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OPTIMIZING TALBOT’S CONTOURS FOR THE INVERSION OF
THE LAPLACE TRANSFORM∗

J. A. C. WEIDEMAN†

Abstract. Talbot’s method for the numerical inversion of the Laplace transform consists of
numerically integrating the Bromwich integral on a special contour by means of the trapezoidal or
midpoint rules. In this paper we address the issue of parameter selection in the method, for the
particular situation when parabolic PDEs are solved. In the process the well-known subgeometric
convergence rate O(exp(−c

√
N)) of this method is improved to the geometric rate O(exp(−cN)),

with N the number of nodes in the integration rule. The value of the maximum decay rate c is
explicitly determined. Numerical results for two versions of the heat equation are presented. With
the choice of parameters derived here, the rule of thumb is that to achieve an accuracy of 10−� at
any given time, the associated elliptic problem has to be solved no more than � times.
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1. Introduction. The Laplace transform is a classical technique for solving lin-
ear differential equations. For computational work, however, this approach never
really became popular, as for many years numerical analysts tended to focus on dis-
cretization methods such as finite differences and finite elements, possibly combined
with linear multistep or Runge–Kutta formulas for integration in time. We conjec-
ture that this lack of interest shown by numerical analysts in the Laplace transform
is partly due to the following two factors.

First, the Laplace transform restricts one to linear differential equations and in
many applications one ultimately aims to solve nonlinear problems. Second, the
Laplace transform, particularly its numerical inversion, has a reputation for being a
computational challenge. This has to do with the fact that the inverse problem is
by nature ill-conditioned when the transform is known only as a real-valued function.
When the transform can be sampled in the complex plane the conditioning seems
better, but then complex arithmetic is required.

Despite these apparent drawbacks of the Laplace transform, there has been a
recent resurgence of the technique, as evidenced by the number of papers on this
topic that have appeared since the year 2000; see, for example, [4, 8, 12, 14, 17, 18].
This renewed activity is in part due to recent interest in linear parabolic PDEs of
fractional type, which are naturally posed in a transform setting. (These fractional
PDEs model phenomena such as anomalous diffusion in several financial and biological
applications.) In addition, MATLAB and other modern computational environments
make complex arithmetic as easy to work with as real arithmetic and therefore complex
inversion formulas become feasible.
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To introduce the problem, consider the linear system of ODEs

df

dt
= Af , f(0) = f0,(1.1)

where A is an M × M real matrix, f(t) an M × 1 real vector, and f0 the initial
condition. We are primarily interested in the case where A is the result of semi-
discretization of a parabolic PDE (examples are given in section 5). We assume,
therefore, that the eigenvalues of A are real and negative.

The formal solution to (1.1) is

f(t) = exp(At) f0,

and this reduces the problem to that of computing the matrix exponential of a (typi-
cally) large matrix. To be more precise, we need to compute the product of the matrix
exponential and a vector, which can be done without actually computing the matrix
exponential itself [15].

The authors of [4, 8, 12, 14, 17, 18] all compute this product by numerically
approximating the inverse Laplace transform

f(t) =
1

2πi

∫
Γ

eztF (z) dz, F (z) ≡ (zI −A)−1f0.(1.2)

In this formula, known as the Bromwich integral, I is the M ×M identity matrix and
Γ is the contour of integration. At least initially, Γ is the Bromwich line Re z = σ,
where the parameter σ should be large enough that all eigenvalues of A lie in the
half-plane Re z < σ.

The typical approach is to deform the Bromwich line into a curve that begins
and ends in the left half-plane, such that Re z → −∞ on the contour; see Figure 1.1.
Owing to the exponential factor ezt, the integrand decays rapidly on such a contour,
and if the contour is smooth this turns the problem into one of the classic situations
where the trapezoidal rule converges extraordinarily rapidly [5, 10, 22, 23].

The articles [4, 8, 12, 14, 17, 18] differ with respect to the choice of the integration
contour Γ, and how this contour is parameterized. A short summary of contours and
convergence rates is given in section 6.

Suprisingly, none of the above references seriously considers Talbot’s contour [19],
rated in some circles as one of the best methods for inverting the Laplace transform;
see [6]. (The method is mentioned in [12, 18], but is neither implemented nor analyzed
there.) This contour may not be suitable when part of the spectrum of A is located off
the negative real axis, but for pure parabolic problems the method is very accurate,
as the numerical results of this paper will testify.

Talbot’s contour is parameterized by

Γ : z(θ) = σ + μ (θ cot θ + ν i θ), −π ≤ θ ≤ π,(1.3)

where σ, μ, and ν are real parameters that determine the geometry of the curve. Both
μ and ν are positive. For the eigenvalues of A to be enclosed by the contour one needs
z(0) > λ, where λ is the largest eigenvalue of A, i.e.,

σ + μ > λ.(1.4)

A typical Talbot contour is shown in Figure 1.1.
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A related contour is obtained by replacing the function θ cot θ in (1.3) with the
first two terms in its partial fraction expansion,

Γ : z(θ) = σ + μ
(
1 +

2θ2

θ2 − π2
+ ν i θ

)
, −π ≤ θ ≤ π.(1.5)

This contour is equivalent to one mentioned in Talbot’s original paper [19], from
which we quote: “. . . and indeed such functions can give good results, though their
potentialities have not yet been explored.”

