
�����������	�
����

für Mathematik
in den Naturwissenschaften

Leipzig

Approximation of boundary element

operators by adaptive H2-matrices

by

Steffen Börm and Wolfgang Hackbusch

Preprint no.: 5 2003

Approximation of boundary element operators by adaptive

H2-matrices

Steffen Börm, Wolfgang Hackbusch

January 22, 2003

Abstract

The discretization of integral operators corresponding to non-local kernel functions typically gives rise
to densely populated matrices. In order to be able to treat these matrices in an efficient manner, they
have to be compressed, e.g., by panel clustering algorithms, multipole expansions or wavelet techniques.

By choosing the correct panel clustering approach, the resulting approximation of the matrix can be
written in the form of a so-called H2-matrix. The H2-matrix representation can be computed for fairly
general kernel functions by a black box algorithm that requires only pointwise evaluations of the kernel
function.

Although this technique leads to good results, the expansion system tends to contain a certain level of
redundancy that leads to an unnecessarily high complexity for the memory requirements and the matrix-
vector multiplication. We present two variants of the original method that can compress the matrix even
further. Both methods work on the fly, i.e., it is not necessary to keep the original H2-matrix in memory,
and both methods perform an algebraic compression, so that the black box character of the algorithm is
preserved.

1 Introduction

1.1 Model Problem

We consider integral operators of the form

K[u](x) =
∫

Γ

κ(x, y)u(y) dy (x ∈ Γ), (1.1)

where u is a suitable function defined on the boundary Γ of a domain Ω ⊆ R
d, where κ(·, ·) is a kernel

function defined on R
d ×R

d, possibly with a singularity at the diagonal {(x, x) : x ∈ R
d}. Discretizing this

operator by a Galerkin method leads to a matrix K ∈ R
I×I defined by

Kij :=
∫

Γ

∫
Γ

κ(x, y)Φj(y)Φi(x) dy dx (i, j ∈ I), (1.2)

where (Φi)i∈I is the set of basis functions. Typical kernel function κ(·, ·) (e.g., from BEM applications)
have non-local support, therefore the matrix K will be densely populated. If we store K in the typical
two-dimensional array, we will need N2 units of memory (N := #I), and obviously this complexity is not
acceptable for high-dimensional problems.

1.2 Compression Techniques

There are different techniques for reducing the complexity: We can use the fast Fourier transform to diago-
nalize K if this matrix has circulant Toeplitz structure. This leads to a complexity of O(N log N), but the
Toeplitz structure occurs only in special situations.

Due to these restrictions, more general techniques have been developed that replace the matrix K by
data-sparse approximations K̃ having a complexity of O(N logλ N) (where λ depends on the choice of
the method): The panel clustering method [9] replaces the kernel function locally by separable functions,

1

e.g., Taylor expansions or polynomial interpolants. The multipole approach [10] uses a more sophisticated
expansion of the kernel function that is more efficient, but requires the analytical expansion formulae for
each kernel under consideration. Finally, we can use the wavelet compression technique [5] provided we are
willing to use wavelet discretizations and can construct suitable wavelet spaces for the domain Γ.

The main advantage of the panel clustering technique is that it is relatively simple, that it can be applied
to a large number of practical problems and that it can be implemented as a black box method. The main
disadvantage is that the standard implementations are based on an approximation of the kernel function in
d-dimensional subdomains, even if Γ is only (d − 1)-dimensional.

If we want to perform not only matrix-vector multiplications, but also matrix-matrix additions, mul-
tiplications or even the inversion of matrices efficiently, most of the techniques mentioned before can not
be applied directly. The method of hierarchical matrices (H-matrices) [6, 7, 1] generalizes the concept of
separable expansions in order to find a representation of matrices that makes it possible to perform the
sophisticated arithmetic operations mentioned above with complexity O(N logλ N), where λ depends on
the type of operation. H2-matrices [8, 3, 4] are a refinement of H-matrices that introduce an additional
hierarchical structure in order to reach the optimal complexity O(N) for the matrix-vector multiplication.

1.3 Adaptive Panel Clustering Method

Our goal is to find a panel clustering algorithm that “automatically” finds improved expansion systems
without sacrificing the black box character and general applicability of the original method.

The idea is to start with a representation of the boundary element matrix by an H2-matrix constructed
by means of polynomial interpolation of the kernel function and then apply an algebraic optimization that
removes superfluous functions from the expansion system while controlling the approximation error. Due
to this additional optimization, setting up the optimized H2-matrix has a higher complexity than in the
standard case, but the complexity of the matrix-vector multiplication is reduced significantly.

