Max-Planck-Institut
fur Mathematik
in den Naturwissenschaften

Leipzig

Adaptive Refinement and Clustering of
‘H-Matrices

by

L. Grasedyck, W. Hackbusch, S. Le Borne

Preprint no.: 106 2001

Adaptive Refinement and Clustering of H-Matrices

L. Grasedyck, Kiel, W. Hackbusch, Leipzig, and S. Le Borne, Cookeville

Abstract

In [4], a class of (data-sparse) H-matrices is introduced which allows an approximate matrix
arithmetic of nearly optimal complexity. In several subsequent papers (e.g., [5], [6]), H-matrices
were shown to be applicable in the boundary element as well as finite element context, again
yielding nearly optimal complexity estimates for storage and work requirements of the respective
stiffness matrices. The analyses were based on the assumption of the underlying cluster trees
being balanced. This assumption might be violated in the case of adaptive mesh refinement.
The present paper provides an extension of H-matrix techniques to (a sequence of) problems on
adaptively refined meshes. A measure to monitor the actual storage and work complexities is
introduced and employed to decide whether an adaptively refined (unbalanced) cluster tree is still
acceptable or should be reconstructed in a balanced way.

AMS Subject Classification: 65F05, 65F30, 65F50, 65N50
Key words: Hierarchical matrices, data-sparse approzimations, formatted matriz operations, fast
solvers, adaptive mesh refinement

1 Introduction

In [4], a class of hierarchical matrices (H-matrices) has been introduced that allows a sparse ap-
proximation to large, fully populated stiffness matrices arising in boundary element method or finite
element method applications. In the FEM case, it is the inverse of the stiffness matrix that is fully
populated and can be approximated by an H-matrix.

The construction of an H-matrix is based on a (hierarchical) block partitioning of the product
index set I x I which itself is based on a (hierarchical) partitioning of the index set I. These
hierarchical partitionings are organised in so-called (block) #H-trees. If the finite index set I and
hence its size n := |I| is fixed, then these (block) H-trees can be constructed in a balanced way which
will lead to nearly optimal complexities between O(n) and O(n log n) for the storage, matrix-vector
multiplication and standard matrix operations like (approximate) matrix-matrix multiplication or
(approximate) matrix inversion of the stiffness matrix A € R™".

A local refinement of the discretisation leads to an enlarged index set I’ of the size n' := |I'| with
n' > n and a stiffness matrix A’. The above mentioned (nearly) optimal case could be obtained for
A’ by reconstructing a balanced H-tree for the index set I’. However, due to the local character of
the refinement, the majority of the indices of A and A’ coincide. This observation suggests to only
update the matrix format locally in the positions corresponding to the refinement. In terms of the
‘H-tree this corresponds to expanding some vertices of the tree, more precisely replacing some leaves
by small subtrees.

Such an update of a (block) H-tree might lead to an unbalanced tree and hence to worse storage
and work complexities, the worst case being O(n?) for storage and O(n?®) for matrix inversion.
Hence one has to carefully weigh the advantages (w.r.t. matrix assembly) of updating the tree over
reconstructing it in a balanced way compared to the disadvantages (w.r.t. storage and subsequent
work requirements) of dealing with an unbalanced tree.

In this paper we introduce a measure which indicates how much the storage and work complexity
of an H-matrix based upon an adaptively refined cluster tree differs from that of a balanced cluster

tree. Hence this measure can be used to decide when a reconstruction of the cluster tree becomes
necessary in order to maintain optimal complexity estimates. Since an implementation of H-matrices
that allow local updates as a consequence of local updates of the cluster tree is not straightforward,
we provide one such exemplary implementation.

The rest of the paper is organised as follows: In Section 2, we introduce the class of H-matrices
and estimate their storage and work complexities under rather general assumptions. In Section 3,
we introduce a measure and explain how it can be employed in an adaptive process in order to keep
storage and work requirements as low as possible. Section 4 provides an implementation for the
relevant data structures and matrix operations. The theoretical results are confirmed by numerical
tests which are presented in Section 5.

