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FAST AND OBLIVIOUS CONVOLUTION QUADRATURE∗

ACHIM SCHÄDLE† , MARÍA LÓPEZ-FERNÁNDEZ‡ , AND CHRISTIAN LUBICH§

Abstract. We give an algorithm to compute N steps of a convolution quadrature approximation
to a continuous temporal convolution using only O(N logN) multiplications and O(logN) active
memory. The method does not require evaluations of the convolution kernel but instead uses O(logN)
evaluations of its Laplace transform, which is assumed sectorial. The algorithm can be used for the
stable numerical solution with quasi-optimal complexity of linear and nonlinear integral and integro-
differential equations of convolution type. In a numerical example we apply it to solve a subdiffusion
equation with transparent boundary conditions.
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1. Introduction. In this paper we give a fast and memory-saving algorithm for
computing the approximation of a continuous convolution (possibly matrix × vector)∫ t

0

f(t− τ) g(τ) dτ , 0 ≤ t ≤ T,(1.1)

by a convolution quadrature with a step size h > 0,

n∑
j=0

ωn−j g(jh) , n = 1, . . . , N.(1.2)

Here, the convolution quadrature weights ωn are the coefficients of the generating
power series (see [12])

∞∑
n=0

ωnζ
n = F

(δ(ζ)
h

)
,(1.3)

where F (s) is the Laplace transform of the (possibly matrix-valued) convolution kernel
f(t), and δ(ζ) = 1 − ζ or δ(ζ) = (1 − ζ) + 1

2 (1 − ζ)2 for the methods based on the
first- or second-order backward difference formula, respectively. We will also consider
closely related convolution quadrature formulas that are based on implicit Runge–
Kutta methods, such as the Radau IIA schemes [13].

Convolution quadratures (1.2)–(1.3) were introduced in [10, 11] and have since
been used in a variety of applications. A recent review is given in [12], which contains
an extensive, annotated bibliography. Attractive features of these convolution quadra-
tures are that they work well for singular kernels f(t), for kernels with multiple time
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scales, and in the common situation where the Laplace transform F (s) (the transfer
function) but not the convolution kernel f(t) (the impulse response) is known analyti-
cally. Perhaps most important, these convolution quadratures enjoy excellent stability
properties in the discretization of integral equations or integrodifferential equations
of convolution type, in a way often strikingly opposed to discretizations with more
straightforward quadrature formulas. This comes about because the stability of a
discrete convolution equation depends on the range of the generating function of the
weights for |ζ| < 1. In (1.3), the generating function is directly related to the Laplace
transform F (s) which determines the stability properties of the continuous convolu-
tion equation.

The direct way to compute (1.2) is to first compute and store the (possibly matrix-
valued) weights ω0, . . . , ωN , which can be done accurately with O(N) evaluations of
the Laplace transform F (s) [11], and then to compute the discrete convolution. Done
naively, this requires O(N2) multiplications (possibly matrix × vector) and O(N)
active memory for the values g(jh) and for the weights. Using FFT, the number
of multiplications can be reduced to O(N logN) and to O(N (logN)2) in the case
of integral equations where the values of g(t) are not known beforehand, but where
g(nh) is computed only in the nth time step [3]. However, that approach does not
reduce the number of F -evaluations and the memory requirements.

Here we give an algorithm, also applicable in the case of linear and nonlinear
integral equations, which computes (1.2) in a way that requires

• O(N logN) multiplications,
• O(logN) evaluations of the Laplace transform F (s), and
• O(logN) active memory.

The history g(jh) for j = 0, . . . , N is forgotten in this algorithm, and only logarithmi-
cally few linear combinations of the g-values are kept in memory. These are obtained
by solving numerically, with step size h, initial value problems of the form y′ = λy+g
with complex λ. The weights ωn (n ≤ N) are not computed explicitly, except the
first few, e.g., the first 10 weights.

The algorithm presented here takes up ideas of the fast convolution algorithm
of [14], which instead of (1.2)–(1.3) makes a different approximation to the continuous
convolution. The stability properties of the second-order method of [14] in integro-
partial differential equations such as those of section 5 are, however, extremely difficult
to analyze (cf. also [17]) and remain entirely unclear for higher-order extensions,
whereas the stability of convolution quadratures (1.2)–(1.3) for such problems is well
understood; see [1]. Here we show how the convolution quadratures (1.2)–(1.3) with all
their known favorable properties can be implemented in an equally fast and memory-
saving way as the method in [14].

Following the error analysis of [7, 8] we give exponentially convergent error bounds
for the contour integral approximations that are employed in this algorithm. They
ensure that the constants hidden in the O-symbols of the above work estimates depend
only logarithmically on the error tolerance for these contour integral approximations.

