
ALGORITHM 682
Talbot’s Method for the Laplace Inversion
Problem

A. MURLI
University of Naples
and
M. RIZZARDI
University of Lecce

We describe a FORTRAN implementation, and some related problems, of Talbot’s method which
numerically solves the inversion problem of almost arbitrary Laplace transforms by means of special
contour integration.

The basic idea is to take into account computer precision to derive a special contour where
integration will be carried out.

Categories and Subject Descriptors: G.l.O [Numerical Analysis]: General--numerical algorithms;
G.1.2 [Numerical Analysis]: Approximation-nonlinear upproxination; G.1.4 [Numerical Analy-
sis]: Quadrature and Numerical Differentiation-equal interval integration; G.1.9 [Numerical
Analysis]: Integral Equations-Fredholm equations

General Terms: Algorithms

Additional Key Words and Phrases: Complex inversion formula, inverse Laplace transform, Laplace
transform, numerical software, TALBOT, trapezoidal rule

1. INTRODUCTION

The Laplace transform of a function f(t), defined on the interval [0, m) and
absolutely integrable on any finite interval [0, a], is defined as follows

F(s) =
s

m
o e-“‘f(t) dt, Re(s) > y.

where y. is the Laplace transform abscissa of conuergence. The inverse Laplace
problem is that of reconstructing f(t) from known values of F(s).

In this paper we describe Talbot’s method for the numerical inversion of the
Laplace transform. We provide a software implementation and give some of

Authors’ address: Universiti di Napoli, Dipartimento di Matematica e Applicazioni, Via Mezzo-
cannone, 16, cap. 80134, Napoli, Italy.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 00983500/90/0600-0158 $01.50

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990, Pages 158-168.

Algorithm 682 l 159

the results of numerical tests. In particular, in Section 2, a brief description of
the underlying theory is given. Section 3 describes the software implementation,
its input requirements, and some of the difficulties that a user may encounter.
Moreover, we describe how we solved the problem of avoiding overflow in
computing the numerical approximation to f(t). In Section 4, some particular
problems are discussed and, in Section 5, we present some of the results of
numerical comparisons between our software and other available software items.

2. OUTLINE OF THE UNDERLYING THEORY

The Riemann inversion formula gives an integral representation for f(t) in terms
of F(s):

f(t) = & B e”%(s) ds, 9
t>o, i=J-1 (2.1)

where B is the Bromwich contour from y - iw to y + &, with y > yo, parallel
to the imaginary axis.

This contour is located to the right of all the singularities of F(s). When f(t)
is to be calculated using numerical quadrature, it may be convenient to use a
different contour. In general, one would like to move the contour to the left so
as to reduce in magnitude the factor est in the integrand, but the contour must
not be moved too close to singularities of F(s), as to do so will result in peaks in
the integrand function.

A prescription for finding a suitable contour (one which retains a proper
balance between the two effects described above) has been provided by Talbot.
This requires that the locations of the singularities of F(s) be known, and that
F(s) satisfies

(a)] F(s) I + 0 uniformly as) s] + co in Re(s) < yo,
(b) for all singularities Sj, I Im(aj)) < K

and a numerical value of K is known.
(2.2)

Talbot’s contour, which is illustrated in Figure 1, is of the form

s(z) = 0 + As,(z), 2% (-27ri, 274 (2.3)

where

s,(z) = z
v-1
- l-e-Z+z 2 *

His prescription for determining the geometrical parameters X, g, v and for
determining the accuracy parameter n, i.e., the number of points required in the
quadrature rule, is lengthy and is given in references [4] and [8].

The software provided here is in two parts: the first requires as input the
locations of the singularities, the required accuracy, and machine characteristics
and provides the value of X, g, v, and n. The second carries out a numerical
integration using n points, which lie on the contour and whose imaginary parts
are equally spaced.

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

160 l A. Murli and M. Rizzardi

Fig. 1. Talbot’s contour.

Specifically, put in (2.3) z = 2 ic9, then the contour is parameterized using

SW = fJ + AS”(O), I9 E (-7r, 7r) (2.4)

where

s,(O) = 8 cot 0 + id,

and the integral (2.1) takes the form

f(t) = 5 -r s eXtSp(‘)F[a + Xs,(t9)]sL (0) d0
*

s:(O) = i
{

0 - cos 19 sin 0
v +

I sin% *

Taking symmetry into account, the trapezoidal rule approximation gives

where

(2.5)

(2.6)

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

Algorithm 682 - 161

The C” notation usually denotes a sum where the first and last terms are
halved; in this case, in the sum, the j = n term is zero and the j = 0 term becomes

i e’“F(a + A).

