
�����������	�
����

für Mathematik
in den Naturwissenschaften

Leipzig

H2-matrices — Multilevel methods for

the approximation of integral operators

by

Steffen Börm

Preprint no.: 7 2003

H2-matrices — Multilevel methods for the
approximation of integral operators

Steffen Börm∗

January 31, 2003

Multigrid methods are typically used to solve partial differential equations,
i.e., they approximate the inverse of the corresponding partial differential
operators. At least for elliptic PDEs, this inverse can be expressed in the
form of an integral operator by Green’s theorem.

This implies that multigrid methods approximate certain integral opera-
tors, so it is straightforward to look for variants of multigrid methods that
can be used to approximate more general integral operators.

H2-matrices combine a multigrid-like structure with ideas from panel clus-
tering algorithms in order to provide a very efficient method for discretizing
and evaluating the integral operators found, e.g., in boundary element appli-
cations.

AMS Subject Classification: 65F05, 65F30, 65F50, 65N50
Key words: Hierarchical matrices, data-sparse approximations

1 Introduction

We consider the integral operator K given by

K[u](x) :=
∫

Γ
κ(x, y)u(y) dy,

where Γ ⊆ R
d is a domain or a submanifold and κ : R

d × R
d → R is a kernel function.

If we discretize K by a Galerkin method using a basis (Ψi)i∈I of functions, we have
to construct the matrix K ∈ R

I×I given by

Kij :=
∫

Γ
Ψi(x)

∫
Γ

κ(x, y)Ψj(y) dy dx for all i, j ∈ I.

∗Max-Planck-Institute for Mathematics in the Sciences, Inselstraße 22–26, 04103 Leipzig, Germany

1

In typical applications, the kernel function κ(·, ·) has non-local support, so the matrix
K will be densely populated even if we use a finite element basis, and this implies that
the complexity of algorithms treating this matrix will be very high.

There are different approaches to this problem: For very simple geometries and
simple kernel functions, the fast Fourier transform can be used to reduce K to diagonal
form. For more complicated geometries, we can replace K by an approximation using,
e.g., the panel clustering technique [14], multipole expansions [15] or wavelet compression
schemes [6].

Our approach is based on multigrid techniques: The matrices corresponding to mul-
tilevel preconditioners for elliptic partial differential equations are densely populated,
too, but can nevertheless be implemented efficiently. Therefore our goal is to use a
structure similar to that of multigrid algorithms in order to evaluate integral operators:
The structure of H2-matrices (cf. [13]), a specialization of hierarchical matrices (cf.
[10, 12, 11, 1]).

In the next section, we will analyze a simple multigrid method in order to find
those basic structures that can be used for our purpose. We will then generalize these
structures and use the result to derive our algorithm for evaluating discretized integral
operators. The presentation of an alternative method for creating H2-matrices and
numerical results conclude the paper.

2 Basic structure of multigrid methods

Let us consider the simple example of the multigrid method for the linear equation

Ax = b.

We fix a hierarchy (A�)L�=0 of stiffness matrices, a hierarchy (S�)L�=0 of smoothing matrices
and a hierarchy (P�)L−1

�=0 of prolongation matrices. We denote the set of degrees of
freedom on a level � ∈ {0, . . . , L} by I�, i.e., we have A�,S� ∈ R

I�×I�
for all � ∈ {0, . . . , L}

and P� ∈ R
I�+1×I�

for all � ∈ {0, . . . L − 1}.
We simplify the usual multigrid algorithm by leaving out the post-smoothing step

and using only one pre-smoothing step:

procedure MG(�, x�, b�);
begin

d� := b� − A�x�; x� := x� + S�d�;
if � > 0 then begin

d� := b� − A�x�; (*)
x�−1 := 0; MG(� − 1, x�−1, P�−1�d�);
x� := x� + P�−1x�−1

end
end

If the second assignment to d� (marked by (*) in the above algorithm) is present, we
have the common multiplicative multigrid algorithm, if this assignment is left out, we

2

get an additive method. The advantage of the additive approach is the simplicity of the
resulting iteration: Let x̃L denote an initial guess. The defect dL on the finest level is
given by b − A�x̃L. In the additive setting, we find

d� = P�� · · ·PL−1�dL = P̂��dL for all � ∈ {0, . . . , L − 1},

where we set P̂� := PL−1 · · ·P� and P̂L := I. This implies

xL =
L∑

�=0

P̂�S�d� =

(
L∑

�=0

P̂�S�P̂��
)

dL,

so the additive multigrid iteration can be written in the form

xL := N(b − ALx̃L) with N :=
L∑

�=0

P̂�S�P̂�
�
.

