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Preface

A major aim of the H-matrix technique is to enable matrix operations of almost linear complexity. Therefore,
the notation and importance of linear complexity is discussed in the following.

Linear Complexity

Let φ : Xn → Ym be any function to be evaluated, where n is the number of input data and m is the number
of output data. The cost of a computation is at least O(N) with N := max{n, m}, provided that φ is a
nontrivial mapping (i.e., it is not independent of some of the input data and the output cannot equivalently
be described by less than m data). If the cost (or storage) depends linearly on the data size N, we speak
about linear complexity. The observation from above shows that linear complexity is the optimal one with
respect to the order.

Given a class of problems it is essential how the size N of the data behaves. The term “large scale computa-
tion” expresses that the desired problem size is as large as possible, which of course depends on the actual
available computer capacity. Therefore, the size N from above is time-dependent and increases according to
the development of the computer technology.

The computer capacity is characterised by two different features: the available storage and the speed of
computing. Up to the present time, these quantities increase proportionally, and the same is expected for
the future. Under this assumption one can conclude that large scale computations require linear
complexity algorithms.

For a proof consider a polynomial complexity: Let the arithmetical costs be bounded by CNσ for some
σ ≥ 1. By the definition of a large scale computation, N = Nt should be the maximal size suited for
computers at time t. There is a time difference ∆t so that at time t + ∆t the characteristic quantities are
doubled: Nt+∆t = 2Nt and speed t+∆t = 2speed t. At time t + ∆t, problems with Nt+∆t data are to be
computed involving CNσ

t+∆t = C2σNσ
t operations. Although the number of operations has increased by 2σ,

the improvement concerning the speed leads to an increase of the computer by the factor 2σ/2 = 2σ−1. If
σ > 1 we have the inconvenient situation that the better the computers are, the longer are the running times.
Therefore, the only stable situation arises when σ = 1, which is the case of linear complexity algorithms.

Often, a complexity O(N logq N) for some q > 0 appears. We name this “almost linear complexity”. Since
the logarithm increases so slowly, O(N logq N) and O(N) are quite similar from a practical point of view.
If the constant C1 in O(N) is much larger than the constant C2 in O(N logq N), it needs a very big Nt such
that C2Nt logq Nt ≥ C1N, i.e., in the next future O(N logq N) and O(N) are not distinguishable.

Linear Complexity in Linear Algebra

Linear algebra problems are basic problems which are part of almost all large scale computations, in particu-
lar, when they involve partial differential equations. Therefore, it is interesting to check what linear algebra
tasks can be performed with linear complexity.

The vector operations (vector sum x+y, scalar multiplication λx, scalar product ⟨x, y⟩) are obvious candidates

7
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for linear complexity.

However, whenever matrices are involved, the situation becomes worse. The operations Ax, A + B, A ∗ B,
A−1, etc. require O(N2) or O(N3) operations. The O(N2)-case can be interpreted as linear complexity,
since an N × N -matrix contains N2 data. However, it is unsatisfactory that one does not know whether a
(general) linear system Ax = b (A regular) can be solved by an O(N2)-algorithm.

Usually, one is working with special subsets of matrices. An ideal family of matrices are the diagonal ones.
Obviously, their storage is O(N) and the standard operations Dx, D + D′, D ∗ D′, D−1 require O(N)
operations. Diagonal matrices allow even to evaluate general functions: f(D) = diag{f(di) : 1 ≤ i ≤ N}.

The class of diagonal matrices might look rather trivial, but is the basis of many FFT applications. If,
e.g., C is circulant (i.e., Cij = Ci′,j′ for all i − j ≡ i′ − j′ mod N), the Fourier transform by F leads to
a diagonalisation: F−1CF = D. This allows to inherit all operations mentioned for the diagonal case to
the set of circulant matrices. Since the computation of Fx and F−1x by the fast Fourier transform needs
O(N log N), these operations are of almost linear complexity.

It is interesting to notice that F =
(
ωi+j

)
i,j=1,...,N

with ω = exp (2πi/N) is neither stored nor used (i.e., no
entries of F are called), when Fx is performed by FFT.

Diagonalisation by other matrices than F is hard to realise. As soon as the transformation T to diagonal form
is a full matrix and Tx must be performed in the standard way, the complexity is too high. Furthermore,
the possibility of cheap matrix operations is restricted to the subclass of matrices which are simultaneously
diagonalised by the transformation.

The class of matrices which is most often used, are the sparse matrices, i.e., #{(i, j) : Aij ̸= 0} = O(N).
Then, obviously, the storage and the matrix-vector multiplication Ax and the matrix addition (in the same
pattern) are of linear complexity. However, already A ∗ B is less sparse, the LU-decomposition A = LU
fills the factors L and U, and the inverse A−1 is usually dense. Whether Ax = b can be solved in O(N)
operations or not, is not known. The fact that Ax requires only linear complexity is the basis of most of the
iterative schemes for solving Ax = b.

A subset of the sparse matrices are band matrices, at least when the band width ω is O(1). Here, LU-
decomposition costs O(ω2N) operations, while the band structure of A is inherited by the LU-factors. The
disadvantages are similar to those of sparse matrices: A ∗B has the enlarged band width ωA + ωB and A−1

is dense.

The conclusion is as follows:

• As long as the matrix-vector multiplication x +→ Ax is the only desired operation, the sparse matrix
format is ideal. This explains the success of the finite element method together with the iterative
solution methods.

• Except the diagonal matrices (or diagonal after a certain cheap transformation), there is no class of
matrices which allow the standard matrix operations

Ax, A + B, A ∗ B, A−1

in O(N) operations.



Chapter 1

Introductory Example

In this very first section we introduce the hierarchical matrix structure by a simple one-dimensional model
problem. This introduction is along the lines of [40], but here we fix a concrete example that allows us to
compute everything explicitly.

1.1 Model Problem

Example 1.1 (One-Dimensional Integral Equation) We consider the integral equation

∫ 1

0
log |x − y| U(y)dy = F(x), x ∈ [0, 1], (1.1)

for a suitable right-hand side F : [0, 1] → R and seek the solution U : [0, 1] → R. The kernel g(x, y) =
log |x − y| in [0, 1]2 has a singularity on the diagonal (x = y) and is plotted in Figure 1.1.

Figure 1.1: The function log |x − y| in [0, 1] × [0, 1] and a cut along the line x + y = 1.

A standard discretisation scheme is Galerkin’s method where we solve equation (1.1) projected onto the
(n-dimensional) space Vn := span{ϕ0, . . . ,ϕn−1},

∫ 1

0

∫ 1

0
ϕi(x) log |x − y| U(y)dydx =

∫ 1

0
ϕi(x)F(x)dx 0 ≤ i < n,

9



10 CHAPTER 1. INTRODUCTORY EXAMPLE

and seek the discrete solution Un in the same space Vn, i.e., Un =
∑n−1

j=0 ujϕj such that the coefficient vector
u is the solution of the linear system

Gu = f, Gij :=
∫ 1

0

∫ 1

0
ϕi(x) log |x − y|ϕj(y)dydx, fi :=

∫ 1

0
ϕi(x)F(x)dx.

In this introductory example we choose piecewise constant basis functions

ϕi(x) =
{

1 if i
n ≤ x ≤ i+1

n
0 otherwise (1.2)

on a uniform grid of [0, 1]:

1

0

φ
2

10

The matrix G is dense in the sense that all entries are nonzero. Our aim is to approximate G by a matrix
G̃ which can be stored in a data-sparse (not necessarily sparse) format. The idea is to replace the kernel
g(x, y) = log |x − y| by a degenerate kernel

g̃(x, y) =
k−1∑

ν=0

gν(x)hν(y)

such that the integration with respect to the x-variable is separated from the one with respect to the y-
variable. However, the kernel function g(x, y) = log |x − y| cannot be approximated by a degenerate kernel
in the whole domain [0, 1] × [0, 1] (unless k is rather large). Instead, we construct local approximations for
subdomains of [0, 1] × [0, 1] where g is smooth (see Figure 1.2).

Figure 1.2: The function log |x − y| in subdomains of [0, 1]× [0, 1].

1.2 Taylor Expansion of the Kernel

Let τ := [a, b], σ := [c, d], τ × σ ⊂ [0, 1] × [0, 1] be a subdomain with the property b < c such that the
intervals are disjoint: τ ∩ σ = ∅. Then the kernel function is nonsingular in τ × σ. Basic calculus reveals
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Lemma 1.2 (Derivatives of log |x − y|) The derivatives of g(x, y) = log |x − y| for x ̸= y and ν ∈ N are

∂ν
xg(x, y) = (−1)ν−1(ν − 1)!(x − y)−ν

∂ν
y g(x, y) = −(ν − 1)!(x − y)−ν .

The Taylor series of x +→ g(x, y) in x0 := (a + b)/2 converges in the whole interval τ , and the remainder of
the truncated Taylor series can be estimated as follows.

Lemma 1.3 (Taylor series of log |x − y|) For each k ∈ N the function (truncated Taylor series)

g̃(x, y) :=
k−1∑

ν=0

1
ν!
∂ν

xg(x0, y)(x − x0)ν (1.3)

approximates the kernel g(x, y) = log |x − y| with an error

|g(x, y) − g̃(x, y)| ≤ |x0 − a|
|c − b|

(
1 +

|c − b|
|x0 − a|

)−k

.

Proof: Let x ∈ [a, b], a < b, and y ∈ [c, d]. In the radius of convergence (which we will determine later) the
Taylor series of the kernel g(x, y) in x0 fulfils

g(x, y) =
∞∑

ν=0

1
ν!
∂ν

xg(x0, y)(x − x0)ν .

The remainder g(x, y) − g̃(x, y) =
∑∞

ν=k
1
ν!∂

ν
xg(x0, y)(x − x0)ν can be estimated by

∣∣∣
∞∑

ν=k

1
ν!
∂ν

xg(x0, y)(x − x0)ν
∣∣∣ =

∣∣∣
∞∑

ν=k

(−1)ν−1 (ν − 1)!
ν!

(
x − x0

x0 − y

)ν ∣∣∣

≤
∞∑

ν=k

∣∣∣
x − x0

x0 − y

∣∣∣
ν

≤
∞∑

ν=k

(
|x0 − a|

|x0 − a| + |c − b|

)ν

=
(

1 +
|x0 − a|
|c − b|

) (
1 +

|c − b|
|x0 − a|

)−k

.

Since 1 + |c−b|
|x0−a| > 1, the radius of convergence covers the whole interval [a, b].

If c → b then the estimate for the remainder tends to infinity and the approximation can be arbitrarily
bad. However, if we replace the condition b < c, i.e., the disjointness of the intervals, by the stronger
admissibility condition

diam

τ σ

dist

0 1 diam(τ) ≤ dist(τ,σ) (1.4)

then the approximation error can be estimated by

|g(x, y) − g̃(x, y)| ≤ 3
2
(1 +

2
1
)−k ≤ 3

2
3−k. (1.5)

This means we get a uniform bound for the approximation error independently of the intervals as long as
the admissibility condition is fulfilled. The error decays exponentially with respect to the order k.
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1.3 Low Rank Approximation of Matrix Blocks

The index set I := {0, . . . , n − 1} contains the indices of the basis functions ϕi used in the Galerkin
discretisation. We fix two subsets t and s of the index set I and define the corresponding domains as the
union of the supports of the basis functions:

τ :=
⋃

i∈t

suppϕi, σ :=
⋃

i∈s

suppϕi.

If τ × σ is admissible with respect to (1.4), then we can approximate the kernel g in this subdomain by the
truncated Taylor series g̃ from (1.3) and replace the matrix entries

Gij =
∫ 1

0

∫ 1

0
ϕi(x)g(x, y)ϕj(y)dydx

by use of the degenerate kernel g̃ =
∑k−1

ν=0 gν(x)hν(y) for the indices (i, j) ∈ t × s:

G̃ij :=
∫ 1

0

∫ 1

0
ϕi(x)g̃(x, y)ϕj(y)dydx.

The benefit is twofold. First, the double integral is separated in two single integrals:

G̃ij =
∫ 1

0

∫ 1

0
ϕi(x)

k−1∑

ν=0

gν(x)hν(y)ϕj(y)dydx

=
k−1∑

ν=0

(∫ 1

0
ϕi(x)gν(x)dx

)(∫ 1

0
ϕj(y)hν(y)dy

)
.

Second, the submatrix G|t×s can be represented in factorised form

G|t×s = ABT , A ∈ Rt×{0,...,k−1}, B ∈ Rs×{0,...,k−1},

A BT

where the entries of the factors A and B are

Aiν :=
∫ 1

0
ϕi(x)gν(x)dx, Bjν :=

∫ 1

0
ϕj(y)hν(y)dy.

The rank of the matrix ABT is at most k independently of the cardinality of t and s. The approximation
error of the matrix block is estimated in the next lemma.

Definition 1.4 (Admissible Blocks) A block t × s ⊂ I × I of indices is called admissible if the corre-
sponding domain τ × σ with τ := ∪i∈tsuppϕi, σ := ∪i∈ssuppϕi is admissible in the sense of (1.4).

Lemma 1.5 (Local Matrix Approximation Error) The elementwise error for the matrix entries Gij

approximated by the degenerate kernel g̃ in the admissible block t × s (and g in the other blocks) is bounded
by

|Gij − G̃ij | ≤
3
2
n−23−k.

Proof:

|Gij − G̃ij | =
∣∣∣
∫ 1

0

∫ 1

0
ϕi(x)(g(x, y) − g̃(x, y))ϕj(y)dydx

∣∣∣
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(1.5)
≤

∫ 1

0

∫ 1

0
|ϕi(x)|3−k|ϕj(y)|dydx

=
3
2
3−k

∫ 1

0
ϕi(x)dx

∫ 1

0
ϕj(y)dy

=
3
2
n−23−k.

Let us assume that we have partitioned the index set I × I for the matrix G into admissible blocks, where
the low rank approximation is applicable, and inadmissible blocks, where we use the matrix entries from G
(in the next two subsections we will present a constructive method for the partitioning):

I × I =
⋃̇

t×s∈P
t × s.

Then the global approximation error is estimated in the Frobenius norm ∥M∥2
F :=

∑
M2

ij :

Lemma 1.6 (Matrix Approximation Error) The approximation error ∥G−G̃∥F in the Frobenius norm
for the matrix G̃ built by the degenerate kernel g̃ in the admissible blocks t×s ∈ P and by g in the inadmissible
blocks is bounded by

∥G − G̃∥F ≤ 3
2
n−13−k.

Proof: Apply Lemma 1.5.

The question remains, how we want to partition the product index set I×I into admissible and inadmissible
blocks. A trivial partition would be P := {(i, j) | i ∈ I, j ∈ I} where only 1 × 1 blocks of rank 1 appear.
In this case the matrix G̃ is identical to G, but we do not exploit the option to approximate the matrix in
large subblocks by matrices of low rank.

The number of possible partitions of I × I is rather large (even the number of partitions of I is so). In
subsequent chapters we will present general strategies for the construction of suitable partitions, but here
we only give an exemplary construction.

1.4 Cluster Tree TI

I(0)
1 = I
✟✟✙ ❍❍❥

I(1)
1

%%✠ ❅❅❘

I(1)
2

%%✠ ❅❅❘

I(2)
1

✁
✁☛

❆
❆❯

I(2)
2

✁
✁☛

❆
❆❯

I(2)
3

✁
✁☛

❆
❆❯

I(2)
4

✁
✁☛

❆
❆❯

I(3)
1 I(3)

2 I(3)
3 I(3)

4 I(3)
5 I(3)

6 I(3)
7 I(3)

8

{0, . . . , 7}
✟✟✙ ❍❍❥

{0, . . . , 3}
%%✠ ❅❅❘

{4, . . . , 7}
%%✠ ❅❅❘

{0, 1}
✁

✁☛
❆
❆❯

{2, 3}
✁

✁☛
❆
❆❯

{4, 5}
✁

✁☛
❆
❆❯

{6, 7}
✁

✁☛
❆
❆❯

{0} {1} {2} {3} {4} {5} {6} {7}

Figure 1.3: The cluster tree TI for p = 3, on the left abstract and on the right concrete.

The candidates t, s ⊂ I for the construction of the partition of I×I will be stored in a so-called cluster tree
TI . The root of the tree TI is the index set I(0)

1 := {0, . . . , n − 1}. For ease of presentation we assume the
number n of basis functions to be a power of two:

n = 2p.



14 CHAPTER 1. INTRODUCTORY EXAMPLE

The two successors of I(0)
1 are I(1)

1 := {0, . . . , n
2 − 1} and I(1)

2 := {n
2 , . . . , n − 1}.

The two successors of I(1)
1 are I(2)

1 := {0, . . . , n
4 − 1} and I(2)

2 := {n
4 , . . . , n

2 − 1}.

The two successors of I(1)
2 are I(2)

3 := {n
2 , . . . , 3n

4 − 1} and I(2)
4 := {3n

4 , . . . , n − 1}.

Each subsequent node t with more than nmin indices has exactly two successors: the first contains the
first half of its indices, the second one the second half. Nodes with not more than nmin indices are leaves.
The parameter nmin controls the depth of the tree. For nmin = 1 we get the maximal depth. However, for
practical purposes (e.g., if the rank k is larger) we might want to set nmin = 2k or nmin = 16.

Remark 1.7 (Properties of TI) For nmin = 1 the tree TI is a binary tree of depth p (see Figure 1.3). It
contains subsets of the index set I of different size. The first level consists of the root I = {0, . . . , n−1} with
n indices, the second level contains two nodes with n/2 indices each and so forth, i.e., the tree is cardinality
balanced. The number of nodes in the cardinality balanced binary tree TI (for nmin = 1) is #TI = 2n− 1.

1.5 Block Cluster Tree TI×I

The number of possible blocks t × s with nodes t, s from the tree TI is (#TI)2 = (2n − 1)2 = O(n2).
This implies that we cannot test all possible combinations (our aim is to reduce the quadratic cost for the
assembly of the matrix).

One possible method is to test blocks level by level starting with the root I of the tree TI and descending in
the tree. The tested blocks are stored in a so-called block cluster tree TI×I whose leaves form a partition of
the index set I×I. The algorithm is given as follows and called with parameters BuildBlockClusterTree(I,I).

Algorithm 1 Construction of the block cluster tree TI×I

procedure BuildBlockClusterTree(cluster t, s)
if (t, s) is admissible then

S(t × s) := ∅
else

S(t × s) := {t′ × s′ | t′ ∈ S(t) and s′ ∈ S(s)}
for t′ ∈ S(t) and s′ ∈ S(s) do

BuildBlockClusterTree(t′, s′)
end for

end if

The tree TI×I is a quadtree, but there are leaves on different levels of the tree which is not the case for the
binary tree TI .

Example 1.8 (Block cluster tree, p = 3) We consider the example tree from Figure 1.3. The root of the
tree is

{0, . . . , 7}× {0, . . . , 7}

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

which is not admissible because the corresponding domain to the index set {0, . . . , 7} is the interval [0, 1] and

diam([0, 1]) = 1 ̸≤ 0 = dist([0, 1], [0, 1]).
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The four successors of the root in the tree TI×I are

{0, 1, 2, 3}× {0, 1, 2, 3}, {0, 1, 2, 3}× {4, 5, 6, 7},
{4, 5, 6, 7}× {0, 1, 2, 3}, {4, 5, 6, 7}× {4, 5, 6, 7}.

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

Again, none of these is admissible, and they are further subdivided into

{0, 1}× {0, 1}, {0, 1}× {2, 3}, {0, 1}× {4, 5}, {0, 1}× {6, 7},
{2, 3}× {0, 1}, {2, 3}× {2, 3}, {2, 3}× {4, 5}, {2, 3}× {6, 7},
{4, 5}× {0, 1}, {4, 5}× {2, 3}, {4, 5}× {4, 5}, {4, 5}× {6, 7},
{6, 7}× {0, 1}, {6, 7}× {2, 3}, {6, 7}× {4, 5}, {6, 7}× {6, 7}.

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

Now some of the nodes are admissible, e.g., the node {0, 1} × {4, 5} because the corresponding domain is
[0, 1

4 ] × [ 12 , 3
4 ]:

diam
([

0,
1
4

])
=

1
4

= dist
([

0,
1
4

]
,

[
1
2
,
3
4

])
.

The nodes on the diagonal are not admissible (the distance of the corresponding domain to itself is zero) and
also some nodes off the diagonal, e.g., {0, 1}× {2, 3}, are not admissible. The successors of these nodes are
the singletons {(i, j)} for indices i, j. The final structure of the partition looks as follows:

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0

0

For p = 4 and p = 5 the structure of the partition is similar:
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1.6 Assembly, Storage and Matrix-Vector Multiplication

The product index set I×I resolves into admissible and inadmissible leaves of the tree TI×I. The assembly,
storage and matrix-vector multiplication differs for the corresponding two classes of submatrices.

1.6.1 Inadmissible Leaves

In the inadmissible (but small !) blocks t × s ⊂ I × I we compute the entries (i, j) as usual:

G̃ij :=
∫ 1

0

∫ 1

0
ϕi(x) log |x − y|ϕj(y)dydx

=
∫ (i+1)/n

i/n

∫ (j+1)/n

j/n
log |x − y|dydx.

Definition 1.9 (fullmatrix Representation) An n × m matrix M is said to be stored in fullmatrix
representation if the entries Mij are stored as real numbers (double) in an array of length nm in the order

M11, . . . , Mn1, M12, . . . , Mn2, . . . , M1m, . . . , Mnm (column-wise).

Implementation 1.10 (fullmatrix) The fullmatrix representation in the C programming language
might look as follows:

typedef struct _fullmatrix fullmatrix;
typedef fullmatrix *pfullmatrix;

struct _fullmatrix {
int rows;
int cols;
double* e;

};

The array e has to be allocated and deallocated dynamically in the constructor and destructor:

pfullmatrix
new_fullmatrix(int rows, int cols){
pfullmatrix f = (pfullmatrix) malloc(sizeof(fullmatrix));
f->rows = rows;
f->cols = cols;
f->e = (double*) malloc(rows*cols*sizeof(double));
for(i=0; i<rows*cols; i++) f->e[i] = 0.0;
return f;

}

void
del_fullmatrix(pfullmatrix f){
if(f->e) free(f->e);
free(f);
f = 0x0;

}

The entry Mij is stored at the position f− > e[i + j ∗ f− > rows]. The ordering of the matrix entries in
the fullmatrix representation is the same ordering that is used in standard linear algebra packages (BLAS,
LAPACK, MATLAB, etc.). Therefore, procedures from these libraries can be called without complications,
e.g., the matrix-vector multiplication can be performed by calling the standard BLAS subroutine dgemv.
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1.6.2 Admissible Leaves

In the admissible blocks t × s ⊂ I × I with corresponding domains [a, b] × [c, d] and x0 := (a + b)/2 we
compute the submatrix in factorised form

G̃|t×s := ABT ,

Aiν :=
∫ (i+1)/n

i/n
(x − x0)νdx,

Bjν :=

{
(−1)ν+1ν−1

∫ (j+1)/n
j/n (x0 − y)−νdy if ν > 0

∫ (j+1)/n
j/n log |x0 − y|dy if ν = 0.

Definition 1.11 (R(k)-Matrices) Let n, m ∈ N, k ∈ N0. We define the set of n × m matrices of rank at
most k by

R(k, n, m) := {M ∈ Rn×m | rank(M) ≤ k}.

A suitable representation for the submatrix G̃|t×s is the rkmatrix format defined next.

Definition 1.12 (rkmatrix Representation) An n × m matrix M of rank at most k is said to be stored
in rkmatrix representation if it is stored in factorised form M = ABT where the two matrices A ∈ Rn×k

and B ∈ Rm×k are both stored as an array (column-wise).

Implementation 1.13 (rkmatrix) The rkmatrix representation is implemented in the C programming
language as follows:

typedef struct _rkmatrix rkmatrix;
typedef rkmatrix *prkmatrix;

struct _rkmatrix {
int k;
int kt;
int rows;
int cols;
double* a;
double* b;

};

The arrays a and b have to be allocated and deallocated dynamically in the constructor and destructor:

prkmatrix
new_rkmatrix(int k, int rows, int cols){
int i;
prkmatrix r = (prkmatrix) malloc(sizeof(rkmatrix));
r->k = k;
r->kt = 0;
r->rows = rows;
r->cols = cols;
r->a = 0x0;
r->b = 0x0;
if(k>0){

r->a = (double*) malloc(k*rows*sizeof(double));
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for(i=0; i<rows*k; i++) r->a[i] = 0.0;
r->b = (double*) malloc(k*cols*sizeof(double));
for(i=0; i<cols*k; i++) r->b[i] = 0.0;

}
return r;

}

void
del_rkmatrix(prkmatrix r){
free(r->a);
free(r->b);
free(r);

}

The implementation of the fullmatrix representation for the factors A and B in the implementation of
the rkmatrix representation differs from the one in Implementation 1.10: the information about the size of
the two factors is stored in the rkmatrix structure and the two matrices A and B are stored as two arrays.
The integer k in the rkmatrix structure is an upper bound for the allowed rank while kt denotes the actual
(temporarily) used rank. Often k equals kt, but in general there holds kt ≤ k.

1.6.3 Hierarchical Matrix Representation

Definition 1.14 (H-matrix) Let TI×I be a block cluster tree for the index set I. We define the set of
H-matrices as

H(TI×I, k) :=
{
M ∈ RI×I | rank(M |t×s) ≤ k for all admissible leaves t × s of TI×I

}
.

Definition 1.15 (H-matrix Representation) Let TI×I be a block cluster tree for the index set I. A
matrix M ∈ H(TI×I, k) is said to be stored in H-matrix representation if the submatrices corresponding to
inadmissible leaves are stored in fullmatrix representation and those corresponding to admissible leaves are
stored in rkmatrix representation.

One possible implementation for a matrix in H-matrix representation would be to store the admissible and
inadmissible matrix blocks in a list. The assembly and matrix-vector multiplication can be done for each
block separately. However, we choose a different implementation that is guided by the block tree TI×I (not
only the leaves) and stores the matrix in a more “structured” way.

Each block t × s in the tree TI×I can be

• a leaf - then the corresponding matrix block is represented by a fullmatrix or rkmatrix;

• not a leaf - then the block t × s is decomposed into its sons t′ × s′ with t′ ∈ S(t) and s′ ∈ S(s). This
means that the matrix corresponding to the block t × s is a supermatrix that consists of submatrices
corresponding to t′ × s′:

t    s
t’   s’

Implementation 1.16 (supermatrix) The supermatrix structure in the C programming language is im-
plemented as follows:
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typedef struct _supermatrix supermatrix;
typedef supermatrix *psupermatrix;

struct _supermatrix {
int rows;
int cols;
int block_rows;
int block_cols;
prkmatrix r;
pfullmatrix f;
psupermatrix* s;

};

A supermatrix M consists of block_rows × block_cols submatrices. The size of the matrix is rows×cols,
i.e., M ∈ Rrows×cols. The matrix can be

• an rkmatrix - then r ̸= 0x0, f = 0x0 and s = 0x0:
the matrix r is the rkmatrix representation of M ;

• a fullmatrix - then f ̸= 0x0, r = 0x0 and s = 0x0:
the matrix f is the fullmatrix representation of M ;

• a supermatrix - then s ̸= 0x0, f = 0x0 and r = 0x0:
the array s contains the pointers to the submatrices Mi,j of

M =

⎡

⎢⎣
M1,1 · · · M1,blockcols

...
. . .

...
Mblockrows,1 · · · Mblockrows,blockcols

⎤

⎥⎦

in the order

M1,1, . . . , Mblockrows,1, M1,2, . . . , Mblockrows,2, . . . , M1,blockcols, . . . , Mblockrows,blockcols,

so that the pointer to the submatrix Mi,j is stored at the position M->s[i+j*M->block_rows].

The implementation of an H-matrix is a tree with nodes implemented as supermatrix. Additionally, the
structure coincides with the structure given by the block cluster tree TI×I (successors ≡ submatrices) and
the submatrices corresponding to admissible or inadmissible leaves are stored in the rkmatrix or fullmatrix
format.
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Chapter 2

Multi-dimensional Construction

In order to apply hierarchical matrices to problems in more than one space dimension, we have to introduce
multi-dimensional counterparts of the cluster tree and the block cluster tree.

2.1 Multi-dimensional Cluster Tree

In the one-dimensional case, the clusters are organized in a balanced binary tree. For multi-dimensional
problems, we need a generalized structure.

2.1.1 Definition and Basic Properties

Before we can define cluster trees, we have to define trees.

Definition 2.1 (Tree) Let N ̸= ∅ be a finite set, let r ∈ N and let S : N → P(N) be a mapping from
N into subsets of N . For t ∈ N , a sequence t0, . . . , tm ∈ N with t0 = r, tm = t and ti+1 ∈ S(ti) for all
i ∈ {0, . . . , m − 1} is called sequence of ancestors of t.

T := (N, r, S) is called a tree if there is exactly one sequence of ancestors for each t ∈ N .

If T is a tree, the elements of N are called nodes, the element r is called the root node or root and denoted
by root(T ), and the set sons(T, t) := S(t) is called the set of sons.

Lemma 2.2 (Properties of trees) Let T = (N, r, S) be a tree.

1. Let t ∈ N , and let t0, . . . , tm ∈ N be its sequence of ancestors. For all i, j ∈ {0, . . . , m} with i ̸= j, we
have ti ̸= tj.

2. There is no t ∈ N with r ∈ sons(t).

3. For each t ∈ N \ {r}, there is a unique t+ ∈ N with t ∈ sons(t+).

Proof: Let i, j ∈ {0, . . . , m} with ti = tj . Then both t0, . . . , ti and t0, . . . , tj are sequences of ancestors for
ti = tj . Since these sequences are unique, we conclude i = j.

Let t ∈ N with sons(T, t) ̸= ∅, and let s ∈ sons(T, t). Let t0, . . . , tm be the sequence of ancestors of t. Then
t0, . . . , tm, s is a sequence of ancestors of s, and by definition it is the only one. This implies r = t0 ̸= s.

Let t ∈ N \ {r}, and let t0, . . . , tm be its sequence of ancestors. Due to t ̸= r = t0, we have m > 0 and find
t = tm ∈ sons(T, tm−1). Therefore we can conclude by setting t+ := tm−1.

21

(Tree)

sons.

root
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2 4

3 6

1

5 7

Figure 2.1: Tree in standard notation

Due to Lemma 2.2, for each t ∈ N \ {r}, there is a t+ ∈ N with t ∈ sons(t+). This node is called the father
of t and denoted by father(t) := t+.

We define the set of descendants sons∗(t) of a node t ∈ N recursively by

sons∗(t) :=

{
{t} if sons(t) = ∅,
{t} ∪

⋃
s∈sons(t) sons∗(s) otherwise.

A vertex t ∈ N is a leaf if sons(t) = ∅ holds and we define the set of leaves

L(T ) := {t ∈ N : sons(t) = ∅}.

Definition 2.3 (Tree level) Let T = (N, r, S) be a tree. Let t ∈ N , and let t0, . . . , tm ∈ N be its sequence
of ancestors. The number m ∈ N0 is called the level of t and denoted by level(T, t). We define

T (ℓ) := {t ∈ N : level(T, t) = ℓ} for all ℓ ∈ N0.

We will use the short notations t ∈ T instead of t ∈ N , sons(t) instead of sons(T, t) and level(t) instead of
level(T, t) as long as this does not lead to confusion.

Obviously, we have level(t) = 0 if and only if t = root(T ). The maximal level is called the depth of T and
denoted by

depth(T ) := max{level(t) : t ∈ N}.

Definition 2.4 (Labeled tree) Let N, L ̸= ∅ be finite sets, let r ∈ N , let S : N → P(N) and m : N → L
be mappings. T := (N, r, S, m, L) is a labeled tree if (N, r, S) is a tree.

The notations for a tree carry over to a labeled tree. In addition, L is called the label set of T and for each
t ∈ N , m(t) ∈ L is called the label of t and denoted by t̂.

Now we can generalize the structure introduced in the previous chapter: we organize subsets of the index
set I in a cluster tree. The cluster tree supplies us with candidates that can be checked for admissibility. If
they are not admissible, we split them and repeat the procedure. This suggests the following definition:

Definition 2.5 (Cluster tree) A labeled tree T = (N, r, S, m, L) is a cluster tree for an index set I if the
following conditions hold:

• ̂root(T ) = I.

ather

leaf

L(T):={t∈N : sons(t)=∅}.

level

depth

depth(T):=max{level(t) : t∈N}.

we organize subsets of the index set I in a cluster tree.

(Cluster tree)
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• Let t ∈ N . If sons(T, t) ̸= ∅, we have
t̂ =

⋃

s∈sons(t)

ŝ.

• Let t ∈ N . For all s1, s2 ∈ sons(T, t) with s1 ̸= s2, we have ŝ1 ∩ ŝ2 = ∅.

The vertices t ∈ N of a cluster tree are called clusters.

A cluster tree for I is usually denoted by TI. We will use the abbreviation t ∈ TI for t ∈ N .

Remark 2.6 (Alternative notation) In the literature, the distinction between the cluster t and the cor-
responding index set t̂ is frequently neglected. This simplifies the notation, but it can lead to ambiguities if
clusters t with # sons(T, t) = 1 are present in the cluster tree: for t′ ∈ sons(T, t), the definition of the cluster
tree implies t̂ = t̂′, although t and t′ are different mathematical objects.

Lemma 2.7 (Properties of cluster trees) Let TI be a cluster tree.

1. For all t, s ∈ TI with t ̸= s and level(t) = level(s), we have t̂ ∩ ŝ = ∅.

2. For all t, s ∈ TI with level(t) ≤ level(s) and t̂ ∩ ŝ ̸= ∅, we have s ∈ sons∗(t).

3. For all i ∈ I, there is a leaf t ∈ L(TI) with i ∈ t̂.

4. I =
⋃̇

t∈L(TI)t̂.

Proof: We prove the first claim by induction over level(t) = level(s) ∈ N0. For level(t) = level(s) = 0, we
have t = root(TI) = s and our statement is trivial. Let now ℓ ∈ N0 be such that

t ̸= s ⇒ t̂ ∩ ŝ = ∅

holds for all t, s ∈ TI with level(t) = level(s) = ℓ.

Let t, s ∈ TI with t ̸= s and level(t) = level(s) = ℓ + 1. Since level(t) = level(s) > 0, there are clusters
t+, s+ ∈ TI with t ∈ sons(t+), s ∈ sons(s+) and level(t+) = level(t) − 1 = ℓ = level(s) − 1 = level(s+).

If t+ = s+, we have s ∈ sons(t+), i.e., s and t are different sons of the same cluster, and Definition 2.5
implies t̂ ∩ ŝ = ∅.

If t+ ̸= s+, we can apply the induction assumption in order to find t̂+ ∩ ŝ+ = ∅. Definition 2.5 yields t̂ ⊆ t̂+

and ŝ ⊆ ŝ+, which implies t̂ ∩ ŝ ⊆ t̂+ ∩ ŝ+ = ∅ and concludes the induction.

Let us now consider the second claim. Let t, s ∈ TI with level(t) ≤ level(s) and t̂ ∩ ŝ ̸= ∅. Let m := level(s)
and ℓ := level(t). Let s0, . . . , sm ∈ TI be the sequence of ancestors of s. Since ℓ ≤ m, s∗ := sℓ is a well-
defined cluster satisfying s = sm ∈ sons∗(s∗) and level(s∗) = ℓ = level(t). Due to Definition 2.5, we have
ŝ∗ ⊇ ŝ and therefore ŝ∗ ∩ t̂ ⊇ ŝ ∩ t̂ ̸= ∅. Using the first part of this proof, we can conclude t = s∗.

In order to prove the third claim, we let i ∈ I and introduce the set

C := {t ∈ TI : i ∈ t̂}.

Due to i ∈ I = ̂root(TI), we have root(TI) ∈ C, i.e., the set C is not empty. Let t ∈ C. If sons(t) ̸= ∅,
Definition 2.5 implies that there is a cluster s ∈ sons(t) with i ∈ ŝ ⊆ t̂, which means s ∈ C. Let now t ∈ C
with level(t) = max{level(s) : s ∈ C}. We have seen that the maximality of level(t) implies sons(t) = ∅,
therefore t is a leaf, and the definition of the set C implies i ∈ t̂.

We can prove the fourth claim by combining the second and third claim: the third claim implies I =⋃
t∈L(TI) t̂. Let t, s ∈ L(TI) with t ̸= s. Without loss of generality, we can assume level(t) ≤ level(s). Since

t is a leaf, we have sons∗(t) = {t}, i.e., s ̸∈ sons∗(t). Due to the second claim, this implies t̂ ∩ ŝ = ∅.

Lemma 2.7 (Properties of cluster trees) Let TI be a cluster tree. 1. Forallt,s∈TI witht̸=sandlevel(t)=level(s),wehavetˆ∩sˆ=∅.2. Forallt,s∈TI withlevel(t)≤level(s)andtˆ∩sˆ̸=∅,wehaves∈sons∗(t). ˆ3. For all i∈I, there is a leaf t∈L(TI) with i∈t. 4.I= t∈L(TI)t. ˆ
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Exercise 1 Let TI be a cluster tree with c clusters and l leaves. Prove that c ≤ 2l − 1 holds if we have
# sons(t) ̸= 1 for all t ∈ TI.

Now that we know what a general cluster tree is, we have to find a suitable method for constructing a good
cluster tree for a given set of basis functions. In the following, we will describe two simple algorithms that
build cluster trees in a relatively general setting.

2.1.2 Geometric Bisection

The complexity of arithmetic operations for a hierarchical matrix is directly linked to the number of leaves
of a block cluster tree, so a good cluster tree should make sure that blocks become admissible as soon as
possible. The admissibility of a block depends on the diameters of the supports of the involved basis functions
and on their distance. We cannot do much about the distance of the supports, but we can try to choose the
cluster tree in such a way that the diameters shrink quickly.

For each i ∈ I, we denote the support of the corresponding basis function ϕi by Ωi := supp(ϕi). Since dealing
directly with the supports will be too complicated, we choose a point xi ∈ Ωi for each index i ∈ I and work
with these points instead of the supports. This simplification will not significantly harm the performance of
the algorithm, since the supports of typical finite element basis functions are small.

Our construction starts with the full index set I, which is the root of the cluster tree by definition. Then,
we apply a suitable technique to find a disjoint partition of the index set and use this partition to create son
clusters. We apply the procedure recursively to the sons until the index sets are small enough.

Let us first consider the one-dimensional case: We want to split the index set t̂ ⊂ I corresponding to a
cluster t into two parts. Each index i ∈ t̂ corresponds to a point xi ∈ R, so we can set a := min{xi : i ∈ t̂},
b := max{xi : i ∈ t̂} and find {xi : i ∈ t̂} ⊆ [a, b]. Now the solution is clear: We set c := (a + b)/2 and
split the interval [a, b] into [a, c] and ]c, b]. This gives rise to the partition {t̂0, t̂1} of t̂ with

t̂0 := {i ∈ t̂ : xi ≤ c}, t̂1 := {i ∈ t̂ : xi > c}.

Obviously, we have
diam{xi : i ∈ t̂0}
diam{xi : i ∈ t̂1}

}
≤ b − a

2
=

diam{xi : i ∈ t̂}
2

,

so our choice is optimal.

a
c

b

In the multi-dimensional setting, we can generalize this approach: We set

al := min{(xi)l : i ∈ t̂} and bl := max{(xi)l : i ∈ t̂}

for all l ∈ {1, . . . , d}, therefore all points are contained in the axis-parallel box [a1, b1] × · · · × [ad, bd]. Now
we are faced with a choice: We can split the box in all coordinate directions simultaneously and get 2d

subdomains, or we can choose the coordinate direction of maximal extent and split the box perpendicular
to this direction into two subdomains.

The first approach guarantees that the diameters of the subdomains are halved, but creates only a small
number of clusters, so we will have only a small number of candidates to choose from in the construction of
the block partition.

The second approach leads to a tree with a large number of clusters, but it also has the disadvantage that
the diameters of the clusters will decrease only by a factor of

√
1 − 3/(4d) during one step of the procedure,

while performing d steps will still give us 2d clusters with halved diameters, just as in the first approach.
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2.1.3 Regular Subdivision

In some situations, we want to have a cluster structure that is more regular than the one resulting from
standard geometric bisection, e.g., for the theoretical treatment of cluster algorithms or in situations where
we want to use one cluster tree structure for different geometries.

As before, we construct the regular cluster tree by defining how a cluster t is split. We assume that a box
Bt = [a1, b1] × · · ·× [ad, bd] with xi ∈ Bt for all i ∈ t̂ and a splitting direction jt ∈ {1, . . . , d} are given. We
construct new boxes Bt0 and Bt1 by setting cj := (aj + bj)/2 and

Bt0 := [a1, b1] × · · ·× [aj , cj ] × · · ·× [ad, bd] and Bt1 := [a1, b1] × · · ·× [cj , bj] × · · ·× [ad, bd].

The index sets t̂0 and t̂1 are defined by

t̂0 := {i ∈ t̂ : xi ∈ Bt0} and t̂1 := t̂ \ t̂1.

We set jt0 := jt1 := (jt mod d) + 1.

Since xi ∈ Bt0 for i ∈ t̂0 and xi ∈ Bt1 for i ∈ t̂1 hold by construction, we can now repeat the procedure for
t0 and t1.

Compared to the standard geometric bisection, the regular construction has a major disadvantage: One of
the son clusters t̂1 and t̂2 can be empty even if t̂ is not, so it is possible to have clusters with exactly one
son. But the regular construction also has a major advantage: all boxes on a level of the cluster tree have
exactly the same dimensions, i.e., they are identical up to translations.

2.1.4 Implementation

The implementation of the tree structure is straightforward:

Implementation 2.8 (cluster) The cluster structure is defined as follows:

typedef struct _cluster cluster;
typedef cluster *pcluster;

struct _cluster {
int start;
int size;

int sons;
pcluster *son;

};

The fields start and size describe t̂: they give us the number of the first index of t̂ and the number of
indices. The meaning of these indices will become clear later.

The field sons contains the number of sons, i.e., the cardinality of the set sons(t), while the array son is
filled with the pointers to these sons.

We will now demonstrate how a cluster tree can be constructed. Before we start, we have to comment on a
finer point of the implementation: in some applications, not all vertices appearing in a grid correspond to
degrees of freedom. An example is the standard finite element method, applied to a problem with Dirichlet
boundary conditions: the boundary vertices are present in the finite element grid, but they are not degrees
of freedom.

In order to handle this in an elegant fashion, we distinguish indices and degrees of freedom. The indices form
the contiguous subinterval {0, . . . , nidx − 1} of the set of integers, while the set I of degrees of freedom is an
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arbitrary non-empty subset of the set of indices. In the finite element example, nidx would be the number
of all vertices, while I would be the subset containing non-boundary vertices.

Before we can give the complete algorithm, we first have to consider the necessary data structures: we need
a struct to store the array of points and some auxiliary data:

Implementation 2.9 (clusterfactory) The clusterfactory structure is defined as follows:

typedef struct _clusterfactory clusterfactory;
typedef clusterfactory *pclusterfactory;

struct _clusterfactory {
double **x;

int ndof;
int nidx;
int d;

double *vmin;
double *vmax;

double *blocks;
};

The field ndof contains the maximal number of degrees of freedom, the field nidx contains the maximal
number of points, while the field d gives us the spatial dimension of the underlying space.

The array x stores the coordinates of the points xi for each index i ∈ {0, . . . , nidx-1}: the entry x[i] is a
d-dimensional array containing the coordinates of the point xi.

The fields vmin and vmax will be used in our algorithms to store the minimal and maximal values corre-
sponding to each coordinate.

Since x is implemented as an array of length nidx containing pointers to double variables, we need something
these pointers can point to. Instead of allocating memory for each point individually, we allocated one block
of size nidx*d and distribute this memory among the pointers x[i]. The field blocks points to the large
block.

The algorithm for the creation of a cluster tree is based on sets of indices. Therefore we have to find a
suitable representation of sets and subsets in the C programming language.

We choose a simple approach: a set is an array of indices. The points are numbered by int quantities, so
we represent a set by an array of int variables: the array

int index[4] = { 7, 2, 5, 8 };

corresponds to the set {7, 2, 5, 8}, the points can be accessed by x[index[i]] for values of i between 0 and
3.

Obviously, the described set does not change if we rearrange the entries in the corresponding array:

int index2[4] = { 2, 5, 7, 8 };

describes exactly the same set as before. This fact can be used to treat subsets efficiently: if we want to split
the set {7, 2, 5, 8} into the subsets {2, 5} and {7, 8}, we find that both subsets are described by two-element
subarrays of index2, namely index2 and index2+2.
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This means that a clustering algorithm will give us two results: the cluster tree, expressed in the cluster
structure, and an array index describing the mapping of degrees of freedom to indices. We collect these
objects in a new class:

Implementation 2.10 (clustertree) The clustertree structure is defined as follows:

typedef struct _clustertree clustertree;
typedef clustertree *pclustertree;

struct _clustertree {
int ndof;
int nidx;

int *dof2idx;
int *idx2dof;
pcluster root;

};

The field ndof contains the maximal number of degrees of freedom, the field nidx contains the maximal
number of points.

The array dof2idx has ndof elements and corresponds to the array index described above, i.e., it translates
degrees of freedom into indices.

The array idx2dof has nidx elements and performs the inverse operation, i.e., it translates indices into
degrees of freedom. The entries of indices that do not correspond to degrees of freedom are set to -1.

The pointer root gives us the root cluster of the cluster tree.

Based on this representation of sets and cluster trees, the implementation of the geometric bisection clustering
algorithm is straightforward: we use a recursive function split_geometrically() that receives a pointer
factory to a clusterfactory structure containing the point coordinates, a pointer index to an int array
describing the subset we have to split, and an int size giving us the size of this array. The function
determines how to split the subset and rearranges the array index such that the first subset corresponds to
the first part of the array and the second subset corresponds to the rest, then calls itself recursively.

In order to be able to reconstruct the subsets corresponding to all clusters, not only the leaf clusters, we add
the additional int parameter start giving us the absolute starting index in the array describing the full
index set. For performance reasons, we may want to stop the splitting process before we have reached sets
containing only one element, so we also add an int parameter leafsize that tells us which sets are small
enough.

static pcluster
split_geometrically(pclusterfactory factory, int *index,

int start, int sz, int leafsize)
{
/* ... some initialization ... */

if(sz <= leafsize) /* Stop if small enough */
this = new_cluster(start, sz, 0);

else {
for(j=0; j<d; j++) { /* Determine bounding box */
vmin[j] = vmax[j] = x[index[0]][j];
for(i=1; i<sz; i++)
if(x[index[i]][j] < vmin[j])
vmin[j] = x[index[i]][j];
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else if(vmax[j] < x[index[i]][j])
vmax[j] = x[index[i]][j];

}

jmax = 0; vdiff = vmax[0] - vmin[0]; /* Find maximal extent */
for(j=1; j<d; j++)
if(vmax[j] - vmin[j] > vdiff) {
jmax = j; vdiff = vmax[j] - vmin[j];

}

l = 0; r = sz-1; /* Rearrange array */
vmid = 0.5 * (vmax[jmax] + vmin[jmax]);
while(l < r) {
while(l < sz && x[index[l]][jmax] <= vmid) l++;
while(r >= 0 && x[index[r]][jmax] > vmid) r--;
if(l < r) {
h = index[l]; index[l] = index[r]; index[r] = h;

}
}

this = new_cluster(start, sz, 2); /* Recursion */
this->son[0] = split_geometrically(factory, index,

start, l, leafsize);
this->son[1] = split_geometrically(factory, index+l,

start+l, sz-l, leafsize);
}

return this;
}

In order to simplify the handling of the creation of cluster trees, we employ a simple “front-end” procedure
to call split_geometrically:

static pcluster
do_geometric(pclusterfactory factory,

int *index, int n,
int leafsize)

{
return split_geometrically(factory, index, 0, n, leafsize);

}

For the clustering strategy based on regular subdivisions, we have to modify the splitting routine slightly:
instead of computing the box given by vmin and vmax in each step, we simply update only one coordinate
before calling the routine recursively.

If we apply one of these algorithms to a simple rectangular grid with lexicographic numbering of the degrees
of freedom, we get the following sequence of numberings:
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3210

4 5 6 7

111098

12 13 14 15

Original

121310

4 5 9 8

111067

3 2 14 15

Level 1

111010

3 2 9 8

121367

4 5 14 15

Level 2

0 3 8 11

10921

5 6 13 14

151274

Level 3

The array index maps the final numbering (i.e., the one corresponding to level 3) to the original numbering:

int index[16] = { 0, 4, 5, 1, 12, 8, 9, 13,
2, 6, 7, 3, 14, 10, 11, 15 };

In practice, the routines for the creation of cluster trees will be called not from the top-level of a program,
but from intermediate routines that initialize the fields x, smin and smax with geometry data. Since we
do not intend to write these routines for each type of clustering strategy, we use a “master function” that
controls all aspects of the creation of a cluster tree:

pclustertree
create_subclustertree(pclusterfactory factory,

const int *index, int n,
ClusterStrategy strategy, int leafsize)

{
/* ... some initialization ... */

ct = new_clustertree(n, factory->nidx);
dof2idx = ct->dof2idx;
idx2dof = ct->idx2dof;

for(i=0; i<n; i++) dof2idx[i] = index[i];

switch(strategy) {
default:
case HLIB_DEFAULT:
case HLIB_GEOMETRIC:

ct->root = do_geometric(factory, dof2idx, n, leafsize);
break;

case HLIB_REGULAR:
ct->root = do_regular(factory, dof2idx, n, leafsize);
break;

/* ... more clustering strategies ... */
}

for(i=0; i<factory->nidx; i++) idx2dof[i] = -1;
for(i=0; i<n; i++) idx2dof[dof2idx[i]] = i;

return ct;
}

Now let us turn our attention to a simple but non-trivial example that illustrates how we have to initialize
the clusterfactory structure and how we can use it to create a cluster tree.
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Example 2.11 (Curve in 2D) We consider a closed curve in two-dimensional space, given as an array x
of vertices points and an array e of edges edges. We use piecewise constant basis functions and choose
the characterizing point to be the middle of the corresponding interval. Building the desired cluster tree is
straightforward:

factory = new_clusterfactory(edges, edges, 2);
index = (int *) malloc((size_t) sizeof(int) * edges);

for(i=0; i<edges; i++) {
factory->x[i][0] = 0.5 * (x[e[i][0]][0] + x[e[i][1]][0]);
factory->x[i][1] = 0.5 * (x[e[i][0]][1] + x[e[i][1]][1]);
index[i] = i;

}

ct = create_subclustertree(factory, index, edges, HLIB_GEOMETRIC, 1);

In the previous example, each index corresponds to a degree of freedom. Now, we will consider a simple
example in which the degrees of freedom are a true subset of the set of indices.