We assume a sectorial Laplace transform F (s):

F (s) is analytic in a sector | arg(s− σ)| < π − ϕ with ϕ < 1
2π, and in this sector

|F (s)| ≤ M |s|−ν for some real M and ν > 0.

(1.4)
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The inverse Laplace transform is then given by

f(t) =
1

2πi

∫
Γ

etλ F (λ) dλ, t > 0,(1.5)

with Γ a contour in the sector of analyticity, going to infinity with an acute angle to
the negative real half-axis and oriented with increasing imaginary part. The function
f(t) is analytic in t > 0 and satisfies

|f(t)| ≤ C tν−1 ect, t > 0,(1.6)

and is therefore locally integrable. (The absolute values on the left-hand sides of
the bounds (1.4) and (1.6) are to be interpreted as matrix norms for matrix-valued
convolution kernels.) A prototypical example, which will actually be used in our
numerical experiments, is the fractional-power kernel f(t) = tν−1/Γ(ν) with ν > 0,
which has the Laplace transform F (s) = s−ν .

In section 2 we review convolution quadrature based on multistep and Runge–
Kutta methods. We give a contour integral representation of the convolution quadra-
ture weights whose discretization along hyperbolas or Talbot contours is discussed in
section 3. The fast and oblivious convolution algorithm is formulated in section 4.
Finally, in section 5 we give the results of numerical experiments with integral and in-
tegrodifferential equations originating from regular and anomalous diffusion problems.

2. Convolution quadrature. In this section we review briefly convolution
quadrature and give a contour integral representation of the convolution quadrature
weights on which the fast algorithm of this paper is based.

2.1. Convolution quadrature based on multistep methods. We consider
the convolution quadrature (1.2) with weights (1.3). By (1.4) and Cauchy’s integral
formula we have, with a contour Γ as in (1.5),

∞∑
n=0

ωnζ
n = F

(δ(ζ)
h

)
=

1

2πi

∫
Γ

(δ(ζ)
h

− λ
)−1

F (λ) dλ.

Hence, with en(z) defined by

(δ(ζ) − z)−1 =

∞∑
n=0

en(z) ζn,(2.1)

we have the integral formula

ωn =
h

2πi

∫
Γ

en(hλ)F (λ) dλ,(2.2)

which can be viewed as the discrete analogue of (1.5). For the backward Euler dis-
cretization δ(ζ) = 1 − ζ we note the explicit formula

en(z) = (1 − z)−n−1,(2.3)

which is of the form en(z) = q(z)r(z)n with r(z) = 1
1−z and q(z) = 1

1−z .
For the second-order backward differentiation formula (BDF), where δ(ζ) =∑p

k=1
1
k (1 − ζ)k with p = 2, we obtain from a partial fraction decomposition of

(δ(ζ) − z)−1 that

en(z) =
1√

1 + 2z

(
(2 −

√
1 + 2z)−n−1 − (2 +

√
1 + 2z)−n−1

)
,(2.4)
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which is of the form en(z) = q1(z)r1(z)
n + q2(z)r2(z)

n. Connoisseurs of Cardano’s
formulas find analogous formulas to (2.4) also for the BDF methods of orders 3 and 4.

2.2. Convolution quadrature based on Runge–Kutta methods. We con-
sider an implicit Runge–Kutta method with coefficients aij , bj , ci for i, j = 1, . . . ,m.
We denote the Runge–Kutta matrix by Oι = (aij), the row vector of the weights by
bT = (bj), and the stability function by

r(z) = 1 + zbT (I − zOι)−11,

where 1 = (1, . . . , 1)T . We assume that all eigenvalues of the Runge–Kutta matrix
Oι have positive real part and that the method is A-stable and the row vector of the
weights equals the last line of the Runge–Kutta matrix,

bj = amj for j = 1, . . . ,m,

and correspondingly cm = 1. Notice that this implies that the method is L-stable,
i.e.,

|r(z)| ≤ 1 for Rez ≤ 0 and r(∞) = 0.

These conditions are in particular satisfied by the Radau IIA family of Runge–Kutta
methods [4]. From such a Runge–Kutta method, a convolution quadrature is con-
structed as follows [13]: let

Δ(ζ) =
(
Oι +

ζ

1 − ζ
1bT

)−1

(2.5)

and define weight matrices Wn by

∞∑
n=0

Wnζ
n = F

(Δ(ζ)

h

)
.(2.6)

Let ωn = (ω1
n, . . . , ω

m
n ) denote the last row of Wn. Then an approximation to the

convolution integral (1.1) at time tn+1 = (n + 1)h is given by

un+1 =

n∑
j=0

m∑
i=1

ωi
n−j g(tj + cih) =

n∑
j=0

ωn−j gj(2.7)

with the column vector gj =
(
g(tj + cih)

)m
i=1

. For a Runge–Kutta method of classical
order p and stage order q, this approximation is known to be convergent of the order
min(p, q + 1 + ν) with ν of (1.4) [13, Theorem 2.2].