It will turn out that the contour (1.5) is easier to analyze than (1.3), so for much
of the paper we shall focus on the second contour. We shall also show, however, that
the first Talbot contour yields superior accuracy.

Using either (1.3) or (1.5), the Bromwich integral (1.2) can be expressed as

f(t) =
1

2πi

∫ π

−π

ez(θ)tF
(
z(θ)

)
z′(θ) dθ,(1.6)

where, respectively,

z′(θ) = μ (cot θ − θ csc2 θ + ν i) or z′(θ) = μ
(
− 4π2θ

(θ2 − π2)2
+ ν i

)
.

The integral (1.6) is typically approximated by the trapezoidal rule on a uniform
partition of [−π, π]. Instead, we prefer to use the equally accurate midpoint rule
with an even number of intervals, say 2N . This is a practical choice that avoids
sampling the integrand at the removable singularity at θ = 0, as well as at the
essential singularities at θ = ±π.

We hence define the grid

θk = (2k + 1)
π

2N
, k = −N, . . . , N − 1,(1.7)

and denote the approximation to (1.6) by

fN (t) =
1

2Ni

N−1∑
k=−N

ez(θk)t z′(θk) F k,

or

fN (t) =
1

N
Im

{
N−1∑
k=0

ez(θk)t z′(θk) F k

}
,(1.8)

if symmetry is used. Here the vectors F k ≡ F (z(θk)) are solved from(
z(θk) I −A

)
F k = f0, k = 0, . . . , N − 1.(1.9)

Unless A is sparse, the solution of the N linear systems (1.9) represents the bulk of the
computational cost of the algorithm. It should, however, be noted that the systems
(1.9) can be solved independently and in parallel [10, 17]. In addition, it is possible to
solve all N systems (1.9) efficiently using a single Hessenberg or Schur decomposition
of A; see Problem P7.4.2 in [9, p. 350].
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Fig. 1.1. Talbot’s contour (1.3) with parameter values σ = 0, μ = 2, ν = 0.5. The dots are the
images in the z-plane of the midpoint abscissas (1.7).

In this paper, we shall aim to optimize the convergence rate fN (t) → f(t) as
N → ∞, keeping t fixed, by selecting the parameters (σ, μ, ν) in (1.3) and (1.5) to
be asymptotically optimal. This is achieved by making σ and μ both proportional
to the ratio N/t. By doing so, a geometric convergence rate, O(e−cN ) as N → ∞,
can be obtained. It is well known that Talbot’s method with fixed (and therefore

suboptimal) parameters converges at a subgeometric rate of O(e−c
√
N ); see [19].

To conclude this introduction, we offer Figure 1.1 as a summary of the role of the
parameters (σ, μ, ν) in the contour (1.3). The parameter σ represents a shift to the left
or right. The parameter μ controls the distance that the two extreme nodes extend
into the left half-plane. The parameter ν determines the width of the contour in the
sense that the contour approaches two horizontal asymptotes at distance proportional
to μν from the real axis as Re z → −∞. The factor μν also determines the spacing
of the nodes near the real axis.

The outline of the paper is as follows. In section 2, we indicate how the well-

known O(e−c
√
N ) convergence rate can be rederived by analyzing the scalar model

problem

f(t) = eλt, F (z) = (z − λ)−1.(1.10)

This analysis suggests the reparameterization that we alluded to above, namely to
make σ and μ both proportional to N/t. A saddle point method is used in section 3
to demonstrate that this rescaling of parameters leads to an improved convergence
rate O(e−cN ). In section 4, we determine the value of ν and the proportionality
constants in σ ∝ N/t, μ ∝ N/t that will maximize the decay rate, c. We hence
obtain the attractive convergence rates O(e−1.90N ) and O(e−1.73N ), respectively, for
the two versions of the Talbot contour (1.3) and (1.5). A further improvement, which
involves omitting those outlying nodes on the Talbot contour that make a negligible
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contribution to the midpoint sum, improves these two convergence rates to effectively
O(e−2.41N ) and O(e−2.56N ). The theory of sections 3 and 4 is tested on two parabolic
PDEs in section 5. In section 6, we discuss a few alternate contours, and we also
contrast the parameter suggestions of this paper with those made by Talbot in [19].

2. Analysis of the scalar problem. We suppose the matrix A, which may
or may not be symmetric, has real and negative eigenvalues, λj , corresponding to a
complete set of eigenvectors, vj , j = 1, . . . ,M . If one expands the initial condition as
a linear combination of eigenvectors,

f0 = c1v1 + · · · + cMvM ,

then (1.2) can be expressed as

f(t) =
c1
2πi

(∫
Γ

ezt

z − λ1
dz

)
v1 + · · · + cM

2πi

(∫
Γ

ezt

z − λM
dz

)
vM .

