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Summary. Numerical methods are derived for problems in integral equations 
(Volterra, Wiener-Hopf equations) and numerical integration (singular inte- 
grands, multiple time-scale convolution). The basic tool of this theory is 
the numerical approximation of convolution integrals 

x 

f*g(x)= S f (x-- t )g(t)dt  (x>O) 
0 

by convolution quadrature rules. Here approximations to f*g(x )  on the 
grid x = 0 ,  h, 2h . . . . .  Nh are obtained from a discrete convolution with the 
values of g on the same grid. The quadrature weights are determined with 
the help of the Laplace transform of f and a linear multistep method. It 
is proved that the convolution quadrature method is convergent of the order 
of the underlying multistep method. 

Subject Classifications: AMS(MOS): 65D30, 65R20, 65L05, 44A55; CR: 
G1.9. 

1. Introduction 

1.1. Derivation of the Methods 

We begin our investigations with the numerical approximation of convolution 
integrals 

x 

f ( t ) g ( x - t ) d t  (x>__O). (1.1) 
0 

We shall obtain methods of discrete convolution form 

~, eo;(h) g(x-.jh) (1.2) 
O<=jh<=x 
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where h > 0 is the stepsize, and the quadrature weights coi(h) are the coefficients 
of the power series 

F(b(~)/h)= ~ ooj(h)~ J. (1.3) 
j = o  

Here F is the Laplace transform of f and 6 (~)=~b j~  J is the quotient of the 
0 

generating polynomials of a linear multistep method. 
As will be pointed out in Part II of this work, quadrature methods of this 

type are particularly suited to the approximation of convolution integrals whose 
kernel f(t) is singular or has components at different time-scales; to the numeri- 
cal evaluation of the expressions arising in classical operational calculus where 
the Laplace transform F of the convolution kernel (and not the kernel f itself) 
is known a priori; and to obtain stable discretizations of integral equations. 
From the control engineer's viewpoint our results can be seen as results on 
the discrete-time simulation of a continuous-time linear system given via its 
transfer function F(s). 

To explain this approach we start from the Laplace inversion formula 

f ( t ) = ~ n  / r~ F(2)e~td2 ( t>0) (1.4) 

which holds if, for example, we assume 

7~ F(s) is analytic in a sector [ a rg ( s -  c)[ < n -- ~o with ~o < ~,  c elR and satisfies there 

] F(s)] < m - I s ] - "  for some M <  oo, # > 0 .  (1.5) 

The contour F can then be chosen as running from oo-e -i("-~) to oo-e i~-~) 
within the sector of analyticity of F(s). A condition equivalent to (1.5) is that 
f(t) is analytic and of (at most) exponential growth in a sector containing the 
positive real half-line and satisfies f ( t ) =  O(t ~- 1) as t--, 0 within the sector. The 
assumption/~ > 0 guarantees in particular that f(t) is locally integrable. Examples 
include fractional powers, logarithms and most special functions. 

The approach (1.2), (1.3) now comes about in the following way: Inserting 
(1.4) into (1.1) and reversing the order of integration gives 

x 1 x 

S f ( t )g(x- t )dt=~n i ~r F(2)~o eZtg(x--t)dtd2" (1.6) 
0 

We now approximate the inner integral by applying a linear multistep method 
to the differential equation y' = 2y + g, y(0) = 0, 

k k 

Z aJYn+J -k-=h Z flJ(2Yn+J k+g((n+j-k)h)) (n>O), ( 1 . 7 )  
j = O  j = O  
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with starting values Y-k . . . . .  y_~=0,  and with g~C[0,  oo) extended by 0 to 
the negative real axis. Multiplying (1.7) by ~" and summing over n from 0 to 
oe we obtain 

(% (k + . . .  + ~k)" Y(O : (flO (k +. . .  + ilk)" (h 2' y(() + h-g(O), 

co co 

with the generating (formal) power series Y(0 = ~Y, (", g (0  = ~g(n  h) (". Solving 
0 0 

this equation for Y(0 we find that y, is the n-th coefficient of the power series 
(b (O/h -  2) -1 g((), where 

6 (0 = (~o ~k +. . .  + C~ k _ i ~ + C~k)/(flO ~k §  + fig - I ~ + fig)" (t .8) 

Hence the resulting approximation of (1.6) at x = nh is the n-th coefficient of 

1 / 6 ( 0  2 ) - lg (Od2=F(6(~h)  ) (1.9) 

where the equality holds by Cauchy's integral formula. The coefficients of the 
right-hand side of (1.9) are the Cauchy product of the two sequences {~o;(h)} 
of (1.3) and {g(jh)}. This gives finally (1.2). 

The above derivation indicates also how to obtain error estimates: One 
studies first the error introduced by approximating the inner integral in (1.6) 
by the multistep method (1.7), then multiplies the obtained error bound by 
the bound (1.5) of F(2) and integrates along the contour F. This will actually 
be carried out in Sects. 2 and 3. 

