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Summary. This article deals with the existence of blockwise low-rank ap-
proximants — so-called H-matrices — to inverses of FEM matrices in the
case of uniformly elliptic operators with L∞-coefficients. Unlike operators
arising from boundary element methods for which the H-matrix theory has
been extensively developed, the inverses of these operators do not benefit
from the smoothness of the kernel function. However, it will be shown that
the corresponding Green functions can be approximated by degenerate func-
tions giving rise to the existence of blockwise low-rank approximants of FEM
inverses. Numerical examples confirm the correctness of our estimates. As a
side-product we analyse the H-matrix property of the inverse of the FE mass
matrix.
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1 Introduction

In a series of papers, the technique of hierarchical matrices (H-matrices) has
been introduced, which enable a cheap but sufficiently accurate represen-
tation of fully populated matrices (cf. [17], [18]). Since the method has its
original from the panel clustering method (cf. [19]), it was first applied to
dense matrices arising from the discretisation of boundary integral operators
(see also [2,1]). Since hierarchical matrices allow the approximate computa-
tion of matrix-matrix multiplications and matrix inversions, also the inverse
finite element (FE) stiffness matrix turns out to be computable with almost
linear complexity.
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A rigorous proof for the fact that the inverse A−1 of a FE stiffness matrix
A can be approximated by means of hierarchical matrices was still missing.
The heuristic argument is that A−1 is closely related to the Galerkin discret-
isation B of L−1, where the inverse differential operator is written as the
integral operator

(L−1ϕ)(x) =
∫

�

G(x, y)ϕ(y) dy(1.1)

using Green’s function G(x, y) as Schwartz kernel. For differential opera-
tors L with constant (or analytic or at least sufficiently smooth) coefficients
and for sufficiently smooth boundary ∂�, one can show that G(x, y) has
the smoothness properties satisfying the following condition: Let ω1 and ω2

be two disjoint subsets of �. Then G(x, y) restricted to x ∈ ω1 and y ∈ ω2

can be approximated sufficiently well by a (e.g., Taylor) polynomial P(x, y).
Since polynomials can be written in the separable form1 ∑k

i=1 ui(x)vi(y),
we conclude that

G(x, y) ≈
k∑

i=1

ui(x)vi(y) in ω1 × ω2.(1.2)

Applying the Galerkin discretisation with FE basis functions ϕi , we obtain
the matrix B, where bνµ := ∫

�

∫
�

ϕν(x)G(x, y)ϕµ(y)dxdy. Let Iω1 and
Iω2 be the index sets with the property that supp(ϕν) ⊂ ω1 for ν ∈ Iω1 and
supp(ϕµ) ⊂ ω2 for µ ∈ Iω2 .Approximating G by the right-hand side in (1.2),
we get bνµ ≈ b̃νµ := ∑k

i=1

∫
�

ϕν(x)ui(x)dx
∫
�

ϕµ(y)vi(y)dy. Hence, the
block (b̃νµ)ν∈Iω1 ,µ∈Iω2

is a rank-k matrix 2. This is the principle behind the
representation of B by a hierarchical matrix B̃: Blocks of appropriate size
are replaced by low-rank matrices.

In short, the approximation of a dense matrix by an H-matrix is a con-
sequence of the exponential convergence of polynomials to certain parts
G(x, y)|ω1×ω2 of the Green function. This argument fails if G is not smooth
as it happens for non-smooth coefficients cij of the (uniformly elliptic) dif-
ferential operator

Lu = −
d∑

i,j=1

∂j (cij ∂iu)(1.3)

1 In fact, we may write a polynomial P(x, y) as
∑k

i=1 pi(x)yi−1, where pi(x) is a
polynomial only in x. Therefore, set ui(x) := pi(x) and vi(y) := yi−1.

2 The rank-k matrix equals
∑k

i=1 aibT
i with the vectors ai =

(∫
�

ϕν(x)ui(x)dx
)
ν∈Iω1

and bi =
(∫

�
ϕµ(x)vi(x)dx

)
µ∈Iω2

.



Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators 3

or close to corners of the boundary ∂�. In the case of cij ∈ L∞(�) the theo-
rem of De Giorgi (1957; see [8, page 200]) guarantees only local Hölder con-
tinuity of G. In this article we consider the extreme case when cij ∈ L∞(�)

and � ⊂ R
d is a bounded Lipschitz domain, and prove that nevertheless

B as well as the inverse FE stiffness matrix A−1 are well approximated by
H-matrices. On the other hand, we require no smoothness of the functions
ui , vi in (1.2).

Usually, iterative methods are applied for the efficient numerical solution
of elliptic partial differential equations, a prominent example are multigrid
methods (cf. [13], [14, Chapter 10]). The first aim of iterative methods is a
convergence rate independent3 of the dimension of the problem (“optimali-
ty”). However, the influence of other problem parameters may still deteriorate
the method and is not so easy to cure (“robustness”). Jumping coefficients and
oscillatory coefficients (as it may happen for cij ∈ L∞(�)) are two examples
of this kind.

A weak point of traditional iterative methods is the treatment of arising
Schur complements, since its explicit calculation is avoided but neverthe-
less a good preconditioning is required. This is hard to achieve for real life
problems involving difficult problem parameters. The concept of H-matri-
ces allows to compute the Schur complement since the class of H-matrices
provides both efficient storage and efficient arithmetic of the matrix algebra.

Consequently, this article is designed to lay ground to future efficient
and easy to implement algorithms for the solution of elliptic partial differ-
ential equations with extremely general coefficients. The efficient treatment
of the inverse of the stiffness matrix might be used for (a) the direct solu-
tion of FEM systems, (b) for preconditioning another iterative method or
(c) for the calculation of a Schur complement. It is interesting to remark that
the easily available inverse enables also the calculation of matrix functions
(e.g., exp(−tA); cf. [6]) or the solution of matrix equations (e.g., the Riccati
equation; cf. [9]).

Since we emphasise the rather weak conditions cij ∈ L∞(�) on the coef-
ficients and “� bounded Lipschitz” on the domain, we simplify other aspects
in order not the distract the attention of the reader by other complications.
These simplifications are listed below.

1. We consider L to be an differential operator (1.3) consisting only of the
principal part. Lower order terms cause no problem as long as we can
guarantee L−1 to exist. A dominant low order term changes the situation,
since we obtain a singularly perturbed problem.

2. We consider a second order differential operator L as in (1.3).
3. L is assumed to be a scalar operator, systems are not considered.

3 A logarithmic dependence can be tolerated.
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4. L is assumed to be uniformly elliptic. Although the numerical examples
presented in Section 6 do not show a dependence on the ratio sup{λmax(x)/

λmin(x) : x ∈ �} of the eigenvalues of the matrix (cij )
d
i,j=1, the proof

requires its boundedness.
5. The spatial dimension is assumed to be d ≥ 3. This is not such restrictive

since d = 3 is the interesting case. The true reason is that the result quoted
from [12] is formulated only for d ≥ 3, although there is no indication
why it should not hold for d = 1, 2.

6. We consider Dirichlet boundary conditions, hence the Green functions
satisfies zero boundary conditions.

7. As discretisation we require a finite element discretisation with a quasi-
uniform triangulation. For other discretisations the proofs may be more
involved, but there is no practical reason why they should behave worse.
Adaptive meshes are no problem for hierarchical matrices (see [11]).

8. The estimates in Subsection 2.5 are proven for convex domains D2. These
domains D2 will later correspond to cluster sets X in R

d . Although the
clusters X are in general not convex, they are usually constructed in such
a way that X ⊂ Xc and Xc is convex. Examples for Xc are Chebyshev
spheres (cf. [19]) or bounding boxes (cf. [3]). Therefore, there is no need
for a generalisation, although the estimates could be extended to non-con-
vex domains D2.

