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Abstract

This article deals with the solution of integral equations using collocation methods with almost linear
complexity. Methods such as fast multipole, panel clustering and H-matrix methods gain their effi-
ciency from approximating the kernel function. The proposed algorithm which uses the H-matrix
format, in contrast, is purely algebraic and relies on a small part of the collocation matrix for its
blockwise approximation by low-rank matrices. Furthermore, a new algorithm for matrix partitioning
that significantly reduces the number of blocks generated is presented.

AMS Subject Classification: 41A63, 41A80, 65D05, 65D15, 65F05, 65F30.

Keywords: Integral equations, hierarchical matrices, low-rank approximation, fast solvers.

1 Introduction

This article is concerned with the efficient solution of Fredholm integral equations

kuðyÞ þ
Z

C
jðx; yÞuðxÞ dsx ¼ f ðyÞ; y 2 C; ð1Þ

with a given right-hand side f on a ðd � 1Þ-dimensional manifold C � Rd . This
kind of integral equation arises for example from the boundary element method.
However, it is easily possible to generalise the results of this paper to volume
integral equations in Rd .

In order to solve equation (1) numerically, the domain of integration C is divided
into triangles Ph ¼ fpi : i 2 Ig, where I is an index set. Besides the Galerkin
method, the collocation method and the Nyström method are commonly used;
mathematically the Galerkin method is better understood than its competitors. In
the Galerkin and the collocation method the solution u is approximated from a
finite dimensional ansatz space Vh, i.e., the approximant uh 2 Vh to u is sought of
the form uh ¼

PN
j¼1 ujuj, where uj, j 2 I :¼ f1; . . . ;Ng, is a basis of Vh. The

corresponding supports Xj :¼ supp uj � C are assembled from the sets pi, i.e.,
there is m 2 N independently of N and for each Xj an index set Ij � I, #Ij � m,
exists, so that
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Xj ¼
[

i2Ij

pi: ð2Þ

All three methods reduce (1) to a linear system of the form

ðkBþ AÞx ¼ b; A;B 2 RN�N ; b 2 RN ; ð3Þ

where B is a sparse matrix and produces no numerical difficulties. However, A is a
full matrix and therefore needs OðN2Þ units of storage. The usual matrix-vector
multiplication requires OðN2Þ arithmetical operations. The latter is of particular
importance if an iterative method is used for the solution of (3). The entries of A in
the case of the Galerkin method are

aij ¼
Z

C

Z
C

jðx; yÞujðxÞuiðyÞ dsx dsy ; ð4Þ

in the case of the collocation method

aij ¼
Z

C
jðx; yiÞujðxÞ dsx ð5Þ

with collocation points yi 2 Xi and in the case of the Nyström method

aij ¼ jðyj; yiÞ for i 6¼ j and aii ¼ ci ð6Þ

with N pairwise distinct points yi 2 C and N numbers ci. In this article we will
focus on collocation matrices, i.e. matrices of type (5). Matrices of type (6) were
investigated in [1].

Modern numerical methods for the solution of (3) such as fast multipole [5, 10],
panel clustering [9] and H-matrices [7, 8] provide an approximation ~xx to the
solution vector x in almost linear complexity by solving a perturbed linear system
(3) in which A is easier to handle. The accuracy of ~xx is chosen so that the addi-
tional error for u is of the same size as the consistency error of the discretisation
method. All these methods are based on kernel approximations by degenerate
kernels, i.e.

jðx; yÞ � ~jjðx; yÞ :¼
Xk

i¼1
uiðxÞviðyÞ: ð7Þ

In this article the kernel j : C� Rd ! R in (1) is assumed to be asymptotically
smooth with respect to y, i.e. jðx; �Þ 2 C1ðRd n fxgÞ for almost all x 2 C, and there
is a constant g < 0 so that for all multiindices a 2 Nd

0 it holds that

jDa
yjðx; yÞj � cpjx� yjg�p; p ¼ jaj; ð8Þ
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where cp depends only on p. As usual we denote by Da
y the partial derivative

Da
y ¼

@

@y1

� �a1

� � � @

@yd

� �ad

:

Strongly singular kernels are not excluded. However, then the integral in (1) has
to be defined by an appropriate regularisation. E.g., the kernels jðx; yÞ ¼ jx� yjg,
g < 0, as well as their partial derivatives are asymptotically smooth. Furthermore,
the kernel of the double-layer potential operator for the three-dimensional
Laplace equation

jðx; yÞ ¼ � 1

4p
ðx� y; nxÞ
jx� yj3

is asymptotically smooth with respect to y. Here nx, x 2 C, denotes the outer
normal unit vector to the surface C at x. It is important to remark that neither the
smoothness of j with respect to x nor smoothness properties of the surface C are
necessary.

From (5) it can be seen that for the entry aij the kernel function j is evaluated only
on Xi � Xj, i.e., a block At1t2 , t1; t2 � I , within the system matrix A corresponds to a
pair of domains ðXt1 ;Xt2Þ, where for t � I we set Xt ¼

S
j2t Xj. For the latter

assume that

diam Xt2 � g distðXt1 ;Xt2Þ; g < 1; ð9Þ

holds. Then asymptotical smoothness guarantees the existence of degenerate
kernel approximants (7) as can be seen from the truncated Taylor expansion.
However, asymptotical smoothness is only sufficient for the existence of ~jj. For
example in [3] it is proven that the Green function of the inverse of an uniformly
elliptic partial differential operator with L1-coefficients can be approximated by a
degenerate kernel.

H-matrices obtain their efficiency in arithmetics and storage from a hierarchical
partition of the matrix and using low-rank matrices as an approximation to each
of the blocks. The blockwise low-rank approximant permits a fast matrix-vector
multiplication, which can be exploited in iterative solvers, and can be stored
efficiently. It has to be guaranteed that the perturbation made to the discrete
operator does not lead to a loss of important properties such as solvability. The
usual way to obtain a low-rank approximant from a degenerate kernel approxi-
mation in each of the cases (4)–(6) is to replace j by ~jj. Obviously, the new block
~AAt1t2 is an approximation to the entries At1t2 from (4)–(6) respectively, and the rank
of ~AAt1t2 is bounded by the number k of terms in the sum (7).