Example 2.12 (FE grid in 2D) We consider a triangular grid, given as an array triangle of nt trian-
gles, an array vertex of nv points and an array dirichlet of nv flags that are set if a point is part of the
Dirichlet boundary. The construction of the cluster tree is done as follows:

n = 0;
for(i=0; i<nv; i++)
if(!dirichlet[i]) n++;

factory = new_clusterfactory(n, nv, 2);
index = (int *) malloc((size_t) sizeof(int) * n);

j = 0;
for(i=0; i<nv; i++) {
factory->x[i][0] = vertex[i][0];
factory->x[i][1] = vertex[i][1];
if(!dirichlet[i]) {

index[j] = i; j++;
}

}

ct = create_subclustertree(factory, index, n, HLIB_REGULAR, 1);

For a given cluster t, we can iterate over all corresponding intervals by using the following simple loop:

for(i=t->start; i<t->start+t->size; i++) {
ii = dof2idx[i];
/* do something for the index ii */

}

For a pair t, s of clusters and a given rank k, we can build the rkmatrix by this function call:

rk = new_rkmatrix(k, t->size, s->size);

There is one very important detail: if we want to perform matrix operations, we use the permutation of the
index set given in dof2idx, not the original ordering. The first index of a cluster t corresponds to the basis
function with the number dof2idx[t->start], not to that with the number t->start.
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In typical applications, the permutation described by dof2idx is only important when accessing the un-
derlying geometry, i.e., when matrices or right hand side vectors are discretized or when results have to be
interpreted, e.g., if the solution vector is to be displayed.

Remark 2.13 (Alternatives) There are many variations of the two possible clustering strategies described
here: for some applications, a balanced cluster tree may be of importance, so the algorithm is changed so that
the subsets it creates are of approximately identical size. For other applications, e.g., in boundary element
techniques, it may be desirable to split the index set by more general planes than those given by the coordinate
vectors we have used in our method.

2.2 Multi-dimensional Block Cluster Tree

As seen in Subsection 1.5, the cluster trees can be used to derive a hierarchy of block partitions of the I×J
corresponding to the matrix, the block cluster tree. The leaves of this tree form a block partition of I × J .

2.2.1 Definition

Definition 2.14 (Block cluster tree) Let TI and TJ be cluster trees for index sets I and J . A finite
tree T is a block cluster tree for TI and TJ if the following conditions hold:

• root(T ) = (root(TI), root(TJ )).

• Each node b ∈ T has the form b = (t, s) for clusters t ∈ TI and s ∈ TJ .

• For each node b = (t, s) ∈ T with sons(b) ̸= ∅, we have

sons(b) =

⎧
⎪⎨

⎪⎩

{(t, s′) : s′ ∈ sons(s)} if sons(t) = ∅ and sons(s) ̸= ∅,
{(t′, s) : t′ ∈ sons(t)} if sons(t) ̸= ∅ and sons(s) = ∅,
{(t′, s′) : t′ ∈ sons(t), s′ ∈ sons(s)} otherwise.

(2.1)

• The label of a node b = (t, s) ∈ T is given by b̂ = t̂ × ŝ ⊆ I × J .

The vertices of T are called block clusters.

A block cluster tree for TI and TJ is usually denoted by TI×J .

We can see that ̂root(TI×J ) = I × J holds. A closer look at the definition reveals that TI×J is a special
cluster tree for the index set I × J , therefore the leaves of TI×J define a disjoint partition

{b̂ : b ∈ L(TI×J )} (2.2)

of the index set I × J corresponding to a matrix.

Remark 2.15 (Alternative notation) In the literature, block clusters are frequently denoted by b = t× s
instead of b = (t, s). The motivation for this notation is the one already pointed out in Remark 2.6: if t and
t̂ are treated as the same object, it is straightforward to also treat b = (t, s) and b̂ = t̂× ŝ as the same object.
Using this sloppy notation, we have b = b̂ = t̂ × ŝ = t × s.

Definition 2.16 (Level-consistency) A block cluster tree TI×J for TI and TJ will be called level-
consistent, if

level(b) = level(t) = level(s)

holds for all b = (t, s) ∈ TI×J .

lock cluster tree
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If a block cluster tree is level-consistent, we have

sons(b) ̸= ∅ ⇒ sons(b) = {t′ × s′ : t′ ∈ sons(t), s′ ∈ sons(s)}

for all b = (t, s) ∈ TI×J , i.e., only the last choice in (2.1) can hold.

2.2.2 Admissibility

In the one-dimensional setting, we have used the simple condition (1.4) to determine whether we could
approximate a matrix block by a low-rank matrix.

In the multi-dimensional setting, we have to generalize the admissibility condition: the indices in I and
therefore the clusters in TI no longer correspond to intervals. We can still find a connection between indices
and domains: each index i ∈ I corresponds to a basis function ϕi, and the support Ωi = suppϕi again is a
subdomain of Rd.

We can generalize Ωi to clusters t ∈ TI by setting

Ωt :=
⋃

i∈t̂

Ωi,

i.e., Ωt is the minimal subset of Rd that contains the supports of all basis functions ϕi with i ∈ t̂.

Using this, a possible generalization of (1.4) is

min{diam(Ωt), diam(Ωs)} ≤ η dist(Ωt, Ωs), (2.3)

where diam(·) is the Euclidean diameter of a set and dist(·, ·) is the Euclidean distance of two sets.

The concept of admissibility carries over to clusters: a pair (t, s) of clusters t ∈ TI , s ∈ TJ is admissible if
the corresponding domains Ωt and Ωs are admissible. Using this, we can define the necessary conditions for
block cluster trees:

Definition 2.17 (Admissible block cluster tree) A block cluster tree TI×J for I and J is called ad-
missible with respect to an admissibility condition if

(t, s) is admissible or sons(t) = ∅ or sons(s) = ∅

holds for all leaves (t, s) ∈ L(TI×J ).

Constructing an admissible block cluster tree from the cluster trees TI and TJ and a given admissibility
condition can be done by a straightforward recursion: given two clusters t ∈ TI and s ∈ TJ , we check the
admissibility. If the clusters are admissible, we are done. If they are not admissible, we repeat the procedure
for all combinations of sons of t and sons of s.

Checking the condition (2.3) for general domains can be computationally expensive, so we are looking for a
simplified condition. The traditional way is to determine the Chebyshev circles (in 2D) or spheres (in 3D)
for the domains, since diameters and distances of circles or spheres can be computed in O(1) operations.
Unfortunately, the construction of Chebyshev circles is not entirely trivial, so we make use of an even simpler
technique: axis-parallel boxes.

2.2.3 Bounding Boxes

For each cluster t ∈ TI , we define an axis-parallel box Qt ⊆ Rd such that Ωt ⊆ Qt holds. This box will be
called the bounding box of the cluster t.

By replacing the possibly complicated domains Ωt and Ωs in (2.3) by the larger boxes Qt and Qs, we get
the admissibility condition

min{diam(Qt), diam(Qs)} ≤ η dist(Qt, Qs). (2.4)
This condition obviously implies (2.3).

min{diam(Ωt), diam(Ωs)} ≤ η dist(Ωt, Ωs),

ad- missible
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Checking the distance and computing the diameters for axis-parallel boxes is not as simple as in the case of
Chebyshev circles, but still manageable: if Qt = [a1, b1] × · · · × [ad, bd] and Qs = [c1, d1] × · · ·× [cd, dd], we
have

diam(Qt) =

(
d∑

l=1

(bl − al)2
)1/2

, diam(Qs) =

(
d∑

l=1

(dl − cl)2
)1/2

and

dist(Qs, Qs) =

(
d∑

l=1

dist([al, bl], [cl, dl])2
)1/2

,

so these quantities can be computed by O(1) operations.

2.2.4 Implementation

Implementation 2.18 (Bounding boxes in cluster) Since bounding boxes are fundamental, we modify
the definition of the cluster structure by adding the necessary fields:

double *bmin;
double *bmax;
int d;

The fields bmin and bmax are d-dimensional arrays of double variables representing the minimal and maximal
coordinates, i.e., if Qt = [a1, b1]× · · ·× [ad, bd], then bmin contains the vector (ai)d

i=1 and bmax contains the
vector (bi)d

i=1.

We can make use of the structure of the cluster tree in order to construct optimal bounding boxes, i.e., bound-
ing boxes with minimal diameter: since t̂ =

⋃
t′∈sons(t) t̂′ holds by definition, we have Ωt =

⋃
t′∈sons(t) Ωt′ , so

the optimal bounding box for the cluster t has to contain all the optimal bounding boxes for its sons t′ and
can therefore be constructed by finding maxima and minima of the corresponding coordinate vectors.

In the leaf clusters, we need information on the supports of the basis functions corresponding to the indices,
and this geometric information has to be provided by the user. The obvious solution is to store it in the
clusterfactory structure:
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Implementation 2.19 (Bounding boxes of supports in clusterfactory) We add the following two
fields to the clusterfactory structure:

double **smin;
double **smax;

The arrays smin and smax have nidx entries, one for each index. The entries smin[i] and smax[i] describe
the axis-parallel box containing the support Ωi of the corresponding basis function in the same way the fields
bmin and bmax describe the bounding box of a cluster.

Example 2.20 (Curve in 2D, support) In the Example 2.11, we have to add code that initializes the new
fields smin and smax describing the bounding boxes of the supports of basis functions. Since these supports
are simple intervals, it is sufficient to determine the minimal and maximal coordinates of the endpoints:

for(i=0; i<edges; i++) {
factory->smin[i][0] = dmin(x[e[i][0]][0], x[e[i][1]][0]);
factory->smax[i][0] = dmax(x[e[i][0]][0], x[e[i][1]][0]);
factory->smin[i][1] = dmin(x[e[i][0]][1], x[e[i][1]][1]);
factory->smax[i][1] = dmax(x[e[i][0]][1], x[e[i][1]][1]);

}

Here, we use the functions dmin and dmax to compute the minimum and maximum of two double arguments.

Example 2.21 (FE grid in 2D, support) Creating bounding boxes in the setting of Example 2.12 is
slightly more complicated, since more than one triangle contribute to the support of a nodal basis function.
Therefore we compute bounding boxes for all triangles and combine them to form boxes for the vertices:

for(i=0; i<nv; i++) {
factory->smin[i][0] = factory->smax[i][0] = vertex[i][0];
factory->smin[i][1] = factory->smax[i][1] = vertex[i][1];

}

for(i=0; i<nt; i++) {
tmin[0] = dmin( vertex[triangle[i][0]][0],

dmin(vertex[triangle[i][1]][0],
vertex[triangle[i][2]][0]));

tmax[0] = dmax( vertex[triangle[i][0]][0],
dmax(vertex[triangle[i][1]][0],

vertex[triangle[i][2]][0]));
tmin[1] = dmin( vertex[triangle[i][0]][1],

dmin(vertex[triangle[i][1]][1],
vertex[triangle[i][2]][1]));

tmax[1] = dmax( vertex[triangle[i][0]][1],
dmax(vertex[triangle[i][1]][1],

vertex[triangle[i][2]][1]));

for(j=0; j<3; j++) {
k = triangle[i][j];
factory->smin[k][0] = dmin(factory->smin[k][0], tmin[0]);
factory->smax[k][0] = dmax(factory->smax[k][0], tmax[0]);
factory->smin[k][1] = dmin(factory->smin[k][1], tmin[1]);
factory->smax[k][1] = dmax(factory->smax[k][1], tmax[1]);

}
}
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Note that we have to initialize the bounding boxes with “safe” values before entering the main loop.

Using the extended clusterfactory, we can construct the bounding boxes and initialize the fields bmin and
bmax in the cluster structure by the following recursive procedure:

static void
find_boundingbox(pcluster tau, pcclusterfactory factory)
{
/* ... some initialization ... */

if(sons > 0) {
for(i=0; i<sons; i++)
find_boundingbox(tau->son[i], factory);

for(j=0; j<d; j++) {
bmin[j] = son[0]->bmin; bmax[j] = son[0]->bmax;

}

for(i=1; i<sons; i++)
for(j=0; j<d; j++) {
bmin[j] = dmin(bmin[j], son[i]->bmin[j]);
bmax[j] = dmax(bmax[j], son[i]->bmax[j]);

}
}
else {

for(j=0; j<d; j++) {
bmin[j] = smin[index[0]]; bmax[j] = smax[index[0]];

}

for(i=1; i<size; i++)
for(j=0; j<d; j++) {
bmin[j] = dmin(bmin[j], smin[index[i]][j]);
bmax[j] = dmax(bmax[j], smax[index[i]][j]);

}
}

}

Now we can use the bounding boxes in order to construct a block cluster tree.

Implementation 2.22 (blockcluster) The blockcluster structure is defined as follows:

typedef struct _blockcluster blockcluster;
typedef blockcluster *pblockcluster;

typedef struct {
unsigned weakadm : 1;
unsigned minadm : 1;
unsigned maxadm : 1;

} BlockType;

struct _blockcluster {
pccluster row;
pccluster col;
BlockType type;
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pblockcluster *son;
int block_rows;
int block_cols;

};

The fields row and col give the row and column clusters that form this block. If the block has sons, the
array son contains block_rows*block_cols pointers to these sons. The pointer to son (i, j) can be found
at position i+j*block_rows. The bitfield type contains information about the admissibility criteria this
block satisfies: it has subfields weakadm, minadm and maxadm corresponding to weak admissibility, standard
admissibility (2.4) and strong admissibility (9.8).

The following simple algorithm constructs a blockcluster structure from cluster structures and the stan-
dard admissibility condition (2.4):

pblockcluster
build_blockcluster(pccluster row, pccluster col, double eta)
{
/* ... some initialization ... */

dist = distance_cluster(row, col);
diam_row = diameter_cluster(row);
diam_col = diameter_cluster(col);

type.maxadm = type.minadm = type.weakadm = 0;

if(diam_row < eta*dist || diam_col < eta*dist) {
type.minadm = type.weakadm = 1;
bc = new_blockcluster(row, col, 0, 0, type);

}
else if(row->sons > 0 && col->sons > 0) {

bc = new_blockcluster(row, col, row->sons, col->sons, type);
for(j=0; j<col->sons; j++)
for(i=0; i<row->sons; i++)
bc->son[i+j*bc->block_rows] =

build_blockcluster(row->son[i], col->son[j], eta);
}
else

bc = new_blockcluster(row, col, 0, 0, type);

return bc;
}

Exercise 2 The routine build_blockcluster stops splitting matrix blocks as soon as one of the correspond-
ing clusters is a leaf.

Write a routine build_blockcluster_inhom that splits the blocks until both clusters are leaves. If a pair
(t, s) is not admissible, we distinguish four cases:

• If sons(t) ̸= ∅ and sons(s) ̸= ∅, examine all pairs (t′, s′) with t′ ∈ sons(t) and s′ ∈ sons(s).

• If sons(t) = ∅ and sons(s) ̸= ∅, examine all pairs (t, s′) with s′ ∈ sons(s).

• If sons(t) ̸= ∅ and sons(s) = ∅, examine all pairs (t′, s) with t′ ∈ sons(t).

• If sons(t) = ∅ and sons(s) = ∅, create a full matrix.
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Differently from build_blockcluster, this new routine may create a block cluster tree that is not level-
consistent.

Implementation 2.23 (Construction of blockcluster structures) In the library, we use a more ge-
neral routine

pblockcluster
build_blockcluster(pccluster row, pccluster col,

BlockAdmissiblityCriterion adm,
BlockHomogeneity hom, double eta, int leafsize);

which allows the user to pick the desired kind of admissibility criterion adm, to choose to create inhomogeneous
block cluster trees (suited for H2-matrices) by setting hom appropriately, and to stop splitting clusters if they
have not more than leafsize elements. The latter option is useful if a “coarse” block cluster tree has to be
created without changing the clustertree structure.

2.3 Construction of an Admissible supermatrix Structure

Since the structure of a supermatrix closely resembles that of a blockcluster tree, we can directly translate
the latter into the former:

psupermatrix
build_supermatrix_from_blockcluster(pcblockcluster bc, int k)
{
/* ... some initialization ... */

if(bc->son) {
s = new_supermatrix(block_rows, block_cols, rows, cols,

NULL, NULL, NULL);
for(j=0; j<block_cols; j++)
for(i=0; i<block_rows; i++)
s->s[i+j*block_rows] =
build_supermatrix_from_blockcluster(bc->son[i+j*block_rows],

k, eps);
}
else {

if(bc->type.weakadm) {
r = new_rkmatrix(k, rows, cols);
s = new_supermatrix(1, 1, rows, cols, NULL, r, NULL);

}
else {
f = new_fullmatrix(rows, cols);
s = new_supermatrix(1, 1, rows, cols, NULL, NULL, f);

}
}
return s;

}

If we apply this algorithm to Example 2.11 and a block cluster tree constructed for the standard admissibility
condition (2.4), we get a supermatrix structure that corresponds to the following matrix partition:
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Chapter 3

Integral Equations

Using the multi-dimensional cluster tree and the corresponding generalised block cluster tree, we can store
approximations of multi-dimensional discretise integral operators in the form of hierarchical matrices.

The basic approach is to replace the kernel by a degenerate expansion [44], this leads to the panel-clustering
method. One of these expansions is the multipole expansion [53, 35] for the Laplace kernel, another one is
the Taylor expansion which has already been used in Chapter 1.

3.1 Galerkin Discretisation

We consider a general Fredholm integral equation

G[u] + λu = f (3.1)

in a Hilbert space H of functions on a domain Ω, where G is an integral operator

G[u](x) =
∫

Ω
g(x, y)u(y) dx (3.2)

corresponding to a kernel function g, which maps H into its dual space H ′. The right hand side f ∈ H ′ is
an element of the dual space, λ ∈ R is some parameter and u ∈ H is the solution we are looking for.

The variational counterpart of equation (3.1) is given by

a(u, v) + λm(u, v) = ⟨f, v⟩H′×H for all v ∈ H, (3.3)

where the bilinear forms a and m are given by

a(u, v) = ⟨G[u], v⟩H′×H and m(u, v) = ⟨u, v⟩H×H .

The bilinear form a(·, ·) representing the integral operator can be written as

a(u, v) =
∫

Ω
v(x)

∫

Ω
g(x, y)u(y) dy dx. (3.4)

The equation (3.3) is discretised by a Galerkin method, i.e., we choose an n-dimensional subspace Hn of H
and consider the problem of finding a function un ∈ Hn such that

a(un, vn) + λm(un, vn) = ⟨f, vn⟩H′×H holds for all vn ∈ Hn.

Given a basis (ϕi)i∈I of Hn, this is equivalent to

a(un,ϕi) + λm(un,ϕi) = ⟨f,ϕi⟩H′×H for all i ∈ I.

39
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Since the solution un is an element of Hn, there is a coefficient vector x = (xi)i∈I satisfying

un =
∑

j∈I
xjϕj ,

so the coefficients satisfy the equation
∑

j∈I
xja(ϕj ,ϕi) + λ

∑

j∈I
xjm(ϕj ,ϕi) = ⟨f,ϕi⟩H′×H for all i ∈ I.

This is a system of linear equations and can be written in matrix form

Gx + λMx = b

by introducing matrices G, M ∈ RI×I and a vector b ∈ RI with

Gij := a(ϕj ,ϕi) =
∫

Ω
ϕi(x)

∫

Ω
g(x, y)ϕj(y) dy dx for all i ∈ I, j ∈ I, (3.5)

Mij := m(ϕj ,ϕi) =
∫

Ω
ϕi(x)ϕj(x) dx for all i ∈ I, j ∈ I, and (3.6)

bi := ⟨f,ϕi⟩H′×H for all i ∈ I. (3.7)

If we use standard finite element basis functions (ϕi)i∈I , the matrix M will be sparse, but the matrix G will
be densely populated, since typical kernel functions have global support.

Storing G directly will not lead to efficient algorithms. One way of avoiding this problem is to approximate
G by a matrix that can be treated efficiently. The idea has already been described in Section 1.2: we replace
the original kernel function g(·, ·) by local degenerate approximations, and this leads to a hierarchical matrix.

3.2 Degenerate Expansions

In Section 1.2, we have used the approximation

g̃(x, y) =
k−1∑

ν=0

1
ν!
∂ν

xg(x0, y)(x − x0)ν (3.8)

of the kernel function g(·, ·). This approach can be generalised to the higher-dimensional case, but it will
only work satisfactorily if the derivatives of the kernel function can be evaluated efficiently: in some cases it
is possible to derive efficient recursion schemes to reach this goal, in other cases the kernel function is simply
too complicated.

Fortunately, we are not forced to rely on Taylor expansions to construct H-matrix approximations, we can
use any approximation scheme which has two key properties: the approximant has to be degenerate, i.e.,
the variables x and y have to be separated, and it has to converge rapidly (cf. (1.5)) to the original kernel
function g.

Before we consider concrete approximation schemes matching this description, let us investigate the general
case: let τ,σ ⊆ Ω, let K be a general index set of cardinality k, and let (vν)ν∈K and (wν)ν∈K be functions
on τ and σ, respectively, which satisfy

|g(x, y) − g̃(x, y)| ≤ ε for all x ∈ τ, y ∈ σ (3.9)

for the general degenerate approximation

g̃(x, y) :=
∑

ν∈K

vν(x)wν (y) (3.10)
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and a given error tolerance ε ∈ R>0.

Let t and s be clusters whose supports Ωt and Ωs satisfy

Ωt ⊆ τ and Ωs ⊆ σ.

Then a rank-k-approximation of the subblock G|t̂×ŝ is given by

G̃t,s
ij :=

∫

Ω
ϕi(x)

∫

Ω
g̃(x, y)ϕj(y) dxdy =

∑

ν∈K

∫

Ω
ϕi(x)

∫

Ω
vν(x)wν (y)ϕj(y) dxdy

=
∑

ν∈K

∫

Ω
vν(x)ϕi(x) dx

︸ ︷︷ ︸
=Aiν

∫

Ω
wν(y)ϕj(y) dy

︸ ︷︷ ︸
=Bjν

= (AB⊤)ij for all i ∈ t̂, j ∈ ŝ,

where the matrices A ∈ Rt̂×K and B ∈ Rŝ×K are given by

Aiν :=
∫

Ω
vν(x)ϕi(x) dx for all i ∈ t̂, ν ∈ K, (3.11)

Bjν :=
∫

Ω
wν(y)ϕj(y) dy for all j ∈ ŝ, ν ∈ K. (3.12)

Obviously, G̃t,s = AB⊤ is given in rkmatrix representation, and this implies that its rank is bounded by
#K = k.

Now let us investigate the approximation error introduced by replacing G|t̂×ŝ by G̃t,s. For each cluster
t ∈ TI , we introduce the local coordinate isomorphism

Pt : Rt̂ → H, u +→
∑

i∈t̂

uiϕi,

and a corresponding L2-like norm

∥ · ∥Hn : Rt̂ → R≥0, u +→ ∥Ptu∥L2,

and find the following estimate:

Lemma 3.1 (Kernel approximation) Let t, s ∈ TI be clusters satisfying Ωt ⊆ τ and Ωs ⊆ σ, and let
(3.9) hold. Then we have

⟨v, (G|t̂×ŝ − G̃t,s)u⟩2 ≤ ε|Ωt|1/2|Ωs|1/2∥v∥Hn∥u∥Hn for all v ∈ Rt̂, u ∈ Rŝ.

Proof: Let v ∈ Rt̂ and u ∈ Rŝ. For v̂ := Ptv and û := Psu, we find

|⟨v, (G|t̂×ŝ − G̃t,s)u⟩2| =
∣∣∣∣
∫

Ω
v̂(x)

∫

Ω
(g(x, y) − g̃(x, y))û(y) dy dx

∣∣∣∣

≤
∫

Ω
|v̂(x)|

∫

Ω
|g(x, y) − g̃(x, y)||û(y)| dy dx

≤ ε

∫

Ω
|v̂(x)| dx

∫

Ω
|û(y)| dy = ε

∫

Ωt

|v̂(x)| dx

∫

Ωs

|û(y)| dy

= ε

(∫

Ωt

dx

)1/2(∫

Ωt

v̂2(x) dx

)1/2(∫

Ωs

dy

)1/2(∫

Ωs

û2(y) dy

)1/2

≤ ε|Ωt|1/2∥v̂∥L2 |Ωs|1/2∥û∥L2 = ε|Ωt|1/2|Ωs|1/2∥v∥Hn∥u∥Hn .
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This error estimate demonstrates that a good approximation of g, i.e., a small value of ε, directly translates
into a good approximation of G|t̂×ŝ. Another important point is that the sizes |Ωt| and |Ωs| of the supports
of the clusters t and s enter the estimate, since this suggests that only large clusters require a high accuracy,
i.e., a higher rank, while small clusters can be handled with lower rank.

The estimate provided by Lemma 3.1 is not “purely algebraic”, since it explicitly involves the coordinate
isomorphisms, i.e., the discretisation scheme. Under the assumption that these isomorphisms are well-
behaved, we can derive a more familiar-looking error estimate:

Lemma 3.2 (Block approximation) Let µmax ∈ R>0 be a constant satisfying

∥u∥2
Hn

≤ µmax∥u∥2
2 for all t ∈ TI and u ∈ Rt̂.

Let t, s ∈ TI be clusters satisfying Ωt ⊆ τ and Ωs ⊆ σ, and let (3.9) hold. Then we have

∥G|t̂×ŝ − G̃t,s∥2 ≤ µmaxε|Ωt|1/2|Ωs|1/2. (3.13)

Proof: Let v ∈ Rt̂ and u ∈ Rŝ. Due to Lemma 3.1, we have

|⟨v, (G|t̂×ŝ − G̃t,s)u⟩2| ≤ ε|Ωt|1/2|Ωs|1/2∥v∥Hn∥u∥Hn ≤ µmaxε|Ωt|1/2|Ωs|1/2∥v∥2∥u∥2.

Choosing v := (G|t̂×ŝ − G̃t,s)u yields

∥(G|t̂×ŝ − G̃t,s)u∥2
2 ≤ µmaxε|Ωt|1/2|Ωs|1/2∥(G|t̂×ŝ − G̃t,s)u∥2∥u∥2,

and we can infer
∥(G|t̂×ŝ − G̃t,s)u∥2 ≤ µmaxε|Ωt|1/2|Ωs|1/2∥u∥2

for all u ∈ Rŝ, which implies our claim.

Remark 3.3 The optimal choice for the constant µmax is the spectral norm of the mass matrix M ∈ RI×I

given by (3.6): let r := root(TI). Since M = P ∗r Pr, we have

max
{
∥Pru∥2

L2

∥u∥2
2

: u ∈ RI \ {0}
}

= max
{
⟨Mu, u⟩2
∥u∥2

2

: u ∈ RI \ {0}
}

= ∥M∥2

due to the Courant-Fischer Minimax Theorem [21, Theorem 8.1.2]. This means that µmax = ∥M∥2 is the
optimal choice for the root cluster r of TI. For an arbitrary cluster t ∈ TI, we apply this theorem to the
principal submatrix M |t̂×t̂ = P ∗t Pt of M and find that µmax = ∥M∥2 is already optimal.

For a discretisation using standard finite elements on a family of dΩ-dimensional quasi-uniform meshes with
mesh parameter h ∈ R>0, there is a constant Cfe ∈ R>0 satisfying

µmax ≤ Cfeh
dΩ .

We can combine estimates of the type (3.13) in order to derive global error estimates for hierarchical matrix
approximations:

Lemma 3.4 (Global operator norm) Let TI×J be a block cluster tree. We have

∥X∥2 ≤

⎛

⎝
∑

b=(t,s)∈L(TI×J )

∥X |t̂×ŝ∥2
2

⎞

⎠ for all X ∈ RI×J .
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Proof: Let v ∈ RI and u ∈ RJ . We have

|⟨v, Xu⟩2| =

∣∣∣∣∣∣

∑

(t,s)∈L(TI×J )

⟨v|t̂, X |t̂×ŝu|ŝ⟩2

∣∣∣∣∣∣
≤

∑

(t,s)∈L(TI×J )

|⟨v|t̂, X |t̂×ŝu|ŝ⟩2|

≤
∑

(t,s)∈L(TI×J )

∥X |t̂×ŝ∥2∥v|t̂∥2∥u|ŝ∥2

≤

⎛

⎝
∑

(t,s)∈L(TI×J )

∥X |t̂×ŝ∥2
2

⎞

⎠
1/2⎛

⎝
∑

(t,s)∈L+(TI×J )

∥v|t̂∥2
2∥u|ŝ∥2

2

⎞

⎠
1/2

.

Due to Lemma 2.7, we have
∑

t×s∈L(TI×I)

∥v|t̂∥
2
2∥u|ŝ∥2

2 =
∑

t×s∈L(TI×I)

∑

i∈t̂

∑

j∈ŝ

v2
i u2

j =
∑

i∈I

∑

j∈I
v2

i u2
j = ∥v∥2

2∥u∥2
2

and can conclude

|⟨v, Xu⟩2| ≤

⎛

⎝
∑

(t,s)∈L(TI×I)

∥X |t̂×ŝ∥2
2

⎞

⎠
1/2

∥v∥2∥u∥2.

Proceeding as in the proof of Lemma 3.2 yields the desired estimate.

Theorem 3.5 (Operator-norm error) Let Cov ∈ N be a constant satisfying

#{i ∈ I : ϕi(x) ̸= 0} ≤ Cov for all x ∈ Ω.

Let ε ∈ R>0. Let TI×I be an admissible block cluster tree. For each admissible leaf (t, s) ∈ L+(TI×I), let
G̃t,s ∈ Rt̂×ŝ be an approximation of G|t̂×ŝ satisfying (3.13), and let the global approximation G̃ ∈ RI×I be
defined by

G̃|t̂×ŝ :=

{
G̃t,s if (t, s) is admissible,
G|t̂×ŝ otherwise,

for all leaves (t, s) ∈ L(TI×I).

Then we have
∥G − G̃∥2 ≤ Covµmax|Ω|ε.

Proof: Applying Lemma 3.4 to the matrix X := G − G̃ and the block cluster tree TI×I yields

∥G − G̃∥2 ≤

⎛

⎝
∑

(t,s)∈L+(TI×I)

∥G|t̂×ŝ − G̃t,s∥2
2

⎞

⎠
1/2

.

Due to (3.13), we find

∥G − G̃∥2 ≤ εµmax

⎛

⎝
∑

(t,s)∈L(TI×I)

|Ωt| |Ωs|

⎞

⎠
1/2

.

The analysis of this sum is based on Lemma 2.7: it implies that L(TI×I) corresponds to a disjoint partition
of I × I, and we find

∑

t×s∈L(TI×I)

|Ωt||Ωs| ≤
∑

t×s∈L(TI×I)

∑

i∈t̂

∑

j∈ŝ

|Ωi||Ωj | =
∑

i∈I

∑

j∈I
|Ωi||Ωj | =

(
∑

i∈I
|Ωi|

)2

. (3.14)
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We introduce

χi : Ω → {0, 1}, x +→
{

1 if ϕi(x) ̸= 0,

0 otherwise,
for all i ∈ I.

Due to our assumption, we have ∑

i∈I
χi(x) ≤ Cov

in all points x ∈ Ω and conclude

∑

i∈I
|Ωi| =

∑

i∈I

∫

Ω
χi(x) dx =

∫

Ω

∑

i∈I
χi(x) dx ≤ Cov|Ω|. (3.15)

Combining (3.14) and (3.15) yields the estimate.

Remark 3.6 If the space Hn is constructed by a standard finite element approach using a local trial space on
a reference element, the optimal choice for the constant Cov is the dimension of this local space. For piecewise
constant functions we have Cov = 1, while the well-known piecewise linear basis functions on triangles lead
to the choice Cov = 3.

The error estimate of Lemma 3.4 will, in general not be optimal: if we consider the identity matrix I ∈ Rn×n

as an n-by-n block matrix with blocks of size 1 × 1, the Lemma yields an estimate of
√

n for the norm,
while obviously 1 would be correct. If we assume that the block cluster tree is level-consistent and satisfies a
property closely related to the concept ot sparsity introduced in Definition 7.3, we can derive the following
improved error estimate:

Theorem 3.7 Let TI×J be a level-consistent block cluster tree of depth p, and let

Pℓ := {b = (t, s) ∈ L(TI×J ) : level(t) = ℓ} for all ℓ ∈ {0, . . . , p}.

Similar to Definition 7.3, we let

C∗sp := max{max{#{s ∈ TJ : (t, s) ∈ L(TI×J )} : t ∈ TI}, (3.16)

max{#{t ∈ TI : (t, s) ∈ L(TI×J )} : s ∈ TJ }}. (3.17)

The following inequality holds for the global and the blockwise spectral norms:

∥X∥2 ≤ C∗sp

p∑

ℓ=0

max{∥X |t̂×ŝ∥2 : b = (t, s) ∈ Pℓ} for all X ∈ RI×J . (3.18)

Here we use the convention max ∅ = 0.

Proof: Let P := L(TI×J ), let

εℓ := max{∥X |t̂×ŝ∥2 : b = (t, s) ∈ Pℓ} for all ℓ ∈ {0, . . . , p},

and let Let v ∈ RI and u ∈ J . According to Lemma 2.7 and the fact that TI×J is a cluster tree for I ×J ,

{t̂ × ŝ : b = (t, s) ∈ P}

is a disjoint partition of I × J and we have

|⟨v, Xu⟩2| =

∣∣∣∣∣∣

∑

b=(t,s)∈P

⟨v|t̂, X |t̂×ŝu|ŝ⟩2

∣∣∣∣∣∣
≤

∑

b=(t,s)∈P

∥v|t̂∥2∥X |t̂×ŝ∥2∥u|ŝ∥2
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≤
∑

b=(t,s)∈P

εlevel(b)∥v|t̂∥2∥u|ŝ∥2 =
∑

b=(t,s)∈P

(
ε1/2
level(t)∥v|t̂∥2

)(
ε1/2
level(s)∥u|ŝ∥2

)

≤

⎛

⎝
∑

b=(t,s)∈P

εlevel(t)∥v|t̂∥2
2

⎞

⎠
1/2⎛

⎝
∑

b=(t,s)∈P

εlevel(s)∥u|ŝ∥2
2

⎞

⎠
1/2

=

⎛

⎜⎝
p∑

ℓ=0

εℓ

∑

t∈T (ℓ)
I

∥v|t̂∥2
2 #{s ∈ TJ : (t, s) ∈ Pℓ}

⎞

⎟⎠

1/2

⎛

⎜⎝
p∑

ℓ=0

εℓ

∑

s∈T (ℓ)
J

∥u|ŝ∥2
2 #{t ∈ TI : (t, s) ∈ Pℓ}

⎞

⎟⎠

1/2

.

Since Pℓ ⊆ P , we have

max{#{s ∈ TJ : (t, s) ∈ Pℓ} : t ∈ TI} ≤ C∗sp, max{#{t ∈ TI : (t, s) ∈ Pℓ} : s ∈ TJ } ≤ C∗sp,

and due to Lemma 2.7, we find that {t̂ : t ∈ T (ℓ)
I } ⊆ I and {ŝ : s ∈ T (ℓ)

J } ⊆ J hold, which implies

∑

t∈T (ℓ)
I

∥v|t̂∥2
2 ≤ ∥v∥2

2

∑

s∈T (ℓ)
J

∥u|ŝ∥2
2 ≤ ∥u∥2

2

Combining both estimates yields

|⟨v, Xu⟩2| ≤
(

p∑

ℓ=0

εℓC
∗
sp∥v∥2

2

)1/2( p∑

ℓ=0

εℓC
∗
sp∥u∥2

2

)1/2

= C∗sp

(
p∑

ℓ=0

εℓ

)
∥v∥2∥u∥2.

In the case Xu = 0, (3.18) holds trivially. Otherwise, we let v := Xu, find

∥Xu∥2
2 = ⟨Xu, Xu⟩2 = ⟨v, Xu⟩2 ≤ C∗sp

(
p∑

ℓ=0

εℓ

)
∥Xu∥2∥u∥2,

and divide by ∥Xu∥2 in order to obtain the desired result.

3.3 Interpolation

A relatively general approach to the construction of degenerate approximations is based on polynomial
interpolation and has been described in [8, 47]. Its implementation is quite simple and it can be applied to
all asymptotically smooth (cf. (3.38)) kernel functions.

Let (ξν)ν∈K be a family of interpolation points in τ , and let (Lν)ν∈K be the corresponding Lagrange
polynomials satisfying

Lν(ξµ) = δν,µ

for all ν, µ ∈ K. We interpolate the (function-valued) function x +→ g(x, ·) and get the interpolant

g̃(x, y) :=
∑

ν∈K

g(ξν , y)Lν(x). (3.19)

This approximation is obviously degenerate, and it can be constructed without the need for derivatives of
the kernel function.
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Figure 3.1: Lagrange polynomial L2 for m = 5

The computation of the entries of A and B defined in (3.11) and (3.12) is simple: the entries of the matrix
A are given by

Aiν =
∫

Ω
Lν(x)ϕi(x) dx for all i ∈ t̂, ν ∈ K, (3.20)

i.e., if the basis functions ϕi are piecewise polynomial, the same will hold for the integrand, so that the
entries can be computed by an exact quadrature rule. The entries of the matrix B are given by

Bjν =
∫

Ω
g(ξν , y)ϕj(y) dy for all j ∈ ŝ, ν ∈ K, (3.21)

and they can be computed either exactly (cf. Exercise 3) or approximated efficiently by quadrature rules: if
the basis function is piecewise polynomial, the fact that the point xν is well separated from the support of
ϕj implies that the integrand will be piecewise smooth.

3.3.1 Tensor-product Interpolation on Bounding Boxes

Since we cannot find a global degenerate approximation of the kernel function g(·, ·), we work with local
approximations corresponding to pairs of clusters.

This means that we have to find a set of interpolation points and a set of corresponding Lagrange polynomials
for each cluster t ∈ TI such that the approximation error on the corresponding domain Ωt is small enough.

Constructing good interpolation operators for general domains is a complicated topic, therefore we use the
same simplification as in the treatment of the admissibility condition: instead of approximating the kernel
function on a general subset Ωt of Rd, we approximate it on the bounding box Qt ⊇ Ωt.

Since the bounding box Qt is the tensor product of intervals, we first consider interpolation on intervals. For
the interval [−1, 1], the m-th order Chebyshev points

ξν := cos
(

2ν + 1
2m + 2

π

)
for all ν ∈ {0, . . . , m}

are a good choice. The Lagrange polynomials (cf. Figure 3.1) have the form

Lν(x) =
m∏

µ=0,µ̸=ν

x − ξµ
ξν − ξµ

for all ν ∈ {0, . . . , m}

and the corresponding interpolation operator is given by

Im : C[−1, 1] → Pm, f +→
m∑

ν=0

f(ξν)Lν .
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Figure 3.2: Transformation of two-dimensional tensor interpolation points

In order to get an interpolation operator for an arbitrary non-empty interval [a, b], we use the bijective affine
transformation

Φ[a,b] : [−1, 1] → [a, b], x +→ b + a

2
+

b − a

2
x

and define the transformed interpolation operator I
[a,b]
m : C[a, b] → Pm by

I[a,b]
m [f ] :=

(
Im[f ◦ Φ[a,b]]

)
◦ Φ−1

[a,b]. (3.22)

It can be written in the form

I[a,b]
m [f ] =

m∑

ν=0

f(Φ[a,b](ξν))Lν ◦ Φ−1
[a,b],

so it is straightforward to define the transformed interpolation points

ξ[a,b]
ν := Φ[a,b](ξν) =

b + a

2
+

b − a

2
ξν

and corresponding Lagrange functions

L[a,b]
ν := Lν ◦ Φ−1

[a,b].

We observe that
L[a,b]

ν (ξ[a,b]
µ ) = Lν ◦ Φ−1

[a,b](Φ[a,b](ξµ)) = Lν(ξµ) = δνµ

holds for all ν, µ ∈ {0, . . . , m}. This implies

L[a,b]
ν (x) =

m∏

µ=0,µ̸=ν

x − ξ[a,b]
µ

ξ[a,b]
ν − ξ[a,b]

µ

for all x ∈ [a, b].

In the d-dimensional case, the domain of interpolation is an axis-parallel bounding box Qt = [a1, b1] ×
· · · × [ad, bd]. Since the domain has tensor-product structure, it is straightforward to use tensor-product
interpolation, i.e., to set

It
m := I[a1,b1]

m ⊗ · · ·⊗ I[ad,bd]
m .

By introducing the set

K := {ν ∈ Nd
0 : νi ≤ m for all i ∈ {1, . . . , d}} = {0, . . . , m}d
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of multi-indices and the corresponding interpolation points (cf. Figure 3.2) and Lagrange polynomials

ξt
ν := (ξ[a1,b1]

ν1
, . . . , ξ[ad,bd]

νd
), Lt

ν := L[a1,b1]
ν1

⊗ · · ·⊗ L[ad,bd]
νd

, (3.23)

we can express It
m in the familiar form

It
m[f ](x) =

∑

ν∈K

f(ξt
ν)Lt

ν(x).

Note that evaluating the tensor-product polynomials Lt
ν is quite simple due to

Lt
ν(x) =

(
L[a1,b1]

ν1
⊗ · · ·⊗ L[ad,bd]

νd

)
(x) =

d∏

i=1

L[ai,bi]
νi

(xi) =
d∏

i=1

m∏

µ=0,µ̸=νi

xi − ξ[ai,bi]
µ

ξ[ai,bi]
νi − ξ[ai,bi]

µ

. (3.24)

3.3.2 Construction of the Low-rank Approximation

Let us consider an admissible pair (t, s) of clusters. The admissibility implies that

min{diam(Qt), diam(Qs)} ≤ η dist(Qt, Qs)

holds. If diam(Qt) ≤ diam(Qs), we apply interpolation to the first argument of the kernel function. The
corresponding block of the matrix has the form (3.19), so we have to compute the matrices At,s and Bt,s:

At,s
iν =

∫

Ω
ϕi(x)Lt

ν (x) dx, Bt,s
jν =

∫

Ω
ϕj(y)g(xt

ν , y) dy,

where xt
ν and Lt

ν are the transformed interpolation points and Lagrange polynomials defined in (3.23).

If diam(Qs) ≤ diam(Qt), we apply interpolation to the second argument and have to compute the matrices
At,s and Bt,s with reversed roles:

At,s
iν =

∫

Ω
ϕi(x)g(x, xs

ν ) dx, Bt,s
jν =

∫

Ω
ϕj(y)Ls

ν(y) dy.

In both cases, we need the transformed interpolation points. Given an array xp of dimension p = m +
1 containing the points (ξi)m

i=0 and a cluster t, the following code fragment computes the corresponding
transformed points and stores the points in an array l containing p entries containing the transformed
points for each of the d dimensions:

for(j=0; j<d; j++) {
mid = 0.5 * (t->bmax[j] + t->bmin[j]);
dif = 0.5 * (t->bmax[j] - t->bmin[j]);

for(i=0; i<p; i++)
l[j][i] = mid + xp[i] * dif;

}

We store a multi-index ν ∈ Nd
0 in the form of an array nu of d integers. The j-th coordinate of the point

ξt
ν is then given by l[j][nu[j]] for nu[j]= νj . The computation of integrals of the Lagrange polynomials

can be handled by exact quadrature rules, so only a way of evaluating a Lagrange polynomial corresponding
to a multi-index ν at a point x is required. Due to (3.24), we can use the following simple code fragment:

result = 1.0;
for(j=0; j<d; j++)
for(i=0; i<p; i++)

if(i != nu[j])
result *= (x[j] - l[j][i]) / (l[j][nu[j]] - l[j][i]);
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3.3.3 Interpolation Error Bound

We will now investigate the error introduced by replacing the kernel function g by its interpolant g̃. We
start by recalling the properties of one-dimensional interpolation, derive the properties of multi-dimensional
tensor-product interpolation, and then apply these results to the problem of approximating g.

For each m ∈ N, we let Λm be a constant satisfying the stability estimate

∥Im[f ]∥∞,[−1,1] ≤ Λm∥f∥∞,[−1,1] for all f ∈ C[−1, 1]. (3.25)

In the case of Chebyshev interpolation, it is possible to show [51] that

Λm :=
2
π

ln(m + 1) + 1 ≤ m + 1 (3.26)

is a good choice for all m ∈ N, i.e., the stability constant grows very slowly depending on m.

A bound for the approximation error can be derived by using the fact that Im is a projection onto the set
Pm of m-th order polynomials, i.e., that we have

Im[v] = v for all v ∈ Pm. (3.27)

Combining (3.27) with (3.25) yields Λm ≥ 1.

Lemma 3.8 (Best-approximation property) Let Im satisfy (3.25) and (3.27). Then we have

∥f − Im[f ]∥∞,[−1,1] ≤ (1 + Λm) inf{∥f − v∥∞,[−1,1] : v ∈ Pm} for all f ∈ C[−1, 1]. (3.28)

Proof: Let f ∈ C[−1, 1]. For an arbitrary v ∈ Pm, we can combine (3.27) and (3.25) in order to find

∥f − Im[f ]∥∞,[−1,1] = ∥f − v + Im[v] − Im[f ]∥∞,[−1,1] = ∥(f − v) − Im[f − v]∥∞,[−1,1]

≤ ∥f − v∥∞,[−1,1] + ∥Im[f − v]∥∞,[−1,1]

≤ (1 + Λm)∥f − v∥∞,[−1,1].

Since v is arbitrary, this implies (3.28).

This lemma demonstrates that a stable interpolation scheme yields the best approximation of any given
function, up to the additional factor 1 + Λm, in the space of polynomials.

For a function f ∈ Cm+1[−1, 1], we can find a bound for the approximation error directly without relying
on stability estimates: we get

∥f − Im[f ]∥∞,[−1,1] ≤
2−m

(m + 1)!
∥f (m+1)∥∞,[−1,1]. (3.29)

Let us now consider the transformed interpolation operator I
[a,b]
m mapping C[a, b] into Pm. The stability

estimate (3.25) yields

∥I[a,b]
m [f ]∥∞,[a,b] = ∥(Im[f ◦ Φ[a,b]]) ◦ Φ−1

[a,b]∥∞,[a,b] = ∥Im[f ◦ Φ[a,b]]∥∞,[−1,1]

≤ Λm∥f ◦ Φ[a,b]∥∞,[−1,1] = Λm∥f∥∞,[a,b] (3.30)

for all f ∈ C[a, b]. The error estimate (3.29) takes the form

∥f − I[a,b]
m [f ]∥∞,[a,b] = ∥f ◦ Φ[a,b] − (I[a,b]

m [f ]) ◦ Φ[a,b]∥∞,[−1,1] = ∥f ◦ Φ[a,b] − Im[f ◦ Φ[a,b]]∥∞,[−1,1]

≤ 2−m

(m + 1)!
∥(f ◦ Φ[a,b])(m+1)∥∞,[−1,1] =

2−m

(m + 1)!

(
b − a

2

)m+1

∥f (m+1)∥∞,[a,b]

=
2

(m + 1)!

(
b − a

4

)m+1

∥f (m+1)∥∞,[a,b] (3.31)
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for all f ∈ Cm+1[a, b].

Now we will consider tensor-product interpolation operators on a general d-dimensional axis-parallel box
Q = [a1, b1] × · · ·× [ad, bd]. Let

IQ
m := I[a1,b1]

m ⊗ · · ·⊗ I[ad,bd]
m (3.32)

be the corresponding m-th order tensor-product interpolation operator mapping C(Q) into Pm ⊗ · · ·⊗ Pm.
We introduce the componentwise interpolation operators

IQ
m,i := I ⊗ · · ·⊗ I ⊗ I[ai,bi]

m ⊗ I ⊗ · · ·⊗ I

for all i ∈ {1, . . . , d}. For i ∈ {1, . . . , d} and a function f ∈ C(Q), the function IQ
m,i[f ] is a polynomial in the

i-th coordinate:

IQ
m,i[f ](x) =

m∑

ν=0

f(x1, . . . , xi−1, ξ
[ai,bi]
ν , xi+1, . . . , xd)L[ai,bi]

ν (xi) for all x ∈ Q. (3.33)

Before we can investigate IQ
m, we have to consider IQ

m,i. Fortunately, the latter operator inherits most of its
properties directly from the one-dimensional operator I

[a,b]
m :

Lemma 3.9 Let i ∈ {1, . . . , d}. We have

∥IQ
m,i[f ]∥∞,Q ≤ Λm∥f∥∞,Q for all f ∈ C(Q),

∥f − IQ
m,i[f ]∥∞,Q ≤ 2

(m + 1)!

(
b − a

4

)m+1

∥∂m+1
i f∥∞,Q for all f ∈ Cm+1(Q).

Proof: Let yk ∈ [ak, bk] for k ∈ {1, . . . , i − 1, i + 1, . . . , m}. For all f ∈ C(Q), we define the function

fi : [ai, bi] → R, x +→ f(y1, . . . , yi−1, x, yi+1, . . . , yd)

and observe

∥fi∥∞,[ai,bi] ≤ ∥f∥∞,Q for all f ∈ C(Q),

∥f (m+1)
i ∥∞,[ai,bi] ≤ ∥∂m+1

i f∥∞,Q for all f ∈ Cm+1(Q).

Let now f ∈ C(Q). We have

f(y1, . . . , yi−1, x, yi+1, . . . , yd) = fi(x),

IQ
m,i[f ](y1, . . . , yi−1, x, yi+1, . . . , yd) = I[ai,bi]

m [fi](x),

so the stability estimate (3.30) yields
∣∣∣IQ

m,i[f ](y1, . . . , yi−1, x, yi+1, . . . , yd)
∣∣∣ ≤

∣∣∣I[ai,bi]
m [fi](x)

∣∣∣ ≤ Λm∥fi∥∞,[ai,bi] ≤ Λm∥f∥∞,Q. (3.34)

For f ∈ Cm+1(Q), we can use the approximation error estimate (3.31) in order to find
∣∣∣f(y1, . . . , yi−1, x, yi+1, . . . , yd) − IQ

m,i[f ](y1, . . . , yi−1, x, yi+1, . . . , yd)
∣∣∣ =

∣∣∣fi(x) − I[ai,bi]
m [fi](x)

∣∣∣

≤ 2
(m + 1)

(
bi − ai

4

)m+1

∥f (m+1)
i ∥∞,[ai,bi] ≤

2
(m + 1)

(
bi − ai

4

)m+1

∥∂m+1
i f∥∞,Q. (3.35)

Applying (3.34) and (3.35) to arbitrary points (y1, . . . , yi−1, x, yi+1, . . . , yd) ∈ Q yields the desired result.

