of order at most 1.
We obtain the approximation of the kernel function by applying Dy, D, to the
Cebysev interpolation of the global kernel function. From an algorithmic point of
view the question arises how to compute the coefficients in the derivative of the
Lagrange representation. As an approximation we use [see (7.40)]

D1DyG (x,y) ~ D1D2Gp (x,y) = D K (b) D1LEM (x) DLV (y).
W VETm

This means that the expansion coefficients of the kernel function coincide with those
of the global kernel function. Therefore the expansion functions are the derivatives
of the original expansion functions.

Computation of the Shift Coefficients

By integrating the expansion coefficients D1 L) D, L©@Y) over T, we define the
far-field coefficients for the algorithms upward and downward_pass (see Algo-
rithm 7.1.31). We need the basis expansion coefficients R[(,v) (b)), LE’L ) (b;) for the
initialization of the recursion. We need the shift coefficients yﬁ‘,v’c and y}f’v,c to
evaluate the recursion step.

We begin with the algorithm to compute the shift coefficients and thus begin
with the one-dimensional expansion functions L1 (see Definition 7.1.14) on an
interval I'.. Let ¢ € X (c¢) be a son of ¢ in the cluster tree. The (Vjebyéev nodes with
respect to ¢ are denoted by (E @Jj ))3;1' Then we have on I'z

JACEN

i
L= Y a4 e L) withay = LD (E(E’”)-
At
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In the following we will present an algorithm to compute the one-dimensional
shift coefficients. We use the representation

m «(c,j k
1.(e.i) (g&j)) = H—g(c D gl
g(c,i) — g(c,k)

k=1
ki

and for 1 < j < m define the numbers

w; =[] (g@,n _g(c,k>) and B =] (g(w') _g(C=k>)_ (7.41)
k=1 k=1
=y

The shift coefficients L(¢-) (E(E’j )) can be computed with these quantities as
given by

wj . ~ . .
) o _ i lfé:(C,J) £ g(c,1)7
ai iz = L@ (g(c,;)) — | (@) —gleD) g; (7.42)
1 otherwise.

We will now consider the multi-dimensional case. Let ¢ be a cluster and
(L(C ’”))M Tnm the set of the associated Lagrange functions. Let ¢ € X (c¢) be a son
of ¢ in the cluster tree with a minimal axiparallel box Qz = t; X t» X t3. Owing to
the uniqueness of the interpolation the restriction of the expansion functions L (¢-*)
to the geometric cluster I'z has the representation

1.(c:) — Z View EL(E,v)
Te VETm
with the shift coefficients
Viuw,é *= Auivi Ao, 0uns,vs,es, (7.43)

By virtue of the linearity of the differentiation we have

DZL(C,M)

=Y Dol

¢ VETm

with the same shift coefficients as for the original functions L(*). This yields the
definition

y[;,v,g = y}j’v,g = Yy (7.44)
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Computing the Basis Far-Field Coefficients

In the next step we will present a method to compute the basis far-field coefficients.
For this we have to evaluate integrals of the form

/ b (x) D1LC" (x)dsy, and / bi (x) Do LY (x) dsy. (7.45)
T T

If the expansion functions are polynomial on every panel t and the mesh G con-
sists of plane panels, the integrals can be evaluated exactly (cf. [112, 117, 157]).
We can then derive recursion formulas by means of integration by parts. However,
we recommend using Gaussian quadrature because of its increased stability, simple
implementation and flexibility, which also allows for the efficient approximation of
general (analytic) expansion functions and curved panels t. Note that for plane tri-
angles and polynomial expansion functions Gaussian quadrature already yields the
exact integral value with relatively few interpolation nodes.

Example 7.2.1. Let t be a plane triangle with vertices A, B, C € R3. Let the expan-

sion function Cng) (x) be a polynomial of degree v; with respect to the variables x;
and let the basis function b; be of degree p. Then we have

1 & 1 p1
/ bi (x) O (x) dsy = /0 /0 ¢ (&) dErdes = /0 /0 hq (11, t112) dtydts

(7.46)
with

q® =21t B ©) (o) ) and x:(§) =A+[B-A C—BIE,

where the basis function B; (&) on the reference element is a polynomial of degree
p. Therefore q is a polynomial of total degree |v| + p and the integrand in the
integral on the right-hand side of (7.46) is a polynomial of degree |v| + p + 1 in
and |v| + p in ty. Let n be the smallest integer such that

m—1>pl+p+1 (7.47)

and let (a)k,n, Sk,,,)zzl be the scaled weights and interpolation nodes on the interval
(0, 1) of the associated Gaussian quadrature formula. If we apply the tensor version
of this Gaussian quadrature on the right-hand side of (7.46) we obtain

n
[ bi (0 OO %) dse = 21t] Y @knrnbinBr (Eem Enen) O (Een)
T k=1
(7.48)
with the transformed Gaussian points §x ¢.n = Xz (Ek,,,, Sk,n&,,,).
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Remark 7.2.2. For a curved triangle the transformation y. : T — T is non-linear.
In this case the integrand in (7.45) on the reference element is, in general, not
a polynomial. Gaussian quadrature should again be used for the approximation.
The quadrature order n with respect to each coordinate direction should be chosen
according to (7.47).

Computing the basis far-field coefficients requires an efficient method to evaluate
the expansion functions D L and D, L") at the quadrature points.

If either D¢ or D, represents the identity, L., is evaluated according to the
recursion (7.42).

In the following let D; := (w(x), V) for a vector w (x) = (wg (X)),3€=1 e C3.
The minimal axiparallel cuboid for a cluster c is denoted by Q. = t; X3 x (3. Then
we have

DLW (x) = (w(x), V) LW (x)

3 3
=Y we () | [TL M (xp) [ 0 LU () . (7.49)
k=1 =1
(#k
Therefore we need an efficient algorithm to evaluate the derivative of the one-
X m
dimensional Lagrange functions ((L(’))/ (Z))‘ g We distinguish between two
1=
cases:

. Let¢ ¢ {€@ :1 <i <m}. Thenfor 1 <i < m we have

(L) @ =10 ¢ —1§<J-—> :
o

2. Let{:é(k) foral <k <m.Thenfor1 <i < m we have

21
L)Y ——— i =k,
le ¢ - g(J)

(L(i))/ (&) = J;k (7.50)
~. 1
L0 gor—gm | #H
where 0
@ p . T L8V
j=1
J#ik

denotes the Lagrange polynomial for the interpolation node & @i # k, of order
m — 2 for the reduced set of interpolation nodes {E(’) 1 <i < m} \ {E(k)}.
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In the following we will present the algorithm to evaluate (7.49). Let ¢ € T and
let Q. = 11 X tp X 13 be the associated cluster box. The Cebysev nodes in Q. are

) — [ Wr) 3
denoted by ¥ = (&} iy P € Im-
Algorithm 7.2.3. The subroutine evaluate _D L. ({) generates the evaluation of
the Lagrange polynomials (DlL(C ")) e, @ apoint & = (&)} ieq-

procedure evaluate _DL ({) ;
begin
fork := 1to 3 do begin

o= ] (6 -):

i=1
forj =1to mdo begin

0 = H(f(]) g(n)y

i=1

i#] ok
)
. o e F
LY = (;k 5(1)) ()
1 otherwise
end;
ifC ¢ {Elg) 1 <i Sm}then
for j :=1to m do begin
m
() ._ 1 OINOPION
A=) ok (DL) = L2
=16 =&
i#]
end;
else begin
choose i with { = &‘(1)
m
. 1 . N
@) . @) ._ 7 @4 0).
W= ——m (DL =LA
=15k — &
Hél
forj e (l,...m\(iydo (DL)) =T/ (6 - £7);
(see Remark 7.2.4)
end;
end;

forall u € 7, do

3
DL (&) = > wie (§) (DL HLM,

k=1
l;ék

end;
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Remark 7.2.4. (a) Evaluating the quantities Zk, j definedin (7.51) is realized from
an algorithmic point of view in the same way as for the Lagrange polynomials.
For the sake of clarity this step was not explicitly formulated in Algorithm 7.2.3.

(b) The query {y ¢ { Ig) 1<i< m} in Algorithm 7.2.3 is numerically unstable

because of roundoff errors. If &y coincides with an interpolation node E,g) up to
machine accuracy, the second, numerically more stable case in (7.50) should
be chosen.

7.2.2 Expansion with Variable Order

By imposing moderate conditions on the surface mesh and the integral operator it
can be shown that the complexity of the cluster method is proportional to (f P) xm*,
where m denotes the order of expansion, A ~ 4 — 7 and § P denotes the number of
blocks in the decomposition P. It is shown in Sect. 7.3 that the order of expansion
m should be chosen proportional to log N to maintain the order of convergence of
the overall discretization. For the number of blocks in P the estimate fP < CN
can be shown for shape-regular and quasi-uniform surface meshes. This yields the

asymptotic complexity bound O (N log)L N ) for the cluster method on trees with

O (N) leaves forsome A > 0,as N — oo. The logarithmic terms do have a negative
impact on the computational complexity for large, practical applications and are
also the reason that the breakeven point (compared to the standard matrix-oriented
representation) is quite large and, typically, lies between N ~ 103 to 2 x 10*. In this
section we will explain briefly how this logarithmic term can be avoided without
any additional algorithmic cost for certain classes of boundary integral operators.
A detailed description of the cluster method with variable order can be found in
[26,199].

First we will combine clusters with the same level within a cluster tree to a cluster
level by Ty := {Z} and recursively for £ > 0 by

T¢ :={c € T :father(c) € Ty_}. (7.52)

The maximal cluster level is denoted by £,,,«. The level of a cluster ¢ € Ty is defined
by level (¢) := £.

The following assumptions serve to simplify the representation and can be
generalized.

Assumption 7.2.5. (i) The cluster tree is balanced: Yo € Leaves : 0 € Ty, .
(ii) All blocks b = (c,0) € P consist of clusters of the same level: c,o € Ty for
a0 = 14 = emax-

The level hierarchy of the clusters is inherited by the blocks b = (c¢,0) € P as
given by
level (b) := level (¢), (7.53)
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and the sets Py contain all the blocks of the level £. The cluster method with variable
expansion order takes advantage of the fact that a high expansion order is only
necessary on large blocks b € P; (with a small index £). These levels, however,
only contain few blocks. Conversely, it can be shown under suitable conditions on
the boundary integral operator that on small blocks b € Py (i.e., £ close to £y,x) an
expansion order m = O (1) is sufficient for the approximation and that the required
precision is achieved through the small size of the blocks. For example, we have for
the number of small blocks {Py, ~ CN.

For the parameters o, 8 > 0 we define the distribution function for the expansion
order my on the blocks b € P, by

= |—Ol (Emax - Z) + ﬂ-| s (754)

where [x7] denotes the smallest integer y such that y > x.

The formal changes to the cluster algorithm with variable order are marginal
compared to the original version. We summarize them below. We use the algorithmic
description from Sect. 7.1.4.4 to indicate the changes:

1. In the procedures generate_cluster_tree and divide every cluster and block is
recursively assigned its appropriate level

2. The definition of the shift coefficients y 5.z and y Y for ¢,6 € Ty remains
unchanged. However, the index sets are reduced vV € Ly, V € Ly,
M € Rmy_,» L € Rum,. We have a similar result for the expansion coefficients
Ku,v (b), which, for b € P7%" 0 Py, only have to be computed and stored for the
indices (i, v) € tm,.

3. The basis far-field coefficients Lg?, R{(r}) have to be computed for the indices
W E Ly [see (7.50)] and v € R4, -

4. In the procedure upward_pass, for ¢ € Ty the expressions v € R, have to be
replaced by v € Ry, and the expressions V € Ry, by U € Ry ;-
In the evaluation of the cluster—cluster coupling the expansion order m has to be
replaced by my for b € Py.
In the procedure downward_pass, for all ¢ € T the expressions u € L,, have
to be replaced by u € L, and the expressions ji € L,, by fi € Ly,_,.
In (7.38), m has to be replaced by mg7.

Remark 7.2.6. Modification (2) implies that the expansion functions ®}, W) on Ty,
€ < Lmax, are approximated by means of the expansion functions on Temzlx

We will illustrate the reduction in complexity by using a uniform mesh with
N = 4tmx #py = 4L,
The number of all expansion coefficients ky , (b) is a measure for the complexity

of the method. For the cluster method with variable order it grows linearly with the
dimension of the problem
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Lmax Linax

Do tPex (m)t =) 4 o (bnax — ) + 71
=0 =0

Limax 0
SNY @+ =@+ N Y 4T =G+ PN
(=0 =0

Proposition 7.2.7. The cluster method with variable expansion order (7.54)
requires a storage capacity of O (N) real numbers. The evaluation of a matrix-
vector multiplication requires O (N) arithmetic operations.

A detailed study of this approach can be found in [26, 199].

7.3 Error Analysis for the Cluster Method

The error of the cluster method approximation originates when the kernel function is
replaced by the kernel expansion on an admissible pair of clusters. In this section we
will estimate this local error and analyze its influence on the overall discretization.
The global error estimate will be based on the abstract assumption given in 7.1.23.
We will show in the next section that the Cebysev interpolation satisfies this assump-
tion in particular for the global kernel function G (x,y) of the differential operator
L as well as for the kernel functions that are derived from it.

7.3.1 Local Error Estimates

In this section we will analyze the error for the approximation of general kernel
functions by Cebysev interpolation. Error estimates for the Taylor and multipole
expansions for the Laplace and Helmholtz problem can be found in, for example,
[110,111,122,125,194,199].

7.3.1.1 Local Error Estimates for the éebyéev Interpolation

We begin with error estimates for the three-dimensional Cebysev interpolation of a
function f : [-1, 1]3 — C and transfer this to general axiparallel cuboids by means
of an affine pullback. Error estimates with respect to the L°-norm for functions
f Q1 x Qz — C on axiparallel cuboids Q1, Q2 can be obtained by means of
a tensor argument. Since, in general, the kernel function is defined as the derivative
of the global kernel function, we will also derive error estimates with respect to the
W 1-%_norm at the end of this section.

First we will summarize some of the properties of CebySev polynomials. We
refer to [192] for the proofs. The one-dimensional Cebysev polynomials are again

denoted by T3, [see (7.13)] and their n-th derivative by T,f,"). For the tensorized
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Cebygev polynomials we use the multi-index 11 € N§ and write T}, (x) = ]_[?=1

Ty, (x;) [see (7.14)].
Corollary 7.3.1. (a) Forall x € [-1,1] andn,m € Ny

ntl 2 ;2
‘T,fl") (x)‘ <™ with ™= 1_[ TR

i=0

(7.55)

(b) Forallx € [-1,1]?

‘TM (x)—ﬁ(m) [T,] (x)‘ =0 VYueNg: max i < m = 1,

I<i<

’Tu (x)—ﬁ(m) [T,] (x)‘ <2  VpeN;: max i > m— 1.

1<i<

Proof. Part (a) follows from [192, Theorem 2.24].

For (b) The first part of the statement is trivial, owing to the uniqueness of the
Ceby3ev interpolation polynomial. First we prove the second statement for the one-
dimensional case. The univariate éebyéev interpolation can alternatively be written
in the form

m—1 m
m : ._1 i,m i,m
H”(f>:k=§_mﬁ+lfﬂk(x) with S '_"_71-§=1:f(§( ) T (£6m).

By using the orthogonality of the Cebysev polynomials with respect to the set of
interpolation nodes

,m 2(=1)*if ¢/ (2m) =s € Z and k = 0,
=3 T (M) Tr(60™) = {1 itk £0and B —sezor ol = e 7,
i=1 0 otherwise.

for |k| <mand £ € Z (see [192, p. 49]) we obtain

N7, = ye Ty, ,, (7.56)
with
£—~Lmod(2m)
Ve = (=1)" 2m Ne,m := £ mod (2m) if £ mod 2m) < m,
£—Lmod(2m

Ven = —(=1) S Nem = 2m — £ mod 2m) if £ mod (2m) > m,

Ven =0 Ne.m ‘= £ mod (2m) if £ mod 2m) = m.
(7.57)

This and part (a) imply that |H(m) (Ty) (x)| < lforall x € [-1,1].
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The second part of the corollary follows from the triangle inequality and by
applying the one-dimensional argument to every factor of the tensor 7, (x) =

TM] (Xl) Tuz (XZ) TM3 (X3).
O

Remark 7.3.2. The first coeﬁiczents ) in (7.55) are given by

m? (m? -1 m2(m?2—1)(m2 -4
B S S (3 ) @ = ( 15)( )

and are monotonically increasing form =0, 1,2, ... and a fixed n.

Since the complexity of the cluster method strongly depends on the required
polynomial degree m it is important to derive as accurately as possible an error esti-
mate for the interpolation error. The error representation (7.12) is not suitable for
this. In the same way as we did for numerical quadrature, we will apply the interpo-
lation to functions that can be analytically extended to complex neighborhoods of
the coordinate intervals under consideration.

In the following we will recall the classical derivative free interpolation error esti-
mates for analytic functions, which are due to Davis [81, (4.6.1.11)]. Let 5'0 ccC
again be the closed ellipse with focal points at a and b, a < b, with the semlmajor
axis @ > (b —a) /2 and the semiminor axis b > 0 (see Sect.5.3.2.2). The sum
of the semi-axes is denoted by p = a + b. For the three-dimensional version we
consider an axiparallel cuboid Q,p as in Convention 7.1.13. The ellipses 55 ii,bi’

1 <i < 3, now refer to the coordinate intervals Q f",), and, once tensorized, yield the
—
domain 5:,13 = ® £ . For the cuboid Q, 1, we define the index ¢ € {1,2, 3}

=1%a;.b;*
by bzpz = argmin; _, , 3 {b,-zfa,- } and denote
Pmin :=p, and L := (b, —a,)/2. (7.58)
In the case b = (1,1,1)T =: 1 and a = —1 we omit the indices a, b for the

quantities £ and Q.
A classical error estimate for CebySev interpolation of analytic functions can be
found in [81].

Lemma 7.3.3. Letd = 3, Q = [1, l]d and let a function f € C°(Q) be given
that can be extended to an analytic function f* on EP with p; > 1,1 < i < 3.

4 . . =4 .
Then for the Cebysev interpolation p,, = LY [ f] the error estimate

d/2

Lf = Pmllcocgy < V222 prm (1= pp2) ™" M, (f)

holds with
M, (f) := max |/* @)].

€EEP
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Proof. We will only sketch the proof, by using the interpolation error estimates for
analytic functions taken from [81]. For this we introduce the inner product

f(@)g (@
1—z |

(f.8), = [ﬁp _S@s@

and the Hilbert space

L? (?’;b> : {f f is analytic in€° apand [ fl,:=(f f)l/2 }

The fact that this is indeed a Hilbert space is proved in [81, Chap. 9.2, Sect. IIT] (it is,
in fact, a separable, closed subspace of the Lebesgue space L2 (?g’b>). This space
has two properties that are essential for our application: (a) Evaluation at points on
L? (?ib) is well defined and the associated operator is continuous. More precisely,
there exists a constant C such that

swp |/ @I =CIfl,  Vfer(EL,).

=)
2€E 4y

This estimate is essential for the application under consideration, as the interpolation
—>
is based on point evaluations. (b) L2 (5 Z,b) is a Hilbert space and thus permits the

application of strong tools from functional analysis of Hilbert spaces.
In the following leta = —1 and b = 1.
The scaled CebySev polynomials

_ y\d/2 4 , , 12

T, (z):=c,T,(z) with ¢, := (;) 1_[( By p “’) Vi e N3
i=1

(7.59)

define a complete orthonormal system for L2 (?f’b> with respect to the inner

product (-, -) P (see [81]). For an arbitrary, bounded functional £ on L2 (?g,b> we
have

EDOI=El, /1, (7.60)

where | E ||, denotes the operator norm, which satisfies

E ()] _

IEl, =
f€L2( )\{0} ”f”p
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owing to the orthonormality of (T“)u end - Let E be the error of the Cebysev
0
interpolation at a pointx € Q, i.e.,

E(f)=f®-T"[f]x).

From E (p) = 0 for all p € Q;,—1 and Corollary 7.3.1 we have

Z |E(Tu)|2: Z CLZL|E(TM)|2: Z CLZL|E(TM)|2

u,eNg MEN(‘)l ”‘ENg
[l =m

d d
2 -2
2 Hj
<4 E c,=4 (;) E E | | P
MEN(‘)I i=1 MEN‘I Jj=1
[t]oo=m MiZm

< 4(£)di —2m Z —2(pj—m) 1—[ —2u)
= - Pi

i=1
[,LGN
Mizr(r)l ”é’

() S| e

i=1 neNg =1
2)\? —2m —2lul _ 2 4 —2m —2\—4
=4 ; Pmin d Z Pmin = 4 T Pmin d (1 _pmin) :
MGN()
In view of (7.60) we still need to estimate the norm || /|| ,. We have
f@T@ i
zZ z
112 = [} df(wa®0H%-
1 — | ZEE)p
It follows from ¢/ 27”0 = 1 and the orthonormality of the system TM that

IF12 <7 M2 (f). (7.61)

|

Transferring this error estimate to general, axiparallel cuboids can be achieved
by means of an affine transformation. For this let a,b and let Q,) be as in
Convention 7.1.13 and Q = [—1, 1]>. The transformation

~ x; +1 3
150 = Oun x@=@ﬁ@—m 2)
i=1
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is affine. The Cebysev interpolation nodes on Qa,p can be obtained by transforming
the one-dimensional interpolation nodes & ® to [ai, bi]

Ve Tm: EW =y (g(m)’g(uz)’g(uﬁ)’ o = {g(u) e Jm}.
Then the Ceby3ev interpolant on Q a,b 1S given by

(m) V(=3 f(g(u))L(M)’

HETm

where the Lagrange functions L refer to the set of interpolation nodes @g"’:)).

Theorem 7.3.4. Let d = 3 and Qayp be as in Convention 7.1.13. We assume that
—
the function f € C°(Qayp) can be extended to an analytic function f* on & g,b

with p; > (b; —a;) /2, 1 < i < 3. Then the Cebysev interpolant p, = T [f]
satisfies the error estimate

m 2 —d/2
1S = pmllcocoy <f2‘””‘( = ) (1—( L ) ) M, (f)

Pmin Pmin

with
M, (f) := max |f (@)

zEE

and pmin, L as in (7.58).

Proof. Let f € C™t1(Q,p) and let the affine transformation y : Q — Q,p with
0 = (-1, 1)d be defined as before. We set f = f o y and denote the Cebysev

interpolant of f on Q by p,,. Then we have ﬁ);t',’)) [f]1= pm o x~! and obtain

f=TW U = (F=pm)or™

The transformed ellipse ?’3 =y 1?"1, satisfies p = (2p;/ (b; a,-))?zl, and we
set
Pmin 1= min{2p;/ (b; —a;) : 1 <i <3}.

Now we can apply the error estimate from the previous theorem and obtain

| = Tan (1] <2020 gt (1) (7)

COQup) ‘ c0(0)

L \™ L\?\ 7
52d/2+1ﬁ(r) (1_(p ' ) ) My (f).
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Remark 7.3.5. Since pmin > L, it follows from the estimate above that the Cebysev
interpolation converges exponentially with respect to the order m.

The approximation of the kernel function of the boundary integral operator is
based on the (local) approximation of the global kernel function G : Qap X Qca —
C, where Qap, Qca C R3 denote axiparallel cuboids as in Convention 7.1.13. The
Cebysev interpolant of G of order m is defined by

ﬁ)f:z],[c,d] [G] x,y) := Z G (é(#)7 i;(V)) L(M) (x) L(v) (y)
WVETm
Y (x,y) € [a,b] x [c.d].

In the following we will transfer the statement from Theorem 7.3.4 to this situa-
tion. Let 9pmm, LD (or p(z) L®) be the constants from (7.58) for the cuboid Qap

(or Qc.q)- We fix (omin, L) € {(,OmI?1 L(1)> ( [(rﬁ)n L(2))} by

. 1 2
pri L = i 0,/ 522}

Theorem 7.3.6. Let Qap, Oc,a be axiparallel cuboids as in Convention 7.1.13. We

that the function f € C° x be extended on €7\ x €7
assume that the function (Qap X Qc,a) can be extended on &, cd

with (p1); > (b; —a,)/2 and (p3); > (di —c¢;) /2, 1 < i < 3. Then the Cebysev

T (m)

interpolant p, = H[a b],[c,d]

[f] satisfies the error estimate

L m
0
1S = Prllco(@upxoen) < Coor i ( ) My, xp, (f)

Pmin
with
My xp, (f) = max |f* (v,w)|
(V’W)G?Z,LX?Z%
and

CO = a2+ (1 p2) 7

Proof. Firstletb: = d: = 1anda: = ¢: = —1. We adapt the arguments from
Lemma 7.3.3 to the tensorized case. To this end, we introduce the inner product

[ (v.w)g (v, w)
for analytic functions f, g € £ x €92 as well as the Hilbert space
L? (?"1 X ?"’2) = {f . f is analytic in P % EP2 and
1f pips = (s I pn < 00}

dwdv

(£ 8)pyxpy =
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The statements from the proof of Lemma 7.3.3 can be applied to L? (?” 1 x ?”2>
analogously. "

The polynomials 7', (v,w) := ¢, T, (v) ey Ty (W) with ¢, from (7.59) con-
stitute for v, u € N3 a complete orthonormal system for L2 (?”1 X ?”2> with

respect to the inner product (-, -) 5, x,,- Let E be the error of Cebysev interpolation
atapoint (x,y) € Q x Q,i.e.,

E()=fy)-T" g /1&y.

It follows from E (p) = O forall p € Q,,—1 X Qu—1 and the second estimate in
Corollary 7.3.1(b) that

(B ()| = [T 0o0) =T 1y (Ts) 59

= |7 1T @] + [T (1) 0| [T (1) )] =2

and thus
Z |E (TM,V)|2 = Z C;ZLCS |E (Tu,v)|2
u,,vENg M,veNg
= Z e |E (T,L,\,)|2 <4 Z el
(,v)eNg xN¢ (1e,)eNZ xN¢
(V)| oo =m [(14,0)| oo =m

d

()22 (o)

=1 (1, @) eNd xNd

M,(q)>m
2 d r)
=2
() Y
[T 1 (+")
r=1 Jj=1
(r,)#(qi)

2d )

(2) ren X T160) 6™
min

i (p,,v)eNO XN(‘)I Jj=1

2d
<4 %) pr2m 2d) (1 - p2) 27 .



7.3 Error Analysis for the Cluster Method 441

The norm || f[| 5, x5, is estimated in the same way as in (7.61). Thus,

1F12 ey < T2ME L, ().

The results for the general axiparallel cuboids follow by an affine transformation.
O

The kernel function of the boundary integral operator under consideration is
either the global kernel function or a directional derivative thereof. In the latter case
we define the approximation of the kernel function by the directional derivative of
the approximation of the global kernel function. The corresponding error estimate
can be found in the following two theorems.

Theorem 7.3.7. Let Qap, Qca be axipamllel cuboids as in Convention 7.1.13. Let
f € C'(Qap x Qca) and D € { o, 3y 1 <i=< d} We assume that the func-

tion Df can be analytically extended to ?Z’lb X ?ffd with (p1); > (bi —a;) /2

and (p2); > (di —c¢i)/2, 1 < i < 3. Then the Cebysev interpolant p, =
T 0m)

[a.b].[c.d] [f], m > 2, satisfies the error estimate

1 ,Omin/L + 1 m=1
ID(f = pllesiouunoen = Chyn (P2 M, 1),

2,Omin/L
(7.62)
with 2 de1)2
V= \[de,2973/? (—2 )
p?—1
and ¢, from (7.63).

Corollary 7.3.8. The constant C,Sii)n tends to zero for pmn — 00 at the rate
(log ,omin)_2 while for pmin — 1 it grows as (Pmin — 1)_d_2.
For the proof of Theorem 7.3.7 we need a lemma.

Lemma 7.3.9. Form € Ny and p > 1

Zp %yt < G (P2+1)

k=m p

with 4
~ 2 4p?
C, = (7.63)
? eln (f’“) BGe+1D(p—1)

Proof. An elementary analysis yields
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From this we obtain

0 2 00 1 2k . 1 2m
3 p et < Tl) Z(i) =Cp(’0+) .

k=m eln = 2p

|

Proof of Theorem 7.3.7. We first consider the non-tensorized, one-dimensional case
d =1land f : C'([-1,1],C). We set g := f’ with the analytic extension g* :
£P — C. The approximation of g can be represented by g, := (1™ g(_l))/ with
gV (x) = ffl g (s) ds. The error functional E is defined in this case by

E(g) = (g —gm) x.¥).

The norm || E|, again has to be computed and we use the previously developed
method. The definition of g,, implies that E (p) = 0 for all p € P,,_>.

~ /
To estimate |E (Tk) | we need to find an upper bound for (H("’)Tk(_l)) and use
(see [192, Exercise 1.1.4])

1/(2s) s#0

Tk(—l) = Br4iTks1 + Bi—kTie—1 + o with B = { 0 otherwise

and a constant og. With (7.56) and y; ,,, and ng_,, from (7.57) we obtain
H(m)Tk(_l) = Vk-‘rl,m;Bl-i-ankJer + Vk—l,m:BI—ankflim + o
and by differentiation
(m) (1) ! ’ ’
(H T, ) = Vk+1=m'31+ank+1.m + Vk—l,mﬁl—ank,LM
Corollary 7.3.1 implies for all x € [—1, 1] and rlgl) as in (7.55) that
Ty (0)| < k2.
In all we have shown that

() oo

< BrikMegrm + 1Bk Moy g < (m — 1)

The norm of E can therefore be estimated in the same way as in the proof of
Theorem 7.3.3. With Lemma 7.3.9 we obtain
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o0 - 5 o0 o0 2
YANETI = Y RIETP < Z i (K +m—17?)
k=0 k=m—1 =m—1
00 o] 2m—2
8 _ ~ (p+1
<4 2kt < = kgt < c — :
= Z . Z o "\ "2p
k=m—1 k=m—1
Now let b: =d:=1anda: = c¢: = —1. Without loss of generality we choose
D = ;9. Let E be the derivative D of the error of the CebySev interpolant at one

point (x y) eQxQ
E(f)=Df xy) - DA™ o[/ &y,

where £V is an antiderivative of f with respect to the first variable. Let Q, _,
be the set of all polynomials p € Qp—; with (x1p) € Q—1. It follows from
E(p) = Oforall p € Q,,_; X Q;—1 combined with the previous results for
W1 = m — 1 that we have the estimate

B (Tyw)| = |D T ko) = DT (T50) 09)|

= DT @[T, )]+ [PT™ (10) o [H (1) )] = 203
/
For 1 <m — 1 we use (T,“ - H(’")T,ETI)) = 0 and also obtain

B (T)] = |75, )] (T 6) To )
~(IF=n T, ()

" T (Xj)‘ < pi(l+1)=2ui.

We denote the Kronecker symbol by §(, i), j) and for 1 € Ng weset Ly = U+e;
with e; = (1,0,0,...,0)T. Then we have

> ETu) = X e |E )

u,,vENg M,veNg
_ 2.2 2 2.2, 4
= Z Culy |E (Tuo)|” < 4 Z vty
(w,v)eNG xNg (u,v)eNd xNd

|(14-) | o =m |(1420) | oo =m
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2\ &G OV (@2
q 1
(2 X (W)ee)
g=1i=1 () ;,@)eNd xN¢
1P +8(g.0y.1.1)2m
2 d Ito)
21
(r) J
[T TT (+")
j=1
(r, /) #(q.i)
d
2\ s WY 24
(7)Y x )
q= 1’_l(u(1),u(2))eNdeg
1P +8(q.0y.1.1)2m

Lem. 739 ~ 2\2%4 J 2d=1 Pmin + 12" 72
< 8Cpud|(— S B :
T Pmin — 1 Z,Omm

The norm || Df || 5, x,, s estimated in the same way as in (7.61). Thus

d
IFN2 xpy <T24M2 ., (DS).

In all we have shown that

—1
Pmin + 1 m
—) Mﬂlxﬂz (Df) .

ID(f = pm)llcoorsx0 10 < Com ( i
pmln

The result for general axiparallel cuboids can again be achieved by an affine
transformation. We again first consider the one-dimensional, non-tensorized case
that g : [a, b] — C and note that

d
gm (x (%)) == (E

M) () = (148 ) () = 8 ()

with ¢ := g o . It follows that

lg — gm||L°°(a,b) =g — §m||L<><>(—1,1)-

Now we can apply the error estimates for the unit interval.
From the previous results we deduce for the tensorized case

Pmin/L + l)m_l

”D (f - pm)HCO(Qa,hXQc,d) = Cﬂmin/L ( 2Pmin/L M/A)IX/A)Z (Df) :

The assertion finally follows by means of a transform to the original coordinates

Mg, xp, (57> = Mp,xp, (Df).
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In the following theorem we consider the error of the approximation of the
second derivative of the global kernel function.

