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Abstract. Nonreflecting boundary conditions for problems of wave propagation are nonlocal
in space and time. While the nonlocality in space can be efficiently handled by Fourier or spherical
expansions in special geometries, the arising temporal convolutions still form a computational bot-
tleneck. In the present article, a new algorithm for the evaluation of these convolution integrals is
proposed. To compute a temporal convolution over N; successive time steps, the algorithm requires
O(N¢ log Nt) operations and O(log N¢) memory. In the numerical examples, this algorithm is used to
discretize the Neumann-to-Dirichlet operators arising from the formulation of nonreflecting boundary
conditions in rectangular geometries for Schrodinger and wave equations.
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1. Introduction. Wave propagation is usually formulated in terms of partial
differential equations on unbounded domains. For a computational treatment, how-
ever, the equations need to be restricted to a bounded domain in a neighborhood of
the region of physical interest. This requires imposing transparent boundary condi-
tions (or, synonymously, nonreflecting boundary conditions) which are ideally such
that the solution of the equations incorporating these boundary conditions coincides
with the restriction to the bounded domain of the solution to the whole-space equa-
tions. The derivation of such transparent boundary conditions is well understood;
see, e.g., [3, 6] and also sections 3 and 4 below. However, these boundary conditions
turn out to be nonlocal both in space and time. For special geometries, e.g., discs
or balls or periodically extended slabs and cylinders, Fourier or spherical expansions
decouple the boundary equations for the expansion coefficients. There still remain
temporal convolutions of the type

(1.1) /0 f&—7)g(r)dr, 0<t<T.

For concreteness, consider the example of the wave equation uy = Ugs + Uyy + Uz
on R3. Suppose the solution is 27-periodic in y and z, a situation that occurs in mod-
eling wave propagation near extended layers. Transparent boundary conditions are
required at the planes x = H+a. We consider the Fourier coefficients of the solution,
Ug(z,t) with k = (ky,k.) € Z x Z. Their Laplace transforms Uy(z, s) then satisfy
the linear ordinary differential equation s*Uy = 0, Uy — |k[?Uy, with |k|* = k2 + k2
for Re(s) > 0. This equation can be solved analytically. Retaining only the solution
decaying to zero as |z| — oo gives Ui (x, s) = exp(—+/s? + |k|? |z Fa|) Ug(=+a, s). Dif-
ferentiation of this equation at x = +a yields a relation between the transforms of the
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Fia. 1.1. Tessellation for base B = 2.

Dirichlet and Neumann data: Uy (+a,s) = — (s> 4+ |k|?)~'/20,Uy(%a, s). Applying the
inverse Laplace transform to this equation gives the transparent boundary condition
as the temporal convolution

g (da, t) = — / "ot — ) By (a7 d,
0

where f;(t) is the function with Laplace transform Fy(s) = (s% 4 |k|?)~1/2.

As in the above example, it is typically the Laplace transform F'(s) of f(¢) in
(1.1), rather than the convolution kernel f(¢) itself, which is known a priori. The
function g(7) contains the expansion coefficients of Neumann or Dirichlet data of the
solution on the boundary, which are not known beforehand but are computed as the
algorithm proceeds from time step to time step. A naive implementation would re-
quire O(N?) operations and O(N;) memory per expansion coefficient for computing
the temporal convolution over N; time steps. In this paper we propose an algorithm
that takes O(N;log N;) operations and O(log N;) memory. The computational work
and the memory requirements for accurately implementing the transparent bound-
ary conditions thus become less than those for treating the interior domain and are
asymptotically negligible as the spatial and temporal grid sizes tend to zero. The
present paper describes the algorithmic aspects of this approach.

In section 2, after briefly reviewing existing approaches to the computational
treatment of the temporal convolutions in transparent boundary conditions, we de-
scribe our algorithm. The basic idea is illustrated in Figure 1.1: each of the L-shaped
regions in the triangle {(¢,7) : 0 < 7 <t < T} corresponds to solving a set of scalar
linear ordinary differential equations. On each of these regions, the memory require-
ments are therefore independent of the time step number, and along any vertical line
in the triangle, i.e., for any fixed ¢ = nAt with n < NV, there are at most log, Ny such
regions. This leads to the logarithmic memory requirement mentioned above. The
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scheme extends to decompositions of the triangle that correspond to other bases of
the logarithm, yielding logy V¢, for example, with B = 10.

In section 3 we apply the algorithm to Schrédinger equations in conjunction with
an implicit time discretization in the interior domain and in section 4 to wave equations
with fully explicit time stepping. Numerical experiments illustrate the performance
of the method in both cases. It should be noted that the algorithm is not restricted
to Schrodinger and wave equations but applies equally to other problems of wave
propagation, e.g., Maxwell’s equations, linear elasticity equations, or damped wave
equations.

2. The convolution algorithm. In this section we describe the algorithm for
computing temporal convolutions which forms the basic ingredient in our treatment
of nonreflecting boundary conditions.