Another advantage of using standard interpolation as the basis of our method is that the total approxima-
tion error of the adaptive method is a combination of the well-known interpolation error and the user-defined
error bound of the algebraic optimization procedure.

1.4 Organization of this Paper

This paper is organized in five sections: In the current section, we will introduce a model problem and discuss
some of the related algorithms. The next section is devoted to the definition of the H2-approximation of the
matrix corresponding to the model problem. The third section describes two techniques for compressing the
original H2-approximation, and the fourth section contains numerical experiments that demonstrate that
the compression rates achieved by our techniques are much better than those of standard methods.

2 Approximation of integral operators by H2-matrices

In this section, we give a short introduction to H2-matrices and a simple method for using them to approx-
imate matrices corresponding to integral operators (cf. [3]).

2.1 Interpolation

Due to reasons that will become clear later on, we cannot hope to find a global approximation of the matrix
K. Therefore we consider only a submatrix corresponding to a block τ × σ, where τ, σ ⊆ I (recall that I is
the index set corresponding to the finite element space). Let Bτ , Bσ ⊆ R

d be axis-parallel boxes satisfying

supp Φi ⊆ Bτ , supp Φj ⊆ Bσ (i ∈ τ, j ∈ σ).

The boxes Bτ and Bσ will be called the bounding boxes corresponding to τ and σ.
Now we need to find a separable approximation of the kernel function κ(·, ·) on Bτ × Bσ. The simplest

possible approach is to use interpolation: We fix an m-th order d-dimensional interpolation operator

I : C([−1, 1]d) → Qd,m,

2

where Qd,m denotes the set of d-dimensional polynomials of order m. For any d-dimensional axis-parallel
box B, we introduce the transformed interpolation operator

IB : C(B) → Qd,m, u �→ (I[u ◦ Ψ]) ◦ Ψ−1,

where Ψ is the standard affine mapping from [−1, 1]d to B.
The approximation of κ(·, ·) on the domain Bτ × Bσ is given by

κ̃τ,σ := (IBτ

⊗ IBσ

)κ ∈ Q2d,m.

If we denote the interpolation points corresponding to IBτ

and IBσ

by (xτ
ν)ν∈K and (xσ

µ)µ∈K and the
corresponding Lagrange polynomials by (Lτ

ν)ν∈K and (Lσ
µ)µ∈K , we have

IBτ

u =
∑
ν∈K

u(xτ
ν)Lτ

ν , IBσ

v =
∑
µ∈K

v(xσ
µ)Lσ

µ

and therefore
κ̃τ,σ(x, y) = ((IBτ ⊗ IBσ

)κ)(x, y) =
∑
ν∈K

∑
µ∈K

κ(xτ
ν , xσ

µ)Lτ
ν(x)Lσ

µ(y),

i.e., in κ̃τ,σ(·, ·), we have found a separable approximation of κ(·, ·). Replacing κ(x, y) by κ̃τ,σ(x, y) in
equation (1.2) leads to the approximated matrix entries

K̃ij :=
∫

Γ

∫
Γ

κ̃1,2(x, y)Φj(y)Φi(x) dy dx

=
∑
ν∈K

∑
µ∈K

κ(x1
ν , x2

µ)
∫

Γ

L1
ν(x)Φi(x) dx

∫
Γ

L2
µ(y)Φj(y) dy = (V1S1,2V2�)ij (2.1)

for i ∈ τ and j ∈ σ, where

V1
iν :=

∫
Γ

L1
ν(x)Φi(x), V2

jµ :=
∫

Γ

L2
µ(y)Φj(y) and S1,2

νµ := κ(x1
ν , x2

µ).

This factorized form can be evaluated in O(k#τ + k#σ + k2) operations for k := #K and is therefore much
more efficient than the standard form if k is significantly smaller than N .

2.2 Approximation Error

Let us now take a look at the error introduced by replacing κ by its approximation κ̃1,2. For tensor product
interpolation, error estimates of the form

‖κ − κ̃1,2‖∞,B1×B2 ≤ Cin(m)
cm
1

(m + 1)!
diam(B1 × B2)m+1

2d∑
p=1

‖∂m+1
p κ‖∞,B1×B2 (2.2)

hold, where c1 ∈ R>0 is a constant and Cin(m) is a polynomial in m (cf. [3]). In order to make use of this
estimate, we need a bound for the derivatives of κ. Typical kernel functions are asymptotically smooth, i.e.,
they have a singularity of order g ∈ N0 at x = y and satisfy the inequality

|∂α
x ∂β

y κ(x, y)| ≤ Capx(α + β)!(c0‖x − y‖)−g−|α|−|β| (2.3)

for some constants Capx, c0 ∈ R>0. Combining this inequality with (2.2) , we find

‖κ− κ̃τ,σ‖∞,Bτ×Bσ ≤ Cin(m)Capx

(
c1 diam(Bτ × Bσ)
c0 dist(Bτ , Bσ)

)m+1

dist(Bτ , Bσ)−g.

