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We describe a FORTRAN implementation, and some related problems, of Talbot’s method which 
numerically solves the inversion problem of almost arbitrary Laplace transforms by means of special 
contour integration. 

The basic idea is to take into account computer precision to derive a special contour where 
integration will be carried out. 
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1. INTRODUCTION 

The Laplace transform of a function f(t), defined on the interval [0, m) and 
absolutely integrable on any finite interval [0, a], is defined as follows 

F(s) = 
s 

m 
o e-“‘f(t) dt, Re(s) > y. 

where y. is the Laplace transform abscissa of conuergence. The inverse Laplace 
problem is that of reconstructing f(t) from known values of F(s). 

In this paper we describe Talbot’s method for the numerical inversion of the 
Laplace transform. We provide a software implementation and give some of 
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the results of numerical tests. In particular, in Section 2, a brief description of 
the underlying theory is given. Section 3 describes the software implementation, 
its input requirements, and some of the difficulties that a user may encounter. 
Moreover, we describe how we solved the problem of avoiding overflow in 
computing the numerical approximation to f(t). In Section 4, some particular 
problems are discussed and, in Section 5, we present some of the results of 
numerical comparisons between our software and other available software items. 

2. OUTLINE OF THE UNDERLYING THEORY 

The Riemann inversion formula gives an integral representation for f(t) in terms 
of F(s): 

f(t) = & B e”%(s) ds, 9 
t>o, i=J-1 (2.1) 

where B is the Bromwich contour from y - iw to y + &, with y > yo, parallel 
to the imaginary axis. 

This contour is located to the right of all the singularities of F(s). When f(t) 
is to be calculated using numerical quadrature, it may be convenient to use a 
different contour. In general, one would like to move the contour to the left so 
as to reduce in magnitude the factor est in the integrand, but the contour must 
not be moved too close to singularities of F(s), as to do so will result in peaks in 
the integrand function. 

A prescription for finding a suitable contour (one which retains a proper 
balance between the two effects described above) has been provided by Talbot. 
This requires that the locations of the singularities of F(s) be known, and that 
F(s) satisfies 

(a) ] F(s) I + 0 uniformly as ) s ] + co in Re(s) < yo, 
(b) for all singularities Sj, I Im(aj) ) < K 

and a numerical value of K is known. 
(2.2) 

Talbot’s contour, which is illustrated in Figure 1, is of the form 

s(z) = 0 + As,(z), 2% (-27ri, 274 (2.3) 

where 

s,(z) = z 
v-1 
- l-e-Z+z 2 * 

His prescription for determining the geometrical parameters X, g, v and for 
determining the accuracy parameter n, i.e., the number of points required in the 
quadrature rule, is lengthy and is given in references [4] and [8]. 

The software provided here is in two parts: the first requires as input the 
locations of the singularities, the required accuracy, and machine characteristics 
and provides the value of X, g, v, and n. The second carries out a numerical 
integration using n points, which lie on the contour and whose imaginary parts 
are equally spaced. 
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Fig. 1. Talbot’s contour. 

Specifically, put in (2.3) z = 2 ic9, then the contour is parameterized using 

SW = fJ + AS”(O), I9 E (-7r, 7r) (2.4) 

where 

s,(O) = 8 cot 0 + id, 

and the integral (2.1) takes the form 

f(t) = 5 -r s eXtSp(‘)F[a + Xs,(t9)]sL (0) d0 
* 

s:(O) = i 
{ 

0 - cos 19 sin 0 
v + 

I sin% * 

Taking symmetry into account, the trapezoidal rule approximation gives 

where 

(2.5) 

(2.6) 

ACM Transactions on Mathematical Software, Vol. 16, No. 2, June 1990. 



Algorithm 682 - 161 

The C” notation usually denotes a sum where the first and last terms are 
halved; in this case, in the sum, the j = n term is zero and the j = 0 term becomes 

i e’“F(a + A). 