Applying Talbot’s method to the right-hand side is therefore equivalent to applying it
to the scalar problem (1.10), where λ represents a real and negative eigenvalue of A.
For any fixed t, we shall restrict attention to λ in the range |λt| = O(1) as M → ∞.
We consider this sufficient because in the actual solution,

f(t) = c1e
λ1tv1 + · · · + cMeλM tvM ,

modes that satisfy |λt| � 1 are negligible.
Our task is therefore to estimate the error when approximating the integral

f(t) =
1

2πi

∫ π

−π

ez(θ)t

z(θ) − λ
z′(θ) dθ(2.1)

with the midpoint rule, with z(θ) defined by (1.3) or (1.5), and λ < 0. To start, we
recall an error formula for the midpoint rule.

Consider an integral on [−π, π] and its midpoint rule approximation

I(g) =

∫ π

−π

g(θ) dθ, MN (g) =
π

N

N−1∑
k=−N

g(θk),(2.2)

where the nodes θk are defined by (1.7). Suppose that the function g(θ) has an
absolutely convergent Fourier series expansion

g(θ) =
∞∑

k=−∞
cke

ikθ, with ck =
1

2π

∫ π

−π

g(θ)e−ikθ dθ.

Then it is possible to insert these formulas into (2.2), followed by termwise integration
and summation, to obtain

I(g) = 2πc0, MN (g) = 2πc0 + 2π

∞∑
�=−∞
� �=0

(−1)�c2�N .

The error is therefore given by

I(g) −MN (g) = −2π

∞∑
�=−∞
� �=0

(−1)�c2�N .(2.3)
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(The trapezoidal rule error would be similar, except for the absence of the (−1)�

factor; see [23].)
When the periodic extension of g(θ) is infinitely differentiable on [−π, π], the

Fourier coefficients ck decay rapidly. In fact, repeated integration by parts can then
be used to establish ck = O(|k|−m) for each positive integer m. In such cases a good
error estimate can be obtained by retaining only the leading two terms in (2.3), as
follows:

I(g) −MN (g) ∼ 2π
(
c−2N + c2N

)
=

∫ π

−π

g(θ)e−2Niθ dθ +

∫ π

−π

g(θ)e+2Niθ dθ.

One may apply this estimate to the special integral (2.1). The factor ez(θ)t de-
cays sufficiently rapidly as θ → ±π to ensure infinite differentiability of the periodic
extension of the integrand. We therefore propose to analyze the error estimate,

f(t) − fN (t) ∼ E−
N (t) + E+

N (t), N → ∞,

where, using symmetry,

E±
N (t) =

1

π
Im

{∫ 0

−π

ez(θ)t±2iNθ

z(θ) − λ
z′(θ) dθ

}
.(2.4)

We shall keep both t > 0 and λ < 0 fixed, as well as the parameters σ, μ, and ν in
the contours (1.3) or (1.5); our interest is the behavior of (2.4) as N → ∞.

We digress for a moment to point out that error estimates such as (2.4) were used
to good effect by Lin, to numerically predict optimal parameters for Talbot’s contour
[11]. A wide range of transforms was considered there, not just the F (z) = 1/(z − λ)
considered here.

Rather than using numerical optimization, we shall instead use the saddle point
method to estimate analytically the two integrals (2.4). Since this analysis is primarily
used to justify the form of the rescaling of parameters in section 3, and not in the
determination of the actual optimal numbers itself, we omit the details. (A sketch of
the derivation can be found in [24].) The result is that, with EN (t) ≡ E−

N (t)+E+
N (t),

EN (t) = O
(
e(σ+μ)t−2

√
πμtN

)
, N → ∞,(2.5)

in the case of contour (1.3), and

EN (t) = O
(
e(σ+ 5

2μ)t−2
√
πμtN

)
, N → ∞,(2.6)

in the case of (1.5). Results similar to these were obtained by Talbot [19, eq. (15)],
who used a different method to prove that

EN (t) = O
(
N2e(σ+aμ)t−b

√
tN

)
.

The constants a and b depend on the transform and the contour.
The factor 5/2 that appears in (2.6) indicates that the error constant associated

with the modified contour (1.5) is larger than that of the original contour (1.3). This
was confirmed by the numerical experiments in [24].

The estimates (2.5)–(2.6) suggest the strategy of choosing σ, μ ∝ N/t. This

should improve the subgeometric convergence rate, O(e−c
√
N ), to pure geometric con-

vergence, O(e−cN ). We consider this next.
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3. New parameters for the contour. Consider the rescaling

σ = −s
N

t
, μ = m

N

t
, ν = n,(3.1)

where s, m, and n are real parameters to be determined. Both m and n are positive,
and in accordance with (1.4) we require that

s < m− λt

N
.(3.2)

The constant λ is defined in (1.10), which we continue to use as the model problem.
Because the parameters become dependent on t, so does the contour and hence

also the integration nodes. This means that the N linear systems (1.9) have to be
solved for each value of t, which may be inefficient. We therefore intend this rescaling
to be used when the solution is required at only a few values of t.