This estimate implies that we can expect good convergence only if the diameter of Bτ ×Bσ can be bounded
by the distance of the boxes, i.e., if Bτ and Bσ satisfy an admissibility condition of the type

diam(Bτ × Bσ) ≤ η dist(Bτ , Bσ) (2.4)

3

for some parameter η ∈ R>0. If this inequality holds, we find

‖κ− κ̃τ,σ‖∞,Bτ×Bσ ≤ Cin(m)Capx

(
c1η

c0

)m+1

dist(Bτ , Bσ)−g, (2.5)

i.e., we have exponential convergence in m if η < c0/c1 holds.

Remark 2.1 The Newton kernel κ(x, y) = 1/‖x− y‖ satisfies (2.3) with c0 = 1. Tensor product Chebyshev
interpolation satisfies (2.2) with c1 = 1/4. This implies that η ∈ (0, 4) guarantees exponential convergence
of the kernel approximation.

2.3 Local Approximation

The admissibility condition (2.4) implies dist(Bτ , Bσ) > 0, so we cannot expect to find a global approxima-
tion of the form (2.1) for the entire matrix. Instead, we split the matrix into suitable blocks and approximate
each block separately.

In order to get an efficient algorithm, we use a hierarchical approach to construct the block decomposition:
We organize the degrees of freedom in the form of a cluster tree, i.e., a tree with root I and the property
that if a node τ ⊆ I is not a leaf, it is the disjoint union of all of its sons. The nodes of a cluster tree will
be called clusters.

For a given cluster tree TI, we denote the set of clusters by TI and the set of sons for a given cluster
τ ∈ TI by sons(τ). We fix a bounding box Bτ for each cluster τ ∈ TI.

We can use the admissibility condition (2.4) in combination with the cluster tree to construct the desired
partition of the matrix: A pair (τ, σ) is called admissible, if condition (2.4) holds. We start with (I, I) and
split a cluster pair as long as it is not admissible. This leads to the following algorithm:

procedure subdivide(τ, σ, var P);
begin if (τ, σ) is admissible then P := P ∪ {(τ, σ)}

else if sons(τ) = ∅ or sons(σ) = ∅ then P := P ∪ {(τ, σ)}
else for all τ ′ ∈ sons(τ) do

for all σ′ ∈ sons(σ) do subdivide(τ ′, σ′, P)
end;

procedure divide(var P);
begin P := ∅; subdivide(I, I, P) end;

This algorithm gives us a set P satisfying

I × I =
⋃

(τ,σ)∈P

τ × σ,

i.e., a partition of the index set I × I corresponding to the matrix K. Obviously, an entry (τ, σ) can only
appear in P if either it is admissible or if τ or σ is a leaf. This distinction is represented by the splitting

Pfar := {(τ, σ) ∈ P : (τ, σ) is admissible}, Pnear := P \ Pfar

of P into admissible and non-admissible blocks. The non-admissible blocks are stored without compression,
while we apply our approximation scheme to the admissible blocks.

2.4 Compressed Representation

For each cluster τ , we denote the interpolation points and Lagrange polynomials corresponding to IBτ

by
(xτ

ν)ν∈K and (Lτ
ν)ν∈K and introduce the matrix Vτ ∈ R

τ×K by setting

Vτ
iν :=

∫
Γ

Lτ
ν(x)Φi(x) dx (i ∈ τ, ν ∈ K). (2.6)

4

The family (Vτ)τ∈TI
is called a cluster basis. Let (τ, σ) ∈ Pfar. We replace the kernel function κ by its

interpolant
κ̃τ,σ := (IBτ

⊗ IBσ

)κ =
∑
ν∈K

∑
µ∈K

κ(xτ
ν , xσ

µ)Lτ
ν(x)Lσ

µ(y)

and get the approximate matrix K̃τ,σ ∈ R
τ×σ defined by

K̃τ,σ
ij :=

∑
ν∈K

∑
µ∈K

κ(xτ
ν , xσ

µ)
∫

Γ

Lτ
ν(x)Φi(x) dx

∫
Γ

Lσ
µ(y)Φj(y) dy = (VτSτ,σVσ�)ij (2.7)

for i ∈ τ , j ∈ σ, where Sτ,σ ∈ R
K×K is given by

Sτ,σ
ν,µ := κ(xτ

ν , xσ
µ) (ν, µ ∈ K). (2.8)