3. SOFTWARE IMPLEMENTATION

The user is provided with two routines. These are called successively: the first
(subroutine TAPAR) provides the geometrical parameters X, u, Y defining a
Talbot’s contour and the number n of function values that should be used in the
subsequent quadrature routine. These parameters need to be computed for each
value of t for which the Inverse transform is required. Inputs to the subroutine
TAPAR are

-the value of t where the Inverse Laplace transform f(t) is required (t > 0);
-the location and nature of some of the singularities of the Laplace transform

F(s);
-decimal machine-precision; and
-the required accuracy in the result.

The second routine (subroutine TSUM) requires t, X, u, v, and n as input, and
calculates the approximation (2.6) to the contour integral (2.5). More precisely,
inputs to the subroutine TSUM are

-the value oft (as before);
-the Laplace transform, passed by an external complex function of a complex

argument;
-geometrical parameters X, u, and u; and
-the number n of abscissas.

The division into two subroutines allows the possibility, for expert users, to
modify either the method’s parameters or the quadrature rule at will. Our
experience is that minor modifications to the contour can result in a large
increase in the cost of integration. Nevertheless, users may

(a) increase or decrease u, or
(b) change X and v in such a way that neither X nor Xv are decreased,

and remain confident that the new contour is equivalent to Talbot’s. In addition,
users may use Talbot’s contour but, for additional safety, use a larger value of n
for the number of abscissas.

Incidentally, we remark that in general the cost of running TSUM far exceeds
that of running TAPAR, and for different values of t, TSUM cannot reuse
previous function values whether or not the same contour is used.

Moreover, we chose complex arithmetic for the Laplace transform function-
input parameter to the subroutine TSUM-because it is simpler, for nonexpert
users to write a FORTRAN complex function as a copy of the corresponding
mathematical function. But, as we read in [l], the collection of software for

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

162 l A. Murli and M. Rizzardi

complex functions in general is not very extensive, and the most important
numerical libraries are only minimally cognizant of complex variable computa-
tion. A reason for this is that the FORTRAN double precision complex arithmetic
is not yet standardized; we give an example of this fact in the sequel.

So if the Laplace transform function is furnished by some library or some
existing software, users will probably have at their disposal a FORTRAN sub-
routine instead of the FORTRAN complex function required by TSUM. How
can users use the Talbot method implementation? Suppose they have, for
computing F(s), a subroutine like the following:

SUBROUTINE LAPFUN (SREAL, SIMAG, FREAL, FIMAG)

where SREAL, SIMAG, FREAL, and FIMAG are respectively, real variables, for
the real and imaginary parts of the argument of the function and the real and
imaginary parts of the function itself.

To use TSUM, it is sufficient to provide the following interface function:

COMPLEX FUNCTION F(S)
COMPLEX S
REAL SREAL, SIMAG, FREAL, FIMAG

SREAL = REAL(S)
SIMAG = IMAG(S)
CALL LAPFUN(SREAL, SIMAG, FREAL, FIMAG)
F = CMPLX(FREAL, FIMAG)
RETURN

END

A similar interface function (but one that is simpler) is required if the Laplace
transform function F(s) is computed in complex arithmetic by a FORTRAN
subroutine such as the following:

SUBROUTINE FUNLAP(SCMPLX, FCMPLX)
COMPLEX SCMPLX, FCMPLX

. . .

The software presented here is written in ANSI FORTRAN 77, using single
precision arithmetic throughout. We have available fully tested versions using
double precision arithmetic.

Double precision complex arithmetic is not standard in FORTRAN; we
have tested our software successfully on several computers: at first a UNIVAC
1100/90 (FTN ASCII compiler) and a HEWLETT PACKARD 1000/F (FTN’IX
compiler), and then a CDC, a VAX, and an IBM-PC, each of which uses different
double precision complex arithmetic. It is straightforward for users to modify
these routines to use double precision arithmetic; however, they should take great
care to locate and allow for these sort of effects.