The aim of this article is to present an algorithm for the generation of low-rank
approximants from the matrix entries themselves without explicitly dealing with
the kernel. The advantage of this technique is that the performance of already
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existing computer codes can be improved easily without changing the routines for
the calculation of the matrix entries. Since only few entries are necessary to
generate the approximant, the coefficient matrix does not have to be calculated in
advance. Furthermore, the algorithm presented adapts the rank of the approxi-
mant to the respective needs, whereas in the existing methods the rank has to be
fixed a priori from theoretical error estimates.

The structure of the rest of the article is as follows: for the existence of low-rank
approximants in the case of asymptotically smooth kernels we have to impose
condition (9). Since this condition cannot be fulfilled on C� C, the coefficient
matrix A has to be subdivided into blocks corresponding to domains that fulfil
condition (9). Usually, algorithms as in [8, 1] are used to partition the matrix
appropriately. In Section 2 we present a new algorithm that compared with the
standard algorithms significantly reduces the number of blocks generated. For the
sake of simplicity we will assume that the discretisation is quasi-uniform. Adap-
tive meshes require a more complicated complexity analysis for the matrix par-
titioning but do not affect the approximation results in Section 3. In this section
an algorithm for the generation of low-rank approximants is described, which
here will be referred to as ACA (Adaptive Cross Approximation). This algorithm
is purely algebraic in the sense that it uses only entries from the original matrix A
for the approximation of each block. The numerical examples in Section 4 show
that this algorithm has almost linear complexity. Furthermore, not only can the
approximant generated be stored efficiently, but multiplying it with a vector as a
part of an iterative method also has almost linear complexity.

2 Matrix Partitioning

The aim of this section is to construct a partition of the coefficient matrix. We will
divide the index set ðI ; IÞ into pairwise disjoint subsets P ¼ fðt1; t2Þ : t1; t2 � Ig, so
that

I � I ¼
[

ðt1;t2Þ2P

t1 � t2

and for each pair ðt1; t2Þ 2 P one of the following conditions holds:

minf#t1;#t2g ¼ 1 or ð10aÞ

diam Xt2 � g distðXt1 ;Xt2Þ: ð10bÞ

The parameter g is an upper bound for the relative distance of two clusters t1 and
t2 and will be chosen later. If a pair ðt1; t2Þ fulfils condition (10a) then each element
from the corresponding block will be generated and stored. For all other pairs,
condition (10b) is valid and in Section 3 we will investigate an algorithm for the
approximation of the corresponding block by matrices of low rank. Both storage
and multiplication of the resulting matrix by a vector can be done blockwise,
taking advantage of the efficient representation of low-rank matrices.

4 M. Bebendorf and S. Rjasanow



2.1 The Algorithm

Given S : PotðIÞ ! PotðPotðIÞÞ mapping an index set t � I to a set SðtÞ of pair-
wise disjoint subsets, so that

t ¼
[

s2SðtÞ
s; if #t > 1;

and SðtÞ ¼ [, if #t � 1, we define a cluster tree T by recursively applying S
starting from the root I . S prescribes how an index set t � I and therefore the
domain Xt is subdivided into its sons. Hence, the cluster tree T contains a hier-
archy of partitions of I . Cluster trees are frequently used in this field of research,
cf. [9, 8]. For t � I we assume that SðtÞ can be evaluated in Oð#tÞ operations. An
example for S can be found in [2]. By q 2 N we denote the maximum degree, i.e.
the maximum number of sons, of vertices t 2 T . If we assume the ratios
maxf#t=#s; s 2 SðtÞg, t 2 T and SðtÞ 6¼ [, to be bounded by R > 1 from below,
the depth of the cluster tree is of order L :¼ logR N ¼ OðlogNÞ.

Instead of searching all possible partitions of I � I for a candidate P that fulfils
(10), in the following algorithm we are looking at only those partitions with pairs
ðt1; t2Þ for which t2 stems from the cluster tree T . By this simplification it may
happen that not the optimal P is found. However, as we will see, a partition P
satisfying our needs can be computed in reasonable time.

For t 2 T let zt 2 Rd be an arbitrary but fixed point in Xt,

~FF ðtÞ :¼ i 2 I : diam Xt �
g

1þ g
distðXi; ztÞ

� �
ð11Þ

and ~NNðtÞ :¼ I n ~FF ðtÞ. It can easily be seen that ~FF ðtÞ � F ðtÞ, where

F ðtÞ :¼ i 2 I : diam Xt � g distðXi;XtÞf g

denotes the farfield of Xt. Obviously, the computation of t1 \ ~FF ðt2Þ can be per-
formed with Oð#t1 þ#t2Þ operations, whereas the computation of t1 \ F ðt2Þ
would need Oð#t1#t2Þ operations.

Algorithm 2.1. Partitioning ðt1; t2Þ
If minf#t1;#t2g ¼ 1 then P :¼ P [ fðt1; t2Þg == block ðt1; t2Þ fulfils ð10aÞ
else begin

St2 :¼ Sðt2Þ; == evaluate Sðt2Þ
for s 2 St2 begin

if t1 \ ~FF ðsÞ 6¼ [ then begin

P :¼ P [ fðt1 \ ~FF ðsÞ; sÞg; ==block ðt1 \ ~FF ðsÞ; sÞ fulfils ð10bÞ
if t1 n ~FF ðsÞ 6¼ [ then Partitioningðt1 n ~FF ðsÞ; sÞ == recursion

end

end

end

Adaptive Low-Rank Approximation of Collocation Matrices 5



In Algorithm 2.1 each block ðt1; t2Þ with #t2 > 1 is subdivided into blocks ðt1; sÞ,
s 2 Sðt2Þ. The set t1 \ ~FF ðsÞ is the largest possible subset of t1 within the farfield
F ðsÞ of s under the simplification we made when replacing F by ~FF . Hence,
ðt1 \ ~FF ðsÞ; sÞ fulfils (10b) and is stored in P . The algorithm is then applied to the
remaining parts ðt1 n ~FF ðsÞ; sÞ. The recursion stops if t2 cannot be subdivided any
more, i.e. #t2 ¼ 1. It is obvious that a partition with the desired properties (10) is
obtained by applying Partitioning to ðI ; IÞ, if P was previously initialised by
P ¼ [. Notice that there is no need to calculate the cluster tree T in advance.