2 H-Matrices

Let I be a finite index set, and consider the vector space K! over the field K € {R,C}. A (fixed)
partitioning P of I into disjoint subsets is described by

P={L|t<j<IP} with I=U"\I;, LNnL=0fori#;

We consider a set of such partitionings, including coarse as well as fine ones, which is hierarchically
structured and defined by an H-tree T = T'(I) which will be introduced after establishing some
notation. Given a tree T' = (V, E) with a vertex ¢ € V, we will also write ¢t € T instead. A vertex
x € V is called a predecessor (successor, son) of y € V if (z,y) € E ((y,z) € E). A vertex with no
successor is called leaf. We use the notations

S(t) = {s € T'| s is successor of ¢} fort €T,
F(t)y=vifteSw) for teT)\{root(T)},
L) = {teT | S(t) =0},
T = {root(T)},
T ={teT|Fit)eTt P} forieN,
L(T,i) = LT)NTD forie Ny,
pr = max{i € Ny | T® # 0}

for the set of successors of a vertex, the predecessor (father) of a vertex, the set of leaves of a tree, the
vertices of level 0, the vertices of level 4, the leaves of level i and the depth of the tree, respectively.

Definition 2.1 (H-tree) Let I be an index set, and let P(I) denote its power set. A tree T = (V, E)
with V- C P(I) is called an H-tree (based on I), if the following conditions hold:

(1) ITeT.
(1) Ift ¢ L(T), then S(t) contains disjoint subsets of I and t is the union of its sons,
i.e., t = Uses(p)S-

The name H-tree is due to its hierarchical structure. Since the vertices ¢t € T' are named clusters,
the H-tree is also called cluster tree.

Remark 2.2 For any H-tree T of I and i € {0,...,pr} there holds

I=|\J{t1teTDu(T,j),j<i}, inparticular I=|J{t|te (T)},

i.e., the leaves of an H-tree yield a partitioning for the index set I.

In order to obtain a (hierarchical) set of partitionings for the index set I x I we will construct
a so-called block H-tree, denoted by Ty = T'(I x I) in contrast to 77 = T'(I) for the previous cluster
tree.

Definition 2.3 (block H-tree) Given an index set I and an H-tree Ty (I) = (V1, E1), a block H-tree
(block cluster tree) To(I x I) = (Va, Es) corresponding to Ty is an H-tree of I x I with root I x T

such that for all i € {0,...,p,} and t =11 Xty € T2(i) it holds t1,t9 € Tl(i).

Remark 2.4 A more general definition of a block H-tree allows t1,to € Ty of different depths for
blocks t = t1 X to € Ty. This would, however, complicate the subsequent theoretical considerations
without yielding significantly improved results.

The vertices of a block H-tree are called block clusters or just blocks. There exist several con-
structions to obtain a block H-tree from a cluster tree in a unique way. Two such algorithms that
construct the more general block #H-trees of Remark 2.4 are described in [6]. A simple algorithm to
construct a block H-tree as defined in Definition 2.3 will be given in Construction 2.7 below. There
we distinguish between admissible and non-admissible blocks as defined in

Definition 2.5 (admissibility) a) An admissibility condition for a block H-tree Ty is a mapping
Adm : Ty — {TRUE, FALSE}. A block b=t x to € Ty is called admissible if Adm(b) = TRUE.

b) Given a parameter Ny, indicating a minimal block size, a block H-tree Ty is called admissible if
all leaves b = t1 X to are either admissible or max{|t1|, |t2|} < nmin. We denote the set of admissible
(inadmissible) leaves of Ty by L1 (Ty) (L™ (T3)).

For the remainder of the paper we assume the following condition to hold:

Assumption 2.6 T5 is an admissible block H-tree.
Construction 2.7 Start with I x I = root(T,) and define sons of b = t1 Xty € Ty (where t1,ty € T1)
0 Sit)=0 Vv S(t2)

=0 Vv
S(b) = \ (|t1| < Nymin A |t2| < nmin)a
{s1 X s2 | s1 € S(t1),s2 € S(t2)} otherwise.

t1 X to admaissible

Each block b € T, corresponds to a location of a matrix block M® = (mij)i,jyep of a matrix
M = (mij) (i jyerxr € K.