The approximation K̃ ∈ R
I×I of the matrix K is given by

K̃ij :=

{
(VτSτ,σVσ�)ij if (i, j) ∈ τ × σ for (τ, σ) ∈ Pfar,

Kij otherwise,
(i, j ∈ I).

2.5 Fast Matrix-Vector Multiplication

Now that we have derived a compact approximation of the matrix K, we consider the efficient computation
of the product of K̃ and a given vector u ∈ R

I.
The straightforward method is to loop over all blocks (τ, σ) ∈ P and multiply them by u. This approach

is not optimal, since we have to perform the multiplication by Vσ� for each single block of the form
(τ, σ) ∈ Pfar. In order to remove this redundancy, we split the matrix-vector multiplication into four parts:

1. Forward transformation: Compute ûσ :=Vσ�u|σ for all σ ∈ TI.

2. Multiplication: Compute v̂τ :=
∑

σ,(τ,σ)∈Pfar
Sτ,σûσ for all τ ∈ TI.

3. Backward transformation: Initialize the output vector v by zero and add up the contributions of
all clusters: v|τ := v|τ + Vτ v̂τ .

4. Nearfield: Add the uncompressed parts: v|τ := K|τ×σu|σ for all (τ, σ) ∈ Pnear.

This approach is more efficient than the naive method, but can be improved even further: Let τ ∈ TI be
a node that is not a leaf. Let τ ′ ∈ sons(τ). Since our interpolation operators are projections onto Qd,m, we
find that

Lτ
ν = IBτ′

Lτ
ν =

∑
ν′∈K

Lτ
ν(xτ ′

ν′)Lτ ′
ν′ holds for all ν ∈ K.

For a given index i ∈ τ ′, this implies

Vτ
iν =

∫
Γ

Lτ
ν(x)Φi(x) dx =

∑
ν′∈K

Lτ
ν(xτ ′

ν′)
∫

Γ

Lτ ′
ν′ (x)Φi(x) dx = (Vτ ′

Bτ ′,τ)iν , (2.9)

where Bτ ′,τ ∈ R
K×K is defined by

Bτ ′,τ
ν′ν := Lτ

ν(xτ ′
ν′) (ν, ν′ ∈ K). (2.10)

The equation (2.9) describes an essential property of the basis: The restriction of Vτ to the subset τ ′ belongs
to the range of Vτ ′

, the cluster bases are nested.
Using this property, we can derive recursive procedures for performing the first and third step of the

matrix-vector multiplication:

5

procedure fastforward(σ, u, var (ûσ)σ∈TI);
begin if sons(σ) = ∅ then ûσ := Vσ�u|σ

else for all σ′ ∈ sons(σ) do
begin fastforward(σ′, u, û);

ûσ := ûσ + Bσ′,σ�ûσ′

end end;

procedure fastbackward(τ, var v, (v̂τ)τ∈TI);
begin if sons(τ) = ∅ then v|τ := Vτ v̂τ

else for all τ ′ ∈ sons(τ) do

begin v̂τ ′ := v̂τ ′ + Bτ ′,τ
τ ′ v̂τ;

fastbackward(τ ′, v, v̂)
end end;

In order to stress the similarities of both procedures, we have not included the necessary initialization:
Before calling the fast forward transformation, the output coefficients (ûσ)σ∈TI

have to be set to zero.
The advantage of the recursive procedures is that we have to store the matrices Vτ only for the leaves of

the cluster tree. For all other clusters, it is sufficient to store the small transfer matrices Bτ ′,τ . This leads
to a significant reduction in the storage complexity.

Remark 2.2 (Complexity) In typical situations, building the matrices Bτ ′,τ , Vτ , and Sτ,σ can be done
in O(Nmd) operations. The matrix-vector multiplication based on the recursive procedures requires O(Nmd)
operations, too (cf. [3]).