Now that we have established the stability and approximation properties of IQ
m,i, we can do the same for

the tensor-product operator IQ
m:
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Theorem 3.10 (Tensor-product interpolation) Let Q = [a1, b1] × · · · × [ad, bd], let m ∈ N. Let Im

satisfy the stability estimate (3.25) and the error estimate (3.29). Let IQ
m be the m-th order tensor-product

interpolation operator defined by (3.32). We have

∥IQ
m[f ]∥∞,Q ≤ Λd

m∥f∥∞,Q for all f ∈ C(Q),

∥f − IQ
m[f ]∥∞,Q ≤ 2dΛd−1

m

(
diam(Q)

4

)m+1 max{∥∂m+1
i f∥∞,Q : i ∈ {1, . . . , d}}

(m + 1)!
for all f ∈ Cm+1(Q).

Proof: For all i ∈ {0, . . . , d}, we introduce the auxiliary operator

Pi := I[a1,b1]
m ⊗ · · ·⊗ I[ai,bi]

m ⊗ I ⊗ · · ·⊗ I =
i∏

k=1

IQ
m,k.

We observe P0 = I and Pd = IQ
m. Let i ∈ {1, . . . , d}. We have Pi = IQ

m,iPi−1, so the first inequality of
Lemma 3.9 yields

∥Pi[f ]∥∞,Q = ∥IQ
m,i[Pi−1[f ]]∥∞,Q ≤ Λm∥Pi−1[f ]∥∞,Q,

and we get
∥Pi[f ]∥∞,Q ≤ Λi

m∥f∥∞,Q (3.36)

by induction. This implies
∥IQ

m[f ]∥∞,Q = ∥Pd[f ]∥∞,Q ≤ Λd
m∥f∥∞,Q,

which is the first inequality of Theorem 3.10. In order to prove the second one, we combine (3.36) with
Lemma 3.9 and find

∥f − IQ
mf∥∞,Q ≤

d∑

i=1

∥Pi−1f − Pif∥∞,Q =
d∑

i=1

∥Pi−1[f − IQ
m,i[f ]]∥∞,Q

≤
d∑

i=1

Λi−1
m ∥f − IQ

m,i[f ]∥∞,Q ≤ 2Λd−1
m

(m + 1)!

d∑

i=1

(
bi − ai

4

)m+1

∥∂m+1
i f∥∞,Q (3.37)

≤ 2dΛd−1
m

(m + 1)!

(
diam(Q)

4

)m+1

max{∥∂m+1
i f∥∞,Q : i ∈ {1, . . . , d}},

and this was to be demonstrated.

Remark 3.11 (Anisotropic interpolation) The intermediate estimate (3.37) in the proof of Theo-
rem 3.10 suggests a modification of the interpolation scheme: if the dimensions of the bounding box vary,
i.e., if it is short in some directions and long in other ones, it may be possible to use a lower interpolation
order in the shorter directions without harming the total interpolation error.

Now let us apply Theorem 3.10 to the kernel function g.

We assume that g ∈ C∞(Qt × Qs) is asymptotically smooth, i.e, that

|∂α
x ∂

β
y g(x, y)| ≤ C |α+ β|! c|α+β|

0 ∥x − y∥−|α+β|−σ (3.38)

holds for constants C, c0,σ ∈ R>0. This implies that the functions

gx : Qt → C∞(Qs), x +→ g(x, ·), (3.39)
gy : Qs → C∞(Qt), y +→ g(·, y),

satisfy the estimates

∥∂αgx(x)∥∞,Qt ≤ C |α|! c|α|
0 dist(Qt, Qs)−|α|−σ,
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∥∂βgy(y)∥∞,Qs ≤ C |β|! c|β|0 dist(Qt, Qs)−|β|−σ

for x ∈ Qt and y ∈ Qs, so we can apply Theorem 3.10 and use Λm ≤ m + 1 in order to get

∥gx − It
m[gx]∥∞,Qt ≤

2Cd(m + 1)d−1

dist(Qt, Qs)σ

(
c0 diam(Qt)

4 dist(Qt, Qs)

)m+1

∥gy − Is
m[gy]∥∞,Qs ≤ 2Cd(m + 1)d−1

dist(Qt, Qs)σ

(
c0 diam(Qs)
4 dist(Qt, Qs)

)m+1

.

The approximation g̃ is given by

g̃(x, y) :=

{
(It

m[gx])(x)(y) if diam(Qt) ≤ diam(Qs),
(Is

m[gy])(y)(x) otherwise
for all x ∈ Qt, y ∈ Qs. (3.40)

If diam(Qt) ≤ diam(Qs), we have

|g(x, y) − g̃(x, y)| = |g(x, y) −
∑

ν∈K

g(xt
ν , y)Lt

ν(x)| = |gx(x)(y) − (It
m[gx](x))(y)| = |(gx − It

m[gx])(x)(y)|

≤ 2Cd(m + 1)d−1

dist(Qt, Qs)σ

(
c0 diam(Qt)

4 dist(Qt, Qs)

)m+1

≤ 2Cd(m + 1)d−1ησ

min{diam(Qt), diam(Qs)}σ

(c0η

4

)m+1
.

In a similar fashion, we can treat the case diam(Qs) ≤ diam(Qt) and conclude

|g(x, y) − g̃(x, y)| ≤ Cin(m)
dist(Qt, Qs)σ

(c0η

4

)m+1
(3.41)

for the polynomial Cin(m) := 2Cd(m + 1)dησ. If we choose η < 4/c0, we have (c0η/4) < 1 and the
approximation of the kernel function converges exponentially in m.

Remark 3.12 (Improved error bound) In [8], we prove that the error converges as O((c0η)/(c0η+ 2)),
i.e., we get exponential convergence even if η and c0 are large.

3.4 Approximation of Derivatives

In the context of boundary element methods, we are frequently faced by the challenge of approximating prod-
ucts of derivatives of an asymptotically smooth function and another function which is not asymptotically
smooth, but separable.

A typical example is the classical double layer potential operator

GDLP[u](x) =
1
2π

∫

Γ

⟨x − y, n(y)⟩
∥x − y∥2

on a curve Γ in two spatial dimensions, where for each y ∈ Γ the unit vector n(y) describes the outward
normal direction. The kernel function

g(x, y) =
1
2π

⟨x − y, n(y)⟩
∥x − y∥2

is not asymptotically smooth: n is only defined on Γ, and it will, in general, not be smooth. Therefore the
theory of the preceding section does not apply directly to this integral operator.
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3.4.1 Separable Approximation of Partial Derivatives

We observe that we have

g(x, y) = ⟨grady γ(x, y), n(y)⟩ for x, y ∈ R2, x ̸= y

for the generator function

γ : (R2) × (R2) → R, (x, y) +→
{
− 1

2π log ∥x − y∥ if x ̸= y,

0 otherwise.

This function is asymptotically smooth, so g is the product of a derivative of γ and a separable function
(since n does not depend on x, it is trivially separable).

We can apply the theory of the previous sections to γ in order to construct a separable approximation

γ̃(x, y) =
∑

ν∈K

vν(x)wν (y),

which gives rise to a separable approximation

g̃(x, y) := ⟨grady γ̃(x, y), n(y)⟩ =
∑

ν∈K

vν(x)⟨grad wν(y), n(y)⟩

of the kernel function g. Using this approach, we can construct low-rank approximations of matrix blocks
by the techniques we have already introduced.

Now let us investigate the error introduced by replacing g by g̃. We have

|g(x, y) − g̃(x, y)| = |⟨grady(γ − γ̃)(x, y), n(y)⟩ ≤ ∥ grady(γ − γ̃)(x, y)∥ ∥n(y)∥

and due to ∥n(y)∥ = 1, we are left with the task of finding a bound for ∥ grady(γ− γ̃)(x, y)∥, i.e., of bounding
the derivatives of the approximation error.

3.4.2 Stability of Derivatives

In the case of polynomial interpolation, we can use an indirect approach: we construct a polynomial f∗ of
order m − 1 which approximates f ′. Its antiderivative f̃ will be a polynomial of order m with f∗ = f̃ ′,
therefore the derivative of f̃ will be a good approximation of f ′. With a suitable generalization of the
stability bound (3.25), we can then proceed as in Lemma 3.8 in order to prove that the interpolant of f is
as least as good as f̃ .

Our goal is therefore to establish a version of (3.25) relating to the derivatives of f and f̃ . The key component
of the proof is the following inverse estimate in the space of polynomials:

Lemma 3.13 (Markov’s inequality iterated) Let ℓ ∈ N0, and let u ∈ Pm. We have

∥u(ℓ)∥∞,[−1,1] ≤

⎧
⎨

⎩

(
m!

(m−ℓ)!

)2
∥u∥∞,[−1,1] if ℓ ≤ m,

0 otherwise.
(3.42)

Proof: By induction over ℓ. For ℓ = 0, this inequality is trivial.

Let now ℓ ∈ N0 be such that (3.42) holds. We have to prove the inequality for ℓ + 1. If ℓ ≥ m, we have
ℓ+ 1 > m and u(ℓ+1) = 0, therefore (3.42) is trivial.

Otherwise, we have u(ℓ) ∈ Pm−ℓ and can apply Markov’s inequality [19, Theorem 4.1.4] in order to get

∥u(ℓ+1)∥∞,[−1,1] = ∥(u(ℓ))′∥∞,[−1,1] ≤ (m − ℓ)2∥u(ℓ)∥∞,[−1,1].
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The induction assumption yields

∥u(ℓ+1)∥∞,[−1,1] ≤ (m − ℓ)2∥u(ℓ)∥∞,[−1,1] ≤ (m − ℓ)2
(

m!
(m − ℓ)!

)2

∥u∥∞,[−1,1]

=
(

m!
(m − ℓ− 1)!

)2

∥u∥∞,[−1,1],

which is the desired estimate.

Using this estimate, we can reduce the task of bounding the derivative of the interpolant to the task of
bounding the interpolant itself, i.e., to the standard stability estimate (3.25).

Lemma 3.14 (Stability of derivatives) Let ℓ ∈ {0, . . . , m}, let f ∈ Cℓ[a, b]. If I
[a,b]
m satisfies the stability

condition (3.25), it also satisfies the condition

∥(I[a,b]
m [f ])(ℓ)∥∞,[a,b] ≤ Λ(ℓ)

m ∥f (ℓ)∥∞,[a,b]

with the stability constant

Λ(ℓ)
m :=

Λm

ℓ!

(
m!

(m − ℓ)!

)2

.

Proof: Let f̂ := f ◦ Φ[a,b] ∈ Cℓ[−1, 1]. We denote the Taylor expansion of the function f̂ around zero by

f̃(x) :=
ℓ−1∑

k=0

f̂ (k)(0)
xk

k!
.

Since f̃ (ℓ) = 0 and ℓ ≤ m, we have
(Im[f̃ ])(ℓ) = f̃ (ℓ) = 0

and find
(Im[f̂ ])(ℓ) = (Im[f̂ − f̃ ])(ℓ).

We apply Lemma 3.13 to u := Im[f̂ − f̃ ] ∈ Pm in order to get

∥(Im[f̂ − f̃ ])(ℓ)∥∞,[−1,1] ≤
(

m!
(m − ℓ)!

)2

∥Im[f̂ − f̃ ]∥∞,[−1,1] ≤ Λm

(
m!

(m − ℓ)!

)2

∥f̂ − f̃∥∞,[−1,1].

The standard error estimate for the Taylor expansion yields

∥f̂ − f̃∥∞,[−1,1] ≤
∥f̂ (ℓ)∥∞,[−1,1]

ℓ!
,

and we conclude

∥(Im[f̂ ])(ℓ)∥∞,[−1,1] ≤
Λm

ℓ!

(
m!

(m − ℓ)!

)2

∥f̂ (ℓ)∥∞,[−1,1] = Λℓ
m∥f̂ (ℓ)∥∞,[−1,1].

Let us now return our attention to the original function f on the interval [a, b]. Due to (3.22), we have

(I[a,b]
m [f ])(ℓ) = (Im[f̂ ] ◦ Φ−1

[a,b])
(ℓ) =

(
2

b − a

)ℓ

(Im[f̂ ])(ℓ) ◦ Φ−1
[a,b],

which implies

∥(I[a,b]
m [f ])(ℓ)∥∞,[a,b] =

(
2

b − a

)ℓ

∥(Im[f̂ ])(ℓ)∥∞,[−1,1] ≤ Λ(ℓ)
m

(
2

b − a

)ℓ

∥f̂ (ℓ)∥∞,[−1,1]

= Λ(ℓ)
m

(
2

b − a

)ℓ

∥(f ◦ Φ[a,b])(ℓ)∥∞,[−1,1] = Λ(ℓ)
m

(
2

b − a

)ℓ(b − a

2

)ℓ

∥f (ℓ)∥∞,[a,b]

= Λ(ℓ)
m ∥f (ℓ)∥∞,[a,b],

and this is the desired result.



3.4. APPROXIMATION OF DERIVATIVES 55

3.4.3 Construction of Approximants

We can use the stability estimate of Lemma 3.14 in order to prove a best-approximation inequality similar
to the one from Lemma 3.8.

Theorem 3.15 (Approximation of derivatives) Let ℓ ∈ {0, . . . , m}, let n ∈ {0, . . . , m − ℓ} and let
f ∈ Cm+1[a, b]. If (3.25) and (3.29) hold, we have

∥f (ℓ) − (I[a,b]
m [f ])(ℓ)∥∞,[a,b] ≤

2(Λ(ℓ)
m + 1)

(n + 1)!

(
b − a

4

)n+1

∥f (ℓ+n+1)∥∞,[a,b].

Proof: Let fℓ := f (ℓ), and let Let f̃ℓ := I
[a,b]
n [fℓ] ∈ Pn ⊆ Pm−ℓ. According to (3.31), we have

∥fℓ − f̃ℓ∥∞,[a,b] ≤
2

(n + 1)!

(
b − a

4

)n+1

∥f (n+1)
ℓ ∥∞,[a,b]

=
2

(n + 1)!

(
b − a

4

)n+1

∥f (ℓ+n+1)∥∞,[a,b].

For all k ∈ {0, . . . , ℓ− 1}, we construct f̃k ∈ Pm−k inductively by

f̃k(t) :=
∫ t

a
f̃k−1(s) ds for all t ∈ [a, b].

This definition implies f̃ ′k = f̃k−1, and by induction f̃ (ℓ)
0 = f̃ℓ, i.e.,

∥(f − f̃0)(ℓ)∥∞,[a,b] = ∥fℓ − f̃ℓ∥∞,[a,b] ≤
2

(n + 1)!

(
b − a

4

)n+1

∥f (ℓ+n+1)∥∞,[a,b].

Due to f̃0 ∈ Pm, we have

∥(f − I[a,b]
m [f ])(ℓ)∥∞,[a,b] = ∥(f − f̃0 + I[a,b]

m [f̃0] − I[a,b]
m [f ])(ℓ)∥∞,[a,b]

≤ ∥(f − f̃0)(ℓ)∥∞,[a,b] + ∥(I[a,b]
m [f − f̃0])(ℓ)∥∞,[a,b] (3.43)

and can apply Lemma 3.14 to get

∥(I[a,b]
m [f − f̃0])(ℓ)∥∞,[a,b] ≤ Λ(ℓ)

m ∥(f − f̃0)(ℓ)∥∞,[a,b].

Combining this estimate with (3.43) yields

∥(f − I[a,b]
m [f ])(ℓ)∥∞,[a,b] ≤ (1 + Λ(ℓ)

m )∥(f − f̃0)(ℓ)∥∞,[a,b] ≤
2(1 + Λ(ℓ)

m )
(n + 1)!

(
b − a

4

)n+1

∥f (ℓ+n+1)∥∞,[a,b],

which was to be proven.

Combining this estimate with the technique used in the proof of Theorem 3.10 allows us to find an error
estimate for the multi-dimensional interpolation operator.

We first consider the coordinate-wise operators IQ
m,i:

Lemma 3.16 Let i, j ∈ {1, . . . , d}. Let ℓ ∈ {0, . . . , m} and n ∈ {0, . . . , m − ℓ}. We have

∥∂ℓ
j(I

Q
m,i[f ])∥∞,Q ≤

{
Λ(ℓ)

m ∥∂jf∥∞,Q if i = j,

Λm∥∂jf∥∞,Q otherwise
for all f ∈ Cℓ(Q),

∥∂ℓ
jf − ∂ℓ

j(I
Q
m,i[f ])∥∞,Q ≤

{
2(Λ(ℓ)

m +1)
(n+1)!

(
b−a
4

)n+1 ∥∂ℓ+n+1
i f∥∞,Q if i = j,

2
(n+1)!

(
b−a
4

)n+1 ∥∂ℓ
j∂

n+1
i f∥∞,Q otherwise

for all f ∈ Cℓ+n+1(Q).
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Proof: The case i ̸= j is simple: according to (3.33), we have

∂ℓ
j(I

Q
m,i[f ])(x) = IQ

m,i[∂
ℓ
jf ](x) for all x ∈ Q, f ∈ Cℓ(Q),

∂ℓ
j(f − IQ

m,i[f ])(x) = ∂ℓ
jf(x) − IQ

m,i[∂
ℓ
jf ](x) for all x ∈ Q, f ∈ Cℓ(Q),

and applying Lemma 3.9 yields the desired result.

Let us now consider the case i = j. As in the proof of Lemma 3.9, we let yk ∈ [ak, bk] for all k ∈
{1, . . . , i − 1, i + 1, . . . , d} and define

fi : [ai, bi] → R, x +→ f(y1, . . . , yi−1, x, yi+1, . . . , yd)

for all f ∈ C(Q). If f ∈ Cℓ(Q) holds, we have

∂ℓ
i f(y1, . . . , yi−1, x, yi+1, . . . , yd) = f (ℓ)

i (x),

∂ℓ
i (I

Q
m,i[f ])(y1, . . . , yi−1, x, yi+1, . . . , yd) = (I[ai,bi]

m [fi])(ℓ)(x)

for all x ∈ [ai, bi]. Lemma 3.14 yields the stability estimate, while we can use Theorem 3.15 in order to get

|∂ℓ
i f(y1, . . . , yi−1, x, yi+1, . . . , yd) − ∂ℓ

i (I
Q
m,i[f ])(y1, . . . , yi−1, x, yi+1, . . . , yd)| = |f (ℓ)

i (x) − (I[ai,bi]
m [fi])(ℓ)(x)|

≤ 2(Λ(ℓ)
m + 1)

(n + 1)!

(
b − a

4

)n+1

∥f (ℓ+n+1)
i ∥∞,[ai,bi] ≤

2(Λ(ℓ)
m + 1)

(n + 1)!

(
b − a

4

)n+1

∥∂ℓ+n+1
i f∥∞,Q

for all x ∈ [ai, bi].

Theorem 3.17 (Tensor-product interpolation) Let Q = [a1, b1] × . . . × [ad, bd], let m ∈ N, and let
µ ∈ Nd

0 with µi ≤ m for all i ∈ {1, . . . , d}. Let n ∈ N0 with n ≤ m − µi for all i ∈ {1, . . . , d}. Let Im

satisfy the stability estimate (3.25) and the error estimate (3.29). Let IQ
m be the m-th order tensor-product

interpolation operator defined by (3.32). We let

Λ(µ)
m :=

d∏

i=1

(Λ(µi)
m + 1).

The error estimate

∥∂µ(f − IQ
m[f ])∥∞,Q ≤ 2Λ(µ)

m

(n + 1)!

d∑

i=1

(
bi − ai

4

)n+1

∥∂n+1
i ∂µf∥∞,Q

holds for all f ∈ Cm+1(Q).

Proof: We proceed as in the proof of Theorem 3.10: for all i ∈ {0, . . . , d}, we introduce

Pi :=
i∏

k=1

IQ
m,k

and note P0 = I and Pd = IQ
m. Let f ∈ Cm+1(Q) and i ∈ {1, . . . , d}. According to Lemma 3.16, we have

∥∂(µj)
j (Pi[f ])∥∞,Q = ∥∂(µj)

j (IQ
m,i[Pi−1[f ]])∥∞,Q ≤ ∥∂(µj)

j (Pi−1[f ])∥∞,Q

{
Λ(µj)

m if i = j,

Λm otherwise,

and due to 1 ≤ Λm ≤ Λ(µj)
m ≤ Λ(µj)

m + 1, a simple induction yields

∥∂µ(Pi[f ])∥∞,Q ≤

⎛

⎝
i−1∏

j=1

(Λ(µj)
m + 1)

⎞

⎠ ∥∂µf∥∞,Q
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for all i ∈ {0, . . . , d − 1}.

The second inequality of Lemma 3.16 implies

∥∂µf − ∂µ(IQ
m,i[f ])∥∞,Q ≤ 2(Λ(µi)

m + 1)
(n + 1)!

(
bi − ai

4

)n+1

∥∂m+1
i ∂µf∥∞,Q,

and proceeding as in the proof of Theorem 3.10 yields

∥∂µf − ∂µ(IQ
m[f ])∥∞,Q ≤

d∑

i=1

⎛

⎝
i−1∏

j=1

(Λ(µj)
m + 1)

⎞

⎠ ∥∂jf − ∂f (IQ
m,i[f ])∥∞,Q

≤ 2Λ(µ)
m

(n + 1)!

d∑

i=1

(
bi − ai

4

)n+1

∥∂n+1
i ∂µf∥∞,Q,

which is the inequality we had to prove.

3.4.4 Application to the Generator Function

We assume that Qt and Qs are bounding boxes satisfying the admissibility condition (2.4) and require that
the generator function γ is asymptotically smooth, i.e., satisfies

|∂α
x ∂

β
y γ(x, y)| ≤ C |α+ β|! c|α+β|

0 ∥x − y∥−|α+β|−σ

for all x ∈ Qt, y ∈ Qs and all multi-indices α,β ∈ Nd
0.

We assume that g = ∂µ
x∂

ζ
yγ holds for µ, ζ ∈ Nd

0.

We will consider only the case diam(Qt) ≤ diam(Qs), i.e., we will approximate the function γx defined by

γx : Qt → C∞(Qs), x +→ γ(x, ·),

by an interpolant IQt
m gx. The case diam(Qt) > diam(Qs), in which we approximate a similarly-defined γy,

can be handled similarly.

We assume that the interpolation order m ∈ N is sufficiently high, i.e., that µi ≤ m holds for all i ∈ {1, . . . , d},
and we fix n ∈ N0 with n ≤ m − µi for all i ∈ {1, . . . , d}.

For ∂µγx, we have
∥∂α∂µgx(x)∥∞,Qt ≤ C |α+ µ|! c|α+µ|

0 dist(Qt, Qs)−|α|−(σ+|µ|).

Using this estimate, we can derive the bound

∥∂n+1
i ∂µgx∥∞,Qt ≤ C (|µ| + n + 1)! c|µ|+n+1

0 dist(Qt, Qs)−(n+1)−(σ+|µ|)

for all i, j ∈ {1, . . . , d}, and combining this bound with Theorem 3.17 yields

∥∂µγ − ∂µ(IQ
m[γ])∥∞,Q ≤ 2CΛ(µ)

m c|µ|0

dist(Qt, Qs)σ+|µ|
(|µ| + n + 1)!

(n + 1)!

d∑

i=1

(
(bi − ai)c0

4 dist(Qt, Qs)

)n+1

.

We have bi − ai ≤ diam(Qt), and since Qt and Qs are admissible, we also find

dist(Qt, Qs)−1 ≤ η diam(Qt)−1,

and combining both estimates yields
(bi − ai)c0

4 dist(Qt, Qs)
≤ c0η

4
.
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As in the standard case, we assume η < 4/c0, i.e., c0η/4 < 1, and conclude

∥∂µγ − ∂µ(IQ
m[γ])∥∞,Q ≤ 2CdΛ(µ)

m c|µ|0

dist(Qt, Qs)σ+|µ|
(|µ| + n + 1)!

(n + 1)!

(c0η

4

)n
, (3.44)

so the derivative of the interpolant of γ will converge to the derivative of γ with the same rate as in the
standard case.

We introduce the polynomial

C(µ)
in (n) := 2Cd

(
d∏

i=1

m + 1
µi!

(
m!

(m − µi)!

)2
)

c|µ|0

(|µ| + n + 1)!
(n + 1)!

and find that (3.44) implies

|g(x, y) − g̃(x, y)| ≤ C(µ)
in (n)

dist(Qt, Qs)σ+|µ|

(c0η

4

)n+1

for the separable approximation given by

g̃(x, y) =
∑

ν∈K

(∂µLt
ν)(x)(∂ζ

y )g(xt
ν , y).

This estimate is very similar to the estimate (3.41) we have found for the approximation without derivatives,
only the polynomial C(µ)

in is of higher order and we only get an exponent of n + 1 instead of m + 1 in the
rightmost term.

We can conclude that the derivatives of the interpolant will converge under exactly the same conditions as
before and with the same asymptotic convergence rate, only the additional constants are higher.

3.5 Example: Boundary Element Method in 2D

In Example 2.11, we have considered the construction of a cluster tree for a curve in two-dimensional space.
Now we will solve integral equations on this curve by the techniques introduced in this chapter.

We are interested in a boundary integral problem, i.e., the set Ω will be a submanifold. In our case, Ω is a
one-dimensional submanifold of R2, i.e., a curve. Since we are interested in integral equations, we have to
recall the meaning of an integral on a curve.

3.5.1 Curve Integrals

Let γ : [0, 1] → R2 be a continuously differentiable function that is injective in [0, 1[. We denote its range
by Γ := γ([0, 1]). Let u ∈ C(Γ). Similar to the construction of Riemann integrals, we introduce a partition
0 = x0 < x1 < . . . < xn = 1 of the interval [0, 1] and consider the sum

Ix :=
n∑

i=1

u(γ(xi))∥γ(xi) − γ(xi−1)∥.

Lemma 3.18 (Curve integral) Let ε ∈ R>0. There is a δ ∈ R>0 such that for all partitions 0 = x0 <
x1 < . . . < xn = 1 with xi − xi−1 < δ (i ∈ {1, . . . , n}) we have

∣∣∣∣Ix −
∫ 1

0
u(γ(y))∥γ′(y)∥ dy

∣∣∣∣ ≤ ε.
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Proof: Since u ◦ γ and ∥γ′∥ are continuous on the compact set [0, 1], they are uniformly continuous. Let
ε̂ :=

√
ε+ a2/4 − a/2 for

a :=
∫ 1

0
|u(γ(y))| + ∥γ′(y)∥ dy.

Due to uniform continuity, there is a δ ∈ R>0 such that

|u ◦ γ(x) − u ◦ γ(y)| < ε̂ and |∥γ′(x)∥ − ∥γ′(y)∥| < ε̂

holds for all x, y ∈ [0, 1] with |x − y| < δ.

Let 0 = x0 < x1 < . . . < xn = 1 with xi − xi−1 < δ for all i ∈ {1, . . . , n}. By the differential mean value
theorem, we find an x̂i ∈ [xi−1, xi] with

γ′(x̂i) =
γ(xi) − γ(xi−1)

xi − xi−1
.

This implies

∣∣∣∣Ix −
∫ 1

0
u(γ(y))∥γ′(y)∥ dy

∣∣∣∣ =

∣∣∣∣∣

n∑

i=1

∫ xi

xi−1

(
u(γ(xi))

∥∥∥∥
γ(xi) − γ(xi−1)

xi − xi−1

∥∥∥∥− u(γ(y))∥γ′(y)∥
)

dy

∣∣∣∣∣

≤
n∑

i=1

∣∣∣∣∣

∫ xi

xi−1

(u(γ(xi))∥γ′(x̂i)∥ − u(γ(y))∥γ′(y)∥) dy

∣∣∣∣∣

≤
n∑

i=1

∫ xi

xi−1

(|u(γ(xi))| |∥γ′(x̂i)∥ − ∥γ′(y)∥| + |u(γ(xi)) − u(γ(y))|∥γ′(y)∥) dy

≤
n∑

i=1

∫ xi

xi−1

(|u(γ(xi))|ε+ ε∥γ′(y)∥) dy

≤
n∑

i=1

∫ xi

xi−1

(
ε̂2 + |u(γ(y))|ε̂+ ε̂∥γ′(y)∥

)
dy

= ε̂2 + ε̂

∫ 1

0
(|u ◦ γ(y)| + ∥γ′(y)∥) dy = ε̂2 + ε̂a = ε.

Now we can define the curve integral: let (γi)m
i=1 be a tuple of injective functions in C1([0, 1], R2). For all

i ∈ {1, . . . , m}, we set Γi := γi([0, 1]). The curve integral over the piecewise differentiable curve Γ :=
⋃m

i=1 Γi

is given by
∫

Γ
u(x)dx :=

m∑

i=1

∫ 1

0
u(γi(y))∥γ′i(y)∥ dy.

3.5.2 Single Layer Potential Operator

We fix n points p0, . . . , pn−1 ∈ R2, set pn := p0 and define the affine parametrisations

γi : [0, 1] → R2, y +→ pi−1(1 − y) + piy,

for i ∈ {1, . . . , n}. As long as pi ̸= pj holds for all i, j ∈ {0, . . . , n − 1} with i ̸= j, this defines a polygonal
curve Γ :=

⋃m
i=1 γi([0, 1]).
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On the curve Γ, we can now define the single layer potential operator

Gslp[u](x) := − 1
2π

∫

Γ
log(∥x − y∥)u(y) dy

and the corresponding bilinear form

aslp(u, v) := − 1
2π

∫

Γ
v(x)

∫

Γ
log(∥x − y∥)u(y) dy dx.

We discretise aslp(·, ·) by piecewise constant functions (ϕi)n
i=1 defined through

ϕi ◦ γj ≡ δij

for i, j ∈ I := {1, . . . , n}. The coefficients of the corresponding matrix are given by

Gij = aslp(ϕj ,ϕi) = − 1
2π

∫

Γ
ϕi(x)

∫

Γ
log(∥x − y∥)ϕj(y) dy dx

= − 1
2π

∥pi − pi−1∥ ∥pj − pj−1∥
∫ 1

0

∫ 1

0
log(∥γi(x) − γj(y)∥) dy dx.

Now we are in the situation of Section 3.2 and can construct a hierarchical matrix by replacing the logarithmic
kernel g(x, y) := log(∥x − y∥) by degenerate approximations.

3.5.3 Implementation

We have already considered the construction of suitable cluster trees and admissible partitions in Exam-
ples 2.11 and 2.20, so we will focus on the problem of computing the entries of the hierarchical matrix
represented by a supermatrix in our code.

The treatment of the full matrices involves the efficient evaluation of singular integrals and is not the subject
of our investigation. It suffices to say that we provide a function integrate_nearfield that initialises these
matrices.

Let us now consider the treatment of the low-rank blocks. They correspond to admissible pairs (t, s) of
clusters and require the evaluation of a degenerate approximation of the kernel function. We assume that
diam(Qt) ≤ diam(Qs), so the approximation is given by

g̃(x, y) =
∑

ν∈K

log(∥xt
ν − y∥)Lt

ν(x)

and we have to compute the matrices

At,s
iν =

∫

Γ
ϕi(x)Lt

ν(x) dx = ∥pi − pi−1∥
∫ 1

0
Lt

ν(γi(x)) dx, (3.45)
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Bt,s
jν = − 1

2π

∫

Γ
ϕj(y) log(∥xt

ν − y∥) dy = − 1
2π

∥pj − pj−1∥
∫ 1

0
log(∥xt

ν − γj(y)∥) dy. (3.46)

Since γi is affine, the first integrand is a polynomial of degree m, so we can apply an exact quadrature rule
for its evaluation.

In order to implement this computation, we need the following data:

• An array vertex of dimension n containing the coordinates of the points (pi)n−1
i=0 .

• Arrays xq and wq of dimension q containing the points and weights of a suitable quadrature rule. For
the typical choice, Gauss quadrature, we can use the library routine build_gauss.

• An array l of dimension p containing the transformed interpolation points. This array can be computed
by the function given in Subsection 3.3.2.

Filling the matrix Bt,s requires us to integrate the kernel function for points xt
ν on intervals given by pi−1

and pi. In our example, this can be done analytically (cf. Exercise 3). In more general situations, we can
use the same quadrature rule as in the case of the integration of the Lagrange polynomials.

The supermatrix structure can be initialised by a simple recursion: If the supermatrix contains an
rkmatrix, we compare the diameters of the clusters involved and use the procedure described above to
initialise the fields a and b of the rkmatrix.

If the supermatrix contains a fullmatrix, we evaluate singular integrals and fill its field e.

Otherwise, we proceed recursively with the subblocks that are given by the array s.

3.6 Exercises

3.6.1 Practice

Exercise 3 Let γ : [0, 1] → R2 and c ∈ R2 be given by

γ(t) :=
(

sx + tdx

sy + tdy

)
and c :=

(
cx

cy

)
.

We assume that c ̸∈ γ([0, 1]). Write a C function

static double
collocation_logarithm(double sx, double sy, double dx, double dy,

double cx, double cy);

that computes the value of the integral
∫ 1

0
log(∥γ(t) − c∥2) ∥γ′(t)∥2 dt.

There are two ways of solving this exercise: you can compute the value of the integral explicitly by using the
equation ∫

log(a2 + x2) dx = x log(a2 + x2) − 2x + 2a arctan
(x

a

)
,

or you can use Gauss quadrature. Gauss quadrature points can be computed by the routine build_gauss in
the file quadrature.c.

Exercise 4 (BEM) The structure curvebemfactory contains the data necessary for the discretisation of
the single layer potential on a curve:
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• An integer n and an array vertex containing the geometrical information of the curve, i.e., the points
(pi)p−1

i=0 .

• Arrays xq and wq containing q quadrature points.

• An array xp containing p interpolation points.

• An auxiliary array l that can be used to store transformed interpolation points.

Use the given function transform_interpolation_points to implement the functions

static void
integrate_polynomial(pccluster t,

pcurvebemfactory bfactory,
double *X, int ldX);

static void
integrate_kernel(pccluster t, pccluster s,

pcurvebemfactory bfactory,
double *X, int ldX);

that initialise the matrices X as follows: for the first function, the matrix X is filled with the entries of the
matrix At,s from (3.45). For the second function, it is filled with the entries of the matrix Bt,s.



Chapter 4

Cross Approximation

In the previous chapter we have constructed a degenerate kernel approximation g̃(x, y) ≈ g(x, y). The
subblock R := G̃|t̂×ŝ of the stiffness matrix using the degenerate kernel g̃ instead of g is of low rank and can
be represented by an rkmatrix ABT . The rank k in this representation is independent of the quadrature
used to compute the matrix entries and it is independent of the discretisation scheme (Nystrøm, Collocations,
Galerkin).

In this section we consider methods that start with the already discretised matrix block M := G|t̂×ŝ and
compute a (low rank) approximation up to a prescribed error ε. For the more elaborate (and more heuristic)
methods it is not necessary to assemble the whole matrix block in advance, the method will request to
compute particular entries of the matrix.

4.1 Singular Value Decomposition

The minimal rank approximation R of M ∈ Rt̂×ŝ for a prescribed error bound ∥R−M∥2 ≤ ε is given in the
following Lemma.

Lemma 4.1 (Best approximation via SVD) Let the singular value decomposition of M ∈ Rt̂×ŝ be given
by

M = UΣV T

with unitary matrices U and V (columns orthonormal) and diagonal (rectangular) matrix

Σ = diag(σ1, . . . ,σmin(#t̂,#ŝ)), σ1 ≥ σ2 ≥ · · · ≥ σmin(#t̂,#ŝ) ≥ 0.

Then the matrix

R :=
k∑

ν=1

uνσνvT
ν , σk > ε ≥ σk+1,

is a minimal rank approximation of M that fulfils ∥M − R∥2 ≤ ε, i.e., R = argminR∈R(k)∥M − R∥2.

Proof: [21, Theorem 2.5.3]

The rank k of the minimal rank approximation R obviously depends on the desired accuracy ε. But it also
depends on the perturbation of M due to an inexact quadrature.

63
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Example 4.2 (Influence of quadrature errors) We consider the model problem from Section 1.1 where
the matrix block Gt̂×ŝ corresponding to the subdomain [0, 1

4 ]× [ 34 , 1] can be approximated by low rank provided
that the quadrature is exact. In practice this will almost never be the case (due to the complexity). Instead,
one lowers the order of the quadrature formula in the farfield where the kernel is fairly smooth. In particular,
one can replace farfield entries Gi,j by zero if the distance between suppϕi and suppϕj is large compared
to diam(suppϕi × suppϕj). In our model problem we assume that the meshwidth h is small enough so that
matrix entries Gi,j can be replaced by zero if |i− j| > 3

4n. For i = 0 all entries G0,j with j > 3
4n are zero, for

i = 1 all entries G1,j with j > 3
4n+1 are zero and so forth. The pattern of the matrix block Gt̂×ŝ is that of a

*

00 1/4 3/4 1

st

Figure 4.1: The matrix Gt̂×ŝ corresponding to the subdomain [0, 1
4 ] × [ 34 , 1] is lower triangular.

lower triangular matrix (cf. Figure 4.1). This means that for an accuracy ε≪ min{|Gi,j | ̸= 0 | i ∈ t̂, j ∈ ŝ}
any approximation G̃|t̂×ŝ of G|t̂×ŝ with ∥G̃|t̂×ŝ − G|t̂×ŝ∥2 ≤ ε has to be of full rank.

The previous example is not an academic or practically unimportant example. In fact, whenever the quadra-
ture order is changed within a matrix block, we expect the approximation rank to be k = O(n) as the desired
accuracy ε reaches the quadrature error. If we forbid a change in the quadrature error within a single matrix
block (in order to get rid of this side effect) and instead use the highest quadrature, proposed for an entry
(i, j) in the respective block, for all entries in the block, then the computational effort is much higher, as
can be seen in Figure 4.2.

q=3
q=3
q=2

q=1

q=0

Figure 4.2: The matrix G from the model problem of Section 1.1 is assembled with different quadrature
orders q ∈ {0, 1, 2, 3} in different parts of the matrix. The highest order is used close to the diagonal. If we
forbid a change in the quadrature order within a single block, then all blocks have to be assembled with the
highest order q = 3.

Conclusion: When applying rank revealing decompositions, then the accuracy of the quadrature has to be
better than the desired accuracy of the low rank approximation.

4.2 Cross Approximation

An interesting approach for a special low rank approximation is proposed in [26] under the name skeleton
approximation or cross approximation. Let us fix a block t̂ × ŝ ⊂ I × I and a matrix block M ∈ Rt̂×ŝ. The
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idea of cross approximation is to choose (in a clever way that we describe later) a small set s∗ ⊂ ŝ of pivot
columns and a small set t∗ ⊂ t̂ of pivot rows so that for a matrix S ∈ Rs∗×t∗ there holds (cf. Figure 4.3)

∥M − M̃∥2 ≤ ε, M̃ := M |t̂×s∗ · S · M |t∗×ŝ ∈ R(min{#s∗, #t∗}).

Since only #t∗ rows and #s∗ columns of the matrix M are used in the representation of M̃ , this is an

4
7

∼∼

2
6

2

4

7

13 61 3

Figure 4.3: The matrix M is approximated by a combination of few rows t∗ = {2, 4, 7} and columns s∗ =
{1, 3, 6} of the matrix. A diagonal entry (i, j) ∈ t∗ × s∗ defines the (rank 1) cross (M |{i}×ŝ) 1

Mi,j
(M |{j}×t̂).

efficient way to assemble the matrix M̃ in rkmatrix format with rank k = min{#t∗, #s∗}.

There is a positive result proven in [26]: if we assume that there exists a sufficiently good low rank approxi-
mation, then there also exists a cross approximation with almost the same approximation quality.

Theorem 4.3 (Existence of cross approximations) Let M, R ∈ Rt̂×ŝ be matrices with ∥M − R∥ ≤ ε
and rank(R) ≤ k. Then there exists a subset s∗ ⊂ ŝ of pivot columns and a subset t∗ ⊂ t̂ of pivot rows and
a matrix S ∈ Rt∗×s∗

with

∥M − M |t̂×s∗ · S · M |t∗×ŝ∥2 ≤ ε(1 + 2
√

k(
√

#t̂ +
√

#ŝ)).

Proof: [26]

In the following we introduce two constructive heuristics for the assembly of a cross approximation. Both
algorithms compute successive rank one approximations. The first one is of quadratic complexity, the second
one of linear complexity.

4.3 Cross Approximation with Full Pivoting

Let M ∈ Rt̂×ŝ ̸= 0 be given. All entries of M have to be computed in advance.

An R(1)-approximation of M using full pivoting is constructed in two steps:

1. Determine the index pair (i∗, j∗) with maximal entry |Mi∗,j∗ | in
modulus. Set δ := Mi∗,j∗ .

2. Compute the entries

ai := Mi,j∗ , i ∈ t̂, bj := Mi∗,j/δ, j ∈ ŝ.

The matrix R := abT ∈ R(1) is the sought rank one approximation.

1

i*

j*

An R(k)-approximation of M consists of k steps of the above procedure applied to the remainder M −∑µ
ν=1 aν(bν)T . The rank one approximation is denoted by R1, the rank two approximation by R2 and so

forth. The complete cross approximation algorithm with full pivoting is given in Algorithm 2.

This approximation scheme is able to find the exact representation of a rank k matrix in k steps, i.e.,∑k
ν=1 aν(bν)T = M if rank(M) = k.
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Algorithm 2 Cross approximation with full pivoting and quadratic complexity O(k#t̂#ŝ).

The input of the algorithm is the matrix M ∈ Rt̂×ŝ which is overwritten during the procedure. The output
is a rank k approximation

∑k
ν=1 aν(bν)T of M .

for ν = 1, . . . , k do
Compute the maximal entry in modulus

(iν , jν) := argmax(i,j)|Mi,j |, δ := Miν ,jν .

if δ = 0 then
the algorithm terminates with the exact rank ν − 1 representation Rν−1 of the input matrix M .

else
Compute the entries of the vectors aν , bν :

(aν)i := Mi,jν , i ∈ t̂, (bν)j := Miν ,j/δ, j ∈ ŝ.

Subtract the rank one approximation

Mi,j := Mi,j − (aν)i(bν)j , i ∈ t̂, j ∈ ŝ.

end if
end for

Lemma 4.4 (Exact reproduction of rank k matrices) Let M be a matrix of rank exactly k. Then the
matrix Rk :=

∑k
ν=1 aνbT

ν given by Algorithm 2 equals M .

Proof: We will prove that Mk′ := M−
∑k′

ν=1 aν(bν)T is of rank k−k′ for k′ ∈ {0, . . . , k} by induction, where
the start k′ = 0 is trivial. Now let Mk′ be of rank k− k′. Let V denote the k − k′-dimensional image of Mk′

and W = V ⊥ the n − k + k′-dimensional complement in Rn×m. Let V ′ and W ′ denote the corresponding
spaces for Mk′+1 = Mk′ − ak′+1(bk′+1)T . Since by construction (Algorithm 2) ak′+1 is a column j∗ := jk′+1

of Mk′ it must belong to V . Therefore V ′ ⊂ V and W ⊂ W ′. Let i∗ := ik′+1 be the corresponding row pivot
index. Then there holds

eT
i∗Mk′ = (bk′+1)T δ ̸= 0,

eT
i∗(Mk′ − ak′+1(bk′+1)T ) = (bk′+1)T δ − eT

i∗a
k′+1(bk′+1)T = (bk′+1)T δ − δ(bk′+1)T = 0,

so that ei∗ ∈ W ′ \W , i.e., the dimension of the image V ′ of Mk′+1 is at most dim(V )− 1 = k− k′− 1. Since
Mk′+1 is a rank one perturbation of Mk′ , we conclude rank(Mk′+1) = rank(Mk′) − 1 = k − k′ − 1.

For k′ = k we get rank(Mk) = 0 so that M =
∑k

ν=1 aν(bν)T .

Lemma 4.5 (Interpolation property) Let M be a matrix of rank at least k ≥ 1 and Rk the cross ap-
proximation from Algorithm 2. For any row pivot index i∗ and any column pivot index j∗ there holds

Rkej∗ = Mt̂×{j∗} and eT
i∗Rk = M{i∗}×ŝ,

i.e., Rk exactly reproduces the pivot columns and rows of M .

Proof: The statement holds for k = 1:

(R1ej∗)i = a1
i b

1
j∗ = Mi,j∗ , (eT

i∗R1)j = a1
i∗b1

j = Mi∗,j

so that for the remainder M1 the row i∗ and column j∗ is zero. We prove by induction over k′ = 1, . . . , k
that each Rk′ fulfils the statement for the first k′ pivot elements, where the start of the induction is already
proven.



4.4. CROSS APPROXIMATION WITH PARTIAL PIVOTING 67

The matrix Mk′ , 1 ≤ k′ < k has zero columns and rows for the first k′ pivot columns and rows. For the
k′ + 1-st column pivot element j∗ there holds

(Rk′+1ej∗)i = (Rk′ )i,j∗ + ak′+1
i bk′+1

j∗ (Rk′ )i,j∗ + (Mk′)i,j∗ = Mi,j∗

and analogously for i∗. For any of the first k′ pivot elements j∗ we conclude

(Rk′+1ej∗)i = (Rk′)i,j∗ + ak′+1
i bk′+1

j∗ (Rk′ )i,j∗ + (Mk′ )i,j∗ = (Rk′ )i,j∗ + 0 = Mi,j∗ .

Lemma 4.6 The cross approximation of a matrix M of rank at least k by the matrix Rk from above is of
the form

Rk :=
k∑

ν=1

aν(bν)T = M |t̂×Pcols
· (M |Prows×Pcols)

−1 · M |Prows×ŝ =: R̂k,

where Prows is the set of pivot rows and Pcols the respective set of pivot columns. Note that the ordering of
the pivot rows and columns is irrelevant.

Proof: By construction both matrices Rk and R̂k are of rank k. Let jℓ ∈ Pcols be the ℓ-th pivot column.
Then for the jℓ-th unit vector ejℓ there holds

R̂kejℓ = M |t̂×Pcols
· (M |Prows×Pcols)

−1 · M |Prows×{jℓ} = M |t̂×Pcols
eℓ = M |t̂×{jℓ}.

According to Lemma 4.5 both Rk and R̂k are identical on the span of the unit vectors ej∗ , j∗ ∈ Pcol. Since
the image of them spans the whole image of Rk and R̂k, both matrices are identical.

For matrices M with full rank but exponentially decaying singular values there is no guarantee for a good
approximation quality of Rk. Even if we could prove such a result, the quadratic complexity O(k#t̂#ŝ) is
not efficient enough for large scale problems. The reason for the inefficiency comes from the determination
of the pivot indices (i∗, j∗).

4.4 Cross Approximation with Partial Pivoting

In each step ν = 1, . . . , k of Algorithm 2 we have to

• determine the pivot pair (i∗, j∗) (complexity O(#t̂#ŝ))

• compute the two vectors aν , bν (complexity O(#t̂ + #ŝ)) and

• update the matrix M (complexity O(#t̂#ŝ)).

The bottleneck is the determination of the pivot pairs and the update of the matrix M .

In the following we introduce a heuristic where the determination of the pivot pair (i∗, j∗) is changed so that
we do not have to compute all entries of M in advance. Also, we omit the update of M and instead use
the representation Mν = M −

∑k′

ν=1 aν(bν)T from above. The only open question is: how do we choose the
pivot indices (i∗, j∗) ?

The idea of partial pivoting is to maximise |Mi,j| only for one of the two indices i or j and keep the other one
fixed, i.e., we determine the maximal element in modulus in one particular row or one particular column.

Let i∗ denote an arbitrary row index. Then the corresponding matrix row Mi∗,j can be computed in
complexity O(#ŝ). The row maximiser

j∗ := argmax
j∈ŝ

|Mi∗,j|, δ := Mi∗,j∗ ,
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Algorithm 3 Cross approximation with partial pivoting and complexity O(k2(#t̂ + #ŝ)).

The input of the algorithm is the matrix M ∈ Rt̂×ŝ. The output is a rank k approximation
∑k

ν=1 aν(bν)T

of M .
Set i∗ := min{i ∈ t̂}, ν := 1 and P := {} (the set of row pivot indices)
while ν ≤ k do

Compute the maximal entry in modulus

j∗ := argmaxj∈ŝ|Mi∗,j |, δ := Mi∗,j∗ −
ν−1∑

µ=1

(aµ)i∗(bµ)j∗ .

if δ = 0 then
if #P = n − 1 then

the algorithm terminates with the exact rank ν − 1 representation Rν−1 of the input matrix M .
end if

else
Compute the entries of the vectors aν , bν :

(aν)i := Mi,j∗ −
ν−1∑

µ=1

(aµ)i(bµ)j∗ , i ∈ t̂,

(bν)j :=

(
Mi∗,j −

ν−1∑

µ=1

(aµ)i∗(bµ)j

)
/δ, j ∈ ŝ.

end if
P := P ∪ {i∗}
Choose i∗ ∈ t̂ \ P , e.g., i∗ := argmaxi∈t̂\P |(bν)i,j∗ |

end while

yields the pivot pair (i∗, j∗) which is not a maximiser for all pairs of indices but at least for one row. The
whole cross approximation procedure based on partial pivoting is given in Algorithm 3.

For δ ̸= 0 the arguments of Lemma 4.4 apply and the rank of the remainder is reduced by one. However,
the condition δ ̸= 0 is sometimes a bottleneck, as the following example shows.

Example 4.7 Let M ∈ Rn×n with

Mi,j :=
{

1 (i, j) = (i0, j0)
0 otherwise.

i

j0

0

Obviously M ∈ R(1, n, n), but if the position (i0, j0) of the only non-zero entry is not known in advance,
then it takes in average O(n) steps to find the row index i0 and in each step we have to compute n entries
of a row. The average total complexity is O(n2).

We conclude that the cross approximation with partial pivoting is not a useful technique for sparse matrices.
For the typically dense boundary element matrices however, the method can be well-suited.
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4.5 Adaptive Cross Approximation (ACA)

A variant of the cross approximation algorithms (Algorithm 2 and 3) is derived if we determine the rank
k adaptively for a given approximation accuracy ε. The important question is: how do we estimate the
(relative or absolute) approximation error?

A good heuristic is to estimate the remainder ∥M − Rk∥ by a rank one approximation R. Since we use a
successive rank one approximation (in each step we compute a rank one approximation of the remainder)
we can estimate

∥M − Rk∥ ! ∥M − Rk−1∥ ≈ ∥Rk − Rk−1∥ = ∥ak(bk)T ∥.

