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Abstract

The main difference of convolution quadrature method (CQM)-based boundary element formulations to usual time-

stepping BE formulations is the way to solve the convolution integral appearing in most time-dependent integral equa-

tions. In the CQM formulation, the convolution integrals are approximated by a quadrature rule whose weights are

determined by the Laplace transformed fundamental solutions and a multi-step method. So, there is no need of a time

domain fundamental solution. For quasi-static problems in visco- or poroelasticity time-dependent fundamental solu-

tions are available, but these fundamental solutions are highly complicated yielding to very sensitive algorithms. Espe-

cially in viscoelasticity, for every rheological model a separate fundamental solution must be deduced.

Here, firstly, viscoelastic as well as poroelastic constitutive equations are recalled and, then, the respective integral

equations are presented. Applying the usual spatial discretization and using the CQM for the temporal discretization

yields the final time-stepping algorithm. The proposed methodology is tested by two simple examples considering creep

behavior in viscoelasticity and consolidation processes in poroelasticity. The algorithm shows no stability problems and

behaves well over a broad range of time step sizes.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Convolution quadrature method (CQM)-based

boundary element (BE) formulations are first published

in 1997 [1,2] with applications in elasto- or viscoelasto-

dynamics. The main difference to usual time-stepping

BE formulations is the way to solve the convolution

integral appearing in most time-dependent integral

equations. In the CQM formulation, this convolution

integral is approximated by a quadrature rule whose

weights are determined by the Laplace transformed
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fundamental solutions and a multi-step method [3,4].

An overview of this BE formulation is given in [5].

There are mainly two reasons to use a CQM-based

BEM instead of usual time-stepping procedures. One

reason is to improve the stability of the time-stepping

procedure [1,6]. The other reason is to tackle problems

where no time-dependent fundamental solutions are

available, e.g., for inelastic material behavior in viscoel-

astodynamics [7], in poroelastodynamics [8], or for func-

tional graded materials [9]. Also, this method is used to

avoid highly complicated fundamental solutions in time

domain [10–12].

However, up to now, the CQM-based BEM is used

only in dynamic formulations. Clearly, for quasi-static
ed.
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problems as in visco- or poroelasticity there is no need to

apply the CQM because time-dependent fundamental

solutions are available, e.g., for viscoelasticity in

[13,14] and for poroelasticity in [15]. However, these

fundamental solutions are highly complicated yield-

ing to very sensitive algorithms and, especially in visco-

elasticity [16], for every rheological model a separate

fundamental solution must be deduced, which is even

not possible for very complicated rheological models.

Therefore, it is promising to apply the CQM also to

the quasi-static integral equations in visco- and

poroelasticity.

Here, at first, viscoelastic as well as poroelastic con-

stitutive equations are recalled whereas in viscoelasticity

a generalized 3-parameter model (see, e.g., [17]) serves as

an example and Biot�s theory [18] is used in poroelastic-

ity. It should be mentioned that the proposed method

can also be applied on mixture theory based theories

as the Theory of Porous Media [19] because the mathe-

matical operator of the governing equations is equal to

that of Biot�s theory, as shown for the dynamic case

by Schanz and Diebels [20]. For both constitutive

assumptions, viscoelasticity and poroelasticity, the fun-

damental solutions in Laplace domain are given and

the singular behavior is discussed. For viscoelasticity

such solutions are found by applying the elastic–visco-

elastic correspondence principle [21] to the elastostatic

fundamental solutions. In case of poroelasticity, the

quasi-static fundamental solutions in Laplace domain

may be found in [22] or in the survey article by Cheng

and Detournay [23].

Subsequent to the formulation of the constitutive and

governing equations, the respective integral equations

are presented. Applying the usual spatial discretization

and using the CQM for the temporal discretization

yields the final time-stepping algorithm. Concerning

the treatment of the singular integrals, the well known

procedures from elasticity can be used because the singu-

lar parts of the integrals are equal to the elastic case. Fi-

nally, the proposed methodology is tested with simple

examples for creep behavior in viscoelasticity or for con-

solidation processes in poroelasticity.

Throughout this paper, the summation convention is

applied over repeated indices and Latin indices receive

the values 1,2, and 1,2,3 in two-dimensions (2-d) and

three-dimensions (3-d), respectively. Commas ( ),i denote

spatial derivatives and, as usual, the Kronecker delta is

denoted by dij.
GðsÞ ¼ G
1 þ qDsa

D

1 þ pDsaD

mðsÞ ¼
ð1 þ mÞ 1 þ qHsa

H� �
1 þ pDsa

D� �
� ð1 � 2mÞ 1 þ qDsa

D� �
1 þ
�

2ð1 þ mÞ 1 þ qHsaHð Þ 1 þ pDsaDð Þ þ ð1 � 2mÞ 1 þ qDsaDð Þ 1ð
2. Governing equations and fundamental solutions

In the following, the constitutive equations and the

governing equations for a viscoelastic continuum and a

poroelastic continuum are given in a short form. The

intention is only to point out the notation and to state

the basic assumptions. For a more detailed description

on viscoelasticity the reader is referred to [21] and on

poroelasticity to Biot�s original work [18] or to the quite

comprehensive article of Detournay and Cheng [24].