With the row vector en(z) = (e1
n(z), . . . , emn (z)) defined as the last row of the

m×m matrix En(z) given by

(Δ(ζ) − zIm)−1 =

∞∑
n=0

En(z) ζn,(2.8)

we obtain an integral formula like in (2.2),

ωn =
h

2πi

∫
Γ

en(hλ) ⊗ F (λ) dλ.(2.9)
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For n ≥ 0, en(z) is given as

en(z) = r(z)nq(z)(2.10)

with the row vector q(z) = bT (I − zOι)−1; cf. [13, Lemma 2.4]. We note that

y
(λ)
n+1 = h

n∑
j=0

en−j(hλ) gj(2.11)

is the Runge–Kutta approximation at time tn+1 of the linear initial value problem

y′ = λy + g(t), y(0) = 0 .(2.12)

The convolution quadrature (2.7) is thus interpreted as

un+1 =
1

2πi

∫
Γ

F (λ) y
(λ)
n+1 dλ ;

see [13, Proposition 2.1].

3. Approximation of the contour integrals. The fast convolution algorithm
will be based on discretizing the integrals in (2.2) and (2.9) along suitable complex
contours. This approximation is discussed in the present section.

3.1. Quadrature on hyperbolas and Talbot contours. The fast algorithm
approximates the quadrature weights ωn by linear combinations of the exponential
approximations en(hλ), locally on a sequence of fast-growing time intervals nh ∈ I�:

I� = [B�−1h, 2B�h),(3.1)

where the base B > 1 is an integer. For example, B = 10 was found a good choice in
our numerical experiments. The approximation on I� results from applying the trape-
zoidal rule to a parametrization of the contour integral for the convolution quadrature
weights,

ωn =
h

2πi

∫
Γ�

en(hλ) ⊗ F (λ) dλ ≈ h

K∑
k=−K

w
(�)
k en(hλ

(�)
k ) ⊗ F (λ

(�)
k ) , nh ∈ I�,(3.2)

with an appropriately chosen complex contour Γ�. The number of quadrature points
on Γ�, 2K + 1, is chosen independent of �. It is much smaller than what would be
required for a uniform approximation of the contour integral on the whole interval
[0, T ]. The integration contour is chosen as a hyperbola [8] or a Talbot contour [20, 16].

The hyperbola is given by

R → Γ : θ 
→ γ(θ) = μ(1 − sin(α + iθ)) + σ(3.3)

with a positive scale parameter μ, a positive angle α < π/2−ϕ, and the shift σ of (1.4).
The contour thus remains in the sector (1.4) of analyticity of F (s). Additionally the
contour is chosen such that the singularities of en(hs) lie to the right of the contour.
See the left part of Figure 3.1 for α = π/2 − 1/2. The parameter μ will depend on �,
which yields a contour Γ� depending on the approximation interval I�. The weights
and quadrature points in (3.2) are given by (omitting � in the notation)

wk =
iτ

2π
γ′(θk) , λk = γ(θk) with θk = kτ ,
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Fig. 3.1. Hyperbola (left) and Talbot contour (right).

where τ is a step length parameter.
Alternatively, the Talbot contour is given by

(−π, π) → Γ : θ 
→ γ(θ) = μ (θ cot(θ) + iκθ) + σ(3.4)

where the parameters μ, κ, and σ are such that the singularities of F (s) lie to the left
of the contour and that the singularities of en(hs) lie to the right of the contour. The
parameter μ will again depend on �. See the right part of Figure 3.1 for σ = 0. The
weights and quadrature points in (3.2) are given by (omitting � in the notation)

wk = − i

2(K + 1)
γ′(θk) , λk = γ(θk) with θk =

kπ

K + 1
.

3.2. Theoretical error bounds of the contour integral approximations.
For the case of the hyperbola, we obtain with the proof of [7, Theorem 3] the following
error bound, which shows exponential convergence.

Theorem 3.1. There are positive constants C, d, c0, . . . , c4, and c such that at
t = nh ≤ T the quadrature error in (3.2) for a hyperbola (3.3) with 1 ≤ cμt ≤ n is
bounded by

‖E(τ,K, h, n)‖ ≤ C h tν−1 (μt)1−ν

(
ec0μt

e2πd/τ − 1
+ e(c1−c2 cosh(Kτ))μt

+ ec3μt
(
1 +

c4 cosh(Kτ)μt

n/2

)−n/2
)
,

where ν is the exponent of (1.4).
The first summand in this estimate corresponds to the error in the discretization

of the integral (3.2), parametrized over the real line with an integrand holomorphic
in a strip |Im θ| < d, with step size τ and with the infinite quadrature sum over all
integers k [18, 19]. The other two terms result from truncating the infinite sum to the
terms −K ≤ k ≤ K, using the strong decay of the integrand along the integration
contour.