The structure of the rest of the article is as follows: Section 2 is devoted
to the existence of degenerate approximations to the Green function G corre-
sponding to the underlying boundary. The Green function G allows to define
the solution operator by the integral operator (1.1). Its Galerkin discretisation
with respect to the FE functions from above yields the matrix B. In Sec-
tion 3 we show that B possesses the H-matrix structure. The inverse stiffness
matrix A−1 and B are connected via the mass matrix M which is considered
in Section 4. Again M−1 can be approximated by an H-matrix. Finally, in
Section 5, we represent the inverse A−1 of the FE stiffness matrix by means
of the foregoing quantities. Using results on the algebra of H-matrices, we
obtain the desired H-matrix property of A−1. Section 6 contains results of
numerical tests that confirm the estimates made in this article.

2 Analysis of the green function

2.1 The differential operator

Let L : V → V ′ (V = H 1
0 (�)) be an (scalar) uniformly elliptic operator in

divergence form

Lu = −
d∑

i,j=1

∂j (cij ∂iu)(2.1)
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in a bounded Lipschitz domain � ⊂ R
d , d ≥ 3. The coefficient matrix

C = C(x) = (cij )ij , cij ∈ L∞(�), shall be symmetric with

0 < λmin ≤ λ ≤ λmax(2.2)

for all eigenvalues λ of C(x) and almost all x ∈ �. The ratio κC = λmax/λmin

is an upper bound on almost all spectral condition numbers cond‖·‖2 C(x).
Under these assumptions it is shown in [12] that in the case d ≥ 3, a Green
function G : �×�→ R ∪ {∞} with the following properties exists:

G(·, y) ∈ H 1(� \ Br(y)) ∩W
1,1
0 (�) for all y ∈ � and all r > 0,(2.3a)

a(G(·, y), ϕ) = ϕ(y) for all ϕ ∈ C∞0 (�) and y ∈ �,(2.3b)

where Br(y) is the open ball centred at y with radius r and

a(u, v) =
∫

�

d∑
i,j=1

cij (∂iu)(∂jv) dx(2.4)

(see also [5]). Furthermore, for x, y ∈ � it holds that

|G(x, y)| ≤ c(d, κC)

λmin
|x − y|2−d .(2.5)

Since L is uniformly elliptic, L−1 : V ′ → V exists and

‖L−1‖V←V ′ ≤ Cλ−1
min (λmin is a matter of scaling).

We will make use of the characteristic relation between L−1 and G, which is
equivalent to (2.3b):

(L−1ϕ)(x) =
∫

�

G(x, y)ϕ(y) dy for all ϕ ∈ C∞0 (�).(2.6)

2.2 Approximation by finite dimensional subspaces

In the following lemmata D ⊂ R
d is a domain. All distances and diame-

ters use the Euclidean norm in R
d except the distance of functions which

uses the L2(D)-norm. The constant cappr in (2.7) depends only on the spatial
dimension d.

Lemma 2.1 Let D ⊂ R
d be a convex domain and X a closed subspace of

L2(D). Then for any k ∈ N there is a subspace Vk ⊂ X satisfying dim Vk ≤ k

so that

(2.7)

distL2(D)(u, Vk) ≤ cappr

diam(D)
d
√

k
‖∇u‖L2(D)

for all u ∈ X ∩H 1(D).
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Proof. (a) First we assume k = �d and D ⊂ Q = {x ∈ R
d : ‖x − z‖∞ <

1
2 diam(D)} for some z ∈ R

d . We subdivide the cube Q uniformly into k

subcubes Qi , i = 1, . . . , k, and set Di = D ∩Qi , i = 1, . . . , k. Each of the
sets Di is convex with diam(Di) ≤

d√2
�

diam(D). Let

Wk = {v ∈ L2(D) : v is constant on Di for all i = 1, . . . , k}.
Then dim Wk ≤ k and according to Poincaré’s inequality for u ∈ H 1(D)

(in particular, we use the convex version in [21] with explicitly given con-
stant) it holds that∫

Di

|u− ūi |2dx ≤ π−2 diam2(Di)

∫
Di

|∇u|2dx,

where ūi = vol(Di)
−1

∫
Di

u dx is the mean value of u in Di . Summation
over all i yields

distL2(D)(u, Wk) ≤ ‖u− ū‖L2(D) ≤
d
√

2

π�
diam(D) ‖∇u‖L2(D)

for ū defined by ū|Di
= ūi .

(b) For general k ∈ N, choose � := � d
√

k� ∈ N, i.e., �d ≤ k < (� + 1)d .
Applying Part (a) for k′ := �d , we use the space Wk := Wk′ satisfying
dim Wk = dim Wk′ ≤ k′ ≤ k. Using 1

�
≤ 2

�+1 < 2
d√

k
, we arrive at

distL2(D)(u, Wk) ≤ cappr

diam(D)
d
√

k
‖∇u‖L2(D)

with the constant cappr := 2 d
√

2 cd .
(c) Let P : L2(D)→ X be the L2(D)-orthogonal projection onto X and

Vk = P(Wk). Keeping in mind that P has norm one and u ∈ X, the assertion
follows from ‖u− P ū‖L2(D) = ‖P(u− ū)‖L2(D) ≤ ‖u− ū‖L2(D). ��

In the last proof we have restricted Di to convex domains though
Poincaré’s inequality holds whenever the embedding H 1(Di) ↪→ L2(Di)

is compact (cf. [22]). This is for example true if Di fulfils a uniform cone
condition. However, in this case it is not obvious how the constant depends
on the geometry.

2.3 Space of L-harmonic functions

The Green function G(x, ·) is a special example of an L-harmonic function
in a subdomain D� ⊂ � (provided x /∈ D�) with zero boundary values on
∂�∩D�. The space X in Lemma 2.1 will be substituted by a function space
X(D) ⊂ L2(D) which we define next. While the notation X(D) will be used
for different D, the underlying domain � is fixed.
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Let D be a domain intersecting �: D� := D ∩ � �= ∅. The boundary
∂D� consists of two parts:

�0(D) := D ∩ ∂�, �1(D) := ∂D�\�0(D) = ∂D ∩�.(2.8)

�0 = ∅ holds in the cases of D ⊂ � or D ⊃ �. The former case may happen,
whereas the latter is of no interest for us.

��

��

�

�

If D is not a subset of �, we require that outside of � functions u ∈ X(D)

are extended by zero. The functions u ∈ X(D) are locally in H 1(D) relative
to �1(D) (notation: u ∈ H 1

rl,�(D)) in the following sense:

H 1
rl,�(D) := {u ∈ L2(D) : u|D\� = 0, u ∈ H 1(K)

for all K ⊂ D with dist(K, �1(D)) > 0}.(2.9)

The first condition is empty if D ⊂ �.
The L-harmonicity4 is required in the weak formulation of Lu = 0,

a(u, ϕ) = 0 for all ϕ ∈ C∞0 (D�) (D� = D ∩�)(2.10)

with a(·, ·) from (2.4). The final definition is

X(D) := {u ∈ H 1
rl,�(D) : u satisfies (2.10)}.(2.11)

The Green function G(x, ·) can be extended to D by zero. This extension is
in H 1(D) and hence in X(D) if x ∈ � \D.

Lemma 2.2 The space X(D) is closed in L2(D).

The proof is postponed to the next subsection, since it needs Lemma 2.4.
The closeness of X(D) is necessary in order to use X(D) as X in Lemma
2.1.

4 To be precise, we need L∗-harmonicity, since the Green function G(x, y) is L-har-
monic w.r.t. x but L∗-harmonic w.r.t. y. However, since here L consists only of the principle
part (2.1), L is self-adjoined. But notice that symmetry is not at all essential.
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Remark 2.3 Consider X(D) and X(D′) for two domains D′ ⊂ D intersect-
ing �.

(a) For any u ∈ X(D), the restriction u|D′ belongs to X(D′); hence, in
short notation, X(D)|D′ = X(D′). If dist(D′, �1(D)) > 0, even

X(D)|D′ = X(D′) ∩H 1(D′)

holds (cf. (2.9)).
(b) The relevant parts of D and D′ are D� = D ∩ �, D′� = D′ ∩ � as

well as �0(D) and �0(D
′). D� and D′� are the domains of L-harmonicity,

whereas �0(D) and �0(D
′) describe the location of zero boundary values due

to the zero extension outside. As long as D = D′ and �0 = �′0, differences
in D \ � and D′ \ � are irrelevant, since functions from X(D) and X(D′)
vanish in these parts anyway.