Of the linear multistep method we shall assume that it is A(a)-stable with 
a>(p of (1.5), stable in a neighbourhood of infinity, strongly zero-stable and 
consistent of order p. In terms of 6(0, these conditions can be expressed as: 

3(0 is analytic and without zeros in a neighbourhood of the 
closed unit disc ]~1__< 1, with the exception of a zero at ~ = 1. (1.10a) 

[ a rg6 (0 l<n -c~  for [~ l<l ,  forsome c~>q~. (1.10b) 

1 
7 6 ( e - h ) = l + O ( h  p) forsome p > l .  (1.10c) 
n 

Well-known examples are the backward differentiation formulas of order p < 6, 

given by 3(~)= ~-(1--0 i, with e = 90 ~ 90 ~ 88 ~ 73 ~ 51 ~ 18 ~ for p--1, ..., 6, 
respectively, i= 1 

Condition (1.5) on the transfer function (or symbol) F(s) of the convolution 
(1.1), and condition (I.10) on the discretization method will serve as the main 
assumption for all results of this paper. 

Remark. (1.3) is well-defined if 5o/h is in the domain of analyticity of F(s). Since 
30 > 0  by (1.10), this is satisfied at least for sufficiently small h >0.  The integrals 
in (1.6) and (1.9) are absolutely convergent, because ~ > 0 in (1.5). 
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1.2. Symbolic Notation and Historical Remarks 

It will be convenient to use transfer function notation for the convolution (1.1), 

x 

F(s)g(x)=f*g(x)= ~ f ( t ) g ( x - t ) d t  (s: complex variable). (1.i1) 
0 

We use the abbreviation Sh=(~(~)/h and employ discrete transfer function nota- 
tion for (1.2), (1.3), 

F(Sh)g(x)= ~, coi(h)g(x--jh). (1.12) 
O<jh<x 

Note that F(Sh)=~'c%(h)( ~ is the discrete Laplace transform of the sequence 
0 

{coj(h)}.) 

With this notation we obtain from (1.9) the "Cauchy integral formula" 

1 
F (s,) g (x) = T ~  ~ F (2~). (sh - .~) -1 g (x). d ,~, (t.  13 ) 

and the same relation, with s formally in place of sh, holds by (1.6), since ( s -  2)- 
is the Laplace transform of e ~'. 

We shall use the notation (1.11) also for distributional convolution, in partic- 
ular for differentiation 

s g = ~ ' . g = g ' + g ( 0 ) . ~  (Dirac's 6). (1.14) 

As usual, we identify distributions with functions outside their singular support 
(which wilt be at most {0} in our applications), so that (sg)(x)=g'(x) for x > 0 .  
The derivative (1.14) is discretized by the backward difference approximation 

1 
Shg(X)=~ Z 6~g(x--jh). (1.15) 

O <=jh <=x 

With this in mind, the discretization process leading from (t.11) to (1.12) has 
a simple interpretation: The symbol of differentiation, s, is replaced by the symbol 
of a backward difference quotient, Sh. This idea of a discretized operational calcu- 
lus has actually very old origins and seems to have been rediscovered several 
times. Of particular historical interest in this context is the work of Post [12] 
who has shown pointwise convergence of F(Sh) g(x) as h ~ 0  for the simple 
difference quotient sh g(x)=(g(x)-g(x--h))/h, thereby generalizing earlier work 
of Liouville [10] and Gr/inwald [8] on fractional integrals, i.e. the case F(s)= s -u. 
Post's work appears to have gone unnoticed in numerical analysis (in which 
he himself showed no interest), and the author of the present paper is not 
aware of any results in the literature going beyond those of Post. 
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1.3. Outline of the Paper 

In Sect. 2 we study the convergence properties of the linear multistep method 
(1.7) (i.e., of (Sh--2)- 1 g(x)) for 2 varying in a sector of the complex left half-plane. 
Such problems have previously been studied in the numerical analysis of para- 
bolic differential equations by Ztfimal [15] and Crouzeix and Raviart [2], see 
also Gekeler [7]. Here we give (and require) stronger estimates in terms of 
the input g, using different techniques. 

Section 3 contains the first main results. The convergence properties of con- 
volution quadrature rules F(Sh)g(x) are now immediately obtained by integra- 
ting the error bounds of Sect. 2 along the contour F. The convergence order 
of the underlying multistep method, p, is obtained for geCP[0, oo) by adding 
a few correction terms to F(Sh) g(x), 

p - 2  

F(Sh)~g(x)=F(sh)g(x)+ ~ w,j(h)g(jh) at x=nh. (1.16) 
j = 0  

These are required because of the special choice of starting values in (1.7), unless 
g near 0 or f near x=nh is "small". 