Further, as the convolution quadrature method uses

fundamental solutions only in Laplace domain, it is suf-

ficient to give the governing equations and their funda-

mental solutions in Laplace domain.

2.1. Quasi-static viscoelasticity

Decomposing the stress tensor rij and strain tensor �ij
into their hydrostatic parts dijrkk/3, dij�kk/3 and the devi-

atoric parts sij, eij and assuming a linear isothermal vis-

coelastic material, e.g., a generalized three parameter

model, two independent sets of constitutive equations

exist in the Laplace domain

1 þ pDsa
D

� �
ŝij ¼ 2Gêij 1 þ qDsa

D
� �

ð1aÞ

1 þ pHsa
H

� �
r̂kk ¼

2G 1 þ mð Þ
1 � 2m

�̂kk 1 þ qHsa
H

� �
; ð1bÞ

when f̂ ðsÞ denotes the Laplace transform of a function

f(t) with the complex Laplace variable s. In the Eq.

(1), the shear modulus G and the Poisson�s ratio m are

used as elastic material constants . The index H or D

indicates that the constitutive parameters p,q and the

fractional power a can be different for the hydrostatic

part H and the deviatoric part D of the stress–strain

relation.

A plausible model of the viscoelastic phenomenon

should predict non-negative internal work, a non-nega-

tive rate of energy dissipation [25], and finite wave veloc-

ities. Therefore, the parameters are constrained by [26]

0 6 pD < qD; 0 < aD < 2; 0 6 pH < qH ;

0 < aH < 2: ð2Þ

Comparing the viscoelastic constitutive equation (1)

with Hooke�s law, the elastic–viscoelastic correspon-

dence principle G() GðsÞ and m () mðsÞ is obtained

with
pHsa
H �

þ pHsaH Þ ;
ð3Þ
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where G and m without the argument (s) denote the elas-

tic material data whereas G(s) and m(s) means the com-

plex moduli from viscoelasticity. Hence, every

elastodynamic solution of a specific problem can be con-

verted to the solution of the related viscoelastic problem

by replacing the elastic material data by the complex

moduli (3) [21].

In Eq. (3), the dependence of Poisson�s ratio m(s) from

the Laplace parameter s is clearly observed, which corre-

sponds to a time-dependent Poisson�s ratio. If, however,

the parameters satisfy the relation

1 þ qHsa
H

� �
1 þ pDsa

D
� �

¼ 1 þ qDsa
D

� �
1 þ pHsa

H
� �

;

ð4Þ

which means that the deviatoric part and the hydrostatic

part of the stress–strain relation behave similar, Pois-

son�s ratio is also for viscoelasticity no function of s,

i.e., time invariant, and equal to the elastic case [21].

Inserting the viscoelastic constitutive equation (1) in

the static equilibrium rij,j = �fi yields the governing

equation in Laplace domain

GðsÞûi;jjðx; sÞ þ
GðsÞ

ð1 � 2mðsÞÞ ûj;ijðx; sÞ ¼ �f̂ iðx; sÞ: ð5Þ

This is the viscoelastic equivalent to the Lamé field

equations where the only difference is the dependence

of the material parameters on the Laplace variable s.

Clearly, this equation can be obtained by applying the

elastic–viscoelastic correspondence principle on the elas-

tic Lamé equations. Since both, the displacements ûi and

the material factors are dependent on s, the inverse

transformation yields an integrodifferential equation as

governing equation in time domain. Due to this, solu-

tions in time domain are very rare. However, via the

elastic–viscoelastic correspondence principle in Laplace

domain, with a subsequent inverse Laplace transform,

solutions of several problems may be found.

Here, the fundamental solution is required for the BE

formulation. Fortunately, the CQM based BE formula-

tion uses only the Laplace transformed fundamental

solution which is easily achieved with the elastic–visco-

elastic correspondence principle. So, the displacement

fundamental solution for a quasi-static viscoelastic con-

tinuum is

bU ij ¼
1

16pGðsÞrð1 � mðsÞÞ r;ir;j þ dijð3 � 4mðsÞÞ
� �

ð6Þ

and the corresponding traction fundamental solution is

bT ij ¼
�1

8pð1 � mðsÞÞr2 ð1 � 2mðsÞÞdij þ 3r;ir;j
� 	

r;n
�

�ð1 � 2mðsÞÞ r;jni � r;inj
� ��

: ð7Þ

The dependence on r = jx � yj, i.e., the distance be-

tween field and load point, is the same as for the elasto-

static fundamental solutions. So, the displacement
fundamental solution is weakly singular and the traction

fundamental solution strongly singular. Obviously, the

same procedures as in elastostatics to tackle these singu-

larities can be applied. However, it should be mentioned

that the singular part of the traction fundamental solu-

tion is in viscoelasticity dependent on s, i.e., time-depen-

dent. Only for the special case of (4), the traction

fundamental solution (7) is equal to the elastostatic

one and, therefore, not dependent on s.

