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Abstract

We give a short introduction to methods for the data-sparse approximation of matrices resulting from the discretisation of non-local

operators occurring in boundary integral methods, as the inverses of partial differential operators or as solutions of control problems.

The result of the approximation will be so-called hierarchical matrices (or short H-matrices). These matrices form a subset of the set of all

matrices and have a data-sparse representation. The essential operations for these matrices (matrix-vector and matrix–matrix multiplication,

addition and inversion) can be performed in, up to logarithmic factors, optimal complexity.

We give a review of specialised variants of H-matrices, especially of H2-matrices, and finally consider applications of the different

methods to problems from integral equations, partial differential equations and control theory.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Overview

H-matrices are based on two observations:

† Integral operators can be efficiently treated by using

separable expansions of the corresponding kernel func-

tions [20,26].

† The inverse of an elliptic partial differential operator can

be cast in the form of an integral operator by using

Green’s function as Schwartz kernel.

This article consists of seven sections: the present section

gives a short over-view of the basic ideas. Section 2 will

establish cluster trees and block partitions that play a crucial

role in the subsequent approximation schemes. Section 3 is

concerned with operations on low-rank matrices, the basic

building blocks of H-matrices. In Section 4, we introduce

the original H-matrices and a set of algorithms for

performing basic algebraic operations on them. Section 5

is concerned with a specialisation of H-matrices, namely

uniform H-matrices and H2-matrices, which can be used

to significantly improve the performance and reduce

memory requirements, especially for applications in the

field of integral equations. Other specialised variants of H-

matrices are described in Section 6. Section 7 presents

several applications of H- and H2-matrices together with

numerical results.

1.2. Model problem: integral equation

Let us consider an integral operator of the form

L½u�ðxÞ ¼
ð
V

gðx; yÞuðyÞdy ð1Þ

on a submanifold or subdomain V of Rd with a kernel

function

g : Rd £ Rd ! R:

In typical applications, g is non-local, so, contrary to the

treatment of differential operators, the finite element

discretisation of the operator L does not lead to a sparse

matrix. Due to the lack of sparsity, operations on the

discrete matrix are prohibitively expensive.

There are different methods for avoiding the necessity of

working with the full matrix: for some domains and some
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operators, it may be possible to diagonalise the matrix by

applying the fast Fourier transform. In a more general

setting, it may be possible to approximate the integral

operator by means of a Wavelet basis.

H-matrices are based on the fact that, at least for typical

kernel functions gð·; ·Þ; singularities only occur at the

diagonal and the function is smooth everywhere else. In

order to describe this property precisely, we introduce the

notion of asymptotic smoothness: the kernel function gð·; ·Þ

is called asymptotically smooth, if there are constants

Cas1;Cas2 [ R.0 satisfying

l›ax ›by gðx; yÞl # Cas1ðCas2kx 2 ykÞ2lal2lblaþ blgðx; yÞl ð2Þ

for all multi-indices a;b [ Nd
0 and all x; y [ Rd with x – y:

The idea of the panel clustering method [20] is to exploit

this smoothness in order to replace gð·; ·Þ by an approxi-

mation: if we fix x [ V and a subset v of V satisfying

distðx;vÞ U inf{kx 2 yk : y [ v} $ CdiamðvÞ;

we can replace gðx; yÞ by its truncated Taylor expansion at a

point y0 [ v in order to get the degenerate approximation

~gðx; yÞ ¼
Xk

n¼1

px
nqnðyÞ: ð3Þ

If we use a collocation scheme, this translates into a low-

rank approximation of part of the row corresponding to the

collocation point x. By organising the sets v in a

hierarchical way, a data-sparse approximation of the full

matrix can be constructed.

A closer investigation shows that the coefficients px
n can

be used for a neighbourhood of x without reducing the

approximation properties. This leads to schemes based on

low-rank approximations of blocks of the matrix [3,14,26],

that we will call H-matrix schemes.

These methods can be refined by choosing different

degenerate approximations, leading to multipole expan-

sions, uniform H-matrix or H2-matrix techniques.

1.3. Elliptic partial differential equations

Neglecting boundary conditions, we can represent the

inverse of an elliptic partial differential operator by an

integral operator of the form (1). This suggests that it will be

possible to apply the H-matrix technique to these inverses

and even, since we assume that a finite element discretisa-

tion scheme will give us a good approximation of the

infinite-dimensional operator, to store the inverse of

the matrix resulting from a finite element discretisation in

the form of an H-matrix.

Since the ‘real’ kernel function, i.e. Green’s function,

will depend on the (variable) coefficients and on the

shape of the boundary in a complicated way, it is not

feasible to discretise it directly in order to find an

approximation of the inverse. Instead, we will introduce

approximations of basic matrix operations like addition

and multiplication in Section 4.4 and derive an

approximative algorithm for the computation of the

inverse of the FE stiffness matrix.

1.4. Matrix equations

The approximative matrix operations, namely addition,

multiplication and inversion, introduced in Section 4.4 can

replace the corresponding standard operations in many

algorithms working on matrices.

We can approximate matrix functions like expðLÞ by

using the approximative matrix–matrix multiplication in

combination with a Taylor expansion of the function or by

using the approximative inversion in combination with

Dunford–Cauchy integrals [6].

We can also use the approximative matrix arithmetic to

improve the performance of Newton’s method for solving

nonlinear matrix equations like Riccati’s equation arising,

e.g., in control theory (Section 7.4).

2. Construction of the cluster tree and block partition

While wavelet techniques can be employed to deal

directly with problems in a continuum, H-matrix

techniques require a discrete subspace together with the

finite element or boundary element basis ðwiÞi[I : The

corresponding Ritz–Galerkin matrix (stiffness matrix) L

is given by

Lij ¼ kwi;LwjlL2 : ð4Þ

In the following, we identify subblocks t £ s , I £ I

such that the submatrix ðLijÞi[t;j[s allows a low rank

approximation. Since the number of possible subsets of

I £ I is considerably large we restrict ourselves to a small

set of candidates t;s that are constructed and organised

in a tree structure.

2.1. Cluster tree

Let TI be a tree and denote by TI the set of its nodes. TI

is called a cluster tree corresponding to an index set I, if the

following conditions hold:

1. TI # PðIÞ\{Y}; i.e. each node of TI is a subset of the

index set I. Here, PðIÞ denotes the set of all subsets of I.

2. I is the root of TI :

3. If t [ TI is a leaf, then ltl # Cleaf ; i.e. the leaves consist

of a relatively small number of indices (here, ltl denotes

the number of elements in the set t).

4. If t [ TI is not a leaf, then it has two sons and is their

disjoint union.

For each t [ TI ; we denote the set of its sons by SðtÞ # TI :

The leaves of the tree TI are denoted by LI :
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The restriction of TI to binary trees serves only the

purpose of simplifying the presentation of some steps of the

algorithms. The extension to more general trees is

straightforward.

The support of a cluster t [ TI is given by the union of

the supports of the basis functions corresponding to its

elements, i.e.

Vt U
[
i[t

Vi; where Vi U supp wi for all i [ I:

Example 2.1 (Construction of cluster trees by bisection).

A simple method of building a cluster tree is based on

geometry-based splittings of the index set. We associate

each degree of freedom i [ I with a suitable point xi [ Rd;

e.g., the centre of the support of the corresponding basis

function or the corresponding Lagrange point, if Lagrangian

finite elements are used.

Let {e1;…; ed} be an orthonormal basis of Rd; e.g. the basis

{ex; ey; ez} of the canonical unit vectors in 3D. The following

algorithm will split a given cluster t # I into two sons such

that the points xi are separated by a hyper-plane (Fig. 1).

procedure Split(t, var t1; var t2);

begin
{Choose a direction for geometrical splitting of the

cluster t}

for j U 1 to d do begin
aj U min{kej; xil : i [ t}; {k·; ·l is the Rd Eucli-

dean product}

bj U max{kej; xil : i [ t}

end;

jmax U argmax{bj 2 aj : j [ {1;…; d}};

{Split the cluster t in the chosen direction}

g U ðajmax
þ bjmax

Þ=2;

t1 U Y; t2 U Y;
for i [ t do
if kejmax

; xil # g then
t1 U t1 < {i}

else
t2 U t2 < {i};

end

In theory each node of the tree is split into two sons until the

cardinality of the node is 1. In practice one should stop the

splitting if the cardinality of a node is less or equal to a

threshold parameter Cleaf : On typical machines, setting

Cleaf ¼ 32 leads to good performance.

2.2. Admissibility condition

Next, we need an admissibility condition that allows us to

check if a candidate ðt;sÞ [ TI £ TI allows for a suitable

low rank approximation.