2.4 The Caccioppoli Inequality

The following lemma shows that any function u ∈ X(D) allows to estimate
‖∇u‖L2(K�) for a domain K ⊂ D not touching �1(D) by means of the weaker
norm ‖u‖L2(D�). Note that K may contain parts of �0(D).

Lemma 2.4 Let X(D), �1(D) as in (2.11), (2.8), and K ⊂ D, K� = K∩�

with dist(K, �1(D)) > 0. Further, let κC = λmax/λmin (cf. (2.2)). Then the
so-called Caccioppoli inequality holds:

‖∇u‖L2(K�) ≤
4
√

κC

dist(K, �1(D))
‖u‖L2(D�) for all u ∈ X(D).(2.12)

Proof. The proof follows the lines of [7]. Let η ∈ C1(D) satisfy 0 ≤ η ≤ 1,
η = 1 in K , η = 0 in a neighbourhood of �1(D) and5 |∇η| ≤ 2/δ in
D�, where we set δ = dist(K, �1(D)). Since K ′ := supp(η) ⊂ D satis-
fies dist(K ′, �1(D)) > 0, (2.9) implies u ∈ H 1(K ′). Hence, ϕ := η2u ∈
H 1

0 (D�) may be used as a test function in a(u, ϕ) = 0 due to the dense
embedding of C∞0 (D�) in H 1

0 (D�):

0 =
∫

D�

(∇u)T C(x)∇(η2u)dx

= 2
∫

D�

ηu(∇u)T C(x)(∇η)dx +
∫

D�

η2(∇u)T C(x)(∇u)dx.

From (2.2) it follows that∫
D�

η2|C1/2(x)∇u|2dx =
∣∣∣∣
∫

D�

η2(∇u)T C(x)(∇u)dx

∣∣∣∣
= 2

∣∣∣∣
∫

D�

ηu(∇u)T C(x)(∇η)dx

∣∣∣∣
5 The estimate |∇η| ≤ c/δ can be fulfilled for all c > 1. Hence, in (2.12) the factor 4

may be replaced by 2c. Since it is true for all 2c > 2, it follows also for 2 instead of 4.
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≤ 2
∫

D�

η |u| |C1/2(x)∇η| |C1/2(x)∇u| dx

≤ 4

√
λmax

δ

∫
D�

|u| (η|C1/2(x)∇u|) dx

≤ 4

√
λmax

δ

(∫
D�

η2|C1/2(x)∇u|2dx

)1/2

‖u‖L2(D�),

i.e., ‖η C1/2(x)∇u‖L2(D�) ≤ 4
√

λmax
δ
‖u‖L2(D�). The estimation by

‖∇u‖L2(K�) ≤ ‖η∇u‖L2(D�) ≤ λ
−1/2
min ‖ηC1/2(x)∇u‖L2(D�)

yields the assertion. ��
Remark 2.5 Since u = 0 in D \�, we may write the norms in the inequal-
ity of Lemma 2.4 as ‖∇u‖L2(K) and ‖u‖L2(D) (i.e., K instead of K� and D

instead of D�).

Proof of Lemma 2.2 Let {uk}k∈N ⊂ X(D) converge to u in L2(D). Let
K ⊂ D with dist(K, �1(D)) > 0. According to Remark 2.5, the sequence
{∇uk}k∈N is bounded on K ,

‖∇uk‖L2(K) ≤ c ‖uk‖L2(D) ≤ C.

Due to the Banach-Alaoglu Theorem, a subsequence {uik }k∈N converges
weakly in H 1(K) to û ∈ H 1(K). Hence, for any v ∈ L2(K) we have
(u, v)L2(K) = limk→∞(uik , v)L2(K) = (û, v)L2(K) proving u = û ∈ H 1(K).
Since the functional a(·, ϕ) for ϕ ∈ C∞0 (D�) is in (H 1(K))′, we see by the
same argument that a(u, ϕ) = 0. Finally, uk|D\� = 0 leads to u|D\� = 0.
Hence, u ∈ X(D) is shown. ��

2.5 Main theorem

First we investigate how large the dimension of a finite dimensional subspace
must be to approximate a function from X(D) in a subdomain D2 of D up
to a certain error.

Lemma 2.6 Let D, �1(D), D� and X(D) as before (cf. Lemma 2.4) and
assume that D2 ⊂ D is a convex domain such that

dist(D2, ∂D) ≥ ρ diam(D2) > 0.

Then for any M > 1 there is a subspace W ⊂ X(D2) so that

distL2(D2)(u, W) ≤ 1

M
‖u‖L2(D�) for all u ∈ X(D)(2.13)



10 M. Bebendorf, W. Hackbusch

and

dim W ≤ cd
ρ�log M�d+1 + �log M�, cρ = 4ecappr

√
κC

1+ 2ρ

ρ
.(2.14)

Proof. (a) Consider K(r) := {x ∈ R
d : dist(x, D2) ≤ r} for 0 ≤ r ≤

dist(D2, ∂D). We conclude that K(r) are again convex domains which are
increasing with r: K(r1) ⊂ K(r2) for r1 ≤ r2. The smallest is K(0) = D2,
while K(dist(D2, ∂D)) is the largest one which is still in D. We remark that
dist(K(r1), ∂K(r2)) = r2−r1 for r1 ≤ r2 and diam(K(r)) ≤ diam(D2)+2r .

(b) Consider the sequence r0 > r1 > . . . > ri = 0 with

rj := (1− j/i) dist(D2, ∂D),

where i is chosen later. Using K(r) from Part (a) we set

Dj := K(rj ), Xj := X(Dj) (cf. (2.11))

and notice that D2 = Di ⊂ Di−1 ⊂ . . . ⊂ D0 ⊂ D.
(c) Let j ∈ {1, . . . , i}.Applying Lemma 2.4 (Remark 2.5) with (Dj , Dj−1)

instead of (K, D), we obtain

‖∇v‖L2(Dj ) ≤
4
√

κC

dist(Dj , �1(Dj−1))
‖v‖L2(Dj−1) for all v ∈ Xj−1

(we recall �1(D
j−1) = ∂Dj−1 ∩ � ). Because of dist(Dj , �1(D

j−1)) ≥
dist(Dj , ∂Dj−1) = rj−1 − rj = r0/i (see Part (a)), the resulting estimate is

‖∇v‖L2(Dj ) ≤
4i
√

κC

r0
‖v‖L2(Dj−1) for all v ∈ Xj−1.(2.15)

(d) Apply Lemma 2.1 with Dj instead of D and with k := �(Bi)d�, where
the factor B will be adjusted later. Then this Lemma ensures that there is a
subspace Vj ⊂ Xj satisfying dim Vj ≤ k and

distL2(Dj )(v, Vj ) ≤ cappr

diam(Dj )
d
√

k
‖∇v‖L2(Dj ) for all v ∈ Xj ∩H 1(Dj ).

Using d
√

k ≥ Bi and diam(Dj ) = diam(D2) + 2rj ≤ diam(D2) + 2r0 (see
Part (a)), we arrive at

(2.16)

distL2(Dj )(v, Vj ) ≤ cappr

diam(D2)+ 2r0

Bi
‖∇v‖L2(Dj )

for all v ∈ Xj ∩H 1(Dj ).
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Since any v ∈ Xj−1 also belongs to Xj ∩ H 1(Dj ), the estimates (2.15),
(2.16) together with r0 ≥ ρ diam(D2) may be combined to

(2.17)

distL2(Dj )(v, Vj ) ≤ 1+ 2ρ

ρ

4cappr

√
κC

B
‖v‖L2(Dj−1)

for all v ∈ Xj−1.

In particular, the factor 1+2ρ

ρ

4cappr
√

κC

B
becomes M−1/i for the choice

B := B0M
1/i with B0 := 4cappr

√
κC

1+ 2ρ

ρ
.(2.18)

(e) For any given u =: v0 ∈ X0, (2.17) and (2.18) lead to v0|D1 = u1+v1

with u1 ∈ V1 and

‖v1‖L2(D1) ≤ M−1/i ‖v0‖L2(D0).

