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Summary. Operational quadrature rules are applied to problems in numerical 
integration and the numerical solution of integral equations: singular inte- 
grals (power and logarithmic singularities, finite part integrals), multiple time- 
scale convolution, Volterra integral equations, Wiener-Hopf integral equa- 
tions. Frequency domain conditions, which determine the stability of such 
equations, can be carried over to the discretization. 

Subject Classifications: AMS(MOS): 65R20, 65D30; CR: G1.9. 

6. Introduction 

In this paper we give applications of the operational quadrature rules of Part I 
to numerical integration and the numerical solution of integral equations. It 
is the aim to indicate problem classes where such methods can be applied success- 
fully, and to point out features which distinguish them from other approaches. 

Section 8 deals with the approximation of integrals with singular kernel. 
This comes as a direct application of the results of Part I. 

In Sect. 9 we study the numerical approximation of convolution integrals 
whose kernel has components at largely differing time-scales. 

In Sect. 10 we give a case study for a problem in chemical absorption kinetics. 
There a system of an ordinary differential equation coupled with a diffusion 
equation is reduced to a single Volterra integral equation. This reduction is 
achieved in a standard way via Laplace transform techniques and, as is typical 
in such situations, it is the Laplace transform of the kernel (rather than the 
kernel itself) which is known a priori, and which is of a simple form. Operational 
quadrature rules lend themselves conveniently to the discretization of such prob- 
lems. The numerical solution obtained in this way can be re-interpreted as 
that of a semi-discretization in time of the original problem. 

* This is Part II to the article with the same title (Part I), which was published in Volume 52, No. 2, 
pp. 129-145 (1988) 
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In various classes of integral and integro-differential equations of convolution 
type the stability properties (or even existence) of the solution are determined 
by conditions on the range of the Laplace or Fourier transform of the kernel 
(" frequency domain conditions"), see e.g. Corduneanu (1973), Desoer and Vidya- 
sagar (1975), Londen and Staffans (1979), Hannsgen et al. (1982). In a discretiza- 
tion by an operational quadrature rule the generating function (i.e., discrete 
Laplace transform) of the discrete kernel is, by construction, closely related 
to the Laplace transform of the continuous kernel. It is thus possible to carry 
over frequency domain conditions from the continuous problem to the discreti- 
zation and thereby obtain stable approximations. In Sect. 11 this is illustrated 
at Wiener-Hopf integral equations with symmetric kernel. 

Any application of the methods relies, of course, on the availability of efficient 
algorithms for the computation of the quadrature weights. Using Fast Fourier 
Transform techniques, N weights can actually be computed with O(N) transfer 
function evaluations and O(N. log N) arithmetical operations. This is discussed 
in Sect. 7. 

Meanwhile, operational quadratures have been used in Lubich (1985, 1987), 
Hairer and Maass (1987), Hairer et al. (1986), Sanz-Serna (1986), Gienger (1987), 
Lopez-Castillo et al. (1987). The reader will find in these papers further theoreti- 
cal aspects as well as extensive numerical examples. We have therefore not 
concentrated on numerical examples in the present paper (although one is given 
in Sect. 10). 

On part of the reader we assume only some familiarity with the introduction 
to Part I. Further material from Part I will be explicitly referenced where it 
is required. The sections of Part II can be read independently of each other. 

7. Implementation 

In this section we describe briefly how to numerically evaluate the approxima- 
tions (1.2), (1.3), which we recall for convenience: 

where 

~co,,_j(h)g(jh), n=0,  1 , . . . ,N  (7.1) 
j = 0  

F(,5(()/h)= ~ r ~'~. (7.2) 
n=O 

Several techniques are available, using Fast Fourier Transforms (FFT). 
i) Formal power series methods to compute ~on(h) in (7.2). 

ii) Trapezoidal rule approximation of the Cauchy integral for ~o,(h) with 
contour I~1 =P. 