2.1. Previously existing convolution algorithms. We consider the convo-
lution (1.1) which is to be computed on the grid ¢t = 0, At,2At,..., T = N, At with
step size At. In (1.1) f and g assume different roles. We are interested in situations
where the evaluation of g(7) at 7 = nAt requires knowledge of the values of the con-
volution up to (n — 1)At so that the required values of g(7) cannot be computed in
advance. This is the situation in transparent boundary conditions or, more generally,
in Volterra-type convolution equations. Typically, it is the Laplace transform F'(s)
of the kernel f(t), rather than the kernel itself, which is known a priori and can be
evaluated easily. Therefore the algorithm should use evaluations only of F(s).

If F(s) is a rational function with a known partial fraction decomposition, say

m

m o .
Fs) =Y =2, then  f{H)= ¢eM,
j=1 /

Jj=1

and it is a simple but very useful fact that the problem of computing the convolution
(1.1) is in this case reduced to solving m linear differential equations:

t
/ M) g(r) dr = y(t,0, ),

0
where y(t,0, ) is the solution of the initial value problem

v =X\y+g, y(0) = 0.

The computation of the convolution then requires O(mN;) operations and O(m) active
memory.

The situation of rational Laplace transforms F'(s) occurs in transparent boundary
conditions on a sphere for the three-dimensional (3D) wave equation, and the above
observation lies at the heart of the algorithm by Grote and Keller [4, 5]. Although
this situation of rational F'(s) does arise in some situations of practical interest, F'(s)
is not rational in many other cases arising from nonreflecting boundary conditions, be
it for other equations (e.g., Schrédinger equations, damped wave equations) or other
geometries. Moreover, even in cases of rational F(s) the maximum degree m corre-
sponds to the largest wave number considered and can therefore become large. The
direct reduction to m differential equations is then not necessarily computationally
efficient.

In view of the benefits of a rational Laplace transform F'(s), it is not a far-fetched
idea to approximate a general F(s) by a rational function and hence to approxi-
mate f(t) by a finite sum of exponentials. This approach is excellently reviewed by
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F1a. 2.1. Tessellation for fast Fourier transforms [7].

Hagstrom [6], where the reader finds many more references. In particular, Alpert,
Greengard, and Hagstrom [1] give theoretical bounds on the degree m required for
a uniform approximation of f(¢) on [0,7] by a sum of m complex exponentials for
the particular kernels f(t) arising from nonreflecting boundary conditions of the wave
equation in spherical and cylindrical geometries. The bounds grow only logarithmi-
cally with the wave number bound and with 7. Alpert, Greengard, and Hagstrom [1]
also propose a nonlinear least squares algorithm for the numerical construction of
the exponents A\; and coefficients c¢;, which is, however, not free from computational
difficulties.

A different approach to a fast convolution algorithm is given by Hairer, Lubich,
and Schlichte [7]. That algorithm applies after replacing the continuous convolution
with a discrete convolution

ALY " wnj g(jAY),

=0

where the convolution quadrature weights w,, (n > 0) can be constructed from F(s)
by the method of [8, 9]. The fast discrete convolution algorithm of [7] is based on
decomposing the triangle 0 < 7 < t < T of the (¢,7)-plane into squares on which
partial convolutions, composed of the values w,_; g(jAt) for grid points (nAt, jAt)
of the square, can be computed by fast Fourier transforms. In Figure 2.1 each square
corresponds to an FFT of a length proportional to the length of a side of the square.
The computational complexity is then O(N;(log N;)?) operations and O(N;) memory.
A problem with this algorithm in the context of nonreflecting boundary conditions
is the fact that all past boundary values and all quadrature weights need to be kept
in active memory throughout the computation, which may not be feasible for 3D
problems over longer time intervals.
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2.2. Local approximation by discretized contour integrals. The algo-
rithm to be described in the following approximates the kernel f(¢) by sums of expo-
nentials locally on a sequence of fast growing time intervals I, covering [At, T1:

(2.1) I, = [B"'At,(2B" — 1)At],

where the base B > 1 is an integer. For example, B = 10 was found to be a good
choice in our numerical experiments. The approximation of f(¢) on I, results from
applying the trapezoidal rule to a parametrization of the contour integral for the
inverse Laplace transform,

N

1
22  f)=5— /F FO P dx Y ol POy N te,
2 j=—N

with a suitably chosen complex contour I'y to be described in detail below. The
number of quadrature points on I'y, 2N + 1 is chosen independent of ¢. It is much
smaller than what would be required for a uniform approximation of the contour
integral on [0, 7.

To make such a contour integral approximation computationally efficient, F(s)
must have a bounded analytic extension to a complex domain whose boundary is
given by contours that have only pieces of short total length in and near the right
half-plane and tend to infinity with an acute angle to the negative real axis so that ex-
ponentials decay rapidly along such contours. It is a remarkable fact that the Laplace
transforms F'(s) arising from Fourier or spherical expansions in nonreflecting bound-
ary conditions on planar, cylindrical, and spherical geometries for the Schrodinger
equation, undamped and damped wave equations, and Maxwell equations all have
this property, in contrast to the resolvents of the corresponding differential operators
(which are not sectorial operators). In the sections below, we will encounter

F(s) = ! S d F(s) = ! W
(8) - \/m ( ) an (8) - m ( )
for the Schrodinger and the wave equation, respectively. We will also consider ap-
proximations to these functions with similar behavior, which result from a regular
space discretization on the exterior domain. All these functions satisfy the above
requirements uniformly in the wave number parameter a € R, though with different
contours shifted by +ia.