Given an error tolerance ε, the first term in the error bound becomes O(ε h tν−1)
if τ is chosen so small that c0μt − 2πd/τ ≤ log ε, which requires an asymptotic
proportionality 1

τ ∼ log 1
ε + μt. For μ chosen such that a1

B log 1
ε ≤ μt ≤ a1 log 1

ε with
an arbitrary positive constant a1 and with B > 1, we obtain that the second term is
O(ε h tν−1) if c1 − c2 cosh(Kτ) ≤ −B/a1, i.e., with cosh(Kτ) = a2 for a sufficiently
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large constant a2. With the above choice of τ , this yields K ∼ log 1
ε . The third term

then becomes smaller than ε h tν−1 for n ≥ c log 1
ε with a sufficiently large constant c.

In summary, this gives the following bound for the required number of quadrature
points on the hyperbola.

Theorem 3.2. In (3.2), a quadrature error bounded in norm by ε h tν−1 for
nh ∈ I� is obtained with K = O(log 1

ε ). This holds for n ≥ c log 1
ε (with some

constant c > 0) with K independent of � and of n and h with nh ≤ T .
No small error bound is, however, obtained for the first few n < c log 1

ε . The
approximation is indeed poor for small n, as will be seen in the numerical experi-
ments in section 3.4. Therefore the first few ωn are not computed using the integral
representation (3.2) but are computed using the method of section 3.5.

We expect that a similar result to Theorem 3.2 holds also for the Talbot contours,
if the Laplace transform has an analytic continuation beyond the negative real axis
from above and below, as is the case for the fractional powers considered below.

3.3. Choice of parameters for the hyperbolas. The estimate in Theorem 3.1
is valid for the discretization of contour integrals of the type considered in (3.2), where
en(hλ) is an approximation to exp(nhλ). Replacing en(hλ) by exp(nhλ) in (3.2) we
obtain the inverse Laplace transform at nh of F . For the numerical inversion of
the Laplace transform there is a spectral order method developed in [9], where the
error estimate is explicit in all constants involved. Getting an estimate explicit in
all constants for the discretization of (3.2) is much more difficult and, in practice,
we choose the parameters following the strategy proposed in [9] for the numerical
inversion of the Laplace transform. This makes sense as for large n and small h with
nh ≤ T the estimate in Theorem 3.1 tends to an expression of the same type as the
error estimate for the approximation of the inverse Laplace transform in [9].

Given the approximation interval [B�−1h, (2B�−2)h] and K the number of nodes
on the hyperbola, the strategy for choosing the parameters is as follows:

1. Choose α = d = (π/2 − ϕ)/2, with ϕ of (1.4).
2. Minimize for 0 < ρ < 1 the expression

eps εK(ρ)ρ−1 + εK(ρ)ρ,

where

εK(ρ) = exp
(
− 2πd

a(ρ)
K
)
, a(ρ) = acosh

( 2B

(1 − ρ) sinα

)
and eps is the machine precision.

3. Take

τ =
1

K
a(ρopt), μ =

2πdK(1 − ρopt)

(2B� − 2)ha(ρopt)
.

This strategy for choosing the hyperbola contours is used in the numerical experiments
below.

3.4. Numerical experiments. In view of the examples of section 5 we present
here numerical experiments with

f(t) =
1√
πt

for which F (s) = s−1/2.

The error is calculated with respect to a reference solution, obtained for a dis-
cretization of the contour integral with a large number of integration points. For the
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Fig. 3.2. Hyperbola quadrature errors versus time in logarithmic scale for K = 15, B = 5 and
K = 10, B = 10 for different Integrators. (Implicit Euler, BDF(2), RadauIIA(3), and RadauIIA(5)
in clockwise order starting from the upper left).

Radau IIA methods of order 3 and 5, where the ωn are row vectors of dimension 2
and 3, respectively, we plot the error of the last entry.

Using the hyperbola contours, for B = 10 and K = 10 we obtain an absolute
error of about 10−4 on the interval I� for � ≥ 2 taking α = 1, μ and τ as described
above. For an absolute approximation error of 3 · 10−8, we take B = 5, K = 15, and
the other parameters as before; cf. Figure 3.2. For n > 20 there is no substantial
difference between the quadrature errors corresponding to the different Runge–Kutta
methods.

Using the Talbot contours, the following choices of parameters were experimen-
tally found to give good results. An absolute accuracy of about 10−3 on the interval
I� for � ≥ 2 with right end-point T� is obtained with B = 10, K = 10, μ = 8/T�,
κ = 0.6. For an absolute approximation error of 10−6, take B = 5, K = 15, and
the other parameters as before; cf. Figure 3.3. For n > 20 there is again no essential
difference between the different Runge–Kutta methods.