2.2. Quasi-static poroelasticity

Following Biot�s approach to model the behavior of

porous media, the constitutive equations can be ex-

pressed as

rij ¼ Gðui;j þ uj;iÞ þ K � 2

3
G


 �
dijuk;k � adijp

and

f ¼ auk;k þ
1

M
p ð8Þ

in which rij denotes the total stress, p the pore pressure,

ui the displacements of the solid frame, and f the varia-

tion of fluid volume per unit reference volume. The sign

convention for stress and strain follows that of elasticity,

namely, tensile stress and strain is denoted positive. The

bulk material is defined by the shear modulus G and

the compression modulus K, known from elasticity.

The porosity /, Biot�s effective stress coefficient a, and

M complete the set of material parameters. Further, a

linear strain-displacement relation eij = 1/2(ui,j + uj,i) is

used, i.e., small deformation gradients are assumed.

Conservation of the linear momentum yields the sta-

tic equilibrium

rij;j ¼ �F i ð9Þ

formulated for the mixture, i.e., for the solid and the

interstitial fluid. In Eq. (9), Fi denotes the bulk body

forces. The mass conservation is governed by the conti-

nuity equation

o

ot
f þ qi;i ¼ a; ð10Þ

with the specific flux of the fluid qi and a source term

a(t). Finally, the interstitial flow is modeled with Darcy�s
law

qi ¼ �jp;i ð11Þ

where j denotes the permeability.

As shown in [27], it is sufficient to use the solid dis-

placement and the pore pressure as basic variables to de-

scribe a poroelastic continuum. Therefore, the above

equations are reduced to these four unknowns. Clearly,

contrary to the dynamic case, this can be achieved even

in time domain by eliminating the flux in the above given

equations. However, because in the following only the
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Laplace transformed equations are necessary, Eqs. (8)–

(11) are transformed to Laplace domain. Subsequently,

eliminating the flux yields the final set of differential equa-

tions for the displacements ûi and the pore pressure p̂

Gûi;jj þ K þ 1

3
G


 �
ûj;ij � ap̂;i ¼ �bF i ð12aÞ

jp̂;ii �
s
M
p̂ � asûi;i ¼ �â: ð12bÞ

It must be mentioned that vanishing initial condi-

tions for all state variables are assumed.

The fundamental solutions for the system of govern-

ing Eq. (12) are solutions due to single forces in the solid

in all three spatial directions bF iej ¼ dðx� yÞdij denoted

by bU s

ij and bP s

i as well due to a single source in the fluid

â ¼ dðx� yÞ denoted by bUf

i and bP f
, i.e., in total four

functions. These solutions can be found in the literature,

e.g., in [22], and are given for convenience in Appendix A.

For developing a BE formulation the corresponding inte-

gral equation to the system (12) is used where an essential

feature is the singular behavior of the fundamental solu-

tions and their derivatives, i.e., the flux and the traction

fundamental solution. Simple series expansion with

respect to the variable r = jx � yj shows that these solu-

tions behave in the limit r! 0 like the elastic or the

acoustic fundamental solutions, i.e., in 3-d

bU s

ij ¼
1

16pGrð1 � mÞ fr;ir;j þ dijð3 � 4mÞg þ Oðr0Þ ð13aÞ

bP f ¼ 1

4pj
1

r
þ Oðr0Þ ð13bÞ

bT s

ij ¼
�1

8pð1 � mÞr2 ð1 � 2mÞdij þ 3r;ir;j
� 	

r;n
�

�ð1 � 2mÞðr;jni � r;injÞ
�
þ Oðr0Þ ð13cÞ

bT f

i ¼
sað1 � 2mÞ
8pjð1 � mÞ

1

r
½ni þ r;ir;n
 þ Oðr0Þ ð13dÞ

bQs

j ¼
að1 � 2mÞ
16pð1 � mÞ

1

r
½r;jr;n � nj
 þ Oðr0Þ ð13eÞ

bQf
¼ � 1

4p
r;n
r2

þ Oðr0Þ: ð13fÞ

In Eq. (13), r,n = r,knk denotes the normal derivative

and the fundamental solutions bUf

i ¼ sbP s

i ¼ Oðr0Þ are

regular.
3. Quasi-static boundary element formulation

To establish a BE formulation an integral equation

corresponding to the governing equations must be de-

rived. For both constitutive assumptions, viscoelasticity
and poroelasticity, the usual methods, i.e., weighted

residuals or reciprocal work theorem, can be used. Here,

the corresponding integral equations are only recalled

where a derivation for viscoelasticity may be found in

[28] and for poroelasticity in [29].