The numerical integration in (2.2) is done by applying the trapezoidal rule with

equidistant steps to a parametrization of a Talbot contour [12, 10], which is given by

(2.3) (—m,m) =T 0+ v(0) =0+ pu(fcot(h) +ivh),

where the parameters p, v, and o are such that the singularities of F(s) lie to the
left of the contour; see Figure 2.2. We may also use two shifted Talbot contours with
o = +ia if necessary, as in (W) above with large a. The parameter p will depend
on ¢ via the right end-point of Iy, which yields a Talbot contour I'y depending on the
approximation interval .
For completeness we note that the weights and quadrature points in (2.2) are
given by (omitting ¢ in the notation)
wj; = —m 7’(9j) s )\j = ’7(9j) with 9j =
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Fi1G. 2.2. Talbot contour.

The following choices of parameters were found to give good results in our numeri-
cal experiments. First consider the Schrédinger case (S). A relative accuracy of 1-1073
on the interval I, with right end-point T} is obtained with B = 10, N = 10, pu = po /Ty
with pg = 8, v = 0.6, ¢ = ia. For a relative approximation error of 2 - 1075, take
B =5, N =15, and the other parameters as before. See Figure 2.3 for plots of the
relative errors | fapprox(t) — f(¢)|/|f(t)] for N = 10 and B = 10 on three fast growing
intervals [1073,2-1072], [1072,2-107!], and [0.1,2], and for N = 15 and B =5 and
for four fast growing intervals [1072,9-1073], [5-1073,5-1072], [2.5-1072,2.5-107}],
and [0.125,1.25]. In fact, since |f(t)| = (nt)~'/2, the same figures are obtained on
any interval [a,20a] for B = 10 and [a, 10a] for B = 5 with arbitrary a > 0.

In the case (W) for the wave equation we use only one contour as long as a <
a* = %ﬂ'/u/o. For a relative approximation error 10~2, we choose B = 10, N = 10, u =
wo/Ty with pg = 8, v = vo(1 + a/a*) with vg = 0.6, 0 = 0. For an accuracy of 1077,
we choose B = 5, N = 15, and pg, vy, o as before. For a > o* we take two Talbot
contours with 0 = +io and the other parameters as in case (S) above. Using the
symmetry with respect to the real axis approximately halves the computational work.
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t t

Fi1c. 2.3. Quadrature errors versus time for N = 15 and B = 5 (left figure) and N = 10 and
B =10 (right figure).
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FiG. 2.4. Quadrature error versus time.

Figure 2.4 plots the relative errors for (S) on the interval [1-1073,2] (or any
interval [a,2000a] with a > 0) for N = 10, 20,40, 80, 160,320, 640. The thick part
of the line for N = 10 is identical to that of the right figure in Figure 2.3. This
error behavior clearly demonstrates the advantage of using local approximations with
a rather small B. With B = 10, we need three approximation intervals to cover the
interval [1-1073,2] so that for a work of 3- N with N = 10 we obtain better accuracy
than with NV = 640 over the whole interval. The errors also behave similarly for (W).

The error of the quadrature approximation is known to decrease exponentially
with N [12]. The constants in the error bound depend on the distance of the sin-
gularities of the analytic function F' to the contour and on bounds of F'. This error
behavior would suggest to choose p large, but this must be counterbalanced with the
increased sensitivity to perturbations in terms multiplied with e#!. For the above
functions F'(s), which have inverse square root bounds near the singularities and at
infinity, it can be shown that the required number N to obtain an error bounded by
€¢/+/t on (0,00) decomposed as in (2.1) is bounded by

1
(2.4) N < CBlog -,
€

with a moderate constant C', uniformly in ¢ and B > 2.

2.3. Reduction to ordinary differential equations. For general boundary
points a < b in the integral we have

2mi

/abf(t—T)g(T)dT:/ab 1 /FF(A)G(H)’\d)\g(T)dT
1

b
=2 | T e(t—bﬂ/a e g(r) dr dA,

where the inner integral, henceforth denoted by y(b, a, ), is recognized as the solution
at time b of the scalar linear initial value problem

(2.5) Yy =M\y+g, y(a) = 0.