The two vectors ak and bk are constructed in Algorithms 2 and 3, so the functionals

ϵabs(k) := ∥ak∥2∥bk∥2,

ϵrel(k) := ∥ak∥2∥bk∥2/∥a1∥2∥b1∥2

can be used to estimate the (absolute or relative) error ∥M −Rk∥2 in the Euclidean norm. For the Frobenius
norm one uses

ϵFabs(k) := ∥ak∥2∥bk∥2,

ϵFrel(k) := ∥ak∥2∥bk∥2/

√√√√
k∑

ν=1

∥aν∥2
2∥bν∥2

2.

The stopping criterion “ν ≤ k” is replaced by

ϵrel(ν − 1) ≤ ε or ϵabs(ν − 1) ≤ ε (4.1)

for one of the above error estimators (Euclidean or Frobenius). The initial value is ϵ(0) := ∞. Since the rank
is determined adaptively, this variant is called adaptive cross approximation (ACA). The counterexamples
that will follow show that for smooth kernels g it can nonetheless happen that ϵ(ν) → 0 although the relative
or absolute approximation error is O(1).

In the literature [2, 1, 4] there exist some “proofs” for the convergence of (adaptive) cross approximation
in the case that the matrix entries Mi,j stem from the evaluation of a smooth function f(xi, yj) = Mi,j at
some points xi, yj ∈ Rd . At the core the “proofs” are based on a theorem that states that a Lagrange
interpolation with p points (in some bounded subset DX ⊂ Rd) has a uniformly good approximation quality
η d
√

p, η < 1, for a smooth function f : Rd → R. Obviously, one needs assumptions on the distribution of the
p points used for the interpolation, i.e., we need (geometric) assumptions on the choice of the pivot elements
i∗, j∗. In particular, for all boundary element discretisations the set DX lies on the boundary Γ (measure
zero) of a domain Ω ⊂ Rd so that the theorem can not be applied. This is not just a technical detail in the
proof, as the following examples reveal.

Example 4.8 (Counterexample for cross approximation) We define the function

g : R2 × R2 → R, (x, y) +→ (y1 − x1 − 1) · (y2 − x2 − 1) · log ∥x − y∥.

The derivatives of g are bounded by those of log ∥x − y∥, therefore g is asymptotically smooth, in particular
in the domain Ω := [0, 1]2 × [0, 1]2 and on the boundary Γ := ∂Ω.

We apply a Nystrøm discretisation
Mi,j := g(ξi, ξj)

for a uniformly distributed set of points Ξ := {ξ1, . . . , ξN}, I := {1, . . . , N}, on the boundary Γ (just for the
sake of simplicity, in general one should apply a Galerkin discretisation). For a given admissibility parameter
η we define δ := η/(1 + η) and
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t̂1 := {i ∈ I | (ξi)1 ∈ [0, δ]},
t̂2 := {i ∈ I | (ξi)2 ∈ [0, δ]},
ŝ1 := {i ∈ I | (ξi)2 ∈ [1 − δ, 1]},
ŝ1 := {i ∈ I | (ξi)1 ∈ [1 − δ, 1]}. t1

s1

s2

t2̂

^
^

^ Γ

Ω

The two clusters t̂ := t̂1 ∪ t̂2 and ŝ := ŝ1 ∪ ŝ2 are η-admissible:

diam(t̂) =
√

2δ =
√

2η/(1 + η), dist(t̂, ŝ) =
√

2(1 − δ) =
√

2/(1 + η).

For each i ∈ t̂1 and j ∈ ŝ2 the matrix entry is

Mi,j = g(ξi, ξj) = (1 − 0 − 1) · ((ξj)2 − (ξi)2) − 1) · log ∥ξi − ξj∥ = 0.

The same holds for i ∈ t̂2 and j ∈ ŝ1. The matrix block M |t̂×ŝ is therefore of the 2×2
block structure depicted rightward.

t

t

s s1

2

1

2
^^

^

^

In each of the two subblocks t̂1 × ŝ1 and t̂2 × ŝ2 the matrix can be approximated by low rank (e.g. by
interpolation of g in [0, δ]2 × [1 − δ, 1]2 as in the previous section).

The cross approximation algorithm with partial pivoting starting with an index i∗ ∈ t̂1 will compute a nonzero
pivot element j∗ ∈ ŝ1. Hence, the first cross a1(b1)T is zero outside of t̂1 × ŝ1 so that the remainder is of
the same structure as M . If we apply the standard heuristic i∗ := argmaxi∈t̂\P |(bν)i,j∗ | for the next pivot
row index, then again i∗ ∈ t̂1. All pivot indices (i∗, j∗) will belong to t̂1 × ŝ1 until k > min{#t̂1, #ŝ1}. The
second block M |t̂2×ŝ2

will not be approximated at all: ∥M −
∑k

ν=1 aν(bν)T ∥2 ≥ ∥M |t̂2×ŝ2
∥2.

The problems in the previous example can be remedied by taking a different heuristic for the choice of pivot
elements leading to the ACA+ algorithm that will be introduced later.

The counterexample seems to be artificial, since the kernel function was chosen so that (partially pivoted)
cross approximation fails. In the next example the same effect appears for the standard double layer potential
in three dimensions. There the kernel function is only asymptotically smooth with respect to one of the two
variables.

Example 4.9 (DLP counterexample for cross approximation) We consider the Nystrøm discretisa-
tion of the double layer potential g(x, y) = ⟨x−y,n(y)⟩

4π∥x−y∥3 in three dimensions for an η-admissible block t × s.
The corresponding domains of the two clusters are

Ωt = Ωt1 ∪ Ωt2 , Ωs = Ωs1 ∪ Ωs2 ,

where

Ωt1 := [0, 1] × [0, 1]× {0},
Ωt2 := [0, 1] × {0}× [0, 1],
Ωs1 := [1 + 2η−1, 2 + 2η−1] × {0}× [0, 1],
Ωs2 := [1 + 2η−1, 2 + 2η−1] × [0, 1]× {0}.
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1s

s2

1s s2

t2

t1

t1

t2

ΩΩ

−1η2

0

0

ΩΩ

The matrix block M has entries

Mi,j := g(xi, yj), xi ∈ Ωt, yj ∈ Ωs.

The normal vector n(y) is perpendicular to the xy-plane, and for all xi ∈ Ωt1 , yj ∈ Ωs2 the difference xi − yj

lies in the xy-plane. Therefore,

Mi,j = 0 for all i ∈ t̂1, j ∈ ŝ2 and i ∈ t̂2, j ∈ ŝ1.

The double layer kernel g(x, y) is a standard kernel function that is asymptotically smooth with respect to
the first variable x but not with respect to the second variable y (there are jumps in n(y) across edges).

Let us assume that in Algorithm 3 the first pivot index i∗ belongs to t̂1. Then the corresponding row has zero
entries for all j ∈ ŝ2, so that the column pivot index j∗ (row maximiser) belongs to ŝ1. The cross

R1 = a1(b1), a1
i = Mi,j∗ , b1

j = Mi∗,j/Mi∗,j∗

has non-zero entries only for all (i, j) ∈ t̂1 × ŝ1. This means that the off-diagonal zero blocks are unmodified
during the update, i.e., M − R1 is of the same block structure as M . Consequently, if all pivot rows are
chosen from t̂1 (which is the case for the default choice i∗ := argmaxi|(bν)i,j∗ | in Algorithm 3), then

∥(M − Rk)|t̂1×ŝ1
∥2 → 0 but ∥(M − Rk)|t̂2×ŝ2

∥2 ∼ ∥M |t̂2×ŝ2
∥2 ̸= 0 for all k ≤ #t̂1.

The partial pivot search simply fails to “see” the second block M |t̂2×ŝ2
. There occurs no breakdown during

the iteration in Algorithm 3 but still the approximation is bad.

Conclusion: The standard cross approximation algorithms from the literature fail even for smooth kernels
and the standard double layer kernel on domains with edges.

4.6 Improved Adaptive Cross Approximation (ACA+)

As the many counterexamples in the previous sections indicate, it is not advisable to use ACA for the
assembly of stiffness matrices from boundary integral operators. In the next section we present a hybrid
method (HCA) for the assembly of admissible matrix blocks. That method however is not purely algebraic,
that means it is not sufficient to provide only a function (i, j) +→ Mi,j , we also need to evaluate the kernel
function (x, y) +→ g(x, y).

In practice we are sometimes forced to assemble the BEM stiffness matrix in a grey-box fashion. That means
we are given the locations of the basis functions, e.g., a nodal point ξi from the support of ϕi (we need this
to construct the cluster tree TI and block cluster tree TI×I), but the assembly of matrix entries Mi,j is
done by some provided procedure assemble(i, j). In this setting we can use either the expensive SVD (not
reasonable for large scale problems) or a heuristic like ACA. Due to the fact that ACA fails even for the
standard double layer potential operator on domains with edges, we will improve the pivoting strategy of
ACA in this section. This variant of ACA is called the ACA+ algorithm.

We denote the matrix to be approximated by M ∈ Rn×m. A reference column of M is defined by

(aref)i := Mi,jref , i ∈ {1, . . . , n},
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Figure 4.4: Three situations where ACA (with standard partial pivoting) fails.

where the choice of the index jref is arbitrary. The reference row is determined by

iref := argmini∈{1,...,n}|(aref)i|,

(bref)j := Miref ,j , j ∈ {1, . . . , m}.

The choice of iref is counterintuitive, because iref corresponds to a row that produces a small entry in the
column jref . The reason why we do this is that we expect one of the three situations from Figure 4.4 where
ACA with standard partial pivoting will fail. The above choice of iref and jref ensures each non-zero block
is intersected by a reference row or column. The role of the reference row and column is that of an observer
that tells us where to start with the pivot search.

The pivoting strategy is now based on the knowledge that we gain from aref and bref :

1. Determine the index i∗ of the largest entry in modulus in aref , i∗ := argmaxi=1,...,n |aref
i |.

2. Determine the index j∗ of the largest entry in modulus in bref , j∗ := argmaxj=1,...,m |bref
j |.

3. If |aref
i∗ | > |bref

j∗ | then

(a) compute the vector b ∈ Rm with entries bj := Mi∗,j;
(b) redefine the column pivot index j∗ := argmaxj=1,...,m |bj|;
(c) compute the vector a ∈ Rn with entries ai := Mi,j∗/Mi∗,j∗ ;

4. otherwise

(a) compute the vector a ∈ Rn with entries ai := Mi,j∗ ;
(b) redefine the row pivot index i∗ := argmaxi=1,...,n |ai|;
(c) compute the vector b ∈ Rm with entries bj := Mi∗,j/Mi∗,j∗ .

5. The rank one matrix abT is the sought cross approximation to M .

In the next step we can omit to determine a new reference row and colum by updating the already existing
ones. Of course, it is not reasonable to use the reference row iref if it was chosen as a pivot index, i.e.,
i∗ = iref or to use the reference column if j∗ = jref (the corresponding matrix row (column) of the remainder
is zero). In that case we have to define a new reference row or column (provided the stopping criterion by a
given rank k or given accuracy ε is not fulfilled). We denote the already used pivot elements by Prows and
Pcols and proceed as follows:

1. We update the reference row and column

aref := aref − a · bjref , bref := bref − airef · b.

2. If both i∗ = iref and j∗ = jref , then we have to determine both of them as above, where we restrict the
possible indices to non-pivot ones.
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3. If i∗ = iref and j∗ ̸= jref , then we have to choose a new reference row bref corresponding to a reference
index iref that has not yet been a pivot index and that is consistent to jref :

iref := argmin
i∈{1,...,n}\Prows

|aref
i |

4. If j∗ = jref and i∗ ̸= iref , then we have to choose a new reference column aref corresponding to a
reference index jref that has not yet been a pivot index and that is consistent to iref :

jref := argmin
j∈{1,...,m}\Pcols

|bref
j |

For the improved cross approximation ACA+ we are not able to prove convergence, but at least for the
counterexamples presented above the method works fine, because we have modified the partial pivot search
correspondingly. The question is: Is it possible to find a partial pivoting strategy that yields a good cross
approximation in O(n)? The following example gives a negative answer to that question.

Example 4.10 (Counterexample for partial pivoting) We define the functions

p(z) := (z − 1) · (z − 13/16),
q(z) := z · (z − 1/8),
r(z) := (z − 1) · (z − 7/8)

and
f : R2 × R2 → R, (x, y) +→ p(x1 − y1) · q(x2) · r(y2).

2/16

14/16

t
t

t
t

1

2
3

4

s

s
s

s
3

4

2

1

13/163/160 1

0

1

The polynomials p, q, r are chosen such that

q(x2) ≡ 0 for x ∈ t2 ∪ t4, (4.2)
r(y2) ≡ 0 for y ∈ s2 ∪ s4, (4.3)

p(x1 − y1) ≡ 0 for (x, y) ∈ t1 × s1 ∪ t3 × s1 ∪ t1 × s3. (4.4)

We define the matrix M ∈ Rn×m by
Mi,j := f(xi, yj),

where the points xi ∈ t = t1 ∪ t2 ∪ t3 ∪ t4 and yj ∈ s = s1 ∪ s2 ∪ s3 ∪ s4 are uniformly distributed in
t, s ⊂ Γ = ∂Ω of the H-domain Ω depicted above. From (4.2) and (4.3) and (4.4) it follows that M is of the
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block structure

M =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 M3,3 0
0 0 0 0

⎤

⎥⎥⎦ ,

where M3,3 ∈ R#t3×#s3 . Here, cross approximation with partial pivoting faces the same problem as in
Example 4.7: the block M3,3 can only be found in quadratic complexity O(nm). On the other hand, polynomial
interpolation yields the exact representation with separation rank k = (m + 1)2 = 4. Of course, we can add
a “nice” smooth function to f in order to avoid the zero matrix entries and the breakdown of the cross
approximation.

Conclusion: The grey-box algorithm ACA+ seems to work for many practical cases, in particular for the
double layer potential operator on domains with edges. In general however, it is impossible to find
reliable partial pivoting strategies and it is even impossible for the algorithm to detect whether it has
succeeded or not — unless one checks all n × m matrix entries.

4.7 Hybrid Cross Approximation (HCA)

The problems for ACA (and ACA+) stem from the fact that we evaluate the kernel function only in a part
of the boundary Γ (measure zero) and not in the whole volume. Additionally, the results of the existing
convergence proofs are not convincing and we don’t have a reliable error estimate (there are claims and
“proofs” but in presence of the above examples they are at best misleading).

The idea for hybrid cross approximation is to use the nodal points of a standard tensor-product Chebyshev
interpolation scheme in a bounding box Qt that contains a given cluster t, as pivot points for cross approx-
imation. The m-th order tensor interpolation in Qt ⊂ Rd uses (m + 1)d interpolation points (xt

ν)ν∈K . We
define the coupling matrix S ∈ RK×K by

Sν,µ := g(xt
ν , xs

µ)

and observe that for an admissible block cluster t × s the interpolation based low-rank approximation is of
the form

M̃ |t̂×ŝ = U tS(V s)T ,

where the entries of U t, V s are

U t
i,ν :=

∫

Ω
ϕi(x)Lt

ν(x)dx, V s
j,µ :=

∫

Ω
ϕj(x)Ls

µ(y)dy.

The matrix S ∈ RK×K is the pointwise evaluation of an asymptotically smooth kernel g at nodal points
distributed in the whole volume of the bounding box product Qt×Qs, therefore we expect ACA (with partial
or full pivoting) to work for this type of matrix. In particular, S is of size K ×K so that full pivoting and a
posteriori error control is feasible. Let Prows denote the row pivot indices and Pcols the column pivot indices.
A cross approximation of S is of the form (Lemma 4.6)

S ≈ Sk := S|K×Pcols · G · S|Prows×K , G = (S|Prows×Pcols)
−1 ∈ RPcols×Prows .

The entries of the product U tS|K×Pcols are

(U tS|K×Pcols)iµ =
∑

ν∈K

U t
i,νg(xt

ν , xs
µ) =

∑

ν∈K

∫

Ω
ϕi(x)Lν(x)dxg(xt

ν , xs
µ) =

∫

Ω
ϕi(x)It

mg(x, xs
µ)dx.

If we now replace the interpolation It
mg(x, xs

µ) by the exact kernel g, we get

M̃ |t̂×ŝ ≈ Rk := AGBT , A ∈ Rt̂×Pcols , B ∈ Rŝ×Prows ,
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where the two matrices A and B consist of collocation integrals

Ai,ν :=
∫

Ω
ϕi(x)g(x, xs

ν )dx, Bj,µ :=
∫

Ω
ϕj(y)g(xt

µ, y)dy

and the matrix G is
G = (S|Prows×Pcols)

−1 .

The entries of Rk = AGBT coincide with

(R̂k)i,j :=
∫

Ω

∫

Ω
ϕi(x)g̃(x, y)ϕj(y)dxdy,

where the degenerate kernel g̃ is given by

g̃(x, y) :=
∑

ν∈Prows

∑

µ∈Pcols

g(x, xs
ν)Gν,µg(xt

µ, y). (4.5)

From the representation of Rk we can see that the interpolation is only used to determine the correct pivot
indices. However, since we restrict the set of allowed pivot indices, the accuracy ∥M − Rk∥ will depend on
both the accuracy of the interpolation M − M̃ as well as the accuracy of the cross approximation ∥S − Sk∥.

Theorem 4.11 Let Qt×Qs the product of the two bounding boxes for two clusters t, s ∈ TI. The degenerate
kernel g̃ from (4.5) fulfils

∀(x, y) ∈ Qt × Qs : |g(x, y) − g̃(x, y)| ≤ ϵint(g) + ϵint(g̃) + Λ2d
m ϵACA,

where ϵint(g) and ϵint(g̃) are the interpolation errors of g and g̃ by the m-th order tensor Lagrange interpo-
lation

gint(x, y) :=
∑

ν∈K

∑

µ∈K

Lt
ν(x)g(xt

ν , ys
µ)Ls

µ(y)

g̃int(x, y) :=
∑

ν∈K

∑

µ∈K

Lt
ν(x)g̃(xt

ν , ys
µ)Ls

µ(y),

with stability constant Λm, and ϵACA is the entrywise error of the cross approximation of the coupling matrix
S: |(Sk − S)ij | ≤ ϵACA.

Proof: [13, Corollary25]

If the kernel function g is of the form
g(x, y) = DxDyγ(x, y)

for some partial differential operators Dx acting on x and Dy acting on y, then Theorem 4.11 cannot be
applied directly: g might not be smooth in any of the two variables. We assume that the so-called generating
kernel function γ is asymptotically smooth. Then we define the approximating separable kernel g̃ by

g̃(x, y) := DxDyγ̃ =
∑

ν∈Prows

∑

µ∈Pcols

Dxg(x, xs
ν)Gν,µDyg(xt

µ, y) (4.6)

so that the low rank approximation of M |t̂×ŝ by M̃ |t̂×ŝ = AGBT consists of G as above and matrices A, B
with entries

Ai,ν :=
∫

Ω
ϕi(x)Dxg(x, xs

ν)dx, Bj,µ :=
∫

Ω
ϕj(y)Dyg(xt

µ, y)dy.

The approximation error can be estimated analogously to Theorem 4.11 where the error |DxDyγ −DxDyγ̃|
is now amplified by the derivatives [13, Theorem26].
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Figure 4.5: The crank shaft geometry

Remark 4.12 The error of the cross approximation is amplified by Λ2d
m , but Λm ∼ log m depends only

logarithmically on m, i.e, on log(1/ε). The interpolation error of g has already been estimated in the previous
section. In order to estimate the interpolation error for g̃, we have to give bounds for the asymptotic
smoothness of g̃. From (4.5) we observe that both g and g̃ have the same asymptotic behaviour with respect
to partial derivatives ∂i

x and ∂j
y. However, the coefficients Gν,µ can only be bounded by ϵ−1

ACA so that the order
of the interpolation has to be m ∼ log(1/(ε · ϵACA) in order to compensate this. This is a purely theoretical
artifact: we expect that the substitution of

∑
ν∈K Lt

νg(xt
ν , y) by g(x, y) will only decrease and not increase

the error, so that the expected error is

∀(x, y) ∈ Qt × Qs : |g(x, y) − g̃(x, y)| ! max{ϵint(g), ϵACA}.

The numerical tests in the next section will even suggest that

|g(x, y) − g̃(x, y)| ≤ c1ϵint(g) + c2ϵACA,

where c1 ≪ 1 and c2 ≈ 1 for the single layer potential and c2 ≈ 30 for the double layer potential, i.e., a weak
dependency on the interpolation order and a strong dependency on the cross approximation error.

4.8 Numerical Examples in 3D for Interpolation, ACA, ACA+
and HCA

4.8.1 The Test Problem: 3D Laplace Single- and Double-Layer Potential

For the numerical examples in this section we consider as a reference problem the single layer potential
operator V and double layer potential operator K of the three-dimensional Laplacian,

V [u](x) :=
∫

Γ

1
4π∥x − y∥u(y)dy, x ∈ Γ,

K[u](x) :=
∫

Γ

⟨x − y, n(y)⟩
4π∥x − y∥3

u(y)dy, x ∈ Γ,

where Γ := ∂Ω is the surface of the domain Ω describing a crank shaft geometry, cf. Figure 4.5 (an
example from the NETGEN library of Joachim Schöberl). The surface Γ is discretised by n flat triangles
of a triangulation T . The Galerkin discretisation Vn of V and Kn of K in the piecewise constant basis
{ϕi = χτi | τi ∈ T } yields fully populated matrices that can be approximated by data-sparse H-matrices



4.8. NUMERICAL EXAMPLES IN 3D FOR INTERPOLATION, ACA, ACA+ AND HCA 77

Ṽn, K̃n. Each admissible block of the H-matrix is assembled by either ACA, ACA+, HCA or interpolation.
For the quadrature we choose a variable order that is lowered in the far-field where the kernel function
is smoother. The underlying cluster tree TI is produced by regular subdivision with stopping parameter
nmin := 20, and the block cluster tree TI×I is constructed in the canonic way using the standard admissibility
with η = 2 based on bounding boxes.

All computations are performed on a single UltraSPARC IIIcu processor with 900 MHz clock rate in a
SunFire6800 machine. The elapsed time is measured in seconds and the storage requirements are measured
in megabyte.

4.8.2 Interpolation

First, we consider the interpolation approach. The accuracy of the approximation will depend on the order
p = m + 1 of the interpolation. According to (3.41) we expect an exponential decay, and this is underlined
by the results in Table 4.1. The complexity for the assembly and the storage requirements of the matrix
entries is expected to be linear in the rank k = p3 and thus cubic in p, which is in accordance with the results
in Table 4.1.

DLP M = Kn SLP M = Vn

p Time Storage ∥M−M̃∥2
∥M∥2 ∥I − M̃−1M∥2 Time Storage ∥M−M̃∥2

∥M∥2 ∥I − M̃−1M∥2

1 95 255 1.4×10−1 2.2×10−0 93 255 9.3×10−2 9.6×10−0

2 150 652 3.5×10−2 1.2×10−0 144 652 8.2×10−3 4.6×10−1

3 365 1731 5.7×10−3 6.3×10−1 343 1731 7.0×10−4 4.7×10−2

4 1060 3830 8.2×10−4 1.5×10−1 1028 3830 6.9×10−5 6.9×10−3

5 1996 7291 1.9×10−4 1.9×10−2 1890 7291 1.5×10−5 1.2×10−3

6 3625 12455 3.9×10−5 3.6×10−3 3528 12455 1.8×10−6 2.1×10−4

Table 4.1: Assembly of Kn and Vn, n = 25744, using a p-th order interpolation scheme.

4.8.3 ACA and ACA+

The second numerical test illustrates the behaviour of ACA and ACA+ when these methods are used to
assemble K̃n (cf. Example 4.9). In Table 4.2 we observe that ACA fails to assemble the stiffness matrix
whereas ACA+ yields a good approximation. This behaviour is not stable. For finer discretisations of the

ACA ACA+
ϵACA Time Storage ∥M−M̃∥2

∥M∥2 ∥I − M̃−1M∥2 Time Storage ∥M−M̃∥2
∥M∥2 ∥I − M̃−1M∥2

1×10−1 131 303 1.4×10−2 1.1×10−0 171 351 2.9×10−3 5.0×10−1

1×10−2 185 434 8.3×10−3 3.8×10−1 206 469 3.2×10−4 4.8×10−2

1×10−3 251 584 6.2×10−3 2.7×10−1 249 609 4.2×10−5 4.1×10−3

1×10−4 329 752 4.4×10−3 2.1×10−1 301 772 3.2×10−6 4.6×10−4

1×10−5 422 936 4.1×10−3 1.9×10−1 357 958 4.4×10−7 3.9×10−5

Table 4.2: Assembly of Kn, n = 25744, using ACA and ACA+ with different stopping tolerances ϵACA.

same geometry with n2 = 102976 panels we observe that both ACA and ACA+ are deteriorated, cf. Table
4.3. The prescribed stopping tolerance ϵACA is not met: the error estimate (4.1) becomes very small when
the exact error is still rather large. For sufficiently small ϵACA the improved adaptive cross approximation
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ACA+ is able to find the desired approximation, but then both the time for the assembly and the storage
requirements are undesirably large.

ACA ACA+
ϵACA Time Storage ∥M−M̃∥2

∥M∥2 ∥I − M̃−1M∥2 Time Storage ∥M−M̃∥2
∥M∥2 ∥I − M̃−1M∥2

1×10−4 5788 1900 8.9×10−3 3.7×10−1 5262 1874 2.1×10−4 3.4×10−2

1×10−5 9035 6603 7.1×10−3 3.7×10−1 8096 6625 2.0×10−4 3.4×10−2

1×10−6 15100 12482 8.5×10−3 3.7×10−1 13804 12353 2.1×10−4 3.4×10−2

Table 4.3: Assembly of Kn, n = 102976, using ACA and ACA+ with different stopping tolerances ϵACA.

4.8.4 HCA

The third numerical test supports the statements in Remark 4.12: we fix the order p := 3 of the polynomial
interpolation and vary the accuracy ϵACA in the HCA algorithm. In Table 4.4 one can see that the error
of the approximation by HCA tends to be much smaller than the interpolation error with order p = 3. For
very small ϵACA the HCA error stabilises at a certain level. For the Laplace kernel it seems that the choice
ϵACA = 10−p−1 is appropriate. With this choice of parameters we start the fourth numerical test where we

DLP M = Kn SLP M = Vn
∥M−M̃∥2
∥M∥2 ∥I − M̃−1M∥2

∥M−M̃∥2
∥M∥2 ∥I − M̃−1M∥2

Interpolation, p = 3 5.7×10−3 6.3×10−1 7.0×10−4 4.7×10−2

ϵACA = 1×10−2 9.4×10−3 3.5×10−0 2.0×10−3 2.5×10−1

ϵACA = 1×10−3 7.5×10−4 1.5×10−1 1.4×10−4 2.3×10−2

ϵACA = 1×10−4 3.0×10−4 3.9×10−2 3.2×10−5 3.2×10−3

ϵACA = 1×10−5 8.7×10−5 1.2×10−2 1.2×10−5 1.5×10−3

ϵACA = 1×10−6 6.5×10−5 9.4×10−3 1.1×10−5 1.4×10−3

Table 4.4: We assemble the low rank blocks of the matrix M̃ ∈ {K̃n, Ṽn} using HCA with fixed interpolation
order p = 3 and different accuracies ϵACA for ACA applied to the coupling matrices S.

approximate Vn and Kn by HCA with different accuracies ϵACA. The results in Table 4.5 underline that
HCA converges faster than standard interpolation but with a complexity comparable to ACA. However,
for large p (i.e., small ϵACA) the full pivoting for the p3 × p3 coupling matrix St,s in each block M |t̂×ŝ is
dominant. This can be overcome by using a partial pivoting strategy — at least for the Laplace kernel.

DLP M = Kn SLP M = Vn

ϵACA Time Storage ∥M−M̃∥2
∥M∥2 ∥I − M̃−1M∥2 Time Storage ∥M−M̃∥2

∥M∥2 ∥I − M̃−1M∥2

1×10−2 141 485 1.0×10−2 3.4×10−0 138 484 2.0×10−3 2.6×10−1

1×10−3 172 678 6.8×10−4 1.5×10−1 166 677 1.3×10−4 2.6×10−2

1×10−4 269 895 2.2×10−4 2.7×10−2 263 880 2.6×10−5 2.8×10−3

1×10−5 486 1143 1.7×10−5 2.2×10−3 472 1101 2.2×10−6 3.2×10−4

1×10−6 1096 1288 1.2×10−6 1.0×10−4 1075 1171 2.2×10−7 3.0×10−5

Table 4.5: Assembly of Kn and Vn using an HCA approximation with accuracy parameter ϵACA.

The last numerical test in this section compares the three methods interpolation, ACA+ and HCA to each
other when used on three different discretisation levels with n1 = 25744, n2 = 102976 and n3 = 411904
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panels. The order of the quadrature is adapted to the discretisation level so that the relative inversion error
is ϵ1 ≈ 10−2, ϵ2 ≈ 3 × 10−3 and ϵ3 ≈ 10−3. Each of the compression schemes uses parameters that yield an
approximation with relative inversion error approximately ϵi (ACA+ fails to achieve this for the two larger
problems and the interpolation approach is too expensive for the largest problem). The results are given
in Table 4.6. For all three discretisation levels we have applied an on-the-fly recompression and coarsening
scheme that will be introduced later. This keeps the storage requirements almost independent of the method
for the assembly and at the same time minimises the total amount of storage needed.

n1 = 25744 n2 = 102976 n2 = 411904
Method Time Storage Time Storage Time Storage
ACA+ 656 235 (6538) 1499 (88811) 8003
Interpolation 3416 235 50054 1485 918000 —
HCA 587 235 3203 1484 34540 8025

Table 4.6: Assembly of Kn on three different levels with n ∈ {25744, 102976, 411904} panels. The time in
brackets is for a constant order quadrature instead of the variable-order one (roughly twice as expensive).
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Chapter 5

Elliptic Partial Differential Equations

In the previous two sections we have introduced the hierarchical matrix format which is well suited for the
fast assembly and evaluation of stiffness matrices stemming from non-local integral operators. Since the
stiffness matrix of those operators is in general dense, one has to apply a compression method in order to
avoid the O(n2) complexity.

The case is different for the discretisation and solution of partial differential equations. Differential operators
are local so that a finite element discretisation leads to a sparse stiffness matrix. This means, the assembly
and evaluation is of (optimal) complexity O(n). However, the inverse to the stiffness matrix is in general
dense. In Theorem 5.18 (cf. [3]) we prove that the inverse allows for a data-sparse H-matrix approximation.
The analysis shows that no smoothness of the coefficients need to be required.

5.1 Sparse Finite-Element Matrices

We consider the differential equation

L[u](x) := − div (C gradu) (x)

=
d∑

i,j=1

∂

∂xi

(
Cij(x)

∂

∂xj
u(x)

)
= f(x) for all x ∈ Ω ⊂ Rd (5.1)

with Dirichlet boundary conditions

u(x) = 0 for all x ∈ Γ := ∂Ω,

where C(x) = (Cij(x))d
i,j=1 is a symmetric and positive definite matrix for all x ∈ Ω and f ∈ L2(Ω) is the

right-hand side.

The corresponding weak formulation reads as follows:

Seek the solution u ∈ H1
0 (Ω) of

∫

Ω
⟨grad v(x), C(x) grad u(x)⟩dx =

∫

Ω
v(x)f(x) dx for all v ∈ H1

0 (Ω). (5.2)

We define

a : H1
0 (Ω) × H1

0 (Ω) → R, (v, u) +→
∫

Ω
⟨grad v(x), C(x) grad u(x)⟩dx,

F : H1
0 (Ω) → R, v +→

∫

Ω
v(x)f(x) dx,

81
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and can now write (5.2) in the short form

a(v, u) = F (v) for all v ∈ H1
0 (Ω).

Let Vn := span{ϕ1, . . . ,ϕn} be an n-dimensional subspace of H1
0 (Ω), and let I := {1, . . . , n}. The coefficient

vector u = (ui)i∈I ∈ RI of the Galerkin solution un(x) :=
∑

i∈I uiϕi(x) is the solution to the linear system

Au = f (5.3)

for the stiffness matrix A = (Aij)i,j∈I ∈ RI×I and the load vector f = (fi)i∈I ∈ RI given by

Aij := a(ϕi,ϕj) =
∫

Ω
⟨gradϕi(x), C(x) gradϕj(x)⟩dx for all i, j ∈ I, (5.4)

fi := F (ϕi) =
∫

Ω
ϕi(x)f(x) dx for all i ∈ I.

In the case of a general Galerkin method, the matrix A may be fully populated (when all ϕi have global
support). The finite-element method, however, uses basis function with minimal support. Typical are the
piecewise affine basis functions on a triangulation T of Ω, with one Lagrange basis function ϕi associated
to each nodal point xi of the triangulation. In such a case, A is sparse. In particular, Aij ̸= 0 holds only if
i = j or if the nodal points xi and xj are connected by an edge of a triangle τ ∈ T .

As in Chapter 2, we will use the notations

Ωi := supp(ϕi), Ωt :=
⋃

i∈t̂

Ωi (5.5)

in the following.

Lemma 5.1 Let H(TI×I, k) ∈ RI×I be an arbitrary H-matrix format, where each admissible block (t, s) ∈
TI×I satisfies at least the simple admissibility condition

min{diam(Ωt), diam(Ωs)} ≤ η dist(Ωt, Ωs)

with η > 0. Then any finite-element matrix belongs (exactly) to H(TI×I, k).

Proof: Let b = (t, s) be an admissible block. Because of η > 0, dist(Ωt, Ωs) > 0 follows. Therefore, for all
i ∈ t̂, j ∈ ŝ the supports of ϕi and ϕj are disjoint, which implies Aij = 0. This shows A|t̂×ŝ = 0. Hence, the
local rank is 0 which is ≤ k for any k from H(TI×I, k).

5.2 The Mass Matrix

The mass matrix (or Gram matrix) M ∈ RI×I defined by

Mij =
∫

Ω
ϕi(x)ϕj(x)dx for all i, j ∈ I

is the finite-element approximation of the identity with respect to the finite-element space Vn from above.

We introduce the prolongation

P : RI → Vn, v = (vj)j∈I +→
∑

j∈I
vjϕj , (5.6a)
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and the restriction

R : Vn → RI , v +→ v =
(∫

Ω
ϕi(x)v(x) dx

)

i∈I
. (5.6b)

We can see that R = P ∗ holds, i.e., that R is the L2-adjoint of P .

Exercise 5 Show that a) M = RP , b) M is positive definite, and c) the extreme eigenvalues µmin and µmax

of M are the best bounds in the inequalities
√

µmin∥v∥2 ≤ ∥Pv∥L2 ≤ √
µmax∥v∥2 for all v ∈ RI . (5.6c)

If the triangles τ ∈ T have comparable size, i.e., if

diam(τ)
diam(τ ′)

≤ Cq holds for all τ, τ ′ ∈ T ,

the triangulation T is called quasi-uniform.

The triangulation T is called form-regular, if all angles of the triangles τ ∈ T are bounded from below by a
fixed angle α0 > 0.

Lemma 5.2 If T is quasi-uniform and form-regular, the norms given by ∥Pv∥L2/ vol(Ω) and ∥v∥2/
√

n for
all v ∈ RI are equivalent with a constant independent of n = #I.

In particular, the condition cond(M) = µmax/µmin is independent of n.

Proof: see [38, Remark 8.8.4].

The norm defined by

∥v∥Vn := ∥Pv∥L2 for all v ∈ RI

has the major advantage that it does not depend on the choice of basis functions and that refining the grid
will not change its scaling. Using the mass matrix, we can write the norm as

∥v∥Vn = ∥Pv∥L2 =
√
⟨Pv, Pv⟩L2 =

√
⟨Mv,v⟩2 = ∥M1/2v∥2.

We require a counterpart of this norm for functionals. The natural choice is the dual norm

∥f∥V ′
n

:= sup
v ̸=0

⟨f ,v⟩2
∥Pv∥L2

= sup
v ̸=0

⟨f ,v⟩2
∥M1/2v∥2

= sup
v ̸=0

⟨f , M−1/2v⟩2
∥v∥2

= ∥M−1/2f∥2.

These vector norms give rise to matrix norms. We define

∥X∥V ′
n←Vn := sup

v ̸=0

∥Xv∥V ′
n

∥v∥Vn

= ∥M−1/2XM−1/2∥2 for all X ∈ RI×I ,

∥X∥Vn←V ′
n

:= sup
v ̸=0

∥Xv∥Vn

∥v∥V ′
n

= ∥M1/2XM1/2∥2 for all X ∈ RI×I .

We will frequently use the first of these two norms, so we introduce the short notation

|||X ||| := ∥X∥V ′
n←Vn for all X ∈ RI×I

and observe that

|||X ||| = ∥M−1/2XM−1/2∥2 = ∥PM−1XM−1R∥L2←L2 holds for all X ∈ RI×I . (5.7)
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Let us consider the application of the norm |||·||| to the matrices corresponding to integral operators introduced
in the Chapters 1 and 3: for a kernel function g : Ω × Ω → R, we define the operator G by

G[u](x) :=
∫

Ω
g(x, y)u(y) dy for all u ∈ Vn and allx ∈ Ω.

Its discrete counterpart is the matrix G ∈ RI×I given by

Gij =
∫

Ω
ϕi(x)G[ϕj ](x) dx =

∫

Ω
ϕi(x)

∫

Ω
g(x, y)ϕj(y) dy dx for all i, j ∈ I.

Remark 5.3 Let Cfe := µmax/µmin. For all u = (ui)i∈I , we have

∥∥∥∥∥
∑

i∈I
uiϕi

∥∥∥∥∥

2

L2

≤ Cfe

∑

i∈I
∥uiϕi∥2

L2 ≤ C2
fe

∥∥∥∥∥
∑

i∈I
uiϕi

∥∥∥∥∥

2

L2

. (5.8)

Proof: Let u ∈ RI . We define ei := (δij)j∈I for all i ∈ I and get

∥∥∥∥∥
∑

i∈I
uiϕi

∥∥∥∥∥

2

L2

= ∥Pu∥2
L2 ≤ µmax∥u∥2

2 = µmax

∑

i∈I
∥uiei∥2

2 ≤ µmax

µmin

∑

i∈I
∥uiϕi∥2

L2

≤ µ2
max

µmin

∑

i∈I
∥uiei∥2

2 =
µ2

max

µmin
∥u∥2

2 ≤ µ2
max

µ2
min

∥Pu∥2
L2 =

µ2
max

µ2
min

∥∥∥∥∥
∑

i∈I
uiϕi

∥∥∥∥∥

2

L2

.

We can use this estimate in order to prove an equivalent of Theorem 3.7 for the norm ||| · |||:

Theorem 5.4 Let ϵ ∈ R≥0, and let C∗sp be defined as in (3.16). Let (Gt,s)b=(t,s)∈L(TI×I) be a family of
operators satisfying

∥Gt,s∥L2(Ωt)←L2(Ωs) ≤ ϵ for all b = (t, s) ∈ L(TI×I).

Let p ∈ N0 be the depth of the cluster tree TI. Let the matrix G̃ ∈ RI×I be defined by

Gij := ⟨ϕi,Gt,s[ϕj ]⟩L2 for i ∈ t̂, j ∈ ŝ, b = (t, s) ∈ L(TI×I).

Then we have
|||G||| ≤ C2

feC
∗
sp(p + 1)ϵ.

Proof: Let u,v ∈ RI . Due to (2.2), we find

⟨v, Gu⟩2 =
∑

(t,s)∈L(TI×I)

∑

i∈t̂

∑

j∈ŝ

viujGij

=
∑

(t,s)∈L(TI×I)

∑

i∈t̂

∑

j∈ŝ

viuj⟨ϕi,Gt,s[ϕj ]⟩L2

=
∑

(t,s)∈L(TI×I)

〈
∑

i∈t̂

uiϕi,Gt,s

⎡

⎣
∑

j∈ŝ

vjϕj

⎤

⎦
〉

≤
∑

(t,s)∈L(TI×I)

∥∥∥∥∥∥

∑

i∈t̂

uiϕi

∥∥∥∥∥∥
L2(Ωt)

∥∥∥∥∥∥
Gt,s

⎡

⎣
∑

j∈ŝ

vjϕj

⎤

⎦

∥∥∥∥∥∥
L2(Ωt)
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≤ ϵ
∑

(t,s)∈L(TI×I)

∥∥∥∥∥∥

∑

i∈t̂

uiϕi

∥∥∥∥∥∥
L2(Ωt)

∥∥∥∥∥∥

∑

j∈ŝ

vjϕj

∥∥∥∥∥∥
L2(Ωs)

≤ ϵ

⎛

⎜⎝
∑

(t,s)∈L(TI×I)

∥∥∥∥∥∥

∑

i∈t̂

uiϕi

∥∥∥∥∥∥

2

L2(Ω)

⎞

⎟⎠

1/2⎛

⎜⎝
∑

(t,s)∈L(TI×I)

∥∥∥∥∥∥

∑

j∈ŝ

vjϕj

∥∥∥∥∥∥

2

L2(Ω)

⎞

⎟⎠

1/2

.

Now we can use the L2-stability (5.8) of the basis and Lemma 2.7 to prove

∑

(t,s)∈L(TI×I)

∥∥∥∥∥∥

∑

i∈t̂

uiϕi

∥∥∥∥∥∥

2

L2(Ω)

≤ C∗sp
∑

t∈TI

∥∥∥∥∥∥

∑

i∈t̂

uiϕi

∥∥∥∥∥∥

2

L2(Ω)

= C∗sp

p∑

ℓ=0

∑

t∈T
(ℓ)
I

∥∥∥∥∥∥

∑

i∈t̂

uiϕi

∥∥∥∥∥∥

2

L2(Ω)

≤ CfeC
∗
sp

p∑

ℓ=0

∑

t∈T
(ℓ)
I

∑

i∈t̂

∥uiϕi∥2
L2(Ω) ≤ CfeC

∗
sp

p∑

ℓ=0

∑

i∈I
∥uiϕi∥2

L2(Ω)

≤ C2
feC
∗
sp

p∑

ℓ=0

∥∥∥∥∥
∑

i∈I
uiϕi

∥∥∥∥∥

2

L2(Ω)

= C2
feC
∗
sp(p + 1)∥Pu∥2

L2(Ω)

= C2
feC
∗
sp(p + 1)∥u∥2

Vn
.

This means that we have
⟨v, Gu⟩2 ≤ C2

feC
∗
sp(p + 1)ϵ∥u∥Vn∥v∥Vn

and can conclude
|||G||| = ∥G∥V ′

n←Vn = sup
u,v ̸=0

⟨v, Gu⟩
∥v∥Vn∥u∥Vn

≤ C2
feC
∗
sp(p + 1)ϵ.

5.3 H-Matrix Approximation of the Inverse of the Mass Matrix

Our construction of the inverse of the stiffness matrix A of the discrete problem (5.3) employs the inverse of
the mass matrix M to switch between the discrete space and its dual. Before we can prove that A can be
approximated by an H-matrix, we have to establish that we can approximate M in this format.

The analysis is based on the graph G(M) of a matrix M (cf. [39, §6.2]): the nodes of the graph are the
indices i ∈ I, and for i, j ∈ I, (i, j) is a (directed) edge in G(M) if and only if Mij ̸= 0 holds. A path
from i ∈ I to j ∈ I is a sequence (iι)m

ι=0 of nodes iι ∈ I such that (iι−1, iι) is an edge in G(M) for all
ι ∈ {1, . . . , m}. In this context, the number m ∈ N0 is called the length of the path. The graph distance
δ(i, j) is defined to be the length of the shortest path from i to j in G(M).

We assume that the discrete space Vn is defined based on a conforming triangulation T with nodes (xi)i∈I
and let h ∈ R>0 denote the maximal length of an edge of T , i.e.,

h := max{diam(τ) : τ ∈ T }. (5.9)

Remark 5.5 a) For all i ∈ I, h is a bound of the radius of the support Ωi with respect to the center xi:

max{∥xi − x∥2 : x ∈ Ωi} = dist(xi, Rd \ Ωi} ≤ h.

b) Let i, j ∈ I, and let (iι)m
ι=0 be a path from i to j in G(M) of minimal length δ := δ(i, j) ∈ N0. Then

∥xi − xj∥2 ≤ δh holds.

c) Furthermore,
δ ≥ 2 + dist(Ωi, Ωj)/h

holds if dist(Ωi, Ωj) > 0 or Ωi ∩ Ωj is of measure zero. All i ̸= j satisfy δ ≥ 1 + dist(Ωi, Ωj)/h.
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Proof: a) The set {∥xi − x∥2 : x ∈ Ωi} takes its maxima at the corner points. For each corner point x′ of
Ωi there is a triangle τ ∈ T , so that the line xi x′ coincides with a side of t. Hence ∥xi − x′∥2 ≤ h.

b) Let (im, im+1) be an edge in G(M), i.e., Mim,im+1 ̸= 0. Hence the supports Ωim and Ωim+1 must overlap
in an inner point. This case happens only if the nodal point xim+1 is one of the corner points of Ωim or if it
coincides with xim itself. Hence, ∥xim − xim+1∥2 ≤ h. A simple induction yields ∥xi − xj∥2 ≤ δh.

c) Let δ ≥ 2. Because of xi1 ∈ Ωi and xiδ−1 ∈ Ωj , dist(Ωi, Ωj) ≤ ∥xi1 − xiδ−1∥2 ≤ δ(i1, iδ−1)h holds. Due
to the minimality of δ, we have δ(i1, iδ−1) = δ − 2 and conclude dist(Ωi, Ωj) ≤ (δ − 2)h , which implies the
further assertions.

The mass matrix is positive definite and therefore the norms and the extreme eigenvalues are connected by
µmin = ∥M−1∥−1

2 and µmax = ∥M∥2.

Let TI×I be a level-consistent block cluster tree satisfying the admissibility condition

max{diam(Ωt), diam(Ωs)} ≤ η dist(Ωt, Ωs) for all admissible blocks b = (t, s) ∈ L+(TI×I) (5.10)

(here the weaker condition
√

diam(Ωt) diam(Ωs)) ≤ η dist(Ωt, Ωs) would be sufficient).

Criterion 1 Assume

diam(Ωt)d ≥ C1h
d#t̂ for all t ∈ TI (5.11a)

with certain constants C1, d, and h > 0 from (5.9). Let M ∈ RI×I be a matrix with the entry-wise estimate

|Mij | ≤ c2q
dist(Ωi,Ωj)/h for all i, j ∈ I, where q < 1. (5.11b)

Then the blockwise definition

Mk|t̂×ŝ :=

{
M |t̂×ŝ for b = (t, s) ∈ L(TI×I) with (#t̂)(#ŝ) ≤ k2,

0 for b = (t, s) ∈ L(TI×I) with (#t̂)(#ŝ) > k2,
(5.11c)

leads to Mk ∈ H(k, P ) with the error estimate

∥M − Mk∥2 ≤ C∗spc2(1 + depth(TI×I)) · O(rk1/d

) for any r < qC1/η < 1, (5.11d)

where C∗sp is defined as in (3.16).

Proof: a) Since rank(Mk|b) ≤ min{#t̂, #ŝ} ≤
√

(#t̂)(#ŝ) ≤ k for all b = (t, s) ∈ L(TI×I), Mk belongs to
H(k, P ). Let E = M − Mk be the error matrix. E|t̂×ŝ = 0 holds, if (#t̂)(#ŝ) ≤ k2. Theorem 3.7 provides
an estimate of ∥E∥2 by means of the local spectral norms of E|b = M |b which are to be considered for the
remaining case of #τ#σ > k2.

b) For (#t̂)(#ŝ) > k2 and i ∈ t̂, j ∈ ŝ we have to estimate the error component Eij = Mij . The admissibility
condition implies

dist(Ωi, Ωj)
h

≥
i∈t̂,j∈ŝ

dist(Ωt, Ωs)
h

≥
(5.10)

√
diam(Ωt) diam(Ωs)

hη
≥

(5.11a)

C1

η
2d

√
(#t̂)(#ŝ).

From inequality (5.11b) we derive

|Eij | = |Mij | ≤ c2q
C1

2d
√

(#t̂)(#ŝ)/η.

A rough estimate of the spectral norm is provided by

∥E|t̂×ŝ∥2 ≤
√

(#t̂)(#ŝ) max
i∈t̂,j∈ŝ

|Eij | ≤ c2

√
(#t̂)(#ŝ)qC1

2d
√

(#t̂)(#ŝ)/η.
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The right-hand side can be simplified: Let kmin ≤ k. There are constants c′1 = c′1(kmin) > C1 and c′′2 such
that ℓ qC1

2d√ℓ/η ≤ c′′2qc′1
2d√ℓ/η for all ℓ > kmin. Hence, with c′2 := c2c′′2 , we have

∥E|b∥2 ≤ c2 c′′2 qc′1
2d√#τ#σ/η <

#τ#σ>k2
c′2 qc′1

d√k/η.

Lemma 3.7 shows ∥E∥2 ≤ C∗sp(1 + depth(TI×I))c′2qc′1
d√k/η. The inequalities c′1 > C1 and r := qc′1/η < qC1/η

are equivalent and yield (5.11d).

In the following we have to satisfy the conditions (5.11a,b) of the criterion. The first step is done by the
next lemma which applies to all positive definite, well-conditioned matrices. Note that the optimal values of
a, b in the next lemma are the extreme eigenvalues resulting in r = cond(M).

Lemma 5.6 Let M ∈ RI×I be a symmetric positive definite matrix with spectrum σ(M) ⊂ [a, b], where
0 < a ≤ b. For i, j ∈ I denote the graph distance of i, j by δ(i, j). Then for all i ̸= j, the following estimate
holds:

|(M−1)ij | ≤ ĉ qδ(i,j) with ĉ =
(1 +

√
r)2

2ar
, q =

√
r − 1√
r + 1

, where r :=
b

a
. (5.12)

Proof: For any polynomial p ∈ Pk with k < δij we observe that p(M)ij = 0 holds. Furthermore, the
spectral norm and the spectral radius coincide for normal matrices:

∥M−1 − p(M)∥2 = ρ(M−1 − p(M)) = max
µ∈σ(M)

|µ−1 − p(µ)|.

Due to a result of Chebyshev (cf. [49, p. 33]) there is a polynomial pk ∈ Pk so that

∥µ−1 − pk(µ)∥∞,[a,b] ≤ ĉ qk+1

with q and ĉ as in (5.12). Set k := δij − 1. Then

|(M−1)ij | = |(M−1)ij − pk(M)ij | ≤ ∥M−1 − pk(M)∥2 ≤ ĉ qk+1 = ĉ qδij

proves the assertion.

