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Overview

• Symmetrize Projection Methods

• Analyze symmetric projection methods

• Simulation: Solve pendulum equations using

symmetric projection methods

• Symmetrize Local Coordinates methods
• Find two symmetric Lie group methods
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Projection Methods and Symmetry
Standard projection methods are not symmetric, because of asymmetric
use of projections.
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Projection Methods and Symmetry
Standard projection methods are not symmetric, because of asymmetric
use of projections.

We look for an algorithm using projections that preserves the symmetry of
the basic integrator:
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Projection Methods and Symmetry
Standard projection methods are not symmetric, because of asymmetric
use of projections.

We look for an algorithm using projections that preserves the symmetry of
the basic integrator:

Use: “inverse projection” - symmetric integration step - projection
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Symmetric Projection Methods

If Φh is a symmetric method applied to ẏ = f(y), define:

Algorithm 1 (Symmetric Projection Method (SPM)) Assume that

yn ∈ M. One step yn 7→ yn+1 is defined as follwos:

• ỹn = yn +G(yn)Tµ (perturbation step);

• ỹn+1 = Φh(ỹn);

• yn+1 = ỹn+1 +G(yn+1)
Tµ with g(yn+1) = 0 (projection step);

where G(y) = g′(y) and the manifold M is given by g(y) = 0.
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Symmetric Projection Methods

If Φh is a symmetric method applied to ẏ = f(y), define:

Algorithm 1 (Symmetric Projection Method (SPM)) Assume that

yn ∈ M. One step yn 7→ yn+1 is defined as follwos:

• ỹn = yn +G(yn)Tµ (perturbation step);

• ỹn+1 = Φh(ỹn);

• yn+1 = ỹn+1 +G(yn+1)
Tµ with g(yn+1) = 0 (projection step);

where G(y) = g′(y) and the manifold M is given by g(y) = 0.

Note: µ is determined implicitly by g(yn+1) = 0 and

µperturbation = µprojection.
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Existence of Numerical Solution
The vector µ and the numerical approximation yn+1 are implicitly

defined by

F (h, yn+1, µ) =




yn+1 − Φh(yn +G(yT

nµ) −G(yn+1)
Tµ

g(yn+1)



 = 0.

Since F (0, yn, 0) = 0 and since

∂F

∂(yn+1, µ)
(0, yn, 0) =




I −2G(yn)T

G(yn) 0





is invertible (provided that G(yn) has full rank), an application of the

implicit function theorem proves the existence of the numerical solution

for sufficiently small step size h.
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The implicit function theorem

Theorem 0 (Implicit Function Theorem) Let f(x, y) be a function from

a neighborhood of (a, b) into a neighborhood of f(a, b). Define

fa(y) := f(a, y) and assume that dfa|b is an isomorphism.

Then, there exist neighborhoods U of a and V of f(a, b) and a unique

function ϕ(x, z) from U × V into a neighborhood of b, such that

z = f(x, ϕ(x, z)). Furthermore

dϕ =

(
∂f

∂y

)−1 [

dz − ∂f

∂x
dx

]

.
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Order of the SPM
For a study of the local error we let yn := y(tn) be a value on the exact

solution y(t) of

ẏ = f(y), f(y) ∈ TyM.

If the basic method Φh is of order p, i.e., if y(tn + h) − Φh(y(tn))

= O(hp+1), we have

F (h, y(tn+1), 0) = O(hp+1).
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Order of the SPM
For a study of the local error we let yn := y(tn) be a value on the exact

solution y(t) of

ẏ = f(y), f(y) ∈ TyM.

If the basic method Φh is of order p, i.e., if y(tn + h) − Φh(y(tn))

= O(hp+1), we have

F (h, y(tn+1), 0) = O(hp+1).

Compared to

F (h, yn+1, µ) = 0

the implicit function theorem yields

yn+1 − y(tn+1) = O(hp+1), µ = O(hp+1).
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Symmetry of the method
Exchanging h→ −h and yn ↔ yn+1 in the SPM yields

ỹn = yn+1 +G(yn+1)
Tµ, g(yn+1) = 0,

ỹn+1 = Φ−h(ỹn),

yn = ỹn+1 +G(yn)Tµ, g(yn) = 0.

Renaming auxiliary variables µ→ −µ and ỹn ↔ ỹn+1 gives

ỹn+1 = yn+1 −G(yn+1)
Tµ, g(yn+1) = 0,

ỹn = Φ−h(ỹn+1),

yn = ỹn −G(yn)Tµ, g(yn) = 0,

which is equivalent to the formulae of the original algorithm provided

Φh is symmetric.
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ρ-Reversibility
We know that for ρ-reversibility, a method Φh has to be symmetric and

satisfy

ρ ◦ Φh = Φ−h ◦ ρ.
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ρ-Reversibility
We know that for ρ-reversibility, a method Φh has to be symmetric and

satisfy

ρ ◦ Φh = Φ−h ◦ ρ.

For a symmetric projection, this leads to the condition

ρG(y)T = G(ρy)Tσ σ constant and invertible,

if the integrator Φh of the intermediate step is ρ -reversible.
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ρ-Reversibility
We know that for ρ-reversibility, a method Φh has to be symmetric and

satisfy

ρ ◦ Φh = Φ−h ◦ ρ.