Consequently, v1 belongs to X1. Similarly, for all j = 1, . . . , i we are able
to find an approximant uj ∈ Vj so that vj−1|Dj = uj + vj and

‖vj‖L2(Dj ) ≤ M−1/i ‖vj−1‖L2(Dj−1).

Hence, the subspace

W := span{Vj |D2 : j = 1, . . . , i}

using the restrictions of Vj to the smallest domain D2 = Di contains uj |D2 ∈
Vj |D2 ⊂ W . Therefore, v0 = vi +

∑i
j=1 uj leads to

distL2(D2)(v0, W) ≤ ‖vi‖L2(D2) ≤
(
M−1/i

)i ‖v0‖L2(D0) ≤ M−1‖u‖L2(D�),

where the last inequality is due to D0 ⊂ D and u|D\� = 0.
(f) The dimension of W is bounded by

i∑
j=1

dim Vj = i�(Bi)d� ≤ i + Bdid+1.

The choice i := �log M� yields

dim W ≤ �log M� + Bd
0 ed�log M�d+1

because of B = B0M
1/i ≤ B0e. Together with cρ = B0e, we obtain the final

result. ��
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Remark 2.7 (a) Setting M = exp(m), the dimension of W is bounded by
cd
ρ�m�d+1 + �m� ∼ cd

ρm
d+1. On the other hand, if a dimension K = dim W

is given, the possible improvement factor 1
M
= exp(−m) is described by

m � (cρK)1/(d+1)/cρ .
(b) The factor 1+2ρ

ρ
in (2.14) shows that ρ should be of order O(1), e.g.,

dist(D2, ∂D) ≥ diam(D2) is a reasonable choice.

Next we consider the Green functions G(x, ·) with x ∈ D1 ⊂ �, which
are L-harmonic in � \D1. Note that its approximant Gk(x, ·) from the fol-
lowing theorem is of the desired form (1.2).

Theorem 2.8 Let D1, D2 ⊂ � be two domains such that D2 is convex and

dist(D′1, D
′
2) ≥ ρ diam(D′2) > 0. when D′1 := D1 ∩�

and D′2 := D2 ∩�

Then for any ε ∈ (0, 1) there is a separable approximation

Gk(x, y) =
k∑

i=1

ui(x)vi(y) with k ≤ kε = cd
ρ/2�log

1

ε
�d+1 + �log

1

ε
�,

where cρ is defined in (2.14), so that

‖G(x, ·)−Gk(x, ·)‖L2(D′2) ≤ ε‖G(x, ·)‖L2(D̂2)
for all x ∈ D′1,(2.19)

where D̂2 := {y ∈ � : dist(y, D′2) ≤ ρ

2 diam(D′2)}.
Proof. Let D = {y ∈ R

d : dist(y, D′2) ≤ ρ

2 diam(D′2)}. Note that D̂2 =
D ∩ � and that because of dist(D̂2, D

′
1) ≥ dist(D, D′1) = dist(D2, D

′
1) −

ρ

2 diam(D′2) ≥ ρ

2 diam(D′2) > 0, the right-hand side ‖G(x, ·)‖L2(D̂2)
does

not contain the singularity of G (cf. (2.5)).
Since dist(D′2, ∂D) = ρ

2 diam(D′2), we are able to apply Lemma 2.6 with
M = ε−1 and ρ replaced by ρ/2. Let {v1, . . . , vk} be a basis of the subspace
W ⊂ X(D′2) with k = dim W ≤ cd

ρ/2�log 1
ε
�d+1 + �log 1

ε
� according to

Lemma 2.6.
For any x ∈ D′1, the function gx := G(x, ·) is in X(D). By means of

(2.13), gx = ĝx + rx holds with ĝx ∈ W and ‖rx‖L2(D′2) ≤ ε‖gx‖L2(D̂2)
.

Expressing ĝx by means of the basis, we obtain

ĝx =
k∑

i=1

ui(x)vi

with coefficients ui(x) depending on the index x. Since x varies in D′1, the
ui are functions defined on D′1. The function Gk(x, y) := ∑k

i=1 ui(x)vi(y)

satisfies estimate (2.19). ��
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Remark 2.9 Without loss of generality, we may choose {v1, . . . , vk} as an
orthogonal basis of W . Then the coefficients ui(x) in the latter expansion
equal (G(x, ·), vi)L2(D2∩�) showing that the ui’s satisfy Lui = vi with ho-
mogeneous Dirichlet boundary conditions. In particular, ui is L-harmonic in
� \D2. Note that the ui’s do not depend on D1.

For later use, we add a trivial remark.

Remark 2.10 Assume (2.19) and E ⊂ D′1. Then ‖G − Gk‖L2(E×D′2) ≤
ε‖G‖L2(E×D̂2)

.

Theorem 2.8 can be easily adjusted to fundamental solutions S,

LxS(x, y) = δ(x − y) for all x, y ∈ R
d,

which play a central role for example in boundary element methods (BEM).
The following corollary guarantees that we are able to treat BEM matrices
by H-matrices.

Corollary 2.11 Assume that a fundamental solutionS exists forL. LetD1, D2

⊂ R
d be two domains with D2 being convex and

dist(D1, D2) ≥ ρ diam(D2) > 0.

Then for ε > 0 there is

Sk(x, y) =
k∑

i=1

ui(x)vi(y) with k ≤ kε = cd
ρ/2�log

1

ε
�d+1 + �log

1

ε
�,

where cρ is defined in (2.14), so that

‖S(x, ·)− Sk(x, ·)‖L2(D2) ≤ ε‖S(x, ·)‖L2(D̂2)
for all x ∈ D1,

where D̂2 = {x ∈ R
d : dist(x, D2) ≤ 1

2 dist(D1, D2)}.

3 The discrete Green function integral operator

3.1 The finite element discretisation

V is the function space introduced in Section 2.1. In the (conforming) finite
element discretisation, V is approximated by Vh ⊂ V. Let n = dim Vh be its
dimension and {ϕi}i∈I a basis, where I = {1, . . . , n} is used as index set. The
notation for the support of the finite element basis function is generalised to
subsets τ ⊂ I as follows:

Xi := supp ϕi for i ∈ I, Xτ :=
⋃

i∈τ Xi for τ ⊂ I.(3.1)
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In order to avoid technical complications, we consider a quasi-uniform
and shape-regular triangulation. Hence, the step size h := maxi∈I diam(Xi)

fulfils

vol(Xi) ≥ cvh
d.(3.2)

The supports Xi may overlap. In accordance with the standard finite ele-
ment discretisation we require that each triangle belongs to the support of a
bounded number of basis functions, i.e., there is a constant cM > 0 so that

cM vol(Xτ ) ≥
∑
i∈τ

vol(Xi).(3.3)

We use the notation J for the natural bijection J : R
n → Vh defined

by Jx =∑
i∈I xiϕi . For quasi-uniform and shape-regular triangulations it is

known that there are constants 0 < cJ,1 ≤ cJ,2 (independent of h and n) such
that

cJ,1‖x‖h ≤ ‖Jx‖L2(�) ≤ cJ,2‖x‖h for all x ∈ R
n,(3.4)

where ‖x‖h =
√

hd
∑

i∈I x2
i is the (naturally scaled) Euclidean norm

(cf. [14,Theorem 8.8.1]). Correspondingly, we use the scalar product 〈x, y〉h =
hd

∑
i∈I xiyi .

Since J is also a function from R
n into V , the adjoint J ∗ ∈ L(V ′, R

n) is
defined. We define the following three n× n matrices,

A = J ∗LJ, B = J ∗L−1J, and M = J ∗J.

A is the stiffness matrix, B the Galerkin discretisation of the inverse of L,

and M the mass matrix. The matrices A and M are sparse, while B as well
as A−1 and M−1 are dense.

