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Abstract

In previous papers hierarchical matrices were introduced which are data-sparse and allow an
approximate matrix arithmetic of nearly optimal complexity. In this paper we analyse the complexity
(storage, addition, multiplication and inversion) of the hierarchical matrix arithmetics. Two criteria,
the sparsity and idempotency, are sufficient to give the desired bounds. For standard finite element and
boundary element applications we present a construction of the hierarchical matrix format for which
we can give explicit bounds for the sparsity and idempotency.
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1 Introduction

1.1 Overview

In [8] a new format for the representation of matrices was introduced, the so-
called hierarchical matrices or shortly H-matrices. This format is well-suited for
the data-sparse representation of matrices arising in the boundary element
method or for the approximation of the inverse to a finite element discretisation of
an elliptic partial differential operator. In subsequent papers, several model
problems were analysed and for each of them a suitable H-matrix format was
defined. A short overview and an introduction to hierarchical matrices can be
found in [3].

In this paper we do not describe the various applications of the H-matrix
arithmetic, but present a precise complexity analysis. It turns out that such an
analysis can be based on two criteria, namely the sparsity and idempotency of the
underlying tree. Corresponding to the exact matrix operations þ; � we define the
so-called formatted matrix operations �, � that allow us to compute an
approximate inverse to an H-matrix in almost linear complexity. For standard
finite element and boundary element applications we are able to give a con-
struction of the H-matrix format where we can give explicit bounds for the
sparsity and idempotency.
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The rest of the paper is organised as follows. The next subsections give a short
introduction to H-matrices. In Section 2 we present the algorithms for the
formatted arithmetic operations within the set of H-matrices and estimate their
complexity. Section 3 describes the image of the inversion operator in the set of
H-matrices and introduces the admissibility condition that allows us to
approximate efficiently (BEM) stiffness matrices or the inverse to a (FEM)
stiffness matrix in the set of H-matrices. Based upon the admissibility condition
we construct the hierarchical structures and H-matrices in Section 4. The
theoretical results are confirmed by numerical tests which are presented in
Section 5.

1.2 RðkÞ-Matrices

The basic building blocks for H-matrices are matrices of low rank (as compared
to their size). We use a data sparse representation for this kind of matrices.

Definition 1.1 (RðkÞ-matrix representation) Let k; n;m 2 N0. A matrix M 2 Rn�m is
called an RðkÞ-matrix (given in RðkÞ-representation) if M is given in factorised form

M ¼ ABT ; A 2 Rn�k; B 2 Rm�k; ð1:1Þ

with A;B in full matrix representation.

Throughout this paper the storage is measured by the number of floating point
numbers to be stored, while the cost of an operation is given by the number of
elementary operations þ;�; �; =.

Remark 1.2 (storage and matrix-vector product) The storage requirements
NF ;Stðn;mÞ for a matrix M 2 Rn�m in full matrix representation is NF ;Stðn;mÞ ¼ nm.
The storage requirements NR;Stðn;m; kÞ for an n� m RðkÞ-matrix M is

NR;Stðn;m; kÞ ¼ kðnþ mÞ: ð1:2Þ

The complexity NF �vðn;mÞ and NR�vðn;m; kÞ for the computation of the matrix-vector
product of M in full matrix and RðkÞ-matrix representation is

NF �vðn;mÞ ¼ 2nm� n; NR�vðn;m; kÞ ¼ 2kðnþ mÞ � n� k:

In the next lemma, the term ‘truncated’ will appear in two meanings. First in part
(a) the truncated singular value decomposition (SVD) and the truncated QR-
decomposition are the exact ones, where the corresponding factors are reduced to
the non-zero part. In part (b) of the lemma, truncation from rank k to k0 < k
includes loss of information.

Lemma 1.3 (truncated SVD, truncation) (a) Let R ¼ ABT 2 Rn�m be an RðkÞ-
matrix. A truncated singular value decomposition of R can be computed with
complexity NR;SVDðn;m; kÞ � 5k2ðnþ mÞ þ 23k3 as follows:
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1. Calculate a truncated QR-decomposition A ¼ QARA of A, QA 2 Rn�k;RA 2 Rk�k.

2. Calculate a truncated QR-decomposition B ¼ QBRB of B, QB 2 Rm�k;RB 2 Rk�k.

3. Calculate a singular value decomposition RART
B ¼ ~UUR ~VV T of RART

B .

4. Define U :¼ QA ~UU 2 Rn�k and V :¼ QB ~VV 2 Rm�k.

Then R ¼ URV T is a (truncated) SVD. Due to [5, Sections 5.2.9 and 5.4.5], the
complexity of the previous steps is

QR� decomposition of A: 4nk2

QR� decomposition of B: 4mk2

multiplication of RART
B: 2k3

SVD of RART
B: 21k3

Multiplication of QA eUU and QBeVV : 2nk2 þ 2mk2

Altogether : NR;SVDðn;m; kÞ ¼ 6k2ðnþ mÞþ 23k3

(b) A truncation of an RðkÞ-matrix R to rank k0 � k is defined as the best approx-
imation with respect to the Frobenius and spectral norm of R in the set of Rðk0Þ-
matrices. This can be computed by using the first k0 columns of the matrices UR and
V from the truncated singular value decomposition of R with the same complexity as
above. We denote the truncation from rank k to k0 by the symbol

TR
k0 k: ð1:3Þ

If k0 � k; TR
k0 k is the identity. In the representation (1.1), the matrices A;B are

extended by k0 � k zero columns.

We remark that the truncation in part (b) becomes non-unique when the k0th and
k0 þ 1ð Þst singular values are equal. Consequently, all operators defined below and
involving a truncation may be non-unique.

Definition 1.4 (formatted addition) The formatted addition R� S of two n� m
RðkÞ-matrices R and S is defined as a truncation of Rþ S to the set of RðkÞ-matrices,
i.e., R� S :¼TR

k 2kðRþ SÞ:

Note that � is commutative, but in general not distributive (i.e., A� Bð Þ � C and
A� B� Cð Þ may differ).

Remark 1.5 The formatted addition can be computed with complexity
NR;�ðn;m; kÞ � 24k2ðnþ mÞ þ 184k3:

Proof. Use the truncation of Lemma 1.3b for the Rð2kÞ-matrix Rþ S. u

Lemma 1.6 (spectral and Frobenius norm) The spectral and Frobenius norm of an
n� m RðkÞ-matrix R can be computed as in Lemma 1.3a with complexity
NR;k�kðn;m; kÞ � 4k2ðnþ mÞ þ 23k3.
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Proof. The norms can be obtained from the singular values, i.e., steps 1–3 from
Lemma 1.3a are to be performed. u

1.3 H-Matrices

In essence, the hierarchical structure of H-matrices is the tree structure defined
below.

1.3.1 H-Trees TI

Here, we give only the definition of an H-tree and introduce some notations. The
concrete construction of the tree will be discussed in §4.1.

Definition 1.7 (H-tree, sons) Let I be a finite set and let TI ¼ ðV ;EÞ be a tree with
vertex set V and edge set E. For a vertex v 2 V we define the set of sons of v as
SðvÞ :¼ fw 2 V j ðv;wÞ 2 Eg. The tree TI is called an H-tree of I, if the following
conditions hold:

I is the root of TI and ; 6¼ v � I for all v 2 V ; ð1:4aÞ

8v 2 V : either SðvÞ ¼ ; or v ¼ _[[

w2SðvÞw: ð1:4bÞ

In (1.4b) we use the notation _[ for the disjoint union.

In the following we identify V and TI , i.e., we write v 2 TI instead of v 2 V : The
edge set E is not needed, since Sð�Þ contains all information about the edges.

Definition 1.8 (descendant, father, leaf, level, depth) Let TI be anH-tree. We define
the descendants of a vertex v 2 TI by S	ðvÞ :¼ fw 2 TI j w � vg and the uniquely
determined predecessor (father) of a non-root vertex v 2 TI is denoted by FðvÞ. The
set of leaves of the tree TI is LðTIÞ ¼ fv 2 TI j SðvÞ ¼ ;g. The levels of the tree TI

are defined as

T ð0ÞI :¼ fIg; T ð‘ÞI :¼ fv 2 TI jFðvÞ 2 T ð‘�1ÞI g for ‘ 2 N;

and we write levelðvÞ ¼ ‘ if v 2 T ð‘ÞI . The depth of T is defined as depthðT Þ :¼
maxf‘ 2 N0 j T ð‘ÞI 6¼ ;g. The leaves of T on level ‘ are denoted by LðTI ; ‘Þ :¼
LðTIÞ \ T ð‘ÞI .

The introduced notation requires implicitly #SðvÞ 6¼ 1; as discussed in

Remark 1.9 (general H-trees) In the definition of an H-tree the vertices were
labelled by subsets of the index set I. Therefore, it is not possible that a vertex v has
exactly one son w ((1.4b) would demand v ¼ w). This could be overcome by denoting
the vertices of an H-tree by a tuple ðv; ‘Þ, where v � I and ‘ is the level number of
the vertex. Then the vertex ðv; ‘Þ is allowed to have exactly one son ðv; ‘þ 1Þ. In the
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rare cases where it becomes important, we will explicitly note the level number, e.g.,
by v 2 T ð‘Þ, but omit the tuple notation otherwise.

Remark 1.10 (a) Any H-tree TI with root I has the property _[v2LðTI Þv ¼ I ; i.e., the
leaves of an H-tree yield a partitioning for the index set I.

(b) For any H-tree TI and ‘ 2 f0; . . . ; depthðT Þg there holds

I ¼ _[[

v2T ð‘ÞI

v

0

B
@

1

C
A _[ _[[

v2LðTI ;‘�1Þ
v

0

@

1

A _[ � � � _[ _[[

v2LðTI ;0Þ
v

0

@

1

A:

(c) Each vertex v 2 TI induces a subtree

Tv :¼ ðVv;EvÞ; Vv :¼ fw 2 S	ðvÞg; Ev :¼ E \ Vv � Vvð Þ;

which is an H-tree of the index set v.

Proof. a) Use induction over the depth of H-trees. b) Consider T 0I :¼ TIn[depthðTI Þ
j¼‘þ1

and apply part a). (

1.3.2 Block H-Trees TI�J

For (rectangular) matrices from RI�J we need H-trees with the root I � J : The
case I � I for square matrices is a particular subcase. Again, the concrete con-
struction is postponed to §4.2.

Definition 1.11 (block H-tree) Let I and J be finite sets and let TI and TJ be H-
trees of I and J. An H-tree TI�J is called a block H-tree (based upon TI and TJ ) if
for all v 2 T ð‘ÞI�J there exist r 2 T ð‘ÞI and s 2 T ð‘ÞJ such that v ¼ r � s. In the case
TI ¼ TJ we say that TI�I is based on TI .

Given v 2 TI�J , Definition 1.11 does not fix whether a vertex v is a leaf or not. But
if v ¼ r � s is not a leaf, the set of sons is given by SðvÞ ¼ fv0 ¼ r0 � s0 j r0 2
SðrÞ; s0 2 SðsÞg: Since by definition, r and s belong to some identical level number
‘; the sons v0 ¼ r0 � s0 2 SðvÞ are products of r0 and s0 from level number ‘þ 1:
Furthermore, the set T ð‘ÞI�J defined in Definition 1.11 is a subset of T ð‘ÞI � T ð‘ÞJ :

Definition 1.12 (cardinality, submatrix, supermatrix) Let M 2 RI�J be a matrix
over the index set I � J . We denote the cardinality of a set I by #I . The submatrix
ðMi;jÞði;jÞ2I 0�J 0 for a subset I 0 � J 0 of I � J is denoted by M jI 0�J 0 . For a superset

I 00 � J 00 
 I � J we denote the matrix M 00 2 RI 00�J 00 with entries M 00i;j ¼
Mi;j if ði; jÞ 2 I � J
0 otherwise

� �

by M jI
00�J 00 .

Remark 1.13 (partitioning) Due to Remark 1.10a, any block H-tree TI�J with root
I � J has the property _[v2LðTI�J Þ ¼ I � J . Vice versa, given a partitioning P � TI�J
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such that _SS
v2P ¼ I � J ; there is a unique H-subtree T 0I�J of TI�J (with same root

I � JÞ so that LðT 0I�J Þ ¼ P:

In previous papers (e.g., [8], [10]), we have based the H-matrix on a partitioning
P � TI�J : Equivalently, we can use the associated H-tree TI�J with LðT 0I�J Þ ¼ P
(see Remark 1.13).

In principal, the H-matrix uses the RðkÞ-representation (1.1) for all blocks
v ¼ r � s 2 TI�J : By practical reasons this is less efficient for small-sized blocks.
Therefore, a minimal block size nmin will be introduced. The use of the RðkÞ-
representation is restricted to minf#r;#sg > nmin, otherwise the standard full
representation is used (in the later numerical examples we choose nmin ¼ 32).

