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FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA
CONVOLUTION EQUATIONS*

E. HAIRERf, CH. LUBICHt AND M. SCHLICHTE’

Abstract. Numerical methods for general Volterra integral equations of the second kind need O(n2)
kernel evaluations and O(n2) additions and multiplications. Here it is shown how the effort can be reduced
for nonlinear convolution equations. Exploiting the convolution structure, most numerical methods need
only O(n) kernel evaluations. With the use of Fast Fourier Transform techniques only O(n(log n)2) additions
and multiplications are necessary. The paper closes with numerical examples and comparisons.
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1. Introduction. We consider nonlinear second kind Volterra integral equations
of convolution type

(1) y(x)=f(x)+ k(x-s)g(s, y(s)) ds, Xo<-_x<-.

The kernel k and the functions f, g are assumed to be sufficiently smooth on [Xo, ],
so that the solution y(x) is smooth, too. Problems of this type appear in biology, e.g.
neurophysiology (an der Heiden [7]), epidemiology (Hethcote-Tudor [9]), and in the
treatment of special hyperbolic differential equations (Friedlander 5]). Further applica-
tions are given in Corduneanu [3].

Usually the starting point for numerical methods is the more general equation

(2) y(x)=f(x)+ K(x,s,y(s)) ds, Xo<-X<-g.

If the integration interval is discretized with n gridpoints, then algorithms for (2) need
O(t2) evaluations of K. For the special equation (1), which appears most often in
applications, the number of function evaluations can be reduced to O(n) k- and g-
evaluations for suitably chosen methods, e.g. extended Runge-Kutta methods and
linear multistep methods.

In 2 we describe the extended classical Runge-Kutta method. If this method is
implemented straightforwardly, it requires still O(n2) additions and multiplications.
It is shown in 3, the central part of this paper, that this overhead can be reduced to
O(n(log n)2). In 4 the asymptotic expansion of the global error is used for improving
the accuracy of the numerical solution and estimating the global error. Some numerical
results are given in 5. Comparisons of our code VOLCON with existing codes are
presented.

The ideas of this article are not restricted to Runge-Kutta methods, they are also
applicable to multistep methods. Although we present the theory only for the scalar
equation ), it also pertains to systems of equations ), to integrodifferential equations
and to weakly singular integral equations of convolution type.
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2. The extended classical Runge--Kutta method. Extended Runge-Kutta methods
have been introduced by Pouzet 11]. The classical 4th order method, applied to (2),
is given by

y,,=F,,(x,,),

F(xl=f(xl+-d=o (x,x, +2: r
+ x, x +-, + (x, x + h,

YJ) g xj + + K xj +, x, YJ)
(3)

()h(h h )v’= x+ + +i,+i,W’

Y=(x+ h)+ hK x + h, x +,
Here h denotes the stepsize, and y, approximates the solution at x, Xo+ nh. This
method is convergent with a global error of O(h). For a proof see Pouzet [1 l] or
Hairer-Lubich-Nrsett [6]. The positions, where the kernel K (x, s, y) has to be evalu-
ated, lie very regularly in the (x, s)-plane. They are indicated with crosses in Fig. 1.

Since these points lie on lines parallel to the diagonal and the x-axis, the number
of function evaluations can be reduced for the convolution equation (1). Here the
method (3) reads (o(x)=f(x))
(4a) y, , (x,),

(x)=f(x)+ k(x-xo)g(xo,
6

+=o k x-x- g x+,
(4b)

h
+- 2 k(x-x)[g(x, Y]-’))+g(xj, Y]J))]
6=
h

+- k(x x.)g(x., Y"-’),
6

Y=),
h

(4c)

() h ( h )W= x+ +k0)g x+,Y,

Y4J)=(xj+h)+hk()g(xj+, Yt3J)).
It is seen that for the computation of y, only 2n/l k- and f-evaluations and 4n
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FIG.

g-evaluations are necessary. If the formulas (4) are implemented straightforwardly,
O(n2) additions and multiplications still are needed.

3. Fast computation of the lag-terms. We describe in this section, how the overhead
for method (4) can be reduced using FFT-techniques.

Assume that YJ) for i= 1,...,4 and j=0,..., r-1 are computed directly by
(4) (step I of the algorithm). With the notation

j=0,...,r-l,

h Y-) (x, Y{)2’2 [g(xj, )+ g )],

h
(6) ’Y2r =g g(x,, y0r-l)),

y 0 for j 2r + 1, , 4r- 1,

the lag-term Fr(X) becomes

(7)

j- 1,. , r- 1,

_,(x)=f(x)+(r * Y)2,+ for X--Xr+(j+ 1)h/2 andj=O, 1,---,2r-1.