Once the weights co,(h) and the required values of g are computed, the 
discrete convolution (7. I) can be evaluated in O(N log N) arithmetical operations, 
using FFT. A further approach avoids the explicit computation of the weights 
con(h): 



Convolution Quadrature and Discretized Operational Calculus. II 415 

iii) Trapezoidal rule approximation of the Cauchy integrals on ] ( l=p  for 

the coefficients of f(6(~)/h), g(~) where g(~) = ~ g(j h) ~ . 
o 

Method i) is efficient if F(s) is of a simple structure, e.g., a rational function, 
a fractional power, a logarithm (cf. Sect. 8) or not too complicated an expression 
composed of such ingredients, see Henrici (1979) for details. Methods ii) and 
iii) are algorithmically very similar. So we restrict our attention to ii) in the 
following, 

Here one seeks approximations to ~o,(h) of the form 

1 L - 1  
o3, (h)=p-" - -  ~ F t . e  -'"~', n = 0 , 1  . . . . .  g (7.3) 

L l=0 

where ~ = F(b(p ei*')/h), zl = 2n 1/L. 
These coefficients can be computed simultaneously using FFT. This requires 

L evaluations of F and O(Llog L) arithmetical operations. There remains the 
problem how to choose p and L. For  this we note that by (1.5), (1.10) there 
exists 7~IR such that 

F(b(~)/h) is analytic in a neighbourhood of ]~l<e-Th and is bounded 
by 

[F(b(()/h)[ <M for I~I <= e-eh, uniformly for he(0, h-]. (7.4) 

We remark that ~ is negative if F(s) is exponentially stable, at least for sufficiently 
small h->0. If we assume that one can actually compute only ~,(h), which 
results from an approximate evaluation of F~ in (7.3) with a relative error of 
at most e, the following error estimate is derived from the aliasing formula 
(Theorem 2a in Henrici (1979)): 

M 
[ff),(h)- co,(h)[ <=1 -(pe~h) L e~h"'(pe~h)L+p-nMe (n=0,  1, ..., L--  1). (7.5) 

In order to compute co,(h) (n = 0, 1 . . . . .  N; N h = Y fixed) with an error of magni- 
tude O(e) one has thus to choose log p = O(h) and L = N ]log O(e)[. For  accuracy 

requirements up to O(~/~) a choice of L = N  (and pN=]/~) is sufficient. The 
situation improves for exponentially stable transfer functions (7 < 0). 

It has been shown in Theorem 4.1 that f , (h)= co,(h)/h is a p-th order approxi- 
mation to the inverse Laplace transform f(t) of F(s) at t = n h bounded away 
from 0. As a consequence, the weights ~o,(h) need in practice be computed 
by (7.3) only on rather short intervals 0 < n h < 2 and can be replaced by h f(n h) 
else. (Values of f may be obtained by any of the common Laplace inversion 
algorithms, if necessary.) The quality of the approximation is improved by adding 
a few correction terms to (7.1), see Corollaries 3.2 and 4.2, and Sect. 10 below 
for an example. 
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8. Singular Integrals 

Integrals of the form 

x 

I f(t) g (x-- t) d t 
0 

can be approximated conveniently with the help of operational quadratures 
whenever f(t) has a known and hopefully simple Laplace transform. This 
includes power singularities, f(t) = t u- 1 (/~ > 0), for which F(s) = F(p). s-", and 
logarithmic singularities, f(t) = t"- 1. log t, for which F(s) = F(#) s ". (log s 
--F'(l~)/F(la)). Such discretizations can have distinct advantages over traditional 
product integration rules, as is pointed out in Lubich (1985, 1987), Hairer and 
Maass (1987). Other classes of singular kernels (e.g. exponential integral, Hankel 
functions . . . .  ) are equally amenable to approximation. Stronger types of singular- 
ities can be treated in the same way, e.g., the finite part integrals 

1 (--1) k-1 d k S l o g t . g ( x _ t ) d  t 
~o ~ g ( x - t ) d t -  ( k - l ) !  

(--1)k sk--l(logs+7) g(x) (k= 1,2, 3 . . . .  ), 
-- (k-- 1)! 

where 7 = 0.5772... is Euler's constant. 

9. Multiple Time-Scale Convolution 

We now consider the approximation of convolution integrals k ,  g with kernels 
of the form 

where k~eL~(0, oo) are "well-behaved',  and ei are scalars with 0 < e~ < . . .  < ~1 --< 1, 
e~/el ,~ 1; cf., e.g., Hoppensteadt (1983) and the applications quoted there. In 
contrast to quadrature methods which are based on pointwise evaluation of 
the kernel k, no difficulties are encountered with operational quadratures. Here 
the accuracy even improves when el become small, irrespective of the ratio 
~dh. 