3.2 Admissible partitions and H-matrices

In the following, τ and σ denote subsets of the index set I . The set Xτ ⊂ �

has already been defined in (3.1). A block of an n×n matrix is characterised
by the pair product τ ×σ (τ contains the row indices, σ the column indices).
P is a partition of I × I , if it contains elements of the form τ ×σ (τ, σ ⊂ I )
such that (3.5a) holds6:

I × I =
⋃

τ×σ∈P τ × σ (disjoint union),(3.5a)
(3.5b)

dist(Xτ , Xσ ) ≥ ρ max{diam(Xτ ), diam(Xσ )} > 0

or min{#τ, #σ } = 1.

If, in addition, (3.5b) is satisfied, P is called7 an admissible partition of I×I .
6 In practice, min{#τ, #σ } = 1 is replaced by min{#τ, #σ } ≤ cmin with an appropriate

cmin > 1.
7 Either the factor ρ is fixed or we use the more precise notation “ρ-admissible partition”.
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The desirable properties of the hierarchical matrices are based on the fact
that the “clusters” τ, σ appearing in P are hierarchically generated. In par-
ticular, this allows the cheap computation of the minimal admissible partition
(with O(n log n) cost, see [1], [9], [17], [18]).

The hierarchical structure is based on a cluster tree T (I) which may be
assumed to be a binary tree: I is the root and each τ ∈ T (I) is a subset of I

which either contains only one index (#τ = 1) or is the disjoint union of its
two sons τ ′, τ ′′ ∈ T (I). Let

T�(I ) := {τ ∈ T (I) : the path from I to τ has length �},

e.g., I is the only element of T0(I ). The maximal level L with TL(I) �= ∅
is of the size O(log n). The blocks b = τ × σ are constructed such that
both τ and σ belong to the same level. Therefore, P is the union of the sets
P� = {b = τ × σ : τ, σ ∈ T�(I )}, 0 ≤ � ≤ L.

The hierarchical structure does not enter the proofs given in this paper,
but for instance the following results makes use of it.

Lemma 3.1 Let P be a partition as described above with L = O(log n).
Then there is a constant Csp such that for any matrix M ∈ R

n×n the following
inequality holds between the global and the blockwise spectral norms:

(3.6)

‖M‖2 ≤ Csp

L∑
�=0

max
b∈P�

‖M|b‖2,

where M|b = (Mij )i∈τ, j∈σ for b = τ × σ.

Lemma 3.2 The exact product8 of two matrices M1 ∈ H(P, k1) and M2 ∈
H(P, k2) is in H(P, k) for all k ≥ k3 = c L max{k1, k2} with a constant c

and L as in the previous lemma.

The proofs can be found in [9] and the forthcoming paper [10].

Remark 3.3 In the practical determination of an (minimal) admissible par-
tition P , one uses suitable supersets Yτ ⊃ Xτ (e.g., Chebyshev spheres
or bounding boxes) which are convex and satisfy dist(Yτ , Yσ ) ≥ ρ max
{diam(Yτ ), diam(Yσ )}> 0 if min{#τ, #σ }> 1. Note that this inequality im-
plies (3.5b).

8 In the usual H-matrix arithmetic, the exact product is replaced by a truncation of the
true product (in H(P, k3)) to an approximation in H(P, k), where k is of the size of k1

and k2.
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Having fixed the partition P and a number k ∈ N, we define the set of
hierarchical matrices (H-matrices of blockwise rank at most k corresponding
to the partition P ) by

H(P, k) := {M ∈ R
n×n : rank (M|b) ≤ k for all b = τ × σ ∈ P }.

In [1], [9], [17], [18] it is shown that operations like matrix-times-vector, ma-
trix-plus-matrix, matrix-times-matrix, matrix-inversion within H(P, k) cost
O(nk logα n) with α = 1 (first two operations) or α = 2 (last two operations).
Also the storage amounts to O(nk log n).

The next theorem shows that the Galerkin discretisation B of L−1 can be
well approximated by H(P, k)-matrices.

3.3 H(P, k)-approximation to B

Theorem 3.4 Assume (3.5b) and let Xσ be convex for all σ ∈ T (I). Let P

be chosen such that Lemma 3.1 can be applied. For any ε ∈ (0, 1), let kε ∈ N

(kε ∼ O(logd+1( 1
ε
))) be the dimension bound from Theorem 2.8. Then for

k ≥ kε there is BH ∈ H(P, k) such that the spectral norm of the difference
is bounded by

‖B − BH‖2 ≤ ε
c(κC, ρ, diam(�))

λmin
L,(3.7)

where c(κC, ρ, �) is a function depending on κC = λmax/λmin, ρ from (3.5b)
and diam(�). L = O(log n) is the maximal level from Lemma 3.1.

Proof. (a) Let b = τ × σ ∈ P with min{#τ, #σ } > 1. Hence, (3.5b) holds.
Apply Theorem 2.8 with D1 = Xτ , D2 = Xσ . Consequently,

D̂2 = X̂σ := {x ∈ � : dist(x, Xσ ) ≤ ρ

2
diam(Xσ )}

and according to Remark 2.10 there is G̃b(x, y) = ∑kε

i=1 ub
i (x)vb

i (y) such
that

‖G− G̃b‖L2(Xτ×Xσ ) ≤ ε‖G‖L2(Xτ×X̂σ ).

Let the functions ub
i and vb

i of G̃b be extended to � by zero. We define the
integral operator

Kbϕ =
∫

�

G̃b(·, y)ϕ(y) dy for supp ϕ ⊂ �

and set BH|b = (J ∗KbJ )|b for all blocks b. The rank of BH|b is bound-
ed by kε since each term ub

i (x)vb
i (y) in G̃b produces one rank-1 matrix in

(J ∗KbJ )|b.
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If min{#τ, #σ } = 1, we use the exact Green function, i.e., G̃b := G.
Since the block BH|b has rank 1 at most, rank(BH|b) ≤ k holds again.

(b) Consider a block b = τ × σ ∈ P with min{#τ, #σ } > 1. Choose any
vectors x = (xj )j∈σ , y = (yi)i∈τ and set u = Jx =∑

j∈σ xjϕj and v = Jy.
To see that BH|b approximates the block B|b, remember the representation
(2.6) of L−1 and use (3.4). The estimate

|〈(B|b − BH|b)y, x〉h| = |〈J ∗(L−1 −Kb)Jy, x〉h| = |((L−1 −Kb)v, u)L2 |
≤ ‖G− G̃b‖L2(Xτ×Xσ ) ‖u‖L2(Xσ ) ‖v‖L2(Xτ )

≤ ε ‖G‖L2(Xτ×X̂σ ) ‖u‖L2(�) ‖v‖L2(�)

≤ ε c2
J,2 ‖G‖L2(Xτ×X̂σ ) ‖x‖h ‖y‖h

proves ‖B|b − BH|b‖2 ≤ ε c2
J,2 ‖G‖L2(Xτ×X̂σ ) for the spectral norm.

Although G(·, y) ∈ W 1,1(�) for all y ∈ �, G(·, ·) does not belong to
L2(�×�) as soon as d ≥ 4. From (2.5) it can be seen that ‖G‖L2(Xτ×X̂σ ) may

increase when the sets Xτ , X̂σ are approaching each other. The construction
of X̂τ ensures

δ := dist(Xτ , X̂σ ) = 1

2
dist(Xτ , Xσ ) ≥ ρ

2
diam(Xτ )

as well as δ ≥ ρ

2 diam(Xσ ). Hence (2.5) implies

‖G‖L2(Xτ×X̂σ ) ≤
c(d, κC)

λmin
δ2−d

√
vol(Xτ ) vol(X̂σ ).

Using vol(X̂σ ) ≤ ωd(
1
2 diam(X̂σ ))d ≤ ωd(1 + 1/ρ)dδd and vol(Xτ ) ≤

ωd(δ/ρ)d with ωd = vol(B1(0)), we see that

‖G‖L2(Xτ×X̂σ ) ≤ Cρ

c(d, κC)

λmin
δ2 with Cρ := ωd

(ρ + 1)d/2

ρd
.