In Sect. 4 we turn our attention to the coefficients {o,(h) of (1.3) themselves, 
or rather to f,(h)=oo,(h)/h which is shown to approximate the inverse Laplace 
transform f(t) of F(s) at t =  nh (away from 0) with the full order of the multistep 
method (1.7). This result (which comes rather unexpected) extends the classical 
Post-Widder inversion formula. Its numerical importance is perhaps not so much 
in the numerical inversion of Laplace transforms, but in the fact that it justifies 
replacing the weights co,(h) by hf(nh) for nh bounded away from 0, and in 
a very simple choice of the starting weights w,j(h) of (1.16). 

In Sect. 5 we give some extensions of the results in Sect. 3. These concern 
the approximation of derivatives 

(d~k x 
dx] Jo f ( t )g (x - t )d t  (x>O) 

("finite part integrals") and the convergence of (1.2) under weakened smoothness 
assumptions on g, in particular for the important case g (t)= t ~- 1 ~(t) with fl > 0, 

smooth, for which p-th order convergence can again be preserved by a modifi- 
cation of the form (1.16). 

Topics which have been omitted are an extension to the non-sectorial, 
"hyperbolic" case, where F(s) is analytic and suitably bounded only in some 
half-plane Re s>c.  For A-stable linear multistep methods (1.7) one can still 
obtain convergence results (of order at most 2, according to Dahlquist's [4] 
well-known order barrier.) Another omission concerns convolution quadratures 

2 
in which the underlying multistep method is the trapezoidal rule, Sh=~(1 

-~) / ( i+~) ,  which does not satisfy (1.10a). It appears, however, in the control 
literature where it is known as Tustin's method (after Tustin [13]; see, e.g., 
Franklin and Powell [6]). 
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2. L i n e a r  M u l t i s t e p  M e t h o d s  A p p l i e d  to  y ' =  2y+g 
with  ~ Varying in a Sector 

In this section we derive some technical estimates which will be required for 
the subsequent development. We begin with some preparation. 

Since F(Sh)g is the convolution of g with the sequence {co,(h)}~, the associati- 
vity of convolution yields 

and similarly 

F(Sh)(g~ * g2) = (F(Sh) ga)* g2, (2.1) 

F(s)(gl * g2)=(F (s) gl)* g2 . (2.2) 

We shall use these relations in place of the usual Peano kernel technique. They 
permit to reduce the study of the error F(Sh) g(x) F(s) g(x) to the polynomial 
case g (x)= x q, since 

p -  1 g(q)(o) 1 1 
g (x) = Y' ~ x q + ~ ( t ' -  * g('))(x), (2.3) 

q = O  

the Taylor expansion of g at 0. 
Here we have denoted by t p-I  the function t~--~t p-~ on 1-0, oe), and the 

same notation will also be used for other exponents in the following. 
We now study the error of ( s , -  2)- 1 g(x), i.e., of the linear multistep method 

(1.7). 

[,emma 2.1. Let Sh = 6(()/h satisfy (1.10). 

a) For l a rg ( - -2 ) l=e  <c~ and IhRl_>r>0 we have 

l(Sh--R)-ltq(x)--(s--R)-ltq(x)l< C~.p x/h.hq (q=0 ,1  . . . .  p) 
=lh21 I,ll 

with C=C(r) and p=p(r)< 1 independent of h~(O, 1], x > h and 2. 
TC 

b) To arbitrary 0<~:<1  there exists t o > 0  such that for l a r g ( - 2 ) l < e ' < ~  
and Ih21<ro 

I C[Cile'ax['hq+l (q=0 ,1  . . . . .  p - l )  
I (Sh --  2 ) -  1 t q (X) - -  ( S - -  2 ) -  1 t q (X) [ < [ e ~ ax 1" h ;  

121 (q=P) 

with C independent of he(O, 1], x > 0 and 2. 

Remark. Except for q = 0  the estimate in a) holds also for 0__<x<h. (In this 
interval F(sh)g(x)=F(6o/h).g(x), and error estimates are easily derived.) 

It is easily verified that 

(Sh--2)- 1 g(X)--(S-- 2)- I g(x)= --(Sh-- 2)- 1 (Sh y--y')(X) (2.4) 
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where y = ( s - 2 ) - 1 g ,  the solution of  y ' =  2y + g, y (0)=  0. We study Sn y-Y' in Lem- 
ma 2.2 (consistency), and ( sh -2 )  -1 in Lemma 2.3 (stability). Lemma 2.1 is de- 
rived from these estimates without  new difficulty. 

Lemma 2.2. a) For  I arg ( - 2) 1 < c~' < 2 and I h 21 > r > 0 we have 

C 
[(S h --  S) (S --  2) - 1 t q (X) I ~ ]h~T" px/h. h q (q = O, 1 . . . .  , p) 

with C = C  (r) and p-=p(r)  < t independent o f  h ~(O, I] ,  x > h and 2. 

b) There ex is t s  r > O  such that f o r  ]h21<r  

I ( sh- - s ) ( s - -2 )  -1 t~(x)l< C1.12P-qeZXl.hP+C2.px/h.h q (q=O, 1 . . . . .  p) 

with C t ,  C 2 and p <  1 independent  o f  he(O, 1], x >O and 2. 