Theorem 7.3.10. Let Qap, Qc,a be axiparallel cuboids as in Convention 7.1.13.
Let f € C?(Qap X Qca) and D, e{ 1< <d} Dze{ 1< <d}

We assume that the function D1 D, f can be extended to £ g}b x E72 e c.d With (p1); >
(b; —a,) /2 and (p2); > (di —¢;) /2, 1 < i < 3. Then the Cebysev interpolant

Pm = H[a bl.[c.d] [f], m = 2, satisfies the error estimate

,Omin/L + l)m_l

DDy (f — <c®
| D1D2 (f pm)”CO(QathcAd) -~ 2Pmin/ L

M, xp, (D1D>f).

with

2 d—1
CP =T Jari+¥? (zp—_l) .

The proof is completely analogous to that of the previous theorem and will
therefore not be detailed.

For the error analysis of the cluster method we apply the CebySev interpolation
to the global kernel function for separated cluster boxes Q1, Q2. To be able to use
the estimate for the interpolation error we need to estimate the modulus M, x,, for
the (derivative of the) global kernel function.

Here we will restrict ourselves to the fundamental solution G : R3\ {0} — C

1 e{bza—Allzlla 52 ’
G (z) = , =c+|b (7.64)
Ny S PR bl
from (3.3) and the kernel functions derived from it
ki(x,y) =G (x—y), ka (x,y) = 71,yG (x—y),
(7.65)

k3 (x,y) = y1xG (x—Y), ka(X,y) = y1xV1,yG (X =)

with the conormal derivative y; and the modified conormal derivative y; [see
(2.103), (2.107)]. Let n be as in Definition 7.1.11.

Lemma 7.3.11. There exist constants Cq, C, that depend only on the coefficients
A, b, c in (7.64) and T with the following properties.
Let (0,5) € P/ and Qy =: Qap, Qs =: Qca. With

|b,~—a,~| 2 |d,’—C,’| 2
| = —— 1 _— d j = — 1 —_
P1,i 2 + Cl an P2,i 2 + Cin
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forl<i <3, 0% dyG (x—y), |u + v| = 2, can be analytically extended to ?Z’lb X

?ffd and satisfies the estimate

C2 )1+|M+v|

w56 6-91= (Gt g

201.,,2P2
x,y)e & abX € cd

Proof- Let (0,s) € P/% be an admissible far-field block with associated clus-
ter boxes Qs =: Qap, Os =: (Ocqa. The singular behavior of the function
leg dyG (x —y) is characterized by the function

—A
g2:00x Qs >R, g(xy:=|[x—-y[",
which we will consider first. It follows from the admissibility condition

ndist(Qs, Qs) > max {diam Qy, diam Q;} (7.66)

that g, can be extended with respect to every variable to ellipses 55 ! lla or Ef ,22_,
%1 11
1 <1i <3, where

|bi — ai| 1 dist(Qs, Os) |bi — ai| 2
p= 2 > 1+ =),
P, > T 3A a2 > T oy

C :=3+/3and P2, > @ (1 +2/(Cn)). The function g, can be estimated on
these ellipses by

(x.¥) = ( ¢ )A
su YY) <\7—F+777"7<1 -
(x,y)e?olpx?’()z o Y dISt(Qch QS)

[a.b] [c.d]

This result can be directly transferred to the function ||x — y||1§’l for the met-
ric induced by A. This is achieved by replacing the constant C by a constant that
depends on A.

For the fundamental solution G (x — y) or its derivatives % dyG (x —y) the size
of the analyticity ellipses remains unchanged. For the estimate of the function on
the analyticity ellipses we obtain

C )1+|M+v|

sup G (x—y)| = (m

—=2>p —=2p
(xy)E€E L LXE 3

where C depends on the coefficients A, b, ¢ of the differential operator and on T.
O
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By combining Lemma 7.3.11 and Theorems 7.3.6, 7.3.7 and 7.3.10 we obtain the
estimates for the blockwise approximations:

~ — ~ L =
by =T gGE=y) . kaxy) =gy A0 aGx-y).

~ — ~ 1

ks (x,y) := Vl,xngjz],[c,d]G (x—y), ka(x,y) := Vl,xyl,yngil)],[c,d]G (x—y)

(7.67)
of the kernel functions from (7.65) on admissible far-field blocks (o, s) € pJfar
with associated cluster boxes Qs =: Qap and Q5 =: Qcq-

Theorem 7.3.12. There exist a sufficiently small ny € (0,1) and constants
0<cy <1, Cy > 0 that depend only on the coefficients A, b, ¢ and T" with the
following properties.

For all 0 < n < ng in Definition 7.1.11 the approximations (7.67) of the kernel
functions from (7.65) satisfy on all admissible far-field blocks (o,s) € P7%" the
error estimate

-5

vi =0, vo:=v3:=1 and v4:=2.

< Coc™ (dist , —1-v;
ooy = CoCT [ist(Qo, O))

with
Proof. Lemma 7.3.11 combined with Definition (7.58) yields
2
Pmin/L =1+ —. (7.68)
Cn

If we insert this into the error estimate from Theorem 7.3.6 we obtain

o)

<C -
CO(Qapx0c.a) 24+ Cny dist (Q¢, Q)

with a constant C; that depends only on I, 19 and the coefficients A, b, c.
For the first derivatives D € {d/dx;,d/dy; : 1 <i <3} we combine Theo-
rem 7.3.7 with (7.68), which gives us

5 1 + C m—1 1 2
HD(kl_kl)‘ =G (_77) (— )
CO(QaAthCAd) 2 + Cn dISt (QO" QS)
with a constant C, that again depends only on I', 5o and the coefficients A, b, c. If
we choose ¢ := ;igz and C¢ := C,/c; we obtain the asserted estimate.

For the mixed derivatives D1 € {d/dx; : 1 <i <3} and D, € {3/dy; : 1 <
i < 3} we use Theorem 7.3.10 and obtain

i 1+Cnp\™! 1 ’
HDlDZ (ks _k‘)‘ CO@urren) ~ O (21—CZ) (M) '
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The derivatives y1, y; can be written as a linear combination of the above-
mentioned differential operators with L>-coefficients. This yields the estimates
from the assertion fork; —k;, j = 2,3, 4. O

Remark 7.3.13. The error estimates prove the exponential convergence of the ker-
nel approximations with respect to the expansion order m. Note that by employing
the classical error estimate

o

CO-1.1]) < +cm) Vggn lu—vllcog=1,17

with the Lebesgue constant

- sup (IMull coq—1.13) / Nl co—1.1))
ueCO([~1,1)\{0}

and the estimate ¢, < Cm we would obtain the far more pessimistic estimate
1 = k1| = Com®er™ (@ist (06,0507

Since the previous, derivative-free error estimates due to [81] take advantage of the
6

analyticity of the kernel function, we were able to avoid the factor m®.
Remark 7.3.14. The size of the constants Cy and cy for special kernel functions
can be found, for example, in [125] and [122]. For the Taylor approximation of the
fundamental solution of the Laplace operator we obtain Cy = 1 and ¢y = 1.

Remark 7.3.15. The explicit dependency with respect to the coefficients A, b, ¢ in
the fundamental solution has to be analyzed from case to case. For the Helmholtz
problem with a large wave number ¢ K —1 the quantity M, x,, (k1) grows
exponentially with respect to \/H and the expansion order m has to be chosen

proportional to +/|c|.

7.3.2 Global Error Estimates

Replacing the kernel function locally by the cluster approximation defines an
approximation b (-, -) of the sesquilinear form b (-, -). We have derived local error
estimates in Sect. 7.3.1.1 for the Cebysev interpolation. In this section we will use
the abstract assumption 7.1.23 imposed on the local accuracy of the approximation
of the kernel function. From this we will use the Strang lemma to derive an estimate
for the error b (-,+) — b (-, *).
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7.3.2.1 L2-Estimate for the Clustering Error Without Integration by Parts

We consider the class of kernel functions from Assumption 7.1.1 and use the admis-
sibility condition from Definition 7.1.11 with a fixed n € (0, 1). Letb : S x § — C
be the sesquilinear form for the integral operator K and let b be the approximation
that is defined by the cluster representation.

First we will introduce some surface and mesh dependent constants that will be
needed for the error estimates.

Assumption 7.3.16, which is related to the geometry of the surface I', excludes
strongly folded surfaces. For 0 < r < R < diamI" and x € I" we define the annular
domain AR, (x) by

Ap,(x):={yeR’:r <|x—y| < R}.

Assumption 7.3.16. There exist constants Cr,Dr > 0 such that the two-
dimensional surface measure of the intersection I'r , (X) := I' N AR, (X) satisfies
the estimate

ITr,r (x)| < Cr (R*—r?).

forallx e 'and0) <r < R < Dr.

Assumption 7.3.16 implies the estimate
lw| < Cr (diam w)?
for all subsets w C I' with the (Euclidean) diameter diam w.

For a given surface mesh G the constant g¢ indicates the quasi-uniformity of
the mesh (see Definition 4.1.13) and k¢ describes the shape-regularity of the ele-
ments (see Definition 4.1.12). The minimal constant in the inverse estimate (see
Corollary 4.4.6)

lull oo ey < ChT ull 2 VieG, VYueS (7.69)

is denoted by Cj,y. For s > 0 we need the auxiliary function Cs : R~g — R

1 0<s<2,
Cs(h):=h"24 1+ [logh| s=2, (7.70)
h?=s s> 2.

Convention 7.3.17. In general, we will assume for the following theorems that
either Assumption 4.3.17 or Assumption 4.3.18 is satisfied. The constants in the
following theorems usually depend on the polynomial degree in S 5 and on the mesh
G via the constants kg, qg, Ciny. In the case of curved surfaces they also depend
on the derivatives of the global transformations y, x~\, even if this is not explicitly
stated.
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Theorem 7.3.18. Let Assumption 7.1.23 be satisfied with s > 0 and y € |0, 1] and
let Assumption 7.3.16 hold. For the cluster approximation b of the sesquilinear form
b of the integral operator K the following holds with the notation introduced above:

b (u,v) — b (u,v)| = Cellullor Ivllo,r forallu,v e S
with
e :=y"Cs (h) (7.71)

and a constant C that depends only on s, n, T, the constants from Assumption 7.3.16
and the parameters described in Convention 7.3.17.

Proof. We use the notation from Assumption 7.1.23 and Definition 7.1.11 and by
applying (7.19) we thus obtain the estimate

E@wl=lpwn-bwv|< ¥ / v (o1 [k (x.y)
b=(c,o0)ePfar
—kf" (x. y)\ 0 )| dsydlsy
v ()] Ju )|
=Cr /rcxpa dist’ (¢, 0) @t (c,0) s

b=(c, U)EPf‘”

For all cluster pairs (¢,0) € P74 the admissibility condition implies the
estimate

dist(c,0) = inf |x—y|l = n ! max {diam ¢, diamo} > (ggn) "' h
x,Y)€EQcX0¢

with mesh width 4 = & (G). The geometric far-field blocks are thus contained in
(M x 1)/ = {xy el |x =yl = (ggn " h}.
Since

dist (c,0) = dist(Q¢, Qo) > || X —y|| — diam Q. — diam Q4
> |[x =yl —2ndist(c.0)

for all (x,y) € Q. x Qy we obtain the estimate

dist > -yl
is(e0) 2 5 Xyl

Therefore s > 0 yields the estimate

1
IE ()] < € (1+20)° ¥ 1l oo V] oo [ s,
L>(T) L>(T) (Fxl")f‘” ”X_y”s x4y
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In Corollary 7.3.19 we show that

! 2
/(]“Xr*)far stxdsy S csh CS (h)

with Cs (k) as in (7.70) and a constant ¢ that depends only on s, I" and 7.
For a boundary element function u there exists a panel t € G such that

~1 ~1
lull ooy = llull Loory = Cimvhz ™ lull L2y < Civggh™ llull L2(r) -
Combining this we obtain

|E (u,v)| < CCs (B) y™ llull L2ry VIl L2y

with R
C = c;Ciyqz (1+2n)".

Corollary 7.3.19. Let Assumption 7.3.16 be satisfied. Then we have

! 2
/(Fxr)far stxdsy < csh“Cs (h)

with Cs (h) as in (7.70) and a constant cs that depends only on s, ' and n as well
as the constants from Assumption 7.3.16.

Proof. (a) Let 0 < s < 2 For this case the statement follows from the fact that
[x —y||¥ is improperly integrable:

1 1
/ ————dsydsy < / ———dsydsy < 0.
xry/er [[x =y rxr [[x =yl

(b) Let s > 2 and Cr, Dr as in Assumption 7.3.16.

Weset§ := (qgn)~ " handn := [Dr /8], where [a] denotes the smallest integer
larger than or equal to a. Forx € I" we set I'; (X) := I' N AG4+1)5,i5 (X), 1 <i <
n—1,and I'; (x) := ' N Agiam .08 (X).

Then with Assumption 7.3.16 we have

n—1
I :=/ Ix =yl ds =/ [ Ix =y~ dsydsx
’ (TxT)7/er ' F; i (x) !

+ / / Ix— ¥~ dsydsy
r JIy(x)
n—1

< [ I wi9 ™ ds,+ D P

i=1
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n—1 . 2 L oN2
1)6)* — (ié
SCF/ (G + ).)s (l)dsx+D;S|F|2
ri5 (i6)
n—1 .
_ 2i +1 _
=Cr8®* 1) I + DF* T

i=1
For s = 2 we have
2

I, < Cr|T| (210g(n - +2+ %) + D2 T2,

Since Dr depends only on T', it follows for a sufficiently large n = [qgnDr/h] or
a sufficiently small / that the statement

I, <C (1 +1logn) <C (1+ [logh)

I —1 2i j -
is satisfied. For s > 2 we have Y_/—; 2L < 392 2lEl < 60, and the assertion

follows from §275 < Ch%~s, O

7.3.2.2 L2-Estimates for the Cluster Method with Integration by Parts
The estimate in Corollary 7.3.19 is too pessimistic for hypersingular kernel func-
tions (s = 3) if we regularize by means of integration by parts (see Theorem 3.3.22).
Applying integration by parts to the hypersingular integral operator for the general
elliptic boundary value problem yields the representation

b (u,v) = bo (u,v) + b1 (u,v),
where by (u, v) contains a kernel function that satisfies

k1 x| <C|x—y|™ for all X,y € I' almost everywhere

with @ < 1 and where by (u, v) has the form

/F ko (5,3) D1 1] () D2 7] () dyd

Dj and D, denote differential operators in the tangent plane of I' with an order
equal to or smaller than one, i.e.,

[Diullp2qry = C llullgrqry and  [Davliz2qy = C vIlgry -
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The kernel function of by is weakly singular
lko (x,y)| < C ||x—y||_1 forall x,y € I withx #y.

The cluster method can now be applied separately to each of the sesquilinear forms
by and b; so that Theorem 7.3.18 can be applied with slight modifications. In the
error estimate for the approximation of the bilinear form by, s in (7.71) has to be
replaced by «. The error estimate for the cluster approximation of by reads:

bo (u,v) — bo (u,v)| < Ce Nl ooy VI ey forallu,v e H' ('),

where s = 1 has to be chosen in the definition (7.71) of €.

7.3.2.3 Stability and Consistency of the Cluster Method

We assume that the sesquilinear form b : H* (') x H* (') — C in (5.68) is
continuous, injective and coercive with an s € {—% 0, %}
For a given right-hand side F € H™* (I") we are seeking u € H* (I') such that

bu,v)=F @) Yve H° ().

The conforming boundary element space S C H* (I') is defined on a surface
mesh of I" with a local polynomial degree p € Ny (see Chap.4). The Galerkin
solution ug € S satisfies

b(us,v) = F (v) Vv e S.

Since the influence of the quadrature error was already studied in Chap. 5, we
assume in this analysis of the error introduced by the cluster method that the near-
field integrals are computed exactly. Then the cluster method defines a perturbed
sesquilinear form b : § x § — C. This leads to the perturbed Galerkin solution
i:ts es .

b(us,v) = F (v) Vv e S. (7.72)

In this section we will estimate the error u—uts which is introduced by the cluster
method.

We will assume that the right-hand side in (7.72) is computed without any numer-
ical errors, i.e., the components of the vectors F (b j) in the right-hand side of the
linear system of equations are evaluated exactly. If this is not the case the influence
of this additional error can be analyzed as in Sect. 5.3.3.

If the surface is sufficiently smooth and the solution of the problem (5.67) is
sufficiently regular the following asymptotic estimate for the unperturbed Galerkin
discretization error holds (see Sect. 4.3):

= us | sy < CRP75 Nl oy -
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In order to achieve this order of convergence for the perturbed approximation as
well, we will use Theorem 4.2.11.

Let s— := min{s, 0} and s+ := max {s, 0}. The stability and consistency condi-
tions (4.151) and (4.153) follow from Theorem 7.3.18 and the inverse estimate, and
they are given by

b uv) = b )| = CCo ) Y™ I Jul gt oy IV sy

b ) = b @.)| = CCo ) y™ B2 Nl sy s

for all u, v € S. Therefore the conditions

Co(hy"h>-"3"0  and  C, (h)y"h- < ChPH1S

are sufficient for the stability and consistency of the cluster method. The following
table gives the required orders of expansion for s = {—1/2,0, 1/2}, corresponding
to weakly singular, Cauchy singular, and hypersingular boundary integral equations.

s = —% s=0 s = 1/2
o (p + 3) [logh| 4+ log (1 + [log h|) logh
mi(p +4) |22 (P +7/2)
[log y| logy

(7.73)

Theorem 7.3.20. Let the conditions from Theorem 7.3.18 be satisfied. Let the
sesquilinear form b : HS (') x H® (") of the boundary integral operator be contin-
uous, coercive and injective for an s € {—1/2,0,1/2}. Furthermore, let the order
of expansion be chosen as given by Table (7.73). Then the Galerkin solution with
the cluster method converges with the same order as the exact Galerkin solution.

For hypersingular kernel functions the order of expansion refers to the direct
representation. If we apply integration by parts for the purpose of regularization,
the order of singularity is reduced (see Sect.7.3.2.2). The order of expansion m is
reduced accordingly. We refer to [107] for details.

7.4 The Complexity of the Cluster Method

In this subsection we will show that for all kernel functions k (x,y) which satisfy
Assumption 7.1.23 the cluster method reduces the storage and computing complex-
ity from O (N?) for the matrix-oriented representation of the Galerkin method to
O (N log“ N). We note that the class of kernel functions that we consider here is
considerably more general than the (47 ||x — y||) " -kernel for the Laplace equation.
For this specific kernel, complexity estimates are proved in, e.g., [111].

The estimate consists of two parts. First we will show that, if we impose suitable
conditions on the surface and the surface mesh, the number of blocks in the covering
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is of the order N . Then the algorithmic complexity of the cluster method is estimated
per block and cluster, from which we determine the overall complexity.

7.4.1 Number of Clusters and Blocks

We will estimate the number of clusters and blocks for quasi-uniform meshes and
balanced cluster trees. Details can be found in the following assumption. The level
of a cluster and the maximal number of levels within a cluster tree are defined as in
(7.52).

Assumption 7.4.1. 1. Leti € T <= {i} € Leaves.
2. The mesh width h of the mesh G and the maximal number of levels €.y in the
cluster tree satisfy
2ty > C, (7.74)

with a constant C; that does not depend on h or £ .
3. Every cluster ¢ € T\ Leaves has at least four sons.
4. Every block b = (c,s) € P satisfies level (c) = level (s) .

Remark 7.4.2. Algorithm 7.1.8 does not necessarily produce cluster trees that sat-
isfy Assumptions 7.4.1.(2) and 7.4.1.(3). This problem can be easily resolved by
using a post-processing algorithm to redefine the set of sons for all clusters o0 € T
with §3 (0) < 4 according to X (0) := Usexg) = (5)-

Assumptions 7.4.1.(1) and 7.4.1.(2) simplify the complexity estimates for the
cluster method. We recommend using Algorithm 7.1.8 in an unchanged form for
the numerical computations. An algorithm for the generation of a cluster tree that
satisfies Assumptions 7.4.1(1)—(4) is described in [199].

The constants in the following assumption depend on the polynomial degree of
the boundary element space while we do not track this dependence explicitly.

Assumption 7.4.3. There exist constants ¢, and C), such that

cp = (19)/ (D) = Cp.

First we will derive estimates for the number of clusters in the cluster tree.

Lemma 7.4.4. Let N := {7 and let Assumption 7.4.1(1) hold. Then

4
BT < =N.
3
Proof. Let T be the set of all clusters with a tree depth of £ € Ny [see (7.52)]
Ty :={c €T :level(c) =¥}

We have #{Ty, . = ##Z = N and, thus, recursively

1
T < ZﬁTe~
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By summing we obtain

max

¢ . R
N 47'<N 47" = —N.

|

In order to estimate the number of blocks in P we use the admissibility condition
and a result concerning the size of the clusters ¢ € Ty. The constant that describes
the quasi-uniformity from Definition 4.1.13 is again denoted by gg and the minimal
constant in (7.69) is denoted by Cijpy.

Corollary 7.4.5. Let Assumptions 7.3.16, 7.4.1 and 7.4.3 hold. Let the cluster tree
be generated by the procedure generate_cluster_tree (see Algorithm 7.1.8). Then
foro €Ty

diamo < 2 ¢diam T + 4h,
ITo| > (ggCiny) > 4bma=t"1 42, (1.75)

where diam (-) again denotes the Euclidean diameter.

Proof. (i) Let 0 € T\ Leaves be a cluster with cluster box Q. and let Q € ¥ (Qy)
be a congruent sub-cuboid [see (7.4)]. The maximal edge length of Q. is denoted
by L. Q is associated with the cluster s = s (Q), which contains all the indices
i € I with My, € Q (see Definition 7.1.6). The support of the basis function
corresponding to the degree of freedom i satisfies diam (supp b;) < 2h. Therefore
the maximal edge length of the cluster box Qy;, is bounded from above by 2/. The
union [ J;¢; Q) is thus contained in a cuboid with the center of mass M and the
maximal edge length L /2 + 2h. Hence it follows that

1
diams < EL + 2h. (7.76)

Clearly we have for therootZ € T
diamZ = diamT".

With (7.76) we thus conclude for o € T, by induction that

-1
diamo < 2=t diam T + 2h Z 2t < 2=t diam T + 4h.
i=0

(i1) By Assumption 7.4.1.(3) every cluster 0 € T'\ Leaves has at least four sons.
With £ := level (o) it thus follows that

o > 4bmn—t, (7.77)
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Since every panel has at most 4 vertices (for triangles only 3 vertices), ['c contains
at least fo/4 different panels. We obtain a lower bound for the surface of a panel
with inequality (7.69) by choosing u = 1. This yields

Tl = 1113200 = 72/ Cy |70 () = (he/Cin)* = (gCin) > h* VT €G.
It follows that
ITs| > (ggCiny) 2 4bm=t"1p2, (7.78)
O

Corollary 7.4.6. Let the conditions from Corollary 7.4.5 be satisfied. Then there
exists a constant C that depends only on qg, Ciny, Cp and diam I" such that

diamo < C27¢ (7.79)

forallo € Ty.
Proof. Estimate (7.75) with 0 = Z implies that
IT| = (ggCin) ™ 4712
and it follows that
h < 2¢gCin2 " diam . (7.80)
Therefore the constant in (7.79) can be chosen as C = (1 + 8¢gCiny) diamI'. O
With this corollary the number of blocks in P can be estimated.

Theorem 7.4.7. Let the assumptions from Corollary 7.4.5 be satisfied. Then
gP <CN,

where C depends only on n, C,, Cr, qg, Ciny, Cp and diamT'.

Proof. Let b = (0,s5) € P. The construction of the covering P of Z x Z by means
of the procedure divide implies that the father b = (G,5) := father (b) is not
contained in P/%" and that the admissibility condition for b is violated. Therefore
we have

ndist (6,5) < max {diam &, diam §} . (7.81)

It follows from o C & that I’y C I's, and combined with (7.81) we obtain

1
dist (0, 5) < dist (0, 5) + diamo + diams§ < (— + 2) max {diam ¢, diam §} .
n

We set £ := level (o) = level (s). Corollary 7.4.6 implies the estimate

dist (0,5) < C (1/n+2)27¢, (7.82)
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For all (x,y) € (I's, ['s) we have
Ix —y|| <dist(o,s) + diamo + diams,
and it follows from (7.82) that
Ix—yl<C1/n+2)27  +2027¢ =: ;27

This estimate means that the subset of I x I which is covered by the blocks (o, 5) €
Py (more precisely by (I'y x I's)) is contained in

([ xT), = {(x, V) lx—yl < clz—‘} . (7.83)
Forx € T" we set
Iy (x) := {y el |x—y| < C12_£}.

Assumption 7.3.16 yields
ITe (%)) = €47

and it follows that
(T x ), < C|r|47¢ (7.84)

With the help of (7.75) the surface of the block can be estimated by
|(To. Ty)| = T [Ts| = 16%7" 1/ (g5 Cim))* - (7.85)

This means that the number of elements Py [see (7.53)] is bounded by the quotient
of the right-hand sides in (7.84) and (7.85):

46
Py < Cm. (7.86)
If we use (7.74) and sum over all levels we obtain § Py, < C>4% and
Linax Linax C
1P =) #P < CzZ4‘ 2 gl (7.87)
{=0

If we then choose 0 = 7 and £ = 0 in Estimate (7.77) we obtain the assertion

gP < C3(82).
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Keeping in mind (7.26) and (7.38) we still need estimates for the cardinalities of
the sets P/4" (c),c € T,and P™ (c), c € Leaves.

Theorem 7.4.8. Let the conditions from Corollary 7.4.5 be satisfied. Then for all
o € T and c € Leaves

nPfar (O') _i_ﬁPnear (C) <C,

where C depends only on 1, C,, Cr, Cp, diamI" and the parameters described in
Convention 7.3.17.

Proof. Leto € Ty and P72" (o) be defined as in (7.7). It follows from (7.83) that all

clusters s € P/4" () (more precisely, the geometric clusters I'y) are contained in

e ()= {y el x—y| < clz—‘}.

xels

Let M, be the center of the smallest ball that contains I'; and let 4 be its radius.
Clearly we have with Corollary 7.4.6 that

re <diamo < C2_[,

and that Ty (o) is contained in a ball B, around M, with radius C,27¢ :=
(Cy + C)27¢. The surface measure of the intersection B, N I' can be estimated
with Assumption 7.3.16 according to

|B, NT| < CC247¢, (7.88)

Assumption 7.4.1(4) implies P/4” (o) C Ty and Corollary 7.4.5 gives us that
every cluster s € P/%" (o) satisfies the estimate

|Tg| > 4bme=t1 (n /)2 (7.89)

The quotient of the right-hand sides in (7.88) and (7.89) constitutes an upper bound
for the number § P /%" (o)

Cs
prar (0) < 2 dlm

and combined with Assumption 7.4.1(2) we obtain the assertion.
The proof of the estimate for the near-field clusters P (c), ¢ € Leaves, uses
the same arguments as above and is therefore omitted. O
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7.4.2 The Algorithmic Complexity of the Cluster Method

In order to estimate the complexity of the cluster method we will make the following
simplifying assumptions. For a more general discussion we refer to [109].

Assumption 7.4.9. Let Assumptions 7.3.16, 7.4.1 and 7.4.3 hold. The cluster app-
roximation is defined by Cebysev interpolation. The order of expansion is chosen as
m = O (logN) [see (7.73)].

Generating the Cluster Tree

The cluster tree is generated level-by-level by the procedure generate_cluster_tree
(Algorithm 7.1.8). The set of sons is generated for all clusters belonging to the
current level. This results in a total computational complexity of O (N) per level
and O (N £,y) for the entire cluster tree. If we use (7.77) with 0 = Z we obtain

Emax = lOg N/ 10g4

and O (N log N) arithmetic operations for the generation of the cluster tree. This
requires a memory capacity of O (N) floating-point numbers.

Generating the Covering

The covering P is generated by the procedure divide by a recursion over the tree
levels. On every level £ > 1 all pairs (0, s) € Ty x T; whose fathers do not satisfy
the admissibility condition are checked for admissibility. Therefore the associated
geometric blocks (I'y, I's) are contained in (I" x I"), [see (7.83)] and their number
can be estimated as in (7.86). By summing over all levels we obtain [see (7.87)] a
computational and memory complexity which is proportional to O (N).

Generating the Shift Coefficients

For the computation of the shift coefficients in the Lagrange representation we use
the recursion (7.42) combined with Definitions (7.43) and (7.44)

Yiuw,e *= Auy i Qus,van,dus,vs,s.

Computing the coefficients a;,;,,, foralll <i <m,1 < j <iandl1 <k <3is
performed by recursion (7.42) in O (mz) operations. It is only necessary to compute
and store the coefficients a; ;,, in this phase. These coefficients can be multiplied
by each other as is necessary during the upwards and downwards paths, for example,
for the computation of
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(v) Z i GE (V)
VERmMm

The computational complexity and memory requirements therefore consist of at
most O ((§7) x m?) = O (N log® N) operations.

Computing the Expansion Coefficients

For every block b = (0,5) € P/% there exist O (m6) expansion coefficients
Kky,v (b) that are defined by

G (gm’ ;(v))

wvE€ETm

for the interpolation points (E(“),é (v))u,v egn C Qs X Qs. The overall com-
putational complexity for the computation of all far-field coefficients therefore
consists of O (#P/" x m®) = O (N log® N) operations and requires memory
O (P79 x m®) = O (N log® N) floating-point numbers.

Computing the Basis Far-Field Coefficients

We will restrict ourselves here to determining the complexity for the computation
of the coefficients

LY = / b (x) @) (x) dsy.
supp b;

The coefficients Rg)}) can be computed with the same computational cost.

We achieve this by decomposing supp b; into O (1) many panels and by apply-
ing the quadrature described in (7.48). Per panel the integrand has to be evaluated in
o (mz) interpolation nodes. For any panel T C supp b; we denote the associated set

L (D)

of quadrature points by ({ (")) . In order to evaluate the integrals ( Gy

>M€[rm
. We use the Algorithm evaluate DL, to

vel,

WEL
vel,

evaluate the expansion functions CD?L}) This requires a computational cost of O (m3)

()
we need to evaluate (dD{l.} (é'(”))>

operations per point ¢ and a cost of O (ms) operations for all points (é‘ ("))v el

Analogously, the evaluation of the sum in (7.48) for all v € L, requires O (ms)

arithmetic operations by assuming precomputed values (CDgL}) ({ ("))) . Over-

;LE,C
ely

all, this results in a computational complexity of O ((HZ) x m”) = O (N log’ N)
operations.
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Computing the Near-Field Matrix
We have for the number of near-field matrix elements
HPnear < ]:T.P < CN.

In Chap. 5 quadrature methods were developed that allow for an approximation of
the near-field matrix entries with the required precision in O (log4 N ) operations
per element. The total cost for the computation of the near-field matrix therefore
consists of O (N log* N ) operations and the memory capacity in a sparse matrix
representation consists of O (N) floating-point numbers.

All the computations that we have discussed so far only need to be done once
during a preparatory phase. The following steps have to be performed once for every
matrix-vector multiplication.

Evaluating the Upwards Recursion

Per cluster the operation

Vv €Rm: R = Z Vfa,aﬁév)

VERm

has to be evaluated. Since R, = O (m?) this yields an overall complexity of
o (ﬂT X m6) =0 (N log® N ) Storing all coefficients 752") requires storage of
O (N log® N) floating-point numbers.

Evaluating the Cluster—Cluster Coupling

Per block the expression

Bc(v) = Z Z kv, (b) Egﬂ)

oeP/ar(c)u€Rm(v)

has to be evaluated. For every ¢ € T Theorem 7.4.8 gives us the estimate
P72 (¢) = O (1). For v € L,, we have for the Cebysev interpolation the equality

iRm (v) = iR = §Tm = m”.

This yields an overall complexity of O ((7) x 1 x m®) = O (N log® N) oper-
ations. Storing all coefficients (Bc(v)> .

veLm

requires O (N log® N') floating-point

numbers.
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Evaluating the Downwards Recursion

The complexity for the downwards recursion is the same as for the upwards recur-
sion and therefore consists of O (N log® N ) operations and requires a memory

capacity of O (N log> N) floating-point numbers.

Evaluating the Matrix-Vector Product

The evaluation of the matrix-vector multiplication by means of the near-field matrix

and the precalculated coefficients Lg.‘}) and ng‘}) is given by

Viel: v;:= Z (Khear)i,juj + Z Lgf‘})ﬁg‘}).
{jreprear({i}) WELm

For every i € 7 we have P ({i}) = O (1) (see Theorem 7.4.8). This yields
an overall complexity of O (#Z x (1 +m?)) = O (N log® N)) operations for this
phase. Storing the resulting vector v requires space for N floating-point numbers.

Theorem 7.4.10. Let Assumption 7.4.9 be satisfied. Then the computational cost of
the cluster method for the approximation of a matrix-vector multiplication is given
by O (N log® N) operations and the memory required is given by O (N log® N)
floating-point numbers.

For special kernel functions (Laplace/Helmholtz) the asymptotic complexity can
be reduced by choosing special approximation systems (see Sect.7.1.3.2). For a
detailed description of these modifications we refer to [77,78, 110,111, 194].

Remark 7.4.11. The estimates that we have presented here illustrate the reduc-
tion in asymptotic complexity of the cluster method in comparison with the usual
matrix oriented representations. Whether this asymptotic behavior becomes evi-
dent for problems with a size that is more common in practical applications, i.e.,
N = 103 — 2 x 10% strongly depends on the efficiency of the implementation.
Numerical experiments have shown that the reductions in computational time and
memory capacity become evident from about N = 500 for standard problems
(Laplace) (see [122, 148, 152, 198, 205]).