We assume that the index sets are disjoint, i.e., that � �= �′ ⇒ I� ∩ I�′ = ∅ holds for
�, �′ ∈ {0, . . . , L}. For each i ∈ I�, we define ei ∈ R

I�
by ei

j := δij and set vi := P̂�ei.
Let

P � := {(i, j) ∈ I� × I� : (S�)ij �= 0} for � ∈ {0, . . . , L}

and define P :=
⋃L

�=0 P �. The matrix N can be written in the form

N =
∑

(i,j)∈P

viS�
ijv

j�, (1)

i.e., as a sum of rank 1 matrices.
Let i ∈ I� for � ∈ {0, . . . , L − 1}. Due to the definition of P̂�, we have

vi = P̂�ei = P̂�+1P�ei = P̂�+1
∑

j∈I�+1

P�
jie

j =
∑

j∈I�+1

P�
jiv

j =
∑
j∈Si

P�
jiv

j , (2)

where Si := {j ∈ I�+1 : P�
ji �= 0}. This means that the vectors vi corresponding to

lower levels of the hierarchy can be expressed in terms of vectors vj corresponding to
higher levels of the hierarchy. In typical multigrid schemes, the prolongation matrices
P� are sparse, i.e., the set Si contains only a small number of elements.

We assume that each degree of freedom i ∈ I�, � ∈ {0, . . . , L}, corresponds to a sub-
domain Ωi ⊆ R

d of d-dimensional space, e.g., the support of the associated basis function
in finite element methods. In typical multigrid algorithms, the smoothing matrices S�

are local operators, i.e., we have

S�
ij �= 0 ⇒ Ωi ∩ Ωj �= ∅ for all i, j ∈ I�, � ∈ {0, . . . , L}.

This implies
S�

ij �= 0 ⇒ dist(Ωi,Ωj) ≤ C max{diam(Ωi),diam(Ωj)} (3)

3

for any constant C ∈ R>0 and i, j ∈ I�, � ∈ {0, . . . , L}.
The sum (1) can be transformed in such a way that the upper bound in (3) is

complemented by a lower bound.
For a given constant C ′ ∈ R>0 and a given level � ∈ {0, . . . , L − 1}, we define the

indicator matrix δ� ∈ R
I�×I�

by marking all pairs of indices satisfying the reverse of (3):

δ�
ij =

{
1 if max{diam(Ωi),diam(Ωj)} ≤ C ′ dist(Ωi,Ωj)
0 otherwise.

The operator
χ� : R

I�×I� → R
I�×I�

, X
→ (δ�
ijXij)i,j∈I�,

removes all unwanted coefficients. Now we can recursively define the desired transfor-
mation: For � ∈ {0, . . . , L− 1}, we can split a given matrix S� into the part χ�S� having
non-zero coefficients only for indices satisfying our inequality and the remainder S�−χ�S�

that can be transformed to the next finer level due to (2):

P̂�S�P̂�� = P̂�χ�S�P̂�� + P̂�(S� − χ�S�)P̂��

= P̂�χ�S�P̂�� + P̂�+1
[
P�(S� − χ�S�)P��

]
P̂�+1�.

We apply this procedure recursively by defining

Ŝ0 := S0, Ŝ�+1 := S�+1 + P�(Ŝ� − χ�Ŝ�)P�� for all � ∈ {0, . . . , L − 1}.

The matrix Ŝ�+1 consists of the matrix S�+1 and the prolongation of that part of Ŝ� that
did not match our condition. We define

S̃� :=

{
χ�Ŝ� if � < L

Ŝ� otherwise,

and this implies that

P̂�+1Ŝ�+1P̂�+1� − P̂�Ŝ�P̂�� + P̂�S̃�P̂�� = P̂�+1S�+1P̂�+1�

holds for all � ∈ {0, . . . , L − 1}. This means

N =
L∑

�=0

P̂�S�P̂�� = P̂0S0P̂0� +
L−1∑
�=0

P̂�+1S�+1P̂�+1�

= P̂0S0P̂0� +
L−1∑
�=0

(P̂�+1Ŝ�+1P̂�+1� − P̂�Ŝ�P̂�� + P̂�S̃�P̂��)

= P̂0S0P̂0� + P̂LŜLP̂L� − P̂0Ŝ0P̂0� +
L−1∑
�=0

P̂�S̃�P̂�� =
L∑

�=0

P̂�S̃�P̂��,

4

so we have found an alternative representation of N that still has the form (1) such that

S̃�
ij �= 0 ⇒ max{diam(Ωi),diam(Ωj)} ≤ C ′ dist(Ωi,Ωj)

holds for all � ∈ {0, . . . , L− 1}. In standard situations, the S̃� of the new representation
will be sparse and the diameters and the distance will be proportional.