As we commented after Theorem 3.2, the approximations to the first few convo-
lution quadrature weights are poor and so they will not be used in the algorithm.

Figure 3.4 shows the absolute errors on the interval [10, 20000] (similar for any
interval [a, 2000a] with a > 10) for the RadauIIA(3) method with K = 10, 20, 40, 80,
160, 320, 640. For the implicit Euler, the BDF(2), and the RadauIIA(5) methods
these error plots look similar. This behavior of the errors clearly demonstrates the
advantage of using local approximations. With B = 10, we need three approximation
intervals to cover the interval [10, 20000], so that for a work of 3 ·K with K = 10 we
obtain better accuracy than with K = 640 over the whole interval.

In this example the maximum quadrature errors using the hyperbolas are smaller
than those for the Talbot contours. Moreover, the hyperbolas allow us to choose larger
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Fig. 3.3. Talbot quadrature errors versus time in logarithmic scale for K = 15, B = 5 and
K = 10, B = 10 for different Integrators. (Implicit Euler, BDF(2), RadauIIA(3), and RadauIIA(5)
in clockwise order starting from the upper left).
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Fig. 3.4. Hyperbola (left) and Talbot (right) quadrature error versus n in logarithmic scale
for the RadauIIA(3) method with K = 10, 20, 40, 80, 160, 320, 640. The bold parts of the error curve
correspond to the lower left parts of Figures 3.3 and 3.2.

intervals. On the other hand, the Talbot contours turned out to be less sensitive to
the choice of parameters and the Laplace transform functions than the hyperbolas.

3.5. Computation of the first few convolution quadrature weights. In
view of the poor approximation properties of the discretized contour integral for the
first few ωn, the first N0 (e.g., N0 = 10 or 20, and asymptotically N0 = c log 1

ε ) con-
volution quadrature weights are approximated differently, using their representation
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as an integral over a circle:

ωn = last row of
1

2πi

∫
|ζ|=ρ

ζ−n−1 F
(Δ(ζ)

h

)
dζ, n ≤ N0.(3.5)

This is approximated by the trapezoidal rule,

ωn ≈ last row of
ρ−n

J

J∑
j=1

F
(Δ(ζj)

h

)
e−2πinj/J , n ≤ N0,(3.6)

with ζj = ρe−2πij/J . The choice of the parameters ρ and J follows [11]: assuming
that the values of F are computed with precision ε̂, the error in ωn (0 ≤ n ≤ N0) is
O(ε̂1/2) if J = N0 + 1 and ρJ = ε̂1/2, and the error is O(ε̂) if J ≥ N0 log(1/ε̂) and
ρ = e−γh, with γ > σ of (1.4).

4. The fast and oblivious algorithm. We now describe the convolution algo-
rithm, concentrating on Runge–Kutta-based convolution quadrature. The algorithm
differs slightly depending on whether we want to compute a convolution or to solve
an integral or integrodifferential equation of convolution type.

4.1. The algorithm for computing convolutions. The algorithm presented
here uses the organization scheme of the fast convolution algorithm described in a
step-by-step manner in [14]. A pseudocode for the algorithm developed in [14] can be
found in [5]. We now describe the fast and memory-saving algorithm for computing
(2.7) for n ≤ N .

For fixed integer n ≤ N and a given base B we split the discrete convolution (1.2)
or (2.7) into L sums, where L is the smallest integer such that n < 2BL:

un+1 =

n∑
j=0

ωn−j gj = u
(0)
n+1 + · · · + u

(L)
n+1

with u
(0)
n+1 = ω0 gn and u

(�)
n+1 =

b�−1−1∑
j=b�

ωn−j gj

for suitable n = b0 > b1 > · · · > bL−1 > bL = 0. In view of the approximation
intervals (3.1), the splitting is done in such a way that for fixed � in each sum from
b� to b�−1 − 1, we have n − j ∈ [B�−1, 2B� − 2]. The b� = b(�), � = 1, . . . , L − 1 are
determined recursively by the following pseudocode:

L = 1; q = 0;

for n = 1 to N do

if (2*B^L == n+1) then L = L+1; endif

k = 1;

while ((mod(n+1,B^k) == 0) & (k < L))

q(k) = q(k)+1;

k = k+1;

endwhile

for k = 1 to L-1 do b(k) = q(k)*B^k; endfor

endfor
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B2−1

2B2−2

b(2)

b(1)

b(0)

b(3)=0

n

j

Fig. 4.1. Visualization of the scheme for B = 2 to determine the values b(l). For n = 14,
L = 3 and b = [14 12 8 0]. Additionally the approximation interval for � = 2 is indicated.