So, starting from a weighted residual statement de-

fined on the domain X with boundary C using funda-

mental solutions as weighting functions an integral

equation is achieved. Next, performing two partial inte-

grations with respect to the spatial variable yields the

boundary integral equations. With careful regard to

the singular behavior of the fundamental solutions, the

load point y is shifted to the boundary. Based on the

governing Eq. (5), the integral equation for

viscoelasticity

cijðy; tÞ � uiðy; tÞ ¼
Z

C
Uijðx; y; tÞ � tiðx; tÞdC

� T ijðx; y; tÞ � uiðx; tÞdC ð14Þ

and based on the poroelastic system of Eq. (12), the

respective integral equations for poroelasticity

cijðyÞ 0

0 cðyÞ


 �
uiðt; yÞ
pðt; yÞ


 �
¼
Z

C

Us
ijðt; y; xÞ �Psjðt; y; xÞ

Uf
i ðt; y; xÞ �Pf ðt; y; xÞ

" #
�

tiðt; xÞ
qðt; xÞ


 �
dC

�
T s
ijðt; y; xÞ Qs

jðt; y; xÞ
T f
i ðt; y; xÞ Qf ðt; y; xÞ

" #
�

uiðt; xÞ
pðt; xÞ


 �
dC:

ð15Þ

are achieved. The time domain representation is ob-

tained by a formal inverse Laplace transform where all

products between two Laplace parameter dependent

functions are transformed into convolution integrals

f � g ¼
Z t

0

f ðt � sÞgðsÞds: ð16Þ

The integral free terms cij and c are due to the

strongly singular behavior of the last integrals in (14)

and (15) where denotes the Cauchy principal value

of the integral. As seen from the singular parts of the

traction fundamental solutions (7) and (13c), the integral

free terms cij differ only in the time-dependency of the

viscoelastic case compared to the constant term in the

poroelastic case. But, finally, both are equal to elasto-

statics with respect to the spatial behavior. The integral

free term c is equal to acoustics which can be seen from

Eq. (13f). So, the procedure proposed by Mantic [30] to

determine these terms can be used.

Next, a boundary element formulation is achieved

following the usual procedure, i.e., introducing spatial

and temporal discretization. For simplicity this proce-

dure is only described for the more complex poroelastic
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integral equation (15) which includes the single integral

equation of viscoelasticity (14). Differences in both for-

mulations are remarked.

3.1. Spatial discretization

First, the boundary surface C is discretized by E iso-

parametric elements Ce where F polynomial shape func-

tions Nf
e ðxÞ are defined. Hence, the following ansatz

functions with the time-dependent nodal values uefi ðtÞ,
tefi ðtÞ, pef(t), and qef(t) are used to approximate the

boundary states

uiðx; tÞ ¼
XE
e¼1

XF
f¼1

Nf
e ðxÞu

ef
i ðtÞ;

tiðx; tÞ ¼
XE
e¼1

XF
f¼1

Nf
e ðxÞt

ef
i ðtÞ;

pðx; tÞ ¼
XE
e¼1

XF
f¼1

Nf
e ðxÞpef ðtÞ;

qðx; tÞ ¼
XE
e¼1

XF
f¼1

Nf
e ðxÞqef ðtÞ:

ð17Þ

In Eq. (17), the shape functions of all four variables

are denoted by the same function Nf
e ðxÞ indicating the

same approximation level for all variables. This is not

mandatory but usual. Clearly, in viscoelasticity, ansatz

functions have to be chosen only for the displacements

and tractions. Inserting these ansatz functions (17) in

the time-dependent integral Eq. (15) yields

cijðyÞ 0

0 cðyÞ


 �
uiðy; tÞ
pðy; tÞ


 �
¼
XE
e¼1

XF
f¼1

Z
C

Us
ijðr; tÞ �P sjðr; tÞ

Uf
i ðr; tÞ �Pf ðr; tÞ

" #(

� Nf
e ðxÞdC � tefi ðtÞ

qef ðtÞ

" #
�

T s
ijðr; tÞ Qs

jðr; tÞ
T f
i ðr; tÞ Qf ðr; tÞ

" #

�Nf
e ðxÞdC � uefi ðtÞ

pef ðtÞ

" #)
: ð18Þ
3.2. Temporal discretization

Next, a time discretization has to be introduced. In-

stead of using the time-dependent fundamental solu-

tions, here, the convolution quadrature method (briefly

summarized in Appendix B) is used as a promising

alternative.