To see this, assume (1.5) with c < 0  (so that F(s) is exponentially stable) 
and (1.10). Consider 

F(es )g(x )=l  ~o g ( x - t ) d t  (9.1) 

and its discretization 

F(esh)g(x)= ~ coj(h/e)g(x--jh), (9.2) 
O<=jh<~x 
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where, in accordance with the nota t ion  (1.12), og;(h/e) are the coefficients of  

F(e b(~)/h)= ~ ooj(h/e) ~:. 
]=0 

It is wel l-known that  for g e C  ~ 

ao  

F(e s)g(x)-oF(O), g ( x ) =  ~ f ( t ) d t -g (x )  as e ~ O + .  
o 

For  fixed h > 0 and x > 0 we have also 

F(e sh) g(x )~F(O)  �9 g(x) as e ~ O + ,  

which follows immediate ly  upon taking the limit in the finite sum (9.2). 
This  simple result can be considerably sharpened.  We assume 

g~CV+ 1 [0, oo), gtV+ 1) bounded  on [0, oo). (9.3) 

Theorem 9.1. Assume (1.5) with c < 0, (1.10) and (9.3). Then 

IF(e Sh) g(x)-- F(e s) g(x)l ~ C . e . h e 

where the constant C is independent of h ~ (0, 1], e with 0 < e"< h for some fixed, 
arbitrary m > 0, and x E [Xo, ~ )  with fixed Xo > O. 

Remark. The behaviour  near  0 is easily seen from the est imate (9.4) below and 
formula  (3.1). 

Proof By (1.13), 

and the same formula  also holds with s formally in place of  Sh. 
By L e m m a  2.1 we have for q = 0, 1 . . . . .  p 

(Sh--~)- l tq(x)--(S--~)- l tq(x) ~ C . ~l (h Je~Xa/~[-t-~21px/h) - h q-1 

for some 0 < K < 1, 0 < p < 1. Hence 

IF(esh)tq(x)--F(es)tq(x)l<C.(h.~X/'+e.~/h).h q-1 (q=0 ,  1 , . . . , p )  (9.4) 

with ~ = max  {e ~c, p} < 1 and C independent  of  ee(0, i ] ,  he(0,  1] and x >0 .  The 
result now follows f rom (2.1), (2.2), and (2.3) with p +  1 instead ofp .  [ ]  
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10. A Boundary Integral Equation for an Absorption-Diffusion Problem 

The following example arises in chemical absorption kinetics, see Gelbin (1985). 
Find y(t) given by the coupled system of ordinary differential equation and 
diffusion equation 

~tt(t):--~c~u(I,t), y(O)=y o (10.1) 
dr  

where u(r, t) satisfies 

OU ~[32U 2 O ~\ 
~-=f l~2r2  + r  ~r )  in 0 < r < l ,  t>0  (10.2) 

with nonlinear boundary conditions (b smooth) 

u(1, t)=b(y(t)), t>O 
(10.3) 

~@(0, t)=O, t>O 

and initial condition 
u(r, 0)=0, O < r <  1. (10.4) 

Boundary and initial conditions are incompatible, b (Y0)> 0. 
Here u(r, t) represents a concentration profile in a spherical absorbing parti- 

cle, and y(t) is the concentration in the surrounding aqueous solution. (Actually 
one is interested in the inverse problem of determining the positive constants 
~, fl from measurements of y(t).) 

The above system can be reduced to a single Volterra integral equation, 
roughly by the following (standard) arguments: Taking Laplace transforms in 
(10.2)-(10.4) leads to the boundary value problem 

U'(0,s)=0, U(1, s)=B(s) ( '=~ r )  

which can be solved analytically for U In particular, one obtains 

U'( t , s )=;K(s) -B(s)  

with 
1 K(s) = 

s ~ t a n h  s ~  

By (10.1) the Laplace transform of y(t) satisfies 

s//l" 

(lO.5) 

(10.6) 

s. Y(s)--y o = --~ U'(1, s). 

Inserting (10.5) and applying the inverse transform gives the (weakly singular) 
Volterra integral equation 

t 

Y(t)=Y~ ~o k( t -z)b(y(z))dz ,  t>O, (10.7) 
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where the Laplace transform K(s) of the kernel k(t) is known from (10.6), rather 
than the kernel itself. 