If we assume asymptotically smooth kernels, this

requirement will lead to an admissibility condition of the

form

min{diamðVtÞ; diamðVsÞ} # h distðVt;VsÞ; ð5Þ

where h [ R.0 is some parameter controlling the trade-off

between the number of admissible blocks, i.e. the

algorithmic complexity, and the speed of convergence, i.e.

the quality of the approximation [20].

In typical applications for unstructured grids, the compu-

tation of the diameter of a cluster and especially of the

distance of two clusters will be too complicated or too time-

consuming, so the ‘minimal’ condition (5) will be replaced by

a stronger variant, for example, by using super-sets ofVt and

Vs; such as bounding sets, that are of a simpler structure.

Example 2.2 (Admissibility by bounding boxes). A

relatively general and practical admissibility condition for

clusters in Rd can be defined by using bounding boxes. We

define the canonical coordinate maps

pk : R
d ! R; x 7! xk;

for all k [ {1;…; d}: The bounding box for a cluster t [ TI

is then given by

Qt U
Yd

k¼1

½at;k; bt;k�;

where at;k U minðpkVtÞ and bt;k U maxðpkVtÞ:

Obviously, we have Vt # Qt; so we can define the

admissibility condition

min{diamðQtÞ; diamðQsÞ} # h distðQt;QsÞ ð6Þ

that implies Eq. (5). We can compute the diameters and

distances of the boxes by

diamðQtÞ ¼
Xd
k¼1

ðbt;k 2 at;kÞ
2

 !1=2

and

distðQt;QsÞ ¼
Xd
k¼1

ðmaxð0; at;k 2 bs;kÞÞ
2 þ ðmaxð0; as;k

 

2 bt;kÞÞ
2

�1=2

:

2.3. Block tree

The cluster tree can be used to define a block tree by

forming pairs of clusters recursively. The block tree TI£I

Fig. 1. The bounding box to the left containing the points xi is divided into

two parts in x-direction. In the next step the new bounding boxes are

divided in y-direction.
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corresponding to a cluster tree TI and an admissibility

condition is constructed by the following procedure:

procedure BuildBlockTreeðt £ sÞ;

begin
if t £ s is not admissible and ltl . Cleaf and lsl .
Cleaf then begin

Sðt £ sÞ U {t0 £ s0 : t0 [ SðtÞ; s0 [ SðsÞ};

for t0 £ s0 [ Sðt £ sÞ do
BuildBlockTreeðt0 £ s0Þ

end
else

Sðt £ sÞ U Y
end

By calling this procedure with t ¼ s ¼ I and a

parameter Cleaf that determines the minimal size of a cluster

(Definition 4.1), we create a block tree with root I £ I: The

leaves of the block tree are denoted by LI£I and form a

partition of I £ I:

The suitability of a block tree can be measured by:

Definition 2.3 (Sparsity). We define the sparsity constant

Csp of a block tree TI£I by

Csp U max
t[TI

l{s [ TI ; t £ s [ LI£I}l:

A block tree TI£I is called sparse if Csp ¼ Oð1Þ (does not

depend on lIl).

The constant Csp is a measure for the sparsity of the block

structure imposed by the partitioning LI£I of the product

index set I £ I (Fig. 2).

The complexity of algorithms for the creation of a

cluster tree and block tree has been analysed in detail in

Ref. [10]: for typical quasi-uniform grids, a ‘good’ cluster

tree can be created in Oðn log nÞ operations, the compu-

tation of the block tree can be accomplished in OðnÞ

operations. Even for arbitrary grids where we only assume

that the supports Vi of the corresponding basis functions

are local and satisfy some weak assumptions, one can

generate a sparse block tree in Oðn log nÞ operations [11,

13]. An alternative algorithm for constructing admissible

block-partitions for integral equations is described in Ref.

[3]. Further analysis concerning the approximation on

graded meshes can be found in Ref. [16].

3. Rk-matrices

The basic building blocks for H-matrices (defined in

Section 4) are Rk-matrices which are a straightforward

representation of low rank matrices. These matrices

form subblocks of the H-matrix corresponding to subsets

t £ s , I £ I:

Definition 3.1 ðRk-matrixÞ. A matrix of the form

R ¼ ABT
; A [ Rt£k

; B [ Rs£k

is called an Rk-matrix.

Here, t £ k is a short notation for {ði; jÞli [ t;

j [ {1; …; k}}:

Any matrix of rank atmost k can be represented as an Rk-

matrix and each Rk-matrix has at most rank k. Rk-matrices

have some nice properties, e.g., only kðn þ mÞ numbers are

needed to store an Rk-matrix.

3.1. Discretisation

In the H-matrix representation of matrices, Rk-matrices

will occur only as a representation of admissible blocks.

If L is a differential operator, we have suppðLwjÞ #
suppwj; so the matrix blocks corresponding to admissible

pairs of clusters are zero.

The situation is more complicated if L is an integral

operator of the type (1): let t £ s be an admissible pair of

clusters. Without loss of generality, we may assume that

diamðVtÞ # diamðVsÞ:

In order to construct a rank-k approximation of the block

t £ s; we use an m-th order interpolation scheme with

interpolation points ðxtj Þ
k
j¼1 and corresponding Lagrange

polynomials ðpt
j Þ

k
j¼1 and approximate the original kernel

function gð·; ·Þ by its interpolant

~gðx; yÞ U
Xk

i¼1

pt
i ðxÞgðx

t
i ; yÞ: ð7Þ

Combining the asymptotical smoothness assumption (2)

with standard interpolation error estimates, we get

lgðx; yÞ2 ~gðx; yÞl # C CintCas2

diamðVtÞ

distðVt;VsÞ

� �m

kgk1;Vt£Vs
;

Fig. 2. The maximum of 4 in the definition of Csp is achieved by t:
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which combined with the admissibility condition (5) reads

lgðx; yÞ2 ~gðx; yÞl # CðCintCas2hÞ
mkgk1;Vt£Vs

;

so if we choose h , 1=ðCintCas2Þ; we get exponential

convergence of the interpolation if we increase the order m.

By replacing gð·; ·Þ by ~gð·; ·Þ in Eq. (4), we find

Lij <
Xk

i¼1

ð
V

pt
i ðxÞwiðxÞdx

ð
V

gðxti ; yÞwjðyÞdy: ð8Þ

Notation 3.2. For a vector v and a subset t , I; vlt is the

restriction to the vector ðvjÞj[t; while for a matrix L and

subsets t; s , I the notation Llt£s is used for the block

ðLijÞi[t;j[s:

We define matrices A [ Rt£k and B [ Rs£k by setting

Aii U
ð
V

pt
i ðxÞwiðxÞdx

and

Bji U
ð
V

gðxti ; yÞwjðyÞdy

and rewrite Eq. (8) as

Llt£s < ABT
;

so we have approximated Llt£s by an Rk-matrix.

Remark 3.3 (Collocation instead of Galerkin tech-

niques). This interpolation-based approach is not limited

to Galerkin discretisations. In the case of a collocation

scheme, the matrix entries LColl
ij take the form

LColl
ij U ðLwjÞðciÞ ¼

ð
V

gðci; yÞwjðyÞdy;

where ðciÞi[I is the family of collocation points. Replacing

the kernel function gð·; ·Þ by its interpolant ~gð·; ·Þ; we find

LColl
ij <

Xk

i¼1

pt
i ðciÞ

ð
V

gðxti ; yÞwjðyÞdy

and can introduce

A0
ii U pt

i ðciÞ

in order to get

LColllt£s < A0BT
:

Remark 3.4 (Double layer potential). The double layer

potential

LDLP : ½u�ðxÞ U
ð
G
k7ygðx; yÞ; nðyÞluðyÞdy

for a one-codimensional submanifold G of Rd plays an

important role in boundary element techniques. Since

the effective kernel function depends on the normal vector

of the manifold, it is not defined in Rd; so we are not able to

establish the estimate Eq. (2) directly.

Instead, we replace gð·; ·Þ by ~gð·; ·Þ from Eq. (7) and use the

normal derivative of the result to get

LDLP
ij <

Xk

i¼1

ð
G

pt
i ðxÞwiðxÞdx

ð
G
k7ygðxti ; yÞ; nðyÞlwjðyÞdy;

so we can again find a low-rank approximation

LDLPlt£s < AB0
T

by setting

B0
ji U

ð
G
k7ygðxti ; yÞ; nðyÞlwjðyÞdy:

Remark 3.5 (Adaptive low-rank approximation). The

complexity can be significantly improved by using adaptive

low-rank approximations instead of the analytically derived

ones given above [1].

