

Polynomial Invariants

We consider two classes of problems with polynomial invariants of degree higher than two:

1. linear problems

2. isospectral flows

The Determinant as an invariant

 $\dot{Y} = A(Y)Y, \quad Y(0) = Y_0 \quad (1.1)$ where Y and A(Y) are $n \times n$ matrices.

Definition: **trace** $A = \sum_{i=1}^{n} a_{ii}$

Definition: A non constant function I(Y) is called a first invariant if I'(Y)A(Y)Y = 0 for all Y

 \Rightarrow every solution Y(t) satisfies $I(Y(t)) = I(Y_0) = const.$

Lemma 1.1 If trace A(Y) = 0 for all $Y \Rightarrow g(Y) := \mathbf{det}Y$ is an invariant.

 $Proof: g(Y) = \det Y$. We show that $g'(Y)(AY) = \operatorname{trace} A \cdot \det Y$. Hence the determinant is an invariant if $\operatorname{trace} A(Y) = 0$ for all Y.

 $\det Y$ represents the volume of the parallelepiped: Conservation of the invariant \Rightarrow volume preservation. $\det Y$: a polynomial invariant of degree n

Question: Can Runge-Kutta methods conserve this invariant for $n \geq 3$?

Let's see...

Theorem 1.3 For $n \geq 3$, no Runge-Kutta method can conserve all polynomial invariants of degree n.

A negative result!

Isospectral Flows

$$\dot{L} = [B(L), L], \quad L(0) = L_0 \quad (1.2)$$

 L_0 : a symmetric matrix, B(L): skew-symmetric, [B, L] = BL - LB: commutator of B and L.

Lemma 1.4 L_0 symmetric, B(L) skew-symmetric for all $L \Rightarrow L(t)$ symmetric, $\lambda(t) = \mathbf{const.}$

Proof - scetch: We define the function U(t) by $\dot{U} = B(L(t))U$, U(0) = I. (1.3)

In the characteristic polynomial $\det(L - \lambda I) = \sum_{i=0}^{n} a_i \lambda^i$ the coefficients a_i also are independent of t.

Coefficients as: $a_0 = \det L$, $a_{n-1} = \pm \operatorname{trace} L$ are polynomial invariants.

Because of Theorem 1.3 \Rightarrow no hope that Runge-Kutta methods can conserve invariants automatically for $n \geq 3$.

Isospectral Methods

$$\dot{L} = [B(L), L], \quad L(0) = L_0:$$

solve $\dot{U} = B(UL_0U^{-1})U, \quad U(0) = I$ up to time t

$$\Rightarrow \tilde{L}(t) = \tilde{U}(t)L_0\tilde{U}(t)^{-1},$$

B(L) skew-symmetric for all L, then U^TU is a quadratic invariant of $\dot{U} = B(L)U$, U(0) = I and the methods of Sect. IV.2 (i.e. Gauss) will produce an orthogonal \tilde{U} .

$$\Rightarrow spec(\tilde{L}(t)) = spec(L_0)$$
 and $\tilde{L}(t)^T = \tilde{L}(t)$ for all t .

⇒ isospectral methods conserve polynomial invariants.

Example: Toda Lattice (n = 3) $\dot{L} = [B, L]$

$$B(t) = \begin{pmatrix} 0 & b_1(t) & -b_3(t) \\ -b_1(t) & 0 & b_2(t) \\ b_3(t) & -b_2(t) & 0 \end{pmatrix}$$

$$L(t) = \begin{pmatrix} a_1(t) & b_1(t) & b_3(t) \\ b_1(t) & a_2(t) & b_2(t) \\ b_3(t) & b_2(t) & a_3(t) \end{pmatrix}$$

$$a_1(0) = \frac{3}{4}$$
, $a_2(0) = -\frac{1}{2}$, $a_3(0) = -\frac{1}{4}$

$$b_1(0) = \frac{1}{2}e^{-\frac{1}{2}}$$
, $b_2(0) = \frac{1}{2}e^{\frac{3}{2}}$, $b_3(0) = \frac{1}{2}e^{-1}$

study $\lambda_1(t)$, $\lambda_2(t)$, $\lambda_3(t)$

2 Methods:

- A) RK: ODE 45 (Matlab) on $\dot{L} = [B, L]$, $L(0) = L_0$
- B) impl. midpoint on $\dot{U} = B(UL_0U^{-1})U$, U(0) = I then $L(t) = U(t)L_0U^{-1}(t)$

