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Abstract.
This article reviews convolution quadrature and its uses, extends the known approx-

imation results for the case of sectorial Laplace transforms to finite-part convolutions
with non-integrable kernel, and gives new, unified proofs of the optimal error bounds
for both locally integrable and non-integrable convolution kernels.
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1 Introduction.

1.1 Convolution quadrature.

A convolution quadrature approximates the continuous convolution∫ t

0

f(τ) g(t − τ) dτ, t > 0,(1.1)

by a discrete convolution with a step size h > 0,∑
0≤jh≤t

ωj g(t − jh), t = h, 2h, 3h, . . . ,(1.2)

where the convolution quadrature weights ωj are determined from their gener-
ating power series as

∞∑
j=0

ωjζ
j = F

(
δ(ζ)
h

)
.(1.3)

Here F (s) is the Laplace transform of f(t), and δ(ζ) is a given rational func-
tion, chosen as the quotient of the generating polynomials of a linear multistep
method.
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Such convolution quadratures were proposed, implemented and analyzed twen-
ty years ago in my report [23], later published in [24, 25]. A forerunner to these
methods appears in the (non-numerical) analytical work of Post [39] from 1930,
which can be interpreted as dealing with the limit for h → 0 of (1.2)–(1.3) for
the backward Euler method, i.e., for δ(ζ) = 1 − ζ. In an applied, empirical con-
text of control engineering there is Tustin’s digital filter [52], proposed in 1947,
which corresponds to the choice of the trapezoidal rule, δ(ζ) = 2(1− ζ)/(1 + ζ).
In numerical analysis, the interpretation of stable linear multistep methods as
convolution quadrature for pure integration (i.e., f(t) = 1) with weights given
by (1.3) for F (s) = s−1 was put forward in [37].

A complete error analysis of (1.2)–(1.3) for the case F (s) = s−µ with real µ,
which is known as fractional integration and differentiation, was given in [19].
That paper prepared the ground for the extension to general Laplace trans-
forms F (s), analyzed in [24] for F (s) which are analytic and polynomially
bounded outside a sector with an acute angle to the negative real axis, and
in [27, 28] for F (s) which are polynomially bounded only in a half-plane. An al-
ternative approach to the error analysis for the sectorial case was presented in [7].
The general result is that a pth order multistep method with appropriate stability
properties, such as A(α)-stability, gives a convolution quadrature approximation
of the full order p provided that sufficiently many derivatives of g vanish at 0. The
above-mentioned papers also describe modifications of (1.2) by correction terms
involving a few grid values of g near 0, which improve the accuracy to the full
order for integrands g that are not small near 0. Convolution quadrature based
on Runge–Kutta instead of linear multistep methods is proposed and studied
in [29]. There, the basic formula is still (1.3) but δ(ζ) becomes a low-dimensional
matrix-valued function instead of a scalar function.

Attractive features of convolution quadratures are that they work well in the
following situations:

• singular kernels f(t) [19, 25],

• kernels with multiple time scales [25],

• highly oscillatory kernels [27],

• only the Laplace transform F (s), but not the convolution kernel f(t) is
known analytically [25, 28, 45, 46].

The last item is obvious, but of importance in many applications where the model
equations are derived via a frequency-domain fundamental solution or transfer
function, whereas the time-domain fundamental solution or impulse response is
not available.

From the beginning, a main motivation for considering these convolution
quadrature methods was that they enjoy excellent stability properties when used
for the discretization of integral equations or integro-differential equations of
convolution type, in a way often strikingly opposed to standard quadrature for-
mulas using values of f(t) or product integration formulas using moments of f(t)
over short intervals. The stability aspect of convolution quadrature methods was
emphasized in [20, 22] and [21] for Abel–Volterra integral equations of the second
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and first kind, respectively, for a large class of nonlinear convolution equations
in [8], for Wiener–Hopf integral equations in [9, 25].

Further developments of convolution quadrature came up in their application
to integro-partial differential equations [40, 18, 34, 35, 53–55, 3, 4] and further
Volterra integral and integro-differential equations [13, 27, 17, 6, 38], to non-
reflecting boundary conditions [41, 42] and to boundary integral equations for
time-dependent problems [28, 33]. The latter class of applications made these
methods enter the mechanical engineering literature in the late 1990s [46, 12],
where they have since been successfully applied to problems of wave propagation
in viscoelastic and poroelastic continua [43–45, 47, 48, 50, 15, 16] and of dynamic
crack analysis [56–60, 51].