2.2 Computational complexity

In this subsection we will estimate the computational cost of the above algorithm.
The domain of integration C � Rd is ðd � 1Þ-dimensional, i.e., there are two
constants c1; c2 > 0 so that for all z 2 C

c1rd�1 � jC \ BrðzÞj � c2rd�1 for r! 0: ð12Þ

Here, j � j denotes the surface measure and BrðzÞ � Rd is the Euclidean ball with
centre z and radius r. We assume the triangulation Ph to be quasi-uniform and
shape-regular, i.e., that there is a constant cu so that

cujXij � hd�1 for i 2 I ; ð13Þ

where h ¼ maxi2I diam Xi. This guarantees in particular that we are able to find
c3 > 0 such that diam Xi � c3 diam Xj, i; j 2 I . The supports Xi may overlap. In
accordance with the standard finite element discretisation we require that each
panel belongs to the support of a bounded number of basis functions, i.e., there is
a constant l > 0 so that

ljXtj �
X
i2t

jXij: ð14Þ

These assumptions lead to

Lemma 2.2. There is a constant c4 such that #t=c4 � jXtjh�ðd�1Þ � c4#t for all
t � I .

Proof. Using (12) and (13) we see that

jXtj �
X
i2t

jXij � c2#tmax
i2I

diamd�1Xi ¼ c2#t hd�1:

On the other hand ljXtj �
P

i2t jXij � #t hd�1=cu. (

Lemma 2.3. Let t � I . Then # ~NNðtÞ � cðgÞ#t, cðgÞ ¼ ~ccð1þ 1=gÞd�1 holds, where
~NNðtÞ is the set from (11).

6 M. Bebendorf and S. Rjasanow



Proof. From (13) follows diam Xi � c3diam Xt, i 2 I . Since distðXi; ztÞ <
ð1þ 1=gÞ diam Xt for i 2 ~NNðtÞ the ball BrðztÞ with r ¼ ðc3 þ 1þ 1=gÞ diam Xt

covers X ~NNðtÞ � Xt. Now

jX ~NNðtÞj � c2rd�1 ¼ c2ðc3 þ 1þ 1=gÞd�1diamd�1Xt:

Using (12) again we obtain

jX ~NNðtÞj �
c2
c1
ðc3 þ 1þ 1=gÞd�1jXtj:

Lemma 2.2 leads to the desired estimate. (

Theorem 2.4. The number of operations and the amount of storage needed to
perform the recursion Partitioning ðI ; IÞ is of order g�ðd�1ÞN logN . The number
of blocks generated is of order N.

Proof. The recursion Partitioning ðI ; IÞ descending the cluster tree T generates at
most q blocks in each node. Remember that by assumption the maximum degree
of vertices in T is q. The number of nodes is limited by qN , so the number of
generated blocks is of order N .

Let Nt2 denote the number of operations needed to carry out a part Partitioning
ðt1; t2Þ of the whole recursion Partitioning ðI ; IÞ. We will show that
Nt2 � �ccðgÞ#t2 logR #t2, where �ccðgÞ ¼ c5ð1þ qcðgÞÞ. According to the remark
preceding Algorithm 2.1 for the number of operations it holds that

Nt2 �
X

s2Sðt2Þ
c5ð#t1 þ#sÞ þ Ns � c5#t2ð1þ qcðgÞÞ þ

X
s2Sðt2Þ

Ns:

For the last estimate we used Lemma 2.3 because Partitioning is only applied to
pairs ðt1; t2Þ for which t1 � ~NNðt2Þ is valid. Thus

Nt2 �
X

s2Sðt2Þ
�ccðgÞ#s logR #sþ �ccðgÞ#t2

¼ �ccðgÞ#t2
X

s2Sðt2Þ

#s
#t2

logR #t2 � logR
#t2
#s

� �
þ �ccðgÞ#t2

¼ �ccðgÞ#t2 logR #t2 þ �ccðgÞ#t2 1�
X

s2Sðt2Þ

#s
#t2

logR
#t2
#s

0
@

1
A

� �ccðgÞ#t2 logR #t2;

because we have assumed that #t2 � R#s. (
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In Section 3 it will be shown that it is possible to generate a rank-k approximant
of a single block ðt1; t2Þ in Oðk2ð#t1 þ#t2ÞÞ operations. Storing and multiplying it
by a vector takes Oðkð#t1 þ#t2ÞÞ operations. By the same arguments as in the
proof of Theorem 2.4 the numerical effort for approximating the whole matrix is
Oðg�ðd�1Þk2N logNÞ. The cost for storing and multiplying the whole matrix by a
vector amounts to Oðg�ðd�1ÞkN logNÞ.

3 Incomplete Low-Rank Approximation

In the preceding section we explained how to partition a matrix into blocks ðt1; t2Þ
such that for the corresponding domains Xt1 and Xt2

diam Xt2 � g distðXt1 ;Xt2Þ ð15Þ

holds or the block degenerates to a vector. In this section we may therefore
concentrate on a single block B 2 Rm�n with entries

bij ¼
Z

C
jðx; yiÞujðxÞ dsx; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n; ð16Þ

satisfying (15). We introduce functions Ljj on Rd n �XX t1 by

ðLjjÞðyÞ ¼
Z

C
jðx; yÞujðxÞ dsx:

Note that (8) guarantees that the functions Ljj are well defined for all g < 0.

Let k 2 N. The aim of this section is to devise an algorithm which decomposes the
block B in the following way:

B ¼ UkV T
k þ Rk;

where Uk 2 Rm�k and Vk 2 Rn�k, and Rk 2 Rm�n is the approximation error. If we
succeed in proving that the norm of Rk is small, B is obviously approximated by a
matrix of rank at most k.

3.1 The Algorithm

In the course of this section an integer m0 and points fi, i ¼ 1; . . . ;m0, will be
chosen appropriately. We combine the yet undefined points fi with the collocation
points yj in the ðm0 þ mÞ-tuple

zi ¼
fi; 1 � i � m0

yi�m0 ; m0 < i � m0 þ m

�

and extend B to B̂B by setting b̂bij ¼ ðLjjÞðziÞ, i ¼ 1; . . . ;m0 þ m, j ¼ 1; . . . ; n. The
idea of the following algorithm is to approximate B̂B by the outer product ûuvT of

8 M. Bebendorf and S. Rjasanow



one column ûu and one (scaled) row v of B̂B. Higher order approximations are
obtained by approximating the remainder of the previous approximation step,
respectively. Once m0 and fi are given, the following algorithm, in which ûuk and vk

are successively generated, can be applied.