Using the new parameters (3.1) we define ζ(θ) = (t/N) z(θ); i.e.,

ζ(θ) = −s + m
(
θ cot θ + i n θ

)
(3.3)

in the case of the contour (1.3), and

ζ(θ) = −s + m
(
1 +

2θ2

θ2 − π2
+ i n θ

)
(3.4)

in the case of (1.5). The two error integrals (2.4) therefore become

E±
N (t) =

1

π
Im

{∫ 0

−π

eNg±(θ)

ζ(θ) − λt/N
ζ ′(θ) dθ

}
,(3.5)

where

g±(θ) = ζ(θ) ± 2 i θ.

We apply the saddle point method to (3.5). (For details of this method, we
refer the reader to [1, sect. 6.4; 3, sect. 6.6].) The idea is to deform the interval of
integration, [−π, 0], to a special contour in the complex θ-plane on which the integral
can be estimated accurately. By Cauchy’s theorem such a deformed contour will be
permissible as long as it starts at θ = −π, terminates at θ = 0, and does not cross
any singularities of the integrand in between. Suitable contours are steepest descent
curves, defined by Im

{
g±(θ)

}
= constant, for these remove the oscillations from the

integrands in (3.5). The constants are chosen such that the contours pass through
the saddle points, θ = θ+ and θ = θ−, respectively, defined by

g′+(θ) = 0, g′−(θ) = 0.(3.6)

To ensure analyticity of the integrand, one needs to take into consideration the
singularities associated with the vanishing of the denominator in (3.5), i.e., the zeros
of ζ(θ) = λt/N . In view of the discussion in the first paragraph of section 2, we shall
assume |λt| 	 N and ignore the right-hand side of this equation. We therefore define
the critical points, θ = θ∗, as the zeros of

ζ(θ) = 0.(3.7)
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This is the same as setting λ = 0, and in accordance with (3.2) we shall therefore
consider only m > s.

To apply the saddle point method, we have to know where the critical points
and saddle points are. We restrict ourselves to the modified contour (1.5); i.e., we
assume ζ(θ) is defined by (3.4). For this contour (3.6) and (3.7) reduce to polynomial
equations of degrees 4 and 3, respectively, which can in principle be solved explicitly.
The results are unwieldy, however, and we follow a more elementary approach.

In order to work with equations with real coefficients, we introduce the variable
φ by θ = iφ. After denominators have been cleared, (3.6) can be factored into

(
mn± 2

)(
φ2 + π2

)2
= 4mπ2φ,(3.8)

and (3.7) into (
mnφ + s−m

)(
φ2 + π2

)
= 2mφ2.(3.9)

Assuming m > s ≥ 0 and working with these two representations, we were able to
establish the following properties of the roots of (3.6)–(3.7).

Starting with the cubic equation (3.9), it is readily established that it always has
a positive real root. The remaining two roots may either be real as well or occur as
a conjugate pair. In the latter case the real part of these roots is positive, and the
imaginary part is bounded in absolute value by π. Transplanting this information
from the φ variable to θ, we deduce that the three critical points θ∗ defined by (3.7)
are all in the upper half-plane, with real parts in the interval (−π, π). At least one
root lies on the positive imaginary axis. The other two roots may be pure imaginary
as well, or they may be located symmetrically with respect to the imaginary axis. (In
the next section, we shall conjecture that the optimal configuration occurs when this
pair of roots coalesces into a double root on the imaginary axis.)

Turning to (3.8), one notices that it is a quartic equation with real coefficients
that is missing its cubic term. The typical configuration of roots is therefore one in
each quadrant of the complex θ-plane, at equal distances from the real axis. The
exception is when (3.8) admits four real roots, which would mean saddle points on
the imaginary θ-axis. Considering the minus sign in (3.8) we see this cannot happen
when mn < 2, and because of (3.10) below, we disregard this possibility.

Figure 3.1 shows a typical configuration of critical and saddle points. The roots
of (3.6) are represented by +’s and ×’s (corresponding to the + and − signs, respec-
tively), and the roots of (3.7) are plotted as the ∗’s.

We propose a saddle point analysis based on the contours shown in the figure.
The Γ± are the curves of steepest descent Im

{
g±(θ)

}
= constant. Writing θ = x+yi,

they can be expressed as

Γ± :
4mπ2xy

(x2 − y2 − π2)2 + 4x2y2
− (mn± 2)x = c±.

The constants c± are determined by the requirement that each Γ± passes through its
corresponding saddle point, θ+ or θ−, as defined by (3.6).

In the lower half-plane, Γ− starts at θ = −π, passes through θ−, and continues
to θ = −i∞. This is valid since the integrand in (3.5), with minus sign, approaches
zero as θ → −i∞, provided that

mn < 2.(3.10)
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Fig. 3.1. Saddle points, θ− and θ+, critical points θ∗, and steepest descent contours used in
deriving the error estimates (3.11)–(3.13).