7.5 Cluster Method for Collocation Methods

The discretization of a boundary integral operator by means of the collocation
method requires a boundary element space S of dimension N = dim S and a set of
collocation points Z C I with N = #7Z (see Remark 4.1.26). We assume that the
set 7 is chosen in such a way that the interpolation problem:



464 7 Cluster Methods

Find u € S such that u (x) = wy vVxeZl

has a unique solution for all mesh functions w = (wy),c7 € CZ.

The collocation solution ug"” € S for the boundary integral equation

Au=f

is defined by
(Au") (x) = f (x) Vx e . (7.90)

Let A be a boundary integral operator of the form
A=A+ K with (Ku)(x)=/k(x,y)u(y)dsy vVx eTl.
r

In order to ensure that the collocation method is well defined we assume that AS C
Cco(I).
The cluster method for Galerkin discretizations can be transferred to collocation
methods with small modifications.
For this we define the space V' as the span of delta distributions in the collocation
points
V :=span{dy :x € I}

and use (0x)yc7 as a basis for V. Then the collocation method can be written in the
“variational form”: Find ug”” such that

a(us,v) :=V(Au§’”)=v(f) Yvev.

The cluster algorithm can be easily generalized to handle the bilinear forma : S x
V — C. It turns out that for the collocation method only the definition of the left
far-field coefficients L‘{’l.} in (7.34) has to be replaced by

LY =0l (xi)  YveLln

and the definition of the near-field matrix has to be replaced by

Koy oo LRG0 by G dsy i (G} (D) € P,
near)j,j - 0 otherwise.

7.6 Remarks and Additional Results

In the present chapter, we introduced the panel-clustering methods for the fast
numerical evaluation of discretized integral operators applied to vectors; this is the
key step in the iterative numerical solution of the large, densely populated matrix
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equations which result from the boundary element discretization of BIEs. Formally,
these methods allow the reduction of the matrix-vector multiplication from O (N 2)
to log-linear in N complexity, and are the key reason why boundary integral equa-
tion based methods are today highly competitive solvers for linear elliptic problems.
In [104], a version of the panel-clustering method for optimally refined, anisotropic
meshes has been developed.

Naturally, as in previous chapters, problems with the panel clustering and the
related, Fast-Multipole-Method (FMM) type approach arise with high frequency
scattering, since the truncation error introduced in the complexity reduction is not
uniformly small with respect to the wave number. Special versions of the FMM are
available, however, which do exhibit log-linear scaling complexity independent of
the wave number. We refer to [77,78, 194], for example. All these references have
in common a very carefully tailored multipole expansion in different regimes of the
frequency.

An alternative approach which has emerged in recent years and which is, at least
in key components, related to FMM and panel clustering, is the concept of so-called
hierarchical matrices (H- and H>-Matrices). We refer to [19, 24, 118—121]. Here,
no explicit, wave number dependent FMM expansion is required, as optimal, sepa-
rated approximations of the kernel of the BIE are generated by means of recursive
(over all clusters) adaptive low-rank matrix approximations. Another automatic and
purely algebraic approach for the sparse representation of non-local operators is the
Adaptive Cross Approximation (ACA). We refer to [19,20, 25, 103] for details.



Chapter 8
p-Parametric Surface Approximation

In practice, the description of the “true” physical surface might be very compli-
cated or even not available as an exact analytic function and has to be approximated
by using, e.g., pointwise measurements of the surface or some geometric mod-
elling software. In this chapter, we will address the question how to approximate
quite general surfaces in a flexible way by p-parametric boundary elements. Sur-
face approximations for integral equations and their influence on the discretization
error have first been studied systematically in [167]. Further papers on this topic are
[168], [80, Chap. XIII, Sect. 2], [84], [21], [63, Sect. 1.4].

For the error estimates, we will need some tools from elementary differential
geometry. In order to keep this book self contained we have included Sect. 8.4,
where these tools are developed.

Readers who are interested in the practical application of p-parametric surface
approximations and not so much in the convergence analysis will find in Sect. 8.3 an
overview of the required polynomial orders for the p-parametric approximations.

8.1 Discretization of Boundary Integral Equations
with Surface Approximations

In this section, we assume that I is the surface of a bounded domain  C R3. We
emphasize that the concept of p-parametric surface approximation can be applied
verbatim to one-dimensional boundaries of two-dimensional domains  C R? and
in higher dimensions as well.

8.1.1 p-Parametric Surface Meshes
Jor Globally Smooth Surfaces

The approximation of T" starts with the construction of a mesh Gi"® which consists
of plane, open triangles with straight edges.

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series 467
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2_8,
(© Springer-Verlag Berlin Heidelberg 2011
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Definition 8.1.1 (Affine Surface Approximation). Let I be the boundary of a
bounded domain Q. A set Gffine .= {t1, 72, ..., TN} consisting of plane open trian-
gles with straight edges in R? is an affine surface mesh for I' if Conditions 1-3 are
satisfied:

1. G¥fine is a regular boundary element mesh for

Fafﬁne = U 7.

1€ gafﬁnc

2. Tnaffine jnterpolates the surface I at the vertices of the triangles.
The reference mappings 21" :  — 7 are affine.
4. There exists a bi-Lipschitz continuous lifting gaffine . [ _, Traffine 5 o there exist

constants c&ffine caffine () gych that

(O8]

Cafﬁne H eafﬁne (X) _ eafﬁne (y) H < ||X _ y” < Cafﬁne ||9afﬁne (X) _ eafﬁneyH VX, ye€ T.
8.1

We refer to "¢ a5 the affine surface approximation.

Remark 8.1.2. We restrict ourselves to simplicial surface meshes because then
Gt consists of plane triangles while the bilinear images of the unit square would
be, in general, curved quadrilaterals.

The definition of the abstract surface lifting 2ire : T' — [ affine typically depends
on the concrete application. We will consider a construction which is based on the
following assumption.

Assumption 8.1.3. There is a neighborhood Ut of I" and a mapping P : Upr — T’
such that:

(a) T¥M"e C Ur.
(b) Plpane @ T affine T ¢ bi-Lipschitz continuous, i.e., there exists a constant
cp > 0 such that

cplx=yll <P ) —P Wl <cp' Ix=yl  Vxyele
(c) For any T € G qnd ¥ := P (1), the restriction P|, : T — T isa ck1
diffeomorphism for some k > 2.

If Assumption 8.1.3 is satisfied, we may simply set
gaffine - — (P|l"afﬁne)_1 : T — [affine,

The p-th order parametric surface approximation will be defined by employing
(p )} denotes

the mapping P as in Assumption 8.1.3. Recall that {ﬁgji) 2@ )) ey
the set of nodal points on the reference element and N 8’ }) is the Lagrange basis on

7 corresponding to the nodal point /P(ij 7)-
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Definition 8.1.4. For given panel 7 € G¥" and degree p > 1, the p—parametric

reference mapping x., , of degree p is (componentwise) the p-th order nodal inter-

affine
T

affine
T

polation of P o y3"" ie., x¢,p = 1r (P oy ) It has the explicit representation

A 27 A A A affine A(P)
Yop (R) = Z Pgiz)N((f‘)j) €3] VX e 1, where sz) := PoyM (P(l,’j) )
(.)€,
For t € G| the image y:,, (7) is the p—parametric panel of degree p. The

mesh G? := {)., (f) : T € G} is the p—parametric surface mesh of degree p.
The p—parametric surface approximation of degree p corresponding to G? is

r? .= U T.

Tegr

Remark 8.1.5. The p-parametric reference mapping xr,p : T — T is component-
wise a polynomial of maximal degree p. The definition of x+,p does not require the
analytic knowledge of the pullbacks P o y*M for all X € % but only the discrete

images of the nodal points P o yAffine (ﬁzi;))for all reference indices (i, j) € L;. In
practice, such discrete images can be obtained either by measurements or by using
geometric modelling provided by CAD-programs.

For p = 1, the mesh G' = G4 s independent of the choice of the surface

projection P since all nodal points of G [ie on the true surface.

The analogue to Assumption 8.1.3 for p-parametric surface approximations of
higher order reads as follows.

Assumption 8.1.6. The mapping P : Ur — I as in Assumption 8.1.3 satisfies:

(a) TP C Ur.
(b) P|pp : TP — T is bi-Lipschitz continuous, i.e., there exists a constant cp > 0
such that
cpx=yl <IIP®)~P|=cp Ix—-y|  V¥xyel?
(c) For any T € GP and T := P (%), the restriction Pl : T — T isa Cck-1

diffeomorphism for some k > 2.

If Assumption 8.1.6 is satisfied we set
07 = (Plrp)~".

Notation 8.1.7. For the panels in G e write T and use them as counting

indices. For the lifted panel on G?, we use a “~ " notation and write T = lift, , (1),

afﬁne) -1

where lift; , 1= y¢p o ()(T : T — 1. For the corresponding panel on the
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“wY o

original surface we use a superscript and write T = P () = lift; (t), where

lift; := P o lifty p.

In the case of globally smooth surfaces, the orthogonal surface projection is well
defined in a neighborhood of I'. This choice will lead to estimates in the analysis of
the surface approximation errors which are improved by one order of & compared
to more general mappings P. The proof of the following example can be found in,
e.g., [100, Lemma 14.16].

Example 8.1.8 (Orthogonal surface projection). Let I" be the surface of a boun-
ded domain Q@ C R3 of class C¥ for some k > 2. This implies that there exist § > 0
and a tubular neighborhood V of T such that the mapping

v x]-8,8[—V ¥ (X,5) =X+ sn(x) (8.2)

is a Ck=1 diffeomorphism. Thus the orthogonal projection P : V. — T resp. the
oriented distance function dist : V- — |=6, [ are well defined by

P(x+sn(x)) =x and dist(x+ sn(x)) =s

and of class C*=1 resp. C*.

Remark 8.1.9. The case d = 2 is special because, for sufficiently small mesh
width h, the projection P can always be chosen, locally, as the orthogonal surface
projection, i.e.,

Vxeregiic  x_x1T;

where X = P (x) and Ty denotes the tangential plane at T = P (1) in X
This is due to the fact that for sufficiently small h., 8, and any X € T, the line
{X+sn(X):s €[-6,0]} and t have a unique intersection point.

In the case of anisotropic boundary value problems, where the principal part of
L is given by —div (A gradu) with some positive definite A # I, the rdle of the
orthogonal surface projection is played by the conormal surface projection.

Example 8.1.10 (Conormal surface projection). Let I be the boundary of a boun-
ded domain Q C R3 of class C* for some k > 2. Let A € R**3 be positive definite
and define the exterior conormal vector atz € T" by v(z) = An(z). This implies
that there exist § > 0 and a tubular neighborhood V of T such that the mapping

1//:1"x]—8,8[—>i7 ¥ (X,5) =X+ sV (X)

is a C*=1 diffeomorphism. Thus the conormal projection P : V- — T resp. the
Sfunction dista : V — |=6, §[ are well defined by

P(x+sv(x) =x and dista (x+sv(x)) =s (8.3)

and of class C*=1 resp. C*.
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Proof. The proof of Example 8.1.8 is based on the introduction of a local coor-
dinate system (t;(x),t2(x),n(x)) at some points x € I'" and the application of
the inverse mapping theorem along with the compactness of I'. The positive def-
initeness of the diffusion matrix A implies (v(x),n(x)) = (An(x),n(x)) > Ay,
where A, is the smallest eigenvalue of A. As a consequence, the transformation
(t1 (%), t2(x), n(x)) — (t1(x), t2(x), v(x)) is regular and hence the asserted proper-
ties of the conormal projection (8.3) are inherited from the analogous properties of
the orthogonal projection. O

Remark 8.1.11. In some applications, the function P : Ur — I, which is used in
Definitions 8.1.1 and 8.1.4 for the construction of the p-parametric surface approx-
imations, is not explicitly given. Instead the surface mesh is given in parametrized
form by a set of pullbacks x : © — R3, k € I, where I is some finite index set. We
assume here that

Gi=1{m@ :kel}

is a surface mesh for U in the sense of Definition 4.1.2. If the evaluation of the
mappings Xy and their derivatives are costly it is recommended that yy be replaced
by a p-parametric approximation

Yo =17 Q) and g7 = {0f (): ¥ € G,

where the lifting is defined by 9,‘: ‘= Xk,p© )(]:1. Note that, in general, 67 is not the
orthogonal surface projection.

8.1.2 (k,p)-Boundary Element Spaces with p-Parametric
Surface Approximation

The definition of boundary element spaces as introduced in Chap. 4 has to be modi-
fied slightly if the original surface is replaced by its p-parametric approximation.
The p-parametric surface mesh G? is characterized by the set of parametrizations

711 = {X‘t,p ‘T e gafﬁne}

which map the reference element 7 to the panel yr,p (7) € GP. (Recall that we
always use the elements of the affine mesh G as the counting index for mesh-
related quantities such as the pullbacks { x-,, : T € G*ffinc})

Definition 8.1.12. For given p > 1, let G denote a p-parametric surface approx-
imation of degree p. The space of (k, p)-discontinuous boundary elements of
algebraic degree k € Ny and geometric degree p is given by

skt {1//:F1’—>K|Vt€gafﬁ“ei I,/fo)(r,pelp)kA}'

Xp
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The space of (k, p)-continuous boundary elements of algebraic degree k € N and
geometric degree p is given by

S%Z ={y e COT") | YT € G Yoy, € P}

Remark 8.1.13. If parts of the sub- and superscripts in the notation S fx;r are clear
4

from the context, we will write for short Sk0.p gk.l.p gk.p o simply S.

Note that the functions u € Sk:"P , in general, are not defined on the true surface.
The approximations to the exact solution are obtained by using the surface projec-
tion by means of u o 7. For a function v : T'’? — C, we denote by v the lifted
function

vVi=vofh?:T - C (8.4)

8.1.3 Discretization of Boundary Integral Equations
with p-Parametric Surface Approximation

We will consider the abstract problem:

Findu € H : b(u,v) =F (v) Vv e H. (8.5)

The Hilbert space H, typically, is a Sobolev space H (T"), s = —1/2,0,1/2 resp.
a suitable closed subspace. The functional F € H’ denotes a given right-hand side
which, possibly as, e.g., in the case of the direct method (cf. Sect. 3.4.2), might be
defined via integral operators. For the boundary integral operators V, K, and K’ (cf.
Chap. 3), the sesquilinear form b (-, -) has the abstract form

b (u,v) = (Bu,v)2(r) (8.6)

with the boundary integral operator

(Bu) (x) = A1 (X)u (x) + A2 (X) /1" kx,y)u(y)dsy x €T ae. (8.7)

For the integral operator W, the kernel function is hypersingular and we choose the
regularization via partial integration (cf. Sect. 3.3.4). The sesquilinear form is given
by [cf. (3.3.22)]

b(u.v) = [F iy (53) (el o (). a2 ()

+cky (X, y)u (y) v (X)} dsydsx (8.8)
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with
kixy) =G x-y) and kxy) =Gx-y)(Anx.A"n ().

Assumption 8.1.14. The kernel function k : I' x I' — C is either a fundamental
solution G : R3® — C [cf (3.3)]
1 elbzha—Allzll

G (z) =
@ = diex T

(8.9)

or a suitable Gdteaux derivative:

k(X’y) = G(X_Y),

k (x,y) = 0G (x —y) /vy,

k(xy) = 4G (x—y) +2(b.vy) G (x—y),
k(x,y) =G (x—y)(A?n(x),A?n(y))

KN oL~

where v = An denotes the conormal vector [cf. (2.103)].

Notation 8.1.15. Existence and uniqueness of the Galerkin solution on the sur-
face TP will be proved for sufficiently fine mesh width. In this light, we consider
a sequence (gf ) cen Of p-parametric surface meshes with corresponding approxi-

b4 ; k,r,p ;
mate surfaces (Fe )eeN' We write (Se )eeN for the corresponding sequence of

boundary element spaces.

If the polynomial orders (k, p) and the regularity index r € {—1,0} are clear
from the context, we simply write Gy, Ty, Sy, 0. For the mesh sequence (Q?fﬁne) LN’
the constants in Definition 8.1.1 and Assumption 8.1.3, resp. Assumption 8.1.6, in

general, depend on £ and we write czfﬁne, C é‘fﬁne, cpy.

The following Assumption expresses the requirement that these constants are
uniformly bounded.

Assumption 8.1.16. There exists constants ciffine 0, CAfine « oo such that
the constants czfﬁ“e, C ;f““e, cp in Definition 8.1.1 and Assumption 8.1.3, resp.
Assumption 8.1.6 satisfy

Vi e N cafﬁne < czfﬁne < C(afﬁne < Cafﬁne and cp < cpu.

Example 8.1.17. Let T' = S, and let T pe the double pyramid with vertices
(1,0,0)T, (0,1,0)7, (=1,0,0)T, (0,—1,0)T, (0,0, 1)T, (0,0, —1)T. The mesh G3'ine
is the set of the eight triangular faces of T The orthogonal projection P :
rafine . T s given by P (X) = x/ ||x|| and can be extended to an appropriate
neighborhood Ur as required in Assumption 8.1.3.

Recursively, we assume ng_ﬁ‘l‘e has been generated for some £ > 1. A finer mesh
ngﬁne is constructed by (a) connecting the midpoints of edges of the panels in Gy,
and (b) projecting these midpoints to the surface by means of the mapping P.
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Because the projection P is given explicitly, the construction of the p-parametric
surface approximations Ff is without any difficulty. This leads to meshes Qé’
which satisfy Assumption 8.1.16. The proof of this statement is straightforward but
somewhat lengthy and will be skipped.

The Galerkin boundary element method of algebraic degree k and geometric
degree p for the discretization of (8.7) consists of two steps (cf. Notation 8.1.15):

e Replacing the true surface by the p-parametric approximation:
Find uy € Sy : by (ug,v) = Fy (v) Vv e Sy. (8.10)

The perturbed sesquilinear form is given for the boundary integral operators
V, K, and K’ by
be (u,v) = (Beu,v)2(r,) »

where
(Beu) (x) = A1 0 (X) u (%) + Az (X)/ ke(x,y)u(y)dsy  xeljae.
I
and, for the hypersingular operator W, by

by i= [l (o) feurir g (). curlr .07 ()
Fg XF@
+cka o (X, y)u(y)v (X)} dsydsx.

The kernels kg : Ty x Ty — C which correspond to the four cases in
Assumption 8.1.14 are given by:

Lo kg (x,y) = ki (x.y) =G (x—y).

2. kg (x,y) = 0G (x—Y)/0vyx, where v; := Ang. The matrix A is as in
(2.98) and ny denotes the normal field at the p-parametric surface I'y pointing
towards the unbounded exterior domain. The notation v  indicates that the
Gateaux derivative is applied with respect to the variable x.

3. ke (x,y) = 0G (x—y) /0vey + 2(b,vey) G (x—y).

4. ko (x,y) = G (x—y) (A"?ng (), A'?ng (y)).

Furthermore, the (real-valued) coefficients A; ¢ and A, ¢ are defined by A, ¢ :=
Ao 9[1, Az i=Azo0 9[1 . Note that in most cases A1, A, are piecewise constant
implying that A1 y = Ay and A5 ¢ = A».

Remark 8.1.18. We do not discuss the approximation of the right-hand side F (v)
in detail, since its accurate evaluation strongly depends on the specific problem. As
a rule of thumb, one replaces integrals over I by integrals over I'y and (expressions
containing) the conormal vector field v by Ang. The arising approximation of the
functional F in (8.10) is denoted by Fy.
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o Lifting the approximation uy to the true surface:
The p-parametric Galerkin approximation to the exact solution of (8.5) is
given by
Ijtg = ugot%. (8.11)

8.2 Convergence Analysis

In this section, we will address the question how the degree p in the p-parametric
surface approximation has to be chosen such that the convergence rates of the
unperturbed Galerkin discretization (on the exact surface) are preserved. The dis-
cretization parameter for the mesh Gy is the mesh width %y. In this section, we
will investigate the convergence of the corresponding sequence (uy), of Galerkin
solutions.

For the continuous problem (8.5) we assume existence and uniqueness via the
following conditions.

Assumption 8.2.1. /. Continuity: There exists C > 0 such that
Vu,ve H : b .| < Cllullg Vg

2. Gadrdings’s inequality: There exist a constant ¢ > 0 and a compact operator
T : H — H' such that

VYueH : b (u,u) — (Tu,u) gy | > ull.
3. Injectivity: For allv € H\ {0},
bu,v)y=0 = u=0.

In order to compare the sesquilinear forms b (-,-) and by (-, ), we will lift the
sesquilinear form by (-,-) to the true surface I'. For t € G4 and 7 = lift,,, (7)
(cf. Notation 8.1.7), the pullback of the corresponding panel ¢ = P () C I to the
reference element is the composition

Yr=Pojyrp:T—>1. (8.12)

The function py : I' — R is the quotient of the square roots of Gram’s
determinants for I" and I'y. We define py : ' — R piecewise, for x € 7 C Gy, by

(grpoxs') ®

pe (x) = g o x7t (x)

Here, g; : T — R denotes the surface element of © € G; and g, is the surface
element of the corresponding p-parametric panel. Explicitly, we have
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gr (®) = VdetG; (}) with G (}®) :=J7 ®)J: K, (8.13a)
grp X) = 1/detGer p (X) with Gep R) =1, X) Je,p (X) (8.13b)

where J; (resp. J¢, p) is the Jacobi matrix of y (resp. x¢,p).
The following quantities will enter the error estimates

pe = llpeliooqry and g = llpe — 1l ooqry - (8.14)
By employing the function pg, we may define the lifted p-parametric boundary

element space by 5
S[ = {I/[O@( u e S[},

and the lifted sesquilinear form l;g : S'g X S‘g — C as follows:

e For the boundary integral operators V, K, and K’,
b 5) = [ 21007010 e (),
r

+ [ Ao (0T e (%) ( [ Fe (k. y) i (¥) pe (9) dsy) ds,,
T T

where k¢ (x.) = k¢ (60 (0) 6 (¥).
e For the hypersingular integral operator W,

b i) i= [ o000 @) {59 {(eurlr ) @) (corire127) )

tekay (X Y) (Y)Y (x)} dsydsy. (8.15)

where k; ¢ (X, y) := ki ¢ (0¢ (x) .0 (y)).i = 1,2,and v := Vol 1, vi=vo0, ",
andX := 0y (x),y := 0 (y).
e The lifted right-hand side Fy : S; — C is given by
]5'5 () := Fy (ﬁo 9[1) .
Remark 8.2.2. (a) For all u,v € Sy and corresponding lifted u,v [cf. (8.4)],
by (u,v) = by (it,¥) and Fy () = Fy (u).

(b) The Qalerkin solution 1y in (8.11) can be characterized equivalently: Find
iy € Sy, such that

by (itg, ) = Fo (V) Vi € Sy
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Since the sesquilinear form 154 and the right-hand side Fy are both defined for
functions on the true surface I', we may compare them with the original sesquilinear
form b and right-hand side F. In order to ensure well-posedness of this problem
and quasi-optimal error estimates, we employ the concepts of uniform continuity,
consistency, and stability as introduced in Sect. 4.2.4.

1. The family of sesquilinear forms by (-, ) : S¢ x S¢ — C is uniformly continuous
if there is a constant C such that

Vive St Ibe wv)] < C lullg IVl - (8.162)

2. The family of lifted sesquilinear forms by () : Sgx Sy — Cis uniformly stable
if there exists a null sequence (c¢), such that

Vit v e Sp: |b (V) — by (V)| < cq llitl g V] - (8.16b)

3. Let U be a subspace of H with continuous embedding and g[ C U. (Note that
the trivial choice U = H is always possible.) Let the exact solution be U -regular,
i.e, the solution u of (8.5) satisfies u € U. The family of lifted sesquilinear forms
l;g (-.) : S¢ x S¢ — C is uniformly consistent with respect to ||l 7 if there exists
a null sequence (8;) ¢ such that

Vi v e S ‘b(ﬁ,(z) — b (i, %)

<8 llilly IVl g - (8.16¢)

4. The family of right-hand sides Fy ¢): S¢ — C is uniformly consistent if there
exist a constant Cr which depends only on F and a null sequence (&), such
that

Viie S : ‘F(ﬁ) —F (1)

< Cr& ||it] g - (8.16d)

Remark 8.2.3. Let the exact solution satisfy u € U. Conditions (8.16) imply, by
means of Strang’s lemma (cf. Sect. 4.2.4), that the error of the exact solution u and
the (k, p)-boundary element approximation ity can be estimated by

lu—itgll g < C (llu—Teull g + 8 llully + Créy). (8.17)

where I1y : H — Sy denotes the orthogonal projection with respect to the scalar
product (-, ). The first term on the right-hand side of (8.17) can be estimated as in
(4.158).If H = H" (') for some s € {—1/2,0,1/2}, if the polynomial order for the
boundary element functions equals k, and if problem (8.5) has full H**'-regularity,
the error estimate

. kt1—
lu— el gsry < C (he+1 el g oy + 8 llully + CF(S?)
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follows. Hence the optimal convergence order is preserved if the family of sesquilin-
ear forms is uniformly stable, and both 8; and 5? are bounded from above by

C/’lk—H_S.

In view of the Strang’s lemma it suffices to estimate the constants in the estimates
(8.16). We write the sesquilinear form b (-, -) as a sum

b(u,v) = bI(l,u, 1,v) + b1 (1,u,1,v),

where

b (Wi, u, wa,v) = / Awa (X) V(X)) wy (X) u (X) dsy
r
and

e For the boundary integral operators V, K, and K’,

b (W, u,wa,v) 1= / Az (X) wy (x) V (x) (/ kx,y)u(y)w: (y) dsy) dsy.
r r
e For the boundary integral operator W, we set b' = 0 and

P iz ) i= [ w2 (9w 0) o) ((eurtrao ) 8 (eurirazn ) )

Tk (x,y) i (V)T (x)} dsydsy.

Note that the use of the real-valued weights wy, w» in the sesquilinear forms bl
and b allows us to express some error splittings in a more compact way.
An analogous splitting is employed for the sesquilinear form by (-, -)

be (u.v) = by (1,u, pe.v) + by (pe.u, pe.v)
The difference of the sesquilinear forms b (-, -) and by (-, -) can be written in the form
3
b (it, V) — by (i1, %) = Y _e; (it. V).
i=1
where
e (it,v) = b' (1,1, (1 = pg) , ¥) + 6" (1,1, (1 = pe) , V)

€2 (’jh ‘V)) = bH (106’ 127 P, ‘V}) - b? (IOZ’ Ijh Pes ‘V)) (818)
€3 (’jh ‘V)) = bH ((1 _,O[) 7’7[7 Pes ‘V}) .
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Lemma 8.2.4. Forallu € L?> (T) andw € L™ (T),

||W“||L2(r) <C ||W||L°°(I‘) ||“||L2(r)-

The estimate of the sesquilinear form e, is based on an estimate of the difference
of the kernel functions k and ]ge. Let k be defined as in Assumption 8.1.14. Since
norms are equivalent in finite-dimensional spaces there exist constants ca, Ca > 0
such that

calul <y <Callu]  VueR3. (8.19)

In the following convergence analysis, certain geometric quantities dy, dy, e will
determine the convergence rates of the (k, p)-boundary element method. Let

lIx — ylIx — 116 %) — 0 (V)3 |

d¢p = max sup = (8.20a)
ae{-1,1,2} | xyer [x =yl
xF#y

and

dy = sup IXx —y — (6 (x) — 6 (y))|| and &g := Ca [|b]ly d¢ + (diamT) [A| dy,
X,yE
(8.20b)

where A, b, A are as in (3.3), (8.9). 3
First, we prove convergence estimates in terms of dy, dy, ¢, while the conver-
gence rates of these three geometric quantities will be estimated in Sect. 8.4.

Lemma 8.2.5. Let the kernel function be defined as in Assumption 8.1.14(1). Then
there exists a constant C > 0 which depends only on the coefficients of the differen-
tial operator L and the diameter of T such that

. 1
Vx,yeI''x#y, k(x,y) —ke (x,y)| < C (g¢ + dy) m (8.21)

Proof. For x,y € T', letX := 6 (x) and y € 6 (y). The differences are denoted by
z=y—xandZ:=Yy —X. Then

eb:zha—Allzlls eb:2)a—Alzll5

k(x,y) —k¢ (x,y) = mfz (z,z) + mﬁ (z,2).

where

& (2.2) = |zlly" — |Z];" and § (2.7) = 1 — e®F AUl



480 8 p-Parametric Surface Approximation
The definition of d; immediately implies that

B B _ Assumption 8.1.6b dy (8.19) dy
181 (z.2)| = de/ 1Zllx = de/ |IZll5 =

S 2 b
cpea l|zlly cpey ||zl
(8.22)

while the exponent in the definition of {, can be estimated by
[(b,z —z), —A([1Zll5 = l1z[0)] < [blls 12— 2zll5 + [A[dellz]] <& < ¢

This leads to .
2 (2,7)| < eeq.

Since the surface is bounded there is a constant C > 0 such that

eb:z)a—Allzlls c eDE)a—AllZl 5 o
sup —— < and sup —— < C. (8.23)
x,yeT' v/det A x,yeT' +/detA
Z=x—y 72=0¢(x)—0¢(y)

Thus we have proved that

v C
k(x.y) = ke (x,y)] = (e¢+dy)  Vx.yel,x#y,
Az |z
where C depends on the coefficients of the differential operator. |

For the proof of the following lemma, we will employ an inverse inequality in
the form
VueS  ullpaqy < Chy P llull g2y - (8.24)

The constant Cj,, is moderately bounded for shape-regular and quasi-uniform
meshes. In addition, it depends on the polynomial degree of the shape functions
(cf. Theorem 4.4.3).

Corollary 8.2.6. Let the kernel function be defined by Assumption 8.1.14(1). Then
there exist a constant C > 0 which depends only on the coefficients of the
differential operator L, the diameter of T" and Ciyy in (8.24) such that fors = 0,1/2

Vil e Se | (v —be 9| = 27 {(ee + do) 5 + (1 o) B
it zr-s ey 19l =12 -

Proof. We start with the estimate of the sesquilinear form e, as in (8.18). The
monotonicity of the Riemann integral allows us to use (8.21) to get

loe (¥) it (¥)] | pg () V (x)]
dr |Ix =yl

lez (i, V)| < C (g¢ + de)/ dsydsy.
rJr
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The continuity of the single layer potential for the Laplace operator [from L? (T") to
H' (T') (cf. Theorem 3.1.16)] implies the continuity from L2 (T") to L2 (T"). Thus

) (¥ pe (x) v (x)|

2 @h) = C ety [ [ 1 dsydsy < C (60 + do)
rJr

4 |Ix =yl B
loeitll L2¢ry llPeVll L2 (1
Lemma 8.2.4 I .
< C(se+do) pj litll 2y 19l 2y - (8.25)

where pg is as in (8.14). The inverse inequality (cf. Remark 4.4.4) finishes the
estimate of the sesquilinear form e;.

The estimates of the sesquilinear forms ey, e3 are simpler because no perturbation
of the kernel function appears therein and we may directly apply the continuity of
the original boundary integral operator to obtain

lex (i1, V)| = |b (i1, (1 = p) V)| = C [litll g2y 11 = pe) VIl 21y
Lemma 8.2.4 A v .
< Cpg llull g2y IVl L2(ry - (8.26)

In a similar fashion, the estimate
le3 (it. V)| < C pepf 2l 20y 90l 22 (8.27)

is derived and an inverse inequality finishes the proof. O

In the following we will briefly explain why our proof does not give a better
estimate if we employ the H ~'/2 (I")-continuity of the single layer potential directly
instead of the L? (I")-continuity along with an inverse inequality.

Note that the inclusion S < L2 (I') implies that |pgit|, |V € L2(T) C
H~Y2(T") holds for all i € S. Hence in (8.25) we could employ the H /2 (I')-
continuity of the single layer potential to obtain

le2 . V)| = C (e¢ + do) llpeitl | g—172¢ry peVl g=172(r) - (8.28)

By the continuity of the embedding L? (I') < H~'/2 (T") and an inverse inequality
the estimate

Mocill =172y < C lllpettlll L2y < € pe il L2y

. =, —1/2= v
= Cpellitl 2y < Chy M pe il gr-172(r
follows. The combination with (8.28) yields

le2 (i1, V)| < Chi* (¢ + do) llill g-120y IV -172ry - (8.29)
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Example 8.2.7 explains why the estimate
. —1/2 v .
Wil =120y < Ch V2 il g1y Vi€ S,

in general, is sharp so that (8.29) cannot be improved along the lines of our proof.
In order to avoid technicalities we consider the H~!(I')-norm instead of the
H~'/2(I')-norm in the following example.