The rough estimate δ ≤ diam(�) = O(1) together with Lemma 3.1 yields
(3.7). ��
Corollary 3.5 Assume that each (possibly non-convex) set Xσ has a con-
vex superset Yσ satisfying the admissibility condition (cf. Remark 3.3). Then
Theorem 3.4 remains true for Xτ , Xσ .

Proof. Apply Theorem 3.4 to Yτ and Yσ . ��
Remark 3.6 (a) The factor L = O(log n) in (3.7) can be avoided. Under the
following two reasonable assumptions that (i) τ ∈ T (I) is always subdi-
vided into its two sons τ ′, τ ′′ ∈ T (I) so that the diameters are comparable,
i.e. for the diameter of a cluster Xτ ∈ T�(I ) it holds that diam(Xτ ) ≤ cq−�
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(q < 1) and (ii) the partition P is generated so that the admissibility con-
dition is almost sharp for each admissible block b = τ × σ ∈ P , i.e., in
addition to (3.5b) there is a constant c̃ > 1, which is independent of b, so
that dist(Xτ , Xσ ) ≤ c̃ρ min{diam(Xτ ), diam(Xσ )}. In this case the factor δ2

decreases with respect to the level � as δ2 ≤ Cq−2�. Thus, the sum (3.6) is
bounded independently of n.

(b) Replacing ε by ελmin/(c(κC, ρ, diam(�))L), Theorem 3.4 yields
‖B − BH‖2 ≤ ε with kε = O (

logd+1(L
ε
)
)

and thanks to Part (a) even
O (

logd+1( 1
ε
)
)
.

4 Approximation of the inverse mass matrix by an H-matrix

The inverse of the mass matrix M will arise when the inverse of the stiffness
matrix is approximated by an H-matrix. Therefore H-matrix properties of
M−1 are to be investigated.

For the inverse of banded matrices an exponential decay of the entries has
been observed (cf. [4]). Here, σ(M) denotes the spectrum of M .

Lemma 4.1 Let M = (Mij )i,j∈I be a symmetric positive definite matrix
with σ(M) ⊂ [a, b], a > 0, and denote its matrix graph by GM (cf. [15,
Subsection 6.2]). Let i, j ∈ I and δij be the minimal length of a path9 in GM

from i to j . Then

|(M−1)ij | ≤ ĉ qδij with ĉ = (1+√r)2

2ar
, q =

√
r − 1√
r + 1

, r = b

a
.(4.1)

Proof. For any polynomial p ∈ �k with k < δij we observe p(M)ij = 0.
Furthermore, the spectral norm and the spectral radius coincide for normal
matrices:

‖M−1 − p(M)‖2 = ρ(M−1 − p(M)) = max
x∈σ(M)

|x−1 − p(x)|.

A result due to Chebyshev says that �k contains a polynomial pk (cf. [20, p.
33]) so that

‖x−1 − pk(x)‖∞,[a,b] ≤ ĉ qk+1

with q, ĉ as in (4.1). Set k = δij − 1. The previous arguments show the final
result:

|(M−1)ij | = |(M−1)ij − pk(M)ij | ≤ ‖M−1 − pk(M)‖2 ≤ ĉ qk+1 = ĉ qδij .

��
9 If no path from i to j exists (case of a reducible matrix M), we formally set δij = ∞,

because (M−1)ij = 0.
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The mass matrix is by definition symmetric positive definite with
a = ‖M−1‖−1

2 and b = ‖M‖2. (i, j) ∈ GM implies that Xi ∩ Xj contains
an interior point. Hence, if k is the smallest integer so that dist(Xi, Xj ) ≤
(k − 1)h, the length of a path in GM from i to j must be at least k, i.e.,
δij ≥ 1+ dij /h, where dij := dist(Xi, Xj ).

Lemma 4.2 Let 0 < cJ,1 ≤ cJ,2 be the constants from (3.4). Then

|(M−1)ij | ≤ C ‖M−1‖2 qdij /h for all i, j ∈ I,

where C = r−1
2r

and q =
√

r−1√
r+1
∈ (0, 1) with r = (cJ,2/cJ,1)

2 are independent
of the matrix size n.

Proof. Since M = J ∗J , the spectrum of M is contained in [a, b] with
a = c2

J,1 and b = c2
J,2. Hence, the condition number of M is bounded in-

dependently of the matrix size n by r = (cJ,2/cJ,1)
2. Applying the previous

lemma and using δij ≥ 1+ dij /h, we end up with the assertion. ��
Theorem 4.3 Assume (3.2), (3.4), (3.5b), and choose P such that Lemma 3.1
holds. For any ε > 0, there is NH ∈ H(P, kε) satisfying ‖M−1 − NH‖2 ≤
ε‖M−1‖2 with kε = O(logd(L

ε
)) (L = O(log n) from Lemma 3.1).

Proof. (a) We use the following explicit definition of NH = NH(k) depend-
ing on k ∈ N. Set NH|b := M−1|b for b = τ × σ ∈ P if #τ#σ ≤ k2;
otherwise NH|b := 0. Since rank(NH|b) ≤ min{#τ, #σ } ≤ k for all b ∈ P ,
NH belongs to H(P, k). Let E = M−1 −NH(k) be the error matrix. Due to
Lemma 3.1, it remains to determine the spectral norms of E|b = M−1|b in
the case of #τ#σ > k2.

(b) For #τ#σ > k2 and i ∈ τ , j ∈ σ , we want to estimate Eij =
(M−1)ij . Condition (3.5b) implies dij = dist(Xi, Xj ) ≥ dist(Xτ , Xσ ) ≥
ρ max{diam(Xτ ), diam(Xσ )}.We notice that (diam(Xτ ))

d ≥ vol(Xτ )2d/ωd ,
and from (3.3) and (3.2) we obtain that

vol(Xτ ) ≥ c−1
M

∑
i∈τ

vol(Xi) ≥ cv

cM

hd#τ.

Altogether, dij ≥ C ′h d
√

#τ follows with C ′ expressed by ωd , ρ, cM , and cv.
Similarly,dij ≥ C ′h d

√
#σ holds.The combination yieldsdij /h ≥ C ′ 2d

√
#τ#σ .

This proves

|Eij | ≤ C ‖M−1‖2 qC′ 2d√#τ#σ .

(c) A trivial estimate of the spectral norm yields

‖E|b‖2 ≤
√

#τ#σ max
i∈τ, j∈σ

|Eij | ≤ C
√

#τ#σ ‖M−1‖2 qC′ 2d√#τ#σ .
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We simplify the right-hand side: For a suitable C ′′ > C ′, the estimate
C� qC′ d√

� ≤ qC′′ d√
� holds for all � ≥ kmin so that

‖E|b‖2 ≤ ‖M−1‖2 qC′′ 2d√#τ#σ < ‖M−1‖2 qC′′ d√
k.

Lemma 3.1 implies ‖E‖2 ≤ LC∗ ‖M−1‖2 qC′′ d√
k with C∗ = CCsp. Choose

k = kε ≥ kmin such that LC∗ qC′′ d√
k ≤ ε, i.e., kε = max{kmin,O(logd(LC∗

ε
)}

= O(logd(L
ε
)). ��

We summarise that the simple construction used in the proof yields an
H(P, k)-approximation with k = O(logd(L

ε
))which is asymptotically small-

er than the rank k from the B-approximation in Theorem 3.4.

Remark 4.4 The factor L = O(log n) in kε = O(logd(L
ε
)) can be avoided

by arguments as in Remark 3.6a.

5 Approximation of the inverse FE-stiffness matrix by an H-matrix

5.1 Projections and smoothness assumptions

The following two projectors will be necessary in the FE error analysis. The
L2(�)-orthogonal projection is expressed by

Qh := JM−1J ∗ : L2(�)→ Vh,

i.e., (Qhu, vh)L2 = (u, vh)L2 for all u ∈ V and vh ∈ Vh. The related error is
described by

e
Q
h (u) := ‖u−Qhu‖L2(�).(5.1)

On the other hand, the finite element approximation is connected with the
Ritz projection Ph = JA−1J ∗L : V → Vh. If u ∈ V is the solution of the
variational problem a(u, v) = f (v) (cf. (2.4)), uh = Phu is its finite element
solution. The FE error is

eP
h (u) := ‖u− Phu‖L2(�).