(The corresponding restriction for the contour (1.3) is m(1 + n) < 2.) The contour
is then closed at −i∞ and returns to the origin via the negative imaginary θ-axis.
On this axis the contribution can be ignored, since the integrand is real. The error
E−

N (t) is therefore solely determined by the saddle point contribution, which can be
computed in the usual manner as [1, sect. 6.4; 3, sect. 6.6]

E−
N (t) = O

(
ed−N

)
, d− = Re

{
g−(θ−)

}
.(3.11)

In the upper half-plane a similar approach is used, except for the fact that the
critical points θ∗ have to be taken into account. The contour Γ+ is not continued
to θ = +i∞, as it will not be possible to return to the origin without crossing the
singular points θ = θ∗. To maintain analyticity of the integrand, we introduce a
third contour, Γ∗, that branches off from Γ+ and has a constant imaginary part, say
Im

{
Γ∗

}
= b. Typically, the value of b would be determined by the critical point θ∗

nearest to the real axis. By letting Γ∗ approach such a limiting θ∗ from below, it is
possible to establish

E+
N (t) = O

(
ed∗N

)
, d∗ = Re

{
g+(θ∗)

}
.(3.12)

If θ+ lies below Γ∗, a saddle point contribution similar to (3.11),

E+
N (t) = O

(
ed+N

)
, d+ = Re

{
g+(θ+)

}
,(3.13)

is to be added to (3.12).
In our numerical experiments, the total error was dominated either by (3.11) or

by (3.12). We have not found a set of parameters (s,m, n) for which (3.13) dominates,
but neither have we tried to prove that this is impossible.
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Fig. 3.2. Convergence curves for Talbot’s method applied to the model problem (1.10), with
λ = −1, t = 1, and using contour (1.5). The solid curves represent the actual errors, and the dash-
dot lines (virtually indistinguishable in (a) and (c)) their theoretical estimates. The plots (a)–(c)
correspond to three different choices of (s, m, n), as summarized in the appendix.

In Figure 3.2, we offer numerical verification of these error estimates. In the
appendix, the corresponding values of saddle points, critical points, and expected
convergence rates are summarized. We have picked sets of parameter values (s,m, n)
for which (a) the saddle point contribution (3.11) dominates, (b) the critical point
contribution (3.12) dominates, and (c) these two contributions are equal (the con-
jectured optimal situation). Also shown, as the dash-dot curves, are the predicted
convergence rates, i.e., the maximum of (3.11) and (3.12). Here we should point out
that these estimates are asymptotic, and much information is suppressed by the order
notation of (3.11)–(3.13). Therefore, in some cases N has to be large for the estimate
to become valid. This can be seen in part (b) of Figure 3.2, for example, where N
has to be greater than 70, roughly, before (3.12) becomes evident.

In Figure 3.2, and elsewhere in the paper where multiprecision arithmetic was
required, we computed in Maple and exported the numbers to MATLAB for plotting.

4. Computing the optimal parameters. A first attempt at finding optimal
parameters (s,m, n) was based on a numerical optimization strategy, involving the
objective function

F (s,m, n) ≡ max
{
d+, d−, d∗

}
= minimum.(4.1)

Here d+, d−, d∗ are the decay constants in the error estimates (3.13), (3.11), and
(3.12). For each set of parameters (s,m, n), the value of F can be computed by first
solving (3.6) and (3.7) to obtain θ+, θ−, and θ∗. These values are then substituted
into g±(θ), to compute d+, d−, d∗ as defined by (3.11)–(3.13).

In the case of contour (1.5), (3.6) and (3.7) can be solved with polynomial rootfind-
ing routines, and in this case MATLAB’s function roots was used. In the case of
contour (1.3) a complex Newton process was used. When solving (3.7), one should
take care to select the correct root θ∗.

The problem (4.1) was solved using MATLAB’s function fminsearch, a rou-
tine suitable for nonsmooth, unconstrained optimization. Aside from some mild ill-
conditioning that will be explained below, this approach worked well.
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In the case of contour (1.5), this yielded the parameters presented as case (c) in
Figure 3.2, namely

s = 0.7556, m = 0.8597, n = 0.3029.(4.2)

The corresponding saddle and critical points are summarized in the appendix. The
predicted optimal convergence rate is

EN (t) = O
(
e−1.7303N

)
, N → ∞.(4.3)

Applying the same algorithm to the original Talbot contour (1.3), we obtained a
better convergence rate, namely

EN (t) = O
(
e−1.8975N

)
, N → ∞.(4.4)

This corresponds to parameter values

s = 0.4814, m = 0.6443, n = 0.5653,(4.5)

with saddle points and critical point given by

θ+ = −2.5293 + 0.7435 i, θ− = −2.4158 − 0.9487 i, θ∗ = 0.9487 i,(4.6)

and decay rates

d+ = −2.5048, d− = −1.8975, d∗ = −1.8975.