On the other hand, convolution quadrature also turned out to be an ex-
tremely useful theoretical tool in analyzing standard numerical time discretiza-
tion methods (linear multistep methods, Runge–Kutta methods) for stiff ordi-
nary differential equations [26, 14] as well as for parabolic partial differential
equations [26, 29–32] and hyperbolic initial-boundary value problems [28]. This
is because convolution quadrature provides an appropriate framework for the
discrete variation-of-constants formula needed in studying these problems.

1.2 Discretized operational calculus.

To a large extent, the good stability properties of the convolution quadrature
discretizations rely on a simple operational relation. To formulate this relation,
it is convenient to introduce the operational calculus notation, cf. [11, 36, 49],
which for F (s) denoting again the Laplace transform of the convolution kernel
f(t) and with ∂ symbolizing differentiation sets

F (∂)g(t) :=
∫ t

0

f(t) g(t − τ) dτ, t > 0.(1.4)

This notation is motivated by the facts that then ∂−1g(t) =
∫ t

0 g(τ) dτ and, by
the associativity of convolution,

F2(∂)F1(∂)g(t) = (F2F1)(∂)g(t).(1.5)

From the very construction of the convolution quadrature (1.2)–(1.3), we have
for

F (∂h)g(t) :=
∑

0≤jh≤t

ωj g(t − jh), t > 0,(1.6)

that ∂−1
h g(t) is the result of the underlying multistep method applied to the

differential equation y′ = g(t) (with the special choice of starting values yj = 0
for j < 0), and again by (1.3) and the associativity of convolution,

F2(∂h)F1(∂h)g(t) = (F2F1)(∂h)g(t).(1.7)

This is a basic relation which is at the heart of stability of convolution quadrature
discretizations of integral equations [8, 21, 28, 33], together with the fact that the
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range of the generating function of the weights (1.3) for |ζ| < 1 is in the range of
the Laplace transform F (s). The relation (1.7) does not hold for more traditional
discretizations based on values or short-time moments of f(t). The convolution
quadrature method is therefore sometimes called operational quadrature method.

The operational notation is useful in that it emphasizes the role of F (s) rather
than the convolution kernel f(t) and suggests representations and interpretations
that would not appear obvious otherwise. For example, the error bounds in [24]
are based on comparing

F (∂h)g(t) =
1

2πi

∫
Γ

F (λ)(∂h − λ)−1g(t) dλ

for a suitable complex contour Γ with the analogous formula for the continuous
case (i.e., with ∂ in place of ∂h), and the error analysis in [27] is based on

F (∂h)g(t) =
∫ ∞

0

f(τ)e−τ∂hg(t) dτ.

1.3 Scope of the present paper.

This paper closes a gap that was left in the theory of [24] in the case of
finite-part convolution integrals (or in other terms, of derivatives of convolution
integrals). The motivation for this extension of the theory comes from recent
work on nonsmooth-data error bounds for discretizations of integro-partial dif-
ferential equations [5], where such results are needed. The results are stated in
Section 2 and proved in Sections 3 and 4.

2 Statement of results.

The framework is that of a sectorial Laplace transform F (s):

F (s) is analytic in a sector |arg(s − c)| < π − ϕ with ϕ < 1
2π and real c,

(2.1)
and |F (s)| ≤ M |s|−µ for some real µ and M.

The inverse Laplace transform is then given by

f(t) =
1

2πi

∫
Γ

F (λ) eλt dλ, t > 0,(2.2)

with Γ a contour in the sector of analyticity, parallel to its boundary and oriented
with increasing imaginary part. The function f(t) is analytic in t > 0 and satisfies

|f(t)| ≤ C tµ−1 ect, t > 0,(2.3)

and is therefore locally integrable if µ > 0. For µ ≤ 0 the convolution (1.1)
is interpreted as a Hadamard finite-part integral, or equivalently for F̃ (s) =
F (s)s−k with the integer k chosen such that µ̃ = µ + k > 0, as the derivative

F (∂)g(t) = ∂kF̃ (∂)g(t) =
(

d
dt

)k ∫ t

0

f̃(τ) g(t − τ) dτ(2.4)
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for k-times continuously differentiable functions g(t), where f̃(t) is the inverse
Laplace transform of F̃ (s).

