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Laplace transform - Definition
Definition

Let u: [0,00] — R and piecewise continuous. Then the Laplace
transform of u is given by:

£(u) = /Ooo et u(t) dt (1)

Comments:

e L(u) is a function of the complex variable s = x + iy

£(u) = / e (cos(yt) — i sin(yt))ul)dt
0
= F(x,y) +iG(x,y) (2)

— | When does the integral (1) exist?
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Existence conditions

To ensure that L(u fo e Sty

t) dt [— (1)] exists, we impose the
following condltlons

Let u(t) be a piecewise continuous function on [0, c0)
Q letci,cp € Rst. fort — 00

lu(t)] < cre®t

@ For any finite T

T
/ lu(t)] dt < oo
0

— (1) converges absolutely and uniformly for Re(s) > ¢, since

/Oo ‘e_Stu(t)‘ dt < ¢ /OO ’e(cz—Re(S))t
0 0
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.
Comparison: Fourier transform

Definition
The Fourier transform of a function is given by:

Fw) = \/12? / T f(p)eiwtar (6)

where f belongs to the so called Schwartz space
S(R") ={f € CR") [ |flla,p < o0V, B} (7)

where

fllas = sup [x*D’f(x)|
xeR?

— Laplace transform is much more powerful than Fourier transform
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.
Properties of Laplace transform - 1

o Linearity
L(u+v)=L(u)+ L(v) (8)
L(Au) = \L(u)

@ Uniqueness [Lerch’'s Theorem]

Distinct continuous functions on [0, c0) have distinct LTs
(— Be careful transforming functions with discontinuities)

@ Translation in s- and t-space

L(e Pu(t)) = F(s + b) (9)
/OO e~ u(t — 1)dt = e~L(u) (10)
1
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.
Properties of Laplace transform - 2

@ Laplace transform of integral

T
L (/0 f(t)dt> = F(s)/s. (11)
o Multiplication by t
c(ery = - L) (12)
@ Division by t .
(") = [ Fprap (13)
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Some transformed functions

For basic functions, the Laplace transform has been calculated using
equation (1) and properties (5) to (13).

f(t) F(s) f(t) F(s)
n! w
- .
t (‘HEN) m sin wt 52 4 2
et 1 cos wt ,,;
s+a 52 + w?
1 n!
t —at tn —at
¢ (s +a)? ¢ (s + a)™*t
a(t) (n) n
(Dirac delta) 1 8(D) s
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o Laplace transform of nt" derivative

c (‘ﬂ) = () — " Lu(0) — o — aD(O) (14)

Proof.
n=1: Integrating by parts yields:

du _ R @ Pl s
ﬁ(dt)/o e <dt>dte u(t)

= lim e *u(t)—u(0) +sL(u) =sL(u
—_—

—0, see (5)

~
\
c
—~
(=}
~

n-1— n:  Similarly, we get:

d"u 41y
= — (”_1) — N _ h—1 _ _ (n_]_)
£ ( den > u (0)+sL ( g1 ) s"L(u)—s"""u(0)—...—u (0) O

v
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Solving ODEs

The Laplace transform turns ODEs into simple algebraic expressions.
Example (1)

ODE: | du/dt = au(t) + v(t), u(0) = |

Applying the Laplace transform on both sides gives:

L(du/dt) = L(au) + L(v) [Linearity, (5)]
sL(u) —u(0) = [,( )+ L(v) [Transf. of derivatives, (14)]
(s —a) £u) = 1 + £(v)
L(v)
=675 (6 g -

‘ — To find solution u(t), existence of inverse LT is necessary. ‘
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Inverse by Partial fraction expansion

o Partial fraction expansion

(— Inverse Transformations for most rational functions easy thanks
to known results)

f(t) F(s) f(t) F(s)
n! . w
t" (n € N) m sin wt m
1
et - cos wt
s+a
1
te—ﬂr tﬂc—ﬂf
(s+a)? (s + a)™*t
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Bromwich Integral

Another method for inversion of the Laplace transform is provided by the

Bromwich Integral formula (Fourier—Mellin integral; Mellin's inverse
formula).