1.3.3 Set of Hierarchical Matrices

Definition 1.14 (H-matrix) Let k; nmin 2 N0. The set of H-matrices induced by a
block H-tree T with blockwise rank k and minimal block size nmin is defined as

HðT ;kÞ :¼ fM 2RI�J j 8r� s2LðT Þ : rankðM jr�sÞ � k or #r� nmin or #s� nming:

A matrix M 2HðT ; kÞ is said to be given in H-matrix representation, if for all
leaves r � s with #r � nmin or #s � nmin the corresponding matrix block M jr�s is
given in full matrix representation and in RðkÞ-matrix representation for the other
leaves.

2 H-Matrix Arithmetics and Their Complexity

In the first part of this section we estimate the storage requirements of an
H-matrix, the cardinality of the H-tree, the complexity of the matrix-vector
multiplication, truncation and formatted addition of H-matrices based on the
sparsity of the H-tree T . In the second part we define the idempotency constant
which is needed to bound the complexity of the matrix multiplication and
inversion in the set of H-matrices.

2.1 Sparsity Based Estimates

Hierarchical matrices possess a certain kind of sparsity which is essential for
favourable estimates of the storage and the cost of the matrix-vector multiplica-
tion and matrix addition.

2.1.1 Sparsity Constant and H-Trees

The block H-tree TI�J may have a sparsity property which is measured by the
quantity Csp defined below. In §4.2, the construction of TI�J will lead to block
H-trees with a sparsity constant Csp independent of the size of #I :
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Definition 2.1 (sparsity constant) Let TI�J be a block H-tree based on TI and TJ .
We define the sparsity (constant) Csp of TI�J by

Csp :¼ max max
r2TI

#fs 2 TJ j r � s 2 TI�Jg;max
s2TJ

#fr 2 TI j r � s 2 TI�Jg
� �

: ð2:1Þ

In many estimates (e.g., in (2.2) below) sums over the quantities #f. . .g appear.
Then the maximum Csp from (2.1) could be replaced by the possibly smaller
average.

In the following, we simplify the notation TI�J by T without subscripts.

Lemma 2.2 (a) Let T be a block H-tree based on TI and TJ with sparsity constant
Csp. If TI and TJ satisfy #SðvÞ 6¼ 1 for all vertices v 2 TI [ TJ , then

#TI � 2#I ; #T � 2Csp minf#I ;#Jg:

(b) Let p :¼ depthðT Þ � 1. If #SðvÞ 6¼ 1 is not necessarily fulfilled, then it still holds

#TI � 2p#I ; #T � 2pCsp minf#I ;#Jg:

(c) The previous estimates provide a bound for #LðT Þ � #T .

Proof. The first inequality of part (a) is trivial. The second inequality is derived by

#T ¼
X

r�s2T

1 ¼
X

r2TI

#fr � s 2 Tg �
X

r2TI

Csp � 2#ICsp: ð2:2Þ

Part (c) is a consequence of LðT Þ � T . (

Due to the distinction between the RðkÞ-representation and the full representation,
we introduce L�ðT Þ and LþðT Þ:

Definition 2.3 Let T be a block H-tree based on TI and TJ . The set of ‘‘small’’
leaves of T is denoted by L�ðT Þ :¼ fr � s 2LðT Þ j #r � nmin or #s � nming and
the set of ‘‘large’’ leaves is denoted as LþðT Þ :¼LðT Þ nL�ðT Þ.

Later, in (3.6), it will turn out that nmin should not be smaller than a constant
given there.

2.1.2 Storage

The estimate in the next lemma makes use of the set of occupied levels L of a block
H-tree T defined by

L :¼ fi 2 N0 jLðT ; iÞ 6¼ ;g: ð2:3Þ

In particular, #L is of interest. Note that #L � depth Tð Þ þ 1:
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Lemma 2.4 (storage) Let T be a block H-tree based on TI and TJ with sparsity
constant Csp (cf. (2.1)) and minimal block size nmin. Then the storage requirements
NH;StðT ; kÞ for an H-matrix M 2HðT ; kÞ are bounded by

NH;StðT ; kÞ � #LCsp maxfk; nmingð#I þ#JÞ:

Proof.

NH;StðT ; kÞ ¼Def:1:14
X

r�s2L�ðT Þ
NF ;Stð#r;#sÞ þ

X

r�s2LþðT Þ
NR;Stð#r;#s; kÞ

�
Rem:1:2 X

r�s2L�ðT Þ
nminð#r þ#sÞ þ

X

r�s2LþðT Þ
kð#r þ#sÞ ð2:4Þ

�
X

r�s2LðT Þ
maxfk; nming#r þ

X

r�s2LðT Þ
maxfk; nming#s

�
Def:2:1X

i2L

X

r2T ðiÞI

Csp maxfk; nming#r þ
X

i2L

X

s2T ðiÞJ

Csp maxfk; nming#s

�
Rem:1:10X

i2L

Csp maxfk; nming#I þ
X

i2L

Csp maxfk; nming#J

¼ #LCsp maxfk; nmingð#I þ#JÞ:

(

In line (2.4), the maximum in NF ;Stð#r;#sÞ � nmin 	maxf#r;#sg is estimated by
#r þ#s:Under the assumption #r � #s; this is an overestimation by the factor 2.
Therefore, #LCsp maxfk; 12 nmingð#I þ#JÞ is supposed to be closer to NH;StðT ; kÞ:

The aim will be to construct T such that depth Tð Þ ¼ O log nð Þ; where n is the size of
I and J .

2.1.3 Matrix-Vector Multiplication

Lemma 2.5 (matrix-vector product) Let T be a block H-tree. The complexity
NH�vðT ; kÞ of the matrix-vector product in the set of H-matrices can be bounded
from above and below by

NH;StðT ; kÞ � NH�vðT ; kÞ � 2NH;StðT ; kÞ:

Proof. According to Remark 1.2 the storage requirements in a block r � s in full
matrix representation are #r#s. The cost to multiply the submatrix with a vector
x and add the result to the target vector y are 2#r#s�#r for the multiplication
and #r for the addition:

NF ;St � NF �v � 2NF ;St:
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For a block r � s in RðkÞ-matrix representation the storage requirements are
kð#r þ#sÞ. The cost to multiply the submatrix with a vector x and add the result
to the target vector y are (due to Remark 1.2) 2kð#r þ#sÞ �#r � k for the
multiplication and #r for the addition:

NR;St � NR�v � 2NR;St:

Since an H-matrix consists blockwise of either full matrices or RðkÞ-matrices, this
concludes the proof. (

Algorithm 2.6 (matrix-vector product) Let M 2HðT ; kÞ be an H-matrix. To
compute the matrix-vector product y :¼ y þMx with x 2 RJ ; y 2 RI , we call MVM
(M , I � J , x, y), where MVM is the following procedure:

procedure MVMðM ; r � s; x;var yÞ;
begin

if Sðr � sÞ 6¼ ; then fsubdivide blockg
for each r0 � s0 2 Sðr � sÞ do MVMðM ; r0 � s0; x; yÞ

else yjr :¼ yjr þM jr�sxjs ffull or RðkÞ � matrixg
end;

2.1.4 Truncation

In (1.3), we have defined the truncation TR
k0 k of RðkÞ-matrices. The extension to

H-matrices is given below.

Definition 2.7 (truncation of H-matrices) Let T be a block H-tree and let
k; k0 2 N0. We define the truncation operator

TH
k0 k : HðT ; kÞ !HðT ; k0Þ

by M 0 ¼TH
k0 k Mð Þ with M 0jr�s ¼TR

k0 k M jr�s

� �
for all r � s 2LþðT Þ and

M 0jr�s ¼ M jr�s for all r � s 2L�ðT Þ:

Remark 2.8 TH
k0 k maps a matrix M 2HðT ; kÞ to a best approximation

M 0 2HðT ; k0Þ of M with respect to the Frobenius norm. Since there is possibly more
than one best approximation we choose an arbitrary representative.

Note that #LðT Þ appearing in the next estimate can be bounded by means of
Lemma 2.2c.

Lemma 2.9 (complexity of the H-matrix truncation) Let T be a block H-tree
based on the H-trees TI and TJ . A truncation TH

k0 kðMÞ of an H-matrix
M 2HðT ; kÞ can be computed with complexity

NH;k0 kðT Þ � 6kNH;StðT ; kÞ þ 23k3#LðT Þ:
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Proof. Lemma 1.3b and Remark 1.2 show

NH;k0 kðT Þ¼
X

r�s2LþðT Þ
NR;SVDð#r;#s;kÞ �

Lemma1.3b X

r�s2LþðT Þ
6k2ð#rþ#sÞþ23k3

¼ 6k
h X

r�s2LþðT Þ
kð#rþ#sÞ

i

þ23k3#LþðT Þ �
ð1:2Þ

6kNH;Stðk;T Þþ23k3#LðT Þ:

(

A sum M of q RðkÞ-matrices Ai (1 � i � q) is an RðqkÞ-matrix. Instead of the
optimal truncation M 0 ¼TR

k qkð
P

AiÞ; we can apply the cheaper TR
k 2k-trunca-

tion to sums of only two terms: M2 :¼TR
k 2k A1 þ A2ð Þ; Mi :¼TR

k 2k Mi�1 þ Aið Þ
(i ¼ 3; . . . ; q) resulting in M 00 :¼ Mq (in general, M 00 6¼ M 0).

Lemma 2.10 (fast truncation of H-matrices) Let T be a block H-tree. An
approximate truncation of an H-matrix from HðT ; qkÞ to HðT ; kÞ (not necessarily
a best approximation) can be computed with complexity

N
H;k fast qk

ðT Þ � ðq� 1Þð24kNH;StðT ; kÞ þ 184k3#LðT ÞÞ

by successive use of the truncation TH
k 2k: let M 2HðT ; qkÞ be decomposed into

M ¼
Pq

i¼1 Mi with matrices Mi 2HðT ; kÞ. Then we define

~MM1 :¼ M1 and ~MMj :¼TH
k 2kð ~MMj�1 þMjÞ for j ¼ 2; . . . ; q:

The matrix ~MMq is the desired approximation in HðT ; kÞ.

The truncation procedure from Lemma 2.9 is useful for theoretical purposes
because it computes a best approximation. The fast truncation procedure from
Lemma 2.10 can yield arbitrarily poor results (because of cancellation of the
singular values), but in practice this is not likely to occur.

If we want to approximate an HðT ; kÞ-matrix by an RðkÞ-matrix then we can
exploit the hierarchical structure of the H-matrix format to do this with almost
linear complexity. This is by itself an important result, but we will also use this
(fast) conversion in the multiplication procedure for H-matrices in Section 2.2.2.

Algorithm 2.11 (hierarchical conversion) Let T be a block H-tree of depth
p :¼ depthðT Þ where each vertex v 2 T has at most Csons successors. For a matrix
M 2HðT ; kÞ we compute an approximation RH 2 RðkÞ in p þ 1 steps:

1. We convert the matrix blocks of M corresponding to ‘‘small’’ leaves
r � s 2L�ðT Þ to R(k)-format and retain the ‘‘large’’ leaves r � s 2L�ðT Þ:

Rpjr�s :¼ TR
k nmin

ðM jr�sÞ if r � s 2L�ðT Þ;
M jr�s otherwise.

�
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2. For each ‘ ¼ p � 1; . . . ; 0 we define the matrix R‘ blockwise for all r � s 2 T ð‘Þ[
LðT ; ‘� 1Þ [ � � � [LðT ; 0Þ (cf. Remark 1.10) by

R‘jr�s :¼ TR
k CsonskðR‘þ1jr�sÞ if r � s 2 T ð‘Þ;

R‘þ1jr�s otherwise.

�

The last matrix R0 2 RðkÞ is the desired approximation RH to M.