168 CHRISTIAN LUBICH AND ACHIM SCHADLE
If [t—b, t—a] C Iy, then the contour integral over the Talbot contour I' = Iy is replaced

with its trapezoidal rule approximation (2.2), which gives (omitting the superscripts
¢ for notational simplicity)

b b N
/f(t—T)g(T)dT%/ Z w; F(X) e 7% g(7) dr
N

j=—N
(2.6) = > w F(A) "% y(b,a,);).
j=—N

The 2N + 1 differential equations (2.5) with A = \; are solved approximately by
replacing the function g with its piecewise linear approximation and then solving
exactly. Setting g, = g(a + nAt), we get approximations y,, ~ y(a+ nAt) recursively
via

1
Yn+1 = eAt)\ Yn + h/ e(lie)At)\ (ogn-‘rl + (1 - 0)gn) do
0

eAt)\ -1

9. gy, 1
(2.7) Un T TR

In+1 — Gn 9n+1 — 9n
At y, + Atg,, + At —/———"— | — At —"—",
( Yn + Olgn + AtA > At

To estimate the error, note that in total we approximate
b b
[ re-namar~ [ fe-nr)ar
a a

where f is the quadrature approximation to f constructed in the previous subsec-
tion, whose error is well under control, and g is the piecewise linear interpolant of
g. (Higher-order interpolants of g might also be used, but we have not implemented
such an extension.)

2.4. The convolution algorithm with base 2. The approximations of sec-
tions 2.2 and 2.3 can be combined into a fast convolution algorithm that requires
O(Nilog Ny) arithmetical operations and O(log N¢) memory. This algorithm is best
explained by describing the first few steps for base B = 2. (Here B refers to (2.1).)

First step. We compute the convolution integral at ¢ = At by approximating g(7)
linearly:

At At At
At) —
f(At —7)g(T)dr ~ f(At —7)dr g(0) + fAt—=T7)TdT M
0 0 0 At
The remaining integrals are approximated as the inverse Laplace transforms of F'(s)/s
and F(s)/s?, respectively:

At N
o1 = fAt=7)dr = Y wi F(X)/A; e,
0 i
(2.8) N =
do= | f(At—T)Tdr™ Y wiF()\)/A] A,
0 J=—N

where the weights w; and nodes A; correspond to a Talbot contour with the parameter
u chosen for t = At (e.g., p = 8/At).
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Second step. The integral over [0,2A¢] is split into integrals over [0, At] and
[At, 2At]. The latter integral is approximated as in the first step:

24
t f(2At — 1) g(7) dT = ¢ g(At) + b2 9(241) — g(At)
At At

The integral over [0, At] is approximated according to (2.6):
At

N
fQRAt —1)g(T)dr = Z w]m F (AEl)) A y (At, 0, )\51)) ,
0 .
j=—N

where wj(»l), A§1) correspond to the Talbot contour I'y for the interval I; = [At, 3At].

This requires solving 2N + 1 differential equations (2.5) with A = /\5-1) € I'y by one
step of (2.7).
Third step. We compute

3At
F(BAL —7) g(7)dr = ¢1 g(2At) + ¢ M
2AL At

and

2AL N
f(BAt — 1) g(7) dT =~ Z wj(-l) F(Agl)) A y (2At,0, )\§1)) 7
0 at

which requires advancing the solutions of the differential equations for I'y; from At to
2At.

Fourth step. A new situation appears at t = 4At. Continuing as in the two
previous steps would involve approximations of f(t — 7) for t — 7 € [At,4At] ¢ I4.
As is indicated in Figure 2.5 by the different textures of the column for ¢ = 4At,
the integral from 0 to 4At is therefore split into integrals over the intervals [0, 2A¢],
[2At,3At], and [3At,4At], which correspond to different distance classes from the
diagonal ¢t — 7 = 0. The integral over [3At,4At], which is next to the diagonal,
is approximated as in the above formulas with ¢; and ¢2, with the arguments of
g advanced by At. The integral over the interval [2At, 3A¢], whose points 7 have
t — 7 € I, is approximated by

3At N .
faat—ryg(rydr = 30wl O ey (34024600
2A¢t .

j=—N

which uses the result of one step of method (2.7) for differential equations for I'y.
The approximation of the integral over [0,2A¢], which is farthest from the diagonal,
involves the weights and nodes for the Talbot contour I'y that corresponds to the
approximation interval Iy = [2At, TAt]:

24t N
/ fant =) g(rydr = 3wl FOP) 2207y (281,007
0 Pyt
This requires the solution of another set of 2N + 1 differential equations (2.5)

with A = )\gz) € I's. The different textures in Figure 2.5 thus correspond to differ-
ent sets of differential equations (2.5), which correspond to different Talbot contours
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Fic. 2.5. Decomposition for B = 2.

T'y, which in turn correspond to different approximation intervals I,. Identical tex-
tures in different columns of Figure 2.5 correspond to identical sets of differential
equations/contours/approximation intervals/distance classes from the diagonal.