A more insidious problem we encountered using the double complex arithmetic
in FORTRAN 77 is concerned with different values furnished, in single and
double precision, by some built-in functions with branch-points such as the
square root. Testing our software on the HP 1000 machine, we found that the
FORTRAN routine CSQRT(S), used in a Laplace transform test function, gives
different results (for the same complex argument S, of course) in single and
double precision, due to the fact that the complex square root is a two-valued
ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

Algorithm 682 l 163

function. In single precision, it seems to work in the cut plane] arg .s] c 7r,
while in double precision, in the cut plane -312~ < arg s < a/2. So, for example,
if we compute CSQRT(S) where the argument of S lies in (7r/2, r), the complex
single precision computation gives the correct result, with its argument lying in
(7r/4, r/2), while the complex double precision computation gives as a result the
opposite of the value returned in single precision. Naturally, this phenomenon
may have a catastrophic effect on the numerical result also if, when discouered,
it is easy to solve the problem: it suffices to multiply the wrong complex value
by an appropriate rotation factor.

In order to assure complete portability, we provide only the single precision
version of the software.

Besides TAPAR and TSUM, implementation of Talbot’s method requires two
further subroutines. One is INVPC (called by TAPAR). This inverts the equation
of the contour (for v = 1):

2
Sl(Z) = ~

1 - e-’

for any s located to the left of the contour. The subroutine INVPC implements
a suitable real Newton process to solve the above complex nonlinear equation,
and it only requires a few iterations (in most cases three to five) to satisfy a
convergence criterion of 0.01 percent.

The other routine is RlMACH [3] (called by TSUM). This routine furnishes
some environmental arithmetic parameters for several machines (by a simple
manipulation of the FORTRAN code); in this case it is used to obtain the largest
magnitude floating-point number to avoid an overflow in the final result.

An overflow problem in computing f(t) may arise, for large t, when F(s) has a
singularity aj such that

Re(aj) > 0.

The same problem occurs in the numerical approximation fct) given by (2.6),
because of the factor

Xeot

n ’
u > 0.

The remedy is the following: since the algorithm at first computes the sum T,(t)
in (2.6), whose terms are small when compared to the final result, in order to
evaluate (2.6), we put

f(t) = sgn[f(t)]el”‘f’t”.

If M is the maximum representable floating-point number and

M = eP,

(3.1)

then f(t) may produce overflow when

at + In i T,(t) > p.
[I

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

164 - A. Murli and M. Rizzardi

In this case, an error indicator (output parameter) in the subrout&re TSUM
signals that an overflow might occur, and the routine, instead of f(t), returns
Z’,(t); the true result can then be computed by (2.6).

Several different schemes have been tested for computing the sum T,(t) in the
quadrature routine (TSUM). In our context, better results were obtained using
the Reinsch form of the Goertzel algorithm [7] to evaluate the Chebyshev-
Clenshaw sum that gives the Trapezoidal approximation to f(t). This algorithm
is implemented in the program.

4. MISCELLANEOUS

In this section we provide two examples in which Talbot’s method does not work
well, and give some suggestions to bypass the obstacles.

4.1 Essential Singularity

A particular problem arises for the function

-l/s

F(s) = e
cos 24

&’
f(t) = -

Jz’

This Laplace transform has an essential singularity in 0, and its behavior near
an essential singularity badly influences the results of the method, possibly
leading to overflow in F(s) for large t. A similar situation occurs using other
methods.

Talbot suggests a remedy: to increase the value of X so that the contour avoids
this singularity by a wide margin. If c is the decimal machine precision, Talbot’s
modification consists of

w-l 1
A=-

t +s?
w = 0.4(c + 1). (4.1)

On the basis of many experimental results, we suggest that the modification

w as before (4.2)

should be used instead of (4.1), and that n should be increased to n’, given by

n ’ = n loglo when t > 10.

With the modification (4.2), the result is correct for t less than 105, while the
modification (4.1) produces overflow when t > 103.

For larger t, the overflow problem may still remain, but it can be mitigated
by increasing X again. Our recommendations are based on limited numerical
evidence.

4.2 Necessity of Condition (2.2a)

Condition (2.2a) is necessary for Talbot’s method to work. For example, when
applied to the function

F(s) = F, f(t) = H(t - 5)

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

Algorithm 682 l 165

where His the Heaviside step unit function, Talbot’s method gives unpredictable
results (often overflow) for small values of t; however, when t > 5, its behavior
returns to normal. If it is known that F(s) is of the form

F(s) = e-“G(s), a>0

and G(s) is known to satisfy Condition (2.2a), the method may still be applied
to F(s), but with the restriction t > a.