3 Orthonormalization

Our approximation is created by a d-dimensional interpolation operator, but enters the computations only
in the form of boundary integrals over a (d− 1)-dimensional surface. Therefore we can expect that the used
expansion system is too rich and that it should be possible to construct reduced expansion systems, e.g.,
harmonic polynomials if κ(·, ·) is the kernel function corresponding to the Laplace equation. We do this by
applying algebraic algorithms to the original H2-matrix.

The algebraic equivalent of the continuous expansion system is the cluster basis (Vτ)τ∈TI
(cf. (2.6)),

which can be considered to represent the Galerkin discretizations of the expansion functions.
Therefore, our goal is to find a reduced cluster basis (Ṽτ)τ∈TI

and then to find an approximation of the
original H2-matrix in terms of the new basis.

3.1 Orthonormalized Cluster Basis

Let us fix a cluster τ ∈ TI, and let ν ∈ K. If the basis function Lτ
ν is redundant, its Galerkin projection can

be represented in terms of the projections of the remaining basis functions, therefore we can represent the
ν-th column of Vτ in terms of the other columns, and this implies that Vτ is rank-deficient.

This suggests a simple method for the elimination of redundant expansion functions: We try to or-
thonormalize Vτ , i.e., to find a rank k̃τ ∈ N and matrix Qτ ∈ R

K×k̃τ

such that Ṽτ := VτQτ ∈ R
τ×k̃τ

is
orthogonal. The hope is that k̃τ < #K leads to lower cost without losing accuracy.

The orthogonality of Ṽτ is equivalent to

I = Ṽτ�
Ṽτ = Qτ�(Vτ�Vτ)Qτ . (3.1)

A matrix Qτ satisfying this condition can be found by different algorithms. We use the Schur decomposition

P�GP = D

of the positive semidefinite symmetric matrix G :=Vτ�Vτ , where P ∈ R
K×k is a square orthogonal matrix

(recall that K is the index set corresponding to the original expansion system and k is its cardinality),
D ∈ R

k×k is diagonal and the entries of D are ordered in a monotonously increasing sequence.
If all the diagonal entries of D were positive, we could set Qτ := PD−1/2 and find

Qτ�(Vτ�Vτ)Qτ = D−1/2P�GPD−1/2 = D−1/2DD−1/2 = I,

so we would have found a solution for equation (3.1).

6

For rank-deficient matrices Vτ , D will have zero entries, so we have to modify our approach. The idea
is to choose those entries of D that are larger than a given threshold ε ∈ R>0: We set

k̃τ := min{� ∈ {1, . . . , k} :
k∑

p=�+1

Dpp ≤ ε}

and use D† ∈ R
k×k̃τ

given by

D†
ij =

{
D−1/2

ij if i = j,

0 otherwise
(i ∈ {1, . . . , k}, j ∈ {1, . . . , k̃τ})

in order to define
Ṽτ := VτPD†.

This implies
Ṽτ Ṽτ� = VτP(D†)2P�Vτ�

and therefore
Vτ�Ṽτ Ṽτ�Vτ = GP(D†)2P�G = PD(D†)2DP�.

Due to orthogonality, the best approximation of Vτ in the range of Ṽτ is given by Ṽτ Ṽτ�Vτ and satisfies
the error estimate

‖Vτ − Ṽτ Ṽτ�Vτ‖2
F = tr(Vτ �Vτ − Vτ�Ṽτ Ṽτ�Vτ)

= tr(P(D − D(D†)2D)P�) = tr(D − D(D†)2D) ≤ ε

(‖·‖F is the Frobenius norm).

3.2 Nested Basis

Applying the straightforward orthonormalization described above to all clusters τ ∈ TI will give us a reduced
basis, but this basis will no longer be nested, i.e., the equation (2.9) will no longer hold, so we would not be
able to use the fast matrix-vector multiplication algorithm.

Therefore we have to introduce a further modification: Let τ ∈ TI be a cluster with sons(τ) �= ∅. Due
to (2.9), we have

Vτ |τ ′×K = Vτ ′
Bτ ′,τ for all τ ′ ∈ sons(τ). (3.2)

We want to find a reduced matrix Ṽτ satisfying a similar equation for reduced transfer matrices B̃τ ′,τ .
Suppose we have already computed Ṽτ ′

for all τ ′ ∈ sons(τ) of τ . We approximate Vτ ′
in (3.2) in terms

of Ṽτ ′
, i.e., we apply the orthogonal projection to the range of Ṽτ ′

to both sides of the equation:

Ṽτ ′
Ṽτ ′�Vτ |τ ′×K = Ṽτ ′

Ṽτ ′�Vτ ′
Bτ ′,τ .