For a symmetric projection, this leads to the condition

ρG(y)T = G(ρy)Tσ σ constant and invertible,

if the integrator Φh of the intermediate step is ρ -reversible.

In many interesting cases,

g(ρy) = σ−T g(y)

holds, which implies ρG(y)T = G(ρy)Tσ if ρρT = I .
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Modifications

The perturbation and projection steps can be modified without destroying
the symmetry.

For example use a constant projection direction:

ỹn = yn +ATµ, yn+1 = ỹn+1 +ATµ A constant.

To guarantee the existence of the numerical solution, G(y)AT has to be

invertible along the solution y(t).
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Modifications

The perturbation and projection steps can be modified without destroying
the symmetry.

For example use a constant projection direction:

ỹn = yn +ATµ, yn+1 = ỹn+1 +ATµ A constant.

To guarantee the existence of the numerical solution, G(y)AT has to be

invertible along the solution y(t).

For ρ-reversibility, A has to satisfy

ρAT = ATσ

for an invertible matrix σ.
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Example: The Pendulum
The pendulum equations in Cartesian coordinates are

q̇1 = p1, ṗ1 = −q1λ
q̇2 = p2, ṗ2 = −1 − q2λ,

with λ = (p2 − q2)/q
2.

• The solution to these equations remains on the manifold

M = {(q1, q2, p1, p2)|q2 = 1, q · p = 0}.
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Example: The Pendulum
The pendulum equations in Cartesian coordinates are

q̇1 = p1, ṗ1 = −q1λ
q̇2 = p2, ṗ2 = −1 − q2λ,

with λ = (p2 − q2)/q
2.

• The solution to these equations remains on the manifold

M = {(q1, q2, p1, p2)|q2 = 1, q · p = 0}.

• The problem is ρ-reversible for both

ρ(q1, q2, p1, p2) = (q1, q2,−p1,−p2) and

ρ(q1, q2, p1, p2) = (−q1, q2, p1,−p2).
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The Pendulum - Projections
Three different ways to project to the Manifold Mwere used:

• Orthogonal Projection: GTµ ⊥ M, G =




2q1 2q2 0 0

p1 p2 q1 q2
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The Pendulum - Projections
Three different ways to project to the Manifold Mwere used:

• Orthogonal Projection: GTµ ⊥ M, G =




2q1 2q2 0 0

p1 p2 q1 q2





•

Coordinate Projection:

CTµ with
C1± =




0 ±2 0 0

0 0 0 ±1





C2± =




±2 0 0 0

0 0 ±1 0
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The Pendulum - Projections
Three different ways to project to the Manifold Mwere used:

• Orthogonal Projection: GTµ ⊥ M, G =




2q1 2q2 0 0

p1 p2 q1 q2





•

Coordinate Projection:

CTµ with
C1± =




0 ±2 0 0

0 0 0 ±1





C2± =




±2 0 0 0

0 0 ±1 0





• Projection violating ρ-reversibility: A =




−ε −2 0 0

−ε 0 0 −1
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The Pendulum - Results
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Local Coordinate Methods (LCM)

Algorithm 1 (Symmetric Local Coordinates Approach) Assume:

yn ∈ M and ψa a local parametrization of M with ψa(0) = a (close to

yn).

• find zn (close to 0) such that ψa(zn) = yn;

• z̃n+1 = Φh(zn) (symmetric one-step method applied to

ż = ψ′(z)+f(ψ(z))).

• yn+1 = ψa(z̃n+1);

• choose a in the parametrization such that zn + z̃n+1 = 0.
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Reversibility of Symmetric LCM

A symmetric local coordinates method is ρ-reversible, if the

parametrization is s.t.:

ρψa(z) = ψρa(σz)

for some invertible σ .
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Reversibility of Symmetric LCM

A symmetric local coordinates method is ρ-reversible, if the

parametrization is s.t.:

ρψa(z) = ψρa(σz)

for some invertible σ .

If the initial problem is ρ-reversible, this implies σ-reversibility for

ż = ψ′(z)+f(ψ(z)).

The basic method Φh must therefore be σ-reversible.
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Symmetric Lie Group Methods
Now, consider

Ẏ = A(Y )Y, Y (0) = Y0,

where A(Y ) is in the Lie algebra G whenever Y is in the Lie group G.

Munthe-Kaas methods are in general not symmetric (asymmetric use

of the local coordinates Y = exp(Ω)Y0).
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Symmetric Lie Group Methods
Now, consider

Ẏ = A(Y )Y, Y (0) = Y0,

where A(Y ) is in the Lie algebra G whenever Y is in the Lie group G.

Munthe-Kaas methods are in general not symmetric (asymmetric use

of the local coordinates Y = exp(Ω)Y0).