Lemma 2.12 (accuracy and complexity of the hierarchical conversion) We use the
notation from Algorithm 2.11. If Rbest denotes an RðkÞ-best approximation to M
(with respect to the Frobenius norm) and RH the above defined hierarchical
approximation, then the error is bounded by

kRH �MkF � ð2pþ1 þ 1ÞkRbest �MkF

while the complexity for the conversion (we assume nmin � k and Csons � 2) is

NRðkÞ H � 6CspC2
sonsk

2ðp þ 1Þð#I þ#JÞ þ 23C3
sonsk

3#T :

Proof. a) (Complexity) The conversion of the full matrix blocks r � s 2L�ðT Þ to
RðkÞ-format is done by a singular value decomposition which has a complexity of
21n3

min. For all vertices r � s 2 T nLðT Þ we have to truncate the sum over all sons
of r � s, which due to Remark 1.3a is of complexity 6C2

sonsk
2ð#r þ#sÞþ

23C3
sonsk

3. For all vertices this sums up to

NRðkÞ H �
X

r�s2L�ðT Þ
21n3

min þ
X

r�s2TnLðT Þ
6C2

sonsk
2ð#r þ#sÞ þ 23C3

sonsk
3

� �

�
X

r�s2T

6C2
sonsk

2ð#r þ#sÞ þ 23C3
sonsk

3
� �

� ðp þ 1ÞCsp6C2
sonsk

2ð#I þ#JÞ þ 23C3
sonsk

3#T :

b) (Error) We define the sets

RðT ;‘;kÞ :¼fM 2RI�J j 8r� s2 T ð‘Þ [LðT ;‘�1Þ[ � � �[LðT ;0Þ : rankðM jr�sÞ� kg:

By R‘ we denote the matrix appearing in the ‘th step of the algorithm. Obviously R‘
is contained in the set RðT ; ‘; kÞ. The matrix R0 is the resulting approximant RH.
From one level ‘ to the next level ‘� 1; the algorithm determines a best approx-
imation (with respect to the Frobenius norm) of the matrix R‘ in the set RðT ; ‘; kÞ:

8~RR 2 RðT ; ‘; kÞ : kR‘ � R‘�1kF � kR‘ � ~RRkF : ð2:5aÞ

In the first step (conversion of the full matrix blocks) this reads

8~RR 2 RðT ; p; kÞ : kM � RpkF � kM � ~RRkF : ð2:5bÞ
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By induction we prove kR‘ � RbestkF � 2p�‘kRp � RbestkF as follows. The start
‘ ¼ p of the induction is trivial. The induction step ‘7!‘� 1 follows from

kR‘�1 � RbestkF � kR‘�1 � R‘kF þ kR‘ � RbestkF �
ð2:5aÞ

2kR‘�1 � RbestkF :

Using this inequality, we can conclude that

kM �R0kF ¼kM �
Xp�1

‘¼0
ðR‘�R‘þ1Þ�RpkF �kM �RpkF þ

Xp�1

‘¼0
kR‘�R‘þ1kF

�
ð2:5a;bÞ

kM �RbestkF þ
Xp�1

‘¼0
kRbest�R‘þ1kF

�kM �RbestkF þ
Xp�1

‘¼0
2p�‘�1kRp�RbestkF � 2pkRp�RbestkF þkM �RbestkF

� 2pðkRp�MkF þkM �RbestkF ÞþkM �RbestkF �
ð2:5bÞ
ð2pþ1þ1ÞkM �RbestkF :

(

2.1.5 Addition

Definition 2.13 (formatted H-matrix addition) The formatted addition
� : H ðT ; kÞ �HðT ; kÞ !HðT ; kÞ is defined as a truncation of the (exact) sum to
the set of H-matrices, i.e., A� B :¼TH

k 2kðAþ BÞ.

Remark 2.14 According to Lemma 2.9 the complexity of the formatted H-matrix
addition is bounded by

NH;�ðT ; kÞ � 24kNH;StðT ; kÞ þ 184k3#LðT Þ:

In the later inversion procedure (see Table 1) we have to add three H-matrices
A;B;C and to truncate the sum to rank k and to overwrite C by the result. This is
done by the following algorithm.

Algorithm 2.15 (formatted H-matrix addition) Let A;B;C 2HðT ; kÞ be H-
matrices over the index set I � J . To compute the (formatted) sum
C :¼TH

k 3kðAþ Bþ CÞ we use the following procedure (called by Add(C, I � J , A,
B)):

procedure Addðvar C; r � s;A;BÞ;
begin

if Sðr � sÞ 6¼ ; then fsubdivide blockg
for each r0 � s0 2 Sðr � sÞ do AddðC; r0 � s0;A;BÞ

else Cjr�s :¼TR
k 3k Cjr�s þ Ajr�s þ Bjr�s

� �
ffull or RðkÞ �matrixg

end;
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2.1.6 Matrix-Matrix Multiplication

We consider the multiplication of two (rectangular) matrices A 2 RI�J and
B 2 RJ�K (a particular case is I ¼ J ¼ K). To elucidate the difficulty of the mul-
tiplication, we recall that the addition is a structure-preserving operation in the
sense that the sum of two H-matrices based on the H-tree T can be represented
using the same H-tree T and the sum of the blockwise ranks. In contrast to the
addition, the product of two H-matrices is much more complicated: even if
I ¼ J ¼ K and if A and B belong to the same set HðT ; kÞ, the tree T is in general
not suitable for the representation of the (exact) product. A suitable tree is the
product tree T � T , which is defined next.

Definition 2.16 (product of block H-trees) Let T ¼ TI�J be a block H-tree based
on TI ; TJ and let T 0 ¼ TJ�K be a block H-tree based on TJ ; TK . We define the
product tree TI�K (denoted by T � T 0) by means of rootðT � T 0Þ :¼ I � K and the
description of the set of sons of each node. For each level ‘ ¼ 0; . . . ; p � 1 and
each vertex r � t 2 ðT � T 0Þð‘Þ, the set of sons of r � t is defined by

Sðr � tÞ :¼ r0 � t0
�
�
�9s 2 T ð‘ÞJ 9s0 2 T ð‘þ1ÞJ : r0 � s0 2 ST ðr � sÞ; s0 � t0 2 ST 0 ðs� tÞ

n o

:

We remark that depth ðT � T 0Þ � minfdepthðT Þ; depthðT 0Þg:

Lemma 2.17 (a) Let T be a block H-tree based on TI ; TJ and let T 0 be a block H-
tree based on TJ ; TK . Then the tree T � T 0 is a block H-tree based on TI ; TK .

(b) Let CspðT Þ and CspðT 0Þ denote the corresponding sparsity constant. Then the
sparsity of T � T 0 can be estimated by

CspðT � T 0Þ � CspðT ÞCspðT 0Þ:

Proof. Let r 2 TI . Due to the symmetry of the sparsity we only give a bound for
#ft 2 TK j r � t 2 T � T 0g:

ft 2 TK j r � t 2 T � T 0g �
Def:2:16

ft 2 TK j 9s 2 TJ : r � s 2 T ; s� t 2 T 0g;

#ft 2 TK j r � t 2 T � T 0g �
X

s2TJ ;r�s2T

#ft 2 TK j s� t 2 T 0g � CspðT ÞCspðT 0Þ:

(

Definition 2.18 (predecessors) Let T be an H-tree, i 2 0; depthðT Þ½ �, t 2 T ðiÞ. We
define the predecessor of t on level j 2 f0; . . . ; ig as the uniquely determined vertex
FjðtÞ 2 T ðjÞ with t 2 S	ðFjðtÞÞ.

Due to the H-tree property, the condition t 2 S	ðFjðtÞÞ can equivalently be de-
fined by t �FjðtÞ.
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In the following, we describe the exact multiplication of two H-matrices. In x 2.2
we consider the truncation to a given format and rank, which leads to the for-
matted multiplication � analogously to the formatted addition � from x 2.1.5.

Lemma 2.19 (representation of the H-matrix product) Let T be a block H-tree
based on TI ; TJ and let T 0 be a block H-tree based on TJ ; TK . For each leaf
r � t 2LðT � T 0; iÞ we define

Uðr � t; jÞ :¼ s 2 T ðjÞJ

�
�
�

FjðrÞ � s 2 T and s�FjðtÞ 2 T 0 and

ðFjðrÞ � s 2LðT Þ or s�FjðtÞ 2LðT 0ÞÞ

( )

; j 2 N0:

Then for two matrices M 2HðT ; kÞ and M 0 2HðT 0; k0Þ and each
r � t 2LðT � T 0; iÞ there holds

ðM �M 0Þjr�t ¼
Xi

j¼0

X

s2Uðr�t;jÞ
M jr�sM

0js�t ð2:6Þ

and

J ¼ _[

j¼0;...;i

[

j¼0;...;i

_[

s2 Uðr�t;jÞ

[

s2 Uðr�t;jÞ
s: ð2:7Þ

Proof. a) Assuming that (2.7) is true, we conclude the representation formula
(2.6) from (2.7). The proof of (2.7) is given in the following parts b–d.

b) (Disjointness of Uðr � t; jÞ) According to Remark 1.10b, the elements of
Uðr � t; jÞ are disjoint.

c) (Disjointness w.r.t. j) Let s 2 Uðr � t; jÞ, s0 2 Uðr � t; j0Þ, j � j0 and s \ s0 6¼ ;.
Since s; s0 2 TJ and TJ is an H-tree we get s0 � s, Fjðs0Þ ¼ s. It follows

Fj0 ðrÞ � s0 �FjðrÞ � s; s0 �Fj0 ðtÞ � s�FjðtÞ: ð2:8Þ

Due to the definition of Uðr � t; iÞ either FjðrÞ � s or s�FjðtÞ is a leaf. Hence,
one inclusion in (2.8) becomes an equality which implies j0 ¼ j.

d) (Covering) Let j 2 J . It holds t0 :¼Fð0ÞðrÞ � J 2 T , t00 :¼ J �Fð0ÞðtÞ 2 T 0 and
j 2 J . If neither t0 nor t00 is a leaf, then there exists J 0 2 SðJÞ such that j 2 J 0 and
t1 :¼Fð1ÞðrÞ � J 0 2 T , t01 :¼ J 0 �Fð1ÞðtÞ 2 T 0. By induction we define
ti ¼FðiÞðrÞ� s, t0i ¼ s�FðiÞðtÞ with j 2 s. Let i be the first index for which either
ti ¼FðiÞðrÞ � s or t0i ¼ s�FðiÞðtÞ is a leaf. Then j 2 s 2 Uðr � t; iÞ. (

Theorem 2.20 (structure of the H-matrix product) Let T be a block H-tree based
on TI ; TJ and let T 0 be a blockH-tree based on TJ ; TK . Let CspðT Þ and CspðT 0Þ denote
the sparsity constant of T and T 0 and set p :¼ minfdepthðT Þ; depthðT 0Þg. The exact
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multiplication is a mapping � : HðT ; kÞ �HðT 0; k0Þ !HðT � T 0; ~kkÞ for some ~kk
which can be bounded by

~kk � ðp þ 1ÞminfCspðT Þ;CspðT 0Þgmaxfk; k0; nming: ð2:9Þ

The exact multiplication can be performed with complexity

NH;�ðT ; T 0Þ � 2ðp þ 1ÞCspðT ÞCspðT 0Þ maxfk0; nmingNH;StðT ; kÞ
�

þmaxfk; nmingNH;StðT 0; k0Þ
�
:

Proof. a) (Rank) Let M 2HðT ; kÞ, M 0 2HðT 0; k0Þ, and r � t 2LðT � T 0Þ. Due to
(2.6), we can express the product by ðp þ 1Þmaxi

j¼0 #Uðr � t; jÞ addends, each of
which is a product of two matrices. From the definition of Uðr � t; jÞ we get that
for each addend one of the factors corresponds to a leaf and so its rank is
bounded by maxfk; k0; nming. Hence, each addend has a rank bounded by
maxfk; k0; nming. It follows that ~kk � ðp þ 1Þmaxi

j¼0 #Uðr � t; jÞmaxfk; k0; nming.
The cardinality of Uðr � t; jÞ is bounded by

#Uðr � t; jÞ � #fs 2 T ðjÞJ jFjðrÞ � s 2 Tg � CspðT Þ;

#Uðr � t; jÞ � #fs 2 T ðjÞJ j s�FjðtÞ 2 T 0g � CspðT 0Þ;

which yields #Uðr � s; jÞ � minfCspðT Þ;CspðT 0Þg.

b) (Complexity) Using the representation formula (2.6), we have to compute the
products M jr�sM

0js�t that consist (due to the definition of Uðr � t; jÞ) of
maxfk; k0; nming matrix-vector products. In the following, the expressions
NH;StðTr�J ; kÞ and NH;StðT 0J�t; k

0Þ appear which denote the storage requirements
for a submatrix to the index set r � J and J � t of a matrix in HðT ; kÞ and
HðT 0; k0Þ. We use the abbreviations j :¼ maxfk; nming and j0 :¼ maxfk0; nming
and conclude that

NH;�ðT ; T 0Þ �
Lem:2:5 X

r�t2LðT �T 0Þ

Xp

j¼0

X

s2Uðr�t;jÞ
maxf2j0NH;StðTr�s; kÞ; 2jNH;StðT 0s�t; k

0Þg

�
ð2:7Þ X

r�t2LðT �T 0Þ
2maxfj0NH;StðTr�J ; kÞ;jNH;StðT 0J�t; k

0Þg

¼ 2
Xp

i¼0

X

r�t2LðT �T 0;iÞ
j0NH;StðTr�J ; kÞ þ

X

r�t2LðT �T 0;iÞ
jNH;StðT 0J�t; k

0Þ

0

@

1

A

�
Lem:2:17

2
Xp

i¼0
CspðT ÞCspðT 0Þj0NH;StðT ; kÞ þ CspðT ÞCspðT 0ÞjNH;StðT 0; k0Þ
� �

� 2ðp þ 1ÞCspðT ÞCspðT 0Þ j0NH;StðT ; kÞ þ jNH;StðT 0; k0Þ
� �

;

proving the last estimate. (
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The factor p þ 1 in (2.9) can be replaced by #L with L corresponding to LðT � T 0Þ
(cf. (2.3)).