Algorithm 3.1.

k :¼ 1; i1 ¼ 1

repeat

ð~vvkÞj :¼ ðLjjÞðfik Þ �
Xk�1
‘¼1
ðûu‘Þik ðv‘Þj; j ¼ 1; . . . ; n

if ~vvk vanishes then ik :¼ ik þ 1

else begin

jk :¼ argmaxj¼1;...;njð~vvkÞjj; ck :¼ ð~vvkÞ�1jk
; vk :¼ ck~vvk;

ðûukÞi :¼ ðLjk jÞðziÞ �
Xk�1
‘¼1
ðûu‘Þiðv‘Þjk

; i ¼ 1; . . . ;m0 þ m

ikþ1 :¼ ik þ 1; k :¼ k þ 1

end

until ik > m0

Since the B̂B is evaluated only in the first m0 rows and the columns j1; . . . ; jk,
there is no need to generate the whole block B̂B for its approximation. Due to
this we call this approximation by low-rank matrices incomplete. It is
worth remarking that Algorithm 3.1 differs from the algorithm in [1] for the
approximation of matrices of type (6) only with respect to the initial matrix B̂B.
Define

ŜSk ¼
Xk

‘¼1
ûu‘vT

‘

and R̂Rk ¼ B̂B� ŜSk. It is easy to see that ðûukÞi ¼ ðR̂Rk�1Þijk
, 1 � i � m0 þ m and

ð~vvkÞj ¼ ðR̂Rk�1Þik j, 1 � j � n. The rank of ŜSk is bounded by k. For the calculation of
ŜSk we need at most kðm0 þ mþ nÞ units of memory and

m0nþ kðm0 þ mÞ evaluations of Ljj;

2km0nþ k2ðm0 þ mÞ additions and multiplications;

kn divisions:

Under the assumption that the evaluation of ðLjjÞðyÞ can be done in Oð1Þ
operations the cost for the generation of the approximant ŜSk sum up to
Oðkm0ðm0 þ mþ nÞÞ operations.

Adaptive Low-Rank Approximation of Collocation Matrices 9



We have already pointed out in [1] that each step of Algorithm 3.1 may be
understood as the generation of an approximant using the column-pivoted LU
decomposition. To see this let us assume that i‘ ¼ j‘ ¼ ‘, ‘ ¼ 1; . . . ; k. In this case
we have

R̂Rk ¼ ðI � ckR̂Rk�1ekeT
k ÞR̂Rk�1 ¼ LkR̂Rk�1:

The ðm0 þ mÞ � ðm0 þ mÞ matrix Lk

Lk ¼

1
. .

.

1
0

� ðR̂Rk�1Þkþ1;k
ðR̂Rk�1Þk;k

1

..

. . .
.

� ðR̂Rk�1Þm0þm;k

ðR̂Rk�1Þk;k
1

2
666666666664

3
777777777775

differs from a Gaussian matrix only in position ðk; kÞ.

In the rest of this section the entries of R̂Rk will be estimated. To this end we will
relate R̂Rk with functions rk constructed by the following rule. Let r0ðx; yÞ ¼ jðx; yÞ,
s0ðx; yÞ ¼ 0 and for k ¼ 1; 2; . . .

rkðx; yÞ ¼ rk�1ðx; yÞ � ckðLjk rk�1ÞðyÞrk�1ðx; fik Þ; ð17aÞ
skðx; yÞ ¼ sk�1ðx; yÞ þ ckðLjk rk�1ÞðyÞrk�1ðx; fik Þ: ð17bÞ

The following relation between R̂Rk and rk is obvious.

Lemma 3.2. For 1 � i � m0 þ m, 1 � j � n and k � 1 it holds that ðR̂RkÞij ¼
ðLjrkÞðziÞ:

The number of zeros of Ljrk increases correspondingly with increasing k.

Lemma 3.3. For k � 0 and 1 � ‘ � k it holds that

ðLj‘rkÞðyÞ ¼ 0 for all y 2 Rd n Xt1 :

The preceding lemma can be proven by inductively applying (17). We define

ÂAk ¼
ðLj1jÞðfi1Þ . . . ðLjk jÞðfi1Þ

..

. ..
.

ðLj1jÞðfik Þ . . . ðLjk jÞðfik Þ

2
64

3
75: ð18Þ
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Let ÂAkð‘; jÞ 2 Rk�k be the matrix resulting from ÂAk by replacing the ‘th column
with the vector ðLjjÞð½f	kÞ. Here and in the rest of this article we use the ab-
breviations

ðLjjÞð½f	kÞ :¼
ðLjjÞðfi1Þ

..

.

ðLjjÞðfik Þ

2
64

3
75 and ð½L	kjÞðyÞ :¼

ðLj1jÞðyÞ
..
.

ðLjk jÞðyÞ

2
64

3
75:

Let Mkð‘; yÞ 2 Rk�k be the matrix that forms after replacing the ‘th row of ÂAk with
the last vector ð½L	kjÞðyÞ. Especially, ÂAk ¼ ÂAkð‘; j‘Þ ¼ Mkð‘; fi‘Þ holds. For the
determinants of the matrices ÂAkð‘; jÞ the following recurrence relation can be
obtained.