5. NUMERICAL RESULTS

Many tests have been performed on several Laplace transforms, including func-
tions with only real singularities and functions with complex singularities (both
polar and essential).

In discussing numerical results, we compare our implementation of Talbot’s
method with a modification of Talbot’s method introduced by Piessens et al., in
the book QUADPACK [5], and with DLAINV [6]. For brevity, we refer to our
implementation as TALBOT-SOFTWARE and to Piessens’ modification of
Talbot’s method as TALBOT-QUADPACK.

DLAINV implements a method based on a Fourier series expansion for
approximating f (t) and uses the e-algorithm to accelerate the convergence; while
TALBOT-QUADPACK and TALBOT-SOFTWARE implement methods based
on the numerical quadrature in the complex plane, starting from the Riemann
inversion formula. The difference between them consists of two different con-
tours.

In Tables I and II we report, for several values of t, some numerical results
related to the following tests functions:

Fl(s) = s-~ fi(t) = t l

F2(s) = s-‘ln s f2(t) = -7) - In t (17 = Euler’s number)

F3(s) = e -492 f3(t) = s
P

F4(s) = arctan i

s2 + 1
Fs(s) = In ~2

f5(t) = 2 cos 2t - cos t
t

F,(s) = 6 fs(t) =
e-2t + 2etcos(t&)

3

The first four functions are taken from [2] and the last two from [8]. All the
computations were carried out on a UNIVAC 1100/90 computer. TALBOT-
QUADPACK (single precision) was run with constants cl and c2 equal to 5,
requiring an accuracy in the result of 10m6; DLAINV (double precision) was run
requiring an accuracy in the result of 10e6; TALBOT-SOFTWARE (single
precision) was run requiring an accuracy in the result of 6 decimal digits.

Comparing the results of Tables I and II, we note first of all that the accuracy
reached by TALBOT-SOFTWARE and TALBOT-QUADPACK is almost the
same, while the accuracy furnished by DLAINV is worse, although DLAINV

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

166 l A. Murli and M. Rizzardi

Table I. Numerical Results for Transforms with Real Singularities. Required Accuracy = 10e6.

TALBOT DLAINV QUADPACK

t Ezact No.Eval. Error No.Eval. Error No.Eval. Error
.l +.lOOE+O 11 l.El4 4005+ 3X-7 155 l.E8
1 +.lOOE+l 11 1.E8 n 3.E6 185 l.E7

10 +. lOOE+2 11 l.El5 ’ 3.E5 485 8.E8
100 +.lOOE+3 11 l.El5 ID 3.E4 485 1.E7

1000 +.lOOE+4 11 3.E8 II 3.E3 485 9.E8

FI(s) = l/a2 h(t) = t

TALBOT

t Ezac t No.Eval. Error
.l +.172E+l 11 1.E7

DLAINV

No.Eval. Error
4005+ 1.E2

ID 9.E6
a 4.E3
IJ 5.E+O
n 4.E3

qUADPACK
Noi$val. .Ery 1

185 1.E7
185 7.E8 -! 185 3.E8
185 1.E7

t Ezac t
.l +.151E15
1 +.206El

10 +.2393-l
100 +. 108E2

1000 +.355E4

Fs(s) = e-‘fi

fa(t) = -q - In t (q = Euler’s number)

TALBOT

No. Eval. Error
11 1.E8
11 3.E7
11 5-E-9
11 3.E9
11 5.ElO

DLAINV QUADPACK

No. Eval. Error 1 No.Eval. Error
93 2.E20 I 95 2.E7

4005+ 3.E19 185 1.E9
al 2.E12 185 4.E9
a 5.E6 155 1.E9

3597 7.ElO 1 215 3.E10

fs(t) = s
Note: +maximum number of evaluations has been achieved.

works in double precision. This fact confirms our experience in testing several
methods based on Fourier series: these methods require that a small range oft is
fixed and suffer from convergence acceleration problems. However, they are the
only applicable methods when the singularities of F(s) do not satisfy the property
(2.2b).

Second, comparing the number of function evaluations used by the three
softwares, our implementation of Talbot’s method is much more efficient because
it uses, in general, many fewer function values: this always seems to be true for
every t when P(s) has only real singularities, and for moderate t when F(s) has
complex singularities.
ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

Algorithm 682 - 167

Table II. Numerical Results for Transform with Complex Singularities. Required Accuracy = 10e6.