Example 2.1 (One-dimensional case) We consider a one-dimensional partial dif-
ferential equation discretized by the common piecewise linear nodal basis functions on
a dyadic grid hierarchy. We use a Jacobi smoother, so the smoothing matrices S� are
diagonal. Due to the choice of basis functions, the matrices P̂�S�P̂�� take the following
form:

Each diagonal entry of the matrix S� represents a nodal basis function, and the matrix
P̂� corresponds to the interpolation of this basis function in the grid points on the finest
level of the hierarchy. Since S� is the composition of its diagonal entries, the matrix
P̂�S�P̂�� is a composition of matrix blocks of rank 1.

For the matrix N, we combine the interpolated smoothing matrices on all levels and
get the following representation:

We can see that the size of the non-diagonal blocks is proportional to their distance from
the diagonal.

3 Generalization

Let I∗ :=
⋃L

�=0 I�. In the previous section, we have seen that the matrix N corresponding
to an additive multigrid preconditioner has the following properties: For each i ∈ I∗,
there is a vector vi ∈ R

IL
with an associated subdomain Ωi ⊆ R

d such that the matrix
N is a sum of rank-1-blocks of the form visijvj� with

dist(Ωi,Ωj) ∼ max{diam(Ωi),diam(Ωj)}.

5

If � ∈ {0, . . . , L − 1}, each i ∈ I� can be expressed in the form

vi =
∑
j∈Si

vjpji

for coefficients pji ∈ R and a subset Si ⊆ I�+1.
In order to derive a similar algorithm for the evaluation of integral operators, we

have to generalize this structure.

3.1 Cluster tree

In the multigrid setting, we have introduced subdomains Ωi corresponding to degrees i
of freedom. In typical boundary element applications, a hierarchy of degrees of freedom
is not readily available, but it is still possible to construct a hierarchy of subdomains:

Definition 3.1 (Cluster tree) Let TI be a tree satisfying

1. Γ is the root of TI .

2. If a node τ of TI is not a leaf, it is the union of its sons Sτ and #Sτ ≤ Csons

holds for a constant Csons ∈ N.

3. If a node τ of TI is a leaf, the set

τ̂ := {i ∈ I : suppΨi ∩ τ �= ∅}

satisfies #τ̂ ≤ Cleaf for a constant Cleaf ∈ N.

Then TI is called a cluster tree, the set of its nodes is denoted by TI and its elements
τ ∈ TI are called clusters.

We note that this definition implies τ ⊆ Γ for all nodes of TI . Simple algorithms for
constructing suitable cluster trees for relatively general finite element grids can be found
in [8, 9, 1].

3.2 Block partition

We have seen that the multigrid operator can be expressed in the form of a sum of terms
of the form visijvj� that satisfy max{diam(Ωi),diam(Ωj)} ∼ C ′ dist(Ωi,Ωj).

We make use of this condition to create a similar structure: A pair (τ, σ) of clusters
is called η-admissible for a parameter η ∈ R>0 if

max{diam(τ),diam(σ)} ≤ η dist(τ, σ) (4)

holds. Using this criterion, the following algorithm constructs the necessary blocks:

6

procedure BuildPartition(τ , σ, var P);
begin

if (τ, σ) is η-admissible then P := P ∪ {(τ, σ)} { admissible block }
else if Sτ = ∅ then

if Sσ = ∅ then
P := P ∪ {(τ, σ)} { no splitting possible }

else
for σ′ ∈ Sσ do BuildPartition(τ , σ′, P) { split σ only }

else
if Sσ = ∅ then

for τ ′ ∈ Sτ do BuildPartition(τ ′, σ, P) { split τ only }
else

for τ ′ ∈ Sτ , σ′ ∈ Sσ do BuildPartition(τ ′, σ′, P) { split τ and σ }
end

We collect the admissible blocks of P in Pfar (they are referred to as far-field blocks,
since they are far from the diagonal) and the remaining blocks in Pnear (these are called
near-field blocks):

Pfar := {(τ, σ) ∈ P : (τ, σ) is η-admissible}, Pnear := P \ Pfar.

3.3 Increased rank

The blocks of the multigrid operator N are stored in the form visijvj� and have rank 1.
Since the matrix N is only a rough approximation of the inverse of the stiffness matrix,
we have to use multiple iteration steps in order to reach a sufficient accuracy of the
solution.

We do not have the possibility of using an iterative process in order to evaluate a
general integral operator, therefore we have to look for an alternative way of improving
the accuracy. The solution is to increase the rank: For each cluster τ ∈ TI , we fix a rank
kτ and introduce a matrix Vτ ∈ R

I×kτ
describing a cluster basis as a generalization of

the vectors vi. The coefficients sij are replaced by a matrix Sτ,σ ∈ R
kτ×kσ

for blocks
(τ, σ) ∈ P .