Computing y(2At, 0, )\;2)) only at this moment would require the values ¢(0),
g(At), g(2At), which would thus have to be kept in memory. However, we can re-
organize the computations so that in the second step above we not only compute
y(At,O,)\gl)) but also y(At,O,)\f)) for the second contour and in fact y(At,O,)\;Z))
for all further contours I'y that are required to cover the interval [At, T| by the approx-
imation intervals I, of (2.1) with B = 2. The third step then advances the solutions
y(t, 0, )\y)) from At to 2At for all ¢ > 1. The fourth step advances y(t, 0, )\y)) from

2At to 3At for all £ > 2, whereas y(t, 2At, )\J@)) is advanced for £ = 1, in accordance
with Figure 2.5. In this way one proceeds stepwise from bottom up in the triangle,
rather than from left to right.

It is now clear how the algorithm continues in the next steps. The fifth step uses
y(4At,2At,)\§-1)) and again y(2At,O,)\§2)), and the sizth step uses y(5At,4At,)\§1))
and y(4At, 0, )\;2)). A third set of differential equations, for the contour I's, enters

in the eighth step, where y(4At, 0, )\§-3)) is used. Carrying Figure 2.5 further to more
steps finally gives the tessellation of the (¢, 7)-triangle shown in Figure 1.1.

The algorithm is organized such that all the differential equations for all integra-
tion contours required for the given interval [0,T] are advanced by one time step in
every step t — t + At of the algorithm. In this way, past values of g(t) need not
be kept in memory but instead the present value and possibly one past value of the

solutions y(t, 0, Age)) for all j and ¢. (For example, y(4At,0, A.§3)) must be stored in

steps 4 to 11, while the differential equation with )\§-3) is advanced by At in each of
these steps.)
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The number of operations is proportional to Ny Ly N, where N; is the number
of time steps, L; < logy N; is the number of different contours, and 2N + 1 is the
number of quadrature points on each contour, which depends logarithmically on the
quadrature error tolerance; see (2.4). The required memory is approximately 5 L;N.

This includes storing the quadrature points )\;l), their exponentials exp(At)\y)), and

the weighted function values wy)F()\;@). We also note that the algorithm is highly
parallelizable.

2.5. The convolution algorithm for general bases. The algorithm extends
to the base B = 4 in (2.1) if the contours in the above base-2 algorithm are chosen such
that I'y = I'y is the joint Talbot contour for the union of the base-2 approximation in-
tervals I; Ul = [At, TAt], T's = Ty is the contour for IsUI, = [4At, 31At], I's = ['g for
[16At,127At], and so on. In this case, the differential equations associated with the
quadrature points )\5-1) = /\§-2)7 etc. are the same, which leads to substantial savings,
since half of the sets of differential equations can be omitted. On the other hand, N
must be chosen slightly larger so that there are now more quadrature points on each
contour and hence more differential equations for each contour. As Figure 2.3 indi-
cates, this base-4 algorithm is nevertheless more efficient, except possibly for extreme
accuracy requirements below 10710, Figure 2.6 shows the decomposition of the (¢, 7)-
triangle corresponding to the base-4 algorithm, which is obtained from Figure 1.1 by
uniting some of the tiles. Each of the differently colored regions corresponds to one
set of differential equations.

Similarly, a base-8 algorithm is obtained by taking instead I'y = T's = I's as
the Talbot contour for I} U I, U I3 = [At,15At¢], Ty = I's = T'g the contour for
[8At, 127At], etc. The base-2™ algorithm is obtained by choosing every m consecutive
base-2 contours identical.

A

F1G. 2.6. Tessellation for B = 4.
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More formally, the general base-B algorithm approximates the convolution as
follows: in the nth step (n =1,..., Ny), let t = nAt and approximate

with ¢; and ¢, of (2.8). Let L be the smallest integer for which t < 2BLAt. For
{=1,2,...,L — 1 determine the integer g, > 1 such that

70 = qB'At satisfies t — 71, € [B*At, (2B — 1)At].

Note that ¢, is augmented by 1 every B’ steps and t — At > 71 > --- > 77,1 > 0. Set
70 =t — At and 7, = 0. Then approximate

t—At L N
,T O]
@) [ s namar= Y Y wf? PO N gl ml?),
0

¢=1j=—N

where wy) and )\y) are the weights and quadrature points for the Talbot contour I'y
that corresponds to the base-B approximation interval I, = [B‘~tAt, (2B — 1)At] of
(2.1). Note that [t —7y_1,t — 7] C I, for all £. As described for the base-2 algorithm,
the differential equations determining y(¢, 7, A) are advanced by one step of (2.7) for all
required values A on all Talbot contours in every time step ¢ — t 4+ At. The operation
counts and memory requirements are still proportional (with the same factors as in
the base-2 case) to Ny Ly N and L; N, respectively, where the number of integration
contours is now bounded by L; < logp N;.

3. Schrodinger equations. In this section we illustrate the use of the convo-
lution algorithm on Schrédinger equations (or Fresnel equations, as they are called in
applications to fiber optics) on unbounded domains. We consider transparent bound-
ary conditions for both the spatially continuous and the spatially discretized problem.
The convolution algorithm for the transparent boundary conditions is combined with
an implicit time discretization of the partial differential equation in the interior do-
main. We discuss the one-dimensional (1D) case in some detail because it shows
the basics of the approach with a minimum of notational effort. We then turn to a
two-dimensional (2D) problem which is periodic in one space direction and requires
transparent boundary conditions in the orthogonal direction.