Hence, after dividing time period t in N time steps of

equal duration Dt, so that t = NDt, the convolution inte-

grals between the fundamental solutions and the nodal

values in (18) are approximated by the convolution

quadrature method, i.e., the quadrature formula (B.1)
is applied to the integral Eq. (18). This results in the fol-

lowing boundary element time-stepping procedure

(n = 0,1, . . . ,N)

cijðyÞ 0

0 cðyÞ

" #
uiðy; nDtÞ
pðy; nDtÞ

" #

¼
XE
e¼1

XF
f¼1

Xn
k¼0

xef
n�k

bU s

ij; y;Dt
� �

�xef
n�k

bP s

j; y;Dt
� �

xef
n�k

bU f

i ; yDt
� �

�xef
n�k

bP f
; yDt

� �
264

375
8><>:

�
tefi ðkDtÞ
qef ðkDtÞ

" #
�

xef
n�k

bT s

ij; y;Dt
� �

xef
n�k

bQs

j; y;Dt
� �

xef
n�k

bT f

i ; y;Dt
� �

xef
n�k

bQf
; y;Dtq

� �
264

375

�
uefi ðkDtÞ
pef ðkDtÞ

" #9>=>; ð19Þ

with the integration weights corresponding to (B.3), e.g.,

(for details see Appendix B)

xef
n
bU s

ij; y;Dt
� �
¼ R�n

L

XL�1

‘¼0

Z
C

bU s

ij x; y;
c Rei‘2pL

� �
Dt

0@ 1ANf
e ðxÞdCe�in‘2p

L :

ð20Þ

Note, the calculation of the integration weights is

only based on the Laplace transformed fundamental

solutions. Therefore, with this time-stepping procedure

(19), a boundary element formulation for quasi-static

poroelasticity is given without time-dependent funda-

mental solutions. The same is true for the quasi-static

viscoelastic BE formulationXn
k¼0

xn�kðĉij; y;DtÞuiðy; kDtÞ

¼
XE
e¼1

XF
f¼1

Xn
k¼0

xn�k bU ij; y;Dt
� �

tefi ðkDtÞ
n

�xn�k bT ij; y;Dt
� �

uefi ðkDtÞ
o

ð21Þ

where, contrary to the formulation (19), also the convo-

lution of the integral free term must be considered.

However, as remarked above, for the case of similar vis-

coelastic behavior of the hydrostatic and deviatoric con-

stitutive assumption, i.e., Eq. (4) is fulfilled, the

summation on the left hand side of Eq. (21) vanishes.

To calculate the integration weights xef
n�k in (19) and

(21), spatial integration over the boundary C has to be

performed. The regular integrals are evaluated by stan-

dard Gaussian quadrature rule and the weakly singular

parts of the integrals in (19) and (21) are regularized by

polar coordinate transformation. The strongly singular

integrals in (19) and (21) are equal to those of elastostat-

ics or acoustics, respectively, and, hence, the regulariza-

tion methods known from these theories can be applied,
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Fig. 1. Geometry, loading, and discretization (mesh 1) of the

3-d bar.
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e.g., the method suggested by Guiggiani and Gigante

[31]. Moreover, to obtain a system of algebraic equa-

tions, collocation is used at every node of the shape

functions Nf
e ðxÞ.

According to t � s = (n � k)Dt, the integration

weights xef
n�k are only dependent on the difference

n � k. This property is analogous to elastodynamic time

domain BE formulations (see, e.g., [32]) and can be used

to establish a recursion formula for n = 1,2, . . . ,N
(m = n � k)

x0ðCÞdn ¼ x0ðDÞ�d
n þ

Xn
m¼1

xmðUÞtn�m � xmðTÞun�mð Þ:

ð22Þ

with the time-dependent integration weights xm contain-

ing the Laplace transformed fundamental solutions.

Similarly, x0(C) and x0(D) are the corresponding inte-

gration weights of the first time step related to the un-

known boundary data dn and the known boundary

data �d
n

in the time step n, respectively. Finally, a direct

equation solver is applied.
4. Example: creeping and consolidation

To show the accuracy and the robustness of the pro-

posed formulation, the displacement response of a 3-d

bar is calculated using a viscoelastic constitutive law as

well as using a poroelastic constitutive law. The material

data are given in Table 1. In the case of viscoelasticity,

the material data of a perspex (PMMA) are used based

on experiments performed at the Institute of Technical

Mechanics, Technical University Braunschweig. In the

case of poroelasticity, the soil material data are taken

from literature [33].

First, tests on the influence of mesh size and time step

size are presented and, subsequently, the creep behavior

of the perspex bar and the consolidation of a soil half

space close this example section.