Since the exponent in (5.12) satisfies δ(i, j) ≥ 1 + dist(Ωi, Ωj)/h due to Remark 5.5b, the condition (5.11a)
holds: ĉ qδ(i,j) ≤ ĉq1+dist(Ωi,Ωj)/h = (ĉq) qdist(Ωi,Ωj)/h = c2qdist(Ωi,Ωj)/h with

c2 = ĉq = C ∥M−1∥2, C :=
r − 1
2r

, (5.13)

provided that a = µmin and b = µmax are the extreme eigenvalues of M.

Under the assumption of shape regularity and quasi-uniformity, we have the estimate

vol(Ωi) ≥ cvhd. (5.14)

The supports Ωi may overlap, but due to the form regularity the number of intersecting Ωi is limited. This
fact is expressed in the following inequality: there is a constant Cov > 0 so that

Cov vol(Ωt) ≥
∑

i∈t̂

vol(Ωi). (5.15)

Lemma 5.7 The inequalities (5.14) and (5.15) imply the condition (5.11a), i.e.,

diam(Ωt)d ≥ C1h
d#t̂ with C1 :=

cv

ωdCov
,

where ωd is the volume of the d-dimensional unit sphere.
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Proof: Ωt is contained in the sphere of radius diam(Ωt), so that diam(Ωt)d ≥ vol(Ωt)/ωd. On the other
hand, (5.15) and (5.14) show that vol(Ωt) ≥ 1

Cov

∑
i∈t̂ vol(Ωi) ≥ cv

Cov
hd#t̂.

Theorem 5.8 Assume that the admissible leaves b = (t, s) ∈ L+(TI×I) of TI×I satisfy the admissibility
condition (5.10). Assume form regular and quasi-uniform finite elements (in particular (5.14), (5.15) and
cond(M) = O(1) are needed; cf. Lemmata 5.2, 5.7). Then for all ε > 0 there is a matrix NH ∈ H(TI×I, kε)
such that

∥M−1 − NH∥2 ≤ ε∥M−1∥2 with kε = O(logd((p + 1)/ε) and p := depth(TI×I). (5.16)

Proof: In Criterion 1 (with M replaced by M−1) the conditions (5.11a,b) are satisfied with the constants
C1 := cv

ωdCov
(see Lemma 5.7) and c2 := C ∥M−1∥2 from (5.13). The error estimate (5.11d) yields

∥M−1 − NH∥2 ≤ ∥M−1∥2 · C∗sp(1 + depth(TI×I)) · const · ρk1/d

(5.17)

with quantities C∗sp, const and ρ < qC1/η (η from (5.10)) independent of #I. Hence, (5.16) follows for
k = kε = O(logd((p + 1)/ε)) with p = depth(TI×I).

Inequality (5.16) describes the relative error with respect to the spectral norm. Later, the norm |||A||| from
(5.7) will be of interest.

Corollary 5.9 Under the assumptions of Theorem 5.8 the inequality

∥M(M−1 − NH)M ||| = ∥M1/2(M−1 − NH)M1/2∥2 = ∥P (M−1 − NH)R∥L2(Ω)←L2(Ω) (5.18a)

≤ C∗sp(1 + depth(TI×I)) · const′ · ρk1/d

, (5.18b)

holds, where const′ := const · cond(M) with const from (5.17). As in Theorem 5.8, for all ε > 0 there exists
a matrix NH ∈ H(TI×I , kε)), such that

∥M1/2(M−1 − NH)M1/2∥2 ≤ ε with kε = O(logd((1 + depth(TI×I))/ε)). (5.18c)

Proof: For (5.18a) compare (5.7). Furthermore,

∥M1/2(M−1 − NH)M1/2∥2 ≤ ∥M1/2∥2∥M−1 − NH∥2∥M1/2∥2

= ∥M−1 − NH∥2∥M1/2∥2
2 = ∥M−1 − NH∥2∥M∥2.

Inequality (5.17) shows

∥M1/2(M−1 − NH)M1/2∥2 ≤ ∥M−1∥2∥M∥2 · C∗sp(1 + depth(TI×I)) · const · ρk1/d

.

Since ∥M−1∥2∥M∥2 = cond(M) = O(1), the assertion is proved.

5.4 The Green Function Operator and its Galerkin Discretisation

5.4.1 The Elliptic Boundary Value Problem

We consider the differential operator

Lu = − div(C(x) gradu) in Ω (5.19)

from (5.1), where Ω ⊂ Rd is assumed to be a bounded Lipschitz domain.

The Dirichlet boundary value problem is

Lu = f in Ω,
u = 0 on Γ := ∂Ω.

(5.20)
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We assume no smoothness of the d × d coefficient matrix C(x) except its boundedness C ∈ L∞(Ω). The
uniform ellipticity is described by the inequalities

0 < λmin ≤ λ ≤ λmax for all eigenvalues λ ∈ σ(C(x)) for almost all x ∈ Ω. (5.21)

The ratio
κC = λmax/λmin (5.22)

is an upper bound of all spectral condition numbers cond2 C(x). But notice that the extrema λmin and λmax

need not be attained for the same x ∈ Ω.

After fixing the basis of Vn ⊂ V = H1
0 (Ω), the finite-element matrix A is defined by Aij = a(φj ,φi) using

the weak formulation (5.2) (see (5.4)).

Using P, R from (5.6a,b) and L : H1
0 (Ω) → H−1(Ω) from a(u, v) = (Lu, v)L2(Ω) , a possible representation of

the stiffness matrix A is
A = RLP. (5.23)

The following statements also hold, when L contains further terms of first and zeroth order with L∞-
coefficients (cf. Bebendorf [5]). The case of dominating convection is discussed in Bebendorf [6]. Elliptic
systems of equations (e.g., the Lamé equation) are considered in [57].

5.4.2 The Green Function

For all x, y ∈ Ω the Green function G(x, y) is the solution of LG(·, y) = δy with boundary data G(·, y)|Γ = 0
(L and the restriction to Γ refer to the first variable ·), where δy is the Dirac distribution at y ∈ Ω. The
Green function is the Schwartz kernel of the inverse L−1, i.e., the solution of (5.20) is represented by

u(x) =
∫

Ω
G(x, y) f(y) dy.

For L = −∆ (i.e., C(x) = I) the Green function is analytic in Ω. Since, under the present assumptions
the coefficient matrix C(x) is only bounded, G is not necessarily differentiable. The existence of Green’s
function is proved for d ≥ 3 by Grüter-Widman [36] together with the estimate

|G(x, y)| ≤ CG

λmin
|x − y|2−d (CG = CG(κC) with κC from (5.22), λmin from (5.21)) . (5.24a)

For d = 2, the existence proof can be found in Dolzmann-Müller [20] together with

|G(x, y)| ≤ CG

λmin
log |x − y| . (5.24b)

Here, |·| denotes the Euclidean norm in Rd.

5.4.3 The Green Function Operator G

Because of (5.24a,b) the integral operator

(
L−1f

)
(x) = (Gf) (x) :=

∫

Ω
G(x, y)f(y)dy (x ∈ Ω) (5.25)

is well-defined. Usually, G is not explicitly known, however, we will use G only for theoretical considerations.

Lemma 5.10 Under the mentioned assumptions G ∈ L
(
L2(Ω), L2(Ω)

)
. More precisely, the bound is

∥G∥L2(Ω)←L2(Ω) ≤ diam(Ω)2/λmin. (5.26)
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Proof: Let u = Gf ∈ H1
0 (Ω) with f ∈ L2(Ω). (5.21) shows a(u, u) ≥ λmin∥∇u∥2

L2(Ω). The estimate
∥u∥2

L2(Ω) ≤ diam(Ω)2∥∇u∥2
L2(Ω) holds for a bounded domain Ω and functions u ∈ H1

0 (Ω) so that

∥u∥2
L2(Ω) ≤ diam(Ω)2∥∇u∥2

L2(Ω) ≤
diam(Ω)2

λmin
a(u, u).

On the other hand, a(u, u) = (f, u)L2(Ω) ≤ ∥f∥L2(Ω) ∥u∥L2(Ω) . Dividing by ∥u∥L2(Ω) , one obtains the desired
inequality.

We remark that, in general, ∥G∥L2(Ω)←L2(Ω) cannot be replaced by the weaker Hilbert-Schmidt norm ∥G∥F =
∥G∥L2(Ω×Ω), since G with its singularity (5.24a) is not square-integrable in Ω × Ω for d ≥ 4.

5.4.4 Galerkin Discretisation of G and the Connection to A−1

The Galerkin discretisation matrix of G from (5.25) is B := R GP with the components

Bij :=
∫

Ω

∫

Ω
ϕi(x)G(x, y)ϕj (y)dxdy (i, j ∈ I), (5.27)

where we use the same finite-element basis ϕi as above.

Two different finite-element error estimates can be considered. The L2(Ω) orthogonal projection is defined
by

Qh := PM−1R : L2(Ω) → Vh, i.e., (Qhu, vh)L2 = (u, vh)L2 for all u ∈ V and vh ∈ Vh

(M is the mass matrix). The corresponding error is

eQ
h (u) := ∥u − Qhu∥L2(Ω).

On the other hand, the finite-element approximation is associated with the Ritz projection

QRitz,h = PA−1RL : V → Vh.

If u ∈ V is the solution of the variational problem a(u, v) = f(v) (see (5.2)), then uh = Phu is the finite-
element solution. The finite-element error is

eP
h (u) := ∥u − QRitz,hu∥L2(Ω).

Since the L2(Ω) orthogonal projection is optimal, i.e., eQ
h (u) ≤ eP

h (u), it suffices to bound the error eP
h . The

weakest form of finite-element convergence reads

eP
h (u) ≤ εh∥f∥L2(Ω) for all u = Gf, f ∈ L2(Ω), (5.28)

where εh → 0 for h → 0. This estimate will be provided by Lemma 5.11, whose presumptions hold for the
problem considered here. Only under further smoothness conditions and regularity assumptions, one can
expect a better behaviour like εh = O(hσ) with σ ∈ (0, 2].

Lemma 5.11 Let the bilinear form a : V × V → R be bounded, while the subspaces Vn ⊂ V satisfy

lim
n→∞

dist(u, Vn) = 0 for all u ∈ V (dist(u, Vn) := infv∈Vn ∥u − v∥V ) . (5.29)

Let the discretisation {An}n∈N′ be stable and the embedding V ↪→ L2(Ω) be continuous, dense and compact.
Then

∥L−1 − PA−1R∥L2(Ω)←L2(Ω) ≤ εn with εn → 0 for n → ∞

(here L : V → V ′ is the operator associated with a : a(u, v) = ⟨Lu, v⟩V ′×V . The last inequality can also be
written as ∥ (I − QRitz,n)u∥L2(Ω) ≤ εn∥f∥L2(Ω) with Au = f .
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Proof: a) Because of the embedding property of V ↪→ L2(Ω), also the embedding E : L2(Ω) ↪→ V ′ is a
continuous, dense and compact embedding (cf. Hackbusch [38, Lemmata 6.3.9 and 6.4.5b]).

b) Let en(u) := (I − QRitz,n)u for u ∈ V. Cea’s Lemma shows ∥en(u)∥V ≤ C1 dist(u, Vn) (cf. Hackbusch [38,
Theorem 8.2.1]). Hence, (5.29) and part a) imply ∥en(u)∥L2(Ω) → 0 for all u ∈ V.

c) The stability of {An}n∈N′ together with (5.29) proves L−1 ∈ L(V ′, V ) (cf. Hackbusch [38, Theorem
8.2.2]).

d) The set U := {L−1f ∈ V : ∥f∥L2(Ω) ≤ 1} is image of the unit sphere {f ∈ L2(Ω) : ∥f∥L2(Ω) ≤ 1} under
the mapping L−1E. Since L−1 is bounded (see part c) and E is compact (see part a), U is a precompact
subset of V.

e) Now we want to show the uniform convergence εn := sup{∥en(u)∥L2(Ω) : u ∈ U} → 0. For the indirect
proof assume that there are η > 0 and a sequence u(n) ∈ U such that

∥en(u(n))∥L2(Ω) ≥ η > 0 for all n ∈ N′ ⊂ N.

By the precompactness of U there is a subsequence u(n) ∈ U with u(n) → u∗ ∈ V for n = nk → ∞. Since
en(u(n)) = en(u(n) − u∗) + eP

h (u∗), it follows that ∥en(u(n))∥L2(Ω) ≤ ∥en(u(n) − u∗)∥L2(Ω) + ∥en(u∗)∥L2(Ω).
For the first term use

∥en(u(n) − u∗)∥L2(Ω) ≤ C0∥en(u(n) − u∗)∥V ≤ C0C1 dist(u(n) − u∗, Vn) ≤ C0C1∥u(n) − u∗∥V → 0,

and ∥en(u∗)∥L2(Ω) ≤ C0∥en(u∗)∥V ≤ C0C1 dist(u∗, Vn) → 0 for the second. This yields the contradiction
∥en(u(n))∥L2(Ω) → 0.

The next lemma shows that M−1BM−1 is an approximation of A−1.

Lemma 5.12 Let εh be as in (5.28). Then, using the norm ||| · ||| from (5.7), the following estimate holds:

|||MA−1M − B||| = ∥PA−1R − PM−1BM−1R∥L2(Ω)←L2(Ω) ≤ 2εh. (5.30)

Proof: |||MA−1M−B||| = ∥PA−1R−PM−1BM−1R∥L2(Ω)←L2(Ω) follows from the definition (5.7). Because
of B = RGP , we have

PM−1BM−1R = PM−1RGPM−1R = QhGQh.

We have to estimate
(
PA−1R − QhGQh

)
f for f ∈ L2(Ω). Since Rf = 0 for f ∈ V ⊥h , it suffices to use

f ∈ Vh. uh := PA−1Rf is the finite-element solution of Lu = f, while QhGQhf = QhGf = Qhu is the
L2(Ω) projection of the u into Vh. The expression can be formulated by means of the Ritz projection Ph,

(
PA−1R − QhGQh

)
f = uh − Qhu = QRitz,hu − Qhu = (u − Qhu) − (u − QRitz,hu)

and can be bounded by ∥
(
PA−1R − QhGQh

)
f∥L2(Ω) ≤ eQ

h (u)+eP
h (u) ≤ 2eP

h (u) ≤ 2εh∥f∥L2(Ω). This proves
the inequality (5.30).

Corollary 5.13 An equivalent formulation of the triple norm in (5.30) is

|||MA−1M − B||| = ∥M1/2A−1M1/2 − M−1/2BM−1/2∥2.

This implies ∥A−1 − M−1BM−1∥2 ≤ |||MA−1M − B||| ∥M−1∥2 ≤ 2∥M−1∥2εh.

We remark that the boundedness of G implies the boundedness of B. Because of

|||B||| = ∥QhGQh∥L2(Ω)←L2(Ω)

we conclude the inequality in

Remark 5.14 |||B||| ≤ ∥G∥L2(Ω)←L2(Ω).

The further steps are as follows. In §5.5 we show that B can be approximated by an H-matrix BH. Theorem
5.8 states the M−1 has an H-matrix approximation NH. By Theorem 7.17 the product NHBHNH is again
an H-matrix which now approximates M−1BM−1. Since additional errors of the size of the discretisation
error εh are acceptable, approximations of M−1BM−1 are also good approximations of A−1 (see (5.30)).
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5.4.5 Conclusions from the Separable Approximation of Green’s Function

We anticipate the result of Section §5.5 and assume that the Green function allows a separable approximation

G(x, y) ≈ Gk(x, y) =
k∑

i=1

u(k)
i (x)v(k)

i (y) for x ∈ X, y ∈ Y, (5.31a)

where the subsets X, Y ⊂ Ω satisfy the usual admissibility condition

min{diam(X), diam(Y )} ≤ η dist(X, Y ). (5.31b)

Moreover, we assume that the approximation error decays exponentially, i.e., the integral operators
GXY ,Gk,XY ∈ L

(
L2(Y ), L2(X)

)
defined by

(GXY u) (x) =
∫

Y
G(x, y)u(y)dy, (Gk,XY u) (x) =

∫

Y
Gk(x, y)u(y)dy (x ∈ X)

satisfy

∥GXY − Gk,XY ∥L2(X)←L2(Y ) ≤ ε∥G∥L2(Ω)←L2(Ω) with ε = ε(k) ≤ C1 exp(−c2k
c3), c1, c2, c3 > 0 (5.31c)

for all k ∈ N. We shall prove (5.31c) with the constants

c1 ≈ 1, c2 ≈ cd/(d+1)
η , c3 =

1
d + 1

(cη = β0e with β0 from (5.47d) below). (5.31d)

The proof, however, uses a further assumption: If the minimum in (5.31b) is taken by diam(X) [diam(Y )],
then X [Y ] must be convex. In practice this is no restriction, since by construction of the partition
P ⊂ T (I × I) the admissibility of the bounding boxes are used and the bounding boxes are convex. The
verification of (5.31a-d) follows after the proof of Lemma 5.28.

The matrix B from (5.27) is obviously approximated by Bk ∈ H(TI×I, k), where the definition of Bk|b uses
the approximation Gk from (5.31a). For b = (t, s), the sets X and Y in (5.31a) become Ωt and Ωs. The
estimate (5.31c) implies that

∥GΩt,Ωs − Gk,Ωt,Ωs∥L2(Ωt)←L2(Ωs) ≤ ϵ∥G∥L2(Ω)←L2(Ω) holds for all b = (t, s) ∈ L+(TI×I)

while no approximation is used in inadmissible leaves b = (t, s) ∈ L−(TI×I). The total error can be estimated
by means of Theorem 5.4: for a sparse block cluster tree and an L2-stable finite element basis, we get

|||B − Bk||| ≤ εCfeCsp(1 + depth(TI×I))∥G∥L2(Ω)←L2(Ω)

This inequality combined with Lemma 7.26, which yields Csp = O(1), and Lemma 5.26, which yields
∥G∥L2(Ω)←L2(Ω) = O(1), show

|||B − Bk||| ≤ O(ε depth(TI)).

This proves the following Lemma:

Lemma 5.15 The matrix Bk ∈ H(TI×I, k) defined above satisfies the error estimate

|||B − Bk||| ≤ O(ε · depth(TI)) with ε = ε(k) ≤ exp(−c2k
1/(d+1))

for all k ∈ N and with the constant c2 from (5.31d).

Remark 5.16 a) The usual construction of the cluster tree leads to depth(TI) = O(log #I).

b) In the following we choose kε,B ≥ O
(
logd+1((1 + depth(TI))/ε)

)
, so that

|||B − Bk||| ≤ ε for k = kε,B . (5.32)

c) |||B||| ≤ ∥G∥L2(Ω)←L2(Ω) = O(1) from Remark 5.14 and Lemma 5.10 show that ε ≤ O(1) leads to

|||Bk||| ≤ O(1). (5.33)
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Since A−1 ≈ M−1BM−1 (cf. Lemma 5.12) and M−1 ≈ NH (cf. Theorem 5.8) as well as B ≈ Bk, we use

H := NHBkε,BNH (5.34)

as approximation of the inverse finite-element matrix A−1.

Lemma 5.17 Given ε > 0, choose NH ∈ H(TI×I , kε) according to Theorem 5.8 and Bkε,B ∈ H(TI×I, kε,B)
according to Lemma 5.15. According to Theorem 7.17, the (exact) product H from (5.34) is a hierarchical
matrix from H(TI×I , kε,H) with

kε,H = C2
U max{kε, kε,B, nmin}, (5.35)

for CU = O(log #I).

Proof: According to Theorem 5.8, the exact product NHBkε,B satisfies

NHBkε,B ∈ H(TI×I, kNB) with kNB = CU max{kε, kε,B, nmin}.

The second product H =
(
NHBkε,B

)
NH leads to kε,H = CU max{kNB, kε, nmin}. Since CU ≥ 1, one con-

cludes from max{kε, nmin} ≤ kNB the statement (5.35).

The appropriate norm for the error A−1 − H is

∥P
(
A−1 − H

)
R∥L2(Ω)←L2(Ω) = ∥M1/2

(
A−1 − H

)
M1/2∥2 = |||MA−1M − B|||. (5.36a)

(cf. (5.7)). Multiple application of the triangle inequality yields

∥P
(
A−1 − H

)
R∥L2(Ω)←L2(Ω) ≤ ∥P

(
A−1 − M−1BM−1

)
R∥L2(Ω)←L2(Ω) (5.36b)

+ ∥PM−1
(
B − Bkε,B

)
M−1R∥L2(Ω)←L2(Ω)

+ ∥PM−1Bkε,B

(
M−1 − NH

)
R∥L2(Ω)←L2(Ω)

+ ∥P
(
M−1 − NH

)
Bkε,BNHR∥L2(Ω)←L2(Ω).

The first term in (5.36b) is estimated in (5.30) by means of the quantity εh defined there:

∥P
(
A−1 − M−1BM−1

)
R∥L2(Ω)←L2(Ω) ≤ 2εh. (5.36c)

The second term ∥PM−1
(
B − Bkε,B

)
M−1R∥L2(Ω)←L2(Ω) = |||B − Bkε,B ||| in (5.36b) can be treated by

Lemma 5.15 and (5.32):
∥PM−1

(
B − Bkε,B

)
M−1R∥L2(Ω)←L2(Ω) ≤ ε. (5.36d)

The third term in (5.36b) is split into the factors

∥PM−1Bkε,B

(
M−1 − NH

)
R∥L2(Ω)←L2(Ω) (5.36e)

= ∥
[
PM−1Bkε,B M−1/2

] [
M1/2

(
M−1 − NH

)
R
]
∥L2(Ω)←L2(Ω)

≤ ∥PM−1Bkε,B M−1/2∥L2(Ω)←RI∥M1/2
(
M−1 − NH

)
R∥RI←L2(Ω)

= |||Bkε,B |||∥M1/2(M−1 − NH)M1/2∥2

≤ O(1) · ε = O(ε),

where the last inequality follows from (5.33) and (5.18c).

The fourth term in (5.36b) is treated analogously:

∥P (M−1 − NH)Bkε,B NHR∥L2(Ω)←L2(Ω)

=
∥∥∥
[
P
(
M−1 − NH

)
M1/2

] [
M−1/2Bkε,BNHR

]∥∥∥
L2(Ω)←L2(Ω)

≤ ∥P
(
M−1 − NH

)
M1/2∥L2(Ω)←RI∥M−1/2Bkε,BNHR∥RI←L2(Ω)



94 CHAPTER 5. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

= ∥M1/2
(
M−1 − NH

)
M1/2∥2∥PM−1Bkε,BNHR∥L2(Ω)←L2(Ω)

= ε∥PM−1Bkε,BNHR∥L2(Ω)←L2(Ω)

≤ ε
(
∥PM−1Bkε,B M−1R∥L2(Ω)←L2(Ω) + ∥PM−1Bkε,B (M−1 − NH)R∥L2(Ω)←L2(Ω)

)
.

The first norm expression in the last line is ∥PM−1Bkε,BM−1R∥L2(Ω)←L2(Ω) = |||Bk||| ≤ O(1), the second is
estimated in (5.36e) by O(ε), so that

∥P
(
M−1 − NH

)
Bkε,B NHR∥L2(Ω)←L2(Ω) ≤ O(ε). (5.36f)

The combination of (5.36a-f) yields the final result.

Theorem 5.18 Let the assumption of the previous Sections §5.2, §5.3, §5.4.1 hold and assume depth(TI) =
O(#I). Let ε ∈ (0, 1) be given. Choosing the local rank kε = O(logd(#I/ε)) of NH ∈ H(TI×I, kε) and
kε,B = O(logd+1(#I/ε)) of Bkε,B ∈ H(TI×I , kε,B), one obtains an approximation H = NHBkε,B NH ∈
H(TI×I , kε,H) of the inverse finite-element matrix A−1 with the error

∥P (A−1 − H)R∥L2(Ω)←L2(Ω) ≤ O(ε+ εh),

where kε,H = C2
U max{kε, kε,B , nmin} = O

(
log2(#I)kε,B

)
= O

(
logd+3(#I) + log2(#I) logd+1 (1/ε)

)
, while

εh is the finite-element consistency error from (5.28).

An obvious choice of ε is ε = εh. Since, in the best case, εh = O(hα) = O(#I−α/d) (α > 0: consistency
order) the quantities log(#I) and log (1/ε) coincide with respect to their size and yield

∥P
(
A−1 − H

)
R∥L2(Ω)←L2(Ω) ≤ O(hα)

for an H ∈ H(TI×I, kε,H) with kε,H = O
(
logd+3(#I)

)
.

5.5 Analysis of the Green Function

The goal of this Section is to construct a separable approximation G(x, y) ≈ G(k)(x, y) =
∑k

i=1 ui(x)vi(y)
of Green’s function in X × Y (see (5.31a)), where X, Y ⊂ Ω satisfy the admissibility condition.

The Green function G is defined in Ω×Ω. If X ⊂ Ω and Y ⊂ Ω are disjoint, the restriction of G to X ×Y is
L-harmonic, i.e., LG = 0. The subspace of L-harmonic functions will be considered in §5.5.2. First we give
approximation results for general closed subspaces of L2(D).

5.5.1 Approximation by Finite Dimensional Subspaces

In the following D ⊂ Rd is a domain. All distances and diameters use the Euclidean norm in Rd except the
distance of functions which uses the L2(D)-norm.

Lemma 5.19 Let D ⊂ Rd be a convex domain and Z a closed subspace of L2(D). Then for any k ∈ N there
is a subspace Vk ⊂ Z satisfying dimVk ≤ k so that

distL2(D)(u, Vk) ≤ cappr
diam(D)

d
√

k
∥∇u∥L2(D) for all u ∈ Z ∩ H1(D), where cappr :=

2
√

d

π
. (5.37)

Proof: a) D is contained in a cube with side length diam(D). Let z be the centre point:

D ⊂ Q = {x ∈ Rd : ∥x − z∥∞ <
1
2

diam(D)}.
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Ω

D

Γ(  )D

K

Figure 5.1: Domains Ω, D and Γ(D)

b) First let k = ℓd. We subdivide the cube Q uniformly into k subcubes Qi of side length diam(D)/ℓ and
set Di = D ∩ Qi (i = 1, . . . , k). Each Di is convex with diam(Di) ≤

√
d

ℓ diam(D). The subspace

Wk = {v ∈ L2(D) : v is constant on Di for all i = 1, . . . , k}

has the dimension dim Wk ≤ k. Poincaré’s inequality for u ∈ H1(D) shows that
∫

Di

|u − ūi|2dx ≤
(diam(Di)

π

)2
∫

Di

|∇u|2dx ≤
(√d diam(D)

πℓ

)2
∫

Di

|∇u|2dx,

where ūi = vol(Di)−1
∫

Di
u dx is the mean value of u in Di. Summation over all i yields

distL2(D)(u, Wk) ≤ ∥u − ū∥L2(D) ≤
√

d

πℓ
diam(D) ∥∇u∥L2(D),

where ū is the piecewise constant function from Wk with ū|Di = ūi.

c) For general k ∈ N, choose ℓ := ⌊ d
√

k⌋ ∈ N, i.e., ℓd ≤ k < (ℓ + 1)d. Applying Part (a) for k′ := ℓd, we use
the space Wk := Wk′ satisfying dim Wk = dimWk′ ≤ k′ ≤ k. Using 1

ℓ ≤ 2
ℓ+1 < 2

d√k
, we arrive at

distL2(D)(u, Wk) ≤ cappr
diam(D)

d
√

k
∥∇u∥L2(D)

with the constant cappr := 2
√

d/π.

d) Let Π : L2(D) → X be the L2(D)-orthogonal projection onto X and Vk = Π(Wk). Keeping in mind that
P has norm one and u ∈ X , the assertion follows from ∥u − Πū∥L2(D) = ∥Π(u − ū)∥L2(D) ≤ ∥u − ū∥L2(D)

for all ū ∈ Wk.

In the last proof we have restricted Di to convex domains though Poincaré’s inequality holds whenever the
embedding H1(Di) ↪→ L2(Di) is compact. This is for example true if Di fulfils a uniform cone condition.
However, in the general case extra assumptions are required to ensure the uniform boundedness of the
Poincaré constants for all Di.

5.5.2 Space Z(D) of L-Harmonic Functions

Ω ⊂ Rd is the domain where the differential operator L is defined (cf. (5.19), (5.20)). Let D ⊂ Rd be a
further domain with Ω ∩ D ̸= ∅. In the following we will specify the space Z = Z(D) which appears in
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Lemma 5.19. Z(D) has to satisfy three properties: u ∈ Z(D) should be (i) L-harmonic, (ii) locally in H1,
and if (iii) D ̸⊂ Ω , u = 0 holds in D\Ω. Before we give the precise definition, we add some remarks:

ad (i): A function satisfying Lu = 0 in a subdomain, is called there L-harmonic. In particular, the Green
function G(x, y) is L-harmonic with respect of both arguments x, y, if x ̸= y. The appropriate description
(5.39c) uses the weak formulation by means of the bilinear form a from (5.2).

ad (ii): If x ∈ Ω∩∂D, the function u := G(x, ·) is L-harmonic in D (since x /∈ D), but due to the singularity
of the Green function u does not belong to H1(D). There we require only a local H1-property: u ∈ H1(K)
for all domains K ⊂ D, which have a positive distance from the interior boundary

Γ(D) := Ω ∩ ∂D (5.38)

(see Figure 5.1 and (5.39b)).

ad (iii): For later constructions it is helpful if D is not restricted to subsets of Ω. Because of the homogeneous
boundary condition G(x, y) = 0 for x ∈ Ω and y ∈ ∂Ω, the continuation of G(x, ·) by zero in D\Ω belongs
again locally to H1. Condition (5.39a) is an empty statement if D ⊂ Ω holds.

Definition 5.20 Let Ω, D ⊂ Rd and Γ(D) be defined as above. Let Z(D) be the space of all u ∈ L2(D) with
the properties

u|D\Ω = 0, (5.39a)

u ∈ H1(K) for all K ⊂ D with dist(K, Γ(D)) > 0, (5.39b)

a(u,ϕ) = 0 for all ϕ ∈ H1
0 (D ∩ Ω). (5.39c)

Lemma 5.21 The subspace Z(D) is closed in L2(D).

This statement is needed to apply Lemma 5.19 to Z = Z(D). Its proof is postponed to the subsection,
following Lemma 5.23.

Remark 5.22 Let Z(D) and Z(D′) be subspaces for D′ ⊂ D. For all u ∈ Z(D) the restriction u|D′ belongs
to Z(D′). The short notation of this statement is Z(D)|D′ ⊂ Z(D′). If dist(D′, Γ(D)) > 0, even Z(D)|D′ ⊂
Z(D′) ∩ H1(D′) holds (cf. (5.39b)).

5.5.3 Inner Regularity

Inner regularity denotes the characteristic property of homogeneous solutions of elliptic partial differential
equations, to have better regularity in inner subdomains. Here, we make use of the fact that for functions
u ∈ Z(D) the gradient norm ∥∇u∥L2(K∩Ω) in a smaller domain K can be estimated by means of ∥u∥L2(D∩Ω).
Because of the continuation by zero in D\Ω (cf. (5.39a)) also the norms ∥∇u∥L2(K) and ∥u∥L2(D) can be
used.

Lemma 5.23 Let Ω, D, Z(D), Γ(D), and K ⊂ D with dist(K, Γ(D)) > 0 as in Definition 5.20. κC =
λmax/λmin is the quantity from (5.21)). Then the so-called Caccioppoli inequality holds:

∥∇u∥L2(K∩Ω) ≤
2 √

κC

dist(K, Γ(D))
∥u∥L2(D∩Ω) for all u ∈ Z(D). (5.40)

Proof: Let the cut-off function η ∈ C1(D) satisfy 0 ≤ η ≤ 1, η = 1 in K, η = 0 in a neighbourhood of Γ(D),
and |∇η| ≤ 2/δ in D ∩ Ω, where we use the abbreviation

δ := dist(K, Γ(D)).
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Since K ′ := supp(η) ⊂ D satisfies the condition dist(K ′, Γ(D)) > 0, one obtains from (5.39b) that u ∈
H1(K ′). Hence, ϕ := η2u ∈ H1

0 (D ∩ Ω) is a possible test function in a(u,ϕ) = 0:

0 =
∫

D∩Ω
(∇u)⊤C(x)∇(η2u)dx = 2

∫

D∩Ω
ηu(∇u)⊤C(x)(∇η)dx +

∫

D∩Ω
η2(∇u)⊤C(x)(∇u)dx. (5.41)

The inequality chain
∫

D∩Ω
η2∥C1/2(x)∇u∥2dx =

∫

D∩Ω
η2(∇u)⊤C(x)(∇u)dx =

(5.41)
2
∣∣∣∣
∫

D∩Ω
ηu(∇u)⊤C(x)(∇η)dx

∣∣∣∣

≤ 2
∫

D∩Ω
η |u| ∥C1/2(x)∇η∥ ∥C1/2(x)∇u∥ dx

≤
∥C∥≤λmax because of (5.21), |∇η|≤2/δ

4
√
λmax

δ

∫

D∩Ω
|u| η ∥C1/2(x)∇u∥ dx

≤
Schwarz inequality

4
√
λmax

δ

√∫

D∩Ω
η2∥C1/2(x)∇u∥2dx ∥u∥L2(D∩Ω)

can be divided by
√∫

D∩Ω η
2∥C1/2(x)∇u∥2dx = ∥ηC1/2(x)∇u∥L2(D∩Ω):

∥ηC1/2(x)∇u∥L2(D∩Ω) ≤ 4
√
λmax

δ
∥u∥L2(D∩Ω).

Since η = 1 in K, one concludes that

∥∇u∥L2(K∩Ω) = ∥η∇u∥L2(K∩Ω) ≤ ∥η∇u∥L2(D∩Ω) ≤
(5.21)

λ−1/2
min ∥ηC1/2(x)∇u∥L2(D∩Ω).

Altogether, the assertion (5.40) follows with the factor 4 instead of 2. The condition |∇η| ≤ 2/δ can be
replaced by |∇η| ≤ (1 + ε) /δ for any ε > 0. Therefore, (5.40) holds with the factor 2 (1 + ε) for any ε > 0,
hence also for 2.

Proof: [Proof of Lemma 5.21] Let {uk}k∈N ⊂ Z(D) be a sequence converging in L2(D) to u. Let K ⊂ D
with dist(K, Γ(D)) > 0. Since ∥uk∥L2(D) is uniformly bounded, due to Lemma 5.23, also {∇uk}k∈N is
uniformly bounded on K:

∥∇uk∥L2(K) ≤ c ∥uk∥L2(D) ≤ C.

By the Theorem of Banach-Alaoglu, a subsequence {uik}k∈N converges weakly in H1(K) to û ∈ H1(K).
Hence, for each v ∈ L2(K) we have (u, v)L2(K) = limk→∞(uik , v)L2(K) = (û, v)L2(K) showing u = û ∈ H1(K).
Since for any ϕ ∈ H1

0 (D∩Ω) the functional a(·,ϕ) belongs to (H1(K))′, the same argument yields a(u,ϕ) = 0.
Finally, uk|D\Ω = 0 implies also u|D\Ω = 0, proving u ∈ Z(D).

5.5.4 Main Theorem

In the following construction we start from a convex domain K with K ∩ Ω ̸= ∅ . Broadening of K by r > 0
yields

K(r) := {x ∈ Rd : dist(x, K) < r} for 0 < r ≤ δ, (5.42)

where K(0) := K is set for r = 0. Let D be a superset of K with

δ := dist(K, Γ(D)) > 0. (5.43)

It is easy to see that K(δ) ∩ Ω ⊂ D ∩ Ω. In the complement Rd\Ω, where all functions are defined by zero,
D can be enlarged in such a way that K(δ) ⊂ D.

The following lemma describes the approximability of all u ∈ Z(D) by means of a subspace W ⊂ Z(K) , so
that the approximation error decays exponentially with respect to the dimension dim W (i.e., the dimension
grows only logarithmically with the inverse approximation error).



98 CHAPTER 5. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

K( )δK

D δ

Figure 5.2: The domains Ω, K ⊂ K(δ) ⊂ D and Γ(D)

Lemma 5.24 Let Ω, D, Z(D), Γ(D), and K ⊂ D with dist(K, Γ(D)) > 0 as in Definition 5.20. Further-
more, let K be a convex domain with

diam(K) ≤ η dist(K, Γ(D)).

Then for all ε < 1 there exists a subspace W = Wε ⊂ Z(K) with the approximation property

distL2(K)(u, W ) ≤ ε ∥u∥L2(D∩Ω) for all u ∈ Z(D) (5.44)

and the dimension

dimW ≤ cd
η⌈log 1

ε⌉
d+1 + ⌈log 1

ε ⌉ with cη = 2 e cappr
√
κC (η + 2) . (5.45)

Proof: a) Convexity of K implies also convexity of all K(r) from (5.42), which for increasing r become
larger: K(r1) ⊃ K(r2) for r1 ≥ r2. The smallest domain is K(0) = K, while K(δ) is the maximal domain
with K(δ) ⊂ D. It is easy to see that

dist(K(r2), ∂K(r1)) = r1 − r2 for r1 ≥ r2 and diam(K(r)) ≤ diam(K) + 2r. (5.46a)

b) We fix a p ∈ N, which will be specified in part f), and introduce radii r0 > r1 > . . . > rp = 0 by means of

rj := (1 − j

p
)δ (0 ≤ j ≤ p) . (5.46b)

We define
Kj := K(rj), Zj := Z(Kj) (compare Definition 5.20)

and remark that K = Kp ⊂ Kp−1 ⊂ . . . ⊂ K1 ⊂ K0 ⊂ D.

c) Let j ∈ {1, . . . , p}. Application of Lemma 5.23 to the domains Kj−1, Kj instead of D, K yields

∥∇v∥L2(Kj) ≤
2√κC

dist(Kj , Γ(Kj−1))
∥v∥L2(Kj−1) for all v ∈ Zj−1,

where the notation Γ(Kj−1) is explained in (5.38). Because of dist(Kj , Γ(Kj−1)) ≥ dist(Kj , ∂Kj−1) =
rj−1 − rj = δ/p (see (5.46a)) it follows that

∥∇v∥L2(Kj) ≤
2p

√
κC

δ
∥v∥L2(Kj−1) for all v ∈ Zj−1. (5.47a)
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d) We apply Lemma 5.19 with Kj instead of D and with k := ⌈(βp)d⌉. The factor β will be specified later
in (5.47d). Following Lemma 5.19, there is a subspace Vj ⊂ Zj of dimension dimVj ≤ k so that

distL2(Kj)(v, Vj) ≤ cappr
diam(Kj)

d
√

k
∥∇v∥L2(Kj) for all v ∈ Zj ∩ H1(Kj).

Using the inequalities d
√

k ≥ βp and diam(Kj) = diam(K) + 2rj ≤ diam(K) + 2δ (see (5.46a)), we obtain

distL2(Kj)(v, Vj) ≤ cappr
diam(K) + 2δ

βp
∥∇v∥L2(Kj) for all v ∈ Zj ∩ H1(Kj). (5.47b)

Due to Remark 5.22, each v ∈ Zj−1 restricted to Kj belongs to Zj ∩ H1(Kj). The estimates (5.47a,b)
together with diam(K) ≤ ηδ shows

distL2(Kj)(v, Vj) ≤ (η + 2)
2cappr

√
κC

β
∥v∥L2(Kj−1) for all v ∈ Zj−1. (5.47c)

In order to enforce (η + 2) 2cappr
√

κC

β = ε1/p, we choose

β := β0ε
−1/p with β0 := 2cappr

√
κC (η + 2) . (5.47d)

e) (5.47c,d) shows that for each u =: v0 ∈ Z0 there is a u1 ∈ V1 ⊂ Z1, so that u|K1 = v0|K1 = u1 + v1 and

∥v1∥L2(K1) ≤ ε1/p ∥v0∥L2(K0).

Analogously, for v1 ∈ Z1 there exists a u2 ∈ V2 ⊂ Z2, so that v1|K2 = u2 + v2 and ∥v2∥L2(K2) ≤
ε1/p ∥v1∥L2(K1). By induction one constructs uj ∈ Vj (1 ≤ j ≤ p), so that

u|K = vp +
p∑

j=1

uj |K with ∥vp∥L2(K) ≤ ε ∥u∥L2(K).

Since uj |K ∈ Vj |K ,
W := span{Vj |K : j = 1, . . . , p}

is the desired approximating subspace which ensures the estimate

distL2(D2)(u, W ) ≤ ε∥u∥L2(K0) ≤
K0⊂D

ε∥u∥L2(D) =
u|D\Ω=0

ε∥u∥L2(D∩Ω).

f) The dimension of W is bounded by
∑p

j=1 dim Vj = p⌈(βp)d⌉ ≤ p+βdpd+1. The choice p := ⌈log 1
ε⌉ yields

ε−1/p = e(log 1
ε )/p ≤ e1 and the estimate

dim W ≤ ⌈log 1
ε⌉ + βd

0ed⌈log 1
ε⌉

d+1. (5.47e)

This inequality together with cη := β0e proves the assertion.

Remark 5.25 Lemma 5.24 describes the dimension k := dimW in dependence of the factor ε. The inverted
relation shows the exponential decay

ε = ε(k) ≈ exp
(
−c

d+1
√

k
)

with c ≈ (cη)−d/(d+1)

(the equality c = (cη)−d/(d+1) would hold, if on the right-hand side of (5.47e) the term ⌈log 1
ε⌉ of lower order

is missing, whereas ε(k) ≤ exp(−c d+1
√

k ) would hold, if ⌈log 1
ε⌉ is replaced by log 1

ε ).

For x ∈ X ⊂ Ω ⊂ Rd Green’s function G(x, ·) is L-harmonic in Ω\X, i.e., G(x, ·) ∈ Z(Ω\X) and even
G(x, ·) ∈ Z(Rd\X) because of the continuation by zero.
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Theorem 5.26 Let X ⊂ Ω ⊂ Rd and K ⊂ Rd be two domains with K ∩ Ω ̸= ∅. Furthermore, let K be
convex and satisfy

diam(K) ≤ η dist(X, K).

Then for any ε ∈ (0, 1) there exists a separable approximation

Gk(x, y) =
k∑

i=1

ui(x)vi(y) with k ≤ kε = cd
η⌈log 1

ε⌉
d+1 + ⌈log 1

ε⌉

(cη defined in (5.45)) satisfying

∥G(x, ·) − Gk(x, ·)∥L2(K) ≤ ε∥G(x, ·)∥L2(D∩Ω) for all x ∈ X, (5.48)

where D := {y ∈ Rd : dist(y, K) < dist(X, K)}.

Proof: Since diam(K) ≤ η dist(X, K) = η dist(X, ∂D) ≤ η dist(X, Γ(D)), Lemma 5.24 can be applied. Let
{v1, . . . , vk} be a basis of the subspace W ⊂ Z(K) from Lemma 5.24 with k = dimW ≤ cd

η⌈log 1
ε⌉

d+1+⌈log 1
ε⌉.

For all x ∈ X the function gx := G(x, ·) belongs to Z(D) because of X ∩ D = ∅. Due to (5.44) we have
gx = ĝx + rx with ĝx ∈ W and ∥rx∥L2(K) ≤ ε∥gx∥L2(D∩Ω). The approximation ĝx has a representation

ĝx =
k∑

i=1

ui(x)vi (5.49)

with coefficients ui(x) depending on x. Since x varies in X , the coefficients ui are functions defined on X .
The function Gk(x, y) :=

∑k
i=1 ui(x)vi(y) satisfies the estimate (5.48).

Remark 5.27 Without loss of generality, {v1, . . . , vk} can be chosen as an orthogonal basis of W . Then the
coefficients ui(x) in (5.49) are equal to the scalarproduct (G(x, ·), vi)L2(K∩Ω). This proves that the functions
ui satisfy the differential equation

Lui =
{

vi in K ∩ Ω,
0 otherwise

with homogeneous Dirichlet boundary condition. In particular, the ui are L-harmonic in Ω\K. Note that
the ui do not depend on the choice of the domain X.

Lemma 5.28 Let X, K,D, and ε as in Theorem 5.26. Let GXK , GXD, and Gk,XK be the integral operators

(GXKf) (x) =
∫

Y G(x, y)f(y)dy for x ∈ X,

(GXDf) (x) =
∫

D∩Ω G(x, y)f(y)dy for x ∈ X,

(Gk,XK) (x) =
∫

Y Gk(x, y)f(y)dy for x ∈ X,

while G is the operator from (5.25). Then

∥GXK − Gk,XK∥L2(X)←L2(K∩Ω) ≤ ε∥GXD∥L2(X)←L2(D∩Ω) ≤ ε∥G∥L2(Ω)←L2(Ω). (5.50)

Proof: Let ϕ ∈ L2(X) be an arbitrary test function and Φ(y) :=
∫

X G(x, y)ϕ(x)dx for y ∈ D ∩ Ω. Since
Φ ∈ Z(D), we have again

∥Φ − Φk∥L2(K∩Ω) ≤ ε∥Φ∥L2(D∩Ω) (5.51)

(proof as in Theorem 5.26 with the same W ). As Φk is the projection of Φ to the subspace W , it follows
that

Φk(y) =
∫

X
Gk(x, y)ϕ(x)dx =

k∑

i=1

(∫

X
ui(x)ϕ(x)dx

)
vi(y).



5.5. ANALYSIS OF THE GREEN FUNCTION 101

For all ψ ∈ L2(K ∩ Ω) we have

(ϕ, (GXY − Gk,XY )ψ)L2(X) =
∫

K∩Ω

∫

X
(G(x, y) − Gk(x, y))ϕ(x)ψ(y)dxdy = (Φ − Φk,ψ)L2(K∩Ω)

≤ ∥Φ − Φk∥L2(K∩Ω) ∥ψ∥L2(K∩Ω) ≤
(5.51)

ε∥Φ∥L2(D∩Ω) ∥ψ∥L2(K∩Ω) .

Φ can also be written as G∗XDϕ so that

∥Φ∥L2(D∩Ω) ≤ ∥G∗XD∥L2(D∩Ω)←L2(X) ∥ϕ∥L2(X) = ∥GXD∥L2(X)←L2(D∩Ω) ∥ϕ∥L2(X)

proves the first inequality in (5.50). The second inequality holds, since GXD is a restriction of G.

We now show that the assumption in (5.31a-d) hold. The approximation (5.31a) corresponds to the represen-
tation in Theorem 5.26. The notation in (5.31a) indicates that the functions ui, vi depend on the dimension
k.

If the minimum in (5.31b) is taken by diam(Y ), we set Y = K and the inequality in (5.31c) follows from
(5.50). If, however, diam(X) ≤ η dist(X, Y ) holds with a convex X , the same estimate can be proved by
exploiting L-harmonicity with respect to the first argument: G(·, y) ∈ Z(X).

The sizes of the constants in (5.31d) result from Remark 5.25.

In the boundary element method (BEM) the fundamental solution S plays a central role. It is defined by
the property

LxS(x, y) = δ(x − y) for all x, y ∈ Rd.

We can apply Theorem 5.26 to S. The following corollary ensures that BEM matrices can be successfully
represented in the hierarchical format.

Corollary 5.29 Assume the existence of a fundamental solution S for the differential operator L. Let
X, Y ⊂ Rd be two domains such that Y is convex and

diam(Y ) ≤ η dist(X, Y ).

Then for any ε > 0, there is a separable approximation

Sk(x, y) =
k∑

i=1

ui(x)vi(y) with k ≤ kε = cd
η⌈log 1

ε⌉
d+1 + ⌈log 1

ε⌉ (cη as in (5.45)),

so that
∥S(x, ·) − Sk(x, ·)∥L2(Y ) ≤ ε∥S(x, ·)∥L2(D) for all x ∈ X

with D := {x ∈ Rd : dist(x, Y ) < dist(X, Y )}.
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5.6 Implementation

The matrix G defined by (5.4) is sparse, so we should store it in a suitable format.

5.6.1 Sparse Matrices

One way of storing a sparse matrix efficiently is to use the row-compressed representation: For each row i,
there are arrays containing the columns of non-zero entries and the corresponding coefficients.

Implementation 5.30 (sparsematrix) The sparsematrix structure is defined as follows:

typedef struct _sparsematrix sparsematrix;
typedef sparsematrix *psparsematrix;
struct _sparsematrix {
int rows;
int cols;
int nz;
int *row;
int *col;
double *coeff;

};

The fields rows and cols contain the number of rows and the number of columns of the sparse matrix. The
field nz contains the number of non-zero entries.

The columns indices for all non-zero entries are stored in the array col, and the array coeff contains the
corresponding coefficients. The array row contains the start and end indices of the parts of the col and
coeff arrays corresponding to a certain row: For each row i, the entry row[i] is the first index in col and
coeff corresponding to the i-th row of the matrix, and row[i+1]-1 is the last index.

Let us consider the matrix

G =

⎛

⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2

⎞

⎟⎟⎟⎟⎠

as an example (in C notation, i.e., with indices {0, . . . , 4}). The first row contains two non-zero entries,
so we set row[0]=0 and row[1]=2. The first non-zero entry is G00 = 2, therefore we set col[0]=0 and
coeff[0]=2.0. The second non-zero entry is G01 = −1, and we represent it by setting col[1]=1 and
coeff[1]=-1.0.

The second row contains three non-zero entries. We already have found row[1]=2, so we add three to get
row[2]=5. The first non-zero entry G10 = −1 in this row is represented by col[2]=0 and coeff[2]=-1.0.
Repeating this construction for the remaining non-zero entries leads to the following representation:

2 22 −12 2−1

0 1 0 2 3 2

−1

4 4121 3

−1−1−1−1−1

3

2 5 8 13110

coeff

col

row
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The product of a vector v and a matrix described by a sparsematrix object can be computed by the
following simple algorithm:

for(i=0; i<rows; i++) {
sum = 0.0;
for(j=row[i]; j<row[i+1]; j++)
sum += coeff[j] * v[col[j]];

w[i] = sum;
}

This and a number of other useful functions are already included in the library:

Implementation 5.31 (sparsematrix) Once the structure of a sparse matrix (i.e., the arrays row and
col) is fixed, we can use the functions

void
clear_sparsematrix(psparsematrix sp);

void
addcoeff_sparsematrix(psparsematrix sp, int row, int col, double val);

void
setcoeff_sparsematrix(psparsematrix sp, int row, int col, double val);

to initialize the coefficients. clear_sparsematrix sets all coefficients to zero, addcoeff_sparsematrix adds
val to the coefficient in row row and column col, while setcoeff_sparsematrix sets the coefficient to val
directly. The first two functions are useful in the context of finite-element discretisations, where the stiffness
and mass matrices are usually assembled iteratively, while the third function was included for finite difference
methods, where all matrix coefficients are known a priori.