In Figure 4.1, we show the θ+, θ−, and θ∗ defined by (4.6) in the top figure, and
their images in the z-plane in the bottom figure. Also shown are the nodes of the
midpoint approximation, with N = 16.

Examining the numerical results (4.5)–(4.6), we conjecture that in the optimal
configuration,

(a) θ∗ is on the positive imaginary axis,
(b) ζ ′(θ∗) = 0,
(c) Im(θ∗) = −Im(θ−), and
(d) d+ < d− = d∗

for both contours (1.3) and (1.5). All of these properties seem plausible, but we have
not pursued rigorous proofs.

Property (b) indicates that θ∗ is a double root of (3.7), which is the source of
the ill-conditioning mentioned at the beginning of the section. Fortunately, assuming
properties (a)–(d) to be true, the problem can be reformulated such that it becomes
explicitly solvable. The details are as follows.

Using properties (a) and (c) above, we write

θ∗ = y i, θ− = x− y i,

where x < 0 and y > 0. Because of property (d), we shall ignore θ+ and try to solve
for x, y, s, m, and n from the following five (real) equations: the right-hand equality
in (3.6) (two real equations), (3.7), property (b), and the equality in (d).

Using a straightforward but tedious hand calculation this 5×5 system was reduced
to a 2 × 2 system involving x and y. In the case of contour (1.5) this system is

x(P 2 −Q2) + 2yPQ = 0,

(5y2 + π2)(P 2 + Q2) + P (y2 + π2)2 = 0,(4.7)
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where

P = x2 − y2 − π2, Q = 2xy.

For further simplification we turned to Maple, which produced an explicit solution

y = π
√
v,

where v ≈ 0.07584 is the smallest positive root of

41v4 − 308v3 − 98v2 − 4v + 1 = 0.

With this value of v, x is given by

x = − π

4
√

2

√
41 − 209v − 1581v2 + 205v3.
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These formulas yield the values y ≈ 0.8652 and x ≈ −2.2315, as obtained above. The
values of s, m, and n given in (4.2) follow from

n =
4π2y

(y2 + π2)2
, m =

2(R2 + S2)

4π2(yR− xS) + n(R2 + S2)
, s = m

(
3y4 + π4

(y2 + π2)2

)
,

where

R = P 2 −Q2, S = 2PQ.

In the case of contour (1.3) the analogue of the system (4.7) is

A− x
(
A2 −B2 + 1

)
− 2yAB = 0,

xA + yB + y
(
coth y − 2 y csch2y

)
= 0,

where we have defined A = Re
{

cot θ−
}
, B = Im

{
cot θ−

}
, i.e.,

A =
sinx cosx

sin2 x + sinh2 y
, B =

sinh y cosh y

sin2 x + sinh2 y
.

A numerical solution of this system yields the value of θ− = x− iy reported in (4.6).
The values of the other parameters can be computed via

n = coth y − y csch2y, m =
2

B + y(A2 −B2 + 1) − 2xAB + n
, s = my2 csch2y.

As verification that the parameters derived here are indeed close to optimal, we
offer Figure 4.2. There we show, as the thicker curve, the numerically computed error
EN (t) as a function of N , corresponding to parameters (4.5). Virtually on top of
this curve and shown as a dash-dot line is the theoretical error estimate (4.4). To
show the near-optimality of these curves, we have computed errors using a uniform
sampling of parameter space (s,m, n) ∈ (0, 1) × (0, 1) × (0, 1), with step-size 0.05 in
each direction. (That is, 193 = 6859 different parameter sets were used for each value
of N .) The vertical line segments in the figure represent the range of these computed
errors, with the minima and maxima indicated by the tiny horizontal bars.

We should not neglect to point out that if our sampling of parameter space were
finer, some of the lower error bars in this figure could extend further down to 0.
This will happen when the two error components, E+

N (t) and E−
N (t) in (2.4), are

approximately of equal magnitude but of opposite sign. Such instances of fortuitous
cancellation will, however, be rare when the matrix as opposed to the scalar problem
is solved. We believe that Figure 4.2 represents solid evidence that the suggested
parameter values in (4.5) and (4.2) are indeed asymptotically optimal.

To conclude this section, we point out a redundancy in the Talbot contour as
noted by Trefethen [21]. Recall Figure 4.1, where the optimal Talbot contour was
shown for the case N = 16, and recall also that four pairs of nodes were located
outside the frame of the figure, towards Re z = −∞. In fact, the contribution of
each of these outlying nodes is negligible, as |ez(θk)t| ≤ e−1.90N when |k| ≥ 3N/4. It
appears that practically no accuracy is lost by including only the middle 75% of nodes
and discarding the outlying 25%. A more careful calculation shows that the actual
fraction of nodes retained should be about 0.7409. Since 1.8975/0.7409 ≈ 2.5611, the
effective convergence rate improves from about O(e−1.90N ) to O(e−2.56N ). In the case
of the modified Talbot contour (1.5) about 28% of the nodes can be discarded, which
increases the effective rate from O(e−1.73N ) to roughly O(e−2.41N ).

