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1. Introduction

he purpose of this article is to give a practical and complete,

but not rigorous, exposition of the Fast Multipole Method
(FMM). The aim is to give the computational physicist or engineer
a sufficiently clear understanding of the method that he or she will
be able to implement it with a minimum of difficulty. For
mathematical background and rigor, we refer the reader to
Rokhlin’s papers [1, 2].

The FMM provides an efficient mechanism for the numerical
convolution of the Green’s function for the Helmholtz equation
with a source distribution. It can be used to radically accelerate the
iterative solution of boundary-integral equations. In the simple
single-stage form presented here, it reduces the computational
complexity of the convolution from O(N 2 ) to O(N 3 2), where N is
the dimensionality of the problem’s discretization. By implementing
a multistage FMM [1,2], the complexity can be further reduced to
O(NlogN). However, even for problems that have an order of
magnitude more variables than those currently tractable using
dense-matrix techniques (N = 105), we estimate that the perform-
ance of the single-stage algorithm should be near optimal.

Our development is given in terms of the method of moments
[3,4] (MoM), rather than the Nystrom method [5]. We do this
because

+ Electrical engineers are more familiar with the MoM,
and may therefore be more comfortable with the
development.

» The prescription we present is sufficiently simple that
it can be easily retrofitted to existing MoM codes.

» When used in the MoM, detailed comparisons to verify
that results are identical to dense-matrix techniques
are immediately available.

» We avoid all questions of singularity subtraction, as it
is required only for matrix elements representing
nearby interactions, and the computation of these is
unchanged when the FMM is employed.

+ The presentation demonstrates the independence of the
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FMM from the choice of discretization method,
boundary-surface model, basis functions, etc.

The reader is cautioned not to interpret our choice of presentation
as representing a preference toward the MoM. On the contrary, we
think that the Nystrom method is the appropriate tool for efficient
and accurate boundary-integral-equation solvers.

For the purposes of demonstration, we first consider the
MoM for the scalar wave equation, with Dirichlet boundary condi-
tions on the surface of a scatterer. This is done for notational con-
venience only, the (naive) equivalent application to the electric-field
integral equation (EFIE) being straightforward. (One can simply
apply the scalar prescription to each Cartesian component of the
vector expansion functions, and to their divergences; a more effi-
cient method is described in Section 5.)

If the structure of this article seems somewhat confusing at an
initial reading, it is because some considerations are intentionally
delayed. We hope that the reasons for this become clear upon
subsequent readings. In Section 2, we define notation, introduce the
discretization of the scattering problem, relate the FMM to a more
familiar fast algorithm, and introduce the fundamental analytic
apparatus of the FMM. A detailed prescription for FMM
implementation, except for the choice of some important
parameters of the algorithm, is given in Section 3. After the
structure of the method is exhibited, these parameters (the number
of terms used in the multipole expansion, and the directions at
which far-field quantities are tabulated) are analyzed in Section 4.
The algorithm for the scalar problem then having been being com-
pletely defined, we exhibit the minor modifications necessary for
application to vector (electromagnetic) scattering in Section 5.
Before concluding, a physical interpretation of the analysis behind
the FMM is given in Section 6.

2. Basics
2.1 Notation

Vectors in three-dimensional space are represented by bold-
face type (x). The magnitude of a vector x is written as x = ||, unit

vectors are written as X = x/ x, and integrals over the unit sphere
are written as Idzif. The imaginary unit is denoted by /.
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2.2 Time-independent scattering and the Method of Moments

A scattering problem [6, 7] can be defined by the scalar wave equa-
tion

(v2+k2)y/:o, M
a Dirichlet boundary condition

w(x)=0;, xonS, )
on the surface, S, of a bounded scatterer, and a radiation boundary
condition. The method of moments [8] provides a discretization of
the first-kind integral equation associated with this problem, giving

a set of linear equations with a dense coefficient (impedance)
matrix:

ml' - Jd XJ- d~x fn

We assume that the basis functions, f,, are real, and supported on
local subdomains. The FMM provides a prescription for the rapid
computation of the matrix-vector product

1A|x x|

T ®) ®

N
Bn = ZZHM'IH" (4)

n'=1

for an arbitrary vector /. This rapid computation can then be used in
an iterative (e.g., conjugate-gradient) solution of the discretized
integral equation Z+/ =1, where, for an incident wave with wave
vector k,

k)= [odr (x)e™ . (5)

Note that we have chosen to use the same functions for expansion
and testing (the Galerkin method). Not only does this simplify the
development somewhat, but it also results in superconvergence of
the scattering amplitude [9, 10].