Example 8.2.7. Let Q = (0,1) and N € N. Forh = N7\, we set x; := ih,
i =0,1,...,N, and define the intervals t; = (xj—1,x;), 1 <i < N, which define
the mesh G := {t; : 1 <i < N}. For a function f : Q — R, we define its scaled
and periodic version fP : Q — R elementwise by

— Xi—1

PNy = foxt with x7'(x)= xT 1<i<N.
We consider the function
) —-1x€(0,1/2),
u(x) '_{ 1 xe(1/2,1).
Note that
* 1 1
u™D (x) ::/O u(s)ds = ‘5 —Xx| - >

u=? (x):/xu(_l) (s)a’s:l l—x—i—
0 2\4

)

Note that uP*" € Sg’_l is piecewise constant. Our goal is to compute ||[uP” || g1 (q),
where H™1(Q) = (HO1 (Q))/. By definition, we have'

(P, V) 12(q)

[P || -1 () = sup (8.30)
erl@voy  Va@
For the computation of the maximizer vy we define the Lagrange function
J(v) = V)29 — 4 (|V|%-11(S2) - 1) :
The equations for a stationary point (vo, Ag) are given by
/ / 1 per 1
(VO,W )LZ(Q) = m (Ll ,W)LZ(Q) Yw e HO (Q) AN |v0|H1(Q) =1.

! For simplicity, we employ the H'-seminorm as the norm in H, () which is equivalent to the
standard norm.
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The strong formulation is

1
— (P = A =1.
("o ) 210“ Vol 1 (q)

The solution is the scaled and period version vger of

2

vo (x) = ‘;To (—xu (1) + 2 ().

where Ag is chosen such that H (vger)/ ‘

L2(R)
we set Ag = 1. We get

N

2 . Z/ ( per)/
12(Q) —J Yo

Cwl

and
N 1 hz
per _ per _ _
(W0 12y = Z/ uvo —/ uvo = e
i=17% 0
Hence per
er
per _ W) ey VB
07 a1 @) = et = .
|V0 |H1(sz)

Since |uP*| = 1 we get

e =12y = Mlg-1) = € = O (1)

so that
per 12 -1 per
N 1) = C—3h [l =1 (@) -

/3

Hence the estimate

leelll -1 @) < Nl L2y < CH™" llull =10

cannot be improved in general for piecewise constant functions.

483

= 1. Since the scaling in (8.30) cancels

2_ —2[1 lz_ﬁ
=h 0|V0|_192

We turn to the estimate of the derivatives of the fundamental solution. For
x,y e I'letx = 0 (x) and y € 0 (y). The error estimates depend on the following

quantities
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|n(x),y—x) — (g (X),§ —%)|

nI1 ¢ = max_ sup , n? := max sup [n(x) —ng X,
’ %1v,%2§gg XET| ”y - X” T€Gy xet
Ti#h yeb

nIZZ = max sup [(n ),y =) — (ng (f(),f’—i)|'

5 (8.31)
t€Gy x,yet lly — x|l

The proof of the following lemma employs two estimates which will be proved in
Sect. 8.4:

Lemma 8.4.2 —x]|| (8.85)
< Csmbhf and sup ”Y _ | > .
5(,96’,: R£§ ”y - X”
x=x7 &), y=xz (@

max H 3 xep )

1Bl=2 Cco®)

(8.32)

Lemma 8.2.8. Let the kernel function be defined by Assumption 8.1.14(2). Then
there exists a constant C > 0 which depends only on the coefficients of the differen-
tial operator L, the diameter of T', and the constant in Lemma 2.2.14 such that, for
sufficiently small 0 < h < h,

1. VX,yE%GG:

’k (x.y) — k¢ (x, y)‘ I ( 0+ de+ec+ bl n}}). (8.33a)

C
T 4m ||
2. V%l,‘fz (S é, ‘E] ;é ‘Ez, and X € ‘Z’l andy € ‘Z’z,

”Il,e +d; + &
Ix =yl

C
[k oy) — ke = g y”< +||b||n?). (8.33b)

Proof. For x,y € T',let X := 6y (x) and y € 6 (y). The differences are denoted by
zZ =x—yand Z := X — y. We start with the splitting

k(xy) =k (y) = G @ (<Anf ey =05 ) +¢f ) (834
+(G @ =G @) (~n2e &F) + 00 0 — Ane &.5).

where, for o € {1, 2},

T (x,y) 1= S 000) 0 (%) = (b.n (X)),
x—yIE

Mot (xoy) = SV i b )
BT

Nee () 1= Na (%,Y) — Nt K F), ¢f %) =9 (X) — ¢ (%).

Next, we will estimate the different terms in this splitting separately.
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Estimate of 07 ,:
We distinguish two cases:

1. Forx,y € T € G, let X, ¥ be defined as before. Note that X = y.,, (X), ¥ =
Xz.p (§) holds for X := y7' (x) and § := x' (y). By using the quantities n}, ,,
dy¢ we obtain

(x—y.nx) -y nK)

—yIs k9IS

- 2—a 1 —2q —o {X—Y¥,00 (X))]
SR Ix—yI" ny oy RS

|<Xr,p X) = fep ¥).ng 0 )rp (’A‘))|
T dg |,
[x—yll

N (X, y)’ =

dg

< C (h%_“nlzl +
(8.35)

where C depends only on ca, @, and cp.
The first factor in the second term in the right-hand side of (8.35) can be estimated
by repeating the steps in the proof of Lemma 2.2.14. We obtain

& a2
o %=l

co@ Plx—y|*’
(8.36)

X) — T y , T X
(e 3 Xf@a“XJOHSCm)WhA
Ix =¥l |Bl=2

where cp is as in Assumption 8.1.6. From (8.32) we conclude that

Net (X. y)‘ < Ch¥™ (nlz,e + de) , (8.37a)

where C depevnds only on C in (8.36), Cyap, cp, ¢ in (8.32), and c4.
2. Let 71,7, € G with ¥; # T, andx € 71,y € 2. In the same way as before we
derive

x-—yn®) E-yn®)

A 1—a I
n e(X,Y)‘Z - Fr— ’§C||X—y|| (n 5+d@).
® lIx —yllx X —Ilx "
(8.37b)
Estimate of 7, ¢:
As before, we obtain improved estimates if X, y belong to the same panel
|(x—y.n¢ (®)| _ | Ch7® ifx,yeted,
Nt (X,y) = ——————-0 <! ¢ y (8.37¢)

IK=3I% ~ 1 Clx-y|'™ifxet,ye b
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Estimate of ¢/*:
By employing the quantity nj we obtain

92 (0| = 1.0 (0 = ne @) = b 0 x) —ne G < bl ($37)

Estimate of ¢;:
Since ng has length 1,

loe X)] < [Ib]|. (8.37¢)

We have all ingredients to estimate the perturbation error (8.34) of the kernel
function due to boundary approximation. Again, we will distinguish two cases:

(a) Letx,yet € G.
The combination of (8.21), (8.23), and (8.37) yields

v C
k(x,y) — k¢ (x,y)| < ———— (1} d bl ny ).
(9) Ko ()| = g (e o+ e+ bl o)

(b) Letx € 71 and y € ©, for some non-identical panels 71, 7, € G.
In this case, we obtain

C (nllz +di + &g

k (x,y) — ke (x,y)| <
4 |x —yl| Ix—y|

+ bl n?) ,
where C depends on the coefficients A, b, ¢ of the differential operator L. O

Corollary 8.2.9. Let the kernel function be defined by Assumption 8.1.14(2). Then
there exists a constant C > 0 which depends only on the coefficients of the dif-
ferential operator L, the diameter of I, the shape-regularity of the mesh, and the
constant in Lemma 2.2.14 such that

ViieSe: |G i) —be D) < Coe il 2y 17l 2y

where
0= o+ 7 b e+ (g + di +00) (1 + [loghe]))

Proof. We cogsider first the term e, in (8.18). Forany 7 € é , we introduce a partition
of I' and of G by

L= {1}, ri:=1,

gili=lnedm:antLo), =]
%1egg

C;?I = {%1 eé:%ﬂ?:@}, .= 4.
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With this partition at hand, we employ (8.33) to obtain

2 (1) < Z[ > [ty )

Re{1,11,11}

X Ipz (¥) it ()| dsydsx

= C (nhy+de+ec) 72 el oogey el ooy
¥eg

1
x/ ————dsydsy
ixi 4 || x =yl

+CPF (e +de+ee) Y leloen D el oo(rr)
feg

Re{IL,Im}
1
.
tJTR 4 ||x =yl

- litg ()| [Ve (%)]
+Cp2|b|| nH/ — = dsds
¢ Clelr dmix—yl VT
=81+ 52 + Ss.

Estimate of S;:
By introducing local polar coordinates as in (5.53) with s = 1 one proves for any

1eg |
/ ———dsydsy < Ch3
ixt X =yl

The combination of this estimate and Corollary 4.4.6 yields
S1=C (nh o +de+ec) BFhe Y el 2 liell 2y
teg

=C (”Iz,z +de+ 86) prhe Vel L2y Nitell L2 ry-

Estimate of S3:
The continuity of the single layer potential in L2 (T") results in

S3 < Cpg bl ng llitell 22y 1Vell L2ry -

Estimate of S,:
For non- -identical panels t1, 7, € g which have, at least, one common point, i.e.,
71 N T, # @, we may use (5.59), (5.60), resp. (5.62) to get

1
/ —a’sydsX < Ch%l,
fxi X —ylI®

where the shape-regularity of the panels implies /i, ~ hr,.
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The shape-regularity also implies that ugvg = O (1) and hence the summation

over all panels in gvf yields

1
———dsydsy < Ch2.
ff/rwnx—ynz R

For the integral over 7 x ' ?I we argue as in the proof (Part b) of Lemma 7.3.19 to

obtain |
—————dsydsy < ChZ (1 + |loghy]).
/f/rgl dr |x—y|> Y o (1 +[log /)

This leads to the estimate of S»
S2 = Cp7 (nh ¢ +de+2c) ChE (1 + log hel) 3 el ooy el zoory -
feg
Let ; € G denote the triangle with it || oo (ry = llitell Looz,)- By using the inverse
inequality (cf. Corollary 4.4.6) we obtain

v v 1 1 v
el oo ry = el poo(zyy < hz, Niellz2@y < he liel 2

from which we conclude with a Cauchy—Schwarz inequality that
S, < Cpj (nlle +dg + 86) (1 + [loghel) llzeell L2y Vel L2¢ry -
This finishes the estimate of e,
lez (it V)| < C 7 (nhohe + (n) ¢ + de + e¢) (1 + [loghe)) [Vell 2y el 2ry -

The estimates of e; and e3 are based on the continuity of the integral operator
and derived as estimates (8.26), (8.27). O

Corollary 8.2.10. Let the kernel function be defined by Assumption 8.1.14(3). Then
there exists a constant C > 0 which depends only on the coefficients of the dif-
ferential operator L, the diameter of T, the shape-regularity of the mesh, and the
constant in Lemma 2.2.14 such that

Vii,v € Sy : ’b (@, V) = bg (@, V)| < C¢ |l L2¢ry IVl L2y »

where (recall 84 as in Corollary 8.2.9)

8¢ .= Cp7 (nl + dy + e¢) + 8.
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Proof. The kernel function for the double layer potential is (recall: vy = Any)

0
k(x,y) = WG(X—Y)-FZ(b,Vy)G(X—Y)-
y

The perturbation due to the first part of the kernel function can be estimated as in
Corollary 8.2.9 and we consider only the second summand. Let z := x — y and

Z:=X—Yy:= 6y (x) — 0 (y). The splitting

ki (x.y) :=2(b,vy) G (2) —2(b, v 5) G (2)
= 2(Ab.ny —15) G (2) + 2 (Ab.ng5) (G (2) — G (3))

leads to

oy "D (Il L sa vy oo
47 ]

(8.37d), (8<22), (8.23) n? +dg+ g
- 4 ||z||

For the estimate

‘/F FkIA (X, ¥) & (¥) pe (¥) ¥ (%) pe (x) dsydsy

< Cpy (n} +de+ &) @l L2y IV L2

we may argue as in (8.25) and this finishes the proof. O

It remains to estimate the hypersingular boundary integral equation. Let 7 €
G¥fire The pullback of ¢ = lift; (r) € G is y. and its Jacobi matrix is denoted by
J. Similarly the Jacobi matrix for y; p, is J,p.

Let R R
I |3: %) = Jep B
¢ = max sup .

regzlfﬁne zet h‘l.'

(8.38)

Il denotes the matrix norm which is induced by the Euclidean vector norm. The
proof of the following lemma requires an estimate of the number of mesh cells.
Under a weak assumption on the mesh, there exists a constant Cy such that

fGAine < Cyh 2. (8.39)

The proof of the following lemma uses two results from Sect. 8.4 which reads as
follows. Corollary 8.4.3 states that

viet |G (X[ <Ch} and |G.,®| <Ch} (8.40a)
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while Lemma 8.4.4 implies that
|gep ®)| = Ch7 and  |g: (%)] = ChZ. (8.40b)

Lemma 8.2.11. Assume that Sy C H' (T"). Let the sesquilinear forms b and l;g
be defined by (8.8) and (8.15). Let Assumption 8.1.6 and the estimates (8.40) be
satisfied. Then there exists a constant C > 0 which depends only on the coefficients
of the differential operator L, the diameter of T, the shape-regularity of the mesh,
the constants in (8.40) and in Lemma 2.2.14, and the constants in (8.39) and the
inverse inequality, such that

l
b (l\//l, \V/) be (I\:{ \\;) < C (df + &y + ng + JZ + pe )h ||M||Hl s(I) ||v||H1/2(F)

fors =0,1/2and any it,v € S.

Proof. We will estimate the sesquilinear forms e, ez, e3 as in (8.18) and start
with e,.

The kernel function (cf. (8.8) consists of two parts. The estimate of the second
part is simple by using the previous results. Again, letz := x—yandz :=X—y :=
0¢ (x) — B¢ (y). We have

K x.y) = G @ (A" ’n (0. A n(y)) - G @ (A n 3. A "ne @)

=G (z) ((An(x),n(y)) — (Ang (%), 0, (y)))
+ (G (z) = G (2)) (Ang (X) . ng (3)) -

The estimates

C
G
G@I= e 16@=00)] < o e+ e

follow from Lemma 8.2.5, while

|{Ang (X).ng (y))| = C
and
[(An (x) .0 (y)) — (Ang (%) . ng (§))| < Cny

are obvious. Hence we may argue as in the proof of Lemma 8.2.5 to obtain the
estimate of the perturbation in the second part of the sesquilinear form associated
with the operator W

‘ / ke (X, ¥) pe (¥) iig (¥) pe (%) Ve (X) dsyd sy

< Cpp (de + &0 +np) el L2y Vel 2y
< C,Oe (dg + &0+ ”13) lzeell g2y Vel ey - (8.41)
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We turn to the first part of the sesquilinear form (8.8). For i = 1,2, fix some
7; € G and let 7; := lifty, (t;). Define the local sesquilinear form by, -, by

buves () = [ G (x=y) (eurta 71(9) curts a0 T 90 e () 1 (0 sy
T X1

We will transform the integrals to the reference element. For i = 1,2, the local
pullbacks of the normal vectors are

fl,’ =no x.
The column vectors of A2 are denoted by a; € R3, 1 < j < 3.Let A* :=
A1/2 x A1/2 € R3*3 be the matrix formed by the coluvmn vectors a, X az, az X a1,
a; x ap. Then, for any t € gaffine and ¥ = lift, (v) € g,
curly p oV = A% curl; 1oV + ¥ (A_l/zc x Al/zn;) vve H' (1),
where I is the 3 x 3 identity matrix. The transformation formula (3.79) leads to
(curlz19V) 0 xz = J.G7'Vi x ng,

where J; is the Jacobi matrix of y; and G; := JTJ. denotes Gram’s matrix. Some
tedious but elementary tensor analysis leads to

(curly 1o ¥) 0 e = g7 1 Je V4P,

where V419 = (029, —0:9)T and g, := +/detG; is the surface element. We
introduce the matrix A** and the vector w; by

A= (A)TA and wii= (A)T (247 2bx AR ). (842)

(If A is the identity matrix we have A1/2 = AX = A** = L) Thus the pullback of
by, ,z, (1, V) can be written as

b (.9) = | k&9 {(A*curli @), curli 5 ()
T
+(curlait (§), w1 (80) &1 (R) 7 (R dsyds, (8.43a)
where

k(®9)=pe ®) pe 3) G (o1 ®) — 1 (§)) and  curliv (§) :=J5 §) VI §).
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The pullbacks of the finite element functions are
V="Voy; and @ =10 yq,.
To estimate the effect of the perturbation we have to compare by, r, with

51:1,1:2 (Zt, ‘\;) = /

‘I’] X‘Ez

ke (. 9) (A curly et ). curly 5 )
+(curla it §) W1 () 1,6 OF R} dsydse,  (8.43b)

where .
ke (X.9) =G (xe1.p R) = Xrpp §)) e X) pe (§)

and the remaining quantities are defined by replacing y; by x«;,p (recall the relation
(8.12) between y+,, p and y<; ).
We have to estimate corresponding quantities in (8.43) and their differences:

1. Estimate of (the difference of) the kernel function
Lemma 8.2.5 implies that

lpe (%) pe () G (X —=¥) — pe (%) pe (¥) G (x —y)| = C (e + de)f)?m

with pg as in (8.14).

For the kernel function itself, we obtain (cf. Proof of Lemma 8.2.5)

_ 1
lpe (%) pe (¥) G (x = y)| < Cpf -
4 [x =yl

2. Estimate of (the difference of) the first part of the sesquilinear form (8.43)
We obtain

<Axxcﬂﬁza ), curl; (&)) - <Axxcu’ﬂ2\,m ). curly ¢» (&))
= (A (curbit §) - curly ¢it () . curliF (%))
+ <A”c@m )., curlys (&) — curl, ¢p (§)> . (844)
The definition of Jy [cf. (8.38)] implies

Jeurly ) — curly 9 () = | (e, (9 — ey (9) V59 )

E J(h‘tl

V5 (%) H
Recall that ? =V o P o y, , so that the chain rule gives us

Vi &) =T, , 0% ®) Ve (%),



8.2 Convergence Analysis 493

where X := y p(X), X := P (X) and Jp denotes the Jacobi matrix of P.
The surface gradient is defined as the composition Vrv = yoVZ_V, where Z_
denotes the lifting of v to Q7 (cf. Remark 2.6.12).

The Euclidean norm of J p is bounded

|75 ®] = ¢

where C depends only on cp in Assumption 8.1.6. Hence

< C |3 ®IT,, ®|"

H% ®) IVey ()]

From elementary linear algebra follows the first equality in

1/2 (8:402)

2 =Gy 0] Chey.

”Jfl sD (f‘) JI] 5P (f{)

Thus we have shown that

Hcﬁﬁla(ﬁ) —cﬁl\,ga(i)” < Jh2, ‘ﬁﬁ(x)“. (8.45)
Similarly, we obtain
|eurlz i @] < [Gero @] | Vi 3| = B2, IVra @I (460
The estimate
|eurba )| < cr2, [Vri @) (8.46b)

is derived analogously to (8.46a). From (8.46), one derives

(A eyt §)  curlyF (%) — eurly § ()| < Ca2 I VeS|Vt )]

1

The same arguments, applied to the first term on the right-hand side in (8.44),
altogether leads to the estimate

‘(Axxcﬁﬁza (), curis ()2)> - <Axxc@ea ). curl, ¢v (i)>‘

< CJehZ, 12, IV0¥ )| Vri ()]
For the term <Axxcﬁr\lzit §).curl;p (§)>, we apply (8.46) twice to obtain

(Ax*curtzii §) . curli5 ®))| = CB2, 12, 1909 @1 Vit @)1
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3. Estimate of (the difference in) the second part of the sesquilinear forms (8.43)
The estimate of the difference

A = {eurbi (§) . w1 () g1 B)F R) — (curla,eit () . wi.e ) g1 0T %)

requires us to investigate corresponding quantities in both terms and their differ-
ences:

(a) Asin (8.45) and (8.46) we get
|eurlai §) — curly ¢t §)| < CIehZ, IVri )],

eurloie @) = cr2, 1Vra . ek )| = 82, (190 @)1

(b) The definition of the vector w; [cf. (8.42)], directly implies that

Wi R = C. [wie )

<C, |wi®—-wi ®|<Cnj,

where n? is asin (8.31) and C depends only on the coefficients A and b.
(c) Itremains to consider the surface element g;. From (8.40b) we conclude that

g1 ®)] < Ch,.
Recall the definition of ,BZA as in (8.14). The difference can be estimated by
g1 ®) — g1.e R)| = lpe ®) — 1] g1 )| < CoPh2,.

By combining these inequalities we obtain
711

A= € (Je+nf + B8) W20, [ Vrit W] F ()]

Since the function H X X) — xo (3) H “is integrable there exists a constant such
that

1 1
_ __d%d§ < Ch=2h72 — dsyds,.
/exe A [ xey ) =t )| 2 Jax A llx—y Y

In summary, we have estimated

bey ey (9) = bey oy 0. 9)| = C5F (o0 + de + Jo +nff + )

X[ [Vea @) (Vey ®)] + v (x))
1 xt 4 [x ||

dsydsy.
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Let b(,,") := Z%l,fzeé bz, v, (-,+) and define l;(-, -) analogously. A triangle
inequality leads to

b (i1, %) — b (i1, V)

§C,5§(85+de+.]e+n?+,5?)

[ IVrie (W) (IVey )| + [V (x)])
I'xT 4r x =yl

dsydsy.

Our assumption S¢ C H' (T") implies that the functions || Vi (-)|| and || Vrv (-)|| +
[V ()| are in L? (T"). From the continuity of the single layer potential we obtain

b (it,v) — b (i1, %)

<Cp; (8e +de+Jo+ny + ﬁeA) el g1 oy 9 £y -
(8.47)
The combination of (8.41) and (8.47) yields the estimate of the perturbation e,

lez (i,V)| < C (dz +e¢+ny + hzl/z_s (8@ +d+ Jo+ P+ n?))
”’j‘”Hl—S(l") ||‘V’||H1/2(r) (8.48a)

fors =0,1/2.

The estimates of the perturbations e; and e3 are based on the L2-continuity of the
single layer potential. Lemma 8.2.4 and an inverse inequality imply for s = 0,1/2
that

.oy N v “Ap—1/2—s v "
lex (i, )] < C g il gy Il ey < CAERE 27 Wil i oy 190 12 -
(8.48b)
In a similar fashion one proves that
.oy ~ A —1/2—5 v v
les G| < Cpepthy >~ il sy Wl gingy . (8:48¢)
The assertion follows from (8.48). O

8.3 Overview of the Orders of the p-Parametric
Surface Approximations

In the previous section, we have analyzed the perturbations which are introduced
by the p-parametric surface approximation. The errors are expressed in terms of
geometric quantities. In Sect. 8.4, we will estimate these geometric perturbations
by using elementary tools of differential geometry. Here, we will summarize these
results and combine them with the perturbation analysis of the previous section to
derive conditions for the orders of the p-parametric surface approximation such that
the optimal convergence rates of the original Galerkin method are preserved.

First, we introduce the appropriate notion of smoothness of the surface I'.
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Definition 8.3.1. The mapping P in (8.12) belongs to the class Al’)”w if there is a
neighborhood Ur of I" such that P : Ur — T is Lipschitz continuous and:

1. I'? C Ur.
2. P|pp : IT'? — T is bi-Lipschitz continuous:
cplx—yll <P ®)—PMI<cp'lIx—yl vx,y € ',
3. For any T € G¥fi" and 7 = P (1), the restriction P|, : T — T isa C™

diffeomorphism for some m > 1.

A mapping P € A7, belongs to A" if I' € C 2 and if Condition 2 can be
replaced by
Plpp : TP — T is a C'-diffeomorphism.

For the error analysis, we assume that y is as in (8.12) and that the mapping P
satisfies Assumptions 8.1.3, resp. 8.1.6. If P : Ur — T is m times differentiable
the quantity

Cr,m := max sup [|[0*P (x)]| (8.49)

OtENS xeUr
la|<m

is well defined. We distinguish between the following two cases

P belongs to A;”W form >k + 2, (8.50a)
P belongs to A™ for m > k + 2 and is chosen as the conormal projection,
(8.50b)

where k denotes the algebraic polynomial degree of the finite element space (cf.
Definition 8.1.12).

In Sect. 8.4, we will prove that, for the p-parametric surface approximation of
degree p, the quantities dy, dy, . .. can be estimated from above by Ch?, where the
corresponding values of ¢ are listed in Table 8.1. Hence the perturbations in the
sesquilinear forms can be estimated by using Corollaries 8.2.6, 8.2.9, 8.2.10 and
Lemma 8.2.11.

Exemplarily, we discuss the integral equation for the single layer potential [cf.
(4.9)]

Findg € H-'2(T): (Vo.n) 2y = (80.M12(r) Ve H V2(I).
(8.51)
We assume that the coefficients A, b, ¢ are such that Assumption 8.2.1 is satis-
fied. We consider the discretization of (8.51) by (k, p)-boundary elements. Corol-
lary 8.2.6 implies that

N I —1/2— — _ . "
b (i, v) — b (u,v)| < Ch, [27s {(8£ +dy) P[% + PeA} ||”||H—~V(I‘) ||V||H—1/2(r)
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Table 8.1 Convergence orders of geometric quantities which are related to the surface approxi-
mation

Case (8.50a) Case (8.50b)
b=0 b #0 b=0 b#0

Lem. 8.4.12 Lem. 8.4.12 Lem. 8.4.12 Lem. 8.4.12
de®200) P o413 P Cor. 8.4.13 P cosans P71 corgals
dy (820b) pLem.8.4.11 pLem. 8.4.11 pLem. 8.4.11 pLem. 8.4.11
g (8.20b) p p p+1 P
pe (8.14)  OLem.8.4.4 0Lem. 8.4.4 0Lem. 8.4.4 0Lem. 8.4.4
ﬁlA (8.14) p Cor. 8.4.7 p Cor. 8.4.7 p+1Lem.84.10 p+ 1Lem.84.10
n(831)  p(8.95b) P (8.95b) 7 (8.95b) 7 (8.95b)
nll_(Z (8.31) pLem.84.14 p Lem. 8.4.14 p Lem. 8.4.14 p Lem. 8.4.14
nlz_g (831) p—1Lem.84.14 p—1Lem.84.14 p—1Lem.84.14 p—1Lem.84.14
Jo(838)  p(8.71) p(8.71) p(8.71) p(8.71)

fors € {0,1/2}and all &,V € S‘g. For the piecewise smooth case, i.e., Case (8.50a),
we obtain from Table 8.1

b o) = be .9)| = ™2 |

|t fr—s o0y IV =172y -

Hence the sequences in (8.16) are given by ¢, = hf_l, 8§ = hf_l/z , and the
uniform stability follows for sufficiently large £ > £ from

Yooy —1 v v
e 1, 9) = € (LAY il gvacey 19 =1

< |b (@, 9)] + ’b (it ¥) — by (i1, V)

by taking into account Assumption 8.2.1. If the boundary element space consists
of piecewise polynomials of degree k on a piecewise smooth surface, the optimal
choice of p is given by

p=k+2.

All other cases can be treated in an analogous way. Table 8.2 lists the values of
c¢ and 8}, where s = 1/2 corresponds to ¢, and s = 0 to 8;. Finally, Table 8.3 lists
the orders of the p-parametric surface approximation so that the convergence order
is as in the unperturbed case (up to, possibly, a logarithmic factor (1 4 log |A|).

To preserve the convergence rates of the perturbed Galerkin method with respect
to weaker norms or, e.g., field point evaluations, the order of the p-parametric sur-
face approximation has to chosen higher as for the energy norm. The error due to the
geometric perturbation has to be in balance with the convergence order of the unper-
turbed Galerkin method. For field point evaluations, the convergence rates are twice
as high as the rates with respect to the energy norm provided the problem is suffi-
ciently regular (cf. Sect. 4.2.5.1), |u (x) — ug (x)| < Ch?*+272 for any x € Q. The
constant C is independent of the mesh width but, possibly, depends on x. Table 8.4
lists the required orders of the p-parametric approximation to preserve these higher
convergence rates.
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Table 8.2 Values of ¢, and § t{ in the Strang Lemma (cf. Remark 8.2.3) where s = 1/2 corresponds
tociands = 0to 8/

Operator Case (8.50a) Case (8.50b)

b=0 b#0 b=0 b#0
% ch? = ch? = ch? T ch? P
K ChY (14 |loghe|)  CHY (14 |loghe|)  CHY (14 |loghe|)  ChY (1 4 |log he|)
K’ Chl (14 |logh|)  ChY (1 4 lloghe|)  ChY (1 4 |loghe|)  ChY (1 4 |log h|)
w cnl '\ cnl '\ Ch? Ch!

Table 8.3 Required orders p of the p-parametric surface approximation so that the overall
convergence rates are preserved (up to, possibly, a logarithmic factor (1 + log |4]))

Operator Case (8.50a) Case (8.50b)

b=20 b#0 b=0 b#0
14 p=k+2 p=k+2 p=k+1 p=k+2
K p=k+1 p=k+1 p=k+1 p=k+1
K’ p=k+1 p=k+1 p=k+1 p=k+1
w p=k+1 p=k+1 p=k+1 p=k+1

Table 8.4 Required orders p of the p-parametric surface approximation so that the overall
convergence rates with respect to field point evaluations are preserved

Operator Case (8.50a) Case (8.50b)

b=20 b#0 b=20 b#0
Vv p=2k+4 p=2k+4 p=2k+3 p=2k+4
K p=2k+2 p=2k+2 p=2k+2 p=2k+2
K’ p=2k+2 p=2k+2 p=2k+2 p=2k+2
w p=2k+2 p=2k+2 p=2k+1 p=2k+1

8.4 Elementary Differential Geometry

The convergence analysis of boundary element methods with p-parametric surface
approximation requires some estimates for dy, dy, £¢ in (8.20) which, in turn, require
the approximation of the normal vector, the surface element, and the kernel function.
In this section, we will develop these results from basic calculus. We avoid the use
of the intrinsic calculus of differential geometry but employ the parametrizations
which are also used for the numerical realization of boundary element methods.

Some of the results in this section go back to [167]. Further papers on this topic
are [168], [80, Chap. XIII, Sect. 2], [84], [21], [63, Sect. 1.4].

Recall that G denotes the boundary element mesh on the original surface I" and
Gfine is the corresponding affine surface mesh. The p-parametric surface mesh
is GP. For T € G the lifted panel in G? is denoted by 7 = lift; , () (cf.
Notation 8.1.7) and the corresponding panel in g by T = P (T) = y. (T), where

Xt =Poyp:T—T1. (8.52)
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For the convergence analysis, we consider a sequence of meshes szﬁ“e, er yo.. (cf.
Sect. 4 and Notation 8.1.15), while we skip the index £ here for ease of notation.
Throughout this section we assume that Assumption 8.1.16 is satisfied.

Let T € G and ¥ = lift; (v) € G. Recall that Arp = Vi (P o )(*;fﬁ“e), while
the pullback of 7 is given by y; = P o y; ,.We will apply the interpolation error
estimates as derived in Sect. 4.3.

Lemma 8.4.1. Let P in (8.52) belong to the class Aﬁ,}H (cf. Definition 8.3.1) for
some p > 1. Then, for1 <i <3ando € Ng with |a| < p, we have

[(P o xep = 200); | coey < CoCrprah? ™t (8.532)
8% (P o xep — Xep); ||Co(§) < CiCr,p1h? ™1, (8.53b)
where Cy, Cy depend only on p and Cr,p11 is as in (8.49).

Proof. We have y,, = 17 (P o x3fne). For any nodal point P 83-), we have
Xt.p (ﬁgi)) € I" and thus y; , = 1° (P © xz,p)- This leads to

(P © Xt,p — Xr,p),- x) = (P © Xz,p ~T1° (P o Xr,p)>l. x)

and we may apply standard interpolation estimates to bound the right-hand side and
its derivatives.
Fix | < i < 3 and write 77, := (P ) XT’P)I‘ resp. np = (Xﬁp)i' Note that

175, = np. Let T, (71p) denote the p-th order Taylor expansion of 7, about the
barycenter M of 7. Then

ﬁp —Mp = (ﬁp =T, (’vip))"‘(Tp (’vip) - Ip’vip) = (ﬁp =T, (’vip))"‘YP (TP (ﬁp) - ’vip)'

This leads to

lir = leoy = (14 [7 ] cogy o) 175 ) = inllcogy - 839

Standard error estimates for two-dimensional Taylor expansions lead to

1

_ o gp+1=i 5
(p+ D! 051]_115211)7(+1 “ 172 Tp

|75 (iip) —1p ”co(?) = co®)’

In Lemma 8.4.2, we will prove that

i
max ‘)8{8§+ "p

1
1 < Ch2t,
0<j=p+1

C()® -

where C depends only on p and Cr, 1.
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It remains to estimate the first factor in (8.54). For any w € C° (?), let

wp = 1r (w). The coefficient vector of w, with respect to the nodal basis is
denoted by w,. We argue as in the proof of Corollary 4.4.6 to obtain

Theorem 2.5.4 Lemma 4.3.1
[ws “COG) = Clwolgrrey = C [Wplpir

I Wl = C Wl = C W0y 859)

where C” depends only on p.
For the estimate of the derivatives (8.53b), we employ

0 (ip = 1) = (0% (= T (i) + 0% (T (i) = T7315) |
= (3%7p — 3Ty (7)) + o1” (Tp (1p) = 1p) -

The inverse inequality (cf. Theorem 4.4.2), applied to the reference element 7,
results in

_ (8.55) ~
[0iwpllcogy = Cim [Wollcogy = CimC IWlcogs) (8.56)

and a recursive application of the first estimate in (8.56) yields
18w ] cozy < Ci€” Wl co ) -

The Taylor expansion commutes with the derivatives, more precisely, 0“7, (ﬁ p) =
Tp—ja| (0%175), where formally, we set Ty (f) = 0 if k < 0. Thus we obtain

~ L o oY s Pal myle C.
0% (7 — 1) ®)] < |33y — Typ—tal (3%5,)) ®)] + (CinC”)’ 'Q)FT‘”J;;!(%T)”I

< C\Crpp1h? T,
where Cy depends only on p. |

Lemma 8.4.2. Let p > 1 and let P in (8.52) belong to the class A];W for some k.
For any i € N2 with |p| = k>

”aMXr,p ”Co(;) = Cstabhlrc, (8.57a)

2 Note that, for k > p and || = k, the derivatives 9" y.. p vanish and the right-hand side in
(8.57a) may even be replaced by 0.
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where Cya, depends only on p, k, and Cr k. The derivatives of the pullback y; =
P o y: p satisfy
||3M)(r||co(§) < Cyah®, (8.57b)

where Esmb depends only on p, k, and Cr .