In the next section we solve two parabolic problems to test some of these conver-
gence estimates.
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5. Application to PDEs. The prototype parabolic PDE is the heat equation

ut = uxx, 0 ≤ x ≤ π,(5.1)

and here we consider boundary conditions

u(0, t) = 0, u(π, t) = 1, t > 0,(5.2)

and an initial condition

u(x, 0) = 0, 0 ≤ x ≤ π.(5.3)

The exact solution can be represented either as a Fourier series [2, p. 91], or an
infinite series involving the complementary error function [2, p. 93] (efficient for large
and small t, respectively).

For numerical work, we let v(x, t) = u(x, t) − x/π and rewrite the PDE as

vt = vxx,(5.4)

now with homogeneous boundary conditions

v(0, t) = 0, v(π, t) = 0, t > 0,(5.5)

but inhomogeneous initial condition

v(x, 0) = −x/π, 0 ≤ x ≤ π.

To semidiscretize (5.4), a suitable partition {xj}Mj=1 of [0, π] is introduced, along

with an M × M matrix D that represents the approximation to d2/dx2 and which
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incorporates the boundary conditions (5.5). The approximation to (5.1) is then given
by the linear system of ODEs

vt = Dv, v(0) = v0.(5.6)

Here v = v(t) is the M × 1 column vector [v1(t), v2(t), . . . , vM (t)]T , with vj(t) repre-
senting the approximation to v(xj , t). Likewise v0 is the vector consisting of samples
of v(x, 0) at the grid-points xj .

Traditionally, the system (5.6) is integrated by a Runge–Kutta or multistep for-
mula (the method of lines). Here we use the transform approach instead. That is, we
compute the midpoint sum

vN (t) =
1

N
Im

{
N−1∑
k=0

ez(θk)t z′(θk) F k

}
,(5.7)

where z(θ) is given by (1.3) and θk by (1.7). The vectors F k are solved from(
z(θk) I −D

)
F k = v0, k = 0, . . . , N − 1.(5.8)

The details of our particular implementation are as follows. Since we have es-
tablished that the Talbot contour (1.3) is superior to the contour (1.5), we consider
only the former. As for the choice of {xj}Mj=1 and D, we use the Chebyshev spectral
collocation method; i.e., the nodes are the Chebyshev points of the second kind, and
D is the corresponding spectral second derivative matrix incorporating the boundary
conditions (5.2). The canonical interval for the Chebyshev points is [−1, 1], which we
transform to [0, π] with x �→ (π/2)(x+ 1). (Codes for computing {xj}Mj=1 and D and
further details of the spectral method can be found in [7, 20, 25].)

We shall report errors in the L2-norm, as approximated by the Clenshaw–Curtis
rule (the natural quadrature rule for the Chebyshev method). That is, we define as
error norm

EN (t) =

√√√√π

2

M∑
j=1

wj

(
v(xj , t) − vj(t)

)2

,(5.9)

where the wj are the weights defined in [20, p. 128], and the factor π/2 comes from
the transformation of [−1, 1] to [0, π]. The exact solution, v(x, t), was computed by
the series expansions mentioned below (5.3).

Our first aim is to demonstrate that the convergence estimate (4.4), derived for
the model problem (2.1), is also valid for the solution of a PDE. In the latter case,
there is of course a spectrum of λ’s present, not only the single λ that was assumed in
sections 2 and 3. For this reason we chose the side conditions (5.2)–(5.3) to represent
a discontinuous solution at t = 0. Our interest will therefore be in the regime t → 0,
when high frequency modes are relevant.

In Figure 5.1 we show solutions of (5.1)–(5.3) at various values of t. We also show
the error, EN (t), as a function of N , for the corresponding values of t. We have chosen
the M ×M Chebyshev matrices D sufficiently large to fully resolve the solution; i.e.,
the errors reported in the figure are solely due to the Laplace transform quadrature
error and not due to inadequate spatial resolution. Owing to the smoothing property
of the heat equation the order of D can of course be reduced as t increases, and
suitably large values of M were determined by trial and error.
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Fig. 5.1. The left column shows the actual solution of (5.1)–(5.3) at various times. The right
column shows convergence curves when the solution on the left is approximated with a Chebyshev
spectral differentiation matrix of order M ×M and Talbot’s quadrature rule (5.7) using the contour
(1.3) with optimal parameters (4.5). The thinner, dotted curves show the computed errors, and the
thicker, dash-dot lines the error model exp(−1.90N); cf. (4.4). The error EN (t) is defined by (5.9).

Assessing these figures, it is clear that the error estimate (4.4) is valid for this prob-
lem, even for small t. In addition, one should keep in mind that these results can be
achieved by solving effectively only 0.74N linear systems (recall the discussion at the
end of section 4). This allows us to formulate the rule of thumb stated in the abstract.
Suppose an accuracy of 10−� is required at a particular value of t. By considering

e−2.56N = 10−� =⇒ N ≈ 0.9	

one concludes that this should require no more than 	 solutions of the system (5.8).
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We remark that discretization in space is, strictly speaking, not necessary for
(5.1)–(5.3), as the Laplace transform can be obtained explicitly, as follows [2, p. 89]:

F (z) =
sinh(x

√
z)

z sinh(π
√
z)

.