Let Wτ ′
:= Ṽτ ′�

Vτ ′
, and let V̂τ ∈ R

τ×K be defined by

V̂τ |τ ′×K := Ṽτ ′
Wτ ′

Bτ ′,τ (3.3)

for all τ ′ ∈ sons(τ). V̂τ is well-defined since the sons τ ′ ∈ sons(τ) are disjoint and their union is τ .
The matrix V̂τ is the orthogonal projection of Vτ onto the space spanned by the ranges of the matrices

Ṽτ ′
corresponding to the sons of τ , i.e., V̂τ is the best approximation of Vτ we can get without giving up

nestedness.
Now we can apply the same orthogonalization procedure as before to V̂τ instead of Vτ in order to find

a matrix Qτ satisfying
I = Ṽτ�

Ṽτ = Qτ�(V̂τ�V̂τ)Qτ .

The matrix Ṽτ is given by
Ṽτ := V̂τQτ ,

7

and this implies
Ṽτ |τ ′×k̃τ = V̂τ |τ ′×KQτ = Ṽτ ′

Wτ ′
Bτ ′,τQτ = Ṽτ ′

B̃τ ′,τ

for B̃τ ′,τ := Wτ ′
Bτ ′,τQτ , i.e., the new cluster basis (Ṽτ)τ∈TI

is nested (cf. (2.9)).
The Gram matrix V̂τ�V̂τ used in the computation of B̃τ ′,τ can be constructed by means of the equation

V̂τ�V̂τ =
∑

τ ′∈sons(τ)

Bτ ′,τ�Wτ ′�Ṽτ ′�Ṽτ ′
Wτ ′

Bτ ′,τ =
∑

τ ′∈sons(τ)

Bτ ′,τ�Wτ ′�Wτ ′
Bτ ′,τ

due to the orthogonality of Ṽτ ′
.

By splitting the matrix Wτ and using the nestedness of the bases (Vτ)τ∈TI
and (Ṽτ)τ∈TI

, we find that
the matrix Wτ can be represented in the form

Wτ = Ṽτ�Vτ =
∑

τ ′∈sons(τ)

B̃τ ′,τ�Ṽτ ′�Vτ ′
Bτ ′,τ =

�∑
τ ′∈sons(τ)

B̃τ ′,τ�Wτ ′
Bτ ′,τ ; (3.4)

hence, this computation requires only the matrices Wτ ′
corresponding to the sons τ ′ of τ and the transfer

matrices Bτ ′,τ and B̃τ ′,τ .
The following algorithm computes the matrices Ṽτ for leaves τ ∈ TI and the transfer matrices B̃τ ′,τ for

the remaining clusters τ ∈ TI with τ ′ ∈ sons(τ):

procedure orthonormalize(τ);
begin if sons(τ) = ∅ then {treatment of leaves}

begin G := Vτ�Vτ; {build Gram matrix}
Find Qτ with Qτ�GQτ = I;
Ṽτ := VτQτ; {new basis for τ}
Wτ := Ṽτ�Vτ {update transformation matrix}

end else
begin for all τ ′ ∈ sons(τ) do orthonormalize(τ ′); {recursion}

G := 0; {build projected Gram matrix}
for all τ ′ ∈ sons(τ) do G := G + Bτ ′,τ�Wτ ′�Wτ ′

Bτ ′,τ;
Find Qτ with Qτ�GQτ = I;
for all τ ′ ∈ sons(τ) do B̃τ ′,τ := Wτ ′

Bτ ′,τQτ; {new basis for τ}
Wτ := 0; {update transformation matrix}
for all τ ′ ∈ sons(τ) do Wτ := Wτ + B̃τ ′,τ�Wτ ′

Bτ ′,τ

end end;

This procedure is local, i.e., only the matrix Vτ is needed for the computation if τ is a leaf, and only the
matrices Bτ ′,τ for τ ′ ∈ sons(τ) are needed if τ is not a leaf. By using temporary variables that are initialized
at the beginning of the procedure (cf. (2.6) and (2.10)), we do not need to store the entire original cluster
basis.

3.3 Conversion of the Coefficient Matrices

Let (τ, σ) ∈ Pfar. The submatrix corresponding to this block of an H2-matrix is given in the form VτSτ,σVσ�

(cf. (2.7)).
In order to find a representation of this block with respect to the new cluster basis (Ṽτ)τ∈TI

, we once
more use the orthogonal projection and get

Ṽτ Ṽτ�VτSτ,σVσ�ṼσṼσ� = Ṽτ S̃τ,σṼσ�

as the best approximation with

S̃τ,σ := Vτ�VτSτ,σVσ�Ṽσ = WτSτ,σWσ�,

so we need only the matrices (Wτ)τ∈TI
computed as a by-product in the basis orthonormalization algorithm.