2.3 Comparison with the Fast Fourier Transform

A discrete Fourier transform consists of multiplication by a
dense N x N matrix F, with matrix elements

27111(1
Fy = exp—

(6)

The fast Fourier transform (FFT) works by using algebraic
properties of F to construct a sparse factorization,

F= F(I)F(Z)”'F(logz.\'), )

and applying the sparse factors, /- (a), one by one to the vector to
be transformed, in lieu of a single multiplication by the matrix F.
Because each of the factors has only O(N) non-zero elements, this
results in an algorithm that requires O(Nlog N) operations. The

single-stage FMM works by a similar decomposition of the matrix
Z:

Z=7'+vIvt, (8)

1

where Z', V, and T are all sparse. As described in detail in this arti-
cle, this allows computation of the product of Z with an arbitrary
vector (corresponding physically to the determination of the fields

radiated by a known source distribution), with O(N 2 ) operations.

The complexity can be further reduced to NGB N4 by recur-
sive decomposition of Z' and }-
7 =2"+v Ty ©)
V=Vs. (10)

This is entirely analogous to the FFT: if one factors / into only two
factors (independent of N), the result would be an O(N 3 2) algo-

rithm. We do not exhibit the details of the multi-stage FMM in this
article.

In contrast to the FFT, the FMM decomposition is made
possible by analytic rather than algebraic properties of the linear
operator. Thus, while the FFT factorization is exact, the FMM
decomposition is approximate. However, this does ot constitute a
practical limitation, as it is easy to control the FMM to achieve any
desired level of precision (all the way to machine precision).

2.4 Identities

The FMM, as presented here, rests on two elementary
identities. They, or formulas from which they may be easily derived,
are found in many texts and handbooks on mathematical methods,
such as Arfken [11] and Abramowitz and Stegun [12]. The first, an
expansion of the kernel in the integral, Equation (3), for the imped-
ance-matrix elements, is a form of Gegenbauer’s addition theorem,

1k|x+d| ®

e Z )\ (21+1)jy (k)i (kX)B(d - X). (1)
1=(

where j; is a spherical Bessel function of the first kind, h,(” is a
spherical Hankel function of the first kind, 7} is a Legendre poly-
nomial, and d < X'. When using this expansion to compute the field
at x from a source at x’, X will be chosen to be close to x —x’, so
that d will be small. This relationship of the various vectors is
sketched in Figure 1. The special functions are as defined in [12].
The second is an expansion of the product j,F} in propagating plane
waves:

ari' jy(kd)R(d - X) = [d*ke™ (k- X) (12)

Substituting Equation (12) into Equation (11), we get

ik{X+d|
€

k¢ pp ikds ) co
=— | d ki 21+ WA\ (RX)P k- X), (13
X +d] axd R E)'(+)’( Ak-%). 13)
®x
d
() - o
x’ X

Figure 1. The basic geometry, illustrating the relationship
between the locations x,x’ and the displacements X,x.
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where we have performed the illegitimate but expedient interchange
of summation and integration. The key point is that we intend to
precompute the function

L
T1(x,c086) = 3" (21 + 1) (k) B(cos ), (14)
1=0

for various values of k. This is not a function in the 7, — o, but
that need not concern us, as we obviously intend to truncate the
sum in numerical practice. The number of kept terms, L +1, will
depend on the maximum allowed value of kd, as well as the desired
accuracy. The choice of L is discussed in Section 4. It suffices, for
the present, to note that, in order to obtain accuracy from Equa-
tion (11), it must be slightly greater than xI), where D is the maxi-
mum value of d for which the expansion will be used. Ignoring this
question for now (except for noting that the required number of
terms becomes small as D — 0), we have

~ PR T (kxR R) (15)
| (ke ke X)