Of course, there are also the usual eval methods

void
eval_sparsematrix(pcsparsematrix sp, const double *v, double *w);

void
addeval_sparsematrix(pcsparsematrix sp, const double *v, double *w);

void
evaltrans_sparsematrix(pcsparsematrix sp, const double *v, double *w);

void
addevaltrans_sparsematrix(pcsparsematrix sp, const double *v, double *w);

that multiply a sparse matrix or its transposed by a vector and add the result to another vector or overwrite
it.

A sparsematrix is not a supermatrix. Therefore we have to convert it before we can apply H-matrix
arithmetics. Due to Lemma 5.1, this is a simple task that is accomplished by the function

void
convertsparse2_supermatrix(pcsparsematrix sp, psupermatrix s);

Defining the proper structure for a sparse matrix can be complicated, since it involves counting the num-
ber of non-zero entries and enumerating them correctly. Therefore we introduce the auxiliary structure
sparsefactory that handles all the bookkeeping:
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Implementation 5.32 (sparsefactory) A sparsefactory object is used to describe only the structure of
a sparse matrix, i.e., the distribution of non-zero entries. It is created by a call to

void
new_sparsefactory(int rows, int cols);

giving the number rows of rows and cols of columns of the sparse matrix. A new sparsefactory contains
no non-zero entries, i.e., it describes the zero matrix. We can add non-zero entries using the function

void
addnz_sparsefactory(psparsefactory fac, int row, int col);

where row and col are the row and column of a new non-zero entry. This function call will only change the
sparsefactory if the entry is currently not in the list of non-zeros, i.e., it is safe to call it more than once
for the same entry.

After the entire structure of the matrix has been described by calls to addnz_sparsefactory, we can use the
sparsefactory to create a matching sparsematrix:

psparsematrix
new_sparsematrix(psparsefactory fac);

Let us now apply these techniques to Example 2.12: we use piecewise linear basis functions, i.e., an entry
Gij of the stiffness matrix (5.4) can be non-zero only if there is at least one triangle in the grid that lies in
the support of both ϕi and ϕj . This information is sufficient to create the sparsematrix structure:

idx2dof = ct->idx2dof;

fac = new_sparsefactory(n, n);
for(k=0; k<triangles; k++)
for(i=0; i<3; i++) {

ii = idx2dof[t[k][i]];
if(ii >= 0)
for(j=0; j<3; j++) {
jj = idx2dof[t[k][j]];
if(jj >= 0)
addnz_sparsefactory(fac, ii, jj);

}
}

sp = new_sparsematrix(fac);
del_sparsefactory(fac);

Since the sparsematrix structure should be compatible with a supermatrix structure, we have to take the
permutation of the index set into account. The code in Example 2.12 stores the mapping from grid indices
to degrees of freedom in the array ct->idx2dof, and our code fragment uses this array to convert the indices
of the triangles vertices t[k][i] into degrees of freedom. If t[k][i] does not correspond to a degree of
freedom, i.e., if it is a boundary node, idx2dof[t[k][i]] has the value -1 and we drop this entry from the
sparse matrix.

5.6.2 Assembly of Stiffness and Mass Matrices

We have seen how a sparsematrix object matching the structure of a grid and a set of basis functions can
be constructed. Now, we will fill the sparse matrix with coefficients corresponding to the partial differential
equation.
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The matrix coefficients are defined by (5.4). As in Example 2.12, we consider only domains that correspond
to compatible triangulations, i.e., there is a family (τι)T−1

ι=0 of triangles such that

Ω =
T−1⋃

ι=0

τ ι

holds and that two different triangles τι, τκ are either disjoint, share a common vertex or a common edge.

The discrete space Vn of piecewise linear functions on the triangulation (τι)T−1
ι=0 is defined by

Vn := {u ∈ C(Ω) : u|τι is affine for all ι ∈ {0, . . . , T − 1} and u|Γ = 0} ⊆ H1
0 (Ω)

Let u ∈ Vn. Since u is affine on each τι, its restriction u|τι it is uniquely defined by the values in the vertices
of τι. Since u is continuous, it is uniquely defined by its values of u in all vertices of the triangulation, which
implies that the dimension n of Vn has to be the number of interior vertices in the triangulation. We denote
the interior vertices by (vi)i∈I and define the basis functions (ϕi)i∈I by

ϕi(vj) = δij

for all j ∈ I. Due to (5.4), the entry Gij is given by

Gij =
∫

Ω
⟨gradϕi(x), gradϕj(x)⟩dx =

T−1∑

ι=0

∫

τι

⟨gradϕi(x), gradϕj(x)⟩dx,

so we could build the matrix using the code fragment

for(ii=0; ii<n; ii++)
for(jj=0; jj<n; jj++) {

sum = 0.0;
for(k=0; k<triangles; k++)
if(in_support(k, ii) && in_support(k, jj))
addcoeff_sparsematrix(G, ii, jj, integrate_G(k, ii, jj));

}

This is a very inefficient approach, since all entries of the stiffness matrix G are considered at least once, i.e.,
we will have a quadratic complexity in the number n of degrees of freedom, which is clearly inacceptable for
interesting problem sizes.

A far more efficient approach switches the ordering of the loops: the outer loop passes through all triangles,
the inner loops consider all contributions a given triangle τι makes to the matrix G. According to our
definition of the basis functions, only the three basis functions corresponding to the vertices of the triangle
can differ from zero in τι. Therefore we only have to take pairs of these three basis functions into account,
i.e., we require two nested loops passing each through the vertices of the current triangle. This leads to the
following more efficient algorithm:

for(k=0; k<triangles; k++)
for(i=0; i<3; i++) {

ii = idx2dof[t[k][i]];
if(ii >= 0)
for(j=0; j<3; j++) {
jj = idx2dof[t[k][j]];
if(jj >= 0)
addcoeff_sparsematrix(G, ii, jj, integrate_G(k, ii, jj));

}
}
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In order to evaluate the individual integrals (5.4), we need the gradients of the basis functions. For piecewise
linear basis functions, their computation is very simple: let i, j, k ∈ {0, . . . , n− 1} be such that vi, vj , vk are
the vertices of a triangle τι in the triangulation. The function

ϕi,τι(x) :=
det(x − vj , vk − vj)
det(vi − vj , vk − vj)

if affine and obviously satisfies ϕi,τι(vi) = 1, ϕi,τι(vj) = ϕi,τι(vk) = 0. This implies ϕi|τι = ϕi,τι , and we can
use this representation to compute the gradients of basis functions:

det = ((p[t[k][0]][0] - p[t[k][2]][0]) *
(p[t[k][1]][1] - p[t[k][2]][1]) -
(p[t[k][1]][0] - p[t[k][2]][0]) *
(p[t[k][0]][1] - p[t[k][2]][1]));

for(i=0; i<3; i++) {
g[i][0] = (p[t[k][(i+1)%3]][1] - p[t[k][(i+2)%3]][1]) / det;
g[i][1] = (p[t[k][(i+2)%3]][0] - p[t[k][(i+1)%3]][0]) / det;

}

We can combine this fragment with the loop over all triangles in order to complete the algorithm for
assembling the stiffness matrix for the Laplace operator:

for(k=0; k<triangles; k++) {
det = ((p[t[k][0]][0] - p[t[k][2]][0]) *

(p[t[k][1]][1] - p[t[k][2]][1]) -
(p[t[k][1]][0] - p[t[k][2]][0]) *
(p[t[k][0]][1] - p[t[k][2]][1]));

for(i=0; i<3; i++) {
g[i][0] = (p[t[k][(i+1)%3]][1] - p[t[k][(i+2)%3]][1]) / det;
g[i][1] = (p[t[k][(i+2)%3]][0] - p[t[k][(i+1)%3]][0]) / det;

}
area = 0.5 * fabs(det);

for(i=0; i<3; i++) {
ii = idx2dof[t[k][i]];
if(ii >= 0)
for(j=0; j<3; j++) {
jj = idx2dof[t[k][j]];
if(jj >= 0) {
val = area * (g[i][0] * g[j][0] + g[i][1] * g[j][1]);
addcoeff_sparsematrix(G, ii, jj, val);

}
}

}
}



Chapter 6

Arithmetics of Hierarchical Matrices

In this chapter we will explain the algorithms that perform the addition and multiplication in the hierarchical
matrix format efficiently. Based upon these basic linear algebra subroutines, we can define algorithms that
compute an approximate inverse, LU-decompostion or Cholesky decomposition. The actual proof for the
efficiency, namely the complexity estimates, are postponed to the next Chapter 7. The basic idea for the
H-matrix arithmetics is formulated in [40] and a general approach is contained in [27] (german) and [29]
(english).

6.1 Arithmetics in the rkmatrix Representation

Since the basic building blocks of H-matrices are matrices in fullmatrix and rkmatrix representation we
will first explain how the arithmetic operations +, · can be performed efficiently for matrices in rkmatrix
format - for the fullmatrix format this is obvious (and already implemented in BLAS or LAPACK).

First, we have to introduce the set of matrices of rank at most k. These are the matrices that can be
represented in the rkmatrix format. Afterwards, we will modify the rkmatrix implementation.

Implementation 6.1 (rkmatrix) The rkmatrix representation is implemented in the C programming lan-
guage as follows:

typedef struct _rkmatrix rkmatrix;
typedef rkmatrix *prkmatrix;

struct _rkmatrix {
int k;
int kt;
int rows;
int cols;
double* a;
double* b;

};

The description is the same as in the previous Implementation 1.13.

The current rank kt resembles the fact that a matrix in R(k, n, m) can have a rank kt smaller than k. From
Lemma 5.1 we know that all rkmatrix blocks in the H-matrix representation of the stiffness matrix are of
rank 0 while the maximal allowed rank for the formatted arithmetics is k > 0. In the algorithms we want to
exploit kt < k whenever possible.

107

R(k, n, m)
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6.1.1 Reduced Singular Value Decomposition (rSVD)

Definition 6.2 (SVD and rSVD) Let M ∈ R(k, n, m). A singular value decomposition (SVD) of M is a
factorisation of the form

M = UΣV T

TVU Σ

0

0 0

with unitary matrices U ∈ Rn×n, V ∈ Rm×m and a diagonal matrix Σ ∈ Rn×m, where the diagonal entries
are

Σ11 ≥ Σ22 ≥ . . . ≥ Σkk ≥ Σk+1,k+1 = . . . = Σmin{n,m},min{n,m} = 0.

The diagonal entries of Σ are called the singular values of M .

A reduced singular value decomposition (rSVD) of M is a factorisation of the form

M = UΣV T

U Σ V
T

with matrices U ∈ Rn×k, V ∈ Rm×k that have orthonormal columns and a diagonal matrix Σ ∈ Rk×k, where
the diagonal entries are

Σ11 ≥ Σ22 ≥ . . . ≥ Σkk > 0.

Remark 6.3 1. A (reduced) SVD is not unique.

2. If the singular values of M are all different then the reduced singular value decomposition is unique up
to scaling of the columns of U, V by −1.

3. A SVD of M yields a rSVD by discarding the columns > k of U, V and the columns and rows > k of
Σ.

A SVD of a general matrix (fullmatrix) can be computed by the standard LAPACK subroutine dgesvd
within complexity O

(
min(n, m)max(n, m)2

)
(see [21]). After the next Lemma we will explain how to

compute a rSVD of an rkmatrix in O
(
k2 max(n, m)

)
complexity.

The singular value decomposition is a representation of a matrix (in factorised form) and the reduced singular
value decomposition is similar to the rkmatrix format. The reason why the SVD is of interest is given in
the next Lemma.

Lemma 6.4 (Best Approximation with Fixed Rank) Let

M = UΣV T

TVΣU

0

0

0

be a SVD of M ∈ Rn×m. Let

M̃ := ŨΣ̃Ṽ T

U Σ V
T~ ~ ~
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with matrices
Ũ := U |n×k, Σ̃ := diag(Σ1,1, . . . , Σk,k), Ṽ := V |m×k.

Then M̃ is a best approximation to M in the sense that

∥M − M̃∥ = min
R∈R(k,n,m)

∥M − R∥, ∥M − M̃∥2 = Σk+1,k+1, ∥M − M̃∥F =

√√√√
min(n,m)∑

i=k+1

Σ2
i,i.

holds in the Frobenius and spectral norm.

Proof: For the spectral norm the proof is contained in [21]. The extension to the Frobenius norm can be
achieved by induction as an exercise.

Let M = ABT ∈ Rn×m be a matrix in rkmatrix representation. A rSVD M = UΣV T can be computed
efficiently in three steps:

1. Compute (reduced) QR-factorisations of A, B: A = QARA, B = QBRB

with matrices QA ∈ Rn×k, QB ∈ Rm×k, RA, RB ∈ Rk×k. dgeqrf→ complexity O((n + m)k2)

2. Compute a rSVD of RART
B = U ′Σ(V ′)T . dgesvd→ complexity O(k3)

3. Compute U := QAU ′, V := QBV ′. dgemm→ complexity O((n + m)k2)

Implementation 6.5 (rSVD) The implemementation of the rSVD in the C programming language for the
rkmatrix format might look as follows:

void
rsvd_rkmatrix(prkmatrix r, double *u, double* s, double *v){
double *u_a, *v_a, *u_b, *v_b, *usv;
int kt = r->kt, rows = r->rows, cols = r->cols;

... allocate u_a,v_a,u_b,v_b,usv ...

qr_factorisation(r->a,rows,kt,u_a,v_a); /* r->a =: u_a*v_a */
qr_factorisation(r->b,cols,kt,u_b,v_b); /* r->b =: u_b*v_b */

multrans2_lapack(kt, kt, kt, v_a, v_b, usv); /* usv := v_a*v_b’ */
svd_factorisation(usv, u_s, s, v_s); /* usv =: u_s*s*v_s’ */

mul_lapack(rows, kt, kt, u_a, u_s, u); /* u := u_a*u_s */
mul_lapack(cols, kt, kt, v_b, v_s, v); /* v := v_b*v_s */

... deallocate u_a,v_a,u_b,v_b,usv ...
}

The procedure rsvd_rkmatrix enables us to compute a rSVD of an rkmatrix in O
(
k2(n + m)

)
complexity.

According to Lemma 6.4 the rSVD representation can be used to derive a best approximation with fixed
rank.

Definition 6.6 (Truncation Tk) Let M ∈ Rn×m and k ∈ N. We define the truncation operator Tk :
Rn×m → R(k, n, m), M +→ M̃ , where M̃ is a best approximation of M in the set R(k, n, m) (not necessarily
unique). The matrix M̃ is called a “truncation of M to rank k”.

The truncation operator Tk produces an approximation to a given matrix in the set R(k, n, m). The approx-
imation quality might be arbitrarily bad, although it is a best approximation within the set. An alternative
truncation operator is defined by a fixed accuracy that has to be achieved. The rank necessary to reach the
accuracy is chosen automatically.

Let M = ABT ∈ Rn×m be a matrix in rkmatrix representation. A rSVD M = UΣVT can be computedefficiently in three steps: 1. Compute (reduced) QR-factorisations of A,B: A = QARA, B = QBRB with matrices QA ∈ Rn×k, QB ∈ Rm×k, RA, RB ∈ Rk×k.2. Compute a rSVD of RARBT = U′Σ(V ′)T .3. Compute U := QAU′, V := QBV ′. dgeqrf→ complexity O((n + m)k2)dgesvd→ complexity O(k3)dgemm→ complexity O((n + m)k2)
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Definition 6.7 (Truncation Tε) Let M ∈ Rn×m and ε > 0. We define the truncation operator Tε :
Rn×m → R(k, n, m), M +→ M̃ , where M̃ is a best approximation of M in the set R(k, n, m) and

k := min{k̃ ∈ N0 | ∃M̃ ∈ R(k̃, n, m) : ∥M − M̃∥ ≤ ε∥M∥}.

The matrix M̃ is called an “adaptive truncation of M with accuracy ε”. T abs
ε is the respective truncation

operator with absolute truncation error ε.

From Lemma 6.4 we know how to determine the necessary rank for an adaptive truncation: compute a
rSVD and discard singular values (starting from the smallest) as long as the relative or absolute prescribed
accuracy is met.

6.1.2 Formatted rkmatrix Arithmetics

The set R(k, n, m) is not a linear subspace of the n × m matrices, because it is not closed with respect to
the addition. Instead, the set has properties of an ideal.

Lemma 6.8 (Multiplication) Let R ∈ R(k, n, m), N ∈ Rn′×n and M ∈ Rm×m′
. Then

NR ∈ R(k, n′, m), RM ∈ R(k, n, m′).

Proof: If R = ABT then NR = (NA)BT and RM = A(MT B)T .

Lemma 6.9 (Addition) Let R1, R2 ∈ R(k, n, m). Then R1 + R2 ∈ R(2k, n, m).

Proof: If R1 = ABT and R2 = CDT then R1 + R2 = ABT + CDT =
[

A C
]

︸ ︷︷ ︸
n×2k

[
B D

]T
︸ ︷︷ ︸

2k×m

.

The addition of two matrices in rkmatrix format of rank k1 and k2 yields a matrix in rkmatrix format of
rank k1 + k2 without performing arithmetic operations (see the previous proof). The formatted sum is then
defined as a best approximation of rank at most k, where k is either fixed (fixed rank addition) or chosen
automatically so that a given approximation quality is achieved (adaptive addition).

Definition 6.10 (Formatted rkmatrix Addition) The formatted addition (fixed rank k or adaptive with
accuracy ε) is defined as

A ⊕k B := Tk(A + B), A ⊕ε B := Tε(A + B), A, B ∈ Rn×m.

In the following implementation of the formatted rkmatrix addition we have combined the fixed rank and
adaptive truncation.

Implementation 6.11 (Formatted rkmatrix Addition) The structure truncation_control contains
the information about the sufficient relative truncation error rel_eps, the sufficient absolute truncation
error abs_eps and a flag adaptive that tells us wether we use the fixed rank truncation (adaptive= 0) or
the adaptive arithmetic (adaptive= 1). This information is stored in the struct truncation_control:

typedef struct _truncation_control truncation_control;
typedef truncation_control *ptruncation_control;

struct _truncation_control {
double rel_eps;
double abs_eps;
int adaptive;

};

(Truncation Tε)

compute a rSVD and discard singular values (starting from the smallest) as long as the relative or absolute prescribed accuracy is met.

Definition 6.7 (Truncation Tε) Let M ∈ Rn×m and ε > 0. We define the truncation operator Tε : Rn×m → R(k,n,m), M → M ̃ , where M ̃ is a best approximation of M in the set R(k,n,m) andk:=min{k ̃∈N0 |∃M ̃ ∈R(k ̃,n,m):∥M−M ̃∥≤ε∥M∥}. The matrix M ̃ is called an “adaptive truncation of M with accuracy ε”. T abs is the respective truncationε operator with absolute truncation error ε.

NumCSE exercise: implementation of \epsilon truncation

A⊕kB:=Tk(A+B), A⊕εB:=Tε(A+B),
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Each rkmatrix r stores a pointer r->tc to a struct truncation_control which is by default NULL, i.e.,
we use by default the fixed rank arithmetic. If r->tc!=0 and r->tc->adaptive= 1 then the rank k for the
representation of the target matrix is determined by

k := min{k̃ ∈ N0 | ∃M̃ ∈ R(k̃, n, m) : ∥M − M̃∥ ≤ rel_eps∥M∥ or ∥M − M̃∥ ≤ abs_eps}.

The structure of the target matrix has to be extended to allow the necessary rank k (which is a priori not
known).

The implementation of the formatted addition in the C programming language for the rkmatrix format is
done as follows:

void
add_rkmatrix(prkmatrix c, prkmatrix a, prkmatrix b){
prkmatrix a_plus_b;
double *u, *s, *v;
int i, j, n = c->rows, m = c->cols, kt = a->kt + b->kt;

a_plus_b = new_rkmatrix(kt,n,m);
u = (double*) malloc(kt*n*sizeof(double));
v = (double*) malloc(kt*m*sizeof(double));
s = (double*) malloc(kt*sizeof(double));

for(i=0; i<(a->kt)*n; i++) a_plus_b->a[i] = a->a[i];
for(i=0; i<(a->kt)*m; i++) a_plus_b->b[i] = a->b[i];
for(i=0; i<(b->kt)*n; i++) a_plus_b->a[i+(a->kt)*n] = b->a[i];
for(i=0; i<(b->kt)*m; i++) a_plus_b->b[i+(a->kt)*m] = b->b[i];

rsvd_rkmatrix(a_plus_b, u, s, v);

if(c->tc && c->tc->adaptive){
for(i=0; i<kt && s[i]>c->tc->rel_eps*s[0] && s[i]>c->tc->abs_eps; i++)
if(i>c->k) reallocstructure_rkmatrix(c,i);

}else{
for(i=0; i<kt && i<c->k; i++);

}
c->kt = i;
for(i=0; i<c->kt*n; i++) c->a[i] = u[i];
for(i=0; i<m; i++)

for(j=0; j<c->kt; j++)
c->b[i+j*m] = v[i+j*m] * s[j];

free(s); free(u); free(v);
del_rkmatrix(a_plus_b);

}

Later, we will always use the procedure addparts2_rkmatrix(r,nr,rk_no,rk_mo,rk_r) that computes
Tk (R) or Tε (R) for the matrix R (cf. Figure 6.1) defined by

R := r +
nr∑

l=0

Rl,

(Rl)i,j :=
{

rk_ril,jl 0 ≤ il < rk_r[l]->rows, 0 ≤ jl < rk_r[l]->cols,
0 otherwise.

il := i − rk_no[l], jl := j − rk_mo[l].
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r

rk_r[1]

rk_r[2]

rk_r[0]
rk_no[1]

rk_mo[1]

Figure 6.1: The matrix R is the sum of r and the by zero extended matrices rk r[l].

The standard addition Tk(A + B) is given by nr := 2, r := 0, rk_r[0] := A, rk_r[1] := B and offsets
rk_no[l] = rk_mo[l] = 0. The implementation of addparts2_rkmatrix(r,nr,rk_no,rk_mo,rk_r) is
similar to Implementation 6.11.

6.2 Arithmetics in the H-Matrix Format

6.2.1 Addition and Multiplication

In Definitions 6.6 and 6.7, we have defined the truncation operator Tk to the set R(k, n, m). The extension
to H-matrices is given below.

Definition 6.12 (Truncation Tk) Let TI×I be a block cluster tree. We define the truncation operator

Tk : Rn×m → H(TI×I, k), M +→ M̃

blockwise for all leaves t × s ∈ TI×I by

M̃ |t̂×ŝ :=
{

Tk(M |t̂×ŝ) if t × s admissible
M |t̂×ŝ otherwise.

Lemma 6.13 The operator Tk maps a matrix M ∈ RI×I to a best approximation M̃ ∈ H(TI×I, k) with
respect to the Frobenius norm:

∥M − M̃∥F = min
M ′∈H(TI×I ,k)

∥M − M ′∥F

Proof: Exercise

The truncation operator can be used to define the formatted matrix operations as follows, cf. Algorithm 4.

Definition 6.14 (Formatted Addition) Let TI×I denote a block cluster tree and k ∈ N. We define the
formatted addition of H-matrices A, B ∈ H(TI×I, k) by

A ⊕ B := Tk(A + B).

If the rank k under consideration is not evident then we write ⊕k instead of ⊕.

Definition 6.15 (Formatted Multiplication) Let TI×I be a block cluster tree and let k ∈ N. We define
the formatted multiplication of H-matrices A, B ∈ H(TI×I, k) by

A ⊙ B := Tk(A · B).

M|ˆ :=t×sˆ M |ˆt×sˆ Definition 6.12 (Truncation Tk) Let TI×I be a block cluster tree. We define the truncation operatorTk:Rn×m→H(TI×I,k), M→ M blockwise for all leaves t × s ∈ TI×I by kˆ ̃ T (M|t×sˆ) if t×s admissibleotherwise.

(Formatted Addition)

(Formatted Multiplication)
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Algorithm 4
procedure AddH-Matrix(H-Matrices A,B,C);
for t × s ∈ L(TI×I) do
add_rkmatrix(C|t̂×ŝ, A|t̂×ŝ, B|t̂×ŝ);

end for

Formally it is easy to write “A · B”, but in practice the structure of the matrix product A · B can become
rather complicated. This is different from the addition where the structure of the sum A + B retains the
structure of A and B. To illustrate the complications, we take a look at two typical examples. After some
necessary Definitions and Lemmata we finally explain how to compute the H-matrix product efficiently.

Example 6.16 (Multiple Blocks per Row) We consider m × m block matrices in Rn×n:

A =

⎡

⎢⎣
A11 · · · A1m
...

. . .
...

Am1 · · · Amm

⎤

⎥⎦ , B =

⎡

⎢⎣
B11 · · · B1m
...

. . .
...

Bm1 · · · Bmm

⎤

⎥⎦ .

In the sum A + B only one addition per block occurs:

(A + B)ij = Aij + Bij

In the product A · B multiple terms appear:

(A · B)ij =
m∑

l=1

Ail · Blj

The truncation Tk of the sum over m addends is much more expensive than m times the truncation of two
addends. However, the latter will not necessarily yield a best approximation.

Definition 6.17 (Fast Truncation T ′k) Let TI×I be a block cluster tree and q ∈ N>1. We define the fast
truncation operator

T ′k : H(TI×I, qk) → H(TI×I , k), M +→ M̃

by q−1 times calling the truncation for a matrix with blockwise rank 2k: let M =
∑q

i=1 Mi be a decomposition
of M into q matrices Mi ∈ H(TI×I, k). Then we define

M̃1 := M1,

M̃i := Tk(Mi + M̃i−1), i = 2, . . . , q,

M̃ := M̃q.

Example 6.18 (Different Matrix Formats) We consider 2 × 2 block matrices in Rn×n,

A =
[

A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
, C =

[
C11 C12

C21 C22

]
,

and assume that all submatrices Aij , Bij , Cij are again 2 × 2 block matrices consisting of matrices in
supermatrix format except the lower right blocks A22, B22, C22, which belong to R(k, n2, m2). The product
A · B is to be truncated to the format of C:

C A B
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In the lower right block of C we have to perform the truncation

C22 = Tk (A21B12 + A22B22)

to the rkmatrix format. The product A21B12 is not contained in R(k, n2, m2) which poses a problem: we
have to truncate a hierarchical matrix (supermatrix) to the rkmatrix format. To do this efficiently, we will
not compute a best approximation but something close to it.

Definition 6.19 (Levels of the Tree) Let T be a tree. We define the levels ℓ ∈ N0 of T by

T (ℓ) := {t ∈ V (T ) | level(t) = ℓ}.

On each level ℓ ∈ N0 we define
L(T, ℓ) := T (ℓ) ∩ L(T ).

Lemma 6.20 For any cluster tree TI and ℓ ∈ N0 there holds

I =
⋃̇

t∈Lℓ(TI)
t̂, Lℓ(TI) := T (ℓ)

I ∪ L(TI , ℓ− 1) ∪ . . . ∪ L(TI , 0).

Proof: We start by proving I =
⋃

t∈Lℓ
t̂. Let i ∈ I. According to Lemma 2.7, there is a leaf cluster

t ∈ L(TI) with i ∈ t̂. If level(t) < ℓ, we have t ∈ Lℓ. If level(t) ≥ ℓ, let m := level(t), and let t0, . . . , tm be
the sequence of ancestors of t. Due to ℓ ≤ m, t∗ := tℓ is well-defined, satisfies level(t∗) = ℓ, i.e., t∗ ∈ T (ℓ)

I ,
and due to t ∈ sons∗(t∗), we have i ∈ t̂ ⊆ t̂∗, so we have found t∗ ∈ Lℓ with i ∈ t̂∗.

Now we prove that the elements of Lℓ correspond to disjoint index sets. Let t, s ∈ Lℓ with t̂∩ ŝ ̸= ∅. Without
loss of generality, we assume level(t) ≤ level(s), and Lemma 2.7 yields s ∈ sons∗(t). If t is a leaf, this implies
s = t. If t is not a leaf, the definition of Lℓ implies level(t) = ℓ. Due to s ∈ Lℓ, we have level(s) ≤ ℓ, and
ℓ = level(t) ≤ level(s) ≤ ℓ yields level(s) = ℓ = level(t). Using the first statement of Lemma 2.7, we can
conclude s = t.

Definition 6.21 (Hierarchical Approximation) Let TI×I be a block cluster tree and p := depth(TI×I).
For each M ∈ H(TI×I , k) we define the hierarchical approximation MH of M in p+1 steps (see Figure 6.2)
using the notation Lℓ(TI×I) from Lemma 6.20 by

Mp|t̂×ŝ :=
{

Tk(M |t̂×ŝ) t × s ∈ L(TI×I, p),
M |t̂×ŝ t × s ∈ Lp(TI×I) \ L(TI×I , p) ,

Mℓ−1|t̂×ŝ :=
{

Tk(Mℓ|t̂×ŝ) t × s ∈ L(TI×I, ℓ− 1),
Mℓ|t̂×ŝ t × s ∈ Lℓ−1(TI×I) \ L(TI×I , ℓ− 1) ℓ = p, . . . , 1,

MH := M0.

Lemma 6.22 (Hierarchical Approximation Error) Let TI×I be a block cluster tree, p := depth(TI×I),
M ∈ H(TI×I , k) and let MH denote the hierarchical approximation of M . Then

∥M − MH∥F ≤ (2p+1 + 1)∥M − Tk(M)∥F .

Proof: We define the sets

R(TI×I , ℓ, k) := {X ∈ RI×I | rank(X |t̂×ŝ) ≤ k for all leaves t × s ∈ L(TI×I) or t × s ∈ T (ℓ)
I×I}.

Obviously Mℓ is contained in the set R(TI×I , ℓ, k). From one level ℓ to the next level ℓ− 1, the algorithm
determines a best approximation (with respect to the Frobenius norm) of the matrix Mℓ in the set R(TI×I , ℓ−
1, k):

∀X ∈ R(TI×I , ℓ− 1, k) : ∥Mℓ − Mℓ−1∥F ≤ ∥Mℓ − X∥F . (6.1)

(Hierarchical Approximation)

Lemma 6.22 (Hierarchical Approximation Error) Let TI×I be a block cluster tree, p := depth(TI×I),M ∈ H(TI×I,k) and let MH denote the hierarchical approximation of M. Then ∥M−MH∥F ≤(2p+1+1)∥M−Tk(M)∥F.
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Figure 6.2: The matrix M is converted levelwise for each block: in the first step the fullmatrix blocks (F)
to rkmatrix format (R), then the sons of a block to a single rkmatrix.

In the first step (conversion of the fullmatrix blocks) this reads

∀X ∈ R(TI×I, p, k) : ∥M − Mp∥F ≤ ∥M − X∥F . (6.2)

By induction we prove
∥Mℓ − Tk(M)∥F ≤ 2p−ℓ∥Mp − Tk(M)∥F

as follows. The start ℓ = p of the induction is trivial. The induction step ℓ +→ ℓ− 1 follows from

∥Mℓ−1 − Tk(M)∥F ≤ ∥Mℓ−1 − Mℓ∥F + ∥Mℓ − Tk(M)∥F

(6.1)
≤ 2∥Mℓ − Tk(M)∥F .

Using this inequality, we can conclude that

∥M − M0∥F = ∥M −
p−1∑

ℓ=0

(Mℓ − Mℓ+1) − Mp∥F

≤ ∥M − Mp∥F +
p−1∑

ℓ=0

∥Mℓ − Mℓ+1∥F

(6.1),(6.2)
≤ ∥M − Tk(M)∥F +

p−1∑

ℓ=0

∥Mℓ+1 − Tk(M)∥F

≤ ∥M − Tk(M)∥F +
p−1∑

ℓ=0

2p−ℓ−1∥Mp − Tk(M)∥F

≤ 2p∥Mp − Tk(M)∥F + ∥M − Tk(M)∥F

≤ 2p(∥Mp − M∥F + ∥M − Tk(M)∥F ) + ∥M − Tk(M)∥F

(6.2)
≤ (2p+1 + 1)∥M − Tk(M)∥F .

The factor ‘2p+1 + 1 = O(n)’ in the estimate of the hierarchical approximation error seems to be rather
large. Since the singular values in the rkmatrix blocks decay rapidly, this factor can easily be compensated
without destroying the complexity. In practice the hierarchical approximation error is observed to be much
smaller than the estimate.

Next, we want to combine the hierarchical approximation with the multiplication (see Example 6.18). In
order to explain the algorithm we will first take a look at a simple example. Let the matrices

A =
[

A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]

In practice the hierarchical approximation error is observed to be much smaller than the estimate.
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be given. The goal is to approximate the truncation of the product,

C := Tk(AB) = Tk

([
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A22B22 + A21B12

])
.

First, we compute for each block entry the truncated product

C′ij := Tk(Ai1B1j), C′′ij := Tk(Ai2B2j).

Afterwards we compute the formatted sum

Cij := C′ij ⊕ C′′ij

and finally the rkmatrix approximation

C̃ := Tk

([
C11 C12

C21 C22

])
.

In general, C̃ ̸= C due to possible cancellation effects and the hierarchical approximation error.

Implementation 6.23 (Fast Multiplication and Conversion to rkmatrix Format) The matrices a
and b are given in supermatrix format (underlying block cluster tree Ta based on T1, T2 and Tb based
on T2, T3) while the target matrix r is of rkmatrix format. We compute r := r⊕ a⊙ b.

void
addprod2_rkmatrix(prkmatrix r, psupermatrix a, psupermatrix b){
int i,j,k,bn,bm,bam,no,mo,*rk_no,*rk_mo;
prkmatrix *rk_r;

bn = a->block_rows;
bam = a->block_cols;
bm = b->block_cols;
if(a->s!=0x0 && b->s!=0x0){

rk_no = (int*) malloc(bn*bm*sizeof(int));
rk_mo = (int*) malloc(bn*bm*sizeof(int));
rk_r = (prkmatrix*) malloc(bn*bm*sizeof(prkmatrix));
no = 0;
for(i=0; i<bn; i++){
mo = 0;
for(j=0; j<bm; j++){
rk_no[i+j*bn] = no;
rk_mo[i+j*bn] = mo;
rk_r[i+j*bn] = new_rkmatrix(r->k,a->s[i]->rows,b->s[j*bam]->cols);
for(k=0; k<bam; k++){
addprod2_rkmatrix(rk_r[i+j*bn],a->s[i+k*bn],b->s[k+j*bam]);

}
mo += b->s[j*bam]->cols;

}
no += a->s[i]->rows;

}
addparts2_rkmatrix(r,bn*bm,rk_no,rk_mo,rk_r);
for(i=0; i<bn*bm; i++) del_rkmatrix(rk_r[i]);
free(rk_r);
free(rk_mo);
free(rk_no);

}else{
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...
/* no hierarchical conversion necessary */
...
}

}

In the next chapter we will define the product T := TI×I · TI×I of two block cluster trees. The fast
multiplication of two matrices A, B ∈ H(TI×I , k) is defined in two steps by C′ := T (A · B), where T is the
truncation to the set H(T, k), and

C̃|t̂×ŝ :=
{

C′|t̂×ŝ if t × s ∈ L(T )
(C′|t̂×ŝ)H otherwise, for each t × s ∈ L(TI×I),

where (C′|t̂×ŝ)H is the hierarchical approximation of C′|t̂×ŝ from Definition 6.21. The result C̃ belongs
to H(TI×I, k), whereas C′ belongs to H(T, k). In Implementation 6.24 we go even one step further: for
t × s ∈ TI×I the corresponding exact result C|t̂×ŝ is of the form

C|t̂×ŝ =
q∑

ℓ=1

A|t̂×r̂ℓ
B|r̂ℓ×ŝ

where rℓ ∈ TI . Some of the addends are of rank k, but some are hierarchical matrices. We compute
hierarchical approximations (A|t̂×r̂ℓ

B|r̂ℓ×ŝ)H of them and afterwards use the fast truncation to sum up all
the addends:

C̃|(1)
t̂×ŝ

:= (A|t̂×r̂1
B|r̂1×ŝ)H,

C̃|(ℓ)
t̂×ŝ

:= C̃|(ℓ−1)

t̂×ŝ
⊕ (A|t̂×r̂ℓ

B|r̂ℓ×ŝ)H, ℓ = 2, . . . , q,

C̃|t̂×ŝ := C̃|(q)
t̂×ŝ

.

Implementation 6.24 (Fast Multiplication of Hierarchical Matrices) The matrices a,b,c are given
in supermatrix format (the underlying block cluster tree Ta is based on T1 and T2, Tb is based on T2 and
T3, Tc is based on T1 and T3). We compute c := c⊕ a⊙ b.

void
muladd_supermatrix(psupermatrix c, psupermatrix a, psupermatrix b){
int i,j,k,bn,bm,bam;

bn = c->block_rows;
bm = c->block_cols;
bam = a->block_cols;

if(c->s!=0x0){
if(a->s!=0x0 && b->s!=0x0){
/* only supermatrices -> recursion */
for(i=0; i<bn; i++)
for(j=0; j<bm; j++)
for(k=0; k<bam; k++)
muladd_supermatrix(c->s[i+j*bn],a->s[i+k*bn],b->s[k+j*bam]);

}else{
/* a or b is rk or fullmatrix */
...

}
}else{

if(c->r!=0x0){
/* product of 2 supermatrices to be stored in a rkmatrix*/
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addprod2_rkmatrix(c->r,a,b);
}else{
/* c is fullmatrix */
...

}
}

}

6.2.2 Inversion

Definition 6.25 (Preliminary Formatted Inversion) Let TI×I be a block cluster tree and k ∈ N. The
preliminary formatted inversion operator is defined as

Ĩnv : {M ∈ Rn×n | rank(M) = n} → H(TI×I , k), M +→ Tk(M−1).

Since the (fullmatrix) inversion of M is rather expensive, we will present an algorithm that computes an
approximation to Tk(M−1) without the need to invert M exactly. This approximation will not necessarily
be a best approximation.

The inversion is done by use of the equation

M−1 =
[

M−1
11 + M−1

11 M12S−1M21M
−1
11 −M−1

11 M12S−1

−S−1M21M
−1
11 S−1

]
, M =

[
M11 M12

M21 M22

]
, (6.3)

where S = M22 − M21M
−1
11 M12. If the inversion of the submatrices M11 and S is already done, then we

only need to perform multiplications and additions of submatrices. These can be replaced by the formatted
operations ⊕ and ⊙. Recursively, we get an approximate inverse InvH(M). This approximation is called the
formatted inverse.

Our goal is to derive an algorithm that computes the inverse of M with a minimum of storage overhead.
Later we will see that it is possible to compute the approximate inverse within the same supermatrix
structure as the input matrix M , overwriting the input data by the output data, essentially without any
storage overhead. Algorithm 5 computes the approximate inverse in supermatrix format and uses a second
supermatrix as temporary storage, destroying the content of the input matrix and overwriting it by the
approximate inverse.

Algorithm 5 The H-matrix inversion InvH(M) for 2 × 2 block structures. On input m is the matrix to be
inverted, on output m is the approximate inverse InvH(M). x is used for temporary storage.

procedure HInvert(var m, var x)
if the matrix m is of the structure (6.3) then

HInvert(m11, x11) { destroys m11 }
x12 := x11 ⊙ m12 { x12 = M−1

11 M12 }
x21 := m21 ⊙ x11 { x21 = M21M

−1
11 }

m22 := m22 ⊖ m21 ⊙ x12 { m22 = S }
HInvert(m22, x22) { m22 = S−1, destroys x22 }
m12 := −x12 ⊙ m22 { m12 = −M−1

11 M12S−1 }
m11 := m11 ⊖ m12 ⊙ x21 { m11 = M−1

11 + M−1
11 M12S−1M21M

−1
11 }

m21 := −m22 ⊙ x21 { m21 = −S−1M21M
−1
11 }

else
Invert(m11) { fullmatrix inversion }

end if



6.2. ARITHMETICS IN THE H-MATRIX FORMAT 119

6.2.3 Cholesky and LU Decomposition

Sometimes one does not need the whole (approximate) inverse but only a method to perform the matrix
vector multiplication b +→ A−1b, i.e., to solve the system Ax = b. In that case it is sufficient to compute a
Cholesky or LU decomposition

A ≈ LU = 0
0

of the matrix A. Depending on the application one could want a decomposition such that ∥A − LU∥ is of
the size of the discretisation error or just a coarse approximation in order to precondition the linear system
and use a simple iterative solver, e.g., GMRES:

(LU)−1Ax = (LU)−1b

An (approximate) H-LU decomposition is defined as a decomposition of the form

A ≈ LHUH

where the two (lower and upper triangular) matrices LH and UH are stored in the H-matrix format. As for
the fullmatrix version one can store the two factors by overwriting the given H-matrix A.

Three procedures are needed to compute the decomposition: first, a method to solve a triangular H-matrix
system for a vector. Second, a method to solve a triangular H-matrix system for a matrix and third the
LU -decomposition which is based on the aforementioned two.

Solving a triangular system Lx = b for a right-hand side b and lower triangular matrix L in the H-matrix
format is done recursively:

• if L is not subdivided (fullmatrix) then use the LAPACK subroutine dtrsv.

• if L is subdivided, for simplicity into block_rows=2 times block_cols=2 submatrices

L =
[

L11 0
L21 L22

]
, x =

[
x1

x2

]
, b =

[
b1

b2

]

then we have to solve
L11x1 = b1

which yields x1 and afterwards
L22x2 = b1 − L21x1

which yields x2.

Solving a triangular system LX = B for a right-hand side matrix B and lower triangular matrix L in the
H-matrix format is done similarly by recursion:

• if L is not subdivided (fullmatrix) then compute the solution row-wise by the LAPACK subroutine
dtrsv.

• if L is subdivided, for simplicity into block_rows=2 times block_cols=2 submatrices

L =
[

L11 0
L21 L22

]
, X =

[
X11 X12

X21 X22

]
, B =

[
B11 B12

B21 B22

]
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then we have to solve
L11X11 = B11, L11X12 = B12

which yields X11, X12 and afterwards

L22X21 = B21 − L21X11, L22X22 = B22 − L21X12

which yields X21, X22.

Analogously we solve an upper triangular system XU = B.

Finally, the H-LU decomposition A = LU is defined recursively by

• if A is not subdivided (fullmatrix) then use the LAPACK subroutine dgetrf.

• if A is subdivided, for simplicity into block_rows=2 times block_cols=2 submatrices

A =
[

A11 A12

A21 A22

]

then we have to compute the factorisation

L11U11 = A11,

which yields the upper left components L11, U11 of the factors L, U , solve the triangular systems

L11U12 = A12, L21U11 = A21

and compute again a factorisation
L22U22 = A22 − L21U12.

For symmetric matrices A one can of course compute a Cholesky or LDLT factorisation with half the
complexity, where the steps in the algorithm are just analogously to those for the LU decomposition.

The LU decomposition of a matrix M uses only the input matrix as storage and overwrites it by the factors
L and U . These factors can then be used to compute the approximate inverse InvH(M) by overwriting M ,
i.e., the factors L and U . In order to do this efficiently, we use the following special case of a multiplication.

Let L be a square lower trianguar and X a general 2× 2 block matrix of matching size so that the multipli-
cation L · X can be formulated blockwise,

L · X =
[

L11X11 L11X12

L21X11 + L22X21 L21X12 + L22X22

]
. (6.4)

Then the product can be computed in the order presented in Algorithm 6, overwriting X by the product
LX without using extra storage. The multiplication with an upper triangular matrix from the right can be
done analogously.

The inverse of a lower triangular matrix L of 2 × 2 block structure,

L =
[

L11 0
L21 L22

]
, L−1 =

[
L−1

11 0
−L−1

22 L21L
−1
11 L−1

22

]
, , (6.5)

can also be computed by overwriting the input matrix with the (approximate) inverse, cf. Algorithm 7.

Now we can formulate the matrix inversion via LU decompositions so that only a single supermatrix is
necessary for the whole inversion process, namely the input matrix which is overwritten by the approximate)
inverse in Algorithm 8.
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Algorithm 6 The H-matrix multiplication X := L ·X for 2×2 block structures, where L is lower triangular.
On input X is the matrix to be multiplied, on output X is the product.

procedure MultiplyLowerLeft(L, var X)
if L and X are subdivided as in (6.4) then

MultiplyLowerLeft(L22, X21)
MultiplyLowerLeft(L22, X22)
X21 := X21 ⊕ L21 ⊙ X11

X22 := X22 ⊕ L21 ⊙ X12

MultiplyLowerLeft(L11, X11)
MultiplyLowerLeft(L11, X12)

else
{L = (Li,j)i,j∈{1,...,n}, X = (Xi,j)i∈{1,...,n},j∈{1,...,m}}
for i = n, . . . , 1 do

for j = 1, . . . , m do
Xi,j := Li,iXi,j

end for
for ℓ = i − 1, . . . , 1 do

for j = 1, . . . , m do
Xi,j := Xi,j + Li,ℓXℓ,j { uses only the unmodified Xℓ,j for ℓ < i }

end for
end for

end for
end if

Algorithm 7 The H-matrix inversion L := L−1 for 2×2 block structures. On input L is the lower triangular
matrix to be inverted, on output L is the approximate inverse.

procedure InvertLowerTriangular(L)
if L is subdivided as in (6.5) then

InvertLowerTriangular(L11) { L11 = L−1
11 }

InvertLowerTriangular(L22) { L22 = L−1
11 }

MultiplyLowerLeft(L22, L21) { L21 = L−1
22 L21 }

MultiplyLowerRight(−L11, L21) { L21 = −L−1
22 L21L

−1
11 }

else
{L = (Li,j)i,j∈{1,...,n}}
for i = 1, . . . , n do

Li,i := L−1
i,i

end for
for i = n, . . . , 1 do

for j = i, . . . , 1 do
Li,j := Li,iLi,j

for ℓ = j + 1, . . . , i − 1 do
Li,j := Li,j + Li,ℓLℓ,j

{ Li,ℓ is a block of the inverse, because ℓ > j, and Lℓ,j is unmodified because ℓ < i }
end for
Li,j := −Li,jLj,j

end for
end for

end if
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Algorithm 8 The H-matrix inversion A := A−1 for 2 × 2 block structures. On input A is the matrix to be
inverted, on output A is the approximate inverse.

procedure Invert(M)
LUDecomposition(M) { diag(U) = 1, L stored in lower triangular part of M , }

{ strictly upper triangular part of U stored in strictly upper triangular part of M }
InvertLowerTriangular(M)
InvertUpperTriangular(M)
MultiplyUL(M)

procedure MultiplyUL(M)
if M is subdivided as in (6.3) then

MultiplyUL(M11)
M11 := M11 ⊕ M12 ⊙ M21 { M11 = U11L11 + U12L21 }
MultiplyLowerRight(M22,M12) { M12 = U12L22 }
MultiplyUpperLeft(M22,M21) { M21 = U22L21 }
MultiplyUL(M22)

else
{ M = (Mi,j)i,j∈{1,...,n} }
for i = 1, . . . , n do

for j = 1, . . . , i − 1 do
Mj,i := Mj,iMi,i { Mj,i = Uj,iLi,i, Mi,j = Ui,iLi,j = Li,j }
for ℓ = i + 1, . . . , n do
Mi,j := Mi,j + Mi,ℓMℓ,j { Mi,j := Mi,j + Ui,ℓLℓ,j }
Mj,i := Mj,i + Mj,ℓMℓ,i { Mj,i := Mj,i + Uj,ℓLℓ,i }

end for
end for
for ℓ = i + 1, . . . , n do
Mi,i := Mi,i + Mi,ℓMℓ,i { Mi,i := Mi,i + Ui,ℓLℓ,i }

end for
end for

end if



Chapter 7

Complexity Estimates

The complexity estimates for the arithmetics of hierarchical matrices can be decomposed into two parts:

a) The storage, matrix-vector multiplication and addition require the so-called sparsity of the underlying
block cluster tree TI×I.

b) For the (formatted) multiplication and inversion in the H-matrix format we need the so-called idempotency
of TI×I.

The estimates in this general form are contained in [27] (german) and [29] (english). For the one-dimensional
case the complexity estimates can be simplified as in [40], and for a two- and three-dimensional model problem
the storage, matrix-vector mutliplication and addition can be estimated as in [42].

7.1 Arithmetics in the rkmatrix Representation

Let M = ABT ∈ Rn×m be a matrix in rkmatrix representation. Since only the two factors A, B need to be
stored, the storage requirements amount to

NSt,R(k, n, m) = k(n + m) (7.1)

while in the fullmatrix representation we have

NSt,F (n, m) = nm. (7.2)

7.1.1 Reduced Singular Value Decomposition (rSVD)

Let M = ABT ∈ Rn×m be a matrix in rkmatrix representation. We computed an rSVD M = UΣV T by

1. Computing (reduced) QR-factorisations of A, B: A = QARA, B = QBRB

with matrices QA ∈ Rn×k, QB ∈ Rm×k, RA, RB ∈ Rk×k.

2. Computing an rSVD of RART
B = U ′ΣV ′.

3. Computing U := QAU ′, V := QBV ′.

The complexity of each step is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

QR-factorisation of A O(nk2)
QR-factorisation of B O(mk2)
Multiplication RART

B O(k3)
rSVD of RART

B O(k3)
Multiplication U := QAU ′ O(nk2)
Multiplication V := QBV ′ O(mk2)
Altogether O((n + m)k2)

123
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Lemma 7.1 (Truncation) The truncation Tk of a matrix M ∈ Rn×m in rkmatrix format to lower rank
k′ < k is of complexity

NT (k, n, m) ≤ 6k2(n + m) + 23k3.

Remark 7.2 (Large k) If k > min(n, m) then the computation of the rSVD of RART
B can be exceedingly

expensive. In order to avoid this, we first compare k, n, m and if k > min(n, m) then we first change the
representation of M to fullmatrix by Mij :=

∑k
ν=1 AiνBjν at a cost of knm and afterwards we compute

an rSVD of M in fullmatrix representation in O(min(n, m)2 max(n, m)). Altogether this amounts to
O(min(n, m)max(n, m)k).

7.1.2 Formatted rkmatrix Arithmetics

Multiplication

The multiplication of an rkmatrix R = ABT =
∑k

ν=1 AνBT
ν with a matrix M involves k times the matrix-

vector multiplication of the matrix M or MT :

RM = ABT M =
k∑

ν=1

Aν(MT Bν)T ,

MR = MABT =
k∑

ν=1

(MAν)BT
ν .