3. SOFTWARE IMPLEMENTATION 

The user is provided with two routines. These are called successively: the first 
(subroutine TAPAR) provides the geometrical parameters X, u, Y defining a 
Talbot’s contour and the number n of function values that should be used in the 
subsequent quadrature routine. These parameters need to be computed for each 
value of t for which the Inverse transform is required. Inputs to the subroutine 
TAPAR are 

-the value of t where the Inverse Laplace transform f(t) is required (t > 0); 
-the location and nature of some of the singularities of the Laplace transform 

F(s); 
-decimal machine-precision; and 
-the required accuracy in the result. 

The second routine (subroutine TSUM) requires t, X, u, v, and n as input, and 
calculates the approximation (2.6) to the contour integral (2.5). More precisely, 
inputs to the subroutine TSUM are 

-the value oft (as before); 
-the Laplace transform, passed by an external complex function of a complex 

argument; 
-geometrical parameters X, u, and u; and 
-the number n of abscissas. 

The division into two subroutines allows the possibility, for expert users, to 
modify either the method’s parameters or the quadrature rule at will. Our 
experience is that minor modifications to the contour can result in a large 
increase in the cost of integration. Nevertheless, users may 

(a) increase or decrease u, or 
(b) change X and v in such a way that neither X nor Xv are decreased, 

and remain confident that the new contour is equivalent to Talbot’s. In addition, 
users may use Talbot’s contour but, for additional safety, use a larger value of n 
for the number of abscissas. 

Incidentally, we remark that in general the cost of running TSUM far exceeds 
that of running TAPAR, and for different values of t, TSUM cannot reuse 
previous function values whether or not the same contour is used. 

Moreover, we chose complex arithmetic for the Laplace transform function- 
input parameter to the subroutine TSUM-because it is simpler, for nonexpert 
users to write a FORTRAN complex function as a copy of the corresponding 
mathematical function. But, as we read in [l], the collection of software for 
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complex functions in general is not very extensive, and the most important 
numerical libraries are only minimally cognizant of complex variable computa- 
tion. A reason for this is that the FORTRAN double precision complex arithmetic 
is not yet standardized; we give an example of this fact in the sequel. 

So if the Laplace transform function is furnished by some library or some 
existing software, users will probably have at their disposal a FORTRAN sub- 
routine instead of the FORTRAN complex function required by TSUM. How 
can users use the Talbot method implementation? Suppose they have, for 
computing F(s), a subroutine like the following: 

SUBROUTINE LAPFUN (SREAL, SIMAG, FREAL, FIMAG) 

where SREAL, SIMAG, FREAL, and FIMAG are respectively, real variables, for 
the real and imaginary parts of the argument of the function and the real and 
imaginary parts of the function itself. 

To use TSUM, it is sufficient to provide the following interface function: 

COMPLEX FUNCTION F(S) 
COMPLEX S 
REAL SREAL, SIMAG, FREAL, FIMAG 

SREAL = REAL(S) 
SIMAG = IMAG(S) 
CALL LAPFUN(SREAL, SIMAG, FREAL, FIMAG) 
F = CMPLX(FREAL, FIMAG) 
RETURN 

END 

A similar interface function (but one that is simpler) is required if the Laplace 
transform function F(s) is computed in complex arithmetic by a FORTRAN 
subroutine such as the following: 

SUBROUTINE FUNLAP(SCMPLX, FCMPLX) 
COMPLEX SCMPLX, FCMPLX 

. . . 

The software presented here is written in ANSI FORTRAN 77, using single 
precision arithmetic throughout. We have available fully tested versions using 
double precision arithmetic. 

Double precision complex arithmetic is not standard in FORTRAN; we 
have tested our software successfully on several computers: at first a UNIVAC 
1100/90 (FTN ASCII compiler) and a HEWLETT PACKARD 1000/F (FTN’IX 
compiler), and then a CDC, a VAX, and an IBM-PC, each of which uses different 
double precision complex arithmetic. It is straightforward for users to modify 
these routines to use double precision arithmetic; however, they should take great 
care to locate and allow for these sort of effects. 