Definition 2.8 (H-matriz) Let k € Ny. The set of H-matrices induced by a block H-tree T is
My (Ty) :={M € K'*" | Vb € LT(Tp) : rank(M?) < k}.

The purpose of the admissibility condition is to ensure a sufficient approximation of the H-matrix
My, to a given matrix M. The parameter n,,;, has been introduced taking into account practical
aspects: Under a certain size, typically 4 to 32 times k, it is more efficient to implement a matrix as
a full matrix than as a structured one.

Matrices of rank at most k£ can be represented in several ways. For the matrix blocks in an
‘H-matrix corresponding to admissible block clusters we choose the representation as an Rk-matrix,
which is defined in

Definition 2.9 (Rk-matriz) We call a matriz R € K™ an Rk-matriz if R is given as

k
R=> ab/
i=1
with a; € K* and b; e K™ fori=1,...,k.

Lemma 2.10 The costs Ngy s¢, NF,s¢ for the storage and Ngg.v, Np.v for the matriz-vector multi-
plication of n x m Rk- and full matrices are given by

Ngy,st(n,m) = k(n +m), Ngk.v(n,m) =2k(n+m) —k —n < 2k(n +m),

Np,si(n,m) = nm, Np.y(n,m) =2nm—n < 2nm.

Definition 2.11 (sparse block H-tree) A block H-tree To(I x I) that results from a cluster tree
Ti(I) by Construction 2.7 is called sparse if there exists a constant Cyp such that for all t, € T :

max{‘ {t2 eTy | t1 Xty € £(T2)} ‘, ‘ {t2 eTy | to X t1 € ﬁ(TQ)} ‘} < Csp- (2.1)

The sparsity can be proven for rather arbitrary block H-trees (see, e.g., [2],[3]) with a small
constant Cy,. For the block 7{-tree corresponding to the block-partitioning By in [6, Section 2.2.2]
(see also Figure 2 (left)), there holds Cs, = 1. The sparsity enables us to estimate the storage
requirements of an #H-matrix belonging to My 1, (715).

Lemma 2.12 Let L := {i € Ny | 3 t1 x to € L(T»,i)}. The costs for the storage Ny si(T>) of a
matriz M € May (o) for a sparse block H-tree To(I x I) are bounded by 2|L|Csp max{k, 3nmimn |-

Proof.
Npsi(T) = > Nresi(ltihlt2) + Y. Nesltil|tl)
t1 Xto€LT(TH) t1 Xto €L (Th)
L.2.10 1
< Z klti] + Z klta| + Z Enmin(|t1| + [t2])
t1 ><t2€£+(T2) t1 ><t2€£+(T2) t1 xXt2eL(T)
1 1
< > max{k, 5nmin}t1| + > max{k, 3 nmin} |t2|
t1 Xto LT (TH)UL™ (T?) t1 xXto €L (T)UL™ (T?)
(2.1) 1 1
<D Y Cypmax{hgnmindlt] +3 3 Cypmax{k, snminllta
el t1 GTI(Z) ieL tzETl(l)
R.2.2 1 1
< ; Csp max{k, Enmm}|f| + ; Csp max{k, Enmm}|I|
(2 (2

1
< 2|L|Csp max{k, Enmm}m
|

Lemma 2.13 The costs for the storage Ny s¢(To) and for the matriz-vector multiplication Ny (Ts)
of a matriz M € My (T2) based on a block H-tree To(I x I) are related by

Ny 51(T2) < Nyv (To) < 2Ny 54(T5).

Proof.

Nusi(Te)= >, Neesilltihlt2) + > Negi(ltl, ta])
t1 Xt26£+(T2) ti XtaeL™ (T?)
L.2.10
= S k(al+)+) -t
t1 Xto€LT(TH) t1 Xto €L (Th)
< Y k() —k—al D @l Ikl - k)
t1 Xto €ELT(TH) t1 Xto €L (Th)
L.2.10
= Z NRk~V(|t1|7|t2|) + Z NF-V(|t1|7|t2|)
t1 Xt26£+(T2) t1 xt2eL™(T2)
= Ny.v(T3)
L.2.10
< oo 2k(tl+) + D 20t |t
t1 Xto€LT(TH) t1 xto €L (Th)
= 2Ny, 51(T5).