Remark 2.21 Lemma 2.17 shows that the product of two sparse H-matrices
will always yield a sparse H-matrix. Theorem 2.20 bounds the blockwise rank
of the product. However, the product tree T � T 0 may change drastically
even if T ¼ T 0:

2.2 Idempotency Based Estimates

2.2.1 Case I ¼ J ¼ K

Next, we consider the case I ¼ J ¼ K. Given matrices A;B 2HðT ; kÞ; where T is
the block H-tree based on TI ; we would like to get a product AB in HðT ; kÞ: Due
to x 2.1.6, the result is a matrix in HðT � T ; ~kkÞ with the product tree T � T instead
of T : The necessary conversion from HðT � T ; ~kkÞ into HðT ; k00Þ is discussed in the
following.

An H-tree T may be called idempotent if T � T ¼ T holds for the multi-
plication of Definition 2.16. In that case, we immediately get the desired
representation formula (2.6) of the product of two H-matrices from HðT ; kÞ
in the same set. In general, however, the tree T will not be idempotent but
almost idempotent, which will be measured by the idempotency constant
introduced below.

Definition 2.22 (idempotency) Let T be a block H-tree based on TI . We define the
elementwise idempotency Cidðr � tÞ and idempotency constant CidðT Þ by

Cidðr� tÞ :¼ #fr0 � t0 j r0 2 S	ðrÞ; t0 2 S	ðtÞ and 9s0 2 TI : r0 � s0 2 T ; s0 � t0 2 Tg;
CidðT Þ :¼ maxr�t2LðT ÞCidðr� tÞ:

If the tree T is fixed, the short notation Cid is used instead of CidðT Þ:

If the tree T is idempotent, then for any r � t 2LðT Þ and s 2 TI there holds
r � s 2LðT Þ or s� t 2LðT Þ (see Definition 2.16) so that Cid ¼ 1. The reverse
statement is not true: if Cid ¼ 1 then T is not necessarily idempotent, because the
tree T � T can be coarser than T :
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Example 2.23 To illustrate Definition 2.22 we consider the block H-tree

and the leaf r � t in the top left corner:

The vertex s0 connects the two vertices r0; t0 in the sense that r0 � s0 2 T and
s0 � t0 2 T , while r0 � t0 62 T . The number of vertices r0; t0 that are contained in r; t
and connected by a vertex s0 is 5, which is the elementwise idempotency Cidðr � tÞ of
the vertex r � t:

The following theorem provides a matrix product such that the result lies in
HðT ; k00Þ (same tree T as for the factors).

Theorem 2.24 (multiplication of H-matrices) Let T be a block H-tree of the index
set I � I with idempotency constant Cid, sparsity constant Csp and depth p. We
assume (for simplicity) nmin � k; k0. The exact multiplication is a mapping
� : HðT ; kÞ �HðT ; k0Þ !HðT ; ~kkÞ with some ~kk bounded by

~kk � CidCspðp þ 1Þmaxfk; k0g:

The formatted multiplication �best : HðT ; kÞ �HðT ; k0Þ !HðT ; k00Þ for any
k00 < ~kk is defined as the exact multiplication followed by the truncation TH

k00 ~kk of
Lemma 2.9 and can be computed with complexity

NH;�;bestðT ; k; k0Þ � 43C3
idC3

spk3ðp þ 1Þ3 maxf#I ;#LðT Þg

by truncating the exact product. Using the fast truncation algorithm of Lemma 2.10,
the complexity can be reduced to

NH;�ðT ; k; k0Þ � 56C2
sp maxfCid;Cspgmaxfk; k0g2ðp þ 1Þ2#I

þ 184CspCid maxfk; k0g3ðp þ 1Þ#LðT Þ:

r

t

r’ r’

s’ 

s’ 

t’ t’

r’ r’ r’
r’ r’

t’ t’ t’ t’ t’
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We call this mapping � or �fast in contrast to �best from above.

Proof. a) (Rank) Due to (2.9), in each leaf of T � T the rank is bounded by
ðp þ 1ÞCsp maxfk; k0g. If a leaf from T is contained in a leaf from T � T , then the
restriction to the leaf from T does not increase the rank. If a leaf from T contains
leaves from T � T then their number is bounded by Cid and therefore the rank
bounded by ~kk.

b) (Complexity) We split the cost estimate into three parts: Nmul for calculating the
exact product in T � T , N� for converting the Rð~kkÞ-blocks corresponding to
‘‘small’’ leaves L�ðT Þ in full matrix format and Nþ;N fast

þ for the (fast) truncation
of the Rð~kkÞ-blocks to ‘‘large’’ leaves LþðT Þ of rank k00.

b1) (Nmul) According to Theorem 2.20 and Lemma 2.4, the exact product using
the Rð~kkÞ-representation in each leaf can be computed with complexity
4C3

spðp þ 1Þ2kk0#I .

b2) (N�) In the ‘‘small’’ leaves r � s 2L�ðT Þ we have to change the representa-
tion to full matrix format which has a cost of 2~kk#r#s:

N� �
X

r�s2L�ðT Þ
2~kk#r#s �

X

r�s2LðT Þ
2~kknminð#rþ#sÞ �

Xp

i¼0

X

r�s2LðT ;iÞ
2~kknminð#rþ#sÞ

�
Rem:1:10b

4ðpþ1ÞCsp
~kknmin#I � 4ðpþ1Þ2C2

spCidmaxfk;k0gnmin#I:

b3) (Nþ) For each ‘‘large’’ leaf in LþðT Þ we truncate the Rð~kkÞ-block to rank k
using Lemma 2.9 for the truncation or Lemma 2.10 for the fast truncation:

Nþ �
Lem:2:9

6~kkNH;StðT ; ~kkÞ þ 23ð~kkÞ3#LðT Þ

�
Lem:2:4

12C3
spC2

id maxfk; k0g2ðpþ 1Þ3#I þ 23C3
spC3

id maxfk; k0g3ðpþ 1Þ3#LðT Þ
� 35C3

spC3
id maxfk; k0g3ðpþ 1Þ3 maxf#I ;#LðT Þg;

N fast
þ �

Lem:2:10
CspCidðpþ 1Þ 24maxfk; k0gNH;StðT ;maxfk; k0gÞ

�

þ184maxfk; k0g3#LðT Þ
�

�
Lem:2:4

48C2
spCid maxfk; k0g2ðpþ 1Þ2#I þ 184CspCid maxfk; k0g3ðpþ 1Þ#LðT Þ:

2.2.2 General Case

Now we consider the general case of possibly different index sets I ; J ;K:

In Theorem 2.20 the cost for the exact multiplication A � B of two matrices from
HðT ; kÞ and HðT 0; k0Þ is estimated and it turns out that the product lies in the set
of H-matrices based on the product tree T � T 0 (with increased rank). In practice,
the structure in which the product has to be stored (after some kind of conversion)
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is given. If T is based on TI ; TJ and T 0 is based on TJ ; TK , then we assume that the
target tree T 00 is based on TI ; TK . Consequently, each leaf of T 00 is either


 contained in a leaf of T � T 0 or


 a vertex of T � T 0.

The following algorithm deals with the second case where the product of two
structured matrices has to be computed and converted to Rðk00Þ-format. To do this
as fast as possible, we simultaneously compute the product of the two structured
matrices and apply the hierarchical conversion of Algorithm 2.11.

Algorithm 2.25 (simultaneous multiplication and conversion to Rðk00Þ -format) Let T
be a block H-tree based on TI ; TJ , let T 0 be a block H-tree based on TJ ; TK and let
T 00 be a block H-tree based on TI ; TK . Let A 2HðT ; kÞ;B 2HðT 0; k0Þ be H-
matrices.

First, we sketch the idea for a 2� 2 partitioning of the index set: assume we want to
convert the product

A11 A12

A21 A22

� �
B11 B12

B21 B22

� �

¼ A11B11 þ A12B21 A11B12 þ A12B22

A21B11 þ A22B21 A21B12 þ A22B22

� �

to Rðk00Þ-format. By induction, we have already computed Rðk00Þ-approximations to
AijBj‘ for i; j; ‘ 2 f1; 2g. The sum Ai1B1‘ þ Ai2B2‘ is then converted to an Rðk00Þ-
matrix Ri‘: Therefore, we have to approximate the matrix consisting of the four
Rðk00Þ-submatrices R11;R12;R21;R22 by an Rðk00Þ-matrix. This can be accomplished if

we treat
R11 R12

R21 R22

� �

¼ R11 0
0 0

� �

þ 0 R12

0 0

� �

þ 0 0
R21 0

� �

þ 0 0
0 R22

� �

as an

Rð4k00Þ-matrix and use the truncation TR
k00 4k00 from Lemma 1.3. To compute the

(formatted) product C :¼ A� B we use the following procedure called by ‘‘C :¼ 0;
MulAddRk(C; I ; J ;K;A;B)’’:

procedure MulAddRkðvar C; r; s; t;A;BÞ;
begin

C0 :¼ 0 2 Rr�s: if Sðr � sÞ ¼ ; or Sðs� tÞ ¼ ; then
begin C0 :¼ Ajr�sBjs�t; f full or RðkÞ � or Rðk0Þ � matrixg

C :¼TR
k00 k00þmaxfk;k0;nmingðC þ C0Þ

end else

begin for each r0 2 SðrÞ; s0 2 SðsÞ; t0 2 SðtÞ do
MulAddRkðC0jr0�t0 ; r

0; s0; t0;A;BÞ;

C :¼TR
k00 #SðrÞ#SðtÞk00 C þ C0ð Þ

end end;
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At last we are able to present the algorithm for the fast H-matrix multiplication
�.

Algorithm 2.26 (fast H-matrix multiplication) Let T be a block H-tree based on
TI ; TJ , let T 0 be a block H-tree based on TJ ; TK and let T 00 be a block H-tree based
on TI ; TK . Let A 2HðT ; kÞ and B 2HðT 0; k0Þ be H-matrices. The following pro-
cedure computes a matrix C 2HðT 00; k00Þ such that C approximates A � B by the fast
truncation of Lemma 2.10 and Algorithm 2.25.

C ¼ A� B is obtained by the call ‘‘C :¼ 0; MulAdd(C; I ; J ;K;A;B)’’ of

procedureMulAddðvar C;r;s; t;A;BÞ;
begin

if Sðr� sÞ 6¼ ; and Sðs� tÞ 6¼ ; and Sðr� tÞ 6¼ ; then f all matrices subdivided g
for r0 2 SðrÞ;s0 2 SðsÞ; t0 2 SðtÞ doMulAdd ðC;r0;s0; t0;A;BÞ

else if Sðr� tÞ 6¼ ; then f target matrix subdivided g
begin C0 :¼Ajr�sBjs�t; f full or RðkÞ� or Rðk0Þ�matrix g

C :¼TH
k00 k00þmaxfk;k0;nmingðCþC0Þ

end elseMulAddRk ðC;r;s; t;A;BÞ f target matrix not subdivided g
end;

2.3 Inversion of H-matrices

In order to explain the inversion procedure for H-matrices, we will shortly
recapitulate the idea of [8] for a quad tree T based on a binary tree TI . Afterwards
we introduce the (slightly more general)H-matrix inversion algorithm and bound
the complexity by the complexity of the matrix multiplication.

Example 2.27 (Inversion of a 232 block matrix) Let M ¼ M11 M12

M21 M22

� �

be a

positive definite matrix. The inverse M�1 to M can be written in the form

M�1¼
ðM11Þ�1ðIþM12S�1M21ðM11Þ�1Þ � ðM11Þ�1M12S�1

�S�1M21ðM11Þ�1 S�1

" #

; S :¼M22�M21ðM11Þ�1M12:

ð2:10Þ

The invertibility of M11 and S is ensured by the positive definiteness of M (the
supposed positive definiteness can be replaced by regularity of all principal subma-
trices).

In (2.10) we use the multiplication and addition of matrices as well as the inverses
ðM11Þ�1 and S�1. The idea now is to replace the exact addition and multiplication
by the formatted H-matrix counterparts and define the two inverses in the sub-
blocks recursively. This is done by the following algorithm.
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Algorithm 2.28 (H-matrix inversion) The procedure Invert from Table 1 for the
inversion of an H-matrix M is to be called by ‘‘H :¼ 0; R :¼ 0; Invert(M ; I ;H ;R);’’
where the inverse is returned in the matrix R, H is needed as auxiliary storage and
the original matrix M is overwritten.

Theorem 2.29 (complexity of the formatted inversion) Let T be a block H-tree. We
assume that for the ‘small’ matrix blocks r � s 2L�ðT Þ the complexity of the
inversion is bounded by the complexity of the multiplication (in the case nmin ¼ 1
both are one elementary operation). Then the complexity NH;InvðT ; kÞ of the for-
matted inversion (Algorithm 2.28) in the set HðT ; kÞ is bounded by NH;�ðT ; k; kÞ.