Note that for growing n, b� is augmented by B� every B� steps. The procedure
is illustrated for B = 2 in Figure 4.1.

On inserting the integral representation (2.9) of the Runge–Kutta quadrature
weights and the relation (2.10), i.e., en−j(hλ) = r(hλ)n−jq(hλ), we obtain

u
(�)
n+1 =

b�−1−1∑
j=b�

ωn−j gj =

b�−1−1∑
j=b�

h

2πi

∫
Γ�

en−j(hλ) ⊗ F (λ) dλ gj(4.1)

=
1

2πi

∫
Γ�

r(hλ)n−(b�−1−1) F (λ) y(�)(hλ) dλ

with

y(�)(hλ) = h

b�−1−1∑
j=b�

e(b�−1−1)−j(hλ) gj .

Comparing this formula with (2.11), we see that y(�)(hλ) is the Runge–Kutta ap-
proximation y(b�−1h, b�h, λ) to the solution at t = b�−1h of the linear initial-value
problem

y′ = λy + g(t), y(b�h) = 0,(4.2)

and hence y(�)(hλ) is computed as such, by Runge–Kutta time stepping. The integrals
are discretized with the quadrature formula discussed in section 3:

u
(�)
n+1

.
=

K∑
k=−K

w
(�)
k r(hλ

(�)
k )n−b�−1+1 F (λ

(�)
k ) y(�)(hλ

(�)
k ).(4.3)

In the nth time step, we thus compute u
(�)
n+1 and for subsequent use we update the

Runge–Kutta solutions to the (2K+1)L initial value problems (4.2) for the integration

points λ
(�)
k on the contours Γ� for � = 1, . . . , L, doing one time step from tn to tn+1

in each of these differential equations.
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This algorithm does not keep the history gj (j = 0, . . . , n) in memory. Instead,
for each � = 1, . . . , L, it stores the Runge–Kutta approximation yRK(l) to (4.2) at

the current time step, the values w
(�)
k , λ

(�)
k , r(hλ

(�)
k ), F (λ

(�)
k ), the vector y(l) =(

y(�)(hλ
(�)
k )

)
, and two auxiliary vectors yA(l) and yM(l) of the same dimension as

yRK(l) and y(l) ((2K + 1) × (size g)) needed for bookkeeping purposes.
Proceeding from tn to tn+1 the Runge–Kutta solutions yRK(l) of (4.2) are ad-

vanced from y(tb� , tn, λ
(�)
k ) to y(tb� , tn+1, λ

(�)
k ) for � = 2, . . . , L and all k = −K . . . ,K.

The bookkeeping for the yA and yM is done using the following pseudocode:

l = 2;

while ((mod(n+1,Basis^(l-1)) == 0) & (l <= L))

if (mod(n+1, Basis^l) == 0) then

yA(l) = yRK(l);

yM(l) = yRK(l);

restart yRK(l);

else

yM(l) = yRK(l));

endif

l = l+1;

endwhile

Here “restart yRK(l)” means that yRK(l) is set to y(tb� , tb� , λ
(�)
k ) = 0. This way

the scheme in Figure 4.1 is build bottom up.

To retrieve the values y(l) = y(�)(hλ
(�)
k ) required at the current time from the yA

and yM we use the b(l). Again we give the pseudocode:

tvek = h*b; % b is the vector of b(l); l = 0 , ... , L

for l = 2 to length(tvek)-1 do

y(l) = r(l) * y(l);

if (tvek(l) == final time of yM(l)) then

y(l) = yM(l);

if (l == 2) then g = g(1:B-1); endif

endif

if (tvek(l+1) ~= initial time of yM(l)) then

y(l) = y(l) + yA(l)*r(l)^(B^(l-1));

endif

endfor

Here r(l) denotes the stability function given in (2.10) and g is the vector containing
the values gn, . . . , gb1 .

There are only (2K + 1)L evaluations of the Laplace transform F (s). In the
case of real functions f(t) and g(t) only the real parts of the above sums are used,
since the imaginary ones cancel out, and hence the factor 2K + 1 can be replaced by
K + 1, since the quadrature points lie symmetric with respect to the real axis. We
recall L ≤ logB N and K = O(log 1

ε ), where ε is the accuracy requirement in the
discretization of the contour integrals.

In view of the poor approximation of the first convolution quadrature weights by

the discretization of the contour integral, we evaluate u
(�)
n+1 directly for a few of the

first �, e.g., for � = 0, 1 with B = 10. For this we need to keep the n − b1 + 1 ≤ 2B
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values gb1 , . . . , gn in memory, but none of the earlier history gj for j ≤ n − 2B. We
also need the few convolution quadrature weights ω0, . . . , ω2B−1, which are computed
from (3.6) with J = 2B evaluations of the Laplace transform F (s), as described in
section 3.5.