Let F(s) be a function which satisfies the following conditions:

(a) F(s) is analytic for Re(s) > oo (16)

: 1 .
(b) F(s):S—I—O<H2) as |s| oo alongs=b+it, b>oy (17)
s

Let o¢ be greater than the real part of all Singularities of F(s).
Then the inverse Laplace transformation is given by the line integral

oo+iT
LH{F(s)} = F(t) = — / et F(s) ds (18)

27TI T—>OO o—iT

v
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N —
Calculation of Inverse LT

@ Complex Analysis - Calculus of Residues

Sno
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Recall: Residue theorem

Theorem

Let D C C be a domain and sy, ...,s, € D be finite many (pairwise
disjoint) points. Further let f : D\ {s1,...,sn} — C be an analytic
function and T : [a,b] — D\ {s1,...,sn} be a closed contour. Then

/ F(C)dC = 21 3 Res (£) xs(T) (19)

r =

where Ress;(f) denotes the Residue of f at point s;.
Xs;([) is called winding number.
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Some Facts about Residues

Basically, there are three types of Singularities in Complex Analysis:

© removable singularities

sin(z)

eg. f(z)=

@ poles

© essential singularities
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-
Calculating Residues

Let D={z|0<|z—c| <R} apunctured disc in the complex plane.
f is a holomorphic function defined at least on D.

The residue Res.(f) of f at singularity c is the coefficient a_; in the
&8
Laurent Series expansion of f <i.e. f(z)= > an(z— c)”)

n=—oo
Example

© removable singularities

@ poles of nt order

1 dn—l

Res(f) = CE Zl/gé G ((z = ¢)"f(2))
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, , T
Remember: Bromwich Integral = lim [7°"'] et F(s)ds
AU T T oo JO0— i
. i
sz T sz
. I |

Residue theorem can be used to calculate the integral along I'g U Cg:

1

2mi FrRUCR

e F(s)ds = Z Ress, (e F(s))

Depending on f we (hopefully!) can choose g s.t. er e F(s)ds +0as R — o0

Jan Ernest (ETH) Discrete and Continuous Laplace transform October 26, 2009 16 / 41



Example (2)
ODE: | du/dt = au(t) + v(t), u(0) =c |

As we derived in (15), we get the following algebraic expression:

S L) = gt (f(—vl)
= u(t) :z—l{(sc_la)}+.c—1{(f(_vl)} (20)

Using prior results, (e.g. compare basic Laplace transform table), we know:

£ { e = 3 } = ¢ e (21)

— | We still cannot handle the 279 part. What is £71(f - g)?

v
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Convolution Theorem

Theorem (Convolution Theorem)

Let f and g be piecewise continuous on [0, 0] and of exponential order «
(cf. (3)), then

L[(f = g)(t)] = L(F(1)) - L(&(t)), (Re(s) > ) (22)
where f x g denotes the convolution of f and g which is given by

(Fe)0) = | () gt -7 dr (23)
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Proof.

£(F) L(g) = < /0 T e () d7—> ( /O T e s g(u) du>
_ /0 - ( /0 " e £(7) g (u) du) dr

Substituting t = 7 4+ u we get: (7 is fixed in the inner integral and g(t) = 0 for
t <0implies g(t—7)=0fort <)

L(F) £(g) = /O b ( /O T et f(r) gt — 1) dt) dr

Since the Laplace integrals of f and g converge abolutely we are allowed to
reverse the order of integration, so that

£(F) £(g) = /0 h ( /O T et f(r) gt — 1) dT) dt

[e’e] t
:/ e ™ (/ f(r)g(t—1) dT) dt = L[(f = g)(t)] O
0 0
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Example (3)
ODE: ‘ du/dt = au(t) + v(t), u(0) =c1 ‘