Lemma 3.4. For 1 � ‘ < k we have

det ÂAkð‘; jÞ ¼ c�1k det ÂAk�1ð‘; jÞ � ðLjrk�1Þðfik Þ det ÂAk�1ð‘; jkÞ;

det ÂA1ð1; jÞ ¼ ðLjjÞðfi1Þ and det ÂAkðk; jÞ ¼ ðLjrk�1Þðfik Þ det ÂAk�1 for k > 1. Espe-
cially,

det ÂAk ¼
Yk

‘¼1
c�1‘ :

Proof. It is easy to see that there are coefficients aðk�1Þl ; l ¼ 1; . . . ; k � 1, so that

ðLmrk�1Þðfik Þ ¼ ðLmjÞðfik Þ �
Xk�1
l¼1

aðk�1Þl ðLmjÞðfilÞ; m ¼ 1; . . . ; n:

Thus it is possible to replace each entry ðLmjÞðfik Þ in the last row of ÂAkð‘; jÞ by
ðLmrk�1Þðfik Þ and obtain ~AAkð‘; jÞ without changing the determinant. From the last
lemma it can be seen that ðLj‘rk�1Þðfik Þ ¼ 0; 1 � ‘ < k. Hence, only the ‘th and
the kth entry of the last row of ~AAkð‘; jÞ may not vanish. Using Laplace’s theorem
we end up with the assertion. (

Not only does the last lemma guarantee that ÂAk is non-singular, we also notice
that the larger the product of the values c�1‘ , ‘ ¼ 1; . . . ; k, the larger the deter-
minant of ÂAk.

3.2 Type of Approximation

We are now in a position to show that the decomposition of j into sk and rk has a
representation that can be exploited for the error analysis.

Lemma 3.5. The sequences fskgk and frkgk generated in (17) satisfy

skðx; yÞ þ rkðx; yÞ ¼ jðx; yÞ;
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where for k � 1

skðx; yÞ ¼ ð½L	kjÞðyÞ
T ÂA�1k jðx; ½f	kÞ: ð19Þ

Provided ffi1 ; . . . ; fikg � fy1; . . . ; ymg the decomposition (19) constitutes the ana-
lytic form of a pseudo skeleton decomposition in the sense of [6]. In contrast to
multipole [5, 10] and panel clustering [9] methods we do not approximate the
functions Ljj by using appropriate approximations to the kernel j. Instead, (19)
shows that we employ a small number of functions chosen from fL1j; . . . ;Lnjg
to approximate Ljj.

Proof of Lemma 3.5. The lemma is obviously true for k ¼ 1. We continue by
induction. From the definition of rk and sk we can see that

skðx; yÞ þ rkðx; yÞ ¼ sk�1ðx; yÞ þ rk�1ðx; yÞ;

which according to the assumption coincides with jðx; yÞ.

For the sake of simplicity we set

ak ¼ ÂA�1k�1ðLjk jÞð½f	k�1Þ and bk ¼ ÂA�T
k�1ð½L	k�1jÞðfik Þ:

Since

skðx; yÞ ¼ sk�1ðx; yÞ þ ckðLjk rk�1ÞðyÞrk�1ðx; fik Þ

¼
ð½L	k�1jÞðyÞ

ðLjk jÞðyÞ

" #T
ÂA�1k�1 þ ckakbT

k �ckak

�ckbT
k ck

" #
jðx; ½f	k�1Þ

jðx; fik Þ

" #

and

ÂAk
ÂA�1k�1 þ ckakbT

k �ckak

�ckbT
k ck

� �
¼ Ik

together with the induction assumption for sk�1, the property

skðx; yÞ ¼ ð½L	kjÞðyÞ
T ÂA�1k jðx; ½f	kÞ

can also be deduced for sk. (

Using Cramer’s rule we see that

ð½L	kjÞðyÞ
T ÂA�1k

� �
‘
¼ detMkð‘; yÞ

det ÂAk
;

where Mkð‘; yÞ is the matrix defined from (18). Hence from (19) we obtain
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ðLjskÞðyÞ ¼
Xk

‘¼1

detMkð‘; yÞ
det ÂAk

ðLjjÞðfi‘Þ: ð20Þ

The last representation shows thatLjsk is the uniquely defined interpolant ofLjj
at the nodes fi‘ in the span of the functions Lj‘j, ‘ ¼ 1; . . . ; k. In order to see this,
let U be a k-dimensional space of functions / : Rd ! R equipped with a basis
/1; . . . ;/k, xi 2 Rd and fi 2 R, i ¼ 1; . . . ; k. Define

M‘ðxÞ ¼

/1ðx1Þ . . . /kðx1Þ
..
. ..

.

/1ðxÞ . . . /kðxÞ
..
. ..

.

/1ðxkÞ . . . /kðxkÞ

2
6666664

3
7777775
 ‘:

Furthermore, let M ¼ M‘ðx‘Þ 2 Rk�k. It is obvious that provided M is non-
singular the Lagrange functions

v‘ðxÞ :¼ detM‘ðxÞ
detM

are in U and v‘ðxiÞ ¼ di‘; 1 � i; ‘ � k, where d denotes Kronecker’s symbol. The
function

L/
k ðxÞ ¼ f1v1ðxÞ þ � � � þ fkvkðxÞ 2 U

solves the interpolation problem

L/
k ðxiÞ ¼ fi; 1 � i � k; ð21Þ

and is uniquely defined.

3.3 Error Analysis

We need an expression for the interpolation error. To this end, we will relate the
error Ljrk to the error in another system of functions. Let w1; . . . ;wm0 be any
system of functions with

det½wjðfiÞ	1�i;j�m0 6¼ 0; ð22Þ

and define their span by W. For this system let the error

Ew
m0 ½Ljj	 :¼Ljj� Lw

m0 ½Ljj	

be known.
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It is now possible to relate the remainder Ljrk of our approximation to the
remainder Ew

m0 of the interpolation in the w-system. Notice that the points fi,
ik < i < ikþ1, which were omitted during the construction of the sequences frkgk
and fskgk, are not lost for the approximation error, since in (23) the error Ew

m0 is
the error for an interpolation at m0 nodes.

Lemma 3.6. Let fi1; . . . ; ikg be generated by Algorithm 3.1. Then the functions
Ljrk satisfy

ðLjrkÞðyÞ ¼ Ew
m0 ½Ljj	ðyÞ �

Xk

‘¼1

det ÂAkð‘; jÞ
det ÂAk

Ew
m0 ½Lj‘j	ðyÞ; y 2 Rd n X t1 : ð23Þ

Proof. Let vi be the ith Lagrange function in W, i.e., for 1 � i; ‘ � m0 we have
viðf‘Þ ¼ di‘. Set

vðyÞ ¼
v1ðyÞ

..