3.2. Matrix-vector multiplication

The matrix-vector multiplication x 7! y U Rx of an Rk-

matrix R ¼ ABT with a vector x [ Rs can be done in two

steps:

1. Calculate z U BTx [ Rk:

2. Calculate y U Az [ Rt:

The transposed RT ¼ BAT can be treated analogously and

the complexity of the matrix-vector multiplication is

Oðkðlslþ ltlÞ:

3.3. Truncation

A best approximation of an arbitrary matrix M [ Rt£s

by an Rk-matrix ~M ¼ ~A ~BT (w.r.t. the spectral and Frobenius

norm) can be computed using the (truncated) singular value

decomposition as follows:

1. Calculate a singular value decomposition M ¼ USVT

of M.

2. Set ~U U ½U1· · ·Uk� (first k columns), ~S U

diagðS11;…;SkkÞ (first (largest) k singular values), ~V U

½V1· · ·Vk� (first k columns).

3. Set ~A U ~U ~S [ Rt£k and ~B U ~V [ Rs£k:

We call ~M a truncation of M to the set of Rk-matrices.

The complexity of the truncation is Oððltlþ lslÞ3Þ:
If the matrix M is an RK-matrix M ¼ ABT then the

truncation can be computed in OðK2ðltlþ lslÞ þ K3Þ by the

following procedure:
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1. Calculate a truncated QR-decomposition A ¼ QARA of A,

QA [ Rt£K ; RA [ RK£K :

2. Calculate a truncated QR-decomposition B ¼ QBRB of B,

QB [ Rs£K ; RB [ RK£K :

3. Calculate a singular value decomposition RART
B ¼ USVT

of RART
B:

4. Set ~U U ½U1· · ·Uk� (first k columns), ~S U

diagðS11;…;SkkÞ (first (largest) k singular values), ~V U

½V1· · ·Vk� (first k columns).

5. Set ~A U QA
~U ~S [ Rt£k and ~B U QB

~V [ Rs£k:

3.4. Addition

Let R1 ¼ ABT; R2 ¼ CDT be Rk-matrices. The sum

R1 þ R2 ¼ ½A C �½B D �T

is an R2k-matrix. We define the formatted addition % of

two Rk-matrices as a best approximation (in the spectral and

Frobenius norm) of the sum in the set of Rk-matrices, which

can be computed as in Section 3.3 with complexity

Oðk2ðltlþ lslÞ þ k3Þ: The formatted subtraction * is

defined analogously.

3.5. Multiplication

The multiplication of an Rk-matrix R ¼ ABT by an

arbitrary matrix M from the left or right yields again an Rk-

matrix:

RM ¼ ABTM ¼ AðMTBÞT;

MR ¼ MABT ¼ ðMAÞBT
:

To calculate the product one has to perform the matrix-

vector multiplication MTBi for the k columns i ¼ 1;…; k of

B with the transposed of M or MAi for the k columns i ¼

1;…; k of A with the matrix M.

4. HH-matrices

Based on the cluster (binary) tree TI and the block

(quad-) tree TI£I we define the H-matrix structure.

Definition 4.1 (H-matrix). Let L [ RI£I be a matrix and

TI£I a block tree of I £ I consisting of admissible and non-

admissible leaves. Let k [ N: L is called an H-matrix of

blockwise rank k, if for all admissible leaves t £ s [ TI£I

rankðLlt£sÞ # k;

i.e. each admissible subblock of the matrix can be

represented as an RK - matrix while the non-admissible

subblocks corresponding to leaves do not have to bear any

specific structure.

Remark 4.2. If t £ s is a non-admissible leaf of tI£I ; then

either ltl # Cleaf or lsl # Cleaf (Section 2.3), which means

that the rank is bounded by Cleaf :

The storage requirements for an H-matrix are Oðnk logðnÞÞ

for the one- and two-dimensional block tree in Refs. [14,

17]. The same bound holds for any H-matrix based on a

sparse block tree [10,11].

4.1. Matrix-vector multiplication

Let L [ RI£I be an H-matrix. To compute the matrix-

vector product y U y þ Lx with x; y [ RI ; we use the

following procedure that performs the matrix-vector

multiplication in each leaf of the block tree:

procedure MVM(L, t £ s; x, var y);

begin
if Sðt £ sÞ – Y then
for t0 £ s0 [ Sðt £ sÞ do MVM(L, t0 £ s0; x, y)

else
ylt U ylt þ Llt£sxls; {unstructured or Rk-matrix}

end

The starting index sets are t ¼ s ¼ I:

The complexity for the matrix-vector multiplication

(sparse block tree) is Oðnk logðnÞÞ [10,11]. For some

model problems the complexity can be estimated by

exploiting the recursive structure as in Refs. [14,17].

4.2. Addition

Let L, Lð1Þ; Lð2Þ [ RI£I be H-matrices. The sum L U

Lð1Þ þ Lð2Þ is an H-matrix with blockwise rank 2k: The

formatted sum ~L U Lð1Þ%Lð2Þ is defined by using the

formatted addition for the Rk-subblocks and the standard

addition for unstructured (full) matrices in the non-

admissible leaves:

procedure Add(var ~L; t £ s; Lð1Þ; Lð2Þ);

begin
if Sðt £ sÞ – Y then
for t0 £ s0 [ Sðt £ sÞ do Add( ~L; t0 £ s0; Lð1Þ;

Lð2Þ)

else
~Llt£s U Lð1Þlt£s%Lð2Þlt£s {unstructured or Rk-

matrices}

end

Calling the procedure with t ¼ s ¼ I and ~L U 0 yields
~L ¼ Lð1Þ%Lð2Þ:

The complexity of the formatted addition (sparse block

tree) is Oðnk2 logðnÞ:

4.3. Multiplication

Let L, Lð1Þ; Lð2Þ [ RI£I be H-matrices. The matrix L U

L þ Lð1Þ·Lð2Þ is (under moderate assumptions that are further

investigated in Refs. [10,11]) an H-matrix with blockwise
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rank Oðk logðnÞÞ: The formatted product ~L U L%Lð1Þ(Lð2Þ

is defined by using the formatted addition in the Rk-

subblocks. We distinguish between three cases.

: all matrices are subdivided. The multi-

plication and addition is done in the subblocks.

: the target matrix is subdivided and (at

least) one of the factors is not subdivided. Then one of the

factors has at most rank max{k;Cleaf}: We have to compute

the (low rank) product as in Section 3.5 and add the product

to the target matrix.

: the target matrix is not subdivided. This

case will be treated in a separate procedure MulAddRk.

procedure MulAdd(var ~L; t, z, s, Lð1Þ; Lð2Þ);

begin
if Sðt £ zÞ – Y and Sðz £ sÞ – Y and Sðt £ sÞ – Y
then

{ Case 1: All matrices are subdivided }

for t0 [ SðtÞ; z0 [ SðzÞ; s0 [ SðsÞ do

MulAdd( ~L; t0; z0; s0; Lð1Þ; Lð2Þ)

else begin
if Sðt £ sÞ – Y then begin

{ Case 2: The target matrix is subdivided }

Calculate the product L0 U Lð1Þlt£zLð2Þlz£s
and add L0 to ~Llt£s { formatted addition in

subblocks of t £ s }

end
else begin

{ Case 3: The target matrix is not subdivided}

MulAddRk( ~L; t, z, s, Lð1Þ; Lð2Þ)

end
end

end

Calling this procedure with t ¼ z ¼ s ¼ I; ~L U 0 yields
~L ¼ Lð1Þ(Lð2Þ:

To cover Case 3 we have to multiply two subdivided

matrices, truncate the product to the set of Rk-matrices and

add the result to the target matrix. To do this we first

calculate the products in the subblocks and truncate them to

the set of Rk-matrices. Afterwards all four Rk-submatrices

are added to the target matrix (extending them by zeros such

that all matrices are of the same size) using the formatted

addition.

procedure MulAddRk(var ~L; t, z, s, Lð1Þ; Lð2Þ);

begin
if Sðt £ zÞ ¼ Y or Sðz £ sÞ ¼ Y then

Calculate the product L0 U Lð1Þlt£zLð2Þlz£s
and add L0 to ~Llt£s {formatted addition}

else begin
for each t0 [ SðtÞ; s0 [ SðsÞ do begin

Initialise L0
t0;s0 U 0;

for each z0 [ SðzÞ doMulAddRk(L0
t0;s0 ; t0; z0;

s0; Lð1Þ; Lð2Þ);

{L0
t0;s0 is smaller than L and extended by

zeros}
~L U L%

P
t0[SðtÞ

P
s0[SðsÞ L0

t0;s0

end
end

end

The complexity for the formatted multiplication is Oðnk2

logðnÞ2Þ for the block trees from Refs. [14,17].

If TI£I is an arbitrary block tree that is sparse and almost

idempotent (defined in Ref. [11]) then the complexity is

again Oðnk2 logðnÞ2Þ [10,11].