A more insidious problem we encountered using the double complex arithmetic 
in FORTRAN 77 is concerned with different values furnished, in single and 
double precision, by some built-in functions with branch-points such as the 
square root. Testing our software on the HP 1000 machine, we found that the 
FORTRAN routine CSQRT(S), used in a Laplace transform test function, gives 
different results (for the same complex argument S, of course) in single and 
double precision, due to the fact that the complex square root is a two-valued 
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function. In single precision, it seems to work in the cut plane ] arg .s ] c 7r, 
while in double precision, in the cut plane -312~ < arg s < a/2. So, for example, 
if we compute CSQRT(S) where the argument of S lies in (7r/2, r), the complex 
single precision computation gives the correct result, with its argument lying in 
(7r/4, r/2), while the complex double precision computation gives as a result the 
opposite of the value returned in single precision. Naturally, this phenomenon 
may have a catastrophic effect on the numerical result also if, when discouered, 
it is easy to solve the problem: it suffices to multiply the wrong complex value 
by an appropriate rotation factor. 

In order to assure complete portability, we provide only the single precision 
version of the software. 

Besides TAPAR and TSUM, implementation of Talbot’s method requires two 
further subroutines. One is INVPC (called by TAPAR). This inverts the equation 
of the contour (for v = 1): 

2 
Sl(Z) = ~ 

1 - e-’ 

for any s located to the left of the contour. The subroutine INVPC implements 
a suitable real Newton process to solve the above complex nonlinear equation, 
and it only requires a few iterations (in most cases three to five) to satisfy a 
convergence criterion of 0.01 percent. 

The other routine is RlMACH [3] (called by TSUM). This routine furnishes 
some environmental arithmetic parameters for several machines (by a simple 
manipulation of the FORTRAN code); in this case it is used to obtain the largest 
magnitude floating-point number to avoid an overflow in the final result. 

An overflow problem in computing f(t) may arise, for large t, when F(s) has a 
singularity aj such that 

Re(aj) > 0. 

The same problem occurs in the numerical approximation fct) given by (2.6), 
because of the factor 

Xeot 

n ’ 
u > 0. 

The remedy is the following: since the algorithm at first computes the sum T,(t) 
in (2.6), whose terms are small when compared to the final result, in order to 
evaluate (2.6), we put 

f(t) = sgn[f(t)]el”‘f’t”. 

If M is the maximum representable floating-point number and 

M = eP, 

(3.1) 

then f(t) may produce overflow when 

at + In i T,(t) > p. 
[ I 
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In this case, an error indicator (output parameter) in the subrout&re TSUM 
signals that an overflow might occur, and the routine, instead of f(t), returns 
Z’,(t); the true result can then be computed by (2.6). 

Several different schemes have been tested for computing the sum T,(t) in the 
quadrature routine (TSUM). In our context, better results were obtained using 
the Reinsch form of the Goertzel algorithm [7] to evaluate the Chebyshev- 
Clenshaw sum that gives the Trapezoidal approximation to f(t). This algorithm 
is implemented in the program. 

4. MISCELLANEOUS 

In this section we provide two examples in which Talbot’s method does not work 
well, and give some suggestions to bypass the obstacles. 

4.1 Essential Singularity 

A particular problem arises for the function 

-l/s 

F(s) = e 
cos 24 

&’ 
f(t) = - 

Jz’ 

This Laplace transform has an essential singularity in 0, and its behavior near 
an essential singularity badly influences the results of the method, possibly 
leading to overflow in F(s) for large t. A similar situation occurs using other 
methods. 

Talbot suggests a remedy: to increase the value of X so that the contour avoids 
this singularity by a wide margin. If c is the decimal machine precision, Talbot’s 
modification consists of 

w-l 1 
A=- 

t +s? 
w = 0.4(c + 1). (4.1) 

On the basis of many experimental results, we suggest that the modification 

w as before (4.2) 

should be used instead of (4.1), and that n should be increased to n’, given by 

n ’ = n loglo when t > 10. 