3.1. Transparent boundary conditions for a 1D Schrodinger equation.
We consider the time-dependent Schrédinger equation for u = u(x, t),

(3.1) ! Opt = Oppu — b(w, t,u) — o®u | xR, t>0,
c

where b(z,t,u) = 0 for |z| > a > 0 and all ¢ and v and « and c are real constants.
The differential equation is complemented with the initial condition u(z,0) = ug(x)
for z € R, where we also assume ug(z) = 0 for |z| > a. Further, there is a radiation
condition for |z| — oo, which ensures that u(x,t) — 0 for [z| — oo uniformly on
bounded time intervals.

The derivation of transparent boundary conditions at = +a is well known (see,
e.g., [6]) and proceeds formally as follows: the Laplace transform U(x, s) satisfies, for
Res > 0,

(3.2) % U=0,U—a2U,  |z|>a.
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For given Neumann data 9,U (+a, s) = +0,U(=*a, s) and with the condition U(z, s) —
0 for |x| — oo this equation can be solved to give

exp (—|x Fa|lis/c+ a2) 0,U(*a, s)

U(z,s)=—

1
Vis/e+ a?
for x > a and x < —a, respectively. At x = +a this yields

1 is/c+ a?
T Uy :l:a, S or al/U :ta7 )= —————
is/c+ a? ( ) ( ) is/c+ a2

Taking the inverse Laplace transforms and denoting by f(¢) the function with Laplace
transform F(s) = 1/4/is/c+ a2, we obtain the Neumann-to-Dirichlet map

U(xa,s) = — U(za, s).

(3.3) w(ta,t) = — /O F(t = 7) Byu(a, 7) dr

and the Dirichlet-to-Neumann map

(3.4) dyu(£a,t) = — (é B, + a2> /O t F(t — 1) u(za, ) dr.

Either (3.3) or (3.4) forms the transparent boundary conditions for (3.1) restricted to
the interior |z| < a. Numerical methods can be based on either of them, but in the
following we work with (3.3) or spatially discrete variants thereof.

3.2. Transparent boundary conditions for a spatially discretized 1D
Schrédinger equation. Spurious reflections introduced by the spatial discretiza-
tion are avoided if the transparent boundary conditions are derived directly for the
spatially discretized equation; cf. [2] and [11]. Let 2a = N,Axz and let J,,u be
discretized by the standard finite difference quotient

u(x + Az, t) — 2u(x,t) + u(x — Az, t)
Ax?

Opzu(x,t) =
for x = mAx, m an integer, so that (3.1) is replaced with
(3.5) zatu = 8ppu — bz, t,u) — o*u x=mAz, t > 0.
Then (3.2) becomes the difference equation
Z‘;SUzémU—OzZU for x =+(a+ mAzx), m > 0.
The characteristic roots of this equation are determined from
(3.6) 22— (2+ (is/c+ a®)Az®)z + 1= 0.

Choosing z(s) as the root of modulus greater than 1 for Res > 0, we obtain for the
decaying solution of the difference equation

U(xa,s) = —————
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where

U(xa,s) — U(x(a — Az), s)
Az '

6,U(+xa,s) =

Transforming back gives the “discrete Neumann-to-Dirichlet map,” which establishes
a relation between the solution values at +a and at £(a — Ax):

t
(3.7) u(xa,t) = —/ f(t—71)b,u(ta,7)dr,
0
where f(t) is now the function with Laplace transform
Az
. F = —
(38) R it

which is O(Ax) close to 1/1/is/c + a? uniformly for s/c in a bounded complex domain
away from ia? and behaves as 1/(is/c+a?) for |is/c+a?| — oo. Equation (3.7) gives
a transparent boundary condition for the spatial semi-discretization (3.5) restricted
to |z| < a. (This would remain unchanged if a different, adaptive discretization were
used in the interior domain away from the boundary.) The expression for F(s) can
be rewritten as

2

(3.9) F(s)=— :
Azy/is/c+ a2 <\/is/c+ a2 +/is/c+ a2 + 4/Ax2>

This shows that F(s) has a singularity not only at ia%c, as in the continuous case,
but additionally at i(a? +4/Az?), which tends to infinity as Az — 0. Therefore, one
would need two Talbot contours I'y and I'; to take account of these two singularities;
see Figure 3.1 for a« = 0. However, the contribution from I'; is small: Figure 3.2
and an analytic study show that it is of size Az?/t3/2. For the analytic study we
refer to the Ph.D. thesis of Achim Schédle (in preparation). Therefore, I';y may be
omitted in the algorithm, at least when the time step is considerably larger than
Ax?, as is typical when using an implicit time discretization scheme. For small time
steps and fixed Az, the Talbot contours are such that they enclose all singularities by
construction.