Since the L2(�)-orthogonal projection is the optimal one, i.e., e
Q
h (u) ≤

eP
h (u), we only need estimates of eP

h .
The weakest form of the finite element convergence is described by

eP
h (u) ≤ εh‖f ‖L2(�) for all u = L−1f, f ∈ L2(�),(5.2)

where εh→ 0 as h→ 0.
For the sake of completeness, we give a proof of the last statement:

Since I − Ph is an orthogonal projection with respect to the inner product
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(u, v)E := a(u, v), ‖u−Phu‖E ≤ ‖u‖E holds. The inequalities ‖ · ‖L2(�) ≤
C ′‖ · ‖E ≤ C ′′‖ · ‖H 1(�) prove (a) eP

h (u) ≤ C‖u‖H 1(�). Furthermore, for
any fixed u ∈ H 1(�), there holds (b) limh→0 eP

h (u) = 0 (cf. [14, Theorem
8.2.2]). Let H ∗ := {u ∈ H 1(�) : u = L−1f for some f ∈ L2(�) with
‖f ‖L2(�) ≤ 1}. Since the embedding L2(�) ↪→ H−1(�) is compact (cf.
[14, Theorems 6.4.8 and 6.4.10]) and L−1 : H−1(�)→ H 1(�) is bounded,
the closure of the set H ∗ ⊂ H 1(�) is compact. We claim (c) eP

h (u) ≤ εh for
all u ∈ H ∗ with εh → 0 as h → 0. For an indirect proof, we assume that
there is a sequence {uk}k∈N ⊂ H ∗ such that eP

h (uk) ≥ η > 0 for all k ∈ N.
By compactness of H̄ ∗, there is a subsequence ukj

→ u∗ ∈ H 1(�). Note that
eP
h (ukj

) ≤ eP
h (ukj

−u∗)+eP
h (u∗). Due to result (a), eP

h (ukj
−u∗) ≤ C‖ukj

−
u∗‖H 1(�) → 0, while result (b) yields eP

h (u∗) → 0. Together, eP
h (ukj

) →
0 contradicts the assumption (c). Hence, εh := supu∈H ∗ e

P
h (u) → 0 is

proved. ��
The standard error estimate assumes εh = cEhβ with some β > 0:

eP
h (u) ≤ cEhβ‖f ‖L2(�) for all u = L−1f, f ∈ L2(�).(5.3)

Usually, such an estimate is proved in two steps. By regularity assumptions,
u ∈ Hα(�) for some α ∈ (1, 2] is established for u = L−1f , f ∈ L2(�),
so that ‖u‖Hα(�) ≤ C‖f ‖L2(�). Then by approximation properties of Vh,
‖u − Phu‖H 1(�) ≤ C ′hα−1‖u‖Hα(�) is derived and can be generalised to
‖u−Phu‖H 2−α(�) ≤ C ′′h2(α−1)‖u‖Hα(�). Using ‖ · ‖L2(�) ≤ C ′′′‖ · ‖H 2−α(�),
we arrive at (5.3).

Remark 5.1 (a) Due to our quite weak assumption cij ∈ L∞(�) upon the
smoothness of the coefficients, one cannot ensure (5.3) for any β > 0 without
further assumptions, while at best β = 2 holds.

(b) The approximation error ε which we should choose for ‖A−1−CH‖2

when we approximate A−1 by an H-matrix CH, is to be adapted to the finite
element error, i.e., u− uh = u−Phu and uh− ũh ( ũh = CHfh, fh = J ∗f )
should be of similar size.

(c)Accordingly, we take (5.2) as an assumption without specifying the be-
haviour with respect to h→ 0 and use εh as desirable error for ‖A−1−CH‖2.

5.2 Approximation to A−1

First we show that M−1BM−1 is an approximation to the inverse A−1 of the
finite element stiffness matrix.

Lemma 5.2 Let cJ,2 and εh be the quantities in (3.4) and (5.2). Then

‖MA−1M − B‖2 ≤ 2 c2
J,2 εh.
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Proof. Let x, y ∈ R
n and fh = Jx, vh = Jy ∈ Vh. Then, using B =

J ∗L−1J and the projections from above, we have

〈(MA−1M − B)x, y〉h = ((MA−1M − J ∗L−1J )M−1J ∗fh, M
−1J ∗vh)L2(�)

= (
(JA−1J ∗ − JM−1J ∗L−1JM−1J ∗)fh, vh

)
L2(�)

= (PhL
−1fh −QhL

−1Qhfh, vh)L2(�)

= (PhL
−1fh −QhL

−1fh, vh)L2(�)

= ([L−1fh − PhL
−1fh]

− [L−1fh −QhL
−1fh], vh)L2(�)

≤
(
eP
h (L−1fh)+ e

Q
h (L−1fh)

)
‖vh‖L2(�)

≤ 2 eP
h (L−1fh)‖vh‖L2(�)

≤ 2 εh‖fh‖L2(�)‖vh‖L2(�) ≤ 2 c2
J,2 εh‖x‖h‖y‖h,

which proves ‖MA−1M − B‖2 ≤ 2 c2
J,2 εh. ��

Corollary 5.3 ‖A−1 −M−1BM−1‖2 ≤ 2 c−4
J,1 c2

J,2 εh.

Proof. Use A−1 −M−1BM−1 = M−1(MA−1M −B)M−1 and ‖M−1‖2 ≤
c−2
J,1. ��

5.3 H-matrix approximation to M−1BM−1

Above we have shown that B and M−1 can be approximated by the
H-matrices BH and NH, respectively. Therefore, the natural approach
is to use

CH := NHBHNH

as approximant ofA−1. Due to Lemma 3.2, the exact productCH=NHBHNH
belongs to H(P, k) provided that k ≥ kC := c L max{c L max{kB, kN }, kN }
and NH ∈ H(P, kN), BH ∈ H(P, kB). Since L ≥ 1 and, without loss of
generality, c ≥ 1, the latter expression becomes kC = c2L2 max{kB, kN }.
Assuming kB ≥ kN , we arrive at

kC = c2L2kB.

The estimation of the spectral norm of

M−1BM−1 −NHBHNH = (M−1 −NH)BM−1 +NH(B − BH)M−1

+ NHBH(M−1 −NH)
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by

‖M−1−NH‖2(‖B‖2‖M−1‖2+‖NH‖2‖BH‖2)+‖NH‖2‖M−1‖2‖B − BH‖2

is obvious. Let εN := ‖M−1−NH‖2, εB := ‖B−BH‖2. Since εN ≤ ‖M−1‖2,
εB ≤ ‖B‖2 and ‖B‖2, ‖M−1‖2 = O(1), we obtain

‖M−1BM−1 −NHBHNH‖2 ≤ CII (εN + εB).(5.4)

5.4 Final result

The combination of Corollary 5.3 and (5.4) yields

‖A−1 −NHBHNH‖2 ≤ CI εh + CII (εN + εB),

where CI = 2 c−4
J,1 c2

J,2. For simplicity we set kB = kN =: k and choose

k = max{O(logd+1(
LC1

δ
)),O(logd(

L‖M−1‖2

δ
))}

with C1 = c(κC,ρ,diam(�))

λmin
and δ = CI θεh/(2CII ), where the constants in

the O(·) expressions are detailed in Theorem 3.4 and Theorem 4.3, while
θ ∈ (0, 1). Then,

‖A−1 −NHBHNH‖2 ≤ CI (1+ θ)εh(5.5)

shows that the already existing finite element error CI εh is only slightly
increased. The corresponding ranks kB = kN behave asymptotically like

kB = kN = O(logd+1(
L

εh

)).