.

vm0 ðyÞ

2
64

3
75:

For the interpolant Lw
m0 ½Lj0j	ðyÞ ¼ ðLj0jÞð½f	m0 Þ

T vðyÞ, 1 � j0 � n, we obtain

Lw
m0 ½Lj0j	ðyÞ¼

Xi1�1
i¼1
ðLj0jÞðfiÞviðyÞþ

Xk

‘¼1
ðLj0jÞðfi‘Þvi‘ðyÞþ

Xi‘þ1�1
i¼i‘þ1

ðLj0jÞðfiÞviðyÞ
( )

;

where we set ikþ1 ¼ m0 þ 1. Since ðLj0r‘ÞðfiÞ ¼ 0 for all i‘ < i < i‘þ1 we obtain
with the aid of Lemma 3.5

0 ¼ ðLj0r‘ÞðfiÞ ¼ ðLj0jÞðfiÞ � ð½L	‘jÞðfiÞT ÂA�1l ðLj0jÞð½f	‘Þ:

Thus

ðLj0jÞðfiÞ ¼
X‘
m¼1
ð½L	‘jÞðfiÞT ÂA�1‘
� �

m
ðLj0jÞðfimÞ:

From this it follows that

Xi‘þ1�1
i¼i‘þ1

ðLj0jÞðfiÞviðyÞ ¼
Xi‘þ1�1

i¼i‘þ1

X‘
m¼1
ð½L	ljÞðfiÞT ÂA�1‘
� �

m
ðLj0jÞðfimÞviðyÞ

¼
X‘
m¼1
ðLj0jÞðfimÞað‘Þm ðyÞ;

where að‘Þm ðyÞ ¼
Pi‘þ1�1

i¼i‘þ1 viðyÞ ð½L	‘jÞðfiÞT ÂA�1‘
� �

m
.
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From ðLj0jÞðfiÞ ¼ 0, 1 � i < i1, we see that

Lw
m0 ½Lj0j	ðyÞ ¼

Xk

‘¼1
ðLj0jÞðfi‘Þvi‘ðyÞ þ

X‘
m¼1
ðLj0jÞðfimÞað‘Þm ðyÞ

( )

¼
Xk

‘¼1
ðLj0jÞðfi‘Þvi‘ðyÞ þ

Xk

m¼1

Xk

‘¼m

ðLj0jÞðfimÞað‘Þm ðyÞ

¼
Xk

‘¼1
ðLj0jÞðfi‘Þq‘ðyÞ ¼ ðLj0jÞð½f	kÞ

T qðyÞ;

where q 2 Rk is the vector with components q‘ðyÞ ¼ vi‘ðyÞ þ
Pk

m¼‘ a
ðmÞ
‘ ðyÞ. Using

Lemma 3.5 we obtain

ðLjrkÞðyÞ ¼ ðLjjÞðyÞ � ð½L	kjÞðyÞ
T ÂA�1k ðLjjÞð½f	kÞ

¼ Ew
m0 ½Ljj	ðyÞ þ ðLjjÞð½f	kÞ

T qðyÞ � ð½L	kjÞðyÞ
T ÂA�1k ðLjjÞð½f	kÞ

¼ Ew
m0 ½Ljj	ðyÞ � ð½L	kjÞðyÞ � ÂAT

k qðyÞ
	 
T

ÂA�1k ðLjjÞð½f	kÞ

¼ Ew
m0 ½Ljj	ðyÞ �

Xk

‘¼1
Ew

m0 ½Lj‘j	ðyÞ ÂA�1k ðLjjÞð½f	kÞ
	 


‘
:

According to Cramer’s rule

ÂA�1k ðLjjÞð½f	kÞ
	 


‘
¼ det ÂAkð‘; jÞ

det ÂAk
:

The assertion follows. (

3.4 Choice of Pivots

We are now able to control the approximation error by estimating the coefficients
in (23). In general, the choice of jk in Algorithm 3.1 does not produce a submatrix
of maximum determinant in modulus. However, we can see from Lemma 3.4 that
the maximum element strategy is the best possible choice with respect to maxi-
mum determinants if we keep all previously chosen indices j1; . . . ; jk�1 fixed.

Lemma 3.7. Assume that in each step we choose jk so that

jðLjk rk�1Þðfik Þj � jðLjrk�1Þðfik Þj for all 1 � j � n:

Then for 1 � ‘ � k and j ¼ 1; . . . ; n it holds that

j det ÂAkð‘; jÞj � 2k�‘j det ÂAkj: ð24Þ

Proof. Apply Lemma 3.4. For details see [1].
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Thus we obtain

jðLjrkÞðyÞj � ð1þ 2kÞ sup
y2Xt2

jEw
m0 ðLjjÞðyÞj: ð25Þ

It is well known that elements may grow during a column-pivoted LU decom-
position. The term 2k in (25) is therefore not a consequence of overestimation.

3.5 Error Estimates

In order to estimate the error of our interpolation and also, according to Lemma
3.2, the error of matrix approximation, we have to specify the system of functions
w1; . . . ;wm0 so that the interpolation error for it is known. The easiest choice are
the monomials

wiðxÞ ¼ xi ¼ xi1
1 � � � x

id
d ; i 2 Nd

0 with kik1 � p � 1:

Accordingly, we choose m0 ¼ pd as the dimension of the spanned space W. The set
of points ff1; . . . ; fm0 g from the construction of fskgk is chosen to be the tensor-
product

fi ¼ ðni1 ; . . . ; nid Þ 2 Rd ; i 2 Nd with kik1 � p;

of the zeros of Chebyshev polynomials on ½�a; a	

nm ¼ a � cos p
2

2m� 1

p

� �
; m ¼ 1; . . . ; p:

The uniqueness of interpolation is inherited from one-dimensional interpolation,
so the condition det½wjðfiÞ	ij 6¼ 0 from (22) is fulfilled. The polynomial
Lpf 2 Pp�1½�a; a	 interpolating a function f 2 Cp½�a; a	 at the points nm,
m ¼ 1; . . . ; p, satisfies, cf. [12],

kf � Lpf k1 �
ap

2p�1
kf ðpÞk1

p!
and kLpf k1 � c log p kf k1: ð26Þ

For multivariate functions f : ½�a; a	d ! R we use the tensor-product interpola-
tion polynomial Lm0 ½f 	

Lm0 ½f 	 ¼ Lð1Þp � � � LðdÞp f 2 W:

Then using standard tensor-product arguments we obtain with (26)

kf � Lm0 ½f 	k1 � ~ccp ap max
‘¼1;...;d

k@p
‘ f k1; ~ccp ¼

1þ dðc log pÞd�1

2p�1p!
: ð27Þ

We are now ready to estimate the remainder R̂Rk in Algorithm 3.1. To this end we
remove the virtual points fi by letting Sk 2 Rm�n be the last m rows of ŜSk, i.e.
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Sk ¼
Xk

‘¼1
u‘vT

‘ ;

where u‘ 2 Rm are the last m entries of ûu‘.