Using this, the impedance-matrix element, Equation (3), is
given by

Z ® (_4;%15 duf, (x) [ X f,p (x') [ @k X0 (ke X)
(16)

In infinite-precision arithmetic, and in the limit of large L, this result
would be independent of the choice of X (for X > ’x —-x' - X\), In
practice, one chooses X to make x - x’ - X relatively small, so that
excellent accuracy can be obtained with a modest value of L. (That
this can be done by the grouping scheme described below is a con-
sequence of the local support of the basis functions.) Notice that
Equation (16) gives the impedance-matrix element (for well-
separated interactions) in terms of the Fourier transforms with wave
number k of the basis functions, i.e. the basis functions’ far fields.
The acceleration provided by the FMM comes from the fact that
these far fields can be grouped together before the integral over k
is performed.

3. Algorithmic prescription
3.1 Setup

1. Divide the N basis functions into M localized groups,
labeled by an index m, each supporting about N/M basis
functions. (For now, M is a free parameter. Later it will
be seen that the best choice will be M ~ \/7\/_‘) Thus,
establish a correspondence between the basis-function
index, n, and a pair of indices (m,a), where « labels the
particular basis function within the mth group. Denote
the center of the smallest sphere enclosing each group as
X, The grouping and index correspondence is shown,
for a simple case, in Figure 2.

2. For group pairs (m,m’) that contain “nearby” basis

functions [defined for now as those whose regions of
support are separated by a distance comparable to or
smaller than a wavelength, 27 / k, so that Equation (16)
is valid], construct the sparse matrix Z’, with matrix
elements
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Z

’
mam'a’

Zn(m,a)u'(m’,a’)’ (17)

by direct numerical computation of the matrix elements,
Equation (3). For all other pairs, Z;, s, = 0.

This part of the matrix computation is identical to
what is conventionally done. All matrix elements, the
computation of which requires subtraction of singulari-
ties, belong to Z’. If the large-N limit is taken with a
fixed discretization interval and nearness criterion, this
step would require O(N) computations. In Section 4,
we define nearby regions precisely, and it turns out that
their volume increases as v , so that this step requires

O(N 3 /2) computations.

3. For K directions & , compute the “excitation vectors”
(Fourier transforms of the basis functions)

Valk) = J’S d*x U Xa) Fuma)(®): (18)

where £ is considered to be a parameter of the problem,
not a variable. Because K needs to be chosen to give
accurate numerical quadrature for all harmonics to some

order L ~ kD, K oc[? ~ (kD)Z, and because (from
geometrical considerations) kD x+/N /M, this step
requires O(N2 / M) computations.

4. For each pair (m,m’) for which Z, w0 =0 (regions
that are not nearby), compute the matrix elements

Figure 2. The grouping for a simple surface. It is assumed, for
purposes of illustration only, that each patch supports only one
basis function. The correspondence n(m,q) is abbreviated in
Table 1.

Table 1. The abbreviated correspondence # <> (m, ) for the
grouping shown in Figure 2.

m a n(im,a)
1 1 1
1 2 2
1 3 3
1 4 4
2 1 5
2 2 6
2 3 7




T ()=

mm) (k Xmm)

(19)

L
Zz’ 20 +1)h
” =0

for the same K directions & as the previous step, where
L oK. If done in a naive manner, this computation
requires O(KLM2 ~ My 3/2) operations. However, it

can be accomplished more rapidly in a number of ways,
the most elegant being the fast Legendre expansion

[13].

3.2 Fast Matrix-Vector Multiplication

Rapid computation of the vector elements

Z mom' a’ ma (20)

is accomplished by the following steps:

1. Compute the KM quantities
su(k)= Z Ve ) ey

which represent the far fields of each group m. This step
requires O(KN ~N%/ M) operations.

2. Compute the KM quantities
gm(lg) = Z 7;""1'(;)5711,(1;)' (22)

These represent the Fourier components of the field in
the neighborhood of group m, generated by the sources
in the groups that are not nearby. This step requires

O(KM2 ~ MN ) operations.

3. Finally, compute
= Zz;nam a’lm'a’ +J’d k; ma(k)gm(kh)" (23)
ma'

The first term is the standard MoM computation of near
interactions, and the second term gives the far interac-
tions, in terms of the far fields generated by each group.