4.4. Inversion

The inverse of a 2 £ 2 block-matrix can be computed by

use of the Schur complement [14] if the matrix is, e.g.,

positive definite. The exact sums and products are replaced

by the formatted operations %;( and recursively one can

define the formatted inverse ~L of L by the following

procedure:

procedure Invert(var ~L; t, s, L);

begin
if Sðt £ sÞ ¼ Y then

Calculate the inverse ~L U L21 exactly {Small

matrix}

else begin
{SðtÞ ¼ {t1; t2}; SðsÞ ¼ {s1;s2}; L ¼ ½ L11

L21

L12

L22
�}

Invert(Y, t1; s1; Llt1£s1
);

S U L22*ðL21(ðY(L12ÞÞ;

Invert( ~Llt2£s2
; t2; s2; S);

~Llt1£s1
U Y%ðY(ðL12(ð ~Llt2£s2

(ðL21(YÞÞÞÞ;
~Llt1£s2

U 2Y(ðL12( ~Llt2£s2
Þ;

~Llt2£s1
U 2 ~Llt2£s2

(ðL21(YÞ

end

end

The starting index sets are t ¼ s ¼ I: Note that two

auxiliary matrices Y ; S are needed in the procedure.

The complexity for the computation of the formatted

inverse is the same as for the multiplication of two H-

matrices:Oðnk2 logðnÞ2Þ:This is proven in Ref. [14] for a one-

dimensional model problem but also holds for arbitrary block

trees TI£I that are sparse and almost idempotent [10,11].

5. HH2-matrices

The matrix-vector multiplication for H-matrices (Sec-

tion 4.1) has almost linear complexity. While this is sufficient

for most applications, it is not optimal, so we will now

consider improvements of the basicH-matrix technique that

lead to a better complexity. For some problems, even the

optimal complexity of OðnÞ can be reached.
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5.1. Uniform H-matrices

Let us recall the approximation (8):

Lij <
Xk

i¼1

ð
V

pt
i ðxÞwiðxÞdx

ð
V

gðxti ; yÞwjðyÞdy:

It was derived by interpolating the kernel function gð·; ·Þ

in one argument, and the first argument x was chosen

because of the smaller size of the support Vt corresponding

to the cluster t: If Vs had been smaller, we would have

interpolated with respect to the second argument y.

We will now refine this approach along the lines

described in Ref. [8] and introduce uniform H-matrices, a

subset of the general H-matrices, that allow us to improve

the complexity for the matrix-vector multiplication and of

the storage requirements.

If the diameters of Vt and Vs are of comparable size, we

can go one step further and interpolate in both variables,

leading to the interpolant

�gðx; yÞ U
Xkt
i¼1

Xks
k¼1

gðxti ; x
s
kÞp

t
i ðxÞp

s
kðyÞ: ð9Þ

Since we are now interpolating in both arguments, we

have to replace the standard admissibility condition (5) by

the modified condition

max{diamðVtÞ; diamðVsÞ} # h distðVt;VsÞ ð10Þ

in order to get approximation results similar to those derived

for the H-matrix technique. For most applications, the more

restrictive new condition (10) and the original condition (5)

will be equivalent [11].

By replacing gð·; ·Þ by �gð·; ·Þ in Eq. (4), we get

Lij <
Xkt
i¼1

Xks
k¼1

gðxti ; x
s
kÞ
ð
V

pt
i ðxÞwiðxÞdx

ð
V

ps
kðyÞwjðyÞdy;

which can be rewritten in the form

Llt£s < VtSt;sVT
s ð11Þ

with

ðVtÞii U
ð
V

pt
i ðxÞwiðxÞdx;

ðVsÞjk U
ð
V

ps
kðyÞwjðyÞdy

ð12Þ

and

ðSt;sÞik U gðxti ; x
s
kÞ: ð13Þ

The important difference between the Rk-representation

used for standard H-matrices and the representation (14) is

the fact that the matrix Vt depends only on the row cluster t

and the matrix Vs depends only on the column cluster s,

while all the information about their interaction via the

kernel function is stored in the, typically relatively small,

matrix St;s:

Definition 5.1 (Cluster basis). Let k ¼ ðktÞt[TI
[ NTI : A

family V ¼ ðVtÞt[TI
with Vt [ Rt£kt for each t [ TI is

called a cluster basis with respect to the rank distribution k:

Definition 5.2 (Uniform H-matrix). Let L [ RI£I be a

matrix and TI£I a block tree of I £ I consisting of

admissible and non-admissible leaves.

Let V be a cluster basis with respect to a rank distribution k:

L is called uniform H-matrix with respect to V and the

coefficient family ðSt;sÞt£s[LI£I
; if

Llt£s ¼ VtSt;sVT
s ð14Þ

holds for all t £ s [ LI£I :

Remark 5.3 (Subspace property). While the H-matrices

are not closed under addition (therefore we have to use the

formatted addition mentioned above), the uniform H-

matrices corresponding to a fixed cluster basis V form a

subspace of RI£I :

The decomposition (14) gives rise to a new algorithm for

computing the matrix-vector product y U Lx :

if we denote the set of all columns in a row corresponding

to t [ TI (Fig. 3) by

Rt U {s [ TI : t £ s [ LI£I};

we find

yi ¼ ðLxÞi ¼
X
t]i

X
s[Rt

Llt£sxls

0@ 1A
i

¼
X
t]i

X
s[Rt

VtSt;sVT
sxls

0@ 1A
i

¼
X
t]i

Vt

X
s[Rt

St;sVT
sxls

0@ 1A
i

:

This representation of the result vector leads to the

desired new algorithm: in a first step, we compute the vectors

Fig. 3. Blocks in the cluster row corresponding to t.
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x̂s U VT
sxls; leading to the simplified equation

yi ¼
X
t]i

Vt

X
s[Rt

St;sx̂s

0@ 1A
i

:

In the second step, we compute the inner sum

ŷt U
X
s[Rt

St;sx̂s:

In the last step, we compute the outer sum

yi ¼
X
t]i

Vtŷt

 !
i

:

The resulting algorithm takes the following form:

procedure UniformMVM(x, var y);

begin
{ Forward transformation }

for s [ TI do x̂s U VT
sxls;

{ Multiplication }

for t [ TI do begin
ŷt U 0;

for s [ Rt do ŷt U ŷt þ St;sx̂s
end;

{ Backward transformation }

y U 0;

for t [ TI do ylt U ylt þ Vtŷt
end

Remark 5.4 (Complexity). In typical applications with

‘constant’ rank kt ¼ min{ltl; k0}; the computation of the

forward or backward transformation to a given vector can be

computed in Oðnk0 log nÞ operations. The multiplication

requires only Oðnk0Þ operations.

Although the complexity for the entire matrix-vector

multiplication for uniform H-matrices remains the same

as in the case of H-matrices, the new class of matrices has

other advantages: they form a subspace, i.e. they can be

added without truncation and the addition requires usually

only Oðnk0Þ operations. If the cluster basis V, i.e. the

subspace of the set of uniform H-matrices, is fixed, only

Oðnk0Þ units of memory are required to store an element of

this class, therefore uniform H-matrices can be used to

significantly reduce memory requirements when working

with more than one discretised operator, e.g. when storing

resolvents ðA 2 ziIÞ
21 for several shifts zi:

5.2. H2-matrices

The asymptotic complexity of the matrix-vector

multiplication for uniform H-matrices is dominated by

the forward and backward transformation. In order to come

closer to the optimal complexity OðnÞ; we have to find a way

of improving these transformations. The method of doing

this was introduced in Ref. [19] under the name of H2-

matrices. While the former paper applies the Taylor

expansion to approximate the kernel function, our presen-

tation will be based on the interpolation approaches

described in Refs. [5,8].

Let us consider the case of an approximation of the type

(9) with constant approximation order, i.e.

span{pt1
i : i [ {1;…; kt1

}} ¼ span{pt2
i : i [ {1;…; kt2

}}

holds for all t1; t2 [ TI : This means that each polynomial

pt1
i corresponding to a cluster t1 can be expressed in the

polynomial basis corresponding to any other cluster t2 and

that we have constant rank kt ¼ k0 (this implies ltl $ k0 for

all clusters t).