The resulting rank for CH = NHBHNH is bounded by kC = c2L2kB . Thus,
CH approximates A−1 as described in (5.5) and belongs to H(P, k) for all
k ≥ c2L2kB . This result is summarised in Part (a) of

Theorem 5.4 (a) Let εh > 0 be the finite element error from (5.2). L =
O(log n) is the depth of the cluster tree (see Lemma 3.1). Then there are con-
stants C ′ and C ′′ defining kC := C ′L2 logd+1(LC′′

εh
) and there is an H-matrix

CH ∈ H(P, kC) such that

‖A−1 − CH‖2 ≤ CI (1+ θ)εh.(5.6)

(b) If εh = O(hβ) according to (5.3), kC = O(logd+3(n)) holds.

Proof. As h−1 = O(n1/d), the asymptotic behaviour of log(LC′′
εh

) = log(L)

+ const + log(nβ/d) is O(log n). This proves Part (b). ��
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Since λmin in (2.2) is of size O(1) (without loss of generality, we may
scale the problem so that λmin = 1), also ‖A−1‖2 = O(1) holds. Hence, the
absolute error (5.6) may be changed into a relative one: ‖A−1 − CH‖2 ≤
C∗I ‖A−1‖2(1+ θ)εh with another constant C∗I .

6 Computational experiments

In the following section numerical experiments will demonstrate that the pre-
ceding results are true. At this moment we are not interested in fast numerical
schemes to approximate the blocks. Instead, this section will show only the
existence of low-rank approximants. Therefore CPU times are omitted.

We compare the Laplacian with operators of type (2.1). For simplicity,
the following tests are performed for operators in two variables in the unit
square � = [0, 1]2. The Figures 1 and 2 show the coefficient C(x) ∈ R

2×2

for x ∈ �, or more precisely the spectral norm of C(x) for x ∈ �. For
the first example � is decomposed into �1 and �2 = � \ �1, where �1 is
the wall-like domain in Figure 1. Let La be the operator in (2.1) with the
coefficient Ca(x) = c(x)I , where

c(x) =
{

a, x ∈ �1

1, x ∈ �2
.

The following table shows the relative accuracy measured for different prob-
lem sizes n in Frobenius norm when approximating the inverse of the respec-
tive FEM matrix by an H-matrix. For each admissible block the best rank-k
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Fig. 1. Coefficients of the first example
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approximant is calculated using the singular value decomposition. In the first
line of each problem size the amount of storage needed for the respective
H-matrix approximant is given.

n = 2304 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Storage (MB) 10.2 18.9 27.6 36.2
� 4.1e−03 5.9e−04 1.1e−05 1.2e−06
L103 6.9e−03 9.8e−04 1.6e−05 2.1e−06
L106 6.9e−03 9.8e−04 1.6e−05 1.7e−06

n = 6400

Storage (MB) 40.0 75.9 111.6 147.5 183.1 218.8
� 3.5e−03 6.5e−04 8.8e−06 2.1e−06 4.2e−07 8.3e−09
L103 5.5e−03 1.0e−03 1.2e−05 3.2e−06 5.5e−08 1.3e−08
L106 5.6e−03 1.0e−03 1.2e−05 3.1e−07 4.7e−08 9.1e−09

n = 14400

Storage (MB) 123.4 235.7 349.6 462.0 575.9 688.2
� 3.2e−03 5.9e−04 8.9e−06 2.3e−06 5.5e−08 1.5e−08
L103 4.9e−03 8.8e−04 1.2e−05 3.3e−06 7.3e−08 1.9e−08
L106 5.0e−03 8.8e−04 1.0e−05 3.2e−06 6.7e−08 9.1e−09

The values for L103 and L106 differ only insignificantly from those for
the Laplacian. Notice that L103 and L106 behave almost the same though the
ratios κC = λmax/λmin (see Section 2.1) differ by a factor of 1000.

While in the first example the aim was to demonstrate that jumps of ar-
bitrary size do not affect the quality of the H-matrix approximation, the
second example is designed to show that these jumps may happen on more
than few interior boundaries. Again, we decompose � into two domains �1

and �2 = � \�1, where �2 is the lower region in Figure 2.

By La we denote an operator for which Ca(x) is the identity in �2 and
a quadruple of random numbers from the interval [0, a] in the remaining
part �1, so that Ca(x) is always positive definite. The coefficient matrix is
chosen to have a two level random structure: the first scale is

√
h and the sec-

ond h. The corresponding numerical results are assembled in the following
table:
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n = 2304 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

� 4.1e−03 5.9e−04 1.1e−05 1.2e−06
L103 4.4e−03 3.7e−04 1.1e−05 4.4e−07
L106 4.4e−03 3.4e−04 1.0e−05 2.2e−07

n = 6400

� 3.5e−03 6.5e−04 8.8e−06 2.1e−06 4.2e−07 8.3e−09
L103 4.2e−03 5.3e−04 7.5e−06 1.1e−05 2.3e−08 1.7e−09
L106 4.2e−03 5.2e−04 6.8e−06 8.9e−07 1.7e−08 5.4e−10

n = 14400

� 3.2e−03 5.9e−04 8.9e−06 2.3e−06 5.5e−08 1.5e−08
L103 4.0e−03 6.0e−04 1.1e−05 2.1e−06 6.0e−08 1.2e−08
L106 4.0e−03 5.8e−04 1.0e−05 1.9e−06 5.3e−08 9.1e−09

Although in Theorem 5.4 we could only prove a relative error of order εh

the numerical results show that any prescribed accuracy can be reached by
increasing the rank k of the approximation. Moreover, the accuracy does not
seem to depend on the upper bound κC of the condition numbers of Ca(x).

7 Additional comments

There are various steps in the proofs where the constants can be improved.
In (3.5b) we have formulated the admissibility condition by the maxi-

mal diameters: dist(Xτ , Xσ ) ≥ ρ max{diam(Xτ ), diam(Xσ )}. An interest-
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ing weaker form is obtained by changing max into min:

dist(Xτ , Xσ ) ≥ ρ min{diam(Xτ ), diam(Xσ )}.

As long as the clusters of the same level are balanced in size, i.e., diam(Xτ ) ≈
diam(Xσ ), both conditions are very similar. However, there may arise cases,
where diam(Xτ ) and diam(Xσ ) differ strongly (cf. [11]). The proof of the
central Theorem 2.8 relies on dist(D1, D2) ≥ ρ diam(D2). Therefore, the
choice D2 = Xτ in the proof of Theorem 3.4 is correct as long as diam(Xτ ) ≤
diam(Xσ ). If, however, diam(Xτ ) > diam(Xσ ), we have to assume that Xσ

is convex. Again Theorem 2.8 can be applied, now with D2 = Xσ . The es-
timates in Theorem 3.4 must be slightly modified, since vol(Xσ ) cannot be
estimated by means of diam(Xτ ).

Acknowledgements. The authors wish to thank S. Müller (MPI, Leipzig) for his contri-
bution to the proof of Theorem 2.8.
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[3] S. Börm, L. Grasedyck, W. Hackbusch: Introduction to hierarchical matrices with
applications. 2002. To appear.

[4] S. Demko, W. F. Moss, P. W. Smith: Decay rates for inverses of band matrices. Math.
Comp. 43, 491–499 (1984)

[5] G. Dolzmann, S. Müller: Estimates for Green’s matrices of elliptic systems by
Lp theory. Manuscripta Math., 88, 261–273 (1995)

[6] I.P. Gavrilyuk, W. Hackbusch, B. Khoromskij: H-matrix approximation for the
operator exponential with applications. Numer. Math., 92, 83–111 (2002)

[7] M. Giaquinta: Multiple integrals in the calculus of variations and nonlinear elliptic
systems. Princeton University Press, Princeton, NJ, (1983)

[8] D. Gilbarg, N. S. Trudinger: Elliptic partial differential equations of second order.
Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition

[9] L. Grasedyck: Theorie und Anwendungen Hierarchischer Matrizen. Dissertation,
Universität Kiel (2001)

[10] L. Grasedyck, W. Hackbusch: Construction and arithmetics of H-matrices. In
preparation

[11] L. Grasedyck, W. Hackbusch, S. Le Borne: Adaptive refinement and clustering of
H-matrices. Technical Report 106, Max-Planck-Institut für Mathematik, Leipzig,
2001
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