Now we can introduce the generalization of the structure from (1) that we will use
for the approximation of the matrix K:

K̃ :=
∑

(τ,σ)∈Pfar

VτSτ,σVσ� +
∑

(τ,σ)∈Pnear

Ŝτ,σ. (5)

A matrix given in this form is called a uniform hierarchical matrix.
There is still one thing missing: For the vectors vi, the equation (2) holds, i.e., they

are nested. This property is crucial for the efficiency of multigrid methods, so we have
to make sure that the generalized method preserves it. We do this by requiring that
there are matrices Bτ ′,τ ∈ R

kτ ′×kτ
for all τ ∈ TI and τ ′ ∈ Sτ such that

Vτ =
∑

τ ′∈Sτ

Vτ ′
Bτ ′,τ (6)

7

holds. A uniform hierarchical matrix whose cluster bases satisfy the condition (6) is
called an H2-matrix 1 [13].

We have to rearrange the multigrid algorithm in order to adapt it to the generalized
structure: The restriction of the input vector to all grid levels has to be done separately
since we traverse the cluster tree from the coarse to the finer levels, but information has
to be passed in the reverse direction:

procedure Restriction(τ);
begin

if Sτ = ∅ then { highest level }
xτ := Vτ�x { apply Vτ directly }

else begin { intermediate level }
xτ := 0
for τ ′ ∈ Sτ do begin

Restriction(τ ′); xτ := Bτ ′,τ�xτ ′ { use (6) }
end

end
end

This algorithm computes the coefficients xτ := Vτ�x for all clusters τ ∈ TI . The
following procedure performs the rest of the matrix-vector multiplication:

procedure Multiplication(τ);
begin

yτ := 0;
for σ ∈ TI with (τ, σ) ∈ Pfar do yτ := yτ + Sτ,σxσ; { multiply by Sτ,σ }
if Sτ = ∅ then { highest level }

y := y + Vτyτ

else begin { intermediate level }
for τ ′ ∈ Sτ do begin

yτ ′
:= yτ ′

+ Bτ ′,τyτ ; Multiplication(τ ′) { use (6) }
end

end
end

Combining both procedures gives us the fast matrix-vector multiplication algorithm:

procedure MVM(x, var y);
begin

Restriction(Γ); { compute xτ }
y := 0;
Multiplication(Γ); { compute far-field part }
for (τ, σ) ∈ Pnear do y := y + Ŝτ,σx { add near-field part }

end
1The name H2-matrix is due to the fact that we are using two hierarchies: The cluster tree and the

hierarchy of the cluster bases.

8

For typical cluster trees and block partitions, the matrix-vector multiplication requires
O(nkmax) operations, where n := #I is the number of degrees of freedom and where
kmax := max{kτ : τ ∈ TI} is the maximal rank. This means that our generalized
algorithm, just as a usual multigrid algorithm, has optimal complexity in n.

4 H2-matrix approximation of integral operators

We will now apply the H2-matrix technique to the problem of approximating integral
operators: We have to construct appropriate matrices Vτ , Bτ ′,τ and Sτ,σ such that the
resulting H2-matrix approximates the discretized integral operators K.

4.1 Kernel approximation

We recall that the matrix K is defined by

Kij =
∫

Γ
Ψi(x)

∫
Γ

κ(x, y)Ψj(y) dy dx.

If the kernel function κ(·, ·) is degenerate, i.e., if it has the form

κ(x, y) =
k∑

ν=1

l∑
µ=1

sν,µfν(x)gµ(y)

for functions (fν)kν=1 and (gµ)lµ=1 and coefficients (sν,µ)k,l
ν,µ=1, we find

Kij =
k∑

ν=1

l∑
µ=1

sν,µ

∫
Γ

Ψi(x)fν(x) dx︸ ︷︷ ︸
=:Fiν

∫
Γ

Ψj(y)gµ(y) dy︸ ︷︷ ︸
=:Gjµ

= (FSG�)ij ,

i.e., the matrix K has the desired form (5).
Unfortunately, typical kernel functions are not degenerate, so we will not be able

to use the above representation globally. However, we can use it locally : The standard
kernel functions are asymptotically smooth, i.e., they satisfy an estimate of the form

|∂α
x ∂β

y κ(x, y)| ≤ C(α + β)!(c0‖x − y‖)−g−|α|−|β| (7)

for constants C, c0 ∈ R>0, a parameter g ∈ R>0 denoting the degree of singularity at the
diagonal x = y and arbitrary multi-indices α, β ∈ N

d
0. This estimate implies that the

kernel is smooth in domains that are removed from the diagonal.
A smooth function can be approximated by polynomial interpolation, and any poly-

nomial is automatically degenerate, so we can construct degenerate approximations of
the kernel function by interpolation (cf. [7, 3]).