8

3.4 Complete Algebraic Recompression

The orthogonalization algorithm considers only the expansion system itself, but not the kernel function we
intend to approximate. Therefore we can expect improved results if we include the coefficient matrices Sτ,σ

in addition to the cluster basis.
This is done by the algorithm introduced in [2] for dense and hierarchical matrices. Since H2-matrices

are a specialization of hierarchical matrices, we could convert the H2-matrix representation into the form of
an H-matrix representation and apply the algorithm from [2] directly. For the conversion, we would have
to compute the matrices (Vτ)τ∈TI

for all clusters τ ∈ TI, not only for the leaves, i.e., we could not benefit
from the more compact recursive representation based on equation (2.9) .

Instead of computing the matrices (Vτ)τ∈TI
in advance and using them to expand the factorized form

VτSτ,σVσ� of the H2-matrix blocks to the form used in the H-matrix conversion algorithm, we keep the
blocks factorized as long as possible and expand them during the course of the recursion: We use the set of
blocks related to ancestors of τ given by

Aτ := {σ ∈ TI : ∃τ0 ∈ TI : τ ⊆ τ0, (τ0, σ) ∈ Pfar}

and store the intermediate results of the transformation of these blocks in a family (Cτ,σ)σ∈Aτ of auxiliary
matrices. After a suitable basis for a cluster has been found, all the blocks are transformed into the new basis
and the results are stored in another family (Ĉτ,σ)σ∈Aτ of auxiliary matrices. This leads to the following
algorithm:

procedure recompression(τ, Aτ);
begin if sons(τ) = ∅ then for all σ ∈ Aτ do Ĉτ,σ := Cτ,σ {no conversion for leaves}

else
begin let sons(τ) = {τ1, . . . τs}; for i := 1 to s do {compute ancestor blocks}

begin Rτi := {σ ∈ TI : (τi, σ) ∈ Pfar}; Aτi := Aτ ∪ Rτi;
for all σ ∈ Aτ do Cτi,σ := Bτi,τCτ,σ;
for all σ ∈ Rτi do Cτi,σ := Sτi,σ;
recompression(τi, Aτi) {determine cluster basis for sons}

end;
for i := 1 to s do for j := 1 to s do {compute Gram matrix for all sons}
begin Gij := 0;

for all σ ∈ Aτ do Gij := Gij + Ĉτi,σ�TσĈτj ,σ

end;

find an orthogonal k̃τ -column matrix Q =
(
Q�

1 , . . . ,Q�
s

)� maximizing∥∥∥∥∥∥∥
(
Q�

1 , . . . ,Q�
s

) ⎛⎜⎝ G11 . . . G1s

...
. . .

...
Gs1 . . . Gss

⎞⎟⎠
∥∥∥∥∥∥∥

F

;

for all σ ∈ Aτ do Ĉτ,σ := 0; {convert blocks to the new basis}
for i := 1 to s do
begin B̃τi,τ := Qi;

for all σ ∈ Aτ do Ĉτ,σ := Ĉτ,σ + B̃τi,τ
�
Cτi,σ

end end end;

The matrices (Tσ)σ∈TI
appearing in this procedure are defined by Tσ := Vσ�Vσ and can be computed

by a recursion similar to (3.4) .

4 Numerical Experiments

For our experiments, we consider the kernel function

κ(x, y) :=
1

4π‖x − y‖
corresponding to the three-dimensional single layer potential operator. The domain Ω is the unit ball in R

3

and therefore Γ is the unit sphere in three dimensions.

9

We approximate Γ by a regular triangulation consisting of plane triangles and use piecewise constant
basis functions for our Galerkin discretization.

The original discretization is performed for an interpolation order of 4, and we choose ε = 10−4 as the
threshold for the algebraic compression algorithm.