Proof. First we show that 

] (Sh- -S) tq (x ) l<=C.pX/h .h  q - t  (q=0 ,  1 . . . . .  p) (2.5) 

with C and p < 1 independent of h and x > 0. 
Taylor  expansion ia (I.10c) shows (cf. Lemma 5.3 of  Henrici [9]) that  

oO 

1 ~ = o S i ( x _ j h ) q = q . x q _  1 for q = 0 ,  1,.. p, for all h and x. 
h j  

By (1.10a), 5 i =  O(p~ ) for some p <  1. Let now x - ~ n h + O h  with 0 < 0 <  1. Then 

[(Sh--s) tq(x)]= h ~ ( S j ( x - - j h ) q - - q ' x q - 1  
j = o  

i co oo 

This proves (2.5). 

a) By (2.1) and (2.2), 

(s h - s)(s - 2) -1 t q = (s h _ s)(e a '*  t q) = e ~' * (Sh --  S) t q . 

For  ~ = e -~ with ~ > p the estimate (2.5) yields thus 

x 

I(Sh - -  S ) ( S - -  2 )  - 1 tq(x) t ~ C .  h q-  1. e -  ~x/h S e'tRe (h~) + Wh d t. 
0 

(For q = 0  there appears an addit ional term ]e~l  on the r ight-hand side of  
this estimate, caused by s 1 = ~ (Dirac's t~). For  x > h this term does, however, 
not  affect the final estimate, and is therefore omit ted in the following.) Fix 
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now r > 0 .  We can choose ~7='7(r)>0 such that  

7~ 

R e ( h 2 ) + • < - - c < 0  for l a r g ( - s  [hR[>=r. 

Then the upper  limit of the above integral can be extended to infinity, and 
we obtain the estimate 

[(sh -- s) (s -- 2)-  1 t q (x)] < 
C.h C 

. e - ~ X / h . h q -  I < .~x /h .hq"  
- [ R e ( h 2 ) + ~  --]h2I  

This gives a). 

b) By partial  integration, 

1 H t q + 1 t q + 2 t p t p  
: _ _ , c A t  _ _  . . .  _~,~p--q-- 1 _ _  _~_ ,~p-q ~ .  , egt .  ~ .  ( s - 2 ) - l t q  q! (q+  I~.V + 2  ~ + p! 

Using (2.5) with q +  1, . . . ,  p instead of q we obtain thus for [h2[ <const .  

[(Sh--S)(S--A)- l tq(x)[<Cz.pX/h.hq+C1.]2P-q].hV-l . ( fh*]ea'[)(x) .  (2.6) 

Let now p = e  -~ and choose r > 0  so small that  

R e ( h 2 ) + 7 > c > 0  for [h2 [<r .  
Then 

x h 
(p,/n, l ea, l)(x) = [ eXX [. ~ e - t  [Re(h2)+ 7]/h d t <=- I eX~ I. 

e 
0 

Inserting this estimate in (2.6) yields the result. [ ]  

We have ( S n - 2 ) - ~ =  h ( 6 ( O - h  2)-1. For  the coefficients of this power series 
we have the following stability estimate. 

Lemma  2.3. a) For [ arg ( -- z) I _-< e' < e and [ z [ > r > 0 the power series (8 (0  - z ) -  1 
MOO 

is rnajorized by ~ ~o p" (n with M = M (r) and p = p(r) < 1 independent of  z. 

7~ 
b) Let 0 < • < 1. There exists r = r(tz) > 0 such that for ] a r g ( -  z)[ __< e' < ~ and 

oo 

]z[<r the series ( 6 ( O - z ) - 1  is majorized by M.~le"KZ[ ~n with M independent 

o f z .  o 

Proof  a) By (1.10) the series 6 ( Q - z  is for [zl>r, [ a r g ( - z ) l < ~ ' < a  analytic 
and without  zeros in a disc ]([__< 1/p with p <  1, where p is independent  of 
z (but depends on r). Also 

M 
sup j ( b ( O - z ) - l [ < j ~ T  

I~l_-<l/p 
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with M < oo independent of z. Hence Cauchy's estimate (e.g. Ahlfors [-1, p. 98]) 
yields that the n-th coefficient of (6(~)--z)-1 is bounded by Mp"/Iz[. This gives 
a). 

b) Since 3(1)=0, the estimates in a) deteriorate as r ~ 0 .  For small [z[ we 
use instead (1.10c). We define R(z) implicitly by 

We split 

From (1.10c) we obtain 

6(1/R(z))= z, R(0)= 1. (2.7) 

1 1 --R(z)~ 1 

6([)--z 6([)--z 1--R(z)[  

R(z)=e~+O(zV+l). 