Proof. We prove the statement by induction over the depth p of the tree T . For
p ¼ 0, we have assumed that the inversion is of the same complexity as the
multiplication. Now let p > 0. For the inversion of the matrix we call the
multiplication MulAdd for all combinations of blocks ri; r‘; rj, where the com-
bination i ¼ ‘ ¼ j stands for the inversion which is by induction at most of the
same complexity as the multiplication. This is exactly what is done for the
computation of the product of two H-matrices. Additionally, we have to call
n� 1 times the formatted addition Add in the block ri � rj, again the same for
the product. (

Table 1. Procedure for the H-matrix inversion

procedure Invertðvar M ; r; var H ; var RÞ;
begin if Sðr � rÞ ¼ ; then Rjr�r :¼ M jr�rð Þ�1 else ffull submatrixg
begin determine the sons SðrÞ ¼ fr1; . . . ; rrg; felimination of the lower triangular blocksg
for ‘ ¼ 1; . . . ; r do

begin InvertðM ; r‘;H ;RÞ;
for j ¼ 1; . . . ; ‘� 1do
begin H jr‘�rj

:¼ 0;MulAddðH jr‘�rj
; r‘; r‘; rj;Rjr‘�r‘ ;Rjr‘�rj

Þ; Rjr‘�rj
:¼ H jr‘�rj

end;
for j ¼ ‘þ 1; . . . ;r do

begin H jr‘�rj
:¼ 0;MulAddðH jr‘�rj

; r‘; r‘; rj;Rjr‘�r‘ ;M jr‘�rj
Þ; M jr‘�rj

:¼ H jr‘�rj
end;

for i ¼ ‘þ 1; . . . ;r do

begin

for j ¼ 1; . . . ; ‘ do
begin H jri�rj

:¼ 0;MulAddðH jri�rj
; ri; r‘; rj;M jri�r‘ ;Rjr‘�rj

Þ;
H jri�rj

:¼ �H jri�rj
;AddðRjri�rj

; ri; rj;Rjri�rj
;H jri�rj

Þ
end;
for j ¼ ‘þ 1; . . . ;r do

begin H jri�rj
:¼ 0;MulAddðH jri�rj

; ri; r‘; rj;M jri�r‘ ;Rjr‘�rj
Þ;

H jri�rj
:¼ �H jri�rj

;AddðM jri�rj
; ri; rj;Rjri�rj

;H jri�rj
Þ

end end end;
for ‘ ¼ r; . . . ; 1 do felimination of the upper triangular blocksg
for i ¼ ‘� 1; . . . ; 1 do
for j ¼ 1; . . . ;r do

begin H jri�rj
:¼ 0;MulAddðH jri�rj

; ri; r‘; rj;M jri�r‘ ;Rjr‘�rj
Þ;

H jri�rj
:¼ �H jri�rj

;AddðRjri�rj
; ri; rj;H jri�rj

;H jri�rj
Þ

end end end;
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3 Approximation of Matrices by H-Matrices

In this section we first give an algebraic result concerning the structure of the
inverse to an H-matrix where the underlying tree T is the one from the right of
the picture in Remark 2.21. Afterwards, we introduce the admissibility condition
that is needed (in the applications that we aim for) to construct the tree T in such a
way that the ‘large’ leaves r � s 2LþðT Þ allow for a low rank approximation of
the matrix under consideration. In the context of partial differential equations it is
the inverse to the stiffness or mass matrix that has to be stored (and computed), in
the boundary element context it is the discrete operator that has to be stored (and
computed).

For later purpose, we mention a result the proof of which is an easy exercise.

Lemma 3.1 Let Mi 2HðT ; kÞ converge to M as i!1: Then also M 2HðT ; kÞ,
i.e., HðT ; kÞ is closed.

3.1 Algebraic Approximation

In the practical applications, it is essential that although the inverse M�1 has a
rather large local rank, we are able to approximate M�1 by a matrix from HðT ; kÞ
with modest rank k: In this subsection, however, we apply no truncation and show
instead what the local rank of the exact inverse is.

Theorem 3.2 Let M 2HðT ; kÞ be an H-matrix with minimal block size nmin ¼ k
and blockwise rank k. The blockH-tree T is based on a binary H-tree TI and for all
r � s 2 T we define

Sðr � sÞ ¼
fr0 � s0 j r0 2 SðrÞ; s0 2 SðsÞg if r ¼ s;

; otherwise

�

(similar to the block partitioning B2 from [8, Section 2.2.2]). Let M be invertible and
p :¼ depthðT Þ. Then the exact inverse M�1 to M fulfils

M�1 2HðT ; kpÞ: ð3:1Þ

Proof. We prove the statement by induction over the depth p.

a) Start of induction ðp ¼ 0Þ. The block H-tree T consists only of the root I � I .
Since M was assumed to be of full rank it follows from Definition 1.14 that
#I � nmin. Furthermore, LðT Þ ¼L�ðT Þ ¼ fI � Ig; LþðT Þ ¼ ;: Therefore
M�1 2HðT ; 0Þ.

b) Induction step: let the statement be true for trees with depth < p. Let SðIÞ ¼
fI1; I2g. The matrices M ;M�1 are partitioned into 2� 2 submatrices corre-
sponding to the index sets I1; I2:
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M11 M12

M21 M22

� �
ðM�1Þ11 ðM�1Þ12
ðM�1Þ21 ðM�1Þ22

� �

¼ I 0
0 I

� �

: ð3:2Þ

By induction we have ðM11Þ�1 2HðTI1�I1 ; kðp � 1ÞÞ and ðM22Þ�1 2HðTI2�I2 ;
kðp � 1ÞÞ. Let us assume for a moment that M11 and M22 are invertible. Then
equation (3.2) consists of four identities:

ðM�1Þ11 ¼ ðM11Þ�1 � ðM11Þ�1M12ðM�1Þ21;
ðM�1Þ22 ¼ ðM22Þ�1 � ðM22Þ�1M21ðM�1Þ12;
ðM�1Þ12 ¼ �ðM11Þ�1M12;

ðM�1Þ21 ¼ �ðM22Þ�1M21:

The matrices M12;M21 are of rank at most k. The last two equations reveal that
rankððM�1Þ12Þ � k � kp and rankððM�1Þ21Þ � k � kp, the first two ones show
ðM�1Þ11 2HðTI1�I1 ; kðp � 1Þ þ kÞ and ðM�1Þ22 2HðTI2�I2 ; kðp � 1Þ þ kÞ.

c) If M11 or M22 is not invertible, then for any small enough e > 0 the matrices
M11 þ eI and M22 þ eI are invertible, so that ðM þ eIÞ�1 2HðT ; kpÞ. Application
of Lemma 3.1 to the limit e! 0 yields (3.1). (

Example 3.3 (inversion of a special sparse matrix) We consider a regular triangu-
lation of ½0; 1�2 with n2 ¼ 22p, p 2 N, degrees of freedom: the vertices of the grid are

vij ¼
i� 1

n� 1
;

j� 1

n� 1

	 


; i; j ¼ 1; . . . ; n:

Two vertices vij; vi0j0 are neighboured if ji� i0j þ jj� j0j � 1 or if i� i0 ¼ j� j0 and
ji� i0j ¼ 1. The index set is I :¼ fði; jÞ j i; j ¼ 1; . . . ; ng. The index set I is divided
successively as follows:

In the first step we divide the index set I into two equally sized subsets
I1 :¼ fði; jÞ j i ¼ 1; . . . ; n=2; j ¼ 1; . . . ; ng and I2 :¼ fði; jÞ j i ¼ n=2þ 1; . . . ; n; j ¼
1; . . . ; ng which are the two sons of the root I. In the second step we divide the index
set I1 into two equally sized subsets I3 :¼ fði; jÞ j i ¼ 1; . . . ; n=2; j ¼ 1; . . . ; n=2g
and I4 :¼ fði; jÞ j i ¼ 1; . . . ; n=2; j ¼ n=2þ 1; . . . ; ng which are the two sons of I1,

I 0 I 2I 1

I 3

I 4

I 5

I 6
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analogously I2 is divided into two sons I5; I6. We repeat steps one and two until the
index subsets contain only one element: they are the leaves of the binary H-tree TI .

The root of the blockH-tree T is I � I . The sons of a vertex r � s 2 T are defined as
required in Theorem 3.2.

Let the matrix M 2 RI�I be sparse in the sense that Mði;jÞ;ði0;j0Þ ¼ 0 if the
corresponding vertices vij; vi0j0 of the grid are not neighboured (This arises typically
for finite element or finite difference discretisations of partial differential operators).

The vertices of the H-tree TI were chosen such that at most n elements of two
disjoint index subsets Ii; Ij of I are neighboured. Therefore the rank k of M restricted
to Ii � Ij is at most n. If M is invertible, then Theorem 3.2 yields

M 2HðT ; nÞ ) M�1 2HðT ; npÞ:

From [8] we can estimate the storage requirements for the H-matrix representation
of M�1 by 2n3p2 which (for p > 6) is less than n4 for the full matrix representation.

3.2 Analytic Approximation: Model Problem

We consider an integral operator of the form

K½u�ðxÞ ¼
Z

X
gðx; yÞuðyÞdy

on a subdomain or submanifold X � Rd with a kernel function g : Rd � Rd ! R.
The operator K is discretised by a Galerkin finite element (boundary element)
scheme for a basis B :¼ f/1; . . . ;/ng, /i : X! R, and yields a matrix

Ki;j :¼
Z

X

Z

X
/iðxÞgðx; yÞ/jðyÞdxdy; i; j 2 f1; . . . ; ng:

We denote the supports of the basis functions by

Xi :¼ supp /i � X and Xs :¼ [i2sXi � X for s � I :

Our aim is to approximate the matrix K by a matrix KH 2HðT ; kÞ for a ‘suitable’
block H-tree T and rank k. If one assumes that the kernel g is asymptotically
smooth (cf. [2]) then it can locally be approximated by a degenerate kernel
~ggðx; yÞ ¼

Pk
i¼1 g1;iðxÞg2;iðyÞ such that

max
ðx;yÞ2Xs�Xr

jgðx; yÞ � ~ggðx; yÞj ¼ OðC
ffiffi
kdp

s;r Þ

for a block s� r 2 TI�I ; where the constant Cs;r < 1 depends on the ratio of their
distance (distðs; rÞ :¼ distðXs;XrÞ) with respect to the Euclidean distance and
their Chebyshev diameter (diam) defined by
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diamðsÞ :¼ inf q 2 R j 9x 2 Rd 8y 2 Xs : kx� yk2 � q=2
� 


: ð3:3Þ

Typically, one requires the standard admissibility condition

minfdiamðsÞ; diamðrÞg � 2g distðs; rÞ ð3:4Þ

to ensure Cs;r < 1 (exponential convergence with respect to the rank k).
However, the statements in this article also hold for the stronger admissibility
condition

maxfdiamðsÞ; diamðrÞg � 2g distðs; rÞ ð3:5Þ

(min replaced by max), which is needed for the (more refined) H2-matrix
approach.

It is essential that the basis functions /i have a small support as usual in FEM or
BEM. In the extreme opposite case of global support (Xi ¼ X), there exists not
even a single block s� r that fulfils the admissibility condition (3.4). Therefore,
we assume that the supports are locally separated in the sense that there exist two
constants Csep and nmin such that

max
i2I

#fj 2 I j distðXi;XjÞ � C�1sepdiamðXiÞg � nmin: ð3:6Þ

The left-hand side is the maximal number of ‘rather close’ supports. Note that the
bound nmin is the same as in Definition 2.3, i.e., the choice of nmin should satisfy
(3.6). The constant Csep is needed in the next section. The following example
illustrates that Csep is very small, even if the grid is strongly graded (note that the
smaller Csep is the weaker is the condition (3.6)).

Example 3.4 (geometrically graded mesh) Let X ¼ ½0; 1� be an interval that is
subdivided into n disjoint sub-intervals Xi:

Xn :¼ ½0; 21�n�; Xi :¼ ð2�i; 21�i�:

The mesh is geometrically graded to the left corner and fulfils condition (3.6) for the
constants nmin :¼ 3 and Csep :¼ 3 for any n 2 N (the ratio of the diameters between
two adjacent sub-intervals is 2 < Csep). A stronger grading would result in a larger
Csep.

One should notice that an extremely refined mesh like in Example 3.4 is rarely
used in practice.

Example 3.5 (algebraically graded mesh) Usually, adaptive grids refined towards a
point use an algebraically graded mesh like Xn :¼ ½0; n�g�; Xi :¼ i�1

n

� �g
; i

n

� �g� �
for a

suitable exponent g � 1 (see [6]).
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In our model problem we only consider the discretisation of an integral
operator with sufficiently smooth kernel. However, the same admissibility
condition (3.5) is also required to construct block H-trees T that are suitable
to approximate the inverse to a finite element stiffness matrix in the set
HðT ; kÞ, where the underlying differential operator is uniformly elliptic with
L1-coefficients (cf. [1]). Note that the integral kernel (the corresponding
Green’s function) has very poor smoothness, since the coefficients may be
extremely nonsmooth.

4 Construction of the H-Tree and Block H-Tree

4.1 Construction of the H-Tree TI

Let I be any fixed (finite) index set. Let d 2 N. For each i 2 I we denote the
Chebyshev centre x that yields the infimum in (3.3) for the support s :¼ Xi of the
basis function /i by mi.