This step requires O(KN ~N?/ M) operations.

Straightforward substitution of Equations (18), (19), (21),

4. Required number of multipoles and directions
In this section:

* We show how to choose the summation limit in the
transfer function T,,,,,,r(k), Equation (19), to achieve the

desired accuracy (in the process, giving a precise defini-
tion of nearby regions).

» We discuss how to choose the K directions 12 for the
tabulation of angular functions.

One must choose L large enough that the multipole expansion
of the Green’s function, Equation (11), converges to the desired
accuracy. As a function of /, the Bessel functions ji(z) and #{")(z)
are of roughly constant magnitude for / <z. For /> z, j,(z) decays

rapidly and h,(”(z) grows rapidly. While one must choose
L>kd=kx-x'- X,nr| (so that the partial-wave expansion has
converged), L cannot be taken to be much larger than kX,
because the transfer function, Equation (14), will oscillate wildly,
causing inaccuracies in the numerical angular integrations of Equa-
tions (15) and (23). This condition is a consequence of the inter-
change of summation and integration in Equation (13). An excellent
semi-empirical fit to the number of multipoles required for single
precision (32-bit reals) is

Ly(kD) = kD + SIn(kD + ), (24)

where D>1/k is the maximum d which will be required (the
“diameter” of the basis-function groups). For double precision (64-
bit reals), our estimate is

Ly(kD) = kD+10In(kD + 7). (25)

If the L dictated by the appropriate formula exceeds kX,,,,., then
the groups are too close to use the FMM, and their interaction must
be represented in the sparse matrix Z*.

The K directions &, at which the angular functions are tabu-
lated, must be sufficient to give a quadrature rule that is exact for
all spherical harmonics of order / <2L. A simple method [2] for
accomplishing this is to pick polar angles & such that they are zeros
of P,(cosf), and azimuthal angles ¢ to be 2L equally spaced

(sin @cos @,sin Osin @, cosb),
K =277 If more-efficient quadrature rules for the sphere (of the
type described by McLaren [14]) are used, then K = (4/3)I2. Since

kD <~/ N/ M, this justifies the assertion made in Section 3.1 that
KxN/M.

points. Thus, for this choice of k=

5. Application to electromagnetic fields

In the solution of the electric-field integral equation, the
impedance-matrix elements take the form [15]

and (22) into Equation (23), and of Equations (14)-(16) into Zpy =i Z &% [d*x£, ()G (x =x') £, (x), (26)
Equation (20), shows that the two expressions for the vector B, JJ'=ls 5

Equations (23) and (20), give equal results. Thus, computation of

the vector B requires aNM +bN> / M operations, where a and b where

are machine and implementation dependent. The total operation WY

count is minimized by choosing M =+bN/a; the result is an Gj.j,(x-x'):((sjj, ‘TL%J‘*” @n
O(N3/2) algorithm. k* éx; xj 47r|x -x
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and the indices j,;’ label Cartesian components. As implied in
Section 1, one can integrate by parts, and simply use the scalar pre-
scription, given above, on the three components of f and the scalar
Vef. This is not, however, the most economical procedure. By
differentiating with respect to d under the integral in Equation (15),
we get

Gyp(X+d)~ %jdzl\:(&ﬂ. kT (kxR R) (28

Now it can be easily seen that the scalar prescription presented in
Section 3 can be modified to an electromagnetic one, by promoting

the quantities V,,,, s,,,(l;), and g,,,(l;) to three-dimensional vectors,
with

VoK) = [d*x e’k"[f,,(m‘n)(x) —Igl;-fn(m‘a)(x)], (29)

and using a dot product in the J'd21§ term of B

ma>

Equation (23).

This method can be implemented using about half the storage of the
four-fold use of the scalar formula, because the vector V,,, has

only two independent components: [I:' . V(f() = 0}.