Hence there exists r--r(~c)> 0 such that 

~ )  =[e  (1-K)~+O(z p+I)I=]I +(1-g )z+O(z2) l<= l  

r 7/: 
for [z] __< r and [ a r g ( -  z)[ __< a < ~. Therefore 

1 1 
is majorized by 

1 - R ( z ) ~  1-[e~Z[~" 

On the other hand, using (1.10a) Cauchy's estimate yields 

1 - -R( z ) (  M 
6(()--z is majorized by l - p ( '  

with M and p < ! independent of z. Hence 

t M 1 
~(~)--z is majorized by 1 - p ~  1-[e~Z[~" 

We can choose r so small that e~'p<l. For the n-th coefficient of the above 
series we then obtain 

pJle~Zl"-J<:leK~[" ~ pJleKZ]-J<:le~Zl"-- 
j = O  j = O  1 - p  e ~r" 

This proves b). []  

3. Convergence of  Operational Quadratures 

We are now in a position to show convergence of F(Sh) g(x). 

Theorem 3.1. Under the assumptions (1.5), (1.10) we have 



138 C. Lubich 

IF (sh) g (x) - F (s) g (x) [<  C - x  ~- 1. {h ]g (0) l + ... + h p- 1[ g(p- 2)(0)1 

+ hP.([g ~p- 1)(0)1 + x -  max  [gr 
O__<t__<x 

where the constant C does not depend on he(O, [;f], x~[h,  2] with f i xed  ,2< oo, 
and g ~ C p [0, ~]. 

Remark. If addi t ional ly F(s) is exponentially stable (i.e., F(s) is analytic in some 
half-plane Re s > Y with negative 7), Theorem 3.1 extends to a result of uniform 
convergence on the half-line x => 1, with exponential decay in the low-order  error  
terms caused by g(0) . . . .  , g(p-2)(0). (The p roo f  is even slightly simpler, since 
no contour-shif t ing is necessary on intervals bounded  away f rom 0.) 

Proof. By (2.1)-(2.3), 

1 
p-1 g~q)(O) F (sh) tq(x) + T S - - ~ ' ( F  (sh) t p- l F (Sh) g (X) = E * g(P))(x), (3.1) 

~ p - l )  
q=O 

and the same holds with s formally in place of  Sh. By (1.13), 

1 
F (Sh) t q (X) -- F (s) t q (x) = ~ : F (,l)- [(Sh -- 2)-1 t q (X)-- (S-- 2)-1 t q (X)]- d 2. 

We now substi tute w =  2x  in the integral. Since the con tour  x F  comes arbi trar i ly 
close to the origin for small x, we replace it by an equivalent  con tou r / ' 1  which 
is independent  of x~[h ,  2], has  a positive distance to the origin and, apa r t  
f rom a compac t  subset, is again contained in a sector ]a rg( -w)[=< a ' <  a. 

F o r [ w ] = [ 2 x [ < c o n s t .  we obta in  f rom the classical convergence theory of 
l inear mult is tep methods  [3, 9] 

] ( s h - 2 ) - l t q ( x ) - ( s - 2 ) - l t q ( x ) l < = C . h  q+i for xe[h ,  2]. 

For  t arg ( -  w) 1 = [ a rg ( - -  2) ] __< c( < ~ L e m m a  2.1 gives 

/ px/h 
I(Sh-- 2)-  I t q (X)-- (S-- 2) - 1 t q(x)[ _--< C.  (I eZX/2 [" h q + 1 +  zha) �9 

We observe p~/h<= C ' h / x  and insert  the above  est imates and the bound  in (1.5) 
into the integral representat ion over / ' 1 .  This yields the est imate 

I f(sh) ta(x)-- F(s) ta(x) I _--< C - x " - l - h  a + 1  

for xe [h ,  2], q = 0 ,  1 . . . . .  p - 1 .  (3.2) 

(The factor  x " -  1 comes  from [F(w/x)l < M - x " .  Iw l - "  and d2 =dw/x .  The integral 
remains  absolutely convergent ,  because # > 0.) 

Further ,  for 0 < x < h we have 

F(sh ) t p -  1 (x)=Coo(h)x p- 1 = F(fo/h)  x p- 1 =O(hU+ p- 1) 

where we have  used (1.5) in the last estimate.  Since f ( t ) = O ( t  "-~) as t ~ O  we 
have  also 

F ( s ) t P - l ( x ) = O ( h  "+p- i )  for O < x < h .  

Using (3.1) we obtain  finally the est imate of  the theorem. [ ]  
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We can get rid of the low order error terms in Theorem 3.1 by a simple 
modification: 

p - - 2  

F(sh)- g(x)=F(Sh)g(x)+ ~, w.~(h)g(jh) at x=nh ,  (3.3) 
j=O 

where the correction quadrature weights w,~(h) are determined such that the 
quadrature formula becomes exact for polynomials up to degree p - 2 :  

f (Sh) ~ t q (x )=F(s )  tq(x) for q=0 ,  1, ..., p--2. (3.4) 

This gives a Vandermonde system of linear equations for w,i(h ). An alternative 
to (3.4) (for x bounded away from 0) will be given in Corollary 4.2 below. 