In order to get a simple algorithm, we will use tensor-product interpolation, and for
this we need axis-parallel domains. Therefore we fix an axis-parallel box Qτ ⊆ R

d for

9

each cluster τ ∈ TI satisfying τ ⊆ Qτ . Due to this latter property, the boxes Qτ are
called bounding boxes.

In order to find an approximation of the kernel function for a block (τ, σ) ∈ P , we
will use interpolation on the domain Qτ × Qσ, so we have to ensure that the kernel
function is smooth on this domain. We do this by replacing the admissibility condition
(4) by the stronger condition

max{diam(Qτ),diam(Qσ)} ≤ η dist(Qτ , Qσ). (8)

We fix an interpolation operator Iτ of order mτ for each bounding box Qτ with corre-
sponding interpolation points (xτ

ν)ν∈Mτ and Lagrange polynomials (Lτ
ν)ν∈Mτ .

For each admissible block (τ, σ) ∈ Pfar, we define the kernel approximation

κ̃τ,σ(x, y) := (Iτ ⊗ Iσ)[κ](x, y) =
∑

ν∈Mτ

∑
µ∈Mσ

κ(xτ
ν , xσ

µ)Lτ
ν(x)Lσ

µ(y).

The partition P describes a decomposition of the set Γ × Γ into admissible and non-
admissible subdomains. We define the approximation of the kernel function κ(·, ·) by
replacing the original kernel function by its local approximations in all far-field blocks:

κ̃(x, y) :=

{
κ̃τ,σ(x, y) if x ∈ τ, y ∈ σ, (τ, σ) ∈ Pfar

κ(x, y) otherwise.

4.2 Matrix approximation

The approximate matrix K̃ is derived by discretizing κ̃(·, ·):

K̃ij =
∫

Γ
Ψi(x)

∫
Γ

κ̃(x, y)Ψj(y) dy dx =
∑

(τ,σ)∈P

∫
τ
Ψi(x)

∫
σ

κ̃(x, y)Ψj(y) dy dx

=
∑

(τ,σ)∈Pfar

∫
τ
Ψi(x)

∫
σ

κ̃τ,σ(x, y)Ψj(y) dy dx

+
∑

(τ,σ)∈Pnear

∫
τ
Ψi(x)

∫
σ

κ(x, y)Ψj(y) dy dx

=
∑

(τ,σ)∈Pfar

VτSτ,σVσ� +
∑

(τ,σ)∈Pnear

Ŝτ,σ,

where the matrices V ∈ R
I×Mτ

, Sτ,σ ∈ R
Mτ×Mσ

and Ŝτ,σ ∈ R
I×I are defined by

Vτ
iν :=

∫
τ
Lτ

ν(x)Ψi(x) dx, Sτ,σ
νµ := κ(xτ

ν , x
σ
µ) and

Ŝτ,σ
ij :=

∫
τ
Ψi(x)

∫
σ

κ(x, y)Ψj(y) dy dx.

We note that τ ∩ suppΨi = ∅ implies Vτ
iν = 0 for all i ∈ I and ν ∈ M τ , so a large

number of rows of Vτ will be zero. By the same reasoning, we see that most of the
entries of the near-field matrices Ŝτ,σ will be zero, too.

10

Let τ ∈ TI and τ ′ ∈ Sτ . If mτ ≤ mτ ′
, we have Lτ

ν = Iτ ′
[Lτ

ν], and therefore

Vτ
iν =

∫
τ
Lτ

ν(x)Ψi(x) dx =
∑

τ ′∈Sτ

∫
τ ′
Lτ

ν(x)Ψi(x) dx

=
∑

τ ′∈Sτ

∫
τ ′

Iτ ′
[Lτ

ν](x)Ψi(x) dx =
∑

τ ′∈Sτ

∑
ν′∈Mτ ′

Lτ
ν(x

τ ′
ν′)
∫

τ ′
Lτ ′

ν′(x)Ψi(x) dx

=

(∑
τ ′∈Sτ

Vτ ′
Bτ ′,τ

)
iν

holds for Bτ ′,τ ∈ R
Mτ ′×Mτ

defined by

Bτ ′,τ
ν′ν := Lτ

ν(x
τ ′
ν′),

so our cluster bases satisfy condition (6), and this implies that K̃ is an H2-matrix
approximation of K with cluster ranks kτ := #M τ = (mτ)d.

Remark 4.1 Combining standard interpolation estimates with the asymptotic smooth-
ness property (7) and the admissibility condition (8), we get the error bound

|κ(x, y) − κ̃(x, y)| ≤ C(c1η)m min
(τ,σ)∈Pfar

dist(Qτ , Qσ)−g

≤ C(c1η)m
(

η

minτ∈TI
diam(Qτ)

)g

for constants C, c1 ∈ R>0 (cf. [3]). This means that the H2-matrix approximation
converges exponentially in m if c1η < 1 holds.