This equation has been discretized by 

where 

( .  4 
=yo - - ~  ~ co._~(h)b(yj)+ ~ w,j(h)b(yj , n> l (10.8) 

Y" f j=o j=o 

co.(h) ~" = K(6(~)/h) 
o 

with 
6(() = (1 -- ~) + �89 _~)2 + � 8 9  3, 

the third order backward differentiation formula. The correction quadrature 
weights w,j(h) have been chosen such that for ? =0,  �89 1, 3, 2 

. 4 i ~co._j(h).(jh)'+ ~w.j (h) . ( jh) '= k ( t - r ) V d z  (t=nh). (10.9) 
j = 0  j : 0  0 

Method (10.8) yields a 4-dimensional nonlinear system of equations for the 
starting values Yl . . . . .  Y4. The approximations y, for n > 5 can then be computed 
one after another by solving a 1-dimensional nonlinear equation at each step. 

The order of convergence is that of the underlying multistep method: 

Theorem 10.1. The error of the above method satisfies 

y,--y(n h)=O(h 3) uniformly for 0 < n h < c o n s t .  

Proof From the asymptotic behaviour of K(s) for Is[ ~ ~ ,  Re s > 0 

K(s)=(s/fl)-l/E-(s/fl)-l+O(]s[ -M) ( M > 0  arbitrarily large) (10.10) 

one derives the behaviour of k(t) for t ~ 0 +  (see Doetsch (1955), p. 174): 

k(t) = ] / f ~ -  fl + O(t M- 1). 

Picard iteration in (10.7) then shows that the solution y(t) has at t = 0  an asymp- 

totic expansion in powers of ]//t. The correction weights have been constructed 
so that for such a solution the consistency error of method (10.8) is O(h3). 
This follows from Theorem 5.2 with the proof of Corollary 3.2. The result is 
then obtained using, e.g., the proof of Theorem 1 in Lubich (1985). []  

The convolution quadrature weights have been computed with the F F T  
techniques described in Sect. 7. The values of the right-hand side of (10.9) were 
obtained by using for flt >__ 0.1 Talbot's (1979) method for the numerical inversion 
of the Laplace transform K(s)s-~-~. F(1 + 7). For  fl t < 0.1 we have instead ana- 
lytically inverted the simple transform ((s/ f l)-~-(s/ f l)- l) .s-l-~.r(l+~) 
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(obtained from the approximation (10.10) of K(s)) which gives more accurate 
approximations in this range of flt. 

We give numerical results for 

Yo = 10, a--  1, f l= 10 -2, b(y)=y/(1 +y0.75). 

In the interval [0, 10] the solution decreases monotonically from y(0)= 10 to 
y(10) = 0.50522. The results at t = 2 are given below. 

Table 1 

h Numerical solution 

0.4 1.042462948 
0.1 1.043427639 
0.025 1.043427277 

Finally we remark that the numerical solution y, is still closely related to 
the original problem. Apart from the correction quadrature (which can be viewed 
as a perturbation), it can be interpreted as the solution of the semi-discretization 
in time which is obtained by applying a linear multistep method directly to 
(10.1)-(10.4). This can be seen by repeating the arguments which led to (10.7) 
with s replaced by Sh. 

11. Wiener-Hopf Integral Equations 

We consider the Wiener-Hopf integral equation with symmetric kernel, 

GO 

y(x)=f(x)+ S k([x-tJ)y(t)dt,  x>=O (11.1) 
o 

with real-valued keL 1 (0, oo). (k may be unbounded at 0 throughout this section.) 
We assume that the Laplace transform K(s) of k(t) satisfies the following: 

There exists ~ > 0  such that l - -2ReK(s)>c~ for R e s > 0 .  (11.2) 

The following facts are known from (or can easily be derived from) the classical 
work of Krein (1958), or Gochberg and Feldman (1974): The condition (11.2) 
is necessary and sufficient that for every feLZ(O, oo) the Eq. (11.1) has a unique 
solution yeL2(0, oo). (The same holds for the spaces LP(0, oo) with 1 < p < o %  
and Co [-0, oo).) Moreover, one has the estimate 

IlYlIL2tO,~o)= <-1 lJfl[L2to, oo). (1t.3) 

If k(t)=O(e -pt) as t ~ o o  for some f l>0,  one also has for sufficiently small 7 > 0  
that 

y(t)=O(e -~') whenever f(t)=O(e -~') as t ~ o o .  (11.4) 
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We now consider the truncated equation 

T 

yT(x)=f(x) + S k(lx-tl)yT(t) dr, O<x<T. (11.5) 
0 

It can be shown (cf. the discrete analogue Theorem 11.2 below) that for every 
T > 0  and feL2(0, T) the Eq. (11.5) has a unique solution yreL2(O, T), which 
satisfies 