Corollary 3.2. Under the assumptions (1.5), (1.10) the method (3.3), (3.4) satisfies 
for geCP[O, ,23 

1F(sn)- g(x) - F(s) g(x) l <= C. x u- 1 h p 

with C independent of hE(0, h-] and x~[h, ~]. 

1 
Proof With r(x)= (p-2)~  (tp-2*g(P-1))(x)' the remainder in the Taylor expan- 

sion of g at 0, we have by (3.4) at x = n h 

F (Sh) ~ g(x)-- F (s) g(x) = F (Sh)- r(x) -- F (s) r(x) 
p - 2  

= F(Sh) r(x)-- F(s) r(x) + ~, w,2(h) r(jh). (3.5) 
j=o  

The weights w.j(h) are determined from the Vandermonde system 

p - - 2  

w,j(h).jqhq=V(s)tq(x)-F(Sh)tq(x) (q=0,  1 . . . . .  p - 2 )  
j=0  

where the right-hand side is bounded by C. x u- 1. hq+ 1 because of Theorem 3.1. 
Cancelling the factor h q we see that w.~(h) are bounded by 

]w,,~(h)l<C.xU-l-h (x=nh).  

Moreover, 

I r ( jh ) l~C.h  p-1 for j = 0 ,  1, . . . , p - - 2 .  

Inserting these estimates in (3.5) and applying Theorem 3.1 (with r instead of 
g) gives the result. [] 

4. Approximation of the Inverse Laplace Transform 

We define f ,(h) by 
GO 

F(b(O/h) = h ~ f.(h) (" 
n = O  

(4.1) 
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so that 
f,(h)=co,(h)/h (4.2) 

with e),(h) given by (1.3). We show that f,(h) approximate the inverse Laplace 
transform of F(s). For the special case 6(~)= 1 --~ (backward Euler) this is known 
as the Post-Widder inversion formula [12, 14]. 

Theorem 4.1. Assume (1.5), (1.10), and let f (t) denote the inverse Laplace transform 
of F(s). Then 

[L(h)-f(nh)l<=C.xU-l-V.h p (x=nh) 

where the constant C does not depend on he(O, hi and xe [h, ~] with fixed ,2 < oo. 

Remarks. a) For  exponentially stable F(s) (i.e., exponentially decaying f )  Theo- 
rem 4.1 can be extended to a uniform p-th order estimate on the half-line x > 1, 
with exponential decay of the (absolute) error. 

b) For  F (s) = (s-- 2)- 1 the coefficients f ,  (h 2) are the solution of a linear mult- 
istep method applied to y '=2y with the special choice of starting values Y0 
= 1 / (8o-h  2), y_ k . . . . .  Y 1 = 0. It is rather unexpected that f ,  (h 2) are p-th order 
approximations to e nh;~ for n h bounded away from 0. 

Proof a) By Cauchy's integral formula, 

I F(,~) 
F(6(~)/h)=~ni ~r (6(~)/h--2) d2 

where F is again the path of (1.4). We denote the n-th coefficient of the power 
series (6(~) -z) -  1 by e.(z) and thus have 

h I f . (  ) = ~ / r ~  F(2) e.(h2) d2 (4.3) 

which closely resembles the inversion formula 

f (nh)=2~t  ~r F(2)e"h~d2. (4.4) 

We are thus led to study the difference en(h2)-e "ha. As in the proof of Theo- 
rem 3.1, we substitute w= 2x (x=  nh) and replace the contour x F by the contour 
F 1 (independent of x) given there. 

b) For  z=h2 with ]arg(-z) ]  =<~'<a and ]z] =>r>0 Lemma 2.3a) shows 

e,(z)=O = e " z + O  for some p < l .  (4.5) 

c) Let now I z] < r, r sufficiently small. As in the proof of Lemma 2.3 b) let 
R (z) be defined by 

6 (I/R (z)) = z (4.6) 
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so that 
R(z)=e~+O(zP+l) .  (4.7) 

7"C 
Let first I a r g ( -  z)[ < a' < ~.  Using I R (z) l < I e~l for some 0 < K < 1, the relation 

yields 

n - 1  

R (z)" -- e "~ = ~ R (z)" - '  - j e jz [R (z) -- e =] 
j = O  

, 7Z 
IR(z)"-e"ZI<=C.z~le~"Z I for Iarg(-z)l_<~ < ~ ,  Izl<=r. (4.8) 

Using [R (z) l< e elzl for some ff > 1, one has the well-known estimate 

[R( z ) " - en=l<C. z  p for Inz]<const., lzl<=r. (4.9) 

d) We split again 

1 1 - R ( z ) (  1 

6 ( O - - z -  6 (O- - z  1--R(z)~ 

and recall that by Cauchy's estimate the coefficients of(1 - R(z)O/(a(O--z) ,  which 
we denote by ?, (z), satisfy 

?,(z)=O(p")  forsome p < l  (uniformlyin[zl<r).  (4.10) 

We write 

e,(z)= ~ ?j ( z )R(z )" -J=R(z )  ". ~, ?j(z)R(z) - ~ -  ~ ?j(z)R(z) "-j.  (4.11) 
j = 0  j = 0  j = n + l  