]

The fact that the costs for the matrix-vector multiplication can be bounded by the storage

requirements for an H-matrix (and vice versa) will lead to the introduction of a measure for the
overall complexity of an H-matrix in Section 3.

3 Adaptive Refinement and Clustering

3.1 Motivation

We begin this section with a simple example. Given the index set I = {1,--- ,n} with n = 2P,
p € N, we construct two different cluster trees leal‘mced and Tfmb“l‘mced which are depicted in Figure
1. We then construct block cluster trees Tyalanced and Tynbalanced by Construction 2.7 and impose

lealanced Tlunbalanced
{1,...,2°} {1,...,2r}
A/\A /\
{1,...,2r71} {2r=1 41,...,2P} {1} {2,...,2°}
P P P
: : {2} {3,...,27}
{1} {2} oo {7 -1 {27 {2r -1} {27}

Figure 1: A balanced and an unbalanced cluster tree for the index set I.
the admissibility condition

b=t X ty is admissible <= t; Nty = 0. (3.1)

The block structures for the resulting H-matrices ij‘f‘l“med and M%”b“la"ced for p =4, i.e., n = 16,
are depicted in Figure 2. One can easily check that the storage requirements for the matrix formats

are
N’}-L,St(M';Zalanced) _ O(pkn), NH’St(Mg,{nbalanced) — O(n2),

where we assumed rank k for the individual matrix blocks (more precisely, rank(b) = min{k,r, s} for
an admissible r x s matrix block b). This example demonstrates that a balanced cluster tree leads

+

|

|

|

i '

Figure 2: The matrix block structure resulting from a balanced and an unbalanced tree, resp.

to much better storage requirements (and therefore work requirements, see Lemma 2.13) than an
unbalanced tree. In practical applications, however, one might encounter somewhat unbalanced trees
due to an adaptive refinement process as will be illustrated by the following example: Let J = [0, 1]
be an interval that is subdivided into n = 2P disjoint subintervals J;, 1 < i < n, of size 1/n. If we
identify each subinterval J; with an index i, we can construct a balanced cluster tree le“l‘mced for the
index set I = {1,--- ,n} as illustrated in Figure 1(left). Due to the results of some error estimator,
we might want to locally refine our partitioning, e.g., further divide only the leftmost interval Jy
into two subintervals, and then again continue to divide only the leftmost interval of these two new
intervals, etc. The resulting interval partitioning for p = 2 and four further local refinements of
the leftmost interval is given in Figure 3. Starting with a balanced cluster tree for the equidistant

A
AL
M
]

Figure 3: An adaptively refined interval partitioning.

interval partitioning of J into n subintervals, we can iteratively update this tree by simply replacing
the cluster corresponding to the refined interval J; by a new cluster consisting of the two new
subintervals with the corresponding sons. Alternatively, one could rebuild the complete cluster tree
in order to obtain a tree as balanced as possible. Whereas in the case of the balanced cluster tree the
amount of work to update the tree is larger than compared to the unbalanced case, the subsequent
arithmetic operations with the resulting H-matrix will be less expensive. This circumstance raises
the following questions:

e How unbalanced does the tree have to be for it to be worth to be rebuilt completely?

e How can this be measured efficiently and reliably?

e And how does one have to implement H-matrices in order to benefit from the locality of the
update?

3.2 The Density Measure in an Adaptive Scheme

For a sparse block H-tree T that is almost cardinality balanced, i.e., p = log,(n), and 1y, < 2k,
there holds Ny s:(T2) = O(knlogy(n)) and Ny.v(T2) = O(knlogy(n)) (see Lemmata 2.12,2.13).
Therefore the quotient Ny s¢(T2)/(knlogy(n)) should be bounded in the balanced case.

Definition 3.1 (density measure) Given a block H-tree Ty, we define the density of Mqyi,(To) by

Ny 5t(T2)
D(T3) := ——————.
(T2) 2knlogy(n)

For the block #H-tree corresponding to the block-partitioning By in [6, Section 2.2.2], there holds
D(T,) =~ 1. This can be regarded as the coarsest reasonable block H-tree and therefore as a lower
bound for the density of a general admissible block H-tree.