The convolution quadrature approximation is done by (1.2) with (1.3). For
the linear multistep method we make the assumptions of strong A(α)-stability
and order p as in [24, (1.10)]:

δ(ζ) is analytic and without zeros in a neighbourhood of the
closed unit disk |ζ| ≤ 1, with the exception of a zero at ζ = 1,

|arg δ(ζ)| ≤ π − α for |ζ| < 1, for some α > ϕ,

1
h

δ(e−h) = 1 + O(hp) with the order p ≥ 1.

(2.5)

Well-known examples are the backward differentiation formulas of order p ≤ 6,
given by δ(ζ) =

∑p
k=1

1
k (1 − ζ)k, with α = 90◦, 90◦, 86◦, 73◦, 51◦, 17◦ for p =

1, . . . , 6, respectively.
The first result of this paper is concerned with the quadrature weights divided

by the step size h,
fn = ωn/h,

which are shown to be pth order approximations to the inverse Laplace trans-
form f(t) for t = nh bounded away from 0.

Theorem 2.1. Under the conditions (2.1) and (2.5) we have

|fn − f(nh)| ≤ C tµ−1−php (t = nh),

where the constant C does not depend on h ∈ (0, h] and t ∈ (0, t] with fixed
t < ∞. If c ≤ 0 in (2.1), then the error bound holds uniformly for t > 0.

For µ > 0 in (2.1) this is Theorem 4.1 of [24]. The contribution of the present
paper is the extension to µ ≤ 0. As an immediate but useful consequence of
Theorem 2.1. and (2.3) we note the bound

|fn| ≤ C tµ−1 (t = nh),(2.6)

and for f0 = 1
hF (δ(0)/h) condition (2.1) implies directly |f0| ≤ C hµ−1.

The second result bounds the error of the convolution quadrature (1.2) for
g(τ) = τβ−1 with real β > 0. (In the case of β < 1 the sum in (1.6) is understood
to be over 0 ≤ jh ≤ t − h to avoid the evaluation of τβ−1 for 0 ≤ τ < h.)

Theorem 2.2. Under the conditions (2.1) and (2.5) we have, for real β > 0,

|F (∂h)τβ−1(t) − F (∂)τβ−1(t)| ≤
{

C tµ−1hβ for 0 < β ≤ p,

C tµ−1+β−php for β ≥ p,

where the constant C does not depend on h ∈ (0, h] and t ∈ (0, t] with fixed
t < ∞. If c ≤ 0 in (2.1), then the error bound holds uniformly for t > 0.
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For µ > 0 in (2.1) and β an integer this is Theorem 3.1 of [24]. For µ ≤ 0
and β an integer it is Theorem 5.1 of [24], for which, however, only an outline
of the proof is given in [24] (the full proof is in the unpublished report [23]).
For µ > 0 and non-integral β this is Theorem 5.2 of [24] (whose proof is based
on Theorem 5.1). The novelty of the present result lies thus in the remaining
case of µ ≤ 0 and non-integral β, and in a new, self-contained proof based on
Theorem 2.1, which thus assumes a key role in the theory.

In view of the relations (with ∗ denoting continuous convolution)

F (∂)(g1 ∗ g2)(t) = (F (∂)g1) ∗ g2(t),
F (∂h)(g1 ∗ g2)(t) = (F (∂h)g1) ∗ g2(t),

which express the associativity of convolution, Theorem 2.2 yields immediately
error bounds for functions g(τ) that can be written as a linear combination
of powers of τ and a remainder term that can be expressed as a convolution
of a power function with an integrable function (in particular, this holds for a
Taylor expansion with remainder term in integral form). Cf. the formulation of
Theorems 3.1 and 5.1 in [24].

3 Proof of Theorem 2.1.

The proof extends the proof of Theorem 4.1 in [24]. We write F̃ (s) = s−kF (s)
with the integer k chosen such that µ̃ = µ + k > 0, so that F̃ (s) satisfies (2.1)
with µ̃ instead of µ. Then fn = ωn/h is the nth coefficient of

∞∑
n=0

fnζn =
1
h

(
δ(ζ)
h

)k

F̃

(
δ(ζ)
h

)
=

(
δ(ζ)
h

)k 1
2πi

∫
Γ

F̃ (λ)
1

δ(ζ) − hλ
dλ

=
1

2πi

∫
Γ

F (λ)
(

δ(ζ)
hλ

)k 1
δ(ζ) − hλ

dλ.