6. Physical interpretation

The physics of the FMM rests on the following fact: given a
field, y/(x), which satisfies the wave equation

(V2 +#)w(x) =0, (30)

for all x outside a given sphere, the field can be reconstructed
everywhere outside that sphere from its far field [16, 17]. This
means that if the field is radiated by a source density, p{x), sup-

ported only within a sphere of radius R centered at the origin,

eik[x—x’|

#x)= [ d———plx), 31

R 4rix - x'|

then the contribution of the “off-shell” (¢” = ?) components in the
Fourier expansion of the Green’s function [11],

eik|x—x'| d3q ezq(x—x’)

drx - x| J-(271)3 (27[)3q2 k2 —ig’

(32)

(where ¢ is a infinitesimal positive number, prescribing the correct
treatment of the singularity at q2 = k?) are determined for x > R
(after integration over d’x’) by the radiation condition and the “on-
shell” components. The on-shell components, coming from the
residue of the pole at ¢° = k2, give the imaginary part of the
Green’s function, and the off-shell components give the real part. It
is important that the off-shell part is 770f determined by the on-shell
part for x’ < R. This is related to the divergence of the series in
Equation (11) for d > X . This interpretation explains why the far
interactions can be computed [Equation (23)]from the radiation
pattern s,,,(/E) of the mth group. It also clarifies why one only need
keep two components in V, g, and s for the electromagnetic case:

the electromagnetic far field is transverse, and has only two inde-
pendent components.

7. Conclusion

Present methods for computing radar and other scattering
cross sections are limited by computer-processing and memory
requirements. The significance of the increase in problem size made
possible by the FMM can be illustrated by considering the calcula-
tion of RCS for X-band radar. With current methods, the size of the
largest body that can be accurately modeled is a few feet. With the
same computing resources, the techniques that we have described
will increase this by at least an order of magnitude. Such computa-
tional capabilities would significantly reduce the technological risk
of expensive projects employing stealth technology. They may
likewise revolutionize other applications of scattering computa-
tions, such as high-frequency circuit modeling, sonar, and geo-
physical applications.

Because the FMM accelerates computation of the matrix-
vector product Z«/, and thus only indirectly solution of Z+ 7=V,
we are frequently asked about the relative merits of direct and
iterative solutions, and techniques to reduce the iterations required
in a conjugate-gradient type of solution. These are important ques-
tions, and are under study by us as well as many others. We con-
sider them to be mostly beyond the scope of this article, but note
that the FMM is compatible with “complexification,” and with
preconditioning by a sparse matrix

Although we have only demonstrated the use of the FMM for
surface-scattering problems, its application to volume-integral
equations (necessary for the analysis of penetrable inhomogeneous
scatterers) is obvious. When comparison to other techniques for
computing the fields of volume source distributions is made, it
should be noted that in this case the matrix 7 in Equation (8) is a
strict convolution, and as such can be applied by FFT, resulting
immediately in an O(NlogN) algorithm, without further decom-
position.

8. Acknowledgment

This research was supported by the Advanced Research
Projects Agency of the US Department of Defense, and was
monitored by the Air Force Office of Scientific Research under
Contracts No. F49620-91-C-0064 and F49620-91-C-0084. The
United States Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright
notation hereon.

9. References

1. V. Rokhlin, “Rapid solution of integral equations of scattering
theory in two dimensions,” Journal of Computational Physics, 86,
2, pp. 414-439, 1990,

2. V. Rokhlin, “Diagonal form of translation operators for the
Helmholtz equation in three dimensions,” Technical Report
YALEU/DCS/RR-894, Yale University, Department of Computer
Science, March, 1992, to be published in Applied and Computa-
tional Harmonic Analysis.

3. R F. Harrington, Field Computation by Moment Methods, New
York, Macmillan, 1968.

4. R. F. Harrington, “Origin and development of the method of
moments for field computation,” IEEE Antennas and Propagation
Society Magazine, June, 1990, pages 31-35.

IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, June 1993 11




5. V. Rokhlin, “Solution of acoustic scattering problems by means
of second kind integral equations,” Wave Motion, 5, pp. 257-272,
1983.

6. A. W. Maue, “Toward formulation of a general diffraction prob-
lem via an integral equation,” Zeitschrift fir Physik, 126, pp. 601-
618, 1949.