In order to assess the density of a given #H-matrix H € My ;(T2), one needs a reference value
D* for the same matrix represented in a block structure corresponding to a balanced block H-tree
TQI’“l‘mced. In an adaptive process this value is given by the initial (balanced) block cluster tree. If,
after some refinement steps, the density exceeds a certain threshold (1 + §)D*, then the (block)
cluster tree is reconstructed in a balanced way and the reference value D* can be updated. The
optimal value of § depends on how many times the matrix-vector multiplication has to be performed
and how long the reconstruction of the (block) cluster tree (and reassembling of the matrix) takes.
These values can also be estimated by the initial or most recent reconstruction of the (block) cluster
tree and thus the parameter ¢ can be determined.

Example 3.2 Let H € My 1 (T2) be an H-matriz. The reference value D* = D(Ty*need) js given
and we assume that the time for the execution of one matriz-vector multiplication is CyD* in the
balanced and CyD(Ts) in the unbalanced case. The time for the complete re-clustering is estimated
by Creciuster- If s matriz-vector multiplications should be performed then the optimal value for § is

. Crecluster

N SOt_D* '

A crucial point in the adaptive scheme is to update the matrix with a complexity equal to the
number of new matrix entries (usually O(klogy(n)). If the vectors a;,b; corresponding to some
Rk-block in the matrix are stored as arrays, then the complete arrays have to be reallocated if the
lengths of the vectors increase, which leads to a complexity equal to (at least) the size of the largest
updated block (usually O(n)).

If the vectors a;, b; are stored as a doubly linked list and one has to find the j-th entry of the
vector a;j, then one has to go through the whole list (in the worst case), which leads again to a
complexity equal to (at least) the size of the largest updated block (usually O(n)). In the next
section we present an implementation that overcomes this bottleneck.

4 Implementation of Adaptively Expandable H-Matrices

Rk-matrices, full matrices and vectors can be implemented in several ways, depending on factors such
as the class of the machine where the calculation takes place, the problem to be discretised and/or
solved, the available software to be used (e.g., LAPACK, MATLAB) and several other circumstances.
Here we choose to store each vector a;, b; of an Rk-matrix and each row of a full matrix block as a

doubly linked list. The purpose of the linked lists for the storage of vectors is to allow an inexpensive
update if one entry 7 is replaced by a small set {i1,...,%5} of entries, as it might occur in an adaptive
refinement process.

Implementation 4.1 (List based vectors) A list based vector v is implemented as a doubly linked
list of entries. Fach entry v.i has a pointer v.i.prev to its predecessor, a pointer v.i.next to its
successor and a value v.i.value. The first entry v.first of the list has no predecessor (v.first.prev =
NULL) and the last entry v.last of the list has no successor (v.last.next = NULL). The vector v
itself stores only the pointer to v.first and v.first stores a pointer v.first.v to the vector v.

Implementation 4.2 (Rk-matrices) An Rk-matriz R stores 2k pointers R.a[i], R.bi],i = 1,... k,
to the (list based) vectors a;, b; (as they appear in Definition 2.9) in two respective arrays.

Implementation 4.3 (full matrices) Each row of a full matriz F is stored as a (list based) vector.
F stores only the pointer to the first row F.firstrow. Each entry i of a row-vector has (in addition to
his predecessor i.prev and successor i.next) a pointer to the lower entry in the same column (i.lower)
and the upper entry in the same column (i.upper) (if they exist, otherwise they are NULL).

Implementation 4.4 (H-matrices) An H-matric H € My ;(T2) is recursively defined over the
block H-tree To. The structure of H is similar to that of To. H corresponds to the root of To and
has pointers H.subli,j], i,j = 1,...,|S(root(T1))|, to the (sub-)matrices corresponding to the sons
of root(Ts). The submatrices are Rk-, full or again H-matrices. Recursively this defines H. Each
H-submatriz H corresponding to (t1,t2) € Ty stores the number of sons H.r :== |S(t1)|, H.s := |S(t2)]
of rys.