Proof. First, we will prove (8.57b) for the case p = 1, i.e., xr,p = x2°. The
mapping )(afﬁ“e has the form

afﬁne (X) Br)} + br

with some B; € R3*2 and b, € R3. The columns of B; are denoted bya;,a; € R3.
As in the proof of Lemma 4.3.6, we derive

pYC (PlOXafhne _ Z Z IB‘ ,3132 (aﬁ-l—vP) Xifﬁne.

BENG veNj
|l3|=M1 |v|=M2

Next, we employ |(Br) i, j| < h. and obtain

sup [0 (Pi o x¥™) (%)| < Crx (3ho)* (8.58)
Xel’
where Cr is as in (8.49).
Next, we will prove (8.57a) for general p € N. The result is trivial for k > p

and we restrict to the case 0 < k < p. We use  the same notation as in the previous
proof. (Recall that /j; = P; o Xa“me and n, = I77;.) We obtain

Oy = 0 (T71) = 0 (1 =T7) (Teriin — i) + 0. (8.59)

where [ is the identity and, formally, we put 7_;7; = 0. Observe that J*
Tr—1m1 = 0. By taking norms on both sides in (8.59) and by using (8.58), we
obtain

|85 cogzy < 18%llcosy + v I Timritn = i llcogsy + Cre Bhe)*
< Vel Tkl = 7l coz) + 2Cri (3h.)*

where [cf. (8.56)]

|77+ o
Yy = sup < (CinVC")k
weCO(7)\{0} ”WHCOG)
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For the estimate of the error in the Taylor expansion, we employ (8.58) and get
. Cri k
1 Te—1111 = Millco(zy = e (3he)" . (8.60)

The combination of these estimates proves assertion (8.57a).
Next, we will estimate the derivatives of the pullback y; = P o y. , of a surface

panel T = lift; (v) € G for general p > 1 and employ Lemma 4.3.11 (with the
substitutions u <— P; and n < x,,). We obtain

il

50 = 3 cn (#1) o s

IBl=1
where the coefficients cg are real linear combinations of the terms

18]

1_[ 8Ar (XT,P)n,- ’

r=1

where, for 1 < r < |f|, the indices obey the relations 1 < n, < 3, A, € Ng, and
erﬂ:ll |A;| = |u|. By using (8.57a) we get

1B 1B
[T (xe)a, @) = [T (Camh!) = Can)™

r=1 r=1

Thus the coefficients cg satisfy the same estimate (with a different constant C') and
we obtain

|(84775) ®)| = Ch,

where C depends only on k, p, and Cr.

Corollary 8.4.3. The Gram matrices for y. and X+ p satisfy
VX et IG: ®)|| < CCR h2 and  |Gep ()| < CCE h7. (8.61)

Proof- Let t; (X), t» (X) denote the column vectors of J; (X). The Gram matrix can
be written in the form G, (X) = ((fl (X).t g (i))i =1 2). Lemma 8.4.2 implies that

([t ®).1, V)] < Ccn?.
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Hence the matrix norm
IG: ®)[ := max_|(G; (%)), ]|
1<i,j<2

is bounded by Ch%. Since G; (X) is a 2 x 2 matrix and norms in finite-dimensional
spaces are equivalent the first assertion follows.
The proof of the estimate for G , is analogous. |

For y¢,p and x; = P o ¢ p, the surface elements g, and g , can be written in
the form

gr (%) =014 ®) x Doy ®)|  and  grp (R) = |01 fr,p R) X 2e,p R -
Lemma 8.4.4. Let P in (8.52) belong to the class Ag\j ! for some p > 1. Then, for
allx € 1,
|gep ®) — g R)| < C2h2T? and  |ge,p (R)| < C3h2. (8.62a)
For sufficiently small hy < h, we have the lower estimates
c3h? <|gep X)| and &3h7 < g (R)|. (8.62b)

The constants Cy, c3,¢3,C3 depend only on Cyan, Cr,p+1, and p while h may in
addition depend on the shape-regularity of the mesh [cf. (4.17)].

Proof. The reverse triangle inequality leads to

|gep B®) — ge B®)] < [911e R) X D2xtc R) = 81 )2,p R) X D2 xz,p R)|  (8.63)
< 181 (xz ®) = xz.p R)) X D21 ®)
+ ”al)(r,p (X) x 02 (Xr X) = xzp (f‘)) ”
=: 81 + 8.
We start with the estimate of S» and employ (8.53) to obtain
S2 < 91 xe.p R |02 (e ®) — xe.p ®)|| < C1Crpr1 k2 |01 12,5 | -
The quantity d; x,, can be estimated by means of Lemma 8.4.2
101 xz.p| < Cstavhz. (8.64)
The combination of these estimates leads to
Sy < Ch?t2, (8.65)

where C depend only on Cyap, Cr,p+1 and p. The estimate of Sy is just a repetition
of the previous arguments and is skipped here.
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The estimate of g, , from above follows from (8.64)

g0 ®)| < |01 1.0 ®) | [0202.0 R)|| < C2h2.

For the estimate from below, we start with

|gr,p (§)| = |gifﬁne (§)| - |(gi;fﬁne - gr,p) (§)|
> |g4e (%) — [ (g™ — g¢) ®)| — |(gc — ge.p) K]
o 2 |e | ¢ (12 4 h2V?)

The shape-regularity of G¥f" implies that
|_L,afﬁne| > Ch%,

where ¢ depends only on the shape-regularity of the mesh [cf. (4.17)]. Thus, for
sufficiently small 4, < h, the first estimate in (8.62b) is proved.

The second one simply follows by combining the first estimates in (8.62a) and
(8.62b)

lgr (%) > |gr,p (’A‘)| - |gr (%) — &t.p (§)| = C3h$ - C2h€+2 = C~3h$

for sufficiently small /. O

Next, we will transport estimates (8.53) to the surface. For this we have to intro-
duce some notation. Recall that, for t € G the Jacobi matrices of Xz,p Tesp.
Xz = P oy, are denoted by J,, resp. J; and the corresponding Gram matrices
by G, resp. G [cf. (8.13)].

Notation 8.4.5. Let t € G¥" gnd ¢ = lift, (7) € G. Forx € %, let Ty be the
tangential plane to T at x which is spanned by* t; (X) = 0; x: (X), i = 1,2. Fora
tangential vector & € T, the Gdteaux derivative of some sufficiently smooth function
n:t — R3 is defined by

Dn(x)§:= (DH) X G;' ®)IT R)E, (8.66)

where ) = 10 xz.

Corollary 8.4.6. Let P in (8.52) belong to the class Ag\jl for some p > 1. For
T e Gaine Jor ¢ = lift, (v) € G. If hy is sufficiently small hy < hq then, for any
x € Tand € € Ty,

162 (x) — x| < Coh?*1, (8.672)
DO, (x) € —&| < C4h? |E] . (8.67b)

3 Convention: If x € T € G and X € 7 appear in the same context, they are related by x = x, (X).
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where 0, is as in Remark 8.1.11. The constant 50 depends only on Csap, CT,p+1,
and p, while C4 and hg > 0 may in addition depend on the shape-regularity of the
mesh [cf. (4.17)].

Proof. For T € G let ¥ = lift; (r) € G. The first estimate follows from
(8.53a) by

sup [|6z (x) = x|l = sup | xz.p K) = 2z ®)|| < V3CoCr,pr1h? !

XET XET

We turn to the second estimate. Let I : R3 — R? denote the identity. Then (8.66)
simplifies to*

DPh®E= I ®6 ®IT®)E=¢ VEeTy andx= y: (%).
(8.68)

Note that 6; = y,p © )(r_l so that éf = Xr,p and (Dér) (X) = J¢,p (X). Thus and
in view of (8.66) we derive

1D6: (%) & =&l = [|(Jr = Jep) B G (R) ITE] - (8.69)

For a matrix-valued function A : T — R™" A (X) = (a,-, j (ﬁ))lsism, we define
1<j<n
the norm
|All; := sup max |a,-,j (f()| . (8.70)
“~1<i<m
X€ 1<j=<n
Since all norms are equivalent in finite-dimensional spaces (the matrix dimensions
occurring in (8.69) are 3 x 2,2 x 2, and 2 x 3), there is a constant C > 0 such that

1D6: (x)§ — ]| = C | (Je — Iz, p)

(8.53b) B
< CC(Crps1h?™|G!

}—1

T
rJT

s 1§
)5 g1 - (8.71)

T

!
The chain rule implies that
J: ®) = (Jp o xrp X)) Je,p.
where J p is the 3 x 3 Jacobi matrix of P. By using Lemma 8.4.2 we obtain
|97]; < CCroahe. (8.72)
It remains to estimate the inverse of the Gram matrix. We have

6oL Wz _<;1,;2>]

Coa k) )

4 This can easily be seen by writing £ = J,Z and inserting this into (8.68).
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Lemma 8.4.4 implies that
gr (%) > C~3h%

for sufficiently small /.. The estimate [cf. (8.72)]

(t ®).t; ®) = CCE A7 (8.73)

leads to
1G], < ch>. (8.74)
The combination of (8.71), (8.72), and (8.74) leads to the assertion. O

The following statement is a Corollary of Lemma 8.4.4 and applies for any suffi-
ciently smooth projection P : 'y — T. In the case that P is the orthogonal surface
projection, estimate (8.75) can be improved by one order (cf. Lemma 8.4.10).

Corollary 8.4.7. Let the Assumptions of Lemma 8.4.4 be satisfied. For sufficiently
small hy < h, we have

(grpoxz') (® _

Cy
< =
&gz © Xr_l (x)

1 h?, (8.75)

T

€3

where h, Cy, C3 are as in Lemma 8.4.4.

Proof. By using Lemma 8.4.4 we obtain

(gr.p ° Xz_l) (x) —g: 0 Xr_l (x)
grox ' (x)

8t.p (i) — & (ﬁ)
g (%)

(gr,p o Xr_l) (%) 1l =
groxy' ()

< sup
XET

|

We will derive an estimate for the error in the approximation of tangential vectors
and surface elements under the assumption that P is the orthogonal resp. conormal
surface projection (cf. Example 8.1.8). We start by writing the ratio in (8.75) in
an alternative way. Note that the Gram matrix G, (X) = JT %) J; (X) € R¥? is
symmetric and positive definite so that there exists a positive definite square root
GY2 &) € R?*2 such that G; () = GY/? (%) G/? (%). The inverse of G2 (%) is
denoted by G;l/ 2 ().

Lemma 8.4.8. For any x € © € G, the ratio of the original surface element and its
p-parametric approximation satisfies

o —1
% = \/ det (672 R) Grp R G672 (),

where X := y71 (x).
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Proof. The assertion follows from Exercise 8.4.9 and the multiplication theorem for
determinants of matrix products. O

Exercise 8.4.9. Foraj,a; € R3 and A = [a;, a;] € R3Z,
det (ATA) = ||la; x a5 |*.

Let T € G&ffine For any X € T = lift; (r) € C; and £ € T, we introduce the
deformed tangential vector by £ := D0, (x) £.

Lemma 8.4.10. Let P in (8.52) belong to the class AP for some p > 1 and
be chosen as the orthogonal surface projection (cf. Example 8.1.8). Let T =
lift; (r) € G for some T € GYi and assume that hy < hqo with hy as in
Corollary 8.4.6. Then, for all x € t,

(E.8) - 66| sCshZ Ml ) VLG ®760)

(grpoxz!) ®) B

1
gro X7t (%)

< Ceh?™!, (8.76b)

where Cs, Cg depend on 50, C4 as in Corollary 8.4.6.

Proof. For T € gaffire ot x € ¥ = lift, (1) € G The difference in (8.76a) is split
into

<§1»§2> —(61.82) = <§1,§2 - €2> + <§1 - 51,$2> + <§1 — &6 — €2>~ (8.77)

The estimate for the last term follows from Corollary 8.4.6

& - & =106 0 & — &1 < Can?

since 2p > p + 1.

Next, we consider the first term on the right-hand side of (8.77). The vector
0 (X) —X = xrp (X) — xr (X) is collinear to the normal vector n (x). Since, for
any § € R2, the vector J; (X) § € Ty, we have

{(r.p ®) = 1 ®).J: ®)§) = 0.
Applying the Gateaux derivative in the direction of some 2 € R? results in
((Jep ®) = Je R) 2.Jc R §) + (xz.p ®) = 4 ®). DI R) @) (§)) = 0, (8.78)
where we employed the notation
2 2

DJ. ®) (@) ) =Y > %;jdjxr }) € R>.

k=1j=1
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Any & € Ty can be written in the form & = J, (X)§ for some § € R2. Hence
(8.78) is equivalent to

(Jep ®) = Je R) 2. 61) + (Xr.p ®) — 4 ®). DI ) (@) §)) = 0. (8.79)
By substituting & by J; (X) zZ and 7 by 6; in (8.66), we derive
Jep X)2=D0; (x) J: (X)2).

Let & = J; (X) z. Then (8.79) can be written equivalently as
(B-&t1) == (6: 0 -x DI B B @)

The chain rule yields (with X = y , (X))

3

00 (r ®); = Y (Om0nP)) ) (0) (xr.p X)) (9 (Xz.p ®)),,)

m,n=1

3
+ 3 OmP) ®) 00 (xep R),, -

m=1

Lemma 8.4.2 implies that
|00, xep ®)|| < CH2,

where C depends on Cg,p and Cr,2. Since the dimension of the tensor DJ; (x) is
finite and equals 3 x 2 x 2, the equivalence of norms in finite-dimensional spaces
implies that there is a constant C > 0 such that

~ L (8.672) ~ S
(B2 = 2.4 = Cn2 16 0 =l 2l 150 =" ChE* 2 151

Finally, we employ

1

84 )
W Iyl = Chc |yl .
T Iz

€l = 13 ® ¥ = (G X) ¥, §,>1/2 > C

The combination with the analogous estimate for §& = J; (X) Z leads to

(& —&.&1)| = Chztt a2l

Repeating all arguments for the second term on the right-hand side in (8.77)
completes the proof of (8.76a).
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It remains to prove (8.76b). In view of Lemma 8.4.8, we consider
G2 (%) G, ®G;2R) =1+E(x),

where I is the 2 x 2 identity matrix and E (x) := G;l/ 2 (%) G,p (%) G:l/ 2 x)—L
From the continuity of the determinant we conclude that

det(M+E) =1+ O (|E|]). (8.80)

where ||-|| denotes the spectral norm of E. Since E is symmetric we have

(v, Ev)| (W.Gr.p R) W) — (WG (X) W)
IE| = sup — 2" = su -
ver2\(0} IV weR?\{0} (W, Gz (X) W)
~112
18" - ver®
< sup — < ChPt1,
et HE i
§=D0; ()&
Thus (8.76b) is proved. O

Next, we will investigate the difference of the distance ||x —y| between two
points on the original surface I" and the distance ||Xx — y|| between the corresponding
points on the approximate surface. Recall the definition of gr which measures the
ratio between the geodetic distance and the Euclidean distance of surface points [cf.
(4.80)].

Lemma 8.4.11. Let P in (8.52) belong to the class Ag\jl for some p > 1. Let the
mesh width h be sufficiently small h < ho with hy as in Corollary 8.4.6. For any
x,y € I', we have

16 (x) =6 (y) = (x=y)| = C7h? [x—y]|.

The constant C7 depends only on Cgyyy, [cf. (8.57)], C4 as in Corollary 8.4.6, cp as
in Assumption 8.1.16, gr [cf. (4.80)] and the shape-regularity of the mesh.

Proof. First, we consider two points x,y € 7 = lift; (7) € C; for some 7 € GAffine,
Letx = 771 (x), ¥ = x7'(y). Forz € [0,1] we write Z(t) := y + ¢ (X — ) and
z(t) := y: (Z(¢)). Then

Oz (x) = 0 (¥) = (X =¥) = Yz.p B) = Yrp ) — Xz K) — 1= ()

_ /1 d ((Xe.p— xz) @ (t)))dt _ /1 (Jep —Jo) @ () (K — ) dr1.
A d1 0

Note that £ := J; (Z(¢)) (X —§) € T, and, thus, we obtain

1
B (%) — 6: (¥) — (x—y) = /0 (Db, () E—)dr. (881
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Estimate (8.67b) implies that
16z (x) — 6z (y) — (x = y)|| < Cah [I§]|- (8.82)
The norm of ¢ can be estimated by [cf. (8.73)]
I€17 = (&= 9).G: @(1) K= §) = CCF AT %= F|”. (8.83)

Letx = y.(X) andy = y. (¥). By using the bi-Lipschitz continuity of P [cf.
Definition 8.3.1(2)] we get

”X - Y|| = “P (Xr,p (’A‘)) - P (Xr,p (5'))“ >cp HXr,p (’A‘) — Xt,p (5’) ” .

Taylor expansion of y.,, about ¥ yields

Xep X) = Xrp (V) = Jep () X —¥) + R(X.Y)

where
L Iy — &I Lemma 8.4.2 Iy — x| 5
R XY = R lgllixz H 3 Xv,p HCOG) = Csap 5 h
This leads to
o~ s oa Iy — &)1
Ix -yl = cp <||Jr,p ®»E-9| - CsmbThf : (8.84)

For the first term on the right-hand side, we proceed with

[3ep G G=9)]> = X —§.Gep §) R—9)).

The inverse of the Gram matrix has the form

G-l = L ”82)(’7’17”2 _<81Xr,17’32%(r,p)
T,p g%,p _<81X1’,P’82X1',P> ”aIXr,p”

The combination of (8.62b) and (8.57a) leads to

C A A A
6ol = €555 and Wer 9 G-
T
1 R h o
> R > e k-
”GZ}, 2 CCstab
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Inserting this into (8.84) results in

3 h T Cstab

x—y| >cp [X=F| | == — —=2h2 ).
Iyl = er 13 =31 (2= - a2
For sufficiently small /2, we have proved that
ly = x|l = csho |y — x|, (8.85)

where cg > 0 depends on Cyp, ¢3 and the shape-regularity of the mesh.
The combination of (8.1) and (8.82)—(8.85) leads to

16z (%) — 6z (¥) = (x = Y)I| < CCaCrah?* (X —§| < Coh? |x—y| (8.86)
with Co := (CC4C1“’1Cafﬁne) /Cg.

Next, consider some X,y € ', x # y, and choose apaths :={s (t) : t € [0, 1]} €
C%! ([0,1],T) of minimal geodesic length, which connects y and x and satisfies

y = s(0) and x = 5 (1). Let (%k)zzl denote a minimal sequence of triangles in g
such that

q
s={sn:ref0.1)}c |-
k=1
Choose a minimal number of points
O=t<h<..<th=1

such thats; :={s(¢) : 0 <t <t;}and

V2<j<=m  sji={s(t):tj_1 <t =t}
define a disjoint partitioning of s which satisfies

Vi<j=q 31=<k(j)=q s;ChQy-

Let |s| denote the length of s while the length of s; is called |s 7 | Then

16() =6 () —x=yIl = Z |6z, (27) = Ony (27-1) = (27 — 2j-1) |
j=1

m m
<Co Y h?|zj —zj1|| < Coh? Y |s;| < Cls|h”
j=1 Jj=1

(4.80)
=< Cogrh” x—y].
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Lemma 8.4.12. Let P in (8.52) belong to the class Ag\jl for some p > 1. Let
the mesh width h of G be sufficiently small h; < hy, where h1 > 0 depends on

ho as in Corollary 8.4.6 and Cy as in Lemma 8.4.11. For any a € R, there exist
C10, C11 > O such that, for any X,y € T', we have

16 x) — 6 (DI = IIx — y[|*| < Croh” ||Ix —y]|*. (8.87a)

If P € APY! is chosen as the orthonormal projection (cf. Exercise 8.1.8) the
estimate can be improved by one order of h

1160 =0 W = Ix=yI*| = Cih?™ x —y||*. (8.87b)

The constants Cyo depends only on C7 while Cy1 depends on 50, C7, h1, and the
constant C as in Lemma 2.2.14.

Proof. The function py : R3\ {0} — R, py (x) := ||x||* is infinitely differentiable.
Let further
q() :=x+1 (0 X —-x) -y +1(0 () —y).

We obtain
[ a ! d
1000 =0 @I = Ix=yI" = [ Fp(a@nas
1
= [ ona @) (@ ).6 0 —x= 6 0 =) .

The norm of q can be estimated by using Lemma 8.4.11.

la@Ol =lx=y+1(0 & =0 — &=yl = lx—y|—1C7h” [x—y]|
= (1 =Ch?) x—yl. (8.88)

Analogously, the estimate ||q (¢)|| < (1 + C7h®) ||x —y|| is derived. Hence, for
sufficiently small & < &, we have

1
I =YI=IaO1 =5 1=yl and lapaa @O = Callx— "2,
(8.89)
where C;, depends only on o € R.
The combination of the left estimate in (8.89) and Lemma 8.4.11 leads to

A

g (@).0x) —x= O - < lqaO[ 6 -0y — -yl
;th" Ix—y|*. (8.90)

A

Hence (8.87a) follows from (8.89) and (8.90).
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If P € AP s the orthonormal surface projection the estimate can be improved.
We write

(@000 —x— () -y) = (x=y.0 () —x— (6 ¥) - )
+I®-x=@®»-YI*. 6
The second term on the right-hand side can be estimated by using Lemma 8.4.11
1660 =x= (0 ) =WI* = CTH? x—y|* < Cosh” M x—y|*,  (8.92)

where C;3 depends only on /7 and C5. For the first term in (8.91), we employ
0(z)—z==|z—06(z)|n(z) forz € {x,y}. Thus

|(x=y, 0 (x) =x=(0 () =) = [0 (x0) —x[ [(x—y,n(x))]
+16 ¥ —ylllx=yn)l.

The combination of Lemma 2.2.14 and (8.67a) leads to
[(x—y.0(x) —x— (0 (y) —¥))| <2CCoh?" |x—y|>.

where C is the constant as in Lemma 2.2.14. O

For anisotropic problems, where the principal part of L is given by —div

(A grad u) with some positive definite A # I, the fundamental solution G [cf. (3.3)]

contains the anisotropic distance ||-||, = (-, -)i/ %, where

(u,v), := (A_lu,v).

In this case, the following corollary of Lemma 8.4.12 will be employed for the error
estimates.

Corollary 8.4.13. Let the assumptions of Lemma 8.4. 12 be satisfied. For any o € R
andx,y € T, we have

16 ) = 6 IF = Ix = ylIi| < Croh? Ix—y|*. (8.93a)

If P € AP is chosen as the conormal projection (cf. Exercise 8.1.8) the estimate
can be improved by one order of h

160 ) =0 WIS = Ix—ylIz| = Coh?* ' x—y]|* . (8.93b)

The constants 510 (resp. 511) depend only on ca, Ca [cf. (8.19)], and Cig (resp.
Ci1)

Proof. Instead of the function p, as in the proof of Lemma 8.4.12 we employ py :
R3\ {0} — R, pe (x) := |x|%. By repeating all steps of the previous proof we
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derive

1
16 (x) =6 Wz~ lIx=yl3 = /0 @Pa—2(q (1) (q(1), 0 (x) —x = (6 (y) —y))adr.

The equivalence of norms [cf. (8.19)] implies that

Pa—2 (2) < Crapa—2 (2),
Hg (1), 0 (x)—x— (0 () —Y)al = CLla@] 6 x) —6(y) — x—Y)].

where C14 depends only on cy, Ca, and o. We use (8.88)—(8.90) to obtain

3C2C,C15Cha
2

116 () =6 WX — IIx = ylIz| < h? Jlx —y|*.

If P € APT! is the conormal surface projection the estimate can be improved.
We write

Q). 0x)—x—OF —y)s=x-y.0®—x—(6F) —)a
+H0®—-x— @O -yli. (894

The second term on the right-hand side can be estimated by using (8.92)
16 (%) =x = (8 (¥) =W)X = CaCi3h?*! Ix —y]*.

For the first term in (8.94), we employ 0 (z) —z = £ ||z — 6 (z)|| v (z) forz € {x,y}
with the conormal vector v (z) = An (z). Taking into account the definition of the
(-,-)a we derive

[(x—y.0 () —x— (8 (¥) —V)al = () [x— 0 ®] (x—y.n(x))
~ @ y- @I x—y.nm)
<10 ®) = x| [{x—y,n ()|
+16 ) =yl lx—y.n ()|
<2CCoh?™ [x—yl|*.

|

In order to analyze the perturbations for the kernel of the double layer potential
and its adjoint, we will use the following lemma.

Lemma 8.4.14. Let the assumptions of Lemma 8.4.12 be satisfied. Then

vx,y et =lift, (1) € G: |[(n(x).y—x)— (0 (X).§—%)| < Cr4h?" |y —x|°.
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For any pair of non-identical panels t1, T2 € G and x € #; = lifty, (71),
y € 1 = lift (1) we have

|(n(x).y —x) = (ng %),y —X)| < Cish? |y — x|

where C14 and C15 depend on cg, Cyap, Cabs Cr,p+1, Ca, c3, p, and the shape-
regularity of the mesh.

Proof. First, we will consider the case X,y € ¥ = lift; (r) € G for some T € Gafine,
Let X = 0 (x) and § = 6 (y). Taylor expansion on the reference triangle about X
leads to (cf. (5.3) and Definition 5.1.2)

mEx).y—x)—(ng(X),§—X) = (n(x), xz §) — x X)) — (né (%), Xt,p @) - Xt,p (&))

< o, Z< —xV) 1 ®

+ Rl (§’9)>

( —% V) zep ®)

<n£(x) 2 L= +Rz(ﬁ,y>>.

Because <§' —X, ©> xr (X) = J: X) (y —X) € Tk, the term k = 1 in the first sum

vanishes and the same holds for the second sum and the summand with index k = 1.
Thus

o (—xv) 1 ®)
(n(x),y—x)— (¢ (®),§—%) = (n(x) —n (%), Z

k!
k=2
+ (n(x), R1 (X,¥) — (n; (X), R2 (X, Y))
y—x,V (Xr(ﬁ)_)(r, (’2))
<ne ® Z< > k! : >

We will estimate the various quantities in the above expression in the following.

Estimate of R;, R»:
Since R;, R, are the remainders of the p-th order Taylor expansion, we obtain as
in (8.60)

(h- ||y — &[)7*"
(p+ !

®85 C —x|[PTt
2 _C ly=xI""" <Clly—x|?h?!, (8.95)

2t (p+D! T

[Ry &V + Rz (x,9)] = C

where C depends only on p, cg, Cgap, 5stab, and Cr,p41.
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Estimate of n — ny:

Next, we consider the difference of the normal vectors and derive, from
Lemma 8.4.4 and its proof, the estimate

t; (}) x & () B tr1 (X) x tp2 (R)
g: (%) 8t.p (%)
&t,p (%) _Agr (’A‘)n (x) H
gep (X)
[t: R) x &2 (R) — tp,1 () x 2 R
+ =
gep X)

In(x) —ng X)[| =

=

<Ch?, (8.95b)

where C depends only on C, and c3.
Estimate of derivatives of the pullback y.:

We employ estimate (8.57b) and (8.85) to derive, for k > 2,

(%9} 1 ®

Lo e 2 oo
X = 2. -0 R < Cle [§-%I)" = Clly — x|,
’ aeNé ’
la|=k
(8.95¢)

where C depends on 5Smb, cg, and k.
Estimate of derivatives of the p-parametric approximation error:
By using (8.53b), we obtain

(7= %9 (e G0 - 10 ()
k!

A Ank _
< C\Crp B2y — %|“ < ChZ 7! |y — x| 1%,

(8.95d)
where C depends only on p and Cr,p41.

The combination of estimates (8.95) with some Cauchy—Schwarz inequalities
leads to

[(n(x).y —x) — (n¢ (8).§ — %) = ChZ7" |y —x]*.
We turn now to the case that x € 7; = lifty, (71) and y € 7, = lift, (12) for
some non-identical 71, 7, € G, Lemma 8.4.11 and (8.95b) imply that

[(n(x),y—x)—(n;(X),y—X)| = [{(n(x) —n¢ (X),y —X)+(ng (X),y —x — (§ — X)}|
< Cish? |ly — x|,

where C depends on the constant in (8.95b) and C7.



Chapter 9
A Posteriori Error Estimation

The error analysis for the Galerkin discretization exhibits the asymptotic conver-
gence rates for the boundary element method which depend on the regularity of the
underlying integral equation. These estimates are called a priori estimates because
they hold for large classes of problems which are characterized by their regular-
ity. They are important because they show the asymprotic quality of the Galerkin
boundary method. However, for a concrete problem these estimates could be by far
too pessimistic and do not allow answers to the following questions:

e s the size of the error uy —u with respect to some norm or to some other measure
below some given error tolerance &?

e If the numerical solution uy € Sy is not accurate enough, what is a good strategy
to enrich the space Sy in a problem-oriented way? Is the uniform refinement as
described in Remark 4.1.8 a good strategy?

The a posteriori error estimation uses the computed numerical solution u; and
the given data (such as the right-hand side or the integral operator) and computes
non-negative indicators (1;)?_, which have the property that the (weighted) sum
is an upper bound for the true error. The quantities will be local in the sense that
their computation involves integrals over small patches w; C I'" and their number n
depends linearly on the number of panels.

Furthermore, the size of these local quantities can be used directly to detect sub-
regions on the surface I where the error is large and which should then be locally
refined.

The development of a posteriori error estimation for finite element discretizations
of partial differential equations started with the pioneering papers [10, 11]. Since
then the number of publications in this field has grown enormously and we refer
to the monographs [2, 12, 14, 172,232] for a thorough treatment of this topic and
further references.

However, for boundary element methods, the nonlocal character of the integral
operator and the nonlocal fractional Sobolev norms cause difficulties in the mathe-
matical derivation of local error indicators and much fewer authors have investigated
local a posteriori error estimates for integral equations [47,48,50-53, 89,90, 92,93,
189, 196,209,210,240,244].

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series 517
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2_9,
(© Springer-Verlag Berlin Heidelberg 2011
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In this chapter, we will develop and analyze a posteriori error estimators for
boundary integral operators. We will follow the approach and the analysis as
introduced in [89, 90, 92].

9.1 Preliminaries

In Chap. 4 we introduced the Galerkin boundary element method for the abstract
variational problem: For given F € H’, find u € H such that

a(u,v)=F(v) Vv e H. 9.1

Let A : H — H’ denote the operator associated with the sesquilinear form a (-, -)
(cf. Lemma 2.1.38). Throughout this chapter we will assume that the operator A
is either of negative order and maps into H* (I") for some positive s or is of non-
negative order. Note that we always require throughout this chapter that the range
for the differentiability indices s in H* (I") obeys condition (2.84) depending on the
smoothness of I'. A first assumption on the operator A is stated next.

Assumption 9.1.1. A : HS(I') — H ™5 (I") is an isomorphism for some order
2s € R, i.e., there exist constants Cy, Ca > 0 such that

Al g=srymsqry < C1 and A7 ||HS(I‘)<—H*S(F) =G

The boundary element space S is composed by local polynomials which are
lifted to the surface I' via local charts and put together either in a continuous or
discontinuous way. The Galerkin discretization is given by seeking us € S such
that

a(us,v) =F (v) Vv e S. 9.2)

The boundary element mesh is denoted by G consisting of surface panels ©
(cf. Chap. 4).

Typically, the error u — ug will not be distributed uniformly over the surface I',
and adaptive refinement aims at refining the mesh in regions where the error is larger
than some threshold. In this chapter, we will introduce local a posteriori refinement
indicators for the detection of such regions (and for the estimation of the total error).
In this light, the goal of this chapter is to define computable quantities 7; which will
depend on the discrete solution us such that the estimates

n n
Cert 3 07 < llus — ullggsqry < Cra »_ 07 9.3)

i=1 i=1

hold. The upper estimate is called “reliability” because it guarantees a prescribed
given accuracy while the lower estimate is called “efficiency” because it implies
that the qualitative behavior of the error is reflected by the error indicators and not
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overestimated in an unspecified way. The quantities n; will be local in the sense that
their computation involves integrals over small patches w; C I'. The number n in
(9.3) will depend linearly on the number of panels in G.