For the convolution quadrature based on the second-order BDF method a similar
fast algorithm is obtained by inserting the formula (2.4) for en−j(hλ) in (4.1).

4.2. The algorithm for solving integral equations. Consider now a Volterra
integral equation

u(t) = a(t) +

∫ t

0

f(t− τ) g(τ, u(τ)) dτ , t ≥ 0,(4.4)

with a kernel f(t) whose Laplace transform satisfies the sectorial condition (1.4), with
a smooth nonlinearity g(t, u) and inhomogeneity a(t). The adaptation of the above
algorithm to such convolution equations is straightforward for the case of the con-
volution quadrature based on the implicit Euler method and the second-order BDF
method, which use solution approximations only on the grid t = nh. The extension
of the Runge–Kutta-based algorithm is, however, less immediate, because the inte-
gral approximation uses the internal stages of the Runge–Kutta method. Consider
a Runge–Kutta-based convolution quadrature under the assumptions of section 2.2.
With the column vector of internal stages vn = (vni)

m
i=1, the discretization of (4.4)

reads

vn = an +

n∑
j=0

Wn−j gj , n ≥ 0,(4.5)

with an =
(
a(tn + cih)

)m
i=1

, with weight matrices Wn defined by (2.6), and with

gj =
(
g(tj + cih, vji)

)m
i=1

depending on the stages vji. The scheme is implicit in vn.
The solution at tn+1 is approximated by the last component of the stage vector vn,

un+1 = vnm .

With the proof of [13, Theorem 4.1] we obtain that the error of this approximation
over bounded time intervals is bounded by O(hk) with k = min(p, q+1), where p and
q are the classical order and stage order, respectively, of the underlying Runge–Kutta
method. This estimate holds under the assumption that the solution is sufficiently
smooth. It gives orders 3 and 4 for the two- and three-stage Radau IIA methods,
respectively. The precise approximation order for the three-stage method (of classical
order 5) may become larger under appropriate conditions on the nonlinearity and the
convolution kernel; cf. [13, Theorem 4.2].

The weight matrix Wn has the integral representation (cf. (2.9))

Wn =
h

2πi

∫
Γ

En(hλ) ⊗ F (λ) dλ ,

where the m × m matrix En(z) is defined by (2.8). By [13, Lemma 2.4], for n ≥ 1,
En(z) is the rank-1 matrix given by

En(z) = r(z)n−1(I − zOι)−11bT (I − zOι)−1

= r(z)−1 (I − zOι)−11en(z).
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These relations permit us to proceed for the history term of (4.5) as we did for (2.7).
We split the stage vector vn as

vn = an + v(0)
n + · · · + v(L)

n with v(�)
n =

b�−1−1∑
j=b�

Wn−j gj

and obtain, like in (4.1),

v(�)
n =

1

2πi

∫
Γ�

r(hλ)n−b�−1 (I − hλOι)−11⊗ F (λ) y(�)(hλ) dλ ,

where y(�)(hλ) is again the Runge–Kutta approximation at t = b�−1h to the initial-
value problem (4.2), now for the inhomogeneity values gj =

(
g(tj + cih, vji)

)m
i=1

in

place of gj =
(
g(tj + cih)

)m
i=1

. For � ≥ 2 or 3, we thus approximate v
(�)
n as

v(�)
n

.
=

K∑
k=−K

w
(�)
k r(hλ

(�)
k )n−b�−1 (I − hλ

(�)
k Oι)−11⊗ F (λ

(�)
k ) y(�)(hλ

(�)
k ) .

The algorithm stores the same values as before. The memory requirements for the
algorithm are thus independent of the number of stages m and remain essentially the
same as in the pure convolution case.

The effect of the (exponentially small in K) quadrature error of the contour
integrals on the convolution quadrature approximation of the integral equation can
be estimated using a discrete Gronwall inequality or by stability estimates of the
convolution quadrature as, e.g., in [1]. Since the emphasis of the present paper is on
the algorithmic aspects, we do not work out details of such estimates here.

5. Numerical experiments. We give two examples to illustrate the application
and behavior of the fast convolution algorithm.

5.1. A nonlinear Volterra equation. We consider a nonlinear Volterra inte-
gral equation with weakly singular kernel from [6],

u(t) = −
∫ t

0

(
u(τ) − sin(τ)

)3√
π(t− τ)

dτ .(5.1)

The convolution quadrature based on the backward Euler method gives the implicit
discretization

un+1 =

n∑
j=0

ωn−j

(
uj+1 − sin((j + 1)h)

)3
,

where ωn is given by (1.3) with F (s) = s−1/2 and δ(ζ) = 1−ζ. To solve the nonlinear
equation in each time step we use Newton iterations. The history term is computed
by the fast algorithm of the previous section.