Since each pt2
i is a Lagrange polynomial corresponding

to an interpolation point xt2
i ; we even find

pt1
i ðxÞ ¼

Xkt2

k¼1

pt1
i ðx

t2
k Þp

t2
k ðxÞ:

Let us apply this equation to the case of a cluster t with a

son cluster t0: For each i [ t0; we find

ðVtÞii ¼
ð
V

pt
i ðxÞwiðxÞdx ¼

Xkt0
k¼1

pt
i ðx

t0

k Þ
ð
V

pt0

k ðxÞwiðxÞdx

¼
Xkt0
k¼1

pt
i ðx

t0

k ÞðVt0 Þik;

i.e. we can express Vt in terms of Vt0 : We introduce the

transfer matrix Bt0;t by setting

ðBt0;tÞki U pt
i ðx

t0

k Þ

and rewrite the above relation in the form

Vtlt0£kt
¼ Vt0Bt0;t: ð15Þ

This means that we only have to store Vt for clusters

without sons, while for all other clusters, the transfer

matrices Bt0;t of size K0 £ K0 are sufficient.

Definition 5.5 (Nested cluster basis). A cluster basis V with

respect to a rank distribution k is called nested, if there is a

family B ¼ ðBt0;tÞt[TI ;t
0[SðtÞ of transfer matrices satisfying

Vtlt0£kt
¼ Vt0Bt0;t

for all t [ TI and t0 [ SðtÞ:

Definition 5.6 (H2-matrix). Let L [ RI£I be a uniform H-

matrix with respect to a cluster basis V. The matrix L is

called H2-matrix, if V is nested.

The name ‘H2-matrix’ is motivated by the fact that for

this class of matrices, two hierarchies are involved: first

the hierarchy of the clusters already exploited for H-

matrices, second the hierarchy of the cluster bases.
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In addition to the fact that the memory requirements of

H2-matrices are lower than those of H- or even uniform

H-matrices, we can even speed up the forward and

backward transformation: if t is a cluster with sons

{t1;…; ts}; we have

Vt ¼

Vt1
Bt1;t

..

.

Vts
Bts;t

0BBBB@
1CCCCA ¼

Vt1
· · · 0

..

. . .
. ..

.

0 · · · Vts

0BBBB@
1CCCCA

Bt1;t

..

.

Bts;t

0BBBB@
1CCCCA; ð16Þ

and therefore

x̂t ¼ VT
t xlt ¼ ðBT

t1;t
VT
t1

· · · BT
ts;t

VT
ts
Þxlt ¼

Xs

j¼1

BT
tj ;t

VT
tj

xltj

¼
Xs

j¼1

BT
tj;t

x̂tj
:

This equation leads to the following recursive procedure

that, given an input vector and a root cluster t, will compute

the coefficient vectors corresponding to all descendants of t

in the cluster tree:

procedure FastForward(t, x, var x̂);

begin
if SðtÞ ¼ Y then

x̂t U VT
t xlt

else begin
x̂t U 0;

for t0 [ SðtÞ do begin
FastForward(t0; x, x̂);

x̂t U x̂t þ BT
t0;tx̂t0

end
end

end

The backward transformation can, too, be rewritten as a

recursive procedure:

procedure FastBackward(t, var y, var ŷ);

begin
if SðtÞ ¼ Y then

y U Vtŷt
else
for t0 [ SðtÞ do begin

ŷt0 U ŷt0 þ Bt0;tŷt;

FastBackward(t0; y, ŷ)

end
end

Remark 5.7 (Complexity). The matrices Bt0;t are in Rkt0£kt ;

so the recursion steps in the new transformation algorithms

require only Oðkt0ktÞ operations, leading to a total of Oðnk0Þ:

In typical applications, the start of the iteration, i.e. the

multiplication with Vt in the leaves of TI ; requires the

same amount of work, leading to a total of Oðnk0Þ:

The following algorithm results from combining the

fast forward and backward transformations with the

matrix-vector multiplication approach used for uniform

matrices:

procedure FastMVM(x, var y);

begin
{ Recursive forward transformation }

FastForward(I, x, x̂);

{ Multiplication }

for t [ TI do begin
ŷt U 0;

for s [ Rt do ŷt U ŷt þ St;sx̂s
end;

{Recursive backward transformation}

FastBackward(I, y, ŷ)

end

Remark 5.8 (Complexity). By using the recursive algor-

ithms, we have reduced the complexity of the forward and

backward transformation to Oðnk0Þ: In standard appli-

cations, the multiplication step requires the same amount

of work, so the new matrix-vector multiplication algorithm

has a complexity of Oðnk0Þ:

Remark 5.9 (Variable order). Even the improved com-

plexity of Oðnk0Þ is not optimal, since usually k0 will be

chosen to be proportional to log n:

In Ref. [25] a further refinement of H2-matrices is

described: the order of approximation is no longer

constant, but increases as the clusters become larger.

This approach reduces the complexity for the matrix-vector

multiplication and storage to the optimal class of OðnÞ;
while leaving the approximation properties intact, if the

original kernel function kð·; ·Þ satisfies some additional

assumptions.

5.3. Adaptive choice of the cluster basis

As soon as a cluster basis is fixed, the best uniform H- or

H2-approximation of a given matrix L [ RI£I in the

Frobenius norm can be computed by solving the variational

problem given by the projection equation

kVtSt;sVT
s 2 Llt£s;VtXVT

s lF ¼ 0

for all X [ Rkt£ks : The solution is given by

St;s ¼ ðVT
t VtÞ

21VT
t Llt£sVsðV

T
sVsÞ

21
: ð17Þ
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If the bases Vt and Vs are orthogonal, this expression

takes the simple form

St;s ¼ VT
t Llt£sVs: ð18Þ

This means that, in order to find a good approximation, we

‘only’ have to determine a suitable cluster basis, preferably

orthogonal, and compute the corresponding coefficient

matrices by Eq. (17) or (18).

The a priori choice of a cluster basis will, in most

applications, not lead to an optimal H2-representation of

the operator. In some applications, e.g., when dealing with

the inverses of finite element matrices or pseudo-differential

operators, the theoretical construction of a suitable cluster

basis will be much too complicated.

In both cases, an algorithm for creating a cluster basis a

posteriori is desirable. We will now describe an algorithm

(introduced in Ref. [4]) for doing this.

In the case of uniform H-matrices, we can use the

following straightforward approach: in order to find an

optimal rank-k-basis of a general matrix Y, we compute

the singular value decomposition USVT ¼ Y of Y and use

the first k columns of U as basis vectors. This is

equivalent to choosing the eigenvectors corresponding to

the k largest eigenvalues of the matrix YYT ¼ US2UT:

Since a basis Vt will in general be used by more than one

block, we add up all blocks of the form t £ s with s [ Rt

(recall Fig. 3) to get

Gt U
X
s[Rt

Llt£sLlTt£s:

The eigenvectors corresponding to the k largest eigen-

values of Gt form the optimal basis Vt:

The case of H2-matrices is more complicated: since the

bases Vt are required to be nested, they cannot be computed

independently. Since the choice of a basis Vt restricts the

possible solutions for all ancestors of t in the tree TI ;

blocks corresponding to these ancestors have to be

considered in the computation of Vt: To this end, we

introduce the extended set

Rþ
t U {s [ TI : ð’t0 [ TI : s [ Rt0

^ t # t0Þ}

representing all blocks corresponding to an ancestor of t

(Fig. 4).

We want to find an orthogonal basis Vt that minimises

the Frobenius error in all blocksX
s[Rþ

t

kLlt£s2VtV
T
t Llt£sk

2
F ¼

X
s[Rþ

t

ðkLlt£sk
2
F2 kVtV

T
t Llt£sk

2
FÞ;

i.e. that maximises

X
s[Rþ

t

kVT
t Llt£sk

2
F ¼ tr VT

t

X
s[Rþ

t

Llt£sLlTt£s

0@ 1AVt

0@ 1A; ð19Þ

where

trðMÞU
X
i[I

Mii

denotes the trace of a matrix M[RI£I :

We can solve this problem by introducing the matrix

Gt U
X

s[Rþ
t

Llt£sLlTt£s;

computing its orthogonal diagonalisation (Schur decompo-

sition)

QtDtQ
T
t ¼ Gt

and forming Vt by picking the first k columns of Qt:

If t has sons {t1;…; ts} ¼ SðtÞ – Y; we have to ensure

that the cluster bases are nested. We define

�Vt U

Bt1;t

..

.

Bts;t

0BBBB@
1CCCCA ð20Þ

and rewrite Eq. (16) in the form

Vt ¼

Vt1
· · · 0

..

. . .
. ..

.

0 · · · Vts

0BBBB@
1CCCCA �Vt:

Combining this reformulation of the nestedness con-

dition (15) with the maximisation problem (19), we find a

new problem: now we have to find an orthogonal matrix �Vt

Fig. 4. All blocks contributing to a cluster t.
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that maximises

tr �VT
t

X
s[Rþ

t

VT
t1

· · · 0

..

. . .
. ..

.

0 · · · VT
ts

0BBBBBBB@

1CCCCCCCALlt£sLlTt£s

Vt1
· · · 0

..

. . .
. ..

.