TALBOT DLAINV QUADPACK

t Ezact
.l +.9983+0
1 +.841E+O

10 -.544El
100 -.506%2

1000 +.8263-g

No.Eval. Error No.Eval. Error No.Eval. Error
11 1.E7 4005+ 2.E3 155 4.E6
11 1.E7 I) 2%3 215 4.E7
19 m-7 s 2.E3 255 1.E7
70 9.E7 D 2.E3 485 4.E8
525 5.E8 D 8.E4 755 7.E8

F4(3) = arctan(l/a) f4M = y

TALBOT DLAINV

t Ezac t No.Eval. Error
.l -.2983+0 11 5.E8

QUADPACK

No.Eval. Error 1 No.Eval. Error
4005+ 8.E7 1 155 6.E7

D l.E+O 185 4.E8
ls 8.E5 315 5.E7
a 8.E9 905 1.E6
0 2.E3 1755 6.E6

&L
F6(8) = h rl+4 f,j(t) = 2(co82t - COB t)/t

TALBOT DLAINV QUADPACK

t Ezact No.Eval. Error No.Eval. Error No.Eval. Error
.l -f-.9983+0 11 2.ElO 4005+ 2.E3 155 5.E7
1 -.245E+O 11 4.E7 I) 5.E3 185 3.E8
10 +.612E+3 23 l.E4 98 6.E2 255 2.E5

100* -. 1633+44 152 3.E5 II 2.E3 1185 4.E+2
1000* d-.6593+304 1112 8.E6 *** 765 2.E+2

&3(a) = $t& fa(t) = (P + 2e’ CO8 t&i)/3

Note: ‘maximum number of evaluations has been achieved. *Single precision overflow in the result.
***The routine has aborted, since an overflow occurs during its execution.

Finally, but equally importantly, we emphasize that our remedy to solve an
overflow problem in the final result (an example is reported in Table II for F6)
allows us to get a correct numerical result, while in DLAINV the occurrence of
an overflow suddenly aborts the run, and in TALBOT-QUADPACK the overflow
is detected, but a partial numerical result is returned with a large relative error.

6. CONCLUDING REMARKS

In this paper we described a software implementation of Talbot’s method for the
inverse Laplace transform problem.

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

168 l A. Murli and M. Rizzardi

Numerical results confirm that this method is able to satisfy efficiently any
accuracy requirement (of course bounded by computer precision), provided that
the locations of singularities of F(s) are known and the transform F(s) can be
found as a calculable analytic function of s.

The software has been designed in a modular manner; so that, on the one
hand, it is easily used by a nonexpert user and, on the other hand, it allows great
flexibility to the expert user.

ACKNOWLEDGMENT

We would like to acknowledge the help and encouragement given by James N.
Lyness on a preliminary version of this paper. We also wish to thank the referee
for his suggestions and for his work on our software.

REFERENCES

1. AMOS, D. E. Algorithm 644: A portable package for Bessel functions of a complex argument
and nonnegative order. ACM Trans. Math. Softu~. 12, 3 (1986).

2. DAVIES, B., AND MARTIN, B. Numerical inversion of the Laplace transform: A survey and
comparison of methods. J. Comput. Phys. 33 (1979).

3. Fox, P. A., HALL, A. D., AND SCHRYER, N. L. Algorithm 528: Framework for a portable library.
ACM Trans. Math. Softw. 4, 1 (1978).

4. MURLI, A., AND RIZZARDI, M. Sull’implementazione de1 metodo di Talbot per la inversione
numerica della Transformata di Laplace-Progetto Finalizzato Informatica de1 CNR, Rome,
Rapport0 SOFMAT 10.83, 1983. (In Italian.)

5. PIESSENS, R., DE DONCKER-KAPENGA, E., UBERHUBER, C. W., AND KAHANER, D. K.
QUADPACK. A Subroutine Package for Automatic Integration. Springer Verlag, New York, 1983.

6. PIESSENS, R., AND HUYSMANS, R. Algorithm 619: Automatic numerical inversion of the Laplace
transform. ACM Trans. Math. Softw. 10, 3 (1984).

7. STOER, J. Introduzione all’dnalisi Numerica, vol. I. Zanichelli, 1976. Original Title: Einfuhr-
ung in die Numerische Mathematik. Springer Verlag, 1972.

8. TALBOT, A. The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl. 23
(1979).

Received May 1986; revised November 1987, February 1989; accepted June 1989

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990.