Construction 4.1 (cardinality balanced clustering) Let fe1; . . . ; edg 2 Rd denote the
unit vectors. We construct the tree TI by defining rootðTIÞ :¼ I and for each vertex
t 2 T the set SðtÞ of successors as follows. We define the minimal and maximal
coordinates

aj :¼ minfhmi; eji j i 2 tg; bj :¼ maxfhmi; eji j i 2 tg for j ¼ 1; . . . ; d:

Let jmax :¼ argmaxfbj � aj j j 2 f1; . . . ; dgg. We sort the set fhmi; ejmax
i j i 2 tg in

non-descending order mi1 ; . . . ;mi#t (or determine the median). The set of sons of t is
then defined as

SðtÞ :¼ fs1; s2g; s1 :¼ fi1; . . . ; id#t=2eg; s2 :¼ fid#t=2eþ1; . . . ; i#tg:

The above defined cardinality balanced construction has shown to be practically
useful. Later we will see that for some model problems we can prove that the
cardinality balanced construction is well suited. In general however, we are not
able to prove much for the resulting tree TI , and therefore we give another easier
to analyse procedure. In the numerical test of the last chapter we compare both
approaches.

Construction 4.2 (geometrically balanced clustering) Without loss of generality we
assume that the domain X is contained in the cube ½0; hmaxÞd . The regular sub-
division of this cube into 2d ; 22d ; . . . ; 2pd subcubes can be used to define an H-tree
TI with

Pp
j¼0 2

dj vertices corresponding to one of the subcubes. We construct
the tree TI by defining rootðTIÞ :¼ I and for each vertex t 2 T the set SðtÞ
of successors as follows. The cubes Cl

j on level l for a multiindex j 2 Nd are
defined as
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Cl
j :¼ Il

j1 � � � � �Il
jd

with Il
i :¼ ði� 1Þ2�lhmax; i2�lhmax

� �
:

The sons (successors) SðCl
jÞ are defined as the 2d cubes on level lþ 1 that are

contained in Cl
j . Each index subset t 2 T ð‘ÞI corresponds to a cube Cl

j , starting with
the root I and the cube C0

ð1;...;1Þ. The sons of a vertex t with corresponding cube Cl
j are

defined as

SðtÞ :¼ fsC j C 2 SðCl
jÞg n f;g; where sC :¼ fi 2 t j mi 2 Cg for C 2 SðCl

jÞ:

4.2 Construction of the Block H-Tree T

Based on the H-tree TI from Construction 4.1 or Construction 4.2 and the
admissibility condition (3.4) we can define the block H-tree T as follows. For
an index subset r � I we define the corresponding domain as Xr :¼ [i2rXi. A
product index set r � s with corresponding cubes Cr and Cs is called admis-
sible, if

minfgdiamdiamðrÞ; gdiamdiamðsÞg �gdistdistðr; sÞ; ð4:1Þ

where the modified distance and diameter are

gdiamdiamðtÞ :¼diamðCtÞ þmax
i2t

diamðXiÞ;

gdistdistðr; sÞ :¼distðCr;CsÞ �max
i2r[s

diamðXiÞ:

If a product r � s is admissible with respect to (4.1) then (see Lemma 4.5) the
corresponding domain Xr � Xs is admissible with respect to the standard
admissibility condition (3.5).

Construction 4.3 (canonical blockH-tree) Let theH-tree TI be given. We define the
block H-tree T by rootðT Þ :¼ I � I and for each vertex r � s 2 T the set of suc-
cessors

C(1)
21

C(1)
22C(1)

12

(0)C11 C(2) C(3)C(1)
11 ** **
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Sðr � sÞ :¼
fr0 � s0jr0 2 SðrÞ; s0 2 SðsÞg if #r > nmin and #s > nmin

and r � s is in admissible,

; otherwise.

8
<

:

Lemma 4.4 Let T be the block H-tree of depth p � 1 built from the H-tree TI by
Construction 4.3.We denote the maximal number of sons of a vertex s 2 TI by Csons.
Then the sparsity constant (cf. Definition 2.1) Csp of T is bounded by

Csp � Csons max
r2TI

#fs 2 TI j r � s 2 T nLðT Þ and r � s is inadmissibleg:

Proof. Let r � s 2 T ð‘Þ. Then r � s is either the root of T or the father element
FðrÞ �FðsÞ is inadmissible due to Construction 4.3. (

Lemma 4.5 (geometrically balanced cluster tree) Let hmin :¼ mini2I diamðXiÞ. We
use the same notation as in Construction 4.2 and assume that (3.6) holds for some
constants Csep; nmin 2 N. Then Constructions 4.2 and 4.3 yield a block H-tree T
where each r � s 2LþðT Þ fulfils

minfdiamðXrÞ; diamðXsÞg � 2g distðXr;XsÞ

and the depth as well as the sparsity and idempotency constant of T is bounded by

Csp � ð8ðg�1ð1þ CsepÞ þ CsepÞ
ffiffiffi
d
p
þ 4Þd ;

Cid � ðð4þ 4gÞð1þ CsepÞÞ2d ;

depthðT Þ � 1þ log2 ð1þ CsepÞ
ffiffiffi
d
p

hmaxh�1min

� �

:

Proof. a) Admissibility. Let r � s 2LþðT Þ be admissible. Since
diamðXrÞ � gdiamdiamðrÞ and gdistdistðr; sÞ � distðXr;XsÞ we have

gdiamdiamðrÞ � 2ggdistdist ðr; sÞ ) diamðXrÞ � 2gdistðXr;XsÞ:

b) Sparsity. For all t 2 T ð‘ÞI with #t > nmin there holds

max
i2t

diamðXiÞ �
ð3:6Þ

CsepdiamðCtÞ ¼ Csep

ffiffiffi
d
p

2�‘hmax; ð4:2aÞ

gdiamdiamðtÞ ¼ diamðCtÞ þmax
i2t

diamðXiÞ � ð1þ CsepÞ
ffiffiffi
d
p

2�‘hmax; ð4:2bÞ

gdiamdiamðtÞ �
ffiffiffi
d
p

2�‘hmax: ð4:2cÞ
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Our aim is to apply Lemma 4.4 where we have to bound the number of inad-
missible vertices. Let r 2 TI with #r > nmin. The distance from Cr to the clusters
belonging to the same level ‘ is considered in layers (see Fig. 1) as follows:

L1 :¼ fCs j distðCs;CrÞ ¼ 0g; Li :¼ fCs j distðCs;Li�1Þ ¼ 0g n Li�1 for i ¼ 2;3; . . .

The distance of a cluster Xs to Xr with Cs 2 Liþ1 is bounded by

gdistdistðs; rÞ �
ð4:2aÞ
ði� Csep

ffiffiffi
d
p
Þ2�‘hmax: ð4:2dÞ

For a cluster Xs with Cs 2 Liþ1 there holds

i�ðg�1þg�1CsepþCsepÞ
ffiffiffi
d
p

) gði�Csep

ffiffiffi
d
p
Þ � ð1þCsepÞ

ffiffiffi
d
p

) gði�Csep

ffiffiffi
d
p
Þ2�‘hmax � ð1þCsepÞ

ffiffiffi
d
p

2�‘hmax

)
ð4:2b;dÞ

minfgdiamdiamðsÞ; gdiamdiamðrÞg � ggdistdistðs;rÞ

and it follows that all products s� t with Cs 2 Liþ1 and i � ilayer :¼
ðð1þ CsepÞg�1 þ CsepÞ

ffiffiffi
d
p

are admissible. The number of inadmissible clusters is
therefore bounded by #L1 þ � � � þ#Lilayer � ð2ilayer þ 1Þd . According to Lem-
ma 4.4, the sparsity of T is bounded by Csp � 4dð2ilayer þ 1Þd .

c) Depth. From (4.2b) the diameter of a (non-leaf) cluster on level ‘ is bounded by
ð1þ CsepÞ

ffiffiffi
d
p

2�‘hmax. According to the definition of hmin we get ½ð1þ CsepÞffiffiffi
d
p

2�‘hmax � hmin and therefore ‘ � log2ðð1þ CsepÞ
ffiffiffi
d
p

hmax=hminð ÞÞ.

d) Idempotency. Let r � t 2LðT ; ‘Þ. If #Ir � nmin or #It � nmin, then the ele-
mentwise idempotency is Cidðr � tÞ ¼ 1. Now let r � t be admissible. Define
q :¼ dðlog2ð2ð1þ gÞð1þ CsepÞÞe. We want to prove that for all vertices
r0; s0; t0 2 T ‘þq, r0 � s0 2 S	ðr � sÞ and s0 � t0 2 S	ðs� tÞ one of the vertices r0 � s0

and s0 � t0 is a leaf. Let r0; s0; t0 be given as above and minf#r0;#s0;#t0g > nmin.

Ω i

im

Ω

Cr

r

L1

L2

Cr

Fig 1. Left: the cluster Xr contains the whole set Xi while the corresponding cube Cr contains only mi.
Right: the cube Cr and the first two layers L1 and L2

Construction and Arithmetics of H-Matrices 323



For u 2 fr0; s0; t0g it holds

gdiamdiamðuÞ �
ð4:2bÞ
ð1þ CsepÞ

ffiffiffi
d
p

2�q�‘hmax �
1

2

ffiffiffi
d
p
ðgþ 1Þ�12�‘hmax: ð4:2eÞ

Then we can estimate

gdiamdiamðs0Þ �
ð4:2eÞ1

2

ffiffiffi
d
p
ð1�gðgþ1Þ�1Þ2�‘hmax ¼

1

2

ffiffiffi
d
p

2�‘hmax�g
1

2

ffiffiffi
d
p

2�‘hmaxðgþ1Þ�1

�
ð4:2c;eÞ1

2
minfgdiamdiamðrÞ; gdiamdiamðtÞg�g max

u2fr0;s0;t0g
gdiamdiamðuÞ

�1

2
ggdistdistðr;tÞ�g max

u2fr0;s0;t0g
gdiamdiamðuÞ

¼1

2
g distðCr;CtÞ�

1

2
g max

i2r[t
diamðXiÞ�g max

u2fr0;s0;t0g
gdiamdiamðuÞ

� gmaxfdistðCr0 ;Cs0 Þ; distðCs0 ;Ct0 Þg þ g diamðCs0 Þ � g max
u2fr0;s0;t0g

gdiamdiamðuÞ

� gmaxfgdistdistðr0; s0Þ;gdistdistðs0; t0Þg þ g max
i2r0[s0[t0

diamðXiÞ þ g diamðCs0 Þ

� g max
u2fr0;s0;t0g

gdiamdiamðuÞ

� gmaxfgdistdistðr0; s0Þ;gdistdistðs0; t0Þg;

i.e., either r0 � s0 or s0 � t0 is admissible (and has no sons). It follows that there are
no vertices r00 � s00 2 T ð‘þqþ1Þ and s00 � t00 2 T ð‘þqþ1Þ with r00 2 S	ðrÞ; t00 2 S	ðtÞ.
Since the number of sons of a vertex is limited by 22d , there are at most 22dq

vertices in T Æ T that are contained in r � t. (

Remark 4.6 Lemma 4.5 proves that Construction 4.2 (! H-tree) combined with
Construction 4.3 (! blockH-tree) yields anH-tree T that is sparse and idempotent
with Csp and Cid independent of the cardinality of the index set I. The depth of the
tree is estimated by the logarithm of the ratio of the smallest element to the diameter
of the whole domain (which can be large). Construction 4.1 does not necessarily lead
to sparsity (idempotency) independent of #I . This is not to say that the resulting
H-matrices are not data-sparse, but the block-structure is less homogenous and
more difficult to analyse. The trees from Construction 4.1 fulfil the condition
#SðtÞ 6¼ 1 for all vertices t 2 T .

Remark 4.7 (admissibility for H2-matrices) The results of Lemma 4.5 depend on
the admissibility condition (3.4). In the context of H2-matrices [11] the stronger
admissibility condition
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maxfdiamðsÞ; diamðrÞg � 2g distðs; rÞ ð4:3Þ

is required. The bounds for the sparsity constant Csp, the idempotency constant Cid

and the depth p of the tree also hold for the admissibility condition (4.3), because the
reference cubes Cr,Cs on the same level are all of equal size.

4.3 A Special Vertex Concentrated Grid

In Lemma 4.2 we were able to prove that the block H-tree constructed by geo-
metrically balanced clustering is sparse and almost idempotent with constants
independent of the number of basis functions #I . However, the depth p of the tree
depends on the ratio of the diameter hmin of the smallest support to the diameter
hmax of the whole domain. For a uniformly refined grid with nd vertices in Rd we
would expect hmin ¼ Oðn�1Þ, while hmax ¼ Oð1Þ. If the grid is concentrated along
one edge using an algebraically graded mesh, we would expect hmin ¼ Oðn�dÞ (see
Example 3.5). In both cases the depth p is proportional to logðnÞ. Therefore, for
practically relevant grid constructions, the depth of the tree causes no problems.

However, there are pathological cases of geometrically graded meshes. In
Example 3.4 the grid is exponentially concentrated towards the origin. The
diameter of the leftmost interval is 21�n and the diameter of the domain is 1. Here,
the depth of the (geometrically balanced) tree would be p ¼ OðnÞ (implying that
the H-matrix technique is as costly of the naive approach, e.g., the storage is
NH;St � depthðT ÞCsp#I ¼ Oðn2Þ).