With the modification (4.2), the result is correct for t less than 105, while the 
modification (4.1) produces overflow when t > 103. 

For larger t, the overflow problem may still remain, but it can be mitigated 
by increasing X again. Our recommendations are based on limited numerical 
evidence. 

4.2 Necessity of Condition (2.2a) 

Condition (2.2a) is necessary for Talbot’s method to work. For example, when 
applied to the function 

F(s) = F, f(t) = H(t - 5) 
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where His the Heaviside step unit function, Talbot’s method gives unpredictable 
results (often overflow) for small values of t; however, when t > 5, its behavior 
returns to normal. If it is known that F(s) is of the form 

F(s) = e-“G(s), a>0 

and G(s) is known to satisfy Condition (2.2a), the method may still be applied 
to F(s), but with the restriction t > a. 

5. NUMERICAL RESULTS 

Many tests have been performed on several Laplace transforms, including func- 
tions with only real singularities and functions with complex singularities (both 
polar and essential). 

In discussing numerical results, we compare our implementation of Talbot’s 
method with a modification of Talbot’s method introduced by Piessens et al., in 
the book QUADPACK [5], and with DLAINV [6]. For brevity, we refer to our 
implementation as TALBOT-SOFTWARE and to Piessens’ modification of 
Talbot’s method as TALBOT-QUADPACK. 

DLAINV implements a method based on a Fourier series expansion for 
approximating f (t ) and uses the e-algorithm to accelerate the convergence; while 
TALBOT-QUADPACK and TALBOT-SOFTWARE implement methods based 
on the numerical quadrature in the complex plane, starting from the Riemann 
inversion formula. The difference between them consists of two different con- 
tours. 

In Tables I and II we report, for several values of t, some numerical results 
related to the following tests functions: 

Fl(s) = s-~ fi(t) = t l 

F2(s) = s-‘ln s f2(t) = -7) - In t (17 = Euler’s number) 

F3(s) = e -492 f3(t) = s 
P 

F4(s) = arctan i 

s2 + 1 
Fs(s) = In ~2 

f5(t) = 2 cos 2t - cos t 
t 

F,(s) = 6 fs(t) = 
e-2t + 2etcos(t&) 

3 

The first four functions are taken from [2] and the last two from [8]. All the 
computations were carried out on a UNIVAC 1100/90 computer. TALBOT- 
QUADPACK (single precision) was run with constants cl and c2 equal to 5, 
requiring an accuracy in the result of 10m6; DLAINV (double precision) was run 
requiring an accuracy in the result of 10e6; TALBOT-SOFTWARE (single 
precision) was run requiring an accuracy in the result of 6 decimal digits. 

Comparing the results of Tables I and II, we note first of all that the accuracy 
reached by TALBOT-SOFTWARE and TALBOT-QUADPACK is almost the 
same, while the accuracy furnished by DLAINV is worse, although DLAINV 
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Table I. Numerical Results for Transforms with Real Singularities. Required Accuracy = 10e6. 

TALBOT DLAINV QUADPACK 

t Ezact No.Eval. Error No.Eval. Error No.Eval. Error 
.l +.lOOE+O 11 l.El4 4005+ 3X-7 155 l.E8 
1 +.lOOE+l 11 1.E8 n 3.E6 185 l.E7 

10 +. lOOE+2 11 l.El5 ’ 3.E5 485 8.E8 
100 +.lOOE+3 11 l.El5 ID 3.E4 485 1.E7 

1000 +.lOOE+4 11 3.E8 II 3.E3 485 9.E8 

FI(s) = l/a2 h(t) = t 

TALBOT 

t Ezac t No.Eval. Error 
.l +.172E+l 11 1.E7 

DLAINV 

No.Eval. Error 
4005+ 1.E2 

ID 9.E6 
a 4.E3 
IJ 5.E+O 
n 4.E3 

qUADPACK 
Noi$val. .Ery 1 

185 1.E7 
185 7.E8 -! 185 3.E8 
185 1.E7 

t Ezac t 
.l +.151E15 
1 +.206El 

10 +.2393-l 
100 +. 108E2 

1000 +.355E4 

Fs(s) = e-‘fi 

fa(t) = -q - In t (q = Euler’s number) 