Next we will illustrate how to perform the matrix-vector multiplication w = H -v for the list based
vectors v,w € Rl and an H-matrix H. Since H is recursively defined it is advantageous to define
subroutines that perform w' := w' + M - o' for Rk-, full or H-submatrices M of H and subvectors
w',v" of w,v. Here it is convenient to call the subroutines with the first entries of the (sub-)vectors.
The algorithmic details in the context of list based vectors are given in Figures 4, 5.

Implementation 4.5 (degrees of freedom) FEach degree of freedom i (e.g., basis function, grid-
point, triangle or abstract class) stores the pointers x.entry to its respective list entry of every vector
(ai,b; of the Rk-submatrices and v,w from the matriz-vector multiplication) it belongs to. These
pointers are organised in a linked list where i.first is the first entry. Additionally, i stores pointers
to each full matriz it belongs to in a doubly linked list, where i.fullfirst is the first entry.

On each level of a sparse block H-tree of depth p there are at most 2C, leaves that contain ¢,
and thus there are at most 2(p + 1)C;, max{k, %nmm} pointers to vectors of Rk- or full matrices to
be stored. Additionally, pointers to the vectors v, w for the matrix-vector multiplication w = H - v
have to be stored. Overall, the complexity for the storage increases by O(n(p + 1)kCyp), thus the
complexity for an H-matrix implemented as above is of the same order but slightly larger than that
of a standard (non-adaptable) H-matrix.

An algorithm for the local update of the Rk-blocks of the matrix and of the vectors (for the
matrix-vector-multiplication) is given in Figure 5 (right). We restrict ourselves to the case where
one degree of freedom i, specifying a row and column of the matrix, is replaced by exactly two
new ones. Here, we are only concerned with providing storage space and accessing the entries, not
providing the values for the entries. Furthermore, we assume that all admissible block clusters, where
the new degrees of freedom are inserted, remain admissible, i.e., remain Rk-matrices.

Procedure RE-MVM (R, pv, pw) ‘

call with pointers pv=v.first,pw=w.first
uses real number s, pointers z,y, z';
for i=1...k do begin
s:=0;
x = pv; y := R.b[i] first;
while y.next # NULL do begin
s := s + y.value - z.value;
Y 1= y.next; x := r.next;
end;
s := s + y.value - z.value;
=
x := pw; y := R.a[i]first;
while y.next # NULL do begin
z.value := z.value + y.value - s;
Y 1= y.next; x := r.next;
end;
z.value := z.value + y.value - s;
end;
pv =z, pw = x;

‘returns pv = v.last, pw = w.last ‘

Procedure F-MVM(F, pv, pw) ‘

call with pointers pv=v.first,pw=w.first
uses real number s, pointers r, z, ¥y, ¢;
r := Ffirstrow first; y := pw;
while r.lower # NULL do begin
§:=0;z:=pv;c:=r;
while ¢ # NULL do begin
s := s + c.value - z.value;
¢ 1= c.next; x := x.next;

end;

y.value := y.value + s;

r := r.lower; y := y.next;
end;
c:=r;s:=0; x:=v.first;
while c.next # NULL do begin

s := s + c.value - z.value;

¢ := c.next; ¢ := x.next; end;
s := s + c.value - z.value;
y.value := y.value + s;

pv =, pw = y;

returns pv = v.last, pw = w.last

Figure 4: Rk - and full matrix-vector multiplication w := w+ R - v, w := w + F - v, resp.

‘ Procedure H-MVM(H, pv, pw) ‘

call with pointers pv=v.first,pw=w.first
uses integers i, j, pointers z,z’, y;
Y = pw;
for i =1,...,H.r do begin
T = pu;y = y;
for j=1,...,H.s do begin
if j # H.s then y :=y';
if H.subli,j] is an H-matrix then
call H-MVM(H .sub[i,j],z,y);
if H.subli,j] is an Rk-matrix then
call Re-MVM(H.subli,j], z,y);
if H.subli,j] is a full matrix then
call F-MVM(H.subli,j], z,y);
if i # H.r then z := z.next;

end;

if j # H.s then y := y.next;
end;
PVI=X; pW=y;