Theorem 3.8. Let ðXt1 ;Xt2Þ fulfil condition (15) and j be an asymptotically smooth
kernel. In the case of collocation matrices

aij ¼
Z

D
jðx; yiÞujðxÞ dsx; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n;

with supp uj � Xt1 , kujk1 ¼ 1 and yi 2 Xt2 it holds that

jðRkÞijj � Cp distgðXt1 ;Xt2ÞjXt1 jgp; 0 < g <
1

4
ffiffiffi
d
p ; ð28Þ

where Rk ¼ A� Sk.

Proof. We can find a cube Qa having side length a ¼ 2 diam Xt2 such that
Xt2 � Qa, for which we may assume that Qa ¼ fx 2 Rd : kxk1 � ag. It is easy to
check that

2 dist ðXt1 ;QaÞ � dist ðXt1 ;Xt2Þ for g <
1

4
ffiffiffi
d
p :

From this it follows that a � 4g dist ðXt1 ;QaÞ. By assumption (see (7)), the de-
rivatives of j are bounded on Xt1 � Qa:

sup
y2Qa

kð@a
y jÞykL1ðXt1 Þ

� cp distg�pðXt1 ;QaÞ; jaj ¼ p:

According to (27) we have

kEm0 ½Ljj	kQa
� ~ccp ap max

‘¼1;...;d
k@p

‘LjjkQa
:

The derivatives of Ljj can be estimated by

k@p
y‘LjjkQa

¼ kLj@
p
y‘jkQa

¼ sup
y2Qa

Z
C
@p

y‘jðx; yÞujðxÞdsx

����
����

� jXt1 j sup
y2Qa

kð@p
y‘jÞykL1ðXt1 Þ

� cpjXt1 j distg�pðXt1 ;QaÞ

and thus
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kEm0 ½Ljj	kQa
� ~ccpcpjXt1 j distgðXt1 ;QaÞð4gÞp: ð29Þ

Using (23) and (25) we are finally led to

jðRkÞijj � CpjXt1 j distgðXt1 ;Xt2Þgp;

where Cp ¼ ~ccpcp2
2p�gð1þ 2m0 Þ. (

Finally, we will estimate how a prescribed accuracy e > 0 for the approximation
error kA� ~AAkF < e affects the cost of the algorithm. For an increasing p the term
Cp in (28) grows faster than gp. Hence, we have to keep p and therefore the rank k
constant and control the error by g. Theorem 3.8 states that for each block
M 2 Rm�n the approximant ~MM satisfies

kM � ~MMkF � Cp
ffiffiffiffiffiffi
mn
p

distgðXt1 ;Xt2Þgp

Since ðXt1 ;Xt2Þ fulfils (15) and diam Xt2 � h=cu we obtain distgðXt1 ;Xt2Þ � cgghg.

Thus kA� ~AAkF � cCpNhggpþg. Setting gpþg ¼ e=ðcCpNhgÞ we get kA� ~AAkF � e.
Note that from (13) it follows that hd�1 
 N�1. Hence, the overall complexity
Oðg�ðd�1ÞN logNÞ calculated at the end of Section 2 reads Oðe�aN 1þa logNÞ for
any a > 0.

4 Numerical Experiments

Algorithm 3.1 may be stopped if the approximation reaches a certain accuracy.
For this purpose the error estimator from [1] can be used. It is based on the idea

that Rpd is approximated by
Pðpþ1Þd

‘¼pd u‘vT
‘ and that the latter can be evaluated

efficiently.

4.1 Implementation Aspects

In this section we discuss two possible implementations of Algorithm 3.1. For
computational purposes it is possible to use collocation points yi for the inter-
polation points fi, i.e. for practice we do not have to extend the block B to B̂B in
Algorithm 3.1. Each of the following algorithms produces vectors u‘ 2 Rm and
v‘ 2 Rn, ‘ ¼ 1; . . . ; k, from which the approximant Sk can be formed:

Sk ¼
Xk

‘¼1
u‘vT

‘ :

We call the following algorithm fully pivoted ACA, since in each step the whole
error matrix Rk is inspected for its maximal entry.
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Algorithm 4.1. ðfully pivoted ACAÞ.
R0 :¼ B; k :¼ 0

repeat

k :¼ k þ 1

ðik; jkÞ ¼ argmaxi;jjðRk�1Þi;jj;

uk ¼ Rk�1ejk ; vk ¼ RT
k�1eik ;

ck ¼ ðRk�1Þik ;jk

� ��1
;

Rk ¼ Rk�1 � ckukvT
k

until the stopping criterion ð30Þ is fulfilled

Algorithm 4.1 may be stopped at step k if for a given e > 0 the relative accuracy e
is reached:

kRkkF � ekBkF : ð30Þ

Hence, the number of operations required to generate the approximant is
Oðk m nÞ. Memory requirements for the algorithm are OðnmÞ. Thus the algorithm
is rather expensive and cannot be used for large matrices.

If the system matrix A has not yet been generated but there is a possibility of
generating its entries individually then the following partially pivoted ACA method
can be used for the approximation.