Remark 9.1.2. The size of the constant Cy is important for the practical use of
a posteriori error estimation. In order to guarantee a prescribed accuracy for the
energy error ||us — ul| gs ry one has to refine the discretization as long as the upper

bound (Crel 27:1 nl-z)l/z is below the given threshold. In this light, we will track the
dependence of Ci| on more elementary constants as clearly as possible.

The adaptive solution of the problem (9.1) is structured in the following abstract
way. Let ¢ > 0 be a given tolerance for the energy error ||lus — ul| gsry and let
8 € (0,1) be a control parameter for the refinement. Let Gy be a coarse surface
mesh and let Sy denote the corresponding boundary element space.

Algorithm 9.1.3 (Adaptive Refinement).
begin
if £ = 0 then compute the solution ug of problem (9.2) for S = Sy;
1: compute the error indicators n;, | <i < ny;
ify ', r]iz < g then STOP: Solution is uy;

else begin
L:=0+1;
refine all panels t € Gy—1 witht C w; and n; > § 1max nj; 9.4)
<j<n
subdivide (if necessary) further panels Tt € Gy such that the mesh G
(9.5a)
becomes regular (cf. Definition 4.1.4); (9.5b)

solve problem (9.2) for S = Sy,
where Sy corresponds to the new mesh Gy;

goto 1;

end;
end;

The realization of the algorithm requires some mesh refinement techniques and
we will present some basic principles in the sequel.

We assume that a coarse mesh Gy is given. This initial mesh is used to generate
finer ones (gg)ﬁ";“i in a recursive way by applying different refinement patterns.
For triangles, there exist various refinement patterns, some of them are depicted in
Fig.9.1.

If discontinuous boundary elements are employed the mesh G is not required to
be regular (cf. Definition 4.1.4). In this case, step (9.4) in the adaptive algorithm is
realized by refining all panels which satisfy 7, < § max;eg 1y by the red refinement

pattern and skip step (9.5).
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&

- lgree“(i) white

Fig. 9.1 Different refinement patterns for triangles. Red: Subdivision into four concruent triangles,
Green (i): Connecting the i -th vertex with the midpoint of the i-th edge, White: No refinement

red

green
PN

Fig. 9.2 Red refinement of a panel, typically, results in a hanging node (here marked by filled
square). Connecting this node with the opposite vertex of the neighboring panel results in a regular
mesh

If continuous boundary elements are employed the mesh G must be regular. In
particular, hanging nodes have to be avoided which typically arise if some panels
are refined by the red pattern. A panel vertex is called a hanging node if it lies in the
interior of an edge of some other panel. A typical situation is depicted in Fig. 9.2.

The green closure algorithm refines some further panels so that the resulting
mesh becomes regular. It uses a function “mark” which contains the refinement
patterns for the panels in Gy_; and is initialized by mark () = “white” for all
T € Gy—1. Hence it is straightforward to check from the function mark (-) whether a
mesh, which would result by refining Gy according to mark (-), is regular or not.
We set the function regular (G,—;, mark) = “true” in the first case and “false” for
the other case.

The green closure algorithm is realized by replacing steps (9.4) and (9.5) by the
following piece of code.
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for all panels t € Gy—; with: t C w; and n; > § 13}<XM n; forsome 1 <i <ndo
mark (7) := red;
while regular (G,—, mark) = false do
for all r € Gy—; do begin
if mark () = green At contains one additional hanging node then mark (t) := red;
elseif mark () = white then begin
if T contains more than one hanging node then mark (1) := red;
elseif 7 contains one hanging node then mark (t) := green;
end;
end;

Remark 9.1.4. In the literature, there exist many advanced versions of the green
closure algorithm (see, e.g., [17] and the update [18]), which, e.g., use a larger
class of refinement patterns or guarantee that the shape-regularity of the panels is
preserved through the refinement process.

The efficient algorithmic realization of the refinement algorithm requires appro-
priate data structures for the mesh handling. We refer, e.g., to [17] and the update
[18] for the details.

9.2 Local Error Indicators and A Posteriori Error Estimators

The definition of local error indicators and a posteriori error estimators for operators
of negative order will differ from those of non-negative order.

9.2.1 Operators of Negative Order

We start with the case that the operator A : H* (I') — H ~ (I") which is associated
with the sesquilinear form a (-, -) in (9.1) is of negative order 2s € [—4,0] and, in
addition, s has to satisfy condition (2.84) depending on the smoothness of I". Note
that the boundary integral operator V for the single layer potential for the Laplacian
satisfies this condition for 2s = —1 (cf. Theorem 3.1.16).

Let u denote the exact solution to problem (9.1) while the Galerkin solution ug
is the solution of (9.2). Our goal is to estimate the Galerkin error

e=us—u
by computable local error indicators. The image of the error under A is denoted as

the residual
r:=Ae = Aus — F € H* (T').
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The continuity (cf. Assumption 9.1.1) of 4 and A~! leads to the estimates
Cr2 VI —sqy < Mgy = C3 AV @y Yve HS (D).

The choice v = e shows that the Galerkin error is bounded from below and from
above in terms of the residual

— 2 2 2
Cr2 Irllz=sry < llel sy < C3 Irl—s oy Yve H* (T).

We will show in Sect. 9.3 that the norm of the residuals can be localized under very
mild assumptions on the mesh.

Let Z denote the set of counting indices for the basis functions b;, i € Z. The
nodal point associated with b; is denoted by z; € T'. For any i € Z, we introduce
panel neighborhoods w; about z; and, for any 7 € G, neighborhoods w; about 7 by

w; :=suppbh; and w;:= U t. (9.6)

_teg
tNTH#D

The distance of a panel t from I'\w; is denoted by
d, = dist (7, T\ wy). 9.7)

The definition of the local error indicators will be based on the explicit representa-
tion of the seminorm || g0 (4, for non-integers o > 0:

|00 @) = Z/

a=|o] Y%

pd o™ 2
[ 0% (x) — 3% (y)| dsydss,
w;

Ix —y [>T

where 0 = |o] + A. The surface derivatives 0% are defined via local pullbacks
to two-dimensional parameter domains as in (2.85). Recall that the range of o is
restricted depending on the smoothness of the surface [cf. (2.84)].

Definition 9.2.1. Let us denote the Galerkin solution to problem (9.2) and let the
residual be given by
r = Aus - F.

The local error indicators are given by

ni ‘= |r|H_S(CU,') ie’l

ni= > 2.
i€l

and the global error estimator is
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9.2.2 Operators of Non-negative Order

If the operator A : H* (I') — H~* (I') which is associated with the sesquilinear
form in (9.1) is an isomorphism of non-negative order 2s > 0, the residual

r=Aus — F € H (I

is a functional. In this light, the operator A acts as a differential operator in a broader
sense. For this case, we will derive error indicators which are of residual type. For
partial differential equations this type of error estimators goes back to the pioneering
papers [10, 11]. For integral equations they have been developed in [89].

Definition 9.2.2. Let (;);; denote the basis of the boundary element space. The
Galerkin solution is denoted by ug, the exact solution by u, and the corresponding
error by e = us —u. For i € Z, the local error indicators are given by

) la (e, biv)|
ni = sup ———. (9.8a)
vers (@) 1Divl gs
b;v#0
Note that
. b; 7, biv) y—s s
sup la (e, biv)| = swp |( ivV)H (T)xH (F)| (9.8b)
ve HS (T) ”biV”HS(I‘) veHS () ||biV||H~Y(F)
biv#0 biv#0

Remark 9.2.3. Note that the quantities 1; are not computable because the supre-
mum (9.8) is taken over an infinite-dimensional space. Under the assumption that
the residuum is in L? (T'), computable lower and upper bounds which can be
approximated by quadrature formulae are given by

’(r, biz)H*S(F)xHS(F)‘

2
=nm =C Z hzs ||”||L2(f)

2
1621 a5 e reo
Cw}
foralli € I, where
o ={teG:TNw; #0}. (9.9

The constant C depends only on the shape-regularity of G.

9.3 Proof of Efficiency and Reliability

This section is devoted to the proof of efficiency and reliability of the error estima-
tors which have been presented in the previous sections. Again we will distinguish
between operators of negative order and operators of non-negative order. Throughout
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this section, we will assume that the surface I' is of class .Agw (cf. Definition 8.3.1)
and we will restrict to the three-dimensional case.

9.3.1 Analysis of Operators of Negative Order

The analysis of the a posteriori error indicator as in Definition 9.2.1 will be based
on the localization of the globally defined norms of Sobolev spaces of positive frac-
tional order [cf. (2.85)]. Although this can be worked out for any Sobolev index
s € R5o\N we restrict the presentation to s € ]0, 1[ which includes the most
important case s = 1/2 for integral operators of negative order corresponding to
elliptic boundary value problems of second order. For the general case we refer to
[92].

We start with two preparatory lemmata.

Lemma 9.3.1. For A > 0 and for anyy € R? and & > 0, we have

1 21
dx =
[szsm ly — x| > A

Proof. We introduce polar coordinates centered at y by x = y + r (cos ¢, sin )T
and obtain

1 * 1 2
———dx = 271/ ——rdr = ——¢*,
/Rz\Bg(y) ||y _ X||2+A . r2+)(, A

|

Lemma 9.3.2. For A > 0 there exists a constant Cj, depending only on A and the
geometry of I such that

1
—ds SC)@;“_’1
fr\m) ly — x>

forallz e R3 and e > 0.

The proof is completely analogous to the estimate of the quantity S, (x) in the
proof of Theorem 3.3.5 and we leave the details as an exercise.

We start with the derivation of estimates of the H® (I')-norm by a sum of local
integrals for the case s € ]0, 1[. Recall the definition

2 2 2
VI zs @) = VI Z200) + VEs @)

for any measurable w C I and note that, for s € ]0, 1], we have
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v —vI?
V7 @) = // = y|r232s dsx.

Lemma 9.3.3. Let s € 0, 1[. For any function v € H® (') and any boundary
element mesh G,

vVIX)—V —
Vs ) <Z§/[ %d sxdsy + 4C2ed ;2 V]| 2200 (9.10)
T Jwr —

et yll
<D sy +4Cas ) d P V2. (9.10b)
i€T T€G

where w, w; are as in (9.6) and d; is as in (9.7). The constant Ca5 depends only on
s and on the geometry of T'.

Proof. The additivity of the integral leads to the splitting

ey = Z// v ynvjfz)s' ddey=2{/r/wr...+/r/mwr...}.

T€G T€G
9.11)
The second term can be estimated by

[v(x) — V(Y)| I Il
[/;\w y||2+2s ———— o —dsxdsy <2J. +2J, (9.12)

where

v (y)|? " / [ v (x)]?
—————5-dsxdsy and J; dsydsy.
[ /r\w, Ix—yPP> Mor Jo [x—y[2FZ

Note that forany 7 € Gwe have {t € G: 7 C N} = {t € G :t C '\w;} and,
thus, the summations of J; and J[' over all panels coincide as can be seen from

11 |V(X)|
ZJT [/ ||X y||2+2s dSX

T€G reg teg
tclM\wr

= Z Z / lv<y>l+2s dsxdsy

1€G  teg ey —
tCIM\w;

I e o]

TG 1€G tly— T€G
tclMwr

The combination of this equality with (9.11) and (9.12) implies that
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v —vyl?
|V|§_IS(I~) = Z {\/;/{; stxdsy + 4'JTI

(9.13)
T€G ||X - y

Observe that I'\w; C I'\B,, (y) for any y € v and Lemma 9.3.2 implies

1 - 2
= vy (/ - ds ) dsy < Cagd 7> ||v|| .
/; I‘\wr ||X _y||2+25 X y s Lz(‘f)

Thus the first estimate (9.10a) is proved.

For the second estimate (9.10b), it remains to consider the first term in (9.13).
Note that for any pair of panels 7,7 € G with T N7 # @ there exists at least one
i € 7 such that T U v/ C w;. Hence we are led to the final estimate

Y[ =y [ [en X [

T€g T,LEG i1€Z 1,7 Cw;
TNE#D

= P ®—v I
- EI:/ /w, y||2+2s e dS dey.

|

The second term on the right-hand sides of (9.10) is a weighted sum of local
L2-norms of the function v and our goal is to estimate this terms by a sum of local
H? (w;)-norms. Note that an estimate of the form

A7 72y < C IV @y 9.14)

for some small I'-neighborhood U, of T cannot hold for arbitrary functions v €
H?® (T') as can be seen from the counter example v = 1.

s d72|t| hg—0
: L’ T|Z/l || | 2 00 if the ratio || / [Uy | is bounded away from zero.
T

2
||V||HS(u,)

However, we will prove an estimate similar to (9.14) for functions being orthog-
onal to some boundary element functions. First, the result will be proved in some
two-dimensional parameter planes and then lifted to the surface. Let w; be as
in (9.6). We introduce a lifting y; : @; — w; from a two-dimensional convex
polygonal domain to w; as follows:

e If w; = t for some panel t € G the mapping x; is chosen as the reference
mapping y. of t (cf. Definition 4.1.2).

e For continuous boundary elements, ; is the union of a few panels, i.e., there
exist subsets G; C G — the cardinality |G;| of which is bounded by a constant
independent of the refinement level — such that
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o7 = U z.
regi

In this case, the lifting y; : @; — w; is as introduced in Sect. 4.3.5 (cf. Assump-
tion 4.3.25). Recall that w; is a two-dimensional convex and polygonal parameter
domain. Note that, for any T € G;, the pullback 7 := ;! (7) is a plane panel
with straight edges.

The following Lemma is a refined version of the second Poincaré inequality (cf.
Theorem 2.5.9), where the dependence of the constants on the geometry is traced
more explicitly.

Lemma 9.3.4. Let D C R? be a polygonal domain. Then we obtain for s € 10, 1]
and any functions w € H® (D) the estimate
1 (diam D)?>*2$ 1 2
2 2
”W”LZ(D) =< 5 |D—| |W|H5(D) + m LW(X) dx

9.15)

Proof. We proceed with

/D /D w (%) — w (Y| dxdy

:/D/D|w(x)|2dxdy+/D/D|W(Y)|2dXdy

_[/(W(X)W+WW(Y)>dxdy
pJp

=2 |D| ”W”%}(D) -2 |J|2 (916)

where J = fD w. Hence (9.15) follows from

w(x) —w

<(diam D)2+2S
S (dlam D)2+Zs |W|%{3(D) .
O

In the following we will estimate the term |J|* in (9.16) in more detail. Note
that, for general functions w € L? (D), the Cauchy—Schwarz inequality

|J|=‘/w
D

is sharp. In the next lemma, we will prove that, for functions w € L2 which are
orthogonal to finite element basis functions, the estimate (9.17) can be strengthened.

< D" Wl 2p) (9.17)
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Recall that, for the boundary element space S, the local nodal basis is denoted
by (b;); ez First, we will prove the result for the pullbacks @; := ;' (w;) and then
lift it to the surface. For s > 0, we introduce the mesh-dependent Sobolev space

HY (07) :={ve H* (&) : (v.bi o yi)12(5,) = 0} - (9.18)

Definition 9.3.5 (Local Residual Property). A boundary element space along with
a basis (b;); <7 satisfies the “local residual property” if there is some constant 0 <
y < 1 such that

/w
;

Later, we will need the local residual property only for the two basic boundary
element spaces Sgo’_l, which consists of discontinuous piecewise constant func-

<yl@"? w2y  Ywe Hi (&) Viel (9.19)

. 1,0 .. . . . .
tions, and S5 which consists of continuous, piecewise affine boundary elements.

Lemma 9.3.6. For S = Sg’_l the local residual property is satisfied with y = 0
while, for S = SL°, the estimate (9.19) holds fory = 1//2.

Proof. Let S = Sg’_l. Then it is sufficient to prove (9.19) for the unit panel 7,
i.e., either the unit triangle or the unit square [cf. (4.13)]. In this case, we have
H$ () ={we H*(%): [, w =0} and (9.19) holds with y = 0.

LetS = Sg’ 20 Fori € 7, let &; again denote the pullback to the two-dimensional
parameter domam and let bl :=b; o ;. Forany w € H{ (®;), we have

frl =1L =8 v < -5

Pick some 7 C w; andlet T = )(l-_l (7) C w;. Then b, :=

oy M@y 620

bi _ is the affine function
T

A\2
which equals one at some vertex of T and zero at the others. Note that (1 - br> isa

quadratic polynomial and the following quadrature rule is exact. Letm;, 1 <i <3,
denote the midpoints of the edges of 7. Then

[ =By -5y omo -

and for the integral over @; we get

N

N |

|a),|

[t =Bl < 9.21)

The combination of (9.21) with (9.20) yields
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o=

and y equals 1/+/2. |

2
&' Wil L2 @)

SI

Lemma 9.3.7. Let s € |0, 1] and assume that the boundary element space has the
local residual property. Then, for any i € T andw € H? (@;), we have

(diam &; )* 1

2
[[w ”L2(w,) = 2(1—2)|a7,| |W|HS((5,-)-

Proof. Let J; := f w. By (9.15) and the local residual property of S we obtain,
forany w € HY (a),) the estimate

1 (diam &;)>*%

2
. -7 Ji
Il a0y = 5 Wl ) + 72 1P
1 (diam@;)**> 2 12
=5 @ | IWlEs @) + Y ||W||L2(¢5,-) ‘
From y € ]0, 1], the assertion follows. O

Now, we are in the position to prove a Poincaré-type inequality similar to (9.14).
The global version of H{ (&), for a boundary element space S, is given by

H} (S.T):={we H*(I')|VveS:(v.w)2r) =0}, (9.22)

ie, H{ (8§, ) =S LN H* (T). The following remark states that piecewise smooth
surfaces can be covered by a selection of smooth patches w; provided that the mesh
width of the surface mesh is small enough. This property will be needed in the proof
of Lemma 9.3.9.

Remark 9.3.8. For a given surface T" of class Agw (cf. Definition 8.3.1) and any
regular surface mesh G with sufficiently small mesh width hg < hr the following
property holds. For all Tt € G there exists i € T such that t C w; and the mapping
xi can be chosen such that y; € C? (@;).

We always choose y; € C? (&;) if possible. The subset Z5™°" C T contains all
indices Z such that y; € C? (@;). Note that ' = U w;.

i e smooth

Lemma 9.3.9. Let the surface T be of class Agw and hg < hr (cf. Remark 9.3.8).
Let Assumption 4.3.29 hold and let Assumption 4.3.17 or Assumption 4.3.18 hold.
Further, let s € |0, 1[. Then there exists a constant Cy depending on the shape-
regularity constant and on T such that

DA W2 < CL Y s

T€G ieT

forallv e HY (S,T).
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Proof. Let T € G and choose i € Zsmoom Such that T C w;. Forv € HY (S,T) we
have

0=bi)2r) = /~ Bivgidx,
@;

where E := b;j o yi, V:=vo y;,and g; is the surface element. We conclude that
Vg; € H} (@;) and apply Lemma 9.3.7 to obtain

3 A e = 3 d; 25[|v| gi=Yd 25[|ng| gl 923)

€ € T€G
TCw; TCw; TCw;

where T = x;! (r). By using ”gl ||L°°(w = 0 |w;|/ |wi| (cf. (4.227), Lemma
4.3.27) we get

—2s |l| —2s ~, |l| —2s ~o. 12
T o K Xl P AL

T€G T€G TCw;
TCw; rcw,

Note that d; > c4 (diamw,;) where c4 depends only on the constant of shape-
regularity and on the global chart y (cf. Assumption 4.3.10). This leads to

— 2
2 47 Mg <

T€G
TCw;

0 ||

|wi | (c4 diam w;

-~ 2
)2S ||Vgi||L2(a7,-)

Lemnﬁ 9.3.7 0 |&; | (diam @; )2+2S

- 2
- — |V&i S(@:) -
|w; | (cq diam w;)?* 2 (1 — y?) |&; ] V81l @iy

There is a constant Cs depending only on the shape-regularity of the mesh and the
global chart y such that
(diam @;)? / |@;| < Cs.

This leads to

Cs0 |@; | diam @;
d —25
>4 Mizag < 5 T

T€G
TCw;

2s
) PgilGsay - 924

c4 diam w;

Next, we will transform the H* (&; )-seminorm back to the surface. Corollary 4.3.30
implies that

Y ® = 1 B

X =¥l = ¢

for all X, § € @;. Hence we obtain (with §; = g; o Xi_l)
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. 2 g (X) — g D . -
|Vgi|Hs(w /w/ K dxdy

2+2s . . 5
2 (& (x) — & (¥))
“2(cmz) [0 =y 5 0 m

2+2S
- v —v P & ()
2 (cdlamw,) /w /w VP & s

(9.25)
Recall (cf. (4.227) and Lemma 4.3.27) that
1 | | |oi |
”gl ”L (w,) |a)z| an “gl ”L (o;) |a)z| ( )

The difference g; (x) — g (y) can be estimated by

N . x=x; (X), y=x; (§) = ~ < =
1gi (x) — &i (¥)] = lgi %) — & DI = IV&illpoo@) IX— VIl
Corollary 4.3.30 diam ©; wj

- ch;

IV&illLoo @ Iy —xII

where ¢ is as in Corollary 4.3.30. Recall that, for T C @y, the gradient of gz := g;|z
can be written as

Vg: = V| hz| = gz 'Hzngz, (9.27)
where fz 1= t! x t? with th = ok (xily), k =1,2,and

(Hz); ; = 0; (hg); l<j=3 1 <i=<2.
Applying norms to both sides in (9.27) results in
IVegellLoom < |l&7" ||Loo(.;) 871l ooz IHz]lz

where |-||; is as in (8.70). The combination of (9.27) and Lemma 4.3.31 leads to

h; 3
||ng||Loomsc9( . ~) ,

diam w;

where Co depends only on 6, ®, Cr,» [cf. (8.49)], and the shape-regularity of the
surface mesh. Because i € Zymoom We have Vg; € C° (@;) and

hio\*
Voillrer~ < C — | .
IVgill oo (@) = 9(diamwi)

Thus we have proved that

¢ \ diam @;

C h \?
50— < ( ) Iy — x|
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Substituting this and (9.26) into (9.25) yields

e = o (o )M{ PP | s
V8ilys(z) = T~ v Sy@x
Silus @) =1\ gama, o o Ix—yI®
L o)
w; Jow; |X_Y||

where C1o depends only on ¢, 8, ®, Cy, the shape-regularity of the surface mesh,
and the global chart y. Since ||x — -|| ~2* is weakly singular, there exists a constant
C11 depending only on s € ]0, 1] such that

sup [ Ix —yl| 7> dsy < C11. (9.28)
wj

XEW;

Note that the improved estimate < C 11h1-2_2“‘ is possible by introducing local polar
coordinates in the parameter plane, while it turns out that (9.28) is sufficiently sharp
for our purpose.

We have proved that

2 1i S 2 2
~ o ) <( (( N . )
|Vgl|H3(a),-) = Cio ( lia ~i) 11 ”Vle(w,-) |V|H (w;)

and the combination with (9.24) leads to

_ 2 2 Z
2 4 M2 = Cralvlzay + Cis Vs

T€G
TCw;

_ 2 2
< Cphd Y d7* VI 720y + Ci3 Vs o) -

T€G
TCw;

where C15, C13 depends only on I', on y [cf. (9.19)], and on the shape-regularity of
1
the mesh. Thus, for sufficiently small mesh width ig < (2C1,)™ 25, we have

_ 2 2
D A7 T2 < 2C13 Vs ) -

T€G
TCw;

Finally, we obtain

— 2 — 2 2
YA e = D D A I e < 2C13 ) Vs -

‘L’Eg I‘el'smm)th ‘[eg i€l
TCw;
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The combination of Lemmas 9.3.3 and 9.3.9 leads to the following localization
of the H® (I")-norm for fractional Sobolev indices s € ]0, 1].

Theorem 9.3.10. Let " be in the class Agw. Let the boundary element mesh be
shape-regular and satisfy the local residual property. Then

VIl sy = (1 +4C25C1) (Z |V|H5(a),-)> Vve Hi(S,T),
i€

where Cypg is as in (9.10a) and C is as in Lemma 9.3.9.

Proof. Combine (9.10a) and Lemma 9.3.9. O

We come to the main result of this section stating that the local error indicators
as in Definition 9.2.1 are reliable and efficient for shape-regular meshes. Recall that
all boundary element spaces S which have been introduced in Chap. 4 contain either
the space of discontinuous, piecewise constant boundary elements or the space of
continuous, piecewise affine boundary elements, in short, the following condition is
satisfied

IS, € {Sg=‘1, Sé"’} such that  Spin C S. (9.29)

Furthermore, the overlap constant

Co:=max{i €Z:17 Cw} (9.30)
€@

depends only on the kind of boundary element, i.e., the polynomial degree, the basis
functions, the type of panels (triangular/quadrilateral), and on the shape-regularity
but not on the mesh width.

Theorem 9.3.11. Let s € |—1, 0] and assume that A satisfies Assumption 9.1.1. Let
S be a boundary element space satisfying (9.29). Then the a posteriori estimate for
the error ||u — us || gsry of the Galerkin solution holds:

Cett )17 < llu—usllzsry < Ceat Y07 9.31)
i€T i€Z

with n; as in Definition 9.2.1.

The efficiency estimate holds for any boundary element mesh G and the estimate
of reliability holds for shape-regular meshes.

The “efficiency” constant is given by Ceit = C7/Cq with Cy as in Assump-
tion 9.1.1 and the “reliability” constant Cy depends only on T and the shape-
regularity of the mesh.

Proof. Let e = us — u and recall the definition of the residual r = Ae. The lower
estimate follows from
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) )
Doy =) Z// ry y”rzngzS| dsydsx

i€Z i€ teg
TCw;

<Ca)) / / r&) - rz(fz)S' dsyds,

reo -yl

C

2 1

< Cq ”r”H—X(F) = C_OZ ”e”H‘V(F) .
1

For the proof of the upper estimate we assume that the mesh is shape-regular.
Note that the Galerkin orthogonality (4.120) implies that

(r, V)H_X(F)XHX(F) = (Ae, V)H—S(F)XHS(F) =a (€, V) =0 VvesS. (932)

In particular, (9.32) holds for the space Spin C S. Since Spi, has the local residual
property, we conclude that r € H[* (Syin, I'). Hence we may apply Theorem 9.3.10
to obtain

Assumption 9.1.1
2 2 2 2 2
llells s G-y = CuC3 Y Irlh-s(y -
i€l

This is the upper estimate in (9.31) with Cp] = C14C22. O

Remark 9.3.12. (a) The above theorem expresses the efficiency and reliability of
the local a posteriori error indicators. The upper estimate requires shape-
regular meshes. However; it is possible to modify the error indicators so that
the upper estimate becomes independent of the shape-regularity of the mesh
while then the efficiency estimate depends on that property. For the details, we
refer to [92, Theorem 5.2].

(b) In this section, we considered isomorphisms A : H* (I') — H~* (I") for some
negative s. In [92, Theorem 5.2], the theory has been developed for more general
isomorphisms A : H*T25 (T') — H® (') for some a > 0 and arbitrary s € R.

9.3.2 Analysis of Operators of Non-negative Order

We start by introducing the assumptions for the main theorem of this section.

Assumption 9.3.13. The sesquilinear form a : H® (I') x H* (') — C satisfies a
Garding inequality of the form: There exist a constant Cg > 0 and an index 6 < s
such that, for allu € H* ('),

a (u.u) + Co [ullFo | = ¥ lull sy - (9.33)
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Furthermore, A : H® (I') — H~* (I") is an isomorphism for some s € [0, 1].
The next assumption is concerned with the boundary element space S

Assumption 9.3.14. Ifs > 1/2, the continuous, piecewise affine functions Sé’o are
contained in the boundary element space S and

S5 cscctm. (9.34)

For Sé’o 7 S, there holds 0 < s < 1/2and S = Sg’_lfor some p € N,
In both cases, the basis (b;); <7 satisfies Y ;7 bi = 1.

Note that the standard case of an integral operator of positive order is the hyper-
singular operator which maps H'/2 (I') — H~'/2(I"). The conformity condition
S c H'Y2(T) implies that the functions in S are continuous and the inclusion
(9.34) holds for all practical cases. The proof of the second part of the following
lemma is based on the Aubin—Nitsche duality technique (cf. Sect.4.2.5). In this
light, we assume some regularity for the adjoint problem:

Forv e H™*(T') findw, € H*(T") such thata(w,w,) = (v, w) 2y YweH*(T).
(9.35)

Assumption 9.3.15. There exist some t > 0 and some constant Cyq; > 0 such that,
for any v € H™SV (T, the solution of (9.35) satisfies w, € H*T! (') and the
estimate

Iwoll grs+ery < Cagj IVl gr—s+1 (1
holds.

Example 9.3.16. Let Q2 be a Lipschitz domain and consider the operator —Au + cu
for some ¢ > 0. Theorem 3.2.3 implies that the sesquilinear form for the cor-
responding hypersingular integral operator W : HY2(I') — HY?(I') satisfies
Assumption 9.3.15 forany 0 < ¢t < 1/2.

Lemma 9.3.17. Let G be a boundary element mesh and let S denote a boundary
element space which satisfies Assumption 9.3.14:

(a) There exists a constant C ;tab such that
Ve HN () 3peS: Y lbi v =@)lism < G Iy (936)
ieT

(b) Let us € S denote the solution of (9.2). For s = 1, we choose 0 < t < 1 such
that Assumption 9.3.15 holds and, for 0 < s < 1, we choose t suchs +1t < 1
and Assumption 9.3.15 holds. Let Assumption 9.3.13 hold.

Then there exists a constant Cqug such that

lu — us| grs—ry < Cavath llu — us|l s (ry- 9.37)
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Proof. Part a:
Case 1: s = 0.
The choice ¢ = 0 leads to

2 2 2 2
D16 0 =)oy = D172, < max bl 7oe ) D V1720,
i€l i€l i€l
(9.38)

& 2
= Cﬁcl ||v||L2(F)’

where
Cy:=maxcard{i € Z: 7 C w;}
T€g

depends only on the shape-regularity of the mesh and the polynomial degree of the
space S and Cj is as in Corollary 4.4.8.

Case2:s = 1:
Let Qg : L' (I') — Sé’o C S denote the Clément interpolation operator as in
Sect.4.3.5.Forve H' ('), letg := Qg (v) and e := v — ¢. Then

2 2 2 2
Bieyy = 1eVhi + biVelZag, ) < 21020 €220,

2 2
+2||b;i ||L°°(wi) ”Ve”Lz(w,‘)

Corollary 4.4.8 v
272 2 2 2
< 20272 lel2ag,) + 2CE Vel o

Theorem 4.3.28 v o
2.2 2~2 2
= 2(CCEG + CRE) I3 e

=:C

where the constants are as in the quoted Corollary and Theorem and w/ is as in
(9.9). A summation over all i € Z and using (9.38) gives

>k 0= Wy = D0 (10 0= @) 200y + Ibielr10p))

ieT ez
. — 2
= GCivlzeq@ + € Z V121 ()
i€l

< (CuCy +€T) Il ry-

where C := max,¢g card {i €el:tCw } again depends only on the shape-
regularity of the mesh.

Case 3:5 €]0,1[and S;° C S.
Forve HS ('), letp := Qg (v) and e := v — ¢. We have
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(9.10a)
2
Ibielzsey =< Y.

T€G

(bie) () — (Bre) )
L d"dsy§

<4Cy Y d7 |biell o

€@
TCw;

_ 2
= / b (P %dwhy

T€Eg
TCw;

b; bi ()2
+2Z[ le (x)? [%dsydsx. (9.39)

T€G

4C2d 7> [biell3ae

=:0(x)

Note that the term Q (x) vanishes if |; N w;| = 0. Otherwise, we employ the
Lipschitz continuity of the basis functions to obtain

Corollary 4.4.8 -1
bi %) = bi M| = [billwrocy IX=¥II = Ch"x—y[ VX.y€ ..

Thus |
|0 (x)| < Ch;> / sty < Ch;%, (9.40)

where the last inequality is proved in the same way as Theorem 3.3.5 by transform-
ing to a two-dimensional parameter plane, introducing local polar coordinates as in
(5.20a)—( 5.20c) and then integrating with respect to the radial coordinate.

This leads to

_ le (®) —e W
Ibre ey < C( S e+ [ Pt sy

T€G o Jo; [x —yll
TCw;
-2 2
+ >,k s”e”m(wr))
|o; Nw7|>0
-2 2 -2 2
sC< D el o + lelgs @y + D SueuLz(r)),

Teg T€G

tCw; Co’*

where o] = U reg T and o = U teg T. A summation overalli € T
TNw; #9 TN/ #0
yields
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(4.237b)

2 2 - 2 2

Ibiellgs y < €’ <|e|H~V(F) + § he? ||e||L2(T)> < C"IlEsa-
T€G

Case 4: s €10,1] and Sé’o ZS.
From Assumption 9.3.14 it follows that 0 < s < 1/2and S = Sé”_l. We choose

0 = Ié”_l (v), where 15’_1 is as in Theorem 4.3.19 and obtain, analogously as
(9.39),

2 — 2
||b,-e||Hs(p) < 4Cys Z dg > ”bie”Lz(r)

T€G
TCw;

2
o [ wor

T€Eg
TCw;

+zZ[ le (%)]* O (x) dsy.