7. A. W. Maue, “Toward formulation of a general diffraction prob-
lem via an integral equation,” in E. K. Miller, L. Medgyesi-
Mitschang, and E. H. Newman (eds.), Computational Electromag-
netics, New York, IEEE Press, pp. 7-14, 1992, (translated into
English from [6]).

8. E. K. Miller, L. Medgyesi-Mitschang, and E. H. Newman (eds.),
Computational Electromagnetics, second edition, New York,
IEEE Press, 1992.

9. J. H. Richmond, “On the variational aspects of the moment
method,” IEEE Transactions on Antennas and Propagation, 39, 4,
pp. 473-479, April, 1991.

10. S. M. Wandzura, “Optimality of Galerkin method for scattering
computations,” Microwave and Optical Technology Letters, 4, 5,
pp. 199-200, April, 1991.

11. G. Arfken, Mathematical Methods for Physicists, second edi-
tion, New York, Academic Press, 1970.

12. M. Abramowitz and 1. A. Stegun, Handbook of Mathematical
Functions, (Applied Mathematics Series), Cambridge, MA,
National Bureau of Standards, 1972.

13. B. K. Alpert and V. Rokhlin, “A fast algorithm for the evalu-
ation of Legendre expansions,” SIAM Journal of Scientific and
Statistical Computing, 12, pp. 158-179, 1991.

14. A. D. McLaren, “Optimal numerical integration on a sphere,”
Mathematics of Computation, 17, pp. 361-383, 1963.

15. 8. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic
scattering by surfaces of arbitrary shape,” IEEE Transactions on
Antennas and Propagation, AP-30, 3, pp. 409-418, May, 1982.

16. A. J. Devaney and E. Wolf, “Radiating and nonradiating classi-
cal current distributions and the fields they generate,” Physical
Review, D8, 4, pp. 1044-1047, August, 1973.

17. R. Peierls, Surprises in Theoretical Physics (Princeton Series in
Physics), Princeton, New Jersey, Princeton University Press, 1979.

Introducing Feature Article Authors

Ronald Coifman is a professor of mathematics at Yale Uni-
versity. He received his PhD from the Universityof Geneva, in
1965. He received his License es Sciences Mathematiques in 1962.
Prior to coming to Yale, Prof. Coifman was a professor at Wash-
ington University, a visiting professor at Tel-Aviv University, and a
visiting assistant professor at the University of Chicago. Prof.
Coifman’s recent publications have been in the areas of scattering
and inverse scattering, nonlinear harmonic analysis, and wavelet
theory. He was chairman of theYale Mathematics Department from
1986 to 1989.

Viadimir Rokhlin

Vladimir Rokhlin has been a professor of computer science
and mathematics at Yale University since 1985. He received a PhD
in Applied Mathematics from Rice University, in 1983, and a MS in
mathematics from Vilnius University, Vilnius, Lithuania, in 1973.
Prior to joining the faculty at Yale, Prof. Rokhlin worked as a Sen-
ior Research Specialist at Exxon; a partner in Livshitz and Associ-
ates, Houston, TX; a consultant at Computer Systems, Houston,
TX; and as a mathematician at the Institute of Arctic Geology,
Leningrad, Russia. Prof. Rokhlin’s research has been in the areas of
numerical-scattering theory, elliptic partial-differential equations,
numerical solution of integral equations, quadrature formulas for
singular functions, and numerical complex analysis.

‘

Stephen Wandzura

Stephen Wandzura is a Senior Scientist, Optical Physics
Labortory, Hughes Research Laboratories. He received his BS in
music from UCLA, in 1971, and his PhD in physics from Princeton
University, in 1977. His research has been in diverse areas of scat-
tering and propagation. His thesis research could be correctly, if
somewhat whimsically, characterized as the study of the
“impedance matrix of the proton.” As a National Research Fellow
with the NOAA, he studied scattering of light by atmospheric
turbulence, and the occurrence of mountain fee waves. At HRL, he
has worked on classical and quantum optics, especially the
theoretical and numerical study of stimulated scattering. For the last
three years, he has been studying improvements to moment-method
techniques. He has published articles in Physical Review, Physical
Review Letters, Physics Letters, Optics Letters, Nuclear Physics,
Wave Motion, and other journals.

12 IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, June 1993