We introduce en(z) as the nth coefficient of the series
∞∑

n=0

en(z) ζn =
(

δ(ζ)
z

)k 1
δ(ζ) − z

so that
fn =

1
2πi

∫
Γ

F (λ) en(hλ) dλ,(3.1)

which is to be compared with (2.2) for t = nh. We thus need to study en(z)−enz

for z = hλ with λ ∈ Γ.
By (2.5) and the inverse function theorem, the equation δ(ζ) = z has a unique

solution ζ = 1/R(z) with R(0) = 1 for z in some disk around 0, and

R(z) = ez + O(zp+1).(3.2)

For any such approximation to the exponential, there exists r > 0 such that

|R(z)| ≤ |ez/2| for |z| ≤ r, |arg(−z)| ≤ α′ < 1
2π,

e−2|z| ≤ |R(z)| ≤ e2|z| for |z| ≤ r,
(3.3)



CONVOLUTION QUADRATURE REVISITED 509

and hence we have for R(z)n − enz = (R(z) − ez)(R(z)n−1 + R(z)n−2ez + · · · +
e(n−1)z), for n ≥ 1,

|R(z)n − enz| ≤ C|zpenz/2| for |z| ≤ r, |arg(−z)| ≤ α′ < 1
2π,

|R(z)n − enz| ≤ C|zp|e2|nz| for |z| ≤ r.
(3.4)

We write(
δ(ζ)
z

)k 1
δ(ζ) − z

= γ(z, ζ)
1

1 − R(z)ζ
, γ(z, ζ) =

∞∑
n=0

γn(z)ζn,

where now γ(z, ζ) is analytic in a disk |ζ| ≤ 1/ρ of radius 1/ρ > 1 and bounded
by M/|z|k with some constant M for |z| ≤ r. By Cauchy’s estimate, the coeffi-
cients γn(z) thus satisfy

|γn(z)| ≤ M

|z|k ρn for |z| ≤ r.

We have

en(z) =
n∑

j=0

γj(z)R(z)n−j = R(z)n
∞∑

j=0

γj(z)R(z)−j −
∞∑

j=n+1

γj(z)R(z)n−j.

The last sum is O(ρn/|z|k) for |z| ≤ r provided that r is chosen so small that
ρe2r < 1. For the other sum we have, by δ(1/R(z)) = z and de L’Hospital’s rule,
and by (3.2),

∞∑
j=0

γj(z)R(z)−j = γ(z, 1/R(z)) =
(

δ(ζ)
z

)k 1 − R(z)ζ
δ(ζ) − z

∣∣∣∣
ζ=1/R(z)

=
−R(z)

δ′(1/R(z))

=
R′(z)
R(z)

=
ez + O(zp)

ez + O(zp+1)
= 1 + O(zp).

This is the key relation of the proof. Together with (3.3) and (3.4) it gives us

|en(z) − enz| ≤ C(|zpenz/2| + ρn/|z|k) for |z| ≤ r, |arg(−z)| ≤ α′ < 1
2π,

(3.5)
|en(z) − enz| ≤ C(|zp|e2|nz| + ρn/|z|k) for |z| ≤ r.

On the other hand, uniformly for |z| ≥ r, |arg(−z)| ≤ α′ < α with the angle α
of A(α)-stability given in (2.5), we have that there is a ρ < 1 such that∣∣∣∣(δ(ζ)

z

)k 1
δ(ζ) − z

∣∣∣∣ ≤ M

|z|k+1
for |ζ| ≤ 1

ρ
.

By Cauchy’s estimates, this yields

|en(z)| ≤ M

|z|k+1
ρn for |z| ≥ r, |arg(−z)| ≤ α′ < α.(3.6)
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The result now follows upon forming the difference of (2.2) and (3.1) and using
the bounds (3.5), (3.6) and (2.1).

4 Proof of Theorem 2.2.

The proof uses Theorem 2.1 and the following lemma, in which δ
(κ)
n is the nth

coefficient of the power series

∞∑
n=0

δ(κ)
n ζn = δ(ζ)κ.

Lemma 4.1. Under condition (2.5) there is the asymptotic expansion

nβ−1

Γ(β)
= δ(−β)

n + cpδ
(p−β)
n + cp+1δ

(p+1−β)
n + · · · + cN−1δ

(N−1−β)
n + O(nβ−1−N )

for β �= 0,−1,−2, . . . , where the coefficients ck and the constant symbolized by O
do not depend on n ≥ 1.