T€g

Since the basis functions are discontinuous we obtain (cf. (9.40)

10 ®) </ - ”msdsysch—”.

The rest of the proof is a repetition of the arguments as for the previous case.

Part b:
Statement b is proved by the Aubin—Nitsche duality technique (cf. Sect. 4.2.5). We
apply (4.177) to obtain

lwy — wllzrs
lu — usl|gs—rry < Cllu—usllgsqy ~ sup  inf T IO
ve H—s+1 (D)\{0} &S VIl r=s+1 ()

with w,, as in (9.35). For s = 1, we have s +¢ > 1, where 0 < ¢ < 1 is chosen
such that Assumption 9.3.15 is satisfied. Hence H*** (I') ¢ C°(I") and the nodal
interpolant Igl’O : HT' (') — S is well defined. We employ Theorem 4.3.22 to
obtain

1,0
w, — Ig wy

. t
inf s, = wll ey < | < CH Wil sy

Hs(T)
f CCadj]’lt ||V||H—s+r(r),

where C is as in Theorem 4.3.22.
For 0 < s < 1, we choose t > 0 such that Assumption 9.3.15and s + ¢ < 1
hold. Let Qg : H*T'(I') — S denote the Clément interpolation operator as in
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Definition 4.3.24. Then (4.237b) and Assumption 9.3.15 imply that

inf = wlzsry = 1wy = Qowlzscry < CH Iwillgresecry

= CCadjht VIl g7 —s+ (ry-

|

For the proof of the next Theorem 9.3.18 we have to introduce further notation.

We consider decompositions D = {Z,, ff:l of Z into non-empty, pairwise disjoint

4D
subsets Z,, CZ,1 <m < gp,suchthatZ = |J Z,, and

m=1

Vi<m<=<gqgp Vi,jeIm:wiﬂa)j:QJ.

A decomposition D which satisfies these conditions and consists of a minimal num-
ber of subsets {Z,, fle is called minimal disjoint decomposition of Z. For such a
decomposition, we define a second overlap constant [cf. (9.30)] by

Co’i ‘=d{qp.

Now we have all ingredients to prove the main theorem of this section which
states that the error indicators as in Definition 9.2.2 for operators of positive order
are reliable and efficient.

Theorem 9.3.18. Let Assumptions 9.1.1, 9.3.13, 9.3.14 and 9.3.15 be satisfied for
some s € [0,1]. Let e = u — us be the error for the Galerkin solution. Then the
estimate

Cen Y 17 < llelzrsqry < Cra Y07 (9.41)
ieZ ieZ

holds, where the error indicators n; are as in Definition 9.2.2 and

Cerr 1= = (CaCP)™

(S 1\

with Cy is as Assumption 9.1.1. The constant C is given by

Cs®y=2 ifCs = 0in (9.33),

Cre := X
DT l4Csy 2 if C > 0,

(9.42)

where y is as in (9.33) and CSS‘ab as in (9.36). In the case Cg > 0, we have to

assume, in addition, that the mesh size is sufficiently small, i.e., hg < hy, for some
ho > 0 (cf. Theorem 4.2.7).
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Proof. Part a: Proof of efficiency.
Let D = {7, },f;':l denote a minimal disjoint decomposition of the index set Z and
set

Dy, = U supp b; .

i€Zm
In the first step, we will prove the estimate
2
sup (. biv) gr—s (ry s )|

veHS(T)

i€,
" Nbivll s ry=1

2
Y iez,, (1 biw) s qoyxarsy|

< sup > My, (9.43)
weH*(T') Ziel’m ||biW||Hs(r)
| Dy Nsupp w|>0
Let e > 0. Fori € Z,, there exist f; € H® (I") with
Ibi fill gsry = 1 (9.44)
and
|(rvbifi)H*5(I‘)><H*(I‘)|2 > sup |(V7biV)Hﬂ(r)st(r)|2 — & with & 1= ——.
T en) card 1,
16 vl s (ry=1
(9.45)

Because the intersections supp b; Nsupp b; have zero measure for all i, j € Z,, with
i # j,there exists w € H* (') such that for all i € Z,,, we have

W|suppbi = Cj fl |suppbi with Cj = (r, biﬁ)Lz(F)' (946)
This function satisfies
biw =c¢;ib; fi onT foralli € Z. (9.47)

The definition of M, [cf. (9.43)] implies that

2 _ 2
- |ZieIm (r, biW)H—S(F)xH~V(F)| 947) |ZieIm ci(r biﬁ)H—s(r)st(r)|
= 2 = 2 2

ZieIm ||biW||Hs(r) ZieIm |ci | ||bifi||HS(r)

My

512
(9.44), (9.46) ‘ZieIm lcil ‘

2
5= Y [(nbifi) s yxas )|
Yiet,, Icil i€
(9.45) N
> sup [ biv) s oy ()| — &
i€z,  veH (D)
16ivll s (ry=1

Since ¢ > 0 was arbitrary we have proved (9.43).
From (9.43) we derive
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2
Y o b sy
i = 2
; fez. veH* () iV grs
i€l IEImeivaéO YL HS(T)
2
=Y sup |(nhiv)g—sqyxas)]
iz, vEHS(T)
16ivll prs (ry=1

9.43)
< -
This leads to
2
) ‘(Ae’ D iez,, bi W)H*S(F)XHS(F)‘

DM E=Mu= sup :
= weHS (T) > iety, 1Diwllrs

| Dy Nsupp w|>0

2
> > ”ZiEIm biw”m(r)
< 1Az sy ms @y lel sy sup

2
weH?*(I') Ziel’m ”biW”HS(F)
| Dy Nsupp w|>0

Lemma 4.1.49 5 2 2
< 3 ANz —s oy~ s oy Nell sy

and we obtain the estimate for the error indicators by

Col 5C
2 2 ol 2 2
2= 2w = o Al -smenms@ lel sy

€T m=1i€Iy;

Thus we have proved the left side in (9.41).

Part b: Proof of reliability.
The Galerkin orthogonality and the Definition 9.2.2 imply for any v € S that

la(e.e)| = la(e.e —v)| = | al(e.b (e—w))’
i€T
<D nillbi e =lgsay < [D 12 [DIbi (e = @)zrs(ry- (9:48)
i€l iel ieZ

From (9.36) we conclude that there exists ¢ € S such that

> ki (e = @)llzsry < €5 llell s ry-
i€

Inserting this into (9.48) and using Garding’s inequality (9.33) yields
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2 2 2
7 el < [a (e.) + Co lellzroqy| =/ G2 lell ey |32 n2+Co llelzo ey
i€T

(9.49)
for some 0 < 5. If Cg = 0 then the right estimate in (9.41) is proved with C, as in
(9.42).

If Cg > 0 we employ (9.37) to obtain

lell fs—:(ry < Cdualhtg lell s (r)-

We may choose ¢ > 0 always sufficiently small such that 0 < s — ¢ and hence

lell goy < lell gs—ry < Cdualhtg lell & ry-

Substituting this estimate into (9.49) yields

2 2
7 llelzsry = |a (e.e) + Co llulyo o)

2
< JCs el gy [ D1+ CoCluh el -
i1€T

If the minimal mesh width /g is chosen such that
2 g2 _ 1
CoChuahy’ = 5V

we obtain
—2 stab 2
lell s qry < 4y 7>C5™ D 0
ieT
and this is the assertion. O

In some cases, the boundary integral operator has a non-trivial, finite-dimensional
null space as, e.g., the hypersingular operator for the Laplace operator on closed
manifolds, where the null space is spanned by the constant functions. Then the
operator A : HS (I') — H ™5 (I") is not an isomorphism. On the other hand, the
restriction 4 : H — H’ to some quotient space H := H* (I') /N, where N/
is finite-dimensional, is an isomorphism with respect to the induced norms. Such
operators are considered in the following remark.

Remark 9.3.19. Assume that A : H* (I') — H ™ (I') does not satisfy Assump-
tion 9.1.1. Assume that, for a quotient space H := H* (I') /N with some finite-
dimensional subspace N C H* (I'), Assumption 9.1.1 holds for the restricted
operator A ©: 'H — H'. Let S be a boundary element space for H* (I') and
let the index set I correspond to the nodal points for S. Assume further that
N c S c H?® () which, e.g., is satisfied for the hypersingular operator for the
Laplacian on closed manifolds. Then S := S /N is a finite-dimensional subspace
of 'H. For other operators such as, e.g., the Helmholtz operator, the null space of
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the corresponding hypersingular operator, in general, does not belong to S. Then
the following comments directly apply for this case only if the null space N, resp.,
a basis thereof, is known.

Assume that (9.33) holds for all u € H. Let the error indicators be defined as
before by (9.8a). For F € H', let us denote the Galerkin solution of

a(us,v)y =F (v) Vves

and let e := u — ugs denote the corresponding error. Then Theorem 9.3.18 and its
proof remain valid without any changes. Note that the space S in Part b of the proof
must not be replaced by S.

9.3.3 Bibliographical Remarks, Further Results
and Open Problems

As we saw in Chaps. 3 and 4, boundary integral operators obtained via boundary
reduction of elliptic boundary value problems via the direct method are boundedly
invertible between fractional order Sobolev spaces on the boundary. The deriva-
tion of residual a posteriori error estimates in fractional Sobolev norms which are
obtained as sums of O(N) many scaled local residual error bounds is an easy con-
sequence of the bounded invertibility of the boundary integral operators in Sobolev
spaces which we established in Chaps. 3 and 4. The key to obtaining efficiently com-
putable upper bounds for the residual in the relevant, fractional Sobolev norms is the
localization of these norms, i.e., their representation as sums of O(N ) many scaled
local residual error bounds. We showed, based on the work of B. Faermann [89, 90,
92] on the localization of fractional order Sobolev norms, how to obtain computable
upper bounds for the intrinsically nonlocal fractional order Sobolev norms of the
weak residual. While this is not possible for general functions, it is feasible for the
weak residual by exploiting its Galerkin orthogonality as we explained in Sects. 9.2
and 9.3. This implies in particular that an analogous residual estimate for collocation
BEM will require additional technical steps to achieve O(N) complexity.

Due to the appearance of fractional order Sobolev norms, the derivation of upper
bounds for the error of Galerkin discretizations of integral equations is substantially
more involved than in the case of second order, elliptic partial differential equations,
where it involves only elementwise integration by parts and, once more, Galerkin
orthogonality.

Computable residual a posteriori error estimators are a convenient tool to decide
when to terminate mesh refinement procedures in practical computations. If these
estimators are obtained from sums of (squared) error contributions which are local-
ized to (a patch of) elements, it is suggestive to use these contributions as error
indicators, i.e., as a measure for the relative contributions to the global error bound
from the element associated with the error indicator. This is usually successful in
computational practice. Note, however, that this reasoning is completely heuristic:



544 9 A Posteriori Error Estimation

there is a priori no reason at all why a localized quantity should be in one-to-
one correspondence with the source of discretization error in the Finite Element
Galerkin projection. In fact, counterexamples to this heuristic reasoning exist, even
in the case of local operators, i.e., for finite element discretizations of elliptic par-
tial differential equations. Nevertheless, in recent years, substantial progress in the
analysis of adaptive Finite Element Methods for elliptic partial differential equations
has been made. Proofs of optimality of adaptive finite element methods for partial
differential equations are by now available.

While the mathematical understanding of adaptive Finite Element Methods
(AFEM) has proceeded substantially in the past years and has, at least for second
order elliptic PDEs and conforming FEM, reached a certain maturity, the corre-
sponding situation for mathematical analysis of adaptive Galerkin BEM considered
in this book is, at the time of writing, still considerably less developed. While relia-
bility and efficiency of computable residual a posteriori error estimators is available
in Sects. 9.2 and 9.3, neither a convergence result along the lines of [82] nor any
kind of optimality result is known to us at time of writing for Galerkin BEM based
on the standard shape functions described in Chap. 4.

There is, however, an alternative approach of wavelet based Galerkin BEM which
does have a complete mathematical theory with optimality and convergence rates
at linear computational complexity available. It is based on piecewise polynomial,
spline wavelets as basis functions for the subspaces used in the Galerkin discretiza-
tion. The construction of such spline wavelet basis functions on general polyhedrain
R3 is involved, and their supports are considerably larger than the supports of basis
functions described in Chap. 4 above. The effort in their construction and implemen-
tation is, however, worthwhile, since their use in Galerkin BEM achieves two pur-
poses: (1) matrix compression and (2) optimal preconditioning in a unified fashion.

Multilevel Preconditioning in linear complexity is, for these basis functions,
achieved by a simple diagonal scaling of the stiffness matrix due to the fact that
the wavelets constitute Riesz bases of the energy spaces for the boundary integral
operators.

Matrix compression implies that the Galerkin stiffness matrix in these wavelet
bases is, while still being densely populated, numerically sparse. This means that
all but O(N) nonzero matrix entries out of the N2 overall matrix entries need to
be actually computed, and that a mathematical analysis reveals the location and
the accuracy of these O(N) essential matrix entries. We refer to [208] and to the
recent paper [76] and the references therein for details and further results. Note that,
in this setting, acceleration techniques of clustering or fast multipole type are not
required any more. We remark, however, that fast multipole accelerations are natu-
rally robust with respect to the complexity of the boundary surface, since they are
based on the (coordinate free) approximation of the fundamental solution in ambient
space, while the analysis of wavelet matrix compression methods reveals a substan-
tial dependence of the matrix compression error on the surface parametrizations and
their derivatives.

We note, in closing, that also in the wavelet Galerkin approach to the discretiza-
tion of BIEs, the numerical quadrature of the diagonal entries of the Galerkin
stiffness matrix requires the quadrature techniques presented in Chap. 5 above.



References

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

. M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Applied Mathematics
Series 55. National Bureau of Standards, U.S. Department of Commerce, 1972.

. M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Analysis. Wiley,
New York, 2000.

. H. W. Alt. Lineare Funktionalanalysis. Springer, Berlin, 1985.

.E P. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. H. Christiansen, and
E. Michielssen. A multiplicative Calderon preconditioner for the electric field integral
equation. IEEE Trans. Antennas Propagation, 56(8, part 1):2398-2412, 2008.

. S. Arden, S. N. Chandler-Wilde, and S. Langdon. A collocation method for high-frequency
scattering by convex polygons. J. Comput. Appl. Math., 204(2):334-343, 2007.

. D. N. Arnold and W. L. Wendland. On the asymptotic convergence of collocation methods.
Math. Comp., 41:197-242, 1983.

. K. E. Atkinson. A Survey of Numerical Methods for the Solution of Fredholm Integral
Equations of the Second Kind. SIAM, Philadelphia, 1976.

. K. E. Atkinson. The Numerical Solution of Integral Equations of the Second Kind. Cambridge
Univiversity Press, Cambridge, 1997.

. I. Babuska and A. K. Aziz. The Mathematical Foundation of the Finite Element Method.

In A. K. Aziz, editor, The Mathematical Foundation of the Finite Element Method with

Applications to Partial Differential Equations, pages 5-359. Academic, New York, 1972.

1. Babuska and W. C. Rheinboldt. A-posteriori error estimates for the finite element method.

Int. J. Numer. Meth. Eng., 12:1597-1615, 1978.

1. Babuska and W. C. Rheinboldt. Error estimates for adaptive finite element computations.

SIAM J. Numer. Anal., 15:736-754, 1978.

I. Babuska and T. Strouboulis. The Finite Element Method and Its Reliability. Clarendon,

Oxford, 2001.

P. K. Banerjee. The Boundary Element Methods in Engineering. McGraw-Hill, London, 1994.

W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differential Equations.

Birkhéuser, Basel, 2003.

L. Banjai and S. A. Sauter. A refined Galerkin error and stability analysis for highly indefinite

variational problems. SIAM J. Numer. Anal., 45(1):37-53, 2007.

R. Bank. The efficient implementation of local mesh refinement algorithms. In I. Babuska,

J. Chandra, and J. E. Flaherty, editors, Adaptive computational methods for partial differential

equations, Proc. Workshop, College Park, MD, 1983, pages 74—81. SIAM, Philadelphia, 1983.

R. E. Bank. PLTMG User’s Guide Version 6.0. SIAM, Philadelphia, 1990.

R. E. Bank. PLTMG User’s Guide Version 9.0. Technical report, University of San Diego,

2004.

M. Bebendorf. Hierarchical Matrices, volume 63 of Lecture Notes in Computational Science

and Engineering. Springer, Berlin, 2008.

M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation matrices.

Computing, 70(1):1-24, 2003.

S.A. Sauter and C. Schwab, Boundary Element Methods, Springer Series 545
in Computational Mathematics 39, DOI 10.1007/978-3-540-68093-2,
(© Springer-Verlag Berlin Heidelberg 2011



546

21

22
23

24.

25.

26.

217.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

References

. A. Bendali. Numerical analysis of the exterior boundary value problem for the time-harmonic
Maxwell equations by a boundary finite element method. Part 2: The discrete problem. Math.
Comp., 43:47-68, 1984.

. J. Bergh and J. Lofstrom. Interpolation Spaces. Springer, Berlin, 1976.

. M. Bonnet. Boundary Integral Equation Methods for Solids and Fluids. Wiley, Chichester,

1999.

S. Bérm. Data-sparse approximation of non-local operator by H2-matrices. Linear Algebra

Appl., 422(2-3):380-403, 2007.

S. Borm and L. Grasedyck. Hybrid cross approximation of integral operators. Numer. Math.,

101(2):221-249, 2005.

S. Borm and S. A. Sauter. BEM with linear complexity for the classical boundary integral

operators. Math. Comp., 74(251):1139-1177, 2005.

D. Braess. Finite Elements, 3rd edition. Cambridge University Press, Cambridge, 2007.

H. Brakhage and P. Werner. Uber das Dirichletsche AuBenraumproblem fiir die Helmholtz-

sche Schwingungsgleichung. Arch. der Math., 16:325-329, 1965.

J. H. Bramble. Multigrid Methods. Pitman Research Notes in Mathematics. Longman

Scientific & Technical, Essex, 1993.

J. H. Bramble, Z. Leyk, and J. E. Pasciak. The analysis of multigrid algorithms for pseudo-

differential operators of order minus one. Math. Comp., 63:461-478, 1994.

J. H. Bramble, J. E. Pasciak, and P. S. Vassilevksi. Computational scales of Sobolev norms

with applications to preconditioning. Math. Comp., 69:462—-480, 1999.

C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel. Boundary Element Techniques: Theory and

Applications in Engineering. Springer, Berlin, 1984.

S. B. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer,

New York, 1994.

O. P. Bruno. Fast, high-order, high-frequency integral methods for computational acoustics

and electromagnetics. In Topics in Computational Wave Propagation, volume 31 of Lecture

Notes in Computational Science and Engineering, pages 43—82. Springer, Berlin, 2003.

O. P. Bruno. New high-order integral methods in computational electromagnetism. CMES

Comput. Model. Eng. Sci., 5(4):319-330, 2004.

O. P. Bruno and C. A. Geuzaine. An O(1) integration scheme for three-dimensional surface

scattering problems. J. Comput. Appl. Math., 204(2):463-476, 2007.

A. Buffa and S. H. Christiansen. The electric field integral equation on Lipschitz screens:

definitions and numerical approximation. Numer. Math., 94(2):229-267, 2003.

A. Buffa and S. H. Christiansen. A dual finite element complex on the barycentric refinement.

Math. Comp., 76(260):1743-1769, 2007.

A. Buffa and P. Ciarlet, Jr. On traces for functional spaces related to Maxwell’s equations.

Part I: An integration by parts formula in Lipschitz polyhedra. Math. Meth. Appl. Sci., 21:

9-30, 2001.

A. Buffa, M. Costabel, and C. Schwab. Boundary element methods for Maxwell’s equations

on non-smooth domains. Numer. Math., 92(4):679-710, 2002.

A. Buffa and R. Hiptmair. Galerkin boundary element methods for electromagnetic scattering.

In M. Ainsworth, P. Davis, D. Duncan, P. Martin, and B. Rynne, editors, Topics in Com-

putational Wave Propagation. Direct and inverse Problems, volume 31 of Lecture Notes in

Computational Science and Engineering, pages 83—124. Springer, Berlin, 2003.

A. Buffa and R. Hiptmair. A coercive combined field integral equation for electromagnetic

scattering. SIAM J. Numer. Anal., 42(2):621-640, 2004.

A. Buffa and R. Hiptmair. Regularized combined field integral equations. Numer. Math.,

100(1):1-19, 2005.

A. Buffa, R. Hiptmair, T. von Petersdorff, and C. Schwab. Boundary element methods for

Maxwell transmission problems in Lipschitz domains. Numer. Math., 95(3):459-485, 2003.

A. Buffa and S. A. Sauter. On the acoustic single layer potential: Stabilization and Fourier

analysis. SIAM J. Sci. Comput., 28(5):1974-1999, 2006.

A. P. Calderon and A. Zygmund. Singular integral operators and differential equations. Am.

J. Math., 79:901-921, 1957.



References 547

47

48

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.
61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

. C. Carstensen. Efficiency of a-posteriori BEM-error estimates for first kind integral equations
on uniform meshes. Math. Comp., 65:69—-84, 1996.

. C. Carstensen. An a-posteriori error estimate for a first-kind integral equation. Math. Comp.,

66:139-155, 1997.

C. Carstensen and S. A. Funken. Coupling of mixed finite elements and boundary elements.

IMA J. Numer. Anal., 20(3):461-480, 2000.

C. Carstensen, S. A. Funken, and E. P. Stephan. An a-posteriori error estimates for

hp-boundary element methods. Appl. Anal., 61:233-253, 1996.

C. Carstensen, M. Maischak, D. Praetorius, and E. P. Stephan. Residual-based a posteriori

error estimate for hypersingular equation on surfaces. Numer. Math., 97:397-425, 2004.

C. Carstensen, M. Maischak, and E. P. Stephan. A posteriori error estimate and h-adaptive

algorithm on surfaces for Symm’s integral equation. Numer. Math., 90(2):197-213, 2001.

C. Carstensen and E. P. Stephan. A-posteriori error estimates for boundary element methods.

Math. Comp., 64:483-500, 1995.

C. Carstensen. and E. P. Stephan. Coupling of FEM and BEM for a nonlinear interface

problem: The A-p version. Numer. Meth. Partial Diff. Eqns., 11(5):539-554, 1995.

S. Chandler-Wilde and I. Graham. Boundary integral methods in high frequency scattering. In

B. Engquist, A. Fokas, E. Hairer, and A. Iserles, editors, Highly Oscillatory Problems, pages
154-193. Cambridge University Press, Cambridge, 2009.

S. Chandler-Wilde and P. Monk. Wave-number-eplicit bounds in time-harmonic scattering.

SIAM J. Math. Anal., 39:1428-1455, 2008.

S. N. Chandler-Wilde and S. Langdon. A Galerkin boundary element method for high fre-

quency scattering by convex polygons. SIAM J. Numer. Anal., 45(2):610-640 (electronic),

2007.

S. N. Chandler-Wilde and M. Lindner. Wave problems in unbounded domains: Fredholm-

ness and the finite section method. In Fluids and waves, volume 440 of Contemporary

Mathematics, pages 115-122. AMS, Providence, RI, 2007.

S. N. Chandler-Wilde and M. Lindner. Boundary integral equations on unbounded rough sur-

faces: Fredholmness and the finite section method. J. Integral Equations Appl., 20(1):13—-48,

2008.

G. Chen and J. Zhou. Boundary Element Methods. Academic, New York, 1992.

A. Chernov, M. Maischak, and E. P. Stephan. A priori error estimates for iip penalty BEM

for contact problems in elasticity. Comput. Meth. Appl. Mech. Eng., 196(37-40):3871-3880,

2007.

M. M. Chipot. Elliptic Equations: An Introductory Course. Birkhduser, Basel, 2009.

S. H. Christiansen. Résolution des équations intégrales pour la diffraction d’ondes acous-

tiques et électromagnetiques. PhD thesis, I’Ecole Polytechnique, Paris, 2002.

S. H. Christiansen. Discrete Fredholm properties and convergence estimates for the electric

field integral equation. Math. Comp., 73(245):143-167, 2004.

S. H. Christiansen and J. C. Nédélec. Des préconditionneurs pour la résolution numérique

des équations intégrales de frontiere de 1’acoustique. C. R. Acad. Sci. Paris Sér. I Math.,

330(7):617-622, 2000.

S. H. Christiansen and J. C. Nédélec. Des préconditionneurs pour la résolution numérique des

équations intégrales de frontiere de I’électromagnétisme. C. R. Acad. Sci. Paris Sér. I Math.,

331(9):733-738, 2000.

S. H. Christiansen and J. C. Nédélec. A preconditioner for the electric field integral equation

based on Calderon formulas. SIAM J. Numer. Anal., 40(3):1100-1135, 2002.

P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam,
1987.

P. Clément. Approximation by finite element functions using local regularization. RAIRO,

Sér. Rouge Anal. Numér., R-2:77-84, 1975.

D. L. Colton and R. Kress. Integral Equation Methods in Scattering Theory. Wiley, New York,
1983.



548

71

72

73.

74.

75.

76.

7.

78.

79.

80.

81

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

References

. M. Costabel. Symmetric methods for the coupling of finite elements and boundary elements.
In C. A. Brebbia et al., editor, Boundary Elements IX, volume 1, pages 411-420. Springer,
Berlin, 1987.

. M. Costabel. Boundary integral operators on Lipschitz domains: Elementary results. SIAM

J. Math. Anal., 19:613-626, 1988.

M. Costabel. A symmetric method for the coupling of finite elements and boundary ele-

ments. In J. R. Whiteman, editor, Proc. 6th Conf. on the Mathematics of Finite Elements and

Applications VI, Uxbridge 1987 (MAFELAP 1987), pages 281-288. Academic, New York,

1988.

M. Costabel and W. L. Wendland. Strong ellipticity of boundary integral operators. J. Reine

Angew. Math., 372:34-63, 1986.

W. Dahmen, B. Faermann, I. G. Graham, W. Hackbusch, and S. A. Sauter. Inverse inequalities

on non-quasi-uniform meshes and application to the mortar element method. Math. Comp.,

73(247):1107-1138, 2004.

W. Dahmen, H. Harbrecht, and R. Schneider. Adaptive methods for boundary integral equa-

tions: Complexity and convergence estimates. Math. Comp., 76(259):1243-1274, 2007.

E. Darve. The fast multipole method (I) : Error analysis and asymptotic complexity. SIAM J.

Numer. Anal., 38(1):98-128, 2000.

E. Darve. The fast multipole method: Numerical implementation. J. Comput. Phys., 160(1):

195-240, 2000.

M. Dauge. Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathe-

matics. Springer, New York, 1988.

R. Dautray and J. L. Lions. Mathematical Analysis and Numerical Methods for Science and

Technology, volume 4. Springer, Berlin, 1990.

. P. J. Davis. Interpolation and Approximation. Blaisdell, New York, 1963.

W. Dorfler. A convergent adaptive algorithm for Poisson’s equation. Numer Math.,

73:419-448, 1996.

M. G. Duffy. Quadrature over a pyramid or cube of integrands with a singularity at a vertex.

SIAM J. Numer. Anal., 19:1260-1262, 1982.

G. Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. In S. Hildebrandt

and R. Leis, editors, Partial Differential Equations and Calculus of Variations, volume 1357

of Lecture Notes in Mathematics, pages 142—155. Springer, New York, 1988.

Y. V. Egorov and M. A. Shubin. Partial Differential Equations I, Encyclopaedia of Mathe-

matical Sciences edition. Springer, Heidelberg, 1992.

J. Elschner. The double layer potential operator over polyhedral domains I: Solvability in

weighted Sobolev spaces. Appl. Anal., 45:117-134, 1992.

J. Elschner. The double layer potential operator over polyhedral domains II: Spline galerkin

methods. Math. Meth. Appl. Sci., 15:23-37, 1992.

S. Erichsen and S. A. Sauter. Efficient automatic quadrature in 3-D Galerkin BEM. Comput.

Meth. Appl. Mech. Eng., 157:215-224, 1998.

B. Faermann. Local a-posteriori error indicators for the Galerkin discretization of boundary

integral equations. Numer. Math., 79:43-76, 1998.

B. Faermann. Localization of the Aronszajn—Slobodeckij norm and application to adaptive

boundary element methods. Part I. The two-dimensional case. IMA J. Numer. Anal., 20:

203-234, 2000.

B. Faermann. Lokalisierungstechniken fiir Sobolev—-Normen und Anwendungen auf adaptive

Randelementmethoden (in German). Habilitationsschrift, Universitét Kiel, 2000.

B. Faermann. Localization of the Aronszajn—Slobodeckij norm and application to adaptive

boundary element methods. Part II. The three-dimensional case. Numer. Math., 92(3):467—

499, 2002.

M. Feistauer, G. C. Hsiao, and R. E. Kleinman. Asymptotic and a posteriori error estimates

for boundary element solutions of hypersingular integral equations. SIAM J. Numer. Anal.,

33:666-685, 1996.

R. Fletcher and C. H. Reeves. Function minimization by conjugate gradients. Comput. J.,

7:149-154, 1964.



References 549

9s.
96.
97.
98.

99.
100.

101.

102.

103.

104.

105.

106.

107.

108.

109.
110.
111.
112.
113.
114.
115.
116.

117.
118.

119.

120.

121.

122.

123.

O. Forster. Analysis 2. Vieweg, Brunswick, 1993. 5. Auflage.

I. Fredholm. Sur une classe d’equations fonctionelles. Acta Matematica, 27:365-390, 1903.
A. Friedman. Partial Differential Equations. Holt, Rinehart and Winston, New York, 1969.
A. Friedman. Foundations of Modern Analysis. Dover, New York, 1982. Reprint of the 1970
original.

W. Gautschi. Numerical Analysis. Birkhduser, Basel, 1997.

D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order.
Springer, Berlin, 1983.

G. Giraud. Sur une classe generale d’equation a integrales principales. C. R. Acad. Sci. Paris,
202:2124-2126, 1936.

M. Gnewuch and S. A. Sauter. Boundary integral equations for second order elliptic boundary
value problems. Technical Report 55, Max-Planck-Institut, Leipzig, Germany, 1999.

S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of pseudoskeleton
approximations. Linear Algebra Appl., 261:1-21, 1997.

I. G. Graham, L. Grasedyck, W. Hackbusch, and S. A. Sauter. Optimal panel-clustering in the
presence of anisotropic mesh refinement. SIAM J. Numer. Anal., 46(1):517-543, 2008.

I. G. Graham, W. Hackbusch, and S. A. Sauter. Discrete boundary element methods on general
meshes in 3D. Numer. Math., 86:103-137, 2000.

I. G. Graham, W. Hackbusch, and S. A. Sauter. Hybrid Galerkin boundary elements: Theory
and implementation. Numer. Math., 86:139-172, 2000.

I. G. Graham, W. Hackbusch, and S. A. Sauter. Finite elements on degenerate meshes: Inverse-
type inequalities and applications. IMA J. Numer. Anal., 25(2):379-407, 2005.

I. G. Graham and W. McLean. Anisotropic mesh refinement: The conditioning of Galerkin
boundary element matrices and simple preconditioners. SIAM J. Numer. Anal., 44(4):
1487-1513, 2006.

L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices. Computing,
70(4):295-334, 2003.

L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. MIT, Cambridge,
MA, 1988.

L. Greengard and V. Rokhlin. A new version of the fast multipole method for the Laplace
equation in three dimensions. Acta Numerica, 6:229-269, 1997.

M. Griebel, P. Oswald, and T. Schiekofer. Sparse grids for boundary integral equations.
Numer. Math., 83(2):279-312, 1999.

P. G. Grisvard. Singularities in Boundary Value Problems, volume 22 of Research Notes in
Applied Mathematics. Springer, Berlin, 1992.

W. Hackbusch. Multi-Grid Methods and Applications. Springer, Berlin, 1985.

W. Hackbusch. Elliptic Differential Equations. Springer, Berlin, 1992.

W. Hackbusch. Iterative Solutions of Large Sparse Systems of Equations. Springer, New York,
1994.

W. Hackbusch. Integral Equations. ISNM. Birkhéuser, Basel, 1995.

W. Hackbusch. A sparse matrix arithmetic based on H-Matrices. Part I: Introduction to
‘H-Matrices. Computing, 62:89—-108, 1999.

W. Hackbusch. Hierarchische Matrizen. Springer, Heidelberg, 2009.

W. Hackbusch, B. Khoromskij, and S. A. Sauter. On H?-matrices. In H.-J. Bungartz, R. H. W.
Hoppe, and C. Zenger, editors, Lectures on Applied Mathematics, pages 9-30. Springer,
Heidelberg, 2000.

W. Hackbusch and B. N. Khoromskij. A sparse H{-matrix arithmetic. Part II: Applications to
multi-dimensional problems. Computing, 64(22):21-47, 2000.

W. Hackbusch, C. Lage, and S. A. Sauter. On the efficient realization of sparse matrix tech-
niques for integral equations with focus on panel clustering, cubature and software design
aspects. In W.L. Wendland, editor, Boundary Element Topics, pages 51-76. Springer, Berlin,
1997.

W. Hackbusch and Z. P. Nowak. On the Complexity of the Panel Method (in russian). In G.I.
Marchuk, editor, Proc. of the Conference: Modern Problems in Numerical Analysis, Nauka,
Moskau, 1986, pages 233-244, 1988.