4.1. Influence of mesh and time step size

To study the influence of the mesh and the time step

size on the proposed BE formulation, a 3-d bar

(3 m · 1 m · 1 m) is considered. This bar is fixed at one
Table 1

Material data of perspex (PMMA) and a soil (coarse sand)

Poroelastic (soil)

K (N/m2) / G (N/m2)

2.1 · 108 0.48 9.8 · 107

Viscoelastic (PMMA)

G (N/m2) m pH (s�1) qH(s�1) aH
end and loaded with ty = �1 N/m2H(t) over the whole

time period on the other end. The remaining surface is

modeled traction free for the viscoelastic test. Whereas

for the poroelastic test, the normal displacements are

blocked and in tangential directions free sliding, i.e., zero

traction, is modeled. Further, the free surface where the

load as total stress function is applied is assumed to be

permeable, i.e., the prescribed pore pressure vanishes.

All other surfaces including the fixed end are imperme-

able, i.e., the flux vanishes there. The geometry, the

coarsest mesh (mesh 1), and the time history of the load

are shown in Fig. 1.

The mesh 1 (see Fig. 1) consists of 56 linear elements

on 38 nodes. Additionally, three finer meshes are used

for a numerical convergence study: In the Fig. 2, mesh

2 with 112 linear elements on 102 nodes, mesh 3 with

324 linear elements on 188 nodes, and mesh 3 with 700

linear elements on 392 nodes are shown. In Fig. 3, the

calculated displacements at point P (the middle point

of the free and loaded surface) are plotted versus time

for the viscoelastic case and for the poroelastic case.

These results are compared with analytical 1-d solutions.

For the viscoelastic bar the analytical solution is ob-

tained by applying the elastic–viscoelastic correspon-

dence principle on the elastostatic solution. A

subsequent inverse Laplace transform yields the dis-

placement at the free end

uviscoðy ¼ 3 mÞ ¼ ty3
E

1 � e�t=q 1 � p
q


 �
 �
: ð23Þ
a M (N/m2) j (m4/Ns)

0.980918 5.24 · 109 3.55 · 10�9

pD(s�1) qD(s�1) aD



(a)  Mesh 2 (b)  Mesh 3

(c)  Mesh 4

Fig. 2. Discretization steps of the 3-d bar.
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Fig. 3. Displacement at the free end versus time: different mesh

results compared to the analytical solution.
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The poroelastic analytical 1-d solution is taken from

the literature [24].
In the case of viscoelasticity, the results for meshes 1–

3 are presented showing a perfect agreement of all three

discretization with the analytical solution. It can be con-

cluded that even the coarse mesh 1 is sufficient. Con-

trary, in case of the poroelastic formulation mesh 1 is

not sufficient. Only the results of the finer meshes 2–4

coincide whereas for the results of mesh 1 only the ten-

dency is acceptable. For comparison also the limiting

cases of an undrained elastic bar and a drained elastic

bar are given. As expected, in the short time range, the

poroelastic results coincide with the undrained elasto-

static solution and in the long time range the drained

elastostatic solution is obtained. It can be concluded

that the poroelastic formulation needs a much finer spa-

tial discretization than the viscoelastic formulation

which is in agreement with the experiences of the corre-

sponding dynamic formulation [5].

Comparing now the sensitivity of the proposed for-

mulations with respect to the time step size Dt, a com-

plete different situation is observed. In Fig. 4, the

displacements versus time are presented but now using

different time step sizes and mesh 1 for the viscoelastic

results and mesh 3 for the poroelastic results, respec-

tively. The time step size is varied from Dt = 0.002 to

Dt = 0.00002 s in case of viscoelasticity and from

Dt = 1 to Dt = 0.01 s in case of poroelasticity, i.e., in

both cases by a factor of 100. There is a perfect coinci-

dence of the different graphs for the different time

step sizes, respectively, indicating that the proposed

formulation is not influenced by the chosen time step

size. In case of poroelasticity, however, the time step

Dt = 1 s is not able to resolve the early time response

(t < 4 s) well. Further, not presented numerical studies

with larger as well as smaller time step sizes as used here,
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are performed confirming the above observation.

Clearly, for resolving small times a small time step size

is required, however, this is not caused by the proposed

formulation but by the physical process to be described.

So, it can be concluded that the given formulation is not

influenced by the chosen time step size.

A final test to show the accuracy of the proposed

method is the pressure distribution in the bar. In Fig.

5, the pore pressure is depicted versus the position of y

along the midline of the bar. The BE results are com-

pared with the analytical 1-d solution [24] at three differ-

ent times. For t = 1 and t = 10 s a perfect agreement is

found. At smaller times, t = 0.1 s, slight deviations from

the analytical solution are visible close to the fixed end.

But, because the field of applications of quasi-static

poroelasticity is mainly the analysis of consolidation

problems, i.e., of long time studies, these deviations

are no problem.

4.2. Viscoelastic creep behavior

Among other effects in viscoelasticity, the creeping

behavior is expected. To show this effect in Fig. 6, again
the displacement at point P is depicted versus time.