In the following we consider a similar example in R2 where we can prove that the
(almost) cardinality balancedH-tree of the index set has sparsity and idempotency
constants independent of n. In the next example, the elements (panels) may be
considered as the supports of piecewise constant basis functions in a boundary
element method.

Example 4.8 We consider the grid from Fig. 2 with n ¼ 3p þ 1 panels ðXiÞi2I that is
constructed by p times regularly refining the panel at the origin into four parts and
starting with the unit square ½0; 1�2.We define the layers L1; . . . ; Lp that contain panels
of equal size (see Fig. 2) where the size is decreasing with increasing layer number.

Let J :¼ f1; . . . ; pg denote the layer numbers and let TJ be a cardinality balanced
binary H-tree of J as depicted in Fig. 2. Analogously, the tree TI is the same as TJ

but the layer numbers are replaced by the numbers of the domains that belong to it.
The tree T is built as in Construction 4.3 with the admissibility condition

r � s admissible , minfdiamðXrÞ; diamðXsÞg � 2g distðXr;XsÞ

and nmin :¼ 2d3=2þ log2ðg�1Þe. In the following we bound the sparsity Csp and
idempotency Cid of T.

The diameter of a single layer Lj is 2
3=2�j which is also the diameter of Lj [ � � � [ Lp.

Two vertices r; s 2 TI are admissible, if there are at least d3=2þ log2ðg�1Þe layers
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between them: the smaller one is of the size 23=2�j and the distance between the two is
at least 23=2þlog2ðg

�1Þ2�j ¼ g�123=2�j.

(Sparsity) Let r 2 TI . According to the prior statement the only inadmissible nodes
to r are the ones containing at least one of the 2d3=2þ log2ðg�1Þe þ 1 layers closest
to r. From Lemma 4.4 we get Csp � 8þ 4dlog2ðg�1Þe.

(Idempotency) Let r � t 2 T be admissible and let r � s, s� t be inadmissible,
especially #s > nmin. Then s contains at least 2d3=2þ log2ðg�1Þe layers so that the
two sons of s have at least a distance of d3=2þ log2ðg�1Þe to one of the clusters r; t.
Therefore, Cid � #SðrÞ#SðtÞ þ 1 � 5.

In the previous example we were able to define the H-tree TI such that the
canonical block H-tree T from Construction 4.3 is sparse and idempotent with
depthðT Þ ¼ OðlogðnÞÞ. This example illustrates that in the case where the geo-
metrically balanced approach of Construction 4.2 fails, we can use Construction
4.1 which will yield anH-tree TI of depth at most log2ðnÞ. In practice however, we
do not expect the grids to be strongly refined only towards a few single vertices
and therefore Construction 4.2 should be appropriate.

5 Numerical Results

The numerical tests in this section serve two purposes: first, we want to compare
the theoretical results with the numerical ones in order to see if there is some gap
between theoretical asymptotic bounds and actual complexity. Second, for the
cardinality balanced clustering we were not able to sufficiently analyse the arising

L3L5 L4 L2 L1

0
0

1

1

Fig. 2. Left: the grid consists of n ¼ 3p þ 1 panels. The diameter of the smallest panel is 2�p
ffiffiffi
2
p

. The
grid is partitioned into layers L1; . . . ;Lp that contain panels of equal size. Right: a balanced H-tree for
the index set J ¼ f1; . . . ; pg, where p is a power of two. If p is not a power of two, then there appear

also leaves on the last but one level
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H-trees and therefore we want to observe the complexity of the H-matrix ar-
ithmetics for some model problems. It will turn out that the complexity is geometry
independend in the sense that it is worse for a uniform grid than for irregular grids.

It should be noted that the operator to be inverted has no influence on the
complexity of the formatted arithmetics for a fixed rank k (only the approxima-
tion quality may differ). For the sake of simplicity, we consider Poisson’s equation
in the next subsections. Numerical results for other operators are presented in the
last Subsection 5, see also [12].

All computations in this chapter were performed on a SUN ULTRASPARC III with
900 MHz CPU clock rate and 150 MHz memory clock rate.

5.1 Model Problem

We consider Poisson’s equation

�Du ¼ f

in X � R2 with Dirichlet boundary conditions ujC ¼ 0 on C :¼ @X. A Ritz-
Galerkin discretisation with basis functions ð/iÞni¼1 leads to the problem of solving
a linear system of equations

Ax ¼ b

for the right hand side b 2 Rn with entries bi :¼
R

X f ðxÞ/iðxÞdx and the stiffness

matrix A 2 Rn�n with entries Ai;j :¼
R

X

R

Xðr/jðxÞÞTr/iðyÞdxdy. We choose the
nodal basis for the piecewise linear functions on a triangulation of the domain X.

Our goal is to compute and store an approximation A e�1�1 to A�1 in the H-matrix
format. For the domain and triangulation we consider the three cases of a regular
refinement of the unit square, a boundary concentrated grid and an edge con-
centrated grid. The variety of triangulations is used to compare the clustering
algorithms. It turns out that the uniform grid is the worst case with respect to the
complexity of the (formatted) arithmetics per degree of freedom. Therefore, the
numerical results for the uniform triangulation can be regarded as a benchmark
result for arbitrary triangulations.

uniform grid boundary concentrated edge concentrated
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5.2 Uniform Grid

The H-tree T card
I built by Construction 4.1 (cardinality balanced) and the H-tree

T geo
I built by Construction 4.2 (geometrically balanced) for the index set

I :¼ f1; . . . ; ng coincide in the uniform case. Construction 4.3 yields the block
H-tree T whose leaves partition the product index set I � I . The parameter g in
the admissibility condition is g :¼ 1:0 and the minimal blocksize is nmin :¼ 32. For
n ¼ 1024 and n ¼ 4096 degrees of freedom the partitioning is depicted in Fig. 3.
The sparsity Csp and the idempotency Cid of the tree T are given in Table 2. We
observe that the sparsity is bounded by 23 and the idempotency is bounded by 18.
The complexity of the (formatted) arithmetics can be seen in Tables 3–5. The
estimated complexity for the (formatted) multiplication and the (formatted) in-
version is due to Theorem 2.24 and 2.29 Oðn logðnÞ2k2Þ. For a fixed rank k and an
increase of the number of degrees of freedom from n ¼ 65536 ¼ 216 to
4n ¼ 262144 ¼ 218 we expect an increase in the complexity by a factor of
4n logð4nÞ2

n logðnÞ2 ¼ 81=16 � 5. This happens for the (formatted) multiplication in Table 4

for k ¼ 1 and the (formatted) inversion in Table 3 for k 2 f1; 2g. The (formatted)
inversion is by a factor of 2� 3 faster than the (formatted) multiplication, because
the sparsity of the stiffness matrix is exploited in the computational scheme.

5.3 Boundary Concentrated Grid

The H-tree T card
I built by Construction 4.1 (cardinality balanced) and the H-tree

T geo
I built by Construction 4.2 (geometrically balanced) for the index set

Fig. 3. The partitioning of the product index set I � I in the uniform case for n ¼ 1024 and n ¼ 4096
degrees of freedom. RðkÞ-blocks are light grey and full matrix blocks are dark grey

Table 2. The sparsity Csp and the idempotency Cid of the tree T is bounded for increasing n

n ¼ 4096 n ¼ 16384 n ¼ 65536 n ¼ 262144

Csp 23 23 23 23
Cid 18 18 18 18
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I :¼ f1; . . . ; ng differ in the boundary concentrated case. Construction 4.3 yields
the block H-tree T card or T geo, respectively, whose leaves partition the product
index set I � I . The parameter g in the admissibility condition is g :¼ 1:0 and the
minimal blocksize is nmin :¼ 32. For n ¼ 3058 degrees of freedom the partitioning
(geometrically and cardinality balanced) is depicted in Fig. 4. The sparsity Csp and

Table 3. Left: time (in seconds) for the (formatted) inversion on a uniform grid. Right: relative error
kI � A InvðAÞk in the spectral norm for the (formatted) inverse on a uniform grid

n ¼ 4096 16384 65536 262144 n ¼ 4096 16384 65536 262144

k ¼ 1 10.59 6.7+1 3.5+2 1.6+3 k ¼ 1 2.4 8.9 2.6+1 4.7+1
k ¼ 2 11.85 8.0+1 4.4+2 2.2+3 k ¼ 2 5.7)1 3.2 1.2+1 2.7+1
k ¼ 3 13.73 1.0+2 5.6+2 3.0+3 k ¼ 3 9.2)2 5.2)1 2.4 1.0+1
k ¼ 4 16.19 1.2+2 6.8+2 3.6+3 k ¼ 4 2.0)2 9.9)2 4.4)1 1.91
k ¼ 5 19.33 1.5+2 8.6+2 4.8+3 k ¼ 5 2.3)3 9.2)3 4.0)2 1.7)1
k ¼ 6 22.41 1.7+2 1.0+3 6.0+3 k ¼ 6 6.4)4 3.7)3 1.8)2 8.4)2
k ¼ 7 25.80 2.0+2 1.3+3 7.4+3 k ¼ 7 1.4)4 6.9)4 2.9)3 1.2)2
k ¼ 8 27.87 2.2+2 1.3+3 7.8+3 k ¼ 8 7.8)5 3.9)4 1.8)3 7.7)3
k ¼ 9 30.19 2.4+2 1.5+3 9.1+3 k ¼ 9 8.5)6 4.6)5 2.1)4 9.4)4

k ¼ 15 39.77 3.4+2 2.3+3 1.5+4 k ¼ 15 6.8)9 3.3)8 1.3)7 5.2)7
k ¼ 20 42.15 3.7+2 2.6+3 1.6+4 k ¼ 20 1.7)12 1.3)10 5.3)10 2.5)9

Table 4. Left: time (in seconds) for the (formatted) addition on a uniform grid. Right: time (in
seconds) for the (formatted) multiplication on a uniform grid

n ¼ 4096 16384 65536 262144 n ¼ 4096 16384 65536 262144

k ¼ 1 1.5)1 0.81 4.1 2.0+1 k ¼ 1 20.59 1.3+2 6.6+2 3.3+3
k ¼ 2 2.4)1 1.44 7.8 4.0+1 k ¼ 2 24.95 1.7+2 9.4+2 5.2+3
k ¼ 3 3.4)1 2.09 1.2+1 6.2+1 k ¼ 3 30.36 2.1+2 1.3+3 7.6+3
k ¼ 4 4.9)1 2.87 1.6+1 8.0+1 k ¼ 4 37.82 2.7+2 1.6+3 9.3+3
k ¼ 5 6.7)1 4.03 2.2+1 1.1+2 k ¼ 5 46.91 3.5+2 2.2+3 1.3+4
k ¼ 6 8.9)1 5.27 2.8+1 1.5+2 k ¼ 6 57.02 4.3+2 2.8+3 1.7+4
k ¼ 7 1.12 6.82 3.7+1 1.9+2 k ¼ 7 68.75 5.3+2 3.5+3 2.2+4
k ¼ 8 1.33 8.02 4.3+1 2.2+2 k ¼ 8 77.28 6.0+2 3.8+3 2.3+4
k ¼ 9 1.66 10.19 5.5+1 2.9+2 k ¼ 9 93.55 7.3+2 4.8+3 2.9+4

k ¼ 15 3.94 24.21 1.3+2 6.9+2 k ¼ 15 1.7+2 1.4+3 9.7+3 6.2+4
k ¼ 20 5.08 34.04 1.9+2 1.0+3 k ¼ 20 2.0+2 1.8+3 1.2+4 8.0+4

Table 5. Left: time (in seconds) for the matrix vector multiplication on a uniform grid. Right: storage
requirements (in 1024 Byte) for an H-matrix corresponding to a uniform grid

n ¼ 4096 16384 65536 262144 n ¼ 4096 16384 65536 262144

k ¼ 1 2.0)2 0.16 0.76 3.3 k ¼ 1 1.5+4 7.4+4 3.3+5 1.4+6
k ¼ 2 3.4)2 0.18 0.88 3.9 k ¼ 2 1.7+4 8.6+4 4.0+5 1.8+6
k ¼ 3 3.7)2 0.20 0.99 4.6 k ¼ 3 1.9+4 9.8+4 4.7+5 2.1+6
k ¼ 4 4.0)2 0.22 1.11 5.2 k ¼ 4 2.1+4 1.1+5 5.4+5 2.5+6
k ¼ 5 4.3)2 0.24 1.23 5.9 k ¼ 5 2.2+4 1.2+5 6.1+5 2.9+6
k ¼ 6 4.6)2 0.26 1.35 6.5 k ¼ 6 2.4+4 1.3+5 6.8+5 3.3+6
k ¼ 7 4.9)2 0.28 1.46 7.1 k ¼ 7 2.6+4 1.5+5 7.5+5 3.6+6
k ¼ 8 5.1)2 0.30 1.58 7.7 k ¼ 8 2.7+4 1.6+5 8.2+5 4.0+6
k ¼ 9 5.4)2 0.31 1.69 8.4 k ¼ 9 2.9+4 1.7+5 8.8+5 4.4+6

k ¼ 15 7.1)2 0.43 2.39 12.1 k ¼ 15 3.9+4 2.4+5 1.3+6 6.7+6
k ¼ 20 7.1)2 0.44 2.54 13.4 k ¼ 20 4.8+4 3.0+5 1.7+6 8.5+6
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the idempotency Cid of the trees T card and T geo are given in Table 6. As we
expected the sparsity and idempotency constants of the tree T geo are bounded
while these values seem to increase for the tree T card. The complexity and accuracy
of the (formatted) inversion is given in Table 7. The complexity of the inversion is
reduced as compared to the uniform case while the accuracy is enhanced. This
resembles the fact that the grid degenerates to a lower dimensional structure (the
boundary). The cardinality balanced tree T card is also suitable for the (formatted)
arithmetics, although it is of an irregular structure and does not possess a
bounded sparsity or idempotency. From Table 8 we observe that the complexity
of the corresponding arithmetic operations exceeds that of the geometrically ba-
lanced tree by a factor of 2� 3. Since we were able to provide estimates for the
complexity with respect to the geometrically balanced tree and this tree yields a
better performance in practice, we propose to use the tree T geo over the tree T card.