4.3 Variable-order interpolation

Using interpolation of constant order m, the error of the H2-matrix approximation is in
O((c1η)m), while the complexity for the matrix-vector multiplication is in O(nmd).

This is similar to multigrid techniques: One step of the multigrid iteration reduces
the error by a fixed factor γ ∈]0, 1[and requires O(n) operations, so m steps of the
iteration will give us a precision in O(γm) by using O(nm) operations.

The number n of degrees of freedom is related to the discretization error, and we have
to ensure that the error introduced by our approximation scheme or, in the multigrid
context, by the iterative solution process, is of the same order of magnitude as the
discretization error.

For typical discretization schemes, this means that m should be proportional to
log(n), and this implies that the “true” complexity of the constant-order approximation
is O(n logd n). This is clearly not optimal.

The solution is suggested by multigrid techniques: In the nested iteration, the multi-
grid iteration is performed on a coarse grid until the iterative error is proportional to
the discretization error on this grid. Then the solution is interpolated on the next finer

11

S

S

S

S

S

S

S

S

S

S

Figure 1: Multigrid iterations during a nested iteration

grid, and this interpolant is used as an initial guess for the iteration on this grid. The
procedure is repeated until the finest grid has been reached, and due to the quality of the
initial guesses, only a fixed number α of iterations has to be performed per level. Since
the number of degrees of freedom decreases exponentially, the entire nested iteration
procedure takes only O(n) operations to compute a sufficiently precise solution on the
finest grid.

Let us consider the amount of work per level: During the computation on the coarsest
grid, α multigrid steps are performed. On the next finer grid, again α multigrid steps are
performed, and each of these steps involves one recursive multigrid step on the coarsest
level (cf. Figure 1). Summing this up, we see that a total of α(L− �)+α multigrid steps
are performed on level � of the hierarchy, i.e., the number of iteration steps increases
linearly when the level number decreases.

In the setting of H2-matrices, the rank takes the place of the number of iteration
steps, so the equivalent of the nested iteration will be to use a higher rank on larger
clusters and a lower rank on smaller ones. This causes a problem: In the definition of
our H2-matrix approximation of K, we needed the inequality mτ ≤ mτ ′

in order to be
able to prove equation (6), i.e., that the cluster bases are nested. Since this equation is
crucial for our method, we look for an alternative way of defining the cluster basis.

The idea is simple: We look for approximations L̂τ
ν of the Lagrange polynomials Lτ

ν

such that the equality
L̂τ

ν =
∑

ν′∈Mτ ′
Bτ ′,τ

ν′ν L̂τ ′
ν′

holds. This equality implies (6). To this end, we introduce the piecewise interpolation
operator Îτ by

Îτ [u](x) :=

⎧⎪⎨⎪⎩
u(x) if Sτ = ∅
Îτ ′

[Iτ ′
[u]](x) if x ∈ τ ′, τ ′ ∈ Sτ

0 otherwise,

12

Figure 2: Lτ
ν compared to L̂τ

ν for mτ = 5

and define the approximative Lagrange polynomials by

L̂τ
ν := Îτ [Lτ

ν].

We can see in Figure 2 what this means: The original Lagrange polynomials are replaced
by piecewise lower-order interpolants.
By definition, we have L̂τ

ν = Lτ
ν for all leaves τ ∈ TI . For a non-leaf τ ∈ TI with a son

τ ′ ∈ Sτ and for x ∈ τ ′, we find

L̂τ
ν(x) = Îτ [Lτ

ν](x) = Îτ ′
[Iτ ′

[Lτ
ν]](x) =

∑
ν′∈Mτ ′

Lτ
ν(x

τ ′
ν′)Îτ ′

[Lτ ′
ν′](x) =

∑
ν′∈Mτ ′

Bτ ′,τ
ν′ν L̂τ ′

ν′(x).

Using the approximative Lagrange polynomials, we can construct variable-order approx-
imations of the kernel function κ(·, ·). It is possible to show that the resulting approxi-
mation error is proportional to the discretization error and that the complexity for the
matrix-vector multiplication in this case is in O(n) [16, 5].

5 Approximation of general matrices

We have seen that H2-matrices are an efficient tool for the approximation of matrices
resulting from the Galerkin discretization of simple integral operators. The papers [3,
5] demonstrate that our technique can be applied to other discretization schemes and
integral operators involving derivatives of the kernel function.

The construction of H2-matrices we have presented so far requires an explicitly given
kernel function and an explicitly given approximation scheme for this kernel function.
There is an alternative construction that creates H2-matrix approximations based on
purely algebraic properties of the underlying original matrix [2, 4].