Here the convolution of the two 4r-dimensional sequences K (K) and y (y) is
given by

4r--I

(*’)m E -,,.
i=0

This convolution can be computed efficiently using the fast Fourier transform (FFT).
For a description see Henrici [8] and the references given there. These computations
are illustrated in Fig. 2.
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Xr X2r

FIG. 2

Each vertical line in the square of Fig. 2 represents the lag-term /r(x) as given
by (4b) at the corresponding x-value. Formula (7) permits to compute the lag-terms
of this square simultaneously with FFT. We have thus obtained step II in Fig. 3.

s

FIG. 3

x

For the computation of step III we observe that method (4) applied to

(8) y(x)= F,(x)+ k(x-s)g(s, y(s)) as, x>- x,

(with n r) yields the same numerical solution for x => xr as when app.lied to (1). This
permits us to compute YJ) for j =r,..., 2r-1 since the required F(x)-values are
known by (7).

In step IV we employ the same arguments as in step 11 with r replaced by 2r and

compute

2(x) forx=x2+(j+l)h/2, j=0,1,’",4r-1

simultaneously by FFT.
The steps V, VI and VII are now performed by applying the steps I, II and III

to the integral equation (8) with n 2r.
Proceeding by induction, we arrive at Fig. 4, where each square symbolizes the

computation of one convolution by FFT.
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Xr X2r X4r XSr Xl6r

FIG. 4

Since the computation of the convolution of two n-vectors requires O(n log n)
additions and multiplications, our algorithm needs only

O(n logn+2(log)+4(log)+..-)+O(n)= O(n(log n)2)

additions and multiplications.
In Fig. 5 we compare the straightforward computation of (4) with our algorithm.

time

5 6 7 8 9 10 11 log (number of steps)

FIG. 5
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Here we have chosen r 25, which turned out to be optimal in numerical experi-
ments. The difference in computer time is independent of the integral equation to be
solved.

Although both algorithms are mathematically equivalent, that one, which uses the
FFT, causes in general less rounding errors, since it needs fewer additions and
multiplications. This is confirmed by numerical computations.

4. Global error estimation. Consider the method (4) and denote its numerical
solution by y(x, h) Yn if x Xo+ nh, in order to indicate its dependence on the stepsize.
It has been shown in [6] that the global error has an asymptotic expansion of the form

y(x)-y(x, h)=e4(x)h4+es(x)hS+ +eN(x)h N +O(hN+t).

The numerical solution at x is computed for the stepsizes h, h/2, h/4, h/8,.., and
is denoted by To y(x, h/2i). Then the extrapolation tableau (cf. [4])

TII

is calculated according to the formula (Aitken-Neville algorithm)

T/-l,k-i
Tik Ti’k-I + 2k+3

>_- k _>- 1.

Since by this procedure the leading term in the asymptotic expansion of T/,k_ is
cancelled, we have

(9) y(x) T, "yikek+4(x)hk+4 + O( hk+5).

Observe that the leading term in (9) equals that of Ti,k+ Tik which is a numerically
available estimation of (9).

This motivates the following strategy" For a prescribed tolerance TOL, calculate
the extrapolation tableau until we have for some indices i, k

(10) T,k+, TI <_- TOL.

By the above considerations this difference estimates the error of T. The more accurate
value T,+ is then accepted as a numerical approximation to y(x).

Observe that the k- and f- values, which are needed for the computation of y(x, h),
can be used again for the computation ofy(x, hi2). Furthermore, the Fourier transforms
of the kernel-values, which were computed before, can be used to reduce the effort
for the computation of the kernel Fourier transforms for the stepsize hi2.

$. Nmeriel eperimets ml eomlmrisos. Based on the theoretical consider-
ations of 2-4 the authors have written a FORTRAN subroutine VOLCON for the
numerical solution of a scalar equation (1). This program can be obtained on request
from the authors.

In this section we give some numerical results and compare them to those of the
codes VE1 (due to Bownds [2]) and ORION (due to Bader-Kunkel [1]). We omit
comparisons with the codes VOLTEX (due to Hock [10]) and INTSOL (due to
Williams-McKee [12]), since ORION turned out to be competitive or even superior
to these codes in extensive numerical tests (see [1]).
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Our numerical experiments have been run on the IBM 370/168 of the University
of Heidelberg in FORTRAN double precision (with about 16 decimal digits). The
numerical examples to be presented are documented in terms of the quantities

TOL-prescribed absolute precision
TIME-execution time of the subroutine on the IBM 370/168
NFEV-number of f-evaluations
NKEV-number of kernel evaluations
NGEV-number of g-evaluations
ERRACT-actual absolute error
Problem 1. As a first test example we have taken the equation

y(x)=cos x-2 (x-s+2)-Z(y(s)+ y3(s)) ds

on the intervals [0, 10] and [0, 40]. The exact solution at the endpoints is y(10)-
-0.4718905296 and y(40)--0.6501311013. These values have been obtained numeri-
cally using different codes with very stringent tolerances.

A linear version of this equation is formula (8b) in Friedlander [4]. We have
introduced a nonlinearity, since for linear convolution equations the FFT can be used
directly without applying the techniques of 3.

In Tables and 2 the numerical results of VOLCON are presented. ERREST
denotes the difference of the best to the second-best approximation in the extrapolation
tableau (cf. 4 formula (10)).

TABLE
Results of VOLCON for Problem (XEND= 10).