0 · · · Vts

0BBBBBB@

1CCCCCCA

0BBBBBBB@

1CCCCCCCA
�Vt

0BBBBBBB@

1CCCCCCCA

¼ tr �VT
t

X
s[Rþ

t

VT
t1

Llt1£s

..

.

VT
ts

Llts£s

0BBBBBBB@

1CCCCCCCA
VT
t1

Llt1£s

..

.

VT
ts

Llts£s

0BBBBBBB@

1CCCCCCCA

T0BBBBBBB@

1CCCCCCCA
�Vt

0BBBBBBB@

1CCCCCCCA
¼ tr �VT

t

X
s[Rþ

t

�Lt;s
�LT
t;s

0@ 1A �Vt

0@ 1A
with

L̂ti;s
UVT

ti
Llti£s

for i[ {1;…;s} and �Lt;sU

L̂t1;s

..

.

L̂ts;s

0BBBB@
1CCCCA: ð21Þ

This maximisation problem is again of the form

discussed above and can therefore be solved by computing

the orthogonal diagonalisation of

�GtU
X

s[Rþ
t

�Lt;s
�LT
t;s;

leading to the following algorithm:

procedure ComputeRowBasis(t);

begin
if SðtÞ¼Y then begin

GtU0;

for s[Rþ
t do GtUGtþLlt£sLlTt£s;

Compute the orthogonal diagonalisation

QT
t GtQt¼D;

Form Vt by copying the first k columns of Qt;

for s[Rþ
t do Lt;sUVT

t Llt£s
end
else begin
for t0[SðtÞ do ComputeRowBasis(t0);
�GtU0;

for s[Rþ
t do �GtU �Gtþ �Lt;s

�LT
t;s;

Compute the orthogonal diagonalisation

QT
t
�GtQt¼D;

Form �Vt by copying the first k columns of Qt;

Split �Vt into ðBt0;tÞt0[SðtÞ according to (20);

for s[Rþ
t do L̂t;sU �VT

t
�Lt;s

end
end

Remark 5.10 (Complexity). For ‘constant’ rank, i.e. for

kt ¼ min{ltl; k0}; the algorithm requires Oðn2k0Þ

operations.

In the case of suitably varying rank, the algorithm reaches

the optimal complexity Oðn2Þ:

Remark 5.11 (Application to H-matrices). The algorithm

can, obviously, be applied to H-matrices instead of general

matrices. In this case, we can use the special structure in

order to improve the complexity to Oðnk2
H logðnÞÞ; where

kH denotes the blockwise rank of the original H-matrix.

6. Alternative matrix formats

Besides H-matrices and H2-matrices there are some

specialised other matrix formats for certain applications,

e.g.

† wire-basket H-matrices: if applications in the field of

finite element matrices are considered, it is possible to

combine H-matrix ideas with local multi-grid solvers in

order to reduce memory requirements [18];

† blended kernel approximation: for special geometries

(e.g. surfaces of cylinders or bricks) the matrix of certain

discretised integral operators takes the form of a tensor

product of H-matrices and circulant or Toeplitz

matrices. This structure can be exploited by combining

fast Fourier transforms and H-matrix techniques to

speed up the matrix vector multiplication [15];

† semi-explicit H-matrices: the solution operator of a

general elliptic problem can be expressed as a sum of the

convolution operator corresponding to the fundamental

solution and a pseudo-differential operator taking care of

the boundary condition. The former operator can be

treated by H-matrix techniques while fast methods exist

for the latter [21].

7. Applications

In this section, we will demonstrate how the H-matrix-

techniques described above can be applied to problems from

the fields of integral equations, differential equations and

control theory.

7.1. Integral equations

In order to demonstrate the advantage of the H-matrix

approach, we consider the simple example of the discretisa-

tion of the single layer potential on the unit circle in two

space dimensions using a Galerkin method with piecewise

constant basis functions.
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7.1.1. H-matrix approach

The logarithmic kernel function will be approximated by

the interpolation approach given in Eq. (7) using tensor

product Chebyshev points and corresponding Lagrange

polynomials.

We report the relative error kL 2 ~Lk2=kLk2 in Table 1. The

Euclidean norms are approximated by performing 100 steps

of the power iteration. The first column contains the number

of degrees of freedom for each discretisation level, the

following columns give the relative error. We observe that

the error is bounded independently of the discretisation level

and that it decreases very quickly when the interpolation

order is increased.

The time required for matrix vector multiplications is

given in Table 2. It was measured on a SUN Enterprise 6000

machine using UltraSPARC II processors running at

248 MHz by taking the time required for 100 matrix vector

multiplications and dividing by 100. We can see that the

complexity grows almost linearly with respect to the number

of degrees of freedom and rather slowly with respect to the

interpolation order. We let Cleaf be proportional to md in order

to simplify the program. This accounts for the surprising

improvement of the speed for m ¼ 3:

Finally, let us consider the time required for building the

H-matrix representation of the discretised integral operator.

This is given in Table 3 and was measured on the same

machine. The integral of the Lagrange polynomials was

computed by using an exact Gauss quadrature formula, while

the integral of the kernel function was computed analytically.

Once more we observe an almost linear growth of the

complexity with respect to the number of degrees of freedom

and a quadratic growth with respect to the interpolation order.

Note that even on an old and quite slow processor like the

248 MHz UltraSPARC II, the boundary element matrix for

more than half a million degrees of freedom can be

approximated with an error less than 0.03% in less than

half an hour.

7.1.2. H2-matrix approach

In order to illustrate the advantages of H2-matrices

when considering integral operators, we will now approxi-

mate the same kernel function as before by the symmetric

interpolation approach given in Eq. (9), once more using

tensor product Chebyshev points and the corresponding

Lagrange polynomials.

The relative approximation errors for the H2-matrix are

reported in Table 4. As before in the H-matrix case, the

error is almost constant with respect to the number of

degrees of freedom and decreases quickly when the order of

the approximation is increased.

The results for the H2-matrix approximation are not as

good as in the case of the H-matrix for low ranks, but

improve significantly as soon as the rank is increased.

In Table 5, we report the times required for the H2

matrix-vector multiplication. For the lowest rank, the H2-

matrix technique requires more time than the H-matrix

approach, but even for order 2, the H2-matrix is

significantly faster.

Table 6 contains the times required for building the H2-

matrix approximation of the integral operator. Obviously,

the H2-matrix approach is much faster than the H-matrix

approach in all experiments. Especially in the case of higher

order expansions, the performance of the H2-matrix

technique is much better than that of the H-matrix method.

Table 1

Approximation error for the single layer potential

n m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5

1024 3.57 £ 1022 2.16 £ 1023 2.50 £ 1024 7.88 £ 1026 2.67 £ 1026

2048 3.58 £ 1022 2.19 £ 1023 2.51 £ 1024 7.86 £ 1026 2.69 £ 1026

4096 3.59 £ 1022 2.20 £ 1023 2.51 £ 1024 7.87 £ 1026 2.68 £ 1026

8192 3.59 £ 1022 2.20 £ 1023 2.52 £ 1024 7.76 £ 1026 2.67 £ 1026

16384 3.59 £ 1022 2.21 £ 1023 2.53 £ 1024 7.87 £ 1026 2.68 £ 1026

Table 2

Time (s) required for the matrix vector multiplication

n m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5

1024 0.01 0.02 0.01 0.01 0.03

2048 0.02 0.04 0.03 0.05 0.07

4096 0.05 0.11 0.09 0.12 0.17

8192 0.12 0.24 0.19 0.26 0.39

16,384 0.27 0.53 0.41 0.56 0.83

32,768 0.57 1.15 0.90 1.23 1.90

65536 1.18 2.44 1.96 2.73 4.14

131,072 2.45 5.18 4.30 5.89 8.98

262,144 5.15 11.32 9.14 12.95 19.78

524,288 10.68 23.81 19.62 28.02 43.57

Table 3

Time (s) required for building the H-matrix

n m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5

1024 0.61 0.93 1.76 3.11 5.60

2048 1.25 2.03 3.85 7.04 12.94

4096 2.56 4.29 8.41 15.82 29.65

8192 5.25 9.16 18.10 35.31 66.27

16,384 10.75 19.30 39.32 77.47 146.65

32,768 22.15 40.83 85.16 169.16 324.36

65,536 45.79 87.32 185.85 368.46 702.63

131,072 92.64 180.73 387.63 788.06 1511.66

262,144 189.15 378.20 854.75 1775.85 3413.45

524,288 388.96 795.84 1743.66 3596.77 6950.55
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Using H2-matrices, the boundary element matrix for

more than half a million degrees of freedom can be

approximated with an error less than 0.06% in less than

7 min, even on a slow processor like the UltraSPARC II.