The last term is O(p") for p of (4.10), provided that pea'r< 1 (~7 as above). By 
definition of ~/,(z) and by de l'Hospital's rule 

• Tj(z)R(z) - j  
j = O  

1-R( z )_ (  _ - R ( z )  
6 (O- - z  ~=gm-' 6'(1/R(z))" 

Differentiating (4.6) we obtain that this expression equals 

R'(z) e = + 0 (z p) 
~ YJ ( z )R( z ) - J -  R(z)  e z + O ( z  p+I) 

j = 0  

Hence we obtain from (4.8) and (4.9) 

le ,(z)-e"=l ~ C . ( z  p le~"Z I + p") 

l e . ( z ) -e"z l  < C.(zP + p ") 

= 1 + O(zP). (4.12) 

7~ 
for [ a r g ( - z ) l < e ' < ~ ,  Izl~r,  (4.13) 

for Inzl_<const., I z l~r .  (4.14) 
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e) Inserting the estimates (4.5), (4.13), (4.14) and the bound of (1.5) yields 

~C.xU- l . n -P=C.xU-a -P .hP .  [] 

Theorem 4.1 is also of practical interest in the approximation of F(s)g(x). 
Let 

p - 2  

F(Sh)~g(x)=F(Sh)g(x)+ ~ co,_i(h)cjg(jh ) (x=nh)  (4.15) 
j = O  

where cj do not depend on n and h (cf. (3.3).) 

Corollary 4.2. Assume (1.5), (1.10), and choose ci in (4.15) as the correction weights 
of  the p-th order Newton-Gregory formula (end-point correction of the trapezoidal 
rule). Then the method (4.15) satisfies for g~CP[0, oo) 

[ F(sh) ~ g ( x ) - -  F (s) g(x)  t <= C. h p 

where the constant C does not depend on h ~ (0, h-] and x = n h ~ [Xo, x] with f ixed 
Xo>0. 

Examples. p = 2: Co = -- 1/2 (trapezoidal rule) 
p = 3 :  Co = -7 /12 ,  c~=1/12 
p = 4 :  C o = - 5 / 8 ,  c1=1/6,  c 2 = - 1 / 2 4 ,  

Proof Let u(t) a smooth function with 

0 for t <- Xo/3 
u ( t )  = 

1 for t>2Xo/3, 

and let v(t)= 1-u( t ) .  By Theorem 3.1, 

F (sh) ~ (u g)(x) = F (s) (u g)(x) + 0 (hV). 

Further, at x = n h, 

p - - 2  

F(Sh) ~ (vg)(x) = h ~ f ,_j(h)(vg)(jh) + h ~ f ,_j(h) c~(vg)(jh) 
j=o j=o 

p - 2  

= h ~ f ( (n - j )h ) (vg) ( jh )  + h ~, f ( ( n - j )  h) c~(vg)(jh) + 0 (h;) 
j=O j = 0  

= V(s)(vg)(x) + O(hP). 

Here we have used Theorem 4.1 in the second line, and p-th order convergence 
of the Newton-Gregory rule in the last line. Since g - - u g + v g ,  this yields the 
Newton-Gregory result. []  
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5. Extensions: Derivatives of Convolution Integrals, Non-Smooth Input 

In this section we extend Theorem 3.1 in two directions. First we consider the 
approximation of 

d k ~ o f ( t ) g ( x _ t ) d t = s k F ( s ) g ( x  ) (X > 0). 

Theorem 5.1. Under the assumptions (1.5), (1.10) we have for integer k >= 0 

]sk F(sh) g(X)-- sk F(s) g(X)] ~ C" X u- 1 -k.  {h [g(0)] §  + h p- 1 [g(P- z)(0)] 

+h  p.([gr 1)(0)] + x  [g<P)(0)] + . . .  + x  k ]gtp+k- 1)(0)] +Xk+ 1 max IgtP+*)(t)])} 
O < _ t < _ x  

where the constant C does not depend on he(0, h-I, x~[h,  Y:] with ~ < o c ,  and 
g~C p+k [0, 2]. 

Remarks. a) Theorem 5.1 can be interpreted as an extension of Theorem 3.1 
to the case p < 0  in (1.5). (Take F(s)=skF(s),  fi =/~--k.) 

b) For  exponentially stable F(s) the result can again be extended to the 
whole half-line, with exponential decay of the error terms involving 
g(O) . . . . .  g(P +k-1)(0). 

c) Corollary 3.2 remains valid with # - k  instead of #. 

d) Theorem 4.1 can be extended similarly. 

The proof of Theorem 5.1 is documented in LuNch [11]. For  the sake of 
brevity we shall here only sketch the main arguments. 

Outline o f  the proof We write 

s k F (Sh) g - -  s k F (s) g = (s k - -  s k )  F (s) g + s k (F (Sh) g - -  F (s) g). 