‘returns pv = v.last, pw = w.last

Procedure H-Update(H, 1,11, %2) ‘

uses pointers , x1, T2, ', j1, j2, 1, J5, xe;
x := d.first; 2’ := NULL;
while z # NULL do begin
x1 := new list entry; x5 := new list entry;
J1 := new list entry; j, := new list entry;
re = x.entry;
if x # i.first then begin
Ji-next := ji; jh.next := jo; end,;
else begin
i1.first := jy; io.first := jo; end;
Jr-entry := xq; ji := j1; ja.entry := xa; jh 1= jo;

if ze.prev # NULL then ze.prev.next := z1;
if ze.next # NULL then ze.next.prev := x»;
T1.next := xa; Ta.prev = i;
if ze.prev # NULL then z;.prev := xe.prev;
else begin z,.v := ze.v; re.v.first := z1; end;
if ze.next # NULL then z».next := ze.next;
z' := z.next; delete z.entry; delete z; r := z';
end;

)

Figure 5: H-matrix-vector multiplication w := w + H - v and the local Rk -matrix/vector expansion.

A special case that has not been mentioned yet occurs if an (inadmissible) full matrix block
has to be expanded. Due to the expansion, the size of the block may exceed n,,;, and thus the
corresponding index sets have to be further divided and checked for admissibility. Since the size of
the block is limited by n,in, the complexity for the update is O(ny,) if the size of the block does
not exceed Ny, and O(nfmn) otherwise. The implementational techniques are similar to those in
Figure 5 (right).

5 Numerical Results

In this section we provide a numerical example that employs the adaptive update procedures of the
previous section. We assume that each admissible block of the matrix to be stored is an Rk-matrix
and that the entries of the vectors a;, b; (Definition 2.9) are given, thus omitting the discretisation
process as well as the Rk-approximation. The blockwise Rk-approximation can be performed, e.g.,
by some explicit separable kernel approximation in the case of the boundary element method ([9],
[8]) or some low rank/incomplete cross approximation ([1], [10]).

Each entry AZ(-;) of the matrix to be stored and evaluated (in the [-th adaptive step) is related to

a pair of basis functions ¢El), ¢§_l) :10,1]> = R.

The one-dimensional example in Section 3, Figure 2, was introduced to demonstrate that the local
matrix expansion might lead to an expensive arithmetic. For two-dimensional grids, a similar negative
effect theoretically occurs when a grid is adaptively refined towards a single point. The situation
in practical applications is somewhat different: Here we typically begin with some refinement (and
a corresponding balanced cluster tree), and then perform a few adaptive refinement steps around
(possibly several) critical points. The number of unknowns created through the adaptive refinement
is relatively small compared to the number of unknowns created in the initial refinement. This leads
to only a small portion of the adaptively updated cluster tree to be unbalanced. As a consequence,
the overall complexity estimates for storage and matrix arithmetic are dominated by the initial
balanced part of the cluster tree, i.e. they are still nearly optimal.

If the adaptive refinement concerns not just a single point but a (larger) region, hence creating
more than just a few extra unknowns, then the complexities for storage and matrix arithmetic are
still nearly optimal even for the adaptive update scheme. This is illustrated by the following example.

The reference grid Gy that defines the supports XZ.(O) of the basis functions is a regular tensor-
product grid of [0, 1]? with 32 x 32 panels (ng = 1024 degrees of freedom). Subsequent grids (gl)ﬁgw

are obtained by refining the panels adjacent to the y-axis (see Figure 6) and define the index sets
(I,)ime= with ny == || = 992 + S=1 96 4 9l+5 elements and the basis functions (qﬁz(-l));il. The
supports (Xi(l));ll of the basis functions B; := {qbz(l) |iel;={1,...,n}} are squares. Here we have
assumed B; to be the canonical basis of the space of piecewise constant functions on G;.

J
|
[T \l/\ [T

Figure 6: A locally refined reference grid.

10

If Xi(l) cr, X](-l) C o for two subsets 7,0 € R? and the admissibility condition
min{diam(7), diam(c)} < 2ndist(7, o) (5.1)

holds (the diameter diam and distance dist are based on the Euclidean norm in R?, € [0,1]), then

Zf,, Nag (69,

for some f], g7 : B — R. If the admissibility condition does not hold, then

l
A() hTU(¢(),¢§))’
for some h™7 : B; x B; — R.