Talbot’s method (or any other inversion algorithm) may be applied to this transform
for any x in [0, π]. For problems with nonconstant coefficients or with complicated
boundary conditions, however, such explicit representations may not exist.

As a second example, we consider the fractional heat equation

Dα
t u = uxx,(5.10)

subject to boundary conditions (5.5) and initial condition

u(x, 0) = sin x, 0 ≤ x ≤ π.(5.11)

Here Dα
t is the Caputo fractional derivative, defined by [16, p. 79]

Dα
t f(t) =

1

Γ(1 − α)

∫ t

0

f ′(s)

(t− s)α
ds (0 < α < 1).

It can be shown [16, p. 79] that if f(t) is twice continuously differentiable, then in
the limit α → 1 this formula reproduces the ordinary derivative, in which case (5.10)
reduces to the standard heat equation (5.1).

The analytical solution to (5.10)–(5.11) can be written as

u(x, t) = M(t) sinx,

where M(t) can be expressed in terms of the Mittag–Leffler function. In the case
α → 1, it reduces to M(t) = e−t. In the case α = 1/2, the function can be expressed
in terms of the complementary error function, namely

M(t) = eterfc(
√
t).

The qualitative properties of this α = 1/2 solution are similar to those of the ordinary
heat equation, but steady-state is approached on a longer time scale (subdiffusion).

For the numerical solution of (5.10)–(5.11), one takes a Laplace transform of
(5.10), which yields

F (z) =
(
zI − z1/2D

)−1
u0.

We shall continue to let D be the Chebyshev second derivative matrix that incorpo-
rates the boundary conditions (5.5). The modification to the Talbot method (5.7)–
(5.8) is obvious: the scalar z(θk)

1/2 should be inserted to multiply D in (5.8).
Finding optimal parameters for Talbot’s method for the problem (5.10)–(5.11)

would mean analyzing F (z) = 1/(z − z1/2λ) as a test function. Note that the sin-
gularities are no longer isolated, but a branch cut on the negative real axis. Instead
of performing such an analysis, we merely demonstrate numerically that Talbot’s
method with the parameter choices of section 3 is very accurate for this problem as
well. The error curves shown in Figure 5.2 confirm that the convergence rate is, to a
good approximation, again given by O(e−1.90N ).
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Fig. 5.2. Same as Figure 5.1, but the problem is the fractional PDE (5.10)–(5.11), with α = 1/2.

6. Comparisons. Using a combination of asymptotics and heuristics, Talbot
made some suggestions for parameter selection in the original paper [19]. In the case
of singularities on the real negative axis, the suggested values are

σ = 0, μ =
ω

t
, ν = 1.

The recommended value of ω is 6 (resp., 11) for single (resp., double) precision. In our
notation ω = mN , and using m = 0.6443 we find that ω = 6 (resp., 11) corresponds to
N ≈ 9 (resp., 17). This is commensurate with our results, as exp(−1.90×9) ≈ 3.7 10−8

(approx. single precision) and exp(−1.90×17) ≈ 9.4 10−15 (approx. double precision).
The recommended values σ = 0 and ν = 1, however, are suboptimal. Indeed, in the
abstract of [19] it is stated that “The required number of points depends on t. . . and
for moderate t is typically 11 for orders of 10−6, 18 for order 10−10, 35 for order
10−20.” Fitting a model EN = const. × e−cN to these data yields c ≈ 1.35, which is
not as good as the c ≈ 1.90 and c ≈ 2.56 obtained here.

To be fair to Talbot, the aims of the paper [19] were more ambitious than those
of the present paper. To begin with, all singularity distributions were taken into ac-
count, not just poles on the negative imaginary axis. In addition, Talbot considered
finite precision tolerances, and therefore had to deal with the locations of the singu-
larities. By contrast, we let N → ∞, thereby making the errors independent of the
singularities, and trusted in the power of asymptotics to make the parameters thus
found relevant for finite (indeed, relatively small) values of N as well.

More recently, hyperbolic and parabolic contours have been considered as al-
ternatives to Talbot’s contours. Published convergence rates are all subgeometric,

namely O(e−cN1/2

) for the hyperbola of [14], O(e−cN2/3

) for the parabola of [8], and
O(e−cN/ logN ) for the hyperbola of [12]. The hyperbola has the advantage that it can
handle singularities that lie in a sectorial region about the negative real axis; see [12].

Using a rescaling similar to (3.1), the above convergence rates were subsequently
improved to the geometric O(e−cN ); see [13, 26]. In fact, the optimal decay constant c
is marginally better for parabolas and hyperbolas than for Talbot contours. With the
modification introduced at the end of section 4, however, the Talbot contours regain
their superiority.

Appendix. Table A.1 lists saddle points, critical points, and estimated conver-
gence rates corresponding to cases (a)–(c) in Figure 3.2.
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