TALBOT 

No. Eval. Error 
11 1.E8 
11 3.E7 
11 5-E-9 
11 3.E9 
11 5.ElO 

DLAINV QUADPACK 

No. Eval. Error 1 No.Eval. Error 
93 2.E20 I 95 2.E7 

4005+ 3.E19 185 1.E9 
al 2.E12 185 4.E9 
a 5.E6 155 1.E9 

3597 7.ElO 1 215 3.E10 

fs(t) = s 
Note: +maximum number of evaluations has been achieved. 

works in double precision. This fact confirms our experience in testing several 
methods based on Fourier series: these methods require that a small range oft is 
fixed and suffer from convergence acceleration problems. However, they are the 
only applicable methods when the singularities of F(s) do not satisfy the property 
(2.2b). 

Second, comparing the number of function evaluations used by the three 
softwares, our implementation of Talbot’s method is much more efficient because 
it uses, in general, many fewer function values: this always seems to be true for 
every t when P(s) has only real singularities, and for moderate t when F(s) has 
complex singularities. 
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Table II. Numerical Results for Transform with Complex Singularities. Required Accuracy = 10e6. 

TALBOT DLAINV QUADPACK 

t Ezact 
.l +.9983+0 
1 +.841E+O 

10 -.544El 
100 -.506%2 

1000 +.8263-g 

No.Eval. Error No.Eval. Error No.Eval. Error 
11 1.E7 4005+ 2.E3 155 4.E6 
11 1.E7 I) 2%3 215 4.E7 
19 m-7 s 2.E3 255 1.E7 
70 9.E7 D 2.E3 485 4.E8 
525 5.E8 D 8.E4 755 7.E8 

F4(3) = arctan(l/a) f4M = y 

TALBOT DLAINV 

t Ezac t No.Eval. Error 
.l -.2983+0 11 5.E8 

QUADPACK 

No.Eval. Error 1 No.Eval. Error 
4005+ 8.E7 1 155 6.E7 

D l.E+O 185 4.E8 
ls 8.E5 315 5.E7 
a 8.E9 905 1.E6 
0 2.E3 1755 6.E6 

&L 
F6(8) = h rl+4 f,j(t) = 2(co82t - COB t)/t 

TALBOT DLAINV QUADPACK 

t Ezact No.Eval. Error No.Eval. Error No.Eval. Error 
.l -f-.9983+0 11 2.ElO 4005+ 2.E3 155 5.E7 
1 -.245E+O 11 4.E7 I) 5.E3 185 3.E8 
10 +.612E+3 23 l.E4 98 6.E2 255 2.E5 

100* -. 1633+44 152 3.E5 II 2.E3 1185 4.E+2 
1000* d-.6593+304 1112 8.E6 *** 765 2.E+2 

&3(a) = $t& fa(t) = (P + 2e’ CO8 t&i)/3 

Note: ‘maximum number of evaluations has been achieved. *Single precision overflow in the result. 
***The routine has aborted, since an overflow occurs during its execution. 

Finally, but equally importantly, we emphasize that our remedy to solve an 
overflow problem in the final result (an example is reported in Table II for F6) 
allows us to get a correct numerical result, while in DLAINV the occurrence of 
an overflow suddenly aborts the run, and in TALBOT-QUADPACK the overflow 
is detected, but a partial numerical result is returned with a large relative error. 

6. CONCLUDING REMARKS 

In this paper we described a software implementation of Talbot’s method for the 
inverse Laplace transform problem. 
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Numerical results confirm that this method is able to satisfy efficiently any 
accuracy requirement (of course bounded by computer precision), provided that 
the locations of singularities of F(s) are known and the transform F(s) can be 
found as a calculable analytic function of s. 

The software has been designed in a modular manner; so that, on the one 
hand, it is easily used by a nonexpert user and, on the other hand, it allows great 
flexibility to the expert user. 
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