5.4 Edge Concentrated Grid

The H-tree T card
I built by Construction 4.1 (cardinality balanced) and the H-tree

T geo
I built by Construction 4.2 (geometrically balanced) for the index set

Fig. 4. The partitioning of the product index set I � I in the boundary concentrated case for n ¼ 3216
degrees of freedom; to the left the geometrically balanced and to the right the cardinality balanced case.

RðkÞ-blocks are light grey and full matrix blocks are dark grey

Table 6. The sparsity Csp and the idempotency Cid of the tree T geo are bounded for increasing n while
this is not true for T card in the boundary concentrated case

n ¼ 6664 13568 27384 55024 110312

depthðT geoÞ 11 13 15 17 19
CspðT geoÞ 26 28 34 36 26
CidðT geoÞ 18 20 24 22 20

depthðT cardÞ 9 10 11 12 13
CspðT cardÞ 32 38 56 80 131
CidðT cardÞ 24 28 34 39 53
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I :¼ f1; . . . ; ng differ in the edge concentrated case. Construction 4.3 yields the
block H-trees T card or T geo, respectively, whose leaves partition the product index
set I � I . The parameter g in the admissibility condition is g :¼ 1:0 and the minimal
blocksize is nmin :¼ 32. For n ¼ 3058 degrees of freedom the partitioning (geo-
metrically and cardinality balanced) is depicted in Fig. 5. We should mention that
the left picture in Fig. 5 is slightly misleading because the structure of the parti-
tioning is not as regular as it seems: blocks r � s with #r � nmin or #s � nmin and
#r� nmin or #s� nmin are not visible but they appear frequently. The sparsity
Csp and the idempotency Cid of the trees T card and T geo are given in Table 9. Again
we observe that the sparsity and idempotency is bounded for the geometrically
balanced tree T geo while the sparsity of the cardinality balanced tree T card seems to
be CspðT cardÞ ¼ Oð ffiffiffinp Þ. In Fig. 5 we find that the maximal sparsity appears only in a
few rows or columns of the matrix and indeed the numerical results in Table 11
indicate that the (formatted) inversion is of complexity Oðn logðnÞ2Þ. Since the

Table 7. Left: time (in seconds) for the (formatted) inversion on the boundary concentrated grid for
the geometrically balanced tree T geo. Right: relative error kI � A InvðAÞk in the spectral norm for the

(formatted) inverse on the boundary concentrated grid

n ¼ 6664 13568 27384 55024 110312 n ¼ 6664 13568 27384 55024 110312

k ¼ 1 17.83 30.23 7.5+1 1.8+2 4.0+2 k ¼ 1 9.6)2 9.9)2 7.9)2 1.1)1 9.4)2
k ¼ 2 19.24 33.72 8.6+1 2.1+2 4.7+2 k ¼ 2 1.3)2 1.1)2 1.7)2 1.9)2 1.6)2
k ¼ 3 21.27 38.26 9.6+1 2.4+2 5.5+2 k ¼ 3 3.9)3 4.4)3 1.7)3 4.5)3 4.7)3
k ¼ 4 22.79 43.09 1.0+2 2.5+2 5.7+2 k ¼ 4 8.6)5 4.7)4 1.7)4 5.0)4 5.1)4
k ¼ 5 24.53 44.47 1.1+2 2.7+2 6.3+2 k ¼ 5 8.9)6 3.6)5 7.6)6 4.9)5 5.0)5
k ¼ 6 25.03 46.66 1.2+2 2.9+2 6.7+2 k ¼ 6 2.1)8 9.8)7 1.2)6 1.3)6 1.4)6
k ¼ 7 26.42 47.88 1.2+2 3.0+2 7.0+2 k ¼ 7 3.1)10 5.0)7 1.9)10 5.8)7 5.9)7
k ¼ 8 25.71 47.81 1.2+2 2.9+2 6.9+2 k ¼ 8 1.4)12 4.2)10 2.1)11 2.5)10 2.8)10
k ¼ 9 25.72 47.94 1.2+2 3.0+2 7.0+2 k ¼ 9 1.0)14 2.4)13 2.1)14 2.7)13 2.8)13

Table 8. Left: time (in seconds) for the (formatted) inversion on the boundary concentrated grid for
the cardinality balanced tree T card. Right: relative error kI � A InvðAÞk in the spectral norm for the

(formatted) inverse on the boundary concentrated grid

n ¼ 6664 13568 27384 55024 110312 n ¼ 6664 13568 27384 55024 110312

k ¼ 1 25.69 68.26 1.9+2 4.1+2 8.2+2 k ¼ 1 3.8)2 7.8)2 7.8)2 1.0)1 1.1)1
k ¼ 2 27.08 73.67 2.1+2 4.6+2 9.7+2 k ¼ 2 4.8)3 2.2)2 2.2)2 2.7)2 2.8)2
k ¼ 3 29.29 80.22 2.3+2 5.4+2 1.2+3 k ¼ 3 1.2)3 6.3)3 6.3)3 8.5)3 8.6)3
k ¼ 4 31.07 87.48 2.5+2 5.9+2 1.3+3 k ¼ 4 1.2)4 3.9)4 3.9)4 1.1)3 1.2)3

Table 9. The sparsity Csp and the idempotency Cid of the tree T geo are bounded for increasing n while
this is not true for T card in the edge concentrated case

n ¼ 6129 12272 24559 49134 98285

depthðT geoÞ 13 15 17 19 21
CspðT geoÞ 21 21 21 21 21
CidðT geoÞ 16 16 16 16 16

depthðT cardÞ 10 11 12 13 14
CspðT cardÞ 204 204 320 320 640
CidðT cardÞ 40 48 56 64 72
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(formatted) inversion with the cardinality balanced tree is by a factor of 2� 3
slower than with the geometrically balanced tree, it is advisable to use the latter one
for which we have proven the desired estimates of the complexity.

5.5 A Differential Operator with ‘‘Jumping Coefficients’’

In this section we replace the Laplacian �D ¼ �divr by the operator �Dc,

Figure 5. The partitioning of the product index set I � I in the edge concentrated case for n ¼ 3058
degrees of freedom; to the left the geometrically balanced and to the right cardinality balanced case.

RðkÞ-blocks are light grey and full matrix blocks are dark grey

Table 10. Left: time (in seconds) for the (formatted) inversion on the boundary concentrated grid.
Right: relative error kI � A InvðAÞk in the spectral norm for the (formatted) inverse on the edge

concentrated grid

n ¼ 6129 12272 24559 49134 98285 n ¼ 6129 12272 24559 49134 98285

k=1 15.01 36.01 8.7+1 2.1+2 4.8+2 k=1 3.2)2 3.9)2 4.4)2 4.7)2 4.9)2
k=2 15.76 38.74 9.4+1 2.3+2 5.4+2 k=2 4.1)3 4.3)3 4.6)3 4.7)3 4.9)3
k=3 16.83 41.79 1.0+2 2.5+2 6.1+2 k=3 4.3)5 4.6)5 4.7)5 4.9)5 4.9)5
k=4 17.93 44.80 1.1+2 2.7+2 6.4+2 k=4 5.3)6 6.2)6 6.4)6 6.8)6 6.9)6
k=5 18.94 47.34 1.2+2 2.9+2 6.9+2 k=5 1.1)8 1.3)8 1.3)8 1.3)8 1.3)8
k=6 19.56 49.50 1.2+2 3.1+2 7.4+2 k=6 5.0)11 5.8)11 5.8)11 5.9)11 6.2)11
k=7 19.78 50.55 1.3+2 3.2+2 7.7+2 k=7 1.9)14 2.8)14 3.5)14 4.5)14 5.2)14

Table 11. Left: time (in seconds) for the (formatted) inversion on the edge concentrated grid for the
cardinality balanced tree T card. Right: relative error kI � A InvðAÞk in the spectral norm for the

(formatted) inverse on the edge concentrated grid

n ¼ 6129 12272 24559 49134 98285 n ¼ 6129 12272 24559 49134 98285

k=1 42.21 1.1+2 2.5+2 5.5+2 1.3+3 k=1 4.6)2 5.5)2 5.5)2 6.5)2 7.0)2
k=2 50.69 1.2+2 3.0+2 6.6+2 1.6+3 k=2 5.5)3 6.3)3 6.4)3 6.7)3 6.9)3
k=3 57.24 1.5+2 3.6+2 8.2+2 2.1+3 k=3 1.3)3 1.5)3 1.6)3 1.7)3 1.7)3
k=4 67.15 1.7+2 4.3+2 9.8+2 2.5+3 k=4 2.9)5 3.2)5 3.5)5 3.7)5 3.7)5
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�Dc½u�ðxÞ :¼ � div rðc; xÞrð Þ½u�ðxÞ;

where the function rðc; xÞ : R� ½0; 1�2 ! R is defined by

rðc; xÞ :¼ c if x 2 ½0:1; 0:9�2 n ½0:2; 0:8�2;
1 otherwise.

�

The construction of the H-tree TI and the block H-tree T is the same as
in Section 5.2. Consequently, the sparsity and idempotency constants are the
same. Moreover, the complexity for the formatted inversion is the same in
the sense that the numbers coincide exactly with those of Tables 3–5. In Table 12
we present the approximation error kI � A InvðAÞk in the spectral norm for the
formatted inverse InvðAÞ. In this first example the coefficient rðc; xÞ is chosen
in a structured way as it may occur, e.g., for technical devices. As a second
example we choose the coefficient rðc; xÞ in a stochastic way: for each element
s in our triangulation we define a random real number cs 2 ½1; c� and let

rðc; xÞ :¼ cs; for x 2 s;

i.e., rðc; xÞ is piecewise constant. Table 13 presents the approximation error
kI � A InvðAÞk in the spectral norm for the formatted inverse InvðAÞ. The
approximation error is (roughly) the same as for the Laplace operator (cf. Table 3).

Table 12. The relative error kI � A InvðAÞk in the spectral norm for the (formatted) inverse on the
uniform grid where the coefficient is c ¼ 10 left and c ¼ 100 right

c ¼ 10 n ¼ 4096 n ¼ 16384 n ¼ 65536 c ¼ 100 n ¼ 4096 n ¼ 16384 n ¼ 65536

k ¼ 1 6.7 26.3 57.3 k ¼ 1 111 199.9 179.7
k ¼ 5 4.2)3 3.6)2 1.6)1 k ¼ 5 3.1)2 1.79 3.19
k ¼ 9 3.2)5 2.5)4 9.7)4 k ¼ 9 3.9)4 4.2)3 1.7)2
k ¼ 13 7.0)7 3.4)6 1.8)5 k ¼ 13 1.8)6 1.4)4 1.8)4
k ¼ 17 6.1)11 2.5)9 1.4)8 k ¼ 17 1.1)10 2.4)8 4.3)7

Table 13. The relative error kI � A InvðAÞk in the spectral norm for the (formatted) inverse on the
uniform grid where the bound for the random coefficient is c ¼ 10 left and c ¼ 100 right

c ¼ 10 n ¼ 4096 n ¼ 16384 n ¼ 65536 c ¼ 100 n ¼ 4096 n ¼ 16384 n ¼ 65536

k ¼ 1 2.77 10.15 31.04 k ¼ 1 3.00 10.59 32.96
k ¼ 5 2.1)3 9.9)3 4.9)2 k ¼ 5 2.4)3 1.1)2 5.1)2
k ¼ 9 9.7)6 6.5)5 3.1)4 k ¼ 9 1.6)5 6.9)5 3.2)4
k ¼ 13 3.8)7 1.3)6 4.9)6 k ¼ 13 1.5)7 1.1)6 4.0)6
k ¼ 17 9.6)11 3.4)9 1.4)8 k ¼ 17 7.8)11 4.8)9 9.5)9

σ = 1

σ = 1

σ = c
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