3.3. Numerical experiments with a full discretization. We use (3.7), dis-
cretized in time by the convolution algorithm of section 2, as a boundary condition
for the trapezoidal rule time discretization of (3.5) for |z| < a, which reads (denoting
the fully discrete approximation again by )

i u(w,t) —u(z,t—At) 1

- Af =3 <5mu(x, t) — b(z, t,u(x, ) — o?u(x,t)

Fbppu(z,t — At) — b(x, t — At,u(z, t — At)) — ou(x, t — At))

for x = mAx with integer m, |z| < a, and ¢t = nAt with integer n > 1. This yields
an implicit discretization scheme. The discretized boundary condition (3.7) gives, in
view of (2.9), an equation of the form

<1 + Afix) u(£a,t) — Afix u((a — Ax),t) =---,

where the dots represent known values, computed from (2.9) and (2.10).
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For the parameter values ¢ = 1/14, a = 2, & = 0 and for b = 0 we compute the
evolution of a Gaussian beam shown in Figure 3.3 with starting value ug given by

tan(65°)x

(3.10) Uy = exp (—4x2 - ch)

traveling left with an angle of 65°.
The decay of energy versus time, E(t)/E(0) with

B0 = [ " fu(e, p)de,

is shown in Figure 3.4 for different convolution kernels. We used 160 grid points in
x, 400 grid points in ¢, and we set NV = 10 and B = 10 in the convolution algorithm.
The parameters were chosen as in section 2.2: v = 0.6 and po = 8. Figure 3.4 clearly
shows that the convolution kernel for the spatially discrete equation, defined by (3.8),
gives a far better approximation than the spatially continuous kernel in (3.3). It is
also seen that the contribution of I'y is not important and can therefore be omitted
in the algorithm.

The algorithm is of order O(N;log(N;)) by construction. To verify this we plot
cpu-time in seconds (Figure 3.5) and flops (Figure 3.6) as a function of N, indicated
by stars. For these plots we have chosen N = 10 and B = 10. In each figure the
two solid lines are of slope 1 and 2, respectively, and thus correspond to algorithms
of order O(N;) and O(N?), and the dashed line is the function C; N; + CoN; log(Ny)
for some constants C; and Cs. The implementation is in MATLAB and the cpu-time
was obtained from an Intel PIII-Coppermine/600.
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3.4. Transparent boundary conditions for a spatially discretized 2D
Schrédinger equation. We now consider the equation for u = u(z,y, t),

(3.11) éatu = Oppt + Oyyu — b(z,y,t,u) , r,y €R, t >0,

where b is p-periodic in y and b(z,y,t,u) = 0 for || > a and all y,¢,u. Also, the
initial data are assumed p-periodic in y and with support in |z| < a. The solution u
is then also p-periodic in y. We consider the spatial semi-discretization

(3.12) é&tu = bgau + 6yyu — b(x,y, t, u) | xr=mAzx, y=1Ay, t > 0,

for all integers m,l. We assume that the period p is a multiple of Ay: p = N, Ay with
integer N,. We take the discrete Fourier transform of length N, with respect to y in
(3.12) and denote the discrete Fourier coefficients by

(e, )5 = P, (ue, 18y, 0)

On the exterior |z| > a, (3.12) is thus transformed to

TN - B . 2 .
- Uy, = Oppliy, — aiuk with o = — sin(nk/Ny).
c

Ay

This decouples (3.12) on the exterior into N, 1D problems (3.5) for the Fourier coef-
ficients. The transparent boundary conditions at © = +a are therefore, as in (3.7),

t
(3.13) ug(xa,t) = —/ fr(t — 1) 6,0 (La, T) dT,
0
where f(¢) is the function with Laplace transform
Az
F) = —
k() zi(s) — 1

and zy(s) is, for Res > 0, the root of modulus greater than 1 of (3.6) with a = ay.
As in the 1D case, the convolution algorithm for (3.13) is combined with the
implicit trapezoidal time discretization of (3.12) in the interior domain.
The numerical results are similar to the 1D case and therefore are not displayed.
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4. Wave equations. As a further illustration of the use of the convolution
algorithm, we consider transparent boundary conditions for spatially discretized 2D
and 3D wave equations with periodicity in one and two space directions, respectively.
The time discretization is now explicit, using the explicit leapfrog method in the
interior of the domain and linear extrapolation in the convolution algorithm on the
boundary.

4.1. Transparent boundary conditions for spatially discretized 2D and
3D wave equations. We consider the 2D wave equation for v = u(z,y, t),

1
(4.1) 2 Outt = Ozt + Oyyu — b(z,y,t,u), z,y R, t>0,

in a setting similar to section 3.4. We assume again that b is p-periodic in y and
b(x,y,t,u) = 0 for |z| > a and all y,t,u. Also the initial data ug, g are assumed
p-periodic in y and with support in || < a. The solution u is then also p-periodic in
y. We discretize in space by finite differences,

1
(4.2) = Outt = Ozt + byyu — b, y, t, u), x=mAzx,y=1Ay, t >0,

for all integers m, [, where we assume p = N, Ay with integer IV,,. The discrete Fourier
transform of length N, with respect to y transforms (4.2) on the exterior |z| > a to

1. N R . 2
2 Op iy, = Opptiy, — aiuk with ap = A—y sin(mk/Ny).

The derivation of the transparent boundary conditions is now completely analogous
to the Schrodinger case, formally replacing is/c by s?/c? on every occurrence. The
transparent boundary conditions for the Fourier coefficients at = +a thus become

t
(4.3) ug(£a,t) = —/ fre(t — 1) 6,0 (La, 1) dr,
0

where fi(t) is the function with Laplace transform

Az

Fils) = zp(s) — 1

and z(s) is, for |s| large, the root of modulus greater than 1 of
(4.4) 22— (24 (s*/ + af)Az®)z+ 1 = 0.