Additionally, two elastostatic responses are given as

straight lines: one calculated with the initial modulus

G(t = 0) = GqH/pH and the other with the long time

modulus G(t! 1) = G. Note, the 3-d bar is loaded by

a negative stress vector, i.e., a pressure load, so that

the viscoelastic result creeps �negative�. It can be ex-

pected from theory that the viscoelastic response starts

at the elastostatic result for G(t = 0) and approximates

the elastostatic result for G(t! 1). In Fig. 6, this ex-

pected behavior can be clearly observed showing that

the proposed formulation reproduces the physical back-

ground correctly.

4.3. Poroelastic consolidation

In quasi-static poroelasticity, the main interest is in

calculating the consolidation of the poroelastic material.
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Fig. 7. Poroelastic half space: geometry, mesh, and load.
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To simulate this behavior, a poroelastic half space is

modeled as sketched in Fig. 7. The mesh is truncated

outside an area of 6 m · 15 m and the material data

are those of soil (see Table 1). The load perpendicular

to the surface is modeled by the total stress vector

tz = �1000 N/m2 H(t) on the shaded area (near point

A) and kept constant over time. The remaining surface

is traction free and permeable, i.e., the pore pressure is

assumed to be zero at the surface.

In Fig. 8, the displacements on the surface at point A

and at point B are depicted versus time. Note, in Fig.

8(a) the short time behavior (20 s) is presented whereas

in Fig. 8(b) the long time behavior (12 h) is shown. In

both cases, the consolidation process is obvious where

this process is faster below the load than in 10 m dis-

tance from the load at point B.

Additionally to the settlement, the pore pressure dis-

tribution below the surface is of interest. In Fig. 9, the

pore pressure is depicted versus depth for four different

times, i.e., at t = 0.1, t = 0.5, t = 1, and t = 5 s. As before,

not only at point A below the load (Fig. 9(a)) but also at
0.0 2.0 4.0 6.0 8.0 10.0
-10

-8

-6

-4

-2

0

de
pt

h 
[m

]

t=0.1 s 

t=0.5 s 

t=1 s 

t=5 s 

0.0 10.0 20.0 30.0 40.0 50.0 60.0
pressure [N/m2]

-10

-8

-6

-4

-2

0

de
pt

h 
[m

] t=0.1 s 

t=0.5 s 

t=1 s 

t=5 s 

pressure [N/m2]

(a)  Below the load point A

(b)  Below point B in 10 m distance to the load

Fig. 9. Pressure below the surface versus depth at different

times.



682 M. Schanz et al. / Computers and Structures 83 (2005) 673–684
point B in 10 m distance from the load (Fig. 9(b)) the re-

sult is presented. As expected, the pore pressure rises

very fast from zero (the boundary condition at the sur-

face) to its maximum value and tends to a constant va-

lue. For later times this maximum value is smaller and

shifted to larger depth. Remarkable is that at point B

the largest pore pressure is reached not at t = 0.1 s as

at point A but at t = 0.5 s. However, comparing the total

values of the pore pressure in both figures a difference of

factor six is observed. So, at point B the largest pore

pressure values are achieved at later times but also at

lower values. This is in accordance with physical consid-

erations. After loading the half space at point A, it takes

time until the disturbance is observed in 10 m distance

and also the value is reduced.
5. Conclusions

A novel application of the convolution quadrature

method to quasi-static problems in viscoelasticity and

poroelasticity is presented. Following the procedure

known from the corresponding dynamic boundary

element formulations, a time-stepping boundary ele-

ment formulation based on the Laplace transformed

fundamental solutions and on a linear multi-step

method is established. Hence, only the Laplace domain

fundamental solutions are necessary which can be de-

rived much easier than in time domain.

Numerical studies concerning spatial discretization

show that the poroelastic boundary element formulation

needs a much finer mesh than the viscoelastic formula-

tion. Concerning temporal discretization it can be con-

cluded that both presented formulations are not

sensitive on the choice of the time step size. The time

step size must only be small enough to dissolve the time

history of the modeled physical problem. Finally, one

example for the creep behavior and one example for

the consolidation are presented to show that the pro-

posed formulation reproduces the main physical effects

of quasi-static viscoelasticity and quasi-static poroelas-

ticity correctly.
Appendix A. Poroelastic fundamental solutions

In the following, the explicit expressions of the poro-

elastic quasi-static fundamental solutions in 3-d are gi-

ven. A collection of all types of fundamental solutions

caused by different loads for a quasi-static poroelastic

modeled continuum can be found in [23].

The displacement and the pressure due to a single

source in the solid are

bU s

ij ¼
1

4p

K þ 7
3
GþMa2

2G K þ 4
3
GþMa2

� � dij
r

(

þ
K þ 1

3
GþMa2

2G K þ 4
3
GþMa2

� � r;ir;j
r

þ jM2a2

s K þ 4
3
GþMa2

� �2
� 1

r3
dij 1 � ð1 þ nÞe�n
� 	

þ r;ir;j 3 þ 3n þ n2
� �

e�n � 3
� 	�" )

ðA:1Þ

bP s

i ¼ � Ma

4ps K þ 4
3
GþMa2

� � r;i
r2

1 � ð1 þ nÞe�n
� 	

ðA:2Þ

and due to a source in the fluid are

bU f

i ¼ � Ma

4p K þ 4
3
GþMa2

� � r;i
r2

1 � ð1 þ nÞe�n
� 	

ðA:3Þ

bP f ¼ 1

4pj
1

r
e�n ðA:4Þ

with n ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðKþ4

3
GþMa2Þ

MjðKþ4
3
GÞ

r
.