7.2. Elliptic partial differential equations

The model problem of the Poisson equation on the unit

sphere is studied numerically in Ref. [10]. Some theoretical

results will be presented in a forthcoming technical report

[2]. For the convenience of the reader, we will give a short

summary of the numerical tests from Ref. [10].

7.2.1. Simple model problem

We consider the Poisson equation

2›2
xuðx; yÞ2 ›2

yuðx; yÞ ¼ f ðx; yÞ; ðx; yÞ [ V ð22Þ

on the unit square V ¼ ½0; 1�2 with essential boundary

condition u ¼ 0 on the boundary G U ›V:

For the discretisation of the variational formulation of

Eq. (22) we choose continuous piecewise linear nodal

(Lagrangian) basis functions fi defined by a regular

triangulation of [0,1]2. The stiffness matrix

Ai;j U
ð
V
k7fi;7fjl; i; j [ I ¼ {1;…; n} ð23Þ

and mass matrix

Mi;j U
ð
V
fifj; i; j [ I ¼ {1;…; n} ð24Þ

are both sparse. Our aim is to compute an approximate

inverse gA21A21 to A as in Section 4.4. The cluster tree TI and

the block tree TI£I are constructed as in Example 2.1 and

Section 2.3 with admissibility condition (6), h ¼ 0:8:

The time needed to compute the approximate inversegA21A21 to A is given in Table 7 (the entry n.c. means that the

entry was not computed due to limited storage capacity). If

we fix the rank k then the required time grows almost

linearly with respect to n ð9:3=1:9 ¼ 4:9 < 4 ¼ 5122=2562Þ:

Once an approximate inverse is computed, one can solve

an equation of the form Ax ¼ b by ~x U gA21A21b: The time for

one matrix-vector multiplication with the approximate

inverse is reported in Table 8.

The relative error kA21 2 gA21A21k=kA21k for the approxi-

mation of the inverse can be bounded by

kA21 2 gA21A21k
kA21k

¼
kðI 2 gA21A21AÞA21k

kA21k
# kI 2 gA21A21Ak:

To measure kI 2 gA21A21Ak in the spectral norm, we perform

10 steps of the power iteration. The results are given in

Table 9.

To compute a more accurate solution x of the equation

Ax ¼ b one can use the linear iteration

x0 U 0; xiþ1 U xi 2
gA21A21ðAxi 2 bÞ;

that has a convergence rate of kI 2 gA21A21Ak: Therefore, it

suffices to compute an approximate inverse gA21A21 such that

kI 2 gA21A21Ak , 1: A solution of the linear equation Ax ¼ b

can be gained up to any desired accuracy, but the

discretisation error introduced by the choice of the subspace

span{fi : i [ I} is a lower bound for the error of the

solution to the continuous problem.

Table 4

H2-approximation error for the single layer potential

n m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5

1024 1.37 £ 1021 8.51 £ 1023 5.98 £ 1024 4.27 £ 1025 4.18 £ 1026

2048 1.37 £ 1021 8.56 £ 1023 5.98 £ 1024 4.29 £ 1025 4.19 £ 1026

4096 1.37 £ 1021 8.59 £ 1023 5.98 £ 1024 4.30 £ 1025 4.19 £ 1026

8192 1.37 £ 1021 8.60 £ 1023 5.98 £ 1024 4.31 £ 1025 4.19 £ 1026

16384 1.37 £ 1021 8.61 £ 1023 5.99 £ 1024 4.31 £ 1025 4.19 £ 1026

Table 5

Time (s) required for the H2-matrix vector multiplication

n m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5

1024 0.02 0.01 0.01 0.01 0.02

2048 0.04 0.03 0.03 0.03 0.07

4096 0.07 0.05 0.07 0.08 0.14

8192 0.15 0.10 0.17 0.16 0.29

16,384 0.32 0.26 0.33 0.31 0.57

32,768 0.66 0.49 0.66 0.60 1.12

65,536 1.32 1.00 1.34 1.19 2.25

131,072 2.68 2.00 2.75 2.50 4.77

262,144 5.29 4.30 5.61 5.18 9.50

524,288 10.72 8.26 10.91 9.99 18.57

Table 6

Time (s) required for building the H2-matrix

n m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5

1024 0.49 0.62 0.78 1.05 1.57

2048 0.98 1.22 1.49 2.11 3.32

4096 1.93 2.31 2.97 4.18 6.35

8192 3.94 4.64 6.16 8.47 12.99

16,384 8.06 9.76 11.88 16.82 25.76

32,768 15.86 18.75 24.25 33.53 51.97

65,536 32.33 37.87 48.20 67.66 103.03

131,072 66.71 75.46 96.63 139.71 208.18

262,144 130.86 156.81 194.27 282.69 438.77

524,288 264.06 307.09 390.56 548.59 839.58
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7.2.2. Simple model problem with ‘jumping coefficients’

Changing the operator of Eq. (22) to

2divðsðx; yÞ7uðx; yÞÞ ¼ f ðx; yÞ; ðx; yÞ [ V ð25Þ

for some non-constant function s does, as far as numerical

tests indicate, not destroy the approximability of the inverse

by an H-matrix [10]. This is a rather surprising result: for

the Poisson equation the singularity function is asymptoti-

cally smooth while here neither the singularity function nor

its behaviour is known. For a theoretical investigation of the

H-matrix approximation of this problem, see Ref. [2].

7.3. Matrix functions

7.3.1. Matrix exponential function

Matrix functions like the matrix exponential can be

computed effectively by use of the Dunford–Cauchy

representation

expðAÞ ¼
1

2pi

ð
G

expðzÞðzI 2 AÞ21dz ð26Þ

of the operator. To do so, the matrices zI 2 A have to be

inverted. If the matrix A stems, e.g. from the discretisation

of an elliptic partial differential equation, we can use the H-

matrix arithmetic to compute the inverse at certain points

z ¼ zj and compute the integral in Eq. (26) by some

quadrature rule. This approach is investigated in Ref. [6],

including numerical examples.

The Dunford–Cauchy representation can also be used for

other operators [7].

An alternative way to compute the matrix exponential is

using the truncated Taylor-series with scaling. Let A be a

matrix and s [ N such that kAk , 2s21: Then we find

expðAÞ ¼ expð22sAÞ2
s

<
Xk

i¼0

1

i!
ð22sAÞi

 !2s

Therefore, one computes in a first step the matrix

B U
Xk

i¼0

1

i!
ð22sAÞi

by

procedure expsmall(var B, A, k);

begin
B U k21A;

for i U k 2 1 downto 1 do B U i21ðA%A(BÞ;

B U B þ I

end

with calling parameters B; ð22sAÞ: Afterwards the matrix B2s

is gained by squaring s times,

B0 U B; Biþ1 U Bi(Bi; i ¼ 1;…; s 2 1

procedure exp(var B, A, k);

begin
s U dlog2ðkAkÞe;
A U 22sA;

expsmall(B, A, k);

for i U 1 to s do B U B(B

end

The complexity for the computation is OðlogðkAkÞn
logðnÞ2k2Þ since log2ðkAkÞ formatted multiplications and

additions of H-matrices are involved.

Table 7

Time (s) needed to compute the approximate inverse to A for increasing

rank k

k Number of degrees of freedom, n

322 642 1282 2562 5122

1 9.3 £ 10þ0 6.8 £ 10þ1 4.3 £ 10þ2 1.9 £ 10þ3 9.3 £ 10þ3

2 9.7 £ 10þ0 8.0 £ 10þ1 5.0 £ 10þ2 2.7 £ 10þ3 1.4 £ 10þ4

3 1.1 £ 10þ1 9.7 £ 10þ1 6.4 £ 10þ2 3.7 £ 10þ3 2.0 £ 10þ4

4 1.2 £ 10þ1 1.2 £ 10þ2 8.3 £ 10þ2 5.1 £ 10þ3 2.6 £ 10þ4

5 1.3 £ 10þ1 1.4 £ 10þ2 1.1 £ 10þ3 6.6 £ 10þ3 3.5 £ 10þ4

10 1.9 £ 10þ1 2.6 £ 10þ2 2.4 £ 10þ3 1.5 £ 10þ4 n.c.

15 2.1 £ 10þ1 3.2 £ 10þ2 3.0 £ 10þ3 2.1 £ 10þ4 n.c.