As we derived in (20) and (21):

= u(t)=c et + L7 { L(v) }

(s —a)

Using the Convolution Theorem (22) we get:

£ {(E(V)} _ L) L {(5 ! a)} - /ot v(r) et dr

s—a)

— Solution of ODE:

u(t) =cre® + fot v(r)et=") dr

v
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-
Stability of LT

Let v(t) be a function such that

/OOO V()] e dt < e (24)

Then, for Re(s) > k

1£(u+v) = L(u)| =

/ v(t)e "t dt
0

So, a small change in u(t) produces an equally small change in L(u).

</ lv(t)] e Re)t gt < ¢
0

‘ — L(u) is stable under perturbations of type (24) ‘
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Instability of Inverse LT -1

The inverse Laplace transform is not stable under reasonable
perturbations.

Example
Take as an example the transformation:

a

L(sin(at)) = 1)

As a increases...

e ... sin(at) oscillates more and more rapidly, but remains of constant
amplitude.

@ ... The LT is uniformly bounded by 1/a for s > 0, thus approaches 0
uniformly.
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Laplace transform of sin(at) (a=1,10,100) |

1 1
/ b Vd . E
of “q{ 05
8 10
8 10
8 10

Consequence:
Impossibility of usable universal algorithms for Inverse LT!
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Discrete Laplace transform (z-Transform)

In many discrete systems, the signals flowing are considered at discrete
values of t, e.g. at nT, n=20,1,2, ..., where T is called the sampling
period.

So we are looking at a sequence of values f,,.

Here: f, = f(nT)

Definition
Let T > 0 be fixed, f(t) be defined for t > 0. The z-Transformation of f(t)
is the function -
Z[fl=F(z)=>_ f(nT)z"" (25)
n=0

of the complex variable z, for|z| > R = % where p denotes the radius of
convergence of the series.

v
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N —
Existence of z-Transform

3 TN
y N Sampling a discontinuous function with T=1

25

2k

N

15F

1|
05

0

0 1 2 3 4 5 6 7 8 9

time t

If f(t) has a jump discontinuity at some nT, we interpret f(nT) as the
limit of f(t) as t — nT™. To ensure existence of the z-Transform, assume
existence of this limit for n =0,1,2, ... for all f(t) considered.
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.
Properties of z-Transform - 1

@ Linearity
Z(af + bg) = aZ(f) + bZ(g) (26)
@ Shifting theorem
m—1
Z(f(t+mT))=z" |F(z) = > f(kT)z 7k (27)
k=0

@ Corollary of Shifting theorem
Z(f(t—nT)u(t—nT))=z""F(2) (28)

where u(t) denotes the unit step function.
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.
Properties of z-Transform - 2

@ Complex scale change

Z(e Tf(t)) = F(e?T 2) (29)

@ Complex differentiation or multiplication by t

Z(tF)= Tz %]—"(z) (30)
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N —
Convolution

Definition
The convolution of two sequences {f,} and {g,} is given by the
sequence {h,}, where its n'" element is given by:

n
hn - Z fk 8n—k (31)
k=0
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-
Algorithmic calculation of the discrete convolution

Let f, and g, be the following two sequences:

gr.=|2 1 2 1 2 1 ‘ fn=‘1 2 3

|1 2 1 2 1 2 | ——

Second step: Multiply elements below each other and add them together.