During derivation of the boundary integral equation

from the weighted residual statement two integrations

by part have to be performed. For convenience and also

with a physical interpretation of an �adjoint� traction or

flux the following abbreviations are introduced

bT s

ij ¼ K � 2

3
G


 �bU s

kj;k þ sabP s

j


 �
di‘ þ G bU s

ij;‘ þ bU s

‘j;i

� �
 �
n‘

ðA:5aÞ

bQs

j ¼ jbP s

j;ini ðA:5bÞ

bT f

i ¼ K � 2

3
G


 �bU f

k;k þ sabP f

 �

di‘ þ G bU f

i;‘ þ bU s

‘;i

� �
 �
n‘

ðA:5cÞ

bQf
¼ jbP f

;ini: ðA:5dÞ

The explicit expression of these �adjoint� tractions

and fluxes are

bT s

ij ¼
1

4p K þ 4
3
GþMa2

� � 1

r2



Gðnir;j � njr;i � dijr;nÞ

�3 K þ 1

3
GþMa2
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�
þ 2GM2a2j

4ps K þ 4
3
GþMa2

� �2 1

r4

� dijr;n þ njr;i
� ��

n2 þ 3n þ 3
� �

e�n � 3
� 	

þnir;j n3 þ 2n2 þ 3n þ 3
� �

e�n � 3
� 	

þr;ir;jr;n 15 � n3 þ 6n2 þ 15n þ 15
� �

e�n
� 		

ðA:6aÞ

bT f
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2GMa

4p K þ 4
3
GþMa2
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r3
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bQs

j ¼
Maj

4ps K þ 4
3
GþMa2

� � 1

r3
nj 1 þ nð Þe�n � 1
� 	�

þr;jr;n 3 � 3 þ 3n þ n2
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e�n
� 	�

ðA:6cÞ

bQf
¼ � 1

4p
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Note that r,n = r,knk denotes the normal derivative.
Appendix B. Convolution quadrature method

The �convolution quadrature method� developed by

Lubich numerically approximates a convolution integral

for n = 0,1, . . . ,N

yðtÞ ¼
Z t

0

f ðt � sÞgðsÞds ! yðnDtÞ

¼
Xn
k¼0

xn�kðDtÞgðkDtÞ; ðB:1Þ

by a quadrature rule whose weights are determined by

the Laplace transformed function f̂ and a linear multi-

step method. This method was originally published

in [3] and [4]. Application to the boundary element

method may be found in [2]. Here, a brief overview of

the method is given.

In formula (B.1), the time t is divided in N equal steps

Dt. The weights xn(Dt) are the coefficients of the power

series

f̂
cðzÞ
Dt


 �
¼
X1
n¼0

xnðDtÞzn ðB:2Þ

with the complex variable z. The coefficients of a power

series are usually calculated with Cauchy�s integral for-

mula. After a polar coordinate transformation, this inte-

gral is approximated by a trapezoidal rule with L equal

steps 2p
L . This leads to

xnðDtÞ ¼
1

2pi

Z
jzj¼R

f̂
cðzÞ
Dt


 �
z�n�1dz

� R�n

L

XL�1

‘¼0

f̂
cRei‘2pL

Dt

 !�in‘2pL

; ðB:3Þ

where R is the radius of a circle in the domain of analy-

ticity of f̂ ðzÞ.
The function c(z) is the quotient of the characteristic

polynomials of the underlying multi-step method, e.g.,

for a BDF 2, c(z) = 3/2 � 2z + 1/2z2. The used linear

multi-step method must be A(a)-stable and stable at

infinity [4]. Experience shows that the BDF 2 is the best

choice [7]. Therefore, it is used in all calculations in this

paper.

If one assumes that the values of f̂ ðzÞ in (B.3) are com-

puted with an error bounded by �, then the choice L = N
and RN ¼
ffiffi
�

p
yields an error in xn of size Oð

ffiffi
�

p
Þ [3]. Sev-

eral tests conducted by the first author lead to the conclu-

sion that the parameter � = 10�10 is the best choice for

the kind of functions dealt with in this paper [1]. The

assumption L = N leads to a order of complexity O(N2)

for calculating the N coefficients xn(Dt). Due to the expo-

nential function at the end of formula (B.3) this can be

reduced to O(N logN ) using the technique of the Fast

Fourier Transformation (FFT).
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