N yT II L2(O, T) < 1 It f 1[ L:(O, T). (1 1.6) 

Subtracting Eq. (11.1) and (11.5) we have 

T 

y(x)-- yV (x) = ~ k([x-tl) y(t) dt + ~ k(lx--tD (y(t)-- yW (t)) dt, 
T 0 

O<x<T. 
(11.7) 

Let M denote the bound 

[2ReK(s)I<_M for Re s>0 .  (11.8) 

Applying the estimate (11.6) to the truncated Wiener-Hopf equation (11.7) for 
y _ y r  and using Parseval's formula we obtain 

I[Y--YrlIL~(O,T) M IlYllL~(r,~o). (11.9) 

For sufficiently large T the solution yr  of (11.5) is therefore a good approximation 
to the solution y of (11.1). In principle, (11.5) could be discretized by any of 
the existing numerical methods for Fredholm integral equations of the second 
kind. It may, however, be desirable to choose a method whose error does not 
blow up as T becomes large. As we will show in the following, this is easily 
achieved with operational quadratures. Other approaches to the approximation 
of Wiener-Hopf integral equations have been given by Gochberg and Feldman 
(1974), Stenger (1972), Sloan and Spence (1986). 

We consider a multistep method (1.10) which is A-stable, i.e. (cf. Dahlquist 
(1963)), 

Re 6(~') > 0  for Ir (1t.10) 
We expand 

and put 

K (5 (O/h) = ~ o~n (h) ~n (11.11) 
n = 0  

OSo(h)=2e)o(h), cS,(h)=e)l,l(h ) for n~Z, n#0 .  (11.12) 

We then discretize (11.1) by the discrete Wiener-Hopf equation 

o o  

y,=f(nh)+ ~, (5._j(h)yl, n>=O, (11.13) 
j=0 
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where y, is to approximate y(nh). All the following results rely on the crucial 
fact that 

1-- ~ (5,(h)~"=l-2ReK(6(O/h)>e>O for I~l=l ,  (11.14) 
n = - o o  

with c~ of (11.2). The properties of the discretization (11.13) and its truncated 
version are determined by (11.14) in much the same way as those of the continu- 
ous problem by (11.2). 

For ease of notation we identify the sequences Yh= {Y,}~ and fh= {f(n h)}~ 
with step functons on [-0, oe) and thus write 

[ oo \ 1 / 2  

HYhl[L2(O,~o):~h~oY2n ) 

and correspondingly for fh- We have the following discrete analogue of (11.3). 

Theorem 11.1. Consider the discretization (11.10)-(11.13) of the Wiener-Hopf inte- 
gral equation (11.1), (11.2). Then the Eq. (11.13) has for every fhel2(cL2(O, oo)) 
a unique solution yhEl 2, which satisfies 

<1 
llYhllL2<O,~o): llAiIL2(O,~o)- 

Proof Let Ah denote the discrete Wiener-Hopf operator in (11.13), 

{ AhV= v.-- ~3._j(h)vj for v={v.}~eF, 
j = 0  n = 0  

and let (-,-) denote the 12 inner product. Via Parseval's formula 

(Ahv, w)= 1-- ~ . ( h ) e  -~n ~(r)~(z)dz 
- o o  

(with z3, ~sL2(0, 2n) the Fourier transforms of v, weF) the relation (11.14) implies 
(with M of (11.8)) 

[(AhV, W)I<=(I+M)IlvlI Ilwll for v, wel z 
[Ivt[ 2 <(Ahv, v) for vel 2 

(11.15) 

so that Ah is F-elliptic. By the Lax-Milgram lemma, see e.g. Ciarlet (1978), 
A h is invertible o n  12, and IlAflll < i/~. [] 

Remark. The above derivation of (11.15) is immediate only if {co, (h)} ~o e 11 (e.g., 
if k(t), tk(t)eI2(O, oo)). Otherwise the infinite sum in the discrete Wiener-Hopf 
operator has to be interpreted as 

Ah v = lim r I=-jI ~=_j(h) v 
r--+l -- n=0"  
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0o 
Since ~ r I"1 (5,(h)("---2 Re K(6(()/h) uniformly on I~] = 1 as r--* 1--,  the limit 

- - ( 1 3  

exists in the 12 sense, and one obtains again (11.15). 
Next  we study the t runcated discrete equat ion 

N 
yr=f (nh)+  ~ ffg,_j(h)y T, O<_n<_N, N h = T .  (11.16) 

j=o  

For  its solution T T N Yh = {Y. }0 we have the following analogue of ( l l .6) .  