550

124.
125.

126.
. H. Han. The boundary integro-differential equations of three-dimensional neuman problem

127

128.
129.

130.

131.
132.

133.
134.
135.
136.
137.
. J. D. Jackson. Klassische Elektrodynamik, 3rd edition. De Gruyter, Berlin, 2002.

139.
140.

138

141.

142.
143.

144.

145.

146.

147.
148.

149.

150.

151.

152.

References

W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary element
method by panel-clustering. Numer. Math., 54:463-491, 1989.

W. Hackbusch and S. A. Sauter. On the efficient use of the galerkin method to solve fredholm
integral equations. Appl. Math., 38(4-5):301-322, 1993.

J. Hadamard. Lectures on Cauchy’s Problem. Yale University Press, New Haven, CT, 1923.

in linear elasticity. Numer. Math., 68(2):269-281, 1994.

G. Hellwig. Partielle Differentialgleichungen. Teubner, Stuttgart, 1960.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
J. Res. Nat. Bur. Stand., 49:409-436, 1952.

J. S. Hesthaven and T. Warburton. Nodal high-order methods on unstructured grids.
J. Comput. Phys., 181:186-221, 2002.

H. Heuser. Funktionalanalysis. Teubner, Stuttgart, 1986.

R. Hiptmair. Coercive combined field integral equations. J. Numer. Math., 11(2):115-134,
2003.

L. Hormander. The Analysis of Linear Partial Differential Operators I: Distribution Theory
and Fourier Analaysis. Springer, Berlin, 1983.

G. C. Hsiao, P. Kopp, and W. L. Wendland. A Galerkin-collocation method for some integral
equations of the first kind. Computing, 25:89—-130, 1980.

G. C. Hsiao, O. Steinbach, and W. L. Wendland. Domain decomposition methods via
boundary integral equations. J. Comput. Appl. Math., 125:521-537, 2000.

G. C. Hsiao and W. L. Wendland. A finite element method for some integral equations of the
first kind. J. Math. Anal. Appl., 58:449-481, 1977.

G. C. Hsiao and W. L. Wendland. Boundary Integral Equations. Springer, Berlin, 2008.

F. John. Plane Waves and Spherical Means. Springer, New York, 1955.

C. G. L. Johnson and L. R. Scott. An analysis of quadrature errors in second kind boundary
integral equations. SIAM J. Numer. Anal., 26:1356-1382, 1989.

L. V. Kantorovich and G. P. Akilov. Functional Analysis, 2nd edition. Pergamon, Oxford,
1982.

0. D. Kellogg. Foundations of Potential Theory. Springer, Berlin, 1929.

C. Kenig. Harmonic analysis techniques for second order elliptic boundary value problems.
In CBMS Regional Conference Series in Mathematics. AMS, Providence, RI, 1994.

R. Kieser. Uber einseitige Sprungrelationen und hypersingulire Operatoren in der Methode
der Randelemente. PhD thesis, Mathematisches Institut A, Universitdt Stuttgart, Germany,
1991.

V. A. Kozlov, V. G. Mazya, and J. Rossmann. Spectral Problems Associated with Corner
Singularities of Solutions to Elliptic Equations. AMS, Providence, RI, 2001.

R. Kress. Minimizing the condition number of boundary integral operators in acoustics and
electromagnetic scattering. Q. J. Mech. Appl. Math., 38:323-341, 1985.

R. Kress. Linear Integral Equations. Springer, Heidelberg, 1999.

N. Krzebek and S. A. Sauter. Fast Cluster Techniques for BEM. Eng. Anal. Boundary
Elements, 27(5):455-467, 2003.

M. Kuhn and U. Langer. Adaptive domain decomposition methods in FEM and BEM. In J.R.
Whiteman, editor, Proc. 9th Conf. on the Mathematics of Finite Elements and Applications
VI, Uxbridge 1996 (MAFELAP 1996), pages 103—122. Wiley, New York, 1997.

V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burchuladze. Three-
Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity,
volume 25 of North-Holland Series in Applied Mathematics and Mechanics. North-Holland,
Amsterdam, Russian edition, 1979. Edited by V. D. Kupradze.

O. A. Ladyzhenskaya and N. N. Ural’tseva. Linear and Quasilinear Elliptic Equations.
Academic, New York, 1968.

C. Lage. Software development for boundary element mehtods: Analysis and design of
efficient techniques (in German). PhD thesis, Lehrstuhl Prakt. Math., Universitit Kiel, 1995.



References 551

153

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.
171.

172.

173.

174.

175.

176.

1717.

178.
179.

. S. Langdon and S. N. Chandler-Wilde. A wavennumber independent boundary element
method for an acoustic scattering problem. SIAM J. Numer. Anal., 43(6):2450-2477, 2006.
R. Leis. Initial Boundary Value Problems in Mathematical Physics. Teubner/Wiley,
Stuttgart/Chichester, 1986.

J. L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications.
Springer, Berlin, 1972.

M. Lohndorf and J. M. Melenk. Mapping properties of Helmholtz boundary integral operators
and their application to the hp-BEM. Technical Report 34/2009, Institute for Analysis and
Scientific Computing, TU Wien, 2009.

M. Maischak. hp-Methoden fiir randintegralgleichungen bei 3D-problemen, theorie und
implementierung. PhD thesis, IFAM, Universitit Hannover, Germany, 1995.

M. Maischak and E. P. Stephan. The ip-version of the boundary element method for the Lamé
equation in 3D. In Boundary Element Analysis, volume 29 of Lecture Notes in Applied and
Computational Mechanics, pages 97-112. Springer, Berlin, 2007.

H. W. Maue. Zur Formulierung eines allgemeinen beugungsproblems durch eine integralgle-
ichung. Z. Physik, 126:601-618, 1949.

V. G. Mazya. Boundary integral equations. In V. G. Mazya and S. M. Nikolskil, editors,
Encyclopaedia of Mathematical Sciences, volume 27, pages 127-233. Springer, Heidelberg,
1991.

E. McKay Hyde and O. P. Bruno. A fast, higher-order solver for scattering by penetrable
bodies in three dimensions. J. Comput. Phys., 202(1):236-261, 2005.

W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge Univer-
sity Press, Cambridge, 2000.

M. Melenk and S. Langdon. An hp-boundary element method for high frequency scattering
by convex polygons. In Proc. 8th Int. Conf. on Mathematical and Numerical Aspects of Wave
Propagation, Reading University, pages 93-95. Academic, New York, 2007.

S. G. Mikhlin. Integral Equations. Pergamon, London, 1957.

N. I. Muskhelishvili. Singular Integral Equations. Noordhotf, Groningen, 1953.

J. Necas. Les Methodes Directes en Theorie des Equations Elliptiques. Academia, Prague,
1967.

J. C. Nédélec. Curved finite element methods for the solution of singular integral equations
on surfaces in R3 Comput. Meth. Appl. Mech. Eng., 8:61-80, 1976.

J. C. Nédélec. Cours de I’école d’été d’analyse numérique. Technical report, CEA-IRIA-EDF,
1977.

J. C. Nédélec. Integral equations with non integrable kernels. Integral Equations Oper.
Theory, 5:562-572, 1982.

J. C. Nédélec. Acoustic and Electromagnetic Equations. Springer, New York, 2001.

J. C. Nédélec and J. Planchard. Une méthode variationelle d’élements finis pour la résolution
numérique d’un probleme extérieur dans R3. RAIRO, 7(R3):105-129, 1973.

P. Neittaanmiki and S. Repin. Reliable methods for computer simulation. Error control and
a posteriori estimates. Elsevier, New York, 2004.

C. Neumann. Untersuchungen iiber das Logarithmische und Newtonsche Potential. Teubner,
Leipzig, 1877.

L. Nirenberg. Remarks on strongly elliptic partial differential equations. Comm. Pure Appl.
Math., 8:649-675, 1955.

F. Noether. Uber eine Klasse singulirer Integralgleichungen. Math. Ann., 82:42-63, 1921.

E. I. Nystrom. Uber die praktische auflosung von linearen integralgleichungen mit anwen-
dungen auf randwertaufgaben der potentialtheorie. Soc. Sci. Fenn. Comment. Phys.-Math.,
4:1-52, 1928.

E. J. Nystrom. Uber die praktische auflésung von linearen integralgleichungen mit anwen-
dungen auf randwertaufgaben. Acta Math., 54:185-204, 1930.

P. Oswald. Multilevel norms for H ~'/2. Computing, 61, 1998.

0. L. Panich. On the question of the solvability of the exterior boundary-value problems for the
wave equation and Maxwell’s equations. Usp. Mat. Nauk., 20A:221-226, 1965. in Russian.



552

180.

181.

182.

183.
184.

185.

186.

187.

188.

189.

190.

191.

192.

193

194.

195.
196.

197.

198.

199.

200.

201.

202.

203.

204.
205.

206.

References

L. E. Payne and H. F. Weinberger. An optimal Poincaré-inequality for convex domains. Arch.
Rational Mech. Anal., 5:286-292, 1960.

J. Plemelj. Ein ergiinzungssatz zur cauchyschen integraldarstellung analytischer funktionen,
randwerte betreffend. Monatshefte f. Math. u. Phys., 19:205-210, 1908.

J. Plemelj. Potentialtheoretische Untersuchungen. Teubner, Leipzig, 1911. Preisschriften der
Fiirstlich Jablonowskischen Gesellschaft.

E. Polak. Computational Methods in Optimization. Academic, New York, 1971.

A. Pomp. The Boundary-Domain Integral Method for Elliptic Systems, volume 1683 of
Lecture Notes in Mathematics. Springer, Berlin, 1998.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Receipes in
FORTRAN, 2nd edition. Cambridge University Press, Cambridge, 1992.

M. D. Preston, P. G. Chamberlain, and S. N. Chandler-Wilde. An integral equation method
for a boundary value problem arising in unsteady water wave problems. J. Integral Equations
Appl., 20(1):121-152, 2008.

S. ProBdorf and R. Schneider. A Spline Collocation Method for Multidimensional Strongly
Elliptic Pseudodifferential Operators of Order Zero. Integral Equations Oper. Theory,
14:399-435, 1991.

J. Radon. Uber die randwertaufgaben beim logarithmischen potential. In: Sitzungsberichte
der Akademie der Wissenschaften Wien. Ila, 128:1123-1167, 1919.

E. Rank. Adaptive &-, p- and hp-versions for boundary integral method. Int. J. Numer. Meth.
Eng., 28:1335-1349, 1989.

A. Rathsfeld. A wavelet algorithm for the boundary element solution of a geodetic boundary
value problem. Comput. Meth. Appl. Mech. Eng., 157:267-287, 1998.

A. Rathsfeld. On a hierarchical three point basis of piecewise linear functions over smooth
boundaries. In J. Elschner, I. Gohberg, and B. Silbermann, editors, Operator Theory:
Advances and Applications, volume 121, pages 442—470. Birkhduser, Basel, 2001.

T. J. Rivlin. The Chebyshev Polynomials. Wiley, New York, 1974.

. V. Rokhlin. Rapid solutions of integral equations of classical potential theory. J. Comput.

Phys., 60(2):187-207, 1985.

V. Rokhlin. Diagonal forms of translation operators for the Helmholtz equation in three
dimensions. Appl. Comp. Harm. Anal., 1(1):82-93, 1993.

W. Rudin. Functional Analysis. McGraw-Hill, New York, 1991.

J. Saranen and W. L. Wendland. Local residual-type error estimates for adaptive boundary
element methods on closed curves. Appl. Anal., 48:37-50, 1993.

S. A. Sauter. Uber die effiziente verwendung des galerkinverfahrens zur losung fredholmscher
integralgleichungen. PhD thesis, Inst. f. Prakt. Math., Universitit Kiel, 1992.

S. A. Sauter. The panel clustering method in 3-D BEM. In G. Papanicolaou, editor, Wave
Propagation in Complex Media, pages 199-224. Springer, Berlin, 1998. IMA-Volumes in
Mathematics and Its Applications.

S. A. Sauter. Variable order panel clustering. Computing, 64:223-261, 2000.

S. A. Sauter and A. Krapp. On the effect of numerical integration in the Galerkin boundary
element method. Numer. Math., 74(3):337-360, 1996.

S. A. Sauter and C. Lage. Transformation of hypersingular integrals and black-box cubature.
Math. Comp., 70:223-250, 2001.

S. A. Sauter and C. Schwab. On the realization of hp-Galerkin BEM in 3-D. In W. Hack-
busch and G. Wittum, editors, BEM : Implementation and Analysis of Advanced Algorithms,
Proceedings of the 12th GAMM-Seminar; Kiel. Vieweg, Brunswick, 1996.

S. A. Sauter and C. Schwab. Quadrature for hp-Galerkin BEM in R3. Numer Math.,
78(2):211-258, 1997.

S. A. Sauter and C. Schwab. Randelementmethoden. Teubner, Leipzig, 2004.

G. Schmidlin, C. Lage, and C. Schwab. Rapid solution of first kind boundary integral
equations in R3. Eng. Anal. Boundary Elements, 27(5):469-490, 2003.

G. Schmidlin and C. Schwab. Wavelet agglomeration on unstructured meshes. In T. J. Barth,
T. F. Chan, and R. Haimes, editors, Lecture Notes in Computational Science and Engineering,
volume 20, pages 359-378. Springer, Heidelberg, 2002.



References 553

207.

208.

2009.

210.

211.
212.
213.
214.
215.
216.

217.

218.

219.

220.

221.

222.

223.

224.

225

226.

2217.

228.

229.
230.

231.

232.

233.

R. Schneider. Stability of a spline collocation method for strongly elliptic multidimensional
singular integral equations. Numer. Math., 58:855-873, 1991.

R. Schneider. Multiskalen und wavelet-matrixkompression: Analysisbasierte methoden zur
losung grofser vollbesetzter gleichungssysteme. Teubner, Stuttgart, 1998.

H. Schulz and O. Steinbach. A new a-posteriori error estimator in adaptive direct boundary
element methods. the dirichlet problem. Calcolo, 37:79-96, 2000.

H. Schulz and W. L. Wendland. Local residual-based a posteriori error estimates forcing adap-
tive boundary element methods. In W.L. Wendland, editor, Boundary Element Topics, pages
445-470. Springer, Berlin, 1997.

C. Schwab and W. L. Wendland. Kernel properties and representations of boundary integral
operators. Math. Nachr., 156:187-218, 1992.

C. Schwab and W. L. Wendland. On numerical cubatures of singular surface integrals in
boundary element methods. Numer. Math., 62:343-369, 1992.

C. Schwab and W. L. Wendland. On the extraction technique in boundary integral equations.
Math. Comp., 68(225):91-122, 1999.

R. T. Seeley. Singular integrals on compact manifolds. Am. J. Math., 81:658-690, 1959.

I. H. Sloan. Error analysis of boundary integral methods. Acta Numerica, 92:287-339, 1992.
O. Steinbach. Numerische ndherungsverfahren fiir elliptische randwertprobleme. Teubner,
Stuttgart, 2003.

O. Steinbach and W. L. Wendland. The construction of some efficient preconditioners in the
boundary element method. Numerical treatment of boundary integral equations. Adv. Comput.
Math., 9(1-2):191-216, 1998.

0. Steinbach and W. L. Wendland. Neumann’s method for second-order elliptic systems in
domains with non-smooth boundaries. J. Math. Anal. Appl., 262(2):733-748, 2001.

E. P. Stephan. A boundary integral equation method for three-dimensional crack problems in
elasticity. Math. Meth. Appl. Sci., 8:609-623, 1986.

E. P. Stephan. Boundary integral equations for mixed boundary value problems in R3. Math.
Nachr, 131:167-199, 1987.

E. P. Stephan. Improved Galerkin methods for integral equations on polygons and on poly-
heral surfaces. In Proc. First Joint Japan/US Symposium on boundary element methods,
Tokyo, pages 73-80, 1988.

E. P. Stephan. The A-p boundary element method for solving 2- and 3-dimensional problems.
Comput. Meth. Appl. Mech. Eng., 133(3—4):183-208, 1996.

E. P. Stephan and W. L. Wendland. Remarks to Galerkin and least squares methods with finite
elements for general elliptic problems. Manuscripta Geodaetica, 1:93-123, 1976.

J. Stoer and R. Bulirsch. Numerische Mathematik I1, 3rd edition. Springer, Heidelberg, 1990.

. J. Stoer and R. Bulirsch. Introduction to Numerical Analysis, 3rd edition. Springer, New York,

2002.

A. H. Stroud. Approximate Calculations of Multiple Integrals. Prentice Hall, Englewood
Cliffs, 1973.

J. Tausch. Sparse BEM for potential theory and stokes flow using variable order wavelets.
Comput. Mech., 32(4-6):312-318, 2003.

J. Tausch and J. White. Multiscale bases for the sparse representation of boundary integral
operators on complex geometry. SIAM J. Sci Comp., 25(5):1610-1629, 2003.

F. G. Tricomi. Integral Equations. Interscience, New York, 1957.

H. Triebel. Interpolation Theory, Function Spaces, Differential Operators, 2nd edition.
Johann Ambrosius Barth, Heidelberg, 1995.

G. Verchota. Layer potentials and regularity for the Dirichlet problem for the Laplace’s
equation in Lipschitz domains. J. Funct. Anal., 59:572-611, 1984.

R. Verfiirth. A review of a posteriori error estimation and adaptive mesh refinement.
Wiley/Teubner, Chichester/Stuttgart, 1996.

T. von Petersdorff. Boundary integral equations for mixed Dirichlet-, Neumann and transmis-
sion problems. Math. Meth. Appl. Sci., 11:185-213, 1989.



554

234.

235.

236.

237.

238.

239.

240.

241.
242.

243.

244.

245.

246.

References

T. von Petersdorft. Elliptische randwertprobleme in polyedern: singularititen und approxi-
mation mit randelementmethoden (in German). PhD thesis, Institut fiir Mathematik, Univer-
sitdt Darmstadt, Germany, 1989.

T. von Petersdorff and C. Schwab. Fully discrete multiscale Galerkin BEM. In W. Dah-
men, P. Kurdila, and P. Oswald, editors, Multiresolution Analysis and Partial Differential
Equations, pages 287-346. Academic, New York, 1997.

T. von Petersdorff, C. Schwab, and R. Schneider. Multiwavelets for second-kind integral
equations. SIAM J. Numer. Anal., 34(6):2212-2227, 1997.

T. von Petersdorff and Ch. Schwab. Wavelet discretization of first kind boundary integral
equations of polygons. Numer. Math., 74:479-519, 1996.

W. L. Wendland. Strongly elliptic boundary integral equations. In A. Iserles and M. Powell,
editors, The State of the Art in Numerical Analysis, pages 511-561. Clarendon, Oxford, 1987.
W. L. Wendland, E. P. Stephan, and G. C. Hsiao. On the integral equation methods for plane
mixed boundary value problems for the Laplacian. Math. Meth. Appl. Sci., 1:265-321, 1979.
W. L. Wendland and D. Yu. Adaptive BEM for strongly elliptic integral equations. Numer.
Math., 53:539-558, 1988.

H. Whitney. Geometric Integration Theory. Princeton University Press, Princeton, NJ, 1957.
J. Wloka. Partial Differential Equations. Cambridge University Press, Cambridge, 1987.
Translated from the German by C. B. Thomas and M. J. Thomas.

K. Yosida. Functional Analysis. Springer, Berlin, 1964.

D. Yu. A-posteriori estimates and adaptive approaches for some boundary element methods.
In C. A. Brebbia, W. L. Wendland, and G. Kuhn, editors, Boundary Elements 9, pages 241—
256. Springer, Berlin, 1987.

V. A. Zorich. Mathematical Analysis. 1. Springer, Berlin, 2004. Translated from the 2002
fourth Russian edition by Roger Cooke.

V. A. Zorich. Mathematical Analysis. 1I. Springer, Berlin, 2004. Translated from the 2002
fourth Russian edition by Roger Cooke.



Index of Symbols

V”OHW

T*
|o]

10, |®|, card ®
p.v.

Apw

ATy

B ('v ')’ B+ ('7 ')’ B_ ('v )
By (x)

B, Br+, B, B?

ck (@)

ct(@)

Ck* (Q)
Co (82)

Ceomp (82)

C (e11,173)
kA (9—1 @

Closure of a subset V' C W in a normed vector space
. llollw)

Adjoint operator, 28

Volume measure of a measurable subset ® C R? or
a surface measure of a measurable subset ® C T" of a
surface I

Number of elements of a finite set ®

Cauchy principal value, 294

Class of piecewise analytic surfaces, 496

Class of smooth, piecewise analytic surfaces, 496
Sesquilinear form that belongs to the elliptic differen-
tial equation. The indices +, — indicate whether the
exterior Q7T or the interior Q~ is being considered
Open ball with radius » > 0 around a point x € X with
respect to the norm in X, 50

Open ball with radius > 0 around zero, upper half of
B;, lower half of B,, middle plane of B,, 50

Space of all k times continuously differentiable func-
tions on €2, 48

Space of all k times continuously differentiable func-
tions on 2 with k times continuously differentiable
extensions to 2, 48

Space of all k times Holder continuously differentiable
functions, 48

Space of all infinitely differentiable functions with com-
pact support in 2, 54

Restriction of C$° (R9) to 2, 54

Space of all vector-valued, k times continuously differ-
entiable functions, 49

Space of all vector-valued, k times Holder continuously
differentiable functions, 49
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Ck

k
Cow

Cp, (1)

ve, o7
Vs

he

Pz

h, hg
7.7(. p)

Iy
Kg
qg

nm

i m

= (m)

= (m)
[a,b],[c,d]

L*

Ly

T/

V/

a.c.

G(x—Yy)

Q_ —
QF = RIN\Q~
HY(Q)

Hg ()

HY ()
H(Q)
HY(T)

Hl, ()

H* (o)
H™ ()

Index of Symbols

Domain with k times continuously differentiable
boundary, 50
Piecewise smooth domain, 51

Set of all k times piecewise differentiable mappings
onI', 52

Expansion systems for the cluster method, 413
Surface gradient, (4.200)

Diameter of a panel 7, 189

Inner diameter (incircle diameter) of a panel, 189
Mesh width of the mesh G, 190

Set of counting indices of boundary element basis
functions (4.28)

Subset of Z corresponding to the panel 7 (5.71)
Constant which describes the shape-regularity, 190
Constant which describes the quasi-uniformity

of the mesh, 190

One-dimensional Ceby3ev interpolation on [—1, 1], 412

Lagrange interpolation on Q = [—1, 1]*, 412
Lagrange interpolation on the cuboid Q, p, 413

Lagrange interpolation on Qap X Qc.d, 413

General elliptic differential operator of second order
with constant coefficients, 66

Formal adjoint operator, 68

Modified elliptic differential operator, 73

Differential operator L, restricted to 2~ U Qt, 71
Dual operator, 26

Dual of the Banach space V', 30

Almost everywhere

Fundamental solution of the general elliptic

operator, 101

Bounded domain in R?

Unbounded exterior

Sobolev space, 55

Sobolev space of functions with zero boundary condi-
tions, 56

Sobolev space of functions whose traces are equal to
zeroon I'p C T, 80

Dual space of H(f (), 59

Sobolev space on the surface I', 58

Sobolev space which is smoother when considered
piecewise, 213

Sobolev space on a section of the surface I'y C I', 59
Dual space of H* (I'g), 59
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Hiee ()

Hceomp (Q)
H; (Q2)
H} (RI\T)

H'(L,)

Hy (L, Q)
%,

K e {R,C}
L(X.,Y)
L ()

L*(Q)
L ()

lift;,

n: I —S;_;
ng I — Sa

o~

T
tp

Il M-l ss -1k )

¢ )es Cdisgs ) k(@)

I"lies "l "l k()
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Fréchet space of all functions u with pu € H* (Q) for
allp € C3,,, (82), 63

Fréchet space of all functions u with suppu CC R?, 64
Sobolev space with Lu € L2 (), 69

comp
Sobolev space whose restrictions to 7, Q% are con-
tained in Hj (27) H; (Q7), 71

Sobolev spaces that have weight functions for the decay
conditions that depend on the operator, 83

Associated test space, 83

Isomorphic

Set of nodal points on the reference element, 205, 205
Field

Set (vector space) of all bounded linear operators, 22
Lebesgue space of all measurable, almost everywhere
bounded functions, 49

Lebesgue space of all measurable, square integrable
functions, 54

Lebesgue space of all d-valued functions with compo-
nents in L (R2), 67

Lifting operator from the affine surface approximation
to the p-parametric one, 469

N ={1,2,...}

No =1{0,1,2,...}

Field of unit normals, 52

Field of unit normals at p-parametric surface approxi-
mation, 474

In ={neN3|VI<i<3:1=<pu <m}

Index set for the nodal points in the reference element
7,192,204

H* (Q)-norm, (2.78), (2.81), (2.85), (2.91), (2.149),
(2.162)

Associated inner product. Identified with the continu-
ous extension to dual pairings. The complex conjuga-
tion is applied to the second argument

H¥ (Q)-seminorm, which only contains the highest
derivative, (2.79)

Multi-index, subject to rules given in (2.67)

Surface measure of the unit sphere in R¢

Panel, Definitions 2.2.9 and 4.1.2

Surface mesh, Definition 4.1.2

Poincaré—Steklov operator, (3.127)

Space of all polynomials of two variables up to a total
maximal degree of m € Ny [see (4.23)]



Qm

S,D,V,K,K'\W

N

0 ¢P pk opk
SQ’S Sg ’SQ,G

g.0°

Re, Im
Q:=[-11
0 =(0,1)

Yo, 7/6:, Yo
yla 7/1 s Vl_

VLt v
[u]

[y1u]

oQ

Sp:

supp (u)
Wé,oo (Q)

affine

Xz

Index of Symbols

Space of all polynomials of two variables up to a maxi-
mal degree of m € Ny per component [see (4.67)]
General term for P2 or PL

Space of all polynomials of three variables up to a
maximal degree of m € Ny per component [see (7.8)]
Single layer and double layer potential and associated
boundary integral operators, see (3.4), (3.5), Defini-
tion 3.1.5, (3.6)

Newton potential, (3.8)

Boundary element spaces, (4.20), (4.24), Defin-
ition 4.1.36

Real part, imaginary part

Reference element for CebySev interpolation

Unit square as reference element

Unit triangle (with vertices (0,0)7, (1,0)T, (1, )T) as
reference element

General term for the reference element

Set of sons of a cluster o, Definition 7.1.4

Set of eight congruent subcuboids that result when the
edges of Q are bisected

Spectrum of an operator 7'

d-Sphere, surface of the d -dimensional unit sphere
Solution operator,73

Trace extension operators, Theorem 2.6.11, Nota-
tion 2.6.12

Trace operator and one-sided variants, Theorem 2.6.8
Conormal trace operator and one-sided variants,
Definition 2.7.6, Remark 2.7.10

Modified conormal trace operator and one-sided vari-
ants, (2.107), Definition 2.7.6, Remark 2.7.10

Jump in a function across the boundary, [u] := y(f u—
Vo U

Conormal jump in a function across the boundary,
[yru] == y{u—yiu

Sign function, o = —1 for the exterior and o0 = 1
for the interior

Steklov—Poincaré operator, (3.130)

Support of a function u, (2.74)

Sobolev space of functions having all derivatives up to
the order £ in L*° (2),55

Transformation of the reference element to the panel z,
Definition 4.1.2

Affine part of the transformation: yfin (%) = A, +
m.X, Assumption 4.1.6
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Adjoint operator, 28
Admissibility condition, 408
Antisymmetry condition, 298
Approximation property, 385
Associated operator, 34

Banach space, 23
Bi-Lipschitz continuous, 49
Bidual space, 26
Bilinear form, 33
Boundary conditions

Dirichlet, 6

essential, 6

natural, 6

Neumann, 6
Boundary density, 103
Boundary element, 51
Boundary integral operators, 103
Bramble—Hilbert lemma, 248

Calder6n identities, 159
Calderén projector, 157
Cauchy convergent, 23
Cauchy principal value, 294
Cebysev

interpolation, 412

nodes, 411

polynomials, 411
Cg-method, 354
Clément interpolation operator, 262
Cluster, 405

box, 406

center, 406

diameter, 407

father, 406

geometric, 406

son, 406

tree, 405

Cluster method, 403
algorithm, 423
representation, 417

Coercive, 41

Collocation method, 195, 463

Compact, 30

Compact bilinear form, 35

Complete, 23

Completion, 23

Conormal derivative, 68, 69

Conormal jump, 71

Continuous embedding, 24

Coulomb potential, 104

Curl operator, 2

Degree of exactness, 322
Descent method, 361
Diffeomorphism, 49
Differential operator

elliptic, 66
Domain, 2
Double layer potential, 102, 105
Dual operator, 26
Dual space, 25

Elliptic, 39
Elliptic boundary value problems, 76
classical formulation, 76
exterior Dirichlet problem, 77
exterior mixed problem, 78
exterior Neumann problem, 78
exterior transmission problem, 78
interior Dirichlet problem, 76
interior mixed problem, 77
interior Neumann problem, 76
variational formulation, 79
exterior Dirichlet problem, 83
exterior mixed problem, 85
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exterior Neumann problem, 84 Integral equation
interior Dirichlet problem, 79 1. kind, 9
interior mixed problem, 80 2. kind, 10
interior Neumann problem, 80 Interpolation spaces, 46
transmission problem, 85 Iteration
Elliptic differential operator, 66 matrix, 371
Embedding nested, 381
compact, 31 Iterative methods, 370
continuous, 24 convergent, 371
dense, 24
Expansion system, 420
Extension operator, 66 Jacobi method, 370, 372, 376

Jump of a function, 71
Jump relations, 115

Far-field coefficients, 418, 420
basis, 420

Fredholm alternative, 32

Friedrichs’ inequality, 61

Fundamental solution, 101

Kernel function
Cauchy-singular, 294
weakly singular, 294

L-harmonic, 73

Garding inequality, 43 Lagrange polynomials, 410
Galerkin approximation, 223 Laplace equation, 3
Galerkin method, 193 Laplace operator, 82
Galerkin orthogonality, 195, 224 Legendre polynomials, 414
Galerkin product, 393 Lemma

Galerkin projection, 196 Bramble-Hilbert, 248
Galerkin solution, 223 Lax-Milgram, 40
Gauss’ theorem, 67 Lipschitz domain, 50

Gauss—Seidel method, 370
Gaussian quadrature, 323

Gelfand triple, 30 Matri).g .
Green’s formula adjom't,' 354
first, 67 Hermitian, 354
representation, 106 positive definite, 354
second, 67, 70 Measure
third, 72 surface, 54
’ volume, 54

Mesh width, 190
Minimal residual method, 362

Hb'ldt?r continuous, 48 Modified conormal derivative, 68, 69
Hanging nodes, 51 Multi-grid method, 374, 381
Helmbholtz equation, 83, 168 symmetric, 393

Herm§t§an, 33 Multi-index, 48

Hermitian operator, 34 Multipole expansion, 414

Hilbert space, 24

Near-field matrix, 417

Inf—sup condition, 35 Nested iteration, 381, 397

Inner product, 24 Newton potential, 103

Integral Norm, 21
Cauchy-singular, 294 Normal derivative, 68
improper, 294 Normal jump, 71

Riemann, 296 Normal vector, 52



Index

Operator, 22
adjoint, 28
bounded, 22
compact, 31
dual, 26
Hermitian, 34
Laplace, 2
linear, 22
Poincaré-Steklov, 160
Steklov—Poincaré, 161
symmetric, 34
Orthomin, 362

Panel, 51
Parity condition, 298
Piecewise differentiable, 52
Piecewise smooth domain, 51
Poincaré inequalities, 62
Poincaré—Steklov operator, 160
Poisson equation, 6
Positive definite, 35
Potential
double layer, 102, 105
jump properties of, 115
mapping properties of, 112
Newton, 103
single layer, 102, 105
p-parametric surface approximation, 467
Precompact, 30
Projection, 28
orthogonal, 28
Prolongation, 379

Quadrature

degree of exactness, 322

Gaussian, 323

methods, 321

simple, 322

stability, 322
Quasi-uniform, 190
Quotient space, 23

Radial derivative, 77, 169
Reference elements, 51
Reflexive, 26

Regular, 188
Relative coordinates, 304

Rellich’s embedding theorem, 61

Restriction, 379
Riesz—Schauder theory, 32

Self adjoint, 28
Semi-separable, 415
Separable, 23
Sesquilinear form, 32
Shape-regularity, 190
Shift coefficients, 420

Single layer potential, 102, 105

Singularity function, 101
Smoothing iteration, 380
Smoothing method
adjoint, 393
Smoothing property, 383
Sobolev space, 55
Solution operator, 73

Sommerfeld radiation conditions, 77, 168

SOR method, 370
Spectral radius, 371
Spectrum, 31
Sphere, 52

Steklov—Poincaré operator, 74, 161

Support, 54, 64
Surface gradient, 249
Surface mesh, 51
Symmetric operator, 34

Trace extension, 66
Trace operator, 65

Two-grid method, 377, 380

Unisolvent, 205

V-cycle, 392

W-cycle, 389
Weak convergence, 30
Weak derivative, 55
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