We assume that a cluster tree and a block partition are given and that each index
i ∈ I is contained in exactly one leaf cluster, i.e., that the leaf clusters form a partition
of I.

13

Figure 3: Matrix rows corresponding to different clusters

If we have cluster bases (Vτ)τ∈TI
that are orthogonal, i.e., satisfy Vτ�Vτ = I, the

computation of the coefficient matrices (Sτ,σ)(τ,σ)∈Pfar
is straightforward: The orthogonal

projection of a matrix block A|τ×σ into the range of Vτ is given by VτVτ�A|τ×σ,
therefore the coefficient matrices of far-field blocks are given by

Sτ,σ := Vτ�A|τ×σVσ.

This leaves us with the task of computing an orthogonal cluster basis for each cluster
τ ∈ TI . A cluster basis Vτ will be relevant to all far-field blocks of the form τ0×σ where
τ0 is an ancestor of τ (cf. Figure 3), i.e., to the matrix block A|τ×Rτ with

Rτ :=
⋃

{σ ∈ TI : ∃τ0 ∈ TI (τ0, σ) ∈ Pfar, τ ⊆ τ0}.

For leaf clusters, finding an optimal basis is simple: We compute the singular value
decomposition of the matrix block A|τ×Rτ and construct the basis from the left singular
values.

For non-leaf clusters τ ∈ TI , we have to make sure that the equation (6) is pre-
served. Finding a good orthogonal basis Vτ for the matrix block A|τ×Rτ is equivalent
to maximizing the Frobenius norm of Vτ�A|τ×Rτ . If Vτ satisfies (6), we have

Vτ�A|τ×σ =
(
Bτ1,τ�Vτ1� . . . Bτs,τ�Vτs�)A|τ×Rτ

=
(
Bτ1,τ� . . . Bτs,τ�)

⎛⎜⎝Vτ1�A|τ1×Rτ

...
Vτs�A|τs×Rτ

⎞⎟⎠
for Sτ = {τ1, . . . , τs}. This means that we can compute the transfer matrices Bτ ′,τ by
applying the singular value decomposition to the transformed sub-blocks. We get the
following algorithm:

14

procedure CreateRowBasis(τ);
begin

if Sτ = ∅ then
Compute SVD of A|τ×Rτ

else begin
Sτ = {τ1, . . . , τ s};
for i = 1 to s do begin

CreateRowBasis(τi);
Âτi := Vτi�A|τi×Rτ

end;

Compute SVD of

⎛⎜⎝Âτ1

...
Âτs

⎞⎟⎠
end

end

The advantage of this algorithm is that it can be applied efficiently not only to dense
matrices, but also to hierarchical matrices (cf. [10, 12, 11, 1]) and even to H2-matrices.
The latter may seem strange, but numerical examples demonstrate that the original
cluster bases are not optimal and that applying the above algorithm can significantly
improve the performance of the matrix-vector multiplication while reducing the storage
requirements.

6 Numerical examples

6.1 Constant-order approximation in 2D

Our first experiment is to apply the H2-matrix approximation technique to the single
layer potential log ‖x − y‖ on the unit circle in R

2. We use a constant-order approach
with m = 3 and set the admissibility parameter to η = 0.8. The results are given in
Table 1.

We have discretized the integral operator by the Galerkin method based on piecewise
constant basis functions. Table 1 gives the dimension of the discrete space, the time in
seconds2 for building the H2-matrix approximation, the time in seconds for performing
one matrix-vector multiplication, the relative approximation error in the spectral norm
and the memory requirements per degree of freedom.

We can see that the relative error in the Euclidean norm is almost constant and that
both the runtime and the storage requirements grow linearly in the number of degrees
of freedom.

2These times were measured using an Sun Ultra2 processor running at 248 MHz.

15

n Build[s] MV[s] ‖K−K̃‖2

‖K‖2
Mem/n

1024 0.78 0.01 5.98−4 1011
2048 1.49 0.03 5.98−4 1014
4096 2.97 0.07 5.98−4 1016
8192 6.16 0.17 5.98−4 1016

16384 11.88 0.33 5.99−4 1017
32768 24.25 0.66 1017
65536 48.20 1.34 1017

131072 96.63 2.75 1017
262144 194.27 5.61 1017
524288 390.56 10.91 1017

Table 1: H2-matrix constant-order approximation

n Build[s] MV[s] ‖K−K̃‖2

‖K‖2
Mem/n

1024 1.05 0.02 4.84−4 4171
2048 2.30 0.06 2.65−4 4605
4096 4.97 0.14 1.40−4 4929
8192 10.12 0.31 7.25−5 5162

16384 21.01 0.62 3.71−5 5324
32768 40.96 1.22 1.88−5 5434
65536 83.54 2.54 5507

131072 167.79 5.16 5554
262144 338.22 10.27 5584
524288 675.67 20.81 5602

Table 2: H2-matrix variable-order approximation

6.2 Variable-order approximation in 2D

The relative approximation error for the constant-order approximation is constant. In
typical applications, the approximation error should be of the same order as the dis-
cretization error. The way to achieve this is to use a variable-order approximation. For
each cluster τ ∈ TI , we denote its distance to the root cluster Γ by level(τ) and set
mτ := 1 + (L − level(τ)), i.e., the approximation order increases by one when we pass
from a cluster to its father. The results of our experiments for this algorithm are given
in Table 2.