Table 8

Time (s) needed for one matrix-vector multiplication for increasing rank k

k Number of degrees of freedom, n

322 642 1282 2562 5122

1 2.7 £ 1022 1.5 £ 1021 6.9 £ 1021 3.0 £ 10þ0 1.4 £ 10þ1

2 2.9 £ 1022 1.7 £ 1021 8.1 £ 1021 3.9 £ 10þ0 1.7 £ 10þ1

3 3.2 £ 1022 1.8 £ 1021 9.7 £ 1021 4.7 £ 10þ0 2.1 £ 10þ1

4 3.4 £ 1022 2.1 £ 1021 1.1 £ 1020 5.7 £ 10þ0 2.4 £ 10þ1

5 3.5 £ 1022 2.2 £ 1021 1.2 £ 1020 6.4 £ 10þ0 3.4 £ 10þ1

10 4.5 £ 1022 3.3 £ 1021 1.8 £ 1020 8.9 £ 10þ0 n.c.

15 5.0 £ 1022 3.9 £ 1021 2.3 £ 1020 1.2 £ 10þ1 n.c.

Table 9

Relative error kI 2 gA21A21Ak2 for the approximation of A 21 with increasing

rank k

k Number of degrees of freedom, n

322 642 1282 2562 5122

1 5.2 £ 1021 2.1 £ 1020 7.6 £ 1020 2.4 £ 10þ1 4.9 £ 10þ1

2 3.5 £ 1022 3.5 £ 1021 2.0 £ 1020 8.2 £ 1020 2.4 £ 10þ1

3 4.9 £ 1023 3.1 £ 1022 2.0 £ 1021 1.1 £ 1020 5.1 £ 1020

4 1.1 £ 1023 9.1 £ 1023 5.1 £ 1022 2.7 £ 1021 1.2 £ 1020

5 2.2 £ 1024 7.2 £ 1024 4.5 £ 1023 2.3 £ 1022 1.0 £ 1021

10 2.9 £ 1027 4.1 £ 1026 1.9 £ 1025 8.0 £ 1025 n.c.

15 8.4 £ 10213 5.4 £ 10210 2.2 £ 1029 2.8 £ 1028 n.c.
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7.3.2. Matrix sign function

Let S be a matrix with spectrum sðSÞ that does

not intersect the imaginary axis. The matrix sign

function signðSÞ is defined as the matrix function to

sign: C! C; x þ iy 7! signðxÞ: The sign of a number

x – 0 is 1 if x . 0 and -1 if x , 0: This function

plays an important role in the treatment of Riccati’s

equation.

A simple method to calculate the sign function of a

matrix S is Newton’s method applied to the equation S2 ¼ I;

as it is described in Ref. [23].

Theorem 7.1 (Newton’s method to calculate the matrix
sign function). Let S [ Rn£n be a matrix whose spectrum

does not intersect the imaginary axis. Then the iteration

S1 U S; Siþ1 U 1
2
ðSi þ S21

i Þ ð27Þ

converges quadratically to the sign of S.

Replacing the exact addition and inversion by their

formatted counterparts ~Siþ1 U ð1=2Þð~Si%
gS21

iS21
i Þ yields an

algorithm to compute the sign of an H-matrix in the set

of H-matrices. To ensure a sufficient approximation of

the matrix signðSÞ by ~S1 U limi!1
~Si; one needs more

assumptions concerning the structure of S. A numerical

test involving the computation of ~S1 will follow in

Section 7.4.

7.4. Lyapunov and Riccati equations

An algebraic matrix Riccati equation is an equation of

the form

ATX þ XA 2 XFX þ G ¼ 0 ð28Þ

where the matrices A;F;G are given and X is the unknown

solution.

Strategies for solving algebraic matrix Riccati equations

(for matrices of a certain structure) are varied. Basically,

one can either try to solve the (nonlinear) equation (28)

directly, or one can apply Newton’s method to simplify the

equation to a linear one. The latter results in a series of

Lyapunov equations of the form

ATX þ XA þ G ¼ 0 ð29Þ

where the matrices A;G are given and X is the unknown

solution.

7.4.1. Low rank case

If the matrix G in Eq. (29) is of (global) low rank and

the spectra of A and 2A are disjoint, then the singular

values of the solution X decay exponentially [9,22]. This

means that the rank k needed to approximate the solution

X up to a relative error of 1 is k ¼ Oð2logð1ÞÞ:

If also the matrix F is of low rank, this extends to the case

of the Riccati equation.

Consequently, an appropriate representation for X is that

of an Rk-matrix. Still one needs a method to compute X

without losing the low rank structure.

Example 7.2 (Solution by use of the matrix exponential).
Let A be negative definite. Then the solution X to (29) can be

represented in the form

X ¼
ð1

0
expðtATÞG expðtAÞdt:

The integral can be discretised and one has to compute for

several ti [ ð0;1Þ the matrix expðtiA
TÞG expðtiAÞ: This

involves the computation of expðtiAÞ as in Section 7.3.1 and

two products. If the matrix G is of low rank kG then the

products can be computed as in Section 3.5.

To solve the Riccati equation (28) we apply Newton’s

method and have to determine the iterates

Xiþ1 ¼
ð1

0
expðtðA 2 FXiÞ

TÞðXiFXi þ GÞexpðtðA 2 FXiÞÞdt:

ð30Þ

for a suitable initial guess X0:

Example 7.3 (Solution by use of the matrix sign). An

algorithm to solve certain Riccati equations by use of the

matrix sign function is presented in Ref. [23]: let A [ Rn£n

be negative definite and F;G [ Rn£n symmetric positive

semidefinite of low rank. Then the stabilising solution X of

(28) satisfies

N11

N21

" #
X ¼ 2

N12

N22

" #
; ð31Þ

where the matrices N11;N12;N21;N22 [ Rn£n are

N11 N12

N21 N22

" #
U sign

AT G

F 2A

" # !
2

I 0

0 I

" #
: ð32Þ

In the Lyapunov case F ¼ 0 this simplifies to X ¼ N12=2:

In Ref. [12] it is proven that the matrix sign ½ AT

F
G
2A

� consists

of low rank structures plus the identity. The computation of

signð· · ·Þ is done as in Section 7.3.2. The solution of Eq. (31)

simplifies essentially if N11 is regular: X ¼ 2N21
11 N12: The

exact inversion and multiplication are replaced by the

formatted H-matrix arithmetics.

To test the approximability of all the matrices appearing

in Eq. (27) we solve the autonomous linear quadratic

optimal control problem for the heat equation in one

dimension. This has already been investigated in Ref. [24]

but there the low rank structure of the solution was not

exploited.

Example 7.4 (Control of the heat equation). We

consider the linear quadratic optimal control problem of
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the one-dimensional heat flow: the goal is to minimise

JðuÞ U
ð1

0
ðyðtÞ2 þ uðtÞ2Þdt ð33Þ

for u [ L2ð0;1Þ where y is defined via the differential

equation

›

›t
xðt; jÞ ¼

›2

›j2
xðt; jÞ þ bðjÞuðtÞ; j [ ð0; 1Þ; t [ ð0;1Þ;

xðt; jÞ ¼ 0; j [ {0; 1}; t [ ð0;1Þ;

xð0; jÞ ¼ x0ðjÞ; j [ ð0; 1Þ;

yðtÞ ¼
ð0:3

0:2
xðt; jÞdj; t [ ð0;1Þ:

The starting value x0 [ L2ð0; 1Þ is given (not important

here) and b is defined as

bðjÞ U
l j [ ð0:2; 0:3Þ

0 otherwise

(
:

The differential equation is discretised by finite differences

on a uniform mesh of ð0; 1Þ with n inner grid-points and

mesh width h. If we define the matrices

Aij U

2h22 i ¼ j

2h22 li 2 jl ¼ 1

0 otherwise

8>><>>: ; Bi1 U
1 ih [ ½0:2; 0:3�

0 otherwise

(
;

C1j U
ð0:3

0:2
fjðxÞdx; i; j [ {1;…; n};

where fi denotes the ith Lagrange basis function for the

interpolation, then the minimising discrete control u is

uðtÞ ¼ 2BTXxðtÞ; t [ ð0;1Þ;

where X [ Rn£n is the unique, nonnegative symmetric

solution of the algebraic matrix Riccati equation

ATX þ XA 2 XFX þ G ¼ 0

for the matrices F U BBT and G U CTC:

The matrices F;G are of rank one. Using the algorithm

described in Example 7.3, we can compute an approximate

solution ~X to Eq. (28). The results can be seen in Table 10,

where we present the relative error 1 U k ~X 2 Xk2=kXk2 for

increasing rank k and n degrees of freedom.

7.4.2. H-matrix case

If the matrix G in Eq. (29) is an H-matrix with

blockwise rank kG; one can prove under moderate assump-

tions (see Ref. [12] for details and a proof) that the solution

X can be approximated in the H-matrix format with slightly

increased blockwise rank kX :

If also the matrix F is of low rank then this extends to the

case of the Riccati equation.

Consequently, an appropriate representation for X is that

of an H-matrix. An approximate solution ~X can be

computed as in Example 7.2 or 7.3.
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