The above extends straightforwardly to spatially discretized 3D wave equations with
periodicity in the y- and z-directions,

1
(4.5) = Outt = bggu + byt + 6,,u — b(z, y, 2, t,u),
for z = mAzx, y = lAy, z = jAz, t > 0. This now involves 2D discrete Fourier trans-

forms in y and z, with Fourier coefficients @y (x,t) for k = (k,, k). The transparent
boundary conditions are still of the above form, with

o = (ﬁy sin(wky/Ny)>2 + (AQZ sin(wkz/Nz))Q.
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We remark that this double-periodic geometry appears in studying wave propa-
gation in the neighborhood of thin layers. (A corresponding problem for the Maxwell
equations is currently under investigation.)

As in the Schrédinger case we rewrite the expression for Fj(s)

2

(4.6)  Fi(s) =— ;
A /(s/e)? + o7 (Vs/e +a + /(s + (a7 + 4/Ba7))

which clearly shows that it has singularities not only in +¢ca as the continuous kernel
but also in icy/a? + 4/Axz2. Thus we have to develop a new strategy for choosing the
Talbot contours with parameters p, v, and o. Setting ¢ =0, u = 8/T;, vy = 0.6, and

B = empry /2 we choose one contour if a < §. If, in addition, 8 < (y/a? + 4/Ax? —
a)/2 we set v = 1y(1 + /), thus enclosing only the singularities +ica, or else we

set v = vp(1+ /a2 + 4/Ax?/3), thus enclosing all singularities. If & > 3, we choose
two contours. If, in addition, 8 < (\/a? +4/Ax? — a)/2 we set v = vy enclosing
only the singularities +ica, or else we set v = vg(1 + (y/a? + 4/Az? —a)/(20)). The
situation is illustrated in Figures 4.1-4.4, where the solid lines correspond to I'g and
the dashed lines to I'y, similarly as in Figure 3.1.
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4.2. Numerical experiments with a full discretization. For time discreti-
zation in the interior domain we use the Stérmer/leapfrog method

1 u(z,y,t + At) — 2u(z,y,t) + u(z,y, t — At)
c? At2?

= 6xru(m7 Y, t) + 5yyu(xa Y, t) - b(‘rv Y, ta U(.’ﬂ, Y, t))

for x = mAx with |z| < a, y = lAy, and t = nAt. The boundary values at x = +a are
obtained from the convolution algorithm applied to the transparent boundary condi-
tions (4.3) where, in the approximation of Uy (+a, t+ At), we approximate 8, ux(+a, T)
for t < 7 < t+ At by linear extrapolation from the known values at t — At and t.
This yields a fully explicit discretization scheme.

With ¢ =1, a = 0.5, period 1.5 in y, and with starting value

2?2 + (y — 0.25)2

u(0) = exp < 0.01

> . Bu(0) =0,

we compute the movie of Figure 4.5. Here the error is given with respect to a reference
solution computed on a grid with the same Ax, Ay, and At but on a domain whose
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size in x is doubled. In the algorithm we are using I'y and I'; such that the only errors
introduced are spurious reflections at the artificial boundary that emerge from using
different time discretizations in the interior domain and in the boundary condition
and from the quadrature approximations of the contour integrals. In our computation
we have chosen Az = 1/81, Ay = 1/64, At = 1/200, and the parameters in the
convolution algorithm as B = 5, N = 10, vy = 0.6, and puo = 8. Almost identical
figures were obtained with N = 15 and B = 5 or B = 10. Omitting the contributions
of the dashed contours in Figures 4.3 and 4.4 gave errors about five times larger
and made the algorithm more sensitive to changes of the parameters. We made
experiments also with different time steps and different spatial grids and observed
stability up to the stability limit of the leapfrog scheme of the interior discretization.
In Figure 4.6 we show the evolution of the error norm

1/2
o) = (5 S0 - o 0

ij

over a long time interval 0 < ¢ < 30 for B = 5 and N = 15, and Az = 1/97,
Ay = 1/85, and At = 1/200. The computation used only I'g; using both I'y and
T'y resulted in an almost identical error curve. Reducing the time step by powers
of 2 gave a reduction of the error curves by approximately the same power of 4, as
expected for a second order scheme.

We also implemented the double periodic 3D case and obtained similar results
(at least on the shorter time intervals on which a computation of the error was still
feasible).
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