TOL TIME NFEV NKEV NGEV ERREST ERRACT

10-2 0.016 70 70 204 0.159 10-4 0.440 10-5

10-4 0.017 74 74 220 0.159 10-4 0.440 10-5

10-6 0.049 146 146 508 0.138 10-6 0.493 10-8

10-8 0.144 322 322 1,208 0.770 10-1 0.127 10-9

TABLE 2
Results of VOLCON for Problem (XEND=40).

TOL TIME NFEV NKEV NGEV ERREST ERRACT

10-2 0.121 262 262 780 0.902 10-4 0.212 10-5

10-4 0.122 266 266 796 0.902 10-4 0.212 10-5

10-6 0.334 530 530 1,852 0.733 10-7 0.230 10-6

10-8 0.860 1,090 1,090 4,088 0.361 10-8 0.153 10-8

In Tables 3 and 4 the results of the code VE1 are presented. This code approximates
the kernel k by a degenerate one and solves the resulting system of differential equations
by an ODE-solver. The parameter DIM, which has to be specified by the user, denotes
the dimension of the ODE. It has been chosen as the minimal number such that
ERREST, which represents the error caused by approximating the kernel is less than
TOL.
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TABLE 3
Results of VE1 for Problem (XEND= 10).

TOL TIME NFEV NKEV NGEV DIM ERREST ERRACT

10-2 0.13 104 58 408 8 0.331 10-2

10-4 0.34 204 112 808 11 0.856 X 10-4

l0-6 0.92 387 242 1,540 16 0.377 10-6

l0-8 1.96 646 382 2,576 20 0.896 l0-8

0.359 10-3

0.128 10-4

0.335 10-6

0.418 10-8

TABLE 4
Results of VE1 for Problem (XEND=40).

TOL TIME NFEV NKEV NGEV DIM ERREST ERRACT

10-2 0.49 320 112 1,272
10-4 1.45 615 242 2,452
10-6 fail
10-8 fail

11 0.835 10-2 0.256 10-1

16 0.735 10-4 0.427 10-2

We observe that for small integration intervals VE1 gives correct results, but the
computer time is significantly higher than for VOLCON. For large intervals the kernel
cannot be easily approximated by polynomials, so that VE1 produces incorrect results
for TOL 10-2 and 10-4. NO value DIM (-<25) could be found such that ERREST is
smaller than TOL for TOL-< 10-6.

In order to demonstrate that it is worthwhile to exploit the convolution structure
in (1), we give in Tables 5 and 6 the results of ORION. This code is written to solve
general Volterra integral equations (2).

TABLE 5
Results of ORION for Problem (XEND= 10).

TOL TIME NFEV NKEV ERRACT

10-2 0.17 37 1,562 0.156 10-3

10-4 0.46 61 4,277 0.142 10-6

10-6 1.25 100 11,012 0.261 10-7

10-8 2.92 142 23,904 0.533 10-9

TABLE 6
Results of ORION for Problem (XEND=40).

TOL TIME NFEV NKEV ERRACT

10-2 1.09 128 12,593 0.383 10-3

10-4 4.25 242 45,813 0.128 10-4

10-6 11.03 345 107,017 0.616 10-7

10-8 29.04 503 270,117 0.221 10-8

ORION gives the correct results. The number of K-evaluations, and therefore
also the computer time, is very high, since no use of the convolution structure is made.

Problem 2. Equations of the following type arise in the analysis of neural networks
with post-inhibitory rebound. The equation below has been modelled after a qualitative
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description in an der Heiden [7] on pages 4, 9 and 10.

y(x) + (x S)3(4 X d- S) e-x+s
Y4(S)

ds.
l+2y2(s)+2y’(s)

The exact solution at x= 10 is y(10)= 1.25995582337. This value has again been
obtained numerically using different codes with very stringent tolerances. Table 7 gives
the results of VOLCON.

TABLE 7
Results of VOLCON for Problem 2 (XEND= 10).

TOL TIME NFEV NKEV NGEV ERREST ERRACT

10-2 0.017 70 70 204 0.341 x 10-4 0.203 x 10-4

10-4 0.018 74 74 220 0.341 10-4 0.203 10-4

10-6 0.052 162 162 504 0.949 10-6 0.134 10-5

l0-8 0.368 578 578 2,168 0.252 l0-9 0.476 x l0-
The kernel of Problem 2 is exactly decomposable. Problem 2 is therefore equivalent

to a 5-dimensional system of ordinary differential equations (cf. [2]). Solving this ODE
with the efficient code DIFEX1 (due to Deuflhard [4]), we obtain the results of Table 8.

TABLE 8
Results of DIFEX1 for Problem 2 (XEND 10).

TOL TIME NGEV ERRACT

10-2 0.014 67 0.776 10-2

10-4 0.039 203 0.611 10-3

10-6 0.048 256 0.408 10-5

10-8 0.070 380 0.116 10-7

It is seen that VOLCON and DIFEX1 are competitive for TOL>= 10-6. For integral
equations with degenerate kernel, whose corresponding differential equation has a

dimension greater than 5, VOLCON becomes superior. This is due to the fact that the
dimension is significant for the overhead of the ODE-solver. For lower dimensions or
for TOL< 10-6 an ODE-solver like DIFEX1 is to be preferred.
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