The first term on the right-hand side can be shown to satisfy an estimate of 
the desired type by using analyticity and growth properties (as t ~ 0) off ( t ) .  

The estimate for the second term follows from (1.13) and the error bound 

I Skh [ (Sh  __ ,~,) - 1 t q __ (S -- 2) - I t o] (X)] 

<C.(12k e~ZXl hq+14 I pX/h.hq+l_k) = l + [ h 2 l  (q=O, 1 . . . . .  p - - l )  

( ' ) <=C. ]2k+P-q- le~XlhP+ l+lh2~PX/h.h  q+l-k ( q=p  . . . . .  p + k - 1 )  

where ~c>0, p < l ,  and C are independent of he(0, 1], x > h  and 2 with ]arg( 
-,t)t<~'<~. 

This estimate is obtained using techniques similar to those of Sect. 2 and 
the following asymptotic expansion for R(z) defined in (2.7): 

R (z)" = e"Z [ 1 + Pl (n z) z~ + ... + Pu + 1 - p(n z) zu] + Rem (n, z) 
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where Pj are polynomials (of degree j), Pj(0)=0, and the remainder satisfies for 
7~ 

[ a r g ( -  z)] < a' < ~- and [z] < r (r sufficiently small) 

[Rem(n,z)]<C[e~"Z.z N+I} forsome x > 0 .  [] 

Next we turn to the situation where g(t) is smooth on t>0 ,  but has an asymptotic 
expansion in fractional powers of t at t = 0. Here we have the following extension 
of Theorem 3.1 (or equivalently, of (3.2)). Convergence of order p for F(Sh)g 
can be restored by eliminating low-order error terms as in Corollary 3.2. 

Theorem 5.2. Under the assumptions (1.5), (1.10) we have 

1 f C 'Xu- I ' h#  for O<fl<=p 
[F(Sh)ta-l(x)--F(s)ta- (x ) l<~C.xU- l+a-P-h  p for f l>p (fl real) 

where the constant C is independent of he(0, h-] and x ~ [h, if] with ~ < oo. 

Remark. For  0 < fl < 1 the above estimate is understood to hold for 

F(Sh) g(x)= ~ eoj(h) g ( x - j h )  
O<_jh<x-h 

which differs from (1.12) in the omission of the last term of the sum, in order 
that g is not sampled arbitrarily close to the singularity at 0. All the previous 
results remain valid also for this modified definition. 

The proof uses Theorem 5.1 and the following lemma. 

Lemma 5.3. Let #, v ~ O , -  1,--2 . . . .  real numbers. The convolution of two 
sequences u, = O(n u- 1) and vn = O(n ~- 1) satisfies 

~ ujv._j=O(n~-l),  where ?=max{~,  v,#+v}.  
j=O 

This result is easily derived using the relation [5, p. 47] 

n - - I  ~ n u -  1 
( - 1 )  ( n ) = ~ ( ~ [ l + O ( n - 1 ) ] .  

Remark. This formula is the special case F(s)=s -u, 6 ( 0 =  1--( ,  nh= 1 of Theo- 
rem 4.1. 

Proof of Theorem 5.2. a) If fl > p, we use 

t ~ - 1 t p -  1 t # - p -  1 

r(13) - r ( p )  * ~  

By (2.1) and (2.2), 

[F(Sh) -- F(s)] (t p-1 , t/~-p- 1) = ( [ f ( sh)  --  t ( s ) ]  tP-  1) ,  t p -  p -  1, 

and the result follows from (3.2), since t # - p -  1 is locally integrable. 
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b) For fl < p we use 

and write 

[f(sh)-- F(s)] s " - a  t p -  i 

t ~ - 1 t p - 1 

: S  p a _ _  
r(fl) r(p) 

: [ S ~ ( s h a F ( s h ) ) - - s P ( S - a F ( S ) ) ] t P - I - - F ( S h ) [ S ~ S h # - - S P S - # ] t P - 1 .  (5.1) 

By Theorem 5.1 we have for x ~ [ h ,  ~ ]  

[[s~ ( s ;  a F (Sh)) - -  S p ( S -  a F (s))] t p -  1 (x)[ < C .  x ~ + a - 1 - p. h p < C .  x u ~. h a (5.2) 

and 
] [ Sp Sh fl  _ _  S p S - fl] t p - 1 ( X ) [  ~ C "  X fl  - 1 - p .  h p. ( 5 . 3 )  

Further, by (l.5) and Theorem 4.1, 

[ o % ( h ) ] < C . h  ~, [ e ) , ( h ) l < C . h " . n  " - 1  ( n > l ,  n h < ~ ) .  (5.4) 

By Lemma 5.3 the estimates (5.3), (5.4) yield 

I F ( S h ) [ S g - a - - s P - a ] t P - l ( x ) [ = l  ~ o g j ( h ) ' [ s ~ - f l - - s P - a ] t P - l ( x - - j h ) [  
O<jh<x-h 

< C x "  - 1. h a. (5.5) 

Now (5.1), (5.2) and (5.5) give the result. [] 
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