We consider also the discretizations based on the backward differentiation method
of order 2 (cf. section 2.1) and on the two- and three-stage Radau IIA implicit Runge–
Kutta methods of orders 3 and 5, respectively; see sections 2.2 and 4.2.

In the numerical experiment we use the base B = 5 and the Talbot contours
with K = 15 and K = 30 and the further parameters as in section 3.4. We choose
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Fig. 5.1. Evolution of the solution over the interval [0, 60] (left) and logarithm of absolute error
for different time integration methods (right) for h = 0.05 and K = 30.
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Fig. 5.2. Absolute error versus step size h in logarithmic scale, for different integration methods,
with K = 15 (left) and K = 30 (right).

a tolerance of 10−12 in the Newton method. The error is calculated with respect to
a reference solution, obtained with h = 0.001. Figure 5.1 shows the evolution of the
absolute error and the oscillating solution u.

Figure 5.2 shows the errors un − u(tn) versus the step size h at time tn = 60 for
K = 15 and K = 30.

Figure 5.3 plots the cpu time versus the number of integration steps, up to 106

time steps. The near-linear growth of the computational work is clearly visible.

5.2. Fractional diffusion with transparent boundary conditions. Here
we consider a fractional diffusion equation on the real line; see, e.g., [15] for applica-
tions of such equations in physics and for numerous references. The equation can be
formulated as

u(x, t) − u0(x) =

∫ t

0

(t− τ)α−1

Γ(α)
∂xxu(x, τ) dτ + g(x, t) for x ∈ , t > 0,(5.2)
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with the asymptotic condition u(x, t) → 0 for x → ±∞, for an inhomogeneity g with
g(x, 0) = 0. To reduce the computation to a finite domain x ∈ [−a, a] for initial data
u0 and inhomogeneity g with support in [−a, a], we impose transparent boundary
conditions at x = ±a, which read

u(±a, t) = −
∫ t

0

(t− τ)α/2−1

Γ(α/2)
∂νu(±a, τ) dτ,(5.3)

with the outward derivative ∂ν = ±∂x at x = ±a. These boundary conditions
are derived with Laplace transform techniques in the same way as for the wave or
the Schrödinger equation; see, e.g., [2]. Space discretization of (5.2) is done using
second-order finite differences and a central finite difference to approximate the nor-
mal derivative. With the notation

δxxu
n
l =

1

Δx2

(
un
l−1 − 2un

l + un
l+1

)
, δνu

n
±(M−1) =

1

2Δx

(
un
±M − un

±(M−2)

)
for a = MΔx, the discrete equation approximating (5.2) is

un+1
l − u0

l =

n∑
j=0

ω
(α)
n−j δxxu

j+1
l + gnl for l = −(M − 1), . . . ,M − 1 ; n > 0,

un+1
±(M−1) = −

n∑
j=0

ω
(α/2)
n−j δνu

j+1
±(M−1) ,

(5.4)

where the weights ω
(β)
n are the convolution quadrature weights of the backward Euler

method for the kernel f(t) = tβ−1/Γ(β) with Laplace transform F (s) = s−β . In this
case gnl = g(xl, tn + h).

In the numerical example we set a = 5 and M = 450. We consider the prob-
lem with α = 2/3 and no inhomogeneity, i.e., g ≡ 0. The initial value is u(x, 0) =
exp(−x2). Figure 5.4 shows the errors at t = 2 and t = 10 in dependence on the step
size for the convolution quadratures based on the Radau IIA methods of orders 1, 3,
5, obtained with B = 5 and K = 15 in the fast convolution algorithm, by using the
hyperbola contours. The reference solution is obtained with the convolution quadra-
ture based on the Radau IIA method of order 5, with a small step size h = 0.0002
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Fig. 5.4. Absolute error versus time step in logarithmic scale, for different integration methods,
with K = 15. Left t = 2, right t = 10.

and large number K = 40 of nodes on the integration contour. We observe an order
reduction for the higher-order methods, which is due to the temporal nonsmoothness
of the solution at t = 0; cf. [1, sect. 8]. Nevertheless, the higher-order methods give
much better accuracy.

The work diagram looks almost identical to Figure 5.3, showing practically linear
dependence of the computational work on the number of time steps. The required
memory is less than 200 entries per spatial grid point for up to N ≤ 104 steps and
less than 300 entries per grid point for N ≤ 106 steps. These numbers are halved if
we run the algorithm with B = 10, K = 10 instead of B = 5, K = 15, as is sufficient
for less stringent accuracy requirements (∼ 10−3).
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[17] A. Schädle, Ein Schneller Faltungsalgorithmus für Nichtreflektierende Randbedingungen, Doc-
toral Thesis, University of Tübingen, Germany, 2002.
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