Theorem 11.2. Consider the discretization (11.10)-(11.12), (11.16) of the truncated 
Wiener-Hopf equation (11.2), (11.5). Then the Eq, (11.16) has for every fh=  {f.}o N 
a unique solution y'[, which satisfies 

1 T [[Yh lILY,O, r) < -  IlfhllL2r r)- 

Proof y[ is the solution of the Toepli tz system with matrix 

1 -- 2co0(h) - -  (-01 (h) . . .  - -  ON(h) ] 

A =  - o l ( h )  1 - 2 o o ( h )  

�9 __ col(h) 1" 
--CON(h) ... -o~1(h) 1-2~oo(h)J  

Taking v =(Vo . . . . .  VN, 0, 0 . . . .  ) in (11.15) shows that A--o~I is nonnegative defi- 
nite. Hence A is invertible, with IlA-l[[__<l/a (and condit ion number  x(A) 
= IlAl}- [[A-1[] __<(1 +M) /a ,  independent  o f h  and T). [ ]  

Theorems 11.1 and 11.2 show the stability of the discrete approximation.  
F rom the error  equat ion one derives with their help the error  estimate 

r M 
IlYh --YllL2r 1 ][dhllL~O, oo) + - -  IlYhl[L2(r, oo) (11.17) 

where y = {y(nh)}~ is the sampled solution of (11.1), yh T is the solution of (11.16), 
Yh that  of (11.13), and dh = {d,}~ is the consistency error  defined by 

d.-=- ~ Co._j(h)y(jh)- S k(lx-tl)y(t)dt, x = n h .  
j=O 0 

The last term in (11.17) can be further estimated by 

i 

IlYhlIL~tT, oo)<= IlYllL~<T. oo)-I--- IldhllL~O, oo) 

since IIYh-- YtlL2(O,~)~ !a IldhlIL2r oo) by Theorem 11.1). 
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F r o m  the estimate (11.17) one can derive convergence of the approximat ion 
(11.16) under suitable assumptions in (11.1), e.g.: K(s) satisfies (1.4) with c <0 ,  
f is cont inuous  and exponentially decaying on [0, oo). 

Remark. a) Li-convergence as h ~ 0, T ~  oo for 

yr (X) = f(x) + y" d)j (h) y~ (x --j h), 0 <- x < T, 
x-T<=jh<=x 

can be shown under  the mere assumptions k(t), t k(t)~D(O, oo), f~L2(0,  oo). 
b) Eggermont  (1987) has recently shown how U ~ error estimates can be de- 

rived on the basis of  the present L 2 estimates. 
As the p roof  of  Theorem 11.2 shows, (11.16) is a symmetric, positive definite 

Toeplitz system for yr.  Such systems of  linear equat ions can be solved efficiently, 
by the Levinson algori thm (see e.g. Golub  and Van Loan  (1983), Sect. 5.7) or  
using fast iterative techniques (e.g. conjugate gradient method with FFT).  

In  order  to improve the accuracy, it may  be useful to add a correction 
quadra ture  to (11.16). With  suitable weights wnj(h) (cf. Corollaries 3.2, 4.2, and 
Sect. 10), an improved approximat ion  takes the form 

N 

yr~=f(nh)+ ~ chn_j(h)y~+ ~ wnj(h)y r, 
j=0 j=o 

(11.18) 
O<n<_N, N h = T ,  m fixed. 

For  small h the condit ion number  of the system (11.18) is close to that of  
(11.16), whereas the consistency error  dh is reduced. The computa t ional  complex- 
ity for the solution of  (11.18) is still of  the same magni tude as that of  the pure 
Toeplitz system (11.16). 

Remark. Under  addit ional condit ions on the Laplace transform K(s) the A- 
stability assumption (11.10) (which by Dahlquist 's  (1963) order  barrier implies 
that the order, p, of the discretization cannot  exceed 2) can be dispensed with. 
If  K(s) satisfies (1.4) and in addit ion to (11.2) also the condit ion 

1 - 2 R e K ( s ) > e > 0  for I a r g ( s - a ) l _ - < ~ - 0  some a e N ,  0 < ~  , 

then similar results as above can be obtained (for sufficiently small h only, 
if a > 0) with A(0)-stable multistep methods.  
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