The balanced tree T7 () is constructed by binary space partitioning (sometimes called geometric
bisection, see e.g. [2]) and will result in a cardinality-balanced tree. The block H-tree T»(Iy x Iy) is
given by Construction 2.7 (we set the parameter n,;, := 4). The H-matrices H; corresponding to the
block H-trees Th(I; x I;) are obtained by the local matrix expansion (Figure 5 (right)). In Figure 7

5 I D(Ty(I; x I)) t(H; - v)
n 0 1024 38 0.06
4 2464 35 0.13
3 5 4000 35 0.27
6 7072 34 0.49
2 7 13216 34 0.97
1] 8 25504 34 1.85
9 50080 33 4.0
1 10 20 30 40 50 60
Figure 7: Left: The storage requirements for n = 1-10%,...,60-10> degrees of freedom in

100MegaByte. Right: The level [, the number of basis functions n;, the density D(T»>(I; x I;)),
where we replaced Ny g¢(T>) by the actual amount of storage required for the matrix (the unit is
sizeof(double)), and the time for one matrix-vector multiplication in seconds (SunEnterprise, 250
MHz).

we have depicted the storage requirements for the matrices H; and the corresponding density-indices
D(Ty(I; x I})), that do not increase. Here we set the local matrix ranks to & = 1, and the parameter
7 in the admissibility condition (5.1) to n = 0.8. We point out that the storage requirements and the
complexity for the matrix-vector multiplication are roughly twice as large as in the standard (not
adaptively expandable) H-matrix case.

If the (block) H-tree Th(I; x I;) is built by local matrix expansion and the supports of the basis
functions are nested (as in the numerical example chosen here), then the tree is identical to the one
built for the index set I; x I; by geometrically-balanced binary space partitioning (see [3]). The
consequence is that all grids that allow for a geometrically-balanced construction of the H-matrix
are immediately suited for the local matrix expansion. If the grid is not suited for the local matrix
expansion, then this is indicated by the density measure D and one can try to re-cluster the tree 75
in a cardinality-balanced way.

11

References

1]

2]

[6]

[7]

8]

[9]

Bebendorf, M.: Approximation of boundary element matrices. Numerische Mathematik 86, 565—
589 (2000).

Grasedyck, L.: Theorie und Anwendungen Hierarchischer Matrizen (German). PhD thesis, Uni-
versity Kiel, Germany, 2001.

Grasedyck, L. and Hackbusch, W.: Construction and arithmetic of H-matrices. In preparation.

Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-
matrices. Computing 62, 89-108 (1999).

Hackbusch, W. and Khoromskij, B. N.: A sparse H-matrix arithmetic: General complexity
estimates. J. Comp. Appl. Math. 125, 479-501 (2000).

Hackbusch, W. and Khoromskij, B. N.: A sparse H-matrix arithmetic. Part II: Application to
multi-dimensional problems. Computing 64, 21-47 (2000).

Hackbusch, W. and Khoromskij, B. N.: H-matrix approximation on graded meshes. In John R.
Whiteman (ed.): The Mathematics of Finite Elements and Applications X, pages 307-316. Else-
vier, 2000.

Hackbusch, W. and Nowak, Z. P.: On the fast matrix multiplication in the boundary element
method by panel clustering. Numer. Math. 54, 463-491 (1989).

Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys.
60, 187207 (1985).

[10] Tyrtyshnikov, E. E.: Incomplete cross approximation in the mosaic-skeleton method. Computing

64, 367-380 (2000).

Sabine Le Borne Lars Grasedyck Wolfgang Hackbusch
Department of Mathematics Mathematisches Seminar II Max-Planck-Institut fur
Box 5054 Universitat zu Kiel Mathematik in den
Tennessee Technological University Hermann-Rodewald-Str. 3 Naturwissenschaften
Cookeville, TN 38505 D-24098 Kiel Inselstr. 22-26
USA Germany D-04103 Leipzig
Germany
sleborne@tntech.edu lgr@numerik.uni-kiel.de wh@mis.mpg.de

12