Third step: Move sequence by one position and start again at second

step.
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1 2 3 10
1 2 1 2 1 2 | ——
5
2
0 T

o
n
w
-
o

10
1 2 3
1 2 1 2 1 2| 5
1 + 4
o1
o 1 2 3 4 5
10
1 2 3
1 2 1 2 1 2‘ 5 o
2 + 2 + 6 T
oL T
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.
Example: Discrete Convolution

The convolution (MATLAB: conv(f,g)) of the two sequences
fn=1(1,2,3) and g, = (2,1,2,1,2,1) is given by:

Input signal f| P Input signal g

Jan Ernest (ETH) Discrete and Continuous Laplace transform October 26, 2009 31 /41



Convolution theorem for z-Transform

Theorem

If there exist the transform Z(f;) = Fi(z) for |z| > 1/Ry and

Z(h) = Fa(z) for |z| > 1/Ry, then the transform Z(f; = f) also exists
and we have for |z| > max(1/R1,1/R»),

Z(Rxh)= Zﬂ kT) fo((n—K)T)| = Fi(z) Fo(z)  (32)

v
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|
Proof.
First remark, that (28) implies, that:

275 Fy(z) = Z[hH(t — kT)], if o((n—k)T) =0 for n < k

Hence,

i )z K Fo(z) Z A(KT) Z [f(t — kT)]

P
o

k=0

x

o

n=0

but f((n— k)T) =0 for n < k. Therefore we get:

Fi(z) Fa(z) = Z2(h* h) =
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Inverse z-Transform

We are interested in retrieving the values f(nT) from a given transform
F(z), so symbolically we write:

f(nT) =271 [F(2)]

There are three typical methods:

@ Partial fraction expansion
@ Power series method

@ Solving complex integrals
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Power series method

Let F(z) be given as a function analytic for |z| > R and at z = oo, then
the value of f(nT) can be obtained as the coefficient of z~" in the power
series expansion of F(z) as a function of z71.

Assume that F(z) is given as a rational function in z71:

potpizt+ . 4pz" 1
(2) T (7)+f(1T)z (33)

where by comparison of coefficients:

po=1f(0T)qo
p1=Ff(1T)qgo+f(0T)q

pn=1f(nT)qo+f[(n=1)T] g1+ f[(n—=2)T] g2+ ...+ £(0T) qn
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Complex integral formula

The coefficient f(nT) can also be expressed as a complex integral.

We need the following result:

2wi, n= -1
Z2"dz = ’
/|z|r { 0, n#-1
By multiplying F(z) by z"~! and integrating, we get:

% F(z)z"Ydz = f(nT) - 27i (34)
a

So, using again the Residue theorem (19) we get

f(nT) = 2% 7{ F(z)z" 1 dz =) (Residues of F(z)z"!)  (35)

Of course choose I s.t. all residues lie inside the contour
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Problem: Branch points

If we use the complex integral formula we have to be careful because of
branch points in the integrand.

Example

© complex logarithm

Log(z) = In|z| + iArg z (36)

@ roots
Let F(z) be given as:

F(z)=2z, xeR\N
We can rewrite this as

.7:(2) — eLog(z)X

4
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As we meet such branch cuts, we have to be careful choosing our contour

i
T 1+i
/, I'[.Q ",
i
’ 4
I." il '.I
L -
|\ Thelimit of Arg -1 |
'..\ from this side is - |
\ r
\\ - //
‘\-. -~
— |
5
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Comparison between Laplace and z-Transform

Goal:

Develop a transformation to switch between z-Transform and Laplace
Transform.

Recall:
e Laplace transform (1) e z-transform (25)
o oo
—st
L(u) =/ e > u(t) dt Z[fl=F(z)=>_ f(nT)z™"
0 n=0
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Define the impulse function:

(t) = i f(nT)o(t—nT) (37)

n=0

Using that £(d(t)) = 1 and (10) we get

L(O(t — KkT)) = e T* (38)
We obtain:
F*(s) = Lf*(t)] = <Zf (nT)5(t — nT)>
if(nT t—nT)):if(nT) —nTs
n=0 n=0

which actually is the z-Transform with z = e'®
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.
Relationship between z-Transform and Laplace Transform

Using the prior results we can deduct the following relationship:

Z(f) = L(f(t)), evaluated at: s = T~ 1/n(z) (39)
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