Since we are using piecewise constant basis functions, we expect the discretization
error to decrease like O(n−1). We can see that the approximation error of the variable-
order H2-matrix shows the same behaviour, so discretization and approximation error
are proportional, while the computational complexity and the storage complexity are
still in O(n).

16

n Build[s] MV[s] ‖K−K̃‖2

‖K‖2
Mem/n

512 4.31 0.01 4.47−5 2688
2048 24.77 0.04 4.99−5 4168
8192 108.39 0.23 6.67−5 4978

32768 428.68 1.00 7.24−5 5282
131072 1666.90 4.01 5251
524288 6443.56 16.10 5196

2097152 25932.05 69.23 5149

Table 3: H2-matrix approximation with adaptive cluster bases

6.3 Adaptive approximation in 3D

As a last example, we discretize the single layer potential 1/‖x − y‖ on the unit sphere
in R

3 by piecewise constant basis functions. We use a constant approximation order
of m = 4 and use the algorithm from Section 5 in order to compute an orthogonalized
basis.

Table 3 reports the results of the experiment3: The time required for building the
H2-matrix approximation is roughly linear in the dimension of the discrete space, as is
the time required for performing the matrix-vector multiplication. The same holds for
the memory requirements: The ratio of needed storage and number of degrees of freedom
is bounded. The relative error grows slightly, but this can be compensated by increasing
the order of the interpolation if necessary.

References

[1] S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical ma-
trices with applications, Tech. Rep. 18, Max Planck Institute for Mathematics in
the Sciences, 2002. To appear in: Engineering Analysis with Boundary Elements.

[2] S. Börm and W. Hackbusch, Data-sparse approximation by adaptive H2-
matrices, Computing, 69 (2002), pp. 1–35.

[3] , H2-matrix approximation of integral operators by interpolation, Applied Nu-
merical Mathematics, 43 (2002), pp. 129–143.

[4] , Approximation of boundary element operators by adaptive H2-matrices, Tech.
Rep. 5, Max Planck Institute for Mathematics in the Sciences, 2003.

[5] S. Börm, M. Löhndorf, and J. M. Melenk, Approximation of integral op-
erators by variable-order interpolation, Tech. Rep. 82, Max Planck Institute for
Mathematics in the Sciences, 2002.

3The times where measured on a Sun Ultra3cu processor running at 900 MHz.

17

[6] W. Dahmen and R. Schneider, Wavelets on manifolds I: Construction and do-
main decomposition, SIAM Journal of Mathematical Analysis, 31 (1999), pp. 184–
230.

[7] K. Giebermann, Multilevel approximation of boundary integral operators, Com-
puting, 67 (2001), pp. 183–207.

[8] L. Grasedyck, Theorie und Anwendungen Hierarchischer Matrizen, PhD thesis,
Universität Kiel, 2001.

[9] L. Grasedyck and W. Hackbusch, Construction and arithmetics of H-matrices,
Tech. Rep. 103, Max Planck Institute for Mathematics in the Sciences, 2002.

[10] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Intro-
duction to H-matrices, Computing, 62 (1999), pp. 89–108.

[11] W. Hackbusch and B. Khoromskij, A sparse H-matrix arithmetic: General
complexity estimates, J. Comp. Appl. Math., 125 (2000), pp. 479–501.

[12] , A sparse matrix arithmetic based on H-matrices. Part II: Application to multi-
dimensional problems, Computing, 64 (2000), pp. 21–47.

[13] W. Hackbusch, B. Khoromskij, and S. Sauter, On H2-matrices, in Lectures
on Applied Mathematics, H. Bungartz, R. Hoppe, and C. Zenger, eds., Springer-
Verlag, Berlin, 2000, pp. 9–29.

[14] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the
boundary element method by panel clustering, Numerische Mathematik, 54 (1989),
pp. 463–491.

[15] V. Rokhlin, Rapid solution of integral equations of classical potential theory, Jour-
nal of Computational Physics, 60 (1985), pp. 187–207.

[16] S. Sauter, Variable order panel clustering, Computing, 64 (2000), pp. 223–261.

18