Addition

The formatted addition A ⊕ B := Tk(A + B) of two matrices in rkmatrix format is done by truncation of
the exact sum (rank 2k) with a complexity of O((n + m)k2).

7.2 Arithmetics in the H-Matrix Format

For a matrix M ∈ RI×I one can count the number of nonzero entries per row,

c := max
i∈I

#{j ∈ I | Mij ̸= 0},

such that the number of nonzero entries in the whole matrix is at most c#I. The constant c depends on the
sparsity pattern and for standard FEM stiffness matrices the constant c is independent of the size of #I.

The block cluster tree TI×I may have a similar sparsity property which is measured by the quantity Csp

defined below. In Section 7.3, the construction of TI and TI×I will lead to a block cluster tree with a sparsity
constant Csp independent of the size of #I.

Definition 7.3 (Sparsity) Let TI×I be a block cluster tree based on TI. We define the sparsity (constant)
Csp of TI×I by
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Csp := max
{

maxr∈TI #{s ∈ TI | r × s ∈ TI×I},
maxs∈TI #{r ∈ TI | r × s ∈ TI×I}

}
.

Lemma 7.4 For any block cluster tree TI×I based on TI with sparsity constant Csp and depth p holds
∑

t×s∈TI×I

#t̂ + #ŝ ≤ 2Csp(p + 1)#I.

Proof:
∑

t×s∈TI×I

#t̂ + #ŝ =
p∑

i=0

∑

t×s∈T (i)
I×I

#t̂ + #ŝ

=
p∑

i=0

∑

t×s∈T (i)
I×I

#t̂ +
p∑

i=0

∑

t×s∈T (i)
I×I

#ŝ

≤ 2
p∑

i=0

∑

t∈T (i)
I

Csp#t̂

Lemma 6.20
≤ 2

p∑

i=0

Csp#I = 2Csp(p + 1)#I.

Definition 7.5 (Admissible and Inadmissible Leaves) Let T := TI×I be a block cluster tree. The set
of leaves of T is denoted by L(T ) We define the set of admissible leaves of T as

L+(T ) := {t × s ∈ T | t × s admissible}

and the set of inadmissible leaves of T as

L−(T ) := {t × s ∈ T | t × s inadmissible}.

Lemma 7.6 (Storage) Let T := TI×I be a block cluster tree with sparsity constant Csp and depth p. Let
k ∈ N. The storage requirements NSt(T, k) for a matrix M ∈ H(T, k) are bounded by

NSt(T, k) ≤ 2Csp(p + 1)max{k, nmin}#I.

Proof:

NSt(T, k)
(7.1),(7.2)

=
∑

t×s∈L+(T )

k(#t̂ + #ŝ) +
∑

t×s∈L−(T )

#t̂ · #ŝ

≤
∑

t×s∈L+(T )

k(#t̂ + #ŝ) +
∑

t×s∈L−(T )

nmin(#t̂ + #ŝ)

≤
∑

t×s∈T

max{nmin, k}(#t̂ + #ŝ)

L.7.4
≤ 2Csp max{k, nmin}(p + 1)#I.
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Lemma 7.7 (Matrix-Vector Multiplication) Let T := TI×I be a block cluster tree. Let k ∈ N. The
complexity NH·v(T, k) of the matrix-vector multiplication for a matrix M ∈ H(T, k) are bounded by

NH·v(T, k) ≤ 2NSt(T, k).

Proof: Consider the matrix-vector product blockwise and use (7.1), (7.2) together with the respective
counterparts for the matrix-vector product.

7.2.1 Truncation

Lemma 7.8 (Cardinality of TI and TI×I) Let TI be a cluster tree of depth p ≥ 1 and T := TI×I a block
cluster tree with sparsity constant Csp.

1. If # sons(t) ̸= 1 holds for all (or at least #I/p) nodes t ∈ TI then

#TI ≤ 2#I, #T ≤ 2Csp#I. (7.3)

2. If # sons(t) ̸= 1 is not necessarily fulfilled then

#TI ≤ 2p#I, #T ≤ 2pCsp#I. (7.4)

Proof: Exercise.

Lemma 7.9 (Truncation Tk) Let T := TI×I be a block cluster tree. The truncation Tk for a matrix
M ∈ H(T, k) in supermatrix format to lower rank k′ < k is of complexity

NT (T, k) ≤ 6kNSt(T, k) + 23k3#L(T ).

Proof:

NT (T, k) =
∑

t×s∈L+(T )

NT (k, #t̂, #ŝ)
Lemma 7.1

≤
∑

t×s∈L+(T )

6k2(#t̂ + #ŝ) + 23k3#L(T )

≤ 6kNSt(T, k) + 23k3#L(T ).

Lemma 7.10 (Fast Truncation T ′k) Let T := TI×I be a block cluster tree. The truncation T ′k for a matrix
M ∈ H(T, qk) in supermatrix format to rank k is of complexity

NT ′(T, qk) ≤ 24(q − 1)kNSt(T, k) + 184(q − 1)k3#L(T ).

Proof: Apply (q − 1)-times Lemma 7.9 for rank 2k.

Lemma 7.11 (Hierarchical Approximation) Let T := TI×I be a block cluster tree of depth p based
on the cluster tree TI where each node has at most Csons sons (typically Csons = 2) and nmin ≤ k (for
simplification). Then the complexity to compute the hierarchical approximation (cf. Definition 6.21) is
bounded by

NHapx(T, k) ≤ 12Csp max{4, C2
sons}(p + 1)k2#I + 23C3

sonsk
3#T.

Proof: First step of the algorithm: the fullmatrix blocks corresponding to leaves t × s of T have to be
truncated to rkmatrix format. Since either #t̂ ≤ nmin or #ŝ ≤ nmin the complexity for the rSVD is at
most 21(#ŝ + #t̂ )n2

min. In the later steps we always have to truncate a t̂ × ŝ supermatrix consisting of
submatrices in rkmatrix format to rkmatrix format. The submatrices can be extended by zeros to yield an
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t̂ × ŝ rkmatrix of rank at most C2
sonsk. The truncation to rank k is according to Lemma 7.1 of complexity

6C2
sonsk

2(#ŝ + #t̂) + 23C3
sonsk

3. For all nodes this sums up to

NHapx(T, k) ≤
∑

t×s∈L−(T )

21n2
min(#ŝ + #t̂) +

∑

t×s∈T\L−(T )

(
6C2

sonsk
2(#ŝ + #t̂) + 23C3

sonsk
3
)

≤
∑

t×s∈T

(
max{21, 6C2

sons}k2(#ŝ + #t̂) + 23C3
sonsk

3
)

L.7.4
≤ 2Csp(p + 1)

(
max{21, 6C2

sons}k2#I
)

+ 23C3
sonsk

3#T.

7.2.2 Addition

The complexity estimate for the formatted addition of two H-matrices based on the same block cluster tree
TI×I can be derived directly from the estimate for the truncation.

Lemma 7.12 (Addition) Let T = TI×I be a block cluster tree and k ≥ 1. Then the complexity of the
formatted addition of two matrices from H(T, k) is bounded by

N⊕(T, k) ≤ 24kNSt(T, k) + 184k3#L(T ).

Proof:

N⊕(T, k) =
∑

t×s∈L+(T )

NT (2k, #t̂, #ŝ) +
∑

t×s∈L−(T )

#t̂#ŝ

Lemma 7.1
≤

∑

t×s∈L+(T )

24k2(#t̂ + #ŝ) + 184k3#L+(T ) +
∑

t×s∈L−(T )

#t̂#ŝ

≤ 24kNSt(T, k) + 184k3#L(T ).

7.2.3 Multiplication

The multiplication is a much more complicated operation than the addition, as we have already seen in
Examples 6.16, 6.18. In order to illustrate what might happen during the multiplication we will take a look
at three typical examples, where we multiply two matrices A, B ∈ H(T, k) and seek a block cluster tree T ·T
(the product tree) in such a way that A · B ∈ H(T · T, k̃).

It may happen that the structure of the product of two matrices from H(TI×I, k) is “coarser” than TI×I:

The coarsening effect is not severe, since the structure can be refined to fit to the original tree T := TI×I,
but it may also happen that the structure of the product of two matrices from H(T, k) is “finer” than T :
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The refinement effect seems to suggest that the structure of the product of two matrices from H(T, k) is just
slightly enriched but it may also change totally:

This poses the question how one can efficiently describe the structure of the product. The product tree T ·T
should be a block cluster tree based on the cluster tree TI , i.e.,

root(T · T ) := I × I.

If r × t is a node in the product tree T · T then

(AB)|r̂×t̂ = A|r̂×I · B|I×t̂.

r

t t

r

s

s

If there is a cluster s ∈ TI such that both r × s and s × t are a non-leaf element of T , then

(AB)|r̂×t̂ = A|r̂×I\ŝ · B|I\ŝ×t̂ + A|r̂×ŝ · B|ŝ×t̂.

The product A|r̂×ŝ · B|ŝ×t̂ of the two subdivided matrices will yield a matrix that is again subdivided,
therefore the node r × t in the product tree must not be a leaf. This leads to the definition

Definition 7.13 (Product Tree) We define the product T ·T of a block cluster tree T based on the cluster
tree TI by the root root(T · T ) := I × I and for each node r × t of the product tree the successors

sons(r × t) :=
{
r′ × t′

∣∣ ∃s, s′ ∈ TI : r′ × s′ ∈ sonsT (r × s), s′ × t′ ∈ sonsT (s × t)
}

.

The sparsity of the block cluster tree T carries over to the product tree T · T .

Lemma 7.14 The product tree T · T is a block cluster tree of depth at most depth(T ). If Csp(T ) is the
sparsity constant of T then the sparsity of the product tree is bounded by the product of the sparsity:

Csp(T · T ) ≤ Csp(T )2.

Proof: Due to the symmetry of the sparsity we only give a rowwise bound. Let r ∈ TI . Then

{t ∈ TI | r × t ∈ T · T } ⊂ {t ∈ TI | ∃s ∈ TI : r × s ∈ T, s× t ∈ T },
#{t ∈ TI | r × t ∈ T · T } ≤

∑

s∈TI ,r×s∈T

#{t ∈ TI | s × t ∈ T }

≤ Csp(T )Csp(T ).

The product tree T · T allows us to describe the result of the multiplication blockwise in a compact form.
In order to simplify the notation we need to define the ancestors of a cluster.
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Definition 7.15 (Ancestors) Let TI be a cluster tree and t ∈ T (ℓ)
I . Then we define the ancestor of t on

level j ≤ ℓ as the uniquely determined vertex F j(t) ∈ T (j)
I with t̂ ⊂ F̂ j(t). If t is an ancestor of s, we also

write s ∈ S∗(t), i.e., Fℓ(s) = t.

Lemma 7.16 (Representation of the Product) Let T := TI×I be a block cluster tree based on the
cluster tree TI. For each leaf r × t ∈ T on level ℓ and all j = 0, . . . , ℓ we define

U(r × t, j) :=
{
s ∈ TI | F j(r) × s ∈ T, s × F j(t) ∈ T and at least one of the two is a leaf

}
.

Then for two matrices A, B ∈ H(T, k) and each r × t ∈ L(T · T ) there holds

I =
⋃̇

j=0,...,ℓ

⋃̇

s∈U(r×t,j)

ŝ (7.5)

(AB)|r̂×t̂ =
ℓ∑

j=0

∑

s∈U(r×t,j)

A|r̂×ŝB|ŝ×t̂. (7.6)

Proof: (Disjointness of U(r × t, j)) The elements of U(r × t, j) are nodes of the cluster tree TI on the
same level j and Lemma 6.20 yields the disjointness.

(Disjointness w.r.t. j) Let s1 ∈ U(r × t, j1) and s2 ∈ U(r × t, j2), j2 ≤ j1 and ŝ1 ∩ ŝ2 ̸= ∅. We want to
prove ŝ1 = ŝ2. Since s1, s2 ∈ TI we get ŝ1 ⊂ ŝ2 and F j2(s1) = s2. It follows

F̂ j1(r) × ŝ1 ⊂ F̂ j2(r) × ŝ2, ŝ1 × F̂ j1(t) ⊂ ŝ2 × F̂ j2(t). (7.7)

Due to the definition of U(r × t, j2) at least one of F j2(r) × s2 or s2 ×F j2(t) is a leaf. Hence, one inclusion
in (7.7) becomes an equality and ŝ1 = ŝ2.

(Covering) Let j ∈ I. If we define t0 := F0(r) × F0(r) and t′0 := F0(r) × F0(t), then it holds

t0 ∈ T, t′0 ∈ T and j ∈ F0(r).

If neither t0 nor t′0 is a leaf, then there exists s ∈ sons(F0(r)) such that j ∈ ŝ and t1 := F1(r) × s ∈ T ,
t′1 := s × F1(t) ∈ T . By induction we define ti := F i(r) × s, t′i := s × F i(t) with j ∈ ŝ. Let i be the first
index for which either ti = F i(r) × s or t′i = s × F i(t) is a leaf. Then j ∈ ŝ, s ∈ U(r × t, i).

Theorem 7.17 (Structure of the Product) Let T := TI×I be a block cluster tree based on TI with
sparsity constant Csp and depth p. The exact multiplication is a mapping · : H(T, k)×H(T, k) → H(T ·T, k̃)
for some k̃ which can be bounded by

k̃ ≤ (p + 1)Csp max{k, nmin}. (7.8)

The exact multiplication can be performed with complexity

NH,·(T, k) ≤ 4Csp max{k, nmin}(p + 1)NSt(T, k).

Proof: (Rank) Let A, B ∈ H(T, k) and r × t ∈ L(T · T, ℓ). Due to (7.6), we can express the product
by (p + 1)maxℓ

j=0 #U(r × t, j) addends, each of which is a product of two matrices. From the definition
of U(r × t, j) we get that for each addend one of the factors corresponds to a leaf and so its rank is
bounded by max{k, nmin}. Hence, each addend has a rank bounded by max{k, nmin}. It follows that
k̃ ≤ (p + 1)maxℓ

j=0 #U(r × t, j)max{k, nmin}. The cardinality of U(r × t, j) is bounded by

#U(r × t, j) ≤ #{s ∈ TI | F j(r) × s ∈ T } ≤ Csp(T )

which yields #U(r × s, j) ≤ Csp(T ).
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Figure 7.1: The idempotency constant Cid(r × t) of the leaf r × t is 9.

(Complexity) Each leaf r × s ∈ L(T, ℓ) is multiplied with at most every other block s × t ∈ T (ℓ) and vice
versa every leaf s × t ∈ L(T, ℓ) is multiplied with at most every other block r × s ∈ T (ℓ). The cost for the
multiplication is bounded according to Lemma 7.7 by 2κNH,St(Ts×t, k),κ := max{nmin, k}. This sums up
to

NH,·(T, k) ≤
p∑

ℓ=0

∑

r×s∈L(T,ℓ)

∑

s×t∈T (ℓ)

2κNH,St(Ts×t, k) +
p∑

ℓ=0

∑

s×t∈L(T,ℓ)

∑

r×s∈T (ℓ)

2κNH,St(Tr×s, k)

≤ 2Csp

p∑

ℓ=0

∑

s×t∈T (ℓ)

2κNH,St(Ts×t, k)

≤ 4Csp(p + 1)κNH,St(T, k).

The representation formula of the previous theorem is based on the product tree T · T which may differ
from T . The formatted multiplication has to map into H(T, k) such that we have to truncate a matrix from
H(T · T, k̃) to H(T, k). The complexity will depend upon the discrepancy between T · T and T . The trivial
case would be an idempotent tree T in the sense T · T = T . Sadly, block cluster trees will in general not be
idempotent. The distance of T · T from T is measured by the idempotency constant defined next.

Definition 7.18 (Idempotency) Let T := TI×I be a block cluster tree based on TI. We define the ele-
mentwise idempotency (cf. Figure 7.1) Cid(r × t) and idempotency constant Cid(T ) by

Cid(r × t) := #{r′ × t′ | r′ ∈ S∗(r), t′ ∈ S∗(t) and ∃s′ ∈ TI : r′ × s′ ∈ T, s′ × t′ ∈ T },
Cid(T ) := max

r×t∈L(T )
Cid(r × t).

If the tree T is fixed, the short notation Cid is used instead of Cid(T ).

Theorem 7.19 (Formatted Multiplication) Let T := TI×I be a block cluster tree with idempotency con-
stant Cid, sparsity constant Csp and depth p. We assume (for simplicity) nmin ≤ k. The exact multiplication
is a mapping · : H(T, k) ×H(T, k) → H(T, k̃) with some k̃ bounded by

k̃ ≤ CidCsp(p + 1)k.
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The formatted multiplication ⊙best : H(T, k) ×H(T, k) → H(T, k′) for any k′ ∈ N0 is defined as the exact
multiplication followed by the truncation Tk′ of Lemma 6.12 and can be computed with complexity

N⊙,best(T, k) ≤ 47C3
idC

3
spk3(p + 1)3 max{#I, #L(T )}

by truncating the exact product. Using the fast truncation T ′k′ of Defintion 6.17, the complexity can be reduced
to

N⊙(T, k) ≤ 60C2
spCidk

2(p + 1)2#I + 184CspCidk3(p + 1)#L(T ).

We call this mapping ⊙ or ⊙fast in contrast to ⊙best from above.

Proof: (a. Rank) Due to (7.8), in each leaf of T · T the rank is bounded by (p + 1)Cspk. If a leaf from T
is contained in a leaf from T · T , then the restriction to the leaf from T does not increase the rank. If a leaf
from T contains leaves from T · T then their number is bounded by Cid and therefore the rank at most k̃.

(b. Complexity) We split the cost estimate into three parts: Nmul for calculating the exact product in
T · T , N− for converting the rkmatrix blocks corresponding to leaves L−(T ) to fullmatrix format and
N+, N fast

+ for the (fast) truncation of the rkmatrix blocks to leaves L+(T ) with rank k′.

(b1. Nmul) According to Theorem 7.17 and Lemma 7.6, the exact product using the rkmatrix representation
with rank k̃ in each leaf can be computed with complexity 8C2

sp(p + 1)2k2#I.

(b2. N−) In the leaves r × t ∈ L−(T ) we have to change the representation to fullmatrix format which
has a cost of 2k̃#r̂#t̂:

N− ≤
∑

r×t∈L−(T )

2k̃#t̂#ŝ

≤
∑

r×t∈L(T )

2k̃nmin(#r̂ + #t̂)

L.7.4
≤ 4Cspk̃nmin(p + 1)#I
≤ 4C2

spCid(p + 1)2k2#I.

(b3. N+) For each leaf in L+(T ) we truncate the rkmatrix block of rank k̃ to rank k using Lemma 7.9 for
the truncation or Lemma 7.10 for the fast truncation:

N+

Lem.7.9
≤ 6k̃NSt(T, k̃) + 23(k̃)3#L(T )

Lem.7.6
≤ 12C3

spC
2
idk2(p + 1)3#I + 23C3

spC
3
idk3(p + 1)3#L(T )

≤ 35C3
spC

3
idk3(p + 1)3 max{#I, #L(T )},

N fast
+

Lem.7.10
≤ CspCid(p + 1)

(
24kNSt(T, k) + 184k3#L(T )

)

Lem.7.6
≤ 48C2

spCidk2(p + 1)2#I + 184CspCidk3(p + 1)#L(T ).

7.2.4 Inversion

The formatted inversion for matrices in supermatrix format was defined by use of the formatted multi-
plication and addition. The complexity analysis is not done in this way. Instead, we observe that the
multiplication and inversion procedure perform the same kind of operations - only in different order.

Theorem 7.20 (Formatted Inversion) Let T := TI×I be a block cluster tree. We assume that for the
fullmatrix blocks r × t ∈ L−(T ) the complexity of the inversion is bounded by the complexity of the multi-
plication (in the case nmin = 1 both are one elementary operation). Then the complexity NH,Inv(T, k) of the
formatted inversion (Algorithm 5) in the set H(T, k) is bounded by N⊙(T, k).
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Proof: We prove the statement by induction over the depth p of the tree T . For p = 0, we have assumed that
the inversion is of the same complexity as the multiplication. Now let p > 0 and let the matrix M ∈ H(T, k)
be of the block structure

M =
[

M11 M12

M21 M22

]
, sons(I) = {I1, I2}.

The multiplication X := M ⊙ M involves the operations

X =
[

M11 ⊙ M11 ⊕ M12 ⊙ M21 M21 ⊙ M11 ⊕ M22 ⊙ M21

M11 ⊙ M12 ⊕ M12 ⊙ M22 M22 ⊙ M22 ⊕ M21 ⊙ M12

]
. (7.9)

By induction the complexity NH,Inv(TI1×I1 , k) and NH,Inv(TI2×I2 , k) for the formatted inversions of m11 =
M11 and m22 = M22 ⊖M21 ⊙ InvH(M11)⊙M12 (line 3 and 7 in Algorithm 5) is bounded by NH,⊙(TI1×I1 , k)
and NH,⊙(TI2×I2 , k). The other six combinations of formatted multiplications (line 4–6 and 8–10) are of
the form Mij ⊙ Mjℓ and appear also in (7.9). The two formatted additions (line 6 and 9) for the matrices
M11 and M22 are also present in (7.9).

7.3 Sparsity and Idempotency of the Block Cluster Tree TI×I

7.3.1 Construction of the Cluster Tree TI

Before we estimate the idempotency and sparsity of the tree TI×I, we will first recapitulate the construction
of the cluster tree TI by geometrically balanced splitting of the space.

Let I be any fixed (finite) index set and d ∈ N. The basis functions associated to the indices i ∈ I map
from Rd to R and have a small support Ωi. Let mi be any point from the support Ωi (for nodal based basis
functions one can take the nodal point).

In order to simplify the notation and visualisation we will only present the case d = 2. The generalisation
to the case d > 2 is straightforward.

Construction 7.21 (Geometrically Balanced Clustering) Without loss of generality we assume that
the domain Ω is contained in the square [0, H) × [0, H). The root root(TI) of the cluster tree has the whole
index set I as a label.

The splitting of a cluster t with corresponding box [a, c) × [d, f) is done geometrically balanced, i.e., for the
midpoints b := (a + c)/2 and e := (d + f)/2 the four sons {s1, s2, s3, s4} of t are

ŝ1 := {i ∈ t̂ | mi ∈ [a, b) × [d, e),
ŝ2 := {i ∈ t̂ | mi ∈ [b, c) × [d, e),
ŝ3 := {i ∈ t̂ | mi ∈ [a, b) × [e, f),
ŝ4 := {i ∈ t̂ | mi ∈ [b, c) × [e, f).

If t̂ contains less or equal to nmin indices then we do not split t any further. Note that the boxes [a, b)× [d, e)
are passed on to the sons such that they may differ from the bounding box. The box corresponding to
a node t ∈ TI is denoted by Ct.

The structure of the cluster tree TI corresponds to the regular structure of the geometrically splitting of
[0, H ] × [0, H ]. This regular structure is essential in order to bound the sparsity and idempotency of the
block cluster tree to be constructed. Trees that have a large idempotency or sparsity may still be useful and
allow for fast formatted arithmetics, but the bounds for the complexity are not easy to establish.

Since only the vertex mi from Ωi is contained in the respective box, a box Bt containing Ωt has to be
maxi∈t̂ diam(Ωi) larger than Ct. We define the local meshwidth ht and box Bt by

ht := max
i∈t̂

diam(Ωi), Bt := Ct + [−ht, ht]
2 . (7.10)
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Lemma 7.22 For any two nodes t, s ∈ T (ℓ)
I there holds

Ωt ⊂ Bt

diam(Bt) =
√

2(2−ℓ + 2ht)H (7.11)

dist(Bt, Bs) ≥ dist(Ct, Cs) −
√

2(ht + hs). (7.12)

Proof: Let i ∈ t̂. By Construction 7.21 we get mi ∈ Ct. The elements in the support Ωi have a distance of
at most ht from mi and thus Ωi ⊂ Bt. The second and third part follow from the definition of Bt.

7.3.2 Construction of the Block Cluster Tree TI×I

Based on the cluster tree TI from Construction 7.21 and the admissibility condition (2.4) we define the block
cluster tree T := TI×I as follows.

A product index set r̂ × ŝ with corresponding boxes Cr and Cs is called admissible, if

min{d̃iam(r), d̃iam(s)} ≤ ηd̃ist(r, s), (7.13)

where the modified distance and diameter are

d̃iam(t) := diam(Bt),

d̃ist(r, s) := dist(Br, Bs).

If a product r̂ × ŝ is admissible with respect to (7.13) then the corresponding domain Ωr × Ωs is admissible
with respect to the standard admissibility condition (2.4).

This modified admissibility condition is used to construct the block cluster tree TI×I as usual.

Construction 7.23 (Block Cluster Tree TI×I) Let the cluster tree TI be given. We define the block
cluster tree T := TI×I by ̂root(T ) := I × I and for each vertex r × s ∈ T the set of successors

sons(r × s) :=

⎧
⎨

⎩

{r′ × s′ | r′ ∈ sons(r), s′ ∈ sons(s)} if #r̂ > nmin and #ŝ > nmin

and r × s is inadmissible,
∅ otherwise.

The block cluster tree does not bear a regular structure and we have to do some work to gain the bounds
for the sparsity and idempotency.

Lemma 7.24 Let T := TI×I be the block cluster tree of depth p ≥ 1 built from the cluster tree TI by
Construction 7.23. Then the sparsity constant (cf. Definition 7.3) Csp of T is bounded by

Csp ≤ 4 max
r∈TI

#{s ∈ TI | r × s ∈ T \ L(T )}.

Proof: Let r ∈ T (ℓ)
I , ℓ > 0. Then

#{s ∈ T (ℓ)
I | r × s ∈ T } = #{s ∈ T (ℓ)

I | F(r) × F(s) ∈ T \ L(T )}

≤ 4#{F(s) ∈ T (ℓ−1)
I | F(r) × F(s) ∈ T \ L(T )}

≤ 4#{s ∈ T (ℓ−1)
I | F(r) × s ∈ T \ L(T )}

≤ 4#{s ∈ TI | F(r) × s ∈ T \ L(T )}.

Here we exploit that a cluster has at most 4 sons.

So far, we have not posed any condition on the locality of the supports of the basis functions ϕi. If all the
supports cover the whole domain Ω, then the only admissible block t̂× ŝ ⊂ I × I is t̂× ŝ = ∅. Therefore, we
have to demand the locality of the supports.
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Assumption 7.25 (Locality) We assume that the supports are locally separated in the sense that there
exist two constants Csep and nmin such that

max
i∈I

#{j ∈ I | dist(Ωi, Ωj) ≤ C−1
sepdiam(Ωi)} ≤ nmin. (7.14)

The left-hand side is the maximal number of ‘rather close’ supports. Note that the bound nmin is the same
that we use for the construction of TI.

Lemma 7.26 (Sparsity, Idempotency and Depth of TI×I) Let h := mini∈I diam(Ωi). We use the
same notation as in Construction 7.21 and assume that (7.14) holds for some constants Csep, nmin. Let
T := TI×I be the block cluster tree from Construction 7.21 and 7.23. Then the following statements hold:
(a) All leaves t × s ∈ L(T ) are either admissible with respect to (7.13) or min{#t̂, #ŝ} ≤ nmin.
(b) The depth of the tree is bounded by

depth(T ) ≤ 1 + log2

(
(1 + 2Csep)

√
2H/hmin

)
.

(c) The sparsity constant is bounded by

Csp ≤
(
2 + 8

√
2Csep + 4

√
2η−1(1 + 2Csep)

)2
.

(d) The idempotency constant is bounded by

Cid ≤ (2 + 4Csep + 2η(1 + 2
√

2Csep))4

Proof: (a) Holds by Construction 7.23.

(b) Let t ∈ T (ℓ)
I be a non-leaf node, in particular #t̂ > nmin. We prove

ht ≤ Csep diam(Ct)

by contradiction: assume that there exists i ∈ t̂ such that diam(Ωi) > Csep diam(Ct). Then for all j ∈ t̂

dist(Ωi, Ωj) ≤ diam(Ct) < C−1
sep diam(Ωi)

which is a contradiction to (7.14). Using the bound on ht we conclude

diam(Bt)
(7.11)
=

√
2(2−ℓ + 2ht)H

(7.14)
≤

√
2(2−ℓ + 2Csepdiam(Ct))H =

√
2(1 + 2Csep)2−ℓH (7.15)

while diam(Bt) ≥ diam(Ωi) ≥ hmin. This yields 2ℓ ≤
√

2(1 + 2Csep)H/hmin.

(c) We exploit the structure of the regular subdivision of [0, H)× [0, H) into the squares Ct. Let t ∈ T (ℓ)
I be

a node with #t̂ > nmin. The number of squares Cs on level ℓ that touch Ct is at most 32. By induction it
follows that the number of cubes on level ℓ with a distance less than j2−ℓH to Ct is bounded by (1+2j)2. Let
s ∈ T (ℓ)

I with #ŝ > nmin and dist(Ct, Cs) > j2−ℓH . The diameter and distance of the respective bounding
boxes can be estimated by

diam(Bt)
(7.15)
≤

√
2(1 + 2Csep)2−ℓH,

dist(Bt, Bs)
(7.12)
≥ dist(Ct, Cs) −

√
2(ht + hs)

> j2−ℓH −
√

2Csep(diam(Ct) + diam(Cs))

= j2−ℓH −
√

2Csep21−ℓH.

If t× s is not admissible with respect to (7.13) then min{diam(Bt), diam(Bs)} > η dist(Bt, Bs). Insertion of
the above estimates gives

√
2(1 + 2Csep)2−ℓH > η(j2−ℓH − 2

√
2Csep2−ℓH)
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Cr Ct
Cs’

Figure 7.2: The small box Cs′ is well separated from either Cr or Cs if Cr and Ct are well separated.

which yields
j < η−1

(√
2(1 + 2Csep) + 2ηCsep

)
=: jmax.

As a consequence the number of nodes s ∈ T (ℓ)
I not admissible to t is bounded by (1 +2jmax)2. Lemma 7.24

yields (c).

(d) Let r × t ∈ L(T, ℓ). If #r̂ ≤ nmin or #t̂ ≤ nmin, then the elementwise idempotency is Cid(r × t) = 1.
Now let r × t be admissible. Define q := ⌈log2(1 + 2Csep + η(1 + 2

√
2Csep))⌉. We want to prove that for all

vertices r′, s′, t′ ∈ T (ℓ+q), r′ × s′ ∈ S∗(r × s) and s′ × t′ ∈ S∗(s× t) one of the vertices r′ × s′ and s′ × t′ is a
leaf. Let r′, s′, t′ be given as above and min{#r̂′, #ŝ′, #t̂′} > nmin.

For u ∈ {r′, s′, t′} it holds

d̃iam(u)
(7.15)
≤

√
2(1 + 2Csep)2−q−ℓH. (7.16)

The distance between Cs′ and Cr′ or Ct′ can be estimated (cf. Figure 7.2) by

max{dist(Cs′ , Cr′), dist(Cs′ , Ct′)} ≥ dist(Cr′ , Ct′) − diam(Cs′)
≥ dist(Br , Bt) − diam(Cs′ ).

Using this estimate we get

ηmax{dist(Br′ , Bs′), dist(Bs′ , Bt′)} ≥ ηmax{dist(Cr′ , Cs′), dist(Cs′ , Ct′)} − η max
u∈{r′,t′}

√
2(hu + hs′)

≥ η dist(Br, Bt) − η diam(Cs′ ) − η2
√

2Csep diam(Cs′)

≥ min{diam(Br), diam(Bt)} − η(1 + 2
√

2Csep) diam(Cs′ )

≥ diam(Cr) − η(1 + 2
√

2Csep) diam(Cs′)

=
√

22−ℓH − η(1 + 2
√

2Csep)
√

22−ℓ−qH. (7.17)

The admissiblity condition for either r′ × s′ or s′ × t′ is according to (7.16) and (7.17) fulfilled if
√

2(1 + 2Csep)2−q−ℓH ≤
√

22−ℓH − η(1 + 2
√

2Csep)
√

22−ℓ−qH,

which is equivalent to (1 + 2Csep)2−q ≤ 1 − η(1 + 2
√

2Csep)2−q, and this equation is true for the choice of
q = ⌈log2(1 + 2Csep + η(1 + 2

√
2Csep))⌉.

We conclude that either r′× s′ or s′× t′ is admissible (and has no sons). It follows that there are no vertices
r′′ × s′′ ∈ T (ℓ+q+1) and s′′ × t′′ ∈ T (ℓ+q+1) with r′′ ∈ S∗(r), t′′ ∈ S∗(t). Since the number of sons of a vertex
is limited by 24, there are at most 24q vertices in T · T that are contained in r × t.

Remark 7.27 Lemma 7.26 proves that Construction 7.21 (→ cluster tree) combined with Construction
7.23 (→ block cluster tree) yields a tree T that is sparse and idempotent with Csp and Cid independent of the
cardinality of the index set I. The depth of the tree is estimated by the logarithm of the ratio of the smallest
element to the diameter of the whole domain (which can be large). For most triangulations this ratio depends
polynomially on #I such that the logarithm of the ratio is proportional to log(#I).
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Remark 7.28 (Admissibility for H2-matrices) The results of Lemma 7.26 depend on the admissibility
condition (2.4). In the context of H2-matrices the stronger admissibility condition

max{diam(τ), diam(σ)} ≤ ηdist(τ,σ) (7.18)

is required. The bounds for the sparsity constant Csp, the idempotency constant Cid and the depth p of the
tree also hold for this admissibility condition, because the reference cubes Cr,Cs on the same level are of
equal size.



Chapter 8

Alternative Clustering Strategies

In finite element methods, the stiffness matrix is sparse but its inverse is fully populated and can be ap-
proximated by an H-matrix. Such an approximate inverse may then be used as a preconditioner in iterative
methods, for the setup and inversion of Schur complements, for the representation of matrix valued functions
and so forth. Even though the complexity O(n log2 nk2) of the H-matrix inversion is almost linear, there are
relatively large constants hidden. The following developments address this drawback successfully and allow
H-matrix based preconditioners to be competitive in the FEM context:

1. a weak admissibility condition yielding coarser block structures and hence yielding smaller constants
in the complexity [43];
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2. the introduction of an H-LU decomposition which is computed significantly faster than an approximate
inverse and provides an (in general more accurate) preconditioner [48, 33];
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3. the parallelization of the H-matrix arithmetic [46].

In this chapter, we will add a further improvement to these three components which reduces the constants in
the complexity significantly: we will introduce (recursive) domain decompositions with an interior boundary,
also known as nested dissection, into the construction of the cluster tree. This clustering algorithm, first
presented in [32], will yield a block structure in which large subblocks are zero and remain zero in a subsequent
LU factorization. Furthermore, the subsequent H-LU factorization is parallelizable.

In the last part of this chapter we introduce an algebraic clustering algorithm: In previous chapters, the
construction of the matrix partition of H-matrices is based on the underlying geometry of the degrees of
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freedom, i.e., information on the grid is needed in addition to the stiffness matrix itself. Here, we will develop
a black box clustering algorithm that is applicable to sparse matrices and only needs the matrix itself as
input. A matrix graph is constructed based on the sparsity structure of the matrix which is required for
the subsequent algebraic clustering algorithm. We therefore obtain an algorithm for an algebraic H-matrix
construction that can be compared to algebraic multigrid (AMG) techniques [17, 54, 18, 37].

8.1 Nested Dissection

Most direct methods for sparse linear systems perform an LU factorization of the original matrix after some
reordering of the indices in order to reduce fill-ins. One such popular reordering method is the so-called
nested dissection method which exploits the concept of separation. The main idea is to separate the vertices
in a (matrix) graph into three parts, two of which have no coupling between each other. The third one,
referred to as an interior boundary or separator, contains couplings with (possibly both of) the other two
parts. The nodes of the separated parts are numbered first and the nodes of the separator are numbered
last. This process is then repeated recursively in each subgraph. An illustration of the resulting sparsity
pattern is shown in Figure 8.1 for the first two decomposition steps. In domain decomposition terminology,

Ω3Ω1 Ω2 Ω4

Ω3

Ω4

Ω

Ω1 Ω

Ω
2

3

4

1

Ω2

Γ

Γ2

Γ1

1Γ

Γ1 Γ2

2Γ
Γ

Γ
Ω

Figure 8.1: Nested dissection and resulting matrix sparsity structure.

we recursively subdivide the domain into an interior boundary and the resulting two disjoint subdomains.

A favorable property of such an ordering is that a subsequent LU factorization maintains a major part of
this sparsity structure, i.e., there occurs no fill-in in the large, off-diagonal zero matrix blocks. In order
to obtain a (nearly) optimal complexity, we approximate the nonzero, off-diagonal blocks in the H-matrix
representation and compute them using H-matrix arithmetic. The blocks on the diagonal and their LU
factorizations will be stored as full matrices.

8.2 Clustering based on Nested Dissection

In [41], a direct domain decomposition method is combined with the hierarchical matrix technique. In
particular, a domain Ω is subdivided into p subdomains and an interior boundary Γ which separates the
subdomains as shown in Figure 8.2. Within each subdomain, standard H-matrix techniques can be used,
i.e., H-matrices constructed by the standard bisection index clustering with zero or two successors. Thus,
the first step is the decomposition of the domain into a fixed number of subdomains, and in a second step,
H-matrix techniques are applied within each subdomain.

8.2.1 Clustering Based on Bisection

The standard construction of the cluster tree TI is based on variants of binary space partitioning. The
basic idea to construct the clusters is to subdivide a cluster v with support Ωv into smaller clusters v1, v2 as
follows:
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Figure 8.2: Direct domain decomposition and the resulting matrix sparsity structure

1. Let Qv denote a box that contains all nodal points (xi)i∈v. For the root cluster this could be the
bounding box QI := BI .

2. Subdivide the box Qv into two parts Qv = Q1 ∪̇ Q2 of equal size.

3. Define the set sons(v) = {v1, v2} of v by

v1 := {i ∈ v | xi ∈ Q1}, v2 := {i ∈ v | xi ∈ Q2}

and use the boxes Qv1 := Q1, Qv2 := Q2 for the further splitting of the sons.

The subdivision is typically performed such that the resulting diameters of the boxes associated with successor
clusters become as small as possible so that clusters eventually become separated and fulfill the standard
admissibility condition. A visualization of this process, the geometric regular bisection, is given in Figure
8.3.

Figure 8.3: The box QI that contains the whole domain Ω = [0, 1]3 is successively subdivided into two
subboxes. The corresponding matrix A displays a hierarchical 2 × 2 block-structure. The eight light grey
blocks are not standard admissible but “weakly” admissible.

8.2.2 Clustering Based on Domain Decomposition

A new construction of the cluster tree is based on the decomposition of a cluster v with corresponding domain
Ωv into three sons, i.e., sons(v) = {v1, v2, v3}, where v1 and v2 contain the indices of the two disconnected
subdomains Ωv1 and Ωv2 while v3 = v\(v1∪v2) contains the indices corresponding to the separator Γv = Ωv3 ,
cf. Figure 8.1.

Due to the fact that the distance between Ωv1 and Ωv2 , given by the width of the separator Γv, is typically
very small compared to the diameters of Ωv1 , Ωv2 , the block cluster v1 × v2 is neither standard admissible
nor weakly admissible. However, since the corresponding matrix block is zero and remains zero during an
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LU factorization, we want to regard it as admissible; in fact, we can assign a fixed rank of zero to this block.
This means that an admissibility condition suitable for domain decomposition based block clusters has to
distinguish between the sets of domain-clusters Cdom and interface-clusters TI \ Cdom which will be specified
in Construction 8.2.

Definition 8.1 (DD-admissibility) Let TI be a cluster tree for the index set I and let Cdom ⊂ TI be
the subset of domain-clusters which will be defined in Construction 8.2. We define the DD-admissibility
condition by

AdmDD(s × t) = true :⇔ (s ̸= t, s, t ∈ Cdom) or s × t standard admissible. (8.1)

The formal DD-clustering process is presented in the following Construction 8.2. A visualization for the
clustering of a three-dimensional domain and the resulting block structure is presented in Figure 8.4.

Figure 8.4: The domain Ω = [0, 1]3 is successively subdivided using DD-clustering. The top row displays the
respective bounding boxes used for the subdivision. The bottom row shows the resulting hierarchical block
structure of the matrix A. The light grey blocks are still weakly admissible (boxes intersect in at most one
corner) whereas the white blocks satisfy AdmDD.

Construction 8.2 (DD-clustering, domain-cluster, interface-cluster) The cluster tree TI as well as
the set of domain-clusters Cdom and interface-clusters TI \ Cdom is constructed recursively, starting with

• the root I, Cdom := {I} and

• the bounding box QI := BI that contains the domain Ω.

Clusters that satisfy #v ≤ nmin will be no further refined. For all other clusters we distinguish between
domain-clusters and interface-clusters. If a cluster v and a box Qv =

⊗d
i=1[αi,βi] satisfying xj ∈ Qv for all

j ∈ v are given, we introduce new boxes Q1 and Q2 by splitting Qv in half in the coordinate direction isplit

of maximal extent.

Domain-clusters: For v ∈ Cdom, we define the three successors

v1 := {i ∈ v | xi ∈ Q1}, v2 := {i ∈ v | suppϕi ∩ Ωv1 = ∅}, v3 := v \ (v1 ∪ v2) (8.2)

and correspondingly S(v) := {v1, v2, v3}, Cdom := Cdom ∪ {v1, v2}. To the domain-clusters v1 and v2 we
associate the boxes Qv1 := Q1 and Qv2 := Q2. The interface-cluster is equipped with the “flat” box Qv3 :=⊗d

i=1[α̃i, β̃i] where α̃i := αi and β̃i := βi except for the splitting coordinate i = isplit where we set

α̃i :=
1
2
(αi + βi) − hv3 , β̃i :=

1
2
(αi + βi) + hv3 , hv3 := max

j∈v3
diam(suppϕj).
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Interface-clusters: We define the interface-level of a cluster, levelint(v), as the distance of v to the nearest
domain-cluster in the cluster tree. For v ∈ TI \ Cdom and associated flat box Qv, we (possibly) split the box
Qv into two boxes Qv = Q1 ∪̇ Q2 in a direction j different from the flat direction isplit. More precisely, the
set of sons is defined by

S(v) :=
{

{v} levelint(v) ≡ 0(mod d),
{{i ∈ v | xi ∈ Q1}, {i ∈ v | xi ∈ Q2}} otherwise. (8.3)

The associated boxes of the sons are Qvi := Qi.

A visualization of the DD-clustering is given in Figure 8.4 for the first three subdivision steps (top). The
corresponding block cluster tree and partition of the matrix (bottom) is constructed in the canonical way.
The characteristic sparsity pattern can be noticed already after the first subdivision step. Since the dimen-
sion is d = 3 in this example, the interface-clusters that occur after the first and second subdivision have
interface-levels levelint(v) ∈ {1, 2}. Only the four “vertical” interface-clusters that are present after the third
subdivision satisfy levelint(v) = 3 and will not be subdivided in the next subdivision step according to (8.3).

Remark 8.3 1. The construction of the cluster tree is guided by the fact that matrix entries Aij equal zero
if the corresponding supports of basis functions are disjoint. One can therefore replace the condition
“suppϕi ∩ Ωv1 = ∅” in (8.2) by “Aij = 0 for all j ∈ v1”.

2. The subdivision of interface-clusters v ∈ TI \ Cdom is delayed every d-th step in order to calibrate the
diameters of interface-clusters with those of domain-clusters. Without this calibration, the subdivision
of the largest interface cluster will reach the leaves after ≈ log2(N1−1/d) = (1 − 1/d) log2(N) steps
while the depth of the cluster tree is approximately log2(N). This would lead to undesirable fill-in in
the H-matrix so that we would lose the almost linear complexity and instead get the same complexity
as the classical nested dissection.

8.3 Black Box Clustering for Sparse Matrices

Hierarchical matrices are based on a block cluster tree TI×I that describes the (hierarchical) partition of
a matrix into admissible and inadmissible blocks. The (formatted) arithmetic in the H-matrix format is
defined in an abstract setting where only this partition is needed but not the geometric information by
which the cluster tree TI was built. However, for the construction of the bock cluster tree TI×I we use the
cluster tree TI and the admissibility condition which both require information about the distance between
(geometric) entities as well as the diameters of (geometric) entities.

In some applications, the geometric information describing the support of the basis functions that are used
for the discretization of the partial differential operator might not be available. Instead, only the already
assembled sparse stiffness matrix A is given.

In this case, our goal is to derive a black-box clustering algorithm and an admissibility condition that use
only the sparse stiffness matrix A as input. In the following, both the cluster tree TI as well as the block
cluster tree TI×I will be derived from A so that we can solve the linear system Ax = b either directly (by an
almost exact H-LU decomposition) or by use of an H-LU preconditioner in some iterative method. Since the
only information available is the sparse matrix A itself, we use the matrix graph G(A) in order to redefine
the notions of distances and diameters.

The symmetrised graph G(A) = (V, E) of a matrix A ∈ RI×I is defined by the vertex and edge sets

V := I, E := {(i, j) ∈ I × I | (Aij ̸= 0 ∨ Aji ̸= 0)}. (8.4)

The distance between two nodes i, j ∈ I in a connected matrix graph, defined as the length of the shortest
path between these two nodes, can be computed in O(N), N := #I, by Dijkstra’s algorithm. However,
computing all pairwise distances would require quadratic complexity O(N2) which is prohibitively expensive.
For the construction of the cluster tree TI it is sufficient to split a set v ⊂ I into two subsets v1, v2 (and
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possibly the interface v3). The complexity of the splitting should not exceed O(#v), so that the complexity
of the setup of the cluster tree will be O(N log N).

Construction 8.4 (Black Box DD-Clustering) Let Gsym(A) denote the symmetrised matrix graph of a
sparse matrix A ∈ RI×I. We assume Gsym(A) to be connected. The root of the cluster tree TI is root(TI) :=
I. Initially, we set Cdom := {I}.

We define the cluster tree TI recursively by the son relation of an arbitrary cluster v ⊂ I. Let v̄ ⊃ v denote
a connected superset of v; for all domain-clusters (e.g. the root I), this is v̄ := v.

1. We determine two nodes i1, i2 ∈ v with almost maximal distance in v̄ as follows: We choose an arbitrary
vertex i0 ∈ v, determine a node i1 ∈ v with the largest distance to i0 in v̄ and then determine a node
i2 ∈ v with the largest distance to i1 in v̄:

1 i1

i2

i

i 0i0i 0

2. We determine the distance of all i ∈ v̄ to both i1 and i2 in v̄. Subsequently, we partition v̄ into two
parts, each of which is again connected:

v̂1 := {i ∈ v̄ | distv̄(i, i1) ≤ distv̄(i, i2)}, v̂2 := v̄ \ v̂1.

3. For a domain-cluster v ∈ Cdom, we partition v into the three parts

v1 := v̂1, v2 := {i ∈ v | distv̄(i, i2) < distv̄(i, i1) − 1}, v3 := v \ (v1 ∪ v2).

The corresponding supersets are v̄1 := v1, v̄2 := v2, v̄3 := v̄, the sons are S(v) := {v1, v2, v3} with
two domain-clusters Cdom := Cdom ∪ {v1, v2} and one interface-cluster v3. For the recursion, we
first subdivide the two domain-clusters v1, v2 and afterwards the interface-cluster v3. To calibrate the
sizes of interface-clusters with those of domain-clusters (see Remark 8.3), we define the target depth
d(v3) := max{depth(Tv1), depth(Tv2) }, the average reduction factor ρ(v3) := (nmin/#v3)1/p and the
target size s(v3) := #v3ρ(v3) for the next subdivision step.

4. For an interface-cluster v ̸∈ Cdom, we distinguish between two cases:

• If the target depth is d(v) = 0, then the recursion stops, i.e., S(v) := ∅.
• If the target depth is d(v) > 0 and the size of v is less than the target size, #v < s(v), then

S(v) := {v}, s(v) := s(v)ρ(v) and d(v) := d(v) − 1. Proceed with the son of v.
• If the target depth is d(v) > 0 and the size of v is larger than the target size, #v ≥ s(v), then we

define
v1 := v ∩ v̂1, v2 := v ∩ v̂2.

The corresponding supersets are v̄1 := v̂1, v̄2 := v̂2, the sons are S(v) := {v1, v2} with two
interface-clusters v1, v2. The target sizes of both v1 and v2 are s(v1) := s(v2) := s(v)ρ(v) and
ρ(v1) := ρ(v2) := ρ(v), and the target depths are d(v1) := d(v2) := d(v).

Remark 8.5 (Black Box DD-Admissibility) The black box DD-admissibility is defined by estimating
the diameter and distance in the matrix graph. The diameter of a cluster v we estimate by d̃iam(v) :=
dist(i0, i1) + dist(i1, i2), where i0, i1, i2 are defined as above. The admissibility diam(v) ≤ ηd̃ist(v, w) can be
tested checking all nodes with a distance of at most η−1 diam(v) from v. If one of these nodes belongs to w,
then the block is inadmissible, otherwise it is admissible.



Chapter 9

H2-matrices

In order to find a hierarchical matrix approximation of an integral operator, we have used a degenerate
expansion of the kernel function. We have constructed this expansion by applying interpolation to either
the first or the second argument of the kernel function.

In this chapter, we will take a closer look at the properties of this expansion and derive a specialized variant
of hierarchical matrices that can be treated by more efficient algorithms.

H2-matrices were introduced in [45], where the approximation was based on Taylor expansions. We will use
the construction described in [25, 10], which is based on interpolation.

9.1 Motivation

We consider the bilinear form
a(u, v) =

∫

Ω
v(x)

∫

Ω
g(x, y)u(y) dy dx

corresponding to an integral operator. In Chapter 3, we have replaced the original kernel function g(·, ·) by
a degenerate approximation

g̃t,s(x, y) :=
∑

ν∈K

g(xt
ν , y)Lt

ν(x)

for admissible cluster pairs (t, s) (we assume that diam(Qt) ≤ diam(Qs) holds for all cluster pairs in the
block cluster tree, so that we can always interpolate in the x-variable without losing the approximation
property).

Discretizing this approximated kernel function leads to the representation

G̃t,s
ij =

∫

Ω
ϕi(x)

∫

Ω
g̃t,s(x, y)ϕj(y) dy dx

=
∑

ν∈K

∫

Ω
ϕi(x)

∫

Ω
g(xt

ν , y)Lt
ν(x)ϕj(y) dy dx

=
∑

ν∈K

(∫

Ω
ϕi(x)Lt

ν (x) dx

)(∫

Ω
ϕj(y)g(xt

ν , y) dy

)

=
(
At,sBt,s⊤

)

ij

for all i ∈ t̂ and j ∈ ŝ, where

At,s
iν =

∫

Ω
ϕi(x)Lt

ν (x) dx and Bt,s
jν =

∫

Ω
ϕj(y)g(xt

ν , y) dy.