We will first consider the speed of our algorithms. The following table lists the time needed1 for building
the different H2-matrix approximations and for performing the matrix-vector multiplications:

N original orthogonalized recompressed
build/s MVM/s build/s MVM/s build/s MVM/s

512 4.33 0.07 5.42 0.01 6.17 0.01
2048 20.16 0.48 25.83 0.09 30.46 0.04
8192 83.50 1.71 108.24 0.45 223.51 0.24

32768 333.25 6.87 435.54 1.78 1163.62 1.02
131072 1315.24 27.05 1718.66 7.42 5683.39 4.08
524288 27366.03 16.07

Table 1: Time in seconds for setup (‘build’) and matrix-vector multiplication (‘MVM’)

We can see that both compression techniques lead to a significant reduction in the time for the matrix-vector
multiplication: For the simple orthogonalization algorithm the matrix-vector multiplication is speeded up
by a factor of almost 4, while the full recompression even gives us a factor of more than 6.

On the other hand, building the fully recompressed H2-matrix requires much more time than building the
H2-matrix with orthogonalized cluster basis. This is not surprising, since the full recompression algorithm
has to consider all admissible blocks of the H2-matrix, while the orthogonalization algorithm works only
based on the cluster basis.

Next, we consider the amount of memory required for storing the original and compressed H2-
approximations:

N original orthogonalized recompressed
512 92108 6633 3527

2048 139020 15057 5015
8192 152422 19873 5848

32768 152618 21235 6171
131072 146278 20345 6138

Table 2: Memory requirement in bytes per degree of freedom

The last three columns give the number of bytes of storage needed per degree of freedom. In this table, the
advantage of the full recompression method is obvious: It reduces the memory requirements by more than
95% compared to the original method, while the orthogonalization algorithm reaches only 86%.

Of course, we are not only interested in fast algorithms, we also need the results to be sufficiently precise.
We approximate the operator norm of matrices by starting with a random vector and performing 100 steps
of the power iteration. The values of the relative error ‖K− K̃‖2/‖K‖2 are collected in the following table:

N original orthogonalized recompressed
512 4.53033−5 4.52851−5 4.53183−5

2048 5.08654−5 5.11205−5 5.10336−5

8192 6.63957−5 6.65225−5 6.64592−5

32768 7.22294−5 7.22293−5 7.23569−5

Table 3: Relative approximation error

Here, the columns “original”, “orthogonalized” and “recompressed” give the norm of the difference between
the densely populated matrix and the original H2-matrix, the H2-matrix with orthogonalized cluster bases
and the recompressed H2-matrix.

1All computations were performed on Sun Ultra 3cu processors running at 900 MHz.

10

Obviously, the additional errors introduced by orthogonalization and recompression are negligible. This
means that both algorithms yield a significant reduction in the computational complexity without affecting
the precision. The compression ratio of the full recompression procedure is much better than that of the
simple orthogonalization method, but this advantage is complemented by the significantly higher complexity.

References

[1] S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with applications,
Tech. Report 18, Max Planck Institute for Mathematics in the Sciences, 2002. To appear in: Engineering
Analysis with Boundary Elements.

[2] S. Börm and W. Hackbusch, Data-sparse approximation by adaptive H2-matrices, Computing, 69
(2002), pp. 1–35.

[3] S. Börm and W. Hackbusch, H2-matrix approximation of integral operators by interpolation, Appl.
Numer. Math., 43 (2002), pp. 129–143.

[4] S. Börm, M. Löhndorf, and J. M. Melenk, Approximation of integral operators by variable-order
interpolation, Tech. Report 82, Max Planck Institute for Mathematics in the Sciences, 2002.

[5] W. Dahmen and R. Schneider, Wavelets on manifolds I: Construction and domain decomposition,
SIAM Journal of Mathematical Analysis, 31 (1999), pp. 184–230.

[6] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices,
Computing, 62 (1999), pp. 89–108.

[7] W. Hackbusch and B. Khoromskij, A sparse matrix arithmetic based on H-matrices. Part II: Ap-
plication to multi-dimensional problems, Computing, 64 (2000), pp. 21–47.

[8] W. Hackbusch, B. Khoromskij, and S. Sauter, On H2-matrices, in Lectures on Applied Mathe-
matics, H. Bungartz, R. Hoppe, and C. Zenger, eds., Springer-Verlag, Berlin, 2000, pp. 9–29.

[9] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the boundary element method
by panel clustering, Numer. Math., 54 (1989), pp. 463–491.

[10] V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60
(1985), pp. 187–207.

Steffen Börm
Max-Planck-Institut für Mathematik in den Naturwissenschaften
Inselstraße 22–26, D-04103 Leipzig
eMail: sbo@mis.mpg.de

Wolfgang Hackbusch
Max-Planck-Institut für Mathematik in den Naturwissenschaften
Inselstraße 22–26, D-04103 Leipzig
eMail: wh@mis.mpg.de

11