Proof. From Stirling’s formula we get the asymptotic expansion
(cf. [10, p. 47])

(−1)n

(
−α
n

)
=

Γ(n + α)
Γ(n + 1)Γ(α)

(4.1)

=
nα−1

Γ(α)
+ a1

nα−2

Γ(α − 1)
+ · · · + aN−1

nα−N

Γ(α − N + 1)
+

+ O(nα−1−N )

for α �= 0,−1,−2, . . . (the expansion terminates after a finite sum for integer α).
By assumption (2.5) we have δ(ζ) = (1 − ζ)φ(ζ), where φ(ζ) is analytic and

without zeros in a disk of radius strictly greater than 1, and φ(1) = 1. From a
Taylor expansion of φ(ζ) at ζ = 1 we thus obtain for any real α

δ(ζ)−α = (1 − ζ)−α
(
1 + d1(1 − ζ) + · · · + dN−1(1 − ζ)−(N−1)

)
+ r(ζ),

where the remainder r(ζ) is sufficiently often differentiable on the unit circle so
that its coefficients rn are bounded by rn = O(nα−1−N). Hence we have

δ(−α)
n = (−1)n

(
−α
n

)
+ d1(−1)n

(
1 − α

n

)
+ · · · +

+ dN−1(−1)n

(
N − 1 − α

n

)
+ O(nα−1−N ).

With (4.1) this gives us the expansion

δ(−α)
n =

nα−1

Γ(α)
+ b1

nα−2

Γ(α − 1)
+ · · · + bN−1

nα−N

Γ(α − N + 1)
+ O(nα−1−N ).(4.2)
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Moreover, Theorem 2.1 for F (s) = s−α shows that b1 = · · · = bp−1 = 0.
With α = β, β − p, β − p − 1, . . . this yields, conversely, the stated expansion
of nβ−1/Γ(β). �

We now turn to the proof of Theorem 2.2. With f
(κ)
n denoting the nth coeffi-

cient of
∞∑

n=0

f (κ)
n ζn =

1
h

F

(
δ(ζ)
h

)
·
(

δ(ζ)
h

)κ

we obtain from Lemma 4.1. that we have at t = nh, for sufficiently large N ,

F (∂h)
τβ−1

Γ(β)
(t) = hβ

n∑
j=0

fn−j
jβ−1

Γ(β)
(4.3)

= f (−β)
n + hp cp f (p−β)

n + · · · + hN−1 cN−1 f (N−1−β)
n +

+ O(tµ−1hβ).

Here the O(tµ−1hβ) remainder term arises from the bound (2.6) of fn and the
fact that the discrete convolution of an O(nµ−1) sequence and an O(nβ−1−N)
sequence is again O(nµ−1), if β − N < min(0, µ).

On the other hand, f (−β)(t) := F (∂) τβ−1

Γ(β) (t) is the inverse Laplace transform
of F (s)s−β . Hence the error bound of Theorem 2.1,

|f (−β)
n − f (−β)(nh)| ≤ Ctβ+µ−1−php (t = nh),

and the bounds (2.6),

|f (−α)
n | ≤ Ctα+µ−1 (t = nh),

for α = β − p, β − p − 1, . . . inserted into (4.3) give the stated result for t = nh.
Finally, for values t = (n + θ)h between grid points (0 < θ < 1) the result is

obtained by noting

F (∂)τβ−1(nh + θh) = F (∂)(τ + θh)β−1(nh) + O((nh)µ−1hβ)

and using the above arguments together with the binomial expansion for
(n + θ)β−1 in both the discrete and the continuous convolution.
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11. A. Erdélyi, Operational Calculus and Generalized Functions, Holt, Rinehart and Winston,

New York, 1962.
12. L. Gaul and M. Schanz, A comparative study of three boundary element approaches to

calculate the transient response of viscoelastic solids with unbounded domains, Comput.
Methods Appl. Mech., 179 (1999), pp. 111–123.

13. E. Hairer and P. Maass, Numerical methods for singular nonlinear integro-differential
equations, Appl. Numer. Math., 3 (1987), pp. 243–256.

14. E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II: Stiff and
Differential-Algebraic Problems, 2nd rev. edn, Springer, Berlin, 1996.

15. A. Hanyga, Wave propagation in media with singular memory, Math. Comput. Model.,
34 (2001), pp. 1399–1421.

16. A. Hanyga, An anisotropic Cole–Cole model of seismic attenuation, J. Comput. Acoust.,
11 (2003), pp. 75–90.

17. J. P. Kauthen, A survey of singularly perturbed Volterra equations, Appl. Numer. Math.,
24 (1997), pp. 95–114.
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