Accidentally, the Lie group method based on the implicit midpoint rule

Yn+1 = exp(Ω)Yn, Ω = hA(exp(Ω/2)Yn)

is symmetric (exchange h↔ −h, Yn ↔ Yn+1 and the auxiliary

variable Ω ↔ −Ω).
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Symmetric Munthe-Kaas Methods
According to the symmetric LCM, we choose a local parametrization

ψU (Ω) = exp(Ω)U,

where U = exp(Θ)Yn plays the role of the midpoint on the manifold.

We put Zn = −Θ so that ψU(Zn) = Yn.
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Symmetric Munthe-Kaas Methods
According to the symmetric LCM, we choose a local parametrization

ψU (Ω) = exp(Ω)U,

where U = exp(Θ)Yn plays the role of the midpoint on the manifold.

We put Zn = −Θ so that ψU(Zn) = Yn.

Apply any symmetric Runge-Kutta method to the differential equation

Ω̇ = A(ψU (Ω)) +
∑q

k=1
Bk

k!
ad

k
Ω (A(ψU (Ω))) , Ω(0) = −Θ,

to obtain Z̃n+1 from Zn.
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Symmetric Munthe-Kaas Methods
According to the symmetric LCM, we choose a local parametrization

ψU (Ω) = exp(Ω)U,

where U = exp(Θ)Yn plays the role of the midpoint on the manifold.

We put Zn = −Θ so that ψU(Zn) = Yn.

Apply any symmetric Runge-Kutta method to the differential equation

Ω̇ = A(ψU (Ω)) +
∑q

k=1
Bk

k!
ad

k
Ω (A(ψU (Ω))) , Ω(0) = −Θ,

to obtain Z̃n+1 from Zn.

Θ is implicitly given by Zn + Z̃n+1 = 0, and the numerical result is

Yn+1 = ψU (Z̃n+1) = exp(Z̃n+1) exp(Θ)Yn = exp(2Θ)Yn.

Geometrical Numetric Integration – p.17



2-stage Gauss on Lie Groups
2-stage Gauss:

1
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With the coefficients of the 2-stage

Gauss method and with q = 1,

B1 = −1
2

we thus get:

k1 = A

(

exp

(

−Θ +
h

4
(k1 + k2) − h

√
3

6
k2

︸ ︷︷ ︸

Ω1

)

U

)

− 1

2

[

Ω1, A
(
exp(Ω1)U

)]

k2 = A

(

exp

(

−Θ +
h

4
(k1 + k2) + h

√
3

6
k1

︸ ︷︷ ︸

Ω2

)

U

)

− 1

2

[

Ω2, A
(
exp(Ω2)U

)]

Θ = −Θ +
h

2
(k1 + k2) .
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2-stage Gauss on Lie Groups
With

2Θ =
h

2
(k1 + k2) ⇒ Ω1 = −h

√
3

6
k2, Ω2 = h

√
3

6
k1

and Ai := A(exp(Ωi)U) we can rewrite this as

Ω1 = −h
√

3

6

(

A2 −
1

2
[Ω2, A2]

)

Ω2 = h

√
3

6

(

A1 −
1

2
[Ω1, A1]

)

Yn+1 = exp(2Θ)Yn

= exp

(
h

2

(
A1 +A2

)
− h

4

(
[Ω1, A1] + [Ω2, A2]

)
)

Yn.
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2-stage Gauss on Lie Groups
Neglecting terms of size O(h4) in Yn+1 gives

Ω1 = −h
√

3

6
A2 +

h2

24
[A1, A2]

Ω2 = h

√
3

6
A1 −

h2

24
[A1, A2]

Yn+1 = exp

(

h

2

(
A1 +A2

)
− h2

√
3

12
[A1, A2]

)

Yn.

This method is symmetric and therefore still of order 4 (orders of

symmetric methods are even).
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Reversibility of 2-stage Gauss
For any linear invertible transformation ρ, the parametrization

ψU(Ω) = exp(Ω)U satisfies

ρψU (Ω) = ρ exp(Ω)U = exp(ρΩρ−1)ρU = ψρU (σΩ)

with σΩ = ρΩρ−1.
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Reversibility of 2-stage Gauss
For any linear invertible transformation ρ, the parametrization

ψU(Ω) = exp(Ω)U satisfies

ρψU (Ω) = ρ exp(Ω)U = exp(ρΩρ−1)ρU = ψρU (σΩ)

with σΩ = ρΩρ−1.

If the initial problem is ρ-reversible, i.e. ρA(Y ) = −A(ρY )ρ, then

Ω̇ = A(ψU (Ω)) +

q
∑

k+1

Bk

k!
ad

k
Ω (A(ψU (Ω))) , Ω(0) = −Θ

is σ-reversible for all truncation indices q.
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Summary

• symmetric projection methods
• have the same order as basic integrator
• are ρ-reversible if the basic method is ρ-reversible and
ρG(y)T = G(ρy)Tσ for some invertible σ.

• symmetric local coord. methods
• (have the same order as basic integrator)

• are ρ-reversible if ρψa(z) = ψρa(σz) for some invertible σ and
if the basic method is σ -reversible.

• symmetric Lie group methods can be obtained by symmetrizing
Munte-Kaas methods. Examples:
• 2nd order: implicit midpoint rule as basic integrator
• 4th order: 2-stage Gauss as basic integrator
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