Algorithm 4.2 ðpartially pivoted ACAÞ.
i1¼ 1; Z¼[

repeat ==find first non-zero row in B

for j¼ 1; . . . ;n do ð~vv1Þj :¼ bi1j

if ~vv1vanishes then begin

Z :¼ Z[fi1g; i1 :¼ i1þ1 ==in Z the vanishing rows of Rk are collected

end

until ~vv1 does not vanish or i1>m

if i1>m then exit

j1 :¼ argmaxj¼1;...;njbi1jj; c1¼ð~vv1Þ�1j1 ; v1¼ c1~vv1

for i¼ 1; . . . ;m do ðu1Þi¼ bij1

k :¼ 2
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repeat

ik :¼ argmaxi62Z jðuk�1Þij

ð~vvkÞj :¼ bikj�
Xk�1
‘¼1
ðu‘Þik ðv‘Þj; j¼ 1; . . . ;n

Z :¼ Z [fikg
if ~vvk does not vanishes then begin

jk :¼ arg maxj¼1;...;njð~vvkÞjj; ck :¼ð~vvkÞ�1jk
; vk :¼ ck~vvk

ðukÞi :¼ bijk �
Xk�1
‘¼1
ðu‘Þiðv‘Þjk

; i¼ 1; . . . ;m

k :¼ kþ1

end

until the stopping criterion ð32Þ is fulfilled:

With regard to stopping criteria, the following considerations can be made. Since
the block B will not be generated completely, only the norm of the approximant Sk

can be used instead. Its value can be recursively computed in the following way:

kSkk2F ¼ kSk�1k2F þ 2
Xk�1
j¼1

uT
k ujvT

j vk þ kukk2F kvkk2F : ð31Þ

An appropriate stopping criterion is to terminate the iteration, if for a given e > 0
at step k it holds that

kukkF kvkkF � ekSkkF : ð32Þ

The amount of numerical work required by Algorithm 4.2 is of order k2ðmþ nÞ.

The last two algorithms can also be applied to collocation matrices for which the
kernel j is degenerate but not asymptotically smooth.

Lemma 4.3. rank Rkþ1 ¼ rank Rk � 1.

Proof. Without loss of generality we may assume that ik ¼ 1. Hence,

Rkþ1 ¼ Rk �
1

ðRkÞ11
Rke1eT

1 Rk ¼
0 . . . 0
..
.

~RRk

0

2
4

3
5

with an ðm� 1Þ � ðn� 1Þ matrix ~RRk, the rank of which equals the rank of Rkþ1.
On the other hand
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Rk

1

� ðRkÞ21
ðRkÞ11

1

..

. . .
.

� ðRkÞm1

ðRkÞ11
1

2
6666664

3
7777775
¼

ðRkÞ11 . . . ðRkÞ1n

0

..

.
~RRk

0

2
666664

3
777775

gives rank Rk ¼ rank ~RRk þ 1. (

Hence, if rank B ¼ r, then both algorithms will reproduce B in r steps, i.e. Sr ¼ B.

4.2 Numerical Results

We first apply the algorithm to a family of surfaces converging to the unit sphere.
This sequence is generated by recursive refinement of the icosahedron dividing
each of the surface triangles in four and projecting the new knots to the unit
sphere as shown in Figure 1.

The following numerical tests were performed for the boundary integral formu-
lation

Av ¼ 1

2
IþB

� �
f ;

where

ðAuÞðxÞ ¼
Z
@X

sðx; yÞuðyÞ dsy and ðBuÞðxÞ ¼
Z
@X
@ny sðx; yÞuðyÞ dsy ;

of the Dirichlet problem for Laplace’s equation

Fig. 1. Icosahedron (n ¼ 20) and its refinement (n ¼ 5120)
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Du ¼ 0 in X; ð33aÞ
u ¼ f on @X ð33bÞ

using collocation with piecewise constant ansatz functions. In the above the
function s is the so-called singularity function sðx; yÞ ¼ 1

4p jx� yj�1.

Table 1 shows the compression factors for different problem sizes, i.e., the ratios
of the amount of storage needed when using the approximant and the amount of
storage for the original matrix, for the single layer and double potential matrix,
the number of iterations when using unpreconditioned GMRES and the accuracy

X
p2Ph

jpjj@nsðx0;mpÞ � vhðpÞj2
 !1=2

; mp centre of p

of the solution vh. Since we choose f ¼ sðx0; �Þj@X, x0 62 X, the solution of (33) is
known to be u ¼ sðx0; �Þ.

For the approximation of the blocks we use Algorithm 4.2 and in the stopping
criterion (32) e is chosen to be 10�6, while the relative accuracy of GMRES is 10�8.

An example of the partition of the BEM matrix is presented in Figure 2. Note that
the numbering of the columns in the matrix corresponds to the permutation
obtained during the construction of the cluster tree, whereas the numbering of the
rows is individual for each block due to Algorithm 2.1. The grey scale in Figure 2
indicates the quality of the approximation of the block as a percentage. Thus the
big light blocks are very well approximated while the compression of the small
dark blocks is either not possible or the compression rate is low.

In the remaining tests the aim is to compare different methods for the generation
of low-rank approximants for the following mesh which consists of n ¼ 19712
elements. This mesh comes from the TEAM 10 benchmark problem (see [11])
frequently used in the computational electrodynamics community. The speciality
of this multiply connected mesh is an extremely thin split in the middle and mesh
refinement on the edges.

Table 2 shows the numerical results. For the relative accuracy in each case
e ¼ 10�4 is used. Generating the whole matrix without approximation would lead
to 2964.5 MB of storage.

A further example is the kernel of the radiation heat transfer operator for convex
domains

jðx; yÞ ¼ 1

4p
ðx� y; nxÞðx� y; nyÞ

jx� yj4
;

which is not asymptotically smooth in any variable, but can be approximated by a
degenerate kernel. Though this kind of kernel is not covered by our theory, the

22 M. Bebendorf and S. Rjasanow



Table 1. Numerical results for the first example

n single layer double layer # It accuracy

80 100 % 100 % 14 0.791e-2
320 96 % 100 % 19 0.297e-2
1280 57 % 64 % 24 0.927e-3
5120 25 % 27 % 28 0.268e-3
20480 9 % 10 % 34 0.796e-4
81920 3 % 3 % 39 0.263e-4

Fig. 2. Block structure of the matrix for n ¼ 1280

Fig. 3. TEAM 10 problem (n ¼ 19712)
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algorithms seem to work well. Some numerical examples can be found in our
previous article [4].
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Table 2. Numerical results for the second example

single layer double layer CPU-time

SVD 199.11 MB 6.72 % 310.98 MB 10.49 % 100 h
ACA full 277.54 MB 9.36 % 410.29 MB 13.84 % 20.5 h

ACA partial 242.46 MB 8.18 % 376.19 MB 12.69 % 10 min
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