143
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Let us take a closer look at the matrix At,s: since we integrate a Lagrange polynomial corresponding to a
cluster t multiplied with basis functions corresponding to the same cluster, this matrix depends only on the
cluster t, but not on the cluster s. This means that for each cluster t ∈ TI , we have a matrix V t ∈ Rt̂×K

defined by

V t
iν :=

∫

Ω
ϕi(x)Lt

ν (x) dx (9.1)

for i ∈ t̂ and ν ∈ K satisfying V t = At,s for all admissible leaves (t, s) of the block cluster tree TI×I . We
define

Rt := {s ∈ TI : (t, s) ∈ L+(TI×I)},

i.e., Rt contains all clusters s such that (t, s) is an admissible leaf of the block cluster tree TI×I , and rewrite
our observation in the form

At,s = V t for all s ∈ Rt.

This equation has two major implications: we can save memory, since we have to store V t only once, and
we can save time in the matrix-vector multiplication, since due to

∑

s∈Rt

At,sBt,s⊤x|ŝ =
∑

s∈Rt

V tBt,s⊤x|ŝ = V t

(
∑

s∈Rt

Bt,s⊤x|ŝ

)
,

we can sum over vectors of length k = #K instead of over vectors of length #t̂.

But there is more: consider a second cluster t′ ∈ TI . Since we use the same space of polynomials for all
clusters, we have

span{Lt
ν : ν ∈ K} = span{Lt′

ν′ : ν′ ∈ K},

so there must be coefficients T t′

ν′ν ∈ R such that

Lt
ν =

∑

ν′∈K

T t′

ν′νLt′

ν′ (9.2)

holds, i.e., we can represent the Lagrange polynomials corresponding to the cluster t by the Lagrange poly-
nomials corresponding to the cluster t′. Since we are dealing with Lagrange polynomials, the computation
of the coefficients T t′

ν′ν is especially simple: they are given by

T t′

ν′ν = Lt
ν(xt′

ν′ ). (9.3)

For each index i ∈ t̂, we can find a t′ ∈ sons(t) with i ∈ t̂′, and equation (9.2) implies

V t
iν =

∫

Ω
ϕi(x)Lt

ν (x) dx =
∑

ν′∈K

T t′

ν′ν

∫

Ω
ϕi(x)Lt′

ν′ (x) dx =
∑

ν′∈K

T t′

ν′νV t′

iν′ = (V t′T t′)iν . (9.4)

This equation allows us to speed up the matrix-vector multiplication even more: computing V tyt directly
for a vector yt ∈ RK requires O(k#t̂) operations. If t is not a leaf, i.e., if sons(t) ̸= ∅, there is a t′ ∈ sons(t)
for each i ∈ t̂ such that i ∈ t̂′, and this implies (V tyt)i = (V t′T t′yt)i. So instead of computing V tyt directly,
we can compute T t′yt for all sons t′ ∈ sons(t), and this will only require O(k2) operations.

9.2 H2-matrices

9.2.1 Uniform H-matrices

We have seen that the matrices At,s which appear in our degenerate approximation of the admissible matrix
blocks have many desirable properties due to the fact that they are discretizations of Lagrange polynomials.
Unfortunately, the matrices Bt,s are not of this kind.
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In order to fix this, we change our approximation scheme: instead of applying interpolation only to the x
coordinate, we apply it to both coordinates:

g̃t,s(x, y) := (It
m ⊗ Is

m)[g](x, y) =
∑

ν∈K

∑

µ∈K

g(xt
ν , xs

µ)Lt
ν(x)Ls

µ(y). (9.5)

Discretizing this approximation of the kernel, we find

G̃ij :=
∫

Ω
ϕi(x)

∫

Ω
g̃t,s(x, y)ϕj(y) dy dx

=
∑

ν∈K

∑

µ∈K

g(xt
ν , xs

µ)
(∫

Ω
ϕi(x)Lt

ν(x) dx

)

︸ ︷︷ ︸
=V t

iν

(∫

Ω
ϕj(y)Ls

µ(y) dy

)

︸ ︷︷ ︸
=V s

jµ

= V tSt,sV s⊤ (9.6)

for i ∈ t̂ and j ∈ ŝ, where St,s ∈ RK×K is defined by

St,s
νµ := g(xt

ν , xs
µ). (9.7)

Now, we have what we need: the matrices V t and V s have the desired properties, and the matrix St,s is
only of dimension k × k (for k := #K).

Exercise 6 (Error bound for the symmetric kernel approximation) Assume that

max{diam(Qt), diam(Qs)} ≤ η dist(Qt, Qs) (9.8)

holds. Prove that

|g(x, y) − g̃t,s(x, y)| ≤ Cd(m + 1)2d−1

22m dist(Qt, Qs)σ
(c0η)m+1

holds for all x ∈ Qt and y ∈ Qs under the assumptions from Subsection 3.3.3.

Definition 9.1 (Cluster basis) Let TI be a cluster tree for the index set I. A family (V t)t∈TI of matrices
is a cluster basis, if for each t ∈ TI there is a finite index set Kt such that V t ∈ Rt̂×Kt

.

A cluster basis (V t)t∈TI is of constant order, if there is a set K such that Kt = K holds for each t ∈ TI.

Obviously, the matrices V t introduced by (9.1) form a constant-order cluster basis.

Definition 9.2 (Uniform H-matrix) Let TI×J be a block cluster tree and let V = (V t)t∈TI and W =
(W s)s∈TJ be cluster bases for the index sets I,J . We define the set of uniform H-matrices with row basis
V and column basis W as

H(TI×J , V, W ) := {M ∈ RI×J | for all admissible (t, s) ∈ L(TI×J ),

there is St,s ∈ RKt×Ks

with M |t̂×ŝ = V tSt,sW s⊤}.

The matrices St,s are called coupling matrices.

A uniform H-matrix is of constant order, if the cluster bases (V t)t∈TI and (W s)s∈TJ are of constant order.

Remark 9.3 Differently from H-matrices, the set H(TI×J , V, W ) of uniform H-matrices for fixed bases V
and W is a subspace of RI×J .

Exercise 7 (Strongly admissible block cluster tree) In order to get a good approximation by an H2-
matrix, we have to replace the admissibility condition (2.4) by the strong admissibility condition (9.8).

Modify the function build_supermatrix_from_cluster2 from Exercise 2 in such a way that it uses the
strong admissibility condition (9.8) instead of the standard admissibility.
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Exercise 8 (H2-matrix) Modify build_supermatrix_from_cluster2 from Exercise 7 in such a way that
for admissible blocks, a uniformmatrix is created instead of an rkmatrix. Since you need a clusterbasis
to create a uniformmatrix, you have to modify the parameters for your function:

psupermatrix
build_supermatrix_from_cluster2(pclusterbasis row, pclusterbasis col,

double eta);

Each supermatrix corresponds to a pair t × s of clusters. Make sure that the fields row and column of the
supermatrix point to the cluster bases corresponding to the correct clusters.

Due to rank(V tSt,sW s⊤) ≤ rank(St,s) ≤ min{#Kt, #Ks}, each uniform H-matrix is also an H-matrix with
rank k := max{#Kt, #Ks : t ∈ TI , s ∈ TJ }.

Using the kernel approximation (9.5) in each admissible block will lead to blocks satisfying (9.6), this matrix
is a uniform H-matrix of constant order with cluster bases defined by (9.1) and coefficient matrices defined
by (9.7).

Multiplying a vector x ∈ RI can be organized in a procedure consisting of four steps:

1. Forward transformation: Compute xs := W s⊤x|ŝ for all clusters s ∈ TI .

2. Multiplication: Compute
yt :=

∑

s∈Rt

St,sxs

for all clusters t ∈ TI .

3. Backward transformation: Compute y ∈ RI defined by

yi :=
∑

t,i∈t̂

(V tyt)i.

4. Non-admissible blocks: Treat non-admissible blocks as in the case of standard H-matrices.

Lemma 9.4 (Complexity of the multiplication phase) Let Csp be the sparsity constant of TI×I. For
a constant-order cluster basis with k = #K, the multiplication phase requires O(Cspk2#TI) operations.

Proof: By definition, we have #Rt ≤ Csp. Since the multiplication by St,s requires O(k2) operations and
has to be performed for each s ∈ Rt, the computation of yt for a cluster t ∈ TI requires O(Cspk2) operations.

Summing over all clusters concludes the proof.

Lemma 9.5 (Complexity of the multiplication for non-admissible blocks) Let Csp be the sparsity
constant of TI×I, and let nmin := max{#t̂ | t ∈ L(TI)}. We assume for all inadmissible leaves b = (t, s) ∈
L−(TI×I) of the block cluster tree, both t and s are leaves of the cluster tree, i.e., t, s ∈ L(TI) (cf. Exercise 2).
Then the treatment of the non-admissible blocks in the matrix-vector multiplication requires O(Cspn2

min#TI)
operations.

Proof: There are not more than #TI leaves, so there are not more than Csp#TI leaf nodes in the block
cluster tree. Let b = (t, s) ∈ L(TI×I) be one of these leaf nodes. By assumption, t and s must be leaf
clusters of TI , so we have max{#t̂, #ŝ} ≤ nmin, and the multiplication by the corresponding full matrix can
be completed in O(n2

min) operations.

In typical applications, we have #TI ≤ n, so the second and fourth step of the matrix-vector multiplication
can be accomplished in linear complexity with respect to the number of degrees of freedom n.

Unfortunately, a naive implementation of the remaining steps, namely the forward and backward transfor-
mation, requires O(n(p + 1)k) operations, where p is the depth of TI , and due to p ≈ log(n), we would only
reach almost linear complexity in n. In order to be able to perform matrix-vector multiplications in optimal
complexity with respect to n, we need to improve these transformations.
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9.2.2 Nested cluster bases

Definition 9.6 (Nested cluster basis) A cluster basis (V t)t∈TI is nested, if for each non-leaf cluster
t ∈ TI and each son cluster t′ ∈ sons(t), there is a transfer matrix T t′ ∈ RKt′×Kt

satisfying

(V tyt)i = (V t′T t′yt)i (9.9)

for all vectors yt ∈ RKt

and all indices i ∈ t̂′.

Example 9.7 (Two sons) If we assume that sons(t) = {t1, t2} with t1 ̸= t2, we have t̂ = t̂1∪̇t̂2, and (9.9)
takes the form

V t =
(

V t1T t1

V t2T t2

)
=
(

V t1

V t2

)(
T t1

T t2

)
.

Applying this equation recursively, we find

range(V t|t̂′×Kt) ⊆ range(V t′)

for all clusters t′ ∈ TI with t̂′ ⊆ t̂.

Definition 9.8 (H2-matrix) A uniform H-matrix whose column and row cluster basis are nested is called
an H2-matrix.

Due to equation (9.4), the cluster basis defined by (9.1) is nested.

Let us consider the backward transformation: for i ∈ I, we have to compute

yi :=
∑

s,i∈ŝ

(V sys)i.

We single out a non-leaf cluster t ∈ TI and apply (9.9) to the cluster t′ ∈ sons(t) with i ∈ t̂′:

yi =
∑

s̸=t,i∈ŝ

(V sys)i + (V tyt)i =
∑

s̸=t,i∈ŝ

(V sys)i + (V t′T t′yt)i

=
∑

s̸=t,s̸=t′,i∈ŝ

(V sys)i + V t′(yt′ + T t′yt)i.

The cluster t does no longer appear in this sum, since its contribution has been added to the vectors
corresponding to its son. This means that we can define a new set (ŷs)s∈TI by setting

ŷs :=

⎧
⎪⎨

⎪⎩

0 if s = t,

ys + T syt if s ∈ sons(t),
ys otherwise,

and find
yi =

∑

s∋i

(V sys)i =
∑

s∋i

(V sŷs)i =
∑

s∋i,s̸=t

(V sŷs)i

for all i ∈ I. We can apply this technique to recursively eliminate all non-leaf clusters:

void
backward_clusterbasis(pclusterbasis cb, double *y)
{
/* ... some initialization ... */

if(sons > 0) {
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yindex = 0;
for(i=0; i<sons; i++) {
addeval_lapack(son[i]->kt, kt, T[i], yt, son[i]->yt);
backward_clusterbasis(son[i], y + yindex);
yindex += son[i]->n;

}
}
else

addeval_lapack(n, kt, V, yt, y);
}

Lemma 9.9 (Complexity of the backward transformation) For a constant-order cluster basis with
k := #K, the fast backward transformation requires O(kn + k2#TI)) operations.

Proof: For a non-leaf cluster t ∈ TI , we multiply yt by T t′ for all of its sons t′ sons(t). This requires O(k2)
operations. Since each cluster has not more than one father, not more than O(#TI) such multiplications
are performed, so treating all non-leaf clusters is accomplished in O(k2#TI) operations.

For a leaf cluster t ∈ TI , we multiply yt by V t. This requires O(k#t̂) operations. Since the index sets
corresponding to the leaves of TI form a partition of I (cf. Lemma 2.7), we have

∑

t∈L(TI)

k#t̂ = kn,

so the backward transformation requires O(kn + k2#TI) operations.

Let us now turn our attention to the forward transformation, i.e., to the task of computing xs := W s⊤x|ŝ
for all s ∈ TI . Let s ∈ TI . If sons(s) = ∅, we compute xs directly. Otherwise, we first compute xs′

for all
s′ ∈ sons(s) and observe that

xs = W s⊤x|ŝ =
∑

s′∈sons(s)

T s′⊤
W s′⊤

x|ŝ′ =
∑

s′∈sons(s)

T s′⊤
xs′

holds, i.e., we can use the vectors xs′
corresponding to the sons of s to compute xs. The result is the following

recursive procedure:

void
forward_clusterbasis(pclusterbasis cb, const double *x)
{
/* ... some initialization ... */

clear_vector(kt, xt);
if(sons > 0) {

xindex = 0;
for(i=0; i<sons; i++) {
forward_clusterbasis(son[i], x + xindex);
addevaltrans_lapack(son[i]->kt, kt, T[i], son[i]->xt, xt);
xindex += son[i]->n;

}
}
else

addevaltrans_lapack(n, kt, V, xt, x);
}

Remark 9.10 (Complexity of the forward transformation) We can treat the forward transformation
by an identical argument as in the proof of Lemma 9.9 and reach an identical bound for its the complexity.
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Remark 9.11 In special situations, we can reduce the complexity of the forward and backward transforma-
tion to O(n) by using different ranks for different clusters [55, 56, 16].

9.2.3 Implementation

The structure used for the representation of a cluster basis is similar to that used for clusters:

Implementation 9.12 (clusterbasis) The clusterbasis structure is defined as follows:

typedef struct _clusterbasis clusterbasis;
typedef clusterbasis *pclusterbasis;

struct _clusterbasis {
pccluster t;

double **T;
double *V;

double *xt;
double *yt;

int k;
int kt;
int n;

int sons;
pclusterbasis *son;

};

The fields sons and son are used to form a tree of clusterbasis structures similar to the cluster tree.

The entry t points to the cluster this cluster basis is used for.

The field k gives the maximal possible rank for which memory has been allocated, while the field kt gives the
current rank. The field n gives the number of indices in the corresponding cluster, it is identical to t->size.

The array T contains the transfer matrices T t′ . The entry T[i] corresponds to the i-th son son[i] and
represents a matrix in FORTRAN format with son[i]->kt rows and kt columns.

The array V contains the matrix V t corresponding to this cluster, stored in standard FORTRAN format
with n rows and kt columns. Typically, this array will only be used if t is a leaf cluster.

The fields xt and yt are auxiliary variables of size kt that store the vectors xt and yt used in the matrix-vector
multiplication algorithm.

Using this representation of a cluster basis, the representation of a uniform H-matrix is straightforward: we
introduce a new matrix type containing the coefficient matrix St,s and pointers to the cluster bases and add
it to the supermatrix structure:

Implementation 9.13 The structure uniformmatrix is similar to rkmatrix:

typedef struct _uniformmatrix uniformmatrix;
typedef uniformmatrix *puniformmatrix;

struct _uniformmatrix {
pclusterbasis row;
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pclusterbasis column;

int rows;
int cols;

int kr;
int kc;
int ktr;
int ktc;

double *S;
};

The pointers row and column give us the cluster basis corresponding to this block: V t corresponds to row
and V s corresponds to column.

The field rows stores the number of rows of this matrix block, while cols stores the number of columns.

The fields kr and kc give the maximal ranks of the row and column basis, the field ktr and ktc give the
current ranks.

Finally, the array S contains the coefficient matrix St,s in standard FORTRAN format with ktr rows and
ktc columns.

Implementation 9.14 (Changes in supermatrix) In order to be able to treat uniform H-matrices and
H2-matrices, we have to add three fields to the supermatrix structure:

pclusterbasis row;
pclusterbasis col;
puniformmatrix u;

The fields row and col give us the cluster bases corresponding to this supermatrix, if it describes a uniform
H-matrix. If it describes an admissible block of a uniform H-matrix, the field u contains the corresponding
coefficient matrix St,s.

There are two ways of performing a matrix-vector multiplication by a uniform matrix: we can compute
y := V tSt,sV s⊤x|s directly, or we can compute only yt := St,sxs. Obviously, the second choice is much more
efficient than the first. Its implementation is very simple if the LAPACK library is used:

void
fasteval_uniformmatrix(puniformmatrix um)
{
eval_lapack(um->ktr, um->ktc, um->S, um->col->xt, um->row->yt);

}

Obviously, this routine requires the representation um->col->xt of the vector xs to be already initialized.
This can be done by calling forward_clusterbasis before calling the standard eval_supermatrix and by
calling backward_clusterbasis afterwards. We have redefined eval_supermatrix, addeval_supermatrix,
evaltrans_supermatrix and addevaltrans_supermatrix in such a way that the forward and backward
transformations are performed automatically if a cluster basis is present, i.e., if the fields row and col of the
supermatrix are not null pointers.

9.3 Orthogonal cluster bases

In order to simplify the conversion of an arbitrary matrix into an H2-matrix, we introduce a special class of
cluster bases:
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Definition 9.15 (Orthogonal cluster bases) A cluster basis (V t)t∈TI is orthogonal, if

(V t)⊤V t = I

holds for all clusters t ∈ TI.

Before we can prove some of the properties of orthogonal cluster bases, we need some nomenclature:

Definition 9.16 (Matrix Hilbert space) Let I, J be arbitrary finite index sets. We define the Frobenius
inner product on the space RI×J by

⟨A, B⟩F :=
∑

i∈I

∑

j∈J
AijBij

for A, B ∈ RI×J . Obviously, we have ⟨A, A⟩F = ∥A∥2
F , so the Frobenius inner product turns the matrix

space RI×J into a Hilbert space.

Lemma 9.17 (Matrix products) Let I,J ,K be arbitrary finite index sets. Let A ∈ RI×J , B ∈ RJ×K

and C ∈ RI×K. Then we have

⟨AB, C⟩F = ⟨B, A⊤C⟩F = ⟨A, CB⊤⟩F .

Proof: Trivial.

Lemma 9.18 (Best approximation) Let (V t)t∈TI , (W s)s∈TJ be orthogonal cluster bases. Let M ∈ Rt̂×ŝ

be an arbitrary matrix. Then
SM := (V t)⊤MW s

satisfies
∥M − V tSM (W s)⊤∥F ≤ ∥M − V tS(W s)⊤∥F

for all S ∈ RKt×Ks
, i.e., SM is the optimal coefficient matrix for representing M as a uniform matrix block.

Proof: We introduce the function

f : RKt×Ks

→ R, S +→ 1
2
∥V tS(W s)⊤ − M∥2

F .

The minimum S∗ of f is the optimal coefficient matrix. Since f is a quadratic function, its minimum satisfies
the equation

0 = Df(S∗) · R = ⟨V tS∗(W s)⊤, V tR(W s)⊤⟩F − ⟨M, V tR(W s)⊤⟩F (9.10)

for all R ∈ Rt̂×ŝ, i.e.,

⟨SM , R⟩F = ⟨(V t)⊤MW s, R⟩F = ⟨M, V tR(W s)⊤⟩F
(9.10)
= ⟨V tS∗(W s)⊤, V tR(W s)⊤⟩F

= ⟨S∗, (V t)⊤V t

︸ ︷︷ ︸
=I

R (W s)⊤W s

︸ ︷︷ ︸
=I

⟩F = ⟨S∗, R⟩F .

Since the Frobenius inner product in non-degenerate, this implies S∗ = SM .

This lemma implies that computing the optimal coefficient matrices is a simple task once the cluster bases
have been constructed.

As an example, let us consider the conversion of an rkmatrix to a uniformmatrix: the rkmatrix is given
in the form M = AB⊤, so the optimal coupling matrix

SM := (V t)⊤MW s = ((V t)⊤A)((W s)⊤B)⊤

can be computed by the following simple procedure:
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void
convertrk2_uniformmatrix(prkmatrix r, puniformmatrix u)
{
/* ... some initialization ... */

Ac = allocate_matrix(u->ktr,r->kt);
Bc = allocate_matrix(u->ktc,r->kt);

for(i=0; i<r->kt; i++) {
forward_clusterbasis(u->row, r->a + i*r->rows);
copy_lapack(u->ktr, u->row->xt, Ac + i*u->ktr);

forward_clusterbasis(u->col, r->b + i*r->cols);
copy_lapack(u->ktc, u->col->xt, Bc + i*u->ktc);

}

multrans2_lapack(u->ktr, u->ktc, r->kt,
Ac, Bc, u->S);

freemem(Bc); freemem(Ac);
}

9.4 Adaptive cluster bases

We have seen that H2-matrices provide an efficient way of dealing with matrices that result from the dis-
cretization of integral operators. Now we want to examine the case of general matrices, i.e., we want to find
an algorithm that approximates an arbitrary matrix into an H2-matrix (cf. [9, 15, 7]).

9.4.1 Matrix error bounds

Since we intend to compute row and column cluster bases separately, we need to separate the estimates for
V t and W s:

Lemma 9.19 (Separation of row and column bases) Let (V t)t∈TI , (W s)s∈TJ be orthogonal cluster
bases. Let M ∈ Rt̂×ŝ. Then

∥M − V tSM (W s)⊤∥2
F ≤ ∥M − V t(V t)⊤M∥2

F + ∥M⊤ − W s(W s)⊤M⊤∥2
F .

Proof: Let B, C ∈ Rt̂×ŝ. We start by observing

⟨B − V t(V t)⊤B, V t(V t)⊤C⟩F = ⟨V t(V t)⊤B − V t (V t)⊤V t

︸ ︷︷ ︸
=I

(V t)⊤B, C⟩F = 0. (9.11)

Setting B = M and C = M − MW s(W s)⊤, we find that we can apply Pythagoras’ equation in order to
prove

∥M − V tSM (W s)⊤∥2
F = ∥M − V t(V t)⊤M + V t(V t)⊤(M − MW s(W s)⊤)∥2

F

= ∥M − V t(V t)⊤M∥2
F + ∥V t(V t)⊤(M − MW s(W s)⊤)∥2

F .

Setting B = C = M − MW s(W s)⊤ in (9.11), we can again use Pythagoras’ equation to get

∥B∥2
F = ∥B − V t(V t)⊤B∥2

F + ∥V t(V t)⊤B∥2
F ≥ ∥V t(V t)⊤B∥2

F



9.4. ADAPTIVE CLUSTER BASES 153

and therefore
∥V t(V t)⊤(M − MW s(W s)⊤)∥2

F ≤ ∥M − MW s(W s)⊤∥2
F .

Observing ∥M − MW s(W s)⊤∥F = ∥M⊤ − W s(W s)⊤M⊤∥F concludes the proof.

Lemma 9.20 (Approximation error) Let (V t)t∈TI be orthogonal cluster bases. Let M ∈ Rt̂×ŝ. Then we
have

∥M − V t(V t)⊤M∥2
F = ∥M∥2

F − ∥(V t)⊤M∥2
F .

Proof: Due to (9.11), we have

∥M − V t(V t)⊤M∥2
F = ∥M∥2

F + ∥V t(V t)⊤M∥2
F − 2⟨M, V t(V t)⊤M⟩2F

= ∥M∥2
F + ∥V t(V t)⊤M∥2

F − 2⟨V t(V t)⊤M, V t(V t)⊤M⟩2F = ∥M∥2
F − ∥V t(V t)⊤M∥2

F .

The orthogonality of V t implies

∥V t(V t)⊤M∥2
F = ⟨V t(V t)⊤M, V t(V t)⊤M⟩F = ⟨(V t)⊤M, (V t)⊤V t

︸ ︷︷ ︸
=I

(V t)⊤M⟩F = ∥(V t)⊤M∥2
F ,

which proves our claim.

This means that minimizing the approximation error is equivalent to maximizing ∥(V t)⊤M∥F .

9.4.2 Construction of a cluster basis for one cluster

We recall Lemma 6.4 to see that the singular value decomposition can be used to find the orthogonal low-
rank matrix V t that solves this maximization problem: we set n := #t̂ and compute the singular value
decomposition M = V ΣU⊤ of M with orthogonal matrices V ∈ Rt̂×n, W ∈ Rŝ×n and a diagonal matrix
Σ = diag(σ1, . . . ,σn) ∈ Rn×n, where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. We choose a rank k and use In,kt ∈ Rn×kt

defined by
In,k
ij = δij

for i ∈ {1, . . . , n}, j ∈ {1, . . . , k} to define V t := V In,k (in short: the matrix V t consists of the first k
columns of V ). Now we see that

M − V t(V t)⊤M = V ΣU⊤ − V In,k(In,k)⊤V ⊤V ΣU = V (I − In,k(In,k)⊤)ΣU

holds, and since

In,k(In,k)⊤ij =

{
δij if i ≤ kt

0 otherwise,

we get

∥M − V t(V t)⊤M∥2
F =

n∑

i=k+1

σ2
i .

We note that
MM⊤ = V ΣU⊤UΣ⊤V ⊤ = V Σ2V ⊤

implies that, since we are not interested in the matrix U , we do not have to compute a full singular value
decomposition of M , but only a Schur decomposition of the Gram matrix MM⊤. Then the eigenvectors will
correspond to the columns of V and the eigenvalues to the squared singular values.

By definition, the matrix V t will not only be used for one block, but for an entire block row of the matrix.
The block row is given by

Rt
+ := {s ∈ TJ : there is t+ ∈ TI with t̂ ⊆ t̂+ such that t+ × s is an admissible leaf of TI×J }.

Due to the nested structure of cluster bases, we have to consider not only blocks directly connected to t, but
also those that are connected to ancestors of t.
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Block rows influencing different clusters

Using the row blocks described by Rt
+, we can now formulate the optimization problem: let M ∈ RI×J be

a matrix. We need to find an orthogonal rank-k-matrix V t that maximizes
∑

s∈Rt
+

∥(V t)⊤M |t̂×ŝ∥2
F . (9.12)

As we have seen before, this problem can be solved by computing the eigenvectors and eigenvalues of the
Gram matrix

G :=
∑

s∈Rt
+

M |t̂×ŝM |⊤t̂×ŝ. (9.13)

9.4.3 Construction of a nested basis

We can apply the above construction to all clusters in TI and will get a cluster basis, but this basis will in
general not be nested. We have to modify the algorithm in order to ensure that it results in a nested cluster
basis: For all leaf clusters, we can apply the direct construction. For non-leaf clusters t ∈ TI , we assume
that we already have computed suitable orthogonal matrices V t′ for all sons t′ ∈ sons(t) and have to ensure
that there are matrices T t′ ∈ Rkt′×k such that

V t
i = (V t′T t′)i

holds for all t′ ∈ sons(t) and i ∈ t̂. In order to simplify the presentation, we will only consider the case that
t has two sons, i.e., sons(t) = {t1, t2}. Then the condition (9.9) can be written in the form

V t =
(

V t1T t1

V t2T t2

)

and instead of finding V t maximizing (9.12), we have to find T t1 and T t2 maximizing

∑

s∈Rt
+

∥∥∥∥∥

(
V t1T t1

V t2T t2

)⊤(
M |t̂1×ŝ

M |t̂2×ŝ

)∥∥∥∥∥

2

F

=
∑

s∈Rt
+

∥∥∥∥∥

(
T t1

T t2

)⊤((V t1)⊤M |t̂1×ŝ

(V t2)⊤M |t̂2×ŝ

)∥∥∥∥∥

2

F

If we introduce the matrices

M̂ t1,s := (V t1)⊤M |t̂1×ŝ and M̂ t2,s := (V t2)⊤M |t̂2×ŝ,

we get
∑

s∈Rt
+

∥(V t)⊤M |t̂×ŝ∥2
F =

∑

s∈Rt
+

∥∥∥∥∥

(
T t1

T t2

)⊤(
M̂ t1,s

M̂ t2,s

)∥∥∥∥∥

2

F

.
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By construction, we know that V t1 and V t2 are already orthogonal, and we want the matrix V t to be
orthogonal as well, i.e., to satisfy

I = (V t)⊤V t =
(

V t1T t1

V t2T t2

)⊤(
V t1T t1

V t2T t2

)
=
(

T t1

T t2

)⊤((V t1)⊤V t1T t1

(V t2)⊤V t2T t2

)
=
(

T t1

T t2

)⊤(
T t1

T t2

)
.

Now we can summarize the algorithm:

1. If t ∈ TI is a leaf, we compute the Gram matrix

G :=
∑

s∈Rt
+

M |t̂×ŝM |⊤
t̂×ŝ

.

We build V t from the eigenvectors corresponding to the k largest eigenvalues of G and set

M̂ t,s := (V t)⊤M |t̂×ŝ

for all s ∈ Rt
+.

2. If t ∈ TI is not a leaf, we compute cluster bases for the son clusters t1, t2 recursively and then compute
the reduced Gram matrix

Ĝ :=
∑

s∈Rt
+

(
M̂ t1,s

M̂ t2,s

)(
M̂ t1,s

M̂ t2,s

)⊤
.

We build T t1,t and T t2,t from the eigenvectors corresponding to the k largest eigenvalues of Ĝ and set

M̂ t,s :=
(

T t1

T t2

)⊤(
M̂ t1,s

M̂ t2,s

)
= (T t1)⊤M̂ t1,s + (T t2)⊤M̂ t2,s

for all s ∈ Rt
+.

9.4.4 Efficient conversion of H-matrices

We can implement the basic algorithm given above directly and will get a suitable nested row cluster bases
for the matrix M . Unfortunately, the computation of the Gram matrix

G =
∑

s∈Rt
+

M |t̂×ŝM |⊤
t̂×ŝ

for a general matrix will require O((#t̂)2(#ŝ)) operations, leading to a total complexity of O(n2). While
this is acceptable for dense matrices, it is not for matrices that are already stored in H-matrix format.

If M is an H-matrix, then s ∈ Rt
+ implies that there is a cluster t+ ∈ TI such that b := t+ × s ∈ TI×J

is admissible, i.e., that M |t̂+×ŝ = AB⊤ holds for a rank parameter kH ∈ N and matrices A ∈ Rt̂+×kH ,
B ∈ Rŝ×kH . Therefore we have

M |t̂×ŝM |⊤t̂×ŝ = A|t̂×kB⊤BA|⊤t̂×k = A|t̂×kGbA|⊤t̂×k. (9.14)

If we have prepared the matrix
Gb := B⊤B,

in advance, we can compute the product (9.14) in O((t̂)2kH) operations, which leads to a total complexity
of O(n(k2 + kH)p). The preparation of all matrices Gb can be accomplished in O(nk2

Hp) operations.
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9.5 Implementation

Implementation 9.21 (Conversion functions) Since they are quite complicated, we will not describe the
routines for creating adaptive cluster bases and recompressing H- or H2-matrices in detail. The following
functions are collected in the module h2conversion:

pclusterbasis
buildrow2_supermatrix(psupermatrix s, pccluster root,

double eps, int kmax,
TruncationStrategy strategy);

pclusterbasis
buildcol2_supermatrix(psupermatrix s, pccluster root,

double eps, int kmax,
TruncationStrategy strategy);

These functions create an adaptive orthogonal nested cluster basis for a given supermatrix and a given
cluster tree root. The parameter strategy controls the truncation strategy and can take the following
values:

• HLIB_FROBENIUS_ABSOLUTE means that the rank k will be chosen large enough to ensure that the ab-
solute Frobenius error of the resulting matrix is bounded by eps.

• HLIB_FROBENIUS_RELATIVE means that the rank k will be chosen large enough to ensure that the block-
wise relative Frobenius error of the resulting matrix is bounded by eps.

• HLIB_EUCLIDEAN_RELATIVE means that the rank k will be chosen large enough to ensure that the block-
wise relative Euclidean error of the resulting matrix is bounded by eps.

The parameter kmax gives an absolute upper bound for the rank k.

As soon as we have orthogonal row and column cluster bases, we can use the function

psupermatrix
project2bases_supermatrix(psupermatrix s, int mixed,

pclusterbasis row, pclusterbasis col);

to create an H2-matrix that is the optimal approximation of s in the same block structure and with the bases
row and col (cf. Lemma 9.18). If the parameter mixed is non-zero, the routine will not create a “pure”
H2-matrix but mix rkmatrix and uniformmatrix blocks to minimize the storage complexity.

Of course there are also top-level functions that hide all details from the user:

psupermatrix
buildh2_supermatrix(psupermatrix s, pccluster row, pccluster col,

double eps, int kmax,
TruncationStrategy strategy);

psupermatrix
buildh2symm_supermatrix(psupermatrix s, pccluster ct,

double eps, int kmax,
TruncationStrategy strategy);

The first routine computes an H2-matrix that approximates the given matrix s. Here, row and col give the
row and column cluster trees and eps, kmax and strategy have the same meaning as in the cluster bases
construction routines above.
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The second routine is meant for symmetric matrices. Here, we can use the same cluster basis for row and
columns, so we can reduce the computational and storage complexity.
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Chapter 10

Matrix Equations

In this chapter we consider matrix equations of the form

(Lyapunov) AX + XAT + C = 0, (10.1)
(Sylvester) AX − XB + C = 0, (10.2)

(Riccati) AX + XAT − XFX + C = 0, (10.3)

where A, B, C, F are given matrices of suitable dimension and X is the sought solution (a matrix). In the
previous chapters we had the task to assemble a (BEM) stiffness matrix A, or to invert the matrix A in a
data-sparse format, or to solve an equation Ax = b for the vector x, where the right-hand side b and system
matrix A are given. The solution x was just a standard vector.

For matrix equations, also the solution matrix X has to be sought in a data-sparse format. Here, we will
seek X either in the R(k)-matrix or H-matrix format.

10.1 Motivation

Let us start with a simple example, namely the equation

AX + XA + I = 0, A ∈ Rn×n.

The solution is the matrix X = − 1
2A−1, i.e., the inversion of matrices is a special case of such a (linear)

matrix equation. From Section 5 we know that the inverse of an elliptic operator can be approximated
efficiently in the H-matrix format. In the following we will prove that this can be generalised and we will
present some algorithms by which the solution can be computed efficiently in the R(k)-matrix or H-matrix
format.

10.2 Existence of Low Rank Solutions

The existence of (approximate) solutions in a special format is best answered for the Sylvester equation
(which covers the Lyapunov case). For the non-linear Riccati equation we can derive the results easily for
low rank F .

For the existence and uniqueness of solutions to the Sylvester equation (10.2) it is necessary and sufficient
that σ(A) ∩ σ(B) = ∅. We demand a slightly stronger condition, namely

σ(A) < σ(B), (10.4)
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which can be generalised to the case that the spectra of A and B are contained in two disjoint convex sets.
Then the solution X is explicitly known.

Theorem 10.1 Let A ∈ Rn×n, B ∈ Rm×m and let (10.4) hold. Then the matrix

X :=
∫ ∞

0
exp(tA)C exp(−tB) dt (10.5)

solves (10.2).

Proof: Due to (10.4) the function t +→ ∥ exp(tA)∥∥ exp(−tB)∥ decays exponentially so that the matrix X is
well defined. Now we can simply calculate

AX − XB =
∫ ∞

0
(A exp(tA)C exp(−tB) − exp(tA)C exp(−tB)B) dt

=
∫ ∞

0

∂

∂t
exp(tA)C exp(−tB) dt

= lim
t→∞

exp(tA)C exp(−tB) − exp(0 · A)C exp(−0 · B)

= −C.

Since the integrand in (10.5) decays exponentially, we can use special quadrature formulae that need only
O(log(ε)2) quadrature points in order to approximate X up to an absolute error of ε. These can be derived
by piecewise interpolation, where the pieces are refined towards the origin, or one can use the formula from
the book [58] as done in [34] that gives k weights wj and points tj so that the matrix

Xk :=
k∑

j=1

wj exp(tjA)C exp(−tjB) (10.6)

fulfils the error estimate
∥X − Xk∥2 ≤ CA,B∥C∥2 exp(−

√
k),

where the constant CA,B depends on the location of the spectra of A and B. If C is an R(kC)-matrix, then
Xk is an R(k · kC)-matrix, which proves the existence of low rank solutions to the Sylvester and Lyapunov
equation if the matrix C is of low rank. For the solution X of the Riccati equation there holds

AX + XAT + (C − XFX) = 0,

so that the conclusions from above show that the solution X can be approximated up to an error of CA,AT ∥C−
XFX∥2 exp(−

√
k) by a matrix Xk of rank at most k · (kC + kF ).

The computation of an approximate solution by formula (10.6) is not straight-forward, since it involves the
matrix exponential.

10.3 Existence of H-matrix Solutions

Formula (10.6) can be used to prove the existence of H-matrix solutions to the Sylvester equation for
H-matrices C ∈ H(T, kC), if both exp(tjA) and exp(−tjB) can be approximated by H-matrices Aj ∈
H(T, kA), Bj ∈ H(T, kB) for all tj : Lemma 7.19 proves

AjCBj ∈ H(T, C2
idC2

sp(p + 1)2 max{kA, kB, kC})

so that the approximant

XH,k :=
k∑

j=1

wjAjCBj
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is contained in H(T, kX) for a rank kX = O(kp2 max{kA, kB, kC}). The existence of H-matrix approxima-
tions to the matrix exponential is studied in [22, 34] and briefly in the outlook in chapter 11.3.2. Essentially,
one requires the uniform approximability of (λI − A)−1 in H(T, kA) for complex numbers λ outside the
spectrum of A. This is just a variant of the approximation result from Section 5, if the matrix A stems from
the discretisation of a partial differential operator of elliptic type.

For a simple H-matrix format, we can improve the analytic results from above by algebraic arguments. Let
us consider a block-system of the form

[
A11 A12

A21 A22

] [
X11 X12

X21 X22

]
−
[
X11 X12

X21 X22

] [
B11 B12

B21 B22

]
+
[
C11 C12

C21 C22

]
= 0,

where the off-diagonal blocks Aij , BijCij , i ̸= j, are of the R(k)-matrix format.

For the two off-diagonal blocks we get the equations

A22X21 − X21B11 + (C21 + A21X11 − X22B21) = 0,

which is a Sylvester equation with low rank matrix C21 + A21X11 − X22B21, so that here the results from
the previous section prove that X21 can be approximated in the R(k)-matrix format.

In the diagonal subblocks this resolves into two smaller Sylvester equations

AiiXii − XiiBii + (Cii + AijXji − XijBji) = 0, i ̸= j.

Since Aij and Bji are of low rank, the (blockwise) rank of C11 is increased only by 2k.

By induction this proves
X ≈ XH,ε ∈ H(T, k̃), ∥X − XH,ε∥2 ≤ ε

where T is a block cluster tree where all off-diagonal blocks are leaves (admissible), A, B, C ∈ H(T, k) and
k̃ = O(log(ε)2kp).

10.4 Computing the solutions

The computation of rkmatrix and H-matrix solutions can be done efficiently by numerous methods. Here,
we want to present only some concepts of this rapidly developing field of research.

Via the matrix exponential

The first method is just the straight-forward implementation of (10.6). We compute the weights wj and
quadrature points tj beforehand (by an explicit formula), use the H-matrix-by-matrix multiplication ⊙
to compute exp(tjA)C exp(−tjB) and need to compute “only” the matrix exponential for all tj . This
can be done by scaling and squaring in the formatted H-matrix arithmetic [14] or by a Dunford-Cauchy
representation that involves the resolvents [22]. For each quadrature point we have to compute at least once
a matrix exponential, i.e., the complexity is at least O(n log4 n) for this ansatz — neglecting the rank k.
The advantage of this method is its simplicity: all computations can be performed in the standard H-matrix
arithmetic and it works for matrices A, B, C in H-matrix or rkmatrix format.

Via multigrid methods

Multigrid methods rely on a multilevel discretisation of the underlying continuous equation, i.e., we have a
sequence

AℓXℓ − XℓBℓ + Cℓ = 0

of equations where the size of the system on level ℓ is nℓ × nℓ and

1 ≈ n1 ≤ · · · ≤ nℓ.
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Each of the operators Aℓ, Bℓ, Cℓ is discretised on a grid τℓ (e.g., by finite elements) and between two subse-
quent grids τℓ, τℓ+1 we have transfer operators Pℓ that map a vector on the coarser grid τℓ to the finer grid
τℓ+1. Therefore, the coarse solutions Xℓ can be approximated by

Xℓ ≈ PT
ℓ Xℓ+1Pℓ.

In the low rank setting the application of P reads

PT
ℓ Xℓ+1Pℓ =

k∑

ν=1

PT
ℓ aνbT

ν Pℓ =
k∑

ν=1

(PT
ℓ aν)(PT

ℓ bν)T ,

so that the transfer of the solution matrix X between the grids is just the application of the transfer operator
to the vectors aν , bν in the R(k)-matrix format. Similarly, this can be done for H-matrix solutions Xℓ. Apart
from the grid transfer operators we need on each level ℓ a so-called smoothing operator Sℓ, e.g., Richardson
or Jacobi [39]. For a Sylvester equation the Jacobi smoother requires the solution of a diagonal Sylvester
equation (A and B diagonal matrices).

Via meta methods

A meta method is, e.g., ADI. Here, the Sylvester equation is split into a series of linear systems

Ãℓ,jXℓ,j = C̃ℓ,j

where Ãℓ,j = Aℓ + λjI. For the right choice of shift parameters λj the iteration converges rapidly, but
in each step we have to invert the shifted system Ãℓ,j — similar to the matrix exponential ansatz in the
Dunford-Cauchy representation. In the low rank setting however, one can use standard solvers for the linear
system Ãℓ,jx = c, hence the name “meta method”.

Via the matrix sign function

The matrix sign function has proven to be a useful tool for the solution of dense matrix equations [52].
Therefore, it is natural to use the same method but formulate it in terms of H-matrices and H-matrix
arithmetics. We will explain this for the Lyapunov equation and leave the Riccati equation to the interested
reader [34]. We define the matrices

X0 := C, A0 := A

where σ(A) ⊂ C− is assumed. The solution X is just X = 1
2X∞, where X∞ is the limit of the series

Xi+1 :=
1
2
(Xi + A−T

i XiA
−1
i ), Ai+1 :=

1
2
(Ai + A−1

i ).

Implicitly, we have computed

sign
[
AT C

−A

]
=
[
AT
∞ X∞

−A∞

]

by Newton’s method (sign is the matrix sign function corresponding to the complex sign function on C\{0}:

sign(r + ic) =
{

1 r > 0
−1 r < 0

Locally, the convergence is quadratic but the initial slow (linear) convergence dominates. Therefore, one
should use an acceleration technique by scaling.

We consider the scalar case a0 ≪ 0 and compute ai+1 := 1
2 (ai + a−1

i ) ≈ 1
2ai. The limit is the same if we

scale the iterate a0 by some value α > 0:

sign(a0) = lim
i→∞

ai = lim
i→∞

bi = sign(b0), b0 = αa0, bi+1 :=
1
2
(bi + b−1

i ).
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In the limit we get limi→∞ ai = −1, but for a0 ≪ 0 we have just a linear convergence rate of 1/2. Here, it
is obvious to compute

b0 := a0/|a0|,

i.e., we rescale the iterate a0 and get the solution in one step. For matrices Ai this translates to

α :=
√
∥A−1∥2/∥A∥2,

A0 := αA,

Ai+1 =
1
2
(Ai + A−1

i ).

In principle, one can use the acceleration by scaling in every step of Newton’s method, but for two reasons
this is not adavantageous: first, the quadratic convergence can be deteriorated and second, the truncation
error can be amplified by the scaling factor. Therefore, one should only use the scaling in the first step to
balance the spectrum of A0. Due to the fact that we have to compute A−1

0 anyway, the additional cost to
compute α by some power iteration (norm2_supermatrix) is negligible.

In H-matrix arithmetics we have to replace the exact addition, multiplication and inversion by the formatted
counterparts. This yields a fast solution method for Lyapunov, Sylvester and Riccati equations where the
matrices A, B, C, F are allowed to be of an arbitrary H-matrix format. Since the computation of the matrix
sign involves log(n) inversions, the overall complexity of this approach is O(n log3 n).

10.5 High-dimensional Problems

As a generalisation to the Sylvester equation of the previous section one can consider equations Ax = b
where the matrix A ∈ Rnd×nd

is of the form

A =
d∑

i=1

Âi, Âi = I ⊗ · · ·⊗ I︸ ︷︷ ︸
i−1 terms

⊗Ai ⊗ I ⊗ · · ·⊗ I︸ ︷︷ ︸
d−i terms

, I, Ai ∈ Rn×n

and the right-hand side is given as a tensor vector

b =
d⊗

i=1

bi, bi ∈ Rn, b[j1, . . . , jd] =
d∏

i=1

bi[ji] for j ∈ {1, . . . , n}d.

Then the solution can be computed by use of the matrix exponential exp(tjAi) of the n × n matrices Ai,

x ≈
k∑

ν=1

d⊗

i=1

xi,ν , xi,ν = wν exp(tνAi)bi,

such that the complexity is reduced to O(dn log(n)c) instead of O(nd) for the fullmatrix solution. For
details the reader is referred to [28]. Here, the matrix exponential exp(tνAi) can be approximated in the
H-matrix format and the solution is represented as a (low Kronecker rank) tensor vector, which is a d-
dimensional analogue to the rkmatrix format.
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Chapter 11

Outlook

In the previous chapters we introduced the hierarchical matrix format (H-matrices) and a refined variant,
the H2-matrix format. In this chapter we will consider further algorithms for these matrices, other (similar)
matrix formats and possible applications.

11.1 Adaptive Refinement

For the efficient treatment of boundary integral and partial differential equations an adaptive discretization
scheme is inevitable, that means for a given right-hand side the unique solution has to be approximated on
a grid with as few as necessary unknowns. This is typically done by refining the grid adaptively according
to the indication by some a posteriori error estimator.

For partial differential equations the discretization itself is of negligible complexity, only the solution of
the typically ill-conditioned large system of equations is a task. If a large part of the grid is refined, then
the (block) cluster tree is best constructed in the standard geometrically or cardinality balanced way and
the formatted H-matrix inversion yields a good approximate inverse that can be used to directly solve or
precondition the system. If only a small part of the grid is to be refined, then this can be regarded as a
low rank perturbation of the operator on the coarse grid. The Sherman-Morrison-Woodbury formula for the
inversion of the perturbed matrix allows for an efficient low rank update of the previously computed inverse
for the coarse grid.

The story is different for (boundary) integral operators. Here, the (data-sparse) discretization is of high
complexity. Therefore, it is desirable to retain as many as possible entries when refining the grid. This can
be achieved for the regular geometrically balanced clustering if one uses the approximation by interpolation
from Chapter 3 or the cross approximation techniques from Chapter 4. This topic is partially covered by
[30] and [31] and it is the topic of the doctoral thesis of Jelena Djokić.

11.2 Other Hierarchical Matrix Formats

The hierarchical matrices introduced in the previous chapters consist of rkmatrix or fullmatrix blocks
(uniformmatrix blocks for H2-matrices). One may think of other formats like Toeplitz matrices, banded
matrices, sparse matrices or others. Here, one has to distinguish between the data-sparse storage and fast
evaluation of the matrix, and the possibility to apply the formatted H-matrix arithmetics. While the first
goal, the storage and evaluation, can be achieved for a variety of formats, this is not true for the second task,
the formatted arithmetics. Toeplitz matrices allow for a fast inversion, but as subblocks in a hierarchical
matrix they have to be added and multiplied by other matrix blocks, which will destroy the structure.
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11.3 Applications of Hierarchical Matrices

11.3.1 Partial Differential Equations

H2-matrices and multi-grid methods share many properties in common, so it is straightforward to look for
approximations of the inverses of elliptic partial differential equations in the H2-matrix format.

A simple method to compute this approximation is to use the H-matrix inversion and use the algorithm
from [9] to find suitable cluster bases. Evaluating the resulting H2-representation of the inverse is more
efficient than evaluating the H-matrix representation, and the complexity of the transformation from H- to
H2-format is lower than that of the H-inversion.

Finding an algorithm that allows us to create an H2-matrix inverse without having to resort to the H-matrix
inversion is a topic of current research, cf. [12, 11].

11.3.2 Matrix Functions

The most prominent matrix function is M +→ M−1, i.e., f(x) = 1
x , which we have already analysed in

Chapter 5 for elliptic partial differential operators. Another important function is the matrix exponential,
because it allows us to solve systems of ordinary differential equations:

ẋ(t) = Ax(t), x(0) = x0 ⇒ x(t) = exp(tA)x0.

If we could compute exp(δA) for a small δ > 0, then we can easily obtain the values of x at all times tj = jδ,
j = 1, . . . , N , by j times evaluating exp(δA): x(tj) = (exp(δA))jx0, i.e., we need N times the matrix-vector
multiplication and only once the computation of the matrix exponential.

The question remains whether or not it is possible to approximate the matrix exponential in the H-matrix
format and how one can efficiently compute the matrix exponential in this format. The first question is
answered in [22] under the assumption that the resolvents (A−λI)−1 can be approximated in the H-matrix
format, cf. Chapter 5. For the second question there is no definitive answer; often the standard scaling and
squaring strategy proposed in [14] does the job very well but for a more general survey the reader is referred
to [50].

For other matrix functions ([23],[24]) one can use the representation by the Cauchy integral

f(M) =
1

2πi

∮

Γ
f(t)(M − tI)−1dt

and an efficient (exponentially convergent) quadrature rule

f(M) ≈
k∑

j=1

wjf(tj)(M − tjI)−1

to obtain an approximation.
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[13] Steffen Börm and Lars Grasedyck. Hybrid cross approximation of integral operators. Numerische
Mathematik, 101:221–249, 2005.
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